Btrfs: sysfs: separate kobject and attribute creation
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79 struct btrfs_end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 enum btrfs_wq_endio_type metadata;
86 struct list_head list;
87 struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
115 struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
121 int rw;
122 int mirror_num;
123 unsigned long bio_flags;
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
129 struct btrfs_work work;
130 int error;
131 };
132
133 /*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
143 *
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
147 *
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
151 *
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
155 */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 # error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
178 { .id = 0, .name_stem = "tree" },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197 {
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 struct page *page, size_t pg_offset, u64 start, u64 len,
219 int create)
220 {
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
225 read_lock(&em_tree->lock);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 read_unlock(&em_tree->lock);
231 goto out;
232 }
233 read_unlock(&em_tree->lock);
234
235 em = alloc_extent_map();
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
241 em->len = (u64)-1;
242 em->block_len = (u64)-1;
243 em->block_start = 0;
244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246 write_lock(&em_tree->lock);
247 ret = add_extent_mapping(em_tree, em, 0);
248 if (ret == -EEXIST) {
249 free_extent_map(em);
250 em = lookup_extent_mapping(em_tree, start, len);
251 if (!em)
252 em = ERR_PTR(-EIO);
253 } else if (ret) {
254 free_extent_map(em);
255 em = ERR_PTR(ret);
256 }
257 write_unlock(&em_tree->lock);
258
259 out:
260 return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 put_unaligned_le32(~crc, result);
271 }
272
273 /*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
279 int verify)
280 {
281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 char *result = NULL;
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
291 unsigned long inline_result;
292
293 len = buf->len - offset;
294 while (len > 0) {
295 err = map_private_extent_buffer(buf, offset, 32,
296 &kaddr, &map_start, &map_len);
297 if (err)
298 return 1;
299 cur_len = min(len, map_len - (offset - map_start));
300 crc = btrfs_csum_data(kaddr + offset - map_start,
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
304 }
305 if (csum_size > sizeof(inline_result)) {
306 result = kzalloc(csum_size, GFP_NOFS);
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 u32 val;
318 u32 found = 0;
319 memcpy(&found, result, csum_size);
320
321 read_extent_buffer(buf, &val, 0, csum_size);
322 printk_ratelimited(KERN_WARNING
323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 "level %d\n",
325 fs_info->sb->s_id, buf->start,
326 val, found, btrfs_header_level(buf));
327 if (result != (char *)&inline_result)
328 kfree(result);
329 return 1;
330 }
331 } else {
332 write_extent_buffer(buf, result, 0, csum_size);
333 }
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return 0;
337 }
338
339 /*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
348 {
349 struct extent_state *cached_state = NULL;
350 int ret;
351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
356 if (atomic)
357 return -EAGAIN;
358
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 0, &cached_state);
366 if (extent_buffer_uptodate(eb) &&
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
371 printk_ratelimited(KERN_ERR
372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
373 eb->fs_info->sb->s_id, eb->start,
374 parent_transid, btrfs_header_generation(eb));
375 ret = 1;
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
387 out:
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
392 return ret;
393 }
394
395 /*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431 }
432
433 /*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
439 u64 start, u64 parent_transid)
440 {
441 struct extent_io_tree *io_tree;
442 int failed = 0;
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
446 int failed_mirror = 0;
447
448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
453 btree_get_extent, mirror_num);
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
456 parent_transid, 0))
457 break;
458 else
459 ret = -EIO;
460 }
461
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 break;
469
470 num_copies = btrfs_num_copies(root->fs_info,
471 eb->start, eb->len);
472 if (num_copies == 1)
473 break;
474
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
480 mirror_num++;
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
484 if (mirror_num > num_copies)
485 break;
486 }
487
488 if (failed && !ret && failed_mirror)
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
492 }
493
494 /*
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
497 */
498
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501 u64 start = page_offset(page);
502 u64 found_start;
503 struct extent_buffer *eb;
504
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
508 found_start = btrfs_header_bytenr(eb);
509 if (WARN_ON(found_start != start || !PageUptodate(page)))
510 return 0;
511 csum_tree_block(fs_info, eb, 0);
512 return 0;
513 }
514
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 struct extent_buffer *eb)
517 {
518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531 }
532
533 #define CORRUPT(reason, eb, root, slot) \
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
536 btrfs_header_bytenr(eb), root->objectid, slot)
537
538 static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540 {
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597 }
598
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
602 {
603 u64 found_start;
604 int found_level;
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 int ret = 0;
608 int reads_done;
609
610 if (!page->private)
611 goto out;
612
613 eb = (struct extent_buffer *)page->private;
614
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
621 if (!reads_done)
622 goto err;
623
624 eb->read_mirror = mirror;
625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 ret = -EIO;
627 goto err;
628 }
629
630 found_start = btrfs_header_bytenr(eb);
631 if (found_start != eb->start) {
632 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
633 "%llu %llu\n",
634 eb->fs_info->sb->s_id, found_start, eb->start);
635 ret = -EIO;
636 goto err;
637 }
638 if (check_tree_block_fsid(root->fs_info, eb)) {
639 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
640 eb->fs_info->sb->s_id, eb->start);
641 ret = -EIO;
642 goto err;
643 }
644 found_level = btrfs_header_level(eb);
645 if (found_level >= BTRFS_MAX_LEVEL) {
646 btrfs_err(root->fs_info, "bad tree block level %d",
647 (int)btrfs_header_level(eb));
648 ret = -EIO;
649 goto err;
650 }
651
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 eb, found_level);
654
655 ret = csum_tree_block(root->fs_info, eb, 1);
656 if (ret) {
657 ret = -EIO;
658 goto err;
659 }
660
661 /*
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
664 * return -EIO.
665 */
666 if (found_level == 0 && check_leaf(root, eb)) {
667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 ret = -EIO;
669 }
670
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
673 err:
674 if (reads_done &&
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
676 btree_readahead_hook(root, eb, eb->start, ret);
677
678 if (ret) {
679 /*
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
682 * to decrement
683 */
684 atomic_inc(&eb->io_pages);
685 clear_extent_buffer_uptodate(eb);
686 }
687 free_extent_buffer(eb);
688 out:
689 return ret;
690 }
691
692 static int btree_io_failed_hook(struct page *page, int failed_mirror)
693 {
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
697 eb = (struct extent_buffer *)page->private;
698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
699 eb->read_mirror = failed_mirror;
700 atomic_dec(&eb->io_pages);
701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
702 btree_readahead_hook(root, eb, eb->start, -EIO);
703 return -EIO; /* we fixed nothing */
704 }
705
706 static void end_workqueue_bio(struct bio *bio, int err)
707 {
708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709 struct btrfs_fs_info *fs_info;
710 struct btrfs_workqueue *wq;
711 btrfs_work_func_t func;
712
713 fs_info = end_io_wq->info;
714 end_io_wq->error = err;
715
716 if (bio->bi_rw & REQ_WRITE) {
717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 wq = fs_info->endio_meta_write_workers;
719 func = btrfs_endio_meta_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 wq = fs_info->endio_freespace_worker;
722 func = btrfs_freespace_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 wq = fs_info->endio_raid56_workers;
725 func = btrfs_endio_raid56_helper;
726 } else {
727 wq = fs_info->endio_write_workers;
728 func = btrfs_endio_write_helper;
729 }
730 } else {
731 if (unlikely(end_io_wq->metadata ==
732 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 wq = fs_info->endio_repair_workers;
734 func = btrfs_endio_repair_helper;
735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
736 wq = fs_info->endio_raid56_workers;
737 func = btrfs_endio_raid56_helper;
738 } else if (end_io_wq->metadata) {
739 wq = fs_info->endio_meta_workers;
740 func = btrfs_endio_meta_helper;
741 } else {
742 wq = fs_info->endio_workers;
743 func = btrfs_endio_helper;
744 }
745 }
746
747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 btrfs_queue_work(wq, &end_io_wq->work);
749 }
750
751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
752 enum btrfs_wq_endio_type metadata)
753 {
754 struct btrfs_end_io_wq *end_io_wq;
755
756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
757 if (!end_io_wq)
758 return -ENOMEM;
759
760 end_io_wq->private = bio->bi_private;
761 end_io_wq->end_io = bio->bi_end_io;
762 end_io_wq->info = info;
763 end_io_wq->error = 0;
764 end_io_wq->bio = bio;
765 end_io_wq->metadata = metadata;
766
767 bio->bi_private = end_io_wq;
768 bio->bi_end_io = end_workqueue_bio;
769 return 0;
770 }
771
772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
773 {
774 unsigned long limit = min_t(unsigned long,
775 info->thread_pool_size,
776 info->fs_devices->open_devices);
777 return 256 * limit;
778 }
779
780 static void run_one_async_start(struct btrfs_work *work)
781 {
782 struct async_submit_bio *async;
783 int ret;
784
785 async = container_of(work, struct async_submit_bio, work);
786 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 async->mirror_num, async->bio_flags,
788 async->bio_offset);
789 if (ret)
790 async->error = ret;
791 }
792
793 static void run_one_async_done(struct btrfs_work *work)
794 {
795 struct btrfs_fs_info *fs_info;
796 struct async_submit_bio *async;
797 int limit;
798
799 async = container_of(work, struct async_submit_bio, work);
800 fs_info = BTRFS_I(async->inode)->root->fs_info;
801
802 limit = btrfs_async_submit_limit(fs_info);
803 limit = limit * 2 / 3;
804
805 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
806 waitqueue_active(&fs_info->async_submit_wait))
807 wake_up(&fs_info->async_submit_wait);
808
809 /* If an error occured we just want to clean up the bio and move on */
810 if (async->error) {
811 bio_endio(async->bio, async->error);
812 return;
813 }
814
815 async->submit_bio_done(async->inode, async->rw, async->bio,
816 async->mirror_num, async->bio_flags,
817 async->bio_offset);
818 }
819
820 static void run_one_async_free(struct btrfs_work *work)
821 {
822 struct async_submit_bio *async;
823
824 async = container_of(work, struct async_submit_bio, work);
825 kfree(async);
826 }
827
828 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
829 int rw, struct bio *bio, int mirror_num,
830 unsigned long bio_flags,
831 u64 bio_offset,
832 extent_submit_bio_hook_t *submit_bio_start,
833 extent_submit_bio_hook_t *submit_bio_done)
834 {
835 struct async_submit_bio *async;
836
837 async = kmalloc(sizeof(*async), GFP_NOFS);
838 if (!async)
839 return -ENOMEM;
840
841 async->inode = inode;
842 async->rw = rw;
843 async->bio = bio;
844 async->mirror_num = mirror_num;
845 async->submit_bio_start = submit_bio_start;
846 async->submit_bio_done = submit_bio_done;
847
848 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
849 run_one_async_done, run_one_async_free);
850
851 async->bio_flags = bio_flags;
852 async->bio_offset = bio_offset;
853
854 async->error = 0;
855
856 atomic_inc(&fs_info->nr_async_submits);
857
858 if (rw & REQ_SYNC)
859 btrfs_set_work_high_priority(&async->work);
860
861 btrfs_queue_work(fs_info->workers, &async->work);
862
863 while (atomic_read(&fs_info->async_submit_draining) &&
864 atomic_read(&fs_info->nr_async_submits)) {
865 wait_event(fs_info->async_submit_wait,
866 (atomic_read(&fs_info->nr_async_submits) == 0));
867 }
868
869 return 0;
870 }
871
872 static int btree_csum_one_bio(struct bio *bio)
873 {
874 struct bio_vec *bvec;
875 struct btrfs_root *root;
876 int i, ret = 0;
877
878 bio_for_each_segment_all(bvec, bio, i) {
879 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
880 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
881 if (ret)
882 break;
883 }
884
885 return ret;
886 }
887
888 static int __btree_submit_bio_start(struct inode *inode, int rw,
889 struct bio *bio, int mirror_num,
890 unsigned long bio_flags,
891 u64 bio_offset)
892 {
893 /*
894 * when we're called for a write, we're already in the async
895 * submission context. Just jump into btrfs_map_bio
896 */
897 return btree_csum_one_bio(bio);
898 }
899
900 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
901 int mirror_num, unsigned long bio_flags,
902 u64 bio_offset)
903 {
904 int ret;
905
906 /*
907 * when we're called for a write, we're already in the async
908 * submission context. Just jump into btrfs_map_bio
909 */
910 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
911 if (ret)
912 bio_endio(bio, ret);
913 return ret;
914 }
915
916 static int check_async_write(struct inode *inode, unsigned long bio_flags)
917 {
918 if (bio_flags & EXTENT_BIO_TREE_LOG)
919 return 0;
920 #ifdef CONFIG_X86
921 if (cpu_has_xmm4_2)
922 return 0;
923 #endif
924 return 1;
925 }
926
927 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
928 int mirror_num, unsigned long bio_flags,
929 u64 bio_offset)
930 {
931 int async = check_async_write(inode, bio_flags);
932 int ret;
933
934 if (!(rw & REQ_WRITE)) {
935 /*
936 * called for a read, do the setup so that checksum validation
937 * can happen in the async kernel threads
938 */
939 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
940 bio, BTRFS_WQ_ENDIO_METADATA);
941 if (ret)
942 goto out_w_error;
943 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
944 mirror_num, 0);
945 } else if (!async) {
946 ret = btree_csum_one_bio(bio);
947 if (ret)
948 goto out_w_error;
949 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 mirror_num, 0);
951 } else {
952 /*
953 * kthread helpers are used to submit writes so that
954 * checksumming can happen in parallel across all CPUs
955 */
956 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
957 inode, rw, bio, mirror_num, 0,
958 bio_offset,
959 __btree_submit_bio_start,
960 __btree_submit_bio_done);
961 }
962
963 if (ret) {
964 out_w_error:
965 bio_endio(bio, ret);
966 }
967 return ret;
968 }
969
970 #ifdef CONFIG_MIGRATION
971 static int btree_migratepage(struct address_space *mapping,
972 struct page *newpage, struct page *page,
973 enum migrate_mode mode)
974 {
975 /*
976 * we can't safely write a btree page from here,
977 * we haven't done the locking hook
978 */
979 if (PageDirty(page))
980 return -EAGAIN;
981 /*
982 * Buffers may be managed in a filesystem specific way.
983 * We must have no buffers or drop them.
984 */
985 if (page_has_private(page) &&
986 !try_to_release_page(page, GFP_KERNEL))
987 return -EAGAIN;
988 return migrate_page(mapping, newpage, page, mode);
989 }
990 #endif
991
992
993 static int btree_writepages(struct address_space *mapping,
994 struct writeback_control *wbc)
995 {
996 struct btrfs_fs_info *fs_info;
997 int ret;
998
999 if (wbc->sync_mode == WB_SYNC_NONE) {
1000
1001 if (wbc->for_kupdate)
1002 return 0;
1003
1004 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1005 /* this is a bit racy, but that's ok */
1006 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1007 BTRFS_DIRTY_METADATA_THRESH);
1008 if (ret < 0)
1009 return 0;
1010 }
1011 return btree_write_cache_pages(mapping, wbc);
1012 }
1013
1014 static int btree_readpage(struct file *file, struct page *page)
1015 {
1016 struct extent_io_tree *tree;
1017 tree = &BTRFS_I(page->mapping->host)->io_tree;
1018 return extent_read_full_page(tree, page, btree_get_extent, 0);
1019 }
1020
1021 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1022 {
1023 if (PageWriteback(page) || PageDirty(page))
1024 return 0;
1025
1026 return try_release_extent_buffer(page);
1027 }
1028
1029 static void btree_invalidatepage(struct page *page, unsigned int offset,
1030 unsigned int length)
1031 {
1032 struct extent_io_tree *tree;
1033 tree = &BTRFS_I(page->mapping->host)->io_tree;
1034 extent_invalidatepage(tree, page, offset);
1035 btree_releasepage(page, GFP_NOFS);
1036 if (PagePrivate(page)) {
1037 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1038 "page private not zero on page %llu",
1039 (unsigned long long)page_offset(page));
1040 ClearPagePrivate(page);
1041 set_page_private(page, 0);
1042 page_cache_release(page);
1043 }
1044 }
1045
1046 static int btree_set_page_dirty(struct page *page)
1047 {
1048 #ifdef DEBUG
1049 struct extent_buffer *eb;
1050
1051 BUG_ON(!PagePrivate(page));
1052 eb = (struct extent_buffer *)page->private;
1053 BUG_ON(!eb);
1054 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1055 BUG_ON(!atomic_read(&eb->refs));
1056 btrfs_assert_tree_locked(eb);
1057 #endif
1058 return __set_page_dirty_nobuffers(page);
1059 }
1060
1061 static const struct address_space_operations btree_aops = {
1062 .readpage = btree_readpage,
1063 .writepages = btree_writepages,
1064 .releasepage = btree_releasepage,
1065 .invalidatepage = btree_invalidatepage,
1066 #ifdef CONFIG_MIGRATION
1067 .migratepage = btree_migratepage,
1068 #endif
1069 .set_page_dirty = btree_set_page_dirty,
1070 };
1071
1072 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1073 {
1074 struct extent_buffer *buf = NULL;
1075 struct inode *btree_inode = root->fs_info->btree_inode;
1076
1077 buf = btrfs_find_create_tree_block(root, bytenr);
1078 if (!buf)
1079 return;
1080 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1081 buf, 0, WAIT_NONE, btree_get_extent, 0);
1082 free_extent_buffer(buf);
1083 }
1084
1085 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1086 int mirror_num, struct extent_buffer **eb)
1087 {
1088 struct extent_buffer *buf = NULL;
1089 struct inode *btree_inode = root->fs_info->btree_inode;
1090 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1091 int ret;
1092
1093 buf = btrfs_find_create_tree_block(root, bytenr);
1094 if (!buf)
1095 return 0;
1096
1097 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1098
1099 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1100 btree_get_extent, mirror_num);
1101 if (ret) {
1102 free_extent_buffer(buf);
1103 return ret;
1104 }
1105
1106 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1107 free_extent_buffer(buf);
1108 return -EIO;
1109 } else if (extent_buffer_uptodate(buf)) {
1110 *eb = buf;
1111 } else {
1112 free_extent_buffer(buf);
1113 }
1114 return 0;
1115 }
1116
1117 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1118 u64 bytenr)
1119 {
1120 return find_extent_buffer(fs_info, bytenr);
1121 }
1122
1123 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1124 u64 bytenr)
1125 {
1126 if (btrfs_test_is_dummy_root(root))
1127 return alloc_test_extent_buffer(root->fs_info, bytenr);
1128 return alloc_extent_buffer(root->fs_info, bytenr);
1129 }
1130
1131
1132 int btrfs_write_tree_block(struct extent_buffer *buf)
1133 {
1134 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1135 buf->start + buf->len - 1);
1136 }
1137
1138 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1139 {
1140 return filemap_fdatawait_range(buf->pages[0]->mapping,
1141 buf->start, buf->start + buf->len - 1);
1142 }
1143
1144 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1145 u64 parent_transid)
1146 {
1147 struct extent_buffer *buf = NULL;
1148 int ret;
1149
1150 buf = btrfs_find_create_tree_block(root, bytenr);
1151 if (!buf)
1152 return NULL;
1153
1154 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1155 if (ret) {
1156 free_extent_buffer(buf);
1157 return NULL;
1158 }
1159 return buf;
1160
1161 }
1162
1163 void clean_tree_block(struct btrfs_trans_handle *trans,
1164 struct btrfs_fs_info *fs_info,
1165 struct extent_buffer *buf)
1166 {
1167 if (btrfs_header_generation(buf) ==
1168 fs_info->running_transaction->transid) {
1169 btrfs_assert_tree_locked(buf);
1170
1171 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1172 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173 -buf->len,
1174 fs_info->dirty_metadata_batch);
1175 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1176 btrfs_set_lock_blocking(buf);
1177 clear_extent_buffer_dirty(buf);
1178 }
1179 }
1180 }
1181
1182 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183 {
1184 struct btrfs_subvolume_writers *writers;
1185 int ret;
1186
1187 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188 if (!writers)
1189 return ERR_PTR(-ENOMEM);
1190
1191 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1192 if (ret < 0) {
1193 kfree(writers);
1194 return ERR_PTR(ret);
1195 }
1196
1197 init_waitqueue_head(&writers->wait);
1198 return writers;
1199 }
1200
1201 static void
1202 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203 {
1204 percpu_counter_destroy(&writers->counter);
1205 kfree(writers);
1206 }
1207
1208 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1210 u64 objectid)
1211 {
1212 root->node = NULL;
1213 root->commit_root = NULL;
1214 root->sectorsize = sectorsize;
1215 root->nodesize = nodesize;
1216 root->stripesize = stripesize;
1217 root->state = 0;
1218 root->orphan_cleanup_state = 0;
1219
1220 root->objectid = objectid;
1221 root->last_trans = 0;
1222 root->highest_objectid = 0;
1223 root->nr_delalloc_inodes = 0;
1224 root->nr_ordered_extents = 0;
1225 root->name = NULL;
1226 root->inode_tree = RB_ROOT;
1227 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1228 root->block_rsv = NULL;
1229 root->orphan_block_rsv = NULL;
1230
1231 INIT_LIST_HEAD(&root->dirty_list);
1232 INIT_LIST_HEAD(&root->root_list);
1233 INIT_LIST_HEAD(&root->delalloc_inodes);
1234 INIT_LIST_HEAD(&root->delalloc_root);
1235 INIT_LIST_HEAD(&root->ordered_extents);
1236 INIT_LIST_HEAD(&root->ordered_root);
1237 INIT_LIST_HEAD(&root->logged_list[0]);
1238 INIT_LIST_HEAD(&root->logged_list[1]);
1239 spin_lock_init(&root->orphan_lock);
1240 spin_lock_init(&root->inode_lock);
1241 spin_lock_init(&root->delalloc_lock);
1242 spin_lock_init(&root->ordered_extent_lock);
1243 spin_lock_init(&root->accounting_lock);
1244 spin_lock_init(&root->log_extents_lock[0]);
1245 spin_lock_init(&root->log_extents_lock[1]);
1246 mutex_init(&root->objectid_mutex);
1247 mutex_init(&root->log_mutex);
1248 mutex_init(&root->ordered_extent_mutex);
1249 mutex_init(&root->delalloc_mutex);
1250 init_waitqueue_head(&root->log_writer_wait);
1251 init_waitqueue_head(&root->log_commit_wait[0]);
1252 init_waitqueue_head(&root->log_commit_wait[1]);
1253 INIT_LIST_HEAD(&root->log_ctxs[0]);
1254 INIT_LIST_HEAD(&root->log_ctxs[1]);
1255 atomic_set(&root->log_commit[0], 0);
1256 atomic_set(&root->log_commit[1], 0);
1257 atomic_set(&root->log_writers, 0);
1258 atomic_set(&root->log_batch, 0);
1259 atomic_set(&root->orphan_inodes, 0);
1260 atomic_set(&root->refs, 1);
1261 atomic_set(&root->will_be_snapshoted, 0);
1262 root->log_transid = 0;
1263 root->log_transid_committed = -1;
1264 root->last_log_commit = 0;
1265 if (fs_info)
1266 extent_io_tree_init(&root->dirty_log_pages,
1267 fs_info->btree_inode->i_mapping);
1268
1269 memset(&root->root_key, 0, sizeof(root->root_key));
1270 memset(&root->root_item, 0, sizeof(root->root_item));
1271 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1272 if (fs_info)
1273 root->defrag_trans_start = fs_info->generation;
1274 else
1275 root->defrag_trans_start = 0;
1276 root->root_key.objectid = objectid;
1277 root->anon_dev = 0;
1278
1279 spin_lock_init(&root->root_item_lock);
1280 }
1281
1282 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1283 {
1284 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1285 if (root)
1286 root->fs_info = fs_info;
1287 return root;
1288 }
1289
1290 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1291 /* Should only be used by the testing infrastructure */
1292 struct btrfs_root *btrfs_alloc_dummy_root(void)
1293 {
1294 struct btrfs_root *root;
1295
1296 root = btrfs_alloc_root(NULL);
1297 if (!root)
1298 return ERR_PTR(-ENOMEM);
1299 __setup_root(4096, 4096, 4096, root, NULL, 1);
1300 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1301 root->alloc_bytenr = 0;
1302
1303 return root;
1304 }
1305 #endif
1306
1307 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1308 struct btrfs_fs_info *fs_info,
1309 u64 objectid)
1310 {
1311 struct extent_buffer *leaf;
1312 struct btrfs_root *tree_root = fs_info->tree_root;
1313 struct btrfs_root *root;
1314 struct btrfs_key key;
1315 int ret = 0;
1316 uuid_le uuid;
1317
1318 root = btrfs_alloc_root(fs_info);
1319 if (!root)
1320 return ERR_PTR(-ENOMEM);
1321
1322 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1323 tree_root->stripesize, root, fs_info, objectid);
1324 root->root_key.objectid = objectid;
1325 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1326 root->root_key.offset = 0;
1327
1328 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1329 if (IS_ERR(leaf)) {
1330 ret = PTR_ERR(leaf);
1331 leaf = NULL;
1332 goto fail;
1333 }
1334
1335 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1336 btrfs_set_header_bytenr(leaf, leaf->start);
1337 btrfs_set_header_generation(leaf, trans->transid);
1338 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1339 btrfs_set_header_owner(leaf, objectid);
1340 root->node = leaf;
1341
1342 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1343 BTRFS_FSID_SIZE);
1344 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1345 btrfs_header_chunk_tree_uuid(leaf),
1346 BTRFS_UUID_SIZE);
1347 btrfs_mark_buffer_dirty(leaf);
1348
1349 root->commit_root = btrfs_root_node(root);
1350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1351
1352 root->root_item.flags = 0;
1353 root->root_item.byte_limit = 0;
1354 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1355 btrfs_set_root_generation(&root->root_item, trans->transid);
1356 btrfs_set_root_level(&root->root_item, 0);
1357 btrfs_set_root_refs(&root->root_item, 1);
1358 btrfs_set_root_used(&root->root_item, leaf->len);
1359 btrfs_set_root_last_snapshot(&root->root_item, 0);
1360 btrfs_set_root_dirid(&root->root_item, 0);
1361 uuid_le_gen(&uuid);
1362 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1363 root->root_item.drop_level = 0;
1364
1365 key.objectid = objectid;
1366 key.type = BTRFS_ROOT_ITEM_KEY;
1367 key.offset = 0;
1368 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1369 if (ret)
1370 goto fail;
1371
1372 btrfs_tree_unlock(leaf);
1373
1374 return root;
1375
1376 fail:
1377 if (leaf) {
1378 btrfs_tree_unlock(leaf);
1379 free_extent_buffer(root->commit_root);
1380 free_extent_buffer(leaf);
1381 }
1382 kfree(root);
1383
1384 return ERR_PTR(ret);
1385 }
1386
1387 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1388 struct btrfs_fs_info *fs_info)
1389 {
1390 struct btrfs_root *root;
1391 struct btrfs_root *tree_root = fs_info->tree_root;
1392 struct extent_buffer *leaf;
1393
1394 root = btrfs_alloc_root(fs_info);
1395 if (!root)
1396 return ERR_PTR(-ENOMEM);
1397
1398 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1399 tree_root->stripesize, root, fs_info,
1400 BTRFS_TREE_LOG_OBJECTID);
1401
1402 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1403 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1404 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1405
1406 /*
1407 * DON'T set REF_COWS for log trees
1408 *
1409 * log trees do not get reference counted because they go away
1410 * before a real commit is actually done. They do store pointers
1411 * to file data extents, and those reference counts still get
1412 * updated (along with back refs to the log tree).
1413 */
1414
1415 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1416 NULL, 0, 0, 0);
1417 if (IS_ERR(leaf)) {
1418 kfree(root);
1419 return ERR_CAST(leaf);
1420 }
1421
1422 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1423 btrfs_set_header_bytenr(leaf, leaf->start);
1424 btrfs_set_header_generation(leaf, trans->transid);
1425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1426 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1427 root->node = leaf;
1428
1429 write_extent_buffer(root->node, root->fs_info->fsid,
1430 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1431 btrfs_mark_buffer_dirty(root->node);
1432 btrfs_tree_unlock(root->node);
1433 return root;
1434 }
1435
1436 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1437 struct btrfs_fs_info *fs_info)
1438 {
1439 struct btrfs_root *log_root;
1440
1441 log_root = alloc_log_tree(trans, fs_info);
1442 if (IS_ERR(log_root))
1443 return PTR_ERR(log_root);
1444 WARN_ON(fs_info->log_root_tree);
1445 fs_info->log_root_tree = log_root;
1446 return 0;
1447 }
1448
1449 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root)
1451 {
1452 struct btrfs_root *log_root;
1453 struct btrfs_inode_item *inode_item;
1454
1455 log_root = alloc_log_tree(trans, root->fs_info);
1456 if (IS_ERR(log_root))
1457 return PTR_ERR(log_root);
1458
1459 log_root->last_trans = trans->transid;
1460 log_root->root_key.offset = root->root_key.objectid;
1461
1462 inode_item = &log_root->root_item.inode;
1463 btrfs_set_stack_inode_generation(inode_item, 1);
1464 btrfs_set_stack_inode_size(inode_item, 3);
1465 btrfs_set_stack_inode_nlink(inode_item, 1);
1466 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1467 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1468
1469 btrfs_set_root_node(&log_root->root_item, log_root->node);
1470
1471 WARN_ON(root->log_root);
1472 root->log_root = log_root;
1473 root->log_transid = 0;
1474 root->log_transid_committed = -1;
1475 root->last_log_commit = 0;
1476 return 0;
1477 }
1478
1479 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1480 struct btrfs_key *key)
1481 {
1482 struct btrfs_root *root;
1483 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1484 struct btrfs_path *path;
1485 u64 generation;
1486 int ret;
1487
1488 path = btrfs_alloc_path();
1489 if (!path)
1490 return ERR_PTR(-ENOMEM);
1491
1492 root = btrfs_alloc_root(fs_info);
1493 if (!root) {
1494 ret = -ENOMEM;
1495 goto alloc_fail;
1496 }
1497
1498 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1499 tree_root->stripesize, root, fs_info, key->objectid);
1500
1501 ret = btrfs_find_root(tree_root, key, path,
1502 &root->root_item, &root->root_key);
1503 if (ret) {
1504 if (ret > 0)
1505 ret = -ENOENT;
1506 goto find_fail;
1507 }
1508
1509 generation = btrfs_root_generation(&root->root_item);
1510 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1511 generation);
1512 if (!root->node) {
1513 ret = -ENOMEM;
1514 goto find_fail;
1515 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1516 ret = -EIO;
1517 goto read_fail;
1518 }
1519 root->commit_root = btrfs_root_node(root);
1520 out:
1521 btrfs_free_path(path);
1522 return root;
1523
1524 read_fail:
1525 free_extent_buffer(root->node);
1526 find_fail:
1527 kfree(root);
1528 alloc_fail:
1529 root = ERR_PTR(ret);
1530 goto out;
1531 }
1532
1533 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1534 struct btrfs_key *location)
1535 {
1536 struct btrfs_root *root;
1537
1538 root = btrfs_read_tree_root(tree_root, location);
1539 if (IS_ERR(root))
1540 return root;
1541
1542 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1543 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1544 btrfs_check_and_init_root_item(&root->root_item);
1545 }
1546
1547 return root;
1548 }
1549
1550 int btrfs_init_fs_root(struct btrfs_root *root)
1551 {
1552 int ret;
1553 struct btrfs_subvolume_writers *writers;
1554
1555 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1556 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1557 GFP_NOFS);
1558 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1559 ret = -ENOMEM;
1560 goto fail;
1561 }
1562
1563 writers = btrfs_alloc_subvolume_writers();
1564 if (IS_ERR(writers)) {
1565 ret = PTR_ERR(writers);
1566 goto fail;
1567 }
1568 root->subv_writers = writers;
1569
1570 btrfs_init_free_ino_ctl(root);
1571 spin_lock_init(&root->ino_cache_lock);
1572 init_waitqueue_head(&root->ino_cache_wait);
1573
1574 ret = get_anon_bdev(&root->anon_dev);
1575 if (ret)
1576 goto free_writers;
1577 return 0;
1578
1579 free_writers:
1580 btrfs_free_subvolume_writers(root->subv_writers);
1581 fail:
1582 kfree(root->free_ino_ctl);
1583 kfree(root->free_ino_pinned);
1584 return ret;
1585 }
1586
1587 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1588 u64 root_id)
1589 {
1590 struct btrfs_root *root;
1591
1592 spin_lock(&fs_info->fs_roots_radix_lock);
1593 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1594 (unsigned long)root_id);
1595 spin_unlock(&fs_info->fs_roots_radix_lock);
1596 return root;
1597 }
1598
1599 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1600 struct btrfs_root *root)
1601 {
1602 int ret;
1603
1604 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1605 if (ret)
1606 return ret;
1607
1608 spin_lock(&fs_info->fs_roots_radix_lock);
1609 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1610 (unsigned long)root->root_key.objectid,
1611 root);
1612 if (ret == 0)
1613 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1614 spin_unlock(&fs_info->fs_roots_radix_lock);
1615 radix_tree_preload_end();
1616
1617 return ret;
1618 }
1619
1620 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1621 struct btrfs_key *location,
1622 bool check_ref)
1623 {
1624 struct btrfs_root *root;
1625 struct btrfs_path *path;
1626 struct btrfs_key key;
1627 int ret;
1628
1629 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1630 return fs_info->tree_root;
1631 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1632 return fs_info->extent_root;
1633 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1634 return fs_info->chunk_root;
1635 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1636 return fs_info->dev_root;
1637 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1638 return fs_info->csum_root;
1639 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1640 return fs_info->quota_root ? fs_info->quota_root :
1641 ERR_PTR(-ENOENT);
1642 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1643 return fs_info->uuid_root ? fs_info->uuid_root :
1644 ERR_PTR(-ENOENT);
1645 again:
1646 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1647 if (root) {
1648 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1649 return ERR_PTR(-ENOENT);
1650 return root;
1651 }
1652
1653 root = btrfs_read_fs_root(fs_info->tree_root, location);
1654 if (IS_ERR(root))
1655 return root;
1656
1657 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1658 ret = -ENOENT;
1659 goto fail;
1660 }
1661
1662 ret = btrfs_init_fs_root(root);
1663 if (ret)
1664 goto fail;
1665
1666 path = btrfs_alloc_path();
1667 if (!path) {
1668 ret = -ENOMEM;
1669 goto fail;
1670 }
1671 key.objectid = BTRFS_ORPHAN_OBJECTID;
1672 key.type = BTRFS_ORPHAN_ITEM_KEY;
1673 key.offset = location->objectid;
1674
1675 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1676 btrfs_free_path(path);
1677 if (ret < 0)
1678 goto fail;
1679 if (ret == 0)
1680 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1681
1682 ret = btrfs_insert_fs_root(fs_info, root);
1683 if (ret) {
1684 if (ret == -EEXIST) {
1685 free_fs_root(root);
1686 goto again;
1687 }
1688 goto fail;
1689 }
1690 return root;
1691 fail:
1692 free_fs_root(root);
1693 return ERR_PTR(ret);
1694 }
1695
1696 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1697 {
1698 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1699 int ret = 0;
1700 struct btrfs_device *device;
1701 struct backing_dev_info *bdi;
1702
1703 rcu_read_lock();
1704 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1705 if (!device->bdev)
1706 continue;
1707 bdi = blk_get_backing_dev_info(device->bdev);
1708 if (bdi_congested(bdi, bdi_bits)) {
1709 ret = 1;
1710 break;
1711 }
1712 }
1713 rcu_read_unlock();
1714 return ret;
1715 }
1716
1717 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1718 {
1719 int err;
1720
1721 err = bdi_setup_and_register(bdi, "btrfs");
1722 if (err)
1723 return err;
1724
1725 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1726 bdi->congested_fn = btrfs_congested_fn;
1727 bdi->congested_data = info;
1728 return 0;
1729 }
1730
1731 /*
1732 * called by the kthread helper functions to finally call the bio end_io
1733 * functions. This is where read checksum verification actually happens
1734 */
1735 static void end_workqueue_fn(struct btrfs_work *work)
1736 {
1737 struct bio *bio;
1738 struct btrfs_end_io_wq *end_io_wq;
1739 int error;
1740
1741 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1742 bio = end_io_wq->bio;
1743
1744 error = end_io_wq->error;
1745 bio->bi_private = end_io_wq->private;
1746 bio->bi_end_io = end_io_wq->end_io;
1747 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1748 bio_endio_nodec(bio, error);
1749 }
1750
1751 static int cleaner_kthread(void *arg)
1752 {
1753 struct btrfs_root *root = arg;
1754 int again;
1755
1756 do {
1757 again = 0;
1758
1759 /* Make the cleaner go to sleep early. */
1760 if (btrfs_need_cleaner_sleep(root))
1761 goto sleep;
1762
1763 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1764 goto sleep;
1765
1766 /*
1767 * Avoid the problem that we change the status of the fs
1768 * during the above check and trylock.
1769 */
1770 if (btrfs_need_cleaner_sleep(root)) {
1771 mutex_unlock(&root->fs_info->cleaner_mutex);
1772 goto sleep;
1773 }
1774
1775 btrfs_run_delayed_iputs(root);
1776 btrfs_delete_unused_bgs(root->fs_info);
1777 again = btrfs_clean_one_deleted_snapshot(root);
1778 mutex_unlock(&root->fs_info->cleaner_mutex);
1779
1780 /*
1781 * The defragger has dealt with the R/O remount and umount,
1782 * needn't do anything special here.
1783 */
1784 btrfs_run_defrag_inodes(root->fs_info);
1785 sleep:
1786 if (!try_to_freeze() && !again) {
1787 set_current_state(TASK_INTERRUPTIBLE);
1788 if (!kthread_should_stop())
1789 schedule();
1790 __set_current_state(TASK_RUNNING);
1791 }
1792 } while (!kthread_should_stop());
1793 return 0;
1794 }
1795
1796 static int transaction_kthread(void *arg)
1797 {
1798 struct btrfs_root *root = arg;
1799 struct btrfs_trans_handle *trans;
1800 struct btrfs_transaction *cur;
1801 u64 transid;
1802 unsigned long now;
1803 unsigned long delay;
1804 bool cannot_commit;
1805
1806 do {
1807 cannot_commit = false;
1808 delay = HZ * root->fs_info->commit_interval;
1809 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1810
1811 spin_lock(&root->fs_info->trans_lock);
1812 cur = root->fs_info->running_transaction;
1813 if (!cur) {
1814 spin_unlock(&root->fs_info->trans_lock);
1815 goto sleep;
1816 }
1817
1818 now = get_seconds();
1819 if (cur->state < TRANS_STATE_BLOCKED &&
1820 (now < cur->start_time ||
1821 now - cur->start_time < root->fs_info->commit_interval)) {
1822 spin_unlock(&root->fs_info->trans_lock);
1823 delay = HZ * 5;
1824 goto sleep;
1825 }
1826 transid = cur->transid;
1827 spin_unlock(&root->fs_info->trans_lock);
1828
1829 /* If the file system is aborted, this will always fail. */
1830 trans = btrfs_attach_transaction(root);
1831 if (IS_ERR(trans)) {
1832 if (PTR_ERR(trans) != -ENOENT)
1833 cannot_commit = true;
1834 goto sleep;
1835 }
1836 if (transid == trans->transid) {
1837 btrfs_commit_transaction(trans, root);
1838 } else {
1839 btrfs_end_transaction(trans, root);
1840 }
1841 sleep:
1842 wake_up_process(root->fs_info->cleaner_kthread);
1843 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1844
1845 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1846 &root->fs_info->fs_state)))
1847 btrfs_cleanup_transaction(root);
1848 if (!try_to_freeze()) {
1849 set_current_state(TASK_INTERRUPTIBLE);
1850 if (!kthread_should_stop() &&
1851 (!btrfs_transaction_blocked(root->fs_info) ||
1852 cannot_commit))
1853 schedule_timeout(delay);
1854 __set_current_state(TASK_RUNNING);
1855 }
1856 } while (!kthread_should_stop());
1857 return 0;
1858 }
1859
1860 /*
1861 * this will find the highest generation in the array of
1862 * root backups. The index of the highest array is returned,
1863 * or -1 if we can't find anything.
1864 *
1865 * We check to make sure the array is valid by comparing the
1866 * generation of the latest root in the array with the generation
1867 * in the super block. If they don't match we pitch it.
1868 */
1869 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1870 {
1871 u64 cur;
1872 int newest_index = -1;
1873 struct btrfs_root_backup *root_backup;
1874 int i;
1875
1876 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1877 root_backup = info->super_copy->super_roots + i;
1878 cur = btrfs_backup_tree_root_gen(root_backup);
1879 if (cur == newest_gen)
1880 newest_index = i;
1881 }
1882
1883 /* check to see if we actually wrapped around */
1884 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1885 root_backup = info->super_copy->super_roots;
1886 cur = btrfs_backup_tree_root_gen(root_backup);
1887 if (cur == newest_gen)
1888 newest_index = 0;
1889 }
1890 return newest_index;
1891 }
1892
1893
1894 /*
1895 * find the oldest backup so we know where to store new entries
1896 * in the backup array. This will set the backup_root_index
1897 * field in the fs_info struct
1898 */
1899 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1900 u64 newest_gen)
1901 {
1902 int newest_index = -1;
1903
1904 newest_index = find_newest_super_backup(info, newest_gen);
1905 /* if there was garbage in there, just move along */
1906 if (newest_index == -1) {
1907 info->backup_root_index = 0;
1908 } else {
1909 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1910 }
1911 }
1912
1913 /*
1914 * copy all the root pointers into the super backup array.
1915 * this will bump the backup pointer by one when it is
1916 * done
1917 */
1918 static void backup_super_roots(struct btrfs_fs_info *info)
1919 {
1920 int next_backup;
1921 struct btrfs_root_backup *root_backup;
1922 int last_backup;
1923
1924 next_backup = info->backup_root_index;
1925 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1926 BTRFS_NUM_BACKUP_ROOTS;
1927
1928 /*
1929 * just overwrite the last backup if we're at the same generation
1930 * this happens only at umount
1931 */
1932 root_backup = info->super_for_commit->super_roots + last_backup;
1933 if (btrfs_backup_tree_root_gen(root_backup) ==
1934 btrfs_header_generation(info->tree_root->node))
1935 next_backup = last_backup;
1936
1937 root_backup = info->super_for_commit->super_roots + next_backup;
1938
1939 /*
1940 * make sure all of our padding and empty slots get zero filled
1941 * regardless of which ones we use today
1942 */
1943 memset(root_backup, 0, sizeof(*root_backup));
1944
1945 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1946
1947 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1948 btrfs_set_backup_tree_root_gen(root_backup,
1949 btrfs_header_generation(info->tree_root->node));
1950
1951 btrfs_set_backup_tree_root_level(root_backup,
1952 btrfs_header_level(info->tree_root->node));
1953
1954 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1955 btrfs_set_backup_chunk_root_gen(root_backup,
1956 btrfs_header_generation(info->chunk_root->node));
1957 btrfs_set_backup_chunk_root_level(root_backup,
1958 btrfs_header_level(info->chunk_root->node));
1959
1960 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1961 btrfs_set_backup_extent_root_gen(root_backup,
1962 btrfs_header_generation(info->extent_root->node));
1963 btrfs_set_backup_extent_root_level(root_backup,
1964 btrfs_header_level(info->extent_root->node));
1965
1966 /*
1967 * we might commit during log recovery, which happens before we set
1968 * the fs_root. Make sure it is valid before we fill it in.
1969 */
1970 if (info->fs_root && info->fs_root->node) {
1971 btrfs_set_backup_fs_root(root_backup,
1972 info->fs_root->node->start);
1973 btrfs_set_backup_fs_root_gen(root_backup,
1974 btrfs_header_generation(info->fs_root->node));
1975 btrfs_set_backup_fs_root_level(root_backup,
1976 btrfs_header_level(info->fs_root->node));
1977 }
1978
1979 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1980 btrfs_set_backup_dev_root_gen(root_backup,
1981 btrfs_header_generation(info->dev_root->node));
1982 btrfs_set_backup_dev_root_level(root_backup,
1983 btrfs_header_level(info->dev_root->node));
1984
1985 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1986 btrfs_set_backup_csum_root_gen(root_backup,
1987 btrfs_header_generation(info->csum_root->node));
1988 btrfs_set_backup_csum_root_level(root_backup,
1989 btrfs_header_level(info->csum_root->node));
1990
1991 btrfs_set_backup_total_bytes(root_backup,
1992 btrfs_super_total_bytes(info->super_copy));
1993 btrfs_set_backup_bytes_used(root_backup,
1994 btrfs_super_bytes_used(info->super_copy));
1995 btrfs_set_backup_num_devices(root_backup,
1996 btrfs_super_num_devices(info->super_copy));
1997
1998 /*
1999 * if we don't copy this out to the super_copy, it won't get remembered
2000 * for the next commit
2001 */
2002 memcpy(&info->super_copy->super_roots,
2003 &info->super_for_commit->super_roots,
2004 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2005 }
2006
2007 /*
2008 * this copies info out of the root backup array and back into
2009 * the in-memory super block. It is meant to help iterate through
2010 * the array, so you send it the number of backups you've already
2011 * tried and the last backup index you used.
2012 *
2013 * this returns -1 when it has tried all the backups
2014 */
2015 static noinline int next_root_backup(struct btrfs_fs_info *info,
2016 struct btrfs_super_block *super,
2017 int *num_backups_tried, int *backup_index)
2018 {
2019 struct btrfs_root_backup *root_backup;
2020 int newest = *backup_index;
2021
2022 if (*num_backups_tried == 0) {
2023 u64 gen = btrfs_super_generation(super);
2024
2025 newest = find_newest_super_backup(info, gen);
2026 if (newest == -1)
2027 return -1;
2028
2029 *backup_index = newest;
2030 *num_backups_tried = 1;
2031 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2032 /* we've tried all the backups, all done */
2033 return -1;
2034 } else {
2035 /* jump to the next oldest backup */
2036 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2037 BTRFS_NUM_BACKUP_ROOTS;
2038 *backup_index = newest;
2039 *num_backups_tried += 1;
2040 }
2041 root_backup = super->super_roots + newest;
2042
2043 btrfs_set_super_generation(super,
2044 btrfs_backup_tree_root_gen(root_backup));
2045 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2046 btrfs_set_super_root_level(super,
2047 btrfs_backup_tree_root_level(root_backup));
2048 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2049
2050 /*
2051 * fixme: the total bytes and num_devices need to match or we should
2052 * need a fsck
2053 */
2054 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2055 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2056 return 0;
2057 }
2058
2059 /* helper to cleanup workers */
2060 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2061 {
2062 btrfs_destroy_workqueue(fs_info->fixup_workers);
2063 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2064 btrfs_destroy_workqueue(fs_info->workers);
2065 btrfs_destroy_workqueue(fs_info->endio_workers);
2066 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2067 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2068 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2069 btrfs_destroy_workqueue(fs_info->rmw_workers);
2070 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2071 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2072 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2073 btrfs_destroy_workqueue(fs_info->submit_workers);
2074 btrfs_destroy_workqueue(fs_info->delayed_workers);
2075 btrfs_destroy_workqueue(fs_info->caching_workers);
2076 btrfs_destroy_workqueue(fs_info->readahead_workers);
2077 btrfs_destroy_workqueue(fs_info->flush_workers);
2078 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2079 btrfs_destroy_workqueue(fs_info->extent_workers);
2080 }
2081
2082 static void free_root_extent_buffers(struct btrfs_root *root)
2083 {
2084 if (root) {
2085 free_extent_buffer(root->node);
2086 free_extent_buffer(root->commit_root);
2087 root->node = NULL;
2088 root->commit_root = NULL;
2089 }
2090 }
2091
2092 /* helper to cleanup tree roots */
2093 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2094 {
2095 free_root_extent_buffers(info->tree_root);
2096
2097 free_root_extent_buffers(info->dev_root);
2098 free_root_extent_buffers(info->extent_root);
2099 free_root_extent_buffers(info->csum_root);
2100 free_root_extent_buffers(info->quota_root);
2101 free_root_extent_buffers(info->uuid_root);
2102 if (chunk_root)
2103 free_root_extent_buffers(info->chunk_root);
2104 }
2105
2106 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2107 {
2108 int ret;
2109 struct btrfs_root *gang[8];
2110 int i;
2111
2112 while (!list_empty(&fs_info->dead_roots)) {
2113 gang[0] = list_entry(fs_info->dead_roots.next,
2114 struct btrfs_root, root_list);
2115 list_del(&gang[0]->root_list);
2116
2117 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2118 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2119 } else {
2120 free_extent_buffer(gang[0]->node);
2121 free_extent_buffer(gang[0]->commit_root);
2122 btrfs_put_fs_root(gang[0]);
2123 }
2124 }
2125
2126 while (1) {
2127 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2128 (void **)gang, 0,
2129 ARRAY_SIZE(gang));
2130 if (!ret)
2131 break;
2132 for (i = 0; i < ret; i++)
2133 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2134 }
2135
2136 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2137 btrfs_free_log_root_tree(NULL, fs_info);
2138 btrfs_destroy_pinned_extent(fs_info->tree_root,
2139 fs_info->pinned_extents);
2140 }
2141 }
2142
2143 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2144 {
2145 mutex_init(&fs_info->scrub_lock);
2146 atomic_set(&fs_info->scrubs_running, 0);
2147 atomic_set(&fs_info->scrub_pause_req, 0);
2148 atomic_set(&fs_info->scrubs_paused, 0);
2149 atomic_set(&fs_info->scrub_cancel_req, 0);
2150 init_waitqueue_head(&fs_info->scrub_pause_wait);
2151 fs_info->scrub_workers_refcnt = 0;
2152 }
2153
2154 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2155 {
2156 spin_lock_init(&fs_info->balance_lock);
2157 mutex_init(&fs_info->balance_mutex);
2158 atomic_set(&fs_info->balance_running, 0);
2159 atomic_set(&fs_info->balance_pause_req, 0);
2160 atomic_set(&fs_info->balance_cancel_req, 0);
2161 fs_info->balance_ctl = NULL;
2162 init_waitqueue_head(&fs_info->balance_wait_q);
2163 }
2164
2165 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2166 struct btrfs_root *tree_root)
2167 {
2168 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2169 set_nlink(fs_info->btree_inode, 1);
2170 /*
2171 * we set the i_size on the btree inode to the max possible int.
2172 * the real end of the address space is determined by all of
2173 * the devices in the system
2174 */
2175 fs_info->btree_inode->i_size = OFFSET_MAX;
2176 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2177
2178 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2179 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2180 fs_info->btree_inode->i_mapping);
2181 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2182 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2183
2184 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2185
2186 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2187 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2188 sizeof(struct btrfs_key));
2189 set_bit(BTRFS_INODE_DUMMY,
2190 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2191 btrfs_insert_inode_hash(fs_info->btree_inode);
2192 }
2193
2194 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2195 {
2196 fs_info->dev_replace.lock_owner = 0;
2197 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2198 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2199 mutex_init(&fs_info->dev_replace.lock_management_lock);
2200 mutex_init(&fs_info->dev_replace.lock);
2201 init_waitqueue_head(&fs_info->replace_wait);
2202 }
2203
2204 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2205 {
2206 spin_lock_init(&fs_info->qgroup_lock);
2207 mutex_init(&fs_info->qgroup_ioctl_lock);
2208 fs_info->qgroup_tree = RB_ROOT;
2209 fs_info->qgroup_op_tree = RB_ROOT;
2210 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2211 fs_info->qgroup_seq = 1;
2212 fs_info->quota_enabled = 0;
2213 fs_info->pending_quota_state = 0;
2214 fs_info->qgroup_ulist = NULL;
2215 mutex_init(&fs_info->qgroup_rescan_lock);
2216 }
2217
2218 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2219 struct btrfs_fs_devices *fs_devices)
2220 {
2221 int max_active = fs_info->thread_pool_size;
2222 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2223
2224 fs_info->workers =
2225 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2226 max_active, 16);
2227
2228 fs_info->delalloc_workers =
2229 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2230
2231 fs_info->flush_workers =
2232 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2233
2234 fs_info->caching_workers =
2235 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2236
2237 /*
2238 * a higher idle thresh on the submit workers makes it much more
2239 * likely that bios will be send down in a sane order to the
2240 * devices
2241 */
2242 fs_info->submit_workers =
2243 btrfs_alloc_workqueue("submit", flags,
2244 min_t(u64, fs_devices->num_devices,
2245 max_active), 64);
2246
2247 fs_info->fixup_workers =
2248 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2249
2250 /*
2251 * endios are largely parallel and should have a very
2252 * low idle thresh
2253 */
2254 fs_info->endio_workers =
2255 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2256 fs_info->endio_meta_workers =
2257 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2258 fs_info->endio_meta_write_workers =
2259 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2260 fs_info->endio_raid56_workers =
2261 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2262 fs_info->endio_repair_workers =
2263 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2264 fs_info->rmw_workers =
2265 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2266 fs_info->endio_write_workers =
2267 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2268 fs_info->endio_freespace_worker =
2269 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2270 fs_info->delayed_workers =
2271 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2272 fs_info->readahead_workers =
2273 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2274 fs_info->qgroup_rescan_workers =
2275 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2276 fs_info->extent_workers =
2277 btrfs_alloc_workqueue("extent-refs", flags,
2278 min_t(u64, fs_devices->num_devices,
2279 max_active), 8);
2280
2281 if (!(fs_info->workers && fs_info->delalloc_workers &&
2282 fs_info->submit_workers && fs_info->flush_workers &&
2283 fs_info->endio_workers && fs_info->endio_meta_workers &&
2284 fs_info->endio_meta_write_workers &&
2285 fs_info->endio_repair_workers &&
2286 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2287 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2288 fs_info->caching_workers && fs_info->readahead_workers &&
2289 fs_info->fixup_workers && fs_info->delayed_workers &&
2290 fs_info->extent_workers &&
2291 fs_info->qgroup_rescan_workers)) {
2292 return -ENOMEM;
2293 }
2294
2295 return 0;
2296 }
2297
2298 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2299 struct btrfs_fs_devices *fs_devices)
2300 {
2301 int ret;
2302 struct btrfs_root *tree_root = fs_info->tree_root;
2303 struct btrfs_root *log_tree_root;
2304 struct btrfs_super_block *disk_super = fs_info->super_copy;
2305 u64 bytenr = btrfs_super_log_root(disk_super);
2306
2307 if (fs_devices->rw_devices == 0) {
2308 printk(KERN_WARNING "BTRFS: log replay required "
2309 "on RO media\n");
2310 return -EIO;
2311 }
2312
2313 log_tree_root = btrfs_alloc_root(fs_info);
2314 if (!log_tree_root)
2315 return -ENOMEM;
2316
2317 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2318 tree_root->stripesize, log_tree_root, fs_info,
2319 BTRFS_TREE_LOG_OBJECTID);
2320
2321 log_tree_root->node = read_tree_block(tree_root, bytenr,
2322 fs_info->generation + 1);
2323 if (!log_tree_root->node ||
2324 !extent_buffer_uptodate(log_tree_root->node)) {
2325 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2326 free_extent_buffer(log_tree_root->node);
2327 kfree(log_tree_root);
2328 return -EIO;
2329 }
2330 /* returns with log_tree_root freed on success */
2331 ret = btrfs_recover_log_trees(log_tree_root);
2332 if (ret) {
2333 btrfs_error(tree_root->fs_info, ret,
2334 "Failed to recover log tree");
2335 free_extent_buffer(log_tree_root->node);
2336 kfree(log_tree_root);
2337 return ret;
2338 }
2339
2340 if (fs_info->sb->s_flags & MS_RDONLY) {
2341 ret = btrfs_commit_super(tree_root);
2342 if (ret)
2343 return ret;
2344 }
2345
2346 return 0;
2347 }
2348
2349 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2350 struct btrfs_root *tree_root)
2351 {
2352 struct btrfs_root *root;
2353 struct btrfs_key location;
2354 int ret;
2355
2356 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2357 location.type = BTRFS_ROOT_ITEM_KEY;
2358 location.offset = 0;
2359
2360 root = btrfs_read_tree_root(tree_root, &location);
2361 if (IS_ERR(root))
2362 return PTR_ERR(root);
2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364 fs_info->extent_root = root;
2365
2366 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2367 root = btrfs_read_tree_root(tree_root, &location);
2368 if (IS_ERR(root))
2369 return PTR_ERR(root);
2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371 fs_info->dev_root = root;
2372 btrfs_init_devices_late(fs_info);
2373
2374 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2375 root = btrfs_read_tree_root(tree_root, &location);
2376 if (IS_ERR(root))
2377 return PTR_ERR(root);
2378 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2379 fs_info->csum_root = root;
2380
2381 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2382 root = btrfs_read_tree_root(tree_root, &location);
2383 if (!IS_ERR(root)) {
2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385 fs_info->quota_enabled = 1;
2386 fs_info->pending_quota_state = 1;
2387 fs_info->quota_root = root;
2388 }
2389
2390 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2391 root = btrfs_read_tree_root(tree_root, &location);
2392 if (IS_ERR(root)) {
2393 ret = PTR_ERR(root);
2394 if (ret != -ENOENT)
2395 return ret;
2396 } else {
2397 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2398 fs_info->uuid_root = root;
2399 }
2400
2401 return 0;
2402 }
2403
2404 int open_ctree(struct super_block *sb,
2405 struct btrfs_fs_devices *fs_devices,
2406 char *options)
2407 {
2408 u32 sectorsize;
2409 u32 nodesize;
2410 u32 stripesize;
2411 u64 generation;
2412 u64 features;
2413 struct btrfs_key location;
2414 struct buffer_head *bh;
2415 struct btrfs_super_block *disk_super;
2416 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2417 struct btrfs_root *tree_root;
2418 struct btrfs_root *chunk_root;
2419 int ret;
2420 int err = -EINVAL;
2421 int num_backups_tried = 0;
2422 int backup_index = 0;
2423 int max_active;
2424
2425 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2426 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2427 if (!tree_root || !chunk_root) {
2428 err = -ENOMEM;
2429 goto fail;
2430 }
2431
2432 ret = init_srcu_struct(&fs_info->subvol_srcu);
2433 if (ret) {
2434 err = ret;
2435 goto fail;
2436 }
2437
2438 ret = setup_bdi(fs_info, &fs_info->bdi);
2439 if (ret) {
2440 err = ret;
2441 goto fail_srcu;
2442 }
2443
2444 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2445 if (ret) {
2446 err = ret;
2447 goto fail_bdi;
2448 }
2449 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2450 (1 + ilog2(nr_cpu_ids));
2451
2452 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2453 if (ret) {
2454 err = ret;
2455 goto fail_dirty_metadata_bytes;
2456 }
2457
2458 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2459 if (ret) {
2460 err = ret;
2461 goto fail_delalloc_bytes;
2462 }
2463
2464 fs_info->btree_inode = new_inode(sb);
2465 if (!fs_info->btree_inode) {
2466 err = -ENOMEM;
2467 goto fail_bio_counter;
2468 }
2469
2470 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2471
2472 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2473 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2474 INIT_LIST_HEAD(&fs_info->trans_list);
2475 INIT_LIST_HEAD(&fs_info->dead_roots);
2476 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2477 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2478 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2479 spin_lock_init(&fs_info->delalloc_root_lock);
2480 spin_lock_init(&fs_info->trans_lock);
2481 spin_lock_init(&fs_info->fs_roots_radix_lock);
2482 spin_lock_init(&fs_info->delayed_iput_lock);
2483 spin_lock_init(&fs_info->defrag_inodes_lock);
2484 spin_lock_init(&fs_info->free_chunk_lock);
2485 spin_lock_init(&fs_info->tree_mod_seq_lock);
2486 spin_lock_init(&fs_info->super_lock);
2487 spin_lock_init(&fs_info->qgroup_op_lock);
2488 spin_lock_init(&fs_info->buffer_lock);
2489 spin_lock_init(&fs_info->unused_bgs_lock);
2490 rwlock_init(&fs_info->tree_mod_log_lock);
2491 mutex_init(&fs_info->unused_bg_unpin_mutex);
2492 mutex_init(&fs_info->reloc_mutex);
2493 mutex_init(&fs_info->delalloc_root_mutex);
2494 seqlock_init(&fs_info->profiles_lock);
2495 init_rwsem(&fs_info->delayed_iput_sem);
2496
2497 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2498 INIT_LIST_HEAD(&fs_info->space_info);
2499 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2500 INIT_LIST_HEAD(&fs_info->unused_bgs);
2501 btrfs_mapping_init(&fs_info->mapping_tree);
2502 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2503 BTRFS_BLOCK_RSV_GLOBAL);
2504 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2505 BTRFS_BLOCK_RSV_DELALLOC);
2506 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2507 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2508 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2509 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2510 BTRFS_BLOCK_RSV_DELOPS);
2511 atomic_set(&fs_info->nr_async_submits, 0);
2512 atomic_set(&fs_info->async_delalloc_pages, 0);
2513 atomic_set(&fs_info->async_submit_draining, 0);
2514 atomic_set(&fs_info->nr_async_bios, 0);
2515 atomic_set(&fs_info->defrag_running, 0);
2516 atomic_set(&fs_info->qgroup_op_seq, 0);
2517 atomic64_set(&fs_info->tree_mod_seq, 0);
2518 fs_info->sb = sb;
2519 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2520 fs_info->metadata_ratio = 0;
2521 fs_info->defrag_inodes = RB_ROOT;
2522 fs_info->free_chunk_space = 0;
2523 fs_info->tree_mod_log = RB_ROOT;
2524 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2525 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2526 /* readahead state */
2527 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2528 spin_lock_init(&fs_info->reada_lock);
2529
2530 fs_info->thread_pool_size = min_t(unsigned long,
2531 num_online_cpus() + 2, 8);
2532
2533 INIT_LIST_HEAD(&fs_info->ordered_roots);
2534 spin_lock_init(&fs_info->ordered_root_lock);
2535 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2536 GFP_NOFS);
2537 if (!fs_info->delayed_root) {
2538 err = -ENOMEM;
2539 goto fail_iput;
2540 }
2541 btrfs_init_delayed_root(fs_info->delayed_root);
2542
2543 btrfs_init_scrub(fs_info);
2544 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2545 fs_info->check_integrity_print_mask = 0;
2546 #endif
2547 btrfs_init_balance(fs_info);
2548 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2549
2550 sb->s_blocksize = 4096;
2551 sb->s_blocksize_bits = blksize_bits(4096);
2552 sb->s_bdi = &fs_info->bdi;
2553
2554 btrfs_init_btree_inode(fs_info, tree_root);
2555
2556 spin_lock_init(&fs_info->block_group_cache_lock);
2557 fs_info->block_group_cache_tree = RB_ROOT;
2558 fs_info->first_logical_byte = (u64)-1;
2559
2560 extent_io_tree_init(&fs_info->freed_extents[0],
2561 fs_info->btree_inode->i_mapping);
2562 extent_io_tree_init(&fs_info->freed_extents[1],
2563 fs_info->btree_inode->i_mapping);
2564 fs_info->pinned_extents = &fs_info->freed_extents[0];
2565 fs_info->do_barriers = 1;
2566
2567
2568 mutex_init(&fs_info->ordered_operations_mutex);
2569 mutex_init(&fs_info->ordered_extent_flush_mutex);
2570 mutex_init(&fs_info->tree_log_mutex);
2571 mutex_init(&fs_info->chunk_mutex);
2572 mutex_init(&fs_info->transaction_kthread_mutex);
2573 mutex_init(&fs_info->cleaner_mutex);
2574 mutex_init(&fs_info->volume_mutex);
2575 mutex_init(&fs_info->ro_block_group_mutex);
2576 init_rwsem(&fs_info->commit_root_sem);
2577 init_rwsem(&fs_info->cleanup_work_sem);
2578 init_rwsem(&fs_info->subvol_sem);
2579 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2580
2581 btrfs_init_dev_replace_locks(fs_info);
2582 btrfs_init_qgroup(fs_info);
2583
2584 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2585 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2586
2587 init_waitqueue_head(&fs_info->transaction_throttle);
2588 init_waitqueue_head(&fs_info->transaction_wait);
2589 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2590 init_waitqueue_head(&fs_info->async_submit_wait);
2591
2592 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2593
2594 ret = btrfs_alloc_stripe_hash_table(fs_info);
2595 if (ret) {
2596 err = ret;
2597 goto fail_alloc;
2598 }
2599
2600 __setup_root(4096, 4096, 4096, tree_root,
2601 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2602
2603 invalidate_bdev(fs_devices->latest_bdev);
2604
2605 /*
2606 * Read super block and check the signature bytes only
2607 */
2608 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2609 if (!bh) {
2610 err = -EINVAL;
2611 goto fail_alloc;
2612 }
2613
2614 /*
2615 * We want to check superblock checksum, the type is stored inside.
2616 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2617 */
2618 if (btrfs_check_super_csum(bh->b_data)) {
2619 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2620 err = -EINVAL;
2621 goto fail_alloc;
2622 }
2623
2624 /*
2625 * super_copy is zeroed at allocation time and we never touch the
2626 * following bytes up to INFO_SIZE, the checksum is calculated from
2627 * the whole block of INFO_SIZE
2628 */
2629 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2630 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2631 sizeof(*fs_info->super_for_commit));
2632 brelse(bh);
2633
2634 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2635
2636 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2637 if (ret) {
2638 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2639 err = -EINVAL;
2640 goto fail_alloc;
2641 }
2642
2643 disk_super = fs_info->super_copy;
2644 if (!btrfs_super_root(disk_super))
2645 goto fail_alloc;
2646
2647 /* check FS state, whether FS is broken. */
2648 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2649 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2650
2651 /*
2652 * run through our array of backup supers and setup
2653 * our ring pointer to the oldest one
2654 */
2655 generation = btrfs_super_generation(disk_super);
2656 find_oldest_super_backup(fs_info, generation);
2657
2658 /*
2659 * In the long term, we'll store the compression type in the super
2660 * block, and it'll be used for per file compression control.
2661 */
2662 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2663
2664 ret = btrfs_parse_options(tree_root, options);
2665 if (ret) {
2666 err = ret;
2667 goto fail_alloc;
2668 }
2669
2670 features = btrfs_super_incompat_flags(disk_super) &
2671 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2672 if (features) {
2673 printk(KERN_ERR "BTRFS: couldn't mount because of "
2674 "unsupported optional features (%Lx).\n",
2675 features);
2676 err = -EINVAL;
2677 goto fail_alloc;
2678 }
2679
2680 /*
2681 * Leafsize and nodesize were always equal, this is only a sanity check.
2682 */
2683 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2684 btrfs_super_nodesize(disk_super)) {
2685 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2686 "blocksizes don't match. node %d leaf %d\n",
2687 btrfs_super_nodesize(disk_super),
2688 le32_to_cpu(disk_super->__unused_leafsize));
2689 err = -EINVAL;
2690 goto fail_alloc;
2691 }
2692 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2693 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2694 "blocksize (%d) was too large\n",
2695 btrfs_super_nodesize(disk_super));
2696 err = -EINVAL;
2697 goto fail_alloc;
2698 }
2699
2700 features = btrfs_super_incompat_flags(disk_super);
2701 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2702 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2703 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2704
2705 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2706 printk(KERN_INFO "BTRFS: has skinny extents\n");
2707
2708 /*
2709 * flag our filesystem as having big metadata blocks if
2710 * they are bigger than the page size
2711 */
2712 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2713 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2714 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2715 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2716 }
2717
2718 nodesize = btrfs_super_nodesize(disk_super);
2719 sectorsize = btrfs_super_sectorsize(disk_super);
2720 stripesize = btrfs_super_stripesize(disk_super);
2721 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2722 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2723
2724 /*
2725 * mixed block groups end up with duplicate but slightly offset
2726 * extent buffers for the same range. It leads to corruptions
2727 */
2728 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2729 (sectorsize != nodesize)) {
2730 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2731 "are not allowed for mixed block groups on %s\n",
2732 sb->s_id);
2733 goto fail_alloc;
2734 }
2735
2736 /*
2737 * Needn't use the lock because there is no other task which will
2738 * update the flag.
2739 */
2740 btrfs_set_super_incompat_flags(disk_super, features);
2741
2742 features = btrfs_super_compat_ro_flags(disk_super) &
2743 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2744 if (!(sb->s_flags & MS_RDONLY) && features) {
2745 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2746 "unsupported option features (%Lx).\n",
2747 features);
2748 err = -EINVAL;
2749 goto fail_alloc;
2750 }
2751
2752 max_active = fs_info->thread_pool_size;
2753
2754 ret = btrfs_init_workqueues(fs_info, fs_devices);
2755 if (ret) {
2756 err = ret;
2757 goto fail_sb_buffer;
2758 }
2759
2760 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2761 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2762 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2763
2764 tree_root->nodesize = nodesize;
2765 tree_root->sectorsize = sectorsize;
2766 tree_root->stripesize = stripesize;
2767
2768 sb->s_blocksize = sectorsize;
2769 sb->s_blocksize_bits = blksize_bits(sectorsize);
2770
2771 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2772 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2773 goto fail_sb_buffer;
2774 }
2775
2776 if (sectorsize != PAGE_SIZE) {
2777 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2778 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2779 goto fail_sb_buffer;
2780 }
2781
2782 mutex_lock(&fs_info->chunk_mutex);
2783 ret = btrfs_read_sys_array(tree_root);
2784 mutex_unlock(&fs_info->chunk_mutex);
2785 if (ret) {
2786 printk(KERN_ERR "BTRFS: failed to read the system "
2787 "array on %s\n", sb->s_id);
2788 goto fail_sb_buffer;
2789 }
2790
2791 generation = btrfs_super_chunk_root_generation(disk_super);
2792
2793 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2794 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2795
2796 chunk_root->node = read_tree_block(chunk_root,
2797 btrfs_super_chunk_root(disk_super),
2798 generation);
2799 if (!chunk_root->node ||
2800 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2801 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2802 sb->s_id);
2803 goto fail_tree_roots;
2804 }
2805 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2806 chunk_root->commit_root = btrfs_root_node(chunk_root);
2807
2808 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2809 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2810
2811 ret = btrfs_read_chunk_tree(chunk_root);
2812 if (ret) {
2813 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2814 sb->s_id);
2815 goto fail_tree_roots;
2816 }
2817
2818 /*
2819 * keep the device that is marked to be the target device for the
2820 * dev_replace procedure
2821 */
2822 btrfs_close_extra_devices(fs_devices, 0);
2823
2824 if (!fs_devices->latest_bdev) {
2825 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2826 sb->s_id);
2827 goto fail_tree_roots;
2828 }
2829
2830 retry_root_backup:
2831 generation = btrfs_super_generation(disk_super);
2832
2833 tree_root->node = read_tree_block(tree_root,
2834 btrfs_super_root(disk_super),
2835 generation);
2836 if (!tree_root->node ||
2837 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2838 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2839 sb->s_id);
2840
2841 goto recovery_tree_root;
2842 }
2843
2844 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2845 tree_root->commit_root = btrfs_root_node(tree_root);
2846 btrfs_set_root_refs(&tree_root->root_item, 1);
2847
2848 ret = btrfs_read_roots(fs_info, tree_root);
2849 if (ret)
2850 goto recovery_tree_root;
2851
2852 fs_info->generation = generation;
2853 fs_info->last_trans_committed = generation;
2854
2855 ret = btrfs_recover_balance(fs_info);
2856 if (ret) {
2857 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2858 goto fail_block_groups;
2859 }
2860
2861 ret = btrfs_init_dev_stats(fs_info);
2862 if (ret) {
2863 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2864 ret);
2865 goto fail_block_groups;
2866 }
2867
2868 ret = btrfs_init_dev_replace(fs_info);
2869 if (ret) {
2870 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2871 goto fail_block_groups;
2872 }
2873
2874 btrfs_close_extra_devices(fs_devices, 1);
2875
2876 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2877 if (ret) {
2878 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2879 goto fail_block_groups;
2880 }
2881
2882 ret = btrfs_sysfs_add_device(fs_devices);
2883 if (ret) {
2884 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2885 goto fail_fsdev_sysfs;
2886 }
2887
2888 ret = btrfs_sysfs_add_one(fs_info);
2889 if (ret) {
2890 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2891 goto fail_fsdev_sysfs;
2892 }
2893
2894 ret = btrfs_init_space_info(fs_info);
2895 if (ret) {
2896 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2897 goto fail_sysfs;
2898 }
2899
2900 ret = btrfs_read_block_groups(fs_info->extent_root);
2901 if (ret) {
2902 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2903 goto fail_sysfs;
2904 }
2905 fs_info->num_tolerated_disk_barrier_failures =
2906 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2907 if (fs_info->fs_devices->missing_devices >
2908 fs_info->num_tolerated_disk_barrier_failures &&
2909 !(sb->s_flags & MS_RDONLY)) {
2910 printk(KERN_WARNING "BTRFS: "
2911 "too many missing devices, writeable mount is not allowed\n");
2912 goto fail_sysfs;
2913 }
2914
2915 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2916 "btrfs-cleaner");
2917 if (IS_ERR(fs_info->cleaner_kthread))
2918 goto fail_sysfs;
2919
2920 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2921 tree_root,
2922 "btrfs-transaction");
2923 if (IS_ERR(fs_info->transaction_kthread))
2924 goto fail_cleaner;
2925
2926 if (!btrfs_test_opt(tree_root, SSD) &&
2927 !btrfs_test_opt(tree_root, NOSSD) &&
2928 !fs_info->fs_devices->rotating) {
2929 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2930 "mode\n");
2931 btrfs_set_opt(fs_info->mount_opt, SSD);
2932 }
2933
2934 /*
2935 * Mount does not set all options immediatelly, we can do it now and do
2936 * not have to wait for transaction commit
2937 */
2938 btrfs_apply_pending_changes(fs_info);
2939
2940 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2941 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2942 ret = btrfsic_mount(tree_root, fs_devices,
2943 btrfs_test_opt(tree_root,
2944 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2945 1 : 0,
2946 fs_info->check_integrity_print_mask);
2947 if (ret)
2948 printk(KERN_WARNING "BTRFS: failed to initialize"
2949 " integrity check module %s\n", sb->s_id);
2950 }
2951 #endif
2952 ret = btrfs_read_qgroup_config(fs_info);
2953 if (ret)
2954 goto fail_trans_kthread;
2955
2956 /* do not make disk changes in broken FS */
2957 if (btrfs_super_log_root(disk_super) != 0) {
2958 ret = btrfs_replay_log(fs_info, fs_devices);
2959 if (ret) {
2960 err = ret;
2961 goto fail_qgroup;
2962 }
2963 }
2964
2965 ret = btrfs_find_orphan_roots(tree_root);
2966 if (ret)
2967 goto fail_qgroup;
2968
2969 if (!(sb->s_flags & MS_RDONLY)) {
2970 ret = btrfs_cleanup_fs_roots(fs_info);
2971 if (ret)
2972 goto fail_qgroup;
2973
2974 mutex_lock(&fs_info->cleaner_mutex);
2975 ret = btrfs_recover_relocation(tree_root);
2976 mutex_unlock(&fs_info->cleaner_mutex);
2977 if (ret < 0) {
2978 printk(KERN_WARNING
2979 "BTRFS: failed to recover relocation\n");
2980 err = -EINVAL;
2981 goto fail_qgroup;
2982 }
2983 }
2984
2985 location.objectid = BTRFS_FS_TREE_OBJECTID;
2986 location.type = BTRFS_ROOT_ITEM_KEY;
2987 location.offset = 0;
2988
2989 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2990 if (IS_ERR(fs_info->fs_root)) {
2991 err = PTR_ERR(fs_info->fs_root);
2992 goto fail_qgroup;
2993 }
2994
2995 if (sb->s_flags & MS_RDONLY)
2996 return 0;
2997
2998 down_read(&fs_info->cleanup_work_sem);
2999 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3000 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3001 up_read(&fs_info->cleanup_work_sem);
3002 close_ctree(tree_root);
3003 return ret;
3004 }
3005 up_read(&fs_info->cleanup_work_sem);
3006
3007 ret = btrfs_resume_balance_async(fs_info);
3008 if (ret) {
3009 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3010 close_ctree(tree_root);
3011 return ret;
3012 }
3013
3014 ret = btrfs_resume_dev_replace_async(fs_info);
3015 if (ret) {
3016 pr_warn("BTRFS: failed to resume dev_replace\n");
3017 close_ctree(tree_root);
3018 return ret;
3019 }
3020
3021 btrfs_qgroup_rescan_resume(fs_info);
3022
3023 if (!fs_info->uuid_root) {
3024 pr_info("BTRFS: creating UUID tree\n");
3025 ret = btrfs_create_uuid_tree(fs_info);
3026 if (ret) {
3027 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3028 ret);
3029 close_ctree(tree_root);
3030 return ret;
3031 }
3032 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3033 fs_info->generation !=
3034 btrfs_super_uuid_tree_generation(disk_super)) {
3035 pr_info("BTRFS: checking UUID tree\n");
3036 ret = btrfs_check_uuid_tree(fs_info);
3037 if (ret) {
3038 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3039 ret);
3040 close_ctree(tree_root);
3041 return ret;
3042 }
3043 } else {
3044 fs_info->update_uuid_tree_gen = 1;
3045 }
3046
3047 fs_info->open = 1;
3048
3049 return 0;
3050
3051 fail_qgroup:
3052 btrfs_free_qgroup_config(fs_info);
3053 fail_trans_kthread:
3054 kthread_stop(fs_info->transaction_kthread);
3055 btrfs_cleanup_transaction(fs_info->tree_root);
3056 btrfs_free_fs_roots(fs_info);
3057 fail_cleaner:
3058 kthread_stop(fs_info->cleaner_kthread);
3059
3060 /*
3061 * make sure we're done with the btree inode before we stop our
3062 * kthreads
3063 */
3064 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3065
3066 fail_sysfs:
3067 btrfs_sysfs_remove_one(fs_info);
3068
3069 fail_fsdev_sysfs:
3070 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3071
3072 fail_block_groups:
3073 btrfs_put_block_group_cache(fs_info);
3074 btrfs_free_block_groups(fs_info);
3075
3076 fail_tree_roots:
3077 free_root_pointers(fs_info, 1);
3078 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3079
3080 fail_sb_buffer:
3081 btrfs_stop_all_workers(fs_info);
3082 fail_alloc:
3083 fail_iput:
3084 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3085
3086 iput(fs_info->btree_inode);
3087 fail_bio_counter:
3088 percpu_counter_destroy(&fs_info->bio_counter);
3089 fail_delalloc_bytes:
3090 percpu_counter_destroy(&fs_info->delalloc_bytes);
3091 fail_dirty_metadata_bytes:
3092 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3093 fail_bdi:
3094 bdi_destroy(&fs_info->bdi);
3095 fail_srcu:
3096 cleanup_srcu_struct(&fs_info->subvol_srcu);
3097 fail:
3098 btrfs_free_stripe_hash_table(fs_info);
3099 btrfs_close_devices(fs_info->fs_devices);
3100 return err;
3101
3102 recovery_tree_root:
3103 if (!btrfs_test_opt(tree_root, RECOVERY))
3104 goto fail_tree_roots;
3105
3106 free_root_pointers(fs_info, 0);
3107
3108 /* don't use the log in recovery mode, it won't be valid */
3109 btrfs_set_super_log_root(disk_super, 0);
3110
3111 /* we can't trust the free space cache either */
3112 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3113
3114 ret = next_root_backup(fs_info, fs_info->super_copy,
3115 &num_backups_tried, &backup_index);
3116 if (ret == -1)
3117 goto fail_block_groups;
3118 goto retry_root_backup;
3119 }
3120
3121 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3122 {
3123 if (uptodate) {
3124 set_buffer_uptodate(bh);
3125 } else {
3126 struct btrfs_device *device = (struct btrfs_device *)
3127 bh->b_private;
3128
3129 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3130 "I/O error on %s\n",
3131 rcu_str_deref(device->name));
3132 /* note, we dont' set_buffer_write_io_error because we have
3133 * our own ways of dealing with the IO errors
3134 */
3135 clear_buffer_uptodate(bh);
3136 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3137 }
3138 unlock_buffer(bh);
3139 put_bh(bh);
3140 }
3141
3142 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3143 {
3144 struct buffer_head *bh;
3145 struct buffer_head *latest = NULL;
3146 struct btrfs_super_block *super;
3147 int i;
3148 u64 transid = 0;
3149 u64 bytenr;
3150
3151 /* we would like to check all the supers, but that would make
3152 * a btrfs mount succeed after a mkfs from a different FS.
3153 * So, we need to add a special mount option to scan for
3154 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3155 */
3156 for (i = 0; i < 1; i++) {
3157 bytenr = btrfs_sb_offset(i);
3158 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3159 i_size_read(bdev->bd_inode))
3160 break;
3161 bh = __bread(bdev, bytenr / 4096,
3162 BTRFS_SUPER_INFO_SIZE);
3163 if (!bh)
3164 continue;
3165
3166 super = (struct btrfs_super_block *)bh->b_data;
3167 if (btrfs_super_bytenr(super) != bytenr ||
3168 btrfs_super_magic(super) != BTRFS_MAGIC) {
3169 brelse(bh);
3170 continue;
3171 }
3172
3173 if (!latest || btrfs_super_generation(super) > transid) {
3174 brelse(latest);
3175 latest = bh;
3176 transid = btrfs_super_generation(super);
3177 } else {
3178 brelse(bh);
3179 }
3180 }
3181 return latest;
3182 }
3183
3184 /*
3185 * this should be called twice, once with wait == 0 and
3186 * once with wait == 1. When wait == 0 is done, all the buffer heads
3187 * we write are pinned.
3188 *
3189 * They are released when wait == 1 is done.
3190 * max_mirrors must be the same for both runs, and it indicates how
3191 * many supers on this one device should be written.
3192 *
3193 * max_mirrors == 0 means to write them all.
3194 */
3195 static int write_dev_supers(struct btrfs_device *device,
3196 struct btrfs_super_block *sb,
3197 int do_barriers, int wait, int max_mirrors)
3198 {
3199 struct buffer_head *bh;
3200 int i;
3201 int ret;
3202 int errors = 0;
3203 u32 crc;
3204 u64 bytenr;
3205
3206 if (max_mirrors == 0)
3207 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3208
3209 for (i = 0; i < max_mirrors; i++) {
3210 bytenr = btrfs_sb_offset(i);
3211 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3212 device->commit_total_bytes)
3213 break;
3214
3215 if (wait) {
3216 bh = __find_get_block(device->bdev, bytenr / 4096,
3217 BTRFS_SUPER_INFO_SIZE);
3218 if (!bh) {
3219 errors++;
3220 continue;
3221 }
3222 wait_on_buffer(bh);
3223 if (!buffer_uptodate(bh))
3224 errors++;
3225
3226 /* drop our reference */
3227 brelse(bh);
3228
3229 /* drop the reference from the wait == 0 run */
3230 brelse(bh);
3231 continue;
3232 } else {
3233 btrfs_set_super_bytenr(sb, bytenr);
3234
3235 crc = ~(u32)0;
3236 crc = btrfs_csum_data((char *)sb +
3237 BTRFS_CSUM_SIZE, crc,
3238 BTRFS_SUPER_INFO_SIZE -
3239 BTRFS_CSUM_SIZE);
3240 btrfs_csum_final(crc, sb->csum);
3241
3242 /*
3243 * one reference for us, and we leave it for the
3244 * caller
3245 */
3246 bh = __getblk(device->bdev, bytenr / 4096,
3247 BTRFS_SUPER_INFO_SIZE);
3248 if (!bh) {
3249 printk(KERN_ERR "BTRFS: couldn't get super "
3250 "buffer head for bytenr %Lu\n", bytenr);
3251 errors++;
3252 continue;
3253 }
3254
3255 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3256
3257 /* one reference for submit_bh */
3258 get_bh(bh);
3259
3260 set_buffer_uptodate(bh);
3261 lock_buffer(bh);
3262 bh->b_end_io = btrfs_end_buffer_write_sync;
3263 bh->b_private = device;
3264 }
3265
3266 /*
3267 * we fua the first super. The others we allow
3268 * to go down lazy.
3269 */
3270 if (i == 0)
3271 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3272 else
3273 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3274 if (ret)
3275 errors++;
3276 }
3277 return errors < i ? 0 : -1;
3278 }
3279
3280 /*
3281 * endio for the write_dev_flush, this will wake anyone waiting
3282 * for the barrier when it is done
3283 */
3284 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3285 {
3286 if (err) {
3287 if (err == -EOPNOTSUPP)
3288 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3289 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3290 }
3291 if (bio->bi_private)
3292 complete(bio->bi_private);
3293 bio_put(bio);
3294 }
3295
3296 /*
3297 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3298 * sent down. With wait == 1, it waits for the previous flush.
3299 *
3300 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3301 * capable
3302 */
3303 static int write_dev_flush(struct btrfs_device *device, int wait)
3304 {
3305 struct bio *bio;
3306 int ret = 0;
3307
3308 if (device->nobarriers)
3309 return 0;
3310
3311 if (wait) {
3312 bio = device->flush_bio;
3313 if (!bio)
3314 return 0;
3315
3316 wait_for_completion(&device->flush_wait);
3317
3318 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3319 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3320 rcu_str_deref(device->name));
3321 device->nobarriers = 1;
3322 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3323 ret = -EIO;
3324 btrfs_dev_stat_inc_and_print(device,
3325 BTRFS_DEV_STAT_FLUSH_ERRS);
3326 }
3327
3328 /* drop the reference from the wait == 0 run */
3329 bio_put(bio);
3330 device->flush_bio = NULL;
3331
3332 return ret;
3333 }
3334
3335 /*
3336 * one reference for us, and we leave it for the
3337 * caller
3338 */
3339 device->flush_bio = NULL;
3340 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3341 if (!bio)
3342 return -ENOMEM;
3343
3344 bio->bi_end_io = btrfs_end_empty_barrier;
3345 bio->bi_bdev = device->bdev;
3346 init_completion(&device->flush_wait);
3347 bio->bi_private = &device->flush_wait;
3348 device->flush_bio = bio;
3349
3350 bio_get(bio);
3351 btrfsic_submit_bio(WRITE_FLUSH, bio);
3352
3353 return 0;
3354 }
3355
3356 /*
3357 * send an empty flush down to each device in parallel,
3358 * then wait for them
3359 */
3360 static int barrier_all_devices(struct btrfs_fs_info *info)
3361 {
3362 struct list_head *head;
3363 struct btrfs_device *dev;
3364 int errors_send = 0;
3365 int errors_wait = 0;
3366 int ret;
3367
3368 /* send down all the barriers */
3369 head = &info->fs_devices->devices;
3370 list_for_each_entry_rcu(dev, head, dev_list) {
3371 if (dev->missing)
3372 continue;
3373 if (!dev->bdev) {
3374 errors_send++;
3375 continue;
3376 }
3377 if (!dev->in_fs_metadata || !dev->writeable)
3378 continue;
3379
3380 ret = write_dev_flush(dev, 0);
3381 if (ret)
3382 errors_send++;
3383 }
3384
3385 /* wait for all the barriers */
3386 list_for_each_entry_rcu(dev, head, dev_list) {
3387 if (dev->missing)
3388 continue;
3389 if (!dev->bdev) {
3390 errors_wait++;
3391 continue;
3392 }
3393 if (!dev->in_fs_metadata || !dev->writeable)
3394 continue;
3395
3396 ret = write_dev_flush(dev, 1);
3397 if (ret)
3398 errors_wait++;
3399 }
3400 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3401 errors_wait > info->num_tolerated_disk_barrier_failures)
3402 return -EIO;
3403 return 0;
3404 }
3405
3406 int btrfs_calc_num_tolerated_disk_barrier_failures(
3407 struct btrfs_fs_info *fs_info)
3408 {
3409 struct btrfs_ioctl_space_info space;
3410 struct btrfs_space_info *sinfo;
3411 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3412 BTRFS_BLOCK_GROUP_SYSTEM,
3413 BTRFS_BLOCK_GROUP_METADATA,
3414 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3415 int num_types = 4;
3416 int i;
3417 int c;
3418 int num_tolerated_disk_barrier_failures =
3419 (int)fs_info->fs_devices->num_devices;
3420
3421 for (i = 0; i < num_types; i++) {
3422 struct btrfs_space_info *tmp;
3423
3424 sinfo = NULL;
3425 rcu_read_lock();
3426 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3427 if (tmp->flags == types[i]) {
3428 sinfo = tmp;
3429 break;
3430 }
3431 }
3432 rcu_read_unlock();
3433
3434 if (!sinfo)
3435 continue;
3436
3437 down_read(&sinfo->groups_sem);
3438 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3439 if (!list_empty(&sinfo->block_groups[c])) {
3440 u64 flags;
3441
3442 btrfs_get_block_group_info(
3443 &sinfo->block_groups[c], &space);
3444 if (space.total_bytes == 0 ||
3445 space.used_bytes == 0)
3446 continue;
3447 flags = space.flags;
3448 /*
3449 * return
3450 * 0: if dup, single or RAID0 is configured for
3451 * any of metadata, system or data, else
3452 * 1: if RAID5 is configured, or if RAID1 or
3453 * RAID10 is configured and only two mirrors
3454 * are used, else
3455 * 2: if RAID6 is configured, else
3456 * num_mirrors - 1: if RAID1 or RAID10 is
3457 * configured and more than
3458 * 2 mirrors are used.
3459 */
3460 if (num_tolerated_disk_barrier_failures > 0 &&
3461 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3462 BTRFS_BLOCK_GROUP_RAID0)) ||
3463 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3464 == 0)))
3465 num_tolerated_disk_barrier_failures = 0;
3466 else if (num_tolerated_disk_barrier_failures > 1) {
3467 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3468 BTRFS_BLOCK_GROUP_RAID5 |
3469 BTRFS_BLOCK_GROUP_RAID10)) {
3470 num_tolerated_disk_barrier_failures = 1;
3471 } else if (flags &
3472 BTRFS_BLOCK_GROUP_RAID6) {
3473 num_tolerated_disk_barrier_failures = 2;
3474 }
3475 }
3476 }
3477 }
3478 up_read(&sinfo->groups_sem);
3479 }
3480
3481 return num_tolerated_disk_barrier_failures;
3482 }
3483
3484 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3485 {
3486 struct list_head *head;
3487 struct btrfs_device *dev;
3488 struct btrfs_super_block *sb;
3489 struct btrfs_dev_item *dev_item;
3490 int ret;
3491 int do_barriers;
3492 int max_errors;
3493 int total_errors = 0;
3494 u64 flags;
3495
3496 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3497 backup_super_roots(root->fs_info);
3498
3499 sb = root->fs_info->super_for_commit;
3500 dev_item = &sb->dev_item;
3501
3502 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3503 head = &root->fs_info->fs_devices->devices;
3504 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3505
3506 if (do_barriers) {
3507 ret = barrier_all_devices(root->fs_info);
3508 if (ret) {
3509 mutex_unlock(
3510 &root->fs_info->fs_devices->device_list_mutex);
3511 btrfs_error(root->fs_info, ret,
3512 "errors while submitting device barriers.");
3513 return ret;
3514 }
3515 }
3516
3517 list_for_each_entry_rcu(dev, head, dev_list) {
3518 if (!dev->bdev) {
3519 total_errors++;
3520 continue;
3521 }
3522 if (!dev->in_fs_metadata || !dev->writeable)
3523 continue;
3524
3525 btrfs_set_stack_device_generation(dev_item, 0);
3526 btrfs_set_stack_device_type(dev_item, dev->type);
3527 btrfs_set_stack_device_id(dev_item, dev->devid);
3528 btrfs_set_stack_device_total_bytes(dev_item,
3529 dev->commit_total_bytes);
3530 btrfs_set_stack_device_bytes_used(dev_item,
3531 dev->commit_bytes_used);
3532 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3533 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3534 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3535 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3536 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3537
3538 flags = btrfs_super_flags(sb);
3539 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3540
3541 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3542 if (ret)
3543 total_errors++;
3544 }
3545 if (total_errors > max_errors) {
3546 btrfs_err(root->fs_info, "%d errors while writing supers",
3547 total_errors);
3548 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3549
3550 /* FUA is masked off if unsupported and can't be the reason */
3551 btrfs_error(root->fs_info, -EIO,
3552 "%d errors while writing supers", total_errors);
3553 return -EIO;
3554 }
3555
3556 total_errors = 0;
3557 list_for_each_entry_rcu(dev, head, dev_list) {
3558 if (!dev->bdev)
3559 continue;
3560 if (!dev->in_fs_metadata || !dev->writeable)
3561 continue;
3562
3563 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3564 if (ret)
3565 total_errors++;
3566 }
3567 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3568 if (total_errors > max_errors) {
3569 btrfs_error(root->fs_info, -EIO,
3570 "%d errors while writing supers", total_errors);
3571 return -EIO;
3572 }
3573 return 0;
3574 }
3575
3576 int write_ctree_super(struct btrfs_trans_handle *trans,
3577 struct btrfs_root *root, int max_mirrors)
3578 {
3579 return write_all_supers(root, max_mirrors);
3580 }
3581
3582 /* Drop a fs root from the radix tree and free it. */
3583 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3584 struct btrfs_root *root)
3585 {
3586 spin_lock(&fs_info->fs_roots_radix_lock);
3587 radix_tree_delete(&fs_info->fs_roots_radix,
3588 (unsigned long)root->root_key.objectid);
3589 spin_unlock(&fs_info->fs_roots_radix_lock);
3590
3591 if (btrfs_root_refs(&root->root_item) == 0)
3592 synchronize_srcu(&fs_info->subvol_srcu);
3593
3594 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3595 btrfs_free_log(NULL, root);
3596
3597 if (root->free_ino_pinned)
3598 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3599 if (root->free_ino_ctl)
3600 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3601 free_fs_root(root);
3602 }
3603
3604 static void free_fs_root(struct btrfs_root *root)
3605 {
3606 iput(root->ino_cache_inode);
3607 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3608 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3609 root->orphan_block_rsv = NULL;
3610 if (root->anon_dev)
3611 free_anon_bdev(root->anon_dev);
3612 if (root->subv_writers)
3613 btrfs_free_subvolume_writers(root->subv_writers);
3614 free_extent_buffer(root->node);
3615 free_extent_buffer(root->commit_root);
3616 kfree(root->free_ino_ctl);
3617 kfree(root->free_ino_pinned);
3618 kfree(root->name);
3619 btrfs_put_fs_root(root);
3620 }
3621
3622 void btrfs_free_fs_root(struct btrfs_root *root)
3623 {
3624 free_fs_root(root);
3625 }
3626
3627 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3628 {
3629 u64 root_objectid = 0;
3630 struct btrfs_root *gang[8];
3631 int i = 0;
3632 int err = 0;
3633 unsigned int ret = 0;
3634 int index;
3635
3636 while (1) {
3637 index = srcu_read_lock(&fs_info->subvol_srcu);
3638 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3639 (void **)gang, root_objectid,
3640 ARRAY_SIZE(gang));
3641 if (!ret) {
3642 srcu_read_unlock(&fs_info->subvol_srcu, index);
3643 break;
3644 }
3645 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3646
3647 for (i = 0; i < ret; i++) {
3648 /* Avoid to grab roots in dead_roots */
3649 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3650 gang[i] = NULL;
3651 continue;
3652 }
3653 /* grab all the search result for later use */
3654 gang[i] = btrfs_grab_fs_root(gang[i]);
3655 }
3656 srcu_read_unlock(&fs_info->subvol_srcu, index);
3657
3658 for (i = 0; i < ret; i++) {
3659 if (!gang[i])
3660 continue;
3661 root_objectid = gang[i]->root_key.objectid;
3662 err = btrfs_orphan_cleanup(gang[i]);
3663 if (err)
3664 break;
3665 btrfs_put_fs_root(gang[i]);
3666 }
3667 root_objectid++;
3668 }
3669
3670 /* release the uncleaned roots due to error */
3671 for (; i < ret; i++) {
3672 if (gang[i])
3673 btrfs_put_fs_root(gang[i]);
3674 }
3675 return err;
3676 }
3677
3678 int btrfs_commit_super(struct btrfs_root *root)
3679 {
3680 struct btrfs_trans_handle *trans;
3681
3682 mutex_lock(&root->fs_info->cleaner_mutex);
3683 btrfs_run_delayed_iputs(root);
3684 mutex_unlock(&root->fs_info->cleaner_mutex);
3685 wake_up_process(root->fs_info->cleaner_kthread);
3686
3687 /* wait until ongoing cleanup work done */
3688 down_write(&root->fs_info->cleanup_work_sem);
3689 up_write(&root->fs_info->cleanup_work_sem);
3690
3691 trans = btrfs_join_transaction(root);
3692 if (IS_ERR(trans))
3693 return PTR_ERR(trans);
3694 return btrfs_commit_transaction(trans, root);
3695 }
3696
3697 void close_ctree(struct btrfs_root *root)
3698 {
3699 struct btrfs_fs_info *fs_info = root->fs_info;
3700 int ret;
3701
3702 fs_info->closing = 1;
3703 smp_mb();
3704
3705 /* wait for the uuid_scan task to finish */
3706 down(&fs_info->uuid_tree_rescan_sem);
3707 /* avoid complains from lockdep et al., set sem back to initial state */
3708 up(&fs_info->uuid_tree_rescan_sem);
3709
3710 /* pause restriper - we want to resume on mount */
3711 btrfs_pause_balance(fs_info);
3712
3713 btrfs_dev_replace_suspend_for_unmount(fs_info);
3714
3715 btrfs_scrub_cancel(fs_info);
3716
3717 /* wait for any defraggers to finish */
3718 wait_event(fs_info->transaction_wait,
3719 (atomic_read(&fs_info->defrag_running) == 0));
3720
3721 /* clear out the rbtree of defraggable inodes */
3722 btrfs_cleanup_defrag_inodes(fs_info);
3723
3724 cancel_work_sync(&fs_info->async_reclaim_work);
3725
3726 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3727 ret = btrfs_commit_super(root);
3728 if (ret)
3729 btrfs_err(fs_info, "commit super ret %d", ret);
3730 }
3731
3732 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3733 btrfs_error_commit_super(root);
3734
3735 kthread_stop(fs_info->transaction_kthread);
3736 kthread_stop(fs_info->cleaner_kthread);
3737
3738 fs_info->closing = 2;
3739 smp_mb();
3740
3741 btrfs_free_qgroup_config(fs_info);
3742
3743 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3744 btrfs_info(fs_info, "at unmount delalloc count %lld",
3745 percpu_counter_sum(&fs_info->delalloc_bytes));
3746 }
3747
3748 btrfs_sysfs_remove_one(fs_info);
3749 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3750
3751 btrfs_free_fs_roots(fs_info);
3752
3753 btrfs_put_block_group_cache(fs_info);
3754
3755 btrfs_free_block_groups(fs_info);
3756
3757 /*
3758 * we must make sure there is not any read request to
3759 * submit after we stopping all workers.
3760 */
3761 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3762 btrfs_stop_all_workers(fs_info);
3763
3764 fs_info->open = 0;
3765 free_root_pointers(fs_info, 1);
3766
3767 iput(fs_info->btree_inode);
3768
3769 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3770 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3771 btrfsic_unmount(root, fs_info->fs_devices);
3772 #endif
3773
3774 btrfs_close_devices(fs_info->fs_devices);
3775 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3776
3777 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3778 percpu_counter_destroy(&fs_info->delalloc_bytes);
3779 percpu_counter_destroy(&fs_info->bio_counter);
3780 bdi_destroy(&fs_info->bdi);
3781 cleanup_srcu_struct(&fs_info->subvol_srcu);
3782
3783 btrfs_free_stripe_hash_table(fs_info);
3784
3785 __btrfs_free_block_rsv(root->orphan_block_rsv);
3786 root->orphan_block_rsv = NULL;
3787
3788 lock_chunks(root);
3789 while (!list_empty(&fs_info->pinned_chunks)) {
3790 struct extent_map *em;
3791
3792 em = list_first_entry(&fs_info->pinned_chunks,
3793 struct extent_map, list);
3794 list_del_init(&em->list);
3795 free_extent_map(em);
3796 }
3797 unlock_chunks(root);
3798 }
3799
3800 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3801 int atomic)
3802 {
3803 int ret;
3804 struct inode *btree_inode = buf->pages[0]->mapping->host;
3805
3806 ret = extent_buffer_uptodate(buf);
3807 if (!ret)
3808 return ret;
3809
3810 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3811 parent_transid, atomic);
3812 if (ret == -EAGAIN)
3813 return ret;
3814 return !ret;
3815 }
3816
3817 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3818 {
3819 return set_extent_buffer_uptodate(buf);
3820 }
3821
3822 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3823 {
3824 struct btrfs_root *root;
3825 u64 transid = btrfs_header_generation(buf);
3826 int was_dirty;
3827
3828 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3829 /*
3830 * This is a fast path so only do this check if we have sanity tests
3831 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3832 * outside of the sanity tests.
3833 */
3834 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3835 return;
3836 #endif
3837 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3838 btrfs_assert_tree_locked(buf);
3839 if (transid != root->fs_info->generation)
3840 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3841 "found %llu running %llu\n",
3842 buf->start, transid, root->fs_info->generation);
3843 was_dirty = set_extent_buffer_dirty(buf);
3844 if (!was_dirty)
3845 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3846 buf->len,
3847 root->fs_info->dirty_metadata_batch);
3848 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3849 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3850 btrfs_print_leaf(root, buf);
3851 ASSERT(0);
3852 }
3853 #endif
3854 }
3855
3856 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3857 int flush_delayed)
3858 {
3859 /*
3860 * looks as though older kernels can get into trouble with
3861 * this code, they end up stuck in balance_dirty_pages forever
3862 */
3863 int ret;
3864
3865 if (current->flags & PF_MEMALLOC)
3866 return;
3867
3868 if (flush_delayed)
3869 btrfs_balance_delayed_items(root);
3870
3871 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3872 BTRFS_DIRTY_METADATA_THRESH);
3873 if (ret > 0) {
3874 balance_dirty_pages_ratelimited(
3875 root->fs_info->btree_inode->i_mapping);
3876 }
3877 return;
3878 }
3879
3880 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3881 {
3882 __btrfs_btree_balance_dirty(root, 1);
3883 }
3884
3885 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3886 {
3887 __btrfs_btree_balance_dirty(root, 0);
3888 }
3889
3890 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3891 {
3892 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3893 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3894 }
3895
3896 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3897 int read_only)
3898 {
3899 struct btrfs_super_block *sb = fs_info->super_copy;
3900 int ret = 0;
3901
3902 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3903 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3904 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3905 ret = -EINVAL;
3906 }
3907 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3908 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3909 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3910 ret = -EINVAL;
3911 }
3912 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3913 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3914 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3915 ret = -EINVAL;
3916 }
3917
3918 /*
3919 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3920 * items yet, they'll be verified later. Issue just a warning.
3921 */
3922 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3923 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3924 btrfs_super_root(sb));
3925 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3926 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3927 btrfs_super_chunk_root(sb));
3928 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3929 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3930 btrfs_super_log_root(sb));
3931
3932 /*
3933 * Check the lower bound, the alignment and other constraints are
3934 * checked later.
3935 */
3936 if (btrfs_super_nodesize(sb) < 4096) {
3937 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3938 btrfs_super_nodesize(sb));
3939 ret = -EINVAL;
3940 }
3941 if (btrfs_super_sectorsize(sb) < 4096) {
3942 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3943 btrfs_super_sectorsize(sb));
3944 ret = -EINVAL;
3945 }
3946
3947 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3948 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3949 fs_info->fsid, sb->dev_item.fsid);
3950 ret = -EINVAL;
3951 }
3952
3953 /*
3954 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3955 * done later
3956 */
3957 if (btrfs_super_num_devices(sb) > (1UL << 31))
3958 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3959 btrfs_super_num_devices(sb));
3960 if (btrfs_super_num_devices(sb) == 0) {
3961 printk(KERN_ERR "BTRFS: number of devices is 0\n");
3962 ret = -EINVAL;
3963 }
3964
3965 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
3966 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
3967 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
3968 ret = -EINVAL;
3969 }
3970
3971 /*
3972 * Obvious sys_chunk_array corruptions, it must hold at least one key
3973 * and one chunk
3974 */
3975 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
3976 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
3977 btrfs_super_sys_array_size(sb),
3978 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
3979 ret = -EINVAL;
3980 }
3981 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
3982 + sizeof(struct btrfs_chunk)) {
3983 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
3984 btrfs_super_sys_array_size(sb),
3985 sizeof(struct btrfs_disk_key)
3986 + sizeof(struct btrfs_chunk));
3987 ret = -EINVAL;
3988 }
3989
3990 /*
3991 * The generation is a global counter, we'll trust it more than the others
3992 * but it's still possible that it's the one that's wrong.
3993 */
3994 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
3995 printk(KERN_WARNING
3996 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
3997 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
3998 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
3999 && btrfs_super_cache_generation(sb) != (u64)-1)
4000 printk(KERN_WARNING
4001 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4002 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4003
4004 return ret;
4005 }
4006
4007 static void btrfs_error_commit_super(struct btrfs_root *root)
4008 {
4009 mutex_lock(&root->fs_info->cleaner_mutex);
4010 btrfs_run_delayed_iputs(root);
4011 mutex_unlock(&root->fs_info->cleaner_mutex);
4012
4013 down_write(&root->fs_info->cleanup_work_sem);
4014 up_write(&root->fs_info->cleanup_work_sem);
4015
4016 /* cleanup FS via transaction */
4017 btrfs_cleanup_transaction(root);
4018 }
4019
4020 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4021 {
4022 struct btrfs_ordered_extent *ordered;
4023
4024 spin_lock(&root->ordered_extent_lock);
4025 /*
4026 * This will just short circuit the ordered completion stuff which will
4027 * make sure the ordered extent gets properly cleaned up.
4028 */
4029 list_for_each_entry(ordered, &root->ordered_extents,
4030 root_extent_list)
4031 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4032 spin_unlock(&root->ordered_extent_lock);
4033 }
4034
4035 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4036 {
4037 struct btrfs_root *root;
4038 struct list_head splice;
4039
4040 INIT_LIST_HEAD(&splice);
4041
4042 spin_lock(&fs_info->ordered_root_lock);
4043 list_splice_init(&fs_info->ordered_roots, &splice);
4044 while (!list_empty(&splice)) {
4045 root = list_first_entry(&splice, struct btrfs_root,
4046 ordered_root);
4047 list_move_tail(&root->ordered_root,
4048 &fs_info->ordered_roots);
4049
4050 spin_unlock(&fs_info->ordered_root_lock);
4051 btrfs_destroy_ordered_extents(root);
4052
4053 cond_resched();
4054 spin_lock(&fs_info->ordered_root_lock);
4055 }
4056 spin_unlock(&fs_info->ordered_root_lock);
4057 }
4058
4059 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4060 struct btrfs_root *root)
4061 {
4062 struct rb_node *node;
4063 struct btrfs_delayed_ref_root *delayed_refs;
4064 struct btrfs_delayed_ref_node *ref;
4065 int ret = 0;
4066
4067 delayed_refs = &trans->delayed_refs;
4068
4069 spin_lock(&delayed_refs->lock);
4070 if (atomic_read(&delayed_refs->num_entries) == 0) {
4071 spin_unlock(&delayed_refs->lock);
4072 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4073 return ret;
4074 }
4075
4076 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4077 struct btrfs_delayed_ref_head *head;
4078 bool pin_bytes = false;
4079
4080 head = rb_entry(node, struct btrfs_delayed_ref_head,
4081 href_node);
4082 if (!mutex_trylock(&head->mutex)) {
4083 atomic_inc(&head->node.refs);
4084 spin_unlock(&delayed_refs->lock);
4085
4086 mutex_lock(&head->mutex);
4087 mutex_unlock(&head->mutex);
4088 btrfs_put_delayed_ref(&head->node);
4089 spin_lock(&delayed_refs->lock);
4090 continue;
4091 }
4092 spin_lock(&head->lock);
4093 while ((node = rb_first(&head->ref_root)) != NULL) {
4094 ref = rb_entry(node, struct btrfs_delayed_ref_node,
4095 rb_node);
4096 ref->in_tree = 0;
4097 rb_erase(&ref->rb_node, &head->ref_root);
4098 atomic_dec(&delayed_refs->num_entries);
4099 btrfs_put_delayed_ref(ref);
4100 }
4101 if (head->must_insert_reserved)
4102 pin_bytes = true;
4103 btrfs_free_delayed_extent_op(head->extent_op);
4104 delayed_refs->num_heads--;
4105 if (head->processing == 0)
4106 delayed_refs->num_heads_ready--;
4107 atomic_dec(&delayed_refs->num_entries);
4108 head->node.in_tree = 0;
4109 rb_erase(&head->href_node, &delayed_refs->href_root);
4110 spin_unlock(&head->lock);
4111 spin_unlock(&delayed_refs->lock);
4112 mutex_unlock(&head->mutex);
4113
4114 if (pin_bytes)
4115 btrfs_pin_extent(root, head->node.bytenr,
4116 head->node.num_bytes, 1);
4117 btrfs_put_delayed_ref(&head->node);
4118 cond_resched();
4119 spin_lock(&delayed_refs->lock);
4120 }
4121
4122 spin_unlock(&delayed_refs->lock);
4123
4124 return ret;
4125 }
4126
4127 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4128 {
4129 struct btrfs_inode *btrfs_inode;
4130 struct list_head splice;
4131
4132 INIT_LIST_HEAD(&splice);
4133
4134 spin_lock(&root->delalloc_lock);
4135 list_splice_init(&root->delalloc_inodes, &splice);
4136
4137 while (!list_empty(&splice)) {
4138 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4139 delalloc_inodes);
4140
4141 list_del_init(&btrfs_inode->delalloc_inodes);
4142 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4143 &btrfs_inode->runtime_flags);
4144 spin_unlock(&root->delalloc_lock);
4145
4146 btrfs_invalidate_inodes(btrfs_inode->root);
4147
4148 spin_lock(&root->delalloc_lock);
4149 }
4150
4151 spin_unlock(&root->delalloc_lock);
4152 }
4153
4154 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4155 {
4156 struct btrfs_root *root;
4157 struct list_head splice;
4158
4159 INIT_LIST_HEAD(&splice);
4160
4161 spin_lock(&fs_info->delalloc_root_lock);
4162 list_splice_init(&fs_info->delalloc_roots, &splice);
4163 while (!list_empty(&splice)) {
4164 root = list_first_entry(&splice, struct btrfs_root,
4165 delalloc_root);
4166 list_del_init(&root->delalloc_root);
4167 root = btrfs_grab_fs_root(root);
4168 BUG_ON(!root);
4169 spin_unlock(&fs_info->delalloc_root_lock);
4170
4171 btrfs_destroy_delalloc_inodes(root);
4172 btrfs_put_fs_root(root);
4173
4174 spin_lock(&fs_info->delalloc_root_lock);
4175 }
4176 spin_unlock(&fs_info->delalloc_root_lock);
4177 }
4178
4179 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4180 struct extent_io_tree *dirty_pages,
4181 int mark)
4182 {
4183 int ret;
4184 struct extent_buffer *eb;
4185 u64 start = 0;
4186 u64 end;
4187
4188 while (1) {
4189 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4190 mark, NULL);
4191 if (ret)
4192 break;
4193
4194 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4195 while (start <= end) {
4196 eb = btrfs_find_tree_block(root->fs_info, start);
4197 start += root->nodesize;
4198 if (!eb)
4199 continue;
4200 wait_on_extent_buffer_writeback(eb);
4201
4202 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4203 &eb->bflags))
4204 clear_extent_buffer_dirty(eb);
4205 free_extent_buffer_stale(eb);
4206 }
4207 }
4208
4209 return ret;
4210 }
4211
4212 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4213 struct extent_io_tree *pinned_extents)
4214 {
4215 struct extent_io_tree *unpin;
4216 u64 start;
4217 u64 end;
4218 int ret;
4219 bool loop = true;
4220
4221 unpin = pinned_extents;
4222 again:
4223 while (1) {
4224 ret = find_first_extent_bit(unpin, 0, &start, &end,
4225 EXTENT_DIRTY, NULL);
4226 if (ret)
4227 break;
4228
4229 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4230 btrfs_error_unpin_extent_range(root, start, end);
4231 cond_resched();
4232 }
4233
4234 if (loop) {
4235 if (unpin == &root->fs_info->freed_extents[0])
4236 unpin = &root->fs_info->freed_extents[1];
4237 else
4238 unpin = &root->fs_info->freed_extents[0];
4239 loop = false;
4240 goto again;
4241 }
4242
4243 return 0;
4244 }
4245
4246 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4247 struct btrfs_fs_info *fs_info)
4248 {
4249 struct btrfs_ordered_extent *ordered;
4250
4251 spin_lock(&fs_info->trans_lock);
4252 while (!list_empty(&cur_trans->pending_ordered)) {
4253 ordered = list_first_entry(&cur_trans->pending_ordered,
4254 struct btrfs_ordered_extent,
4255 trans_list);
4256 list_del_init(&ordered->trans_list);
4257 spin_unlock(&fs_info->trans_lock);
4258
4259 btrfs_put_ordered_extent(ordered);
4260 spin_lock(&fs_info->trans_lock);
4261 }
4262 spin_unlock(&fs_info->trans_lock);
4263 }
4264
4265 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4266 struct btrfs_root *root)
4267 {
4268 btrfs_destroy_delayed_refs(cur_trans, root);
4269
4270 cur_trans->state = TRANS_STATE_COMMIT_START;
4271 wake_up(&root->fs_info->transaction_blocked_wait);
4272
4273 cur_trans->state = TRANS_STATE_UNBLOCKED;
4274 wake_up(&root->fs_info->transaction_wait);
4275
4276 btrfs_free_pending_ordered(cur_trans, root->fs_info);
4277 btrfs_destroy_delayed_inodes(root);
4278 btrfs_assert_delayed_root_empty(root);
4279
4280 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4281 EXTENT_DIRTY);
4282 btrfs_destroy_pinned_extent(root,
4283 root->fs_info->pinned_extents);
4284
4285 cur_trans->state =TRANS_STATE_COMPLETED;
4286 wake_up(&cur_trans->commit_wait);
4287
4288 /*
4289 memset(cur_trans, 0, sizeof(*cur_trans));
4290 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4291 */
4292 }
4293
4294 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4295 {
4296 struct btrfs_transaction *t;
4297
4298 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4299
4300 spin_lock(&root->fs_info->trans_lock);
4301 while (!list_empty(&root->fs_info->trans_list)) {
4302 t = list_first_entry(&root->fs_info->trans_list,
4303 struct btrfs_transaction, list);
4304 if (t->state >= TRANS_STATE_COMMIT_START) {
4305 atomic_inc(&t->use_count);
4306 spin_unlock(&root->fs_info->trans_lock);
4307 btrfs_wait_for_commit(root, t->transid);
4308 btrfs_put_transaction(t);
4309 spin_lock(&root->fs_info->trans_lock);
4310 continue;
4311 }
4312 if (t == root->fs_info->running_transaction) {
4313 t->state = TRANS_STATE_COMMIT_DOING;
4314 spin_unlock(&root->fs_info->trans_lock);
4315 /*
4316 * We wait for 0 num_writers since we don't hold a trans
4317 * handle open currently for this transaction.
4318 */
4319 wait_event(t->writer_wait,
4320 atomic_read(&t->num_writers) == 0);
4321 } else {
4322 spin_unlock(&root->fs_info->trans_lock);
4323 }
4324 btrfs_cleanup_one_transaction(t, root);
4325
4326 spin_lock(&root->fs_info->trans_lock);
4327 if (t == root->fs_info->running_transaction)
4328 root->fs_info->running_transaction = NULL;
4329 list_del_init(&t->list);
4330 spin_unlock(&root->fs_info->trans_lock);
4331
4332 btrfs_put_transaction(t);
4333 trace_btrfs_transaction_commit(root);
4334 spin_lock(&root->fs_info->trans_lock);
4335 }
4336 spin_unlock(&root->fs_info->trans_lock);
4337 btrfs_destroy_all_ordered_extents(root->fs_info);
4338 btrfs_destroy_delayed_inodes(root);
4339 btrfs_assert_delayed_root_empty(root);
4340 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4341 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4342 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4343
4344 return 0;
4345 }
4346
4347 static const struct extent_io_ops btree_extent_io_ops = {
4348 .readpage_end_io_hook = btree_readpage_end_io_hook,
4349 .readpage_io_failed_hook = btree_io_failed_hook,
4350 .submit_bio_hook = btree_submit_bio_hook,
4351 /* note we're sharing with inode.c for the merge bio hook */
4352 .merge_bio_hook = btrfs_merge_bio_hook,
4353 };
This page took 0.196323 seconds and 5 git commands to generate.