Btrfs: Drop some verbose printks
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38 if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40 (unsigned long long)extent_buffer_blocknr(buf),
41 (unsigned long long)btrfs_header_blocknr(buf));
42 return 1;
43 }
44 return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50 static struct workqueue_struct *async_submit_workqueue;
51
52 struct end_io_wq {
53 struct bio *bio;
54 bio_end_io_t *end_io;
55 void *private;
56 struct btrfs_fs_info *info;
57 int error;
58 int metadata;
59 struct list_head list;
60 };
61
62 struct async_submit_bio {
63 struct inode *inode;
64 struct bio *bio;
65 struct list_head list;
66 extent_submit_bio_hook_t *submit_bio_hook;
67 int rw;
68 int mirror_num;
69 };
70
71 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
72 size_t page_offset, u64 start, u64 len,
73 int create)
74 {
75 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
76 struct extent_map *em;
77 int ret;
78
79 spin_lock(&em_tree->lock);
80 em = lookup_extent_mapping(em_tree, start, len);
81 spin_unlock(&em_tree->lock);
82 if (em)
83 goto out;
84
85 em = alloc_extent_map(GFP_NOFS);
86 if (!em) {
87 em = ERR_PTR(-ENOMEM);
88 goto out;
89 }
90 em->start = 0;
91 em->len = (u64)-1;
92 em->block_start = 0;
93 em->bdev = inode->i_sb->s_bdev;
94
95 spin_lock(&em_tree->lock);
96 ret = add_extent_mapping(em_tree, em);
97 if (ret == -EEXIST) {
98 u64 failed_start = em->start;
99 u64 failed_len = em->len;
100
101 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
102 em->start, em->len, em->block_start);
103 free_extent_map(em);
104 em = lookup_extent_mapping(em_tree, start, len);
105 if (em) {
106 printk("after failing, found %Lu %Lu %Lu\n",
107 em->start, em->len, em->block_start);
108 ret = 0;
109 } else {
110 em = lookup_extent_mapping(em_tree, failed_start,
111 failed_len);
112 if (em) {
113 printk("double failure lookup gives us "
114 "%Lu %Lu -> %Lu\n", em->start,
115 em->len, em->block_start);
116 free_extent_map(em);
117 }
118 ret = -EIO;
119 }
120 } else if (ret) {
121 free_extent_map(em);
122 em = NULL;
123 }
124 spin_unlock(&em_tree->lock);
125
126 if (ret)
127 em = ERR_PTR(ret);
128 out:
129 return em;
130 }
131
132 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
133 {
134 return btrfs_crc32c(seed, data, len);
135 }
136
137 void btrfs_csum_final(u32 crc, char *result)
138 {
139 *(__le32 *)result = ~cpu_to_le32(crc);
140 }
141
142 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
143 int verify)
144 {
145 char result[BTRFS_CRC32_SIZE];
146 unsigned long len;
147 unsigned long cur_len;
148 unsigned long offset = BTRFS_CSUM_SIZE;
149 char *map_token = NULL;
150 char *kaddr;
151 unsigned long map_start;
152 unsigned long map_len;
153 int err;
154 u32 crc = ~(u32)0;
155
156 len = buf->len - offset;
157 while(len > 0) {
158 err = map_private_extent_buffer(buf, offset, 32,
159 &map_token, &kaddr,
160 &map_start, &map_len, KM_USER0);
161 if (err) {
162 printk("failed to map extent buffer! %lu\n",
163 offset);
164 return 1;
165 }
166 cur_len = min(len, map_len - (offset - map_start));
167 crc = btrfs_csum_data(root, kaddr + offset - map_start,
168 crc, cur_len);
169 len -= cur_len;
170 offset += cur_len;
171 unmap_extent_buffer(buf, map_token, KM_USER0);
172 }
173 btrfs_csum_final(crc, result);
174
175 if (verify) {
176 int from_this_trans = 0;
177
178 if (root->fs_info->running_transaction &&
179 btrfs_header_generation(buf) ==
180 root->fs_info->running_transaction->transid)
181 from_this_trans = 1;
182
183 /* FIXME, this is not good */
184 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
185 u32 val;
186 u32 found = 0;
187 memcpy(&found, result, BTRFS_CRC32_SIZE);
188
189 read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
190 printk("btrfs: %s checksum verify failed on %llu "
191 "wanted %X found %X from_this_trans %d "
192 "level %d\n",
193 root->fs_info->sb->s_id,
194 buf->start, val, found, from_this_trans,
195 btrfs_header_level(buf));
196 return 1;
197 }
198 } else {
199 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
200 }
201 return 0;
202 }
203
204 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
205 struct extent_buffer *eb,
206 u64 start)
207 {
208 struct extent_io_tree *io_tree;
209 int ret;
210 int num_copies = 0;
211 int mirror_num = 0;
212
213 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
214 while (1) {
215 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
216 btree_get_extent, mirror_num);
217 if (!ret)
218 return ret;
219
220 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
221 eb->start, eb->len);
222 if (num_copies == 1)
223 return ret;
224
225 mirror_num++;
226 if (mirror_num > num_copies)
227 return ret;
228 }
229 return -EIO;
230 }
231
232 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
233 {
234 struct extent_io_tree *tree;
235 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
236 u64 found_start;
237 int found_level;
238 unsigned long len;
239 struct extent_buffer *eb;
240 int ret;
241
242 tree = &BTRFS_I(page->mapping->host)->io_tree;
243
244 if (page->private == EXTENT_PAGE_PRIVATE)
245 goto out;
246 if (!page->private)
247 goto out;
248 len = page->private >> 2;
249 if (len == 0) {
250 WARN_ON(1);
251 }
252 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
253 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE);
254 BUG_ON(ret);
255 btrfs_clear_buffer_defrag(eb);
256 found_start = btrfs_header_bytenr(eb);
257 if (found_start != start) {
258 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
259 start, found_start, len);
260 WARN_ON(1);
261 goto err;
262 }
263 if (eb->first_page != page) {
264 printk("bad first page %lu %lu\n", eb->first_page->index,
265 page->index);
266 WARN_ON(1);
267 goto err;
268 }
269 if (!PageUptodate(page)) {
270 printk("csum not up to date page %lu\n", page->index);
271 WARN_ON(1);
272 goto err;
273 }
274 found_level = btrfs_header_level(eb);
275 spin_lock(&root->fs_info->hash_lock);
276 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
277 spin_unlock(&root->fs_info->hash_lock);
278 csum_tree_block(root, eb, 0);
279 err:
280 free_extent_buffer(eb);
281 out:
282 return 0;
283 }
284
285 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
286 {
287 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
288
289 csum_dirty_buffer(root, page);
290 return 0;
291 }
292
293 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
294 struct extent_state *state)
295 {
296 struct extent_io_tree *tree;
297 u64 found_start;
298 int found_level;
299 unsigned long len;
300 struct extent_buffer *eb;
301 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
302 int ret = 0;
303
304 tree = &BTRFS_I(page->mapping->host)->io_tree;
305 if (page->private == EXTENT_PAGE_PRIVATE)
306 goto out;
307 if (!page->private)
308 goto out;
309 len = page->private >> 2;
310 if (len == 0) {
311 WARN_ON(1);
312 }
313 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
314
315 btrfs_clear_buffer_defrag(eb);
316 found_start = btrfs_header_bytenr(eb);
317 if (found_start != start) {
318 ret = -EIO;
319 goto err;
320 }
321 if (eb->first_page != page) {
322 printk("bad first page %lu %lu\n", eb->first_page->index,
323 page->index);
324 WARN_ON(1);
325 ret = -EIO;
326 goto err;
327 }
328 found_level = btrfs_header_level(eb);
329
330 ret = csum_tree_block(root, eb, 1);
331 if (ret)
332 ret = -EIO;
333
334 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
335 end = eb->start + end - 1;
336 release_extent_buffer_tail_pages(eb);
337 err:
338 free_extent_buffer(eb);
339 out:
340 return ret;
341 }
342
343 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
344 static void end_workqueue_bio(struct bio *bio, int err)
345 #else
346 static int end_workqueue_bio(struct bio *bio,
347 unsigned int bytes_done, int err)
348 #endif
349 {
350 struct end_io_wq *end_io_wq = bio->bi_private;
351 struct btrfs_fs_info *fs_info;
352 unsigned long flags;
353
354 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
355 if (bio->bi_size)
356 return 1;
357 #endif
358
359 fs_info = end_io_wq->info;
360 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
361 end_io_wq->error = err;
362 list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
363 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
364 queue_work(end_io_workqueue, &fs_info->end_io_work);
365
366 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
367 return 0;
368 #endif
369 }
370
371 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
372 int metadata)
373 {
374 struct end_io_wq *end_io_wq;
375 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
376 if (!end_io_wq)
377 return -ENOMEM;
378
379 end_io_wq->private = bio->bi_private;
380 end_io_wq->end_io = bio->bi_end_io;
381 end_io_wq->info = info;
382 end_io_wq->error = 0;
383 end_io_wq->bio = bio;
384 end_io_wq->metadata = metadata;
385
386 bio->bi_private = end_io_wq;
387 bio->bi_end_io = end_workqueue_bio;
388 return 0;
389 }
390
391 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
392 int rw, struct bio *bio, int mirror_num,
393 extent_submit_bio_hook_t *submit_bio_hook)
394 {
395 struct async_submit_bio *async;
396
397 /*
398 * inline writerback should stay inline, only hop to the async
399 * queue if we're pdflush
400 */
401 if (!current_is_pdflush())
402 return submit_bio_hook(inode, rw, bio, mirror_num);
403
404 async = kmalloc(sizeof(*async), GFP_NOFS);
405 if (!async)
406 return -ENOMEM;
407
408 async->inode = inode;
409 async->rw = rw;
410 async->bio = bio;
411 async->mirror_num = mirror_num;
412 async->submit_bio_hook = submit_bio_hook;
413
414 spin_lock(&fs_info->async_submit_work_lock);
415 list_add_tail(&async->list, &fs_info->async_submit_work_list);
416 spin_unlock(&fs_info->async_submit_work_lock);
417
418 queue_work(async_submit_workqueue, &fs_info->async_submit_work);
419 return 0;
420 }
421
422 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
423 int mirror_num)
424 {
425 struct btrfs_root *root = BTRFS_I(inode)->root;
426 u64 offset;
427 int ret;
428
429 offset = bio->bi_sector << 9;
430
431 if (rw & (1 << BIO_RW)) {
432 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
433 }
434
435 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
436 BUG_ON(ret);
437
438 if (offset == BTRFS_SUPER_INFO_OFFSET) {
439 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
440 submit_bio(rw, bio);
441 return 0;
442 }
443 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
444 }
445
446 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
447 int mirror_num)
448 {
449 if (!(rw & (1 << BIO_RW))) {
450 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
451 }
452 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
453 inode, rw, bio, mirror_num,
454 __btree_submit_bio_hook);
455 }
456
457 static int btree_writepage(struct page *page, struct writeback_control *wbc)
458 {
459 struct extent_io_tree *tree;
460 tree = &BTRFS_I(page->mapping->host)->io_tree;
461 return extent_write_full_page(tree, page, btree_get_extent, wbc);
462 }
463
464 static int btree_writepages(struct address_space *mapping,
465 struct writeback_control *wbc)
466 {
467 struct extent_io_tree *tree;
468 tree = &BTRFS_I(mapping->host)->io_tree;
469 if (wbc->sync_mode == WB_SYNC_NONE) {
470 u64 num_dirty;
471 u64 start = 0;
472 unsigned long thresh = 96 * 1024 * 1024;
473
474 if (wbc->for_kupdate)
475 return 0;
476
477 if (current_is_pdflush()) {
478 thresh = 96 * 1024 * 1024;
479 } else {
480 thresh = 8 * 1024 * 1024;
481 }
482 num_dirty = count_range_bits(tree, &start, (u64)-1,
483 thresh, EXTENT_DIRTY);
484 if (num_dirty < thresh) {
485 return 0;
486 }
487 }
488 return extent_writepages(tree, mapping, btree_get_extent, wbc);
489 }
490
491 int btree_readpage(struct file *file, struct page *page)
492 {
493 struct extent_io_tree *tree;
494 tree = &BTRFS_I(page->mapping->host)->io_tree;
495 return extent_read_full_page(tree, page, btree_get_extent);
496 }
497
498 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
499 {
500 struct extent_io_tree *tree;
501 struct extent_map_tree *map;
502 int ret;
503
504 if (page_count(page) > 3) {
505 /* once for page->private, once for the caller, once
506 * once for the page cache
507 */
508 return 0;
509 }
510 tree = &BTRFS_I(page->mapping->host)->io_tree;
511 map = &BTRFS_I(page->mapping->host)->extent_tree;
512 ret = try_release_extent_state(map, tree, page, gfp_flags);
513 if (ret == 1) {
514 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
515 ClearPagePrivate(page);
516 set_page_private(page, 0);
517 page_cache_release(page);
518 }
519 return ret;
520 }
521
522 static void btree_invalidatepage(struct page *page, unsigned long offset)
523 {
524 struct extent_io_tree *tree;
525 tree = &BTRFS_I(page->mapping->host)->io_tree;
526 extent_invalidatepage(tree, page, offset);
527 btree_releasepage(page, GFP_NOFS);
528 if (PagePrivate(page)) {
529 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
530 ClearPagePrivate(page);
531 set_page_private(page, 0);
532 page_cache_release(page);
533 }
534 }
535
536 #if 0
537 static int btree_writepage(struct page *page, struct writeback_control *wbc)
538 {
539 struct buffer_head *bh;
540 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
541 struct buffer_head *head;
542 if (!page_has_buffers(page)) {
543 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
544 (1 << BH_Dirty)|(1 << BH_Uptodate));
545 }
546 head = page_buffers(page);
547 bh = head;
548 do {
549 if (buffer_dirty(bh))
550 csum_tree_block(root, bh, 0);
551 bh = bh->b_this_page;
552 } while (bh != head);
553 return block_write_full_page(page, btree_get_block, wbc);
554 }
555 #endif
556
557 static struct address_space_operations btree_aops = {
558 .readpage = btree_readpage,
559 .writepage = btree_writepage,
560 .writepages = btree_writepages,
561 .releasepage = btree_releasepage,
562 .invalidatepage = btree_invalidatepage,
563 .sync_page = block_sync_page,
564 };
565
566 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
567 {
568 struct extent_buffer *buf = NULL;
569 struct inode *btree_inode = root->fs_info->btree_inode;
570 int ret = 0;
571
572 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
573 if (!buf)
574 return 0;
575 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
576 buf, 0, 0, btree_get_extent, 0);
577 free_extent_buffer(buf);
578 return ret;
579 }
580
581 static int close_all_devices(struct btrfs_fs_info *fs_info)
582 {
583 struct list_head *list;
584 struct list_head *next;
585 struct btrfs_device *device;
586
587 list = &fs_info->fs_devices->devices;
588 list_for_each(next, list) {
589 device = list_entry(next, struct btrfs_device, dev_list);
590 if (device->bdev && device->bdev != fs_info->sb->s_bdev)
591 close_bdev_excl(device->bdev);
592 device->bdev = NULL;
593 }
594 return 0;
595 }
596
597 int btrfs_verify_block_csum(struct btrfs_root *root,
598 struct extent_buffer *buf)
599 {
600 return btrfs_buffer_uptodate(buf);
601 }
602
603 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
604 u64 bytenr, u32 blocksize)
605 {
606 struct inode *btree_inode = root->fs_info->btree_inode;
607 struct extent_buffer *eb;
608 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
609 bytenr, blocksize, GFP_NOFS);
610 return eb;
611 }
612
613 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
614 u64 bytenr, u32 blocksize)
615 {
616 struct inode *btree_inode = root->fs_info->btree_inode;
617 struct extent_buffer *eb;
618
619 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
620 bytenr, blocksize, NULL, GFP_NOFS);
621 return eb;
622 }
623
624
625 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
626 u32 blocksize)
627 {
628 struct extent_buffer *buf = NULL;
629 struct inode *btree_inode = root->fs_info->btree_inode;
630 struct extent_io_tree *io_tree;
631 int ret;
632
633 io_tree = &BTRFS_I(btree_inode)->io_tree;
634
635 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
636 if (!buf)
637 return NULL;
638
639 ret = btree_read_extent_buffer_pages(root, buf, 0);
640
641 if (ret == 0) {
642 buf->flags |= EXTENT_UPTODATE;
643 }
644 return buf;
645
646 }
647
648 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
649 struct extent_buffer *buf)
650 {
651 struct inode *btree_inode = root->fs_info->btree_inode;
652 if (btrfs_header_generation(buf) ==
653 root->fs_info->running_transaction->transid)
654 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
655 buf);
656 return 0;
657 }
658
659 int wait_on_tree_block_writeback(struct btrfs_root *root,
660 struct extent_buffer *buf)
661 {
662 struct inode *btree_inode = root->fs_info->btree_inode;
663 wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
664 buf);
665 return 0;
666 }
667
668 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
669 u32 stripesize, struct btrfs_root *root,
670 struct btrfs_fs_info *fs_info,
671 u64 objectid)
672 {
673 root->node = NULL;
674 root->inode = NULL;
675 root->commit_root = NULL;
676 root->sectorsize = sectorsize;
677 root->nodesize = nodesize;
678 root->leafsize = leafsize;
679 root->stripesize = stripesize;
680 root->ref_cows = 0;
681 root->track_dirty = 0;
682
683 root->fs_info = fs_info;
684 root->objectid = objectid;
685 root->last_trans = 0;
686 root->highest_inode = 0;
687 root->last_inode_alloc = 0;
688 root->name = NULL;
689 root->in_sysfs = 0;
690
691 INIT_LIST_HEAD(&root->dirty_list);
692 memset(&root->root_key, 0, sizeof(root->root_key));
693 memset(&root->root_item, 0, sizeof(root->root_item));
694 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
695 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
696 init_completion(&root->kobj_unregister);
697 root->defrag_running = 0;
698 root->defrag_level = 0;
699 root->root_key.objectid = objectid;
700 return 0;
701 }
702
703 static int find_and_setup_root(struct btrfs_root *tree_root,
704 struct btrfs_fs_info *fs_info,
705 u64 objectid,
706 struct btrfs_root *root)
707 {
708 int ret;
709 u32 blocksize;
710
711 __setup_root(tree_root->nodesize, tree_root->leafsize,
712 tree_root->sectorsize, tree_root->stripesize,
713 root, fs_info, objectid);
714 ret = btrfs_find_last_root(tree_root, objectid,
715 &root->root_item, &root->root_key);
716 BUG_ON(ret);
717
718 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
719 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
720 blocksize);
721 BUG_ON(!root->node);
722 return 0;
723 }
724
725 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
726 struct btrfs_key *location)
727 {
728 struct btrfs_root *root;
729 struct btrfs_root *tree_root = fs_info->tree_root;
730 struct btrfs_path *path;
731 struct extent_buffer *l;
732 u64 highest_inode;
733 u32 blocksize;
734 int ret = 0;
735
736 root = kzalloc(sizeof(*root), GFP_NOFS);
737 if (!root)
738 return ERR_PTR(-ENOMEM);
739 if (location->offset == (u64)-1) {
740 ret = find_and_setup_root(tree_root, fs_info,
741 location->objectid, root);
742 if (ret) {
743 kfree(root);
744 return ERR_PTR(ret);
745 }
746 goto insert;
747 }
748
749 __setup_root(tree_root->nodesize, tree_root->leafsize,
750 tree_root->sectorsize, tree_root->stripesize,
751 root, fs_info, location->objectid);
752
753 path = btrfs_alloc_path();
754 BUG_ON(!path);
755 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
756 if (ret != 0) {
757 if (ret > 0)
758 ret = -ENOENT;
759 goto out;
760 }
761 l = path->nodes[0];
762 read_extent_buffer(l, &root->root_item,
763 btrfs_item_ptr_offset(l, path->slots[0]),
764 sizeof(root->root_item));
765 memcpy(&root->root_key, location, sizeof(*location));
766 ret = 0;
767 out:
768 btrfs_release_path(root, path);
769 btrfs_free_path(path);
770 if (ret) {
771 kfree(root);
772 return ERR_PTR(ret);
773 }
774 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
775 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
776 blocksize);
777 BUG_ON(!root->node);
778 insert:
779 root->ref_cows = 1;
780 ret = btrfs_find_highest_inode(root, &highest_inode);
781 if (ret == 0) {
782 root->highest_inode = highest_inode;
783 root->last_inode_alloc = highest_inode;
784 }
785 return root;
786 }
787
788 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
789 u64 root_objectid)
790 {
791 struct btrfs_root *root;
792
793 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
794 return fs_info->tree_root;
795 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
796 return fs_info->extent_root;
797
798 root = radix_tree_lookup(&fs_info->fs_roots_radix,
799 (unsigned long)root_objectid);
800 return root;
801 }
802
803 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
804 struct btrfs_key *location)
805 {
806 struct btrfs_root *root;
807 int ret;
808
809 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
810 return fs_info->tree_root;
811 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
812 return fs_info->extent_root;
813 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
814 return fs_info->chunk_root;
815 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
816 return fs_info->dev_root;
817
818 root = radix_tree_lookup(&fs_info->fs_roots_radix,
819 (unsigned long)location->objectid);
820 if (root)
821 return root;
822
823 root = btrfs_read_fs_root_no_radix(fs_info, location);
824 if (IS_ERR(root))
825 return root;
826 ret = radix_tree_insert(&fs_info->fs_roots_radix,
827 (unsigned long)root->root_key.objectid,
828 root);
829 if (ret) {
830 free_extent_buffer(root->node);
831 kfree(root);
832 return ERR_PTR(ret);
833 }
834 ret = btrfs_find_dead_roots(fs_info->tree_root,
835 root->root_key.objectid, root);
836 BUG_ON(ret);
837
838 return root;
839 }
840
841 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
842 struct btrfs_key *location,
843 const char *name, int namelen)
844 {
845 struct btrfs_root *root;
846 int ret;
847
848 root = btrfs_read_fs_root_no_name(fs_info, location);
849 if (!root)
850 return NULL;
851
852 if (root->in_sysfs)
853 return root;
854
855 ret = btrfs_set_root_name(root, name, namelen);
856 if (ret) {
857 free_extent_buffer(root->node);
858 kfree(root);
859 return ERR_PTR(ret);
860 }
861
862 ret = btrfs_sysfs_add_root(root);
863 if (ret) {
864 free_extent_buffer(root->node);
865 kfree(root->name);
866 kfree(root);
867 return ERR_PTR(ret);
868 }
869 root->in_sysfs = 1;
870 return root;
871 }
872 #if 0
873 static int add_hasher(struct btrfs_fs_info *info, char *type) {
874 struct btrfs_hasher *hasher;
875
876 hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
877 if (!hasher)
878 return -ENOMEM;
879 hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
880 if (!hasher->hash_tfm) {
881 kfree(hasher);
882 return -EINVAL;
883 }
884 spin_lock(&info->hash_lock);
885 list_add(&hasher->list, &info->hashers);
886 spin_unlock(&info->hash_lock);
887 return 0;
888 }
889 #endif
890
891 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
892 {
893 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
894 int ret = 0;
895 struct list_head *cur;
896 struct btrfs_device *device;
897 struct backing_dev_info *bdi;
898
899 list_for_each(cur, &info->fs_devices->devices) {
900 device = list_entry(cur, struct btrfs_device, dev_list);
901 bdi = blk_get_backing_dev_info(device->bdev);
902 if (bdi && bdi_congested(bdi, bdi_bits)) {
903 ret = 1;
904 break;
905 }
906 }
907 return ret;
908 }
909
910 /*
911 * this unplugs every device on the box, and it is only used when page
912 * is null
913 */
914 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
915 {
916 struct list_head *cur;
917 struct btrfs_device *device;
918 struct btrfs_fs_info *info;
919
920 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
921 list_for_each(cur, &info->fs_devices->devices) {
922 device = list_entry(cur, struct btrfs_device, dev_list);
923 bdi = blk_get_backing_dev_info(device->bdev);
924 if (bdi->unplug_io_fn) {
925 bdi->unplug_io_fn(bdi, page);
926 }
927 }
928 }
929
930 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
931 {
932 struct inode *inode;
933 struct extent_map_tree *em_tree;
934 struct extent_map *em;
935 struct address_space *mapping;
936 u64 offset;
937
938 /* the generic O_DIRECT read code does this */
939 if (!page) {
940 __unplug_io_fn(bdi, page);
941 return;
942 }
943
944 /*
945 * page->mapping may change at any time. Get a consistent copy
946 * and use that for everything below
947 */
948 smp_mb();
949 mapping = page->mapping;
950 if (!mapping)
951 return;
952
953 inode = mapping->host;
954 offset = page_offset(page);
955
956 em_tree = &BTRFS_I(inode)->extent_tree;
957 spin_lock(&em_tree->lock);
958 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
959 spin_unlock(&em_tree->lock);
960 if (!em)
961 return;
962
963 offset = offset - em->start;
964 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
965 em->block_start + offset, page);
966 free_extent_map(em);
967 }
968
969 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
970 {
971 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
972 bdi_init(bdi);
973 #endif
974 bdi->ra_pages = default_backing_dev_info.ra_pages;
975 bdi->state = 0;
976 bdi->capabilities = default_backing_dev_info.capabilities;
977 bdi->unplug_io_fn = btrfs_unplug_io_fn;
978 bdi->unplug_io_data = info;
979 bdi->congested_fn = btrfs_congested_fn;
980 bdi->congested_data = info;
981 return 0;
982 }
983
984 static int bio_ready_for_csum(struct bio *bio)
985 {
986 u64 length = 0;
987 u64 buf_len = 0;
988 u64 start = 0;
989 struct page *page;
990 struct extent_io_tree *io_tree = NULL;
991 struct btrfs_fs_info *info = NULL;
992 struct bio_vec *bvec;
993 int i;
994 int ret;
995
996 bio_for_each_segment(bvec, bio, i) {
997 page = bvec->bv_page;
998 if (page->private == EXTENT_PAGE_PRIVATE) {
999 length += bvec->bv_len;
1000 continue;
1001 }
1002 if (!page->private) {
1003 length += bvec->bv_len;
1004 continue;
1005 }
1006 length = bvec->bv_len;
1007 buf_len = page->private >> 2;
1008 start = page_offset(page) + bvec->bv_offset;
1009 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1010 info = BTRFS_I(page->mapping->host)->root->fs_info;
1011 }
1012 /* are we fully contained in this bio? */
1013 if (buf_len <= length)
1014 return 1;
1015
1016 ret = extent_range_uptodate(io_tree, start + length,
1017 start + buf_len - 1);
1018 if (ret == 1)
1019 return ret;
1020 return ret;
1021 }
1022
1023 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1024 static void btrfs_end_io_csum(void *p)
1025 #else
1026 static void btrfs_end_io_csum(struct work_struct *work)
1027 #endif
1028 {
1029 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1030 struct btrfs_fs_info *fs_info = p;
1031 #else
1032 struct btrfs_fs_info *fs_info = container_of(work,
1033 struct btrfs_fs_info,
1034 end_io_work);
1035 #endif
1036 unsigned long flags;
1037 struct end_io_wq *end_io_wq;
1038 struct bio *bio;
1039 struct list_head *next;
1040 int error;
1041 int was_empty;
1042
1043 while(1) {
1044 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1045 if (list_empty(&fs_info->end_io_work_list)) {
1046 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1047 flags);
1048 return;
1049 }
1050 next = fs_info->end_io_work_list.next;
1051 list_del(next);
1052 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
1053
1054 end_io_wq = list_entry(next, struct end_io_wq, list);
1055
1056 bio = end_io_wq->bio;
1057 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1058 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1059 was_empty = list_empty(&fs_info->end_io_work_list);
1060 list_add_tail(&end_io_wq->list,
1061 &fs_info->end_io_work_list);
1062 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1063 flags);
1064 if (was_empty)
1065 return;
1066 continue;
1067 }
1068 error = end_io_wq->error;
1069 bio->bi_private = end_io_wq->private;
1070 bio->bi_end_io = end_io_wq->end_io;
1071 kfree(end_io_wq);
1072 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1073 bio_endio(bio, bio->bi_size, error);
1074 #else
1075 bio_endio(bio, error);
1076 #endif
1077 }
1078 }
1079
1080 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1081 static void btrfs_async_submit_work(void *p)
1082 #else
1083 static void btrfs_async_submit_work(struct work_struct *work)
1084 #endif
1085 {
1086 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1087 struct btrfs_fs_info *fs_info = p;
1088 #else
1089 struct btrfs_fs_info *fs_info = container_of(work,
1090 struct btrfs_fs_info,
1091 async_submit_work);
1092 #endif
1093 struct async_submit_bio *async;
1094 struct list_head *next;
1095
1096 while(1) {
1097 spin_lock(&fs_info->async_submit_work_lock);
1098 if (list_empty(&fs_info->async_submit_work_list)) {
1099 spin_unlock(&fs_info->async_submit_work_lock);
1100 return;
1101 }
1102 next = fs_info->async_submit_work_list.next;
1103 list_del(next);
1104 spin_unlock(&fs_info->async_submit_work_lock);
1105
1106 async = list_entry(next, struct async_submit_bio, list);
1107 async->submit_bio_hook(async->inode, async->rw, async->bio,
1108 async->mirror_num);
1109 kfree(async);
1110 }
1111 }
1112
1113 struct btrfs_root *open_ctree(struct super_block *sb,
1114 struct btrfs_fs_devices *fs_devices)
1115 {
1116 u32 sectorsize;
1117 u32 nodesize;
1118 u32 leafsize;
1119 u32 blocksize;
1120 u32 stripesize;
1121 struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1122 GFP_NOFS);
1123 struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1124 GFP_NOFS);
1125 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1126 GFP_NOFS);
1127 struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1128 GFP_NOFS);
1129 struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1130 GFP_NOFS);
1131 int ret;
1132 int err = -EINVAL;
1133 struct btrfs_super_block *disk_super;
1134
1135 if (!extent_root || !tree_root || !fs_info) {
1136 err = -ENOMEM;
1137 goto fail;
1138 }
1139 end_io_workqueue = create_workqueue("btrfs-end-io");
1140 BUG_ON(!end_io_workqueue);
1141 async_submit_workqueue = create_workqueue("btrfs-async-submit");
1142
1143 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1144 INIT_LIST_HEAD(&fs_info->trans_list);
1145 INIT_LIST_HEAD(&fs_info->dead_roots);
1146 INIT_LIST_HEAD(&fs_info->hashers);
1147 INIT_LIST_HEAD(&fs_info->end_io_work_list);
1148 INIT_LIST_HEAD(&fs_info->async_submit_work_list);
1149 spin_lock_init(&fs_info->hash_lock);
1150 spin_lock_init(&fs_info->end_io_work_lock);
1151 spin_lock_init(&fs_info->async_submit_work_lock);
1152 spin_lock_init(&fs_info->delalloc_lock);
1153 spin_lock_init(&fs_info->new_trans_lock);
1154
1155 init_completion(&fs_info->kobj_unregister);
1156 sb_set_blocksize(sb, BTRFS_SUPER_INFO_SIZE);
1157 fs_info->tree_root = tree_root;
1158 fs_info->extent_root = extent_root;
1159 fs_info->chunk_root = chunk_root;
1160 fs_info->dev_root = dev_root;
1161 fs_info->fs_devices = fs_devices;
1162 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1163 INIT_LIST_HEAD(&fs_info->space_info);
1164 btrfs_mapping_init(&fs_info->mapping_tree);
1165 fs_info->sb = sb;
1166 fs_info->max_extent = (u64)-1;
1167 fs_info->max_inline = 8192 * 1024;
1168 setup_bdi(fs_info, &fs_info->bdi);
1169 fs_info->btree_inode = new_inode(sb);
1170 fs_info->btree_inode->i_ino = 1;
1171 fs_info->btree_inode->i_nlink = 1;
1172
1173 /*
1174 * we set the i_size on the btree inode to the max possible int.
1175 * the real end of the address space is determined by all of
1176 * the devices in the system
1177 */
1178 fs_info->btree_inode->i_size = OFFSET_MAX;
1179 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1180 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1181
1182 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1183 fs_info->btree_inode->i_mapping,
1184 GFP_NOFS);
1185 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1186 GFP_NOFS);
1187
1188 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1189
1190 extent_io_tree_init(&fs_info->free_space_cache,
1191 fs_info->btree_inode->i_mapping, GFP_NOFS);
1192 extent_io_tree_init(&fs_info->block_group_cache,
1193 fs_info->btree_inode->i_mapping, GFP_NOFS);
1194 extent_io_tree_init(&fs_info->pinned_extents,
1195 fs_info->btree_inode->i_mapping, GFP_NOFS);
1196 extent_io_tree_init(&fs_info->pending_del,
1197 fs_info->btree_inode->i_mapping, GFP_NOFS);
1198 extent_io_tree_init(&fs_info->extent_ins,
1199 fs_info->btree_inode->i_mapping, GFP_NOFS);
1200 fs_info->do_barriers = 1;
1201
1202 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1203 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1204 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work,
1205 fs_info);
1206 INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1207 #else
1208 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1209 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work);
1210 INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1211 #endif
1212 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1213 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1214 sizeof(struct btrfs_key));
1215 insert_inode_hash(fs_info->btree_inode);
1216 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1217
1218 mutex_init(&fs_info->trans_mutex);
1219 mutex_init(&fs_info->fs_mutex);
1220
1221 #if 0
1222 ret = add_hasher(fs_info, "crc32c");
1223 if (ret) {
1224 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1225 err = -ENOMEM;
1226 goto fail_iput;
1227 }
1228 #endif
1229 __setup_root(4096, 4096, 4096, 4096, tree_root,
1230 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1231
1232 fs_info->sb_buffer = read_tree_block(tree_root,
1233 BTRFS_SUPER_INFO_OFFSET,
1234 4096);
1235
1236 if (!fs_info->sb_buffer)
1237 goto fail_iput;
1238
1239 read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
1240 sizeof(fs_info->super_copy));
1241
1242 read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
1243 (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
1244 BTRFS_FSID_SIZE);
1245
1246 disk_super = &fs_info->super_copy;
1247 if (!btrfs_super_root(disk_super))
1248 goto fail_sb_buffer;
1249
1250 if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1251 printk("Btrfs: wanted %llu devices, but found %llu\n",
1252 (unsigned long long)btrfs_super_num_devices(disk_super),
1253 (unsigned long long)fs_devices->num_devices);
1254 goto fail_sb_buffer;
1255 }
1256 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1257
1258 nodesize = btrfs_super_nodesize(disk_super);
1259 leafsize = btrfs_super_leafsize(disk_super);
1260 sectorsize = btrfs_super_sectorsize(disk_super);
1261 stripesize = btrfs_super_stripesize(disk_super);
1262 tree_root->nodesize = nodesize;
1263 tree_root->leafsize = leafsize;
1264 tree_root->sectorsize = sectorsize;
1265 tree_root->stripesize = stripesize;
1266 sb_set_blocksize(sb, sectorsize);
1267
1268 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1269 sizeof(disk_super->magic))) {
1270 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1271 goto fail_sb_buffer;
1272 }
1273
1274 mutex_lock(&fs_info->fs_mutex);
1275
1276 ret = btrfs_read_sys_array(tree_root);
1277 if (ret) {
1278 printk("btrfs: failed to read the system array on %s\n",
1279 sb->s_id);
1280 goto fail_sys_array;
1281 }
1282
1283 blocksize = btrfs_level_size(tree_root,
1284 btrfs_super_chunk_root_level(disk_super));
1285
1286 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1287 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1288
1289 chunk_root->node = read_tree_block(chunk_root,
1290 btrfs_super_chunk_root(disk_super),
1291 blocksize);
1292 BUG_ON(!chunk_root->node);
1293
1294 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1295 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1296 BTRFS_UUID_SIZE);
1297
1298 ret = btrfs_read_chunk_tree(chunk_root);
1299 BUG_ON(ret);
1300
1301 blocksize = btrfs_level_size(tree_root,
1302 btrfs_super_root_level(disk_super));
1303
1304
1305 tree_root->node = read_tree_block(tree_root,
1306 btrfs_super_root(disk_super),
1307 blocksize);
1308 if (!tree_root->node)
1309 goto fail_sb_buffer;
1310
1311
1312 ret = find_and_setup_root(tree_root, fs_info,
1313 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1314 if (ret)
1315 goto fail_tree_root;
1316 extent_root->track_dirty = 1;
1317
1318 ret = find_and_setup_root(tree_root, fs_info,
1319 BTRFS_DEV_TREE_OBJECTID, dev_root);
1320 dev_root->track_dirty = 1;
1321
1322 if (ret)
1323 goto fail_extent_root;
1324
1325 btrfs_read_block_groups(extent_root);
1326
1327 fs_info->generation = btrfs_super_generation(disk_super) + 1;
1328 fs_info->data_alloc_profile = (u64)-1;
1329 fs_info->metadata_alloc_profile = (u64)-1;
1330 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1331
1332 mutex_unlock(&fs_info->fs_mutex);
1333 return tree_root;
1334
1335 fail_extent_root:
1336 free_extent_buffer(extent_root->node);
1337 fail_tree_root:
1338 free_extent_buffer(tree_root->node);
1339 fail_sys_array:
1340 mutex_unlock(&fs_info->fs_mutex);
1341 fail_sb_buffer:
1342 free_extent_buffer(fs_info->sb_buffer);
1343 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1344 fail_iput:
1345 iput(fs_info->btree_inode);
1346 fail:
1347 close_all_devices(fs_info);
1348 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1349
1350 kfree(extent_root);
1351 kfree(tree_root);
1352 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1353 bdi_destroy(&fs_info->bdi);
1354 #endif
1355 kfree(fs_info);
1356 return ERR_PTR(err);
1357 }
1358
1359 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1360 {
1361 char b[BDEVNAME_SIZE];
1362
1363 if (uptodate) {
1364 set_buffer_uptodate(bh);
1365 } else {
1366 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1367 printk(KERN_WARNING "lost page write due to "
1368 "I/O error on %s\n",
1369 bdevname(bh->b_bdev, b));
1370 }
1371 set_buffer_write_io_error(bh);
1372 clear_buffer_uptodate(bh);
1373 }
1374 unlock_buffer(bh);
1375 put_bh(bh);
1376 }
1377
1378 int write_all_supers(struct btrfs_root *root)
1379 {
1380 struct list_head *cur;
1381 struct list_head *head = &root->fs_info->fs_devices->devices;
1382 struct btrfs_device *dev;
1383 struct extent_buffer *sb;
1384 struct btrfs_dev_item *dev_item;
1385 struct buffer_head *bh;
1386 int ret;
1387 int do_barriers;
1388
1389 do_barriers = !btrfs_test_opt(root, NOBARRIER);
1390
1391 sb = root->fs_info->sb_buffer;
1392 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1393 dev_item);
1394 list_for_each(cur, head) {
1395 dev = list_entry(cur, struct btrfs_device, dev_list);
1396 btrfs_set_device_type(sb, dev_item, dev->type);
1397 btrfs_set_device_id(sb, dev_item, dev->devid);
1398 btrfs_set_device_total_bytes(sb, dev_item, dev->total_bytes);
1399 btrfs_set_device_bytes_used(sb, dev_item, dev->bytes_used);
1400 btrfs_set_device_io_align(sb, dev_item, dev->io_align);
1401 btrfs_set_device_io_width(sb, dev_item, dev->io_width);
1402 btrfs_set_device_sector_size(sb, dev_item, dev->sector_size);
1403 write_extent_buffer(sb, dev->uuid,
1404 (unsigned long)btrfs_device_uuid(dev_item),
1405 BTRFS_UUID_SIZE);
1406
1407 btrfs_set_header_flag(sb, BTRFS_HEADER_FLAG_WRITTEN);
1408 csum_tree_block(root, sb, 0);
1409
1410 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET /
1411 root->fs_info->sb->s_blocksize,
1412 BTRFS_SUPER_INFO_SIZE);
1413
1414 read_extent_buffer(sb, bh->b_data, 0, BTRFS_SUPER_INFO_SIZE);
1415 dev->pending_io = bh;
1416
1417 get_bh(bh);
1418 set_buffer_uptodate(bh);
1419 lock_buffer(bh);
1420 bh->b_end_io = btrfs_end_buffer_write_sync;
1421
1422 if (do_barriers && dev->barriers) {
1423 ret = submit_bh(WRITE_BARRIER, bh);
1424 if (ret == -EOPNOTSUPP) {
1425 printk("btrfs: disabling barriers on dev %s\n",
1426 dev->name);
1427 set_buffer_uptodate(bh);
1428 dev->barriers = 0;
1429 get_bh(bh);
1430 lock_buffer(bh);
1431 ret = submit_bh(WRITE, bh);
1432 }
1433 } else {
1434 ret = submit_bh(WRITE, bh);
1435 }
1436 BUG_ON(ret);
1437 }
1438
1439 list_for_each(cur, head) {
1440 dev = list_entry(cur, struct btrfs_device, dev_list);
1441 BUG_ON(!dev->pending_io);
1442 bh = dev->pending_io;
1443 wait_on_buffer(bh);
1444 if (!buffer_uptodate(dev->pending_io)) {
1445 if (do_barriers && dev->barriers) {
1446 printk("btrfs: disabling barriers on dev %s\n",
1447 dev->name);
1448 set_buffer_uptodate(bh);
1449 get_bh(bh);
1450 lock_buffer(bh);
1451 dev->barriers = 0;
1452 ret = submit_bh(WRITE, bh);
1453 BUG_ON(ret);
1454 wait_on_buffer(bh);
1455 BUG_ON(!buffer_uptodate(bh));
1456 } else {
1457 BUG();
1458 }
1459
1460 }
1461 dev->pending_io = NULL;
1462 brelse(bh);
1463 }
1464 return 0;
1465 }
1466
1467 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1468 *root)
1469 {
1470 int ret;
1471
1472 ret = write_all_supers(root);
1473 #if 0
1474 if (!btrfs_test_opt(root, NOBARRIER))
1475 blkdev_issue_flush(sb->s_bdev, NULL);
1476 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, super);
1477 ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
1478 super->start, super->len);
1479 if (!btrfs_test_opt(root, NOBARRIER))
1480 blkdev_issue_flush(sb->s_bdev, NULL);
1481 #endif
1482 return ret;
1483 }
1484
1485 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1486 {
1487 radix_tree_delete(&fs_info->fs_roots_radix,
1488 (unsigned long)root->root_key.objectid);
1489 if (root->in_sysfs)
1490 btrfs_sysfs_del_root(root);
1491 if (root->inode)
1492 iput(root->inode);
1493 if (root->node)
1494 free_extent_buffer(root->node);
1495 if (root->commit_root)
1496 free_extent_buffer(root->commit_root);
1497 if (root->name)
1498 kfree(root->name);
1499 kfree(root);
1500 return 0;
1501 }
1502
1503 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1504 {
1505 int ret;
1506 struct btrfs_root *gang[8];
1507 int i;
1508
1509 while(1) {
1510 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1511 (void **)gang, 0,
1512 ARRAY_SIZE(gang));
1513 if (!ret)
1514 break;
1515 for (i = 0; i < ret; i++)
1516 btrfs_free_fs_root(fs_info, gang[i]);
1517 }
1518 return 0;
1519 }
1520
1521 int close_ctree(struct btrfs_root *root)
1522 {
1523 int ret;
1524 struct btrfs_trans_handle *trans;
1525 struct btrfs_fs_info *fs_info = root->fs_info;
1526
1527 fs_info->closing = 1;
1528 btrfs_transaction_flush_work(root);
1529 mutex_lock(&fs_info->fs_mutex);
1530 btrfs_defrag_dirty_roots(root->fs_info);
1531 trans = btrfs_start_transaction(root, 1);
1532 ret = btrfs_commit_transaction(trans, root);
1533 /* run commit again to drop the original snapshot */
1534 trans = btrfs_start_transaction(root, 1);
1535 btrfs_commit_transaction(trans, root);
1536 ret = btrfs_write_and_wait_transaction(NULL, root);
1537 BUG_ON(ret);
1538 write_ctree_super(NULL, root);
1539 mutex_unlock(&fs_info->fs_mutex);
1540
1541 btrfs_transaction_flush_work(root);
1542
1543 if (fs_info->delalloc_bytes) {
1544 printk("btrfs: at unmount delalloc count %Lu\n",
1545 fs_info->delalloc_bytes);
1546 }
1547 if (fs_info->extent_root->node)
1548 free_extent_buffer(fs_info->extent_root->node);
1549
1550 if (fs_info->tree_root->node)
1551 free_extent_buffer(fs_info->tree_root->node);
1552
1553 if (root->fs_info->chunk_root->node);
1554 free_extent_buffer(root->fs_info->chunk_root->node);
1555
1556 if (root->fs_info->dev_root->node);
1557 free_extent_buffer(root->fs_info->dev_root->node);
1558
1559 free_extent_buffer(fs_info->sb_buffer);
1560
1561 btrfs_free_block_groups(root->fs_info);
1562 del_fs_roots(fs_info);
1563
1564 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1565
1566 extent_io_tree_empty_lru(&fs_info->free_space_cache);
1567 extent_io_tree_empty_lru(&fs_info->block_group_cache);
1568 extent_io_tree_empty_lru(&fs_info->pinned_extents);
1569 extent_io_tree_empty_lru(&fs_info->pending_del);
1570 extent_io_tree_empty_lru(&fs_info->extent_ins);
1571 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1572
1573 flush_workqueue(end_io_workqueue);
1574 flush_workqueue(async_submit_workqueue);
1575
1576 truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1577
1578 flush_workqueue(end_io_workqueue);
1579 destroy_workqueue(end_io_workqueue);
1580
1581 flush_workqueue(async_submit_workqueue);
1582 destroy_workqueue(async_submit_workqueue);
1583
1584 iput(fs_info->btree_inode);
1585 #if 0
1586 while(!list_empty(&fs_info->hashers)) {
1587 struct btrfs_hasher *hasher;
1588 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1589 hashers);
1590 list_del(&hasher->hashers);
1591 crypto_free_hash(&fs_info->hash_tfm);
1592 kfree(hasher);
1593 }
1594 #endif
1595 close_all_devices(fs_info);
1596 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1597
1598 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1599 bdi_destroy(&fs_info->bdi);
1600 #endif
1601
1602 kfree(fs_info->extent_root);
1603 kfree(fs_info->tree_root);
1604 kfree(fs_info->chunk_root);
1605 kfree(fs_info->dev_root);
1606 return 0;
1607 }
1608
1609 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1610 {
1611 struct inode *btree_inode = buf->first_page->mapping->host;
1612 return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1613 }
1614
1615 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1616 {
1617 struct inode *btree_inode = buf->first_page->mapping->host;
1618 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1619 buf);
1620 }
1621
1622 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1623 {
1624 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1625 u64 transid = btrfs_header_generation(buf);
1626 struct inode *btree_inode = root->fs_info->btree_inode;
1627
1628 if (transid != root->fs_info->generation) {
1629 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1630 (unsigned long long)buf->start,
1631 transid, root->fs_info->generation);
1632 WARN_ON(1);
1633 }
1634 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1635 }
1636
1637 void btrfs_throttle(struct btrfs_root *root)
1638 {
1639 struct backing_dev_info *bdi;
1640
1641 bdi = root->fs_info->sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1642 if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1643 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1644 congestion_wait(WRITE, HZ/20);
1645 #else
1646 blk_congestion_wait(WRITE, HZ/20);
1647 #endif
1648 }
1649 }
1650
1651 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1652 {
1653 balance_dirty_pages_ratelimited_nr(
1654 root->fs_info->btree_inode->i_mapping, 1);
1655 }
1656
1657 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1658 {
1659 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1660 struct inode *btree_inode = root->fs_info->btree_inode;
1661 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1662 buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1663 }
1664
1665 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1666 {
1667 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1668 struct inode *btree_inode = root->fs_info->btree_inode;
1669 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1670 buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1671 GFP_NOFS);
1672 }
1673
1674 int btrfs_buffer_defrag(struct extent_buffer *buf)
1675 {
1676 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1677 struct inode *btree_inode = root->fs_info->btree_inode;
1678 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1679 buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1680 }
1681
1682 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1683 {
1684 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1685 struct inode *btree_inode = root->fs_info->btree_inode;
1686 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1687 buf->start, buf->start + buf->len - 1,
1688 EXTENT_DEFRAG_DONE, 0);
1689 }
1690
1691 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1692 {
1693 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1694 struct inode *btree_inode = root->fs_info->btree_inode;
1695 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1696 buf->start, buf->start + buf->len - 1,
1697 EXTENT_DEFRAG_DONE, GFP_NOFS);
1698 }
1699
1700 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1701 {
1702 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1703 struct inode *btree_inode = root->fs_info->btree_inode;
1704 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1705 buf->start, buf->start + buf->len - 1,
1706 EXTENT_DEFRAG, GFP_NOFS);
1707 }
1708
1709 int btrfs_read_buffer(struct extent_buffer *buf)
1710 {
1711 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1712 int ret;
1713 ret = btree_read_extent_buffer_pages(root, buf, 0);
1714 if (ret == 0) {
1715 buf->flags |= EXTENT_UPTODATE;
1716 }
1717 return ret;
1718 }
1719
1720 static struct extent_io_ops btree_extent_io_ops = {
1721 .writepage_io_hook = btree_writepage_io_hook,
1722 .readpage_end_io_hook = btree_readpage_end_io_hook,
1723 .submit_bio_hook = btree_submit_bio_hook,
1724 /* note we're sharing with inode.c for the merge bio hook */
1725 .merge_bio_hook = btrfs_merge_bio_hook,
1726 };
This page took 0.069948 seconds and 6 git commands to generate.