Btrfs: Remove debugging statements from the invalidatepage calls
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38 if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40 (unsigned long long)extent_buffer_blocknr(buf),
41 (unsigned long long)btrfs_header_blocknr(buf));
42 return 1;
43 }
44 return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50 static struct workqueue_struct *async_submit_workqueue;
51
52 struct end_io_wq {
53 struct bio *bio;
54 bio_end_io_t *end_io;
55 void *private;
56 struct btrfs_fs_info *info;
57 int error;
58 int metadata;
59 struct list_head list;
60 };
61
62 struct async_submit_bio {
63 struct inode *inode;
64 struct bio *bio;
65 struct list_head list;
66 extent_submit_bio_hook_t *submit_bio_hook;
67 int rw;
68 int mirror_num;
69 };
70
71 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
72 size_t page_offset, u64 start, u64 len,
73 int create)
74 {
75 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
76 struct extent_map *em;
77 int ret;
78
79 spin_lock(&em_tree->lock);
80 em = lookup_extent_mapping(em_tree, start, len);
81 spin_unlock(&em_tree->lock);
82 if (em)
83 goto out;
84
85 em = alloc_extent_map(GFP_NOFS);
86 if (!em) {
87 em = ERR_PTR(-ENOMEM);
88 goto out;
89 }
90 em->start = 0;
91 em->len = (u64)-1;
92 em->block_start = 0;
93 em->bdev = inode->i_sb->s_bdev;
94
95 spin_lock(&em_tree->lock);
96 ret = add_extent_mapping(em_tree, em);
97 if (ret == -EEXIST) {
98 u64 failed_start = em->start;
99 u64 failed_len = em->len;
100
101 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
102 em->start, em->len, em->block_start);
103 free_extent_map(em);
104 em = lookup_extent_mapping(em_tree, start, len);
105 if (em) {
106 printk("after failing, found %Lu %Lu %Lu\n",
107 em->start, em->len, em->block_start);
108 ret = 0;
109 } else {
110 em = lookup_extent_mapping(em_tree, failed_start,
111 failed_len);
112 if (em) {
113 printk("double failure lookup gives us "
114 "%Lu %Lu -> %Lu\n", em->start,
115 em->len, em->block_start);
116 free_extent_map(em);
117 }
118 ret = -EIO;
119 }
120 } else if (ret) {
121 free_extent_map(em);
122 em = NULL;
123 }
124 spin_unlock(&em_tree->lock);
125
126 if (ret)
127 em = ERR_PTR(ret);
128 out:
129 return em;
130 }
131
132 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
133 {
134 return btrfs_crc32c(seed, data, len);
135 }
136
137 void btrfs_csum_final(u32 crc, char *result)
138 {
139 *(__le32 *)result = ~cpu_to_le32(crc);
140 }
141
142 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
143 int verify)
144 {
145 char result[BTRFS_CRC32_SIZE];
146 unsigned long len;
147 unsigned long cur_len;
148 unsigned long offset = BTRFS_CSUM_SIZE;
149 char *map_token = NULL;
150 char *kaddr;
151 unsigned long map_start;
152 unsigned long map_len;
153 int err;
154 u32 crc = ~(u32)0;
155
156 len = buf->len - offset;
157 while(len > 0) {
158 err = map_private_extent_buffer(buf, offset, 32,
159 &map_token, &kaddr,
160 &map_start, &map_len, KM_USER0);
161 if (err) {
162 printk("failed to map extent buffer! %lu\n",
163 offset);
164 return 1;
165 }
166 cur_len = min(len, map_len - (offset - map_start));
167 crc = btrfs_csum_data(root, kaddr + offset - map_start,
168 crc, cur_len);
169 len -= cur_len;
170 offset += cur_len;
171 unmap_extent_buffer(buf, map_token, KM_USER0);
172 }
173 btrfs_csum_final(crc, result);
174
175 if (verify) {
176 int from_this_trans = 0;
177
178 if (root->fs_info->running_transaction &&
179 btrfs_header_generation(buf) ==
180 root->fs_info->running_transaction->transid)
181 from_this_trans = 1;
182
183 /* FIXME, this is not good */
184 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
185 u32 val;
186 u32 found = 0;
187 memcpy(&found, result, BTRFS_CRC32_SIZE);
188
189 read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
190 printk("btrfs: %s checksum verify failed on %llu "
191 "wanted %X found %X from_this_trans %d "
192 "level %d\n",
193 root->fs_info->sb->s_id,
194 buf->start, val, found, from_this_trans,
195 btrfs_header_level(buf));
196 return 1;
197 }
198 } else {
199 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
200 }
201 return 0;
202 }
203
204 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
205 struct extent_buffer *eb,
206 u64 start)
207 {
208 struct extent_io_tree *io_tree;
209 int ret;
210 int num_copies = 0;
211 int mirror_num = 0;
212
213 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
214 while (1) {
215 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
216 btree_get_extent, mirror_num);
217 if (!ret) {
218 if (mirror_num)
219 printk("good read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
220 return ret;
221 }
222 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
223 eb->start, eb->len);
224 printk("failed to read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
225 if (num_copies == 1) {
226 printk("reading %Lu failed only one copy\n", eb->start);
227 return ret;
228 }
229 mirror_num++;
230 if (mirror_num > num_copies) {
231 printk("bailing at mirror %d of %d\n", mirror_num, num_copies);
232 return ret;
233 }
234 }
235 printk("read extent buffer page last\n");
236 return -EIO;
237 }
238
239 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
240 {
241 struct extent_io_tree *tree;
242 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
243 u64 found_start;
244 int found_level;
245 unsigned long len;
246 struct extent_buffer *eb;
247 int ret;
248
249 tree = &BTRFS_I(page->mapping->host)->io_tree;
250
251 if (page->private == EXTENT_PAGE_PRIVATE)
252 goto out;
253 if (!page->private)
254 goto out;
255 len = page->private >> 2;
256 if (len == 0) {
257 WARN_ON(1);
258 }
259 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
260 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE);
261 BUG_ON(ret);
262 btrfs_clear_buffer_defrag(eb);
263 found_start = btrfs_header_bytenr(eb);
264 if (found_start != start) {
265 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
266 start, found_start, len);
267 WARN_ON(1);
268 goto err;
269 }
270 if (eb->first_page != page) {
271 printk("bad first page %lu %lu\n", eb->first_page->index,
272 page->index);
273 WARN_ON(1);
274 goto err;
275 }
276 if (!PageUptodate(page)) {
277 printk("csum not up to date page %lu\n", page->index);
278 WARN_ON(1);
279 goto err;
280 }
281 found_level = btrfs_header_level(eb);
282 spin_lock(&root->fs_info->hash_lock);
283 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
284 spin_unlock(&root->fs_info->hash_lock);
285 csum_tree_block(root, eb, 0);
286 err:
287 free_extent_buffer(eb);
288 out:
289 return 0;
290 }
291
292 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
293 {
294 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
295
296 csum_dirty_buffer(root, page);
297 return 0;
298 }
299
300 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
301 struct extent_state *state)
302 {
303 struct extent_io_tree *tree;
304 u64 found_start;
305 int found_level;
306 unsigned long len;
307 struct extent_buffer *eb;
308 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
309 int ret = 0;
310
311 tree = &BTRFS_I(page->mapping->host)->io_tree;
312 if (page->private == EXTENT_PAGE_PRIVATE)
313 goto out;
314 if (!page->private)
315 goto out;
316 len = page->private >> 2;
317 if (len == 0) {
318 WARN_ON(1);
319 }
320 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
321
322 btrfs_clear_buffer_defrag(eb);
323 found_start = btrfs_header_bytenr(eb);
324 if (found_start != start) {
325 printk("bad start on %Lu found %Lu\n", eb->start, found_start);
326 ret = -EIO;
327 goto err;
328 }
329 if (eb->first_page != page) {
330 printk("bad first page %lu %lu\n", eb->first_page->index,
331 page->index);
332 WARN_ON(1);
333 ret = -EIO;
334 goto err;
335 }
336 found_level = btrfs_header_level(eb);
337
338 ret = csum_tree_block(root, eb, 1);
339 if (ret)
340 ret = -EIO;
341
342 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
343 end = eb->start + end - 1;
344 release_extent_buffer_tail_pages(eb);
345 err:
346 free_extent_buffer(eb);
347 out:
348 return ret;
349 }
350
351 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
352 static void end_workqueue_bio(struct bio *bio, int err)
353 #else
354 static int end_workqueue_bio(struct bio *bio,
355 unsigned int bytes_done, int err)
356 #endif
357 {
358 struct end_io_wq *end_io_wq = bio->bi_private;
359 struct btrfs_fs_info *fs_info;
360 unsigned long flags;
361
362 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
363 if (bio->bi_size)
364 return 1;
365 #endif
366
367 fs_info = end_io_wq->info;
368 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
369 end_io_wq->error = err;
370 list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
371 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
372 queue_work(end_io_workqueue, &fs_info->end_io_work);
373
374 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
375 return 0;
376 #endif
377 }
378
379 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
380 int metadata)
381 {
382 struct end_io_wq *end_io_wq;
383 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
384 if (!end_io_wq)
385 return -ENOMEM;
386
387 end_io_wq->private = bio->bi_private;
388 end_io_wq->end_io = bio->bi_end_io;
389 end_io_wq->info = info;
390 end_io_wq->error = 0;
391 end_io_wq->bio = bio;
392 end_io_wq->metadata = metadata;
393
394 bio->bi_private = end_io_wq;
395 bio->bi_end_io = end_workqueue_bio;
396 return 0;
397 }
398
399 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
400 int rw, struct bio *bio, int mirror_num,
401 extent_submit_bio_hook_t *submit_bio_hook)
402 {
403 struct async_submit_bio *async;
404
405 /*
406 * inline writerback should stay inline, only hop to the async
407 * queue if we're pdflush
408 */
409 if (!current_is_pdflush())
410 return submit_bio_hook(inode, rw, bio, mirror_num);
411
412 async = kmalloc(sizeof(*async), GFP_NOFS);
413 if (!async)
414 return -ENOMEM;
415
416 async->inode = inode;
417 async->rw = rw;
418 async->bio = bio;
419 async->mirror_num = mirror_num;
420 async->submit_bio_hook = submit_bio_hook;
421
422 spin_lock(&fs_info->async_submit_work_lock);
423 list_add_tail(&async->list, &fs_info->async_submit_work_list);
424 spin_unlock(&fs_info->async_submit_work_lock);
425
426 queue_work(async_submit_workqueue, &fs_info->async_submit_work);
427 return 0;
428 }
429
430 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
431 int mirror_num)
432 {
433 struct btrfs_root *root = BTRFS_I(inode)->root;
434 u64 offset;
435 int ret;
436
437 offset = bio->bi_sector << 9;
438
439 if (rw & (1 << BIO_RW)) {
440 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
441 }
442
443 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
444 BUG_ON(ret);
445
446 if (offset == BTRFS_SUPER_INFO_OFFSET) {
447 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
448 submit_bio(rw, bio);
449 return 0;
450 }
451 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
452 }
453
454 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
455 int mirror_num)
456 {
457 if (!(rw & (1 << BIO_RW))) {
458 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
459 }
460 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
461 inode, rw, bio, mirror_num,
462 __btree_submit_bio_hook);
463 }
464
465 static int btree_writepage(struct page *page, struct writeback_control *wbc)
466 {
467 struct extent_io_tree *tree;
468 tree = &BTRFS_I(page->mapping->host)->io_tree;
469 return extent_write_full_page(tree, page, btree_get_extent, wbc);
470 }
471
472 static int btree_writepages(struct address_space *mapping,
473 struct writeback_control *wbc)
474 {
475 struct extent_io_tree *tree;
476 tree = &BTRFS_I(mapping->host)->io_tree;
477 if (wbc->sync_mode == WB_SYNC_NONE) {
478 u64 num_dirty;
479 u64 start = 0;
480 unsigned long thresh = 96 * 1024 * 1024;
481
482 if (wbc->for_kupdate)
483 return 0;
484
485 if (current_is_pdflush()) {
486 thresh = 96 * 1024 * 1024;
487 } else {
488 thresh = 8 * 1024 * 1024;
489 }
490 num_dirty = count_range_bits(tree, &start, (u64)-1,
491 thresh, EXTENT_DIRTY);
492 if (num_dirty < thresh) {
493 return 0;
494 }
495 }
496 return extent_writepages(tree, mapping, btree_get_extent, wbc);
497 }
498
499 int btree_readpage(struct file *file, struct page *page)
500 {
501 struct extent_io_tree *tree;
502 tree = &BTRFS_I(page->mapping->host)->io_tree;
503 return extent_read_full_page(tree, page, btree_get_extent);
504 }
505
506 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
507 {
508 struct extent_io_tree *tree;
509 struct extent_map_tree *map;
510 int ret;
511
512 if (page_count(page) > 3) {
513 /* once for page->private, once for the caller, once
514 * once for the page cache
515 */
516 return 0;
517 }
518 tree = &BTRFS_I(page->mapping->host)->io_tree;
519 map = &BTRFS_I(page->mapping->host)->extent_tree;
520 ret = try_release_extent_state(map, tree, page, gfp_flags);
521 if (ret == 1) {
522 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
523 ClearPagePrivate(page);
524 set_page_private(page, 0);
525 page_cache_release(page);
526 }
527 return ret;
528 }
529
530 static void btree_invalidatepage(struct page *page, unsigned long offset)
531 {
532 struct extent_io_tree *tree;
533 tree = &BTRFS_I(page->mapping->host)->io_tree;
534 extent_invalidatepage(tree, page, offset);
535 btree_releasepage(page, GFP_NOFS);
536 if (PagePrivate(page)) {
537 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
538 ClearPagePrivate(page);
539 set_page_private(page, 0);
540 page_cache_release(page);
541 }
542 }
543
544 #if 0
545 static int btree_writepage(struct page *page, struct writeback_control *wbc)
546 {
547 struct buffer_head *bh;
548 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
549 struct buffer_head *head;
550 if (!page_has_buffers(page)) {
551 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
552 (1 << BH_Dirty)|(1 << BH_Uptodate));
553 }
554 head = page_buffers(page);
555 bh = head;
556 do {
557 if (buffer_dirty(bh))
558 csum_tree_block(root, bh, 0);
559 bh = bh->b_this_page;
560 } while (bh != head);
561 return block_write_full_page(page, btree_get_block, wbc);
562 }
563 #endif
564
565 static struct address_space_operations btree_aops = {
566 .readpage = btree_readpage,
567 .writepage = btree_writepage,
568 .writepages = btree_writepages,
569 .releasepage = btree_releasepage,
570 .invalidatepage = btree_invalidatepage,
571 .sync_page = block_sync_page,
572 };
573
574 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
575 {
576 struct extent_buffer *buf = NULL;
577 struct inode *btree_inode = root->fs_info->btree_inode;
578 int ret = 0;
579
580 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
581 if (!buf)
582 return 0;
583 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
584 buf, 0, 0, btree_get_extent, 0);
585 free_extent_buffer(buf);
586 return ret;
587 }
588
589 static int close_all_devices(struct btrfs_fs_info *fs_info)
590 {
591 struct list_head *list;
592 struct list_head *next;
593 struct btrfs_device *device;
594
595 list = &fs_info->fs_devices->devices;
596 list_for_each(next, list) {
597 device = list_entry(next, struct btrfs_device, dev_list);
598 if (device->bdev && device->bdev != fs_info->sb->s_bdev)
599 close_bdev_excl(device->bdev);
600 device->bdev = NULL;
601 }
602 return 0;
603 }
604
605 int btrfs_verify_block_csum(struct btrfs_root *root,
606 struct extent_buffer *buf)
607 {
608 return btrfs_buffer_uptodate(buf);
609 }
610
611 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
612 u64 bytenr, u32 blocksize)
613 {
614 struct inode *btree_inode = root->fs_info->btree_inode;
615 struct extent_buffer *eb;
616 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
617 bytenr, blocksize, GFP_NOFS);
618 return eb;
619 }
620
621 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
622 u64 bytenr, u32 blocksize)
623 {
624 struct inode *btree_inode = root->fs_info->btree_inode;
625 struct extent_buffer *eb;
626
627 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
628 bytenr, blocksize, NULL, GFP_NOFS);
629 return eb;
630 }
631
632
633 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
634 u32 blocksize)
635 {
636 struct extent_buffer *buf = NULL;
637 struct inode *btree_inode = root->fs_info->btree_inode;
638 struct extent_io_tree *io_tree;
639 int ret;
640
641 io_tree = &BTRFS_I(btree_inode)->io_tree;
642
643 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
644 if (!buf)
645 return NULL;
646
647 ret = btree_read_extent_buffer_pages(root, buf, 0);
648
649 if (ret == 0) {
650 buf->flags |= EXTENT_UPTODATE;
651 }
652 return buf;
653
654 }
655
656 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
657 struct extent_buffer *buf)
658 {
659 struct inode *btree_inode = root->fs_info->btree_inode;
660 if (btrfs_header_generation(buf) ==
661 root->fs_info->running_transaction->transid)
662 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
663 buf);
664 return 0;
665 }
666
667 int wait_on_tree_block_writeback(struct btrfs_root *root,
668 struct extent_buffer *buf)
669 {
670 struct inode *btree_inode = root->fs_info->btree_inode;
671 wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
672 buf);
673 return 0;
674 }
675
676 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
677 u32 stripesize, struct btrfs_root *root,
678 struct btrfs_fs_info *fs_info,
679 u64 objectid)
680 {
681 root->node = NULL;
682 root->inode = NULL;
683 root->commit_root = NULL;
684 root->sectorsize = sectorsize;
685 root->nodesize = nodesize;
686 root->leafsize = leafsize;
687 root->stripesize = stripesize;
688 root->ref_cows = 0;
689 root->track_dirty = 0;
690
691 root->fs_info = fs_info;
692 root->objectid = objectid;
693 root->last_trans = 0;
694 root->highest_inode = 0;
695 root->last_inode_alloc = 0;
696 root->name = NULL;
697 root->in_sysfs = 0;
698
699 INIT_LIST_HEAD(&root->dirty_list);
700 memset(&root->root_key, 0, sizeof(root->root_key));
701 memset(&root->root_item, 0, sizeof(root->root_item));
702 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
703 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
704 init_completion(&root->kobj_unregister);
705 root->defrag_running = 0;
706 root->defrag_level = 0;
707 root->root_key.objectid = objectid;
708 return 0;
709 }
710
711 static int find_and_setup_root(struct btrfs_root *tree_root,
712 struct btrfs_fs_info *fs_info,
713 u64 objectid,
714 struct btrfs_root *root)
715 {
716 int ret;
717 u32 blocksize;
718
719 __setup_root(tree_root->nodesize, tree_root->leafsize,
720 tree_root->sectorsize, tree_root->stripesize,
721 root, fs_info, objectid);
722 ret = btrfs_find_last_root(tree_root, objectid,
723 &root->root_item, &root->root_key);
724 BUG_ON(ret);
725
726 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
727 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
728 blocksize);
729 BUG_ON(!root->node);
730 return 0;
731 }
732
733 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
734 struct btrfs_key *location)
735 {
736 struct btrfs_root *root;
737 struct btrfs_root *tree_root = fs_info->tree_root;
738 struct btrfs_path *path;
739 struct extent_buffer *l;
740 u64 highest_inode;
741 u32 blocksize;
742 int ret = 0;
743
744 root = kzalloc(sizeof(*root), GFP_NOFS);
745 if (!root)
746 return ERR_PTR(-ENOMEM);
747 if (location->offset == (u64)-1) {
748 ret = find_and_setup_root(tree_root, fs_info,
749 location->objectid, root);
750 if (ret) {
751 kfree(root);
752 return ERR_PTR(ret);
753 }
754 goto insert;
755 }
756
757 __setup_root(tree_root->nodesize, tree_root->leafsize,
758 tree_root->sectorsize, tree_root->stripesize,
759 root, fs_info, location->objectid);
760
761 path = btrfs_alloc_path();
762 BUG_ON(!path);
763 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
764 if (ret != 0) {
765 if (ret > 0)
766 ret = -ENOENT;
767 goto out;
768 }
769 l = path->nodes[0];
770 read_extent_buffer(l, &root->root_item,
771 btrfs_item_ptr_offset(l, path->slots[0]),
772 sizeof(root->root_item));
773 memcpy(&root->root_key, location, sizeof(*location));
774 ret = 0;
775 out:
776 btrfs_release_path(root, path);
777 btrfs_free_path(path);
778 if (ret) {
779 kfree(root);
780 return ERR_PTR(ret);
781 }
782 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
783 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
784 blocksize);
785 BUG_ON(!root->node);
786 insert:
787 root->ref_cows = 1;
788 ret = btrfs_find_highest_inode(root, &highest_inode);
789 if (ret == 0) {
790 root->highest_inode = highest_inode;
791 root->last_inode_alloc = highest_inode;
792 }
793 return root;
794 }
795
796 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
797 u64 root_objectid)
798 {
799 struct btrfs_root *root;
800
801 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
802 return fs_info->tree_root;
803 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
804 return fs_info->extent_root;
805
806 root = radix_tree_lookup(&fs_info->fs_roots_radix,
807 (unsigned long)root_objectid);
808 return root;
809 }
810
811 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
812 struct btrfs_key *location)
813 {
814 struct btrfs_root *root;
815 int ret;
816
817 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
818 return fs_info->tree_root;
819 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
820 return fs_info->extent_root;
821
822 root = radix_tree_lookup(&fs_info->fs_roots_radix,
823 (unsigned long)location->objectid);
824 if (root)
825 return root;
826
827 root = btrfs_read_fs_root_no_radix(fs_info, location);
828 if (IS_ERR(root))
829 return root;
830 ret = radix_tree_insert(&fs_info->fs_roots_radix,
831 (unsigned long)root->root_key.objectid,
832 root);
833 if (ret) {
834 free_extent_buffer(root->node);
835 kfree(root);
836 return ERR_PTR(ret);
837 }
838 ret = btrfs_find_dead_roots(fs_info->tree_root,
839 root->root_key.objectid, root);
840 BUG_ON(ret);
841
842 return root;
843 }
844
845 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
846 struct btrfs_key *location,
847 const char *name, int namelen)
848 {
849 struct btrfs_root *root;
850 int ret;
851
852 root = btrfs_read_fs_root_no_name(fs_info, location);
853 if (!root)
854 return NULL;
855
856 if (root->in_sysfs)
857 return root;
858
859 ret = btrfs_set_root_name(root, name, namelen);
860 if (ret) {
861 free_extent_buffer(root->node);
862 kfree(root);
863 return ERR_PTR(ret);
864 }
865
866 ret = btrfs_sysfs_add_root(root);
867 if (ret) {
868 free_extent_buffer(root->node);
869 kfree(root->name);
870 kfree(root);
871 return ERR_PTR(ret);
872 }
873 root->in_sysfs = 1;
874 return root;
875 }
876 #if 0
877 static int add_hasher(struct btrfs_fs_info *info, char *type) {
878 struct btrfs_hasher *hasher;
879
880 hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
881 if (!hasher)
882 return -ENOMEM;
883 hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
884 if (!hasher->hash_tfm) {
885 kfree(hasher);
886 return -EINVAL;
887 }
888 spin_lock(&info->hash_lock);
889 list_add(&hasher->list, &info->hashers);
890 spin_unlock(&info->hash_lock);
891 return 0;
892 }
893 #endif
894
895 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
896 {
897 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
898 int ret = 0;
899 struct list_head *cur;
900 struct btrfs_device *device;
901 struct backing_dev_info *bdi;
902
903 list_for_each(cur, &info->fs_devices->devices) {
904 device = list_entry(cur, struct btrfs_device, dev_list);
905 bdi = blk_get_backing_dev_info(device->bdev);
906 if (bdi && bdi_congested(bdi, bdi_bits)) {
907 ret = 1;
908 break;
909 }
910 }
911 return ret;
912 }
913
914 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
915 {
916 struct list_head *cur;
917 struct btrfs_device *device;
918 struct btrfs_fs_info *info;
919
920 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
921 list_for_each(cur, &info->fs_devices->devices) {
922 device = list_entry(cur, struct btrfs_device, dev_list);
923 bdi = blk_get_backing_dev_info(device->bdev);
924 if (bdi->unplug_io_fn) {
925 bdi->unplug_io_fn(bdi, page);
926 }
927 }
928 }
929
930 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
931 {
932 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
933 bdi_init(bdi);
934 #endif
935 bdi->ra_pages = default_backing_dev_info.ra_pages;
936 bdi->state = 0;
937 bdi->capabilities = default_backing_dev_info.capabilities;
938 bdi->unplug_io_fn = btrfs_unplug_io_fn;
939 bdi->unplug_io_data = info;
940 bdi->congested_fn = btrfs_congested_fn;
941 bdi->congested_data = info;
942 return 0;
943 }
944
945 static int bio_ready_for_csum(struct bio *bio)
946 {
947 u64 length = 0;
948 u64 buf_len = 0;
949 u64 start = 0;
950 struct page *page;
951 struct extent_io_tree *io_tree = NULL;
952 struct btrfs_fs_info *info = NULL;
953 struct bio_vec *bvec;
954 int i;
955 int ret;
956
957 bio_for_each_segment(bvec, bio, i) {
958 page = bvec->bv_page;
959 if (page->private == EXTENT_PAGE_PRIVATE) {
960 length += bvec->bv_len;
961 continue;
962 }
963 if (!page->private) {
964 length += bvec->bv_len;
965 continue;
966 }
967 length = bvec->bv_len;
968 buf_len = page->private >> 2;
969 start = page_offset(page) + bvec->bv_offset;
970 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
971 info = BTRFS_I(page->mapping->host)->root->fs_info;
972 }
973 /* are we fully contained in this bio? */
974 if (buf_len <= length)
975 return 1;
976
977 ret = extent_range_uptodate(io_tree, start + length,
978 start + buf_len - 1);
979 if (ret == 1)
980 return ret;
981 return ret;
982 }
983
984 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
985 static void btrfs_end_io_csum(void *p)
986 #else
987 static void btrfs_end_io_csum(struct work_struct *work)
988 #endif
989 {
990 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
991 struct btrfs_fs_info *fs_info = p;
992 #else
993 struct btrfs_fs_info *fs_info = container_of(work,
994 struct btrfs_fs_info,
995 end_io_work);
996 #endif
997 unsigned long flags;
998 struct end_io_wq *end_io_wq;
999 struct bio *bio;
1000 struct list_head *next;
1001 int error;
1002 int was_empty;
1003
1004 while(1) {
1005 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1006 if (list_empty(&fs_info->end_io_work_list)) {
1007 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1008 flags);
1009 return;
1010 }
1011 next = fs_info->end_io_work_list.next;
1012 list_del(next);
1013 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
1014
1015 end_io_wq = list_entry(next, struct end_io_wq, list);
1016
1017 bio = end_io_wq->bio;
1018 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1019 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1020 was_empty = list_empty(&fs_info->end_io_work_list);
1021 list_add_tail(&end_io_wq->list,
1022 &fs_info->end_io_work_list);
1023 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1024 flags);
1025 if (was_empty)
1026 return;
1027 continue;
1028 }
1029 error = end_io_wq->error;
1030 bio->bi_private = end_io_wq->private;
1031 bio->bi_end_io = end_io_wq->end_io;
1032 kfree(end_io_wq);
1033 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1034 bio_endio(bio, bio->bi_size, error);
1035 #else
1036 bio_endio(bio, error);
1037 #endif
1038 }
1039 }
1040
1041 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1042 static void btrfs_async_submit_work(void *p)
1043 #else
1044 static void btrfs_async_submit_work(struct work_struct *work)
1045 #endif
1046 {
1047 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1048 struct btrfs_fs_info *fs_info = p;
1049 #else
1050 struct btrfs_fs_info *fs_info = container_of(work,
1051 struct btrfs_fs_info,
1052 async_submit_work);
1053 #endif
1054 struct async_submit_bio *async;
1055 struct list_head *next;
1056
1057 while(1) {
1058 spin_lock(&fs_info->async_submit_work_lock);
1059 if (list_empty(&fs_info->async_submit_work_list)) {
1060 spin_unlock(&fs_info->async_submit_work_lock);
1061 return;
1062 }
1063 next = fs_info->async_submit_work_list.next;
1064 list_del(next);
1065 spin_unlock(&fs_info->async_submit_work_lock);
1066
1067 async = list_entry(next, struct async_submit_bio, list);
1068 async->submit_bio_hook(async->inode, async->rw, async->bio,
1069 async->mirror_num);
1070 kfree(async);
1071 }
1072 }
1073
1074 struct btrfs_root *open_ctree(struct super_block *sb,
1075 struct btrfs_fs_devices *fs_devices)
1076 {
1077 u32 sectorsize;
1078 u32 nodesize;
1079 u32 leafsize;
1080 u32 blocksize;
1081 u32 stripesize;
1082 struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1083 GFP_NOFS);
1084 struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1085 GFP_NOFS);
1086 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1087 GFP_NOFS);
1088 struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1089 GFP_NOFS);
1090 struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1091 GFP_NOFS);
1092 int ret;
1093 int err = -EINVAL;
1094 struct btrfs_super_block *disk_super;
1095
1096 if (!extent_root || !tree_root || !fs_info) {
1097 err = -ENOMEM;
1098 goto fail;
1099 }
1100 end_io_workqueue = create_workqueue("btrfs-end-io");
1101 BUG_ON(!end_io_workqueue);
1102 async_submit_workqueue = create_workqueue("btrfs-async-submit");
1103
1104 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1105 INIT_LIST_HEAD(&fs_info->trans_list);
1106 INIT_LIST_HEAD(&fs_info->dead_roots);
1107 INIT_LIST_HEAD(&fs_info->hashers);
1108 INIT_LIST_HEAD(&fs_info->end_io_work_list);
1109 INIT_LIST_HEAD(&fs_info->async_submit_work_list);
1110 spin_lock_init(&fs_info->hash_lock);
1111 spin_lock_init(&fs_info->end_io_work_lock);
1112 spin_lock_init(&fs_info->async_submit_work_lock);
1113 spin_lock_init(&fs_info->delalloc_lock);
1114 spin_lock_init(&fs_info->new_trans_lock);
1115
1116 init_completion(&fs_info->kobj_unregister);
1117 sb_set_blocksize(sb, BTRFS_SUPER_INFO_SIZE);
1118 fs_info->tree_root = tree_root;
1119 fs_info->extent_root = extent_root;
1120 fs_info->chunk_root = chunk_root;
1121 fs_info->dev_root = dev_root;
1122 fs_info->fs_devices = fs_devices;
1123 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1124 INIT_LIST_HEAD(&fs_info->space_info);
1125 btrfs_mapping_init(&fs_info->mapping_tree);
1126 fs_info->sb = sb;
1127 fs_info->max_extent = (u64)-1;
1128 fs_info->max_inline = 8192 * 1024;
1129 setup_bdi(fs_info, &fs_info->bdi);
1130 fs_info->btree_inode = new_inode(sb);
1131 fs_info->btree_inode->i_ino = 1;
1132 fs_info->btree_inode->i_nlink = 1;
1133
1134 /*
1135 * we set the i_size on the btree inode to the max possible int.
1136 * the real end of the address space is determined by all of
1137 * the devices in the system
1138 */
1139 fs_info->btree_inode->i_size = OFFSET_MAX;
1140 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1141 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1142
1143 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1144 fs_info->btree_inode->i_mapping,
1145 GFP_NOFS);
1146 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1147 GFP_NOFS);
1148
1149 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1150
1151 extent_io_tree_init(&fs_info->free_space_cache,
1152 fs_info->btree_inode->i_mapping, GFP_NOFS);
1153 extent_io_tree_init(&fs_info->block_group_cache,
1154 fs_info->btree_inode->i_mapping, GFP_NOFS);
1155 extent_io_tree_init(&fs_info->pinned_extents,
1156 fs_info->btree_inode->i_mapping, GFP_NOFS);
1157 extent_io_tree_init(&fs_info->pending_del,
1158 fs_info->btree_inode->i_mapping, GFP_NOFS);
1159 extent_io_tree_init(&fs_info->extent_ins,
1160 fs_info->btree_inode->i_mapping, GFP_NOFS);
1161 fs_info->do_barriers = 1;
1162
1163 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1164 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1165 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work,
1166 fs_info);
1167 INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1168 #else
1169 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1170 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work);
1171 INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1172 #endif
1173 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1174 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1175 sizeof(struct btrfs_key));
1176 insert_inode_hash(fs_info->btree_inode);
1177 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1178
1179 mutex_init(&fs_info->trans_mutex);
1180 mutex_init(&fs_info->fs_mutex);
1181
1182 #if 0
1183 ret = add_hasher(fs_info, "crc32c");
1184 if (ret) {
1185 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1186 err = -ENOMEM;
1187 goto fail_iput;
1188 }
1189 #endif
1190 __setup_root(4096, 4096, 4096, 4096, tree_root,
1191 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1192
1193 fs_info->sb_buffer = read_tree_block(tree_root,
1194 BTRFS_SUPER_INFO_OFFSET,
1195 4096);
1196
1197 if (!fs_info->sb_buffer)
1198 goto fail_iput;
1199
1200 read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
1201 sizeof(fs_info->super_copy));
1202
1203 read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
1204 (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
1205 BTRFS_FSID_SIZE);
1206
1207 disk_super = &fs_info->super_copy;
1208 if (!btrfs_super_root(disk_super))
1209 goto fail_sb_buffer;
1210
1211 if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1212 printk("Btrfs: wanted %llu devices, but found %llu\n",
1213 (unsigned long long)btrfs_super_num_devices(disk_super),
1214 (unsigned long long)fs_devices->num_devices);
1215 goto fail_sb_buffer;
1216 }
1217 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1218
1219 nodesize = btrfs_super_nodesize(disk_super);
1220 leafsize = btrfs_super_leafsize(disk_super);
1221 sectorsize = btrfs_super_sectorsize(disk_super);
1222 stripesize = btrfs_super_stripesize(disk_super);
1223 tree_root->nodesize = nodesize;
1224 tree_root->leafsize = leafsize;
1225 tree_root->sectorsize = sectorsize;
1226 tree_root->stripesize = stripesize;
1227 sb_set_blocksize(sb, sectorsize);
1228
1229 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1230 sizeof(disk_super->magic))) {
1231 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1232 goto fail_sb_buffer;
1233 }
1234
1235 mutex_lock(&fs_info->fs_mutex);
1236
1237 ret = btrfs_read_sys_array(tree_root);
1238 BUG_ON(ret);
1239
1240 blocksize = btrfs_level_size(tree_root,
1241 btrfs_super_chunk_root_level(disk_super));
1242
1243 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1244 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1245
1246 chunk_root->node = read_tree_block(chunk_root,
1247 btrfs_super_chunk_root(disk_super),
1248 blocksize);
1249 BUG_ON(!chunk_root->node);
1250
1251 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1252 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1253 BTRFS_UUID_SIZE);
1254
1255 ret = btrfs_read_chunk_tree(chunk_root);
1256 BUG_ON(ret);
1257
1258 blocksize = btrfs_level_size(tree_root,
1259 btrfs_super_root_level(disk_super));
1260
1261
1262 tree_root->node = read_tree_block(tree_root,
1263 btrfs_super_root(disk_super),
1264 blocksize);
1265 if (!tree_root->node)
1266 goto fail_sb_buffer;
1267
1268
1269 ret = find_and_setup_root(tree_root, fs_info,
1270 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1271 if (ret)
1272 goto fail_tree_root;
1273 extent_root->track_dirty = 1;
1274
1275 ret = find_and_setup_root(tree_root, fs_info,
1276 BTRFS_DEV_TREE_OBJECTID, dev_root);
1277 dev_root->track_dirty = 1;
1278
1279 if (ret)
1280 goto fail_extent_root;
1281
1282 btrfs_read_block_groups(extent_root);
1283
1284 fs_info->generation = btrfs_super_generation(disk_super) + 1;
1285 fs_info->data_alloc_profile = (u64)-1;
1286 fs_info->metadata_alloc_profile = (u64)-1;
1287 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1288
1289 mutex_unlock(&fs_info->fs_mutex);
1290 return tree_root;
1291
1292 fail_extent_root:
1293 free_extent_buffer(extent_root->node);
1294 fail_tree_root:
1295 mutex_unlock(&fs_info->fs_mutex);
1296 free_extent_buffer(tree_root->node);
1297 fail_sb_buffer:
1298 free_extent_buffer(fs_info->sb_buffer);
1299 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1300 fail_iput:
1301 iput(fs_info->btree_inode);
1302 fail:
1303 close_all_devices(fs_info);
1304 kfree(extent_root);
1305 kfree(tree_root);
1306 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1307 bdi_destroy(&fs_info->bdi);
1308 #endif
1309 kfree(fs_info);
1310 return ERR_PTR(err);
1311 }
1312
1313 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1314 {
1315 char b[BDEVNAME_SIZE];
1316
1317 if (uptodate) {
1318 set_buffer_uptodate(bh);
1319 } else {
1320 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1321 printk(KERN_WARNING "lost page write due to "
1322 "I/O error on %s\n",
1323 bdevname(bh->b_bdev, b));
1324 }
1325 set_buffer_write_io_error(bh);
1326 clear_buffer_uptodate(bh);
1327 }
1328 unlock_buffer(bh);
1329 put_bh(bh);
1330 }
1331
1332 int write_all_supers(struct btrfs_root *root)
1333 {
1334 struct list_head *cur;
1335 struct list_head *head = &root->fs_info->fs_devices->devices;
1336 struct btrfs_device *dev;
1337 struct extent_buffer *sb;
1338 struct btrfs_dev_item *dev_item;
1339 struct buffer_head *bh;
1340 int ret;
1341 int do_barriers;
1342
1343 do_barriers = !btrfs_test_opt(root, NOBARRIER);
1344
1345 sb = root->fs_info->sb_buffer;
1346 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1347 dev_item);
1348 list_for_each(cur, head) {
1349 dev = list_entry(cur, struct btrfs_device, dev_list);
1350 btrfs_set_device_type(sb, dev_item, dev->type);
1351 btrfs_set_device_id(sb, dev_item, dev->devid);
1352 btrfs_set_device_total_bytes(sb, dev_item, dev->total_bytes);
1353 btrfs_set_device_bytes_used(sb, dev_item, dev->bytes_used);
1354 btrfs_set_device_io_align(sb, dev_item, dev->io_align);
1355 btrfs_set_device_io_width(sb, dev_item, dev->io_width);
1356 btrfs_set_device_sector_size(sb, dev_item, dev->sector_size);
1357 write_extent_buffer(sb, dev->uuid,
1358 (unsigned long)btrfs_device_uuid(dev_item),
1359 BTRFS_UUID_SIZE);
1360
1361 btrfs_set_header_flag(sb, BTRFS_HEADER_FLAG_WRITTEN);
1362 csum_tree_block(root, sb, 0);
1363
1364 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET /
1365 root->fs_info->sb->s_blocksize,
1366 BTRFS_SUPER_INFO_SIZE);
1367
1368 read_extent_buffer(sb, bh->b_data, 0, BTRFS_SUPER_INFO_SIZE);
1369 dev->pending_io = bh;
1370
1371 get_bh(bh);
1372 set_buffer_uptodate(bh);
1373 lock_buffer(bh);
1374 bh->b_end_io = btrfs_end_buffer_write_sync;
1375
1376 if (do_barriers && dev->barriers) {
1377 ret = submit_bh(WRITE_BARRIER, bh);
1378 if (ret == -EOPNOTSUPP) {
1379 printk("btrfs: disabling barriers on dev %s\n",
1380 dev->name);
1381 set_buffer_uptodate(bh);
1382 dev->barriers = 0;
1383 get_bh(bh);
1384 lock_buffer(bh);
1385 ret = submit_bh(WRITE, bh);
1386 }
1387 } else {
1388 ret = submit_bh(WRITE, bh);
1389 }
1390 BUG_ON(ret);
1391 }
1392
1393 list_for_each(cur, head) {
1394 dev = list_entry(cur, struct btrfs_device, dev_list);
1395 BUG_ON(!dev->pending_io);
1396 bh = dev->pending_io;
1397 wait_on_buffer(bh);
1398 if (!buffer_uptodate(dev->pending_io)) {
1399 if (do_barriers && dev->barriers) {
1400 printk("btrfs: disabling barriers on dev %s\n",
1401 dev->name);
1402 set_buffer_uptodate(bh);
1403 get_bh(bh);
1404 lock_buffer(bh);
1405 dev->barriers = 0;
1406 ret = submit_bh(WRITE, bh);
1407 BUG_ON(ret);
1408 wait_on_buffer(bh);
1409 BUG_ON(!buffer_uptodate(bh));
1410 } else {
1411 BUG();
1412 }
1413
1414 }
1415 dev->pending_io = NULL;
1416 brelse(bh);
1417 }
1418 return 0;
1419 }
1420
1421 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1422 *root)
1423 {
1424 int ret;
1425
1426 ret = write_all_supers(root);
1427 #if 0
1428 if (!btrfs_test_opt(root, NOBARRIER))
1429 blkdev_issue_flush(sb->s_bdev, NULL);
1430 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, super);
1431 ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
1432 super->start, super->len);
1433 if (!btrfs_test_opt(root, NOBARRIER))
1434 blkdev_issue_flush(sb->s_bdev, NULL);
1435 #endif
1436 return ret;
1437 }
1438
1439 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1440 {
1441 radix_tree_delete(&fs_info->fs_roots_radix,
1442 (unsigned long)root->root_key.objectid);
1443 if (root->in_sysfs)
1444 btrfs_sysfs_del_root(root);
1445 if (root->inode)
1446 iput(root->inode);
1447 if (root->node)
1448 free_extent_buffer(root->node);
1449 if (root->commit_root)
1450 free_extent_buffer(root->commit_root);
1451 if (root->name)
1452 kfree(root->name);
1453 kfree(root);
1454 return 0;
1455 }
1456
1457 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1458 {
1459 int ret;
1460 struct btrfs_root *gang[8];
1461 int i;
1462
1463 while(1) {
1464 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1465 (void **)gang, 0,
1466 ARRAY_SIZE(gang));
1467 if (!ret)
1468 break;
1469 for (i = 0; i < ret; i++)
1470 btrfs_free_fs_root(fs_info, gang[i]);
1471 }
1472 return 0;
1473 }
1474
1475 int close_ctree(struct btrfs_root *root)
1476 {
1477 int ret;
1478 struct btrfs_trans_handle *trans;
1479 struct btrfs_fs_info *fs_info = root->fs_info;
1480
1481 fs_info->closing = 1;
1482 btrfs_transaction_flush_work(root);
1483 mutex_lock(&fs_info->fs_mutex);
1484 btrfs_defrag_dirty_roots(root->fs_info);
1485 trans = btrfs_start_transaction(root, 1);
1486 ret = btrfs_commit_transaction(trans, root);
1487 /* run commit again to drop the original snapshot */
1488 trans = btrfs_start_transaction(root, 1);
1489 btrfs_commit_transaction(trans, root);
1490 ret = btrfs_write_and_wait_transaction(NULL, root);
1491 BUG_ON(ret);
1492 write_ctree_super(NULL, root);
1493 mutex_unlock(&fs_info->fs_mutex);
1494
1495 btrfs_transaction_flush_work(root);
1496
1497 if (fs_info->delalloc_bytes) {
1498 printk("btrfs: at unmount delalloc count %Lu\n",
1499 fs_info->delalloc_bytes);
1500 }
1501 if (fs_info->extent_root->node)
1502 free_extent_buffer(fs_info->extent_root->node);
1503
1504 if (fs_info->tree_root->node)
1505 free_extent_buffer(fs_info->tree_root->node);
1506
1507 if (root->fs_info->chunk_root->node);
1508 free_extent_buffer(root->fs_info->chunk_root->node);
1509
1510 if (root->fs_info->dev_root->node);
1511 free_extent_buffer(root->fs_info->dev_root->node);
1512
1513 free_extent_buffer(fs_info->sb_buffer);
1514
1515 btrfs_free_block_groups(root->fs_info);
1516 del_fs_roots(fs_info);
1517
1518 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1519
1520 extent_io_tree_empty_lru(&fs_info->free_space_cache);
1521 extent_io_tree_empty_lru(&fs_info->block_group_cache);
1522 extent_io_tree_empty_lru(&fs_info->pinned_extents);
1523 extent_io_tree_empty_lru(&fs_info->pending_del);
1524 extent_io_tree_empty_lru(&fs_info->extent_ins);
1525 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1526
1527 flush_workqueue(end_io_workqueue);
1528 flush_workqueue(async_submit_workqueue);
1529
1530 truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1531
1532 flush_workqueue(end_io_workqueue);
1533 destroy_workqueue(end_io_workqueue);
1534
1535 flush_workqueue(async_submit_workqueue);
1536 destroy_workqueue(async_submit_workqueue);
1537
1538 iput(fs_info->btree_inode);
1539 #if 0
1540 while(!list_empty(&fs_info->hashers)) {
1541 struct btrfs_hasher *hasher;
1542 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1543 hashers);
1544 list_del(&hasher->hashers);
1545 crypto_free_hash(&fs_info->hash_tfm);
1546 kfree(hasher);
1547 }
1548 #endif
1549 close_all_devices(fs_info);
1550 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1551
1552 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1553 bdi_destroy(&fs_info->bdi);
1554 #endif
1555
1556 kfree(fs_info->extent_root);
1557 kfree(fs_info->tree_root);
1558 kfree(fs_info->chunk_root);
1559 kfree(fs_info->dev_root);
1560 return 0;
1561 }
1562
1563 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1564 {
1565 struct inode *btree_inode = buf->first_page->mapping->host;
1566 return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1567 }
1568
1569 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1570 {
1571 struct inode *btree_inode = buf->first_page->mapping->host;
1572 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1573 buf);
1574 }
1575
1576 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1577 {
1578 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1579 u64 transid = btrfs_header_generation(buf);
1580 struct inode *btree_inode = root->fs_info->btree_inode;
1581
1582 if (transid != root->fs_info->generation) {
1583 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1584 (unsigned long long)buf->start,
1585 transid, root->fs_info->generation);
1586 WARN_ON(1);
1587 }
1588 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1589 }
1590
1591 void btrfs_throttle(struct btrfs_root *root)
1592 {
1593 struct backing_dev_info *bdi;
1594
1595 bdi = root->fs_info->sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1596 if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1597 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1598 congestion_wait(WRITE, HZ/20);
1599 #else
1600 blk_congestion_wait(WRITE, HZ/20);
1601 #endif
1602 }
1603 }
1604
1605 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1606 {
1607 balance_dirty_pages_ratelimited_nr(
1608 root->fs_info->btree_inode->i_mapping, 1);
1609 }
1610
1611 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1612 {
1613 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1614 struct inode *btree_inode = root->fs_info->btree_inode;
1615 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1616 buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1617 }
1618
1619 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1620 {
1621 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1622 struct inode *btree_inode = root->fs_info->btree_inode;
1623 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1624 buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1625 GFP_NOFS);
1626 }
1627
1628 int btrfs_buffer_defrag(struct extent_buffer *buf)
1629 {
1630 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1631 struct inode *btree_inode = root->fs_info->btree_inode;
1632 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1633 buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1634 }
1635
1636 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1637 {
1638 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1639 struct inode *btree_inode = root->fs_info->btree_inode;
1640 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1641 buf->start, buf->start + buf->len - 1,
1642 EXTENT_DEFRAG_DONE, 0);
1643 }
1644
1645 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1646 {
1647 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1648 struct inode *btree_inode = root->fs_info->btree_inode;
1649 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1650 buf->start, buf->start + buf->len - 1,
1651 EXTENT_DEFRAG_DONE, GFP_NOFS);
1652 }
1653
1654 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1655 {
1656 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1657 struct inode *btree_inode = root->fs_info->btree_inode;
1658 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1659 buf->start, buf->start + buf->len - 1,
1660 EXTENT_DEFRAG, GFP_NOFS);
1661 }
1662
1663 int btrfs_read_buffer(struct extent_buffer *buf)
1664 {
1665 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1666 int ret;
1667 ret = btree_read_extent_buffer_pages(root, buf, 0);
1668 if (ret == 0) {
1669 buf->flags |= EXTENT_UPTODATE;
1670 }
1671 return ret;
1672 }
1673
1674 static struct extent_io_ops btree_extent_io_ops = {
1675 .writepage_io_hook = btree_writepage_io_hook,
1676 .readpage_end_io_hook = btree_readpage_end_io_hook,
1677 .submit_bio_hook = btree_submit_bio_hook,
1678 /* note we're sharing with inode.c for the merge bio hook */
1679 .merge_bio_hook = btrfs_merge_bio_hook,
1680 };
This page took 0.06384 seconds and 6 git commands to generate.