e0293d2fbb3a2a63c25bd410a3dabb57186f7d7c
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75 * end_io_wq structs are used to do processing in task context when an IO is
76 * complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79 struct end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 int metadata;
86 struct list_head list;
87 struct btrfs_work work;
88 };
89
90 /*
91 * async submit bios are used to offload expensive checksumming
92 * onto the worker threads. They checksum file and metadata bios
93 * just before they are sent down the IO stack.
94 */
95 struct async_submit_bio {
96 struct inode *inode;
97 struct bio *bio;
98 struct list_head list;
99 extent_submit_bio_hook_t *submit_bio_start;
100 extent_submit_bio_hook_t *submit_bio_done;
101 int rw;
102 int mirror_num;
103 unsigned long bio_flags;
104 /*
105 * bio_offset is optional, can be used if the pages in the bio
106 * can't tell us where in the file the bio should go
107 */
108 u64 bio_offset;
109 struct btrfs_work work;
110 int error;
111 };
112
113 /*
114 * Lockdep class keys for extent_buffer->lock's in this root. For a given
115 * eb, the lockdep key is determined by the btrfs_root it belongs to and
116 * the level the eb occupies in the tree.
117 *
118 * Different roots are used for different purposes and may nest inside each
119 * other and they require separate keysets. As lockdep keys should be
120 * static, assign keysets according to the purpose of the root as indicated
121 * by btrfs_root->objectid. This ensures that all special purpose roots
122 * have separate keysets.
123 *
124 * Lock-nesting across peer nodes is always done with the immediate parent
125 * node locked thus preventing deadlock. As lockdep doesn't know this, use
126 * subclass to avoid triggering lockdep warning in such cases.
127 *
128 * The key is set by the readpage_end_io_hook after the buffer has passed
129 * csum validation but before the pages are unlocked. It is also set by
130 * btrfs_init_new_buffer on freshly allocated blocks.
131 *
132 * We also add a check to make sure the highest level of the tree is the
133 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
134 * needs update as well.
135 */
136 #ifdef CONFIG_DEBUG_LOCK_ALLOC
137 # if BTRFS_MAX_LEVEL != 8
138 # error
139 # endif
140
141 static struct btrfs_lockdep_keyset {
142 u64 id; /* root objectid */
143 const char *name_stem; /* lock name stem */
144 char names[BTRFS_MAX_LEVEL + 1][20];
145 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
146 } btrfs_lockdep_keysets[] = {
147 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
148 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
149 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
150 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
151 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
152 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
153 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
154 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
155 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
156 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
157 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
158 { .id = 0, .name_stem = "tree" },
159 };
160
161 void __init btrfs_init_lockdep(void)
162 {
163 int i, j;
164
165 /* initialize lockdep class names */
166 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
168
169 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170 snprintf(ks->names[j], sizeof(ks->names[j]),
171 "btrfs-%s-%02d", ks->name_stem, j);
172 }
173 }
174
175 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
176 int level)
177 {
178 struct btrfs_lockdep_keyset *ks;
179
180 BUG_ON(level >= ARRAY_SIZE(ks->keys));
181
182 /* find the matching keyset, id 0 is the default entry */
183 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184 if (ks->id == objectid)
185 break;
186
187 lockdep_set_class_and_name(&eb->lock,
188 &ks->keys[level], ks->names[level]);
189 }
190
191 #endif
192
193 /*
194 * extents on the btree inode are pretty simple, there's one extent
195 * that covers the entire device
196 */
197 static struct extent_map *btree_get_extent(struct inode *inode,
198 struct page *page, size_t pg_offset, u64 start, u64 len,
199 int create)
200 {
201 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202 struct extent_map *em;
203 int ret;
204
205 read_lock(&em_tree->lock);
206 em = lookup_extent_mapping(em_tree, start, len);
207 if (em) {
208 em->bdev =
209 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
210 read_unlock(&em_tree->lock);
211 goto out;
212 }
213 read_unlock(&em_tree->lock);
214
215 em = alloc_extent_map();
216 if (!em) {
217 em = ERR_PTR(-ENOMEM);
218 goto out;
219 }
220 em->start = 0;
221 em->len = (u64)-1;
222 em->block_len = (u64)-1;
223 em->block_start = 0;
224 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
225
226 write_lock(&em_tree->lock);
227 ret = add_extent_mapping(em_tree, em, 0);
228 if (ret == -EEXIST) {
229 free_extent_map(em);
230 em = lookup_extent_mapping(em_tree, start, len);
231 if (!em)
232 em = ERR_PTR(-EIO);
233 } else if (ret) {
234 free_extent_map(em);
235 em = ERR_PTR(ret);
236 }
237 write_unlock(&em_tree->lock);
238
239 out:
240 return em;
241 }
242
243 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
244 {
245 return btrfs_crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250 put_unaligned_le32(~crc, result);
251 }
252
253 /*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259 {
260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261 char *result = NULL;
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
270 unsigned long inline_result;
271
272 len = buf->len - offset;
273 while (len > 0) {
274 err = map_private_extent_buffer(buf, offset, 32,
275 &kaddr, &map_start, &map_len);
276 if (err)
277 return 1;
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
283 }
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296 u32 val;
297 u32 found = 0;
298 memcpy(&found, result, csum_size);
299
300 read_extent_buffer(buf, &val, 0, csum_size);
301 printk_ratelimited(KERN_INFO
302 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id, buf->start,
305 val, found, btrfs_header_level(buf));
306 if (result != (char *)&inline_result)
307 kfree(result);
308 return 1;
309 }
310 } else {
311 write_extent_buffer(buf, result, 0, csum_size);
312 }
313 if (result != (char *)&inline_result)
314 kfree(result);
315 return 0;
316 }
317
318 /*
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
323 */
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325 struct extent_buffer *eb, u64 parent_transid,
326 int atomic)
327 {
328 struct extent_state *cached_state = NULL;
329 int ret;
330 bool need_lock = (current->journal_info ==
331 (void *)BTRFS_SEND_TRANS_STUB);
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 if (need_lock) {
340 btrfs_tree_read_lock(eb);
341 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342 }
343
344 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
345 0, &cached_state);
346 if (extent_buffer_uptodate(eb) &&
347 btrfs_header_generation(eb) == parent_transid) {
348 ret = 0;
349 goto out;
350 }
351 printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
352 eb->fs_info->sb->s_id, eb->start,
353 parent_transid, btrfs_header_generation(eb));
354 ret = 1;
355
356 /*
357 * Things reading via commit roots that don't have normal protection,
358 * like send, can have a really old block in cache that may point at a
359 * block that has been free'd and re-allocated. So don't clear uptodate
360 * if we find an eb that is under IO (dirty/writeback) because we could
361 * end up reading in the stale data and then writing it back out and
362 * making everybody very sad.
363 */
364 if (!extent_buffer_under_io(eb))
365 clear_extent_buffer_uptodate(eb);
366 out:
367 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368 &cached_state, GFP_NOFS);
369 if (need_lock)
370 btrfs_tree_read_unlock_blocking(eb);
371 return ret;
372 }
373
374 /*
375 * Return 0 if the superblock checksum type matches the checksum value of that
376 * algorithm. Pass the raw disk superblock data.
377 */
378 static int btrfs_check_super_csum(char *raw_disk_sb)
379 {
380 struct btrfs_super_block *disk_sb =
381 (struct btrfs_super_block *)raw_disk_sb;
382 u16 csum_type = btrfs_super_csum_type(disk_sb);
383 int ret = 0;
384
385 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386 u32 crc = ~(u32)0;
387 const int csum_size = sizeof(crc);
388 char result[csum_size];
389
390 /*
391 * The super_block structure does not span the whole
392 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393 * is filled with zeros and is included in the checkum.
394 */
395 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397 btrfs_csum_final(crc, result);
398
399 if (memcmp(raw_disk_sb, result, csum_size))
400 ret = 1;
401
402 if (ret && btrfs_super_generation(disk_sb) < 10) {
403 printk(KERN_WARNING
404 "BTRFS: super block crcs don't match, older mkfs detected\n");
405 ret = 0;
406 }
407 }
408
409 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
410 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
411 csum_type);
412 ret = 1;
413 }
414
415 return ret;
416 }
417
418 /*
419 * helper to read a given tree block, doing retries as required when
420 * the checksums don't match and we have alternate mirrors to try.
421 */
422 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423 struct extent_buffer *eb,
424 u64 start, u64 parent_transid)
425 {
426 struct extent_io_tree *io_tree;
427 int failed = 0;
428 int ret;
429 int num_copies = 0;
430 int mirror_num = 0;
431 int failed_mirror = 0;
432
433 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
434 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
435 while (1) {
436 ret = read_extent_buffer_pages(io_tree, eb, start,
437 WAIT_COMPLETE,
438 btree_get_extent, mirror_num);
439 if (!ret) {
440 if (!verify_parent_transid(io_tree, eb,
441 parent_transid, 0))
442 break;
443 else
444 ret = -EIO;
445 }
446
447 /*
448 * This buffer's crc is fine, but its contents are corrupted, so
449 * there is no reason to read the other copies, they won't be
450 * any less wrong.
451 */
452 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
453 break;
454
455 num_copies = btrfs_num_copies(root->fs_info,
456 eb->start, eb->len);
457 if (num_copies == 1)
458 break;
459
460 if (!failed_mirror) {
461 failed = 1;
462 failed_mirror = eb->read_mirror;
463 }
464
465 mirror_num++;
466 if (mirror_num == failed_mirror)
467 mirror_num++;
468
469 if (mirror_num > num_copies)
470 break;
471 }
472
473 if (failed && !ret && failed_mirror)
474 repair_eb_io_failure(root, eb, failed_mirror);
475
476 return ret;
477 }
478
479 /*
480 * checksum a dirty tree block before IO. This has extra checks to make sure
481 * we only fill in the checksum field in the first page of a multi-page block
482 */
483
484 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
485 {
486 u64 start = page_offset(page);
487 u64 found_start;
488 struct extent_buffer *eb;
489
490 eb = (struct extent_buffer *)page->private;
491 if (page != eb->pages[0])
492 return 0;
493 found_start = btrfs_header_bytenr(eb);
494 if (WARN_ON(found_start != start || !PageUptodate(page)))
495 return 0;
496 csum_tree_block(root, eb, 0);
497 return 0;
498 }
499
500 static int check_tree_block_fsid(struct btrfs_root *root,
501 struct extent_buffer *eb)
502 {
503 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504 u8 fsid[BTRFS_UUID_SIZE];
505 int ret = 1;
506
507 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
508 while (fs_devices) {
509 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
510 ret = 0;
511 break;
512 }
513 fs_devices = fs_devices->seed;
514 }
515 return ret;
516 }
517
518 #define CORRUPT(reason, eb, root, slot) \
519 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
520 "root=%llu, slot=%d", reason, \
521 btrfs_header_bytenr(eb), root->objectid, slot)
522
523 static noinline int check_leaf(struct btrfs_root *root,
524 struct extent_buffer *leaf)
525 {
526 struct btrfs_key key;
527 struct btrfs_key leaf_key;
528 u32 nritems = btrfs_header_nritems(leaf);
529 int slot;
530
531 if (nritems == 0)
532 return 0;
533
534 /* Check the 0 item */
535 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536 BTRFS_LEAF_DATA_SIZE(root)) {
537 CORRUPT("invalid item offset size pair", leaf, root, 0);
538 return -EIO;
539 }
540
541 /*
542 * Check to make sure each items keys are in the correct order and their
543 * offsets make sense. We only have to loop through nritems-1 because
544 * we check the current slot against the next slot, which verifies the
545 * next slot's offset+size makes sense and that the current's slot
546 * offset is correct.
547 */
548 for (slot = 0; slot < nritems - 1; slot++) {
549 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
551
552 /* Make sure the keys are in the right order */
553 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554 CORRUPT("bad key order", leaf, root, slot);
555 return -EIO;
556 }
557
558 /*
559 * Make sure the offset and ends are right, remember that the
560 * item data starts at the end of the leaf and grows towards the
561 * front.
562 */
563 if (btrfs_item_offset_nr(leaf, slot) !=
564 btrfs_item_end_nr(leaf, slot + 1)) {
565 CORRUPT("slot offset bad", leaf, root, slot);
566 return -EIO;
567 }
568
569 /*
570 * Check to make sure that we don't point outside of the leaf,
571 * just incase all the items are consistent to eachother, but
572 * all point outside of the leaf.
573 */
574 if (btrfs_item_end_nr(leaf, slot) >
575 BTRFS_LEAF_DATA_SIZE(root)) {
576 CORRUPT("slot end outside of leaf", leaf, root, slot);
577 return -EIO;
578 }
579 }
580
581 return 0;
582 }
583
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 u64 phy_offset, struct page *page,
586 u64 start, u64 end, int mirror)
587 {
588 u64 found_start;
589 int found_level;
590 struct extent_buffer *eb;
591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
592 int ret = 0;
593 int reads_done;
594
595 if (!page->private)
596 goto out;
597
598 eb = (struct extent_buffer *)page->private;
599
600 /* the pending IO might have been the only thing that kept this buffer
601 * in memory. Make sure we have a ref for all this other checks
602 */
603 extent_buffer_get(eb);
604
605 reads_done = atomic_dec_and_test(&eb->io_pages);
606 if (!reads_done)
607 goto err;
608
609 eb->read_mirror = mirror;
610 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
611 ret = -EIO;
612 goto err;
613 }
614
615 found_start = btrfs_header_bytenr(eb);
616 if (found_start != eb->start) {
617 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
618 "%llu %llu\n",
619 eb->fs_info->sb->s_id, found_start, eb->start);
620 ret = -EIO;
621 goto err;
622 }
623 if (check_tree_block_fsid(root, eb)) {
624 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
625 eb->fs_info->sb->s_id, eb->start);
626 ret = -EIO;
627 goto err;
628 }
629 found_level = btrfs_header_level(eb);
630 if (found_level >= BTRFS_MAX_LEVEL) {
631 btrfs_info(root->fs_info, "bad tree block level %d",
632 (int)btrfs_header_level(eb));
633 ret = -EIO;
634 goto err;
635 }
636
637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 eb, found_level);
639
640 ret = csum_tree_block(root, eb, 1);
641 if (ret) {
642 ret = -EIO;
643 goto err;
644 }
645
646 /*
647 * If this is a leaf block and it is corrupt, set the corrupt bit so
648 * that we don't try and read the other copies of this block, just
649 * return -EIO.
650 */
651 if (found_level == 0 && check_leaf(root, eb)) {
652 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
653 ret = -EIO;
654 }
655
656 if (!ret)
657 set_extent_buffer_uptodate(eb);
658 err:
659 if (reads_done &&
660 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
661 btree_readahead_hook(root, eb, eb->start, ret);
662
663 if (ret) {
664 /*
665 * our io error hook is going to dec the io pages
666 * again, we have to make sure it has something
667 * to decrement
668 */
669 atomic_inc(&eb->io_pages);
670 clear_extent_buffer_uptodate(eb);
671 }
672 free_extent_buffer(eb);
673 out:
674 return ret;
675 }
676
677 static int btree_io_failed_hook(struct page *page, int failed_mirror)
678 {
679 struct extent_buffer *eb;
680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681
682 eb = (struct extent_buffer *)page->private;
683 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
684 eb->read_mirror = failed_mirror;
685 atomic_dec(&eb->io_pages);
686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 btree_readahead_hook(root, eb, eb->start, -EIO);
688 return -EIO; /* we fixed nothing */
689 }
690
691 static void end_workqueue_bio(struct bio *bio, int err)
692 {
693 struct end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
695 struct btrfs_workqueue *wq;
696 btrfs_work_func_t func;
697
698 fs_info = end_io_wq->info;
699 end_io_wq->error = err;
700
701 if (bio->bi_rw & REQ_WRITE) {
702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 wq = fs_info->endio_meta_write_workers;
704 func = btrfs_endio_meta_write_helper;
705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 wq = fs_info->endio_freespace_worker;
707 func = btrfs_freespace_write_helper;
708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 wq = fs_info->endio_raid56_workers;
710 func = btrfs_endio_raid56_helper;
711 } else {
712 wq = fs_info->endio_write_workers;
713 func = btrfs_endio_write_helper;
714 }
715 } else {
716 if (unlikely(end_io_wq->metadata ==
717 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718 wq = fs_info->endio_repair_workers;
719 func = btrfs_endio_repair_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
721 wq = fs_info->endio_raid56_workers;
722 func = btrfs_endio_raid56_helper;
723 } else if (end_io_wq->metadata) {
724 wq = fs_info->endio_meta_workers;
725 func = btrfs_endio_meta_helper;
726 } else {
727 wq = fs_info->endio_workers;
728 func = btrfs_endio_helper;
729 }
730 }
731
732 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733 btrfs_queue_work(wq, &end_io_wq->work);
734 }
735
736 /*
737 * For the metadata arg you want
738 *
739 * 0 - if data
740 * 1 - if normal metadta
741 * 2 - if writing to the free space cache area
742 * 3 - raid parity work
743 */
744 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
745 int metadata)
746 {
747 struct end_io_wq *end_io_wq;
748
749 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
750 if (!end_io_wq)
751 return -ENOMEM;
752
753 end_io_wq->private = bio->bi_private;
754 end_io_wq->end_io = bio->bi_end_io;
755 end_io_wq->info = info;
756 end_io_wq->error = 0;
757 end_io_wq->bio = bio;
758 end_io_wq->metadata = metadata;
759
760 bio->bi_private = end_io_wq;
761 bio->bi_end_io = end_workqueue_bio;
762 return 0;
763 }
764
765 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
766 {
767 unsigned long limit = min_t(unsigned long,
768 info->thread_pool_size,
769 info->fs_devices->open_devices);
770 return 256 * limit;
771 }
772
773 static void run_one_async_start(struct btrfs_work *work)
774 {
775 struct async_submit_bio *async;
776 int ret;
777
778 async = container_of(work, struct async_submit_bio, work);
779 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
780 async->mirror_num, async->bio_flags,
781 async->bio_offset);
782 if (ret)
783 async->error = ret;
784 }
785
786 static void run_one_async_done(struct btrfs_work *work)
787 {
788 struct btrfs_fs_info *fs_info;
789 struct async_submit_bio *async;
790 int limit;
791
792 async = container_of(work, struct async_submit_bio, work);
793 fs_info = BTRFS_I(async->inode)->root->fs_info;
794
795 limit = btrfs_async_submit_limit(fs_info);
796 limit = limit * 2 / 3;
797
798 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
799 waitqueue_active(&fs_info->async_submit_wait))
800 wake_up(&fs_info->async_submit_wait);
801
802 /* If an error occured we just want to clean up the bio and move on */
803 if (async->error) {
804 bio_endio(async->bio, async->error);
805 return;
806 }
807
808 async->submit_bio_done(async->inode, async->rw, async->bio,
809 async->mirror_num, async->bio_flags,
810 async->bio_offset);
811 }
812
813 static void run_one_async_free(struct btrfs_work *work)
814 {
815 struct async_submit_bio *async;
816
817 async = container_of(work, struct async_submit_bio, work);
818 kfree(async);
819 }
820
821 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
822 int rw, struct bio *bio, int mirror_num,
823 unsigned long bio_flags,
824 u64 bio_offset,
825 extent_submit_bio_hook_t *submit_bio_start,
826 extent_submit_bio_hook_t *submit_bio_done)
827 {
828 struct async_submit_bio *async;
829
830 async = kmalloc(sizeof(*async), GFP_NOFS);
831 if (!async)
832 return -ENOMEM;
833
834 async->inode = inode;
835 async->rw = rw;
836 async->bio = bio;
837 async->mirror_num = mirror_num;
838 async->submit_bio_start = submit_bio_start;
839 async->submit_bio_done = submit_bio_done;
840
841 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
842 run_one_async_done, run_one_async_free);
843
844 async->bio_flags = bio_flags;
845 async->bio_offset = bio_offset;
846
847 async->error = 0;
848
849 atomic_inc(&fs_info->nr_async_submits);
850
851 if (rw & REQ_SYNC)
852 btrfs_set_work_high_priority(&async->work);
853
854 btrfs_queue_work(fs_info->workers, &async->work);
855
856 while (atomic_read(&fs_info->async_submit_draining) &&
857 atomic_read(&fs_info->nr_async_submits)) {
858 wait_event(fs_info->async_submit_wait,
859 (atomic_read(&fs_info->nr_async_submits) == 0));
860 }
861
862 return 0;
863 }
864
865 static int btree_csum_one_bio(struct bio *bio)
866 {
867 struct bio_vec *bvec;
868 struct btrfs_root *root;
869 int i, ret = 0;
870
871 bio_for_each_segment_all(bvec, bio, i) {
872 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
873 ret = csum_dirty_buffer(root, bvec->bv_page);
874 if (ret)
875 break;
876 }
877
878 return ret;
879 }
880
881 static int __btree_submit_bio_start(struct inode *inode, int rw,
882 struct bio *bio, int mirror_num,
883 unsigned long bio_flags,
884 u64 bio_offset)
885 {
886 /*
887 * when we're called for a write, we're already in the async
888 * submission context. Just jump into btrfs_map_bio
889 */
890 return btree_csum_one_bio(bio);
891 }
892
893 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
894 int mirror_num, unsigned long bio_flags,
895 u64 bio_offset)
896 {
897 int ret;
898
899 /*
900 * when we're called for a write, we're already in the async
901 * submission context. Just jump into btrfs_map_bio
902 */
903 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
904 if (ret)
905 bio_endio(bio, ret);
906 return ret;
907 }
908
909 static int check_async_write(struct inode *inode, unsigned long bio_flags)
910 {
911 if (bio_flags & EXTENT_BIO_TREE_LOG)
912 return 0;
913 #ifdef CONFIG_X86
914 if (cpu_has_xmm4_2)
915 return 0;
916 #endif
917 return 1;
918 }
919
920 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
921 int mirror_num, unsigned long bio_flags,
922 u64 bio_offset)
923 {
924 int async = check_async_write(inode, bio_flags);
925 int ret;
926
927 if (!(rw & REQ_WRITE)) {
928 /*
929 * called for a read, do the setup so that checksum validation
930 * can happen in the async kernel threads
931 */
932 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
933 bio, 1);
934 if (ret)
935 goto out_w_error;
936 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
937 mirror_num, 0);
938 } else if (!async) {
939 ret = btree_csum_one_bio(bio);
940 if (ret)
941 goto out_w_error;
942 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
943 mirror_num, 0);
944 } else {
945 /*
946 * kthread helpers are used to submit writes so that
947 * checksumming can happen in parallel across all CPUs
948 */
949 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
950 inode, rw, bio, mirror_num, 0,
951 bio_offset,
952 __btree_submit_bio_start,
953 __btree_submit_bio_done);
954 }
955
956 if (ret) {
957 out_w_error:
958 bio_endio(bio, ret);
959 }
960 return ret;
961 }
962
963 #ifdef CONFIG_MIGRATION
964 static int btree_migratepage(struct address_space *mapping,
965 struct page *newpage, struct page *page,
966 enum migrate_mode mode)
967 {
968 /*
969 * we can't safely write a btree page from here,
970 * we haven't done the locking hook
971 */
972 if (PageDirty(page))
973 return -EAGAIN;
974 /*
975 * Buffers may be managed in a filesystem specific way.
976 * We must have no buffers or drop them.
977 */
978 if (page_has_private(page) &&
979 !try_to_release_page(page, GFP_KERNEL))
980 return -EAGAIN;
981 return migrate_page(mapping, newpage, page, mode);
982 }
983 #endif
984
985
986 static int btree_writepages(struct address_space *mapping,
987 struct writeback_control *wbc)
988 {
989 struct btrfs_fs_info *fs_info;
990 int ret;
991
992 if (wbc->sync_mode == WB_SYNC_NONE) {
993
994 if (wbc->for_kupdate)
995 return 0;
996
997 fs_info = BTRFS_I(mapping->host)->root->fs_info;
998 /* this is a bit racy, but that's ok */
999 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1000 BTRFS_DIRTY_METADATA_THRESH);
1001 if (ret < 0)
1002 return 0;
1003 }
1004 return btree_write_cache_pages(mapping, wbc);
1005 }
1006
1007 static int btree_readpage(struct file *file, struct page *page)
1008 {
1009 struct extent_io_tree *tree;
1010 tree = &BTRFS_I(page->mapping->host)->io_tree;
1011 return extent_read_full_page(tree, page, btree_get_extent, 0);
1012 }
1013
1014 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1015 {
1016 if (PageWriteback(page) || PageDirty(page))
1017 return 0;
1018
1019 return try_release_extent_buffer(page);
1020 }
1021
1022 static void btree_invalidatepage(struct page *page, unsigned int offset,
1023 unsigned int length)
1024 {
1025 struct extent_io_tree *tree;
1026 tree = &BTRFS_I(page->mapping->host)->io_tree;
1027 extent_invalidatepage(tree, page, offset);
1028 btree_releasepage(page, GFP_NOFS);
1029 if (PagePrivate(page)) {
1030 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1031 "page private not zero on page %llu",
1032 (unsigned long long)page_offset(page));
1033 ClearPagePrivate(page);
1034 set_page_private(page, 0);
1035 page_cache_release(page);
1036 }
1037 }
1038
1039 static int btree_set_page_dirty(struct page *page)
1040 {
1041 #ifdef DEBUG
1042 struct extent_buffer *eb;
1043
1044 BUG_ON(!PagePrivate(page));
1045 eb = (struct extent_buffer *)page->private;
1046 BUG_ON(!eb);
1047 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1048 BUG_ON(!atomic_read(&eb->refs));
1049 btrfs_assert_tree_locked(eb);
1050 #endif
1051 return __set_page_dirty_nobuffers(page);
1052 }
1053
1054 static const struct address_space_operations btree_aops = {
1055 .readpage = btree_readpage,
1056 .writepages = btree_writepages,
1057 .releasepage = btree_releasepage,
1058 .invalidatepage = btree_invalidatepage,
1059 #ifdef CONFIG_MIGRATION
1060 .migratepage = btree_migratepage,
1061 #endif
1062 .set_page_dirty = btree_set_page_dirty,
1063 };
1064
1065 void readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
1066 {
1067 struct extent_buffer *buf = NULL;
1068 struct inode *btree_inode = root->fs_info->btree_inode;
1069
1070 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1071 if (!buf)
1072 return;
1073 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1074 buf, 0, WAIT_NONE, btree_get_extent, 0);
1075 free_extent_buffer(buf);
1076 }
1077
1078 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1079 int mirror_num, struct extent_buffer **eb)
1080 {
1081 struct extent_buffer *buf = NULL;
1082 struct inode *btree_inode = root->fs_info->btree_inode;
1083 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1084 int ret;
1085
1086 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1087 if (!buf)
1088 return 0;
1089
1090 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1091
1092 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1093 btree_get_extent, mirror_num);
1094 if (ret) {
1095 free_extent_buffer(buf);
1096 return ret;
1097 }
1098
1099 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1100 free_extent_buffer(buf);
1101 return -EIO;
1102 } else if (extent_buffer_uptodate(buf)) {
1103 *eb = buf;
1104 } else {
1105 free_extent_buffer(buf);
1106 }
1107 return 0;
1108 }
1109
1110 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1111 u64 bytenr)
1112 {
1113 return find_extent_buffer(root->fs_info, bytenr);
1114 }
1115
1116 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1117 u64 bytenr, u32 blocksize)
1118 {
1119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1120 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1121 return alloc_test_extent_buffer(root->fs_info, bytenr,
1122 blocksize);
1123 #endif
1124 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1125 }
1126
1127
1128 int btrfs_write_tree_block(struct extent_buffer *buf)
1129 {
1130 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1131 buf->start + buf->len - 1);
1132 }
1133
1134 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1135 {
1136 return filemap_fdatawait_range(buf->pages[0]->mapping,
1137 buf->start, buf->start + buf->len - 1);
1138 }
1139
1140 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1141 u64 parent_transid)
1142 {
1143 struct extent_buffer *buf = NULL;
1144 int ret;
1145
1146 buf = btrfs_find_create_tree_block(root, bytenr, root->nodesize);
1147 if (!buf)
1148 return NULL;
1149
1150 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1151 if (ret) {
1152 free_extent_buffer(buf);
1153 return NULL;
1154 }
1155 return buf;
1156
1157 }
1158
1159 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1160 struct extent_buffer *buf)
1161 {
1162 struct btrfs_fs_info *fs_info = root->fs_info;
1163
1164 if (btrfs_header_generation(buf) ==
1165 fs_info->running_transaction->transid) {
1166 btrfs_assert_tree_locked(buf);
1167
1168 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1169 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1170 -buf->len,
1171 fs_info->dirty_metadata_batch);
1172 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1173 btrfs_set_lock_blocking(buf);
1174 clear_extent_buffer_dirty(buf);
1175 }
1176 }
1177 }
1178
1179 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1180 {
1181 struct btrfs_subvolume_writers *writers;
1182 int ret;
1183
1184 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1185 if (!writers)
1186 return ERR_PTR(-ENOMEM);
1187
1188 ret = percpu_counter_init(&writers->counter, 0);
1189 if (ret < 0) {
1190 kfree(writers);
1191 return ERR_PTR(ret);
1192 }
1193
1194 init_waitqueue_head(&writers->wait);
1195 return writers;
1196 }
1197
1198 static void
1199 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1200 {
1201 percpu_counter_destroy(&writers->counter);
1202 kfree(writers);
1203 }
1204
1205 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1206 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1207 u64 objectid)
1208 {
1209 root->node = NULL;
1210 root->commit_root = NULL;
1211 root->sectorsize = sectorsize;
1212 root->nodesize = nodesize;
1213 root->stripesize = stripesize;
1214 root->state = 0;
1215 root->orphan_cleanup_state = 0;
1216
1217 root->objectid = objectid;
1218 root->last_trans = 0;
1219 root->highest_objectid = 0;
1220 root->nr_delalloc_inodes = 0;
1221 root->nr_ordered_extents = 0;
1222 root->name = NULL;
1223 root->inode_tree = RB_ROOT;
1224 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1225 root->block_rsv = NULL;
1226 root->orphan_block_rsv = NULL;
1227
1228 INIT_LIST_HEAD(&root->dirty_list);
1229 INIT_LIST_HEAD(&root->root_list);
1230 INIT_LIST_HEAD(&root->delalloc_inodes);
1231 INIT_LIST_HEAD(&root->delalloc_root);
1232 INIT_LIST_HEAD(&root->ordered_extents);
1233 INIT_LIST_HEAD(&root->ordered_root);
1234 INIT_LIST_HEAD(&root->logged_list[0]);
1235 INIT_LIST_HEAD(&root->logged_list[1]);
1236 spin_lock_init(&root->orphan_lock);
1237 spin_lock_init(&root->inode_lock);
1238 spin_lock_init(&root->delalloc_lock);
1239 spin_lock_init(&root->ordered_extent_lock);
1240 spin_lock_init(&root->accounting_lock);
1241 spin_lock_init(&root->log_extents_lock[0]);
1242 spin_lock_init(&root->log_extents_lock[1]);
1243 mutex_init(&root->objectid_mutex);
1244 mutex_init(&root->log_mutex);
1245 mutex_init(&root->ordered_extent_mutex);
1246 mutex_init(&root->delalloc_mutex);
1247 init_waitqueue_head(&root->log_writer_wait);
1248 init_waitqueue_head(&root->log_commit_wait[0]);
1249 init_waitqueue_head(&root->log_commit_wait[1]);
1250 INIT_LIST_HEAD(&root->log_ctxs[0]);
1251 INIT_LIST_HEAD(&root->log_ctxs[1]);
1252 atomic_set(&root->log_commit[0], 0);
1253 atomic_set(&root->log_commit[1], 0);
1254 atomic_set(&root->log_writers, 0);
1255 atomic_set(&root->log_batch, 0);
1256 atomic_set(&root->orphan_inodes, 0);
1257 atomic_set(&root->refs, 1);
1258 atomic_set(&root->will_be_snapshoted, 0);
1259 root->log_transid = 0;
1260 root->log_transid_committed = -1;
1261 root->last_log_commit = 0;
1262 if (fs_info)
1263 extent_io_tree_init(&root->dirty_log_pages,
1264 fs_info->btree_inode->i_mapping);
1265
1266 memset(&root->root_key, 0, sizeof(root->root_key));
1267 memset(&root->root_item, 0, sizeof(root->root_item));
1268 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1269 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1270 if (fs_info)
1271 root->defrag_trans_start = fs_info->generation;
1272 else
1273 root->defrag_trans_start = 0;
1274 init_completion(&root->kobj_unregister);
1275 root->root_key.objectid = objectid;
1276 root->anon_dev = 0;
1277
1278 spin_lock_init(&root->root_item_lock);
1279 }
1280
1281 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1282 {
1283 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1284 if (root)
1285 root->fs_info = fs_info;
1286 return root;
1287 }
1288
1289 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1290 /* Should only be used by the testing infrastructure */
1291 struct btrfs_root *btrfs_alloc_dummy_root(void)
1292 {
1293 struct btrfs_root *root;
1294
1295 root = btrfs_alloc_root(NULL);
1296 if (!root)
1297 return ERR_PTR(-ENOMEM);
1298 __setup_root(4096, 4096, 4096, root, NULL, 1);
1299 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1300 root->alloc_bytenr = 0;
1301
1302 return root;
1303 }
1304 #endif
1305
1306 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1307 struct btrfs_fs_info *fs_info,
1308 u64 objectid)
1309 {
1310 struct extent_buffer *leaf;
1311 struct btrfs_root *tree_root = fs_info->tree_root;
1312 struct btrfs_root *root;
1313 struct btrfs_key key;
1314 int ret = 0;
1315 uuid_le uuid;
1316
1317 root = btrfs_alloc_root(fs_info);
1318 if (!root)
1319 return ERR_PTR(-ENOMEM);
1320
1321 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1322 tree_root->stripesize, root, fs_info, objectid);
1323 root->root_key.objectid = objectid;
1324 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1325 root->root_key.offset = 0;
1326
1327 leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
1328 0, objectid, NULL, 0, 0, 0);
1329 if (IS_ERR(leaf)) {
1330 ret = PTR_ERR(leaf);
1331 leaf = NULL;
1332 goto fail;
1333 }
1334
1335 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1336 btrfs_set_header_bytenr(leaf, leaf->start);
1337 btrfs_set_header_generation(leaf, trans->transid);
1338 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1339 btrfs_set_header_owner(leaf, objectid);
1340 root->node = leaf;
1341
1342 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1343 BTRFS_FSID_SIZE);
1344 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1345 btrfs_header_chunk_tree_uuid(leaf),
1346 BTRFS_UUID_SIZE);
1347 btrfs_mark_buffer_dirty(leaf);
1348
1349 root->commit_root = btrfs_root_node(root);
1350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1351
1352 root->root_item.flags = 0;
1353 root->root_item.byte_limit = 0;
1354 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1355 btrfs_set_root_generation(&root->root_item, trans->transid);
1356 btrfs_set_root_level(&root->root_item, 0);
1357 btrfs_set_root_refs(&root->root_item, 1);
1358 btrfs_set_root_used(&root->root_item, leaf->len);
1359 btrfs_set_root_last_snapshot(&root->root_item, 0);
1360 btrfs_set_root_dirid(&root->root_item, 0);
1361 uuid_le_gen(&uuid);
1362 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1363 root->root_item.drop_level = 0;
1364
1365 key.objectid = objectid;
1366 key.type = BTRFS_ROOT_ITEM_KEY;
1367 key.offset = 0;
1368 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1369 if (ret)
1370 goto fail;
1371
1372 btrfs_tree_unlock(leaf);
1373
1374 return root;
1375
1376 fail:
1377 if (leaf) {
1378 btrfs_tree_unlock(leaf);
1379 free_extent_buffer(root->commit_root);
1380 free_extent_buffer(leaf);
1381 }
1382 kfree(root);
1383
1384 return ERR_PTR(ret);
1385 }
1386
1387 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1388 struct btrfs_fs_info *fs_info)
1389 {
1390 struct btrfs_root *root;
1391 struct btrfs_root *tree_root = fs_info->tree_root;
1392 struct extent_buffer *leaf;
1393
1394 root = btrfs_alloc_root(fs_info);
1395 if (!root)
1396 return ERR_PTR(-ENOMEM);
1397
1398 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1399 tree_root->stripesize, root, fs_info,
1400 BTRFS_TREE_LOG_OBJECTID);
1401
1402 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1403 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1404 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1405
1406 /*
1407 * DON'T set REF_COWS for log trees
1408 *
1409 * log trees do not get reference counted because they go away
1410 * before a real commit is actually done. They do store pointers
1411 * to file data extents, and those reference counts still get
1412 * updated (along with back refs to the log tree).
1413 */
1414
1415 leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1416 BTRFS_TREE_LOG_OBJECTID, NULL,
1417 0, 0, 0);
1418 if (IS_ERR(leaf)) {
1419 kfree(root);
1420 return ERR_CAST(leaf);
1421 }
1422
1423 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1424 btrfs_set_header_bytenr(leaf, leaf->start);
1425 btrfs_set_header_generation(leaf, trans->transid);
1426 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1427 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1428 root->node = leaf;
1429
1430 write_extent_buffer(root->node, root->fs_info->fsid,
1431 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1432 btrfs_mark_buffer_dirty(root->node);
1433 btrfs_tree_unlock(root->node);
1434 return root;
1435 }
1436
1437 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1438 struct btrfs_fs_info *fs_info)
1439 {
1440 struct btrfs_root *log_root;
1441
1442 log_root = alloc_log_tree(trans, fs_info);
1443 if (IS_ERR(log_root))
1444 return PTR_ERR(log_root);
1445 WARN_ON(fs_info->log_root_tree);
1446 fs_info->log_root_tree = log_root;
1447 return 0;
1448 }
1449
1450 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1451 struct btrfs_root *root)
1452 {
1453 struct btrfs_root *log_root;
1454 struct btrfs_inode_item *inode_item;
1455
1456 log_root = alloc_log_tree(trans, root->fs_info);
1457 if (IS_ERR(log_root))
1458 return PTR_ERR(log_root);
1459
1460 log_root->last_trans = trans->transid;
1461 log_root->root_key.offset = root->root_key.objectid;
1462
1463 inode_item = &log_root->root_item.inode;
1464 btrfs_set_stack_inode_generation(inode_item, 1);
1465 btrfs_set_stack_inode_size(inode_item, 3);
1466 btrfs_set_stack_inode_nlink(inode_item, 1);
1467 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1468 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1469
1470 btrfs_set_root_node(&log_root->root_item, log_root->node);
1471
1472 WARN_ON(root->log_root);
1473 root->log_root = log_root;
1474 root->log_transid = 0;
1475 root->log_transid_committed = -1;
1476 root->last_log_commit = 0;
1477 return 0;
1478 }
1479
1480 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1481 struct btrfs_key *key)
1482 {
1483 struct btrfs_root *root;
1484 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1485 struct btrfs_path *path;
1486 u64 generation;
1487 int ret;
1488
1489 path = btrfs_alloc_path();
1490 if (!path)
1491 return ERR_PTR(-ENOMEM);
1492
1493 root = btrfs_alloc_root(fs_info);
1494 if (!root) {
1495 ret = -ENOMEM;
1496 goto alloc_fail;
1497 }
1498
1499 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1500 tree_root->stripesize, root, fs_info, key->objectid);
1501
1502 ret = btrfs_find_root(tree_root, key, path,
1503 &root->root_item, &root->root_key);
1504 if (ret) {
1505 if (ret > 0)
1506 ret = -ENOENT;
1507 goto find_fail;
1508 }
1509
1510 generation = btrfs_root_generation(&root->root_item);
1511 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1512 generation);
1513 if (!root->node) {
1514 ret = -ENOMEM;
1515 goto find_fail;
1516 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1517 ret = -EIO;
1518 goto read_fail;
1519 }
1520 root->commit_root = btrfs_root_node(root);
1521 out:
1522 btrfs_free_path(path);
1523 return root;
1524
1525 read_fail:
1526 free_extent_buffer(root->node);
1527 find_fail:
1528 kfree(root);
1529 alloc_fail:
1530 root = ERR_PTR(ret);
1531 goto out;
1532 }
1533
1534 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1535 struct btrfs_key *location)
1536 {
1537 struct btrfs_root *root;
1538
1539 root = btrfs_read_tree_root(tree_root, location);
1540 if (IS_ERR(root))
1541 return root;
1542
1543 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1544 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1545 btrfs_check_and_init_root_item(&root->root_item);
1546 }
1547
1548 return root;
1549 }
1550
1551 int btrfs_init_fs_root(struct btrfs_root *root)
1552 {
1553 int ret;
1554 struct btrfs_subvolume_writers *writers;
1555
1556 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1557 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1558 GFP_NOFS);
1559 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1560 ret = -ENOMEM;
1561 goto fail;
1562 }
1563
1564 writers = btrfs_alloc_subvolume_writers();
1565 if (IS_ERR(writers)) {
1566 ret = PTR_ERR(writers);
1567 goto fail;
1568 }
1569 root->subv_writers = writers;
1570
1571 btrfs_init_free_ino_ctl(root);
1572 spin_lock_init(&root->ino_cache_lock);
1573 init_waitqueue_head(&root->ino_cache_wait);
1574
1575 ret = get_anon_bdev(&root->anon_dev);
1576 if (ret)
1577 goto free_writers;
1578 return 0;
1579
1580 free_writers:
1581 btrfs_free_subvolume_writers(root->subv_writers);
1582 fail:
1583 kfree(root->free_ino_ctl);
1584 kfree(root->free_ino_pinned);
1585 return ret;
1586 }
1587
1588 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1589 u64 root_id)
1590 {
1591 struct btrfs_root *root;
1592
1593 spin_lock(&fs_info->fs_roots_radix_lock);
1594 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1595 (unsigned long)root_id);
1596 spin_unlock(&fs_info->fs_roots_radix_lock);
1597 return root;
1598 }
1599
1600 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1601 struct btrfs_root *root)
1602 {
1603 int ret;
1604
1605 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1606 if (ret)
1607 return ret;
1608
1609 spin_lock(&fs_info->fs_roots_radix_lock);
1610 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1611 (unsigned long)root->root_key.objectid,
1612 root);
1613 if (ret == 0)
1614 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1615 spin_unlock(&fs_info->fs_roots_radix_lock);
1616 radix_tree_preload_end();
1617
1618 return ret;
1619 }
1620
1621 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1622 struct btrfs_key *location,
1623 bool check_ref)
1624 {
1625 struct btrfs_root *root;
1626 int ret;
1627
1628 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1629 return fs_info->tree_root;
1630 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1631 return fs_info->extent_root;
1632 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1633 return fs_info->chunk_root;
1634 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1635 return fs_info->dev_root;
1636 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1637 return fs_info->csum_root;
1638 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1639 return fs_info->quota_root ? fs_info->quota_root :
1640 ERR_PTR(-ENOENT);
1641 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1642 return fs_info->uuid_root ? fs_info->uuid_root :
1643 ERR_PTR(-ENOENT);
1644 again:
1645 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1646 if (root) {
1647 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1648 return ERR_PTR(-ENOENT);
1649 return root;
1650 }
1651
1652 root = btrfs_read_fs_root(fs_info->tree_root, location);
1653 if (IS_ERR(root))
1654 return root;
1655
1656 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1657 ret = -ENOENT;
1658 goto fail;
1659 }
1660
1661 ret = btrfs_init_fs_root(root);
1662 if (ret)
1663 goto fail;
1664
1665 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1666 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1667 if (ret < 0)
1668 goto fail;
1669 if (ret == 0)
1670 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1671
1672 ret = btrfs_insert_fs_root(fs_info, root);
1673 if (ret) {
1674 if (ret == -EEXIST) {
1675 free_fs_root(root);
1676 goto again;
1677 }
1678 goto fail;
1679 }
1680 return root;
1681 fail:
1682 free_fs_root(root);
1683 return ERR_PTR(ret);
1684 }
1685
1686 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1687 {
1688 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1689 int ret = 0;
1690 struct btrfs_device *device;
1691 struct backing_dev_info *bdi;
1692
1693 rcu_read_lock();
1694 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1695 if (!device->bdev)
1696 continue;
1697 bdi = blk_get_backing_dev_info(device->bdev);
1698 if (bdi && bdi_congested(bdi, bdi_bits)) {
1699 ret = 1;
1700 break;
1701 }
1702 }
1703 rcu_read_unlock();
1704 return ret;
1705 }
1706
1707 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1708 {
1709 int err;
1710
1711 bdi->capabilities = BDI_CAP_MAP_COPY;
1712 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1713 if (err)
1714 return err;
1715
1716 bdi->ra_pages = default_backing_dev_info.ra_pages;
1717 bdi->congested_fn = btrfs_congested_fn;
1718 bdi->congested_data = info;
1719 return 0;
1720 }
1721
1722 /*
1723 * called by the kthread helper functions to finally call the bio end_io
1724 * functions. This is where read checksum verification actually happens
1725 */
1726 static void end_workqueue_fn(struct btrfs_work *work)
1727 {
1728 struct bio *bio;
1729 struct end_io_wq *end_io_wq;
1730 int error;
1731
1732 end_io_wq = container_of(work, struct end_io_wq, work);
1733 bio = end_io_wq->bio;
1734
1735 error = end_io_wq->error;
1736 bio->bi_private = end_io_wq->private;
1737 bio->bi_end_io = end_io_wq->end_io;
1738 kfree(end_io_wq);
1739 bio_endio_nodec(bio, error);
1740 }
1741
1742 static int cleaner_kthread(void *arg)
1743 {
1744 struct btrfs_root *root = arg;
1745 int again;
1746
1747 do {
1748 again = 0;
1749
1750 /* Make the cleaner go to sleep early. */
1751 if (btrfs_need_cleaner_sleep(root))
1752 goto sleep;
1753
1754 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1755 goto sleep;
1756
1757 /*
1758 * Avoid the problem that we change the status of the fs
1759 * during the above check and trylock.
1760 */
1761 if (btrfs_need_cleaner_sleep(root)) {
1762 mutex_unlock(&root->fs_info->cleaner_mutex);
1763 goto sleep;
1764 }
1765
1766 btrfs_run_delayed_iputs(root);
1767 btrfs_delete_unused_bgs(root->fs_info);
1768 again = btrfs_clean_one_deleted_snapshot(root);
1769 mutex_unlock(&root->fs_info->cleaner_mutex);
1770
1771 /*
1772 * The defragger has dealt with the R/O remount and umount,
1773 * needn't do anything special here.
1774 */
1775 btrfs_run_defrag_inodes(root->fs_info);
1776 sleep:
1777 if (!try_to_freeze() && !again) {
1778 set_current_state(TASK_INTERRUPTIBLE);
1779 if (!kthread_should_stop())
1780 schedule();
1781 __set_current_state(TASK_RUNNING);
1782 }
1783 } while (!kthread_should_stop());
1784 return 0;
1785 }
1786
1787 static int transaction_kthread(void *arg)
1788 {
1789 struct btrfs_root *root = arg;
1790 struct btrfs_trans_handle *trans;
1791 struct btrfs_transaction *cur;
1792 u64 transid;
1793 unsigned long now;
1794 unsigned long delay;
1795 bool cannot_commit;
1796
1797 do {
1798 cannot_commit = false;
1799 delay = HZ * root->fs_info->commit_interval;
1800 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1801
1802 spin_lock(&root->fs_info->trans_lock);
1803 cur = root->fs_info->running_transaction;
1804 if (!cur) {
1805 spin_unlock(&root->fs_info->trans_lock);
1806 goto sleep;
1807 }
1808
1809 now = get_seconds();
1810 if (cur->state < TRANS_STATE_BLOCKED &&
1811 (now < cur->start_time ||
1812 now - cur->start_time < root->fs_info->commit_interval)) {
1813 spin_unlock(&root->fs_info->trans_lock);
1814 delay = HZ * 5;
1815 goto sleep;
1816 }
1817 transid = cur->transid;
1818 spin_unlock(&root->fs_info->trans_lock);
1819
1820 /* If the file system is aborted, this will always fail. */
1821 trans = btrfs_attach_transaction(root);
1822 if (IS_ERR(trans)) {
1823 if (PTR_ERR(trans) != -ENOENT)
1824 cannot_commit = true;
1825 goto sleep;
1826 }
1827 if (transid == trans->transid) {
1828 btrfs_commit_transaction(trans, root);
1829 } else {
1830 btrfs_end_transaction(trans, root);
1831 }
1832 sleep:
1833 wake_up_process(root->fs_info->cleaner_kthread);
1834 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1835
1836 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1837 &root->fs_info->fs_state)))
1838 btrfs_cleanup_transaction(root);
1839 if (!try_to_freeze()) {
1840 set_current_state(TASK_INTERRUPTIBLE);
1841 if (!kthread_should_stop() &&
1842 (!btrfs_transaction_blocked(root->fs_info) ||
1843 cannot_commit))
1844 schedule_timeout(delay);
1845 __set_current_state(TASK_RUNNING);
1846 }
1847 } while (!kthread_should_stop());
1848 return 0;
1849 }
1850
1851 /*
1852 * this will find the highest generation in the array of
1853 * root backups. The index of the highest array is returned,
1854 * or -1 if we can't find anything.
1855 *
1856 * We check to make sure the array is valid by comparing the
1857 * generation of the latest root in the array with the generation
1858 * in the super block. If they don't match we pitch it.
1859 */
1860 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1861 {
1862 u64 cur;
1863 int newest_index = -1;
1864 struct btrfs_root_backup *root_backup;
1865 int i;
1866
1867 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1868 root_backup = info->super_copy->super_roots + i;
1869 cur = btrfs_backup_tree_root_gen(root_backup);
1870 if (cur == newest_gen)
1871 newest_index = i;
1872 }
1873
1874 /* check to see if we actually wrapped around */
1875 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1876 root_backup = info->super_copy->super_roots;
1877 cur = btrfs_backup_tree_root_gen(root_backup);
1878 if (cur == newest_gen)
1879 newest_index = 0;
1880 }
1881 return newest_index;
1882 }
1883
1884
1885 /*
1886 * find the oldest backup so we know where to store new entries
1887 * in the backup array. This will set the backup_root_index
1888 * field in the fs_info struct
1889 */
1890 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1891 u64 newest_gen)
1892 {
1893 int newest_index = -1;
1894
1895 newest_index = find_newest_super_backup(info, newest_gen);
1896 /* if there was garbage in there, just move along */
1897 if (newest_index == -1) {
1898 info->backup_root_index = 0;
1899 } else {
1900 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1901 }
1902 }
1903
1904 /*
1905 * copy all the root pointers into the super backup array.
1906 * this will bump the backup pointer by one when it is
1907 * done
1908 */
1909 static void backup_super_roots(struct btrfs_fs_info *info)
1910 {
1911 int next_backup;
1912 struct btrfs_root_backup *root_backup;
1913 int last_backup;
1914
1915 next_backup = info->backup_root_index;
1916 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1917 BTRFS_NUM_BACKUP_ROOTS;
1918
1919 /*
1920 * just overwrite the last backup if we're at the same generation
1921 * this happens only at umount
1922 */
1923 root_backup = info->super_for_commit->super_roots + last_backup;
1924 if (btrfs_backup_tree_root_gen(root_backup) ==
1925 btrfs_header_generation(info->tree_root->node))
1926 next_backup = last_backup;
1927
1928 root_backup = info->super_for_commit->super_roots + next_backup;
1929
1930 /*
1931 * make sure all of our padding and empty slots get zero filled
1932 * regardless of which ones we use today
1933 */
1934 memset(root_backup, 0, sizeof(*root_backup));
1935
1936 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1937
1938 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1939 btrfs_set_backup_tree_root_gen(root_backup,
1940 btrfs_header_generation(info->tree_root->node));
1941
1942 btrfs_set_backup_tree_root_level(root_backup,
1943 btrfs_header_level(info->tree_root->node));
1944
1945 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1946 btrfs_set_backup_chunk_root_gen(root_backup,
1947 btrfs_header_generation(info->chunk_root->node));
1948 btrfs_set_backup_chunk_root_level(root_backup,
1949 btrfs_header_level(info->chunk_root->node));
1950
1951 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1952 btrfs_set_backup_extent_root_gen(root_backup,
1953 btrfs_header_generation(info->extent_root->node));
1954 btrfs_set_backup_extent_root_level(root_backup,
1955 btrfs_header_level(info->extent_root->node));
1956
1957 /*
1958 * we might commit during log recovery, which happens before we set
1959 * the fs_root. Make sure it is valid before we fill it in.
1960 */
1961 if (info->fs_root && info->fs_root->node) {
1962 btrfs_set_backup_fs_root(root_backup,
1963 info->fs_root->node->start);
1964 btrfs_set_backup_fs_root_gen(root_backup,
1965 btrfs_header_generation(info->fs_root->node));
1966 btrfs_set_backup_fs_root_level(root_backup,
1967 btrfs_header_level(info->fs_root->node));
1968 }
1969
1970 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1971 btrfs_set_backup_dev_root_gen(root_backup,
1972 btrfs_header_generation(info->dev_root->node));
1973 btrfs_set_backup_dev_root_level(root_backup,
1974 btrfs_header_level(info->dev_root->node));
1975
1976 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1977 btrfs_set_backup_csum_root_gen(root_backup,
1978 btrfs_header_generation(info->csum_root->node));
1979 btrfs_set_backup_csum_root_level(root_backup,
1980 btrfs_header_level(info->csum_root->node));
1981
1982 btrfs_set_backup_total_bytes(root_backup,
1983 btrfs_super_total_bytes(info->super_copy));
1984 btrfs_set_backup_bytes_used(root_backup,
1985 btrfs_super_bytes_used(info->super_copy));
1986 btrfs_set_backup_num_devices(root_backup,
1987 btrfs_super_num_devices(info->super_copy));
1988
1989 /*
1990 * if we don't copy this out to the super_copy, it won't get remembered
1991 * for the next commit
1992 */
1993 memcpy(&info->super_copy->super_roots,
1994 &info->super_for_commit->super_roots,
1995 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1996 }
1997
1998 /*
1999 * this copies info out of the root backup array and back into
2000 * the in-memory super block. It is meant to help iterate through
2001 * the array, so you send it the number of backups you've already
2002 * tried and the last backup index you used.
2003 *
2004 * this returns -1 when it has tried all the backups
2005 */
2006 static noinline int next_root_backup(struct btrfs_fs_info *info,
2007 struct btrfs_super_block *super,
2008 int *num_backups_tried, int *backup_index)
2009 {
2010 struct btrfs_root_backup *root_backup;
2011 int newest = *backup_index;
2012
2013 if (*num_backups_tried == 0) {
2014 u64 gen = btrfs_super_generation(super);
2015
2016 newest = find_newest_super_backup(info, gen);
2017 if (newest == -1)
2018 return -1;
2019
2020 *backup_index = newest;
2021 *num_backups_tried = 1;
2022 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2023 /* we've tried all the backups, all done */
2024 return -1;
2025 } else {
2026 /* jump to the next oldest backup */
2027 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2028 BTRFS_NUM_BACKUP_ROOTS;
2029 *backup_index = newest;
2030 *num_backups_tried += 1;
2031 }
2032 root_backup = super->super_roots + newest;
2033
2034 btrfs_set_super_generation(super,
2035 btrfs_backup_tree_root_gen(root_backup));
2036 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2037 btrfs_set_super_root_level(super,
2038 btrfs_backup_tree_root_level(root_backup));
2039 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2040
2041 /*
2042 * fixme: the total bytes and num_devices need to match or we should
2043 * need a fsck
2044 */
2045 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2046 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2047 return 0;
2048 }
2049
2050 /* helper to cleanup workers */
2051 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2052 {
2053 btrfs_destroy_workqueue(fs_info->fixup_workers);
2054 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2055 btrfs_destroy_workqueue(fs_info->workers);
2056 btrfs_destroy_workqueue(fs_info->endio_workers);
2057 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2058 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2059 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2060 btrfs_destroy_workqueue(fs_info->rmw_workers);
2061 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2062 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2063 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2064 btrfs_destroy_workqueue(fs_info->submit_workers);
2065 btrfs_destroy_workqueue(fs_info->delayed_workers);
2066 btrfs_destroy_workqueue(fs_info->caching_workers);
2067 btrfs_destroy_workqueue(fs_info->readahead_workers);
2068 btrfs_destroy_workqueue(fs_info->flush_workers);
2069 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2070 btrfs_destroy_workqueue(fs_info->extent_workers);
2071 }
2072
2073 static void free_root_extent_buffers(struct btrfs_root *root)
2074 {
2075 if (root) {
2076 free_extent_buffer(root->node);
2077 free_extent_buffer(root->commit_root);
2078 root->node = NULL;
2079 root->commit_root = NULL;
2080 }
2081 }
2082
2083 /* helper to cleanup tree roots */
2084 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2085 {
2086 free_root_extent_buffers(info->tree_root);
2087
2088 free_root_extent_buffers(info->dev_root);
2089 free_root_extent_buffers(info->extent_root);
2090 free_root_extent_buffers(info->csum_root);
2091 free_root_extent_buffers(info->quota_root);
2092 free_root_extent_buffers(info->uuid_root);
2093 if (chunk_root)
2094 free_root_extent_buffers(info->chunk_root);
2095 }
2096
2097 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2098 {
2099 int ret;
2100 struct btrfs_root *gang[8];
2101 int i;
2102
2103 while (!list_empty(&fs_info->dead_roots)) {
2104 gang[0] = list_entry(fs_info->dead_roots.next,
2105 struct btrfs_root, root_list);
2106 list_del(&gang[0]->root_list);
2107
2108 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2109 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2110 } else {
2111 free_extent_buffer(gang[0]->node);
2112 free_extent_buffer(gang[0]->commit_root);
2113 btrfs_put_fs_root(gang[0]);
2114 }
2115 }
2116
2117 while (1) {
2118 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2119 (void **)gang, 0,
2120 ARRAY_SIZE(gang));
2121 if (!ret)
2122 break;
2123 for (i = 0; i < ret; i++)
2124 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2125 }
2126
2127 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2128 btrfs_free_log_root_tree(NULL, fs_info);
2129 btrfs_destroy_pinned_extent(fs_info->tree_root,
2130 fs_info->pinned_extents);
2131 }
2132 }
2133
2134 int open_ctree(struct super_block *sb,
2135 struct btrfs_fs_devices *fs_devices,
2136 char *options)
2137 {
2138 u32 sectorsize;
2139 u32 nodesize;
2140 u32 stripesize;
2141 u64 generation;
2142 u64 features;
2143 struct btrfs_key location;
2144 struct buffer_head *bh;
2145 struct btrfs_super_block *disk_super;
2146 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2147 struct btrfs_root *tree_root;
2148 struct btrfs_root *extent_root;
2149 struct btrfs_root *csum_root;
2150 struct btrfs_root *chunk_root;
2151 struct btrfs_root *dev_root;
2152 struct btrfs_root *quota_root;
2153 struct btrfs_root *uuid_root;
2154 struct btrfs_root *log_tree_root;
2155 int ret;
2156 int err = -EINVAL;
2157 int num_backups_tried = 0;
2158 int backup_index = 0;
2159 int max_active;
2160 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2161 bool create_uuid_tree;
2162 bool check_uuid_tree;
2163
2164 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2165 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2166 if (!tree_root || !chunk_root) {
2167 err = -ENOMEM;
2168 goto fail;
2169 }
2170
2171 ret = init_srcu_struct(&fs_info->subvol_srcu);
2172 if (ret) {
2173 err = ret;
2174 goto fail;
2175 }
2176
2177 ret = setup_bdi(fs_info, &fs_info->bdi);
2178 if (ret) {
2179 err = ret;
2180 goto fail_srcu;
2181 }
2182
2183 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2184 if (ret) {
2185 err = ret;
2186 goto fail_bdi;
2187 }
2188 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2189 (1 + ilog2(nr_cpu_ids));
2190
2191 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2192 if (ret) {
2193 err = ret;
2194 goto fail_dirty_metadata_bytes;
2195 }
2196
2197 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2198 if (ret) {
2199 err = ret;
2200 goto fail_delalloc_bytes;
2201 }
2202
2203 fs_info->btree_inode = new_inode(sb);
2204 if (!fs_info->btree_inode) {
2205 err = -ENOMEM;
2206 goto fail_bio_counter;
2207 }
2208
2209 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2210
2211 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2212 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2213 INIT_LIST_HEAD(&fs_info->trans_list);
2214 INIT_LIST_HEAD(&fs_info->dead_roots);
2215 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2216 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2217 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2218 spin_lock_init(&fs_info->delalloc_root_lock);
2219 spin_lock_init(&fs_info->trans_lock);
2220 spin_lock_init(&fs_info->fs_roots_radix_lock);
2221 spin_lock_init(&fs_info->delayed_iput_lock);
2222 spin_lock_init(&fs_info->defrag_inodes_lock);
2223 spin_lock_init(&fs_info->free_chunk_lock);
2224 spin_lock_init(&fs_info->tree_mod_seq_lock);
2225 spin_lock_init(&fs_info->super_lock);
2226 spin_lock_init(&fs_info->qgroup_op_lock);
2227 spin_lock_init(&fs_info->buffer_lock);
2228 spin_lock_init(&fs_info->unused_bgs_lock);
2229 rwlock_init(&fs_info->tree_mod_log_lock);
2230 mutex_init(&fs_info->reloc_mutex);
2231 mutex_init(&fs_info->delalloc_root_mutex);
2232 seqlock_init(&fs_info->profiles_lock);
2233
2234 init_completion(&fs_info->kobj_unregister);
2235 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2236 INIT_LIST_HEAD(&fs_info->space_info);
2237 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2238 INIT_LIST_HEAD(&fs_info->unused_bgs);
2239 btrfs_mapping_init(&fs_info->mapping_tree);
2240 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2241 BTRFS_BLOCK_RSV_GLOBAL);
2242 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2243 BTRFS_BLOCK_RSV_DELALLOC);
2244 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2245 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2246 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2247 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2248 BTRFS_BLOCK_RSV_DELOPS);
2249 atomic_set(&fs_info->nr_async_submits, 0);
2250 atomic_set(&fs_info->async_delalloc_pages, 0);
2251 atomic_set(&fs_info->async_submit_draining, 0);
2252 atomic_set(&fs_info->nr_async_bios, 0);
2253 atomic_set(&fs_info->defrag_running, 0);
2254 atomic_set(&fs_info->qgroup_op_seq, 0);
2255 atomic64_set(&fs_info->tree_mod_seq, 0);
2256 fs_info->sb = sb;
2257 fs_info->max_inline = 8192 * 1024;
2258 fs_info->metadata_ratio = 0;
2259 fs_info->defrag_inodes = RB_ROOT;
2260 fs_info->free_chunk_space = 0;
2261 fs_info->tree_mod_log = RB_ROOT;
2262 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2263 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2264 /* readahead state */
2265 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2266 spin_lock_init(&fs_info->reada_lock);
2267
2268 fs_info->thread_pool_size = min_t(unsigned long,
2269 num_online_cpus() + 2, 8);
2270
2271 INIT_LIST_HEAD(&fs_info->ordered_roots);
2272 spin_lock_init(&fs_info->ordered_root_lock);
2273 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2274 GFP_NOFS);
2275 if (!fs_info->delayed_root) {
2276 err = -ENOMEM;
2277 goto fail_iput;
2278 }
2279 btrfs_init_delayed_root(fs_info->delayed_root);
2280
2281 mutex_init(&fs_info->scrub_lock);
2282 atomic_set(&fs_info->scrubs_running, 0);
2283 atomic_set(&fs_info->scrub_pause_req, 0);
2284 atomic_set(&fs_info->scrubs_paused, 0);
2285 atomic_set(&fs_info->scrub_cancel_req, 0);
2286 init_waitqueue_head(&fs_info->replace_wait);
2287 init_waitqueue_head(&fs_info->scrub_pause_wait);
2288 fs_info->scrub_workers_refcnt = 0;
2289 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2290 fs_info->check_integrity_print_mask = 0;
2291 #endif
2292
2293 spin_lock_init(&fs_info->balance_lock);
2294 mutex_init(&fs_info->balance_mutex);
2295 atomic_set(&fs_info->balance_running, 0);
2296 atomic_set(&fs_info->balance_pause_req, 0);
2297 atomic_set(&fs_info->balance_cancel_req, 0);
2298 fs_info->balance_ctl = NULL;
2299 init_waitqueue_head(&fs_info->balance_wait_q);
2300 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2301
2302 sb->s_blocksize = 4096;
2303 sb->s_blocksize_bits = blksize_bits(4096);
2304 sb->s_bdi = &fs_info->bdi;
2305
2306 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2307 set_nlink(fs_info->btree_inode, 1);
2308 /*
2309 * we set the i_size on the btree inode to the max possible int.
2310 * the real end of the address space is determined by all of
2311 * the devices in the system
2312 */
2313 fs_info->btree_inode->i_size = OFFSET_MAX;
2314 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2315 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2316
2317 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2318 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2319 fs_info->btree_inode->i_mapping);
2320 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2321 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2322
2323 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2324
2325 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2326 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2327 sizeof(struct btrfs_key));
2328 set_bit(BTRFS_INODE_DUMMY,
2329 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2330 btrfs_insert_inode_hash(fs_info->btree_inode);
2331
2332 spin_lock_init(&fs_info->block_group_cache_lock);
2333 fs_info->block_group_cache_tree = RB_ROOT;
2334 fs_info->first_logical_byte = (u64)-1;
2335
2336 extent_io_tree_init(&fs_info->freed_extents[0],
2337 fs_info->btree_inode->i_mapping);
2338 extent_io_tree_init(&fs_info->freed_extents[1],
2339 fs_info->btree_inode->i_mapping);
2340 fs_info->pinned_extents = &fs_info->freed_extents[0];
2341 fs_info->do_barriers = 1;
2342
2343
2344 mutex_init(&fs_info->ordered_operations_mutex);
2345 mutex_init(&fs_info->ordered_extent_flush_mutex);
2346 mutex_init(&fs_info->tree_log_mutex);
2347 mutex_init(&fs_info->chunk_mutex);
2348 mutex_init(&fs_info->transaction_kthread_mutex);
2349 mutex_init(&fs_info->cleaner_mutex);
2350 mutex_init(&fs_info->volume_mutex);
2351 init_rwsem(&fs_info->commit_root_sem);
2352 init_rwsem(&fs_info->cleanup_work_sem);
2353 init_rwsem(&fs_info->subvol_sem);
2354 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2355 fs_info->dev_replace.lock_owner = 0;
2356 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2357 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2358 mutex_init(&fs_info->dev_replace.lock_management_lock);
2359 mutex_init(&fs_info->dev_replace.lock);
2360
2361 spin_lock_init(&fs_info->qgroup_lock);
2362 mutex_init(&fs_info->qgroup_ioctl_lock);
2363 fs_info->qgroup_tree = RB_ROOT;
2364 fs_info->qgroup_op_tree = RB_ROOT;
2365 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2366 fs_info->qgroup_seq = 1;
2367 fs_info->quota_enabled = 0;
2368 fs_info->pending_quota_state = 0;
2369 fs_info->qgroup_ulist = NULL;
2370 mutex_init(&fs_info->qgroup_rescan_lock);
2371
2372 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2373 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2374
2375 init_waitqueue_head(&fs_info->transaction_throttle);
2376 init_waitqueue_head(&fs_info->transaction_wait);
2377 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2378 init_waitqueue_head(&fs_info->async_submit_wait);
2379
2380 ret = btrfs_alloc_stripe_hash_table(fs_info);
2381 if (ret) {
2382 err = ret;
2383 goto fail_alloc;
2384 }
2385
2386 __setup_root(4096, 4096, 4096, tree_root,
2387 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2388
2389 invalidate_bdev(fs_devices->latest_bdev);
2390
2391 /*
2392 * Read super block and check the signature bytes only
2393 */
2394 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2395 if (!bh) {
2396 err = -EINVAL;
2397 goto fail_alloc;
2398 }
2399
2400 /*
2401 * We want to check superblock checksum, the type is stored inside.
2402 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2403 */
2404 if (btrfs_check_super_csum(bh->b_data)) {
2405 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2406 err = -EINVAL;
2407 goto fail_alloc;
2408 }
2409
2410 /*
2411 * super_copy is zeroed at allocation time and we never touch the
2412 * following bytes up to INFO_SIZE, the checksum is calculated from
2413 * the whole block of INFO_SIZE
2414 */
2415 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2416 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2417 sizeof(*fs_info->super_for_commit));
2418 brelse(bh);
2419
2420 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2421
2422 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2423 if (ret) {
2424 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2425 err = -EINVAL;
2426 goto fail_alloc;
2427 }
2428
2429 disk_super = fs_info->super_copy;
2430 if (!btrfs_super_root(disk_super))
2431 goto fail_alloc;
2432
2433 /* check FS state, whether FS is broken. */
2434 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2435 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2436
2437 /*
2438 * run through our array of backup supers and setup
2439 * our ring pointer to the oldest one
2440 */
2441 generation = btrfs_super_generation(disk_super);
2442 find_oldest_super_backup(fs_info, generation);
2443
2444 /*
2445 * In the long term, we'll store the compression type in the super
2446 * block, and it'll be used for per file compression control.
2447 */
2448 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2449
2450 ret = btrfs_parse_options(tree_root, options);
2451 if (ret) {
2452 err = ret;
2453 goto fail_alloc;
2454 }
2455
2456 features = btrfs_super_incompat_flags(disk_super) &
2457 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2458 if (features) {
2459 printk(KERN_ERR "BTRFS: couldn't mount because of "
2460 "unsupported optional features (%Lx).\n",
2461 features);
2462 err = -EINVAL;
2463 goto fail_alloc;
2464 }
2465
2466 /*
2467 * Leafsize and nodesize were always equal, this is only a sanity check.
2468 */
2469 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2470 btrfs_super_nodesize(disk_super)) {
2471 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2472 "blocksizes don't match. node %d leaf %d\n",
2473 btrfs_super_nodesize(disk_super),
2474 le32_to_cpu(disk_super->__unused_leafsize));
2475 err = -EINVAL;
2476 goto fail_alloc;
2477 }
2478 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2479 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2480 "blocksize (%d) was too large\n",
2481 btrfs_super_nodesize(disk_super));
2482 err = -EINVAL;
2483 goto fail_alloc;
2484 }
2485
2486 features = btrfs_super_incompat_flags(disk_super);
2487 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2488 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2489 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2490
2491 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2492 printk(KERN_ERR "BTRFS: has skinny extents\n");
2493
2494 /*
2495 * flag our filesystem as having big metadata blocks if
2496 * they are bigger than the page size
2497 */
2498 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2499 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2500 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2501 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2502 }
2503
2504 nodesize = btrfs_super_nodesize(disk_super);
2505 sectorsize = btrfs_super_sectorsize(disk_super);
2506 stripesize = btrfs_super_stripesize(disk_super);
2507 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2508 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2509
2510 /*
2511 * mixed block groups end up with duplicate but slightly offset
2512 * extent buffers for the same range. It leads to corruptions
2513 */
2514 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2515 (sectorsize != nodesize)) {
2516 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2517 "are not allowed for mixed block groups on %s\n",
2518 sb->s_id);
2519 goto fail_alloc;
2520 }
2521
2522 /*
2523 * Needn't use the lock because there is no other task which will
2524 * update the flag.
2525 */
2526 btrfs_set_super_incompat_flags(disk_super, features);
2527
2528 features = btrfs_super_compat_ro_flags(disk_super) &
2529 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2530 if (!(sb->s_flags & MS_RDONLY) && features) {
2531 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2532 "unsupported option features (%Lx).\n",
2533 features);
2534 err = -EINVAL;
2535 goto fail_alloc;
2536 }
2537
2538 max_active = fs_info->thread_pool_size;
2539
2540 fs_info->workers =
2541 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2542 max_active, 16);
2543
2544 fs_info->delalloc_workers =
2545 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2546
2547 fs_info->flush_workers =
2548 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2549
2550 fs_info->caching_workers =
2551 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2552
2553 /*
2554 * a higher idle thresh on the submit workers makes it much more
2555 * likely that bios will be send down in a sane order to the
2556 * devices
2557 */
2558 fs_info->submit_workers =
2559 btrfs_alloc_workqueue("submit", flags,
2560 min_t(u64, fs_devices->num_devices,
2561 max_active), 64);
2562
2563 fs_info->fixup_workers =
2564 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2565
2566 /*
2567 * endios are largely parallel and should have a very
2568 * low idle thresh
2569 */
2570 fs_info->endio_workers =
2571 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2572 fs_info->endio_meta_workers =
2573 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2574 fs_info->endio_meta_write_workers =
2575 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2576 fs_info->endio_raid56_workers =
2577 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2578 fs_info->endio_repair_workers =
2579 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2580 fs_info->rmw_workers =
2581 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2582 fs_info->endio_write_workers =
2583 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2584 fs_info->endio_freespace_worker =
2585 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2586 fs_info->delayed_workers =
2587 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2588 fs_info->readahead_workers =
2589 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2590 fs_info->qgroup_rescan_workers =
2591 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2592 fs_info->extent_workers =
2593 btrfs_alloc_workqueue("extent-refs", flags,
2594 min_t(u64, fs_devices->num_devices,
2595 max_active), 8);
2596
2597 if (!(fs_info->workers && fs_info->delalloc_workers &&
2598 fs_info->submit_workers && fs_info->flush_workers &&
2599 fs_info->endio_workers && fs_info->endio_meta_workers &&
2600 fs_info->endio_meta_write_workers &&
2601 fs_info->endio_repair_workers &&
2602 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2603 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2604 fs_info->caching_workers && fs_info->readahead_workers &&
2605 fs_info->fixup_workers && fs_info->delayed_workers &&
2606 fs_info->extent_workers &&
2607 fs_info->qgroup_rescan_workers)) {
2608 err = -ENOMEM;
2609 goto fail_sb_buffer;
2610 }
2611
2612 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2613 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2614 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2615
2616 tree_root->nodesize = nodesize;
2617 tree_root->sectorsize = sectorsize;
2618 tree_root->stripesize = stripesize;
2619
2620 sb->s_blocksize = sectorsize;
2621 sb->s_blocksize_bits = blksize_bits(sectorsize);
2622
2623 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2624 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2625 goto fail_sb_buffer;
2626 }
2627
2628 if (sectorsize != PAGE_SIZE) {
2629 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2630 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2631 goto fail_sb_buffer;
2632 }
2633
2634 mutex_lock(&fs_info->chunk_mutex);
2635 ret = btrfs_read_sys_array(tree_root);
2636 mutex_unlock(&fs_info->chunk_mutex);
2637 if (ret) {
2638 printk(KERN_WARNING "BTRFS: failed to read the system "
2639 "array on %s\n", sb->s_id);
2640 goto fail_sb_buffer;
2641 }
2642
2643 generation = btrfs_super_chunk_root_generation(disk_super);
2644
2645 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2646 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2647
2648 chunk_root->node = read_tree_block(chunk_root,
2649 btrfs_super_chunk_root(disk_super),
2650 generation);
2651 if (!chunk_root->node ||
2652 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2653 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2654 sb->s_id);
2655 goto fail_tree_roots;
2656 }
2657 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2658 chunk_root->commit_root = btrfs_root_node(chunk_root);
2659
2660 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2661 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2662
2663 ret = btrfs_read_chunk_tree(chunk_root);
2664 if (ret) {
2665 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2666 sb->s_id);
2667 goto fail_tree_roots;
2668 }
2669
2670 /*
2671 * keep the device that is marked to be the target device for the
2672 * dev_replace procedure
2673 */
2674 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2675
2676 if (!fs_devices->latest_bdev) {
2677 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2678 sb->s_id);
2679 goto fail_tree_roots;
2680 }
2681
2682 retry_root_backup:
2683 generation = btrfs_super_generation(disk_super);
2684
2685 tree_root->node = read_tree_block(tree_root,
2686 btrfs_super_root(disk_super),
2687 generation);
2688 if (!tree_root->node ||
2689 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2690 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2691 sb->s_id);
2692
2693 goto recovery_tree_root;
2694 }
2695
2696 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2697 tree_root->commit_root = btrfs_root_node(tree_root);
2698 btrfs_set_root_refs(&tree_root->root_item, 1);
2699
2700 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2701 location.type = BTRFS_ROOT_ITEM_KEY;
2702 location.offset = 0;
2703
2704 extent_root = btrfs_read_tree_root(tree_root, &location);
2705 if (IS_ERR(extent_root)) {
2706 ret = PTR_ERR(extent_root);
2707 goto recovery_tree_root;
2708 }
2709 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2710 fs_info->extent_root = extent_root;
2711
2712 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2713 dev_root = btrfs_read_tree_root(tree_root, &location);
2714 if (IS_ERR(dev_root)) {
2715 ret = PTR_ERR(dev_root);
2716 goto recovery_tree_root;
2717 }
2718 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2719 fs_info->dev_root = dev_root;
2720 btrfs_init_devices_late(fs_info);
2721
2722 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2723 csum_root = btrfs_read_tree_root(tree_root, &location);
2724 if (IS_ERR(csum_root)) {
2725 ret = PTR_ERR(csum_root);
2726 goto recovery_tree_root;
2727 }
2728 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2729 fs_info->csum_root = csum_root;
2730
2731 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2732 quota_root = btrfs_read_tree_root(tree_root, &location);
2733 if (!IS_ERR(quota_root)) {
2734 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2735 fs_info->quota_enabled = 1;
2736 fs_info->pending_quota_state = 1;
2737 fs_info->quota_root = quota_root;
2738 }
2739
2740 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2741 uuid_root = btrfs_read_tree_root(tree_root, &location);
2742 if (IS_ERR(uuid_root)) {
2743 ret = PTR_ERR(uuid_root);
2744 if (ret != -ENOENT)
2745 goto recovery_tree_root;
2746 create_uuid_tree = true;
2747 check_uuid_tree = false;
2748 } else {
2749 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2750 fs_info->uuid_root = uuid_root;
2751 create_uuid_tree = false;
2752 check_uuid_tree =
2753 generation != btrfs_super_uuid_tree_generation(disk_super);
2754 }
2755
2756 fs_info->generation = generation;
2757 fs_info->last_trans_committed = generation;
2758
2759 ret = btrfs_recover_balance(fs_info);
2760 if (ret) {
2761 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2762 goto fail_block_groups;
2763 }
2764
2765 ret = btrfs_init_dev_stats(fs_info);
2766 if (ret) {
2767 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2768 ret);
2769 goto fail_block_groups;
2770 }
2771
2772 ret = btrfs_init_dev_replace(fs_info);
2773 if (ret) {
2774 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2775 goto fail_block_groups;
2776 }
2777
2778 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2779
2780 ret = btrfs_sysfs_add_one(fs_info);
2781 if (ret) {
2782 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2783 goto fail_block_groups;
2784 }
2785
2786 ret = btrfs_init_space_info(fs_info);
2787 if (ret) {
2788 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2789 goto fail_sysfs;
2790 }
2791
2792 ret = btrfs_read_block_groups(extent_root);
2793 if (ret) {
2794 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2795 goto fail_sysfs;
2796 }
2797 fs_info->num_tolerated_disk_barrier_failures =
2798 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2799 if (fs_info->fs_devices->missing_devices >
2800 fs_info->num_tolerated_disk_barrier_failures &&
2801 !(sb->s_flags & MS_RDONLY)) {
2802 printk(KERN_WARNING "BTRFS: "
2803 "too many missing devices, writeable mount is not allowed\n");
2804 goto fail_sysfs;
2805 }
2806
2807 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2808 "btrfs-cleaner");
2809 if (IS_ERR(fs_info->cleaner_kthread))
2810 goto fail_sysfs;
2811
2812 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2813 tree_root,
2814 "btrfs-transaction");
2815 if (IS_ERR(fs_info->transaction_kthread))
2816 goto fail_cleaner;
2817
2818 if (!btrfs_test_opt(tree_root, SSD) &&
2819 !btrfs_test_opt(tree_root, NOSSD) &&
2820 !fs_info->fs_devices->rotating) {
2821 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2822 "mode\n");
2823 btrfs_set_opt(fs_info->mount_opt, SSD);
2824 }
2825
2826 /* Set the real inode map cache flag */
2827 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2828 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2829
2830 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2831 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2832 ret = btrfsic_mount(tree_root, fs_devices,
2833 btrfs_test_opt(tree_root,
2834 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2835 1 : 0,
2836 fs_info->check_integrity_print_mask);
2837 if (ret)
2838 printk(KERN_WARNING "BTRFS: failed to initialize"
2839 " integrity check module %s\n", sb->s_id);
2840 }
2841 #endif
2842 ret = btrfs_read_qgroup_config(fs_info);
2843 if (ret)
2844 goto fail_trans_kthread;
2845
2846 /* do not make disk changes in broken FS */
2847 if (btrfs_super_log_root(disk_super) != 0) {
2848 u64 bytenr = btrfs_super_log_root(disk_super);
2849
2850 if (fs_devices->rw_devices == 0) {
2851 printk(KERN_WARNING "BTRFS: log replay required "
2852 "on RO media\n");
2853 err = -EIO;
2854 goto fail_qgroup;
2855 }
2856
2857 log_tree_root = btrfs_alloc_root(fs_info);
2858 if (!log_tree_root) {
2859 err = -ENOMEM;
2860 goto fail_qgroup;
2861 }
2862
2863 __setup_root(nodesize, sectorsize, stripesize,
2864 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2865
2866 log_tree_root->node = read_tree_block(tree_root, bytenr,
2867 generation + 1);
2868 if (!log_tree_root->node ||
2869 !extent_buffer_uptodate(log_tree_root->node)) {
2870 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2871 free_extent_buffer(log_tree_root->node);
2872 kfree(log_tree_root);
2873 goto fail_qgroup;
2874 }
2875 /* returns with log_tree_root freed on success */
2876 ret = btrfs_recover_log_trees(log_tree_root);
2877 if (ret) {
2878 btrfs_error(tree_root->fs_info, ret,
2879 "Failed to recover log tree");
2880 free_extent_buffer(log_tree_root->node);
2881 kfree(log_tree_root);
2882 goto fail_qgroup;
2883 }
2884
2885 if (sb->s_flags & MS_RDONLY) {
2886 ret = btrfs_commit_super(tree_root);
2887 if (ret)
2888 goto fail_qgroup;
2889 }
2890 }
2891
2892 ret = btrfs_find_orphan_roots(tree_root);
2893 if (ret)
2894 goto fail_qgroup;
2895
2896 if (!(sb->s_flags & MS_RDONLY)) {
2897 ret = btrfs_cleanup_fs_roots(fs_info);
2898 if (ret)
2899 goto fail_qgroup;
2900
2901 mutex_lock(&fs_info->cleaner_mutex);
2902 ret = btrfs_recover_relocation(tree_root);
2903 mutex_unlock(&fs_info->cleaner_mutex);
2904 if (ret < 0) {
2905 printk(KERN_WARNING
2906 "BTRFS: failed to recover relocation\n");
2907 err = -EINVAL;
2908 goto fail_qgroup;
2909 }
2910 }
2911
2912 location.objectid = BTRFS_FS_TREE_OBJECTID;
2913 location.type = BTRFS_ROOT_ITEM_KEY;
2914 location.offset = 0;
2915
2916 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2917 if (IS_ERR(fs_info->fs_root)) {
2918 err = PTR_ERR(fs_info->fs_root);
2919 goto fail_qgroup;
2920 }
2921
2922 if (sb->s_flags & MS_RDONLY)
2923 return 0;
2924
2925 down_read(&fs_info->cleanup_work_sem);
2926 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2927 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2928 up_read(&fs_info->cleanup_work_sem);
2929 close_ctree(tree_root);
2930 return ret;
2931 }
2932 up_read(&fs_info->cleanup_work_sem);
2933
2934 ret = btrfs_resume_balance_async(fs_info);
2935 if (ret) {
2936 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2937 close_ctree(tree_root);
2938 return ret;
2939 }
2940
2941 ret = btrfs_resume_dev_replace_async(fs_info);
2942 if (ret) {
2943 pr_warn("BTRFS: failed to resume dev_replace\n");
2944 close_ctree(tree_root);
2945 return ret;
2946 }
2947
2948 btrfs_qgroup_rescan_resume(fs_info);
2949
2950 if (create_uuid_tree) {
2951 pr_info("BTRFS: creating UUID tree\n");
2952 ret = btrfs_create_uuid_tree(fs_info);
2953 if (ret) {
2954 pr_warn("BTRFS: failed to create the UUID tree %d\n",
2955 ret);
2956 close_ctree(tree_root);
2957 return ret;
2958 }
2959 } else if (check_uuid_tree ||
2960 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2961 pr_info("BTRFS: checking UUID tree\n");
2962 ret = btrfs_check_uuid_tree(fs_info);
2963 if (ret) {
2964 pr_warn("BTRFS: failed to check the UUID tree %d\n",
2965 ret);
2966 close_ctree(tree_root);
2967 return ret;
2968 }
2969 } else {
2970 fs_info->update_uuid_tree_gen = 1;
2971 }
2972
2973 fs_info->open = 1;
2974
2975 return 0;
2976
2977 fail_qgroup:
2978 btrfs_free_qgroup_config(fs_info);
2979 fail_trans_kthread:
2980 kthread_stop(fs_info->transaction_kthread);
2981 btrfs_cleanup_transaction(fs_info->tree_root);
2982 btrfs_free_fs_roots(fs_info);
2983 fail_cleaner:
2984 kthread_stop(fs_info->cleaner_kthread);
2985
2986 /*
2987 * make sure we're done with the btree inode before we stop our
2988 * kthreads
2989 */
2990 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2991
2992 fail_sysfs:
2993 btrfs_sysfs_remove_one(fs_info);
2994
2995 fail_block_groups:
2996 btrfs_put_block_group_cache(fs_info);
2997 btrfs_free_block_groups(fs_info);
2998
2999 fail_tree_roots:
3000 free_root_pointers(fs_info, 1);
3001 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3002
3003 fail_sb_buffer:
3004 btrfs_stop_all_workers(fs_info);
3005 fail_alloc:
3006 fail_iput:
3007 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3008
3009 iput(fs_info->btree_inode);
3010 fail_bio_counter:
3011 percpu_counter_destroy(&fs_info->bio_counter);
3012 fail_delalloc_bytes:
3013 percpu_counter_destroy(&fs_info->delalloc_bytes);
3014 fail_dirty_metadata_bytes:
3015 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3016 fail_bdi:
3017 bdi_destroy(&fs_info->bdi);
3018 fail_srcu:
3019 cleanup_srcu_struct(&fs_info->subvol_srcu);
3020 fail:
3021 btrfs_free_stripe_hash_table(fs_info);
3022 btrfs_close_devices(fs_info->fs_devices);
3023 return err;
3024
3025 recovery_tree_root:
3026 if (!btrfs_test_opt(tree_root, RECOVERY))
3027 goto fail_tree_roots;
3028
3029 free_root_pointers(fs_info, 0);
3030
3031 /* don't use the log in recovery mode, it won't be valid */
3032 btrfs_set_super_log_root(disk_super, 0);
3033
3034 /* we can't trust the free space cache either */
3035 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3036
3037 ret = next_root_backup(fs_info, fs_info->super_copy,
3038 &num_backups_tried, &backup_index);
3039 if (ret == -1)
3040 goto fail_block_groups;
3041 goto retry_root_backup;
3042 }
3043
3044 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3045 {
3046 if (uptodate) {
3047 set_buffer_uptodate(bh);
3048 } else {
3049 struct btrfs_device *device = (struct btrfs_device *)
3050 bh->b_private;
3051
3052 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3053 "I/O error on %s\n",
3054 rcu_str_deref(device->name));
3055 /* note, we dont' set_buffer_write_io_error because we have
3056 * our own ways of dealing with the IO errors
3057 */
3058 clear_buffer_uptodate(bh);
3059 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3060 }
3061 unlock_buffer(bh);
3062 put_bh(bh);
3063 }
3064
3065 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3066 {
3067 struct buffer_head *bh;
3068 struct buffer_head *latest = NULL;
3069 struct btrfs_super_block *super;
3070 int i;
3071 u64 transid = 0;
3072 u64 bytenr;
3073
3074 /* we would like to check all the supers, but that would make
3075 * a btrfs mount succeed after a mkfs from a different FS.
3076 * So, we need to add a special mount option to scan for
3077 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3078 */
3079 for (i = 0; i < 1; i++) {
3080 bytenr = btrfs_sb_offset(i);
3081 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3082 i_size_read(bdev->bd_inode))
3083 break;
3084 bh = __bread(bdev, bytenr / 4096,
3085 BTRFS_SUPER_INFO_SIZE);
3086 if (!bh)
3087 continue;
3088
3089 super = (struct btrfs_super_block *)bh->b_data;
3090 if (btrfs_super_bytenr(super) != bytenr ||
3091 btrfs_super_magic(super) != BTRFS_MAGIC) {
3092 brelse(bh);
3093 continue;
3094 }
3095
3096 if (!latest || btrfs_super_generation(super) > transid) {
3097 brelse(latest);
3098 latest = bh;
3099 transid = btrfs_super_generation(super);
3100 } else {
3101 brelse(bh);
3102 }
3103 }
3104 return latest;
3105 }
3106
3107 /*
3108 * this should be called twice, once with wait == 0 and
3109 * once with wait == 1. When wait == 0 is done, all the buffer heads
3110 * we write are pinned.
3111 *
3112 * They are released when wait == 1 is done.
3113 * max_mirrors must be the same for both runs, and it indicates how
3114 * many supers on this one device should be written.
3115 *
3116 * max_mirrors == 0 means to write them all.
3117 */
3118 static int write_dev_supers(struct btrfs_device *device,
3119 struct btrfs_super_block *sb,
3120 int do_barriers, int wait, int max_mirrors)
3121 {
3122 struct buffer_head *bh;
3123 int i;
3124 int ret;
3125 int errors = 0;
3126 u32 crc;
3127 u64 bytenr;
3128
3129 if (max_mirrors == 0)
3130 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3131
3132 for (i = 0; i < max_mirrors; i++) {
3133 bytenr = btrfs_sb_offset(i);
3134 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3135 device->commit_total_bytes)
3136 break;
3137
3138 if (wait) {
3139 bh = __find_get_block(device->bdev, bytenr / 4096,
3140 BTRFS_SUPER_INFO_SIZE);
3141 if (!bh) {
3142 errors++;
3143 continue;
3144 }
3145 wait_on_buffer(bh);
3146 if (!buffer_uptodate(bh))
3147 errors++;
3148
3149 /* drop our reference */
3150 brelse(bh);
3151
3152 /* drop the reference from the wait == 0 run */
3153 brelse(bh);
3154 continue;
3155 } else {
3156 btrfs_set_super_bytenr(sb, bytenr);
3157
3158 crc = ~(u32)0;
3159 crc = btrfs_csum_data((char *)sb +
3160 BTRFS_CSUM_SIZE, crc,
3161 BTRFS_SUPER_INFO_SIZE -
3162 BTRFS_CSUM_SIZE);
3163 btrfs_csum_final(crc, sb->csum);
3164
3165 /*
3166 * one reference for us, and we leave it for the
3167 * caller
3168 */
3169 bh = __getblk(device->bdev, bytenr / 4096,
3170 BTRFS_SUPER_INFO_SIZE);
3171 if (!bh) {
3172 printk(KERN_ERR "BTRFS: couldn't get super "
3173 "buffer head for bytenr %Lu\n", bytenr);
3174 errors++;
3175 continue;
3176 }
3177
3178 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3179
3180 /* one reference for submit_bh */
3181 get_bh(bh);
3182
3183 set_buffer_uptodate(bh);
3184 lock_buffer(bh);
3185 bh->b_end_io = btrfs_end_buffer_write_sync;
3186 bh->b_private = device;
3187 }
3188
3189 /*
3190 * we fua the first super. The others we allow
3191 * to go down lazy.
3192 */
3193 if (i == 0)
3194 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3195 else
3196 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3197 if (ret)
3198 errors++;
3199 }
3200 return errors < i ? 0 : -1;
3201 }
3202
3203 /*
3204 * endio for the write_dev_flush, this will wake anyone waiting
3205 * for the barrier when it is done
3206 */
3207 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3208 {
3209 if (err) {
3210 if (err == -EOPNOTSUPP)
3211 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3212 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3213 }
3214 if (bio->bi_private)
3215 complete(bio->bi_private);
3216 bio_put(bio);
3217 }
3218
3219 /*
3220 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3221 * sent down. With wait == 1, it waits for the previous flush.
3222 *
3223 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3224 * capable
3225 */
3226 static int write_dev_flush(struct btrfs_device *device, int wait)
3227 {
3228 struct bio *bio;
3229 int ret = 0;
3230
3231 if (device->nobarriers)
3232 return 0;
3233
3234 if (wait) {
3235 bio = device->flush_bio;
3236 if (!bio)
3237 return 0;
3238
3239 wait_for_completion(&device->flush_wait);
3240
3241 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3242 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3243 rcu_str_deref(device->name));
3244 device->nobarriers = 1;
3245 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3246 ret = -EIO;
3247 btrfs_dev_stat_inc_and_print(device,
3248 BTRFS_DEV_STAT_FLUSH_ERRS);
3249 }
3250
3251 /* drop the reference from the wait == 0 run */
3252 bio_put(bio);
3253 device->flush_bio = NULL;
3254
3255 return ret;
3256 }
3257
3258 /*
3259 * one reference for us, and we leave it for the
3260 * caller
3261 */
3262 device->flush_bio = NULL;
3263 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3264 if (!bio)
3265 return -ENOMEM;
3266
3267 bio->bi_end_io = btrfs_end_empty_barrier;
3268 bio->bi_bdev = device->bdev;
3269 init_completion(&device->flush_wait);
3270 bio->bi_private = &device->flush_wait;
3271 device->flush_bio = bio;
3272
3273 bio_get(bio);
3274 btrfsic_submit_bio(WRITE_FLUSH, bio);
3275
3276 return 0;
3277 }
3278
3279 /*
3280 * send an empty flush down to each device in parallel,
3281 * then wait for them
3282 */
3283 static int barrier_all_devices(struct btrfs_fs_info *info)
3284 {
3285 struct list_head *head;
3286 struct btrfs_device *dev;
3287 int errors_send = 0;
3288 int errors_wait = 0;
3289 int ret;
3290
3291 /* send down all the barriers */
3292 head = &info->fs_devices->devices;
3293 list_for_each_entry_rcu(dev, head, dev_list) {
3294 if (dev->missing)
3295 continue;
3296 if (!dev->bdev) {
3297 errors_send++;
3298 continue;
3299 }
3300 if (!dev->in_fs_metadata || !dev->writeable)
3301 continue;
3302
3303 ret = write_dev_flush(dev, 0);
3304 if (ret)
3305 errors_send++;
3306 }
3307
3308 /* wait for all the barriers */
3309 list_for_each_entry_rcu(dev, head, dev_list) {
3310 if (dev->missing)
3311 continue;
3312 if (!dev->bdev) {
3313 errors_wait++;
3314 continue;
3315 }
3316 if (!dev->in_fs_metadata || !dev->writeable)
3317 continue;
3318
3319 ret = write_dev_flush(dev, 1);
3320 if (ret)
3321 errors_wait++;
3322 }
3323 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3324 errors_wait > info->num_tolerated_disk_barrier_failures)
3325 return -EIO;
3326 return 0;
3327 }
3328
3329 int btrfs_calc_num_tolerated_disk_barrier_failures(
3330 struct btrfs_fs_info *fs_info)
3331 {
3332 struct btrfs_ioctl_space_info space;
3333 struct btrfs_space_info *sinfo;
3334 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3335 BTRFS_BLOCK_GROUP_SYSTEM,
3336 BTRFS_BLOCK_GROUP_METADATA,
3337 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3338 int num_types = 4;
3339 int i;
3340 int c;
3341 int num_tolerated_disk_barrier_failures =
3342 (int)fs_info->fs_devices->num_devices;
3343
3344 for (i = 0; i < num_types; i++) {
3345 struct btrfs_space_info *tmp;
3346
3347 sinfo = NULL;
3348 rcu_read_lock();
3349 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3350 if (tmp->flags == types[i]) {
3351 sinfo = tmp;
3352 break;
3353 }
3354 }
3355 rcu_read_unlock();
3356
3357 if (!sinfo)
3358 continue;
3359
3360 down_read(&sinfo->groups_sem);
3361 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3362 if (!list_empty(&sinfo->block_groups[c])) {
3363 u64 flags;
3364
3365 btrfs_get_block_group_info(
3366 &sinfo->block_groups[c], &space);
3367 if (space.total_bytes == 0 ||
3368 space.used_bytes == 0)
3369 continue;
3370 flags = space.flags;
3371 /*
3372 * return
3373 * 0: if dup, single or RAID0 is configured for
3374 * any of metadata, system or data, else
3375 * 1: if RAID5 is configured, or if RAID1 or
3376 * RAID10 is configured and only two mirrors
3377 * are used, else
3378 * 2: if RAID6 is configured, else
3379 * num_mirrors - 1: if RAID1 or RAID10 is
3380 * configured and more than
3381 * 2 mirrors are used.
3382 */
3383 if (num_tolerated_disk_barrier_failures > 0 &&
3384 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3385 BTRFS_BLOCK_GROUP_RAID0)) ||
3386 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3387 == 0)))
3388 num_tolerated_disk_barrier_failures = 0;
3389 else if (num_tolerated_disk_barrier_failures > 1) {
3390 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3391 BTRFS_BLOCK_GROUP_RAID5 |
3392 BTRFS_BLOCK_GROUP_RAID10)) {
3393 num_tolerated_disk_barrier_failures = 1;
3394 } else if (flags &
3395 BTRFS_BLOCK_GROUP_RAID6) {
3396 num_tolerated_disk_barrier_failures = 2;
3397 }
3398 }
3399 }
3400 }
3401 up_read(&sinfo->groups_sem);
3402 }
3403
3404 return num_tolerated_disk_barrier_failures;
3405 }
3406
3407 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3408 {
3409 struct list_head *head;
3410 struct btrfs_device *dev;
3411 struct btrfs_super_block *sb;
3412 struct btrfs_dev_item *dev_item;
3413 int ret;
3414 int do_barriers;
3415 int max_errors;
3416 int total_errors = 0;
3417 u64 flags;
3418
3419 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3420 backup_super_roots(root->fs_info);
3421
3422 sb = root->fs_info->super_for_commit;
3423 dev_item = &sb->dev_item;
3424
3425 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3426 head = &root->fs_info->fs_devices->devices;
3427 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3428
3429 if (do_barriers) {
3430 ret = barrier_all_devices(root->fs_info);
3431 if (ret) {
3432 mutex_unlock(
3433 &root->fs_info->fs_devices->device_list_mutex);
3434 btrfs_error(root->fs_info, ret,
3435 "errors while submitting device barriers.");
3436 return ret;
3437 }
3438 }
3439
3440 list_for_each_entry_rcu(dev, head, dev_list) {
3441 if (!dev->bdev) {
3442 total_errors++;
3443 continue;
3444 }
3445 if (!dev->in_fs_metadata || !dev->writeable)
3446 continue;
3447
3448 btrfs_set_stack_device_generation(dev_item, 0);
3449 btrfs_set_stack_device_type(dev_item, dev->type);
3450 btrfs_set_stack_device_id(dev_item, dev->devid);
3451 btrfs_set_stack_device_total_bytes(dev_item,
3452 dev->commit_total_bytes);
3453 btrfs_set_stack_device_bytes_used(dev_item,
3454 dev->commit_bytes_used);
3455 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3456 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3457 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3458 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3459 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3460
3461 flags = btrfs_super_flags(sb);
3462 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3463
3464 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3465 if (ret)
3466 total_errors++;
3467 }
3468 if (total_errors > max_errors) {
3469 btrfs_err(root->fs_info, "%d errors while writing supers",
3470 total_errors);
3471 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3472
3473 /* FUA is masked off if unsupported and can't be the reason */
3474 btrfs_error(root->fs_info, -EIO,
3475 "%d errors while writing supers", total_errors);
3476 return -EIO;
3477 }
3478
3479 total_errors = 0;
3480 list_for_each_entry_rcu(dev, head, dev_list) {
3481 if (!dev->bdev)
3482 continue;
3483 if (!dev->in_fs_metadata || !dev->writeable)
3484 continue;
3485
3486 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3487 if (ret)
3488 total_errors++;
3489 }
3490 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3491 if (total_errors > max_errors) {
3492 btrfs_error(root->fs_info, -EIO,
3493 "%d errors while writing supers", total_errors);
3494 return -EIO;
3495 }
3496 return 0;
3497 }
3498
3499 int write_ctree_super(struct btrfs_trans_handle *trans,
3500 struct btrfs_root *root, int max_mirrors)
3501 {
3502 return write_all_supers(root, max_mirrors);
3503 }
3504
3505 /* Drop a fs root from the radix tree and free it. */
3506 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3507 struct btrfs_root *root)
3508 {
3509 spin_lock(&fs_info->fs_roots_radix_lock);
3510 radix_tree_delete(&fs_info->fs_roots_radix,
3511 (unsigned long)root->root_key.objectid);
3512 spin_unlock(&fs_info->fs_roots_radix_lock);
3513
3514 if (btrfs_root_refs(&root->root_item) == 0)
3515 synchronize_srcu(&fs_info->subvol_srcu);
3516
3517 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3518 btrfs_free_log(NULL, root);
3519
3520 if (root->free_ino_pinned)
3521 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3522 if (root->free_ino_ctl)
3523 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3524 free_fs_root(root);
3525 }
3526
3527 static void free_fs_root(struct btrfs_root *root)
3528 {
3529 iput(root->ino_cache_inode);
3530 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3531 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3532 root->orphan_block_rsv = NULL;
3533 if (root->anon_dev)
3534 free_anon_bdev(root->anon_dev);
3535 if (root->subv_writers)
3536 btrfs_free_subvolume_writers(root->subv_writers);
3537 free_extent_buffer(root->node);
3538 free_extent_buffer(root->commit_root);
3539 kfree(root->free_ino_ctl);
3540 kfree(root->free_ino_pinned);
3541 kfree(root->name);
3542 btrfs_put_fs_root(root);
3543 }
3544
3545 void btrfs_free_fs_root(struct btrfs_root *root)
3546 {
3547 free_fs_root(root);
3548 }
3549
3550 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3551 {
3552 u64 root_objectid = 0;
3553 struct btrfs_root *gang[8];
3554 int i = 0;
3555 int err = 0;
3556 unsigned int ret = 0;
3557 int index;
3558
3559 while (1) {
3560 index = srcu_read_lock(&fs_info->subvol_srcu);
3561 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3562 (void **)gang, root_objectid,
3563 ARRAY_SIZE(gang));
3564 if (!ret) {
3565 srcu_read_unlock(&fs_info->subvol_srcu, index);
3566 break;
3567 }
3568 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3569
3570 for (i = 0; i < ret; i++) {
3571 /* Avoid to grab roots in dead_roots */
3572 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3573 gang[i] = NULL;
3574 continue;
3575 }
3576 /* grab all the search result for later use */
3577 gang[i] = btrfs_grab_fs_root(gang[i]);
3578 }
3579 srcu_read_unlock(&fs_info->subvol_srcu, index);
3580
3581 for (i = 0; i < ret; i++) {
3582 if (!gang[i])
3583 continue;
3584 root_objectid = gang[i]->root_key.objectid;
3585 err = btrfs_orphan_cleanup(gang[i]);
3586 if (err)
3587 break;
3588 btrfs_put_fs_root(gang[i]);
3589 }
3590 root_objectid++;
3591 }
3592
3593 /* release the uncleaned roots due to error */
3594 for (; i < ret; i++) {
3595 if (gang[i])
3596 btrfs_put_fs_root(gang[i]);
3597 }
3598 return err;
3599 }
3600
3601 int btrfs_commit_super(struct btrfs_root *root)
3602 {
3603 struct btrfs_trans_handle *trans;
3604
3605 mutex_lock(&root->fs_info->cleaner_mutex);
3606 btrfs_run_delayed_iputs(root);
3607 mutex_unlock(&root->fs_info->cleaner_mutex);
3608 wake_up_process(root->fs_info->cleaner_kthread);
3609
3610 /* wait until ongoing cleanup work done */
3611 down_write(&root->fs_info->cleanup_work_sem);
3612 up_write(&root->fs_info->cleanup_work_sem);
3613
3614 trans = btrfs_join_transaction(root);
3615 if (IS_ERR(trans))
3616 return PTR_ERR(trans);
3617 return btrfs_commit_transaction(trans, root);
3618 }
3619
3620 void close_ctree(struct btrfs_root *root)
3621 {
3622 struct btrfs_fs_info *fs_info = root->fs_info;
3623 int ret;
3624
3625 fs_info->closing = 1;
3626 smp_mb();
3627
3628 /* wait for the uuid_scan task to finish */
3629 down(&fs_info->uuid_tree_rescan_sem);
3630 /* avoid complains from lockdep et al., set sem back to initial state */
3631 up(&fs_info->uuid_tree_rescan_sem);
3632
3633 /* pause restriper - we want to resume on mount */
3634 btrfs_pause_balance(fs_info);
3635
3636 btrfs_dev_replace_suspend_for_unmount(fs_info);
3637
3638 btrfs_scrub_cancel(fs_info);
3639
3640 /* wait for any defraggers to finish */
3641 wait_event(fs_info->transaction_wait,
3642 (atomic_read(&fs_info->defrag_running) == 0));
3643
3644 /* clear out the rbtree of defraggable inodes */
3645 btrfs_cleanup_defrag_inodes(fs_info);
3646
3647 cancel_work_sync(&fs_info->async_reclaim_work);
3648
3649 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3650 ret = btrfs_commit_super(root);
3651 if (ret)
3652 btrfs_err(root->fs_info, "commit super ret %d", ret);
3653 }
3654
3655 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3656 btrfs_error_commit_super(root);
3657
3658 kthread_stop(fs_info->transaction_kthread);
3659 kthread_stop(fs_info->cleaner_kthread);
3660
3661 fs_info->closing = 2;
3662 smp_mb();
3663
3664 btrfs_free_qgroup_config(root->fs_info);
3665
3666 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3667 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3668 percpu_counter_sum(&fs_info->delalloc_bytes));
3669 }
3670
3671 btrfs_sysfs_remove_one(fs_info);
3672
3673 btrfs_free_fs_roots(fs_info);
3674
3675 btrfs_put_block_group_cache(fs_info);
3676
3677 btrfs_free_block_groups(fs_info);
3678
3679 /*
3680 * we must make sure there is not any read request to
3681 * submit after we stopping all workers.
3682 */
3683 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3684 btrfs_stop_all_workers(fs_info);
3685
3686 fs_info->open = 0;
3687 free_root_pointers(fs_info, 1);
3688
3689 iput(fs_info->btree_inode);
3690
3691 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3692 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3693 btrfsic_unmount(root, fs_info->fs_devices);
3694 #endif
3695
3696 btrfs_close_devices(fs_info->fs_devices);
3697 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3698
3699 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3700 percpu_counter_destroy(&fs_info->delalloc_bytes);
3701 percpu_counter_destroy(&fs_info->bio_counter);
3702 bdi_destroy(&fs_info->bdi);
3703 cleanup_srcu_struct(&fs_info->subvol_srcu);
3704
3705 btrfs_free_stripe_hash_table(fs_info);
3706
3707 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3708 root->orphan_block_rsv = NULL;
3709 }
3710
3711 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3712 int atomic)
3713 {
3714 int ret;
3715 struct inode *btree_inode = buf->pages[0]->mapping->host;
3716
3717 ret = extent_buffer_uptodate(buf);
3718 if (!ret)
3719 return ret;
3720
3721 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3722 parent_transid, atomic);
3723 if (ret == -EAGAIN)
3724 return ret;
3725 return !ret;
3726 }
3727
3728 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3729 {
3730 return set_extent_buffer_uptodate(buf);
3731 }
3732
3733 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3734 {
3735 struct btrfs_root *root;
3736 u64 transid = btrfs_header_generation(buf);
3737 int was_dirty;
3738
3739 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3740 /*
3741 * This is a fast path so only do this check if we have sanity tests
3742 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3743 * outside of the sanity tests.
3744 */
3745 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3746 return;
3747 #endif
3748 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3749 btrfs_assert_tree_locked(buf);
3750 if (transid != root->fs_info->generation)
3751 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3752 "found %llu running %llu\n",
3753 buf->start, transid, root->fs_info->generation);
3754 was_dirty = set_extent_buffer_dirty(buf);
3755 if (!was_dirty)
3756 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3757 buf->len,
3758 root->fs_info->dirty_metadata_batch);
3759 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3760 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3761 btrfs_print_leaf(root, buf);
3762 ASSERT(0);
3763 }
3764 #endif
3765 }
3766
3767 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3768 int flush_delayed)
3769 {
3770 /*
3771 * looks as though older kernels can get into trouble with
3772 * this code, they end up stuck in balance_dirty_pages forever
3773 */
3774 int ret;
3775
3776 if (current->flags & PF_MEMALLOC)
3777 return;
3778
3779 if (flush_delayed)
3780 btrfs_balance_delayed_items(root);
3781
3782 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3783 BTRFS_DIRTY_METADATA_THRESH);
3784 if (ret > 0) {
3785 balance_dirty_pages_ratelimited(
3786 root->fs_info->btree_inode->i_mapping);
3787 }
3788 return;
3789 }
3790
3791 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3792 {
3793 __btrfs_btree_balance_dirty(root, 1);
3794 }
3795
3796 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3797 {
3798 __btrfs_btree_balance_dirty(root, 0);
3799 }
3800
3801 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3802 {
3803 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3804 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3805 }
3806
3807 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3808 int read_only)
3809 {
3810 /*
3811 * Placeholder for checks
3812 */
3813 return 0;
3814 }
3815
3816 static void btrfs_error_commit_super(struct btrfs_root *root)
3817 {
3818 mutex_lock(&root->fs_info->cleaner_mutex);
3819 btrfs_run_delayed_iputs(root);
3820 mutex_unlock(&root->fs_info->cleaner_mutex);
3821
3822 down_write(&root->fs_info->cleanup_work_sem);
3823 up_write(&root->fs_info->cleanup_work_sem);
3824
3825 /* cleanup FS via transaction */
3826 btrfs_cleanup_transaction(root);
3827 }
3828
3829 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3830 {
3831 struct btrfs_ordered_extent *ordered;
3832
3833 spin_lock(&root->ordered_extent_lock);
3834 /*
3835 * This will just short circuit the ordered completion stuff which will
3836 * make sure the ordered extent gets properly cleaned up.
3837 */
3838 list_for_each_entry(ordered, &root->ordered_extents,
3839 root_extent_list)
3840 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3841 spin_unlock(&root->ordered_extent_lock);
3842 }
3843
3844 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3845 {
3846 struct btrfs_root *root;
3847 struct list_head splice;
3848
3849 INIT_LIST_HEAD(&splice);
3850
3851 spin_lock(&fs_info->ordered_root_lock);
3852 list_splice_init(&fs_info->ordered_roots, &splice);
3853 while (!list_empty(&splice)) {
3854 root = list_first_entry(&splice, struct btrfs_root,
3855 ordered_root);
3856 list_move_tail(&root->ordered_root,
3857 &fs_info->ordered_roots);
3858
3859 spin_unlock(&fs_info->ordered_root_lock);
3860 btrfs_destroy_ordered_extents(root);
3861
3862 cond_resched();
3863 spin_lock(&fs_info->ordered_root_lock);
3864 }
3865 spin_unlock(&fs_info->ordered_root_lock);
3866 }
3867
3868 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3869 struct btrfs_root *root)
3870 {
3871 struct rb_node *node;
3872 struct btrfs_delayed_ref_root *delayed_refs;
3873 struct btrfs_delayed_ref_node *ref;
3874 int ret = 0;
3875
3876 delayed_refs = &trans->delayed_refs;
3877
3878 spin_lock(&delayed_refs->lock);
3879 if (atomic_read(&delayed_refs->num_entries) == 0) {
3880 spin_unlock(&delayed_refs->lock);
3881 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3882 return ret;
3883 }
3884
3885 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3886 struct btrfs_delayed_ref_head *head;
3887 bool pin_bytes = false;
3888
3889 head = rb_entry(node, struct btrfs_delayed_ref_head,
3890 href_node);
3891 if (!mutex_trylock(&head->mutex)) {
3892 atomic_inc(&head->node.refs);
3893 spin_unlock(&delayed_refs->lock);
3894
3895 mutex_lock(&head->mutex);
3896 mutex_unlock(&head->mutex);
3897 btrfs_put_delayed_ref(&head->node);
3898 spin_lock(&delayed_refs->lock);
3899 continue;
3900 }
3901 spin_lock(&head->lock);
3902 while ((node = rb_first(&head->ref_root)) != NULL) {
3903 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3904 rb_node);
3905 ref->in_tree = 0;
3906 rb_erase(&ref->rb_node, &head->ref_root);
3907 atomic_dec(&delayed_refs->num_entries);
3908 btrfs_put_delayed_ref(ref);
3909 }
3910 if (head->must_insert_reserved)
3911 pin_bytes = true;
3912 btrfs_free_delayed_extent_op(head->extent_op);
3913 delayed_refs->num_heads--;
3914 if (head->processing == 0)
3915 delayed_refs->num_heads_ready--;
3916 atomic_dec(&delayed_refs->num_entries);
3917 head->node.in_tree = 0;
3918 rb_erase(&head->href_node, &delayed_refs->href_root);
3919 spin_unlock(&head->lock);
3920 spin_unlock(&delayed_refs->lock);
3921 mutex_unlock(&head->mutex);
3922
3923 if (pin_bytes)
3924 btrfs_pin_extent(root, head->node.bytenr,
3925 head->node.num_bytes, 1);
3926 btrfs_put_delayed_ref(&head->node);
3927 cond_resched();
3928 spin_lock(&delayed_refs->lock);
3929 }
3930
3931 spin_unlock(&delayed_refs->lock);
3932
3933 return ret;
3934 }
3935
3936 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3937 {
3938 struct btrfs_inode *btrfs_inode;
3939 struct list_head splice;
3940
3941 INIT_LIST_HEAD(&splice);
3942
3943 spin_lock(&root->delalloc_lock);
3944 list_splice_init(&root->delalloc_inodes, &splice);
3945
3946 while (!list_empty(&splice)) {
3947 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3948 delalloc_inodes);
3949
3950 list_del_init(&btrfs_inode->delalloc_inodes);
3951 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3952 &btrfs_inode->runtime_flags);
3953 spin_unlock(&root->delalloc_lock);
3954
3955 btrfs_invalidate_inodes(btrfs_inode->root);
3956
3957 spin_lock(&root->delalloc_lock);
3958 }
3959
3960 spin_unlock(&root->delalloc_lock);
3961 }
3962
3963 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3964 {
3965 struct btrfs_root *root;
3966 struct list_head splice;
3967
3968 INIT_LIST_HEAD(&splice);
3969
3970 spin_lock(&fs_info->delalloc_root_lock);
3971 list_splice_init(&fs_info->delalloc_roots, &splice);
3972 while (!list_empty(&splice)) {
3973 root = list_first_entry(&splice, struct btrfs_root,
3974 delalloc_root);
3975 list_del_init(&root->delalloc_root);
3976 root = btrfs_grab_fs_root(root);
3977 BUG_ON(!root);
3978 spin_unlock(&fs_info->delalloc_root_lock);
3979
3980 btrfs_destroy_delalloc_inodes(root);
3981 btrfs_put_fs_root(root);
3982
3983 spin_lock(&fs_info->delalloc_root_lock);
3984 }
3985 spin_unlock(&fs_info->delalloc_root_lock);
3986 }
3987
3988 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3989 struct extent_io_tree *dirty_pages,
3990 int mark)
3991 {
3992 int ret;
3993 struct extent_buffer *eb;
3994 u64 start = 0;
3995 u64 end;
3996
3997 while (1) {
3998 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3999 mark, NULL);
4000 if (ret)
4001 break;
4002
4003 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4004 while (start <= end) {
4005 eb = btrfs_find_tree_block(root, start);
4006 start += root->nodesize;
4007 if (!eb)
4008 continue;
4009 wait_on_extent_buffer_writeback(eb);
4010
4011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4012 &eb->bflags))
4013 clear_extent_buffer_dirty(eb);
4014 free_extent_buffer_stale(eb);
4015 }
4016 }
4017
4018 return ret;
4019 }
4020
4021 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4022 struct extent_io_tree *pinned_extents)
4023 {
4024 struct extent_io_tree *unpin;
4025 u64 start;
4026 u64 end;
4027 int ret;
4028 bool loop = true;
4029
4030 unpin = pinned_extents;
4031 again:
4032 while (1) {
4033 ret = find_first_extent_bit(unpin, 0, &start, &end,
4034 EXTENT_DIRTY, NULL);
4035 if (ret)
4036 break;
4037
4038 /* opt_discard */
4039 if (btrfs_test_opt(root, DISCARD))
4040 ret = btrfs_error_discard_extent(root, start,
4041 end + 1 - start,
4042 NULL);
4043
4044 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4045 btrfs_error_unpin_extent_range(root, start, end);
4046 cond_resched();
4047 }
4048
4049 if (loop) {
4050 if (unpin == &root->fs_info->freed_extents[0])
4051 unpin = &root->fs_info->freed_extents[1];
4052 else
4053 unpin = &root->fs_info->freed_extents[0];
4054 loop = false;
4055 goto again;
4056 }
4057
4058 return 0;
4059 }
4060
4061 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4062 struct btrfs_root *root)
4063 {
4064 btrfs_destroy_delayed_refs(cur_trans, root);
4065
4066 cur_trans->state = TRANS_STATE_COMMIT_START;
4067 wake_up(&root->fs_info->transaction_blocked_wait);
4068
4069 cur_trans->state = TRANS_STATE_UNBLOCKED;
4070 wake_up(&root->fs_info->transaction_wait);
4071
4072 btrfs_destroy_delayed_inodes(root);
4073 btrfs_assert_delayed_root_empty(root);
4074
4075 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4076 EXTENT_DIRTY);
4077 btrfs_destroy_pinned_extent(root,
4078 root->fs_info->pinned_extents);
4079
4080 cur_trans->state =TRANS_STATE_COMPLETED;
4081 wake_up(&cur_trans->commit_wait);
4082
4083 /*
4084 memset(cur_trans, 0, sizeof(*cur_trans));
4085 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4086 */
4087 }
4088
4089 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4090 {
4091 struct btrfs_transaction *t;
4092
4093 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4094
4095 spin_lock(&root->fs_info->trans_lock);
4096 while (!list_empty(&root->fs_info->trans_list)) {
4097 t = list_first_entry(&root->fs_info->trans_list,
4098 struct btrfs_transaction, list);
4099 if (t->state >= TRANS_STATE_COMMIT_START) {
4100 atomic_inc(&t->use_count);
4101 spin_unlock(&root->fs_info->trans_lock);
4102 btrfs_wait_for_commit(root, t->transid);
4103 btrfs_put_transaction(t);
4104 spin_lock(&root->fs_info->trans_lock);
4105 continue;
4106 }
4107 if (t == root->fs_info->running_transaction) {
4108 t->state = TRANS_STATE_COMMIT_DOING;
4109 spin_unlock(&root->fs_info->trans_lock);
4110 /*
4111 * We wait for 0 num_writers since we don't hold a trans
4112 * handle open currently for this transaction.
4113 */
4114 wait_event(t->writer_wait,
4115 atomic_read(&t->num_writers) == 0);
4116 } else {
4117 spin_unlock(&root->fs_info->trans_lock);
4118 }
4119 btrfs_cleanup_one_transaction(t, root);
4120
4121 spin_lock(&root->fs_info->trans_lock);
4122 if (t == root->fs_info->running_transaction)
4123 root->fs_info->running_transaction = NULL;
4124 list_del_init(&t->list);
4125 spin_unlock(&root->fs_info->trans_lock);
4126
4127 btrfs_put_transaction(t);
4128 trace_btrfs_transaction_commit(root);
4129 spin_lock(&root->fs_info->trans_lock);
4130 }
4131 spin_unlock(&root->fs_info->trans_lock);
4132 btrfs_destroy_all_ordered_extents(root->fs_info);
4133 btrfs_destroy_delayed_inodes(root);
4134 btrfs_assert_delayed_root_empty(root);
4135 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4136 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4137 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4138
4139 return 0;
4140 }
4141
4142 static struct extent_io_ops btree_extent_io_ops = {
4143 .readpage_end_io_hook = btree_readpage_end_io_hook,
4144 .readpage_io_failed_hook = btree_io_failed_hook,
4145 .submit_bio_hook = btree_submit_bio_hook,
4146 /* note we're sharing with inode.c for the merge bio hook */
4147 .merge_bio_hook = btrfs_merge_bio_hook,
4148 };
This page took 0.199332 seconds and 4 git commands to generate.