Btrfs: RAID5 and RAID6
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
54
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59 int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
61 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
62 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
63 struct btrfs_root *root);
64 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71
72 /*
73 * end_io_wq structs are used to do processing in task context when an IO is
74 * complete. This is used during reads to verify checksums, and it is used
75 * by writes to insert metadata for new file extents after IO is complete.
76 */
77 struct end_io_wq {
78 struct bio *bio;
79 bio_end_io_t *end_io;
80 void *private;
81 struct btrfs_fs_info *info;
82 int error;
83 int metadata;
84 struct list_head list;
85 struct btrfs_work work;
86 };
87
88 /*
89 * async submit bios are used to offload expensive checksumming
90 * onto the worker threads. They checksum file and metadata bios
91 * just before they are sent down the IO stack.
92 */
93 struct async_submit_bio {
94 struct inode *inode;
95 struct bio *bio;
96 struct list_head list;
97 extent_submit_bio_hook_t *submit_bio_start;
98 extent_submit_bio_hook_t *submit_bio_done;
99 int rw;
100 int mirror_num;
101 unsigned long bio_flags;
102 /*
103 * bio_offset is optional, can be used if the pages in the bio
104 * can't tell us where in the file the bio should go
105 */
106 u64 bio_offset;
107 struct btrfs_work work;
108 int error;
109 };
110
111 /*
112 * Lockdep class keys for extent_buffer->lock's in this root. For a given
113 * eb, the lockdep key is determined by the btrfs_root it belongs to and
114 * the level the eb occupies in the tree.
115 *
116 * Different roots are used for different purposes and may nest inside each
117 * other and they require separate keysets. As lockdep keys should be
118 * static, assign keysets according to the purpose of the root as indicated
119 * by btrfs_root->objectid. This ensures that all special purpose roots
120 * have separate keysets.
121 *
122 * Lock-nesting across peer nodes is always done with the immediate parent
123 * node locked thus preventing deadlock. As lockdep doesn't know this, use
124 * subclass to avoid triggering lockdep warning in such cases.
125 *
126 * The key is set by the readpage_end_io_hook after the buffer has passed
127 * csum validation but before the pages are unlocked. It is also set by
128 * btrfs_init_new_buffer on freshly allocated blocks.
129 *
130 * We also add a check to make sure the highest level of the tree is the
131 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
132 * needs update as well.
133 */
134 #ifdef CONFIG_DEBUG_LOCK_ALLOC
135 # if BTRFS_MAX_LEVEL != 8
136 # error
137 # endif
138
139 static struct btrfs_lockdep_keyset {
140 u64 id; /* root objectid */
141 const char *name_stem; /* lock name stem */
142 char names[BTRFS_MAX_LEVEL + 1][20];
143 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
144 } btrfs_lockdep_keysets[] = {
145 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
146 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
147 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
148 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
149 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
150 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
151 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
152 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
153 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
154 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
155 { .id = 0, .name_stem = "tree" },
156 };
157
158 void __init btrfs_init_lockdep(void)
159 {
160 int i, j;
161
162 /* initialize lockdep class names */
163 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
164 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
165
166 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
167 snprintf(ks->names[j], sizeof(ks->names[j]),
168 "btrfs-%s-%02d", ks->name_stem, j);
169 }
170 }
171
172 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
173 int level)
174 {
175 struct btrfs_lockdep_keyset *ks;
176
177 BUG_ON(level >= ARRAY_SIZE(ks->keys));
178
179 /* find the matching keyset, id 0 is the default entry */
180 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
181 if (ks->id == objectid)
182 break;
183
184 lockdep_set_class_and_name(&eb->lock,
185 &ks->keys[level], ks->names[level]);
186 }
187
188 #endif
189
190 /*
191 * extents on the btree inode are pretty simple, there's one extent
192 * that covers the entire device
193 */
194 static struct extent_map *btree_get_extent(struct inode *inode,
195 struct page *page, size_t pg_offset, u64 start, u64 len,
196 int create)
197 {
198 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
199 struct extent_map *em;
200 int ret;
201
202 read_lock(&em_tree->lock);
203 em = lookup_extent_mapping(em_tree, start, len);
204 if (em) {
205 em->bdev =
206 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
207 read_unlock(&em_tree->lock);
208 goto out;
209 }
210 read_unlock(&em_tree->lock);
211
212 em = alloc_extent_map();
213 if (!em) {
214 em = ERR_PTR(-ENOMEM);
215 goto out;
216 }
217 em->start = 0;
218 em->len = (u64)-1;
219 em->block_len = (u64)-1;
220 em->block_start = 0;
221 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
222
223 write_lock(&em_tree->lock);
224 ret = add_extent_mapping(em_tree, em);
225 if (ret == -EEXIST) {
226 free_extent_map(em);
227 em = lookup_extent_mapping(em_tree, start, len);
228 if (!em)
229 em = ERR_PTR(-EIO);
230 } else if (ret) {
231 free_extent_map(em);
232 em = ERR_PTR(ret);
233 }
234 write_unlock(&em_tree->lock);
235
236 out:
237 return em;
238 }
239
240 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
241 {
242 return crc32c(seed, data, len);
243 }
244
245 void btrfs_csum_final(u32 crc, char *result)
246 {
247 put_unaligned_le32(~crc, result);
248 }
249
250 /*
251 * compute the csum for a btree block, and either verify it or write it
252 * into the csum field of the block.
253 */
254 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
255 int verify)
256 {
257 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
258 char *result = NULL;
259 unsigned long len;
260 unsigned long cur_len;
261 unsigned long offset = BTRFS_CSUM_SIZE;
262 char *kaddr;
263 unsigned long map_start;
264 unsigned long map_len;
265 int err;
266 u32 crc = ~(u32)0;
267 unsigned long inline_result;
268
269 len = buf->len - offset;
270 while (len > 0) {
271 err = map_private_extent_buffer(buf, offset, 32,
272 &kaddr, &map_start, &map_len);
273 if (err)
274 return 1;
275 cur_len = min(len, map_len - (offset - map_start));
276 crc = btrfs_csum_data(root, kaddr + offset - map_start,
277 crc, cur_len);
278 len -= cur_len;
279 offset += cur_len;
280 }
281 if (csum_size > sizeof(inline_result)) {
282 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
283 if (!result)
284 return 1;
285 } else {
286 result = (char *)&inline_result;
287 }
288
289 btrfs_csum_final(crc, result);
290
291 if (verify) {
292 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
293 u32 val;
294 u32 found = 0;
295 memcpy(&found, result, csum_size);
296
297 read_extent_buffer(buf, &val, 0, csum_size);
298 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
299 "failed on %llu wanted %X found %X "
300 "level %d\n",
301 root->fs_info->sb->s_id,
302 (unsigned long long)buf->start, val, found,
303 btrfs_header_level(buf));
304 if (result != (char *)&inline_result)
305 kfree(result);
306 return 1;
307 }
308 } else {
309 write_extent_buffer(buf, result, 0, csum_size);
310 }
311 if (result != (char *)&inline_result)
312 kfree(result);
313 return 0;
314 }
315
316 /*
317 * we can't consider a given block up to date unless the transid of the
318 * block matches the transid in the parent node's pointer. This is how we
319 * detect blocks that either didn't get written at all or got written
320 * in the wrong place.
321 */
322 static int verify_parent_transid(struct extent_io_tree *io_tree,
323 struct extent_buffer *eb, u64 parent_transid,
324 int atomic)
325 {
326 struct extent_state *cached_state = NULL;
327 int ret;
328
329 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
330 return 0;
331
332 if (atomic)
333 return -EAGAIN;
334
335 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
336 0, &cached_state);
337 if (extent_buffer_uptodate(eb) &&
338 btrfs_header_generation(eb) == parent_transid) {
339 ret = 0;
340 goto out;
341 }
342 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
343 "found %llu\n",
344 (unsigned long long)eb->start,
345 (unsigned long long)parent_transid,
346 (unsigned long long)btrfs_header_generation(eb));
347 ret = 1;
348 clear_extent_buffer_uptodate(eb);
349 out:
350 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
351 &cached_state, GFP_NOFS);
352 return ret;
353 }
354
355 /*
356 * helper to read a given tree block, doing retries as required when
357 * the checksums don't match and we have alternate mirrors to try.
358 */
359 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
360 struct extent_buffer *eb,
361 u64 start, u64 parent_transid)
362 {
363 struct extent_io_tree *io_tree;
364 int failed = 0;
365 int ret;
366 int num_copies = 0;
367 int mirror_num = 0;
368 int failed_mirror = 0;
369
370 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
371 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
372 while (1) {
373 ret = read_extent_buffer_pages(io_tree, eb, start,
374 WAIT_COMPLETE,
375 btree_get_extent, mirror_num);
376 if (!ret) {
377 if (!verify_parent_transid(io_tree, eb,
378 parent_transid, 0))
379 break;
380 else
381 ret = -EIO;
382 }
383
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390 break;
391
392 num_copies = btrfs_num_copies(root->fs_info,
393 eb->start, eb->len);
394 if (num_copies == 1)
395 break;
396
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
402 mirror_num++;
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
406 if (mirror_num > num_copies)
407 break;
408 }
409
410 if (failed && !ret && failed_mirror)
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
414 }
415
416 /*
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
419 */
420
421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422 {
423 struct extent_io_tree *tree;
424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425 u64 found_start;
426 struct extent_buffer *eb;
427
428 tree = &BTRFS_I(page->mapping->host)->io_tree;
429
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
435 WARN_ON(1);
436 return 0;
437 }
438 if (!PageUptodate(page)) {
439 WARN_ON(1);
440 return 0;
441 }
442 csum_tree_block(root, eb, 0);
443 return 0;
444 }
445
446 static int check_tree_block_fsid(struct btrfs_root *root,
447 struct extent_buffer *eb)
448 {
449 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
450 u8 fsid[BTRFS_UUID_SIZE];
451 int ret = 1;
452
453 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
454 BTRFS_FSID_SIZE);
455 while (fs_devices) {
456 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
457 ret = 0;
458 break;
459 }
460 fs_devices = fs_devices->seed;
461 }
462 return ret;
463 }
464
465 #define CORRUPT(reason, eb, root, slot) \
466 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
467 "root=%llu, slot=%d\n", reason, \
468 (unsigned long long)btrfs_header_bytenr(eb), \
469 (unsigned long long)root->objectid, slot)
470
471 static noinline int check_leaf(struct btrfs_root *root,
472 struct extent_buffer *leaf)
473 {
474 struct btrfs_key key;
475 struct btrfs_key leaf_key;
476 u32 nritems = btrfs_header_nritems(leaf);
477 int slot;
478
479 if (nritems == 0)
480 return 0;
481
482 /* Check the 0 item */
483 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
484 BTRFS_LEAF_DATA_SIZE(root)) {
485 CORRUPT("invalid item offset size pair", leaf, root, 0);
486 return -EIO;
487 }
488
489 /*
490 * Check to make sure each items keys are in the correct order and their
491 * offsets make sense. We only have to loop through nritems-1 because
492 * we check the current slot against the next slot, which verifies the
493 * next slot's offset+size makes sense and that the current's slot
494 * offset is correct.
495 */
496 for (slot = 0; slot < nritems - 1; slot++) {
497 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
498 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
499
500 /* Make sure the keys are in the right order */
501 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
502 CORRUPT("bad key order", leaf, root, slot);
503 return -EIO;
504 }
505
506 /*
507 * Make sure the offset and ends are right, remember that the
508 * item data starts at the end of the leaf and grows towards the
509 * front.
510 */
511 if (btrfs_item_offset_nr(leaf, slot) !=
512 btrfs_item_end_nr(leaf, slot + 1)) {
513 CORRUPT("slot offset bad", leaf, root, slot);
514 return -EIO;
515 }
516
517 /*
518 * Check to make sure that we don't point outside of the leaf,
519 * just incase all the items are consistent to eachother, but
520 * all point outside of the leaf.
521 */
522 if (btrfs_item_end_nr(leaf, slot) >
523 BTRFS_LEAF_DATA_SIZE(root)) {
524 CORRUPT("slot end outside of leaf", leaf, root, slot);
525 return -EIO;
526 }
527 }
528
529 return 0;
530 }
531
532 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
533 struct page *page, int max_walk)
534 {
535 struct extent_buffer *eb;
536 u64 start = page_offset(page);
537 u64 target = start;
538 u64 min_start;
539
540 if (start < max_walk)
541 min_start = 0;
542 else
543 min_start = start - max_walk;
544
545 while (start >= min_start) {
546 eb = find_extent_buffer(tree, start, 0);
547 if (eb) {
548 /*
549 * we found an extent buffer and it contains our page
550 * horray!
551 */
552 if (eb->start <= target &&
553 eb->start + eb->len > target)
554 return eb;
555
556 /* we found an extent buffer that wasn't for us */
557 free_extent_buffer(eb);
558 return NULL;
559 }
560 if (start == 0)
561 break;
562 start -= PAGE_CACHE_SIZE;
563 }
564 return NULL;
565 }
566
567 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
568 struct extent_state *state, int mirror)
569 {
570 struct extent_io_tree *tree;
571 u64 found_start;
572 int found_level;
573 struct extent_buffer *eb;
574 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575 int ret = 0;
576 int reads_done;
577
578 if (!page->private)
579 goto out;
580
581 tree = &BTRFS_I(page->mapping->host)->io_tree;
582 eb = (struct extent_buffer *)page->private;
583
584 /* the pending IO might have been the only thing that kept this buffer
585 * in memory. Make sure we have a ref for all this other checks
586 */
587 extent_buffer_get(eb);
588
589 reads_done = atomic_dec_and_test(&eb->io_pages);
590 if (!reads_done)
591 goto err;
592
593 eb->read_mirror = mirror;
594 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
595 ret = -EIO;
596 goto err;
597 }
598
599 found_start = btrfs_header_bytenr(eb);
600 if (found_start != eb->start) {
601 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
602 "%llu %llu\n",
603 (unsigned long long)found_start,
604 (unsigned long long)eb->start);
605 ret = -EIO;
606 goto err;
607 }
608 if (check_tree_block_fsid(root, eb)) {
609 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
610 (unsigned long long)eb->start);
611 ret = -EIO;
612 goto err;
613 }
614 found_level = btrfs_header_level(eb);
615
616 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
617 eb, found_level);
618
619 ret = csum_tree_block(root, eb, 1);
620 if (ret) {
621 ret = -EIO;
622 goto err;
623 }
624
625 /*
626 * If this is a leaf block and it is corrupt, set the corrupt bit so
627 * that we don't try and read the other copies of this block, just
628 * return -EIO.
629 */
630 if (found_level == 0 && check_leaf(root, eb)) {
631 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
632 ret = -EIO;
633 }
634
635 if (!ret)
636 set_extent_buffer_uptodate(eb);
637 err:
638 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
639 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
640 btree_readahead_hook(root, eb, eb->start, ret);
641 }
642
643 if (ret) {
644 /*
645 * our io error hook is going to dec the io pages
646 * again, we have to make sure it has something
647 * to decrement
648 */
649 atomic_inc(&eb->io_pages);
650 clear_extent_buffer_uptodate(eb);
651 }
652 free_extent_buffer(eb);
653 out:
654 return ret;
655 }
656
657 static int btree_io_failed_hook(struct page *page, int failed_mirror)
658 {
659 struct extent_buffer *eb;
660 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
661
662 eb = (struct extent_buffer *)page->private;
663 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
664 eb->read_mirror = failed_mirror;
665 atomic_dec(&eb->io_pages);
666 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
667 btree_readahead_hook(root, eb, eb->start, -EIO);
668 return -EIO; /* we fixed nothing */
669 }
670
671 static void end_workqueue_bio(struct bio *bio, int err)
672 {
673 struct end_io_wq *end_io_wq = bio->bi_private;
674 struct btrfs_fs_info *fs_info;
675
676 fs_info = end_io_wq->info;
677 end_io_wq->error = err;
678 end_io_wq->work.func = end_workqueue_fn;
679 end_io_wq->work.flags = 0;
680
681 if (bio->bi_rw & REQ_WRITE) {
682 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
683 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
684 &end_io_wq->work);
685 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
686 btrfs_queue_worker(&fs_info->endio_freespace_worker,
687 &end_io_wq->work);
688 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
689 btrfs_queue_worker(&fs_info->endio_raid56_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_write_workers,
693 &end_io_wq->work);
694 } else {
695 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
696 btrfs_queue_worker(&fs_info->endio_raid56_workers,
697 &end_io_wq->work);
698 else if (end_io_wq->metadata)
699 btrfs_queue_worker(&fs_info->endio_meta_workers,
700 &end_io_wq->work);
701 else
702 btrfs_queue_worker(&fs_info->endio_workers,
703 &end_io_wq->work);
704 }
705 }
706
707 /*
708 * For the metadata arg you want
709 *
710 * 0 - if data
711 * 1 - if normal metadta
712 * 2 - if writing to the free space cache area
713 * 3 - raid parity work
714 */
715 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
716 int metadata)
717 {
718 struct end_io_wq *end_io_wq;
719 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
720 if (!end_io_wq)
721 return -ENOMEM;
722
723 end_io_wq->private = bio->bi_private;
724 end_io_wq->end_io = bio->bi_end_io;
725 end_io_wq->info = info;
726 end_io_wq->error = 0;
727 end_io_wq->bio = bio;
728 end_io_wq->metadata = metadata;
729
730 bio->bi_private = end_io_wq;
731 bio->bi_end_io = end_workqueue_bio;
732 return 0;
733 }
734
735 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
736 {
737 unsigned long limit = min_t(unsigned long,
738 info->workers.max_workers,
739 info->fs_devices->open_devices);
740 return 256 * limit;
741 }
742
743 static void run_one_async_start(struct btrfs_work *work)
744 {
745 struct async_submit_bio *async;
746 int ret;
747
748 async = container_of(work, struct async_submit_bio, work);
749 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
750 async->mirror_num, async->bio_flags,
751 async->bio_offset);
752 if (ret)
753 async->error = ret;
754 }
755
756 static void run_one_async_done(struct btrfs_work *work)
757 {
758 struct btrfs_fs_info *fs_info;
759 struct async_submit_bio *async;
760 int limit;
761
762 async = container_of(work, struct async_submit_bio, work);
763 fs_info = BTRFS_I(async->inode)->root->fs_info;
764
765 limit = btrfs_async_submit_limit(fs_info);
766 limit = limit * 2 / 3;
767
768 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
769 waitqueue_active(&fs_info->async_submit_wait))
770 wake_up(&fs_info->async_submit_wait);
771
772 /* If an error occured we just want to clean up the bio and move on */
773 if (async->error) {
774 bio_endio(async->bio, async->error);
775 return;
776 }
777
778 async->submit_bio_done(async->inode, async->rw, async->bio,
779 async->mirror_num, async->bio_flags,
780 async->bio_offset);
781 }
782
783 static void run_one_async_free(struct btrfs_work *work)
784 {
785 struct async_submit_bio *async;
786
787 async = container_of(work, struct async_submit_bio, work);
788 kfree(async);
789 }
790
791 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
792 int rw, struct bio *bio, int mirror_num,
793 unsigned long bio_flags,
794 u64 bio_offset,
795 extent_submit_bio_hook_t *submit_bio_start,
796 extent_submit_bio_hook_t *submit_bio_done)
797 {
798 struct async_submit_bio *async;
799
800 async = kmalloc(sizeof(*async), GFP_NOFS);
801 if (!async)
802 return -ENOMEM;
803
804 async->inode = inode;
805 async->rw = rw;
806 async->bio = bio;
807 async->mirror_num = mirror_num;
808 async->submit_bio_start = submit_bio_start;
809 async->submit_bio_done = submit_bio_done;
810
811 async->work.func = run_one_async_start;
812 async->work.ordered_func = run_one_async_done;
813 async->work.ordered_free = run_one_async_free;
814
815 async->work.flags = 0;
816 async->bio_flags = bio_flags;
817 async->bio_offset = bio_offset;
818
819 async->error = 0;
820
821 atomic_inc(&fs_info->nr_async_submits);
822
823 if (rw & REQ_SYNC)
824 btrfs_set_work_high_prio(&async->work);
825
826 btrfs_queue_worker(&fs_info->workers, &async->work);
827
828 while (atomic_read(&fs_info->async_submit_draining) &&
829 atomic_read(&fs_info->nr_async_submits)) {
830 wait_event(fs_info->async_submit_wait,
831 (atomic_read(&fs_info->nr_async_submits) == 0));
832 }
833
834 return 0;
835 }
836
837 static int btree_csum_one_bio(struct bio *bio)
838 {
839 struct bio_vec *bvec = bio->bi_io_vec;
840 int bio_index = 0;
841 struct btrfs_root *root;
842 int ret = 0;
843
844 WARN_ON(bio->bi_vcnt <= 0);
845 while (bio_index < bio->bi_vcnt) {
846 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
847 ret = csum_dirty_buffer(root, bvec->bv_page);
848 if (ret)
849 break;
850 bio_index++;
851 bvec++;
852 }
853 return ret;
854 }
855
856 static int __btree_submit_bio_start(struct inode *inode, int rw,
857 struct bio *bio, int mirror_num,
858 unsigned long bio_flags,
859 u64 bio_offset)
860 {
861 /*
862 * when we're called for a write, we're already in the async
863 * submission context. Just jump into btrfs_map_bio
864 */
865 return btree_csum_one_bio(bio);
866 }
867
868 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
869 int mirror_num, unsigned long bio_flags,
870 u64 bio_offset)
871 {
872 int ret;
873
874 /*
875 * when we're called for a write, we're already in the async
876 * submission context. Just jump into btrfs_map_bio
877 */
878 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
879 if (ret)
880 bio_endio(bio, ret);
881 return ret;
882 }
883
884 static int check_async_write(struct inode *inode, unsigned long bio_flags)
885 {
886 if (bio_flags & EXTENT_BIO_TREE_LOG)
887 return 0;
888 #ifdef CONFIG_X86
889 if (cpu_has_xmm4_2)
890 return 0;
891 #endif
892 return 1;
893 }
894
895 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
896 int mirror_num, unsigned long bio_flags,
897 u64 bio_offset)
898 {
899 int async = check_async_write(inode, bio_flags);
900 int ret;
901
902 if (!(rw & REQ_WRITE)) {
903 /*
904 * called for a read, do the setup so that checksum validation
905 * can happen in the async kernel threads
906 */
907 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
908 bio, 1);
909 if (ret)
910 goto out_w_error;
911 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
912 mirror_num, 0);
913 } else if (!async) {
914 ret = btree_csum_one_bio(bio);
915 if (ret)
916 goto out_w_error;
917 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918 mirror_num, 0);
919 } else {
920 /*
921 * kthread helpers are used to submit writes so that
922 * checksumming can happen in parallel across all CPUs
923 */
924 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
925 inode, rw, bio, mirror_num, 0,
926 bio_offset,
927 __btree_submit_bio_start,
928 __btree_submit_bio_done);
929 }
930
931 if (ret) {
932 out_w_error:
933 bio_endio(bio, ret);
934 }
935 return ret;
936 }
937
938 #ifdef CONFIG_MIGRATION
939 static int btree_migratepage(struct address_space *mapping,
940 struct page *newpage, struct page *page,
941 enum migrate_mode mode)
942 {
943 /*
944 * we can't safely write a btree page from here,
945 * we haven't done the locking hook
946 */
947 if (PageDirty(page))
948 return -EAGAIN;
949 /*
950 * Buffers may be managed in a filesystem specific way.
951 * We must have no buffers or drop them.
952 */
953 if (page_has_private(page) &&
954 !try_to_release_page(page, GFP_KERNEL))
955 return -EAGAIN;
956 return migrate_page(mapping, newpage, page, mode);
957 }
958 #endif
959
960
961 static int btree_writepages(struct address_space *mapping,
962 struct writeback_control *wbc)
963 {
964 struct extent_io_tree *tree;
965 tree = &BTRFS_I(mapping->host)->io_tree;
966 if (wbc->sync_mode == WB_SYNC_NONE) {
967 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
968 u64 num_dirty;
969 unsigned long thresh = 32 * 1024 * 1024;
970
971 if (wbc->for_kupdate)
972 return 0;
973
974 /* this is a bit racy, but that's ok */
975 num_dirty = root->fs_info->dirty_metadata_bytes;
976 if (num_dirty < thresh)
977 return 0;
978 }
979 return btree_write_cache_pages(mapping, wbc);
980 }
981
982 static int btree_readpage(struct file *file, struct page *page)
983 {
984 struct extent_io_tree *tree;
985 tree = &BTRFS_I(page->mapping->host)->io_tree;
986 return extent_read_full_page(tree, page, btree_get_extent, 0);
987 }
988
989 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
990 {
991 if (PageWriteback(page) || PageDirty(page))
992 return 0;
993 /*
994 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
995 * slab allocation from alloc_extent_state down the callchain where
996 * it'd hit a BUG_ON as those flags are not allowed.
997 */
998 gfp_flags &= ~GFP_SLAB_BUG_MASK;
999
1000 return try_release_extent_buffer(page, gfp_flags);
1001 }
1002
1003 static void btree_invalidatepage(struct page *page, unsigned long offset)
1004 {
1005 struct extent_io_tree *tree;
1006 tree = &BTRFS_I(page->mapping->host)->io_tree;
1007 extent_invalidatepage(tree, page, offset);
1008 btree_releasepage(page, GFP_NOFS);
1009 if (PagePrivate(page)) {
1010 printk(KERN_WARNING "btrfs warning page private not zero "
1011 "on page %llu\n", (unsigned long long)page_offset(page));
1012 ClearPagePrivate(page);
1013 set_page_private(page, 0);
1014 page_cache_release(page);
1015 }
1016 }
1017
1018 static int btree_set_page_dirty(struct page *page)
1019 {
1020 #ifdef DEBUG
1021 struct extent_buffer *eb;
1022
1023 BUG_ON(!PagePrivate(page));
1024 eb = (struct extent_buffer *)page->private;
1025 BUG_ON(!eb);
1026 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1027 BUG_ON(!atomic_read(&eb->refs));
1028 btrfs_assert_tree_locked(eb);
1029 #endif
1030 return __set_page_dirty_nobuffers(page);
1031 }
1032
1033 static const struct address_space_operations btree_aops = {
1034 .readpage = btree_readpage,
1035 .writepages = btree_writepages,
1036 .releasepage = btree_releasepage,
1037 .invalidatepage = btree_invalidatepage,
1038 #ifdef CONFIG_MIGRATION
1039 .migratepage = btree_migratepage,
1040 #endif
1041 .set_page_dirty = btree_set_page_dirty,
1042 };
1043
1044 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1045 u64 parent_transid)
1046 {
1047 struct extent_buffer *buf = NULL;
1048 struct inode *btree_inode = root->fs_info->btree_inode;
1049 int ret = 0;
1050
1051 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1052 if (!buf)
1053 return 0;
1054 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1055 buf, 0, WAIT_NONE, btree_get_extent, 0);
1056 free_extent_buffer(buf);
1057 return ret;
1058 }
1059
1060 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1061 int mirror_num, struct extent_buffer **eb)
1062 {
1063 struct extent_buffer *buf = NULL;
1064 struct inode *btree_inode = root->fs_info->btree_inode;
1065 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1066 int ret;
1067
1068 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1069 if (!buf)
1070 return 0;
1071
1072 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1073
1074 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1075 btree_get_extent, mirror_num);
1076 if (ret) {
1077 free_extent_buffer(buf);
1078 return ret;
1079 }
1080
1081 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1082 free_extent_buffer(buf);
1083 return -EIO;
1084 } else if (extent_buffer_uptodate(buf)) {
1085 *eb = buf;
1086 } else {
1087 free_extent_buffer(buf);
1088 }
1089 return 0;
1090 }
1091
1092 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1093 u64 bytenr, u32 blocksize)
1094 {
1095 struct inode *btree_inode = root->fs_info->btree_inode;
1096 struct extent_buffer *eb;
1097 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1098 bytenr, blocksize);
1099 return eb;
1100 }
1101
1102 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1103 u64 bytenr, u32 blocksize)
1104 {
1105 struct inode *btree_inode = root->fs_info->btree_inode;
1106 struct extent_buffer *eb;
1107
1108 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1109 bytenr, blocksize);
1110 return eb;
1111 }
1112
1113
1114 int btrfs_write_tree_block(struct extent_buffer *buf)
1115 {
1116 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1117 buf->start + buf->len - 1);
1118 }
1119
1120 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1121 {
1122 return filemap_fdatawait_range(buf->pages[0]->mapping,
1123 buf->start, buf->start + buf->len - 1);
1124 }
1125
1126 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1127 u32 blocksize, u64 parent_transid)
1128 {
1129 struct extent_buffer *buf = NULL;
1130 int ret;
1131
1132 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1133 if (!buf)
1134 return NULL;
1135
1136 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1137 return buf;
1138
1139 }
1140
1141 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1142 struct extent_buffer *buf)
1143 {
1144 if (btrfs_header_generation(buf) ==
1145 root->fs_info->running_transaction->transid) {
1146 btrfs_assert_tree_locked(buf);
1147
1148 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1149 spin_lock(&root->fs_info->delalloc_lock);
1150 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1151 root->fs_info->dirty_metadata_bytes -= buf->len;
1152 else {
1153 spin_unlock(&root->fs_info->delalloc_lock);
1154 btrfs_panic(root->fs_info, -EOVERFLOW,
1155 "Can't clear %lu bytes from "
1156 " dirty_mdatadata_bytes (%llu)",
1157 buf->len,
1158 root->fs_info->dirty_metadata_bytes);
1159 }
1160 spin_unlock(&root->fs_info->delalloc_lock);
1161
1162 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1163 btrfs_set_lock_blocking(buf);
1164 clear_extent_buffer_dirty(buf);
1165 }
1166 }
1167 }
1168
1169 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1170 u32 stripesize, struct btrfs_root *root,
1171 struct btrfs_fs_info *fs_info,
1172 u64 objectid)
1173 {
1174 root->node = NULL;
1175 root->commit_root = NULL;
1176 root->sectorsize = sectorsize;
1177 root->nodesize = nodesize;
1178 root->leafsize = leafsize;
1179 root->stripesize = stripesize;
1180 root->ref_cows = 0;
1181 root->track_dirty = 0;
1182 root->in_radix = 0;
1183 root->orphan_item_inserted = 0;
1184 root->orphan_cleanup_state = 0;
1185
1186 root->objectid = objectid;
1187 root->last_trans = 0;
1188 root->highest_objectid = 0;
1189 root->name = NULL;
1190 root->inode_tree = RB_ROOT;
1191 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1192 root->block_rsv = NULL;
1193 root->orphan_block_rsv = NULL;
1194
1195 INIT_LIST_HEAD(&root->dirty_list);
1196 INIT_LIST_HEAD(&root->root_list);
1197 spin_lock_init(&root->orphan_lock);
1198 spin_lock_init(&root->inode_lock);
1199 spin_lock_init(&root->accounting_lock);
1200 mutex_init(&root->objectid_mutex);
1201 mutex_init(&root->log_mutex);
1202 init_waitqueue_head(&root->log_writer_wait);
1203 init_waitqueue_head(&root->log_commit_wait[0]);
1204 init_waitqueue_head(&root->log_commit_wait[1]);
1205 atomic_set(&root->log_commit[0], 0);
1206 atomic_set(&root->log_commit[1], 0);
1207 atomic_set(&root->log_writers, 0);
1208 atomic_set(&root->log_batch, 0);
1209 atomic_set(&root->orphan_inodes, 0);
1210 root->log_transid = 0;
1211 root->last_log_commit = 0;
1212 extent_io_tree_init(&root->dirty_log_pages,
1213 fs_info->btree_inode->i_mapping);
1214
1215 memset(&root->root_key, 0, sizeof(root->root_key));
1216 memset(&root->root_item, 0, sizeof(root->root_item));
1217 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1218 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1219 root->defrag_trans_start = fs_info->generation;
1220 init_completion(&root->kobj_unregister);
1221 root->defrag_running = 0;
1222 root->root_key.objectid = objectid;
1223 root->anon_dev = 0;
1224
1225 spin_lock_init(&root->root_item_lock);
1226 }
1227
1228 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1229 struct btrfs_fs_info *fs_info,
1230 u64 objectid,
1231 struct btrfs_root *root)
1232 {
1233 int ret;
1234 u32 blocksize;
1235 u64 generation;
1236
1237 __setup_root(tree_root->nodesize, tree_root->leafsize,
1238 tree_root->sectorsize, tree_root->stripesize,
1239 root, fs_info, objectid);
1240 ret = btrfs_find_last_root(tree_root, objectid,
1241 &root->root_item, &root->root_key);
1242 if (ret > 0)
1243 return -ENOENT;
1244 else if (ret < 0)
1245 return ret;
1246
1247 generation = btrfs_root_generation(&root->root_item);
1248 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1249 root->commit_root = NULL;
1250 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1251 blocksize, generation);
1252 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1253 free_extent_buffer(root->node);
1254 root->node = NULL;
1255 return -EIO;
1256 }
1257 root->commit_root = btrfs_root_node(root);
1258 return 0;
1259 }
1260
1261 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1262 {
1263 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1264 if (root)
1265 root->fs_info = fs_info;
1266 return root;
1267 }
1268
1269 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1270 struct btrfs_fs_info *fs_info,
1271 u64 objectid)
1272 {
1273 struct extent_buffer *leaf;
1274 struct btrfs_root *tree_root = fs_info->tree_root;
1275 struct btrfs_root *root;
1276 struct btrfs_key key;
1277 int ret = 0;
1278 u64 bytenr;
1279
1280 root = btrfs_alloc_root(fs_info);
1281 if (!root)
1282 return ERR_PTR(-ENOMEM);
1283
1284 __setup_root(tree_root->nodesize, tree_root->leafsize,
1285 tree_root->sectorsize, tree_root->stripesize,
1286 root, fs_info, objectid);
1287 root->root_key.objectid = objectid;
1288 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1289 root->root_key.offset = 0;
1290
1291 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1292 0, objectid, NULL, 0, 0, 0);
1293 if (IS_ERR(leaf)) {
1294 ret = PTR_ERR(leaf);
1295 goto fail;
1296 }
1297
1298 bytenr = leaf->start;
1299 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1300 btrfs_set_header_bytenr(leaf, leaf->start);
1301 btrfs_set_header_generation(leaf, trans->transid);
1302 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1303 btrfs_set_header_owner(leaf, objectid);
1304 root->node = leaf;
1305
1306 write_extent_buffer(leaf, fs_info->fsid,
1307 (unsigned long)btrfs_header_fsid(leaf),
1308 BTRFS_FSID_SIZE);
1309 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1310 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1311 BTRFS_UUID_SIZE);
1312 btrfs_mark_buffer_dirty(leaf);
1313
1314 root->commit_root = btrfs_root_node(root);
1315 root->track_dirty = 1;
1316
1317
1318 root->root_item.flags = 0;
1319 root->root_item.byte_limit = 0;
1320 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1321 btrfs_set_root_generation(&root->root_item, trans->transid);
1322 btrfs_set_root_level(&root->root_item, 0);
1323 btrfs_set_root_refs(&root->root_item, 1);
1324 btrfs_set_root_used(&root->root_item, leaf->len);
1325 btrfs_set_root_last_snapshot(&root->root_item, 0);
1326 btrfs_set_root_dirid(&root->root_item, 0);
1327 root->root_item.drop_level = 0;
1328
1329 key.objectid = objectid;
1330 key.type = BTRFS_ROOT_ITEM_KEY;
1331 key.offset = 0;
1332 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1333 if (ret)
1334 goto fail;
1335
1336 btrfs_tree_unlock(leaf);
1337
1338 fail:
1339 if (ret)
1340 return ERR_PTR(ret);
1341
1342 return root;
1343 }
1344
1345 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1346 struct btrfs_fs_info *fs_info)
1347 {
1348 struct btrfs_root *root;
1349 struct btrfs_root *tree_root = fs_info->tree_root;
1350 struct extent_buffer *leaf;
1351
1352 root = btrfs_alloc_root(fs_info);
1353 if (!root)
1354 return ERR_PTR(-ENOMEM);
1355
1356 __setup_root(tree_root->nodesize, tree_root->leafsize,
1357 tree_root->sectorsize, tree_root->stripesize,
1358 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1359
1360 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1361 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1362 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1363 /*
1364 * log trees do not get reference counted because they go away
1365 * before a real commit is actually done. They do store pointers
1366 * to file data extents, and those reference counts still get
1367 * updated (along with back refs to the log tree).
1368 */
1369 root->ref_cows = 0;
1370
1371 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1372 BTRFS_TREE_LOG_OBJECTID, NULL,
1373 0, 0, 0);
1374 if (IS_ERR(leaf)) {
1375 kfree(root);
1376 return ERR_CAST(leaf);
1377 }
1378
1379 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1380 btrfs_set_header_bytenr(leaf, leaf->start);
1381 btrfs_set_header_generation(leaf, trans->transid);
1382 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1383 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1384 root->node = leaf;
1385
1386 write_extent_buffer(root->node, root->fs_info->fsid,
1387 (unsigned long)btrfs_header_fsid(root->node),
1388 BTRFS_FSID_SIZE);
1389 btrfs_mark_buffer_dirty(root->node);
1390 btrfs_tree_unlock(root->node);
1391 return root;
1392 }
1393
1394 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1395 struct btrfs_fs_info *fs_info)
1396 {
1397 struct btrfs_root *log_root;
1398
1399 log_root = alloc_log_tree(trans, fs_info);
1400 if (IS_ERR(log_root))
1401 return PTR_ERR(log_root);
1402 WARN_ON(fs_info->log_root_tree);
1403 fs_info->log_root_tree = log_root;
1404 return 0;
1405 }
1406
1407 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1408 struct btrfs_root *root)
1409 {
1410 struct btrfs_root *log_root;
1411 struct btrfs_inode_item *inode_item;
1412
1413 log_root = alloc_log_tree(trans, root->fs_info);
1414 if (IS_ERR(log_root))
1415 return PTR_ERR(log_root);
1416
1417 log_root->last_trans = trans->transid;
1418 log_root->root_key.offset = root->root_key.objectid;
1419
1420 inode_item = &log_root->root_item.inode;
1421 inode_item->generation = cpu_to_le64(1);
1422 inode_item->size = cpu_to_le64(3);
1423 inode_item->nlink = cpu_to_le32(1);
1424 inode_item->nbytes = cpu_to_le64(root->leafsize);
1425 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1426
1427 btrfs_set_root_node(&log_root->root_item, log_root->node);
1428
1429 WARN_ON(root->log_root);
1430 root->log_root = log_root;
1431 root->log_transid = 0;
1432 root->last_log_commit = 0;
1433 return 0;
1434 }
1435
1436 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1437 struct btrfs_key *location)
1438 {
1439 struct btrfs_root *root;
1440 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1441 struct btrfs_path *path;
1442 struct extent_buffer *l;
1443 u64 generation;
1444 u32 blocksize;
1445 int ret = 0;
1446 int slot;
1447
1448 root = btrfs_alloc_root(fs_info);
1449 if (!root)
1450 return ERR_PTR(-ENOMEM);
1451 if (location->offset == (u64)-1) {
1452 ret = find_and_setup_root(tree_root, fs_info,
1453 location->objectid, root);
1454 if (ret) {
1455 kfree(root);
1456 return ERR_PTR(ret);
1457 }
1458 goto out;
1459 }
1460
1461 __setup_root(tree_root->nodesize, tree_root->leafsize,
1462 tree_root->sectorsize, tree_root->stripesize,
1463 root, fs_info, location->objectid);
1464
1465 path = btrfs_alloc_path();
1466 if (!path) {
1467 kfree(root);
1468 return ERR_PTR(-ENOMEM);
1469 }
1470 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1471 if (ret == 0) {
1472 l = path->nodes[0];
1473 slot = path->slots[0];
1474 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1475 memcpy(&root->root_key, location, sizeof(*location));
1476 }
1477 btrfs_free_path(path);
1478 if (ret) {
1479 kfree(root);
1480 if (ret > 0)
1481 ret = -ENOENT;
1482 return ERR_PTR(ret);
1483 }
1484
1485 generation = btrfs_root_generation(&root->root_item);
1486 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1487 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1488 blocksize, generation);
1489 root->commit_root = btrfs_root_node(root);
1490 BUG_ON(!root->node); /* -ENOMEM */
1491 out:
1492 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1493 root->ref_cows = 1;
1494 btrfs_check_and_init_root_item(&root->root_item);
1495 }
1496
1497 return root;
1498 }
1499
1500 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1501 struct btrfs_key *location)
1502 {
1503 struct btrfs_root *root;
1504 int ret;
1505
1506 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1507 return fs_info->tree_root;
1508 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1509 return fs_info->extent_root;
1510 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1511 return fs_info->chunk_root;
1512 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1513 return fs_info->dev_root;
1514 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1515 return fs_info->csum_root;
1516 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1517 return fs_info->quota_root ? fs_info->quota_root :
1518 ERR_PTR(-ENOENT);
1519 again:
1520 spin_lock(&fs_info->fs_roots_radix_lock);
1521 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1522 (unsigned long)location->objectid);
1523 spin_unlock(&fs_info->fs_roots_radix_lock);
1524 if (root)
1525 return root;
1526
1527 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1528 if (IS_ERR(root))
1529 return root;
1530
1531 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1532 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1533 GFP_NOFS);
1534 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1535 ret = -ENOMEM;
1536 goto fail;
1537 }
1538
1539 btrfs_init_free_ino_ctl(root);
1540 mutex_init(&root->fs_commit_mutex);
1541 spin_lock_init(&root->cache_lock);
1542 init_waitqueue_head(&root->cache_wait);
1543
1544 ret = get_anon_bdev(&root->anon_dev);
1545 if (ret)
1546 goto fail;
1547
1548 if (btrfs_root_refs(&root->root_item) == 0) {
1549 ret = -ENOENT;
1550 goto fail;
1551 }
1552
1553 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1554 if (ret < 0)
1555 goto fail;
1556 if (ret == 0)
1557 root->orphan_item_inserted = 1;
1558
1559 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1560 if (ret)
1561 goto fail;
1562
1563 spin_lock(&fs_info->fs_roots_radix_lock);
1564 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1565 (unsigned long)root->root_key.objectid,
1566 root);
1567 if (ret == 0)
1568 root->in_radix = 1;
1569
1570 spin_unlock(&fs_info->fs_roots_radix_lock);
1571 radix_tree_preload_end();
1572 if (ret) {
1573 if (ret == -EEXIST) {
1574 free_fs_root(root);
1575 goto again;
1576 }
1577 goto fail;
1578 }
1579
1580 ret = btrfs_find_dead_roots(fs_info->tree_root,
1581 root->root_key.objectid);
1582 WARN_ON(ret);
1583 return root;
1584 fail:
1585 free_fs_root(root);
1586 return ERR_PTR(ret);
1587 }
1588
1589 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1590 {
1591 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1592 int ret = 0;
1593 struct btrfs_device *device;
1594 struct backing_dev_info *bdi;
1595
1596 rcu_read_lock();
1597 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1598 if (!device->bdev)
1599 continue;
1600 bdi = blk_get_backing_dev_info(device->bdev);
1601 if (bdi && bdi_congested(bdi, bdi_bits)) {
1602 ret = 1;
1603 break;
1604 }
1605 }
1606 rcu_read_unlock();
1607 return ret;
1608 }
1609
1610 /*
1611 * If this fails, caller must call bdi_destroy() to get rid of the
1612 * bdi again.
1613 */
1614 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1615 {
1616 int err;
1617
1618 bdi->capabilities = BDI_CAP_MAP_COPY;
1619 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1620 if (err)
1621 return err;
1622
1623 bdi->ra_pages = default_backing_dev_info.ra_pages;
1624 bdi->congested_fn = btrfs_congested_fn;
1625 bdi->congested_data = info;
1626 return 0;
1627 }
1628
1629 /*
1630 * called by the kthread helper functions to finally call the bio end_io
1631 * functions. This is where read checksum verification actually happens
1632 */
1633 static void end_workqueue_fn(struct btrfs_work *work)
1634 {
1635 struct bio *bio;
1636 struct end_io_wq *end_io_wq;
1637 struct btrfs_fs_info *fs_info;
1638 int error;
1639
1640 end_io_wq = container_of(work, struct end_io_wq, work);
1641 bio = end_io_wq->bio;
1642 fs_info = end_io_wq->info;
1643
1644 error = end_io_wq->error;
1645 bio->bi_private = end_io_wq->private;
1646 bio->bi_end_io = end_io_wq->end_io;
1647 kfree(end_io_wq);
1648 bio_endio(bio, error);
1649 }
1650
1651 static int cleaner_kthread(void *arg)
1652 {
1653 struct btrfs_root *root = arg;
1654
1655 do {
1656 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1657 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1658 btrfs_run_delayed_iputs(root);
1659 btrfs_clean_old_snapshots(root);
1660 mutex_unlock(&root->fs_info->cleaner_mutex);
1661 btrfs_run_defrag_inodes(root->fs_info);
1662 }
1663
1664 if (!try_to_freeze()) {
1665 set_current_state(TASK_INTERRUPTIBLE);
1666 if (!kthread_should_stop())
1667 schedule();
1668 __set_current_state(TASK_RUNNING);
1669 }
1670 } while (!kthread_should_stop());
1671 return 0;
1672 }
1673
1674 static int transaction_kthread(void *arg)
1675 {
1676 struct btrfs_root *root = arg;
1677 struct btrfs_trans_handle *trans;
1678 struct btrfs_transaction *cur;
1679 u64 transid;
1680 unsigned long now;
1681 unsigned long delay;
1682 bool cannot_commit;
1683
1684 do {
1685 cannot_commit = false;
1686 delay = HZ * 30;
1687 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1688
1689 spin_lock(&root->fs_info->trans_lock);
1690 cur = root->fs_info->running_transaction;
1691 if (!cur) {
1692 spin_unlock(&root->fs_info->trans_lock);
1693 goto sleep;
1694 }
1695
1696 now = get_seconds();
1697 if (!cur->blocked &&
1698 (now < cur->start_time || now - cur->start_time < 30)) {
1699 spin_unlock(&root->fs_info->trans_lock);
1700 delay = HZ * 5;
1701 goto sleep;
1702 }
1703 transid = cur->transid;
1704 spin_unlock(&root->fs_info->trans_lock);
1705
1706 /* If the file system is aborted, this will always fail. */
1707 trans = btrfs_attach_transaction(root);
1708 if (IS_ERR(trans)) {
1709 if (PTR_ERR(trans) != -ENOENT)
1710 cannot_commit = true;
1711 goto sleep;
1712 }
1713 if (transid == trans->transid) {
1714 btrfs_commit_transaction(trans, root);
1715 } else {
1716 btrfs_end_transaction(trans, root);
1717 }
1718 sleep:
1719 wake_up_process(root->fs_info->cleaner_kthread);
1720 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1721
1722 if (!try_to_freeze()) {
1723 set_current_state(TASK_INTERRUPTIBLE);
1724 if (!kthread_should_stop() &&
1725 (!btrfs_transaction_blocked(root->fs_info) ||
1726 cannot_commit))
1727 schedule_timeout(delay);
1728 __set_current_state(TASK_RUNNING);
1729 }
1730 } while (!kthread_should_stop());
1731 return 0;
1732 }
1733
1734 /*
1735 * this will find the highest generation in the array of
1736 * root backups. The index of the highest array is returned,
1737 * or -1 if we can't find anything.
1738 *
1739 * We check to make sure the array is valid by comparing the
1740 * generation of the latest root in the array with the generation
1741 * in the super block. If they don't match we pitch it.
1742 */
1743 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1744 {
1745 u64 cur;
1746 int newest_index = -1;
1747 struct btrfs_root_backup *root_backup;
1748 int i;
1749
1750 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1751 root_backup = info->super_copy->super_roots + i;
1752 cur = btrfs_backup_tree_root_gen(root_backup);
1753 if (cur == newest_gen)
1754 newest_index = i;
1755 }
1756
1757 /* check to see if we actually wrapped around */
1758 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1759 root_backup = info->super_copy->super_roots;
1760 cur = btrfs_backup_tree_root_gen(root_backup);
1761 if (cur == newest_gen)
1762 newest_index = 0;
1763 }
1764 return newest_index;
1765 }
1766
1767
1768 /*
1769 * find the oldest backup so we know where to store new entries
1770 * in the backup array. This will set the backup_root_index
1771 * field in the fs_info struct
1772 */
1773 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1774 u64 newest_gen)
1775 {
1776 int newest_index = -1;
1777
1778 newest_index = find_newest_super_backup(info, newest_gen);
1779 /* if there was garbage in there, just move along */
1780 if (newest_index == -1) {
1781 info->backup_root_index = 0;
1782 } else {
1783 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1784 }
1785 }
1786
1787 /*
1788 * copy all the root pointers into the super backup array.
1789 * this will bump the backup pointer by one when it is
1790 * done
1791 */
1792 static void backup_super_roots(struct btrfs_fs_info *info)
1793 {
1794 int next_backup;
1795 struct btrfs_root_backup *root_backup;
1796 int last_backup;
1797
1798 next_backup = info->backup_root_index;
1799 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1800 BTRFS_NUM_BACKUP_ROOTS;
1801
1802 /*
1803 * just overwrite the last backup if we're at the same generation
1804 * this happens only at umount
1805 */
1806 root_backup = info->super_for_commit->super_roots + last_backup;
1807 if (btrfs_backup_tree_root_gen(root_backup) ==
1808 btrfs_header_generation(info->tree_root->node))
1809 next_backup = last_backup;
1810
1811 root_backup = info->super_for_commit->super_roots + next_backup;
1812
1813 /*
1814 * make sure all of our padding and empty slots get zero filled
1815 * regardless of which ones we use today
1816 */
1817 memset(root_backup, 0, sizeof(*root_backup));
1818
1819 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1820
1821 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1822 btrfs_set_backup_tree_root_gen(root_backup,
1823 btrfs_header_generation(info->tree_root->node));
1824
1825 btrfs_set_backup_tree_root_level(root_backup,
1826 btrfs_header_level(info->tree_root->node));
1827
1828 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1829 btrfs_set_backup_chunk_root_gen(root_backup,
1830 btrfs_header_generation(info->chunk_root->node));
1831 btrfs_set_backup_chunk_root_level(root_backup,
1832 btrfs_header_level(info->chunk_root->node));
1833
1834 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1835 btrfs_set_backup_extent_root_gen(root_backup,
1836 btrfs_header_generation(info->extent_root->node));
1837 btrfs_set_backup_extent_root_level(root_backup,
1838 btrfs_header_level(info->extent_root->node));
1839
1840 /*
1841 * we might commit during log recovery, which happens before we set
1842 * the fs_root. Make sure it is valid before we fill it in.
1843 */
1844 if (info->fs_root && info->fs_root->node) {
1845 btrfs_set_backup_fs_root(root_backup,
1846 info->fs_root->node->start);
1847 btrfs_set_backup_fs_root_gen(root_backup,
1848 btrfs_header_generation(info->fs_root->node));
1849 btrfs_set_backup_fs_root_level(root_backup,
1850 btrfs_header_level(info->fs_root->node));
1851 }
1852
1853 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1854 btrfs_set_backup_dev_root_gen(root_backup,
1855 btrfs_header_generation(info->dev_root->node));
1856 btrfs_set_backup_dev_root_level(root_backup,
1857 btrfs_header_level(info->dev_root->node));
1858
1859 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1860 btrfs_set_backup_csum_root_gen(root_backup,
1861 btrfs_header_generation(info->csum_root->node));
1862 btrfs_set_backup_csum_root_level(root_backup,
1863 btrfs_header_level(info->csum_root->node));
1864
1865 btrfs_set_backup_total_bytes(root_backup,
1866 btrfs_super_total_bytes(info->super_copy));
1867 btrfs_set_backup_bytes_used(root_backup,
1868 btrfs_super_bytes_used(info->super_copy));
1869 btrfs_set_backup_num_devices(root_backup,
1870 btrfs_super_num_devices(info->super_copy));
1871
1872 /*
1873 * if we don't copy this out to the super_copy, it won't get remembered
1874 * for the next commit
1875 */
1876 memcpy(&info->super_copy->super_roots,
1877 &info->super_for_commit->super_roots,
1878 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1879 }
1880
1881 /*
1882 * this copies info out of the root backup array and back into
1883 * the in-memory super block. It is meant to help iterate through
1884 * the array, so you send it the number of backups you've already
1885 * tried and the last backup index you used.
1886 *
1887 * this returns -1 when it has tried all the backups
1888 */
1889 static noinline int next_root_backup(struct btrfs_fs_info *info,
1890 struct btrfs_super_block *super,
1891 int *num_backups_tried, int *backup_index)
1892 {
1893 struct btrfs_root_backup *root_backup;
1894 int newest = *backup_index;
1895
1896 if (*num_backups_tried == 0) {
1897 u64 gen = btrfs_super_generation(super);
1898
1899 newest = find_newest_super_backup(info, gen);
1900 if (newest == -1)
1901 return -1;
1902
1903 *backup_index = newest;
1904 *num_backups_tried = 1;
1905 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1906 /* we've tried all the backups, all done */
1907 return -1;
1908 } else {
1909 /* jump to the next oldest backup */
1910 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1911 BTRFS_NUM_BACKUP_ROOTS;
1912 *backup_index = newest;
1913 *num_backups_tried += 1;
1914 }
1915 root_backup = super->super_roots + newest;
1916
1917 btrfs_set_super_generation(super,
1918 btrfs_backup_tree_root_gen(root_backup));
1919 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1920 btrfs_set_super_root_level(super,
1921 btrfs_backup_tree_root_level(root_backup));
1922 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1923
1924 /*
1925 * fixme: the total bytes and num_devices need to match or we should
1926 * need a fsck
1927 */
1928 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1929 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1930 return 0;
1931 }
1932
1933 /* helper to cleanup tree roots */
1934 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1935 {
1936 free_extent_buffer(info->tree_root->node);
1937 free_extent_buffer(info->tree_root->commit_root);
1938 free_extent_buffer(info->dev_root->node);
1939 free_extent_buffer(info->dev_root->commit_root);
1940 free_extent_buffer(info->extent_root->node);
1941 free_extent_buffer(info->extent_root->commit_root);
1942 free_extent_buffer(info->csum_root->node);
1943 free_extent_buffer(info->csum_root->commit_root);
1944 if (info->quota_root) {
1945 free_extent_buffer(info->quota_root->node);
1946 free_extent_buffer(info->quota_root->commit_root);
1947 }
1948
1949 info->tree_root->node = NULL;
1950 info->tree_root->commit_root = NULL;
1951 info->dev_root->node = NULL;
1952 info->dev_root->commit_root = NULL;
1953 info->extent_root->node = NULL;
1954 info->extent_root->commit_root = NULL;
1955 info->csum_root->node = NULL;
1956 info->csum_root->commit_root = NULL;
1957 if (info->quota_root) {
1958 info->quota_root->node = NULL;
1959 info->quota_root->commit_root = NULL;
1960 }
1961
1962 if (chunk_root) {
1963 free_extent_buffer(info->chunk_root->node);
1964 free_extent_buffer(info->chunk_root->commit_root);
1965 info->chunk_root->node = NULL;
1966 info->chunk_root->commit_root = NULL;
1967 }
1968 }
1969
1970
1971 int open_ctree(struct super_block *sb,
1972 struct btrfs_fs_devices *fs_devices,
1973 char *options)
1974 {
1975 u32 sectorsize;
1976 u32 nodesize;
1977 u32 leafsize;
1978 u32 blocksize;
1979 u32 stripesize;
1980 u64 generation;
1981 u64 features;
1982 struct btrfs_key location;
1983 struct buffer_head *bh;
1984 struct btrfs_super_block *disk_super;
1985 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1986 struct btrfs_root *tree_root;
1987 struct btrfs_root *extent_root;
1988 struct btrfs_root *csum_root;
1989 struct btrfs_root *chunk_root;
1990 struct btrfs_root *dev_root;
1991 struct btrfs_root *quota_root;
1992 struct btrfs_root *log_tree_root;
1993 int ret;
1994 int err = -EINVAL;
1995 int num_backups_tried = 0;
1996 int backup_index = 0;
1997
1998 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1999 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2000 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2001 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2002 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2003 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2004
2005 if (!tree_root || !extent_root || !csum_root ||
2006 !chunk_root || !dev_root || !quota_root) {
2007 err = -ENOMEM;
2008 goto fail;
2009 }
2010
2011 ret = init_srcu_struct(&fs_info->subvol_srcu);
2012 if (ret) {
2013 err = ret;
2014 goto fail;
2015 }
2016
2017 ret = setup_bdi(fs_info, &fs_info->bdi);
2018 if (ret) {
2019 err = ret;
2020 goto fail_srcu;
2021 }
2022
2023 fs_info->btree_inode = new_inode(sb);
2024 if (!fs_info->btree_inode) {
2025 err = -ENOMEM;
2026 goto fail_bdi;
2027 }
2028
2029 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2030
2031 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2032 INIT_LIST_HEAD(&fs_info->trans_list);
2033 INIT_LIST_HEAD(&fs_info->dead_roots);
2034 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2035 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2036 INIT_LIST_HEAD(&fs_info->ordered_operations);
2037 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2038 spin_lock_init(&fs_info->delalloc_lock);
2039 spin_lock_init(&fs_info->trans_lock);
2040 spin_lock_init(&fs_info->fs_roots_radix_lock);
2041 spin_lock_init(&fs_info->delayed_iput_lock);
2042 spin_lock_init(&fs_info->defrag_inodes_lock);
2043 spin_lock_init(&fs_info->free_chunk_lock);
2044 spin_lock_init(&fs_info->tree_mod_seq_lock);
2045 rwlock_init(&fs_info->tree_mod_log_lock);
2046 mutex_init(&fs_info->reloc_mutex);
2047
2048 init_completion(&fs_info->kobj_unregister);
2049 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2050 INIT_LIST_HEAD(&fs_info->space_info);
2051 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2052 btrfs_mapping_init(&fs_info->mapping_tree);
2053 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2054 BTRFS_BLOCK_RSV_GLOBAL);
2055 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2056 BTRFS_BLOCK_RSV_DELALLOC);
2057 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2058 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2059 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2060 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2061 BTRFS_BLOCK_RSV_DELOPS);
2062 atomic_set(&fs_info->nr_async_submits, 0);
2063 atomic_set(&fs_info->async_delalloc_pages, 0);
2064 atomic_set(&fs_info->async_submit_draining, 0);
2065 atomic_set(&fs_info->nr_async_bios, 0);
2066 atomic_set(&fs_info->defrag_running, 0);
2067 atomic_set(&fs_info->tree_mod_seq, 0);
2068 fs_info->sb = sb;
2069 fs_info->max_inline = 8192 * 1024;
2070 fs_info->metadata_ratio = 0;
2071 fs_info->defrag_inodes = RB_ROOT;
2072 fs_info->trans_no_join = 0;
2073 fs_info->free_chunk_space = 0;
2074 fs_info->tree_mod_log = RB_ROOT;
2075
2076 /* readahead state */
2077 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2078 spin_lock_init(&fs_info->reada_lock);
2079
2080 fs_info->thread_pool_size = min_t(unsigned long,
2081 num_online_cpus() + 2, 8);
2082
2083 INIT_LIST_HEAD(&fs_info->ordered_extents);
2084 spin_lock_init(&fs_info->ordered_extent_lock);
2085 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2086 GFP_NOFS);
2087 if (!fs_info->delayed_root) {
2088 err = -ENOMEM;
2089 goto fail_iput;
2090 }
2091 btrfs_init_delayed_root(fs_info->delayed_root);
2092
2093 mutex_init(&fs_info->scrub_lock);
2094 atomic_set(&fs_info->scrubs_running, 0);
2095 atomic_set(&fs_info->scrub_pause_req, 0);
2096 atomic_set(&fs_info->scrubs_paused, 0);
2097 atomic_set(&fs_info->scrub_cancel_req, 0);
2098 init_waitqueue_head(&fs_info->scrub_pause_wait);
2099 init_rwsem(&fs_info->scrub_super_lock);
2100 fs_info->scrub_workers_refcnt = 0;
2101 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2102 fs_info->check_integrity_print_mask = 0;
2103 #endif
2104
2105 spin_lock_init(&fs_info->balance_lock);
2106 mutex_init(&fs_info->balance_mutex);
2107 atomic_set(&fs_info->balance_running, 0);
2108 atomic_set(&fs_info->balance_pause_req, 0);
2109 atomic_set(&fs_info->balance_cancel_req, 0);
2110 fs_info->balance_ctl = NULL;
2111 init_waitqueue_head(&fs_info->balance_wait_q);
2112
2113 sb->s_blocksize = 4096;
2114 sb->s_blocksize_bits = blksize_bits(4096);
2115 sb->s_bdi = &fs_info->bdi;
2116
2117 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2118 set_nlink(fs_info->btree_inode, 1);
2119 /*
2120 * we set the i_size on the btree inode to the max possible int.
2121 * the real end of the address space is determined by all of
2122 * the devices in the system
2123 */
2124 fs_info->btree_inode->i_size = OFFSET_MAX;
2125 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2126 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2127
2128 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2129 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2130 fs_info->btree_inode->i_mapping);
2131 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2132 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2133
2134 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2135
2136 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2137 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2138 sizeof(struct btrfs_key));
2139 set_bit(BTRFS_INODE_DUMMY,
2140 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2141 insert_inode_hash(fs_info->btree_inode);
2142
2143 spin_lock_init(&fs_info->block_group_cache_lock);
2144 fs_info->block_group_cache_tree = RB_ROOT;
2145
2146 extent_io_tree_init(&fs_info->freed_extents[0],
2147 fs_info->btree_inode->i_mapping);
2148 extent_io_tree_init(&fs_info->freed_extents[1],
2149 fs_info->btree_inode->i_mapping);
2150 fs_info->pinned_extents = &fs_info->freed_extents[0];
2151 fs_info->do_barriers = 1;
2152
2153
2154 mutex_init(&fs_info->ordered_operations_mutex);
2155 mutex_init(&fs_info->tree_log_mutex);
2156 mutex_init(&fs_info->chunk_mutex);
2157 mutex_init(&fs_info->transaction_kthread_mutex);
2158 mutex_init(&fs_info->cleaner_mutex);
2159 mutex_init(&fs_info->volume_mutex);
2160 init_rwsem(&fs_info->extent_commit_sem);
2161 init_rwsem(&fs_info->cleanup_work_sem);
2162 init_rwsem(&fs_info->subvol_sem);
2163 fs_info->dev_replace.lock_owner = 0;
2164 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2165 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2166 mutex_init(&fs_info->dev_replace.lock_management_lock);
2167 mutex_init(&fs_info->dev_replace.lock);
2168
2169 spin_lock_init(&fs_info->qgroup_lock);
2170 fs_info->qgroup_tree = RB_ROOT;
2171 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2172 fs_info->qgroup_seq = 1;
2173 fs_info->quota_enabled = 0;
2174 fs_info->pending_quota_state = 0;
2175
2176 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2177 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2178
2179 init_waitqueue_head(&fs_info->transaction_throttle);
2180 init_waitqueue_head(&fs_info->transaction_wait);
2181 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2182 init_waitqueue_head(&fs_info->async_submit_wait);
2183
2184 ret = btrfs_alloc_stripe_hash_table(fs_info);
2185 if (ret) {
2186 err = -ENOMEM;
2187 goto fail_alloc;
2188 }
2189
2190 __setup_root(4096, 4096, 4096, 4096, tree_root,
2191 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2192
2193 invalidate_bdev(fs_devices->latest_bdev);
2194 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2195 if (!bh) {
2196 err = -EINVAL;
2197 goto fail_alloc;
2198 }
2199
2200 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2201 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2202 sizeof(*fs_info->super_for_commit));
2203 brelse(bh);
2204
2205 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2206
2207 disk_super = fs_info->super_copy;
2208 if (!btrfs_super_root(disk_super))
2209 goto fail_alloc;
2210
2211 /* check FS state, whether FS is broken. */
2212 fs_info->fs_state |= btrfs_super_flags(disk_super);
2213
2214 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2215 if (ret) {
2216 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2217 err = ret;
2218 goto fail_alloc;
2219 }
2220
2221 /*
2222 * run through our array of backup supers and setup
2223 * our ring pointer to the oldest one
2224 */
2225 generation = btrfs_super_generation(disk_super);
2226 find_oldest_super_backup(fs_info, generation);
2227
2228 /*
2229 * In the long term, we'll store the compression type in the super
2230 * block, and it'll be used for per file compression control.
2231 */
2232 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2233
2234 ret = btrfs_parse_options(tree_root, options);
2235 if (ret) {
2236 err = ret;
2237 goto fail_alloc;
2238 }
2239
2240 features = btrfs_super_incompat_flags(disk_super) &
2241 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2242 if (features) {
2243 printk(KERN_ERR "BTRFS: couldn't mount because of "
2244 "unsupported optional features (%Lx).\n",
2245 (unsigned long long)features);
2246 err = -EINVAL;
2247 goto fail_alloc;
2248 }
2249
2250 if (btrfs_super_leafsize(disk_super) !=
2251 btrfs_super_nodesize(disk_super)) {
2252 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2253 "blocksizes don't match. node %d leaf %d\n",
2254 btrfs_super_nodesize(disk_super),
2255 btrfs_super_leafsize(disk_super));
2256 err = -EINVAL;
2257 goto fail_alloc;
2258 }
2259 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2260 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2261 "blocksize (%d) was too large\n",
2262 btrfs_super_leafsize(disk_super));
2263 err = -EINVAL;
2264 goto fail_alloc;
2265 }
2266
2267 features = btrfs_super_incompat_flags(disk_super);
2268 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2269 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2270 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2271
2272 /*
2273 * flag our filesystem as having big metadata blocks if
2274 * they are bigger than the page size
2275 */
2276 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2277 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2278 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2279 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2280 }
2281
2282 nodesize = btrfs_super_nodesize(disk_super);
2283 leafsize = btrfs_super_leafsize(disk_super);
2284 sectorsize = btrfs_super_sectorsize(disk_super);
2285 stripesize = btrfs_super_stripesize(disk_super);
2286
2287 /*
2288 * mixed block groups end up with duplicate but slightly offset
2289 * extent buffers for the same range. It leads to corruptions
2290 */
2291 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2292 (sectorsize != leafsize)) {
2293 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2294 "are not allowed for mixed block groups on %s\n",
2295 sb->s_id);
2296 goto fail_alloc;
2297 }
2298
2299 btrfs_set_super_incompat_flags(disk_super, features);
2300
2301 features = btrfs_super_compat_ro_flags(disk_super) &
2302 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2303 if (!(sb->s_flags & MS_RDONLY) && features) {
2304 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2305 "unsupported option features (%Lx).\n",
2306 (unsigned long long)features);
2307 err = -EINVAL;
2308 goto fail_alloc;
2309 }
2310
2311 btrfs_init_workers(&fs_info->generic_worker,
2312 "genwork", 1, NULL);
2313
2314 btrfs_init_workers(&fs_info->workers, "worker",
2315 fs_info->thread_pool_size,
2316 &fs_info->generic_worker);
2317
2318 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2319 fs_info->thread_pool_size,
2320 &fs_info->generic_worker);
2321
2322 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2323 fs_info->thread_pool_size,
2324 &fs_info->generic_worker);
2325
2326 btrfs_init_workers(&fs_info->submit_workers, "submit",
2327 min_t(u64, fs_devices->num_devices,
2328 fs_info->thread_pool_size),
2329 &fs_info->generic_worker);
2330
2331 btrfs_init_workers(&fs_info->caching_workers, "cache",
2332 2, &fs_info->generic_worker);
2333
2334 /* a higher idle thresh on the submit workers makes it much more
2335 * likely that bios will be send down in a sane order to the
2336 * devices
2337 */
2338 fs_info->submit_workers.idle_thresh = 64;
2339
2340 fs_info->workers.idle_thresh = 16;
2341 fs_info->workers.ordered = 1;
2342
2343 fs_info->delalloc_workers.idle_thresh = 2;
2344 fs_info->delalloc_workers.ordered = 1;
2345
2346 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2347 &fs_info->generic_worker);
2348 btrfs_init_workers(&fs_info->endio_workers, "endio",
2349 fs_info->thread_pool_size,
2350 &fs_info->generic_worker);
2351 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2352 fs_info->thread_pool_size,
2353 &fs_info->generic_worker);
2354 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2355 "endio-meta-write", fs_info->thread_pool_size,
2356 &fs_info->generic_worker);
2357 btrfs_init_workers(&fs_info->endio_raid56_workers,
2358 "endio-raid56", fs_info->thread_pool_size,
2359 &fs_info->generic_worker);
2360 btrfs_init_workers(&fs_info->rmw_workers,
2361 "rmw", fs_info->thread_pool_size,
2362 &fs_info->generic_worker);
2363 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2364 fs_info->thread_pool_size,
2365 &fs_info->generic_worker);
2366 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2367 1, &fs_info->generic_worker);
2368 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2369 fs_info->thread_pool_size,
2370 &fs_info->generic_worker);
2371 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2372 fs_info->thread_pool_size,
2373 &fs_info->generic_worker);
2374
2375 /*
2376 * endios are largely parallel and should have a very
2377 * low idle thresh
2378 */
2379 fs_info->endio_workers.idle_thresh = 4;
2380 fs_info->endio_meta_workers.idle_thresh = 4;
2381 fs_info->endio_raid56_workers.idle_thresh = 4;
2382 fs_info->rmw_workers.idle_thresh = 2;
2383
2384 fs_info->endio_write_workers.idle_thresh = 2;
2385 fs_info->endio_meta_write_workers.idle_thresh = 2;
2386 fs_info->readahead_workers.idle_thresh = 2;
2387
2388 /*
2389 * btrfs_start_workers can really only fail because of ENOMEM so just
2390 * return -ENOMEM if any of these fail.
2391 */
2392 ret = btrfs_start_workers(&fs_info->workers);
2393 ret |= btrfs_start_workers(&fs_info->generic_worker);
2394 ret |= btrfs_start_workers(&fs_info->submit_workers);
2395 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2396 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2397 ret |= btrfs_start_workers(&fs_info->endio_workers);
2398 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2399 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2400 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2401 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2402 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2403 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2404 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2405 ret |= btrfs_start_workers(&fs_info->caching_workers);
2406 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2407 ret |= btrfs_start_workers(&fs_info->flush_workers);
2408 if (ret) {
2409 err = -ENOMEM;
2410 goto fail_sb_buffer;
2411 }
2412
2413 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2414 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2415 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2416
2417 tree_root->nodesize = nodesize;
2418 tree_root->leafsize = leafsize;
2419 tree_root->sectorsize = sectorsize;
2420 tree_root->stripesize = stripesize;
2421
2422 sb->s_blocksize = sectorsize;
2423 sb->s_blocksize_bits = blksize_bits(sectorsize);
2424
2425 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2426 sizeof(disk_super->magic))) {
2427 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2428 goto fail_sb_buffer;
2429 }
2430
2431 if (sectorsize != PAGE_SIZE) {
2432 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2433 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2434 goto fail_sb_buffer;
2435 }
2436
2437 mutex_lock(&fs_info->chunk_mutex);
2438 ret = btrfs_read_sys_array(tree_root);
2439 mutex_unlock(&fs_info->chunk_mutex);
2440 if (ret) {
2441 printk(KERN_WARNING "btrfs: failed to read the system "
2442 "array on %s\n", sb->s_id);
2443 goto fail_sb_buffer;
2444 }
2445
2446 blocksize = btrfs_level_size(tree_root,
2447 btrfs_super_chunk_root_level(disk_super));
2448 generation = btrfs_super_chunk_root_generation(disk_super);
2449
2450 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2451 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2452
2453 chunk_root->node = read_tree_block(chunk_root,
2454 btrfs_super_chunk_root(disk_super),
2455 blocksize, generation);
2456 BUG_ON(!chunk_root->node); /* -ENOMEM */
2457 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2458 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2459 sb->s_id);
2460 goto fail_tree_roots;
2461 }
2462 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2463 chunk_root->commit_root = btrfs_root_node(chunk_root);
2464
2465 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2466 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2467 BTRFS_UUID_SIZE);
2468
2469 ret = btrfs_read_chunk_tree(chunk_root);
2470 if (ret) {
2471 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2472 sb->s_id);
2473 goto fail_tree_roots;
2474 }
2475
2476 /*
2477 * keep the device that is marked to be the target device for the
2478 * dev_replace procedure
2479 */
2480 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2481
2482 if (!fs_devices->latest_bdev) {
2483 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2484 sb->s_id);
2485 goto fail_tree_roots;
2486 }
2487
2488 retry_root_backup:
2489 blocksize = btrfs_level_size(tree_root,
2490 btrfs_super_root_level(disk_super));
2491 generation = btrfs_super_generation(disk_super);
2492
2493 tree_root->node = read_tree_block(tree_root,
2494 btrfs_super_root(disk_super),
2495 blocksize, generation);
2496 if (!tree_root->node ||
2497 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2498 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2499 sb->s_id);
2500
2501 goto recovery_tree_root;
2502 }
2503
2504 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2505 tree_root->commit_root = btrfs_root_node(tree_root);
2506
2507 ret = find_and_setup_root(tree_root, fs_info,
2508 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2509 if (ret)
2510 goto recovery_tree_root;
2511 extent_root->track_dirty = 1;
2512
2513 ret = find_and_setup_root(tree_root, fs_info,
2514 BTRFS_DEV_TREE_OBJECTID, dev_root);
2515 if (ret)
2516 goto recovery_tree_root;
2517 dev_root->track_dirty = 1;
2518
2519 ret = find_and_setup_root(tree_root, fs_info,
2520 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2521 if (ret)
2522 goto recovery_tree_root;
2523 csum_root->track_dirty = 1;
2524
2525 ret = find_and_setup_root(tree_root, fs_info,
2526 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2527 if (ret) {
2528 kfree(quota_root);
2529 quota_root = fs_info->quota_root = NULL;
2530 } else {
2531 quota_root->track_dirty = 1;
2532 fs_info->quota_enabled = 1;
2533 fs_info->pending_quota_state = 1;
2534 }
2535
2536 fs_info->generation = generation;
2537 fs_info->last_trans_committed = generation;
2538
2539 ret = btrfs_recover_balance(fs_info);
2540 if (ret) {
2541 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2542 goto fail_block_groups;
2543 }
2544
2545 ret = btrfs_init_dev_stats(fs_info);
2546 if (ret) {
2547 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2548 ret);
2549 goto fail_block_groups;
2550 }
2551
2552 ret = btrfs_init_dev_replace(fs_info);
2553 if (ret) {
2554 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2555 goto fail_block_groups;
2556 }
2557
2558 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2559
2560 ret = btrfs_init_space_info(fs_info);
2561 if (ret) {
2562 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2563 goto fail_block_groups;
2564 }
2565
2566 ret = btrfs_read_block_groups(extent_root);
2567 if (ret) {
2568 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2569 goto fail_block_groups;
2570 }
2571 fs_info->num_tolerated_disk_barrier_failures =
2572 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2573 if (fs_info->fs_devices->missing_devices >
2574 fs_info->num_tolerated_disk_barrier_failures &&
2575 !(sb->s_flags & MS_RDONLY)) {
2576 printk(KERN_WARNING
2577 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2578 goto fail_block_groups;
2579 }
2580
2581 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2582 "btrfs-cleaner");
2583 if (IS_ERR(fs_info->cleaner_kthread))
2584 goto fail_block_groups;
2585
2586 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2587 tree_root,
2588 "btrfs-transaction");
2589 if (IS_ERR(fs_info->transaction_kthread))
2590 goto fail_cleaner;
2591
2592 if (!btrfs_test_opt(tree_root, SSD) &&
2593 !btrfs_test_opt(tree_root, NOSSD) &&
2594 !fs_info->fs_devices->rotating) {
2595 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2596 "mode\n");
2597 btrfs_set_opt(fs_info->mount_opt, SSD);
2598 }
2599
2600 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2601 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2602 ret = btrfsic_mount(tree_root, fs_devices,
2603 btrfs_test_opt(tree_root,
2604 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2605 1 : 0,
2606 fs_info->check_integrity_print_mask);
2607 if (ret)
2608 printk(KERN_WARNING "btrfs: failed to initialize"
2609 " integrity check module %s\n", sb->s_id);
2610 }
2611 #endif
2612 ret = btrfs_read_qgroup_config(fs_info);
2613 if (ret)
2614 goto fail_trans_kthread;
2615
2616 /* do not make disk changes in broken FS */
2617 if (btrfs_super_log_root(disk_super) != 0) {
2618 u64 bytenr = btrfs_super_log_root(disk_super);
2619
2620 if (fs_devices->rw_devices == 0) {
2621 printk(KERN_WARNING "Btrfs log replay required "
2622 "on RO media\n");
2623 err = -EIO;
2624 goto fail_qgroup;
2625 }
2626 blocksize =
2627 btrfs_level_size(tree_root,
2628 btrfs_super_log_root_level(disk_super));
2629
2630 log_tree_root = btrfs_alloc_root(fs_info);
2631 if (!log_tree_root) {
2632 err = -ENOMEM;
2633 goto fail_qgroup;
2634 }
2635
2636 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2637 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2638
2639 log_tree_root->node = read_tree_block(tree_root, bytenr,
2640 blocksize,
2641 generation + 1);
2642 /* returns with log_tree_root freed on success */
2643 ret = btrfs_recover_log_trees(log_tree_root);
2644 if (ret) {
2645 btrfs_error(tree_root->fs_info, ret,
2646 "Failed to recover log tree");
2647 free_extent_buffer(log_tree_root->node);
2648 kfree(log_tree_root);
2649 goto fail_trans_kthread;
2650 }
2651
2652 if (sb->s_flags & MS_RDONLY) {
2653 ret = btrfs_commit_super(tree_root);
2654 if (ret)
2655 goto fail_trans_kthread;
2656 }
2657 }
2658
2659 ret = btrfs_find_orphan_roots(tree_root);
2660 if (ret)
2661 goto fail_trans_kthread;
2662
2663 if (!(sb->s_flags & MS_RDONLY)) {
2664 ret = btrfs_cleanup_fs_roots(fs_info);
2665 if (ret)
2666 goto fail_trans_kthread;
2667
2668 ret = btrfs_recover_relocation(tree_root);
2669 if (ret < 0) {
2670 printk(KERN_WARNING
2671 "btrfs: failed to recover relocation\n");
2672 err = -EINVAL;
2673 goto fail_qgroup;
2674 }
2675 }
2676
2677 location.objectid = BTRFS_FS_TREE_OBJECTID;
2678 location.type = BTRFS_ROOT_ITEM_KEY;
2679 location.offset = (u64)-1;
2680
2681 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2682 if (!fs_info->fs_root)
2683 goto fail_qgroup;
2684 if (IS_ERR(fs_info->fs_root)) {
2685 err = PTR_ERR(fs_info->fs_root);
2686 goto fail_qgroup;
2687 }
2688
2689 if (sb->s_flags & MS_RDONLY)
2690 return 0;
2691
2692 down_read(&fs_info->cleanup_work_sem);
2693 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2694 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2695 up_read(&fs_info->cleanup_work_sem);
2696 close_ctree(tree_root);
2697 return ret;
2698 }
2699 up_read(&fs_info->cleanup_work_sem);
2700
2701 ret = btrfs_resume_balance_async(fs_info);
2702 if (ret) {
2703 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2704 close_ctree(tree_root);
2705 return ret;
2706 }
2707
2708 ret = btrfs_resume_dev_replace_async(fs_info);
2709 if (ret) {
2710 pr_warn("btrfs: failed to resume dev_replace\n");
2711 close_ctree(tree_root);
2712 return ret;
2713 }
2714
2715 return 0;
2716
2717 fail_qgroup:
2718 btrfs_free_qgroup_config(fs_info);
2719 fail_trans_kthread:
2720 kthread_stop(fs_info->transaction_kthread);
2721 fail_cleaner:
2722 kthread_stop(fs_info->cleaner_kthread);
2723
2724 /*
2725 * make sure we're done with the btree inode before we stop our
2726 * kthreads
2727 */
2728 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2729 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2730
2731 fail_block_groups:
2732 btrfs_free_block_groups(fs_info);
2733
2734 fail_tree_roots:
2735 free_root_pointers(fs_info, 1);
2736
2737 fail_sb_buffer:
2738 btrfs_stop_workers(&fs_info->generic_worker);
2739 btrfs_stop_workers(&fs_info->readahead_workers);
2740 btrfs_stop_workers(&fs_info->fixup_workers);
2741 btrfs_stop_workers(&fs_info->delalloc_workers);
2742 btrfs_stop_workers(&fs_info->workers);
2743 btrfs_stop_workers(&fs_info->endio_workers);
2744 btrfs_stop_workers(&fs_info->endio_meta_workers);
2745 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2746 btrfs_stop_workers(&fs_info->rmw_workers);
2747 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2748 btrfs_stop_workers(&fs_info->endio_write_workers);
2749 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2750 btrfs_stop_workers(&fs_info->submit_workers);
2751 btrfs_stop_workers(&fs_info->delayed_workers);
2752 btrfs_stop_workers(&fs_info->caching_workers);
2753 btrfs_stop_workers(&fs_info->flush_workers);
2754 fail_alloc:
2755 fail_iput:
2756 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2757
2758 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2759 iput(fs_info->btree_inode);
2760 fail_bdi:
2761 bdi_destroy(&fs_info->bdi);
2762 fail_srcu:
2763 cleanup_srcu_struct(&fs_info->subvol_srcu);
2764 fail:
2765 btrfs_free_stripe_hash_table(fs_info);
2766 btrfs_close_devices(fs_info->fs_devices);
2767 return err;
2768
2769 recovery_tree_root:
2770 if (!btrfs_test_opt(tree_root, RECOVERY))
2771 goto fail_tree_roots;
2772
2773 free_root_pointers(fs_info, 0);
2774
2775 /* don't use the log in recovery mode, it won't be valid */
2776 btrfs_set_super_log_root(disk_super, 0);
2777
2778 /* we can't trust the free space cache either */
2779 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2780
2781 ret = next_root_backup(fs_info, fs_info->super_copy,
2782 &num_backups_tried, &backup_index);
2783 if (ret == -1)
2784 goto fail_block_groups;
2785 goto retry_root_backup;
2786 }
2787
2788 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2789 {
2790 if (uptodate) {
2791 set_buffer_uptodate(bh);
2792 } else {
2793 struct btrfs_device *device = (struct btrfs_device *)
2794 bh->b_private;
2795
2796 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2797 "I/O error on %s\n",
2798 rcu_str_deref(device->name));
2799 /* note, we dont' set_buffer_write_io_error because we have
2800 * our own ways of dealing with the IO errors
2801 */
2802 clear_buffer_uptodate(bh);
2803 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2804 }
2805 unlock_buffer(bh);
2806 put_bh(bh);
2807 }
2808
2809 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2810 {
2811 struct buffer_head *bh;
2812 struct buffer_head *latest = NULL;
2813 struct btrfs_super_block *super;
2814 int i;
2815 u64 transid = 0;
2816 u64 bytenr;
2817
2818 /* we would like to check all the supers, but that would make
2819 * a btrfs mount succeed after a mkfs from a different FS.
2820 * So, we need to add a special mount option to scan for
2821 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2822 */
2823 for (i = 0; i < 1; i++) {
2824 bytenr = btrfs_sb_offset(i);
2825 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2826 break;
2827 bh = __bread(bdev, bytenr / 4096, 4096);
2828 if (!bh)
2829 continue;
2830
2831 super = (struct btrfs_super_block *)bh->b_data;
2832 if (btrfs_super_bytenr(super) != bytenr ||
2833 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2834 sizeof(super->magic))) {
2835 brelse(bh);
2836 continue;
2837 }
2838
2839 if (!latest || btrfs_super_generation(super) > transid) {
2840 brelse(latest);
2841 latest = bh;
2842 transid = btrfs_super_generation(super);
2843 } else {
2844 brelse(bh);
2845 }
2846 }
2847 return latest;
2848 }
2849
2850 /*
2851 * this should be called twice, once with wait == 0 and
2852 * once with wait == 1. When wait == 0 is done, all the buffer heads
2853 * we write are pinned.
2854 *
2855 * They are released when wait == 1 is done.
2856 * max_mirrors must be the same for both runs, and it indicates how
2857 * many supers on this one device should be written.
2858 *
2859 * max_mirrors == 0 means to write them all.
2860 */
2861 static int write_dev_supers(struct btrfs_device *device,
2862 struct btrfs_super_block *sb,
2863 int do_barriers, int wait, int max_mirrors)
2864 {
2865 struct buffer_head *bh;
2866 int i;
2867 int ret;
2868 int errors = 0;
2869 u32 crc;
2870 u64 bytenr;
2871
2872 if (max_mirrors == 0)
2873 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2874
2875 for (i = 0; i < max_mirrors; i++) {
2876 bytenr = btrfs_sb_offset(i);
2877 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2878 break;
2879
2880 if (wait) {
2881 bh = __find_get_block(device->bdev, bytenr / 4096,
2882 BTRFS_SUPER_INFO_SIZE);
2883 BUG_ON(!bh);
2884 wait_on_buffer(bh);
2885 if (!buffer_uptodate(bh))
2886 errors++;
2887
2888 /* drop our reference */
2889 brelse(bh);
2890
2891 /* drop the reference from the wait == 0 run */
2892 brelse(bh);
2893 continue;
2894 } else {
2895 btrfs_set_super_bytenr(sb, bytenr);
2896
2897 crc = ~(u32)0;
2898 crc = btrfs_csum_data(NULL, (char *)sb +
2899 BTRFS_CSUM_SIZE, crc,
2900 BTRFS_SUPER_INFO_SIZE -
2901 BTRFS_CSUM_SIZE);
2902 btrfs_csum_final(crc, sb->csum);
2903
2904 /*
2905 * one reference for us, and we leave it for the
2906 * caller
2907 */
2908 bh = __getblk(device->bdev, bytenr / 4096,
2909 BTRFS_SUPER_INFO_SIZE);
2910 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2911
2912 /* one reference for submit_bh */
2913 get_bh(bh);
2914
2915 set_buffer_uptodate(bh);
2916 lock_buffer(bh);
2917 bh->b_end_io = btrfs_end_buffer_write_sync;
2918 bh->b_private = device;
2919 }
2920
2921 /*
2922 * we fua the first super. The others we allow
2923 * to go down lazy.
2924 */
2925 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2926 if (ret)
2927 errors++;
2928 }
2929 return errors < i ? 0 : -1;
2930 }
2931
2932 /*
2933 * endio for the write_dev_flush, this will wake anyone waiting
2934 * for the barrier when it is done
2935 */
2936 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2937 {
2938 if (err) {
2939 if (err == -EOPNOTSUPP)
2940 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2941 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2942 }
2943 if (bio->bi_private)
2944 complete(bio->bi_private);
2945 bio_put(bio);
2946 }
2947
2948 /*
2949 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2950 * sent down. With wait == 1, it waits for the previous flush.
2951 *
2952 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2953 * capable
2954 */
2955 static int write_dev_flush(struct btrfs_device *device, int wait)
2956 {
2957 struct bio *bio;
2958 int ret = 0;
2959
2960 if (device->nobarriers)
2961 return 0;
2962
2963 if (wait) {
2964 bio = device->flush_bio;
2965 if (!bio)
2966 return 0;
2967
2968 wait_for_completion(&device->flush_wait);
2969
2970 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2971 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2972 rcu_str_deref(device->name));
2973 device->nobarriers = 1;
2974 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2975 ret = -EIO;
2976 btrfs_dev_stat_inc_and_print(device,
2977 BTRFS_DEV_STAT_FLUSH_ERRS);
2978 }
2979
2980 /* drop the reference from the wait == 0 run */
2981 bio_put(bio);
2982 device->flush_bio = NULL;
2983
2984 return ret;
2985 }
2986
2987 /*
2988 * one reference for us, and we leave it for the
2989 * caller
2990 */
2991 device->flush_bio = NULL;
2992 bio = bio_alloc(GFP_NOFS, 0);
2993 if (!bio)
2994 return -ENOMEM;
2995
2996 bio->bi_end_io = btrfs_end_empty_barrier;
2997 bio->bi_bdev = device->bdev;
2998 init_completion(&device->flush_wait);
2999 bio->bi_private = &device->flush_wait;
3000 device->flush_bio = bio;
3001
3002 bio_get(bio);
3003 btrfsic_submit_bio(WRITE_FLUSH, bio);
3004
3005 return 0;
3006 }
3007
3008 /*
3009 * send an empty flush down to each device in parallel,
3010 * then wait for them
3011 */
3012 static int barrier_all_devices(struct btrfs_fs_info *info)
3013 {
3014 struct list_head *head;
3015 struct btrfs_device *dev;
3016 int errors_send = 0;
3017 int errors_wait = 0;
3018 int ret;
3019
3020 /* send down all the barriers */
3021 head = &info->fs_devices->devices;
3022 list_for_each_entry_rcu(dev, head, dev_list) {
3023 if (!dev->bdev) {
3024 errors_send++;
3025 continue;
3026 }
3027 if (!dev->in_fs_metadata || !dev->writeable)
3028 continue;
3029
3030 ret = write_dev_flush(dev, 0);
3031 if (ret)
3032 errors_send++;
3033 }
3034
3035 /* wait for all the barriers */
3036 list_for_each_entry_rcu(dev, head, dev_list) {
3037 if (!dev->bdev) {
3038 errors_wait++;
3039 continue;
3040 }
3041 if (!dev->in_fs_metadata || !dev->writeable)
3042 continue;
3043
3044 ret = write_dev_flush(dev, 1);
3045 if (ret)
3046 errors_wait++;
3047 }
3048 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3049 errors_wait > info->num_tolerated_disk_barrier_failures)
3050 return -EIO;
3051 return 0;
3052 }
3053
3054 int btrfs_calc_num_tolerated_disk_barrier_failures(
3055 struct btrfs_fs_info *fs_info)
3056 {
3057 struct btrfs_ioctl_space_info space;
3058 struct btrfs_space_info *sinfo;
3059 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3060 BTRFS_BLOCK_GROUP_SYSTEM,
3061 BTRFS_BLOCK_GROUP_METADATA,
3062 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3063 int num_types = 4;
3064 int i;
3065 int c;
3066 int num_tolerated_disk_barrier_failures =
3067 (int)fs_info->fs_devices->num_devices;
3068
3069 for (i = 0; i < num_types; i++) {
3070 struct btrfs_space_info *tmp;
3071
3072 sinfo = NULL;
3073 rcu_read_lock();
3074 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3075 if (tmp->flags == types[i]) {
3076 sinfo = tmp;
3077 break;
3078 }
3079 }
3080 rcu_read_unlock();
3081
3082 if (!sinfo)
3083 continue;
3084
3085 down_read(&sinfo->groups_sem);
3086 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3087 if (!list_empty(&sinfo->block_groups[c])) {
3088 u64 flags;
3089
3090 btrfs_get_block_group_info(
3091 &sinfo->block_groups[c], &space);
3092 if (space.total_bytes == 0 ||
3093 space.used_bytes == 0)
3094 continue;
3095 flags = space.flags;
3096 /*
3097 * return
3098 * 0: if dup, single or RAID0 is configured for
3099 * any of metadata, system or data, else
3100 * 1: if RAID5 is configured, or if RAID1 or
3101 * RAID10 is configured and only two mirrors
3102 * are used, else
3103 * 2: if RAID6 is configured, else
3104 * num_mirrors - 1: if RAID1 or RAID10 is
3105 * configured and more than
3106 * 2 mirrors are used.
3107 */
3108 if (num_tolerated_disk_barrier_failures > 0 &&
3109 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3110 BTRFS_BLOCK_GROUP_RAID0)) ||
3111 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3112 == 0)))
3113 num_tolerated_disk_barrier_failures = 0;
3114 else if (num_tolerated_disk_barrier_failures > 1) {
3115 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3116 BTRFS_BLOCK_GROUP_RAID5 |
3117 BTRFS_BLOCK_GROUP_RAID10)) {
3118 num_tolerated_disk_barrier_failures = 1;
3119 } else if (flags &
3120 BTRFS_BLOCK_GROUP_RAID5) {
3121 num_tolerated_disk_barrier_failures = 2;
3122 }
3123 }
3124 }
3125 }
3126 up_read(&sinfo->groups_sem);
3127 }
3128
3129 return num_tolerated_disk_barrier_failures;
3130 }
3131
3132 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3133 {
3134 struct list_head *head;
3135 struct btrfs_device *dev;
3136 struct btrfs_super_block *sb;
3137 struct btrfs_dev_item *dev_item;
3138 int ret;
3139 int do_barriers;
3140 int max_errors;
3141 int total_errors = 0;
3142 u64 flags;
3143
3144 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3145 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3146 backup_super_roots(root->fs_info);
3147
3148 sb = root->fs_info->super_for_commit;
3149 dev_item = &sb->dev_item;
3150
3151 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3152 head = &root->fs_info->fs_devices->devices;
3153
3154 if (do_barriers) {
3155 ret = barrier_all_devices(root->fs_info);
3156 if (ret) {
3157 mutex_unlock(
3158 &root->fs_info->fs_devices->device_list_mutex);
3159 btrfs_error(root->fs_info, ret,
3160 "errors while submitting device barriers.");
3161 return ret;
3162 }
3163 }
3164
3165 list_for_each_entry_rcu(dev, head, dev_list) {
3166 if (!dev->bdev) {
3167 total_errors++;
3168 continue;
3169 }
3170 if (!dev->in_fs_metadata || !dev->writeable)
3171 continue;
3172
3173 btrfs_set_stack_device_generation(dev_item, 0);
3174 btrfs_set_stack_device_type(dev_item, dev->type);
3175 btrfs_set_stack_device_id(dev_item, dev->devid);
3176 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3177 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3178 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3179 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3180 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3181 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3182 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3183
3184 flags = btrfs_super_flags(sb);
3185 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3186
3187 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3188 if (ret)
3189 total_errors++;
3190 }
3191 if (total_errors > max_errors) {
3192 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3193 total_errors);
3194
3195 /* This shouldn't happen. FUA is masked off if unsupported */
3196 BUG();
3197 }
3198
3199 total_errors = 0;
3200 list_for_each_entry_rcu(dev, head, dev_list) {
3201 if (!dev->bdev)
3202 continue;
3203 if (!dev->in_fs_metadata || !dev->writeable)
3204 continue;
3205
3206 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3207 if (ret)
3208 total_errors++;
3209 }
3210 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3211 if (total_errors > max_errors) {
3212 btrfs_error(root->fs_info, -EIO,
3213 "%d errors while writing supers", total_errors);
3214 return -EIO;
3215 }
3216 return 0;
3217 }
3218
3219 int write_ctree_super(struct btrfs_trans_handle *trans,
3220 struct btrfs_root *root, int max_mirrors)
3221 {
3222 int ret;
3223
3224 ret = write_all_supers(root, max_mirrors);
3225 return ret;
3226 }
3227
3228 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3229 {
3230 spin_lock(&fs_info->fs_roots_radix_lock);
3231 radix_tree_delete(&fs_info->fs_roots_radix,
3232 (unsigned long)root->root_key.objectid);
3233 spin_unlock(&fs_info->fs_roots_radix_lock);
3234
3235 if (btrfs_root_refs(&root->root_item) == 0)
3236 synchronize_srcu(&fs_info->subvol_srcu);
3237
3238 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3239 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3240 free_fs_root(root);
3241 }
3242
3243 static void free_fs_root(struct btrfs_root *root)
3244 {
3245 iput(root->cache_inode);
3246 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3247 if (root->anon_dev)
3248 free_anon_bdev(root->anon_dev);
3249 free_extent_buffer(root->node);
3250 free_extent_buffer(root->commit_root);
3251 kfree(root->free_ino_ctl);
3252 kfree(root->free_ino_pinned);
3253 kfree(root->name);
3254 kfree(root);
3255 }
3256
3257 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3258 {
3259 int ret;
3260 struct btrfs_root *gang[8];
3261 int i;
3262
3263 while (!list_empty(&fs_info->dead_roots)) {
3264 gang[0] = list_entry(fs_info->dead_roots.next,
3265 struct btrfs_root, root_list);
3266 list_del(&gang[0]->root_list);
3267
3268 if (gang[0]->in_radix) {
3269 btrfs_free_fs_root(fs_info, gang[0]);
3270 } else {
3271 free_extent_buffer(gang[0]->node);
3272 free_extent_buffer(gang[0]->commit_root);
3273 kfree(gang[0]);
3274 }
3275 }
3276
3277 while (1) {
3278 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3279 (void **)gang, 0,
3280 ARRAY_SIZE(gang));
3281 if (!ret)
3282 break;
3283 for (i = 0; i < ret; i++)
3284 btrfs_free_fs_root(fs_info, gang[i]);
3285 }
3286 }
3287
3288 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3289 {
3290 u64 root_objectid = 0;
3291 struct btrfs_root *gang[8];
3292 int i;
3293 int ret;
3294
3295 while (1) {
3296 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3297 (void **)gang, root_objectid,
3298 ARRAY_SIZE(gang));
3299 if (!ret)
3300 break;
3301
3302 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3303 for (i = 0; i < ret; i++) {
3304 int err;
3305
3306 root_objectid = gang[i]->root_key.objectid;
3307 err = btrfs_orphan_cleanup(gang[i]);
3308 if (err)
3309 return err;
3310 }
3311 root_objectid++;
3312 }
3313 return 0;
3314 }
3315
3316 int btrfs_commit_super(struct btrfs_root *root)
3317 {
3318 struct btrfs_trans_handle *trans;
3319 int ret;
3320
3321 mutex_lock(&root->fs_info->cleaner_mutex);
3322 btrfs_run_delayed_iputs(root);
3323 btrfs_clean_old_snapshots(root);
3324 mutex_unlock(&root->fs_info->cleaner_mutex);
3325
3326 /* wait until ongoing cleanup work done */
3327 down_write(&root->fs_info->cleanup_work_sem);
3328 up_write(&root->fs_info->cleanup_work_sem);
3329
3330 trans = btrfs_join_transaction(root);
3331 if (IS_ERR(trans))
3332 return PTR_ERR(trans);
3333 ret = btrfs_commit_transaction(trans, root);
3334 if (ret)
3335 return ret;
3336 /* run commit again to drop the original snapshot */
3337 trans = btrfs_join_transaction(root);
3338 if (IS_ERR(trans))
3339 return PTR_ERR(trans);
3340 ret = btrfs_commit_transaction(trans, root);
3341 if (ret)
3342 return ret;
3343 ret = btrfs_write_and_wait_transaction(NULL, root);
3344 if (ret) {
3345 btrfs_error(root->fs_info, ret,
3346 "Failed to sync btree inode to disk.");
3347 return ret;
3348 }
3349
3350 ret = write_ctree_super(NULL, root, 0);
3351 return ret;
3352 }
3353
3354 int close_ctree(struct btrfs_root *root)
3355 {
3356 struct btrfs_fs_info *fs_info = root->fs_info;
3357 int ret;
3358
3359 fs_info->closing = 1;
3360 smp_mb();
3361
3362 /* pause restriper - we want to resume on mount */
3363 btrfs_pause_balance(fs_info);
3364
3365 btrfs_dev_replace_suspend_for_unmount(fs_info);
3366
3367 btrfs_scrub_cancel(fs_info);
3368
3369 /* wait for any defraggers to finish */
3370 wait_event(fs_info->transaction_wait,
3371 (atomic_read(&fs_info->defrag_running) == 0));
3372
3373 /* clear out the rbtree of defraggable inodes */
3374 btrfs_cleanup_defrag_inodes(fs_info);
3375
3376 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3377 ret = btrfs_commit_super(root);
3378 if (ret)
3379 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3380 }
3381
3382 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3383 btrfs_error_commit_super(root);
3384
3385 btrfs_put_block_group_cache(fs_info);
3386
3387 kthread_stop(fs_info->transaction_kthread);
3388 kthread_stop(fs_info->cleaner_kthread);
3389
3390 fs_info->closing = 2;
3391 smp_mb();
3392
3393 btrfs_free_qgroup_config(root->fs_info);
3394
3395 if (fs_info->delalloc_bytes) {
3396 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3397 (unsigned long long)fs_info->delalloc_bytes);
3398 }
3399
3400 free_extent_buffer(fs_info->extent_root->node);
3401 free_extent_buffer(fs_info->extent_root->commit_root);
3402 free_extent_buffer(fs_info->tree_root->node);
3403 free_extent_buffer(fs_info->tree_root->commit_root);
3404 free_extent_buffer(fs_info->chunk_root->node);
3405 free_extent_buffer(fs_info->chunk_root->commit_root);
3406 free_extent_buffer(fs_info->dev_root->node);
3407 free_extent_buffer(fs_info->dev_root->commit_root);
3408 free_extent_buffer(fs_info->csum_root->node);
3409 free_extent_buffer(fs_info->csum_root->commit_root);
3410 if (fs_info->quota_root) {
3411 free_extent_buffer(fs_info->quota_root->node);
3412 free_extent_buffer(fs_info->quota_root->commit_root);
3413 }
3414
3415 btrfs_free_block_groups(fs_info);
3416
3417 del_fs_roots(fs_info);
3418
3419 iput(fs_info->btree_inode);
3420
3421 btrfs_stop_workers(&fs_info->generic_worker);
3422 btrfs_stop_workers(&fs_info->fixup_workers);
3423 btrfs_stop_workers(&fs_info->delalloc_workers);
3424 btrfs_stop_workers(&fs_info->workers);
3425 btrfs_stop_workers(&fs_info->endio_workers);
3426 btrfs_stop_workers(&fs_info->endio_meta_workers);
3427 btrfs_stop_workers(&fs_info->endio_raid56_workers);
3428 btrfs_stop_workers(&fs_info->rmw_workers);
3429 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3430 btrfs_stop_workers(&fs_info->endio_write_workers);
3431 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3432 btrfs_stop_workers(&fs_info->submit_workers);
3433 btrfs_stop_workers(&fs_info->delayed_workers);
3434 btrfs_stop_workers(&fs_info->caching_workers);
3435 btrfs_stop_workers(&fs_info->readahead_workers);
3436 btrfs_stop_workers(&fs_info->flush_workers);
3437
3438 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3439 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3440 btrfsic_unmount(root, fs_info->fs_devices);
3441 #endif
3442
3443 btrfs_close_devices(fs_info->fs_devices);
3444 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3445
3446 bdi_destroy(&fs_info->bdi);
3447 cleanup_srcu_struct(&fs_info->subvol_srcu);
3448
3449 btrfs_free_stripe_hash_table(fs_info);
3450
3451 return 0;
3452 }
3453
3454 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3455 int atomic)
3456 {
3457 int ret;
3458 struct inode *btree_inode = buf->pages[0]->mapping->host;
3459
3460 ret = extent_buffer_uptodate(buf);
3461 if (!ret)
3462 return ret;
3463
3464 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3465 parent_transid, atomic);
3466 if (ret == -EAGAIN)
3467 return ret;
3468 return !ret;
3469 }
3470
3471 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3472 {
3473 return set_extent_buffer_uptodate(buf);
3474 }
3475
3476 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3477 {
3478 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3479 u64 transid = btrfs_header_generation(buf);
3480 int was_dirty;
3481
3482 btrfs_assert_tree_locked(buf);
3483 if (transid != root->fs_info->generation)
3484 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3485 "found %llu running %llu\n",
3486 (unsigned long long)buf->start,
3487 (unsigned long long)transid,
3488 (unsigned long long)root->fs_info->generation);
3489 was_dirty = set_extent_buffer_dirty(buf);
3490 if (!was_dirty) {
3491 spin_lock(&root->fs_info->delalloc_lock);
3492 root->fs_info->dirty_metadata_bytes += buf->len;
3493 spin_unlock(&root->fs_info->delalloc_lock);
3494 }
3495 }
3496
3497 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3498 int flush_delayed)
3499 {
3500 /*
3501 * looks as though older kernels can get into trouble with
3502 * this code, they end up stuck in balance_dirty_pages forever
3503 */
3504 u64 num_dirty;
3505 unsigned long thresh = 32 * 1024 * 1024;
3506
3507 if (current->flags & PF_MEMALLOC)
3508 return;
3509
3510 if (flush_delayed)
3511 btrfs_balance_delayed_items(root);
3512
3513 num_dirty = root->fs_info->dirty_metadata_bytes;
3514
3515 if (num_dirty > thresh) {
3516 balance_dirty_pages_ratelimited_nr(
3517 root->fs_info->btree_inode->i_mapping, 1);
3518 }
3519 return;
3520 }
3521
3522 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3523 {
3524 __btrfs_btree_balance_dirty(root, 1);
3525 }
3526
3527 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3528 {
3529 __btrfs_btree_balance_dirty(root, 0);
3530 }
3531
3532 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3533 {
3534 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3535 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3536 }
3537
3538 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3539 int read_only)
3540 {
3541 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3542 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3543 return -EINVAL;
3544 }
3545
3546 if (read_only)
3547 return 0;
3548
3549 return 0;
3550 }
3551
3552 void btrfs_error_commit_super(struct btrfs_root *root)
3553 {
3554 mutex_lock(&root->fs_info->cleaner_mutex);
3555 btrfs_run_delayed_iputs(root);
3556 mutex_unlock(&root->fs_info->cleaner_mutex);
3557
3558 down_write(&root->fs_info->cleanup_work_sem);
3559 up_write(&root->fs_info->cleanup_work_sem);
3560
3561 /* cleanup FS via transaction */
3562 btrfs_cleanup_transaction(root);
3563 }
3564
3565 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3566 {
3567 struct btrfs_inode *btrfs_inode;
3568 struct list_head splice;
3569
3570 INIT_LIST_HEAD(&splice);
3571
3572 mutex_lock(&root->fs_info->ordered_operations_mutex);
3573 spin_lock(&root->fs_info->ordered_extent_lock);
3574
3575 list_splice_init(&root->fs_info->ordered_operations, &splice);
3576 while (!list_empty(&splice)) {
3577 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3578 ordered_operations);
3579
3580 list_del_init(&btrfs_inode->ordered_operations);
3581
3582 btrfs_invalidate_inodes(btrfs_inode->root);
3583 }
3584
3585 spin_unlock(&root->fs_info->ordered_extent_lock);
3586 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3587 }
3588
3589 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3590 {
3591 struct list_head splice;
3592 struct btrfs_ordered_extent *ordered;
3593 struct inode *inode;
3594
3595 INIT_LIST_HEAD(&splice);
3596
3597 spin_lock(&root->fs_info->ordered_extent_lock);
3598
3599 list_splice_init(&root->fs_info->ordered_extents, &splice);
3600 while (!list_empty(&splice)) {
3601 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3602 root_extent_list);
3603
3604 list_del_init(&ordered->root_extent_list);
3605 atomic_inc(&ordered->refs);
3606
3607 /* the inode may be getting freed (in sys_unlink path). */
3608 inode = igrab(ordered->inode);
3609
3610 spin_unlock(&root->fs_info->ordered_extent_lock);
3611 if (inode)
3612 iput(inode);
3613
3614 atomic_set(&ordered->refs, 1);
3615 btrfs_put_ordered_extent(ordered);
3616
3617 spin_lock(&root->fs_info->ordered_extent_lock);
3618 }
3619
3620 spin_unlock(&root->fs_info->ordered_extent_lock);
3621 }
3622
3623 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3624 struct btrfs_root *root)
3625 {
3626 struct rb_node *node;
3627 struct btrfs_delayed_ref_root *delayed_refs;
3628 struct btrfs_delayed_ref_node *ref;
3629 int ret = 0;
3630
3631 delayed_refs = &trans->delayed_refs;
3632
3633 spin_lock(&delayed_refs->lock);
3634 if (delayed_refs->num_entries == 0) {
3635 spin_unlock(&delayed_refs->lock);
3636 printk(KERN_INFO "delayed_refs has NO entry\n");
3637 return ret;
3638 }
3639
3640 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3641 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3642
3643 atomic_set(&ref->refs, 1);
3644 if (btrfs_delayed_ref_is_head(ref)) {
3645 struct btrfs_delayed_ref_head *head;
3646
3647 head = btrfs_delayed_node_to_head(ref);
3648 if (!mutex_trylock(&head->mutex)) {
3649 atomic_inc(&ref->refs);
3650 spin_unlock(&delayed_refs->lock);
3651
3652 /* Need to wait for the delayed ref to run */
3653 mutex_lock(&head->mutex);
3654 mutex_unlock(&head->mutex);
3655 btrfs_put_delayed_ref(ref);
3656
3657 spin_lock(&delayed_refs->lock);
3658 continue;
3659 }
3660
3661 kfree(head->extent_op);
3662 delayed_refs->num_heads--;
3663 if (list_empty(&head->cluster))
3664 delayed_refs->num_heads_ready--;
3665 list_del_init(&head->cluster);
3666 }
3667 ref->in_tree = 0;
3668 rb_erase(&ref->rb_node, &delayed_refs->root);
3669 delayed_refs->num_entries--;
3670
3671 spin_unlock(&delayed_refs->lock);
3672 btrfs_put_delayed_ref(ref);
3673
3674 cond_resched();
3675 spin_lock(&delayed_refs->lock);
3676 }
3677
3678 spin_unlock(&delayed_refs->lock);
3679
3680 return ret;
3681 }
3682
3683 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3684 {
3685 struct btrfs_pending_snapshot *snapshot;
3686 struct list_head splice;
3687
3688 INIT_LIST_HEAD(&splice);
3689
3690 list_splice_init(&t->pending_snapshots, &splice);
3691
3692 while (!list_empty(&splice)) {
3693 snapshot = list_entry(splice.next,
3694 struct btrfs_pending_snapshot,
3695 list);
3696
3697 list_del_init(&snapshot->list);
3698
3699 kfree(snapshot);
3700 }
3701 }
3702
3703 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3704 {
3705 struct btrfs_inode *btrfs_inode;
3706 struct list_head splice;
3707
3708 INIT_LIST_HEAD(&splice);
3709
3710 spin_lock(&root->fs_info->delalloc_lock);
3711 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3712
3713 while (!list_empty(&splice)) {
3714 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3715 delalloc_inodes);
3716
3717 list_del_init(&btrfs_inode->delalloc_inodes);
3718
3719 btrfs_invalidate_inodes(btrfs_inode->root);
3720 }
3721
3722 spin_unlock(&root->fs_info->delalloc_lock);
3723 }
3724
3725 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3726 struct extent_io_tree *dirty_pages,
3727 int mark)
3728 {
3729 int ret;
3730 struct page *page;
3731 struct inode *btree_inode = root->fs_info->btree_inode;
3732 struct extent_buffer *eb;
3733 u64 start = 0;
3734 u64 end;
3735 u64 offset;
3736 unsigned long index;
3737
3738 while (1) {
3739 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3740 mark, NULL);
3741 if (ret)
3742 break;
3743
3744 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3745 while (start <= end) {
3746 index = start >> PAGE_CACHE_SHIFT;
3747 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3748 page = find_get_page(btree_inode->i_mapping, index);
3749 if (!page)
3750 continue;
3751 offset = page_offset(page);
3752
3753 spin_lock(&dirty_pages->buffer_lock);
3754 eb = radix_tree_lookup(
3755 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3756 offset >> PAGE_CACHE_SHIFT);
3757 spin_unlock(&dirty_pages->buffer_lock);
3758 if (eb)
3759 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3760 &eb->bflags);
3761 if (PageWriteback(page))
3762 end_page_writeback(page);
3763
3764 lock_page(page);
3765 if (PageDirty(page)) {
3766 clear_page_dirty_for_io(page);
3767 spin_lock_irq(&page->mapping->tree_lock);
3768 radix_tree_tag_clear(&page->mapping->page_tree,
3769 page_index(page),
3770 PAGECACHE_TAG_DIRTY);
3771 spin_unlock_irq(&page->mapping->tree_lock);
3772 }
3773
3774 unlock_page(page);
3775 page_cache_release(page);
3776 }
3777 }
3778
3779 return ret;
3780 }
3781
3782 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3783 struct extent_io_tree *pinned_extents)
3784 {
3785 struct extent_io_tree *unpin;
3786 u64 start;
3787 u64 end;
3788 int ret;
3789 bool loop = true;
3790
3791 unpin = pinned_extents;
3792 again:
3793 while (1) {
3794 ret = find_first_extent_bit(unpin, 0, &start, &end,
3795 EXTENT_DIRTY, NULL);
3796 if (ret)
3797 break;
3798
3799 /* opt_discard */
3800 if (btrfs_test_opt(root, DISCARD))
3801 ret = btrfs_error_discard_extent(root, start,
3802 end + 1 - start,
3803 NULL);
3804
3805 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3806 btrfs_error_unpin_extent_range(root, start, end);
3807 cond_resched();
3808 }
3809
3810 if (loop) {
3811 if (unpin == &root->fs_info->freed_extents[0])
3812 unpin = &root->fs_info->freed_extents[1];
3813 else
3814 unpin = &root->fs_info->freed_extents[0];
3815 loop = false;
3816 goto again;
3817 }
3818
3819 return 0;
3820 }
3821
3822 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3823 struct btrfs_root *root)
3824 {
3825 btrfs_destroy_delayed_refs(cur_trans, root);
3826 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3827 cur_trans->dirty_pages.dirty_bytes);
3828
3829 /* FIXME: cleanup wait for commit */
3830 cur_trans->in_commit = 1;
3831 cur_trans->blocked = 1;
3832 wake_up(&root->fs_info->transaction_blocked_wait);
3833
3834 cur_trans->blocked = 0;
3835 wake_up(&root->fs_info->transaction_wait);
3836
3837 cur_trans->commit_done = 1;
3838 wake_up(&cur_trans->commit_wait);
3839
3840 btrfs_destroy_delayed_inodes(root);
3841 btrfs_assert_delayed_root_empty(root);
3842
3843 btrfs_destroy_pending_snapshots(cur_trans);
3844
3845 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3846 EXTENT_DIRTY);
3847 btrfs_destroy_pinned_extent(root,
3848 root->fs_info->pinned_extents);
3849
3850 /*
3851 memset(cur_trans, 0, sizeof(*cur_trans));
3852 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3853 */
3854 }
3855
3856 int btrfs_cleanup_transaction(struct btrfs_root *root)
3857 {
3858 struct btrfs_transaction *t;
3859 LIST_HEAD(list);
3860
3861 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3862
3863 spin_lock(&root->fs_info->trans_lock);
3864 list_splice_init(&root->fs_info->trans_list, &list);
3865 root->fs_info->trans_no_join = 1;
3866 spin_unlock(&root->fs_info->trans_lock);
3867
3868 while (!list_empty(&list)) {
3869 t = list_entry(list.next, struct btrfs_transaction, list);
3870 if (!t)
3871 break;
3872
3873 btrfs_destroy_ordered_operations(root);
3874
3875 btrfs_destroy_ordered_extents(root);
3876
3877 btrfs_destroy_delayed_refs(t, root);
3878
3879 btrfs_block_rsv_release(root,
3880 &root->fs_info->trans_block_rsv,
3881 t->dirty_pages.dirty_bytes);
3882
3883 /* FIXME: cleanup wait for commit */
3884 t->in_commit = 1;
3885 t->blocked = 1;
3886 smp_mb();
3887 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3888 wake_up(&root->fs_info->transaction_blocked_wait);
3889
3890 t->blocked = 0;
3891 smp_mb();
3892 if (waitqueue_active(&root->fs_info->transaction_wait))
3893 wake_up(&root->fs_info->transaction_wait);
3894
3895 t->commit_done = 1;
3896 smp_mb();
3897 if (waitqueue_active(&t->commit_wait))
3898 wake_up(&t->commit_wait);
3899
3900 btrfs_destroy_delayed_inodes(root);
3901 btrfs_assert_delayed_root_empty(root);
3902
3903 btrfs_destroy_pending_snapshots(t);
3904
3905 btrfs_destroy_delalloc_inodes(root);
3906
3907 spin_lock(&root->fs_info->trans_lock);
3908 root->fs_info->running_transaction = NULL;
3909 spin_unlock(&root->fs_info->trans_lock);
3910
3911 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3912 EXTENT_DIRTY);
3913
3914 btrfs_destroy_pinned_extent(root,
3915 root->fs_info->pinned_extents);
3916
3917 atomic_set(&t->use_count, 0);
3918 list_del_init(&t->list);
3919 memset(t, 0, sizeof(*t));
3920 kmem_cache_free(btrfs_transaction_cachep, t);
3921 }
3922
3923 spin_lock(&root->fs_info->trans_lock);
3924 root->fs_info->trans_no_join = 0;
3925 spin_unlock(&root->fs_info->trans_lock);
3926 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3927
3928 return 0;
3929 }
3930
3931 static struct extent_io_ops btree_extent_io_ops = {
3932 .readpage_end_io_hook = btree_readpage_end_io_hook,
3933 .readpage_io_failed_hook = btree_io_failed_hook,
3934 .submit_bio_hook = btree_submit_bio_hook,
3935 /* note we're sharing with inode.c for the merge bio hook */
3936 .merge_bio_hook = btrfs_merge_bio_hook,
3937 };
This page took 0.142086 seconds and 5 git commands to generate.