Btrfs: proper -ENOSPC handling
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
41
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 static void free_fs_root(struct btrfs_root *root);
45
46 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
47
48 /*
49 * end_io_wq structs are used to do processing in task context when an IO is
50 * complete. This is used during reads to verify checksums, and it is used
51 * by writes to insert metadata for new file extents after IO is complete.
52 */
53 struct end_io_wq {
54 struct bio *bio;
55 bio_end_io_t *end_io;
56 void *private;
57 struct btrfs_fs_info *info;
58 int error;
59 int metadata;
60 struct list_head list;
61 struct btrfs_work work;
62 };
63
64 /*
65 * async submit bios are used to offload expensive checksumming
66 * onto the worker threads. They checksum file and metadata bios
67 * just before they are sent down the IO stack.
68 */
69 struct async_submit_bio {
70 struct inode *inode;
71 struct bio *bio;
72 struct list_head list;
73 extent_submit_bio_hook_t *submit_bio_start;
74 extent_submit_bio_hook_t *submit_bio_done;
75 int rw;
76 int mirror_num;
77 unsigned long bio_flags;
78 struct btrfs_work work;
79 };
80
81 /* These are used to set the lockdep class on the extent buffer locks.
82 * The class is set by the readpage_end_io_hook after the buffer has
83 * passed csum validation but before the pages are unlocked.
84 *
85 * The lockdep class is also set by btrfs_init_new_buffer on freshly
86 * allocated blocks.
87 *
88 * The class is based on the level in the tree block, which allows lockdep
89 * to know that lower nodes nest inside the locks of higher nodes.
90 *
91 * We also add a check to make sure the highest level of the tree is
92 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
93 * code needs update as well.
94 */
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 # if BTRFS_MAX_LEVEL != 8
97 # error
98 # endif
99 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
100 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
101 /* leaf */
102 "btrfs-extent-00",
103 "btrfs-extent-01",
104 "btrfs-extent-02",
105 "btrfs-extent-03",
106 "btrfs-extent-04",
107 "btrfs-extent-05",
108 "btrfs-extent-06",
109 "btrfs-extent-07",
110 /* highest possible level */
111 "btrfs-extent-08",
112 };
113 #endif
114
115 /*
116 * extents on the btree inode are pretty simple, there's one extent
117 * that covers the entire device
118 */
119 static struct extent_map *btree_get_extent(struct inode *inode,
120 struct page *page, size_t page_offset, u64 start, u64 len,
121 int create)
122 {
123 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
124 struct extent_map *em;
125 int ret;
126
127 read_lock(&em_tree->lock);
128 em = lookup_extent_mapping(em_tree, start, len);
129 if (em) {
130 em->bdev =
131 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
132 read_unlock(&em_tree->lock);
133 goto out;
134 }
135 read_unlock(&em_tree->lock);
136
137 em = alloc_extent_map(GFP_NOFS);
138 if (!em) {
139 em = ERR_PTR(-ENOMEM);
140 goto out;
141 }
142 em->start = 0;
143 em->len = (u64)-1;
144 em->block_len = (u64)-1;
145 em->block_start = 0;
146 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
147
148 write_lock(&em_tree->lock);
149 ret = add_extent_mapping(em_tree, em);
150 if (ret == -EEXIST) {
151 u64 failed_start = em->start;
152 u64 failed_len = em->len;
153
154 free_extent_map(em);
155 em = lookup_extent_mapping(em_tree, start, len);
156 if (em) {
157 ret = 0;
158 } else {
159 em = lookup_extent_mapping(em_tree, failed_start,
160 failed_len);
161 ret = -EIO;
162 }
163 } else if (ret) {
164 free_extent_map(em);
165 em = NULL;
166 }
167 write_unlock(&em_tree->lock);
168
169 if (ret)
170 em = ERR_PTR(ret);
171 out:
172 return em;
173 }
174
175 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
176 {
177 return crc32c(seed, data, len);
178 }
179
180 void btrfs_csum_final(u32 crc, char *result)
181 {
182 *(__le32 *)result = ~cpu_to_le32(crc);
183 }
184
185 /*
186 * compute the csum for a btree block, and either verify it or write it
187 * into the csum field of the block.
188 */
189 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
190 int verify)
191 {
192 u16 csum_size =
193 btrfs_super_csum_size(&root->fs_info->super_copy);
194 char *result = NULL;
195 unsigned long len;
196 unsigned long cur_len;
197 unsigned long offset = BTRFS_CSUM_SIZE;
198 char *map_token = NULL;
199 char *kaddr;
200 unsigned long map_start;
201 unsigned long map_len;
202 int err;
203 u32 crc = ~(u32)0;
204 unsigned long inline_result;
205
206 len = buf->len - offset;
207 while (len > 0) {
208 err = map_private_extent_buffer(buf, offset, 32,
209 &map_token, &kaddr,
210 &map_start, &map_len, KM_USER0);
211 if (err)
212 return 1;
213 cur_len = min(len, map_len - (offset - map_start));
214 crc = btrfs_csum_data(root, kaddr + offset - map_start,
215 crc, cur_len);
216 len -= cur_len;
217 offset += cur_len;
218 unmap_extent_buffer(buf, map_token, KM_USER0);
219 }
220 if (csum_size > sizeof(inline_result)) {
221 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
222 if (!result)
223 return 1;
224 } else {
225 result = (char *)&inline_result;
226 }
227
228 btrfs_csum_final(crc, result);
229
230 if (verify) {
231 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
232 u32 val;
233 u32 found = 0;
234 memcpy(&found, result, csum_size);
235
236 read_extent_buffer(buf, &val, 0, csum_size);
237 if (printk_ratelimit()) {
238 printk(KERN_INFO "btrfs: %s checksum verify "
239 "failed on %llu wanted %X found %X "
240 "level %d\n",
241 root->fs_info->sb->s_id,
242 (unsigned long long)buf->start, val, found,
243 btrfs_header_level(buf));
244 }
245 if (result != (char *)&inline_result)
246 kfree(result);
247 return 1;
248 }
249 } else {
250 write_extent_buffer(buf, result, 0, csum_size);
251 }
252 if (result != (char *)&inline_result)
253 kfree(result);
254 return 0;
255 }
256
257 /*
258 * we can't consider a given block up to date unless the transid of the
259 * block matches the transid in the parent node's pointer. This is how we
260 * detect blocks that either didn't get written at all or got written
261 * in the wrong place.
262 */
263 static int verify_parent_transid(struct extent_io_tree *io_tree,
264 struct extent_buffer *eb, u64 parent_transid)
265 {
266 int ret;
267
268 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
269 return 0;
270
271 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
272 if (extent_buffer_uptodate(io_tree, eb) &&
273 btrfs_header_generation(eb) == parent_transid) {
274 ret = 0;
275 goto out;
276 }
277 if (printk_ratelimit()) {
278 printk("parent transid verify failed on %llu wanted %llu "
279 "found %llu\n",
280 (unsigned long long)eb->start,
281 (unsigned long long)parent_transid,
282 (unsigned long long)btrfs_header_generation(eb));
283 }
284 ret = 1;
285 clear_extent_buffer_uptodate(io_tree, eb);
286 out:
287 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
288 GFP_NOFS);
289 return ret;
290 }
291
292 /*
293 * helper to read a given tree block, doing retries as required when
294 * the checksums don't match and we have alternate mirrors to try.
295 */
296 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
297 struct extent_buffer *eb,
298 u64 start, u64 parent_transid)
299 {
300 struct extent_io_tree *io_tree;
301 int ret;
302 int num_copies = 0;
303 int mirror_num = 0;
304
305 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
306 while (1) {
307 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
308 btree_get_extent, mirror_num);
309 if (!ret &&
310 !verify_parent_transid(io_tree, eb, parent_transid))
311 return ret;
312
313 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
314 eb->start, eb->len);
315 if (num_copies == 1)
316 return ret;
317
318 mirror_num++;
319 if (mirror_num > num_copies)
320 return ret;
321 }
322 return -EIO;
323 }
324
325 /*
326 * checksum a dirty tree block before IO. This has extra checks to make sure
327 * we only fill in the checksum field in the first page of a multi-page block
328 */
329
330 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
331 {
332 struct extent_io_tree *tree;
333 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
334 u64 found_start;
335 int found_level;
336 unsigned long len;
337 struct extent_buffer *eb;
338 int ret;
339
340 tree = &BTRFS_I(page->mapping->host)->io_tree;
341
342 if (page->private == EXTENT_PAGE_PRIVATE)
343 goto out;
344 if (!page->private)
345 goto out;
346 len = page->private >> 2;
347 WARN_ON(len == 0);
348
349 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
350 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
351 btrfs_header_generation(eb));
352 BUG_ON(ret);
353 found_start = btrfs_header_bytenr(eb);
354 if (found_start != start) {
355 WARN_ON(1);
356 goto err;
357 }
358 if (eb->first_page != page) {
359 WARN_ON(1);
360 goto err;
361 }
362 if (!PageUptodate(page)) {
363 WARN_ON(1);
364 goto err;
365 }
366 found_level = btrfs_header_level(eb);
367
368 csum_tree_block(root, eb, 0);
369 err:
370 free_extent_buffer(eb);
371 out:
372 return 0;
373 }
374
375 static int check_tree_block_fsid(struct btrfs_root *root,
376 struct extent_buffer *eb)
377 {
378 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
379 u8 fsid[BTRFS_UUID_SIZE];
380 int ret = 1;
381
382 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
383 BTRFS_FSID_SIZE);
384 while (fs_devices) {
385 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
386 ret = 0;
387 break;
388 }
389 fs_devices = fs_devices->seed;
390 }
391 return ret;
392 }
393
394 #ifdef CONFIG_DEBUG_LOCK_ALLOC
395 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
396 {
397 lockdep_set_class_and_name(&eb->lock,
398 &btrfs_eb_class[level],
399 btrfs_eb_name[level]);
400 }
401 #endif
402
403 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
404 struct extent_state *state)
405 {
406 struct extent_io_tree *tree;
407 u64 found_start;
408 int found_level;
409 unsigned long len;
410 struct extent_buffer *eb;
411 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
412 int ret = 0;
413
414 tree = &BTRFS_I(page->mapping->host)->io_tree;
415 if (page->private == EXTENT_PAGE_PRIVATE)
416 goto out;
417 if (!page->private)
418 goto out;
419
420 len = page->private >> 2;
421 WARN_ON(len == 0);
422
423 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
424
425 found_start = btrfs_header_bytenr(eb);
426 if (found_start != start) {
427 if (printk_ratelimit()) {
428 printk(KERN_INFO "btrfs bad tree block start "
429 "%llu %llu\n",
430 (unsigned long long)found_start,
431 (unsigned long long)eb->start);
432 }
433 ret = -EIO;
434 goto err;
435 }
436 if (eb->first_page != page) {
437 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
438 eb->first_page->index, page->index);
439 WARN_ON(1);
440 ret = -EIO;
441 goto err;
442 }
443 if (check_tree_block_fsid(root, eb)) {
444 if (printk_ratelimit()) {
445 printk(KERN_INFO "btrfs bad fsid on block %llu\n",
446 (unsigned long long)eb->start);
447 }
448 ret = -EIO;
449 goto err;
450 }
451 found_level = btrfs_header_level(eb);
452
453 btrfs_set_buffer_lockdep_class(eb, found_level);
454
455 ret = csum_tree_block(root, eb, 1);
456 if (ret)
457 ret = -EIO;
458
459 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
460 end = eb->start + end - 1;
461 err:
462 free_extent_buffer(eb);
463 out:
464 return ret;
465 }
466
467 static void end_workqueue_bio(struct bio *bio, int err)
468 {
469 struct end_io_wq *end_io_wq = bio->bi_private;
470 struct btrfs_fs_info *fs_info;
471
472 fs_info = end_io_wq->info;
473 end_io_wq->error = err;
474 end_io_wq->work.func = end_workqueue_fn;
475 end_io_wq->work.flags = 0;
476
477 if (bio->bi_rw & (1 << BIO_RW)) {
478 if (end_io_wq->metadata)
479 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
480 &end_io_wq->work);
481 else
482 btrfs_queue_worker(&fs_info->endio_write_workers,
483 &end_io_wq->work);
484 } else {
485 if (end_io_wq->metadata)
486 btrfs_queue_worker(&fs_info->endio_meta_workers,
487 &end_io_wq->work);
488 else
489 btrfs_queue_worker(&fs_info->endio_workers,
490 &end_io_wq->work);
491 }
492 }
493
494 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
495 int metadata)
496 {
497 struct end_io_wq *end_io_wq;
498 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
499 if (!end_io_wq)
500 return -ENOMEM;
501
502 end_io_wq->private = bio->bi_private;
503 end_io_wq->end_io = bio->bi_end_io;
504 end_io_wq->info = info;
505 end_io_wq->error = 0;
506 end_io_wq->bio = bio;
507 end_io_wq->metadata = metadata;
508
509 bio->bi_private = end_io_wq;
510 bio->bi_end_io = end_workqueue_bio;
511 return 0;
512 }
513
514 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
515 {
516 unsigned long limit = min_t(unsigned long,
517 info->workers.max_workers,
518 info->fs_devices->open_devices);
519 return 256 * limit;
520 }
521
522 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
523 {
524 return atomic_read(&info->nr_async_bios) >
525 btrfs_async_submit_limit(info);
526 }
527
528 static void run_one_async_start(struct btrfs_work *work)
529 {
530 struct btrfs_fs_info *fs_info;
531 struct async_submit_bio *async;
532
533 async = container_of(work, struct async_submit_bio, work);
534 fs_info = BTRFS_I(async->inode)->root->fs_info;
535 async->submit_bio_start(async->inode, async->rw, async->bio,
536 async->mirror_num, async->bio_flags);
537 }
538
539 static void run_one_async_done(struct btrfs_work *work)
540 {
541 struct btrfs_fs_info *fs_info;
542 struct async_submit_bio *async;
543 int limit;
544
545 async = container_of(work, struct async_submit_bio, work);
546 fs_info = BTRFS_I(async->inode)->root->fs_info;
547
548 limit = btrfs_async_submit_limit(fs_info);
549 limit = limit * 2 / 3;
550
551 atomic_dec(&fs_info->nr_async_submits);
552
553 if (atomic_read(&fs_info->nr_async_submits) < limit &&
554 waitqueue_active(&fs_info->async_submit_wait))
555 wake_up(&fs_info->async_submit_wait);
556
557 async->submit_bio_done(async->inode, async->rw, async->bio,
558 async->mirror_num, async->bio_flags);
559 }
560
561 static void run_one_async_free(struct btrfs_work *work)
562 {
563 struct async_submit_bio *async;
564
565 async = container_of(work, struct async_submit_bio, work);
566 kfree(async);
567 }
568
569 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
570 int rw, struct bio *bio, int mirror_num,
571 unsigned long bio_flags,
572 extent_submit_bio_hook_t *submit_bio_start,
573 extent_submit_bio_hook_t *submit_bio_done)
574 {
575 struct async_submit_bio *async;
576
577 async = kmalloc(sizeof(*async), GFP_NOFS);
578 if (!async)
579 return -ENOMEM;
580
581 async->inode = inode;
582 async->rw = rw;
583 async->bio = bio;
584 async->mirror_num = mirror_num;
585 async->submit_bio_start = submit_bio_start;
586 async->submit_bio_done = submit_bio_done;
587
588 async->work.func = run_one_async_start;
589 async->work.ordered_func = run_one_async_done;
590 async->work.ordered_free = run_one_async_free;
591
592 async->work.flags = 0;
593 async->bio_flags = bio_flags;
594
595 atomic_inc(&fs_info->nr_async_submits);
596
597 if (rw & (1 << BIO_RW_SYNCIO))
598 btrfs_set_work_high_prio(&async->work);
599
600 btrfs_queue_worker(&fs_info->workers, &async->work);
601
602 while (atomic_read(&fs_info->async_submit_draining) &&
603 atomic_read(&fs_info->nr_async_submits)) {
604 wait_event(fs_info->async_submit_wait,
605 (atomic_read(&fs_info->nr_async_submits) == 0));
606 }
607
608 return 0;
609 }
610
611 static int btree_csum_one_bio(struct bio *bio)
612 {
613 struct bio_vec *bvec = bio->bi_io_vec;
614 int bio_index = 0;
615 struct btrfs_root *root;
616
617 WARN_ON(bio->bi_vcnt <= 0);
618 while (bio_index < bio->bi_vcnt) {
619 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
620 csum_dirty_buffer(root, bvec->bv_page);
621 bio_index++;
622 bvec++;
623 }
624 return 0;
625 }
626
627 static int __btree_submit_bio_start(struct inode *inode, int rw,
628 struct bio *bio, int mirror_num,
629 unsigned long bio_flags)
630 {
631 /*
632 * when we're called for a write, we're already in the async
633 * submission context. Just jump into btrfs_map_bio
634 */
635 btree_csum_one_bio(bio);
636 return 0;
637 }
638
639 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
640 int mirror_num, unsigned long bio_flags)
641 {
642 /*
643 * when we're called for a write, we're already in the async
644 * submission context. Just jump into btrfs_map_bio
645 */
646 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
647 }
648
649 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
650 int mirror_num, unsigned long bio_flags)
651 {
652 int ret;
653
654 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
655 bio, 1);
656 BUG_ON(ret);
657
658 if (!(rw & (1 << BIO_RW))) {
659 /*
660 * called for a read, do the setup so that checksum validation
661 * can happen in the async kernel threads
662 */
663 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
664 mirror_num, 0);
665 }
666
667 /*
668 * kthread helpers are used to submit writes so that checksumming
669 * can happen in parallel across all CPUs
670 */
671 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
672 inode, rw, bio, mirror_num, 0,
673 __btree_submit_bio_start,
674 __btree_submit_bio_done);
675 }
676
677 static int btree_writepage(struct page *page, struct writeback_control *wbc)
678 {
679 struct extent_io_tree *tree;
680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681 struct extent_buffer *eb;
682 int was_dirty;
683
684 tree = &BTRFS_I(page->mapping->host)->io_tree;
685 if (!(current->flags & PF_MEMALLOC)) {
686 return extent_write_full_page(tree, page,
687 btree_get_extent, wbc);
688 }
689
690 redirty_page_for_writepage(wbc, page);
691 eb = btrfs_find_tree_block(root, page_offset(page),
692 PAGE_CACHE_SIZE);
693 WARN_ON(!eb);
694
695 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
696 if (!was_dirty) {
697 spin_lock(&root->fs_info->delalloc_lock);
698 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
699 spin_unlock(&root->fs_info->delalloc_lock);
700 }
701 free_extent_buffer(eb);
702
703 unlock_page(page);
704 return 0;
705 }
706
707 static int btree_writepages(struct address_space *mapping,
708 struct writeback_control *wbc)
709 {
710 struct extent_io_tree *tree;
711 tree = &BTRFS_I(mapping->host)->io_tree;
712 if (wbc->sync_mode == WB_SYNC_NONE) {
713 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
714 u64 num_dirty;
715 unsigned long thresh = 32 * 1024 * 1024;
716
717 if (wbc->for_kupdate)
718 return 0;
719
720 /* this is a bit racy, but that's ok */
721 num_dirty = root->fs_info->dirty_metadata_bytes;
722 if (num_dirty < thresh)
723 return 0;
724 }
725 return extent_writepages(tree, mapping, btree_get_extent, wbc);
726 }
727
728 static int btree_readpage(struct file *file, struct page *page)
729 {
730 struct extent_io_tree *tree;
731 tree = &BTRFS_I(page->mapping->host)->io_tree;
732 return extent_read_full_page(tree, page, btree_get_extent);
733 }
734
735 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
736 {
737 struct extent_io_tree *tree;
738 struct extent_map_tree *map;
739 int ret;
740
741 if (PageWriteback(page) || PageDirty(page))
742 return 0;
743
744 tree = &BTRFS_I(page->mapping->host)->io_tree;
745 map = &BTRFS_I(page->mapping->host)->extent_tree;
746
747 ret = try_release_extent_state(map, tree, page, gfp_flags);
748 if (!ret)
749 return 0;
750
751 ret = try_release_extent_buffer(tree, page);
752 if (ret == 1) {
753 ClearPagePrivate(page);
754 set_page_private(page, 0);
755 page_cache_release(page);
756 }
757
758 return ret;
759 }
760
761 static void btree_invalidatepage(struct page *page, unsigned long offset)
762 {
763 struct extent_io_tree *tree;
764 tree = &BTRFS_I(page->mapping->host)->io_tree;
765 extent_invalidatepage(tree, page, offset);
766 btree_releasepage(page, GFP_NOFS);
767 if (PagePrivate(page)) {
768 printk(KERN_WARNING "btrfs warning page private not zero "
769 "on page %llu\n", (unsigned long long)page_offset(page));
770 ClearPagePrivate(page);
771 set_page_private(page, 0);
772 page_cache_release(page);
773 }
774 }
775
776 static struct address_space_operations btree_aops = {
777 .readpage = btree_readpage,
778 .writepage = btree_writepage,
779 .writepages = btree_writepages,
780 .releasepage = btree_releasepage,
781 .invalidatepage = btree_invalidatepage,
782 .sync_page = block_sync_page,
783 };
784
785 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
786 u64 parent_transid)
787 {
788 struct extent_buffer *buf = NULL;
789 struct inode *btree_inode = root->fs_info->btree_inode;
790 int ret = 0;
791
792 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
793 if (!buf)
794 return 0;
795 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
796 buf, 0, 0, btree_get_extent, 0);
797 free_extent_buffer(buf);
798 return ret;
799 }
800
801 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
802 u64 bytenr, u32 blocksize)
803 {
804 struct inode *btree_inode = root->fs_info->btree_inode;
805 struct extent_buffer *eb;
806 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
807 bytenr, blocksize, GFP_NOFS);
808 return eb;
809 }
810
811 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
812 u64 bytenr, u32 blocksize)
813 {
814 struct inode *btree_inode = root->fs_info->btree_inode;
815 struct extent_buffer *eb;
816
817 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
818 bytenr, blocksize, NULL, GFP_NOFS);
819 return eb;
820 }
821
822
823 int btrfs_write_tree_block(struct extent_buffer *buf)
824 {
825 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
826 buf->start + buf->len - 1, WB_SYNC_ALL);
827 }
828
829 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
830 {
831 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
832 buf->start, buf->start + buf->len - 1);
833 }
834
835 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
836 u32 blocksize, u64 parent_transid)
837 {
838 struct extent_buffer *buf = NULL;
839 struct inode *btree_inode = root->fs_info->btree_inode;
840 struct extent_io_tree *io_tree;
841 int ret;
842
843 io_tree = &BTRFS_I(btree_inode)->io_tree;
844
845 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
846 if (!buf)
847 return NULL;
848
849 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
850
851 if (ret == 0)
852 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
853 return buf;
854
855 }
856
857 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
858 struct extent_buffer *buf)
859 {
860 struct inode *btree_inode = root->fs_info->btree_inode;
861 if (btrfs_header_generation(buf) ==
862 root->fs_info->running_transaction->transid) {
863 btrfs_assert_tree_locked(buf);
864
865 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
866 spin_lock(&root->fs_info->delalloc_lock);
867 if (root->fs_info->dirty_metadata_bytes >= buf->len)
868 root->fs_info->dirty_metadata_bytes -= buf->len;
869 else
870 WARN_ON(1);
871 spin_unlock(&root->fs_info->delalloc_lock);
872 }
873
874 /* ugh, clear_extent_buffer_dirty needs to lock the page */
875 btrfs_set_lock_blocking(buf);
876 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
877 buf);
878 }
879 return 0;
880 }
881
882 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
883 u32 stripesize, struct btrfs_root *root,
884 struct btrfs_fs_info *fs_info,
885 u64 objectid)
886 {
887 root->node = NULL;
888 root->commit_root = NULL;
889 root->sectorsize = sectorsize;
890 root->nodesize = nodesize;
891 root->leafsize = leafsize;
892 root->stripesize = stripesize;
893 root->ref_cows = 0;
894 root->track_dirty = 0;
895
896 root->fs_info = fs_info;
897 root->objectid = objectid;
898 root->last_trans = 0;
899 root->highest_objectid = 0;
900 root->name = NULL;
901 root->in_sysfs = 0;
902 root->inode_tree.rb_node = NULL;
903
904 INIT_LIST_HEAD(&root->dirty_list);
905 INIT_LIST_HEAD(&root->orphan_list);
906 INIT_LIST_HEAD(&root->root_list);
907 spin_lock_init(&root->node_lock);
908 spin_lock_init(&root->list_lock);
909 spin_lock_init(&root->inode_lock);
910 mutex_init(&root->objectid_mutex);
911 mutex_init(&root->log_mutex);
912 init_waitqueue_head(&root->log_writer_wait);
913 init_waitqueue_head(&root->log_commit_wait[0]);
914 init_waitqueue_head(&root->log_commit_wait[1]);
915 atomic_set(&root->log_commit[0], 0);
916 atomic_set(&root->log_commit[1], 0);
917 atomic_set(&root->log_writers, 0);
918 root->log_batch = 0;
919 root->log_transid = 0;
920 extent_io_tree_init(&root->dirty_log_pages,
921 fs_info->btree_inode->i_mapping, GFP_NOFS);
922
923 memset(&root->root_key, 0, sizeof(root->root_key));
924 memset(&root->root_item, 0, sizeof(root->root_item));
925 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
926 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
927 root->defrag_trans_start = fs_info->generation;
928 init_completion(&root->kobj_unregister);
929 root->defrag_running = 0;
930 root->defrag_level = 0;
931 root->root_key.objectid = objectid;
932 root->anon_super.s_root = NULL;
933 root->anon_super.s_dev = 0;
934 INIT_LIST_HEAD(&root->anon_super.s_list);
935 INIT_LIST_HEAD(&root->anon_super.s_instances);
936 init_rwsem(&root->anon_super.s_umount);
937
938 return 0;
939 }
940
941 static int find_and_setup_root(struct btrfs_root *tree_root,
942 struct btrfs_fs_info *fs_info,
943 u64 objectid,
944 struct btrfs_root *root)
945 {
946 int ret;
947 u32 blocksize;
948 u64 generation;
949
950 __setup_root(tree_root->nodesize, tree_root->leafsize,
951 tree_root->sectorsize, tree_root->stripesize,
952 root, fs_info, objectid);
953 ret = btrfs_find_last_root(tree_root, objectid,
954 &root->root_item, &root->root_key);
955 if (ret > 0)
956 return -ENOENT;
957 BUG_ON(ret);
958
959 generation = btrfs_root_generation(&root->root_item);
960 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
961 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
962 blocksize, generation);
963 BUG_ON(!root->node);
964 root->commit_root = btrfs_root_node(root);
965 return 0;
966 }
967
968 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
969 struct btrfs_fs_info *fs_info)
970 {
971 struct extent_buffer *eb;
972 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
973 u64 start = 0;
974 u64 end = 0;
975 int ret;
976
977 if (!log_root_tree)
978 return 0;
979
980 while (1) {
981 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
982 0, &start, &end, EXTENT_DIRTY);
983 if (ret)
984 break;
985
986 clear_extent_dirty(&log_root_tree->dirty_log_pages,
987 start, end, GFP_NOFS);
988 }
989 eb = fs_info->log_root_tree->node;
990
991 WARN_ON(btrfs_header_level(eb) != 0);
992 WARN_ON(btrfs_header_nritems(eb) != 0);
993
994 ret = btrfs_free_reserved_extent(fs_info->tree_root,
995 eb->start, eb->len);
996 BUG_ON(ret);
997
998 free_extent_buffer(eb);
999 kfree(fs_info->log_root_tree);
1000 fs_info->log_root_tree = NULL;
1001 return 0;
1002 }
1003
1004 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1005 struct btrfs_fs_info *fs_info)
1006 {
1007 struct btrfs_root *root;
1008 struct btrfs_root *tree_root = fs_info->tree_root;
1009 struct extent_buffer *leaf;
1010
1011 root = kzalloc(sizeof(*root), GFP_NOFS);
1012 if (!root)
1013 return ERR_PTR(-ENOMEM);
1014
1015 __setup_root(tree_root->nodesize, tree_root->leafsize,
1016 tree_root->sectorsize, tree_root->stripesize,
1017 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1018
1019 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1020 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1021 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1022 /*
1023 * log trees do not get reference counted because they go away
1024 * before a real commit is actually done. They do store pointers
1025 * to file data extents, and those reference counts still get
1026 * updated (along with back refs to the log tree).
1027 */
1028 root->ref_cows = 0;
1029
1030 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1031 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1032 if (IS_ERR(leaf)) {
1033 kfree(root);
1034 return ERR_CAST(leaf);
1035 }
1036
1037 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1038 btrfs_set_header_bytenr(leaf, leaf->start);
1039 btrfs_set_header_generation(leaf, trans->transid);
1040 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1041 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1042 root->node = leaf;
1043
1044 write_extent_buffer(root->node, root->fs_info->fsid,
1045 (unsigned long)btrfs_header_fsid(root->node),
1046 BTRFS_FSID_SIZE);
1047 btrfs_mark_buffer_dirty(root->node);
1048 btrfs_tree_unlock(root->node);
1049 return root;
1050 }
1051
1052 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1053 struct btrfs_fs_info *fs_info)
1054 {
1055 struct btrfs_root *log_root;
1056
1057 log_root = alloc_log_tree(trans, fs_info);
1058 if (IS_ERR(log_root))
1059 return PTR_ERR(log_root);
1060 WARN_ON(fs_info->log_root_tree);
1061 fs_info->log_root_tree = log_root;
1062 return 0;
1063 }
1064
1065 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1066 struct btrfs_root *root)
1067 {
1068 struct btrfs_root *log_root;
1069 struct btrfs_inode_item *inode_item;
1070
1071 log_root = alloc_log_tree(trans, root->fs_info);
1072 if (IS_ERR(log_root))
1073 return PTR_ERR(log_root);
1074
1075 log_root->last_trans = trans->transid;
1076 log_root->root_key.offset = root->root_key.objectid;
1077
1078 inode_item = &log_root->root_item.inode;
1079 inode_item->generation = cpu_to_le64(1);
1080 inode_item->size = cpu_to_le64(3);
1081 inode_item->nlink = cpu_to_le32(1);
1082 inode_item->nbytes = cpu_to_le64(root->leafsize);
1083 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1084
1085 btrfs_set_root_node(&log_root->root_item, log_root->node);
1086
1087 WARN_ON(root->log_root);
1088 root->log_root = log_root;
1089 root->log_transid = 0;
1090 return 0;
1091 }
1092
1093 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1094 struct btrfs_key *location)
1095 {
1096 struct btrfs_root *root;
1097 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1098 struct btrfs_path *path;
1099 struct extent_buffer *l;
1100 u64 generation;
1101 u32 blocksize;
1102 int ret = 0;
1103
1104 root = kzalloc(sizeof(*root), GFP_NOFS);
1105 if (!root)
1106 return ERR_PTR(-ENOMEM);
1107 if (location->offset == (u64)-1) {
1108 ret = find_and_setup_root(tree_root, fs_info,
1109 location->objectid, root);
1110 if (ret) {
1111 kfree(root);
1112 return ERR_PTR(ret);
1113 }
1114 goto out;
1115 }
1116
1117 __setup_root(tree_root->nodesize, tree_root->leafsize,
1118 tree_root->sectorsize, tree_root->stripesize,
1119 root, fs_info, location->objectid);
1120
1121 path = btrfs_alloc_path();
1122 BUG_ON(!path);
1123 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1124 if (ret == 0) {
1125 l = path->nodes[0];
1126 read_extent_buffer(l, &root->root_item,
1127 btrfs_item_ptr_offset(l, path->slots[0]),
1128 sizeof(root->root_item));
1129 memcpy(&root->root_key, location, sizeof(*location));
1130 }
1131 btrfs_free_path(path);
1132 if (ret) {
1133 if (ret > 0)
1134 ret = -ENOENT;
1135 return ERR_PTR(ret);
1136 }
1137
1138 generation = btrfs_root_generation(&root->root_item);
1139 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1140 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1141 blocksize, generation);
1142 root->commit_root = btrfs_root_node(root);
1143 BUG_ON(!root->node);
1144 out:
1145 if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1146 root->ref_cows = 1;
1147
1148 return root;
1149 }
1150
1151 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1152 u64 root_objectid)
1153 {
1154 struct btrfs_root *root;
1155
1156 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1157 return fs_info->tree_root;
1158 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1159 return fs_info->extent_root;
1160
1161 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1162 (unsigned long)root_objectid);
1163 return root;
1164 }
1165
1166 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1167 struct btrfs_key *location)
1168 {
1169 struct btrfs_root *root;
1170 int ret;
1171
1172 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1173 return fs_info->tree_root;
1174 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1175 return fs_info->extent_root;
1176 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1177 return fs_info->chunk_root;
1178 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1179 return fs_info->dev_root;
1180 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1181 return fs_info->csum_root;
1182 again:
1183 spin_lock(&fs_info->fs_roots_radix_lock);
1184 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1185 (unsigned long)location->objectid);
1186 spin_unlock(&fs_info->fs_roots_radix_lock);
1187 if (root)
1188 return root;
1189
1190 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1191 if (ret == 0)
1192 ret = -ENOENT;
1193 if (ret < 0)
1194 return ERR_PTR(ret);
1195
1196 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1197 if (IS_ERR(root))
1198 return root;
1199
1200 WARN_ON(btrfs_root_refs(&root->root_item) == 0);
1201 set_anon_super(&root->anon_super, NULL);
1202
1203 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1204 if (ret)
1205 goto fail;
1206
1207 spin_lock(&fs_info->fs_roots_radix_lock);
1208 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1209 (unsigned long)root->root_key.objectid,
1210 root);
1211 if (ret == 0)
1212 root->in_radix = 1;
1213 spin_unlock(&fs_info->fs_roots_radix_lock);
1214 radix_tree_preload_end();
1215 if (ret) {
1216 if (ret == -EEXIST) {
1217 free_fs_root(root);
1218 goto again;
1219 }
1220 goto fail;
1221 }
1222
1223 ret = btrfs_find_dead_roots(fs_info->tree_root,
1224 root->root_key.objectid);
1225 WARN_ON(ret);
1226
1227 if (!(fs_info->sb->s_flags & MS_RDONLY))
1228 btrfs_orphan_cleanup(root);
1229
1230 return root;
1231 fail:
1232 free_fs_root(root);
1233 return ERR_PTR(ret);
1234 }
1235
1236 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1237 struct btrfs_key *location,
1238 const char *name, int namelen)
1239 {
1240 return btrfs_read_fs_root_no_name(fs_info, location);
1241 #if 0
1242 struct btrfs_root *root;
1243 int ret;
1244
1245 root = btrfs_read_fs_root_no_name(fs_info, location);
1246 if (!root)
1247 return NULL;
1248
1249 if (root->in_sysfs)
1250 return root;
1251
1252 ret = btrfs_set_root_name(root, name, namelen);
1253 if (ret) {
1254 free_extent_buffer(root->node);
1255 kfree(root);
1256 return ERR_PTR(ret);
1257 }
1258
1259 ret = btrfs_sysfs_add_root(root);
1260 if (ret) {
1261 free_extent_buffer(root->node);
1262 kfree(root->name);
1263 kfree(root);
1264 return ERR_PTR(ret);
1265 }
1266 root->in_sysfs = 1;
1267 return root;
1268 #endif
1269 }
1270
1271 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1272 {
1273 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1274 int ret = 0;
1275 struct btrfs_device *device;
1276 struct backing_dev_info *bdi;
1277
1278 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1279 if (!device->bdev)
1280 continue;
1281 bdi = blk_get_backing_dev_info(device->bdev);
1282 if (bdi && bdi_congested(bdi, bdi_bits)) {
1283 ret = 1;
1284 break;
1285 }
1286 }
1287 return ret;
1288 }
1289
1290 /*
1291 * this unplugs every device on the box, and it is only used when page
1292 * is null
1293 */
1294 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1295 {
1296 struct btrfs_device *device;
1297 struct btrfs_fs_info *info;
1298
1299 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1300 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1301 if (!device->bdev)
1302 continue;
1303
1304 bdi = blk_get_backing_dev_info(device->bdev);
1305 if (bdi->unplug_io_fn)
1306 bdi->unplug_io_fn(bdi, page);
1307 }
1308 }
1309
1310 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1311 {
1312 struct inode *inode;
1313 struct extent_map_tree *em_tree;
1314 struct extent_map *em;
1315 struct address_space *mapping;
1316 u64 offset;
1317
1318 /* the generic O_DIRECT read code does this */
1319 if (1 || !page) {
1320 __unplug_io_fn(bdi, page);
1321 return;
1322 }
1323
1324 /*
1325 * page->mapping may change at any time. Get a consistent copy
1326 * and use that for everything below
1327 */
1328 smp_mb();
1329 mapping = page->mapping;
1330 if (!mapping)
1331 return;
1332
1333 inode = mapping->host;
1334
1335 /*
1336 * don't do the expensive searching for a small number of
1337 * devices
1338 */
1339 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1340 __unplug_io_fn(bdi, page);
1341 return;
1342 }
1343
1344 offset = page_offset(page);
1345
1346 em_tree = &BTRFS_I(inode)->extent_tree;
1347 read_lock(&em_tree->lock);
1348 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1349 read_unlock(&em_tree->lock);
1350 if (!em) {
1351 __unplug_io_fn(bdi, page);
1352 return;
1353 }
1354
1355 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1356 free_extent_map(em);
1357 __unplug_io_fn(bdi, page);
1358 return;
1359 }
1360 offset = offset - em->start;
1361 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1362 em->block_start + offset, page);
1363 free_extent_map(em);
1364 }
1365
1366 /*
1367 * If this fails, caller must call bdi_destroy() to get rid of the
1368 * bdi again.
1369 */
1370 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1371 {
1372 int err;
1373
1374 bdi->capabilities = BDI_CAP_MAP_COPY;
1375 err = bdi_init(bdi);
1376 if (err)
1377 return err;
1378
1379 err = bdi_register(bdi, NULL, "btrfs-%d",
1380 atomic_inc_return(&btrfs_bdi_num));
1381 if (err) {
1382 bdi_destroy(bdi);
1383 return err;
1384 }
1385
1386 bdi->ra_pages = default_backing_dev_info.ra_pages;
1387 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1388 bdi->unplug_io_data = info;
1389 bdi->congested_fn = btrfs_congested_fn;
1390 bdi->congested_data = info;
1391 return 0;
1392 }
1393
1394 static int bio_ready_for_csum(struct bio *bio)
1395 {
1396 u64 length = 0;
1397 u64 buf_len = 0;
1398 u64 start = 0;
1399 struct page *page;
1400 struct extent_io_tree *io_tree = NULL;
1401 struct btrfs_fs_info *info = NULL;
1402 struct bio_vec *bvec;
1403 int i;
1404 int ret;
1405
1406 bio_for_each_segment(bvec, bio, i) {
1407 page = bvec->bv_page;
1408 if (page->private == EXTENT_PAGE_PRIVATE) {
1409 length += bvec->bv_len;
1410 continue;
1411 }
1412 if (!page->private) {
1413 length += bvec->bv_len;
1414 continue;
1415 }
1416 length = bvec->bv_len;
1417 buf_len = page->private >> 2;
1418 start = page_offset(page) + bvec->bv_offset;
1419 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1420 info = BTRFS_I(page->mapping->host)->root->fs_info;
1421 }
1422 /* are we fully contained in this bio? */
1423 if (buf_len <= length)
1424 return 1;
1425
1426 ret = extent_range_uptodate(io_tree, start + length,
1427 start + buf_len - 1);
1428 return ret;
1429 }
1430
1431 /*
1432 * called by the kthread helper functions to finally call the bio end_io
1433 * functions. This is where read checksum verification actually happens
1434 */
1435 static void end_workqueue_fn(struct btrfs_work *work)
1436 {
1437 struct bio *bio;
1438 struct end_io_wq *end_io_wq;
1439 struct btrfs_fs_info *fs_info;
1440 int error;
1441
1442 end_io_wq = container_of(work, struct end_io_wq, work);
1443 bio = end_io_wq->bio;
1444 fs_info = end_io_wq->info;
1445
1446 /* metadata bio reads are special because the whole tree block must
1447 * be checksummed at once. This makes sure the entire block is in
1448 * ram and up to date before trying to verify things. For
1449 * blocksize <= pagesize, it is basically a noop
1450 */
1451 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1452 !bio_ready_for_csum(bio)) {
1453 btrfs_queue_worker(&fs_info->endio_meta_workers,
1454 &end_io_wq->work);
1455 return;
1456 }
1457 error = end_io_wq->error;
1458 bio->bi_private = end_io_wq->private;
1459 bio->bi_end_io = end_io_wq->end_io;
1460 kfree(end_io_wq);
1461 bio_endio(bio, error);
1462 }
1463
1464 static int cleaner_kthread(void *arg)
1465 {
1466 struct btrfs_root *root = arg;
1467
1468 do {
1469 smp_mb();
1470 if (root->fs_info->closing)
1471 break;
1472
1473 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1474
1475 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1476 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1477 btrfs_clean_old_snapshots(root);
1478 mutex_unlock(&root->fs_info->cleaner_mutex);
1479 }
1480
1481 if (freezing(current)) {
1482 refrigerator();
1483 } else {
1484 smp_mb();
1485 if (root->fs_info->closing)
1486 break;
1487 set_current_state(TASK_INTERRUPTIBLE);
1488 schedule();
1489 __set_current_state(TASK_RUNNING);
1490 }
1491 } while (!kthread_should_stop());
1492 return 0;
1493 }
1494
1495 static int transaction_kthread(void *arg)
1496 {
1497 struct btrfs_root *root = arg;
1498 struct btrfs_trans_handle *trans;
1499 struct btrfs_transaction *cur;
1500 unsigned long now;
1501 unsigned long delay;
1502 int ret;
1503
1504 do {
1505 smp_mb();
1506 if (root->fs_info->closing)
1507 break;
1508
1509 delay = HZ * 30;
1510 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1511 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1512
1513 mutex_lock(&root->fs_info->trans_mutex);
1514 cur = root->fs_info->running_transaction;
1515 if (!cur) {
1516 mutex_unlock(&root->fs_info->trans_mutex);
1517 goto sleep;
1518 }
1519
1520 now = get_seconds();
1521 if (now < cur->start_time || now - cur->start_time < 30) {
1522 mutex_unlock(&root->fs_info->trans_mutex);
1523 delay = HZ * 5;
1524 goto sleep;
1525 }
1526 mutex_unlock(&root->fs_info->trans_mutex);
1527 trans = btrfs_start_transaction(root, 1);
1528 ret = btrfs_commit_transaction(trans, root);
1529
1530 sleep:
1531 wake_up_process(root->fs_info->cleaner_kthread);
1532 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1533
1534 if (freezing(current)) {
1535 refrigerator();
1536 } else {
1537 if (root->fs_info->closing)
1538 break;
1539 set_current_state(TASK_INTERRUPTIBLE);
1540 schedule_timeout(delay);
1541 __set_current_state(TASK_RUNNING);
1542 }
1543 } while (!kthread_should_stop());
1544 return 0;
1545 }
1546
1547 struct btrfs_root *open_ctree(struct super_block *sb,
1548 struct btrfs_fs_devices *fs_devices,
1549 char *options)
1550 {
1551 u32 sectorsize;
1552 u32 nodesize;
1553 u32 leafsize;
1554 u32 blocksize;
1555 u32 stripesize;
1556 u64 generation;
1557 u64 features;
1558 struct btrfs_key location;
1559 struct buffer_head *bh;
1560 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1561 GFP_NOFS);
1562 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1563 GFP_NOFS);
1564 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1565 GFP_NOFS);
1566 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1567 GFP_NOFS);
1568 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1569 GFP_NOFS);
1570 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1571 GFP_NOFS);
1572 struct btrfs_root *log_tree_root;
1573
1574 int ret;
1575 int err = -EINVAL;
1576
1577 struct btrfs_super_block *disk_super;
1578
1579 if (!extent_root || !tree_root || !fs_info ||
1580 !chunk_root || !dev_root || !csum_root) {
1581 err = -ENOMEM;
1582 goto fail;
1583 }
1584
1585 ret = init_srcu_struct(&fs_info->subvol_srcu);
1586 if (ret) {
1587 err = ret;
1588 goto fail;
1589 }
1590
1591 ret = setup_bdi(fs_info, &fs_info->bdi);
1592 if (ret) {
1593 err = ret;
1594 goto fail_srcu;
1595 }
1596
1597 fs_info->btree_inode = new_inode(sb);
1598 if (!fs_info->btree_inode) {
1599 err = -ENOMEM;
1600 goto fail_bdi;
1601 }
1602
1603 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1604 INIT_LIST_HEAD(&fs_info->trans_list);
1605 INIT_LIST_HEAD(&fs_info->dead_roots);
1606 INIT_LIST_HEAD(&fs_info->hashers);
1607 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1608 INIT_LIST_HEAD(&fs_info->ordered_operations);
1609 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1610 spin_lock_init(&fs_info->delalloc_lock);
1611 spin_lock_init(&fs_info->new_trans_lock);
1612 spin_lock_init(&fs_info->ref_cache_lock);
1613 spin_lock_init(&fs_info->fs_roots_radix_lock);
1614
1615 init_completion(&fs_info->kobj_unregister);
1616 fs_info->tree_root = tree_root;
1617 fs_info->extent_root = extent_root;
1618 fs_info->csum_root = csum_root;
1619 fs_info->chunk_root = chunk_root;
1620 fs_info->dev_root = dev_root;
1621 fs_info->fs_devices = fs_devices;
1622 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1623 INIT_LIST_HEAD(&fs_info->space_info);
1624 btrfs_mapping_init(&fs_info->mapping_tree);
1625 atomic_set(&fs_info->nr_async_submits, 0);
1626 atomic_set(&fs_info->async_delalloc_pages, 0);
1627 atomic_set(&fs_info->async_submit_draining, 0);
1628 atomic_set(&fs_info->nr_async_bios, 0);
1629 fs_info->sb = sb;
1630 fs_info->max_extent = (u64)-1;
1631 fs_info->max_inline = 8192 * 1024;
1632 fs_info->metadata_ratio = 0;
1633
1634 fs_info->thread_pool_size = min_t(unsigned long,
1635 num_online_cpus() + 2, 8);
1636
1637 INIT_LIST_HEAD(&fs_info->ordered_extents);
1638 spin_lock_init(&fs_info->ordered_extent_lock);
1639
1640 sb->s_blocksize = 4096;
1641 sb->s_blocksize_bits = blksize_bits(4096);
1642
1643 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1644 fs_info->btree_inode->i_nlink = 1;
1645 /*
1646 * we set the i_size on the btree inode to the max possible int.
1647 * the real end of the address space is determined by all of
1648 * the devices in the system
1649 */
1650 fs_info->btree_inode->i_size = OFFSET_MAX;
1651 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1652 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1653
1654 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1655 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1656 fs_info->btree_inode->i_mapping,
1657 GFP_NOFS);
1658 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1659 GFP_NOFS);
1660
1661 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1662
1663 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1664 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1665 sizeof(struct btrfs_key));
1666 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1667 insert_inode_hash(fs_info->btree_inode);
1668
1669 spin_lock_init(&fs_info->block_group_cache_lock);
1670 fs_info->block_group_cache_tree.rb_node = NULL;
1671
1672 extent_io_tree_init(&fs_info->freed_extents[0],
1673 fs_info->btree_inode->i_mapping, GFP_NOFS);
1674 extent_io_tree_init(&fs_info->freed_extents[1],
1675 fs_info->btree_inode->i_mapping, GFP_NOFS);
1676 fs_info->pinned_extents = &fs_info->freed_extents[0];
1677 fs_info->do_barriers = 1;
1678
1679
1680 mutex_init(&fs_info->trans_mutex);
1681 mutex_init(&fs_info->ordered_operations_mutex);
1682 mutex_init(&fs_info->tree_log_mutex);
1683 mutex_init(&fs_info->chunk_mutex);
1684 mutex_init(&fs_info->transaction_kthread_mutex);
1685 mutex_init(&fs_info->cleaner_mutex);
1686 mutex_init(&fs_info->volume_mutex);
1687 init_rwsem(&fs_info->extent_commit_sem);
1688 init_rwsem(&fs_info->subvol_sem);
1689
1690 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1691 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1692
1693 init_waitqueue_head(&fs_info->transaction_throttle);
1694 init_waitqueue_head(&fs_info->transaction_wait);
1695 init_waitqueue_head(&fs_info->async_submit_wait);
1696
1697 __setup_root(4096, 4096, 4096, 4096, tree_root,
1698 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1699
1700
1701 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1702 if (!bh)
1703 goto fail_iput;
1704
1705 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1706 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1707 sizeof(fs_info->super_for_commit));
1708 brelse(bh);
1709
1710 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1711
1712 disk_super = &fs_info->super_copy;
1713 if (!btrfs_super_root(disk_super))
1714 goto fail_iput;
1715
1716 ret = btrfs_parse_options(tree_root, options);
1717 if (ret) {
1718 err = ret;
1719 goto fail_iput;
1720 }
1721
1722 features = btrfs_super_incompat_flags(disk_super) &
1723 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1724 if (features) {
1725 printk(KERN_ERR "BTRFS: couldn't mount because of "
1726 "unsupported optional features (%Lx).\n",
1727 (unsigned long long)features);
1728 err = -EINVAL;
1729 goto fail_iput;
1730 }
1731
1732 features = btrfs_super_incompat_flags(disk_super);
1733 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1734 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1735 btrfs_set_super_incompat_flags(disk_super, features);
1736 }
1737
1738 features = btrfs_super_compat_ro_flags(disk_super) &
1739 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1740 if (!(sb->s_flags & MS_RDONLY) && features) {
1741 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1742 "unsupported option features (%Lx).\n",
1743 (unsigned long long)features);
1744 err = -EINVAL;
1745 goto fail_iput;
1746 }
1747 printk("thread pool is %d\n", fs_info->thread_pool_size);
1748 /*
1749 * we need to start all the end_io workers up front because the
1750 * queue work function gets called at interrupt time, and so it
1751 * cannot dynamically grow.
1752 */
1753 btrfs_init_workers(&fs_info->workers, "worker",
1754 fs_info->thread_pool_size);
1755
1756 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1757 fs_info->thread_pool_size);
1758
1759 btrfs_init_workers(&fs_info->submit_workers, "submit",
1760 min_t(u64, fs_devices->num_devices,
1761 fs_info->thread_pool_size));
1762
1763 /* a higher idle thresh on the submit workers makes it much more
1764 * likely that bios will be send down in a sane order to the
1765 * devices
1766 */
1767 fs_info->submit_workers.idle_thresh = 64;
1768
1769 fs_info->workers.idle_thresh = 16;
1770 fs_info->workers.ordered = 1;
1771
1772 fs_info->delalloc_workers.idle_thresh = 2;
1773 fs_info->delalloc_workers.ordered = 1;
1774
1775 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1776 btrfs_init_workers(&fs_info->endio_workers, "endio",
1777 fs_info->thread_pool_size);
1778 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1779 fs_info->thread_pool_size);
1780 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1781 "endio-meta-write", fs_info->thread_pool_size);
1782 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1783 fs_info->thread_pool_size);
1784
1785 /*
1786 * endios are largely parallel and should have a very
1787 * low idle thresh
1788 */
1789 fs_info->endio_workers.idle_thresh = 4;
1790 fs_info->endio_meta_workers.idle_thresh = 4;
1791
1792 fs_info->endio_write_workers.idle_thresh = 2;
1793 fs_info->endio_meta_write_workers.idle_thresh = 2;
1794
1795 fs_info->endio_workers.atomic_worker_start = 1;
1796 fs_info->endio_meta_workers.atomic_worker_start = 1;
1797 fs_info->endio_write_workers.atomic_worker_start = 1;
1798 fs_info->endio_meta_write_workers.atomic_worker_start = 1;
1799
1800 btrfs_start_workers(&fs_info->workers, 1);
1801 btrfs_start_workers(&fs_info->submit_workers, 1);
1802 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1803 btrfs_start_workers(&fs_info->fixup_workers, 1);
1804 btrfs_start_workers(&fs_info->endio_workers, 1);
1805 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1806 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1807 btrfs_start_workers(&fs_info->endio_write_workers, 1);
1808
1809 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1810 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1811 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1812
1813 nodesize = btrfs_super_nodesize(disk_super);
1814 leafsize = btrfs_super_leafsize(disk_super);
1815 sectorsize = btrfs_super_sectorsize(disk_super);
1816 stripesize = btrfs_super_stripesize(disk_super);
1817 tree_root->nodesize = nodesize;
1818 tree_root->leafsize = leafsize;
1819 tree_root->sectorsize = sectorsize;
1820 tree_root->stripesize = stripesize;
1821
1822 sb->s_blocksize = sectorsize;
1823 sb->s_blocksize_bits = blksize_bits(sectorsize);
1824
1825 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1826 sizeof(disk_super->magic))) {
1827 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1828 goto fail_sb_buffer;
1829 }
1830
1831 mutex_lock(&fs_info->chunk_mutex);
1832 ret = btrfs_read_sys_array(tree_root);
1833 mutex_unlock(&fs_info->chunk_mutex);
1834 if (ret) {
1835 printk(KERN_WARNING "btrfs: failed to read the system "
1836 "array on %s\n", sb->s_id);
1837 goto fail_sb_buffer;
1838 }
1839
1840 blocksize = btrfs_level_size(tree_root,
1841 btrfs_super_chunk_root_level(disk_super));
1842 generation = btrfs_super_chunk_root_generation(disk_super);
1843
1844 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1845 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1846
1847 chunk_root->node = read_tree_block(chunk_root,
1848 btrfs_super_chunk_root(disk_super),
1849 blocksize, generation);
1850 BUG_ON(!chunk_root->node);
1851 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1852 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1853 sb->s_id);
1854 goto fail_chunk_root;
1855 }
1856 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1857 chunk_root->commit_root = btrfs_root_node(chunk_root);
1858
1859 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1860 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1861 BTRFS_UUID_SIZE);
1862
1863 mutex_lock(&fs_info->chunk_mutex);
1864 ret = btrfs_read_chunk_tree(chunk_root);
1865 mutex_unlock(&fs_info->chunk_mutex);
1866 if (ret) {
1867 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1868 sb->s_id);
1869 goto fail_chunk_root;
1870 }
1871
1872 btrfs_close_extra_devices(fs_devices);
1873
1874 blocksize = btrfs_level_size(tree_root,
1875 btrfs_super_root_level(disk_super));
1876 generation = btrfs_super_generation(disk_super);
1877
1878 tree_root->node = read_tree_block(tree_root,
1879 btrfs_super_root(disk_super),
1880 blocksize, generation);
1881 if (!tree_root->node)
1882 goto fail_chunk_root;
1883 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1884 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1885 sb->s_id);
1886 goto fail_tree_root;
1887 }
1888 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1889 tree_root->commit_root = btrfs_root_node(tree_root);
1890
1891 ret = find_and_setup_root(tree_root, fs_info,
1892 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1893 if (ret)
1894 goto fail_tree_root;
1895 extent_root->track_dirty = 1;
1896
1897 ret = find_and_setup_root(tree_root, fs_info,
1898 BTRFS_DEV_TREE_OBJECTID, dev_root);
1899 if (ret)
1900 goto fail_extent_root;
1901 dev_root->track_dirty = 1;
1902
1903 ret = find_and_setup_root(tree_root, fs_info,
1904 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1905 if (ret)
1906 goto fail_dev_root;
1907
1908 csum_root->track_dirty = 1;
1909
1910 btrfs_read_block_groups(extent_root);
1911
1912 fs_info->generation = generation;
1913 fs_info->last_trans_committed = generation;
1914 fs_info->data_alloc_profile = (u64)-1;
1915 fs_info->metadata_alloc_profile = (u64)-1;
1916 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1917 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1918 "btrfs-cleaner");
1919 if (IS_ERR(fs_info->cleaner_kthread))
1920 goto fail_csum_root;
1921
1922 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1923 tree_root,
1924 "btrfs-transaction");
1925 if (IS_ERR(fs_info->transaction_kthread))
1926 goto fail_cleaner;
1927
1928 if (!btrfs_test_opt(tree_root, SSD) &&
1929 !btrfs_test_opt(tree_root, NOSSD) &&
1930 !fs_info->fs_devices->rotating) {
1931 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1932 "mode\n");
1933 btrfs_set_opt(fs_info->mount_opt, SSD);
1934 }
1935
1936 if (btrfs_super_log_root(disk_super) != 0) {
1937 u64 bytenr = btrfs_super_log_root(disk_super);
1938
1939 if (fs_devices->rw_devices == 0) {
1940 printk(KERN_WARNING "Btrfs log replay required "
1941 "on RO media\n");
1942 err = -EIO;
1943 goto fail_trans_kthread;
1944 }
1945 blocksize =
1946 btrfs_level_size(tree_root,
1947 btrfs_super_log_root_level(disk_super));
1948
1949 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1950 GFP_NOFS);
1951
1952 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1953 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1954
1955 log_tree_root->node = read_tree_block(tree_root, bytenr,
1956 blocksize,
1957 generation + 1);
1958 ret = btrfs_recover_log_trees(log_tree_root);
1959 BUG_ON(ret);
1960
1961 if (sb->s_flags & MS_RDONLY) {
1962 ret = btrfs_commit_super(tree_root);
1963 BUG_ON(ret);
1964 }
1965 }
1966
1967 ret = btrfs_find_orphan_roots(tree_root);
1968 BUG_ON(ret);
1969
1970 if (!(sb->s_flags & MS_RDONLY)) {
1971 ret = btrfs_recover_relocation(tree_root);
1972 BUG_ON(ret);
1973 }
1974
1975 location.objectid = BTRFS_FS_TREE_OBJECTID;
1976 location.type = BTRFS_ROOT_ITEM_KEY;
1977 location.offset = (u64)-1;
1978
1979 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1980 if (!fs_info->fs_root)
1981 goto fail_trans_kthread;
1982
1983 return tree_root;
1984
1985 fail_trans_kthread:
1986 kthread_stop(fs_info->transaction_kthread);
1987 fail_cleaner:
1988 kthread_stop(fs_info->cleaner_kthread);
1989
1990 /*
1991 * make sure we're done with the btree inode before we stop our
1992 * kthreads
1993 */
1994 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1995 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1996
1997 fail_csum_root:
1998 free_extent_buffer(csum_root->node);
1999 free_extent_buffer(csum_root->commit_root);
2000 fail_dev_root:
2001 free_extent_buffer(dev_root->node);
2002 free_extent_buffer(dev_root->commit_root);
2003 fail_extent_root:
2004 free_extent_buffer(extent_root->node);
2005 free_extent_buffer(extent_root->commit_root);
2006 fail_tree_root:
2007 free_extent_buffer(tree_root->node);
2008 free_extent_buffer(tree_root->commit_root);
2009 fail_chunk_root:
2010 free_extent_buffer(chunk_root->node);
2011 free_extent_buffer(chunk_root->commit_root);
2012 fail_sb_buffer:
2013 btrfs_stop_workers(&fs_info->fixup_workers);
2014 btrfs_stop_workers(&fs_info->delalloc_workers);
2015 btrfs_stop_workers(&fs_info->workers);
2016 btrfs_stop_workers(&fs_info->endio_workers);
2017 btrfs_stop_workers(&fs_info->endio_meta_workers);
2018 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2019 btrfs_stop_workers(&fs_info->endio_write_workers);
2020 btrfs_stop_workers(&fs_info->submit_workers);
2021 fail_iput:
2022 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2023 iput(fs_info->btree_inode);
2024
2025 btrfs_close_devices(fs_info->fs_devices);
2026 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2027 fail_bdi:
2028 bdi_destroy(&fs_info->bdi);
2029 fail_srcu:
2030 cleanup_srcu_struct(&fs_info->subvol_srcu);
2031 fail:
2032 kfree(extent_root);
2033 kfree(tree_root);
2034 kfree(fs_info);
2035 kfree(chunk_root);
2036 kfree(dev_root);
2037 kfree(csum_root);
2038 return ERR_PTR(err);
2039 }
2040
2041 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2042 {
2043 char b[BDEVNAME_SIZE];
2044
2045 if (uptodate) {
2046 set_buffer_uptodate(bh);
2047 } else {
2048 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2049 printk(KERN_WARNING "lost page write due to "
2050 "I/O error on %s\n",
2051 bdevname(bh->b_bdev, b));
2052 }
2053 /* note, we dont' set_buffer_write_io_error because we have
2054 * our own ways of dealing with the IO errors
2055 */
2056 clear_buffer_uptodate(bh);
2057 }
2058 unlock_buffer(bh);
2059 put_bh(bh);
2060 }
2061
2062 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2063 {
2064 struct buffer_head *bh;
2065 struct buffer_head *latest = NULL;
2066 struct btrfs_super_block *super;
2067 int i;
2068 u64 transid = 0;
2069 u64 bytenr;
2070
2071 /* we would like to check all the supers, but that would make
2072 * a btrfs mount succeed after a mkfs from a different FS.
2073 * So, we need to add a special mount option to scan for
2074 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2075 */
2076 for (i = 0; i < 1; i++) {
2077 bytenr = btrfs_sb_offset(i);
2078 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2079 break;
2080 bh = __bread(bdev, bytenr / 4096, 4096);
2081 if (!bh)
2082 continue;
2083
2084 super = (struct btrfs_super_block *)bh->b_data;
2085 if (btrfs_super_bytenr(super) != bytenr ||
2086 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2087 sizeof(super->magic))) {
2088 brelse(bh);
2089 continue;
2090 }
2091
2092 if (!latest || btrfs_super_generation(super) > transid) {
2093 brelse(latest);
2094 latest = bh;
2095 transid = btrfs_super_generation(super);
2096 } else {
2097 brelse(bh);
2098 }
2099 }
2100 return latest;
2101 }
2102
2103 /*
2104 * this should be called twice, once with wait == 0 and
2105 * once with wait == 1. When wait == 0 is done, all the buffer heads
2106 * we write are pinned.
2107 *
2108 * They are released when wait == 1 is done.
2109 * max_mirrors must be the same for both runs, and it indicates how
2110 * many supers on this one device should be written.
2111 *
2112 * max_mirrors == 0 means to write them all.
2113 */
2114 static int write_dev_supers(struct btrfs_device *device,
2115 struct btrfs_super_block *sb,
2116 int do_barriers, int wait, int max_mirrors)
2117 {
2118 struct buffer_head *bh;
2119 int i;
2120 int ret;
2121 int errors = 0;
2122 u32 crc;
2123 u64 bytenr;
2124 int last_barrier = 0;
2125
2126 if (max_mirrors == 0)
2127 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2128
2129 /* make sure only the last submit_bh does a barrier */
2130 if (do_barriers) {
2131 for (i = 0; i < max_mirrors; i++) {
2132 bytenr = btrfs_sb_offset(i);
2133 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2134 device->total_bytes)
2135 break;
2136 last_barrier = i;
2137 }
2138 }
2139
2140 for (i = 0; i < max_mirrors; i++) {
2141 bytenr = btrfs_sb_offset(i);
2142 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2143 break;
2144
2145 if (wait) {
2146 bh = __find_get_block(device->bdev, bytenr / 4096,
2147 BTRFS_SUPER_INFO_SIZE);
2148 BUG_ON(!bh);
2149 wait_on_buffer(bh);
2150 if (!buffer_uptodate(bh))
2151 errors++;
2152
2153 /* drop our reference */
2154 brelse(bh);
2155
2156 /* drop the reference from the wait == 0 run */
2157 brelse(bh);
2158 continue;
2159 } else {
2160 btrfs_set_super_bytenr(sb, bytenr);
2161
2162 crc = ~(u32)0;
2163 crc = btrfs_csum_data(NULL, (char *)sb +
2164 BTRFS_CSUM_SIZE, crc,
2165 BTRFS_SUPER_INFO_SIZE -
2166 BTRFS_CSUM_SIZE);
2167 btrfs_csum_final(crc, sb->csum);
2168
2169 /*
2170 * one reference for us, and we leave it for the
2171 * caller
2172 */
2173 bh = __getblk(device->bdev, bytenr / 4096,
2174 BTRFS_SUPER_INFO_SIZE);
2175 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2176
2177 /* one reference for submit_bh */
2178 get_bh(bh);
2179
2180 set_buffer_uptodate(bh);
2181 lock_buffer(bh);
2182 bh->b_end_io = btrfs_end_buffer_write_sync;
2183 }
2184
2185 if (i == last_barrier && do_barriers && device->barriers) {
2186 ret = submit_bh(WRITE_BARRIER, bh);
2187 if (ret == -EOPNOTSUPP) {
2188 printk("btrfs: disabling barriers on dev %s\n",
2189 device->name);
2190 set_buffer_uptodate(bh);
2191 device->barriers = 0;
2192 /* one reference for submit_bh */
2193 get_bh(bh);
2194 lock_buffer(bh);
2195 ret = submit_bh(WRITE_SYNC, bh);
2196 }
2197 } else {
2198 ret = submit_bh(WRITE_SYNC, bh);
2199 }
2200
2201 if (ret)
2202 errors++;
2203 }
2204 return errors < i ? 0 : -1;
2205 }
2206
2207 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2208 {
2209 struct list_head *head;
2210 struct btrfs_device *dev;
2211 struct btrfs_super_block *sb;
2212 struct btrfs_dev_item *dev_item;
2213 int ret;
2214 int do_barriers;
2215 int max_errors;
2216 int total_errors = 0;
2217 u64 flags;
2218
2219 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2220 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2221
2222 sb = &root->fs_info->super_for_commit;
2223 dev_item = &sb->dev_item;
2224
2225 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2226 head = &root->fs_info->fs_devices->devices;
2227 list_for_each_entry(dev, head, dev_list) {
2228 if (!dev->bdev) {
2229 total_errors++;
2230 continue;
2231 }
2232 if (!dev->in_fs_metadata || !dev->writeable)
2233 continue;
2234
2235 btrfs_set_stack_device_generation(dev_item, 0);
2236 btrfs_set_stack_device_type(dev_item, dev->type);
2237 btrfs_set_stack_device_id(dev_item, dev->devid);
2238 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2239 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2240 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2241 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2242 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2243 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2244 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2245
2246 flags = btrfs_super_flags(sb);
2247 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2248
2249 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2250 if (ret)
2251 total_errors++;
2252 }
2253 if (total_errors > max_errors) {
2254 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2255 total_errors);
2256 BUG();
2257 }
2258
2259 total_errors = 0;
2260 list_for_each_entry(dev, head, dev_list) {
2261 if (!dev->bdev)
2262 continue;
2263 if (!dev->in_fs_metadata || !dev->writeable)
2264 continue;
2265
2266 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2267 if (ret)
2268 total_errors++;
2269 }
2270 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2271 if (total_errors > max_errors) {
2272 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2273 total_errors);
2274 BUG();
2275 }
2276 return 0;
2277 }
2278
2279 int write_ctree_super(struct btrfs_trans_handle *trans,
2280 struct btrfs_root *root, int max_mirrors)
2281 {
2282 int ret;
2283
2284 ret = write_all_supers(root, max_mirrors);
2285 return ret;
2286 }
2287
2288 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2289 {
2290 spin_lock(&fs_info->fs_roots_radix_lock);
2291 radix_tree_delete(&fs_info->fs_roots_radix,
2292 (unsigned long)root->root_key.objectid);
2293 spin_unlock(&fs_info->fs_roots_radix_lock);
2294
2295 if (btrfs_root_refs(&root->root_item) == 0)
2296 synchronize_srcu(&fs_info->subvol_srcu);
2297
2298 free_fs_root(root);
2299 return 0;
2300 }
2301
2302 static void free_fs_root(struct btrfs_root *root)
2303 {
2304 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2305 if (root->anon_super.s_dev) {
2306 down_write(&root->anon_super.s_umount);
2307 kill_anon_super(&root->anon_super);
2308 }
2309 free_extent_buffer(root->node);
2310 free_extent_buffer(root->commit_root);
2311 kfree(root->name);
2312 kfree(root);
2313 }
2314
2315 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2316 {
2317 int ret;
2318 struct btrfs_root *gang[8];
2319 int i;
2320
2321 while (!list_empty(&fs_info->dead_roots)) {
2322 gang[0] = list_entry(fs_info->dead_roots.next,
2323 struct btrfs_root, root_list);
2324 list_del(&gang[0]->root_list);
2325
2326 if (gang[0]->in_radix) {
2327 btrfs_free_fs_root(fs_info, gang[0]);
2328 } else {
2329 free_extent_buffer(gang[0]->node);
2330 free_extent_buffer(gang[0]->commit_root);
2331 kfree(gang[0]);
2332 }
2333 }
2334
2335 while (1) {
2336 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2337 (void **)gang, 0,
2338 ARRAY_SIZE(gang));
2339 if (!ret)
2340 break;
2341 for (i = 0; i < ret; i++)
2342 btrfs_free_fs_root(fs_info, gang[i]);
2343 }
2344 return 0;
2345 }
2346
2347 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2348 {
2349 u64 root_objectid = 0;
2350 struct btrfs_root *gang[8];
2351 int i;
2352 int ret;
2353
2354 while (1) {
2355 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2356 (void **)gang, root_objectid,
2357 ARRAY_SIZE(gang));
2358 if (!ret)
2359 break;
2360
2361 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2362 for (i = 0; i < ret; i++) {
2363 root_objectid = gang[i]->root_key.objectid;
2364 btrfs_orphan_cleanup(gang[i]);
2365 }
2366 root_objectid++;
2367 }
2368 return 0;
2369 }
2370
2371 int btrfs_commit_super(struct btrfs_root *root)
2372 {
2373 struct btrfs_trans_handle *trans;
2374 int ret;
2375
2376 mutex_lock(&root->fs_info->cleaner_mutex);
2377 btrfs_clean_old_snapshots(root);
2378 mutex_unlock(&root->fs_info->cleaner_mutex);
2379 trans = btrfs_start_transaction(root, 1);
2380 ret = btrfs_commit_transaction(trans, root);
2381 BUG_ON(ret);
2382 /* run commit again to drop the original snapshot */
2383 trans = btrfs_start_transaction(root, 1);
2384 btrfs_commit_transaction(trans, root);
2385 ret = btrfs_write_and_wait_transaction(NULL, root);
2386 BUG_ON(ret);
2387
2388 ret = write_ctree_super(NULL, root, 0);
2389 return ret;
2390 }
2391
2392 int close_ctree(struct btrfs_root *root)
2393 {
2394 struct btrfs_fs_info *fs_info = root->fs_info;
2395 int ret;
2396
2397 fs_info->closing = 1;
2398 smp_mb();
2399
2400 kthread_stop(root->fs_info->transaction_kthread);
2401 kthread_stop(root->fs_info->cleaner_kthread);
2402
2403 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2404 ret = btrfs_commit_super(root);
2405 if (ret)
2406 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2407 }
2408
2409 fs_info->closing = 2;
2410 smp_mb();
2411
2412 if (fs_info->delalloc_bytes) {
2413 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2414 (unsigned long long)fs_info->delalloc_bytes);
2415 }
2416 if (fs_info->total_ref_cache_size) {
2417 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2418 (unsigned long long)fs_info->total_ref_cache_size);
2419 }
2420
2421 free_extent_buffer(fs_info->extent_root->node);
2422 free_extent_buffer(fs_info->extent_root->commit_root);
2423 free_extent_buffer(fs_info->tree_root->node);
2424 free_extent_buffer(fs_info->tree_root->commit_root);
2425 free_extent_buffer(root->fs_info->chunk_root->node);
2426 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2427 free_extent_buffer(root->fs_info->dev_root->node);
2428 free_extent_buffer(root->fs_info->dev_root->commit_root);
2429 free_extent_buffer(root->fs_info->csum_root->node);
2430 free_extent_buffer(root->fs_info->csum_root->commit_root);
2431
2432 btrfs_free_block_groups(root->fs_info);
2433
2434 del_fs_roots(fs_info);
2435
2436 iput(fs_info->btree_inode);
2437
2438 btrfs_stop_workers(&fs_info->fixup_workers);
2439 btrfs_stop_workers(&fs_info->delalloc_workers);
2440 btrfs_stop_workers(&fs_info->workers);
2441 btrfs_stop_workers(&fs_info->endio_workers);
2442 btrfs_stop_workers(&fs_info->endio_meta_workers);
2443 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2444 btrfs_stop_workers(&fs_info->endio_write_workers);
2445 btrfs_stop_workers(&fs_info->submit_workers);
2446
2447 btrfs_close_devices(fs_info->fs_devices);
2448 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2449
2450 bdi_destroy(&fs_info->bdi);
2451 cleanup_srcu_struct(&fs_info->subvol_srcu);
2452
2453 kfree(fs_info->extent_root);
2454 kfree(fs_info->tree_root);
2455 kfree(fs_info->chunk_root);
2456 kfree(fs_info->dev_root);
2457 kfree(fs_info->csum_root);
2458 return 0;
2459 }
2460
2461 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2462 {
2463 int ret;
2464 struct inode *btree_inode = buf->first_page->mapping->host;
2465
2466 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2467 if (!ret)
2468 return ret;
2469
2470 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2471 parent_transid);
2472 return !ret;
2473 }
2474
2475 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2476 {
2477 struct inode *btree_inode = buf->first_page->mapping->host;
2478 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2479 buf);
2480 }
2481
2482 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2483 {
2484 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2485 u64 transid = btrfs_header_generation(buf);
2486 struct inode *btree_inode = root->fs_info->btree_inode;
2487 int was_dirty;
2488
2489 btrfs_assert_tree_locked(buf);
2490 if (transid != root->fs_info->generation) {
2491 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2492 "found %llu running %llu\n",
2493 (unsigned long long)buf->start,
2494 (unsigned long long)transid,
2495 (unsigned long long)root->fs_info->generation);
2496 WARN_ON(1);
2497 }
2498 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2499 buf);
2500 if (!was_dirty) {
2501 spin_lock(&root->fs_info->delalloc_lock);
2502 root->fs_info->dirty_metadata_bytes += buf->len;
2503 spin_unlock(&root->fs_info->delalloc_lock);
2504 }
2505 }
2506
2507 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2508 {
2509 /*
2510 * looks as though older kernels can get into trouble with
2511 * this code, they end up stuck in balance_dirty_pages forever
2512 */
2513 u64 num_dirty;
2514 unsigned long thresh = 32 * 1024 * 1024;
2515
2516 if (current->flags & PF_MEMALLOC)
2517 return;
2518
2519 num_dirty = root->fs_info->dirty_metadata_bytes;
2520
2521 if (num_dirty > thresh) {
2522 balance_dirty_pages_ratelimited_nr(
2523 root->fs_info->btree_inode->i_mapping, 1);
2524 }
2525 return;
2526 }
2527
2528 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2529 {
2530 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2531 int ret;
2532 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2533 if (ret == 0)
2534 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2535 return ret;
2536 }
2537
2538 int btree_lock_page_hook(struct page *page)
2539 {
2540 struct inode *inode = page->mapping->host;
2541 struct btrfs_root *root = BTRFS_I(inode)->root;
2542 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2543 struct extent_buffer *eb;
2544 unsigned long len;
2545 u64 bytenr = page_offset(page);
2546
2547 if (page->private == EXTENT_PAGE_PRIVATE)
2548 goto out;
2549
2550 len = page->private >> 2;
2551 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2552 if (!eb)
2553 goto out;
2554
2555 btrfs_tree_lock(eb);
2556 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2557
2558 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2559 spin_lock(&root->fs_info->delalloc_lock);
2560 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2561 root->fs_info->dirty_metadata_bytes -= eb->len;
2562 else
2563 WARN_ON(1);
2564 spin_unlock(&root->fs_info->delalloc_lock);
2565 }
2566
2567 btrfs_tree_unlock(eb);
2568 free_extent_buffer(eb);
2569 out:
2570 lock_page(page);
2571 return 0;
2572 }
2573
2574 static struct extent_io_ops btree_extent_io_ops = {
2575 .write_cache_pages_lock_hook = btree_lock_page_hook,
2576 .readpage_end_io_hook = btree_readpage_end_io_hook,
2577 .submit_bio_hook = btree_submit_bio_hook,
2578 /* note we're sharing with inode.c for the merge bio hook */
2579 .merge_bio_hook = btrfs_merge_bio_hook,
2580 };
This page took 0.094918 seconds and 5 git commands to generate.