Merge branch 'cleanup/messages' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79 struct btrfs_end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 enum btrfs_wq_endio_type metadata;
86 struct list_head list;
87 struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
115 struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
121 int rw;
122 int mirror_num;
123 unsigned long bio_flags;
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
129 struct btrfs_work work;
130 int error;
131 };
132
133 /*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
143 *
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
147 *
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
151 *
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
155 */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 # error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
178 { .id = 0, .name_stem = "tree" },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197 {
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 struct page *page, size_t pg_offset, u64 start, u64 len,
219 int create)
220 {
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
225 read_lock(&em_tree->lock);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 read_unlock(&em_tree->lock);
231 goto out;
232 }
233 read_unlock(&em_tree->lock);
234
235 em = alloc_extent_map();
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
241 em->len = (u64)-1;
242 em->block_len = (u64)-1;
243 em->block_start = 0;
244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246 write_lock(&em_tree->lock);
247 ret = add_extent_mapping(em_tree, em, 0);
248 if (ret == -EEXIST) {
249 free_extent_map(em);
250 em = lookup_extent_mapping(em_tree, start, len);
251 if (!em)
252 em = ERR_PTR(-EIO);
253 } else if (ret) {
254 free_extent_map(em);
255 em = ERR_PTR(ret);
256 }
257 write_unlock(&em_tree->lock);
258
259 out:
260 return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 put_unaligned_le32(~crc, result);
271 }
272
273 /*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
279 int verify)
280 {
281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 char *result = NULL;
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
291 unsigned long inline_result;
292
293 len = buf->len - offset;
294 while (len > 0) {
295 err = map_private_extent_buffer(buf, offset, 32,
296 &kaddr, &map_start, &map_len);
297 if (err)
298 return 1;
299 cur_len = min(len, map_len - (offset - map_start));
300 crc = btrfs_csum_data(kaddr + offset - map_start,
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
304 }
305 if (csum_size > sizeof(inline_result)) {
306 result = kzalloc(csum_size, GFP_NOFS);
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 u32 val;
318 u32 found = 0;
319 memcpy(&found, result, csum_size);
320
321 read_extent_buffer(buf, &val, 0, csum_size);
322 btrfs_warn_rl(fs_info,
323 "%s checksum verify failed on %llu wanted %X found %X "
324 "level %d",
325 fs_info->sb->s_id, buf->start,
326 val, found, btrfs_header_level(buf));
327 if (result != (char *)&inline_result)
328 kfree(result);
329 return 1;
330 }
331 } else {
332 write_extent_buffer(buf, result, 0, csum_size);
333 }
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return 0;
337 }
338
339 /*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
348 {
349 struct extent_state *cached_state = NULL;
350 int ret;
351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
356 if (atomic)
357 return -EAGAIN;
358
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 0, &cached_state);
366 if (extent_buffer_uptodate(eb) &&
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
371 btrfs_err_rl(eb->fs_info,
372 "parent transid verify failed on %llu wanted %llu found %llu",
373 eb->start,
374 parent_transid, btrfs_header_generation(eb));
375 ret = 1;
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
387 out:
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
392 return ret;
393 }
394
395 /*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431 }
432
433 /*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
439 u64 start, u64 parent_transid)
440 {
441 struct extent_io_tree *io_tree;
442 int failed = 0;
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
446 int failed_mirror = 0;
447
448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
453 btree_get_extent, mirror_num);
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
456 parent_transid, 0))
457 break;
458 else
459 ret = -EIO;
460 }
461
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 break;
469
470 num_copies = btrfs_num_copies(root->fs_info,
471 eb->start, eb->len);
472 if (num_copies == 1)
473 break;
474
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
480 mirror_num++;
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
484 if (mirror_num > num_copies)
485 break;
486 }
487
488 if (failed && !ret && failed_mirror)
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
492 }
493
494 /*
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
497 */
498
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501 u64 start = page_offset(page);
502 u64 found_start;
503 struct extent_buffer *eb;
504
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
508 found_start = btrfs_header_bytenr(eb);
509 if (WARN_ON(found_start != start || !PageUptodate(page)))
510 return 0;
511 csum_tree_block(fs_info, eb, 0);
512 return 0;
513 }
514
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 struct extent_buffer *eb)
517 {
518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531 }
532
533 #define CORRUPT(reason, eb, root, slot) \
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
536 btrfs_header_bytenr(eb), root->objectid, slot)
537
538 static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540 {
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597 }
598
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
602 {
603 u64 found_start;
604 int found_level;
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 int ret = 0;
608 int reads_done;
609
610 if (!page->private)
611 goto out;
612
613 eb = (struct extent_buffer *)page->private;
614
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
621 if (!reads_done)
622 goto err;
623
624 eb->read_mirror = mirror;
625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 ret = -EIO;
627 goto err;
628 }
629
630 found_start = btrfs_header_bytenr(eb);
631 if (found_start != eb->start) {
632 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633 found_start, eb->start);
634 ret = -EIO;
635 goto err;
636 }
637 if (check_tree_block_fsid(root->fs_info, eb)) {
638 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639 eb->start);
640 ret = -EIO;
641 goto err;
642 }
643 found_level = btrfs_header_level(eb);
644 if (found_level >= BTRFS_MAX_LEVEL) {
645 btrfs_err(root->fs_info, "bad tree block level %d",
646 (int)btrfs_header_level(eb));
647 ret = -EIO;
648 goto err;
649 }
650
651 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652 eb, found_level);
653
654 ret = csum_tree_block(root->fs_info, eb, 1);
655 if (ret) {
656 ret = -EIO;
657 goto err;
658 }
659
660 /*
661 * If this is a leaf block and it is corrupt, set the corrupt bit so
662 * that we don't try and read the other copies of this block, just
663 * return -EIO.
664 */
665 if (found_level == 0 && check_leaf(root, eb)) {
666 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667 ret = -EIO;
668 }
669
670 if (!ret)
671 set_extent_buffer_uptodate(eb);
672 err:
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675 btree_readahead_hook(root, eb, eb->start, ret);
676
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
684 clear_extent_buffer_uptodate(eb);
685 }
686 free_extent_buffer(eb);
687 out:
688 return ret;
689 }
690
691 static int btree_io_failed_hook(struct page *page, int failed_mirror)
692 {
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695
696 eb = (struct extent_buffer *)page->private;
697 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
698 eb->read_mirror = failed_mirror;
699 atomic_dec(&eb->io_pages);
700 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
701 btree_readahead_hook(root, eb, eb->start, -EIO);
702 return -EIO; /* we fixed nothing */
703 }
704
705 static void end_workqueue_bio(struct bio *bio)
706 {
707 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
708 struct btrfs_fs_info *fs_info;
709 struct btrfs_workqueue *wq;
710 btrfs_work_func_t func;
711
712 fs_info = end_io_wq->info;
713 end_io_wq->error = bio->bi_error;
714
715 if (bio->bi_rw & REQ_WRITE) {
716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717 wq = fs_info->endio_meta_write_workers;
718 func = btrfs_endio_meta_write_helper;
719 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720 wq = fs_info->endio_freespace_worker;
721 func = btrfs_freespace_write_helper;
722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723 wq = fs_info->endio_raid56_workers;
724 func = btrfs_endio_raid56_helper;
725 } else {
726 wq = fs_info->endio_write_workers;
727 func = btrfs_endio_write_helper;
728 }
729 } else {
730 if (unlikely(end_io_wq->metadata ==
731 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732 wq = fs_info->endio_repair_workers;
733 func = btrfs_endio_repair_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
735 wq = fs_info->endio_raid56_workers;
736 func = btrfs_endio_raid56_helper;
737 } else if (end_io_wq->metadata) {
738 wq = fs_info->endio_meta_workers;
739 func = btrfs_endio_meta_helper;
740 } else {
741 wq = fs_info->endio_workers;
742 func = btrfs_endio_helper;
743 }
744 }
745
746 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747 btrfs_queue_work(wq, &end_io_wq->work);
748 }
749
750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
751 enum btrfs_wq_endio_type metadata)
752 {
753 struct btrfs_end_io_wq *end_io_wq;
754
755 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
756 if (!end_io_wq)
757 return -ENOMEM;
758
759 end_io_wq->private = bio->bi_private;
760 end_io_wq->end_io = bio->bi_end_io;
761 end_io_wq->info = info;
762 end_io_wq->error = 0;
763 end_io_wq->bio = bio;
764 end_io_wq->metadata = metadata;
765
766 bio->bi_private = end_io_wq;
767 bio->bi_end_io = end_workqueue_bio;
768 return 0;
769 }
770
771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
772 {
773 unsigned long limit = min_t(unsigned long,
774 info->thread_pool_size,
775 info->fs_devices->open_devices);
776 return 256 * limit;
777 }
778
779 static void run_one_async_start(struct btrfs_work *work)
780 {
781 struct async_submit_bio *async;
782 int ret;
783
784 async = container_of(work, struct async_submit_bio, work);
785 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786 async->mirror_num, async->bio_flags,
787 async->bio_offset);
788 if (ret)
789 async->error = ret;
790 }
791
792 static void run_one_async_done(struct btrfs_work *work)
793 {
794 struct btrfs_fs_info *fs_info;
795 struct async_submit_bio *async;
796 int limit;
797
798 async = container_of(work, struct async_submit_bio, work);
799 fs_info = BTRFS_I(async->inode)->root->fs_info;
800
801 limit = btrfs_async_submit_limit(fs_info);
802 limit = limit * 2 / 3;
803
804 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
805 waitqueue_active(&fs_info->async_submit_wait))
806 wake_up(&fs_info->async_submit_wait);
807
808 /* If an error occured we just want to clean up the bio and move on */
809 if (async->error) {
810 async->bio->bi_error = async->error;
811 bio_endio(async->bio);
812 return;
813 }
814
815 async->submit_bio_done(async->inode, async->rw, async->bio,
816 async->mirror_num, async->bio_flags,
817 async->bio_offset);
818 }
819
820 static void run_one_async_free(struct btrfs_work *work)
821 {
822 struct async_submit_bio *async;
823
824 async = container_of(work, struct async_submit_bio, work);
825 kfree(async);
826 }
827
828 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
829 int rw, struct bio *bio, int mirror_num,
830 unsigned long bio_flags,
831 u64 bio_offset,
832 extent_submit_bio_hook_t *submit_bio_start,
833 extent_submit_bio_hook_t *submit_bio_done)
834 {
835 struct async_submit_bio *async;
836
837 async = kmalloc(sizeof(*async), GFP_NOFS);
838 if (!async)
839 return -ENOMEM;
840
841 async->inode = inode;
842 async->rw = rw;
843 async->bio = bio;
844 async->mirror_num = mirror_num;
845 async->submit_bio_start = submit_bio_start;
846 async->submit_bio_done = submit_bio_done;
847
848 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
849 run_one_async_done, run_one_async_free);
850
851 async->bio_flags = bio_flags;
852 async->bio_offset = bio_offset;
853
854 async->error = 0;
855
856 atomic_inc(&fs_info->nr_async_submits);
857
858 if (rw & REQ_SYNC)
859 btrfs_set_work_high_priority(&async->work);
860
861 btrfs_queue_work(fs_info->workers, &async->work);
862
863 while (atomic_read(&fs_info->async_submit_draining) &&
864 atomic_read(&fs_info->nr_async_submits)) {
865 wait_event(fs_info->async_submit_wait,
866 (atomic_read(&fs_info->nr_async_submits) == 0));
867 }
868
869 return 0;
870 }
871
872 static int btree_csum_one_bio(struct bio *bio)
873 {
874 struct bio_vec *bvec;
875 struct btrfs_root *root;
876 int i, ret = 0;
877
878 bio_for_each_segment_all(bvec, bio, i) {
879 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
880 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
881 if (ret)
882 break;
883 }
884
885 return ret;
886 }
887
888 static int __btree_submit_bio_start(struct inode *inode, int rw,
889 struct bio *bio, int mirror_num,
890 unsigned long bio_flags,
891 u64 bio_offset)
892 {
893 /*
894 * when we're called for a write, we're already in the async
895 * submission context. Just jump into btrfs_map_bio
896 */
897 return btree_csum_one_bio(bio);
898 }
899
900 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
901 int mirror_num, unsigned long bio_flags,
902 u64 bio_offset)
903 {
904 int ret;
905
906 /*
907 * when we're called for a write, we're already in the async
908 * submission context. Just jump into btrfs_map_bio
909 */
910 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
911 if (ret) {
912 bio->bi_error = ret;
913 bio_endio(bio);
914 }
915 return ret;
916 }
917
918 static int check_async_write(struct inode *inode, unsigned long bio_flags)
919 {
920 if (bio_flags & EXTENT_BIO_TREE_LOG)
921 return 0;
922 #ifdef CONFIG_X86
923 if (cpu_has_xmm4_2)
924 return 0;
925 #endif
926 return 1;
927 }
928
929 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
930 int mirror_num, unsigned long bio_flags,
931 u64 bio_offset)
932 {
933 int async = check_async_write(inode, bio_flags);
934 int ret;
935
936 if (!(rw & REQ_WRITE)) {
937 /*
938 * called for a read, do the setup so that checksum validation
939 * can happen in the async kernel threads
940 */
941 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
942 bio, BTRFS_WQ_ENDIO_METADATA);
943 if (ret)
944 goto out_w_error;
945 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
946 mirror_num, 0);
947 } else if (!async) {
948 ret = btree_csum_one_bio(bio);
949 if (ret)
950 goto out_w_error;
951 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
952 mirror_num, 0);
953 } else {
954 /*
955 * kthread helpers are used to submit writes so that
956 * checksumming can happen in parallel across all CPUs
957 */
958 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
959 inode, rw, bio, mirror_num, 0,
960 bio_offset,
961 __btree_submit_bio_start,
962 __btree_submit_bio_done);
963 }
964
965 if (ret)
966 goto out_w_error;
967 return 0;
968
969 out_w_error:
970 bio->bi_error = ret;
971 bio_endio(bio);
972 return ret;
973 }
974
975 #ifdef CONFIG_MIGRATION
976 static int btree_migratepage(struct address_space *mapping,
977 struct page *newpage, struct page *page,
978 enum migrate_mode mode)
979 {
980 /*
981 * we can't safely write a btree page from here,
982 * we haven't done the locking hook
983 */
984 if (PageDirty(page))
985 return -EAGAIN;
986 /*
987 * Buffers may be managed in a filesystem specific way.
988 * We must have no buffers or drop them.
989 */
990 if (page_has_private(page) &&
991 !try_to_release_page(page, GFP_KERNEL))
992 return -EAGAIN;
993 return migrate_page(mapping, newpage, page, mode);
994 }
995 #endif
996
997
998 static int btree_writepages(struct address_space *mapping,
999 struct writeback_control *wbc)
1000 {
1001 struct btrfs_fs_info *fs_info;
1002 int ret;
1003
1004 if (wbc->sync_mode == WB_SYNC_NONE) {
1005
1006 if (wbc->for_kupdate)
1007 return 0;
1008
1009 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1010 /* this is a bit racy, but that's ok */
1011 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1012 BTRFS_DIRTY_METADATA_THRESH);
1013 if (ret < 0)
1014 return 0;
1015 }
1016 return btree_write_cache_pages(mapping, wbc);
1017 }
1018
1019 static int btree_readpage(struct file *file, struct page *page)
1020 {
1021 struct extent_io_tree *tree;
1022 tree = &BTRFS_I(page->mapping->host)->io_tree;
1023 return extent_read_full_page(tree, page, btree_get_extent, 0);
1024 }
1025
1026 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1027 {
1028 if (PageWriteback(page) || PageDirty(page))
1029 return 0;
1030
1031 return try_release_extent_buffer(page);
1032 }
1033
1034 static void btree_invalidatepage(struct page *page, unsigned int offset,
1035 unsigned int length)
1036 {
1037 struct extent_io_tree *tree;
1038 tree = &BTRFS_I(page->mapping->host)->io_tree;
1039 extent_invalidatepage(tree, page, offset);
1040 btree_releasepage(page, GFP_NOFS);
1041 if (PagePrivate(page)) {
1042 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1043 "page private not zero on page %llu",
1044 (unsigned long long)page_offset(page));
1045 ClearPagePrivate(page);
1046 set_page_private(page, 0);
1047 page_cache_release(page);
1048 }
1049 }
1050
1051 static int btree_set_page_dirty(struct page *page)
1052 {
1053 #ifdef DEBUG
1054 struct extent_buffer *eb;
1055
1056 BUG_ON(!PagePrivate(page));
1057 eb = (struct extent_buffer *)page->private;
1058 BUG_ON(!eb);
1059 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1060 BUG_ON(!atomic_read(&eb->refs));
1061 btrfs_assert_tree_locked(eb);
1062 #endif
1063 return __set_page_dirty_nobuffers(page);
1064 }
1065
1066 static const struct address_space_operations btree_aops = {
1067 .readpage = btree_readpage,
1068 .writepages = btree_writepages,
1069 .releasepage = btree_releasepage,
1070 .invalidatepage = btree_invalidatepage,
1071 #ifdef CONFIG_MIGRATION
1072 .migratepage = btree_migratepage,
1073 #endif
1074 .set_page_dirty = btree_set_page_dirty,
1075 };
1076
1077 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1078 {
1079 struct extent_buffer *buf = NULL;
1080 struct inode *btree_inode = root->fs_info->btree_inode;
1081
1082 buf = btrfs_find_create_tree_block(root, bytenr);
1083 if (!buf)
1084 return;
1085 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1086 buf, 0, WAIT_NONE, btree_get_extent, 0);
1087 free_extent_buffer(buf);
1088 }
1089
1090 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1091 int mirror_num, struct extent_buffer **eb)
1092 {
1093 struct extent_buffer *buf = NULL;
1094 struct inode *btree_inode = root->fs_info->btree_inode;
1095 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1096 int ret;
1097
1098 buf = btrfs_find_create_tree_block(root, bytenr);
1099 if (!buf)
1100 return 0;
1101
1102 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1103
1104 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1105 btree_get_extent, mirror_num);
1106 if (ret) {
1107 free_extent_buffer(buf);
1108 return ret;
1109 }
1110
1111 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1112 free_extent_buffer(buf);
1113 return -EIO;
1114 } else if (extent_buffer_uptodate(buf)) {
1115 *eb = buf;
1116 } else {
1117 free_extent_buffer(buf);
1118 }
1119 return 0;
1120 }
1121
1122 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1123 u64 bytenr)
1124 {
1125 return find_extent_buffer(fs_info, bytenr);
1126 }
1127
1128 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1129 u64 bytenr)
1130 {
1131 if (btrfs_test_is_dummy_root(root))
1132 return alloc_test_extent_buffer(root->fs_info, bytenr);
1133 return alloc_extent_buffer(root->fs_info, bytenr);
1134 }
1135
1136
1137 int btrfs_write_tree_block(struct extent_buffer *buf)
1138 {
1139 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1140 buf->start + buf->len - 1);
1141 }
1142
1143 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1144 {
1145 return filemap_fdatawait_range(buf->pages[0]->mapping,
1146 buf->start, buf->start + buf->len - 1);
1147 }
1148
1149 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1150 u64 parent_transid)
1151 {
1152 struct extent_buffer *buf = NULL;
1153 int ret;
1154
1155 buf = btrfs_find_create_tree_block(root, bytenr);
1156 if (!buf)
1157 return ERR_PTR(-ENOMEM);
1158
1159 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1160 if (ret) {
1161 free_extent_buffer(buf);
1162 return ERR_PTR(ret);
1163 }
1164 return buf;
1165
1166 }
1167
1168 void clean_tree_block(struct btrfs_trans_handle *trans,
1169 struct btrfs_fs_info *fs_info,
1170 struct extent_buffer *buf)
1171 {
1172 if (btrfs_header_generation(buf) ==
1173 fs_info->running_transaction->transid) {
1174 btrfs_assert_tree_locked(buf);
1175
1176 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1177 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1178 -buf->len,
1179 fs_info->dirty_metadata_batch);
1180 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1181 btrfs_set_lock_blocking(buf);
1182 clear_extent_buffer_dirty(buf);
1183 }
1184 }
1185 }
1186
1187 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1188 {
1189 struct btrfs_subvolume_writers *writers;
1190 int ret;
1191
1192 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1193 if (!writers)
1194 return ERR_PTR(-ENOMEM);
1195
1196 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1197 if (ret < 0) {
1198 kfree(writers);
1199 return ERR_PTR(ret);
1200 }
1201
1202 init_waitqueue_head(&writers->wait);
1203 return writers;
1204 }
1205
1206 static void
1207 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1208 {
1209 percpu_counter_destroy(&writers->counter);
1210 kfree(writers);
1211 }
1212
1213 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1214 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1215 u64 objectid)
1216 {
1217 root->node = NULL;
1218 root->commit_root = NULL;
1219 root->sectorsize = sectorsize;
1220 root->nodesize = nodesize;
1221 root->stripesize = stripesize;
1222 root->state = 0;
1223 root->orphan_cleanup_state = 0;
1224
1225 root->objectid = objectid;
1226 root->last_trans = 0;
1227 root->highest_objectid = 0;
1228 root->nr_delalloc_inodes = 0;
1229 root->nr_ordered_extents = 0;
1230 root->name = NULL;
1231 root->inode_tree = RB_ROOT;
1232 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1233 root->block_rsv = NULL;
1234 root->orphan_block_rsv = NULL;
1235
1236 INIT_LIST_HEAD(&root->dirty_list);
1237 INIT_LIST_HEAD(&root->root_list);
1238 INIT_LIST_HEAD(&root->delalloc_inodes);
1239 INIT_LIST_HEAD(&root->delalloc_root);
1240 INIT_LIST_HEAD(&root->ordered_extents);
1241 INIT_LIST_HEAD(&root->ordered_root);
1242 INIT_LIST_HEAD(&root->logged_list[0]);
1243 INIT_LIST_HEAD(&root->logged_list[1]);
1244 spin_lock_init(&root->orphan_lock);
1245 spin_lock_init(&root->inode_lock);
1246 spin_lock_init(&root->delalloc_lock);
1247 spin_lock_init(&root->ordered_extent_lock);
1248 spin_lock_init(&root->accounting_lock);
1249 spin_lock_init(&root->log_extents_lock[0]);
1250 spin_lock_init(&root->log_extents_lock[1]);
1251 mutex_init(&root->objectid_mutex);
1252 mutex_init(&root->log_mutex);
1253 mutex_init(&root->ordered_extent_mutex);
1254 mutex_init(&root->delalloc_mutex);
1255 init_waitqueue_head(&root->log_writer_wait);
1256 init_waitqueue_head(&root->log_commit_wait[0]);
1257 init_waitqueue_head(&root->log_commit_wait[1]);
1258 INIT_LIST_HEAD(&root->log_ctxs[0]);
1259 INIT_LIST_HEAD(&root->log_ctxs[1]);
1260 atomic_set(&root->log_commit[0], 0);
1261 atomic_set(&root->log_commit[1], 0);
1262 atomic_set(&root->log_writers, 0);
1263 atomic_set(&root->log_batch, 0);
1264 atomic_set(&root->orphan_inodes, 0);
1265 atomic_set(&root->refs, 1);
1266 atomic_set(&root->will_be_snapshoted, 0);
1267 root->log_transid = 0;
1268 root->log_transid_committed = -1;
1269 root->last_log_commit = 0;
1270 if (fs_info)
1271 extent_io_tree_init(&root->dirty_log_pages,
1272 fs_info->btree_inode->i_mapping);
1273
1274 memset(&root->root_key, 0, sizeof(root->root_key));
1275 memset(&root->root_item, 0, sizeof(root->root_item));
1276 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1277 if (fs_info)
1278 root->defrag_trans_start = fs_info->generation;
1279 else
1280 root->defrag_trans_start = 0;
1281 root->root_key.objectid = objectid;
1282 root->anon_dev = 0;
1283
1284 spin_lock_init(&root->root_item_lock);
1285 }
1286
1287 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1288 {
1289 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1290 if (root)
1291 root->fs_info = fs_info;
1292 return root;
1293 }
1294
1295 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1296 /* Should only be used by the testing infrastructure */
1297 struct btrfs_root *btrfs_alloc_dummy_root(void)
1298 {
1299 struct btrfs_root *root;
1300
1301 root = btrfs_alloc_root(NULL);
1302 if (!root)
1303 return ERR_PTR(-ENOMEM);
1304 __setup_root(4096, 4096, 4096, root, NULL, 1);
1305 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1306 root->alloc_bytenr = 0;
1307
1308 return root;
1309 }
1310 #endif
1311
1312 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1313 struct btrfs_fs_info *fs_info,
1314 u64 objectid)
1315 {
1316 struct extent_buffer *leaf;
1317 struct btrfs_root *tree_root = fs_info->tree_root;
1318 struct btrfs_root *root;
1319 struct btrfs_key key;
1320 int ret = 0;
1321 uuid_le uuid;
1322
1323 root = btrfs_alloc_root(fs_info);
1324 if (!root)
1325 return ERR_PTR(-ENOMEM);
1326
1327 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1328 tree_root->stripesize, root, fs_info, objectid);
1329 root->root_key.objectid = objectid;
1330 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1331 root->root_key.offset = 0;
1332
1333 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1334 if (IS_ERR(leaf)) {
1335 ret = PTR_ERR(leaf);
1336 leaf = NULL;
1337 goto fail;
1338 }
1339
1340 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1341 btrfs_set_header_bytenr(leaf, leaf->start);
1342 btrfs_set_header_generation(leaf, trans->transid);
1343 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1344 btrfs_set_header_owner(leaf, objectid);
1345 root->node = leaf;
1346
1347 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1348 BTRFS_FSID_SIZE);
1349 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1350 btrfs_header_chunk_tree_uuid(leaf),
1351 BTRFS_UUID_SIZE);
1352 btrfs_mark_buffer_dirty(leaf);
1353
1354 root->commit_root = btrfs_root_node(root);
1355 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1356
1357 root->root_item.flags = 0;
1358 root->root_item.byte_limit = 0;
1359 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1360 btrfs_set_root_generation(&root->root_item, trans->transid);
1361 btrfs_set_root_level(&root->root_item, 0);
1362 btrfs_set_root_refs(&root->root_item, 1);
1363 btrfs_set_root_used(&root->root_item, leaf->len);
1364 btrfs_set_root_last_snapshot(&root->root_item, 0);
1365 btrfs_set_root_dirid(&root->root_item, 0);
1366 uuid_le_gen(&uuid);
1367 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1368 root->root_item.drop_level = 0;
1369
1370 key.objectid = objectid;
1371 key.type = BTRFS_ROOT_ITEM_KEY;
1372 key.offset = 0;
1373 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1374 if (ret)
1375 goto fail;
1376
1377 btrfs_tree_unlock(leaf);
1378
1379 return root;
1380
1381 fail:
1382 if (leaf) {
1383 btrfs_tree_unlock(leaf);
1384 free_extent_buffer(root->commit_root);
1385 free_extent_buffer(leaf);
1386 }
1387 kfree(root);
1388
1389 return ERR_PTR(ret);
1390 }
1391
1392 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1393 struct btrfs_fs_info *fs_info)
1394 {
1395 struct btrfs_root *root;
1396 struct btrfs_root *tree_root = fs_info->tree_root;
1397 struct extent_buffer *leaf;
1398
1399 root = btrfs_alloc_root(fs_info);
1400 if (!root)
1401 return ERR_PTR(-ENOMEM);
1402
1403 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1404 tree_root->stripesize, root, fs_info,
1405 BTRFS_TREE_LOG_OBJECTID);
1406
1407 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1408 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1409 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1410
1411 /*
1412 * DON'T set REF_COWS for log trees
1413 *
1414 * log trees do not get reference counted because they go away
1415 * before a real commit is actually done. They do store pointers
1416 * to file data extents, and those reference counts still get
1417 * updated (along with back refs to the log tree).
1418 */
1419
1420 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1421 NULL, 0, 0, 0);
1422 if (IS_ERR(leaf)) {
1423 kfree(root);
1424 return ERR_CAST(leaf);
1425 }
1426
1427 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1428 btrfs_set_header_bytenr(leaf, leaf->start);
1429 btrfs_set_header_generation(leaf, trans->transid);
1430 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1431 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1432 root->node = leaf;
1433
1434 write_extent_buffer(root->node, root->fs_info->fsid,
1435 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1436 btrfs_mark_buffer_dirty(root->node);
1437 btrfs_tree_unlock(root->node);
1438 return root;
1439 }
1440
1441 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1442 struct btrfs_fs_info *fs_info)
1443 {
1444 struct btrfs_root *log_root;
1445
1446 log_root = alloc_log_tree(trans, fs_info);
1447 if (IS_ERR(log_root))
1448 return PTR_ERR(log_root);
1449 WARN_ON(fs_info->log_root_tree);
1450 fs_info->log_root_tree = log_root;
1451 return 0;
1452 }
1453
1454 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1455 struct btrfs_root *root)
1456 {
1457 struct btrfs_root *log_root;
1458 struct btrfs_inode_item *inode_item;
1459
1460 log_root = alloc_log_tree(trans, root->fs_info);
1461 if (IS_ERR(log_root))
1462 return PTR_ERR(log_root);
1463
1464 log_root->last_trans = trans->transid;
1465 log_root->root_key.offset = root->root_key.objectid;
1466
1467 inode_item = &log_root->root_item.inode;
1468 btrfs_set_stack_inode_generation(inode_item, 1);
1469 btrfs_set_stack_inode_size(inode_item, 3);
1470 btrfs_set_stack_inode_nlink(inode_item, 1);
1471 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1472 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1473
1474 btrfs_set_root_node(&log_root->root_item, log_root->node);
1475
1476 WARN_ON(root->log_root);
1477 root->log_root = log_root;
1478 root->log_transid = 0;
1479 root->log_transid_committed = -1;
1480 root->last_log_commit = 0;
1481 return 0;
1482 }
1483
1484 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1485 struct btrfs_key *key)
1486 {
1487 struct btrfs_root *root;
1488 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1489 struct btrfs_path *path;
1490 u64 generation;
1491 int ret;
1492
1493 path = btrfs_alloc_path();
1494 if (!path)
1495 return ERR_PTR(-ENOMEM);
1496
1497 root = btrfs_alloc_root(fs_info);
1498 if (!root) {
1499 ret = -ENOMEM;
1500 goto alloc_fail;
1501 }
1502
1503 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1504 tree_root->stripesize, root, fs_info, key->objectid);
1505
1506 ret = btrfs_find_root(tree_root, key, path,
1507 &root->root_item, &root->root_key);
1508 if (ret) {
1509 if (ret > 0)
1510 ret = -ENOENT;
1511 goto find_fail;
1512 }
1513
1514 generation = btrfs_root_generation(&root->root_item);
1515 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1516 generation);
1517 if (IS_ERR(root->node)) {
1518 ret = PTR_ERR(root->node);
1519 goto find_fail;
1520 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1521 ret = -EIO;
1522 free_extent_buffer(root->node);
1523 goto find_fail;
1524 }
1525 root->commit_root = btrfs_root_node(root);
1526 out:
1527 btrfs_free_path(path);
1528 return root;
1529
1530 find_fail:
1531 kfree(root);
1532 alloc_fail:
1533 root = ERR_PTR(ret);
1534 goto out;
1535 }
1536
1537 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1538 struct btrfs_key *location)
1539 {
1540 struct btrfs_root *root;
1541
1542 root = btrfs_read_tree_root(tree_root, location);
1543 if (IS_ERR(root))
1544 return root;
1545
1546 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1547 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1548 btrfs_check_and_init_root_item(&root->root_item);
1549 }
1550
1551 return root;
1552 }
1553
1554 int btrfs_init_fs_root(struct btrfs_root *root)
1555 {
1556 int ret;
1557 struct btrfs_subvolume_writers *writers;
1558
1559 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1560 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1561 GFP_NOFS);
1562 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1563 ret = -ENOMEM;
1564 goto fail;
1565 }
1566
1567 writers = btrfs_alloc_subvolume_writers();
1568 if (IS_ERR(writers)) {
1569 ret = PTR_ERR(writers);
1570 goto fail;
1571 }
1572 root->subv_writers = writers;
1573
1574 btrfs_init_free_ino_ctl(root);
1575 spin_lock_init(&root->ino_cache_lock);
1576 init_waitqueue_head(&root->ino_cache_wait);
1577
1578 ret = get_anon_bdev(&root->anon_dev);
1579 if (ret)
1580 goto free_writers;
1581 return 0;
1582
1583 free_writers:
1584 btrfs_free_subvolume_writers(root->subv_writers);
1585 fail:
1586 kfree(root->free_ino_ctl);
1587 kfree(root->free_ino_pinned);
1588 return ret;
1589 }
1590
1591 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1592 u64 root_id)
1593 {
1594 struct btrfs_root *root;
1595
1596 spin_lock(&fs_info->fs_roots_radix_lock);
1597 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1598 (unsigned long)root_id);
1599 spin_unlock(&fs_info->fs_roots_radix_lock);
1600 return root;
1601 }
1602
1603 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1604 struct btrfs_root *root)
1605 {
1606 int ret;
1607
1608 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1609 if (ret)
1610 return ret;
1611
1612 spin_lock(&fs_info->fs_roots_radix_lock);
1613 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1614 (unsigned long)root->root_key.objectid,
1615 root);
1616 if (ret == 0)
1617 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1618 spin_unlock(&fs_info->fs_roots_radix_lock);
1619 radix_tree_preload_end();
1620
1621 return ret;
1622 }
1623
1624 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1625 struct btrfs_key *location,
1626 bool check_ref)
1627 {
1628 struct btrfs_root *root;
1629 struct btrfs_path *path;
1630 struct btrfs_key key;
1631 int ret;
1632
1633 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1634 return fs_info->tree_root;
1635 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1636 return fs_info->extent_root;
1637 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1638 return fs_info->chunk_root;
1639 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1640 return fs_info->dev_root;
1641 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1642 return fs_info->csum_root;
1643 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1644 return fs_info->quota_root ? fs_info->quota_root :
1645 ERR_PTR(-ENOENT);
1646 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1647 return fs_info->uuid_root ? fs_info->uuid_root :
1648 ERR_PTR(-ENOENT);
1649 again:
1650 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1651 if (root) {
1652 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1653 return ERR_PTR(-ENOENT);
1654 return root;
1655 }
1656
1657 root = btrfs_read_fs_root(fs_info->tree_root, location);
1658 if (IS_ERR(root))
1659 return root;
1660
1661 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1662 ret = -ENOENT;
1663 goto fail;
1664 }
1665
1666 ret = btrfs_init_fs_root(root);
1667 if (ret)
1668 goto fail;
1669
1670 path = btrfs_alloc_path();
1671 if (!path) {
1672 ret = -ENOMEM;
1673 goto fail;
1674 }
1675 key.objectid = BTRFS_ORPHAN_OBJECTID;
1676 key.type = BTRFS_ORPHAN_ITEM_KEY;
1677 key.offset = location->objectid;
1678
1679 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1680 btrfs_free_path(path);
1681 if (ret < 0)
1682 goto fail;
1683 if (ret == 0)
1684 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1685
1686 ret = btrfs_insert_fs_root(fs_info, root);
1687 if (ret) {
1688 if (ret == -EEXIST) {
1689 free_fs_root(root);
1690 goto again;
1691 }
1692 goto fail;
1693 }
1694 return root;
1695 fail:
1696 free_fs_root(root);
1697 return ERR_PTR(ret);
1698 }
1699
1700 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1701 {
1702 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1703 int ret = 0;
1704 struct btrfs_device *device;
1705 struct backing_dev_info *bdi;
1706
1707 rcu_read_lock();
1708 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1709 if (!device->bdev)
1710 continue;
1711 bdi = blk_get_backing_dev_info(device->bdev);
1712 if (bdi_congested(bdi, bdi_bits)) {
1713 ret = 1;
1714 break;
1715 }
1716 }
1717 rcu_read_unlock();
1718 return ret;
1719 }
1720
1721 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1722 {
1723 int err;
1724
1725 err = bdi_setup_and_register(bdi, "btrfs");
1726 if (err)
1727 return err;
1728
1729 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1730 bdi->congested_fn = btrfs_congested_fn;
1731 bdi->congested_data = info;
1732 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1733 return 0;
1734 }
1735
1736 /*
1737 * called by the kthread helper functions to finally call the bio end_io
1738 * functions. This is where read checksum verification actually happens
1739 */
1740 static void end_workqueue_fn(struct btrfs_work *work)
1741 {
1742 struct bio *bio;
1743 struct btrfs_end_io_wq *end_io_wq;
1744
1745 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1746 bio = end_io_wq->bio;
1747
1748 bio->bi_error = end_io_wq->error;
1749 bio->bi_private = end_io_wq->private;
1750 bio->bi_end_io = end_io_wq->end_io;
1751 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1752 bio_endio(bio);
1753 }
1754
1755 static int cleaner_kthread(void *arg)
1756 {
1757 struct btrfs_root *root = arg;
1758 int again;
1759 struct btrfs_trans_handle *trans;
1760
1761 do {
1762 again = 0;
1763
1764 /* Make the cleaner go to sleep early. */
1765 if (btrfs_need_cleaner_sleep(root))
1766 goto sleep;
1767
1768 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1769 goto sleep;
1770
1771 /*
1772 * Avoid the problem that we change the status of the fs
1773 * during the above check and trylock.
1774 */
1775 if (btrfs_need_cleaner_sleep(root)) {
1776 mutex_unlock(&root->fs_info->cleaner_mutex);
1777 goto sleep;
1778 }
1779
1780 btrfs_run_delayed_iputs(root);
1781 again = btrfs_clean_one_deleted_snapshot(root);
1782 mutex_unlock(&root->fs_info->cleaner_mutex);
1783
1784 /*
1785 * The defragger has dealt with the R/O remount and umount,
1786 * needn't do anything special here.
1787 */
1788 btrfs_run_defrag_inodes(root->fs_info);
1789
1790 /*
1791 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1792 * with relocation (btrfs_relocate_chunk) and relocation
1793 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1794 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1795 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1796 * unused block groups.
1797 */
1798 btrfs_delete_unused_bgs(root->fs_info);
1799 sleep:
1800 if (!try_to_freeze() && !again) {
1801 set_current_state(TASK_INTERRUPTIBLE);
1802 if (!kthread_should_stop())
1803 schedule();
1804 __set_current_state(TASK_RUNNING);
1805 }
1806 } while (!kthread_should_stop());
1807
1808 /*
1809 * Transaction kthread is stopped before us and wakes us up.
1810 * However we might have started a new transaction and COWed some
1811 * tree blocks when deleting unused block groups for example. So
1812 * make sure we commit the transaction we started to have a clean
1813 * shutdown when evicting the btree inode - if it has dirty pages
1814 * when we do the final iput() on it, eviction will trigger a
1815 * writeback for it which will fail with null pointer dereferences
1816 * since work queues and other resources were already released and
1817 * destroyed by the time the iput/eviction/writeback is made.
1818 */
1819 trans = btrfs_attach_transaction(root);
1820 if (IS_ERR(trans)) {
1821 if (PTR_ERR(trans) != -ENOENT)
1822 btrfs_err(root->fs_info,
1823 "cleaner transaction attach returned %ld",
1824 PTR_ERR(trans));
1825 } else {
1826 int ret;
1827
1828 ret = btrfs_commit_transaction(trans, root);
1829 if (ret)
1830 btrfs_err(root->fs_info,
1831 "cleaner open transaction commit returned %d",
1832 ret);
1833 }
1834
1835 return 0;
1836 }
1837
1838 static int transaction_kthread(void *arg)
1839 {
1840 struct btrfs_root *root = arg;
1841 struct btrfs_trans_handle *trans;
1842 struct btrfs_transaction *cur;
1843 u64 transid;
1844 unsigned long now;
1845 unsigned long delay;
1846 bool cannot_commit;
1847
1848 do {
1849 cannot_commit = false;
1850 delay = HZ * root->fs_info->commit_interval;
1851 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1852
1853 spin_lock(&root->fs_info->trans_lock);
1854 cur = root->fs_info->running_transaction;
1855 if (!cur) {
1856 spin_unlock(&root->fs_info->trans_lock);
1857 goto sleep;
1858 }
1859
1860 now = get_seconds();
1861 if (cur->state < TRANS_STATE_BLOCKED &&
1862 (now < cur->start_time ||
1863 now - cur->start_time < root->fs_info->commit_interval)) {
1864 spin_unlock(&root->fs_info->trans_lock);
1865 delay = HZ * 5;
1866 goto sleep;
1867 }
1868 transid = cur->transid;
1869 spin_unlock(&root->fs_info->trans_lock);
1870
1871 /* If the file system is aborted, this will always fail. */
1872 trans = btrfs_attach_transaction(root);
1873 if (IS_ERR(trans)) {
1874 if (PTR_ERR(trans) != -ENOENT)
1875 cannot_commit = true;
1876 goto sleep;
1877 }
1878 if (transid == trans->transid) {
1879 btrfs_commit_transaction(trans, root);
1880 } else {
1881 btrfs_end_transaction(trans, root);
1882 }
1883 sleep:
1884 wake_up_process(root->fs_info->cleaner_kthread);
1885 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1886
1887 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1888 &root->fs_info->fs_state)))
1889 btrfs_cleanup_transaction(root);
1890 if (!try_to_freeze()) {
1891 set_current_state(TASK_INTERRUPTIBLE);
1892 if (!kthread_should_stop() &&
1893 (!btrfs_transaction_blocked(root->fs_info) ||
1894 cannot_commit))
1895 schedule_timeout(delay);
1896 __set_current_state(TASK_RUNNING);
1897 }
1898 } while (!kthread_should_stop());
1899 return 0;
1900 }
1901
1902 /*
1903 * this will find the highest generation in the array of
1904 * root backups. The index of the highest array is returned,
1905 * or -1 if we can't find anything.
1906 *
1907 * We check to make sure the array is valid by comparing the
1908 * generation of the latest root in the array with the generation
1909 * in the super block. If they don't match we pitch it.
1910 */
1911 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1912 {
1913 u64 cur;
1914 int newest_index = -1;
1915 struct btrfs_root_backup *root_backup;
1916 int i;
1917
1918 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1919 root_backup = info->super_copy->super_roots + i;
1920 cur = btrfs_backup_tree_root_gen(root_backup);
1921 if (cur == newest_gen)
1922 newest_index = i;
1923 }
1924
1925 /* check to see if we actually wrapped around */
1926 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1927 root_backup = info->super_copy->super_roots;
1928 cur = btrfs_backup_tree_root_gen(root_backup);
1929 if (cur == newest_gen)
1930 newest_index = 0;
1931 }
1932 return newest_index;
1933 }
1934
1935
1936 /*
1937 * find the oldest backup so we know where to store new entries
1938 * in the backup array. This will set the backup_root_index
1939 * field in the fs_info struct
1940 */
1941 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1942 u64 newest_gen)
1943 {
1944 int newest_index = -1;
1945
1946 newest_index = find_newest_super_backup(info, newest_gen);
1947 /* if there was garbage in there, just move along */
1948 if (newest_index == -1) {
1949 info->backup_root_index = 0;
1950 } else {
1951 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1952 }
1953 }
1954
1955 /*
1956 * copy all the root pointers into the super backup array.
1957 * this will bump the backup pointer by one when it is
1958 * done
1959 */
1960 static void backup_super_roots(struct btrfs_fs_info *info)
1961 {
1962 int next_backup;
1963 struct btrfs_root_backup *root_backup;
1964 int last_backup;
1965
1966 next_backup = info->backup_root_index;
1967 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1968 BTRFS_NUM_BACKUP_ROOTS;
1969
1970 /*
1971 * just overwrite the last backup if we're at the same generation
1972 * this happens only at umount
1973 */
1974 root_backup = info->super_for_commit->super_roots + last_backup;
1975 if (btrfs_backup_tree_root_gen(root_backup) ==
1976 btrfs_header_generation(info->tree_root->node))
1977 next_backup = last_backup;
1978
1979 root_backup = info->super_for_commit->super_roots + next_backup;
1980
1981 /*
1982 * make sure all of our padding and empty slots get zero filled
1983 * regardless of which ones we use today
1984 */
1985 memset(root_backup, 0, sizeof(*root_backup));
1986
1987 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1988
1989 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1990 btrfs_set_backup_tree_root_gen(root_backup,
1991 btrfs_header_generation(info->tree_root->node));
1992
1993 btrfs_set_backup_tree_root_level(root_backup,
1994 btrfs_header_level(info->tree_root->node));
1995
1996 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1997 btrfs_set_backup_chunk_root_gen(root_backup,
1998 btrfs_header_generation(info->chunk_root->node));
1999 btrfs_set_backup_chunk_root_level(root_backup,
2000 btrfs_header_level(info->chunk_root->node));
2001
2002 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2003 btrfs_set_backup_extent_root_gen(root_backup,
2004 btrfs_header_generation(info->extent_root->node));
2005 btrfs_set_backup_extent_root_level(root_backup,
2006 btrfs_header_level(info->extent_root->node));
2007
2008 /*
2009 * we might commit during log recovery, which happens before we set
2010 * the fs_root. Make sure it is valid before we fill it in.
2011 */
2012 if (info->fs_root && info->fs_root->node) {
2013 btrfs_set_backup_fs_root(root_backup,
2014 info->fs_root->node->start);
2015 btrfs_set_backup_fs_root_gen(root_backup,
2016 btrfs_header_generation(info->fs_root->node));
2017 btrfs_set_backup_fs_root_level(root_backup,
2018 btrfs_header_level(info->fs_root->node));
2019 }
2020
2021 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2022 btrfs_set_backup_dev_root_gen(root_backup,
2023 btrfs_header_generation(info->dev_root->node));
2024 btrfs_set_backup_dev_root_level(root_backup,
2025 btrfs_header_level(info->dev_root->node));
2026
2027 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2028 btrfs_set_backup_csum_root_gen(root_backup,
2029 btrfs_header_generation(info->csum_root->node));
2030 btrfs_set_backup_csum_root_level(root_backup,
2031 btrfs_header_level(info->csum_root->node));
2032
2033 btrfs_set_backup_total_bytes(root_backup,
2034 btrfs_super_total_bytes(info->super_copy));
2035 btrfs_set_backup_bytes_used(root_backup,
2036 btrfs_super_bytes_used(info->super_copy));
2037 btrfs_set_backup_num_devices(root_backup,
2038 btrfs_super_num_devices(info->super_copy));
2039
2040 /*
2041 * if we don't copy this out to the super_copy, it won't get remembered
2042 * for the next commit
2043 */
2044 memcpy(&info->super_copy->super_roots,
2045 &info->super_for_commit->super_roots,
2046 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2047 }
2048
2049 /*
2050 * this copies info out of the root backup array and back into
2051 * the in-memory super block. It is meant to help iterate through
2052 * the array, so you send it the number of backups you've already
2053 * tried and the last backup index you used.
2054 *
2055 * this returns -1 when it has tried all the backups
2056 */
2057 static noinline int next_root_backup(struct btrfs_fs_info *info,
2058 struct btrfs_super_block *super,
2059 int *num_backups_tried, int *backup_index)
2060 {
2061 struct btrfs_root_backup *root_backup;
2062 int newest = *backup_index;
2063
2064 if (*num_backups_tried == 0) {
2065 u64 gen = btrfs_super_generation(super);
2066
2067 newest = find_newest_super_backup(info, gen);
2068 if (newest == -1)
2069 return -1;
2070
2071 *backup_index = newest;
2072 *num_backups_tried = 1;
2073 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2074 /* we've tried all the backups, all done */
2075 return -1;
2076 } else {
2077 /* jump to the next oldest backup */
2078 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2079 BTRFS_NUM_BACKUP_ROOTS;
2080 *backup_index = newest;
2081 *num_backups_tried += 1;
2082 }
2083 root_backup = super->super_roots + newest;
2084
2085 btrfs_set_super_generation(super,
2086 btrfs_backup_tree_root_gen(root_backup));
2087 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2088 btrfs_set_super_root_level(super,
2089 btrfs_backup_tree_root_level(root_backup));
2090 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2091
2092 /*
2093 * fixme: the total bytes and num_devices need to match or we should
2094 * need a fsck
2095 */
2096 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2097 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2098 return 0;
2099 }
2100
2101 /* helper to cleanup workers */
2102 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2103 {
2104 btrfs_destroy_workqueue(fs_info->fixup_workers);
2105 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2106 btrfs_destroy_workqueue(fs_info->workers);
2107 btrfs_destroy_workqueue(fs_info->endio_workers);
2108 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2109 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2110 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2111 btrfs_destroy_workqueue(fs_info->rmw_workers);
2112 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2113 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2114 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2115 btrfs_destroy_workqueue(fs_info->submit_workers);
2116 btrfs_destroy_workqueue(fs_info->delayed_workers);
2117 btrfs_destroy_workqueue(fs_info->caching_workers);
2118 btrfs_destroy_workqueue(fs_info->readahead_workers);
2119 btrfs_destroy_workqueue(fs_info->flush_workers);
2120 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2121 btrfs_destroy_workqueue(fs_info->extent_workers);
2122 }
2123
2124 static void free_root_extent_buffers(struct btrfs_root *root)
2125 {
2126 if (root) {
2127 free_extent_buffer(root->node);
2128 free_extent_buffer(root->commit_root);
2129 root->node = NULL;
2130 root->commit_root = NULL;
2131 }
2132 }
2133
2134 /* helper to cleanup tree roots */
2135 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2136 {
2137 free_root_extent_buffers(info->tree_root);
2138
2139 free_root_extent_buffers(info->dev_root);
2140 free_root_extent_buffers(info->extent_root);
2141 free_root_extent_buffers(info->csum_root);
2142 free_root_extent_buffers(info->quota_root);
2143 free_root_extent_buffers(info->uuid_root);
2144 if (chunk_root)
2145 free_root_extent_buffers(info->chunk_root);
2146 }
2147
2148 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2149 {
2150 int ret;
2151 struct btrfs_root *gang[8];
2152 int i;
2153
2154 while (!list_empty(&fs_info->dead_roots)) {
2155 gang[0] = list_entry(fs_info->dead_roots.next,
2156 struct btrfs_root, root_list);
2157 list_del(&gang[0]->root_list);
2158
2159 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2160 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2161 } else {
2162 free_extent_buffer(gang[0]->node);
2163 free_extent_buffer(gang[0]->commit_root);
2164 btrfs_put_fs_root(gang[0]);
2165 }
2166 }
2167
2168 while (1) {
2169 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2170 (void **)gang, 0,
2171 ARRAY_SIZE(gang));
2172 if (!ret)
2173 break;
2174 for (i = 0; i < ret; i++)
2175 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2176 }
2177
2178 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2179 btrfs_free_log_root_tree(NULL, fs_info);
2180 btrfs_destroy_pinned_extent(fs_info->tree_root,
2181 fs_info->pinned_extents);
2182 }
2183 }
2184
2185 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2186 {
2187 mutex_init(&fs_info->scrub_lock);
2188 atomic_set(&fs_info->scrubs_running, 0);
2189 atomic_set(&fs_info->scrub_pause_req, 0);
2190 atomic_set(&fs_info->scrubs_paused, 0);
2191 atomic_set(&fs_info->scrub_cancel_req, 0);
2192 init_waitqueue_head(&fs_info->scrub_pause_wait);
2193 fs_info->scrub_workers_refcnt = 0;
2194 }
2195
2196 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2197 {
2198 spin_lock_init(&fs_info->balance_lock);
2199 mutex_init(&fs_info->balance_mutex);
2200 atomic_set(&fs_info->balance_running, 0);
2201 atomic_set(&fs_info->balance_pause_req, 0);
2202 atomic_set(&fs_info->balance_cancel_req, 0);
2203 fs_info->balance_ctl = NULL;
2204 init_waitqueue_head(&fs_info->balance_wait_q);
2205 }
2206
2207 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2208 struct btrfs_root *tree_root)
2209 {
2210 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2211 set_nlink(fs_info->btree_inode, 1);
2212 /*
2213 * we set the i_size on the btree inode to the max possible int.
2214 * the real end of the address space is determined by all of
2215 * the devices in the system
2216 */
2217 fs_info->btree_inode->i_size = OFFSET_MAX;
2218 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2219
2220 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2221 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2222 fs_info->btree_inode->i_mapping);
2223 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2224 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2225
2226 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2227
2228 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2229 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2230 sizeof(struct btrfs_key));
2231 set_bit(BTRFS_INODE_DUMMY,
2232 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2233 btrfs_insert_inode_hash(fs_info->btree_inode);
2234 }
2235
2236 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2237 {
2238 fs_info->dev_replace.lock_owner = 0;
2239 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2240 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2241 mutex_init(&fs_info->dev_replace.lock_management_lock);
2242 mutex_init(&fs_info->dev_replace.lock);
2243 init_waitqueue_head(&fs_info->replace_wait);
2244 }
2245
2246 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2247 {
2248 spin_lock_init(&fs_info->qgroup_lock);
2249 mutex_init(&fs_info->qgroup_ioctl_lock);
2250 fs_info->qgroup_tree = RB_ROOT;
2251 fs_info->qgroup_op_tree = RB_ROOT;
2252 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2253 fs_info->qgroup_seq = 1;
2254 fs_info->quota_enabled = 0;
2255 fs_info->pending_quota_state = 0;
2256 fs_info->qgroup_ulist = NULL;
2257 mutex_init(&fs_info->qgroup_rescan_lock);
2258 }
2259
2260 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2261 struct btrfs_fs_devices *fs_devices)
2262 {
2263 int max_active = fs_info->thread_pool_size;
2264 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2265
2266 fs_info->workers =
2267 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2268 max_active, 16);
2269
2270 fs_info->delalloc_workers =
2271 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2272
2273 fs_info->flush_workers =
2274 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2275
2276 fs_info->caching_workers =
2277 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2278
2279 /*
2280 * a higher idle thresh on the submit workers makes it much more
2281 * likely that bios will be send down in a sane order to the
2282 * devices
2283 */
2284 fs_info->submit_workers =
2285 btrfs_alloc_workqueue("submit", flags,
2286 min_t(u64, fs_devices->num_devices,
2287 max_active), 64);
2288
2289 fs_info->fixup_workers =
2290 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2291
2292 /*
2293 * endios are largely parallel and should have a very
2294 * low idle thresh
2295 */
2296 fs_info->endio_workers =
2297 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2298 fs_info->endio_meta_workers =
2299 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2300 fs_info->endio_meta_write_workers =
2301 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2302 fs_info->endio_raid56_workers =
2303 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2304 fs_info->endio_repair_workers =
2305 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2306 fs_info->rmw_workers =
2307 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2308 fs_info->endio_write_workers =
2309 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2310 fs_info->endio_freespace_worker =
2311 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2312 fs_info->delayed_workers =
2313 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2314 fs_info->readahead_workers =
2315 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2316 fs_info->qgroup_rescan_workers =
2317 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2318 fs_info->extent_workers =
2319 btrfs_alloc_workqueue("extent-refs", flags,
2320 min_t(u64, fs_devices->num_devices,
2321 max_active), 8);
2322
2323 if (!(fs_info->workers && fs_info->delalloc_workers &&
2324 fs_info->submit_workers && fs_info->flush_workers &&
2325 fs_info->endio_workers && fs_info->endio_meta_workers &&
2326 fs_info->endio_meta_write_workers &&
2327 fs_info->endio_repair_workers &&
2328 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2329 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2330 fs_info->caching_workers && fs_info->readahead_workers &&
2331 fs_info->fixup_workers && fs_info->delayed_workers &&
2332 fs_info->extent_workers &&
2333 fs_info->qgroup_rescan_workers)) {
2334 return -ENOMEM;
2335 }
2336
2337 return 0;
2338 }
2339
2340 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2341 struct btrfs_fs_devices *fs_devices)
2342 {
2343 int ret;
2344 struct btrfs_root *tree_root = fs_info->tree_root;
2345 struct btrfs_root *log_tree_root;
2346 struct btrfs_super_block *disk_super = fs_info->super_copy;
2347 u64 bytenr = btrfs_super_log_root(disk_super);
2348
2349 if (fs_devices->rw_devices == 0) {
2350 btrfs_warn(fs_info, "log replay required on RO media");
2351 return -EIO;
2352 }
2353
2354 log_tree_root = btrfs_alloc_root(fs_info);
2355 if (!log_tree_root)
2356 return -ENOMEM;
2357
2358 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2359 tree_root->stripesize, log_tree_root, fs_info,
2360 BTRFS_TREE_LOG_OBJECTID);
2361
2362 log_tree_root->node = read_tree_block(tree_root, bytenr,
2363 fs_info->generation + 1);
2364 if (IS_ERR(log_tree_root->node)) {
2365 btrfs_warn(fs_info, "failed to read log tree");
2366 ret = PTR_ERR(log_tree_root->node);
2367 kfree(log_tree_root);
2368 return ret;
2369 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2370 btrfs_err(fs_info, "failed to read log tree");
2371 free_extent_buffer(log_tree_root->node);
2372 kfree(log_tree_root);
2373 return -EIO;
2374 }
2375 /* returns with log_tree_root freed on success */
2376 ret = btrfs_recover_log_trees(log_tree_root);
2377 if (ret) {
2378 btrfs_error(tree_root->fs_info, ret,
2379 "Failed to recover log tree");
2380 free_extent_buffer(log_tree_root->node);
2381 kfree(log_tree_root);
2382 return ret;
2383 }
2384
2385 if (fs_info->sb->s_flags & MS_RDONLY) {
2386 ret = btrfs_commit_super(tree_root);
2387 if (ret)
2388 return ret;
2389 }
2390
2391 return 0;
2392 }
2393
2394 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2395 struct btrfs_root *tree_root)
2396 {
2397 struct btrfs_root *root;
2398 struct btrfs_key location;
2399 int ret;
2400
2401 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2402 location.type = BTRFS_ROOT_ITEM_KEY;
2403 location.offset = 0;
2404
2405 root = btrfs_read_tree_root(tree_root, &location);
2406 if (IS_ERR(root))
2407 return PTR_ERR(root);
2408 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2409 fs_info->extent_root = root;
2410
2411 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2412 root = btrfs_read_tree_root(tree_root, &location);
2413 if (IS_ERR(root))
2414 return PTR_ERR(root);
2415 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2416 fs_info->dev_root = root;
2417 btrfs_init_devices_late(fs_info);
2418
2419 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2420 root = btrfs_read_tree_root(tree_root, &location);
2421 if (IS_ERR(root))
2422 return PTR_ERR(root);
2423 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2424 fs_info->csum_root = root;
2425
2426 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2427 root = btrfs_read_tree_root(tree_root, &location);
2428 if (!IS_ERR(root)) {
2429 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2430 fs_info->quota_enabled = 1;
2431 fs_info->pending_quota_state = 1;
2432 fs_info->quota_root = root;
2433 }
2434
2435 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2436 root = btrfs_read_tree_root(tree_root, &location);
2437 if (IS_ERR(root)) {
2438 ret = PTR_ERR(root);
2439 if (ret != -ENOENT)
2440 return ret;
2441 } else {
2442 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2443 fs_info->uuid_root = root;
2444 }
2445
2446 return 0;
2447 }
2448
2449 int open_ctree(struct super_block *sb,
2450 struct btrfs_fs_devices *fs_devices,
2451 char *options)
2452 {
2453 u32 sectorsize;
2454 u32 nodesize;
2455 u32 stripesize;
2456 u64 generation;
2457 u64 features;
2458 struct btrfs_key location;
2459 struct buffer_head *bh;
2460 struct btrfs_super_block *disk_super;
2461 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2462 struct btrfs_root *tree_root;
2463 struct btrfs_root *chunk_root;
2464 int ret;
2465 int err = -EINVAL;
2466 int num_backups_tried = 0;
2467 int backup_index = 0;
2468 int max_active;
2469
2470 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2471 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2472 if (!tree_root || !chunk_root) {
2473 err = -ENOMEM;
2474 goto fail;
2475 }
2476
2477 ret = init_srcu_struct(&fs_info->subvol_srcu);
2478 if (ret) {
2479 err = ret;
2480 goto fail;
2481 }
2482
2483 ret = setup_bdi(fs_info, &fs_info->bdi);
2484 if (ret) {
2485 err = ret;
2486 goto fail_srcu;
2487 }
2488
2489 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2490 if (ret) {
2491 err = ret;
2492 goto fail_bdi;
2493 }
2494 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2495 (1 + ilog2(nr_cpu_ids));
2496
2497 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2498 if (ret) {
2499 err = ret;
2500 goto fail_dirty_metadata_bytes;
2501 }
2502
2503 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2504 if (ret) {
2505 err = ret;
2506 goto fail_delalloc_bytes;
2507 }
2508
2509 fs_info->btree_inode = new_inode(sb);
2510 if (!fs_info->btree_inode) {
2511 err = -ENOMEM;
2512 goto fail_bio_counter;
2513 }
2514
2515 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2516
2517 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2518 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2519 INIT_LIST_HEAD(&fs_info->trans_list);
2520 INIT_LIST_HEAD(&fs_info->dead_roots);
2521 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2522 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2523 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2524 spin_lock_init(&fs_info->delalloc_root_lock);
2525 spin_lock_init(&fs_info->trans_lock);
2526 spin_lock_init(&fs_info->fs_roots_radix_lock);
2527 spin_lock_init(&fs_info->delayed_iput_lock);
2528 spin_lock_init(&fs_info->defrag_inodes_lock);
2529 spin_lock_init(&fs_info->free_chunk_lock);
2530 spin_lock_init(&fs_info->tree_mod_seq_lock);
2531 spin_lock_init(&fs_info->super_lock);
2532 spin_lock_init(&fs_info->qgroup_op_lock);
2533 spin_lock_init(&fs_info->buffer_lock);
2534 spin_lock_init(&fs_info->unused_bgs_lock);
2535 rwlock_init(&fs_info->tree_mod_log_lock);
2536 mutex_init(&fs_info->unused_bg_unpin_mutex);
2537 mutex_init(&fs_info->delete_unused_bgs_mutex);
2538 mutex_init(&fs_info->reloc_mutex);
2539 mutex_init(&fs_info->delalloc_root_mutex);
2540 seqlock_init(&fs_info->profiles_lock);
2541 init_rwsem(&fs_info->delayed_iput_sem);
2542
2543 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2544 INIT_LIST_HEAD(&fs_info->space_info);
2545 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2546 INIT_LIST_HEAD(&fs_info->unused_bgs);
2547 btrfs_mapping_init(&fs_info->mapping_tree);
2548 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2549 BTRFS_BLOCK_RSV_GLOBAL);
2550 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2551 BTRFS_BLOCK_RSV_DELALLOC);
2552 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2553 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2554 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2555 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2556 BTRFS_BLOCK_RSV_DELOPS);
2557 atomic_set(&fs_info->nr_async_submits, 0);
2558 atomic_set(&fs_info->async_delalloc_pages, 0);
2559 atomic_set(&fs_info->async_submit_draining, 0);
2560 atomic_set(&fs_info->nr_async_bios, 0);
2561 atomic_set(&fs_info->defrag_running, 0);
2562 atomic_set(&fs_info->qgroup_op_seq, 0);
2563 atomic64_set(&fs_info->tree_mod_seq, 0);
2564 fs_info->sb = sb;
2565 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2566 fs_info->metadata_ratio = 0;
2567 fs_info->defrag_inodes = RB_ROOT;
2568 fs_info->free_chunk_space = 0;
2569 fs_info->tree_mod_log = RB_ROOT;
2570 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2571 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2572 /* readahead state */
2573 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2574 spin_lock_init(&fs_info->reada_lock);
2575
2576 fs_info->thread_pool_size = min_t(unsigned long,
2577 num_online_cpus() + 2, 8);
2578
2579 INIT_LIST_HEAD(&fs_info->ordered_roots);
2580 spin_lock_init(&fs_info->ordered_root_lock);
2581 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2582 GFP_NOFS);
2583 if (!fs_info->delayed_root) {
2584 err = -ENOMEM;
2585 goto fail_iput;
2586 }
2587 btrfs_init_delayed_root(fs_info->delayed_root);
2588
2589 btrfs_init_scrub(fs_info);
2590 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2591 fs_info->check_integrity_print_mask = 0;
2592 #endif
2593 btrfs_init_balance(fs_info);
2594 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2595
2596 sb->s_blocksize = 4096;
2597 sb->s_blocksize_bits = blksize_bits(4096);
2598 sb->s_bdi = &fs_info->bdi;
2599
2600 btrfs_init_btree_inode(fs_info, tree_root);
2601
2602 spin_lock_init(&fs_info->block_group_cache_lock);
2603 fs_info->block_group_cache_tree = RB_ROOT;
2604 fs_info->first_logical_byte = (u64)-1;
2605
2606 extent_io_tree_init(&fs_info->freed_extents[0],
2607 fs_info->btree_inode->i_mapping);
2608 extent_io_tree_init(&fs_info->freed_extents[1],
2609 fs_info->btree_inode->i_mapping);
2610 fs_info->pinned_extents = &fs_info->freed_extents[0];
2611 fs_info->do_barriers = 1;
2612
2613
2614 mutex_init(&fs_info->ordered_operations_mutex);
2615 mutex_init(&fs_info->tree_log_mutex);
2616 mutex_init(&fs_info->chunk_mutex);
2617 mutex_init(&fs_info->transaction_kthread_mutex);
2618 mutex_init(&fs_info->cleaner_mutex);
2619 mutex_init(&fs_info->volume_mutex);
2620 mutex_init(&fs_info->ro_block_group_mutex);
2621 init_rwsem(&fs_info->commit_root_sem);
2622 init_rwsem(&fs_info->cleanup_work_sem);
2623 init_rwsem(&fs_info->subvol_sem);
2624 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2625
2626 btrfs_init_dev_replace_locks(fs_info);
2627 btrfs_init_qgroup(fs_info);
2628
2629 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2630 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2631
2632 init_waitqueue_head(&fs_info->transaction_throttle);
2633 init_waitqueue_head(&fs_info->transaction_wait);
2634 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2635 init_waitqueue_head(&fs_info->async_submit_wait);
2636
2637 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2638
2639 ret = btrfs_alloc_stripe_hash_table(fs_info);
2640 if (ret) {
2641 err = ret;
2642 goto fail_alloc;
2643 }
2644
2645 __setup_root(4096, 4096, 4096, tree_root,
2646 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2647
2648 invalidate_bdev(fs_devices->latest_bdev);
2649
2650 /*
2651 * Read super block and check the signature bytes only
2652 */
2653 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2654 if (!bh) {
2655 err = -EINVAL;
2656 goto fail_alloc;
2657 }
2658
2659 /*
2660 * We want to check superblock checksum, the type is stored inside.
2661 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2662 */
2663 if (btrfs_check_super_csum(bh->b_data)) {
2664 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2665 err = -EINVAL;
2666 goto fail_alloc;
2667 }
2668
2669 /*
2670 * super_copy is zeroed at allocation time and we never touch the
2671 * following bytes up to INFO_SIZE, the checksum is calculated from
2672 * the whole block of INFO_SIZE
2673 */
2674 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2675 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2676 sizeof(*fs_info->super_for_commit));
2677 brelse(bh);
2678
2679 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2680
2681 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2682 if (ret) {
2683 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2684 err = -EINVAL;
2685 goto fail_alloc;
2686 }
2687
2688 disk_super = fs_info->super_copy;
2689 if (!btrfs_super_root(disk_super))
2690 goto fail_alloc;
2691
2692 /* check FS state, whether FS is broken. */
2693 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2694 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2695
2696 /*
2697 * run through our array of backup supers and setup
2698 * our ring pointer to the oldest one
2699 */
2700 generation = btrfs_super_generation(disk_super);
2701 find_oldest_super_backup(fs_info, generation);
2702
2703 /*
2704 * In the long term, we'll store the compression type in the super
2705 * block, and it'll be used for per file compression control.
2706 */
2707 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2708
2709 ret = btrfs_parse_options(tree_root, options);
2710 if (ret) {
2711 err = ret;
2712 goto fail_alloc;
2713 }
2714
2715 features = btrfs_super_incompat_flags(disk_super) &
2716 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2717 if (features) {
2718 printk(KERN_ERR "BTRFS: couldn't mount because of "
2719 "unsupported optional features (%Lx).\n",
2720 features);
2721 err = -EINVAL;
2722 goto fail_alloc;
2723 }
2724
2725 /*
2726 * Leafsize and nodesize were always equal, this is only a sanity check.
2727 */
2728 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2729 btrfs_super_nodesize(disk_super)) {
2730 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2731 "blocksizes don't match. node %d leaf %d\n",
2732 btrfs_super_nodesize(disk_super),
2733 le32_to_cpu(disk_super->__unused_leafsize));
2734 err = -EINVAL;
2735 goto fail_alloc;
2736 }
2737 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2738 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2739 "blocksize (%d) was too large\n",
2740 btrfs_super_nodesize(disk_super));
2741 err = -EINVAL;
2742 goto fail_alloc;
2743 }
2744
2745 features = btrfs_super_incompat_flags(disk_super);
2746 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2747 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2748 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2749
2750 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2751 printk(KERN_INFO "BTRFS: has skinny extents\n");
2752
2753 /*
2754 * flag our filesystem as having big metadata blocks if
2755 * they are bigger than the page size
2756 */
2757 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2758 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2759 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2760 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2761 }
2762
2763 nodesize = btrfs_super_nodesize(disk_super);
2764 sectorsize = btrfs_super_sectorsize(disk_super);
2765 stripesize = btrfs_super_stripesize(disk_super);
2766 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2767 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2768
2769 /*
2770 * mixed block groups end up with duplicate but slightly offset
2771 * extent buffers for the same range. It leads to corruptions
2772 */
2773 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2774 (sectorsize != nodesize)) {
2775 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2776 "are not allowed for mixed block groups on %s\n",
2777 sb->s_id);
2778 goto fail_alloc;
2779 }
2780
2781 /*
2782 * Needn't use the lock because there is no other task which will
2783 * update the flag.
2784 */
2785 btrfs_set_super_incompat_flags(disk_super, features);
2786
2787 features = btrfs_super_compat_ro_flags(disk_super) &
2788 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2789 if (!(sb->s_flags & MS_RDONLY) && features) {
2790 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2791 "unsupported option features (%Lx).\n",
2792 features);
2793 err = -EINVAL;
2794 goto fail_alloc;
2795 }
2796
2797 max_active = fs_info->thread_pool_size;
2798
2799 ret = btrfs_init_workqueues(fs_info, fs_devices);
2800 if (ret) {
2801 err = ret;
2802 goto fail_sb_buffer;
2803 }
2804
2805 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2806 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2807 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2808
2809 tree_root->nodesize = nodesize;
2810 tree_root->sectorsize = sectorsize;
2811 tree_root->stripesize = stripesize;
2812
2813 sb->s_blocksize = sectorsize;
2814 sb->s_blocksize_bits = blksize_bits(sectorsize);
2815
2816 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2817 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2818 goto fail_sb_buffer;
2819 }
2820
2821 if (sectorsize != PAGE_SIZE) {
2822 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2823 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2824 goto fail_sb_buffer;
2825 }
2826
2827 mutex_lock(&fs_info->chunk_mutex);
2828 ret = btrfs_read_sys_array(tree_root);
2829 mutex_unlock(&fs_info->chunk_mutex);
2830 if (ret) {
2831 printk(KERN_ERR "BTRFS: failed to read the system "
2832 "array on %s\n", sb->s_id);
2833 goto fail_sb_buffer;
2834 }
2835
2836 generation = btrfs_super_chunk_root_generation(disk_super);
2837
2838 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2839 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2840
2841 chunk_root->node = read_tree_block(chunk_root,
2842 btrfs_super_chunk_root(disk_super),
2843 generation);
2844 if (IS_ERR(chunk_root->node) ||
2845 !extent_buffer_uptodate(chunk_root->node)) {
2846 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2847 sb->s_id);
2848 if (!IS_ERR(chunk_root->node))
2849 free_extent_buffer(chunk_root->node);
2850 chunk_root->node = NULL;
2851 goto fail_tree_roots;
2852 }
2853 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2854 chunk_root->commit_root = btrfs_root_node(chunk_root);
2855
2856 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2857 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2858
2859 ret = btrfs_read_chunk_tree(chunk_root);
2860 if (ret) {
2861 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2862 sb->s_id);
2863 goto fail_tree_roots;
2864 }
2865
2866 /*
2867 * keep the device that is marked to be the target device for the
2868 * dev_replace procedure
2869 */
2870 btrfs_close_extra_devices(fs_devices, 0);
2871
2872 if (!fs_devices->latest_bdev) {
2873 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2874 sb->s_id);
2875 goto fail_tree_roots;
2876 }
2877
2878 retry_root_backup:
2879 generation = btrfs_super_generation(disk_super);
2880
2881 tree_root->node = read_tree_block(tree_root,
2882 btrfs_super_root(disk_super),
2883 generation);
2884 if (IS_ERR(tree_root->node) ||
2885 !extent_buffer_uptodate(tree_root->node)) {
2886 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2887 sb->s_id);
2888 if (!IS_ERR(tree_root->node))
2889 free_extent_buffer(tree_root->node);
2890 tree_root->node = NULL;
2891 goto recovery_tree_root;
2892 }
2893
2894 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2895 tree_root->commit_root = btrfs_root_node(tree_root);
2896 btrfs_set_root_refs(&tree_root->root_item, 1);
2897
2898 ret = btrfs_read_roots(fs_info, tree_root);
2899 if (ret)
2900 goto recovery_tree_root;
2901
2902 fs_info->generation = generation;
2903 fs_info->last_trans_committed = generation;
2904
2905 ret = btrfs_recover_balance(fs_info);
2906 if (ret) {
2907 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2908 goto fail_block_groups;
2909 }
2910
2911 ret = btrfs_init_dev_stats(fs_info);
2912 if (ret) {
2913 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2914 ret);
2915 goto fail_block_groups;
2916 }
2917
2918 ret = btrfs_init_dev_replace(fs_info);
2919 if (ret) {
2920 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2921 goto fail_block_groups;
2922 }
2923
2924 btrfs_close_extra_devices(fs_devices, 1);
2925
2926 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2927 if (ret) {
2928 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2929 goto fail_block_groups;
2930 }
2931
2932 ret = btrfs_sysfs_add_device(fs_devices);
2933 if (ret) {
2934 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2935 goto fail_fsdev_sysfs;
2936 }
2937
2938 ret = btrfs_sysfs_add_one(fs_info);
2939 if (ret) {
2940 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2941 goto fail_fsdev_sysfs;
2942 }
2943
2944 ret = btrfs_init_space_info(fs_info);
2945 if (ret) {
2946 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2947 goto fail_sysfs;
2948 }
2949
2950 ret = btrfs_read_block_groups(fs_info->extent_root);
2951 if (ret) {
2952 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2953 goto fail_sysfs;
2954 }
2955 fs_info->num_tolerated_disk_barrier_failures =
2956 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2957 if (fs_info->fs_devices->missing_devices >
2958 fs_info->num_tolerated_disk_barrier_failures &&
2959 !(sb->s_flags & MS_RDONLY)) {
2960 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2961 fs_info->fs_devices->missing_devices,
2962 fs_info->num_tolerated_disk_barrier_failures);
2963 goto fail_sysfs;
2964 }
2965
2966 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2967 "btrfs-cleaner");
2968 if (IS_ERR(fs_info->cleaner_kthread))
2969 goto fail_sysfs;
2970
2971 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2972 tree_root,
2973 "btrfs-transaction");
2974 if (IS_ERR(fs_info->transaction_kthread))
2975 goto fail_cleaner;
2976
2977 if (!btrfs_test_opt(tree_root, SSD) &&
2978 !btrfs_test_opt(tree_root, NOSSD) &&
2979 !fs_info->fs_devices->rotating) {
2980 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2981 "mode\n");
2982 btrfs_set_opt(fs_info->mount_opt, SSD);
2983 }
2984
2985 /*
2986 * Mount does not set all options immediatelly, we can do it now and do
2987 * not have to wait for transaction commit
2988 */
2989 btrfs_apply_pending_changes(fs_info);
2990
2991 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2992 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2993 ret = btrfsic_mount(tree_root, fs_devices,
2994 btrfs_test_opt(tree_root,
2995 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2996 1 : 0,
2997 fs_info->check_integrity_print_mask);
2998 if (ret)
2999 printk(KERN_WARNING "BTRFS: failed to initialize"
3000 " integrity check module %s\n", sb->s_id);
3001 }
3002 #endif
3003 ret = btrfs_read_qgroup_config(fs_info);
3004 if (ret)
3005 goto fail_trans_kthread;
3006
3007 /* do not make disk changes in broken FS */
3008 if (btrfs_super_log_root(disk_super) != 0) {
3009 ret = btrfs_replay_log(fs_info, fs_devices);
3010 if (ret) {
3011 err = ret;
3012 goto fail_qgroup;
3013 }
3014 }
3015
3016 ret = btrfs_find_orphan_roots(tree_root);
3017 if (ret)
3018 goto fail_qgroup;
3019
3020 if (!(sb->s_flags & MS_RDONLY)) {
3021 ret = btrfs_cleanup_fs_roots(fs_info);
3022 if (ret)
3023 goto fail_qgroup;
3024
3025 mutex_lock(&fs_info->cleaner_mutex);
3026 ret = btrfs_recover_relocation(tree_root);
3027 mutex_unlock(&fs_info->cleaner_mutex);
3028 if (ret < 0) {
3029 printk(KERN_WARNING
3030 "BTRFS: failed to recover relocation\n");
3031 err = -EINVAL;
3032 goto fail_qgroup;
3033 }
3034 }
3035
3036 location.objectid = BTRFS_FS_TREE_OBJECTID;
3037 location.type = BTRFS_ROOT_ITEM_KEY;
3038 location.offset = 0;
3039
3040 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3041 if (IS_ERR(fs_info->fs_root)) {
3042 err = PTR_ERR(fs_info->fs_root);
3043 goto fail_qgroup;
3044 }
3045
3046 if (sb->s_flags & MS_RDONLY)
3047 return 0;
3048
3049 down_read(&fs_info->cleanup_work_sem);
3050 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3051 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3052 up_read(&fs_info->cleanup_work_sem);
3053 close_ctree(tree_root);
3054 return ret;
3055 }
3056 up_read(&fs_info->cleanup_work_sem);
3057
3058 ret = btrfs_resume_balance_async(fs_info);
3059 if (ret) {
3060 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3061 close_ctree(tree_root);
3062 return ret;
3063 }
3064
3065 ret = btrfs_resume_dev_replace_async(fs_info);
3066 if (ret) {
3067 pr_warn("BTRFS: failed to resume dev_replace\n");
3068 close_ctree(tree_root);
3069 return ret;
3070 }
3071
3072 btrfs_qgroup_rescan_resume(fs_info);
3073
3074 if (!fs_info->uuid_root) {
3075 pr_info("BTRFS: creating UUID tree\n");
3076 ret = btrfs_create_uuid_tree(fs_info);
3077 if (ret) {
3078 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3079 ret);
3080 close_ctree(tree_root);
3081 return ret;
3082 }
3083 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3084 fs_info->generation !=
3085 btrfs_super_uuid_tree_generation(disk_super)) {
3086 pr_info("BTRFS: checking UUID tree\n");
3087 ret = btrfs_check_uuid_tree(fs_info);
3088 if (ret) {
3089 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3090 ret);
3091 close_ctree(tree_root);
3092 return ret;
3093 }
3094 } else {
3095 fs_info->update_uuid_tree_gen = 1;
3096 }
3097
3098 fs_info->open = 1;
3099
3100 return 0;
3101
3102 fail_qgroup:
3103 btrfs_free_qgroup_config(fs_info);
3104 fail_trans_kthread:
3105 kthread_stop(fs_info->transaction_kthread);
3106 btrfs_cleanup_transaction(fs_info->tree_root);
3107 btrfs_free_fs_roots(fs_info);
3108 fail_cleaner:
3109 kthread_stop(fs_info->cleaner_kthread);
3110
3111 /*
3112 * make sure we're done with the btree inode before we stop our
3113 * kthreads
3114 */
3115 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3116
3117 fail_sysfs:
3118 btrfs_sysfs_remove_one(fs_info);
3119
3120 fail_fsdev_sysfs:
3121 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3122
3123 fail_block_groups:
3124 btrfs_put_block_group_cache(fs_info);
3125 btrfs_free_block_groups(fs_info);
3126
3127 fail_tree_roots:
3128 free_root_pointers(fs_info, 1);
3129 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3130
3131 fail_sb_buffer:
3132 btrfs_stop_all_workers(fs_info);
3133 fail_alloc:
3134 fail_iput:
3135 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3136
3137 iput(fs_info->btree_inode);
3138 fail_bio_counter:
3139 percpu_counter_destroy(&fs_info->bio_counter);
3140 fail_delalloc_bytes:
3141 percpu_counter_destroy(&fs_info->delalloc_bytes);
3142 fail_dirty_metadata_bytes:
3143 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3144 fail_bdi:
3145 bdi_destroy(&fs_info->bdi);
3146 fail_srcu:
3147 cleanup_srcu_struct(&fs_info->subvol_srcu);
3148 fail:
3149 btrfs_free_stripe_hash_table(fs_info);
3150 btrfs_close_devices(fs_info->fs_devices);
3151 return err;
3152
3153 recovery_tree_root:
3154 if (!btrfs_test_opt(tree_root, RECOVERY))
3155 goto fail_tree_roots;
3156
3157 free_root_pointers(fs_info, 0);
3158
3159 /* don't use the log in recovery mode, it won't be valid */
3160 btrfs_set_super_log_root(disk_super, 0);
3161
3162 /* we can't trust the free space cache either */
3163 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3164
3165 ret = next_root_backup(fs_info, fs_info->super_copy,
3166 &num_backups_tried, &backup_index);
3167 if (ret == -1)
3168 goto fail_block_groups;
3169 goto retry_root_backup;
3170 }
3171
3172 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3173 {
3174 if (uptodate) {
3175 set_buffer_uptodate(bh);
3176 } else {
3177 struct btrfs_device *device = (struct btrfs_device *)
3178 bh->b_private;
3179
3180 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3181 "lost page write due to IO error on %s",
3182 rcu_str_deref(device->name));
3183 /* note, we dont' set_buffer_write_io_error because we have
3184 * our own ways of dealing with the IO errors
3185 */
3186 clear_buffer_uptodate(bh);
3187 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3188 }
3189 unlock_buffer(bh);
3190 put_bh(bh);
3191 }
3192
3193 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3194 {
3195 struct buffer_head *bh;
3196 struct buffer_head *latest = NULL;
3197 struct btrfs_super_block *super;
3198 int i;
3199 u64 transid = 0;
3200 u64 bytenr;
3201
3202 /* we would like to check all the supers, but that would make
3203 * a btrfs mount succeed after a mkfs from a different FS.
3204 * So, we need to add a special mount option to scan for
3205 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3206 */
3207 for (i = 0; i < 1; i++) {
3208 bytenr = btrfs_sb_offset(i);
3209 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3210 i_size_read(bdev->bd_inode))
3211 break;
3212 bh = __bread(bdev, bytenr / 4096,
3213 BTRFS_SUPER_INFO_SIZE);
3214 if (!bh)
3215 continue;
3216
3217 super = (struct btrfs_super_block *)bh->b_data;
3218 if (btrfs_super_bytenr(super) != bytenr ||
3219 btrfs_super_magic(super) != BTRFS_MAGIC) {
3220 brelse(bh);
3221 continue;
3222 }
3223
3224 if (!latest || btrfs_super_generation(super) > transid) {
3225 brelse(latest);
3226 latest = bh;
3227 transid = btrfs_super_generation(super);
3228 } else {
3229 brelse(bh);
3230 }
3231 }
3232 return latest;
3233 }
3234
3235 /*
3236 * this should be called twice, once with wait == 0 and
3237 * once with wait == 1. When wait == 0 is done, all the buffer heads
3238 * we write are pinned.
3239 *
3240 * They are released when wait == 1 is done.
3241 * max_mirrors must be the same for both runs, and it indicates how
3242 * many supers on this one device should be written.
3243 *
3244 * max_mirrors == 0 means to write them all.
3245 */
3246 static int write_dev_supers(struct btrfs_device *device,
3247 struct btrfs_super_block *sb,
3248 int do_barriers, int wait, int max_mirrors)
3249 {
3250 struct buffer_head *bh;
3251 int i;
3252 int ret;
3253 int errors = 0;
3254 u32 crc;
3255 u64 bytenr;
3256
3257 if (max_mirrors == 0)
3258 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3259
3260 for (i = 0; i < max_mirrors; i++) {
3261 bytenr = btrfs_sb_offset(i);
3262 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3263 device->commit_total_bytes)
3264 break;
3265
3266 if (wait) {
3267 bh = __find_get_block(device->bdev, bytenr / 4096,
3268 BTRFS_SUPER_INFO_SIZE);
3269 if (!bh) {
3270 errors++;
3271 continue;
3272 }
3273 wait_on_buffer(bh);
3274 if (!buffer_uptodate(bh))
3275 errors++;
3276
3277 /* drop our reference */
3278 brelse(bh);
3279
3280 /* drop the reference from the wait == 0 run */
3281 brelse(bh);
3282 continue;
3283 } else {
3284 btrfs_set_super_bytenr(sb, bytenr);
3285
3286 crc = ~(u32)0;
3287 crc = btrfs_csum_data((char *)sb +
3288 BTRFS_CSUM_SIZE, crc,
3289 BTRFS_SUPER_INFO_SIZE -
3290 BTRFS_CSUM_SIZE);
3291 btrfs_csum_final(crc, sb->csum);
3292
3293 /*
3294 * one reference for us, and we leave it for the
3295 * caller
3296 */
3297 bh = __getblk(device->bdev, bytenr / 4096,
3298 BTRFS_SUPER_INFO_SIZE);
3299 if (!bh) {
3300 btrfs_err(device->dev_root->fs_info,
3301 "couldn't get super buffer head for bytenr %llu",
3302 bytenr);
3303 errors++;
3304 continue;
3305 }
3306
3307 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3308
3309 /* one reference for submit_bh */
3310 get_bh(bh);
3311
3312 set_buffer_uptodate(bh);
3313 lock_buffer(bh);
3314 bh->b_end_io = btrfs_end_buffer_write_sync;
3315 bh->b_private = device;
3316 }
3317
3318 /*
3319 * we fua the first super. The others we allow
3320 * to go down lazy.
3321 */
3322 if (i == 0)
3323 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3324 else
3325 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3326 if (ret)
3327 errors++;
3328 }
3329 return errors < i ? 0 : -1;
3330 }
3331
3332 /*
3333 * endio for the write_dev_flush, this will wake anyone waiting
3334 * for the barrier when it is done
3335 */
3336 static void btrfs_end_empty_barrier(struct bio *bio)
3337 {
3338 if (bio->bi_private)
3339 complete(bio->bi_private);
3340 bio_put(bio);
3341 }
3342
3343 /*
3344 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3345 * sent down. With wait == 1, it waits for the previous flush.
3346 *
3347 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3348 * capable
3349 */
3350 static int write_dev_flush(struct btrfs_device *device, int wait)
3351 {
3352 struct bio *bio;
3353 int ret = 0;
3354
3355 if (device->nobarriers)
3356 return 0;
3357
3358 if (wait) {
3359 bio = device->flush_bio;
3360 if (!bio)
3361 return 0;
3362
3363 wait_for_completion(&device->flush_wait);
3364
3365 if (bio->bi_error) {
3366 ret = bio->bi_error;
3367 btrfs_dev_stat_inc_and_print(device,
3368 BTRFS_DEV_STAT_FLUSH_ERRS);
3369 }
3370
3371 /* drop the reference from the wait == 0 run */
3372 bio_put(bio);
3373 device->flush_bio = NULL;
3374
3375 return ret;
3376 }
3377
3378 /*
3379 * one reference for us, and we leave it for the
3380 * caller
3381 */
3382 device->flush_bio = NULL;
3383 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3384 if (!bio)
3385 return -ENOMEM;
3386
3387 bio->bi_end_io = btrfs_end_empty_barrier;
3388 bio->bi_bdev = device->bdev;
3389 init_completion(&device->flush_wait);
3390 bio->bi_private = &device->flush_wait;
3391 device->flush_bio = bio;
3392
3393 bio_get(bio);
3394 btrfsic_submit_bio(WRITE_FLUSH, bio);
3395
3396 return 0;
3397 }
3398
3399 /*
3400 * send an empty flush down to each device in parallel,
3401 * then wait for them
3402 */
3403 static int barrier_all_devices(struct btrfs_fs_info *info)
3404 {
3405 struct list_head *head;
3406 struct btrfs_device *dev;
3407 int errors_send = 0;
3408 int errors_wait = 0;
3409 int ret;
3410
3411 /* send down all the barriers */
3412 head = &info->fs_devices->devices;
3413 list_for_each_entry_rcu(dev, head, dev_list) {
3414 if (dev->missing)
3415 continue;
3416 if (!dev->bdev) {
3417 errors_send++;
3418 continue;
3419 }
3420 if (!dev->in_fs_metadata || !dev->writeable)
3421 continue;
3422
3423 ret = write_dev_flush(dev, 0);
3424 if (ret)
3425 errors_send++;
3426 }
3427
3428 /* wait for all the barriers */
3429 list_for_each_entry_rcu(dev, head, dev_list) {
3430 if (dev->missing)
3431 continue;
3432 if (!dev->bdev) {
3433 errors_wait++;
3434 continue;
3435 }
3436 if (!dev->in_fs_metadata || !dev->writeable)
3437 continue;
3438
3439 ret = write_dev_flush(dev, 1);
3440 if (ret)
3441 errors_wait++;
3442 }
3443 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3444 errors_wait > info->num_tolerated_disk_barrier_failures)
3445 return -EIO;
3446 return 0;
3447 }
3448
3449 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3450 {
3451 if ((flags & (BTRFS_BLOCK_GROUP_DUP |
3452 BTRFS_BLOCK_GROUP_RAID0 |
3453 BTRFS_AVAIL_ALLOC_BIT_SINGLE)) ||
3454 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0))
3455 return 0;
3456
3457 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3458 BTRFS_BLOCK_GROUP_RAID5 |
3459 BTRFS_BLOCK_GROUP_RAID10))
3460 return 1;
3461
3462 if (flags & BTRFS_BLOCK_GROUP_RAID6)
3463 return 2;
3464
3465 pr_warn("BTRFS: unknown raid type: %llu\n", flags);
3466 return 0;
3467 }
3468
3469 int btrfs_calc_num_tolerated_disk_barrier_failures(
3470 struct btrfs_fs_info *fs_info)
3471 {
3472 struct btrfs_ioctl_space_info space;
3473 struct btrfs_space_info *sinfo;
3474 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3475 BTRFS_BLOCK_GROUP_SYSTEM,
3476 BTRFS_BLOCK_GROUP_METADATA,
3477 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3478 int i;
3479 int c;
3480 int num_tolerated_disk_barrier_failures =
3481 (int)fs_info->fs_devices->num_devices;
3482
3483 for (i = 0; i < ARRAY_SIZE(types); i++) {
3484 struct btrfs_space_info *tmp;
3485
3486 sinfo = NULL;
3487 rcu_read_lock();
3488 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3489 if (tmp->flags == types[i]) {
3490 sinfo = tmp;
3491 break;
3492 }
3493 }
3494 rcu_read_unlock();
3495
3496 if (!sinfo)
3497 continue;
3498
3499 down_read(&sinfo->groups_sem);
3500 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3501 u64 flags;
3502
3503 if (list_empty(&sinfo->block_groups[c]))
3504 continue;
3505
3506 btrfs_get_block_group_info(&sinfo->block_groups[c],
3507 &space);
3508 if (space.total_bytes == 0 || space.used_bytes == 0)
3509 continue;
3510 flags = space.flags;
3511
3512 num_tolerated_disk_barrier_failures = min(
3513 num_tolerated_disk_barrier_failures,
3514 btrfs_get_num_tolerated_disk_barrier_failures(
3515 flags));
3516 }
3517 up_read(&sinfo->groups_sem);
3518 }
3519
3520 return num_tolerated_disk_barrier_failures;
3521 }
3522
3523 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3524 {
3525 struct list_head *head;
3526 struct btrfs_device *dev;
3527 struct btrfs_super_block *sb;
3528 struct btrfs_dev_item *dev_item;
3529 int ret;
3530 int do_barriers;
3531 int max_errors;
3532 int total_errors = 0;
3533 u64 flags;
3534
3535 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3536 backup_super_roots(root->fs_info);
3537
3538 sb = root->fs_info->super_for_commit;
3539 dev_item = &sb->dev_item;
3540
3541 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3542 head = &root->fs_info->fs_devices->devices;
3543 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3544
3545 if (do_barriers) {
3546 ret = barrier_all_devices(root->fs_info);
3547 if (ret) {
3548 mutex_unlock(
3549 &root->fs_info->fs_devices->device_list_mutex);
3550 btrfs_error(root->fs_info, ret,
3551 "errors while submitting device barriers.");
3552 return ret;
3553 }
3554 }
3555
3556 list_for_each_entry_rcu(dev, head, dev_list) {
3557 if (!dev->bdev) {
3558 total_errors++;
3559 continue;
3560 }
3561 if (!dev->in_fs_metadata || !dev->writeable)
3562 continue;
3563
3564 btrfs_set_stack_device_generation(dev_item, 0);
3565 btrfs_set_stack_device_type(dev_item, dev->type);
3566 btrfs_set_stack_device_id(dev_item, dev->devid);
3567 btrfs_set_stack_device_total_bytes(dev_item,
3568 dev->commit_total_bytes);
3569 btrfs_set_stack_device_bytes_used(dev_item,
3570 dev->commit_bytes_used);
3571 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3572 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3573 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3574 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3575 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3576
3577 flags = btrfs_super_flags(sb);
3578 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3579
3580 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3581 if (ret)
3582 total_errors++;
3583 }
3584 if (total_errors > max_errors) {
3585 btrfs_err(root->fs_info, "%d errors while writing supers",
3586 total_errors);
3587 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3588
3589 /* FUA is masked off if unsupported and can't be the reason */
3590 btrfs_error(root->fs_info, -EIO,
3591 "%d errors while writing supers", total_errors);
3592 return -EIO;
3593 }
3594
3595 total_errors = 0;
3596 list_for_each_entry_rcu(dev, head, dev_list) {
3597 if (!dev->bdev)
3598 continue;
3599 if (!dev->in_fs_metadata || !dev->writeable)
3600 continue;
3601
3602 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3603 if (ret)
3604 total_errors++;
3605 }
3606 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3607 if (total_errors > max_errors) {
3608 btrfs_error(root->fs_info, -EIO,
3609 "%d errors while writing supers", total_errors);
3610 return -EIO;
3611 }
3612 return 0;
3613 }
3614
3615 int write_ctree_super(struct btrfs_trans_handle *trans,
3616 struct btrfs_root *root, int max_mirrors)
3617 {
3618 return write_all_supers(root, max_mirrors);
3619 }
3620
3621 /* Drop a fs root from the radix tree and free it. */
3622 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3623 struct btrfs_root *root)
3624 {
3625 spin_lock(&fs_info->fs_roots_radix_lock);
3626 radix_tree_delete(&fs_info->fs_roots_radix,
3627 (unsigned long)root->root_key.objectid);
3628 spin_unlock(&fs_info->fs_roots_radix_lock);
3629
3630 if (btrfs_root_refs(&root->root_item) == 0)
3631 synchronize_srcu(&fs_info->subvol_srcu);
3632
3633 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3634 btrfs_free_log(NULL, root);
3635
3636 if (root->free_ino_pinned)
3637 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3638 if (root->free_ino_ctl)
3639 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3640 free_fs_root(root);
3641 }
3642
3643 static void free_fs_root(struct btrfs_root *root)
3644 {
3645 iput(root->ino_cache_inode);
3646 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3647 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3648 root->orphan_block_rsv = NULL;
3649 if (root->anon_dev)
3650 free_anon_bdev(root->anon_dev);
3651 if (root->subv_writers)
3652 btrfs_free_subvolume_writers(root->subv_writers);
3653 free_extent_buffer(root->node);
3654 free_extent_buffer(root->commit_root);
3655 kfree(root->free_ino_ctl);
3656 kfree(root->free_ino_pinned);
3657 kfree(root->name);
3658 btrfs_put_fs_root(root);
3659 }
3660
3661 void btrfs_free_fs_root(struct btrfs_root *root)
3662 {
3663 free_fs_root(root);
3664 }
3665
3666 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3667 {
3668 u64 root_objectid = 0;
3669 struct btrfs_root *gang[8];
3670 int i = 0;
3671 int err = 0;
3672 unsigned int ret = 0;
3673 int index;
3674
3675 while (1) {
3676 index = srcu_read_lock(&fs_info->subvol_srcu);
3677 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3678 (void **)gang, root_objectid,
3679 ARRAY_SIZE(gang));
3680 if (!ret) {
3681 srcu_read_unlock(&fs_info->subvol_srcu, index);
3682 break;
3683 }
3684 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3685
3686 for (i = 0; i < ret; i++) {
3687 /* Avoid to grab roots in dead_roots */
3688 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3689 gang[i] = NULL;
3690 continue;
3691 }
3692 /* grab all the search result for later use */
3693 gang[i] = btrfs_grab_fs_root(gang[i]);
3694 }
3695 srcu_read_unlock(&fs_info->subvol_srcu, index);
3696
3697 for (i = 0; i < ret; i++) {
3698 if (!gang[i])
3699 continue;
3700 root_objectid = gang[i]->root_key.objectid;
3701 err = btrfs_orphan_cleanup(gang[i]);
3702 if (err)
3703 break;
3704 btrfs_put_fs_root(gang[i]);
3705 }
3706 root_objectid++;
3707 }
3708
3709 /* release the uncleaned roots due to error */
3710 for (; i < ret; i++) {
3711 if (gang[i])
3712 btrfs_put_fs_root(gang[i]);
3713 }
3714 return err;
3715 }
3716
3717 int btrfs_commit_super(struct btrfs_root *root)
3718 {
3719 struct btrfs_trans_handle *trans;
3720
3721 mutex_lock(&root->fs_info->cleaner_mutex);
3722 btrfs_run_delayed_iputs(root);
3723 mutex_unlock(&root->fs_info->cleaner_mutex);
3724 wake_up_process(root->fs_info->cleaner_kthread);
3725
3726 /* wait until ongoing cleanup work done */
3727 down_write(&root->fs_info->cleanup_work_sem);
3728 up_write(&root->fs_info->cleanup_work_sem);
3729
3730 trans = btrfs_join_transaction(root);
3731 if (IS_ERR(trans))
3732 return PTR_ERR(trans);
3733 return btrfs_commit_transaction(trans, root);
3734 }
3735
3736 void close_ctree(struct btrfs_root *root)
3737 {
3738 struct btrfs_fs_info *fs_info = root->fs_info;
3739 int ret;
3740
3741 fs_info->closing = 1;
3742 smp_mb();
3743
3744 /* wait for the uuid_scan task to finish */
3745 down(&fs_info->uuid_tree_rescan_sem);
3746 /* avoid complains from lockdep et al., set sem back to initial state */
3747 up(&fs_info->uuid_tree_rescan_sem);
3748
3749 /* pause restriper - we want to resume on mount */
3750 btrfs_pause_balance(fs_info);
3751
3752 btrfs_dev_replace_suspend_for_unmount(fs_info);
3753
3754 btrfs_scrub_cancel(fs_info);
3755
3756 /* wait for any defraggers to finish */
3757 wait_event(fs_info->transaction_wait,
3758 (atomic_read(&fs_info->defrag_running) == 0));
3759
3760 /* clear out the rbtree of defraggable inodes */
3761 btrfs_cleanup_defrag_inodes(fs_info);
3762
3763 cancel_work_sync(&fs_info->async_reclaim_work);
3764
3765 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3766 /*
3767 * If the cleaner thread is stopped and there are
3768 * block groups queued for removal, the deletion will be
3769 * skipped when we quit the cleaner thread.
3770 */
3771 btrfs_delete_unused_bgs(root->fs_info);
3772
3773 ret = btrfs_commit_super(root);
3774 if (ret)
3775 btrfs_err(fs_info, "commit super ret %d", ret);
3776 }
3777
3778 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3779 btrfs_error_commit_super(root);
3780
3781 kthread_stop(fs_info->transaction_kthread);
3782 kthread_stop(fs_info->cleaner_kthread);
3783
3784 fs_info->closing = 2;
3785 smp_mb();
3786
3787 btrfs_free_qgroup_config(fs_info);
3788
3789 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3790 btrfs_info(fs_info, "at unmount delalloc count %lld",
3791 percpu_counter_sum(&fs_info->delalloc_bytes));
3792 }
3793
3794 btrfs_sysfs_remove_one(fs_info);
3795 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3796
3797 btrfs_free_fs_roots(fs_info);
3798
3799 btrfs_put_block_group_cache(fs_info);
3800
3801 btrfs_free_block_groups(fs_info);
3802
3803 /*
3804 * we must make sure there is not any read request to
3805 * submit after we stopping all workers.
3806 */
3807 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3808 btrfs_stop_all_workers(fs_info);
3809
3810 fs_info->open = 0;
3811 free_root_pointers(fs_info, 1);
3812
3813 iput(fs_info->btree_inode);
3814
3815 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3816 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3817 btrfsic_unmount(root, fs_info->fs_devices);
3818 #endif
3819
3820 btrfs_close_devices(fs_info->fs_devices);
3821 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3822
3823 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3824 percpu_counter_destroy(&fs_info->delalloc_bytes);
3825 percpu_counter_destroy(&fs_info->bio_counter);
3826 bdi_destroy(&fs_info->bdi);
3827 cleanup_srcu_struct(&fs_info->subvol_srcu);
3828
3829 btrfs_free_stripe_hash_table(fs_info);
3830
3831 __btrfs_free_block_rsv(root->orphan_block_rsv);
3832 root->orphan_block_rsv = NULL;
3833
3834 lock_chunks(root);
3835 while (!list_empty(&fs_info->pinned_chunks)) {
3836 struct extent_map *em;
3837
3838 em = list_first_entry(&fs_info->pinned_chunks,
3839 struct extent_map, list);
3840 list_del_init(&em->list);
3841 free_extent_map(em);
3842 }
3843 unlock_chunks(root);
3844 }
3845
3846 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3847 int atomic)
3848 {
3849 int ret;
3850 struct inode *btree_inode = buf->pages[0]->mapping->host;
3851
3852 ret = extent_buffer_uptodate(buf);
3853 if (!ret)
3854 return ret;
3855
3856 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3857 parent_transid, atomic);
3858 if (ret == -EAGAIN)
3859 return ret;
3860 return !ret;
3861 }
3862
3863 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3864 {
3865 return set_extent_buffer_uptodate(buf);
3866 }
3867
3868 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3869 {
3870 struct btrfs_root *root;
3871 u64 transid = btrfs_header_generation(buf);
3872 int was_dirty;
3873
3874 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3875 /*
3876 * This is a fast path so only do this check if we have sanity tests
3877 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3878 * outside of the sanity tests.
3879 */
3880 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3881 return;
3882 #endif
3883 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3884 btrfs_assert_tree_locked(buf);
3885 if (transid != root->fs_info->generation)
3886 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3887 "found %llu running %llu\n",
3888 buf->start, transid, root->fs_info->generation);
3889 was_dirty = set_extent_buffer_dirty(buf);
3890 if (!was_dirty)
3891 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3892 buf->len,
3893 root->fs_info->dirty_metadata_batch);
3894 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3895 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3896 btrfs_print_leaf(root, buf);
3897 ASSERT(0);
3898 }
3899 #endif
3900 }
3901
3902 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3903 int flush_delayed)
3904 {
3905 /*
3906 * looks as though older kernels can get into trouble with
3907 * this code, they end up stuck in balance_dirty_pages forever
3908 */
3909 int ret;
3910
3911 if (current->flags & PF_MEMALLOC)
3912 return;
3913
3914 if (flush_delayed)
3915 btrfs_balance_delayed_items(root);
3916
3917 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3918 BTRFS_DIRTY_METADATA_THRESH);
3919 if (ret > 0) {
3920 balance_dirty_pages_ratelimited(
3921 root->fs_info->btree_inode->i_mapping);
3922 }
3923 return;
3924 }
3925
3926 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3927 {
3928 __btrfs_btree_balance_dirty(root, 1);
3929 }
3930
3931 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3932 {
3933 __btrfs_btree_balance_dirty(root, 0);
3934 }
3935
3936 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3937 {
3938 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3939 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3940 }
3941
3942 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3943 int read_only)
3944 {
3945 struct btrfs_super_block *sb = fs_info->super_copy;
3946 int ret = 0;
3947
3948 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3949 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3950 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3951 ret = -EINVAL;
3952 }
3953 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3954 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3955 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3956 ret = -EINVAL;
3957 }
3958 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3959 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3960 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3961 ret = -EINVAL;
3962 }
3963
3964 /*
3965 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3966 * items yet, they'll be verified later. Issue just a warning.
3967 */
3968 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3969 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3970 btrfs_super_root(sb));
3971 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3972 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3973 btrfs_super_chunk_root(sb));
3974 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3975 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3976 btrfs_super_log_root(sb));
3977
3978 /*
3979 * Check the lower bound, the alignment and other constraints are
3980 * checked later.
3981 */
3982 if (btrfs_super_nodesize(sb) < 4096) {
3983 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3984 btrfs_super_nodesize(sb));
3985 ret = -EINVAL;
3986 }
3987 if (btrfs_super_sectorsize(sb) < 4096) {
3988 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3989 btrfs_super_sectorsize(sb));
3990 ret = -EINVAL;
3991 }
3992
3993 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3994 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3995 fs_info->fsid, sb->dev_item.fsid);
3996 ret = -EINVAL;
3997 }
3998
3999 /*
4000 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4001 * done later
4002 */
4003 if (btrfs_super_num_devices(sb) > (1UL << 31))
4004 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4005 btrfs_super_num_devices(sb));
4006 if (btrfs_super_num_devices(sb) == 0) {
4007 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4008 ret = -EINVAL;
4009 }
4010
4011 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4012 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4013 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4014 ret = -EINVAL;
4015 }
4016
4017 /*
4018 * Obvious sys_chunk_array corruptions, it must hold at least one key
4019 * and one chunk
4020 */
4021 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4022 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4023 btrfs_super_sys_array_size(sb),
4024 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4025 ret = -EINVAL;
4026 }
4027 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4028 + sizeof(struct btrfs_chunk)) {
4029 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4030 btrfs_super_sys_array_size(sb),
4031 sizeof(struct btrfs_disk_key)
4032 + sizeof(struct btrfs_chunk));
4033 ret = -EINVAL;
4034 }
4035
4036 /*
4037 * The generation is a global counter, we'll trust it more than the others
4038 * but it's still possible that it's the one that's wrong.
4039 */
4040 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4041 printk(KERN_WARNING
4042 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4043 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4044 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4045 && btrfs_super_cache_generation(sb) != (u64)-1)
4046 printk(KERN_WARNING
4047 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4048 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4049
4050 return ret;
4051 }
4052
4053 static void btrfs_error_commit_super(struct btrfs_root *root)
4054 {
4055 mutex_lock(&root->fs_info->cleaner_mutex);
4056 btrfs_run_delayed_iputs(root);
4057 mutex_unlock(&root->fs_info->cleaner_mutex);
4058
4059 down_write(&root->fs_info->cleanup_work_sem);
4060 up_write(&root->fs_info->cleanup_work_sem);
4061
4062 /* cleanup FS via transaction */
4063 btrfs_cleanup_transaction(root);
4064 }
4065
4066 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4067 {
4068 struct btrfs_ordered_extent *ordered;
4069
4070 spin_lock(&root->ordered_extent_lock);
4071 /*
4072 * This will just short circuit the ordered completion stuff which will
4073 * make sure the ordered extent gets properly cleaned up.
4074 */
4075 list_for_each_entry(ordered, &root->ordered_extents,
4076 root_extent_list)
4077 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4078 spin_unlock(&root->ordered_extent_lock);
4079 }
4080
4081 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4082 {
4083 struct btrfs_root *root;
4084 struct list_head splice;
4085
4086 INIT_LIST_HEAD(&splice);
4087
4088 spin_lock(&fs_info->ordered_root_lock);
4089 list_splice_init(&fs_info->ordered_roots, &splice);
4090 while (!list_empty(&splice)) {
4091 root = list_first_entry(&splice, struct btrfs_root,
4092 ordered_root);
4093 list_move_tail(&root->ordered_root,
4094 &fs_info->ordered_roots);
4095
4096 spin_unlock(&fs_info->ordered_root_lock);
4097 btrfs_destroy_ordered_extents(root);
4098
4099 cond_resched();
4100 spin_lock(&fs_info->ordered_root_lock);
4101 }
4102 spin_unlock(&fs_info->ordered_root_lock);
4103 }
4104
4105 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4106 struct btrfs_root *root)
4107 {
4108 struct rb_node *node;
4109 struct btrfs_delayed_ref_root *delayed_refs;
4110 struct btrfs_delayed_ref_node *ref;
4111 int ret = 0;
4112
4113 delayed_refs = &trans->delayed_refs;
4114
4115 spin_lock(&delayed_refs->lock);
4116 if (atomic_read(&delayed_refs->num_entries) == 0) {
4117 spin_unlock(&delayed_refs->lock);
4118 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4119 return ret;
4120 }
4121
4122 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4123 struct btrfs_delayed_ref_head *head;
4124 struct btrfs_delayed_ref_node *tmp;
4125 bool pin_bytes = false;
4126
4127 head = rb_entry(node, struct btrfs_delayed_ref_head,
4128 href_node);
4129 if (!mutex_trylock(&head->mutex)) {
4130 atomic_inc(&head->node.refs);
4131 spin_unlock(&delayed_refs->lock);
4132
4133 mutex_lock(&head->mutex);
4134 mutex_unlock(&head->mutex);
4135 btrfs_put_delayed_ref(&head->node);
4136 spin_lock(&delayed_refs->lock);
4137 continue;
4138 }
4139 spin_lock(&head->lock);
4140 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4141 list) {
4142 ref->in_tree = 0;
4143 list_del(&ref->list);
4144 atomic_dec(&delayed_refs->num_entries);
4145 btrfs_put_delayed_ref(ref);
4146 }
4147 if (head->must_insert_reserved)
4148 pin_bytes = true;
4149 btrfs_free_delayed_extent_op(head->extent_op);
4150 delayed_refs->num_heads--;
4151 if (head->processing == 0)
4152 delayed_refs->num_heads_ready--;
4153 atomic_dec(&delayed_refs->num_entries);
4154 head->node.in_tree = 0;
4155 rb_erase(&head->href_node, &delayed_refs->href_root);
4156 spin_unlock(&head->lock);
4157 spin_unlock(&delayed_refs->lock);
4158 mutex_unlock(&head->mutex);
4159
4160 if (pin_bytes)
4161 btrfs_pin_extent(root, head->node.bytenr,
4162 head->node.num_bytes, 1);
4163 btrfs_put_delayed_ref(&head->node);
4164 cond_resched();
4165 spin_lock(&delayed_refs->lock);
4166 }
4167
4168 spin_unlock(&delayed_refs->lock);
4169
4170 return ret;
4171 }
4172
4173 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4174 {
4175 struct btrfs_inode *btrfs_inode;
4176 struct list_head splice;
4177
4178 INIT_LIST_HEAD(&splice);
4179
4180 spin_lock(&root->delalloc_lock);
4181 list_splice_init(&root->delalloc_inodes, &splice);
4182
4183 while (!list_empty(&splice)) {
4184 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4185 delalloc_inodes);
4186
4187 list_del_init(&btrfs_inode->delalloc_inodes);
4188 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4189 &btrfs_inode->runtime_flags);
4190 spin_unlock(&root->delalloc_lock);
4191
4192 btrfs_invalidate_inodes(btrfs_inode->root);
4193
4194 spin_lock(&root->delalloc_lock);
4195 }
4196
4197 spin_unlock(&root->delalloc_lock);
4198 }
4199
4200 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4201 {
4202 struct btrfs_root *root;
4203 struct list_head splice;
4204
4205 INIT_LIST_HEAD(&splice);
4206
4207 spin_lock(&fs_info->delalloc_root_lock);
4208 list_splice_init(&fs_info->delalloc_roots, &splice);
4209 while (!list_empty(&splice)) {
4210 root = list_first_entry(&splice, struct btrfs_root,
4211 delalloc_root);
4212 list_del_init(&root->delalloc_root);
4213 root = btrfs_grab_fs_root(root);
4214 BUG_ON(!root);
4215 spin_unlock(&fs_info->delalloc_root_lock);
4216
4217 btrfs_destroy_delalloc_inodes(root);
4218 btrfs_put_fs_root(root);
4219
4220 spin_lock(&fs_info->delalloc_root_lock);
4221 }
4222 spin_unlock(&fs_info->delalloc_root_lock);
4223 }
4224
4225 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4226 struct extent_io_tree *dirty_pages,
4227 int mark)
4228 {
4229 int ret;
4230 struct extent_buffer *eb;
4231 u64 start = 0;
4232 u64 end;
4233
4234 while (1) {
4235 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4236 mark, NULL);
4237 if (ret)
4238 break;
4239
4240 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4241 while (start <= end) {
4242 eb = btrfs_find_tree_block(root->fs_info, start);
4243 start += root->nodesize;
4244 if (!eb)
4245 continue;
4246 wait_on_extent_buffer_writeback(eb);
4247
4248 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4249 &eb->bflags))
4250 clear_extent_buffer_dirty(eb);
4251 free_extent_buffer_stale(eb);
4252 }
4253 }
4254
4255 return ret;
4256 }
4257
4258 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4259 struct extent_io_tree *pinned_extents)
4260 {
4261 struct extent_io_tree *unpin;
4262 u64 start;
4263 u64 end;
4264 int ret;
4265 bool loop = true;
4266
4267 unpin = pinned_extents;
4268 again:
4269 while (1) {
4270 ret = find_first_extent_bit(unpin, 0, &start, &end,
4271 EXTENT_DIRTY, NULL);
4272 if (ret)
4273 break;
4274
4275 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4276 btrfs_error_unpin_extent_range(root, start, end);
4277 cond_resched();
4278 }
4279
4280 if (loop) {
4281 if (unpin == &root->fs_info->freed_extents[0])
4282 unpin = &root->fs_info->freed_extents[1];
4283 else
4284 unpin = &root->fs_info->freed_extents[0];
4285 loop = false;
4286 goto again;
4287 }
4288
4289 return 0;
4290 }
4291
4292 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4293 struct btrfs_fs_info *fs_info)
4294 {
4295 struct btrfs_ordered_extent *ordered;
4296
4297 spin_lock(&fs_info->trans_lock);
4298 while (!list_empty(&cur_trans->pending_ordered)) {
4299 ordered = list_first_entry(&cur_trans->pending_ordered,
4300 struct btrfs_ordered_extent,
4301 trans_list);
4302 list_del_init(&ordered->trans_list);
4303 spin_unlock(&fs_info->trans_lock);
4304
4305 btrfs_put_ordered_extent(ordered);
4306 spin_lock(&fs_info->trans_lock);
4307 }
4308 spin_unlock(&fs_info->trans_lock);
4309 }
4310
4311 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4312 struct btrfs_root *root)
4313 {
4314 btrfs_destroy_delayed_refs(cur_trans, root);
4315
4316 cur_trans->state = TRANS_STATE_COMMIT_START;
4317 wake_up(&root->fs_info->transaction_blocked_wait);
4318
4319 cur_trans->state = TRANS_STATE_UNBLOCKED;
4320 wake_up(&root->fs_info->transaction_wait);
4321
4322 btrfs_free_pending_ordered(cur_trans, root->fs_info);
4323 btrfs_destroy_delayed_inodes(root);
4324 btrfs_assert_delayed_root_empty(root);
4325
4326 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4327 EXTENT_DIRTY);
4328 btrfs_destroy_pinned_extent(root,
4329 root->fs_info->pinned_extents);
4330
4331 cur_trans->state =TRANS_STATE_COMPLETED;
4332 wake_up(&cur_trans->commit_wait);
4333
4334 /*
4335 memset(cur_trans, 0, sizeof(*cur_trans));
4336 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4337 */
4338 }
4339
4340 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4341 {
4342 struct btrfs_transaction *t;
4343
4344 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4345
4346 spin_lock(&root->fs_info->trans_lock);
4347 while (!list_empty(&root->fs_info->trans_list)) {
4348 t = list_first_entry(&root->fs_info->trans_list,
4349 struct btrfs_transaction, list);
4350 if (t->state >= TRANS_STATE_COMMIT_START) {
4351 atomic_inc(&t->use_count);
4352 spin_unlock(&root->fs_info->trans_lock);
4353 btrfs_wait_for_commit(root, t->transid);
4354 btrfs_put_transaction(t);
4355 spin_lock(&root->fs_info->trans_lock);
4356 continue;
4357 }
4358 if (t == root->fs_info->running_transaction) {
4359 t->state = TRANS_STATE_COMMIT_DOING;
4360 spin_unlock(&root->fs_info->trans_lock);
4361 /*
4362 * We wait for 0 num_writers since we don't hold a trans
4363 * handle open currently for this transaction.
4364 */
4365 wait_event(t->writer_wait,
4366 atomic_read(&t->num_writers) == 0);
4367 } else {
4368 spin_unlock(&root->fs_info->trans_lock);
4369 }
4370 btrfs_cleanup_one_transaction(t, root);
4371
4372 spin_lock(&root->fs_info->trans_lock);
4373 if (t == root->fs_info->running_transaction)
4374 root->fs_info->running_transaction = NULL;
4375 list_del_init(&t->list);
4376 spin_unlock(&root->fs_info->trans_lock);
4377
4378 btrfs_put_transaction(t);
4379 trace_btrfs_transaction_commit(root);
4380 spin_lock(&root->fs_info->trans_lock);
4381 }
4382 spin_unlock(&root->fs_info->trans_lock);
4383 btrfs_destroy_all_ordered_extents(root->fs_info);
4384 btrfs_destroy_delayed_inodes(root);
4385 btrfs_assert_delayed_root_empty(root);
4386 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4387 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4388 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4389
4390 return 0;
4391 }
4392
4393 static const struct extent_io_ops btree_extent_io_ops = {
4394 .readpage_end_io_hook = btree_readpage_end_io_hook,
4395 .readpage_io_failed_hook = btree_io_failed_hook,
4396 .submit_bio_hook = btree_submit_bio_hook,
4397 /* note we're sharing with inode.c for the merge bio hook */
4398 .merge_bio_hook = btrfs_merge_bio_hook,
4399 };
This page took 0.114572 seconds and 6 git commands to generate.