btrfs: use printk_get_level and printk_skip_level, add __printf, fix fallout
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53 int read_only);
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
65
66 /*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71 struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
77 int metadata;
78 struct list_head list;
79 struct btrfs_work work;
80 };
81
82 /*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
87 struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
93 int rw;
94 int mirror_num;
95 unsigned long bio_flags;
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
101 struct btrfs_work work;
102 int error;
103 };
104
105 /*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
115 *
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
119 *
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
123 *
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
127 */
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
130 # error
131 # endif
132
133 static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
150 };
151
152 void __init btrfs_init_lockdep(void)
153 {
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164 }
165
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168 {
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180 }
181
182 #endif
183
184 /*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
188 static struct extent_map *btree_get_extent(struct inode *inode,
189 struct page *page, size_t pg_offset, u64 start, u64 len,
190 int create)
191 {
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
196 read_lock(&em_tree->lock);
197 em = lookup_extent_mapping(em_tree, start, len);
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201 read_unlock(&em_tree->lock);
202 goto out;
203 }
204 read_unlock(&em_tree->lock);
205
206 em = alloc_extent_map();
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
212 em->len = (u64)-1;
213 em->block_len = (u64)-1;
214 em->block_start = 0;
215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216
217 write_lock(&em_tree->lock);
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
223 free_extent_map(em);
224 em = lookup_extent_mapping(em_tree, start, len);
225 if (em) {
226 ret = 0;
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
230 ret = -EIO;
231 }
232 } else if (ret) {
233 free_extent_map(em);
234 em = NULL;
235 }
236 write_unlock(&em_tree->lock);
237
238 if (ret)
239 em = ERR_PTR(ret);
240 out:
241 return em;
242 }
243
244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245 {
246 return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 put_unaligned_le32(~crc, result);
252 }
253
254 /*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260 {
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353 out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357 }
358
359 /*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
363 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
365 u64 start, u64 parent_transid)
366 {
367 struct extent_io_tree *io_tree;
368 int failed = 0;
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
372 int failed_mirror = 0;
373
374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
379 btree_get_extent, mirror_num);
380 if (!ret && !verify_parent_transid(io_tree, eb,
381 parent_transid, 0))
382 break;
383
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390 break;
391
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
394 if (num_copies == 1)
395 break;
396
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
402 mirror_num++;
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
406 if (mirror_num > num_copies)
407 break;
408 }
409
410 if (failed && !ret && failed_mirror)
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
414 }
415
416 /*
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
419 */
420
421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422 {
423 struct extent_io_tree *tree;
424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425 u64 found_start;
426 struct extent_buffer *eb;
427
428 tree = &BTRFS_I(page->mapping->host)->io_tree;
429
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
435 WARN_ON(1);
436 return 0;
437 }
438 if (eb->pages[0] != page) {
439 WARN_ON(1);
440 return 0;
441 }
442 if (!PageUptodate(page)) {
443 WARN_ON(1);
444 return 0;
445 }
446 csum_tree_block(root, eb, 0);
447 return 0;
448 }
449
450 static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452 {
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467 }
468
469 #define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475 static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477 {
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534 }
535
536 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 struct page *page, int max_walk)
538 {
539 struct extent_buffer *eb;
540 u64 start = page_offset(page);
541 u64 target = start;
542 u64 min_start;
543
544 if (start < max_walk)
545 min_start = 0;
546 else
547 min_start = start - max_walk;
548
549 while (start >= min_start) {
550 eb = find_extent_buffer(tree, start, 0);
551 if (eb) {
552 /*
553 * we found an extent buffer and it contains our page
554 * horray!
555 */
556 if (eb->start <= target &&
557 eb->start + eb->len > target)
558 return eb;
559
560 /* we found an extent buffer that wasn't for us */
561 free_extent_buffer(eb);
562 return NULL;
563 }
564 if (start == 0)
565 break;
566 start -= PAGE_CACHE_SIZE;
567 }
568 return NULL;
569 }
570
571 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
572 struct extent_state *state, int mirror)
573 {
574 struct extent_io_tree *tree;
575 u64 found_start;
576 int found_level;
577 struct extent_buffer *eb;
578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579 int ret = 0;
580 int reads_done;
581
582 if (!page->private)
583 goto out;
584
585 tree = &BTRFS_I(page->mapping->host)->io_tree;
586 eb = (struct extent_buffer *)page->private;
587
588 /* the pending IO might have been the only thing that kept this buffer
589 * in memory. Make sure we have a ref for all this other checks
590 */
591 extent_buffer_get(eb);
592
593 reads_done = atomic_dec_and_test(&eb->io_pages);
594 if (!reads_done)
595 goto err;
596
597 eb->read_mirror = mirror;
598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 ret = -EIO;
600 goto err;
601 }
602
603 found_start = btrfs_header_bytenr(eb);
604 if (found_start != eb->start) {
605 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606 "%llu %llu\n",
607 (unsigned long long)found_start,
608 (unsigned long long)eb->start);
609 ret = -EIO;
610 goto err;
611 }
612 if (check_tree_block_fsid(root, eb)) {
613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
614 (unsigned long long)eb->start);
615 ret = -EIO;
616 goto err;
617 }
618 found_level = btrfs_header_level(eb);
619
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
622
623 ret = csum_tree_block(root, eb, 1);
624 if (ret) {
625 ret = -EIO;
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
638
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
641 err:
642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 btree_readahead_hook(root, eb, eb->start, ret);
645 }
646
647 if (ret)
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
650 out:
651 return ret;
652 }
653
654 static int btree_io_failed_hook(struct page *page, int failed_mirror)
655 {
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
659 eb = (struct extent_buffer *)page->private;
660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
661 eb->read_mirror = failed_mirror;
662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663 btree_readahead_hook(root, eb, eb->start, -EIO);
664 return -EIO; /* we fixed nothing */
665 }
666
667 static void end_workqueue_bio(struct bio *bio, int err)
668 {
669 struct end_io_wq *end_io_wq = bio->bi_private;
670 struct btrfs_fs_info *fs_info;
671
672 fs_info = end_io_wq->info;
673 end_io_wq->error = err;
674 end_io_wq->work.func = end_workqueue_fn;
675 end_io_wq->work.flags = 0;
676
677 if (bio->bi_rw & REQ_WRITE) {
678 if (end_io_wq->metadata == 1)
679 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 &end_io_wq->work);
681 else if (end_io_wq->metadata == 2)
682 btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 &end_io_wq->work);
684 else
685 btrfs_queue_worker(&fs_info->endio_write_workers,
686 &end_io_wq->work);
687 } else {
688 if (end_io_wq->metadata)
689 btrfs_queue_worker(&fs_info->endio_meta_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_workers,
693 &end_io_wq->work);
694 }
695 }
696
697 /*
698 * For the metadata arg you want
699 *
700 * 0 - if data
701 * 1 - if normal metadta
702 * 2 - if writing to the free space cache area
703 */
704 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 int metadata)
706 {
707 struct end_io_wq *end_io_wq;
708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 if (!end_io_wq)
710 return -ENOMEM;
711
712 end_io_wq->private = bio->bi_private;
713 end_io_wq->end_io = bio->bi_end_io;
714 end_io_wq->info = info;
715 end_io_wq->error = 0;
716 end_io_wq->bio = bio;
717 end_io_wq->metadata = metadata;
718
719 bio->bi_private = end_io_wq;
720 bio->bi_end_io = end_workqueue_bio;
721 return 0;
722 }
723
724 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725 {
726 unsigned long limit = min_t(unsigned long,
727 info->workers.max_workers,
728 info->fs_devices->open_devices);
729 return 256 * limit;
730 }
731
732 static void run_one_async_start(struct btrfs_work *work)
733 {
734 struct async_submit_bio *async;
735 int ret;
736
737 async = container_of(work, struct async_submit_bio, work);
738 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 async->mirror_num, async->bio_flags,
740 async->bio_offset);
741 if (ret)
742 async->error = ret;
743 }
744
745 static void run_one_async_done(struct btrfs_work *work)
746 {
747 struct btrfs_fs_info *fs_info;
748 struct async_submit_bio *async;
749 int limit;
750
751 async = container_of(work, struct async_submit_bio, work);
752 fs_info = BTRFS_I(async->inode)->root->fs_info;
753
754 limit = btrfs_async_submit_limit(fs_info);
755 limit = limit * 2 / 3;
756
757 atomic_dec(&fs_info->nr_async_submits);
758
759 if (atomic_read(&fs_info->nr_async_submits) < limit &&
760 waitqueue_active(&fs_info->async_submit_wait))
761 wake_up(&fs_info->async_submit_wait);
762
763 /* If an error occured we just want to clean up the bio and move on */
764 if (async->error) {
765 bio_endio(async->bio, async->error);
766 return;
767 }
768
769 async->submit_bio_done(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
772 }
773
774 static void run_one_async_free(struct btrfs_work *work)
775 {
776 struct async_submit_bio *async;
777
778 async = container_of(work, struct async_submit_bio, work);
779 kfree(async);
780 }
781
782 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783 int rw, struct bio *bio, int mirror_num,
784 unsigned long bio_flags,
785 u64 bio_offset,
786 extent_submit_bio_hook_t *submit_bio_start,
787 extent_submit_bio_hook_t *submit_bio_done)
788 {
789 struct async_submit_bio *async;
790
791 async = kmalloc(sizeof(*async), GFP_NOFS);
792 if (!async)
793 return -ENOMEM;
794
795 async->inode = inode;
796 async->rw = rw;
797 async->bio = bio;
798 async->mirror_num = mirror_num;
799 async->submit_bio_start = submit_bio_start;
800 async->submit_bio_done = submit_bio_done;
801
802 async->work.func = run_one_async_start;
803 async->work.ordered_func = run_one_async_done;
804 async->work.ordered_free = run_one_async_free;
805
806 async->work.flags = 0;
807 async->bio_flags = bio_flags;
808 async->bio_offset = bio_offset;
809
810 async->error = 0;
811
812 atomic_inc(&fs_info->nr_async_submits);
813
814 if (rw & REQ_SYNC)
815 btrfs_set_work_high_prio(&async->work);
816
817 btrfs_queue_worker(&fs_info->workers, &async->work);
818
819 while (atomic_read(&fs_info->async_submit_draining) &&
820 atomic_read(&fs_info->nr_async_submits)) {
821 wait_event(fs_info->async_submit_wait,
822 (atomic_read(&fs_info->nr_async_submits) == 0));
823 }
824
825 return 0;
826 }
827
828 static int btree_csum_one_bio(struct bio *bio)
829 {
830 struct bio_vec *bvec = bio->bi_io_vec;
831 int bio_index = 0;
832 struct btrfs_root *root;
833 int ret = 0;
834
835 WARN_ON(bio->bi_vcnt <= 0);
836 while (bio_index < bio->bi_vcnt) {
837 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
838 ret = csum_dirty_buffer(root, bvec->bv_page);
839 if (ret)
840 break;
841 bio_index++;
842 bvec++;
843 }
844 return ret;
845 }
846
847 static int __btree_submit_bio_start(struct inode *inode, int rw,
848 struct bio *bio, int mirror_num,
849 unsigned long bio_flags,
850 u64 bio_offset)
851 {
852 /*
853 * when we're called for a write, we're already in the async
854 * submission context. Just jump into btrfs_map_bio
855 */
856 return btree_csum_one_bio(bio);
857 }
858
859 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
860 int mirror_num, unsigned long bio_flags,
861 u64 bio_offset)
862 {
863 /*
864 * when we're called for a write, we're already in the async
865 * submission context. Just jump into btrfs_map_bio
866 */
867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
868 }
869
870 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
871 int mirror_num, unsigned long bio_flags,
872 u64 bio_offset)
873 {
874 int ret;
875
876 if (!(rw & REQ_WRITE)) {
877
878 /*
879 * called for a read, do the setup so that checksum validation
880 * can happen in the async kernel threads
881 */
882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883 bio, 1);
884 if (ret)
885 return ret;
886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
887 mirror_num, 0);
888 }
889
890 /*
891 * kthread helpers are used to submit writes so that checksumming
892 * can happen in parallel across all CPUs
893 */
894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
895 inode, rw, bio, mirror_num, 0,
896 bio_offset,
897 __btree_submit_bio_start,
898 __btree_submit_bio_done);
899 }
900
901 #ifdef CONFIG_MIGRATION
902 static int btree_migratepage(struct address_space *mapping,
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
905 {
906 /*
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
909 */
910 if (PageDirty(page))
911 return -EAGAIN;
912 /*
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
915 */
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
918 return -EAGAIN;
919 return migrate_page(mapping, newpage, page, mode);
920 }
921 #endif
922
923
924 static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926 {
927 struct extent_io_tree *tree;
928 tree = &BTRFS_I(mapping->host)->io_tree;
929 if (wbc->sync_mode == WB_SYNC_NONE) {
930 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931 u64 num_dirty;
932 unsigned long thresh = 32 * 1024 * 1024;
933
934 if (wbc->for_kupdate)
935 return 0;
936
937 /* this is a bit racy, but that's ok */
938 num_dirty = root->fs_info->dirty_metadata_bytes;
939 if (num_dirty < thresh)
940 return 0;
941 }
942 return btree_write_cache_pages(mapping, wbc);
943 }
944
945 static int btree_readpage(struct file *file, struct page *page)
946 {
947 struct extent_io_tree *tree;
948 tree = &BTRFS_I(page->mapping->host)->io_tree;
949 return extent_read_full_page(tree, page, btree_get_extent, 0);
950 }
951
952 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953 {
954 if (PageWriteback(page) || PageDirty(page))
955 return 0;
956 /*
957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958 * slab allocation from alloc_extent_state down the callchain where
959 * it'd hit a BUG_ON as those flags are not allowed.
960 */
961 gfp_flags &= ~GFP_SLAB_BUG_MASK;
962
963 return try_release_extent_buffer(page, gfp_flags);
964 }
965
966 static void btree_invalidatepage(struct page *page, unsigned long offset)
967 {
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
970 extent_invalidatepage(tree, page, offset);
971 btree_releasepage(page, GFP_NOFS);
972 if (PagePrivate(page)) {
973 printk(KERN_WARNING "btrfs warning page private not zero "
974 "on page %llu\n", (unsigned long long)page_offset(page));
975 ClearPagePrivate(page);
976 set_page_private(page, 0);
977 page_cache_release(page);
978 }
979 }
980
981 static int btree_set_page_dirty(struct page *page)
982 {
983 struct extent_buffer *eb;
984
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!eb);
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
991 return __set_page_dirty_nobuffers(page);
992 }
993
994 static const struct address_space_operations btree_aops = {
995 .readpage = btree_readpage,
996 .writepages = btree_writepages,
997 .releasepage = btree_releasepage,
998 .invalidatepage = btree_invalidatepage,
999 #ifdef CONFIG_MIGRATION
1000 .migratepage = btree_migratepage,
1001 #endif
1002 .set_page_dirty = btree_set_page_dirty,
1003 };
1004
1005 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 u64 parent_transid)
1007 {
1008 struct extent_buffer *buf = NULL;
1009 struct inode *btree_inode = root->fs_info->btree_inode;
1010 int ret = 0;
1011
1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013 if (!buf)
1014 return 0;
1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017 free_extent_buffer(buf);
1018 return ret;
1019 }
1020
1021 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 int mirror_num, struct extent_buffer **eb)
1023 {
1024 struct extent_buffer *buf = NULL;
1025 struct inode *btree_inode = root->fs_info->btree_inode;
1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 int ret;
1028
1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 if (!buf)
1031 return 0;
1032
1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 btree_get_extent, mirror_num);
1037 if (ret) {
1038 free_extent_buffer(buf);
1039 return ret;
1040 }
1041
1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 free_extent_buffer(buf);
1044 return -EIO;
1045 } else if (extent_buffer_uptodate(buf)) {
1046 *eb = buf;
1047 } else {
1048 free_extent_buffer(buf);
1049 }
1050 return 0;
1051 }
1052
1053 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 u64 bytenr, u32 blocksize)
1055 {
1056 struct inode *btree_inode = root->fs_info->btree_inode;
1057 struct extent_buffer *eb;
1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059 bytenr, blocksize);
1060 return eb;
1061 }
1062
1063 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 u64 bytenr, u32 blocksize)
1065 {
1066 struct inode *btree_inode = root->fs_info->btree_inode;
1067 struct extent_buffer *eb;
1068
1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070 bytenr, blocksize);
1071 return eb;
1072 }
1073
1074
1075 int btrfs_write_tree_block(struct extent_buffer *buf)
1076 {
1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078 buf->start + buf->len - 1);
1079 }
1080
1081 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082 {
1083 return filemap_fdatawait_range(buf->pages[0]->mapping,
1084 buf->start, buf->start + buf->len - 1);
1085 }
1086
1087 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088 u32 blocksize, u64 parent_transid)
1089 {
1090 struct extent_buffer *buf = NULL;
1091 int ret;
1092
1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 if (!buf)
1095 return NULL;
1096
1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098 return buf;
1099
1100 }
1101
1102 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 struct extent_buffer *buf)
1104 {
1105 if (btrfs_header_generation(buf) ==
1106 root->fs_info->running_transaction->transid) {
1107 btrfs_assert_tree_locked(buf);
1108
1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110 spin_lock(&root->fs_info->delalloc_lock);
1111 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112 root->fs_info->dirty_metadata_bytes -= buf->len;
1113 else {
1114 spin_unlock(&root->fs_info->delalloc_lock);
1115 btrfs_panic(root->fs_info, -EOVERFLOW,
1116 "Can't clear %lu bytes from "
1117 " dirty_mdatadata_bytes (%llu)",
1118 buf->len,
1119 root->fs_info->dirty_metadata_bytes);
1120 }
1121 spin_unlock(&root->fs_info->delalloc_lock);
1122 }
1123
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
1126 clear_extent_buffer_dirty(buf);
1127 }
1128 }
1129
1130 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 u32 stripesize, struct btrfs_root *root,
1132 struct btrfs_fs_info *fs_info,
1133 u64 objectid)
1134 {
1135 root->node = NULL;
1136 root->commit_root = NULL;
1137 root->sectorsize = sectorsize;
1138 root->nodesize = nodesize;
1139 root->leafsize = leafsize;
1140 root->stripesize = stripesize;
1141 root->ref_cows = 0;
1142 root->track_dirty = 0;
1143 root->in_radix = 0;
1144 root->orphan_item_inserted = 0;
1145 root->orphan_cleanup_state = 0;
1146
1147 root->objectid = objectid;
1148 root->last_trans = 0;
1149 root->highest_objectid = 0;
1150 root->name = NULL;
1151 root->inode_tree = RB_ROOT;
1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 root->block_rsv = NULL;
1154 root->orphan_block_rsv = NULL;
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
1157 INIT_LIST_HEAD(&root->root_list);
1158 spin_lock_init(&root->orphan_lock);
1159 spin_lock_init(&root->inode_lock);
1160 spin_lock_init(&root->accounting_lock);
1161 mutex_init(&root->objectid_mutex);
1162 mutex_init(&root->log_mutex);
1163 init_waitqueue_head(&root->log_writer_wait);
1164 init_waitqueue_head(&root->log_commit_wait[0]);
1165 init_waitqueue_head(&root->log_commit_wait[1]);
1166 atomic_set(&root->log_commit[0], 0);
1167 atomic_set(&root->log_commit[1], 0);
1168 atomic_set(&root->log_writers, 0);
1169 atomic_set(&root->orphan_inodes, 0);
1170 root->log_batch = 0;
1171 root->log_transid = 0;
1172 root->last_log_commit = 0;
1173 extent_io_tree_init(&root->dirty_log_pages,
1174 fs_info->btree_inode->i_mapping);
1175
1176 memset(&root->root_key, 0, sizeof(root->root_key));
1177 memset(&root->root_item, 0, sizeof(root->root_item));
1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180 root->defrag_trans_start = fs_info->generation;
1181 init_completion(&root->kobj_unregister);
1182 root->defrag_running = 0;
1183 root->root_key.objectid = objectid;
1184 root->anon_dev = 0;
1185
1186 spin_lock_init(&root->root_times_lock);
1187 }
1188
1189 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1190 struct btrfs_fs_info *fs_info,
1191 u64 objectid,
1192 struct btrfs_root *root)
1193 {
1194 int ret;
1195 u32 blocksize;
1196 u64 generation;
1197
1198 __setup_root(tree_root->nodesize, tree_root->leafsize,
1199 tree_root->sectorsize, tree_root->stripesize,
1200 root, fs_info, objectid);
1201 ret = btrfs_find_last_root(tree_root, objectid,
1202 &root->root_item, &root->root_key);
1203 if (ret > 0)
1204 return -ENOENT;
1205 else if (ret < 0)
1206 return ret;
1207
1208 generation = btrfs_root_generation(&root->root_item);
1209 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1210 root->commit_root = NULL;
1211 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1212 blocksize, generation);
1213 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1214 free_extent_buffer(root->node);
1215 root->node = NULL;
1216 return -EIO;
1217 }
1218 root->commit_root = btrfs_root_node(root);
1219 return 0;
1220 }
1221
1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1223 {
1224 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1225 if (root)
1226 root->fs_info = fs_info;
1227 return root;
1228 }
1229
1230 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1231 struct btrfs_fs_info *fs_info,
1232 u64 objectid)
1233 {
1234 struct extent_buffer *leaf;
1235 struct btrfs_root *tree_root = fs_info->tree_root;
1236 struct btrfs_root *root;
1237 struct btrfs_key key;
1238 int ret = 0;
1239 u64 bytenr;
1240
1241 root = btrfs_alloc_root(fs_info);
1242 if (!root)
1243 return ERR_PTR(-ENOMEM);
1244
1245 __setup_root(tree_root->nodesize, tree_root->leafsize,
1246 tree_root->sectorsize, tree_root->stripesize,
1247 root, fs_info, objectid);
1248 root->root_key.objectid = objectid;
1249 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1250 root->root_key.offset = 0;
1251
1252 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1253 0, objectid, NULL, 0, 0, 0);
1254 if (IS_ERR(leaf)) {
1255 ret = PTR_ERR(leaf);
1256 goto fail;
1257 }
1258
1259 bytenr = leaf->start;
1260 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1261 btrfs_set_header_bytenr(leaf, leaf->start);
1262 btrfs_set_header_generation(leaf, trans->transid);
1263 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1264 btrfs_set_header_owner(leaf, objectid);
1265 root->node = leaf;
1266
1267 write_extent_buffer(leaf, fs_info->fsid,
1268 (unsigned long)btrfs_header_fsid(leaf),
1269 BTRFS_FSID_SIZE);
1270 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1271 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1272 BTRFS_UUID_SIZE);
1273 btrfs_mark_buffer_dirty(leaf);
1274
1275 root->commit_root = btrfs_root_node(root);
1276 root->track_dirty = 1;
1277
1278
1279 root->root_item.flags = 0;
1280 root->root_item.byte_limit = 0;
1281 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1282 btrfs_set_root_generation(&root->root_item, trans->transid);
1283 btrfs_set_root_level(&root->root_item, 0);
1284 btrfs_set_root_refs(&root->root_item, 1);
1285 btrfs_set_root_used(&root->root_item, leaf->len);
1286 btrfs_set_root_last_snapshot(&root->root_item, 0);
1287 btrfs_set_root_dirid(&root->root_item, 0);
1288 root->root_item.drop_level = 0;
1289
1290 key.objectid = objectid;
1291 key.type = BTRFS_ROOT_ITEM_KEY;
1292 key.offset = 0;
1293 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1294 if (ret)
1295 goto fail;
1296
1297 btrfs_tree_unlock(leaf);
1298
1299 fail:
1300 if (ret)
1301 return ERR_PTR(ret);
1302
1303 return root;
1304 }
1305
1306 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1307 struct btrfs_fs_info *fs_info)
1308 {
1309 struct btrfs_root *root;
1310 struct btrfs_root *tree_root = fs_info->tree_root;
1311 struct extent_buffer *leaf;
1312
1313 root = btrfs_alloc_root(fs_info);
1314 if (!root)
1315 return ERR_PTR(-ENOMEM);
1316
1317 __setup_root(tree_root->nodesize, tree_root->leafsize,
1318 tree_root->sectorsize, tree_root->stripesize,
1319 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1320
1321 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1322 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1323 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1324 /*
1325 * log trees do not get reference counted because they go away
1326 * before a real commit is actually done. They do store pointers
1327 * to file data extents, and those reference counts still get
1328 * updated (along with back refs to the log tree).
1329 */
1330 root->ref_cows = 0;
1331
1332 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1333 BTRFS_TREE_LOG_OBJECTID, NULL,
1334 0, 0, 0);
1335 if (IS_ERR(leaf)) {
1336 kfree(root);
1337 return ERR_CAST(leaf);
1338 }
1339
1340 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1341 btrfs_set_header_bytenr(leaf, leaf->start);
1342 btrfs_set_header_generation(leaf, trans->transid);
1343 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1344 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1345 root->node = leaf;
1346
1347 write_extent_buffer(root->node, root->fs_info->fsid,
1348 (unsigned long)btrfs_header_fsid(root->node),
1349 BTRFS_FSID_SIZE);
1350 btrfs_mark_buffer_dirty(root->node);
1351 btrfs_tree_unlock(root->node);
1352 return root;
1353 }
1354
1355 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1356 struct btrfs_fs_info *fs_info)
1357 {
1358 struct btrfs_root *log_root;
1359
1360 log_root = alloc_log_tree(trans, fs_info);
1361 if (IS_ERR(log_root))
1362 return PTR_ERR(log_root);
1363 WARN_ON(fs_info->log_root_tree);
1364 fs_info->log_root_tree = log_root;
1365 return 0;
1366 }
1367
1368 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root)
1370 {
1371 struct btrfs_root *log_root;
1372 struct btrfs_inode_item *inode_item;
1373
1374 log_root = alloc_log_tree(trans, root->fs_info);
1375 if (IS_ERR(log_root))
1376 return PTR_ERR(log_root);
1377
1378 log_root->last_trans = trans->transid;
1379 log_root->root_key.offset = root->root_key.objectid;
1380
1381 inode_item = &log_root->root_item.inode;
1382 inode_item->generation = cpu_to_le64(1);
1383 inode_item->size = cpu_to_le64(3);
1384 inode_item->nlink = cpu_to_le32(1);
1385 inode_item->nbytes = cpu_to_le64(root->leafsize);
1386 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1387
1388 btrfs_set_root_node(&log_root->root_item, log_root->node);
1389
1390 WARN_ON(root->log_root);
1391 root->log_root = log_root;
1392 root->log_transid = 0;
1393 root->last_log_commit = 0;
1394 return 0;
1395 }
1396
1397 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1398 struct btrfs_key *location)
1399 {
1400 struct btrfs_root *root;
1401 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1402 struct btrfs_path *path;
1403 struct extent_buffer *l;
1404 u64 generation;
1405 u32 blocksize;
1406 int ret = 0;
1407 int slot;
1408
1409 root = btrfs_alloc_root(fs_info);
1410 if (!root)
1411 return ERR_PTR(-ENOMEM);
1412 if (location->offset == (u64)-1) {
1413 ret = find_and_setup_root(tree_root, fs_info,
1414 location->objectid, root);
1415 if (ret) {
1416 kfree(root);
1417 return ERR_PTR(ret);
1418 }
1419 goto out;
1420 }
1421
1422 __setup_root(tree_root->nodesize, tree_root->leafsize,
1423 tree_root->sectorsize, tree_root->stripesize,
1424 root, fs_info, location->objectid);
1425
1426 path = btrfs_alloc_path();
1427 if (!path) {
1428 kfree(root);
1429 return ERR_PTR(-ENOMEM);
1430 }
1431 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1432 if (ret == 0) {
1433 l = path->nodes[0];
1434 slot = path->slots[0];
1435 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1436 memcpy(&root->root_key, location, sizeof(*location));
1437 }
1438 btrfs_free_path(path);
1439 if (ret) {
1440 kfree(root);
1441 if (ret > 0)
1442 ret = -ENOENT;
1443 return ERR_PTR(ret);
1444 }
1445
1446 generation = btrfs_root_generation(&root->root_item);
1447 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1448 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1449 blocksize, generation);
1450 root->commit_root = btrfs_root_node(root);
1451 BUG_ON(!root->node); /* -ENOMEM */
1452 out:
1453 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1454 root->ref_cows = 1;
1455 btrfs_check_and_init_root_item(&root->root_item);
1456 }
1457
1458 return root;
1459 }
1460
1461 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1462 struct btrfs_key *location)
1463 {
1464 struct btrfs_root *root;
1465 int ret;
1466
1467 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1468 return fs_info->tree_root;
1469 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1470 return fs_info->extent_root;
1471 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1472 return fs_info->chunk_root;
1473 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1474 return fs_info->dev_root;
1475 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1476 return fs_info->csum_root;
1477 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1478 return fs_info->quota_root ? fs_info->quota_root :
1479 ERR_PTR(-ENOENT);
1480 again:
1481 spin_lock(&fs_info->fs_roots_radix_lock);
1482 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1483 (unsigned long)location->objectid);
1484 spin_unlock(&fs_info->fs_roots_radix_lock);
1485 if (root)
1486 return root;
1487
1488 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1489 if (IS_ERR(root))
1490 return root;
1491
1492 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1493 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1494 GFP_NOFS);
1495 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1496 ret = -ENOMEM;
1497 goto fail;
1498 }
1499
1500 btrfs_init_free_ino_ctl(root);
1501 mutex_init(&root->fs_commit_mutex);
1502 spin_lock_init(&root->cache_lock);
1503 init_waitqueue_head(&root->cache_wait);
1504
1505 ret = get_anon_bdev(&root->anon_dev);
1506 if (ret)
1507 goto fail;
1508
1509 if (btrfs_root_refs(&root->root_item) == 0) {
1510 ret = -ENOENT;
1511 goto fail;
1512 }
1513
1514 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1515 if (ret < 0)
1516 goto fail;
1517 if (ret == 0)
1518 root->orphan_item_inserted = 1;
1519
1520 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1521 if (ret)
1522 goto fail;
1523
1524 spin_lock(&fs_info->fs_roots_radix_lock);
1525 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1526 (unsigned long)root->root_key.objectid,
1527 root);
1528 if (ret == 0)
1529 root->in_radix = 1;
1530
1531 spin_unlock(&fs_info->fs_roots_radix_lock);
1532 radix_tree_preload_end();
1533 if (ret) {
1534 if (ret == -EEXIST) {
1535 free_fs_root(root);
1536 goto again;
1537 }
1538 goto fail;
1539 }
1540
1541 ret = btrfs_find_dead_roots(fs_info->tree_root,
1542 root->root_key.objectid);
1543 WARN_ON(ret);
1544 return root;
1545 fail:
1546 free_fs_root(root);
1547 return ERR_PTR(ret);
1548 }
1549
1550 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1551 {
1552 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1553 int ret = 0;
1554 struct btrfs_device *device;
1555 struct backing_dev_info *bdi;
1556
1557 rcu_read_lock();
1558 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1559 if (!device->bdev)
1560 continue;
1561 bdi = blk_get_backing_dev_info(device->bdev);
1562 if (bdi && bdi_congested(bdi, bdi_bits)) {
1563 ret = 1;
1564 break;
1565 }
1566 }
1567 rcu_read_unlock();
1568 return ret;
1569 }
1570
1571 /*
1572 * If this fails, caller must call bdi_destroy() to get rid of the
1573 * bdi again.
1574 */
1575 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1576 {
1577 int err;
1578
1579 bdi->capabilities = BDI_CAP_MAP_COPY;
1580 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1581 if (err)
1582 return err;
1583
1584 bdi->ra_pages = default_backing_dev_info.ra_pages;
1585 bdi->congested_fn = btrfs_congested_fn;
1586 bdi->congested_data = info;
1587 return 0;
1588 }
1589
1590 /*
1591 * called by the kthread helper functions to finally call the bio end_io
1592 * functions. This is where read checksum verification actually happens
1593 */
1594 static void end_workqueue_fn(struct btrfs_work *work)
1595 {
1596 struct bio *bio;
1597 struct end_io_wq *end_io_wq;
1598 struct btrfs_fs_info *fs_info;
1599 int error;
1600
1601 end_io_wq = container_of(work, struct end_io_wq, work);
1602 bio = end_io_wq->bio;
1603 fs_info = end_io_wq->info;
1604
1605 error = end_io_wq->error;
1606 bio->bi_private = end_io_wq->private;
1607 bio->bi_end_io = end_io_wq->end_io;
1608 kfree(end_io_wq);
1609 bio_endio(bio, error);
1610 }
1611
1612 static int cleaner_kthread(void *arg)
1613 {
1614 struct btrfs_root *root = arg;
1615
1616 do {
1617 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1618
1619 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1620 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1621 btrfs_run_delayed_iputs(root);
1622 btrfs_clean_old_snapshots(root);
1623 mutex_unlock(&root->fs_info->cleaner_mutex);
1624 btrfs_run_defrag_inodes(root->fs_info);
1625 }
1626
1627 if (!try_to_freeze()) {
1628 set_current_state(TASK_INTERRUPTIBLE);
1629 if (!kthread_should_stop())
1630 schedule();
1631 __set_current_state(TASK_RUNNING);
1632 }
1633 } while (!kthread_should_stop());
1634 return 0;
1635 }
1636
1637 static int transaction_kthread(void *arg)
1638 {
1639 struct btrfs_root *root = arg;
1640 struct btrfs_trans_handle *trans;
1641 struct btrfs_transaction *cur;
1642 u64 transid;
1643 unsigned long now;
1644 unsigned long delay;
1645 bool cannot_commit;
1646
1647 do {
1648 cannot_commit = false;
1649 delay = HZ * 30;
1650 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1651 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1652
1653 spin_lock(&root->fs_info->trans_lock);
1654 cur = root->fs_info->running_transaction;
1655 if (!cur) {
1656 spin_unlock(&root->fs_info->trans_lock);
1657 goto sleep;
1658 }
1659
1660 now = get_seconds();
1661 if (!cur->blocked &&
1662 (now < cur->start_time || now - cur->start_time < 30)) {
1663 spin_unlock(&root->fs_info->trans_lock);
1664 delay = HZ * 5;
1665 goto sleep;
1666 }
1667 transid = cur->transid;
1668 spin_unlock(&root->fs_info->trans_lock);
1669
1670 /* If the file system is aborted, this will always fail. */
1671 trans = btrfs_join_transaction(root);
1672 if (IS_ERR(trans)) {
1673 cannot_commit = true;
1674 goto sleep;
1675 }
1676 if (transid == trans->transid) {
1677 btrfs_commit_transaction(trans, root);
1678 } else {
1679 btrfs_end_transaction(trans, root);
1680 }
1681 sleep:
1682 wake_up_process(root->fs_info->cleaner_kthread);
1683 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1684
1685 if (!try_to_freeze()) {
1686 set_current_state(TASK_INTERRUPTIBLE);
1687 if (!kthread_should_stop() &&
1688 (!btrfs_transaction_blocked(root->fs_info) ||
1689 cannot_commit))
1690 schedule_timeout(delay);
1691 __set_current_state(TASK_RUNNING);
1692 }
1693 } while (!kthread_should_stop());
1694 return 0;
1695 }
1696
1697 /*
1698 * this will find the highest generation in the array of
1699 * root backups. The index of the highest array is returned,
1700 * or -1 if we can't find anything.
1701 *
1702 * We check to make sure the array is valid by comparing the
1703 * generation of the latest root in the array with the generation
1704 * in the super block. If they don't match we pitch it.
1705 */
1706 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1707 {
1708 u64 cur;
1709 int newest_index = -1;
1710 struct btrfs_root_backup *root_backup;
1711 int i;
1712
1713 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1714 root_backup = info->super_copy->super_roots + i;
1715 cur = btrfs_backup_tree_root_gen(root_backup);
1716 if (cur == newest_gen)
1717 newest_index = i;
1718 }
1719
1720 /* check to see if we actually wrapped around */
1721 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1722 root_backup = info->super_copy->super_roots;
1723 cur = btrfs_backup_tree_root_gen(root_backup);
1724 if (cur == newest_gen)
1725 newest_index = 0;
1726 }
1727 return newest_index;
1728 }
1729
1730
1731 /*
1732 * find the oldest backup so we know where to store new entries
1733 * in the backup array. This will set the backup_root_index
1734 * field in the fs_info struct
1735 */
1736 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1737 u64 newest_gen)
1738 {
1739 int newest_index = -1;
1740
1741 newest_index = find_newest_super_backup(info, newest_gen);
1742 /* if there was garbage in there, just move along */
1743 if (newest_index == -1) {
1744 info->backup_root_index = 0;
1745 } else {
1746 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1747 }
1748 }
1749
1750 /*
1751 * copy all the root pointers into the super backup array.
1752 * this will bump the backup pointer by one when it is
1753 * done
1754 */
1755 static void backup_super_roots(struct btrfs_fs_info *info)
1756 {
1757 int next_backup;
1758 struct btrfs_root_backup *root_backup;
1759 int last_backup;
1760
1761 next_backup = info->backup_root_index;
1762 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1763 BTRFS_NUM_BACKUP_ROOTS;
1764
1765 /*
1766 * just overwrite the last backup if we're at the same generation
1767 * this happens only at umount
1768 */
1769 root_backup = info->super_for_commit->super_roots + last_backup;
1770 if (btrfs_backup_tree_root_gen(root_backup) ==
1771 btrfs_header_generation(info->tree_root->node))
1772 next_backup = last_backup;
1773
1774 root_backup = info->super_for_commit->super_roots + next_backup;
1775
1776 /*
1777 * make sure all of our padding and empty slots get zero filled
1778 * regardless of which ones we use today
1779 */
1780 memset(root_backup, 0, sizeof(*root_backup));
1781
1782 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1783
1784 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1785 btrfs_set_backup_tree_root_gen(root_backup,
1786 btrfs_header_generation(info->tree_root->node));
1787
1788 btrfs_set_backup_tree_root_level(root_backup,
1789 btrfs_header_level(info->tree_root->node));
1790
1791 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1792 btrfs_set_backup_chunk_root_gen(root_backup,
1793 btrfs_header_generation(info->chunk_root->node));
1794 btrfs_set_backup_chunk_root_level(root_backup,
1795 btrfs_header_level(info->chunk_root->node));
1796
1797 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1798 btrfs_set_backup_extent_root_gen(root_backup,
1799 btrfs_header_generation(info->extent_root->node));
1800 btrfs_set_backup_extent_root_level(root_backup,
1801 btrfs_header_level(info->extent_root->node));
1802
1803 /*
1804 * we might commit during log recovery, which happens before we set
1805 * the fs_root. Make sure it is valid before we fill it in.
1806 */
1807 if (info->fs_root && info->fs_root->node) {
1808 btrfs_set_backup_fs_root(root_backup,
1809 info->fs_root->node->start);
1810 btrfs_set_backup_fs_root_gen(root_backup,
1811 btrfs_header_generation(info->fs_root->node));
1812 btrfs_set_backup_fs_root_level(root_backup,
1813 btrfs_header_level(info->fs_root->node));
1814 }
1815
1816 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1817 btrfs_set_backup_dev_root_gen(root_backup,
1818 btrfs_header_generation(info->dev_root->node));
1819 btrfs_set_backup_dev_root_level(root_backup,
1820 btrfs_header_level(info->dev_root->node));
1821
1822 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1823 btrfs_set_backup_csum_root_gen(root_backup,
1824 btrfs_header_generation(info->csum_root->node));
1825 btrfs_set_backup_csum_root_level(root_backup,
1826 btrfs_header_level(info->csum_root->node));
1827
1828 btrfs_set_backup_total_bytes(root_backup,
1829 btrfs_super_total_bytes(info->super_copy));
1830 btrfs_set_backup_bytes_used(root_backup,
1831 btrfs_super_bytes_used(info->super_copy));
1832 btrfs_set_backup_num_devices(root_backup,
1833 btrfs_super_num_devices(info->super_copy));
1834
1835 /*
1836 * if we don't copy this out to the super_copy, it won't get remembered
1837 * for the next commit
1838 */
1839 memcpy(&info->super_copy->super_roots,
1840 &info->super_for_commit->super_roots,
1841 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1842 }
1843
1844 /*
1845 * this copies info out of the root backup array and back into
1846 * the in-memory super block. It is meant to help iterate through
1847 * the array, so you send it the number of backups you've already
1848 * tried and the last backup index you used.
1849 *
1850 * this returns -1 when it has tried all the backups
1851 */
1852 static noinline int next_root_backup(struct btrfs_fs_info *info,
1853 struct btrfs_super_block *super,
1854 int *num_backups_tried, int *backup_index)
1855 {
1856 struct btrfs_root_backup *root_backup;
1857 int newest = *backup_index;
1858
1859 if (*num_backups_tried == 0) {
1860 u64 gen = btrfs_super_generation(super);
1861
1862 newest = find_newest_super_backup(info, gen);
1863 if (newest == -1)
1864 return -1;
1865
1866 *backup_index = newest;
1867 *num_backups_tried = 1;
1868 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1869 /* we've tried all the backups, all done */
1870 return -1;
1871 } else {
1872 /* jump to the next oldest backup */
1873 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1874 BTRFS_NUM_BACKUP_ROOTS;
1875 *backup_index = newest;
1876 *num_backups_tried += 1;
1877 }
1878 root_backup = super->super_roots + newest;
1879
1880 btrfs_set_super_generation(super,
1881 btrfs_backup_tree_root_gen(root_backup));
1882 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1883 btrfs_set_super_root_level(super,
1884 btrfs_backup_tree_root_level(root_backup));
1885 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1886
1887 /*
1888 * fixme: the total bytes and num_devices need to match or we should
1889 * need a fsck
1890 */
1891 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1892 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1893 return 0;
1894 }
1895
1896 /* helper to cleanup tree roots */
1897 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1898 {
1899 free_extent_buffer(info->tree_root->node);
1900 free_extent_buffer(info->tree_root->commit_root);
1901 free_extent_buffer(info->dev_root->node);
1902 free_extent_buffer(info->dev_root->commit_root);
1903 free_extent_buffer(info->extent_root->node);
1904 free_extent_buffer(info->extent_root->commit_root);
1905 free_extent_buffer(info->csum_root->node);
1906 free_extent_buffer(info->csum_root->commit_root);
1907 if (info->quota_root) {
1908 free_extent_buffer(info->quota_root->node);
1909 free_extent_buffer(info->quota_root->commit_root);
1910 }
1911
1912 info->tree_root->node = NULL;
1913 info->tree_root->commit_root = NULL;
1914 info->dev_root->node = NULL;
1915 info->dev_root->commit_root = NULL;
1916 info->extent_root->node = NULL;
1917 info->extent_root->commit_root = NULL;
1918 info->csum_root->node = NULL;
1919 info->csum_root->commit_root = NULL;
1920 if (info->quota_root) {
1921 info->quota_root->node = NULL;
1922 info->quota_root->commit_root = NULL;
1923 }
1924
1925 if (chunk_root) {
1926 free_extent_buffer(info->chunk_root->node);
1927 free_extent_buffer(info->chunk_root->commit_root);
1928 info->chunk_root->node = NULL;
1929 info->chunk_root->commit_root = NULL;
1930 }
1931 }
1932
1933
1934 int open_ctree(struct super_block *sb,
1935 struct btrfs_fs_devices *fs_devices,
1936 char *options)
1937 {
1938 u32 sectorsize;
1939 u32 nodesize;
1940 u32 leafsize;
1941 u32 blocksize;
1942 u32 stripesize;
1943 u64 generation;
1944 u64 features;
1945 struct btrfs_key location;
1946 struct buffer_head *bh;
1947 struct btrfs_super_block *disk_super;
1948 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1949 struct btrfs_root *tree_root;
1950 struct btrfs_root *extent_root;
1951 struct btrfs_root *csum_root;
1952 struct btrfs_root *chunk_root;
1953 struct btrfs_root *dev_root;
1954 struct btrfs_root *quota_root;
1955 struct btrfs_root *log_tree_root;
1956 int ret;
1957 int err = -EINVAL;
1958 int num_backups_tried = 0;
1959 int backup_index = 0;
1960
1961 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1962 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1963 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1964 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1965 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1966 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1967
1968 if (!tree_root || !extent_root || !csum_root ||
1969 !chunk_root || !dev_root || !quota_root) {
1970 err = -ENOMEM;
1971 goto fail;
1972 }
1973
1974 ret = init_srcu_struct(&fs_info->subvol_srcu);
1975 if (ret) {
1976 err = ret;
1977 goto fail;
1978 }
1979
1980 ret = setup_bdi(fs_info, &fs_info->bdi);
1981 if (ret) {
1982 err = ret;
1983 goto fail_srcu;
1984 }
1985
1986 fs_info->btree_inode = new_inode(sb);
1987 if (!fs_info->btree_inode) {
1988 err = -ENOMEM;
1989 goto fail_bdi;
1990 }
1991
1992 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1993
1994 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1995 INIT_LIST_HEAD(&fs_info->trans_list);
1996 INIT_LIST_HEAD(&fs_info->dead_roots);
1997 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1998 INIT_LIST_HEAD(&fs_info->hashers);
1999 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2000 INIT_LIST_HEAD(&fs_info->ordered_operations);
2001 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2002 spin_lock_init(&fs_info->delalloc_lock);
2003 spin_lock_init(&fs_info->trans_lock);
2004 spin_lock_init(&fs_info->ref_cache_lock);
2005 spin_lock_init(&fs_info->fs_roots_radix_lock);
2006 spin_lock_init(&fs_info->delayed_iput_lock);
2007 spin_lock_init(&fs_info->defrag_inodes_lock);
2008 spin_lock_init(&fs_info->free_chunk_lock);
2009 spin_lock_init(&fs_info->tree_mod_seq_lock);
2010 rwlock_init(&fs_info->tree_mod_log_lock);
2011 mutex_init(&fs_info->reloc_mutex);
2012
2013 init_completion(&fs_info->kobj_unregister);
2014 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2015 INIT_LIST_HEAD(&fs_info->space_info);
2016 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2017 btrfs_mapping_init(&fs_info->mapping_tree);
2018 btrfs_init_block_rsv(&fs_info->global_block_rsv);
2019 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2020 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2021 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2022 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
2023 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
2024 atomic_set(&fs_info->nr_async_submits, 0);
2025 atomic_set(&fs_info->async_delalloc_pages, 0);
2026 atomic_set(&fs_info->async_submit_draining, 0);
2027 atomic_set(&fs_info->nr_async_bios, 0);
2028 atomic_set(&fs_info->defrag_running, 0);
2029 atomic_set(&fs_info->tree_mod_seq, 0);
2030 fs_info->sb = sb;
2031 fs_info->max_inline = 8192 * 1024;
2032 fs_info->metadata_ratio = 0;
2033 fs_info->defrag_inodes = RB_ROOT;
2034 fs_info->trans_no_join = 0;
2035 fs_info->free_chunk_space = 0;
2036 fs_info->tree_mod_log = RB_ROOT;
2037
2038 init_waitqueue_head(&fs_info->tree_mod_seq_wait);
2039
2040 /* readahead state */
2041 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2042 spin_lock_init(&fs_info->reada_lock);
2043
2044 fs_info->thread_pool_size = min_t(unsigned long,
2045 num_online_cpus() + 2, 8);
2046
2047 INIT_LIST_HEAD(&fs_info->ordered_extents);
2048 spin_lock_init(&fs_info->ordered_extent_lock);
2049 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2050 GFP_NOFS);
2051 if (!fs_info->delayed_root) {
2052 err = -ENOMEM;
2053 goto fail_iput;
2054 }
2055 btrfs_init_delayed_root(fs_info->delayed_root);
2056
2057 mutex_init(&fs_info->scrub_lock);
2058 atomic_set(&fs_info->scrubs_running, 0);
2059 atomic_set(&fs_info->scrub_pause_req, 0);
2060 atomic_set(&fs_info->scrubs_paused, 0);
2061 atomic_set(&fs_info->scrub_cancel_req, 0);
2062 init_waitqueue_head(&fs_info->scrub_pause_wait);
2063 init_rwsem(&fs_info->scrub_super_lock);
2064 fs_info->scrub_workers_refcnt = 0;
2065 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2066 fs_info->check_integrity_print_mask = 0;
2067 #endif
2068
2069 spin_lock_init(&fs_info->balance_lock);
2070 mutex_init(&fs_info->balance_mutex);
2071 atomic_set(&fs_info->balance_running, 0);
2072 atomic_set(&fs_info->balance_pause_req, 0);
2073 atomic_set(&fs_info->balance_cancel_req, 0);
2074 fs_info->balance_ctl = NULL;
2075 init_waitqueue_head(&fs_info->balance_wait_q);
2076
2077 sb->s_blocksize = 4096;
2078 sb->s_blocksize_bits = blksize_bits(4096);
2079 sb->s_bdi = &fs_info->bdi;
2080
2081 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2082 set_nlink(fs_info->btree_inode, 1);
2083 /*
2084 * we set the i_size on the btree inode to the max possible int.
2085 * the real end of the address space is determined by all of
2086 * the devices in the system
2087 */
2088 fs_info->btree_inode->i_size = OFFSET_MAX;
2089 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2090 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2091
2092 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2093 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2094 fs_info->btree_inode->i_mapping);
2095 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2096 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2097
2098 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2099
2100 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2101 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2102 sizeof(struct btrfs_key));
2103 set_bit(BTRFS_INODE_DUMMY,
2104 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2105 insert_inode_hash(fs_info->btree_inode);
2106
2107 spin_lock_init(&fs_info->block_group_cache_lock);
2108 fs_info->block_group_cache_tree = RB_ROOT;
2109
2110 extent_io_tree_init(&fs_info->freed_extents[0],
2111 fs_info->btree_inode->i_mapping);
2112 extent_io_tree_init(&fs_info->freed_extents[1],
2113 fs_info->btree_inode->i_mapping);
2114 fs_info->pinned_extents = &fs_info->freed_extents[0];
2115 fs_info->do_barriers = 1;
2116
2117
2118 mutex_init(&fs_info->ordered_operations_mutex);
2119 mutex_init(&fs_info->tree_log_mutex);
2120 mutex_init(&fs_info->chunk_mutex);
2121 mutex_init(&fs_info->transaction_kthread_mutex);
2122 mutex_init(&fs_info->cleaner_mutex);
2123 mutex_init(&fs_info->volume_mutex);
2124 init_rwsem(&fs_info->extent_commit_sem);
2125 init_rwsem(&fs_info->cleanup_work_sem);
2126 init_rwsem(&fs_info->subvol_sem);
2127
2128 spin_lock_init(&fs_info->qgroup_lock);
2129 fs_info->qgroup_tree = RB_ROOT;
2130 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2131 fs_info->qgroup_seq = 1;
2132 fs_info->quota_enabled = 0;
2133 fs_info->pending_quota_state = 0;
2134
2135 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2136 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2137
2138 init_waitqueue_head(&fs_info->transaction_throttle);
2139 init_waitqueue_head(&fs_info->transaction_wait);
2140 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2141 init_waitqueue_head(&fs_info->async_submit_wait);
2142
2143 __setup_root(4096, 4096, 4096, 4096, tree_root,
2144 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2145
2146 invalidate_bdev(fs_devices->latest_bdev);
2147 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2148 if (!bh) {
2149 err = -EINVAL;
2150 goto fail_alloc;
2151 }
2152
2153 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2154 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2155 sizeof(*fs_info->super_for_commit));
2156 brelse(bh);
2157
2158 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2159
2160 disk_super = fs_info->super_copy;
2161 if (!btrfs_super_root(disk_super))
2162 goto fail_alloc;
2163
2164 /* check FS state, whether FS is broken. */
2165 fs_info->fs_state |= btrfs_super_flags(disk_super);
2166
2167 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2168 if (ret) {
2169 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2170 err = ret;
2171 goto fail_alloc;
2172 }
2173
2174 /*
2175 * run through our array of backup supers and setup
2176 * our ring pointer to the oldest one
2177 */
2178 generation = btrfs_super_generation(disk_super);
2179 find_oldest_super_backup(fs_info, generation);
2180
2181 /*
2182 * In the long term, we'll store the compression type in the super
2183 * block, and it'll be used for per file compression control.
2184 */
2185 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2186
2187 ret = btrfs_parse_options(tree_root, options);
2188 if (ret) {
2189 err = ret;
2190 goto fail_alloc;
2191 }
2192
2193 features = btrfs_super_incompat_flags(disk_super) &
2194 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2195 if (features) {
2196 printk(KERN_ERR "BTRFS: couldn't mount because of "
2197 "unsupported optional features (%Lx).\n",
2198 (unsigned long long)features);
2199 err = -EINVAL;
2200 goto fail_alloc;
2201 }
2202
2203 if (btrfs_super_leafsize(disk_super) !=
2204 btrfs_super_nodesize(disk_super)) {
2205 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2206 "blocksizes don't match. node %d leaf %d\n",
2207 btrfs_super_nodesize(disk_super),
2208 btrfs_super_leafsize(disk_super));
2209 err = -EINVAL;
2210 goto fail_alloc;
2211 }
2212 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2213 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2214 "blocksize (%d) was too large\n",
2215 btrfs_super_leafsize(disk_super));
2216 err = -EINVAL;
2217 goto fail_alloc;
2218 }
2219
2220 features = btrfs_super_incompat_flags(disk_super);
2221 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2222 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2223 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2224
2225 /*
2226 * flag our filesystem as having big metadata blocks if
2227 * they are bigger than the page size
2228 */
2229 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2230 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2231 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2232 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2233 }
2234
2235 nodesize = btrfs_super_nodesize(disk_super);
2236 leafsize = btrfs_super_leafsize(disk_super);
2237 sectorsize = btrfs_super_sectorsize(disk_super);
2238 stripesize = btrfs_super_stripesize(disk_super);
2239
2240 /*
2241 * mixed block groups end up with duplicate but slightly offset
2242 * extent buffers for the same range. It leads to corruptions
2243 */
2244 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2245 (sectorsize != leafsize)) {
2246 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2247 "are not allowed for mixed block groups on %s\n",
2248 sb->s_id);
2249 goto fail_alloc;
2250 }
2251
2252 btrfs_set_super_incompat_flags(disk_super, features);
2253
2254 features = btrfs_super_compat_ro_flags(disk_super) &
2255 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2256 if (!(sb->s_flags & MS_RDONLY) && features) {
2257 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2258 "unsupported option features (%Lx).\n",
2259 (unsigned long long)features);
2260 err = -EINVAL;
2261 goto fail_alloc;
2262 }
2263
2264 btrfs_init_workers(&fs_info->generic_worker,
2265 "genwork", 1, NULL);
2266
2267 btrfs_init_workers(&fs_info->workers, "worker",
2268 fs_info->thread_pool_size,
2269 &fs_info->generic_worker);
2270
2271 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2272 fs_info->thread_pool_size,
2273 &fs_info->generic_worker);
2274
2275 btrfs_init_workers(&fs_info->submit_workers, "submit",
2276 min_t(u64, fs_devices->num_devices,
2277 fs_info->thread_pool_size),
2278 &fs_info->generic_worker);
2279
2280 btrfs_init_workers(&fs_info->caching_workers, "cache",
2281 2, &fs_info->generic_worker);
2282
2283 /* a higher idle thresh on the submit workers makes it much more
2284 * likely that bios will be send down in a sane order to the
2285 * devices
2286 */
2287 fs_info->submit_workers.idle_thresh = 64;
2288
2289 fs_info->workers.idle_thresh = 16;
2290 fs_info->workers.ordered = 1;
2291
2292 fs_info->delalloc_workers.idle_thresh = 2;
2293 fs_info->delalloc_workers.ordered = 1;
2294
2295 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2296 &fs_info->generic_worker);
2297 btrfs_init_workers(&fs_info->endio_workers, "endio",
2298 fs_info->thread_pool_size,
2299 &fs_info->generic_worker);
2300 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2301 fs_info->thread_pool_size,
2302 &fs_info->generic_worker);
2303 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2304 "endio-meta-write", fs_info->thread_pool_size,
2305 &fs_info->generic_worker);
2306 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2307 fs_info->thread_pool_size,
2308 &fs_info->generic_worker);
2309 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2310 1, &fs_info->generic_worker);
2311 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2312 fs_info->thread_pool_size,
2313 &fs_info->generic_worker);
2314 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2315 fs_info->thread_pool_size,
2316 &fs_info->generic_worker);
2317
2318 /*
2319 * endios are largely parallel and should have a very
2320 * low idle thresh
2321 */
2322 fs_info->endio_workers.idle_thresh = 4;
2323 fs_info->endio_meta_workers.idle_thresh = 4;
2324
2325 fs_info->endio_write_workers.idle_thresh = 2;
2326 fs_info->endio_meta_write_workers.idle_thresh = 2;
2327 fs_info->readahead_workers.idle_thresh = 2;
2328
2329 /*
2330 * btrfs_start_workers can really only fail because of ENOMEM so just
2331 * return -ENOMEM if any of these fail.
2332 */
2333 ret = btrfs_start_workers(&fs_info->workers);
2334 ret |= btrfs_start_workers(&fs_info->generic_worker);
2335 ret |= btrfs_start_workers(&fs_info->submit_workers);
2336 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2337 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2338 ret |= btrfs_start_workers(&fs_info->endio_workers);
2339 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2340 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2341 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2342 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2343 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2344 ret |= btrfs_start_workers(&fs_info->caching_workers);
2345 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2346 if (ret) {
2347 err = -ENOMEM;
2348 goto fail_sb_buffer;
2349 }
2350
2351 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2352 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2353 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2354
2355 tree_root->nodesize = nodesize;
2356 tree_root->leafsize = leafsize;
2357 tree_root->sectorsize = sectorsize;
2358 tree_root->stripesize = stripesize;
2359
2360 sb->s_blocksize = sectorsize;
2361 sb->s_blocksize_bits = blksize_bits(sectorsize);
2362
2363 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2364 sizeof(disk_super->magic))) {
2365 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2366 goto fail_sb_buffer;
2367 }
2368
2369 if (sectorsize != PAGE_SIZE) {
2370 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2371 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2372 goto fail_sb_buffer;
2373 }
2374
2375 mutex_lock(&fs_info->chunk_mutex);
2376 ret = btrfs_read_sys_array(tree_root);
2377 mutex_unlock(&fs_info->chunk_mutex);
2378 if (ret) {
2379 printk(KERN_WARNING "btrfs: failed to read the system "
2380 "array on %s\n", sb->s_id);
2381 goto fail_sb_buffer;
2382 }
2383
2384 blocksize = btrfs_level_size(tree_root,
2385 btrfs_super_chunk_root_level(disk_super));
2386 generation = btrfs_super_chunk_root_generation(disk_super);
2387
2388 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2389 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2390
2391 chunk_root->node = read_tree_block(chunk_root,
2392 btrfs_super_chunk_root(disk_super),
2393 blocksize, generation);
2394 BUG_ON(!chunk_root->node); /* -ENOMEM */
2395 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2396 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2397 sb->s_id);
2398 goto fail_tree_roots;
2399 }
2400 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2401 chunk_root->commit_root = btrfs_root_node(chunk_root);
2402
2403 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2404 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2405 BTRFS_UUID_SIZE);
2406
2407 ret = btrfs_read_chunk_tree(chunk_root);
2408 if (ret) {
2409 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2410 sb->s_id);
2411 goto fail_tree_roots;
2412 }
2413
2414 btrfs_close_extra_devices(fs_devices);
2415
2416 if (!fs_devices->latest_bdev) {
2417 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2418 sb->s_id);
2419 goto fail_tree_roots;
2420 }
2421
2422 retry_root_backup:
2423 blocksize = btrfs_level_size(tree_root,
2424 btrfs_super_root_level(disk_super));
2425 generation = btrfs_super_generation(disk_super);
2426
2427 tree_root->node = read_tree_block(tree_root,
2428 btrfs_super_root(disk_super),
2429 blocksize, generation);
2430 if (!tree_root->node ||
2431 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2432 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2433 sb->s_id);
2434
2435 goto recovery_tree_root;
2436 }
2437
2438 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2439 tree_root->commit_root = btrfs_root_node(tree_root);
2440
2441 ret = find_and_setup_root(tree_root, fs_info,
2442 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2443 if (ret)
2444 goto recovery_tree_root;
2445 extent_root->track_dirty = 1;
2446
2447 ret = find_and_setup_root(tree_root, fs_info,
2448 BTRFS_DEV_TREE_OBJECTID, dev_root);
2449 if (ret)
2450 goto recovery_tree_root;
2451 dev_root->track_dirty = 1;
2452
2453 ret = find_and_setup_root(tree_root, fs_info,
2454 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2455 if (ret)
2456 goto recovery_tree_root;
2457 csum_root->track_dirty = 1;
2458
2459 ret = find_and_setup_root(tree_root, fs_info,
2460 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2461 if (ret) {
2462 kfree(quota_root);
2463 quota_root = fs_info->quota_root = NULL;
2464 } else {
2465 quota_root->track_dirty = 1;
2466 fs_info->quota_enabled = 1;
2467 fs_info->pending_quota_state = 1;
2468 }
2469
2470 fs_info->generation = generation;
2471 fs_info->last_trans_committed = generation;
2472
2473 ret = btrfs_recover_balance(fs_info);
2474 if (ret) {
2475 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2476 goto fail_block_groups;
2477 }
2478
2479 ret = btrfs_init_dev_stats(fs_info);
2480 if (ret) {
2481 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2482 ret);
2483 goto fail_block_groups;
2484 }
2485
2486 ret = btrfs_init_space_info(fs_info);
2487 if (ret) {
2488 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2489 goto fail_block_groups;
2490 }
2491
2492 ret = btrfs_read_block_groups(extent_root);
2493 if (ret) {
2494 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2495 goto fail_block_groups;
2496 }
2497
2498 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2499 "btrfs-cleaner");
2500 if (IS_ERR(fs_info->cleaner_kthread))
2501 goto fail_block_groups;
2502
2503 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2504 tree_root,
2505 "btrfs-transaction");
2506 if (IS_ERR(fs_info->transaction_kthread))
2507 goto fail_cleaner;
2508
2509 if (!btrfs_test_opt(tree_root, SSD) &&
2510 !btrfs_test_opt(tree_root, NOSSD) &&
2511 !fs_info->fs_devices->rotating) {
2512 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2513 "mode\n");
2514 btrfs_set_opt(fs_info->mount_opt, SSD);
2515 }
2516
2517 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2518 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2519 ret = btrfsic_mount(tree_root, fs_devices,
2520 btrfs_test_opt(tree_root,
2521 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2522 1 : 0,
2523 fs_info->check_integrity_print_mask);
2524 if (ret)
2525 printk(KERN_WARNING "btrfs: failed to initialize"
2526 " integrity check module %s\n", sb->s_id);
2527 }
2528 #endif
2529 ret = btrfs_read_qgroup_config(fs_info);
2530 if (ret)
2531 goto fail_trans_kthread;
2532
2533 /* do not make disk changes in broken FS */
2534 if (btrfs_super_log_root(disk_super) != 0 &&
2535 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2536 u64 bytenr = btrfs_super_log_root(disk_super);
2537
2538 if (fs_devices->rw_devices == 0) {
2539 printk(KERN_WARNING "Btrfs log replay required "
2540 "on RO media\n");
2541 err = -EIO;
2542 goto fail_qgroup;
2543 }
2544 blocksize =
2545 btrfs_level_size(tree_root,
2546 btrfs_super_log_root_level(disk_super));
2547
2548 log_tree_root = btrfs_alloc_root(fs_info);
2549 if (!log_tree_root) {
2550 err = -ENOMEM;
2551 goto fail_qgroup;
2552 }
2553
2554 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2555 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2556
2557 log_tree_root->node = read_tree_block(tree_root, bytenr,
2558 blocksize,
2559 generation + 1);
2560 /* returns with log_tree_root freed on success */
2561 ret = btrfs_recover_log_trees(log_tree_root);
2562 if (ret) {
2563 btrfs_error(tree_root->fs_info, ret,
2564 "Failed to recover log tree");
2565 free_extent_buffer(log_tree_root->node);
2566 kfree(log_tree_root);
2567 goto fail_trans_kthread;
2568 }
2569
2570 if (sb->s_flags & MS_RDONLY) {
2571 ret = btrfs_commit_super(tree_root);
2572 if (ret)
2573 goto fail_trans_kthread;
2574 }
2575 }
2576
2577 ret = btrfs_find_orphan_roots(tree_root);
2578 if (ret)
2579 goto fail_trans_kthread;
2580
2581 if (!(sb->s_flags & MS_RDONLY)) {
2582 ret = btrfs_cleanup_fs_roots(fs_info);
2583 if (ret)
2584 goto fail_trans_kthread;
2585
2586 ret = btrfs_recover_relocation(tree_root);
2587 if (ret < 0) {
2588 printk(KERN_WARNING
2589 "btrfs: failed to recover relocation\n");
2590 err = -EINVAL;
2591 goto fail_qgroup;
2592 }
2593 }
2594
2595 location.objectid = BTRFS_FS_TREE_OBJECTID;
2596 location.type = BTRFS_ROOT_ITEM_KEY;
2597 location.offset = (u64)-1;
2598
2599 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2600 if (!fs_info->fs_root)
2601 goto fail_qgroup;
2602 if (IS_ERR(fs_info->fs_root)) {
2603 err = PTR_ERR(fs_info->fs_root);
2604 goto fail_qgroup;
2605 }
2606
2607 if (sb->s_flags & MS_RDONLY)
2608 return 0;
2609
2610 down_read(&fs_info->cleanup_work_sem);
2611 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2612 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2613 up_read(&fs_info->cleanup_work_sem);
2614 close_ctree(tree_root);
2615 return ret;
2616 }
2617 up_read(&fs_info->cleanup_work_sem);
2618
2619 ret = btrfs_resume_balance_async(fs_info);
2620 if (ret) {
2621 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2622 close_ctree(tree_root);
2623 return ret;
2624 }
2625
2626 return 0;
2627
2628 fail_qgroup:
2629 btrfs_free_qgroup_config(fs_info);
2630 fail_trans_kthread:
2631 kthread_stop(fs_info->transaction_kthread);
2632 fail_cleaner:
2633 kthread_stop(fs_info->cleaner_kthread);
2634
2635 /*
2636 * make sure we're done with the btree inode before we stop our
2637 * kthreads
2638 */
2639 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2640 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2641
2642 fail_block_groups:
2643 btrfs_free_block_groups(fs_info);
2644
2645 fail_tree_roots:
2646 free_root_pointers(fs_info, 1);
2647
2648 fail_sb_buffer:
2649 btrfs_stop_workers(&fs_info->generic_worker);
2650 btrfs_stop_workers(&fs_info->readahead_workers);
2651 btrfs_stop_workers(&fs_info->fixup_workers);
2652 btrfs_stop_workers(&fs_info->delalloc_workers);
2653 btrfs_stop_workers(&fs_info->workers);
2654 btrfs_stop_workers(&fs_info->endio_workers);
2655 btrfs_stop_workers(&fs_info->endio_meta_workers);
2656 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2657 btrfs_stop_workers(&fs_info->endio_write_workers);
2658 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2659 btrfs_stop_workers(&fs_info->submit_workers);
2660 btrfs_stop_workers(&fs_info->delayed_workers);
2661 btrfs_stop_workers(&fs_info->caching_workers);
2662 fail_alloc:
2663 fail_iput:
2664 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2665
2666 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2667 iput(fs_info->btree_inode);
2668 fail_bdi:
2669 bdi_destroy(&fs_info->bdi);
2670 fail_srcu:
2671 cleanup_srcu_struct(&fs_info->subvol_srcu);
2672 fail:
2673 btrfs_close_devices(fs_info->fs_devices);
2674 return err;
2675
2676 recovery_tree_root:
2677 if (!btrfs_test_opt(tree_root, RECOVERY))
2678 goto fail_tree_roots;
2679
2680 free_root_pointers(fs_info, 0);
2681
2682 /* don't use the log in recovery mode, it won't be valid */
2683 btrfs_set_super_log_root(disk_super, 0);
2684
2685 /* we can't trust the free space cache either */
2686 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2687
2688 ret = next_root_backup(fs_info, fs_info->super_copy,
2689 &num_backups_tried, &backup_index);
2690 if (ret == -1)
2691 goto fail_block_groups;
2692 goto retry_root_backup;
2693 }
2694
2695 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2696 {
2697 if (uptodate) {
2698 set_buffer_uptodate(bh);
2699 } else {
2700 struct btrfs_device *device = (struct btrfs_device *)
2701 bh->b_private;
2702
2703 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2704 "I/O error on %s\n",
2705 rcu_str_deref(device->name));
2706 /* note, we dont' set_buffer_write_io_error because we have
2707 * our own ways of dealing with the IO errors
2708 */
2709 clear_buffer_uptodate(bh);
2710 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2711 }
2712 unlock_buffer(bh);
2713 put_bh(bh);
2714 }
2715
2716 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2717 {
2718 struct buffer_head *bh;
2719 struct buffer_head *latest = NULL;
2720 struct btrfs_super_block *super;
2721 int i;
2722 u64 transid = 0;
2723 u64 bytenr;
2724
2725 /* we would like to check all the supers, but that would make
2726 * a btrfs mount succeed after a mkfs from a different FS.
2727 * So, we need to add a special mount option to scan for
2728 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2729 */
2730 for (i = 0; i < 1; i++) {
2731 bytenr = btrfs_sb_offset(i);
2732 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2733 break;
2734 bh = __bread(bdev, bytenr / 4096, 4096);
2735 if (!bh)
2736 continue;
2737
2738 super = (struct btrfs_super_block *)bh->b_data;
2739 if (btrfs_super_bytenr(super) != bytenr ||
2740 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2741 sizeof(super->magic))) {
2742 brelse(bh);
2743 continue;
2744 }
2745
2746 if (!latest || btrfs_super_generation(super) > transid) {
2747 brelse(latest);
2748 latest = bh;
2749 transid = btrfs_super_generation(super);
2750 } else {
2751 brelse(bh);
2752 }
2753 }
2754 return latest;
2755 }
2756
2757 /*
2758 * this should be called twice, once with wait == 0 and
2759 * once with wait == 1. When wait == 0 is done, all the buffer heads
2760 * we write are pinned.
2761 *
2762 * They are released when wait == 1 is done.
2763 * max_mirrors must be the same for both runs, and it indicates how
2764 * many supers on this one device should be written.
2765 *
2766 * max_mirrors == 0 means to write them all.
2767 */
2768 static int write_dev_supers(struct btrfs_device *device,
2769 struct btrfs_super_block *sb,
2770 int do_barriers, int wait, int max_mirrors)
2771 {
2772 struct buffer_head *bh;
2773 int i;
2774 int ret;
2775 int errors = 0;
2776 u32 crc;
2777 u64 bytenr;
2778
2779 if (max_mirrors == 0)
2780 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2781
2782 for (i = 0; i < max_mirrors; i++) {
2783 bytenr = btrfs_sb_offset(i);
2784 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2785 break;
2786
2787 if (wait) {
2788 bh = __find_get_block(device->bdev, bytenr / 4096,
2789 BTRFS_SUPER_INFO_SIZE);
2790 BUG_ON(!bh);
2791 wait_on_buffer(bh);
2792 if (!buffer_uptodate(bh))
2793 errors++;
2794
2795 /* drop our reference */
2796 brelse(bh);
2797
2798 /* drop the reference from the wait == 0 run */
2799 brelse(bh);
2800 continue;
2801 } else {
2802 btrfs_set_super_bytenr(sb, bytenr);
2803
2804 crc = ~(u32)0;
2805 crc = btrfs_csum_data(NULL, (char *)sb +
2806 BTRFS_CSUM_SIZE, crc,
2807 BTRFS_SUPER_INFO_SIZE -
2808 BTRFS_CSUM_SIZE);
2809 btrfs_csum_final(crc, sb->csum);
2810
2811 /*
2812 * one reference for us, and we leave it for the
2813 * caller
2814 */
2815 bh = __getblk(device->bdev, bytenr / 4096,
2816 BTRFS_SUPER_INFO_SIZE);
2817 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2818
2819 /* one reference for submit_bh */
2820 get_bh(bh);
2821
2822 set_buffer_uptodate(bh);
2823 lock_buffer(bh);
2824 bh->b_end_io = btrfs_end_buffer_write_sync;
2825 bh->b_private = device;
2826 }
2827
2828 /*
2829 * we fua the first super. The others we allow
2830 * to go down lazy.
2831 */
2832 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2833 if (ret)
2834 errors++;
2835 }
2836 return errors < i ? 0 : -1;
2837 }
2838
2839 /*
2840 * endio for the write_dev_flush, this will wake anyone waiting
2841 * for the barrier when it is done
2842 */
2843 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2844 {
2845 if (err) {
2846 if (err == -EOPNOTSUPP)
2847 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2848 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2849 }
2850 if (bio->bi_private)
2851 complete(bio->bi_private);
2852 bio_put(bio);
2853 }
2854
2855 /*
2856 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2857 * sent down. With wait == 1, it waits for the previous flush.
2858 *
2859 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2860 * capable
2861 */
2862 static int write_dev_flush(struct btrfs_device *device, int wait)
2863 {
2864 struct bio *bio;
2865 int ret = 0;
2866
2867 if (device->nobarriers)
2868 return 0;
2869
2870 if (wait) {
2871 bio = device->flush_bio;
2872 if (!bio)
2873 return 0;
2874
2875 wait_for_completion(&device->flush_wait);
2876
2877 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2878 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2879 rcu_str_deref(device->name));
2880 device->nobarriers = 1;
2881 }
2882 if (!bio_flagged(bio, BIO_UPTODATE)) {
2883 ret = -EIO;
2884 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2885 btrfs_dev_stat_inc_and_print(device,
2886 BTRFS_DEV_STAT_FLUSH_ERRS);
2887 }
2888
2889 /* drop the reference from the wait == 0 run */
2890 bio_put(bio);
2891 device->flush_bio = NULL;
2892
2893 return ret;
2894 }
2895
2896 /*
2897 * one reference for us, and we leave it for the
2898 * caller
2899 */
2900 device->flush_bio = NULL;
2901 bio = bio_alloc(GFP_NOFS, 0);
2902 if (!bio)
2903 return -ENOMEM;
2904
2905 bio->bi_end_io = btrfs_end_empty_barrier;
2906 bio->bi_bdev = device->bdev;
2907 init_completion(&device->flush_wait);
2908 bio->bi_private = &device->flush_wait;
2909 device->flush_bio = bio;
2910
2911 bio_get(bio);
2912 btrfsic_submit_bio(WRITE_FLUSH, bio);
2913
2914 return 0;
2915 }
2916
2917 /*
2918 * send an empty flush down to each device in parallel,
2919 * then wait for them
2920 */
2921 static int barrier_all_devices(struct btrfs_fs_info *info)
2922 {
2923 struct list_head *head;
2924 struct btrfs_device *dev;
2925 int errors = 0;
2926 int ret;
2927
2928 /* send down all the barriers */
2929 head = &info->fs_devices->devices;
2930 list_for_each_entry_rcu(dev, head, dev_list) {
2931 if (!dev->bdev) {
2932 errors++;
2933 continue;
2934 }
2935 if (!dev->in_fs_metadata || !dev->writeable)
2936 continue;
2937
2938 ret = write_dev_flush(dev, 0);
2939 if (ret)
2940 errors++;
2941 }
2942
2943 /* wait for all the barriers */
2944 list_for_each_entry_rcu(dev, head, dev_list) {
2945 if (!dev->bdev) {
2946 errors++;
2947 continue;
2948 }
2949 if (!dev->in_fs_metadata || !dev->writeable)
2950 continue;
2951
2952 ret = write_dev_flush(dev, 1);
2953 if (ret)
2954 errors++;
2955 }
2956 if (errors)
2957 return -EIO;
2958 return 0;
2959 }
2960
2961 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2962 {
2963 struct list_head *head;
2964 struct btrfs_device *dev;
2965 struct btrfs_super_block *sb;
2966 struct btrfs_dev_item *dev_item;
2967 int ret;
2968 int do_barriers;
2969 int max_errors;
2970 int total_errors = 0;
2971 u64 flags;
2972
2973 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2974 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2975 backup_super_roots(root->fs_info);
2976
2977 sb = root->fs_info->super_for_commit;
2978 dev_item = &sb->dev_item;
2979
2980 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2981 head = &root->fs_info->fs_devices->devices;
2982
2983 if (do_barriers)
2984 barrier_all_devices(root->fs_info);
2985
2986 list_for_each_entry_rcu(dev, head, dev_list) {
2987 if (!dev->bdev) {
2988 total_errors++;
2989 continue;
2990 }
2991 if (!dev->in_fs_metadata || !dev->writeable)
2992 continue;
2993
2994 btrfs_set_stack_device_generation(dev_item, 0);
2995 btrfs_set_stack_device_type(dev_item, dev->type);
2996 btrfs_set_stack_device_id(dev_item, dev->devid);
2997 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2998 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2999 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3000 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3001 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3002 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3003 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3004
3005 flags = btrfs_super_flags(sb);
3006 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3007
3008 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3009 if (ret)
3010 total_errors++;
3011 }
3012 if (total_errors > max_errors) {
3013 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3014 total_errors);
3015
3016 /* This shouldn't happen. FUA is masked off if unsupported */
3017 BUG();
3018 }
3019
3020 total_errors = 0;
3021 list_for_each_entry_rcu(dev, head, dev_list) {
3022 if (!dev->bdev)
3023 continue;
3024 if (!dev->in_fs_metadata || !dev->writeable)
3025 continue;
3026
3027 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3028 if (ret)
3029 total_errors++;
3030 }
3031 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3032 if (total_errors > max_errors) {
3033 btrfs_error(root->fs_info, -EIO,
3034 "%d errors while writing supers", total_errors);
3035 return -EIO;
3036 }
3037 return 0;
3038 }
3039
3040 int write_ctree_super(struct btrfs_trans_handle *trans,
3041 struct btrfs_root *root, int max_mirrors)
3042 {
3043 int ret;
3044
3045 ret = write_all_supers(root, max_mirrors);
3046 return ret;
3047 }
3048
3049 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3050 {
3051 spin_lock(&fs_info->fs_roots_radix_lock);
3052 radix_tree_delete(&fs_info->fs_roots_radix,
3053 (unsigned long)root->root_key.objectid);
3054 spin_unlock(&fs_info->fs_roots_radix_lock);
3055
3056 if (btrfs_root_refs(&root->root_item) == 0)
3057 synchronize_srcu(&fs_info->subvol_srcu);
3058
3059 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3060 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3061 free_fs_root(root);
3062 }
3063
3064 static void free_fs_root(struct btrfs_root *root)
3065 {
3066 iput(root->cache_inode);
3067 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3068 if (root->anon_dev)
3069 free_anon_bdev(root->anon_dev);
3070 free_extent_buffer(root->node);
3071 free_extent_buffer(root->commit_root);
3072 kfree(root->free_ino_ctl);
3073 kfree(root->free_ino_pinned);
3074 kfree(root->name);
3075 kfree(root);
3076 }
3077
3078 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3079 {
3080 int ret;
3081 struct btrfs_root *gang[8];
3082 int i;
3083
3084 while (!list_empty(&fs_info->dead_roots)) {
3085 gang[0] = list_entry(fs_info->dead_roots.next,
3086 struct btrfs_root, root_list);
3087 list_del(&gang[0]->root_list);
3088
3089 if (gang[0]->in_radix) {
3090 btrfs_free_fs_root(fs_info, gang[0]);
3091 } else {
3092 free_extent_buffer(gang[0]->node);
3093 free_extent_buffer(gang[0]->commit_root);
3094 kfree(gang[0]);
3095 }
3096 }
3097
3098 while (1) {
3099 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3100 (void **)gang, 0,
3101 ARRAY_SIZE(gang));
3102 if (!ret)
3103 break;
3104 for (i = 0; i < ret; i++)
3105 btrfs_free_fs_root(fs_info, gang[i]);
3106 }
3107 }
3108
3109 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3110 {
3111 u64 root_objectid = 0;
3112 struct btrfs_root *gang[8];
3113 int i;
3114 int ret;
3115
3116 while (1) {
3117 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3118 (void **)gang, root_objectid,
3119 ARRAY_SIZE(gang));
3120 if (!ret)
3121 break;
3122
3123 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3124 for (i = 0; i < ret; i++) {
3125 int err;
3126
3127 root_objectid = gang[i]->root_key.objectid;
3128 err = btrfs_orphan_cleanup(gang[i]);
3129 if (err)
3130 return err;
3131 }
3132 root_objectid++;
3133 }
3134 return 0;
3135 }
3136
3137 int btrfs_commit_super(struct btrfs_root *root)
3138 {
3139 struct btrfs_trans_handle *trans;
3140 int ret;
3141
3142 mutex_lock(&root->fs_info->cleaner_mutex);
3143 btrfs_run_delayed_iputs(root);
3144 btrfs_clean_old_snapshots(root);
3145 mutex_unlock(&root->fs_info->cleaner_mutex);
3146
3147 /* wait until ongoing cleanup work done */
3148 down_write(&root->fs_info->cleanup_work_sem);
3149 up_write(&root->fs_info->cleanup_work_sem);
3150
3151 trans = btrfs_join_transaction(root);
3152 if (IS_ERR(trans))
3153 return PTR_ERR(trans);
3154 ret = btrfs_commit_transaction(trans, root);
3155 if (ret)
3156 return ret;
3157 /* run commit again to drop the original snapshot */
3158 trans = btrfs_join_transaction(root);
3159 if (IS_ERR(trans))
3160 return PTR_ERR(trans);
3161 ret = btrfs_commit_transaction(trans, root);
3162 if (ret)
3163 return ret;
3164 ret = btrfs_write_and_wait_transaction(NULL, root);
3165 if (ret) {
3166 btrfs_error(root->fs_info, ret,
3167 "Failed to sync btree inode to disk.");
3168 return ret;
3169 }
3170
3171 ret = write_ctree_super(NULL, root, 0);
3172 return ret;
3173 }
3174
3175 int close_ctree(struct btrfs_root *root)
3176 {
3177 struct btrfs_fs_info *fs_info = root->fs_info;
3178 int ret;
3179
3180 fs_info->closing = 1;
3181 smp_mb();
3182
3183 /* pause restriper - we want to resume on mount */
3184 btrfs_pause_balance(root->fs_info);
3185
3186 btrfs_scrub_cancel(root);
3187
3188 /* wait for any defraggers to finish */
3189 wait_event(fs_info->transaction_wait,
3190 (atomic_read(&fs_info->defrag_running) == 0));
3191
3192 /* clear out the rbtree of defraggable inodes */
3193 btrfs_run_defrag_inodes(fs_info);
3194
3195 /*
3196 * Here come 2 situations when btrfs is broken to flip readonly:
3197 *
3198 * 1. when btrfs flips readonly somewhere else before
3199 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3200 * and btrfs will skip to write sb directly to keep
3201 * ERROR state on disk.
3202 *
3203 * 2. when btrfs flips readonly just in btrfs_commit_super,
3204 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3205 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3206 * btrfs will cleanup all FS resources first and write sb then.
3207 */
3208 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3209 ret = btrfs_commit_super(root);
3210 if (ret)
3211 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3212 }
3213
3214 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3215 ret = btrfs_error_commit_super(root);
3216 if (ret)
3217 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3218 }
3219
3220 btrfs_put_block_group_cache(fs_info);
3221
3222 kthread_stop(fs_info->transaction_kthread);
3223 kthread_stop(fs_info->cleaner_kthread);
3224
3225 fs_info->closing = 2;
3226 smp_mb();
3227
3228 btrfs_free_qgroup_config(root->fs_info);
3229
3230 if (fs_info->delalloc_bytes) {
3231 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3232 (unsigned long long)fs_info->delalloc_bytes);
3233 }
3234 if (fs_info->total_ref_cache_size) {
3235 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3236 (unsigned long long)fs_info->total_ref_cache_size);
3237 }
3238
3239 free_extent_buffer(fs_info->extent_root->node);
3240 free_extent_buffer(fs_info->extent_root->commit_root);
3241 free_extent_buffer(fs_info->tree_root->node);
3242 free_extent_buffer(fs_info->tree_root->commit_root);
3243 free_extent_buffer(fs_info->chunk_root->node);
3244 free_extent_buffer(fs_info->chunk_root->commit_root);
3245 free_extent_buffer(fs_info->dev_root->node);
3246 free_extent_buffer(fs_info->dev_root->commit_root);
3247 free_extent_buffer(fs_info->csum_root->node);
3248 free_extent_buffer(fs_info->csum_root->commit_root);
3249 if (fs_info->quota_root) {
3250 free_extent_buffer(fs_info->quota_root->node);
3251 free_extent_buffer(fs_info->quota_root->commit_root);
3252 }
3253
3254 btrfs_free_block_groups(fs_info);
3255
3256 del_fs_roots(fs_info);
3257
3258 iput(fs_info->btree_inode);
3259
3260 btrfs_stop_workers(&fs_info->generic_worker);
3261 btrfs_stop_workers(&fs_info->fixup_workers);
3262 btrfs_stop_workers(&fs_info->delalloc_workers);
3263 btrfs_stop_workers(&fs_info->workers);
3264 btrfs_stop_workers(&fs_info->endio_workers);
3265 btrfs_stop_workers(&fs_info->endio_meta_workers);
3266 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3267 btrfs_stop_workers(&fs_info->endio_write_workers);
3268 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3269 btrfs_stop_workers(&fs_info->submit_workers);
3270 btrfs_stop_workers(&fs_info->delayed_workers);
3271 btrfs_stop_workers(&fs_info->caching_workers);
3272 btrfs_stop_workers(&fs_info->readahead_workers);
3273
3274 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3275 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3276 btrfsic_unmount(root, fs_info->fs_devices);
3277 #endif
3278
3279 btrfs_close_devices(fs_info->fs_devices);
3280 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3281
3282 bdi_destroy(&fs_info->bdi);
3283 cleanup_srcu_struct(&fs_info->subvol_srcu);
3284
3285 return 0;
3286 }
3287
3288 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3289 int atomic)
3290 {
3291 int ret;
3292 struct inode *btree_inode = buf->pages[0]->mapping->host;
3293
3294 ret = extent_buffer_uptodate(buf);
3295 if (!ret)
3296 return ret;
3297
3298 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3299 parent_transid, atomic);
3300 if (ret == -EAGAIN)
3301 return ret;
3302 return !ret;
3303 }
3304
3305 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3306 {
3307 return set_extent_buffer_uptodate(buf);
3308 }
3309
3310 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3311 {
3312 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3313 u64 transid = btrfs_header_generation(buf);
3314 int was_dirty;
3315
3316 btrfs_assert_tree_locked(buf);
3317 if (transid != root->fs_info->generation) {
3318 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3319 "found %llu running %llu\n",
3320 (unsigned long long)buf->start,
3321 (unsigned long long)transid,
3322 (unsigned long long)root->fs_info->generation);
3323 WARN_ON(1);
3324 }
3325 was_dirty = set_extent_buffer_dirty(buf);
3326 if (!was_dirty) {
3327 spin_lock(&root->fs_info->delalloc_lock);
3328 root->fs_info->dirty_metadata_bytes += buf->len;
3329 spin_unlock(&root->fs_info->delalloc_lock);
3330 }
3331 }
3332
3333 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3334 {
3335 /*
3336 * looks as though older kernels can get into trouble with
3337 * this code, they end up stuck in balance_dirty_pages forever
3338 */
3339 u64 num_dirty;
3340 unsigned long thresh = 32 * 1024 * 1024;
3341
3342 if (current->flags & PF_MEMALLOC)
3343 return;
3344
3345 btrfs_balance_delayed_items(root);
3346
3347 num_dirty = root->fs_info->dirty_metadata_bytes;
3348
3349 if (num_dirty > thresh) {
3350 balance_dirty_pages_ratelimited_nr(
3351 root->fs_info->btree_inode->i_mapping, 1);
3352 }
3353 return;
3354 }
3355
3356 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3357 {
3358 /*
3359 * looks as though older kernels can get into trouble with
3360 * this code, they end up stuck in balance_dirty_pages forever
3361 */
3362 u64 num_dirty;
3363 unsigned long thresh = 32 * 1024 * 1024;
3364
3365 if (current->flags & PF_MEMALLOC)
3366 return;
3367
3368 num_dirty = root->fs_info->dirty_metadata_bytes;
3369
3370 if (num_dirty > thresh) {
3371 balance_dirty_pages_ratelimited_nr(
3372 root->fs_info->btree_inode->i_mapping, 1);
3373 }
3374 return;
3375 }
3376
3377 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3378 {
3379 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3380 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3381 }
3382
3383 int btree_lock_page_hook(struct page *page, void *data,
3384 void (*flush_fn)(void *))
3385 {
3386 struct inode *inode = page->mapping->host;
3387 struct btrfs_root *root = BTRFS_I(inode)->root;
3388 struct extent_buffer *eb;
3389
3390 /*
3391 * We culled this eb but the page is still hanging out on the mapping,
3392 * carry on.
3393 */
3394 if (!PagePrivate(page))
3395 goto out;
3396
3397 eb = (struct extent_buffer *)page->private;
3398 if (!eb) {
3399 WARN_ON(1);
3400 goto out;
3401 }
3402 if (page != eb->pages[0])
3403 goto out;
3404
3405 if (!btrfs_try_tree_write_lock(eb)) {
3406 flush_fn(data);
3407 btrfs_tree_lock(eb);
3408 }
3409 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3410
3411 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3412 spin_lock(&root->fs_info->delalloc_lock);
3413 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3414 root->fs_info->dirty_metadata_bytes -= eb->len;
3415 else
3416 WARN_ON(1);
3417 spin_unlock(&root->fs_info->delalloc_lock);
3418 }
3419
3420 btrfs_tree_unlock(eb);
3421 out:
3422 if (!trylock_page(page)) {
3423 flush_fn(data);
3424 lock_page(page);
3425 }
3426 return 0;
3427 }
3428
3429 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3430 int read_only)
3431 {
3432 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3433 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3434 return -EINVAL;
3435 }
3436
3437 if (read_only)
3438 return 0;
3439
3440 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3441 printk(KERN_WARNING "warning: mount fs with errors, "
3442 "running btrfsck is recommended\n");
3443 }
3444
3445 return 0;
3446 }
3447
3448 int btrfs_error_commit_super(struct btrfs_root *root)
3449 {
3450 int ret;
3451
3452 mutex_lock(&root->fs_info->cleaner_mutex);
3453 btrfs_run_delayed_iputs(root);
3454 mutex_unlock(&root->fs_info->cleaner_mutex);
3455
3456 down_write(&root->fs_info->cleanup_work_sem);
3457 up_write(&root->fs_info->cleanup_work_sem);
3458
3459 /* cleanup FS via transaction */
3460 btrfs_cleanup_transaction(root);
3461
3462 ret = write_ctree_super(NULL, root, 0);
3463
3464 return ret;
3465 }
3466
3467 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3468 {
3469 struct btrfs_inode *btrfs_inode;
3470 struct list_head splice;
3471
3472 INIT_LIST_HEAD(&splice);
3473
3474 mutex_lock(&root->fs_info->ordered_operations_mutex);
3475 spin_lock(&root->fs_info->ordered_extent_lock);
3476
3477 list_splice_init(&root->fs_info->ordered_operations, &splice);
3478 while (!list_empty(&splice)) {
3479 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3480 ordered_operations);
3481
3482 list_del_init(&btrfs_inode->ordered_operations);
3483
3484 btrfs_invalidate_inodes(btrfs_inode->root);
3485 }
3486
3487 spin_unlock(&root->fs_info->ordered_extent_lock);
3488 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3489 }
3490
3491 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3492 {
3493 struct list_head splice;
3494 struct btrfs_ordered_extent *ordered;
3495 struct inode *inode;
3496
3497 INIT_LIST_HEAD(&splice);
3498
3499 spin_lock(&root->fs_info->ordered_extent_lock);
3500
3501 list_splice_init(&root->fs_info->ordered_extents, &splice);
3502 while (!list_empty(&splice)) {
3503 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3504 root_extent_list);
3505
3506 list_del_init(&ordered->root_extent_list);
3507 atomic_inc(&ordered->refs);
3508
3509 /* the inode may be getting freed (in sys_unlink path). */
3510 inode = igrab(ordered->inode);
3511
3512 spin_unlock(&root->fs_info->ordered_extent_lock);
3513 if (inode)
3514 iput(inode);
3515
3516 atomic_set(&ordered->refs, 1);
3517 btrfs_put_ordered_extent(ordered);
3518
3519 spin_lock(&root->fs_info->ordered_extent_lock);
3520 }
3521
3522 spin_unlock(&root->fs_info->ordered_extent_lock);
3523 }
3524
3525 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3526 struct btrfs_root *root)
3527 {
3528 struct rb_node *node;
3529 struct btrfs_delayed_ref_root *delayed_refs;
3530 struct btrfs_delayed_ref_node *ref;
3531 int ret = 0;
3532
3533 delayed_refs = &trans->delayed_refs;
3534
3535 spin_lock(&delayed_refs->lock);
3536 if (delayed_refs->num_entries == 0) {
3537 spin_unlock(&delayed_refs->lock);
3538 printk(KERN_INFO "delayed_refs has NO entry\n");
3539 return ret;
3540 }
3541
3542 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3543 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3544
3545 atomic_set(&ref->refs, 1);
3546 if (btrfs_delayed_ref_is_head(ref)) {
3547 struct btrfs_delayed_ref_head *head;
3548
3549 head = btrfs_delayed_node_to_head(ref);
3550 if (!mutex_trylock(&head->mutex)) {
3551 atomic_inc(&ref->refs);
3552 spin_unlock(&delayed_refs->lock);
3553
3554 /* Need to wait for the delayed ref to run */
3555 mutex_lock(&head->mutex);
3556 mutex_unlock(&head->mutex);
3557 btrfs_put_delayed_ref(ref);
3558
3559 spin_lock(&delayed_refs->lock);
3560 continue;
3561 }
3562
3563 kfree(head->extent_op);
3564 delayed_refs->num_heads--;
3565 if (list_empty(&head->cluster))
3566 delayed_refs->num_heads_ready--;
3567 list_del_init(&head->cluster);
3568 }
3569 ref->in_tree = 0;
3570 rb_erase(&ref->rb_node, &delayed_refs->root);
3571 delayed_refs->num_entries--;
3572
3573 spin_unlock(&delayed_refs->lock);
3574 btrfs_put_delayed_ref(ref);
3575
3576 cond_resched();
3577 spin_lock(&delayed_refs->lock);
3578 }
3579
3580 spin_unlock(&delayed_refs->lock);
3581
3582 return ret;
3583 }
3584
3585 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3586 {
3587 struct btrfs_pending_snapshot *snapshot;
3588 struct list_head splice;
3589
3590 INIT_LIST_HEAD(&splice);
3591
3592 list_splice_init(&t->pending_snapshots, &splice);
3593
3594 while (!list_empty(&splice)) {
3595 snapshot = list_entry(splice.next,
3596 struct btrfs_pending_snapshot,
3597 list);
3598
3599 list_del_init(&snapshot->list);
3600
3601 kfree(snapshot);
3602 }
3603 }
3604
3605 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3606 {
3607 struct btrfs_inode *btrfs_inode;
3608 struct list_head splice;
3609
3610 INIT_LIST_HEAD(&splice);
3611
3612 spin_lock(&root->fs_info->delalloc_lock);
3613 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3614
3615 while (!list_empty(&splice)) {
3616 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3617 delalloc_inodes);
3618
3619 list_del_init(&btrfs_inode->delalloc_inodes);
3620
3621 btrfs_invalidate_inodes(btrfs_inode->root);
3622 }
3623
3624 spin_unlock(&root->fs_info->delalloc_lock);
3625 }
3626
3627 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3628 struct extent_io_tree *dirty_pages,
3629 int mark)
3630 {
3631 int ret;
3632 struct page *page;
3633 struct inode *btree_inode = root->fs_info->btree_inode;
3634 struct extent_buffer *eb;
3635 u64 start = 0;
3636 u64 end;
3637 u64 offset;
3638 unsigned long index;
3639
3640 while (1) {
3641 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3642 mark);
3643 if (ret)
3644 break;
3645
3646 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3647 while (start <= end) {
3648 index = start >> PAGE_CACHE_SHIFT;
3649 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3650 page = find_get_page(btree_inode->i_mapping, index);
3651 if (!page)
3652 continue;
3653 offset = page_offset(page);
3654
3655 spin_lock(&dirty_pages->buffer_lock);
3656 eb = radix_tree_lookup(
3657 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3658 offset >> PAGE_CACHE_SHIFT);
3659 spin_unlock(&dirty_pages->buffer_lock);
3660 if (eb)
3661 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3662 &eb->bflags);
3663 if (PageWriteback(page))
3664 end_page_writeback(page);
3665
3666 lock_page(page);
3667 if (PageDirty(page)) {
3668 clear_page_dirty_for_io(page);
3669 spin_lock_irq(&page->mapping->tree_lock);
3670 radix_tree_tag_clear(&page->mapping->page_tree,
3671 page_index(page),
3672 PAGECACHE_TAG_DIRTY);
3673 spin_unlock_irq(&page->mapping->tree_lock);
3674 }
3675
3676 unlock_page(page);
3677 page_cache_release(page);
3678 }
3679 }
3680
3681 return ret;
3682 }
3683
3684 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3685 struct extent_io_tree *pinned_extents)
3686 {
3687 struct extent_io_tree *unpin;
3688 u64 start;
3689 u64 end;
3690 int ret;
3691 bool loop = true;
3692
3693 unpin = pinned_extents;
3694 again:
3695 while (1) {
3696 ret = find_first_extent_bit(unpin, 0, &start, &end,
3697 EXTENT_DIRTY);
3698 if (ret)
3699 break;
3700
3701 /* opt_discard */
3702 if (btrfs_test_opt(root, DISCARD))
3703 ret = btrfs_error_discard_extent(root, start,
3704 end + 1 - start,
3705 NULL);
3706
3707 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3708 btrfs_error_unpin_extent_range(root, start, end);
3709 cond_resched();
3710 }
3711
3712 if (loop) {
3713 if (unpin == &root->fs_info->freed_extents[0])
3714 unpin = &root->fs_info->freed_extents[1];
3715 else
3716 unpin = &root->fs_info->freed_extents[0];
3717 loop = false;
3718 goto again;
3719 }
3720
3721 return 0;
3722 }
3723
3724 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3725 struct btrfs_root *root)
3726 {
3727 btrfs_destroy_delayed_refs(cur_trans, root);
3728 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3729 cur_trans->dirty_pages.dirty_bytes);
3730
3731 /* FIXME: cleanup wait for commit */
3732 cur_trans->in_commit = 1;
3733 cur_trans->blocked = 1;
3734 wake_up(&root->fs_info->transaction_blocked_wait);
3735
3736 cur_trans->blocked = 0;
3737 wake_up(&root->fs_info->transaction_wait);
3738
3739 cur_trans->commit_done = 1;
3740 wake_up(&cur_trans->commit_wait);
3741
3742 btrfs_destroy_delayed_inodes(root);
3743 btrfs_assert_delayed_root_empty(root);
3744
3745 btrfs_destroy_pending_snapshots(cur_trans);
3746
3747 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3748 EXTENT_DIRTY);
3749 btrfs_destroy_pinned_extent(root,
3750 root->fs_info->pinned_extents);
3751
3752 /*
3753 memset(cur_trans, 0, sizeof(*cur_trans));
3754 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3755 */
3756 }
3757
3758 int btrfs_cleanup_transaction(struct btrfs_root *root)
3759 {
3760 struct btrfs_transaction *t;
3761 LIST_HEAD(list);
3762
3763 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3764
3765 spin_lock(&root->fs_info->trans_lock);
3766 list_splice_init(&root->fs_info->trans_list, &list);
3767 root->fs_info->trans_no_join = 1;
3768 spin_unlock(&root->fs_info->trans_lock);
3769
3770 while (!list_empty(&list)) {
3771 t = list_entry(list.next, struct btrfs_transaction, list);
3772 if (!t)
3773 break;
3774
3775 btrfs_destroy_ordered_operations(root);
3776
3777 btrfs_destroy_ordered_extents(root);
3778
3779 btrfs_destroy_delayed_refs(t, root);
3780
3781 btrfs_block_rsv_release(root,
3782 &root->fs_info->trans_block_rsv,
3783 t->dirty_pages.dirty_bytes);
3784
3785 /* FIXME: cleanup wait for commit */
3786 t->in_commit = 1;
3787 t->blocked = 1;
3788 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3789 wake_up(&root->fs_info->transaction_blocked_wait);
3790
3791 t->blocked = 0;
3792 if (waitqueue_active(&root->fs_info->transaction_wait))
3793 wake_up(&root->fs_info->transaction_wait);
3794
3795 t->commit_done = 1;
3796 if (waitqueue_active(&t->commit_wait))
3797 wake_up(&t->commit_wait);
3798
3799 btrfs_destroy_delayed_inodes(root);
3800 btrfs_assert_delayed_root_empty(root);
3801
3802 btrfs_destroy_pending_snapshots(t);
3803
3804 btrfs_destroy_delalloc_inodes(root);
3805
3806 spin_lock(&root->fs_info->trans_lock);
3807 root->fs_info->running_transaction = NULL;
3808 spin_unlock(&root->fs_info->trans_lock);
3809
3810 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3811 EXTENT_DIRTY);
3812
3813 btrfs_destroy_pinned_extent(root,
3814 root->fs_info->pinned_extents);
3815
3816 atomic_set(&t->use_count, 0);
3817 list_del_init(&t->list);
3818 memset(t, 0, sizeof(*t));
3819 kmem_cache_free(btrfs_transaction_cachep, t);
3820 }
3821
3822 spin_lock(&root->fs_info->trans_lock);
3823 root->fs_info->trans_no_join = 0;
3824 spin_unlock(&root->fs_info->trans_lock);
3825 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3826
3827 return 0;
3828 }
3829
3830 static struct extent_io_ops btree_extent_io_ops = {
3831 .write_cache_pages_lock_hook = btree_lock_page_hook,
3832 .readpage_end_io_hook = btree_readpage_end_io_hook,
3833 .readpage_io_failed_hook = btree_io_failed_hook,
3834 .submit_bio_hook = btree_submit_bio_hook,
3835 /* note we're sharing with inode.c for the merge bio hook */
3836 .merge_bio_hook = btrfs_merge_bio_hook,
3837 };
This page took 0.112725 seconds and 5 git commands to generate.