Btrfs: Fix uninitialized root flags for subvolumes
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <asm/unaligned.h>
33 #include "compat.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "print-tree.h"
40 #include "async-thread.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44
45 static struct extent_io_ops btree_extent_io_ops;
46 static void end_workqueue_fn(struct btrfs_work *work);
47 static void free_fs_root(struct btrfs_root *root);
48 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
49 int read_only);
50 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
51 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
52 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
53 struct btrfs_root *root);
54 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
55 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
56 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
57 struct extent_io_tree *dirty_pages,
58 int mark);
59 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
60 struct extent_io_tree *pinned_extents);
61 static int btrfs_cleanup_transaction(struct btrfs_root *root);
62
63 /*
64 * end_io_wq structs are used to do processing in task context when an IO is
65 * complete. This is used during reads to verify checksums, and it is used
66 * by writes to insert metadata for new file extents after IO is complete.
67 */
68 struct end_io_wq {
69 struct bio *bio;
70 bio_end_io_t *end_io;
71 void *private;
72 struct btrfs_fs_info *info;
73 int error;
74 int metadata;
75 struct list_head list;
76 struct btrfs_work work;
77 };
78
79 /*
80 * async submit bios are used to offload expensive checksumming
81 * onto the worker threads. They checksum file and metadata bios
82 * just before they are sent down the IO stack.
83 */
84 struct async_submit_bio {
85 struct inode *inode;
86 struct bio *bio;
87 struct list_head list;
88 extent_submit_bio_hook_t *submit_bio_start;
89 extent_submit_bio_hook_t *submit_bio_done;
90 int rw;
91 int mirror_num;
92 unsigned long bio_flags;
93 /*
94 * bio_offset is optional, can be used if the pages in the bio
95 * can't tell us where in the file the bio should go
96 */
97 u64 bio_offset;
98 struct btrfs_work work;
99 };
100
101 /* These are used to set the lockdep class on the extent buffer locks.
102 * The class is set by the readpage_end_io_hook after the buffer has
103 * passed csum validation but before the pages are unlocked.
104 *
105 * The lockdep class is also set by btrfs_init_new_buffer on freshly
106 * allocated blocks.
107 *
108 * The class is based on the level in the tree block, which allows lockdep
109 * to know that lower nodes nest inside the locks of higher nodes.
110 *
111 * We also add a check to make sure the highest level of the tree is
112 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
113 * code needs update as well.
114 */
115 #ifdef CONFIG_DEBUG_LOCK_ALLOC
116 # if BTRFS_MAX_LEVEL != 8
117 # error
118 # endif
119 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
120 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
121 /* leaf */
122 "btrfs-extent-00",
123 "btrfs-extent-01",
124 "btrfs-extent-02",
125 "btrfs-extent-03",
126 "btrfs-extent-04",
127 "btrfs-extent-05",
128 "btrfs-extent-06",
129 "btrfs-extent-07",
130 /* highest possible level */
131 "btrfs-extent-08",
132 };
133 #endif
134
135 /*
136 * extents on the btree inode are pretty simple, there's one extent
137 * that covers the entire device
138 */
139 static struct extent_map *btree_get_extent(struct inode *inode,
140 struct page *page, size_t page_offset, u64 start, u64 len,
141 int create)
142 {
143 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
144 struct extent_map *em;
145 int ret;
146
147 read_lock(&em_tree->lock);
148 em = lookup_extent_mapping(em_tree, start, len);
149 if (em) {
150 em->bdev =
151 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
152 read_unlock(&em_tree->lock);
153 goto out;
154 }
155 read_unlock(&em_tree->lock);
156
157 em = alloc_extent_map(GFP_NOFS);
158 if (!em) {
159 em = ERR_PTR(-ENOMEM);
160 goto out;
161 }
162 em->start = 0;
163 em->len = (u64)-1;
164 em->block_len = (u64)-1;
165 em->block_start = 0;
166 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
167
168 write_lock(&em_tree->lock);
169 ret = add_extent_mapping(em_tree, em);
170 if (ret == -EEXIST) {
171 u64 failed_start = em->start;
172 u64 failed_len = em->len;
173
174 free_extent_map(em);
175 em = lookup_extent_mapping(em_tree, start, len);
176 if (em) {
177 ret = 0;
178 } else {
179 em = lookup_extent_mapping(em_tree, failed_start,
180 failed_len);
181 ret = -EIO;
182 }
183 } else if (ret) {
184 free_extent_map(em);
185 em = NULL;
186 }
187 write_unlock(&em_tree->lock);
188
189 if (ret)
190 em = ERR_PTR(ret);
191 out:
192 return em;
193 }
194
195 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
196 {
197 return crc32c(seed, data, len);
198 }
199
200 void btrfs_csum_final(u32 crc, char *result)
201 {
202 put_unaligned_le32(~crc, result);
203 }
204
205 /*
206 * compute the csum for a btree block, and either verify it or write it
207 * into the csum field of the block.
208 */
209 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
210 int verify)
211 {
212 u16 csum_size =
213 btrfs_super_csum_size(&root->fs_info->super_copy);
214 char *result = NULL;
215 unsigned long len;
216 unsigned long cur_len;
217 unsigned long offset = BTRFS_CSUM_SIZE;
218 char *map_token = NULL;
219 char *kaddr;
220 unsigned long map_start;
221 unsigned long map_len;
222 int err;
223 u32 crc = ~(u32)0;
224 unsigned long inline_result;
225
226 len = buf->len - offset;
227 while (len > 0) {
228 err = map_private_extent_buffer(buf, offset, 32,
229 &map_token, &kaddr,
230 &map_start, &map_len, KM_USER0);
231 if (err)
232 return 1;
233 cur_len = min(len, map_len - (offset - map_start));
234 crc = btrfs_csum_data(root, kaddr + offset - map_start,
235 crc, cur_len);
236 len -= cur_len;
237 offset += cur_len;
238 unmap_extent_buffer(buf, map_token, KM_USER0);
239 }
240 if (csum_size > sizeof(inline_result)) {
241 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
242 if (!result)
243 return 1;
244 } else {
245 result = (char *)&inline_result;
246 }
247
248 btrfs_csum_final(crc, result);
249
250 if (verify) {
251 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
252 u32 val;
253 u32 found = 0;
254 memcpy(&found, result, csum_size);
255
256 read_extent_buffer(buf, &val, 0, csum_size);
257 if (printk_ratelimit()) {
258 printk(KERN_INFO "btrfs: %s checksum verify "
259 "failed on %llu wanted %X found %X "
260 "level %d\n",
261 root->fs_info->sb->s_id,
262 (unsigned long long)buf->start, val, found,
263 btrfs_header_level(buf));
264 }
265 if (result != (char *)&inline_result)
266 kfree(result);
267 return 1;
268 }
269 } else {
270 write_extent_buffer(buf, result, 0, csum_size);
271 }
272 if (result != (char *)&inline_result)
273 kfree(result);
274 return 0;
275 }
276
277 /*
278 * we can't consider a given block up to date unless the transid of the
279 * block matches the transid in the parent node's pointer. This is how we
280 * detect blocks that either didn't get written at all or got written
281 * in the wrong place.
282 */
283 static int verify_parent_transid(struct extent_io_tree *io_tree,
284 struct extent_buffer *eb, u64 parent_transid)
285 {
286 struct extent_state *cached_state = NULL;
287 int ret;
288
289 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
290 return 0;
291
292 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
293 0, &cached_state, GFP_NOFS);
294 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
295 btrfs_header_generation(eb) == parent_transid) {
296 ret = 0;
297 goto out;
298 }
299 if (printk_ratelimit()) {
300 printk("parent transid verify failed on %llu wanted %llu "
301 "found %llu\n",
302 (unsigned long long)eb->start,
303 (unsigned long long)parent_transid,
304 (unsigned long long)btrfs_header_generation(eb));
305 }
306 ret = 1;
307 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
308 out:
309 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
310 &cached_state, GFP_NOFS);
311 return ret;
312 }
313
314 /*
315 * helper to read a given tree block, doing retries as required when
316 * the checksums don't match and we have alternate mirrors to try.
317 */
318 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
319 struct extent_buffer *eb,
320 u64 start, u64 parent_transid)
321 {
322 struct extent_io_tree *io_tree;
323 int ret;
324 int num_copies = 0;
325 int mirror_num = 0;
326
327 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
328 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
329 while (1) {
330 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
331 btree_get_extent, mirror_num);
332 if (!ret &&
333 !verify_parent_transid(io_tree, eb, parent_transid))
334 return ret;
335
336 /*
337 * This buffer's crc is fine, but its contents are corrupted, so
338 * there is no reason to read the other copies, they won't be
339 * any less wrong.
340 */
341 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
342 return ret;
343
344 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
345 eb->start, eb->len);
346 if (num_copies == 1)
347 return ret;
348
349 mirror_num++;
350 if (mirror_num > num_copies)
351 return ret;
352 }
353 return -EIO;
354 }
355
356 /*
357 * checksum a dirty tree block before IO. This has extra checks to make sure
358 * we only fill in the checksum field in the first page of a multi-page block
359 */
360
361 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
362 {
363 struct extent_io_tree *tree;
364 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
365 u64 found_start;
366 unsigned long len;
367 struct extent_buffer *eb;
368 int ret;
369
370 tree = &BTRFS_I(page->mapping->host)->io_tree;
371
372 if (page->private == EXTENT_PAGE_PRIVATE) {
373 WARN_ON(1);
374 goto out;
375 }
376 if (!page->private) {
377 WARN_ON(1);
378 goto out;
379 }
380 len = page->private >> 2;
381 WARN_ON(len == 0);
382
383 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
384 if (eb == NULL) {
385 WARN_ON(1);
386 goto out;
387 }
388 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
389 btrfs_header_generation(eb));
390 BUG_ON(ret);
391 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
392
393 found_start = btrfs_header_bytenr(eb);
394 if (found_start != start) {
395 WARN_ON(1);
396 goto err;
397 }
398 if (eb->first_page != page) {
399 WARN_ON(1);
400 goto err;
401 }
402 if (!PageUptodate(page)) {
403 WARN_ON(1);
404 goto err;
405 }
406 csum_tree_block(root, eb, 0);
407 err:
408 free_extent_buffer(eb);
409 out:
410 return 0;
411 }
412
413 static int check_tree_block_fsid(struct btrfs_root *root,
414 struct extent_buffer *eb)
415 {
416 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
417 u8 fsid[BTRFS_UUID_SIZE];
418 int ret = 1;
419
420 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
421 BTRFS_FSID_SIZE);
422 while (fs_devices) {
423 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
424 ret = 0;
425 break;
426 }
427 fs_devices = fs_devices->seed;
428 }
429 return ret;
430 }
431
432 #define CORRUPT(reason, eb, root, slot) \
433 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
434 "root=%llu, slot=%d\n", reason, \
435 (unsigned long long)btrfs_header_bytenr(eb), \
436 (unsigned long long)root->objectid, slot)
437
438 static noinline int check_leaf(struct btrfs_root *root,
439 struct extent_buffer *leaf)
440 {
441 struct btrfs_key key;
442 struct btrfs_key leaf_key;
443 u32 nritems = btrfs_header_nritems(leaf);
444 int slot;
445
446 if (nritems == 0)
447 return 0;
448
449 /* Check the 0 item */
450 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
451 BTRFS_LEAF_DATA_SIZE(root)) {
452 CORRUPT("invalid item offset size pair", leaf, root, 0);
453 return -EIO;
454 }
455
456 /*
457 * Check to make sure each items keys are in the correct order and their
458 * offsets make sense. We only have to loop through nritems-1 because
459 * we check the current slot against the next slot, which verifies the
460 * next slot's offset+size makes sense and that the current's slot
461 * offset is correct.
462 */
463 for (slot = 0; slot < nritems - 1; slot++) {
464 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
465 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
466
467 /* Make sure the keys are in the right order */
468 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
469 CORRUPT("bad key order", leaf, root, slot);
470 return -EIO;
471 }
472
473 /*
474 * Make sure the offset and ends are right, remember that the
475 * item data starts at the end of the leaf and grows towards the
476 * front.
477 */
478 if (btrfs_item_offset_nr(leaf, slot) !=
479 btrfs_item_end_nr(leaf, slot + 1)) {
480 CORRUPT("slot offset bad", leaf, root, slot);
481 return -EIO;
482 }
483
484 /*
485 * Check to make sure that we don't point outside of the leaf,
486 * just incase all the items are consistent to eachother, but
487 * all point outside of the leaf.
488 */
489 if (btrfs_item_end_nr(leaf, slot) >
490 BTRFS_LEAF_DATA_SIZE(root)) {
491 CORRUPT("slot end outside of leaf", leaf, root, slot);
492 return -EIO;
493 }
494 }
495
496 return 0;
497 }
498
499 #ifdef CONFIG_DEBUG_LOCK_ALLOC
500 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
501 {
502 lockdep_set_class_and_name(&eb->lock,
503 &btrfs_eb_class[level],
504 btrfs_eb_name[level]);
505 }
506 #endif
507
508 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
509 struct extent_state *state)
510 {
511 struct extent_io_tree *tree;
512 u64 found_start;
513 int found_level;
514 unsigned long len;
515 struct extent_buffer *eb;
516 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
517 int ret = 0;
518
519 tree = &BTRFS_I(page->mapping->host)->io_tree;
520 if (page->private == EXTENT_PAGE_PRIVATE)
521 goto out;
522 if (!page->private)
523 goto out;
524
525 len = page->private >> 2;
526 WARN_ON(len == 0);
527
528 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
529 if (eb == NULL) {
530 ret = -EIO;
531 goto out;
532 }
533
534 found_start = btrfs_header_bytenr(eb);
535 if (found_start != start) {
536 if (printk_ratelimit()) {
537 printk(KERN_INFO "btrfs bad tree block start "
538 "%llu %llu\n",
539 (unsigned long long)found_start,
540 (unsigned long long)eb->start);
541 }
542 ret = -EIO;
543 goto err;
544 }
545 if (eb->first_page != page) {
546 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
547 eb->first_page->index, page->index);
548 WARN_ON(1);
549 ret = -EIO;
550 goto err;
551 }
552 if (check_tree_block_fsid(root, eb)) {
553 if (printk_ratelimit()) {
554 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
555 (unsigned long long)eb->start);
556 }
557 ret = -EIO;
558 goto err;
559 }
560 found_level = btrfs_header_level(eb);
561
562 btrfs_set_buffer_lockdep_class(eb, found_level);
563
564 ret = csum_tree_block(root, eb, 1);
565 if (ret) {
566 ret = -EIO;
567 goto err;
568 }
569
570 /*
571 * If this is a leaf block and it is corrupt, set the corrupt bit so
572 * that we don't try and read the other copies of this block, just
573 * return -EIO.
574 */
575 if (found_level == 0 && check_leaf(root, eb)) {
576 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
577 ret = -EIO;
578 }
579
580 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
581 end = eb->start + end - 1;
582 err:
583 free_extent_buffer(eb);
584 out:
585 return ret;
586 }
587
588 static void end_workqueue_bio(struct bio *bio, int err)
589 {
590 struct end_io_wq *end_io_wq = bio->bi_private;
591 struct btrfs_fs_info *fs_info;
592
593 fs_info = end_io_wq->info;
594 end_io_wq->error = err;
595 end_io_wq->work.func = end_workqueue_fn;
596 end_io_wq->work.flags = 0;
597
598 if (bio->bi_rw & REQ_WRITE) {
599 if (end_io_wq->metadata == 1)
600 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
601 &end_io_wq->work);
602 else if (end_io_wq->metadata == 2)
603 btrfs_queue_worker(&fs_info->endio_freespace_worker,
604 &end_io_wq->work);
605 else
606 btrfs_queue_worker(&fs_info->endio_write_workers,
607 &end_io_wq->work);
608 } else {
609 if (end_io_wq->metadata)
610 btrfs_queue_worker(&fs_info->endio_meta_workers,
611 &end_io_wq->work);
612 else
613 btrfs_queue_worker(&fs_info->endio_workers,
614 &end_io_wq->work);
615 }
616 }
617
618 /*
619 * For the metadata arg you want
620 *
621 * 0 - if data
622 * 1 - if normal metadta
623 * 2 - if writing to the free space cache area
624 */
625 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
626 int metadata)
627 {
628 struct end_io_wq *end_io_wq;
629 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
630 if (!end_io_wq)
631 return -ENOMEM;
632
633 end_io_wq->private = bio->bi_private;
634 end_io_wq->end_io = bio->bi_end_io;
635 end_io_wq->info = info;
636 end_io_wq->error = 0;
637 end_io_wq->bio = bio;
638 end_io_wq->metadata = metadata;
639
640 bio->bi_private = end_io_wq;
641 bio->bi_end_io = end_workqueue_bio;
642 return 0;
643 }
644
645 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
646 {
647 unsigned long limit = min_t(unsigned long,
648 info->workers.max_workers,
649 info->fs_devices->open_devices);
650 return 256 * limit;
651 }
652
653 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
654 {
655 return atomic_read(&info->nr_async_bios) >
656 btrfs_async_submit_limit(info);
657 }
658
659 static void run_one_async_start(struct btrfs_work *work)
660 {
661 struct async_submit_bio *async;
662
663 async = container_of(work, struct async_submit_bio, work);
664 async->submit_bio_start(async->inode, async->rw, async->bio,
665 async->mirror_num, async->bio_flags,
666 async->bio_offset);
667 }
668
669 static void run_one_async_done(struct btrfs_work *work)
670 {
671 struct btrfs_fs_info *fs_info;
672 struct async_submit_bio *async;
673 int limit;
674
675 async = container_of(work, struct async_submit_bio, work);
676 fs_info = BTRFS_I(async->inode)->root->fs_info;
677
678 limit = btrfs_async_submit_limit(fs_info);
679 limit = limit * 2 / 3;
680
681 atomic_dec(&fs_info->nr_async_submits);
682
683 if (atomic_read(&fs_info->nr_async_submits) < limit &&
684 waitqueue_active(&fs_info->async_submit_wait))
685 wake_up(&fs_info->async_submit_wait);
686
687 async->submit_bio_done(async->inode, async->rw, async->bio,
688 async->mirror_num, async->bio_flags,
689 async->bio_offset);
690 }
691
692 static void run_one_async_free(struct btrfs_work *work)
693 {
694 struct async_submit_bio *async;
695
696 async = container_of(work, struct async_submit_bio, work);
697 kfree(async);
698 }
699
700 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
701 int rw, struct bio *bio, int mirror_num,
702 unsigned long bio_flags,
703 u64 bio_offset,
704 extent_submit_bio_hook_t *submit_bio_start,
705 extent_submit_bio_hook_t *submit_bio_done)
706 {
707 struct async_submit_bio *async;
708
709 async = kmalloc(sizeof(*async), GFP_NOFS);
710 if (!async)
711 return -ENOMEM;
712
713 async->inode = inode;
714 async->rw = rw;
715 async->bio = bio;
716 async->mirror_num = mirror_num;
717 async->submit_bio_start = submit_bio_start;
718 async->submit_bio_done = submit_bio_done;
719
720 async->work.func = run_one_async_start;
721 async->work.ordered_func = run_one_async_done;
722 async->work.ordered_free = run_one_async_free;
723
724 async->work.flags = 0;
725 async->bio_flags = bio_flags;
726 async->bio_offset = bio_offset;
727
728 atomic_inc(&fs_info->nr_async_submits);
729
730 if (rw & REQ_SYNC)
731 btrfs_set_work_high_prio(&async->work);
732
733 btrfs_queue_worker(&fs_info->workers, &async->work);
734
735 while (atomic_read(&fs_info->async_submit_draining) &&
736 atomic_read(&fs_info->nr_async_submits)) {
737 wait_event(fs_info->async_submit_wait,
738 (atomic_read(&fs_info->nr_async_submits) == 0));
739 }
740
741 return 0;
742 }
743
744 static int btree_csum_one_bio(struct bio *bio)
745 {
746 struct bio_vec *bvec = bio->bi_io_vec;
747 int bio_index = 0;
748 struct btrfs_root *root;
749
750 WARN_ON(bio->bi_vcnt <= 0);
751 while (bio_index < bio->bi_vcnt) {
752 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
753 csum_dirty_buffer(root, bvec->bv_page);
754 bio_index++;
755 bvec++;
756 }
757 return 0;
758 }
759
760 static int __btree_submit_bio_start(struct inode *inode, int rw,
761 struct bio *bio, int mirror_num,
762 unsigned long bio_flags,
763 u64 bio_offset)
764 {
765 /*
766 * when we're called for a write, we're already in the async
767 * submission context. Just jump into btrfs_map_bio
768 */
769 btree_csum_one_bio(bio);
770 return 0;
771 }
772
773 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
774 int mirror_num, unsigned long bio_flags,
775 u64 bio_offset)
776 {
777 /*
778 * when we're called for a write, we're already in the async
779 * submission context. Just jump into btrfs_map_bio
780 */
781 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
782 }
783
784 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
785 int mirror_num, unsigned long bio_flags,
786 u64 bio_offset)
787 {
788 int ret;
789
790 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
791 bio, 1);
792 BUG_ON(ret);
793
794 if (!(rw & REQ_WRITE)) {
795 /*
796 * called for a read, do the setup so that checksum validation
797 * can happen in the async kernel threads
798 */
799 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
800 mirror_num, 0);
801 }
802
803 /*
804 * kthread helpers are used to submit writes so that checksumming
805 * can happen in parallel across all CPUs
806 */
807 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
808 inode, rw, bio, mirror_num, 0,
809 bio_offset,
810 __btree_submit_bio_start,
811 __btree_submit_bio_done);
812 }
813
814 #ifdef CONFIG_MIGRATION
815 static int btree_migratepage(struct address_space *mapping,
816 struct page *newpage, struct page *page)
817 {
818 /*
819 * we can't safely write a btree page from here,
820 * we haven't done the locking hook
821 */
822 if (PageDirty(page))
823 return -EAGAIN;
824 /*
825 * Buffers may be managed in a filesystem specific way.
826 * We must have no buffers or drop them.
827 */
828 if (page_has_private(page) &&
829 !try_to_release_page(page, GFP_KERNEL))
830 return -EAGAIN;
831 return migrate_page(mapping, newpage, page);
832 }
833 #endif
834
835 static int btree_writepage(struct page *page, struct writeback_control *wbc)
836 {
837 struct extent_io_tree *tree;
838 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
839 struct extent_buffer *eb;
840 int was_dirty;
841
842 tree = &BTRFS_I(page->mapping->host)->io_tree;
843 if (!(current->flags & PF_MEMALLOC)) {
844 return extent_write_full_page(tree, page,
845 btree_get_extent, wbc);
846 }
847
848 redirty_page_for_writepage(wbc, page);
849 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
850 WARN_ON(!eb);
851
852 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
853 if (!was_dirty) {
854 spin_lock(&root->fs_info->delalloc_lock);
855 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
856 spin_unlock(&root->fs_info->delalloc_lock);
857 }
858 free_extent_buffer(eb);
859
860 unlock_page(page);
861 return 0;
862 }
863
864 static int btree_writepages(struct address_space *mapping,
865 struct writeback_control *wbc)
866 {
867 struct extent_io_tree *tree;
868 tree = &BTRFS_I(mapping->host)->io_tree;
869 if (wbc->sync_mode == WB_SYNC_NONE) {
870 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
871 u64 num_dirty;
872 unsigned long thresh = 32 * 1024 * 1024;
873
874 if (wbc->for_kupdate)
875 return 0;
876
877 /* this is a bit racy, but that's ok */
878 num_dirty = root->fs_info->dirty_metadata_bytes;
879 if (num_dirty < thresh)
880 return 0;
881 }
882 return extent_writepages(tree, mapping, btree_get_extent, wbc);
883 }
884
885 static int btree_readpage(struct file *file, struct page *page)
886 {
887 struct extent_io_tree *tree;
888 tree = &BTRFS_I(page->mapping->host)->io_tree;
889 return extent_read_full_page(tree, page, btree_get_extent);
890 }
891
892 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
893 {
894 struct extent_io_tree *tree;
895 struct extent_map_tree *map;
896 int ret;
897
898 if (PageWriteback(page) || PageDirty(page))
899 return 0;
900
901 tree = &BTRFS_I(page->mapping->host)->io_tree;
902 map = &BTRFS_I(page->mapping->host)->extent_tree;
903
904 ret = try_release_extent_state(map, tree, page, gfp_flags);
905 if (!ret)
906 return 0;
907
908 ret = try_release_extent_buffer(tree, page);
909 if (ret == 1) {
910 ClearPagePrivate(page);
911 set_page_private(page, 0);
912 page_cache_release(page);
913 }
914
915 return ret;
916 }
917
918 static void btree_invalidatepage(struct page *page, unsigned long offset)
919 {
920 struct extent_io_tree *tree;
921 tree = &BTRFS_I(page->mapping->host)->io_tree;
922 extent_invalidatepage(tree, page, offset);
923 btree_releasepage(page, GFP_NOFS);
924 if (PagePrivate(page)) {
925 printk(KERN_WARNING "btrfs warning page private not zero "
926 "on page %llu\n", (unsigned long long)page_offset(page));
927 ClearPagePrivate(page);
928 set_page_private(page, 0);
929 page_cache_release(page);
930 }
931 }
932
933 static const struct address_space_operations btree_aops = {
934 .readpage = btree_readpage,
935 .writepage = btree_writepage,
936 .writepages = btree_writepages,
937 .releasepage = btree_releasepage,
938 .invalidatepage = btree_invalidatepage,
939 .sync_page = block_sync_page,
940 #ifdef CONFIG_MIGRATION
941 .migratepage = btree_migratepage,
942 #endif
943 };
944
945 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
946 u64 parent_transid)
947 {
948 struct extent_buffer *buf = NULL;
949 struct inode *btree_inode = root->fs_info->btree_inode;
950 int ret = 0;
951
952 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
953 if (!buf)
954 return 0;
955 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
956 buf, 0, 0, btree_get_extent, 0);
957 free_extent_buffer(buf);
958 return ret;
959 }
960
961 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
962 u64 bytenr, u32 blocksize)
963 {
964 struct inode *btree_inode = root->fs_info->btree_inode;
965 struct extent_buffer *eb;
966 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
967 bytenr, blocksize, GFP_NOFS);
968 return eb;
969 }
970
971 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
972 u64 bytenr, u32 blocksize)
973 {
974 struct inode *btree_inode = root->fs_info->btree_inode;
975 struct extent_buffer *eb;
976
977 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
978 bytenr, blocksize, NULL, GFP_NOFS);
979 return eb;
980 }
981
982
983 int btrfs_write_tree_block(struct extent_buffer *buf)
984 {
985 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
986 buf->start + buf->len - 1);
987 }
988
989 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
990 {
991 return filemap_fdatawait_range(buf->first_page->mapping,
992 buf->start, buf->start + buf->len - 1);
993 }
994
995 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
996 u32 blocksize, u64 parent_transid)
997 {
998 struct extent_buffer *buf = NULL;
999 int ret;
1000
1001 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1002 if (!buf)
1003 return NULL;
1004
1005 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1006
1007 if (ret == 0)
1008 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1009 return buf;
1010
1011 }
1012
1013 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1014 struct extent_buffer *buf)
1015 {
1016 struct inode *btree_inode = root->fs_info->btree_inode;
1017 if (btrfs_header_generation(buf) ==
1018 root->fs_info->running_transaction->transid) {
1019 btrfs_assert_tree_locked(buf);
1020
1021 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1022 spin_lock(&root->fs_info->delalloc_lock);
1023 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1024 root->fs_info->dirty_metadata_bytes -= buf->len;
1025 else
1026 WARN_ON(1);
1027 spin_unlock(&root->fs_info->delalloc_lock);
1028 }
1029
1030 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1031 btrfs_set_lock_blocking(buf);
1032 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1033 buf);
1034 }
1035 return 0;
1036 }
1037
1038 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1039 u32 stripesize, struct btrfs_root *root,
1040 struct btrfs_fs_info *fs_info,
1041 u64 objectid)
1042 {
1043 root->node = NULL;
1044 root->commit_root = NULL;
1045 root->sectorsize = sectorsize;
1046 root->nodesize = nodesize;
1047 root->leafsize = leafsize;
1048 root->stripesize = stripesize;
1049 root->ref_cows = 0;
1050 root->track_dirty = 0;
1051 root->in_radix = 0;
1052 root->orphan_item_inserted = 0;
1053 root->orphan_cleanup_state = 0;
1054
1055 root->fs_info = fs_info;
1056 root->objectid = objectid;
1057 root->last_trans = 0;
1058 root->highest_objectid = 0;
1059 root->name = NULL;
1060 root->in_sysfs = 0;
1061 root->inode_tree = RB_ROOT;
1062 root->block_rsv = NULL;
1063 root->orphan_block_rsv = NULL;
1064
1065 INIT_LIST_HEAD(&root->dirty_list);
1066 INIT_LIST_HEAD(&root->orphan_list);
1067 INIT_LIST_HEAD(&root->root_list);
1068 spin_lock_init(&root->node_lock);
1069 spin_lock_init(&root->orphan_lock);
1070 spin_lock_init(&root->inode_lock);
1071 spin_lock_init(&root->accounting_lock);
1072 mutex_init(&root->objectid_mutex);
1073 mutex_init(&root->log_mutex);
1074 init_waitqueue_head(&root->log_writer_wait);
1075 init_waitqueue_head(&root->log_commit_wait[0]);
1076 init_waitqueue_head(&root->log_commit_wait[1]);
1077 atomic_set(&root->log_commit[0], 0);
1078 atomic_set(&root->log_commit[1], 0);
1079 atomic_set(&root->log_writers, 0);
1080 root->log_batch = 0;
1081 root->log_transid = 0;
1082 root->last_log_commit = 0;
1083 extent_io_tree_init(&root->dirty_log_pages,
1084 fs_info->btree_inode->i_mapping, GFP_NOFS);
1085
1086 memset(&root->root_key, 0, sizeof(root->root_key));
1087 memset(&root->root_item, 0, sizeof(root->root_item));
1088 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1089 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1090 root->defrag_trans_start = fs_info->generation;
1091 init_completion(&root->kobj_unregister);
1092 root->defrag_running = 0;
1093 root->root_key.objectid = objectid;
1094 root->anon_super.s_root = NULL;
1095 root->anon_super.s_dev = 0;
1096 INIT_LIST_HEAD(&root->anon_super.s_list);
1097 INIT_LIST_HEAD(&root->anon_super.s_instances);
1098 init_rwsem(&root->anon_super.s_umount);
1099
1100 return 0;
1101 }
1102
1103 static int find_and_setup_root(struct btrfs_root *tree_root,
1104 struct btrfs_fs_info *fs_info,
1105 u64 objectid,
1106 struct btrfs_root *root)
1107 {
1108 int ret;
1109 u32 blocksize;
1110 u64 generation;
1111
1112 __setup_root(tree_root->nodesize, tree_root->leafsize,
1113 tree_root->sectorsize, tree_root->stripesize,
1114 root, fs_info, objectid);
1115 ret = btrfs_find_last_root(tree_root, objectid,
1116 &root->root_item, &root->root_key);
1117 if (ret > 0)
1118 return -ENOENT;
1119 BUG_ON(ret);
1120
1121 generation = btrfs_root_generation(&root->root_item);
1122 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1123 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1124 blocksize, generation);
1125 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1126 free_extent_buffer(root->node);
1127 return -EIO;
1128 }
1129 root->commit_root = btrfs_root_node(root);
1130 return 0;
1131 }
1132
1133 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1134 struct btrfs_fs_info *fs_info)
1135 {
1136 struct btrfs_root *root;
1137 struct btrfs_root *tree_root = fs_info->tree_root;
1138 struct extent_buffer *leaf;
1139
1140 root = kzalloc(sizeof(*root), GFP_NOFS);
1141 if (!root)
1142 return ERR_PTR(-ENOMEM);
1143
1144 __setup_root(tree_root->nodesize, tree_root->leafsize,
1145 tree_root->sectorsize, tree_root->stripesize,
1146 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1147
1148 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1149 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1150 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1151 /*
1152 * log trees do not get reference counted because they go away
1153 * before a real commit is actually done. They do store pointers
1154 * to file data extents, and those reference counts still get
1155 * updated (along with back refs to the log tree).
1156 */
1157 root->ref_cows = 0;
1158
1159 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1160 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1161 if (IS_ERR(leaf)) {
1162 kfree(root);
1163 return ERR_CAST(leaf);
1164 }
1165
1166 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1167 btrfs_set_header_bytenr(leaf, leaf->start);
1168 btrfs_set_header_generation(leaf, trans->transid);
1169 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1170 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1171 root->node = leaf;
1172
1173 write_extent_buffer(root->node, root->fs_info->fsid,
1174 (unsigned long)btrfs_header_fsid(root->node),
1175 BTRFS_FSID_SIZE);
1176 btrfs_mark_buffer_dirty(root->node);
1177 btrfs_tree_unlock(root->node);
1178 return root;
1179 }
1180
1181 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1182 struct btrfs_fs_info *fs_info)
1183 {
1184 struct btrfs_root *log_root;
1185
1186 log_root = alloc_log_tree(trans, fs_info);
1187 if (IS_ERR(log_root))
1188 return PTR_ERR(log_root);
1189 WARN_ON(fs_info->log_root_tree);
1190 fs_info->log_root_tree = log_root;
1191 return 0;
1192 }
1193
1194 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1195 struct btrfs_root *root)
1196 {
1197 struct btrfs_root *log_root;
1198 struct btrfs_inode_item *inode_item;
1199
1200 log_root = alloc_log_tree(trans, root->fs_info);
1201 if (IS_ERR(log_root))
1202 return PTR_ERR(log_root);
1203
1204 log_root->last_trans = trans->transid;
1205 log_root->root_key.offset = root->root_key.objectid;
1206
1207 inode_item = &log_root->root_item.inode;
1208 inode_item->generation = cpu_to_le64(1);
1209 inode_item->size = cpu_to_le64(3);
1210 inode_item->nlink = cpu_to_le32(1);
1211 inode_item->nbytes = cpu_to_le64(root->leafsize);
1212 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1213
1214 btrfs_set_root_node(&log_root->root_item, log_root->node);
1215
1216 WARN_ON(root->log_root);
1217 root->log_root = log_root;
1218 root->log_transid = 0;
1219 root->last_log_commit = 0;
1220 return 0;
1221 }
1222
1223 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1224 struct btrfs_key *location)
1225 {
1226 struct btrfs_root *root;
1227 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1228 struct btrfs_path *path;
1229 struct extent_buffer *l;
1230 u64 generation;
1231 u32 blocksize;
1232 int ret = 0;
1233
1234 root = kzalloc(sizeof(*root), GFP_NOFS);
1235 if (!root)
1236 return ERR_PTR(-ENOMEM);
1237 if (location->offset == (u64)-1) {
1238 ret = find_and_setup_root(tree_root, fs_info,
1239 location->objectid, root);
1240 if (ret) {
1241 kfree(root);
1242 return ERR_PTR(ret);
1243 }
1244 goto out;
1245 }
1246
1247 __setup_root(tree_root->nodesize, tree_root->leafsize,
1248 tree_root->sectorsize, tree_root->stripesize,
1249 root, fs_info, location->objectid);
1250
1251 path = btrfs_alloc_path();
1252 if (!path) {
1253 kfree(root);
1254 return ERR_PTR(-ENOMEM);
1255 }
1256 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1257 if (ret == 0) {
1258 l = path->nodes[0];
1259 read_extent_buffer(l, &root->root_item,
1260 btrfs_item_ptr_offset(l, path->slots[0]),
1261 sizeof(root->root_item));
1262 memcpy(&root->root_key, location, sizeof(*location));
1263 }
1264 btrfs_free_path(path);
1265 if (ret) {
1266 kfree(root);
1267 if (ret > 0)
1268 ret = -ENOENT;
1269 return ERR_PTR(ret);
1270 }
1271
1272 generation = btrfs_root_generation(&root->root_item);
1273 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1274 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1275 blocksize, generation);
1276 root->commit_root = btrfs_root_node(root);
1277 BUG_ON(!root->node);
1278 out:
1279 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1280 root->ref_cows = 1;
1281 btrfs_check_and_init_root_item(&root->root_item);
1282 }
1283
1284 return root;
1285 }
1286
1287 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1288 u64 root_objectid)
1289 {
1290 struct btrfs_root *root;
1291
1292 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1293 return fs_info->tree_root;
1294 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1295 return fs_info->extent_root;
1296
1297 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1298 (unsigned long)root_objectid);
1299 return root;
1300 }
1301
1302 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1303 struct btrfs_key *location)
1304 {
1305 struct btrfs_root *root;
1306 int ret;
1307
1308 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1309 return fs_info->tree_root;
1310 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1311 return fs_info->extent_root;
1312 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1313 return fs_info->chunk_root;
1314 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1315 return fs_info->dev_root;
1316 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1317 return fs_info->csum_root;
1318 again:
1319 spin_lock(&fs_info->fs_roots_radix_lock);
1320 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1321 (unsigned long)location->objectid);
1322 spin_unlock(&fs_info->fs_roots_radix_lock);
1323 if (root)
1324 return root;
1325
1326 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1327 if (IS_ERR(root))
1328 return root;
1329
1330 set_anon_super(&root->anon_super, NULL);
1331
1332 if (btrfs_root_refs(&root->root_item) == 0) {
1333 ret = -ENOENT;
1334 goto fail;
1335 }
1336
1337 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1338 if (ret < 0)
1339 goto fail;
1340 if (ret == 0)
1341 root->orphan_item_inserted = 1;
1342
1343 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1344 if (ret)
1345 goto fail;
1346
1347 spin_lock(&fs_info->fs_roots_radix_lock);
1348 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1349 (unsigned long)root->root_key.objectid,
1350 root);
1351 if (ret == 0)
1352 root->in_radix = 1;
1353
1354 spin_unlock(&fs_info->fs_roots_radix_lock);
1355 radix_tree_preload_end();
1356 if (ret) {
1357 if (ret == -EEXIST) {
1358 free_fs_root(root);
1359 goto again;
1360 }
1361 goto fail;
1362 }
1363
1364 ret = btrfs_find_dead_roots(fs_info->tree_root,
1365 root->root_key.objectid);
1366 WARN_ON(ret);
1367 return root;
1368 fail:
1369 free_fs_root(root);
1370 return ERR_PTR(ret);
1371 }
1372
1373 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1374 struct btrfs_key *location,
1375 const char *name, int namelen)
1376 {
1377 return btrfs_read_fs_root_no_name(fs_info, location);
1378 #if 0
1379 struct btrfs_root *root;
1380 int ret;
1381
1382 root = btrfs_read_fs_root_no_name(fs_info, location);
1383 if (!root)
1384 return NULL;
1385
1386 if (root->in_sysfs)
1387 return root;
1388
1389 ret = btrfs_set_root_name(root, name, namelen);
1390 if (ret) {
1391 free_extent_buffer(root->node);
1392 kfree(root);
1393 return ERR_PTR(ret);
1394 }
1395
1396 ret = btrfs_sysfs_add_root(root);
1397 if (ret) {
1398 free_extent_buffer(root->node);
1399 kfree(root->name);
1400 kfree(root);
1401 return ERR_PTR(ret);
1402 }
1403 root->in_sysfs = 1;
1404 return root;
1405 #endif
1406 }
1407
1408 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1409 {
1410 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1411 int ret = 0;
1412 struct btrfs_device *device;
1413 struct backing_dev_info *bdi;
1414
1415 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1416 if (!device->bdev)
1417 continue;
1418 bdi = blk_get_backing_dev_info(device->bdev);
1419 if (bdi && bdi_congested(bdi, bdi_bits)) {
1420 ret = 1;
1421 break;
1422 }
1423 }
1424 return ret;
1425 }
1426
1427 /*
1428 * this unplugs every device on the box, and it is only used when page
1429 * is null
1430 */
1431 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1432 {
1433 struct btrfs_device *device;
1434 struct btrfs_fs_info *info;
1435
1436 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1437 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1438 if (!device->bdev)
1439 continue;
1440
1441 bdi = blk_get_backing_dev_info(device->bdev);
1442 if (bdi->unplug_io_fn)
1443 bdi->unplug_io_fn(bdi, page);
1444 }
1445 }
1446
1447 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1448 {
1449 struct inode *inode;
1450 struct extent_map_tree *em_tree;
1451 struct extent_map *em;
1452 struct address_space *mapping;
1453 u64 offset;
1454
1455 /* the generic O_DIRECT read code does this */
1456 if (1 || !page) {
1457 __unplug_io_fn(bdi, page);
1458 return;
1459 }
1460
1461 /*
1462 * page->mapping may change at any time. Get a consistent copy
1463 * and use that for everything below
1464 */
1465 smp_mb();
1466 mapping = page->mapping;
1467 if (!mapping)
1468 return;
1469
1470 inode = mapping->host;
1471
1472 /*
1473 * don't do the expensive searching for a small number of
1474 * devices
1475 */
1476 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1477 __unplug_io_fn(bdi, page);
1478 return;
1479 }
1480
1481 offset = page_offset(page);
1482
1483 em_tree = &BTRFS_I(inode)->extent_tree;
1484 read_lock(&em_tree->lock);
1485 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1486 read_unlock(&em_tree->lock);
1487 if (!em) {
1488 __unplug_io_fn(bdi, page);
1489 return;
1490 }
1491
1492 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1493 free_extent_map(em);
1494 __unplug_io_fn(bdi, page);
1495 return;
1496 }
1497 offset = offset - em->start;
1498 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1499 em->block_start + offset, page);
1500 free_extent_map(em);
1501 }
1502
1503 /*
1504 * If this fails, caller must call bdi_destroy() to get rid of the
1505 * bdi again.
1506 */
1507 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1508 {
1509 int err;
1510
1511 bdi->capabilities = BDI_CAP_MAP_COPY;
1512 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1513 if (err)
1514 return err;
1515
1516 bdi->ra_pages = default_backing_dev_info.ra_pages;
1517 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1518 bdi->unplug_io_data = info;
1519 bdi->congested_fn = btrfs_congested_fn;
1520 bdi->congested_data = info;
1521 return 0;
1522 }
1523
1524 static int bio_ready_for_csum(struct bio *bio)
1525 {
1526 u64 length = 0;
1527 u64 buf_len = 0;
1528 u64 start = 0;
1529 struct page *page;
1530 struct extent_io_tree *io_tree = NULL;
1531 struct bio_vec *bvec;
1532 int i;
1533 int ret;
1534
1535 bio_for_each_segment(bvec, bio, i) {
1536 page = bvec->bv_page;
1537 if (page->private == EXTENT_PAGE_PRIVATE) {
1538 length += bvec->bv_len;
1539 continue;
1540 }
1541 if (!page->private) {
1542 length += bvec->bv_len;
1543 continue;
1544 }
1545 length = bvec->bv_len;
1546 buf_len = page->private >> 2;
1547 start = page_offset(page) + bvec->bv_offset;
1548 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1549 }
1550 /* are we fully contained in this bio? */
1551 if (buf_len <= length)
1552 return 1;
1553
1554 ret = extent_range_uptodate(io_tree, start + length,
1555 start + buf_len - 1);
1556 return ret;
1557 }
1558
1559 /*
1560 * called by the kthread helper functions to finally call the bio end_io
1561 * functions. This is where read checksum verification actually happens
1562 */
1563 static void end_workqueue_fn(struct btrfs_work *work)
1564 {
1565 struct bio *bio;
1566 struct end_io_wq *end_io_wq;
1567 struct btrfs_fs_info *fs_info;
1568 int error;
1569
1570 end_io_wq = container_of(work, struct end_io_wq, work);
1571 bio = end_io_wq->bio;
1572 fs_info = end_io_wq->info;
1573
1574 /* metadata bio reads are special because the whole tree block must
1575 * be checksummed at once. This makes sure the entire block is in
1576 * ram and up to date before trying to verify things. For
1577 * blocksize <= pagesize, it is basically a noop
1578 */
1579 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1580 !bio_ready_for_csum(bio)) {
1581 btrfs_queue_worker(&fs_info->endio_meta_workers,
1582 &end_io_wq->work);
1583 return;
1584 }
1585 error = end_io_wq->error;
1586 bio->bi_private = end_io_wq->private;
1587 bio->bi_end_io = end_io_wq->end_io;
1588 kfree(end_io_wq);
1589 bio_endio(bio, error);
1590 }
1591
1592 static int cleaner_kthread(void *arg)
1593 {
1594 struct btrfs_root *root = arg;
1595
1596 do {
1597 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1598
1599 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1600 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1601 btrfs_run_delayed_iputs(root);
1602 btrfs_clean_old_snapshots(root);
1603 mutex_unlock(&root->fs_info->cleaner_mutex);
1604 }
1605
1606 if (freezing(current)) {
1607 refrigerator();
1608 } else {
1609 set_current_state(TASK_INTERRUPTIBLE);
1610 if (!kthread_should_stop())
1611 schedule();
1612 __set_current_state(TASK_RUNNING);
1613 }
1614 } while (!kthread_should_stop());
1615 return 0;
1616 }
1617
1618 static int transaction_kthread(void *arg)
1619 {
1620 struct btrfs_root *root = arg;
1621 struct btrfs_trans_handle *trans;
1622 struct btrfs_transaction *cur;
1623 u64 transid;
1624 unsigned long now;
1625 unsigned long delay;
1626 int ret;
1627
1628 do {
1629 delay = HZ * 30;
1630 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1631 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1632
1633 spin_lock(&root->fs_info->new_trans_lock);
1634 cur = root->fs_info->running_transaction;
1635 if (!cur) {
1636 spin_unlock(&root->fs_info->new_trans_lock);
1637 goto sleep;
1638 }
1639
1640 now = get_seconds();
1641 if (!cur->blocked &&
1642 (now < cur->start_time || now - cur->start_time < 30)) {
1643 spin_unlock(&root->fs_info->new_trans_lock);
1644 delay = HZ * 5;
1645 goto sleep;
1646 }
1647 transid = cur->transid;
1648 spin_unlock(&root->fs_info->new_trans_lock);
1649
1650 trans = btrfs_join_transaction(root, 1);
1651 BUG_ON(IS_ERR(trans));
1652 if (transid == trans->transid) {
1653 ret = btrfs_commit_transaction(trans, root);
1654 BUG_ON(ret);
1655 } else {
1656 btrfs_end_transaction(trans, root);
1657 }
1658 sleep:
1659 wake_up_process(root->fs_info->cleaner_kthread);
1660 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1661
1662 if (freezing(current)) {
1663 refrigerator();
1664 } else {
1665 set_current_state(TASK_INTERRUPTIBLE);
1666 if (!kthread_should_stop() &&
1667 !btrfs_transaction_blocked(root->fs_info))
1668 schedule_timeout(delay);
1669 __set_current_state(TASK_RUNNING);
1670 }
1671 } while (!kthread_should_stop());
1672 return 0;
1673 }
1674
1675 struct btrfs_root *open_ctree(struct super_block *sb,
1676 struct btrfs_fs_devices *fs_devices,
1677 char *options)
1678 {
1679 u32 sectorsize;
1680 u32 nodesize;
1681 u32 leafsize;
1682 u32 blocksize;
1683 u32 stripesize;
1684 u64 generation;
1685 u64 features;
1686 struct btrfs_key location;
1687 struct buffer_head *bh;
1688 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1689 GFP_NOFS);
1690 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1691 GFP_NOFS);
1692 struct btrfs_root *tree_root = btrfs_sb(sb);
1693 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1694 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1695 GFP_NOFS);
1696 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1697 GFP_NOFS);
1698 struct btrfs_root *log_tree_root;
1699
1700 int ret;
1701 int err = -EINVAL;
1702
1703 struct btrfs_super_block *disk_super;
1704
1705 if (!extent_root || !tree_root || !fs_info ||
1706 !chunk_root || !dev_root || !csum_root) {
1707 err = -ENOMEM;
1708 goto fail;
1709 }
1710
1711 ret = init_srcu_struct(&fs_info->subvol_srcu);
1712 if (ret) {
1713 err = ret;
1714 goto fail;
1715 }
1716
1717 ret = setup_bdi(fs_info, &fs_info->bdi);
1718 if (ret) {
1719 err = ret;
1720 goto fail_srcu;
1721 }
1722
1723 fs_info->btree_inode = new_inode(sb);
1724 if (!fs_info->btree_inode) {
1725 err = -ENOMEM;
1726 goto fail_bdi;
1727 }
1728
1729 fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS;
1730
1731 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1732 INIT_LIST_HEAD(&fs_info->trans_list);
1733 INIT_LIST_HEAD(&fs_info->dead_roots);
1734 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1735 INIT_LIST_HEAD(&fs_info->hashers);
1736 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1737 INIT_LIST_HEAD(&fs_info->ordered_operations);
1738 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1739 spin_lock_init(&fs_info->delalloc_lock);
1740 spin_lock_init(&fs_info->new_trans_lock);
1741 spin_lock_init(&fs_info->ref_cache_lock);
1742 spin_lock_init(&fs_info->fs_roots_radix_lock);
1743 spin_lock_init(&fs_info->delayed_iput_lock);
1744
1745 init_completion(&fs_info->kobj_unregister);
1746 fs_info->tree_root = tree_root;
1747 fs_info->extent_root = extent_root;
1748 fs_info->csum_root = csum_root;
1749 fs_info->chunk_root = chunk_root;
1750 fs_info->dev_root = dev_root;
1751 fs_info->fs_devices = fs_devices;
1752 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1753 INIT_LIST_HEAD(&fs_info->space_info);
1754 btrfs_mapping_init(&fs_info->mapping_tree);
1755 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1756 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1757 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1758 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1759 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1760 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1761 mutex_init(&fs_info->durable_block_rsv_mutex);
1762 atomic_set(&fs_info->nr_async_submits, 0);
1763 atomic_set(&fs_info->async_delalloc_pages, 0);
1764 atomic_set(&fs_info->async_submit_draining, 0);
1765 atomic_set(&fs_info->nr_async_bios, 0);
1766 fs_info->sb = sb;
1767 fs_info->max_inline = 8192 * 1024;
1768 fs_info->metadata_ratio = 0;
1769
1770 fs_info->thread_pool_size = min_t(unsigned long,
1771 num_online_cpus() + 2, 8);
1772
1773 INIT_LIST_HEAD(&fs_info->ordered_extents);
1774 spin_lock_init(&fs_info->ordered_extent_lock);
1775
1776 sb->s_blocksize = 4096;
1777 sb->s_blocksize_bits = blksize_bits(4096);
1778 sb->s_bdi = &fs_info->bdi;
1779
1780 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1781 fs_info->btree_inode->i_nlink = 1;
1782 /*
1783 * we set the i_size on the btree inode to the max possible int.
1784 * the real end of the address space is determined by all of
1785 * the devices in the system
1786 */
1787 fs_info->btree_inode->i_size = OFFSET_MAX;
1788 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1789 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1790
1791 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1792 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1793 fs_info->btree_inode->i_mapping,
1794 GFP_NOFS);
1795 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1796 GFP_NOFS);
1797
1798 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1799
1800 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1801 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1802 sizeof(struct btrfs_key));
1803 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1804 insert_inode_hash(fs_info->btree_inode);
1805
1806 spin_lock_init(&fs_info->block_group_cache_lock);
1807 fs_info->block_group_cache_tree = RB_ROOT;
1808
1809 extent_io_tree_init(&fs_info->freed_extents[0],
1810 fs_info->btree_inode->i_mapping, GFP_NOFS);
1811 extent_io_tree_init(&fs_info->freed_extents[1],
1812 fs_info->btree_inode->i_mapping, GFP_NOFS);
1813 fs_info->pinned_extents = &fs_info->freed_extents[0];
1814 fs_info->do_barriers = 1;
1815
1816
1817 mutex_init(&fs_info->trans_mutex);
1818 mutex_init(&fs_info->ordered_operations_mutex);
1819 mutex_init(&fs_info->tree_log_mutex);
1820 mutex_init(&fs_info->chunk_mutex);
1821 mutex_init(&fs_info->transaction_kthread_mutex);
1822 mutex_init(&fs_info->cleaner_mutex);
1823 mutex_init(&fs_info->volume_mutex);
1824 init_rwsem(&fs_info->extent_commit_sem);
1825 init_rwsem(&fs_info->cleanup_work_sem);
1826 init_rwsem(&fs_info->subvol_sem);
1827
1828 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1829 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1830
1831 init_waitqueue_head(&fs_info->transaction_throttle);
1832 init_waitqueue_head(&fs_info->transaction_wait);
1833 init_waitqueue_head(&fs_info->transaction_blocked_wait);
1834 init_waitqueue_head(&fs_info->async_submit_wait);
1835
1836 __setup_root(4096, 4096, 4096, 4096, tree_root,
1837 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1838
1839 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1840 if (!bh) {
1841 err = -EINVAL;
1842 goto fail_iput;
1843 }
1844
1845 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1846 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1847 sizeof(fs_info->super_for_commit));
1848 brelse(bh);
1849
1850 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1851
1852 disk_super = &fs_info->super_copy;
1853 if (!btrfs_super_root(disk_super))
1854 goto fail_iput;
1855
1856 /* check FS state, whether FS is broken. */
1857 fs_info->fs_state |= btrfs_super_flags(disk_super);
1858
1859 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1860
1861 /*
1862 * In the long term, we'll store the compression type in the super
1863 * block, and it'll be used for per file compression control.
1864 */
1865 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1866
1867 ret = btrfs_parse_options(tree_root, options);
1868 if (ret) {
1869 err = ret;
1870 goto fail_iput;
1871 }
1872
1873 features = btrfs_super_incompat_flags(disk_super) &
1874 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1875 if (features) {
1876 printk(KERN_ERR "BTRFS: couldn't mount because of "
1877 "unsupported optional features (%Lx).\n",
1878 (unsigned long long)features);
1879 err = -EINVAL;
1880 goto fail_iput;
1881 }
1882
1883 features = btrfs_super_incompat_flags(disk_super);
1884 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1885 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1886 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1887 btrfs_set_super_incompat_flags(disk_super, features);
1888
1889 features = btrfs_super_compat_ro_flags(disk_super) &
1890 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1891 if (!(sb->s_flags & MS_RDONLY) && features) {
1892 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1893 "unsupported option features (%Lx).\n",
1894 (unsigned long long)features);
1895 err = -EINVAL;
1896 goto fail_iput;
1897 }
1898
1899 btrfs_init_workers(&fs_info->generic_worker,
1900 "genwork", 1, NULL);
1901
1902 btrfs_init_workers(&fs_info->workers, "worker",
1903 fs_info->thread_pool_size,
1904 &fs_info->generic_worker);
1905
1906 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1907 fs_info->thread_pool_size,
1908 &fs_info->generic_worker);
1909
1910 btrfs_init_workers(&fs_info->submit_workers, "submit",
1911 min_t(u64, fs_devices->num_devices,
1912 fs_info->thread_pool_size),
1913 &fs_info->generic_worker);
1914
1915 /* a higher idle thresh on the submit workers makes it much more
1916 * likely that bios will be send down in a sane order to the
1917 * devices
1918 */
1919 fs_info->submit_workers.idle_thresh = 64;
1920
1921 fs_info->workers.idle_thresh = 16;
1922 fs_info->workers.ordered = 1;
1923
1924 fs_info->delalloc_workers.idle_thresh = 2;
1925 fs_info->delalloc_workers.ordered = 1;
1926
1927 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1928 &fs_info->generic_worker);
1929 btrfs_init_workers(&fs_info->endio_workers, "endio",
1930 fs_info->thread_pool_size,
1931 &fs_info->generic_worker);
1932 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1933 fs_info->thread_pool_size,
1934 &fs_info->generic_worker);
1935 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1936 "endio-meta-write", fs_info->thread_pool_size,
1937 &fs_info->generic_worker);
1938 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1939 fs_info->thread_pool_size,
1940 &fs_info->generic_worker);
1941 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1942 1, &fs_info->generic_worker);
1943
1944 /*
1945 * endios are largely parallel and should have a very
1946 * low idle thresh
1947 */
1948 fs_info->endio_workers.idle_thresh = 4;
1949 fs_info->endio_meta_workers.idle_thresh = 4;
1950
1951 fs_info->endio_write_workers.idle_thresh = 2;
1952 fs_info->endio_meta_write_workers.idle_thresh = 2;
1953
1954 btrfs_start_workers(&fs_info->workers, 1);
1955 btrfs_start_workers(&fs_info->generic_worker, 1);
1956 btrfs_start_workers(&fs_info->submit_workers, 1);
1957 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1958 btrfs_start_workers(&fs_info->fixup_workers, 1);
1959 btrfs_start_workers(&fs_info->endio_workers, 1);
1960 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1961 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1962 btrfs_start_workers(&fs_info->endio_write_workers, 1);
1963 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1964
1965 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1966 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1967 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1968
1969 nodesize = btrfs_super_nodesize(disk_super);
1970 leafsize = btrfs_super_leafsize(disk_super);
1971 sectorsize = btrfs_super_sectorsize(disk_super);
1972 stripesize = btrfs_super_stripesize(disk_super);
1973 tree_root->nodesize = nodesize;
1974 tree_root->leafsize = leafsize;
1975 tree_root->sectorsize = sectorsize;
1976 tree_root->stripesize = stripesize;
1977
1978 sb->s_blocksize = sectorsize;
1979 sb->s_blocksize_bits = blksize_bits(sectorsize);
1980
1981 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1982 sizeof(disk_super->magic))) {
1983 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1984 goto fail_sb_buffer;
1985 }
1986
1987 mutex_lock(&fs_info->chunk_mutex);
1988 ret = btrfs_read_sys_array(tree_root);
1989 mutex_unlock(&fs_info->chunk_mutex);
1990 if (ret) {
1991 printk(KERN_WARNING "btrfs: failed to read the system "
1992 "array on %s\n", sb->s_id);
1993 goto fail_sb_buffer;
1994 }
1995
1996 blocksize = btrfs_level_size(tree_root,
1997 btrfs_super_chunk_root_level(disk_super));
1998 generation = btrfs_super_chunk_root_generation(disk_super);
1999
2000 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2001 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2002
2003 chunk_root->node = read_tree_block(chunk_root,
2004 btrfs_super_chunk_root(disk_super),
2005 blocksize, generation);
2006 BUG_ON(!chunk_root->node);
2007 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2008 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2009 sb->s_id);
2010 goto fail_chunk_root;
2011 }
2012 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2013 chunk_root->commit_root = btrfs_root_node(chunk_root);
2014
2015 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2016 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2017 BTRFS_UUID_SIZE);
2018
2019 mutex_lock(&fs_info->chunk_mutex);
2020 ret = btrfs_read_chunk_tree(chunk_root);
2021 mutex_unlock(&fs_info->chunk_mutex);
2022 if (ret) {
2023 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2024 sb->s_id);
2025 goto fail_chunk_root;
2026 }
2027
2028 btrfs_close_extra_devices(fs_devices);
2029
2030 blocksize = btrfs_level_size(tree_root,
2031 btrfs_super_root_level(disk_super));
2032 generation = btrfs_super_generation(disk_super);
2033
2034 tree_root->node = read_tree_block(tree_root,
2035 btrfs_super_root(disk_super),
2036 blocksize, generation);
2037 if (!tree_root->node)
2038 goto fail_chunk_root;
2039 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2040 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2041 sb->s_id);
2042 goto fail_tree_root;
2043 }
2044 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2045 tree_root->commit_root = btrfs_root_node(tree_root);
2046
2047 ret = find_and_setup_root(tree_root, fs_info,
2048 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2049 if (ret)
2050 goto fail_tree_root;
2051 extent_root->track_dirty = 1;
2052
2053 ret = find_and_setup_root(tree_root, fs_info,
2054 BTRFS_DEV_TREE_OBJECTID, dev_root);
2055 if (ret)
2056 goto fail_extent_root;
2057 dev_root->track_dirty = 1;
2058
2059 ret = find_and_setup_root(tree_root, fs_info,
2060 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2061 if (ret)
2062 goto fail_dev_root;
2063
2064 csum_root->track_dirty = 1;
2065
2066 fs_info->generation = generation;
2067 fs_info->last_trans_committed = generation;
2068 fs_info->data_alloc_profile = (u64)-1;
2069 fs_info->metadata_alloc_profile = (u64)-1;
2070 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2071
2072 ret = btrfs_init_space_info(fs_info);
2073 if (ret) {
2074 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2075 goto fail_block_groups;
2076 }
2077
2078 ret = btrfs_read_block_groups(extent_root);
2079 if (ret) {
2080 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2081 goto fail_block_groups;
2082 }
2083
2084 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2085 "btrfs-cleaner");
2086 if (IS_ERR(fs_info->cleaner_kthread))
2087 goto fail_block_groups;
2088
2089 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2090 tree_root,
2091 "btrfs-transaction");
2092 if (IS_ERR(fs_info->transaction_kthread))
2093 goto fail_cleaner;
2094
2095 if (!btrfs_test_opt(tree_root, SSD) &&
2096 !btrfs_test_opt(tree_root, NOSSD) &&
2097 !fs_info->fs_devices->rotating) {
2098 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2099 "mode\n");
2100 btrfs_set_opt(fs_info->mount_opt, SSD);
2101 }
2102
2103 /* do not make disk changes in broken FS */
2104 if (btrfs_super_log_root(disk_super) != 0 &&
2105 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2106 u64 bytenr = btrfs_super_log_root(disk_super);
2107
2108 if (fs_devices->rw_devices == 0) {
2109 printk(KERN_WARNING "Btrfs log replay required "
2110 "on RO media\n");
2111 err = -EIO;
2112 goto fail_trans_kthread;
2113 }
2114 blocksize =
2115 btrfs_level_size(tree_root,
2116 btrfs_super_log_root_level(disk_super));
2117
2118 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2119 if (!log_tree_root) {
2120 err = -ENOMEM;
2121 goto fail_trans_kthread;
2122 }
2123
2124 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2125 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2126
2127 log_tree_root->node = read_tree_block(tree_root, bytenr,
2128 blocksize,
2129 generation + 1);
2130 ret = btrfs_recover_log_trees(log_tree_root);
2131 BUG_ON(ret);
2132
2133 if (sb->s_flags & MS_RDONLY) {
2134 ret = btrfs_commit_super(tree_root);
2135 BUG_ON(ret);
2136 }
2137 }
2138
2139 ret = btrfs_find_orphan_roots(tree_root);
2140 BUG_ON(ret);
2141
2142 if (!(sb->s_flags & MS_RDONLY)) {
2143 ret = btrfs_cleanup_fs_roots(fs_info);
2144 BUG_ON(ret);
2145
2146 ret = btrfs_recover_relocation(tree_root);
2147 if (ret < 0) {
2148 printk(KERN_WARNING
2149 "btrfs: failed to recover relocation\n");
2150 err = -EINVAL;
2151 goto fail_trans_kthread;
2152 }
2153 }
2154
2155 location.objectid = BTRFS_FS_TREE_OBJECTID;
2156 location.type = BTRFS_ROOT_ITEM_KEY;
2157 location.offset = (u64)-1;
2158
2159 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2160 if (!fs_info->fs_root)
2161 goto fail_trans_kthread;
2162 if (IS_ERR(fs_info->fs_root)) {
2163 err = PTR_ERR(fs_info->fs_root);
2164 goto fail_trans_kthread;
2165 }
2166
2167 if (!(sb->s_flags & MS_RDONLY)) {
2168 down_read(&fs_info->cleanup_work_sem);
2169 err = btrfs_orphan_cleanup(fs_info->fs_root);
2170 if (!err)
2171 err = btrfs_orphan_cleanup(fs_info->tree_root);
2172 up_read(&fs_info->cleanup_work_sem);
2173 if (err) {
2174 close_ctree(tree_root);
2175 return ERR_PTR(err);
2176 }
2177 }
2178
2179 return tree_root;
2180
2181 fail_trans_kthread:
2182 kthread_stop(fs_info->transaction_kthread);
2183 fail_cleaner:
2184 kthread_stop(fs_info->cleaner_kthread);
2185
2186 /*
2187 * make sure we're done with the btree inode before we stop our
2188 * kthreads
2189 */
2190 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2191 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2192
2193 fail_block_groups:
2194 btrfs_free_block_groups(fs_info);
2195 free_extent_buffer(csum_root->node);
2196 free_extent_buffer(csum_root->commit_root);
2197 fail_dev_root:
2198 free_extent_buffer(dev_root->node);
2199 free_extent_buffer(dev_root->commit_root);
2200 fail_extent_root:
2201 free_extent_buffer(extent_root->node);
2202 free_extent_buffer(extent_root->commit_root);
2203 fail_tree_root:
2204 free_extent_buffer(tree_root->node);
2205 free_extent_buffer(tree_root->commit_root);
2206 fail_chunk_root:
2207 free_extent_buffer(chunk_root->node);
2208 free_extent_buffer(chunk_root->commit_root);
2209 fail_sb_buffer:
2210 btrfs_stop_workers(&fs_info->generic_worker);
2211 btrfs_stop_workers(&fs_info->fixup_workers);
2212 btrfs_stop_workers(&fs_info->delalloc_workers);
2213 btrfs_stop_workers(&fs_info->workers);
2214 btrfs_stop_workers(&fs_info->endio_workers);
2215 btrfs_stop_workers(&fs_info->endio_meta_workers);
2216 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2217 btrfs_stop_workers(&fs_info->endio_write_workers);
2218 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2219 btrfs_stop_workers(&fs_info->submit_workers);
2220 fail_iput:
2221 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2222 iput(fs_info->btree_inode);
2223
2224 btrfs_close_devices(fs_info->fs_devices);
2225 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2226 fail_bdi:
2227 bdi_destroy(&fs_info->bdi);
2228 fail_srcu:
2229 cleanup_srcu_struct(&fs_info->subvol_srcu);
2230 fail:
2231 kfree(extent_root);
2232 kfree(tree_root);
2233 kfree(fs_info);
2234 kfree(chunk_root);
2235 kfree(dev_root);
2236 kfree(csum_root);
2237 return ERR_PTR(err);
2238 }
2239
2240 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2241 {
2242 char b[BDEVNAME_SIZE];
2243
2244 if (uptodate) {
2245 set_buffer_uptodate(bh);
2246 } else {
2247 if (printk_ratelimit()) {
2248 printk(KERN_WARNING "lost page write due to "
2249 "I/O error on %s\n",
2250 bdevname(bh->b_bdev, b));
2251 }
2252 /* note, we dont' set_buffer_write_io_error because we have
2253 * our own ways of dealing with the IO errors
2254 */
2255 clear_buffer_uptodate(bh);
2256 }
2257 unlock_buffer(bh);
2258 put_bh(bh);
2259 }
2260
2261 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2262 {
2263 struct buffer_head *bh;
2264 struct buffer_head *latest = NULL;
2265 struct btrfs_super_block *super;
2266 int i;
2267 u64 transid = 0;
2268 u64 bytenr;
2269
2270 /* we would like to check all the supers, but that would make
2271 * a btrfs mount succeed after a mkfs from a different FS.
2272 * So, we need to add a special mount option to scan for
2273 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2274 */
2275 for (i = 0; i < 1; i++) {
2276 bytenr = btrfs_sb_offset(i);
2277 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2278 break;
2279 bh = __bread(bdev, bytenr / 4096, 4096);
2280 if (!bh)
2281 continue;
2282
2283 super = (struct btrfs_super_block *)bh->b_data;
2284 if (btrfs_super_bytenr(super) != bytenr ||
2285 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2286 sizeof(super->magic))) {
2287 brelse(bh);
2288 continue;
2289 }
2290
2291 if (!latest || btrfs_super_generation(super) > transid) {
2292 brelse(latest);
2293 latest = bh;
2294 transid = btrfs_super_generation(super);
2295 } else {
2296 brelse(bh);
2297 }
2298 }
2299 return latest;
2300 }
2301
2302 /*
2303 * this should be called twice, once with wait == 0 and
2304 * once with wait == 1. When wait == 0 is done, all the buffer heads
2305 * we write are pinned.
2306 *
2307 * They are released when wait == 1 is done.
2308 * max_mirrors must be the same for both runs, and it indicates how
2309 * many supers on this one device should be written.
2310 *
2311 * max_mirrors == 0 means to write them all.
2312 */
2313 static int write_dev_supers(struct btrfs_device *device,
2314 struct btrfs_super_block *sb,
2315 int do_barriers, int wait, int max_mirrors)
2316 {
2317 struct buffer_head *bh;
2318 int i;
2319 int ret;
2320 int errors = 0;
2321 u32 crc;
2322 u64 bytenr;
2323 int last_barrier = 0;
2324
2325 if (max_mirrors == 0)
2326 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2327
2328 /* make sure only the last submit_bh does a barrier */
2329 if (do_barriers) {
2330 for (i = 0; i < max_mirrors; i++) {
2331 bytenr = btrfs_sb_offset(i);
2332 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2333 device->total_bytes)
2334 break;
2335 last_barrier = i;
2336 }
2337 }
2338
2339 for (i = 0; i < max_mirrors; i++) {
2340 bytenr = btrfs_sb_offset(i);
2341 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2342 break;
2343
2344 if (wait) {
2345 bh = __find_get_block(device->bdev, bytenr / 4096,
2346 BTRFS_SUPER_INFO_SIZE);
2347 BUG_ON(!bh);
2348 wait_on_buffer(bh);
2349 if (!buffer_uptodate(bh))
2350 errors++;
2351
2352 /* drop our reference */
2353 brelse(bh);
2354
2355 /* drop the reference from the wait == 0 run */
2356 brelse(bh);
2357 continue;
2358 } else {
2359 btrfs_set_super_bytenr(sb, bytenr);
2360
2361 crc = ~(u32)0;
2362 crc = btrfs_csum_data(NULL, (char *)sb +
2363 BTRFS_CSUM_SIZE, crc,
2364 BTRFS_SUPER_INFO_SIZE -
2365 BTRFS_CSUM_SIZE);
2366 btrfs_csum_final(crc, sb->csum);
2367
2368 /*
2369 * one reference for us, and we leave it for the
2370 * caller
2371 */
2372 bh = __getblk(device->bdev, bytenr / 4096,
2373 BTRFS_SUPER_INFO_SIZE);
2374 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2375
2376 /* one reference for submit_bh */
2377 get_bh(bh);
2378
2379 set_buffer_uptodate(bh);
2380 lock_buffer(bh);
2381 bh->b_end_io = btrfs_end_buffer_write_sync;
2382 }
2383
2384 if (i == last_barrier && do_barriers)
2385 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2386 else
2387 ret = submit_bh(WRITE_SYNC, bh);
2388
2389 if (ret)
2390 errors++;
2391 }
2392 return errors < i ? 0 : -1;
2393 }
2394
2395 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2396 {
2397 struct list_head *head;
2398 struct btrfs_device *dev;
2399 struct btrfs_super_block *sb;
2400 struct btrfs_dev_item *dev_item;
2401 int ret;
2402 int do_barriers;
2403 int max_errors;
2404 int total_errors = 0;
2405 u64 flags;
2406
2407 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2408 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2409
2410 sb = &root->fs_info->super_for_commit;
2411 dev_item = &sb->dev_item;
2412
2413 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2414 head = &root->fs_info->fs_devices->devices;
2415 list_for_each_entry(dev, head, dev_list) {
2416 if (!dev->bdev) {
2417 total_errors++;
2418 continue;
2419 }
2420 if (!dev->in_fs_metadata || !dev->writeable)
2421 continue;
2422
2423 btrfs_set_stack_device_generation(dev_item, 0);
2424 btrfs_set_stack_device_type(dev_item, dev->type);
2425 btrfs_set_stack_device_id(dev_item, dev->devid);
2426 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2427 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2428 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2429 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2430 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2431 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2432 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2433
2434 flags = btrfs_super_flags(sb);
2435 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2436
2437 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2438 if (ret)
2439 total_errors++;
2440 }
2441 if (total_errors > max_errors) {
2442 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2443 total_errors);
2444 BUG();
2445 }
2446
2447 total_errors = 0;
2448 list_for_each_entry(dev, head, dev_list) {
2449 if (!dev->bdev)
2450 continue;
2451 if (!dev->in_fs_metadata || !dev->writeable)
2452 continue;
2453
2454 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2455 if (ret)
2456 total_errors++;
2457 }
2458 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2459 if (total_errors > max_errors) {
2460 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2461 total_errors);
2462 BUG();
2463 }
2464 return 0;
2465 }
2466
2467 int write_ctree_super(struct btrfs_trans_handle *trans,
2468 struct btrfs_root *root, int max_mirrors)
2469 {
2470 int ret;
2471
2472 ret = write_all_supers(root, max_mirrors);
2473 return ret;
2474 }
2475
2476 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2477 {
2478 spin_lock(&fs_info->fs_roots_radix_lock);
2479 radix_tree_delete(&fs_info->fs_roots_radix,
2480 (unsigned long)root->root_key.objectid);
2481 spin_unlock(&fs_info->fs_roots_radix_lock);
2482
2483 if (btrfs_root_refs(&root->root_item) == 0)
2484 synchronize_srcu(&fs_info->subvol_srcu);
2485
2486 free_fs_root(root);
2487 return 0;
2488 }
2489
2490 static void free_fs_root(struct btrfs_root *root)
2491 {
2492 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2493 if (root->anon_super.s_dev) {
2494 down_write(&root->anon_super.s_umount);
2495 kill_anon_super(&root->anon_super);
2496 }
2497 free_extent_buffer(root->node);
2498 free_extent_buffer(root->commit_root);
2499 kfree(root->name);
2500 kfree(root);
2501 }
2502
2503 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2504 {
2505 int ret;
2506 struct btrfs_root *gang[8];
2507 int i;
2508
2509 while (!list_empty(&fs_info->dead_roots)) {
2510 gang[0] = list_entry(fs_info->dead_roots.next,
2511 struct btrfs_root, root_list);
2512 list_del(&gang[0]->root_list);
2513
2514 if (gang[0]->in_radix) {
2515 btrfs_free_fs_root(fs_info, gang[0]);
2516 } else {
2517 free_extent_buffer(gang[0]->node);
2518 free_extent_buffer(gang[0]->commit_root);
2519 kfree(gang[0]);
2520 }
2521 }
2522
2523 while (1) {
2524 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2525 (void **)gang, 0,
2526 ARRAY_SIZE(gang));
2527 if (!ret)
2528 break;
2529 for (i = 0; i < ret; i++)
2530 btrfs_free_fs_root(fs_info, gang[i]);
2531 }
2532 return 0;
2533 }
2534
2535 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2536 {
2537 u64 root_objectid = 0;
2538 struct btrfs_root *gang[8];
2539 int i;
2540 int ret;
2541
2542 while (1) {
2543 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2544 (void **)gang, root_objectid,
2545 ARRAY_SIZE(gang));
2546 if (!ret)
2547 break;
2548
2549 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2550 for (i = 0; i < ret; i++) {
2551 int err;
2552
2553 root_objectid = gang[i]->root_key.objectid;
2554 err = btrfs_orphan_cleanup(gang[i]);
2555 if (err)
2556 return err;
2557 }
2558 root_objectid++;
2559 }
2560 return 0;
2561 }
2562
2563 int btrfs_commit_super(struct btrfs_root *root)
2564 {
2565 struct btrfs_trans_handle *trans;
2566 int ret;
2567
2568 mutex_lock(&root->fs_info->cleaner_mutex);
2569 btrfs_run_delayed_iputs(root);
2570 btrfs_clean_old_snapshots(root);
2571 mutex_unlock(&root->fs_info->cleaner_mutex);
2572
2573 /* wait until ongoing cleanup work done */
2574 down_write(&root->fs_info->cleanup_work_sem);
2575 up_write(&root->fs_info->cleanup_work_sem);
2576
2577 trans = btrfs_join_transaction(root, 1);
2578 if (IS_ERR(trans))
2579 return PTR_ERR(trans);
2580 ret = btrfs_commit_transaction(trans, root);
2581 BUG_ON(ret);
2582 /* run commit again to drop the original snapshot */
2583 trans = btrfs_join_transaction(root, 1);
2584 if (IS_ERR(trans))
2585 return PTR_ERR(trans);
2586 btrfs_commit_transaction(trans, root);
2587 ret = btrfs_write_and_wait_transaction(NULL, root);
2588 BUG_ON(ret);
2589
2590 ret = write_ctree_super(NULL, root, 0);
2591 return ret;
2592 }
2593
2594 int close_ctree(struct btrfs_root *root)
2595 {
2596 struct btrfs_fs_info *fs_info = root->fs_info;
2597 int ret;
2598
2599 fs_info->closing = 1;
2600 smp_mb();
2601
2602 btrfs_put_block_group_cache(fs_info);
2603
2604 /*
2605 * Here come 2 situations when btrfs is broken to flip readonly:
2606 *
2607 * 1. when btrfs flips readonly somewhere else before
2608 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2609 * and btrfs will skip to write sb directly to keep
2610 * ERROR state on disk.
2611 *
2612 * 2. when btrfs flips readonly just in btrfs_commit_super,
2613 * and in such case, btrfs cannnot write sb via btrfs_commit_super,
2614 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2615 * btrfs will cleanup all FS resources first and write sb then.
2616 */
2617 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2618 ret = btrfs_commit_super(root);
2619 if (ret)
2620 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2621 }
2622
2623 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2624 ret = btrfs_error_commit_super(root);
2625 if (ret)
2626 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2627 }
2628
2629 kthread_stop(root->fs_info->transaction_kthread);
2630 kthread_stop(root->fs_info->cleaner_kthread);
2631
2632 fs_info->closing = 2;
2633 smp_mb();
2634
2635 if (fs_info->delalloc_bytes) {
2636 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2637 (unsigned long long)fs_info->delalloc_bytes);
2638 }
2639 if (fs_info->total_ref_cache_size) {
2640 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2641 (unsigned long long)fs_info->total_ref_cache_size);
2642 }
2643
2644 free_extent_buffer(fs_info->extent_root->node);
2645 free_extent_buffer(fs_info->extent_root->commit_root);
2646 free_extent_buffer(fs_info->tree_root->node);
2647 free_extent_buffer(fs_info->tree_root->commit_root);
2648 free_extent_buffer(root->fs_info->chunk_root->node);
2649 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2650 free_extent_buffer(root->fs_info->dev_root->node);
2651 free_extent_buffer(root->fs_info->dev_root->commit_root);
2652 free_extent_buffer(root->fs_info->csum_root->node);
2653 free_extent_buffer(root->fs_info->csum_root->commit_root);
2654
2655 btrfs_free_block_groups(root->fs_info);
2656
2657 del_fs_roots(fs_info);
2658
2659 iput(fs_info->btree_inode);
2660
2661 btrfs_stop_workers(&fs_info->generic_worker);
2662 btrfs_stop_workers(&fs_info->fixup_workers);
2663 btrfs_stop_workers(&fs_info->delalloc_workers);
2664 btrfs_stop_workers(&fs_info->workers);
2665 btrfs_stop_workers(&fs_info->endio_workers);
2666 btrfs_stop_workers(&fs_info->endio_meta_workers);
2667 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2668 btrfs_stop_workers(&fs_info->endio_write_workers);
2669 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2670 btrfs_stop_workers(&fs_info->submit_workers);
2671
2672 btrfs_close_devices(fs_info->fs_devices);
2673 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2674
2675 bdi_destroy(&fs_info->bdi);
2676 cleanup_srcu_struct(&fs_info->subvol_srcu);
2677
2678 kfree(fs_info->extent_root);
2679 kfree(fs_info->tree_root);
2680 kfree(fs_info->chunk_root);
2681 kfree(fs_info->dev_root);
2682 kfree(fs_info->csum_root);
2683 kfree(fs_info);
2684
2685 return 0;
2686 }
2687
2688 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2689 {
2690 int ret;
2691 struct inode *btree_inode = buf->first_page->mapping->host;
2692
2693 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2694 NULL);
2695 if (!ret)
2696 return ret;
2697
2698 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2699 parent_transid);
2700 return !ret;
2701 }
2702
2703 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2704 {
2705 struct inode *btree_inode = buf->first_page->mapping->host;
2706 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2707 buf);
2708 }
2709
2710 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2711 {
2712 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2713 u64 transid = btrfs_header_generation(buf);
2714 struct inode *btree_inode = root->fs_info->btree_inode;
2715 int was_dirty;
2716
2717 btrfs_assert_tree_locked(buf);
2718 if (transid != root->fs_info->generation) {
2719 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2720 "found %llu running %llu\n",
2721 (unsigned long long)buf->start,
2722 (unsigned long long)transid,
2723 (unsigned long long)root->fs_info->generation);
2724 WARN_ON(1);
2725 }
2726 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2727 buf);
2728 if (!was_dirty) {
2729 spin_lock(&root->fs_info->delalloc_lock);
2730 root->fs_info->dirty_metadata_bytes += buf->len;
2731 spin_unlock(&root->fs_info->delalloc_lock);
2732 }
2733 }
2734
2735 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2736 {
2737 /*
2738 * looks as though older kernels can get into trouble with
2739 * this code, they end up stuck in balance_dirty_pages forever
2740 */
2741 u64 num_dirty;
2742 unsigned long thresh = 32 * 1024 * 1024;
2743
2744 if (current->flags & PF_MEMALLOC)
2745 return;
2746
2747 num_dirty = root->fs_info->dirty_metadata_bytes;
2748
2749 if (num_dirty > thresh) {
2750 balance_dirty_pages_ratelimited_nr(
2751 root->fs_info->btree_inode->i_mapping, 1);
2752 }
2753 return;
2754 }
2755
2756 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2757 {
2758 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2759 int ret;
2760 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2761 if (ret == 0)
2762 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2763 return ret;
2764 }
2765
2766 int btree_lock_page_hook(struct page *page)
2767 {
2768 struct inode *inode = page->mapping->host;
2769 struct btrfs_root *root = BTRFS_I(inode)->root;
2770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2771 struct extent_buffer *eb;
2772 unsigned long len;
2773 u64 bytenr = page_offset(page);
2774
2775 if (page->private == EXTENT_PAGE_PRIVATE)
2776 goto out;
2777
2778 len = page->private >> 2;
2779 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2780 if (!eb)
2781 goto out;
2782
2783 btrfs_tree_lock(eb);
2784 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2785
2786 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2787 spin_lock(&root->fs_info->delalloc_lock);
2788 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2789 root->fs_info->dirty_metadata_bytes -= eb->len;
2790 else
2791 WARN_ON(1);
2792 spin_unlock(&root->fs_info->delalloc_lock);
2793 }
2794
2795 btrfs_tree_unlock(eb);
2796 free_extent_buffer(eb);
2797 out:
2798 lock_page(page);
2799 return 0;
2800 }
2801
2802 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2803 int read_only)
2804 {
2805 if (read_only)
2806 return;
2807
2808 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2809 printk(KERN_WARNING "warning: mount fs with errors, "
2810 "running btrfsck is recommended\n");
2811 }
2812
2813 int btrfs_error_commit_super(struct btrfs_root *root)
2814 {
2815 int ret;
2816
2817 mutex_lock(&root->fs_info->cleaner_mutex);
2818 btrfs_run_delayed_iputs(root);
2819 mutex_unlock(&root->fs_info->cleaner_mutex);
2820
2821 down_write(&root->fs_info->cleanup_work_sem);
2822 up_write(&root->fs_info->cleanup_work_sem);
2823
2824 /* cleanup FS via transaction */
2825 btrfs_cleanup_transaction(root);
2826
2827 ret = write_ctree_super(NULL, root, 0);
2828
2829 return ret;
2830 }
2831
2832 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2833 {
2834 struct btrfs_inode *btrfs_inode;
2835 struct list_head splice;
2836
2837 INIT_LIST_HEAD(&splice);
2838
2839 mutex_lock(&root->fs_info->ordered_operations_mutex);
2840 spin_lock(&root->fs_info->ordered_extent_lock);
2841
2842 list_splice_init(&root->fs_info->ordered_operations, &splice);
2843 while (!list_empty(&splice)) {
2844 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2845 ordered_operations);
2846
2847 list_del_init(&btrfs_inode->ordered_operations);
2848
2849 btrfs_invalidate_inodes(btrfs_inode->root);
2850 }
2851
2852 spin_unlock(&root->fs_info->ordered_extent_lock);
2853 mutex_unlock(&root->fs_info->ordered_operations_mutex);
2854
2855 return 0;
2856 }
2857
2858 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2859 {
2860 struct list_head splice;
2861 struct btrfs_ordered_extent *ordered;
2862 struct inode *inode;
2863
2864 INIT_LIST_HEAD(&splice);
2865
2866 spin_lock(&root->fs_info->ordered_extent_lock);
2867
2868 list_splice_init(&root->fs_info->ordered_extents, &splice);
2869 while (!list_empty(&splice)) {
2870 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2871 root_extent_list);
2872
2873 list_del_init(&ordered->root_extent_list);
2874 atomic_inc(&ordered->refs);
2875
2876 /* the inode may be getting freed (in sys_unlink path). */
2877 inode = igrab(ordered->inode);
2878
2879 spin_unlock(&root->fs_info->ordered_extent_lock);
2880 if (inode)
2881 iput(inode);
2882
2883 atomic_set(&ordered->refs, 1);
2884 btrfs_put_ordered_extent(ordered);
2885
2886 spin_lock(&root->fs_info->ordered_extent_lock);
2887 }
2888
2889 spin_unlock(&root->fs_info->ordered_extent_lock);
2890
2891 return 0;
2892 }
2893
2894 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2895 struct btrfs_root *root)
2896 {
2897 struct rb_node *node;
2898 struct btrfs_delayed_ref_root *delayed_refs;
2899 struct btrfs_delayed_ref_node *ref;
2900 int ret = 0;
2901
2902 delayed_refs = &trans->delayed_refs;
2903
2904 spin_lock(&delayed_refs->lock);
2905 if (delayed_refs->num_entries == 0) {
2906 printk(KERN_INFO "delayed_refs has NO entry\n");
2907 return ret;
2908 }
2909
2910 node = rb_first(&delayed_refs->root);
2911 while (node) {
2912 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2913 node = rb_next(node);
2914
2915 ref->in_tree = 0;
2916 rb_erase(&ref->rb_node, &delayed_refs->root);
2917 delayed_refs->num_entries--;
2918
2919 atomic_set(&ref->refs, 1);
2920 if (btrfs_delayed_ref_is_head(ref)) {
2921 struct btrfs_delayed_ref_head *head;
2922
2923 head = btrfs_delayed_node_to_head(ref);
2924 mutex_lock(&head->mutex);
2925 kfree(head->extent_op);
2926 delayed_refs->num_heads--;
2927 if (list_empty(&head->cluster))
2928 delayed_refs->num_heads_ready--;
2929 list_del_init(&head->cluster);
2930 mutex_unlock(&head->mutex);
2931 }
2932
2933 spin_unlock(&delayed_refs->lock);
2934 btrfs_put_delayed_ref(ref);
2935
2936 cond_resched();
2937 spin_lock(&delayed_refs->lock);
2938 }
2939
2940 spin_unlock(&delayed_refs->lock);
2941
2942 return ret;
2943 }
2944
2945 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2946 {
2947 struct btrfs_pending_snapshot *snapshot;
2948 struct list_head splice;
2949
2950 INIT_LIST_HEAD(&splice);
2951
2952 list_splice_init(&t->pending_snapshots, &splice);
2953
2954 while (!list_empty(&splice)) {
2955 snapshot = list_entry(splice.next,
2956 struct btrfs_pending_snapshot,
2957 list);
2958
2959 list_del_init(&snapshot->list);
2960
2961 kfree(snapshot);
2962 }
2963
2964 return 0;
2965 }
2966
2967 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2968 {
2969 struct btrfs_inode *btrfs_inode;
2970 struct list_head splice;
2971
2972 INIT_LIST_HEAD(&splice);
2973
2974 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2975
2976 spin_lock(&root->fs_info->delalloc_lock);
2977
2978 while (!list_empty(&splice)) {
2979 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2980 delalloc_inodes);
2981
2982 list_del_init(&btrfs_inode->delalloc_inodes);
2983
2984 btrfs_invalidate_inodes(btrfs_inode->root);
2985 }
2986
2987 spin_unlock(&root->fs_info->delalloc_lock);
2988
2989 return 0;
2990 }
2991
2992 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2993 struct extent_io_tree *dirty_pages,
2994 int mark)
2995 {
2996 int ret;
2997 struct page *page;
2998 struct inode *btree_inode = root->fs_info->btree_inode;
2999 struct extent_buffer *eb;
3000 u64 start = 0;
3001 u64 end;
3002 u64 offset;
3003 unsigned long index;
3004
3005 while (1) {
3006 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3007 mark);
3008 if (ret)
3009 break;
3010
3011 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3012 while (start <= end) {
3013 index = start >> PAGE_CACHE_SHIFT;
3014 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3015 page = find_get_page(btree_inode->i_mapping, index);
3016 if (!page)
3017 continue;
3018 offset = page_offset(page);
3019
3020 spin_lock(&dirty_pages->buffer_lock);
3021 eb = radix_tree_lookup(
3022 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3023 offset >> PAGE_CACHE_SHIFT);
3024 spin_unlock(&dirty_pages->buffer_lock);
3025 if (eb) {
3026 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3027 &eb->bflags);
3028 atomic_set(&eb->refs, 1);
3029 }
3030 if (PageWriteback(page))
3031 end_page_writeback(page);
3032
3033 lock_page(page);
3034 if (PageDirty(page)) {
3035 clear_page_dirty_for_io(page);
3036 spin_lock_irq(&page->mapping->tree_lock);
3037 radix_tree_tag_clear(&page->mapping->page_tree,
3038 page_index(page),
3039 PAGECACHE_TAG_DIRTY);
3040 spin_unlock_irq(&page->mapping->tree_lock);
3041 }
3042
3043 page->mapping->a_ops->invalidatepage(page, 0);
3044 unlock_page(page);
3045 }
3046 }
3047
3048 return ret;
3049 }
3050
3051 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3052 struct extent_io_tree *pinned_extents)
3053 {
3054 struct extent_io_tree *unpin;
3055 u64 start;
3056 u64 end;
3057 int ret;
3058
3059 unpin = pinned_extents;
3060 while (1) {
3061 ret = find_first_extent_bit(unpin, 0, &start, &end,
3062 EXTENT_DIRTY);
3063 if (ret)
3064 break;
3065
3066 /* opt_discard */
3067 if (btrfs_test_opt(root, DISCARD))
3068 ret = btrfs_error_discard_extent(root, start,
3069 end + 1 - start,
3070 NULL);
3071
3072 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3073 btrfs_error_unpin_extent_range(root, start, end);
3074 cond_resched();
3075 }
3076
3077 return 0;
3078 }
3079
3080 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3081 {
3082 struct btrfs_transaction *t;
3083 LIST_HEAD(list);
3084
3085 WARN_ON(1);
3086
3087 mutex_lock(&root->fs_info->trans_mutex);
3088 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3089
3090 list_splice_init(&root->fs_info->trans_list, &list);
3091 while (!list_empty(&list)) {
3092 t = list_entry(list.next, struct btrfs_transaction, list);
3093 if (!t)
3094 break;
3095
3096 btrfs_destroy_ordered_operations(root);
3097
3098 btrfs_destroy_ordered_extents(root);
3099
3100 btrfs_destroy_delayed_refs(t, root);
3101
3102 btrfs_block_rsv_release(root,
3103 &root->fs_info->trans_block_rsv,
3104 t->dirty_pages.dirty_bytes);
3105
3106 /* FIXME: cleanup wait for commit */
3107 t->in_commit = 1;
3108 t->blocked = 1;
3109 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3110 wake_up(&root->fs_info->transaction_blocked_wait);
3111
3112 t->blocked = 0;
3113 if (waitqueue_active(&root->fs_info->transaction_wait))
3114 wake_up(&root->fs_info->transaction_wait);
3115 mutex_unlock(&root->fs_info->trans_mutex);
3116
3117 mutex_lock(&root->fs_info->trans_mutex);
3118 t->commit_done = 1;
3119 if (waitqueue_active(&t->commit_wait))
3120 wake_up(&t->commit_wait);
3121 mutex_unlock(&root->fs_info->trans_mutex);
3122
3123 mutex_lock(&root->fs_info->trans_mutex);
3124
3125 btrfs_destroy_pending_snapshots(t);
3126
3127 btrfs_destroy_delalloc_inodes(root);
3128
3129 spin_lock(&root->fs_info->new_trans_lock);
3130 root->fs_info->running_transaction = NULL;
3131 spin_unlock(&root->fs_info->new_trans_lock);
3132
3133 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3134 EXTENT_DIRTY);
3135
3136 btrfs_destroy_pinned_extent(root,
3137 root->fs_info->pinned_extents);
3138
3139 t->use_count = 0;
3140 list_del_init(&t->list);
3141 memset(t, 0, sizeof(*t));
3142 kmem_cache_free(btrfs_transaction_cachep, t);
3143 }
3144
3145 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3146 mutex_unlock(&root->fs_info->trans_mutex);
3147
3148 return 0;
3149 }
3150
3151 static struct extent_io_ops btree_extent_io_ops = {
3152 .write_cache_pages_lock_hook = btree_lock_page_hook,
3153 .readpage_end_io_hook = btree_readpage_end_io_hook,
3154 .submit_bio_hook = btree_submit_bio_hook,
3155 /* note we're sharing with inode.c for the merge bio hook */
3156 .merge_bio_hook = btrfs_merge_bio_hook,
3157 };
This page took 0.104917 seconds and 5 git commands to generate.