Merge branch 'fix/waitqueue-barriers' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79 struct btrfs_end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 enum btrfs_wq_endio_type metadata;
86 struct list_head list;
87 struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
115 struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
121 int rw;
122 int mirror_num;
123 unsigned long bio_flags;
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
129 struct btrfs_work work;
130 int error;
131 };
132
133 /*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
143 *
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
147 *
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
151 *
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
155 */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 # error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
178 { .id = 0, .name_stem = "tree" },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197 {
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 struct page *page, size_t pg_offset, u64 start, u64 len,
219 int create)
220 {
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
225 read_lock(&em_tree->lock);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 read_unlock(&em_tree->lock);
231 goto out;
232 }
233 read_unlock(&em_tree->lock);
234
235 em = alloc_extent_map();
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
241 em->len = (u64)-1;
242 em->block_len = (u64)-1;
243 em->block_start = 0;
244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246 write_lock(&em_tree->lock);
247 ret = add_extent_mapping(em_tree, em, 0);
248 if (ret == -EEXIST) {
249 free_extent_map(em);
250 em = lookup_extent_mapping(em_tree, start, len);
251 if (!em)
252 em = ERR_PTR(-EIO);
253 } else if (ret) {
254 free_extent_map(em);
255 em = ERR_PTR(ret);
256 }
257 write_unlock(&em_tree->lock);
258
259 out:
260 return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 put_unaligned_le32(~crc, result);
271 }
272
273 /*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
279 int verify)
280 {
281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 char *result = NULL;
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
291 unsigned long inline_result;
292
293 len = buf->len - offset;
294 while (len > 0) {
295 err = map_private_extent_buffer(buf, offset, 32,
296 &kaddr, &map_start, &map_len);
297 if (err)
298 return 1;
299 cur_len = min(len, map_len - (offset - map_start));
300 crc = btrfs_csum_data(kaddr + offset - map_start,
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
304 }
305 if (csum_size > sizeof(inline_result)) {
306 result = kzalloc(csum_size, GFP_NOFS);
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 u32 val;
318 u32 found = 0;
319 memcpy(&found, result, csum_size);
320
321 read_extent_buffer(buf, &val, 0, csum_size);
322 btrfs_warn_rl(fs_info,
323 "%s checksum verify failed on %llu wanted %X found %X "
324 "level %d",
325 fs_info->sb->s_id, buf->start,
326 val, found, btrfs_header_level(buf));
327 if (result != (char *)&inline_result)
328 kfree(result);
329 return 1;
330 }
331 } else {
332 write_extent_buffer(buf, result, 0, csum_size);
333 }
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return 0;
337 }
338
339 /*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
348 {
349 struct extent_state *cached_state = NULL;
350 int ret;
351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
356 if (atomic)
357 return -EAGAIN;
358
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 0, &cached_state);
366 if (extent_buffer_uptodate(eb) &&
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
371 btrfs_err_rl(eb->fs_info,
372 "parent transid verify failed on %llu wanted %llu found %llu",
373 eb->start,
374 parent_transid, btrfs_header_generation(eb));
375 ret = 1;
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
387 out:
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
392 return ret;
393 }
394
395 /*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431 }
432
433 /*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
439 u64 start, u64 parent_transid)
440 {
441 struct extent_io_tree *io_tree;
442 int failed = 0;
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
446 int failed_mirror = 0;
447
448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
453 btree_get_extent, mirror_num);
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
456 parent_transid, 0))
457 break;
458 else
459 ret = -EIO;
460 }
461
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 break;
469
470 num_copies = btrfs_num_copies(root->fs_info,
471 eb->start, eb->len);
472 if (num_copies == 1)
473 break;
474
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
480 mirror_num++;
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
484 if (mirror_num > num_copies)
485 break;
486 }
487
488 if (failed && !ret && failed_mirror)
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
492 }
493
494 /*
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
497 */
498
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501 u64 start = page_offset(page);
502 u64 found_start;
503 struct extent_buffer *eb;
504
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
508 found_start = btrfs_header_bytenr(eb);
509 if (WARN_ON(found_start != start || !PageUptodate(page)))
510 return 0;
511 csum_tree_block(fs_info, eb, 0);
512 return 0;
513 }
514
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 struct extent_buffer *eb)
517 {
518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531 }
532
533 #define CORRUPT(reason, eb, root, slot) \
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
536 btrfs_header_bytenr(eb), root->objectid, slot)
537
538 static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540 {
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597 }
598
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
602 {
603 u64 found_start;
604 int found_level;
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 int ret = 0;
608 int reads_done;
609
610 if (!page->private)
611 goto out;
612
613 eb = (struct extent_buffer *)page->private;
614
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
621 if (!reads_done)
622 goto err;
623
624 eb->read_mirror = mirror;
625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 ret = -EIO;
627 goto err;
628 }
629
630 found_start = btrfs_header_bytenr(eb);
631 if (found_start != eb->start) {
632 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633 found_start, eb->start);
634 ret = -EIO;
635 goto err;
636 }
637 if (check_tree_block_fsid(root->fs_info, eb)) {
638 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639 eb->start);
640 ret = -EIO;
641 goto err;
642 }
643 found_level = btrfs_header_level(eb);
644 if (found_level >= BTRFS_MAX_LEVEL) {
645 btrfs_err(root->fs_info, "bad tree block level %d",
646 (int)btrfs_header_level(eb));
647 ret = -EIO;
648 goto err;
649 }
650
651 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652 eb, found_level);
653
654 ret = csum_tree_block(root->fs_info, eb, 1);
655 if (ret) {
656 ret = -EIO;
657 goto err;
658 }
659
660 /*
661 * If this is a leaf block and it is corrupt, set the corrupt bit so
662 * that we don't try and read the other copies of this block, just
663 * return -EIO.
664 */
665 if (found_level == 0 && check_leaf(root, eb)) {
666 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667 ret = -EIO;
668 }
669
670 if (!ret)
671 set_extent_buffer_uptodate(eb);
672 err:
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675 btree_readahead_hook(root, eb, eb->start, ret);
676
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
684 clear_extent_buffer_uptodate(eb);
685 }
686 free_extent_buffer(eb);
687 out:
688 return ret;
689 }
690
691 static int btree_io_failed_hook(struct page *page, int failed_mirror)
692 {
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695
696 eb = (struct extent_buffer *)page->private;
697 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
698 eb->read_mirror = failed_mirror;
699 atomic_dec(&eb->io_pages);
700 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
701 btree_readahead_hook(root, eb, eb->start, -EIO);
702 return -EIO; /* we fixed nothing */
703 }
704
705 static void end_workqueue_bio(struct bio *bio)
706 {
707 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
708 struct btrfs_fs_info *fs_info;
709 struct btrfs_workqueue *wq;
710 btrfs_work_func_t func;
711
712 fs_info = end_io_wq->info;
713 end_io_wq->error = bio->bi_error;
714
715 if (bio->bi_rw & REQ_WRITE) {
716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717 wq = fs_info->endio_meta_write_workers;
718 func = btrfs_endio_meta_write_helper;
719 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720 wq = fs_info->endio_freespace_worker;
721 func = btrfs_freespace_write_helper;
722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723 wq = fs_info->endio_raid56_workers;
724 func = btrfs_endio_raid56_helper;
725 } else {
726 wq = fs_info->endio_write_workers;
727 func = btrfs_endio_write_helper;
728 }
729 } else {
730 if (unlikely(end_io_wq->metadata ==
731 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732 wq = fs_info->endio_repair_workers;
733 func = btrfs_endio_repair_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
735 wq = fs_info->endio_raid56_workers;
736 func = btrfs_endio_raid56_helper;
737 } else if (end_io_wq->metadata) {
738 wq = fs_info->endio_meta_workers;
739 func = btrfs_endio_meta_helper;
740 } else {
741 wq = fs_info->endio_workers;
742 func = btrfs_endio_helper;
743 }
744 }
745
746 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747 btrfs_queue_work(wq, &end_io_wq->work);
748 }
749
750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
751 enum btrfs_wq_endio_type metadata)
752 {
753 struct btrfs_end_io_wq *end_io_wq;
754
755 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
756 if (!end_io_wq)
757 return -ENOMEM;
758
759 end_io_wq->private = bio->bi_private;
760 end_io_wq->end_io = bio->bi_end_io;
761 end_io_wq->info = info;
762 end_io_wq->error = 0;
763 end_io_wq->bio = bio;
764 end_io_wq->metadata = metadata;
765
766 bio->bi_private = end_io_wq;
767 bio->bi_end_io = end_workqueue_bio;
768 return 0;
769 }
770
771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
772 {
773 unsigned long limit = min_t(unsigned long,
774 info->thread_pool_size,
775 info->fs_devices->open_devices);
776 return 256 * limit;
777 }
778
779 static void run_one_async_start(struct btrfs_work *work)
780 {
781 struct async_submit_bio *async;
782 int ret;
783
784 async = container_of(work, struct async_submit_bio, work);
785 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786 async->mirror_num, async->bio_flags,
787 async->bio_offset);
788 if (ret)
789 async->error = ret;
790 }
791
792 static void run_one_async_done(struct btrfs_work *work)
793 {
794 struct btrfs_fs_info *fs_info;
795 struct async_submit_bio *async;
796 int limit;
797
798 async = container_of(work, struct async_submit_bio, work);
799 fs_info = BTRFS_I(async->inode)->root->fs_info;
800
801 limit = btrfs_async_submit_limit(fs_info);
802 limit = limit * 2 / 3;
803
804 /*
805 * atomic_dec_return implies a barrier for waitqueue_active
806 */
807 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
808 waitqueue_active(&fs_info->async_submit_wait))
809 wake_up(&fs_info->async_submit_wait);
810
811 /* If an error occured we just want to clean up the bio and move on */
812 if (async->error) {
813 async->bio->bi_error = async->error;
814 bio_endio(async->bio);
815 return;
816 }
817
818 async->submit_bio_done(async->inode, async->rw, async->bio,
819 async->mirror_num, async->bio_flags,
820 async->bio_offset);
821 }
822
823 static void run_one_async_free(struct btrfs_work *work)
824 {
825 struct async_submit_bio *async;
826
827 async = container_of(work, struct async_submit_bio, work);
828 kfree(async);
829 }
830
831 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
832 int rw, struct bio *bio, int mirror_num,
833 unsigned long bio_flags,
834 u64 bio_offset,
835 extent_submit_bio_hook_t *submit_bio_start,
836 extent_submit_bio_hook_t *submit_bio_done)
837 {
838 struct async_submit_bio *async;
839
840 async = kmalloc(sizeof(*async), GFP_NOFS);
841 if (!async)
842 return -ENOMEM;
843
844 async->inode = inode;
845 async->rw = rw;
846 async->bio = bio;
847 async->mirror_num = mirror_num;
848 async->submit_bio_start = submit_bio_start;
849 async->submit_bio_done = submit_bio_done;
850
851 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
852 run_one_async_done, run_one_async_free);
853
854 async->bio_flags = bio_flags;
855 async->bio_offset = bio_offset;
856
857 async->error = 0;
858
859 atomic_inc(&fs_info->nr_async_submits);
860
861 if (rw & REQ_SYNC)
862 btrfs_set_work_high_priority(&async->work);
863
864 btrfs_queue_work(fs_info->workers, &async->work);
865
866 while (atomic_read(&fs_info->async_submit_draining) &&
867 atomic_read(&fs_info->nr_async_submits)) {
868 wait_event(fs_info->async_submit_wait,
869 (atomic_read(&fs_info->nr_async_submits) == 0));
870 }
871
872 return 0;
873 }
874
875 static int btree_csum_one_bio(struct bio *bio)
876 {
877 struct bio_vec *bvec;
878 struct btrfs_root *root;
879 int i, ret = 0;
880
881 bio_for_each_segment_all(bvec, bio, i) {
882 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
883 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
884 if (ret)
885 break;
886 }
887
888 return ret;
889 }
890
891 static int __btree_submit_bio_start(struct inode *inode, int rw,
892 struct bio *bio, int mirror_num,
893 unsigned long bio_flags,
894 u64 bio_offset)
895 {
896 /*
897 * when we're called for a write, we're already in the async
898 * submission context. Just jump into btrfs_map_bio
899 */
900 return btree_csum_one_bio(bio);
901 }
902
903 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
904 int mirror_num, unsigned long bio_flags,
905 u64 bio_offset)
906 {
907 int ret;
908
909 /*
910 * when we're called for a write, we're already in the async
911 * submission context. Just jump into btrfs_map_bio
912 */
913 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
914 if (ret) {
915 bio->bi_error = ret;
916 bio_endio(bio);
917 }
918 return ret;
919 }
920
921 static int check_async_write(struct inode *inode, unsigned long bio_flags)
922 {
923 if (bio_flags & EXTENT_BIO_TREE_LOG)
924 return 0;
925 #ifdef CONFIG_X86
926 if (cpu_has_xmm4_2)
927 return 0;
928 #endif
929 return 1;
930 }
931
932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
933 int mirror_num, unsigned long bio_flags,
934 u64 bio_offset)
935 {
936 int async = check_async_write(inode, bio_flags);
937 int ret;
938
939 if (!(rw & REQ_WRITE)) {
940 /*
941 * called for a read, do the setup so that checksum validation
942 * can happen in the async kernel threads
943 */
944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
945 bio, BTRFS_WQ_ENDIO_METADATA);
946 if (ret)
947 goto out_w_error;
948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949 mirror_num, 0);
950 } else if (!async) {
951 ret = btree_csum_one_bio(bio);
952 if (ret)
953 goto out_w_error;
954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955 mirror_num, 0);
956 } else {
957 /*
958 * kthread helpers are used to submit writes so that
959 * checksumming can happen in parallel across all CPUs
960 */
961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962 inode, rw, bio, mirror_num, 0,
963 bio_offset,
964 __btree_submit_bio_start,
965 __btree_submit_bio_done);
966 }
967
968 if (ret)
969 goto out_w_error;
970 return 0;
971
972 out_w_error:
973 bio->bi_error = ret;
974 bio_endio(bio);
975 return ret;
976 }
977
978 #ifdef CONFIG_MIGRATION
979 static int btree_migratepage(struct address_space *mapping,
980 struct page *newpage, struct page *page,
981 enum migrate_mode mode)
982 {
983 /*
984 * we can't safely write a btree page from here,
985 * we haven't done the locking hook
986 */
987 if (PageDirty(page))
988 return -EAGAIN;
989 /*
990 * Buffers may be managed in a filesystem specific way.
991 * We must have no buffers or drop them.
992 */
993 if (page_has_private(page) &&
994 !try_to_release_page(page, GFP_KERNEL))
995 return -EAGAIN;
996 return migrate_page(mapping, newpage, page, mode);
997 }
998 #endif
999
1000
1001 static int btree_writepages(struct address_space *mapping,
1002 struct writeback_control *wbc)
1003 {
1004 struct btrfs_fs_info *fs_info;
1005 int ret;
1006
1007 if (wbc->sync_mode == WB_SYNC_NONE) {
1008
1009 if (wbc->for_kupdate)
1010 return 0;
1011
1012 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1013 /* this is a bit racy, but that's ok */
1014 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1015 BTRFS_DIRTY_METADATA_THRESH);
1016 if (ret < 0)
1017 return 0;
1018 }
1019 return btree_write_cache_pages(mapping, wbc);
1020 }
1021
1022 static int btree_readpage(struct file *file, struct page *page)
1023 {
1024 struct extent_io_tree *tree;
1025 tree = &BTRFS_I(page->mapping->host)->io_tree;
1026 return extent_read_full_page(tree, page, btree_get_extent, 0);
1027 }
1028
1029 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1030 {
1031 if (PageWriteback(page) || PageDirty(page))
1032 return 0;
1033
1034 return try_release_extent_buffer(page);
1035 }
1036
1037 static void btree_invalidatepage(struct page *page, unsigned int offset,
1038 unsigned int length)
1039 {
1040 struct extent_io_tree *tree;
1041 tree = &BTRFS_I(page->mapping->host)->io_tree;
1042 extent_invalidatepage(tree, page, offset);
1043 btree_releasepage(page, GFP_NOFS);
1044 if (PagePrivate(page)) {
1045 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1046 "page private not zero on page %llu",
1047 (unsigned long long)page_offset(page));
1048 ClearPagePrivate(page);
1049 set_page_private(page, 0);
1050 page_cache_release(page);
1051 }
1052 }
1053
1054 static int btree_set_page_dirty(struct page *page)
1055 {
1056 #ifdef DEBUG
1057 struct extent_buffer *eb;
1058
1059 BUG_ON(!PagePrivate(page));
1060 eb = (struct extent_buffer *)page->private;
1061 BUG_ON(!eb);
1062 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063 BUG_ON(!atomic_read(&eb->refs));
1064 btrfs_assert_tree_locked(eb);
1065 #endif
1066 return __set_page_dirty_nobuffers(page);
1067 }
1068
1069 static const struct address_space_operations btree_aops = {
1070 .readpage = btree_readpage,
1071 .writepages = btree_writepages,
1072 .releasepage = btree_releasepage,
1073 .invalidatepage = btree_invalidatepage,
1074 #ifdef CONFIG_MIGRATION
1075 .migratepage = btree_migratepage,
1076 #endif
1077 .set_page_dirty = btree_set_page_dirty,
1078 };
1079
1080 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1081 {
1082 struct extent_buffer *buf = NULL;
1083 struct inode *btree_inode = root->fs_info->btree_inode;
1084
1085 buf = btrfs_find_create_tree_block(root, bytenr);
1086 if (!buf)
1087 return;
1088 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1089 buf, 0, WAIT_NONE, btree_get_extent, 0);
1090 free_extent_buffer(buf);
1091 }
1092
1093 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1094 int mirror_num, struct extent_buffer **eb)
1095 {
1096 struct extent_buffer *buf = NULL;
1097 struct inode *btree_inode = root->fs_info->btree_inode;
1098 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1099 int ret;
1100
1101 buf = btrfs_find_create_tree_block(root, bytenr);
1102 if (!buf)
1103 return 0;
1104
1105 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1106
1107 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1108 btree_get_extent, mirror_num);
1109 if (ret) {
1110 free_extent_buffer(buf);
1111 return ret;
1112 }
1113
1114 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1115 free_extent_buffer(buf);
1116 return -EIO;
1117 } else if (extent_buffer_uptodate(buf)) {
1118 *eb = buf;
1119 } else {
1120 free_extent_buffer(buf);
1121 }
1122 return 0;
1123 }
1124
1125 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1126 u64 bytenr)
1127 {
1128 return find_extent_buffer(fs_info, bytenr);
1129 }
1130
1131 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1132 u64 bytenr)
1133 {
1134 if (btrfs_test_is_dummy_root(root))
1135 return alloc_test_extent_buffer(root->fs_info, bytenr);
1136 return alloc_extent_buffer(root->fs_info, bytenr);
1137 }
1138
1139
1140 int btrfs_write_tree_block(struct extent_buffer *buf)
1141 {
1142 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1143 buf->start + buf->len - 1);
1144 }
1145
1146 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1147 {
1148 return filemap_fdatawait_range(buf->pages[0]->mapping,
1149 buf->start, buf->start + buf->len - 1);
1150 }
1151
1152 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1153 u64 parent_transid)
1154 {
1155 struct extent_buffer *buf = NULL;
1156 int ret;
1157
1158 buf = btrfs_find_create_tree_block(root, bytenr);
1159 if (!buf)
1160 return ERR_PTR(-ENOMEM);
1161
1162 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1163 if (ret) {
1164 free_extent_buffer(buf);
1165 return ERR_PTR(ret);
1166 }
1167 return buf;
1168
1169 }
1170
1171 void clean_tree_block(struct btrfs_trans_handle *trans,
1172 struct btrfs_fs_info *fs_info,
1173 struct extent_buffer *buf)
1174 {
1175 if (btrfs_header_generation(buf) ==
1176 fs_info->running_transaction->transid) {
1177 btrfs_assert_tree_locked(buf);
1178
1179 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1180 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1181 -buf->len,
1182 fs_info->dirty_metadata_batch);
1183 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1184 btrfs_set_lock_blocking(buf);
1185 clear_extent_buffer_dirty(buf);
1186 }
1187 }
1188 }
1189
1190 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1191 {
1192 struct btrfs_subvolume_writers *writers;
1193 int ret;
1194
1195 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1196 if (!writers)
1197 return ERR_PTR(-ENOMEM);
1198
1199 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1200 if (ret < 0) {
1201 kfree(writers);
1202 return ERR_PTR(ret);
1203 }
1204
1205 init_waitqueue_head(&writers->wait);
1206 return writers;
1207 }
1208
1209 static void
1210 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1211 {
1212 percpu_counter_destroy(&writers->counter);
1213 kfree(writers);
1214 }
1215
1216 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1217 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1218 u64 objectid)
1219 {
1220 root->node = NULL;
1221 root->commit_root = NULL;
1222 root->sectorsize = sectorsize;
1223 root->nodesize = nodesize;
1224 root->stripesize = stripesize;
1225 root->state = 0;
1226 root->orphan_cleanup_state = 0;
1227
1228 root->objectid = objectid;
1229 root->last_trans = 0;
1230 root->highest_objectid = 0;
1231 root->nr_delalloc_inodes = 0;
1232 root->nr_ordered_extents = 0;
1233 root->name = NULL;
1234 root->inode_tree = RB_ROOT;
1235 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1236 root->block_rsv = NULL;
1237 root->orphan_block_rsv = NULL;
1238
1239 INIT_LIST_HEAD(&root->dirty_list);
1240 INIT_LIST_HEAD(&root->root_list);
1241 INIT_LIST_HEAD(&root->delalloc_inodes);
1242 INIT_LIST_HEAD(&root->delalloc_root);
1243 INIT_LIST_HEAD(&root->ordered_extents);
1244 INIT_LIST_HEAD(&root->ordered_root);
1245 INIT_LIST_HEAD(&root->logged_list[0]);
1246 INIT_LIST_HEAD(&root->logged_list[1]);
1247 spin_lock_init(&root->orphan_lock);
1248 spin_lock_init(&root->inode_lock);
1249 spin_lock_init(&root->delalloc_lock);
1250 spin_lock_init(&root->ordered_extent_lock);
1251 spin_lock_init(&root->accounting_lock);
1252 spin_lock_init(&root->log_extents_lock[0]);
1253 spin_lock_init(&root->log_extents_lock[1]);
1254 mutex_init(&root->objectid_mutex);
1255 mutex_init(&root->log_mutex);
1256 mutex_init(&root->ordered_extent_mutex);
1257 mutex_init(&root->delalloc_mutex);
1258 init_waitqueue_head(&root->log_writer_wait);
1259 init_waitqueue_head(&root->log_commit_wait[0]);
1260 init_waitqueue_head(&root->log_commit_wait[1]);
1261 INIT_LIST_HEAD(&root->log_ctxs[0]);
1262 INIT_LIST_HEAD(&root->log_ctxs[1]);
1263 atomic_set(&root->log_commit[0], 0);
1264 atomic_set(&root->log_commit[1], 0);
1265 atomic_set(&root->log_writers, 0);
1266 atomic_set(&root->log_batch, 0);
1267 atomic_set(&root->orphan_inodes, 0);
1268 atomic_set(&root->refs, 1);
1269 atomic_set(&root->will_be_snapshoted, 0);
1270 root->log_transid = 0;
1271 root->log_transid_committed = -1;
1272 root->last_log_commit = 0;
1273 if (fs_info)
1274 extent_io_tree_init(&root->dirty_log_pages,
1275 fs_info->btree_inode->i_mapping);
1276
1277 memset(&root->root_key, 0, sizeof(root->root_key));
1278 memset(&root->root_item, 0, sizeof(root->root_item));
1279 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1280 if (fs_info)
1281 root->defrag_trans_start = fs_info->generation;
1282 else
1283 root->defrag_trans_start = 0;
1284 root->root_key.objectid = objectid;
1285 root->anon_dev = 0;
1286
1287 spin_lock_init(&root->root_item_lock);
1288 }
1289
1290 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1291 {
1292 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1293 if (root)
1294 root->fs_info = fs_info;
1295 return root;
1296 }
1297
1298 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1299 /* Should only be used by the testing infrastructure */
1300 struct btrfs_root *btrfs_alloc_dummy_root(void)
1301 {
1302 struct btrfs_root *root;
1303
1304 root = btrfs_alloc_root(NULL);
1305 if (!root)
1306 return ERR_PTR(-ENOMEM);
1307 __setup_root(4096, 4096, 4096, root, NULL, 1);
1308 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1309 root->alloc_bytenr = 0;
1310
1311 return root;
1312 }
1313 #endif
1314
1315 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1316 struct btrfs_fs_info *fs_info,
1317 u64 objectid)
1318 {
1319 struct extent_buffer *leaf;
1320 struct btrfs_root *tree_root = fs_info->tree_root;
1321 struct btrfs_root *root;
1322 struct btrfs_key key;
1323 int ret = 0;
1324 uuid_le uuid;
1325
1326 root = btrfs_alloc_root(fs_info);
1327 if (!root)
1328 return ERR_PTR(-ENOMEM);
1329
1330 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1331 tree_root->stripesize, root, fs_info, objectid);
1332 root->root_key.objectid = objectid;
1333 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1334 root->root_key.offset = 0;
1335
1336 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1337 if (IS_ERR(leaf)) {
1338 ret = PTR_ERR(leaf);
1339 leaf = NULL;
1340 goto fail;
1341 }
1342
1343 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1344 btrfs_set_header_bytenr(leaf, leaf->start);
1345 btrfs_set_header_generation(leaf, trans->transid);
1346 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1347 btrfs_set_header_owner(leaf, objectid);
1348 root->node = leaf;
1349
1350 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1351 BTRFS_FSID_SIZE);
1352 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1353 btrfs_header_chunk_tree_uuid(leaf),
1354 BTRFS_UUID_SIZE);
1355 btrfs_mark_buffer_dirty(leaf);
1356
1357 root->commit_root = btrfs_root_node(root);
1358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1359
1360 root->root_item.flags = 0;
1361 root->root_item.byte_limit = 0;
1362 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1363 btrfs_set_root_generation(&root->root_item, trans->transid);
1364 btrfs_set_root_level(&root->root_item, 0);
1365 btrfs_set_root_refs(&root->root_item, 1);
1366 btrfs_set_root_used(&root->root_item, leaf->len);
1367 btrfs_set_root_last_snapshot(&root->root_item, 0);
1368 btrfs_set_root_dirid(&root->root_item, 0);
1369 uuid_le_gen(&uuid);
1370 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1371 root->root_item.drop_level = 0;
1372
1373 key.objectid = objectid;
1374 key.type = BTRFS_ROOT_ITEM_KEY;
1375 key.offset = 0;
1376 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1377 if (ret)
1378 goto fail;
1379
1380 btrfs_tree_unlock(leaf);
1381
1382 return root;
1383
1384 fail:
1385 if (leaf) {
1386 btrfs_tree_unlock(leaf);
1387 free_extent_buffer(root->commit_root);
1388 free_extent_buffer(leaf);
1389 }
1390 kfree(root);
1391
1392 return ERR_PTR(ret);
1393 }
1394
1395 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1396 struct btrfs_fs_info *fs_info)
1397 {
1398 struct btrfs_root *root;
1399 struct btrfs_root *tree_root = fs_info->tree_root;
1400 struct extent_buffer *leaf;
1401
1402 root = btrfs_alloc_root(fs_info);
1403 if (!root)
1404 return ERR_PTR(-ENOMEM);
1405
1406 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1407 tree_root->stripesize, root, fs_info,
1408 BTRFS_TREE_LOG_OBJECTID);
1409
1410 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1411 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1412 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1413
1414 /*
1415 * DON'T set REF_COWS for log trees
1416 *
1417 * log trees do not get reference counted because they go away
1418 * before a real commit is actually done. They do store pointers
1419 * to file data extents, and those reference counts still get
1420 * updated (along with back refs to the log tree).
1421 */
1422
1423 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1424 NULL, 0, 0, 0);
1425 if (IS_ERR(leaf)) {
1426 kfree(root);
1427 return ERR_CAST(leaf);
1428 }
1429
1430 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1431 btrfs_set_header_bytenr(leaf, leaf->start);
1432 btrfs_set_header_generation(leaf, trans->transid);
1433 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1434 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1435 root->node = leaf;
1436
1437 write_extent_buffer(root->node, root->fs_info->fsid,
1438 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1439 btrfs_mark_buffer_dirty(root->node);
1440 btrfs_tree_unlock(root->node);
1441 return root;
1442 }
1443
1444 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1445 struct btrfs_fs_info *fs_info)
1446 {
1447 struct btrfs_root *log_root;
1448
1449 log_root = alloc_log_tree(trans, fs_info);
1450 if (IS_ERR(log_root))
1451 return PTR_ERR(log_root);
1452 WARN_ON(fs_info->log_root_tree);
1453 fs_info->log_root_tree = log_root;
1454 return 0;
1455 }
1456
1457 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root)
1459 {
1460 struct btrfs_root *log_root;
1461 struct btrfs_inode_item *inode_item;
1462
1463 log_root = alloc_log_tree(trans, root->fs_info);
1464 if (IS_ERR(log_root))
1465 return PTR_ERR(log_root);
1466
1467 log_root->last_trans = trans->transid;
1468 log_root->root_key.offset = root->root_key.objectid;
1469
1470 inode_item = &log_root->root_item.inode;
1471 btrfs_set_stack_inode_generation(inode_item, 1);
1472 btrfs_set_stack_inode_size(inode_item, 3);
1473 btrfs_set_stack_inode_nlink(inode_item, 1);
1474 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1475 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1476
1477 btrfs_set_root_node(&log_root->root_item, log_root->node);
1478
1479 WARN_ON(root->log_root);
1480 root->log_root = log_root;
1481 root->log_transid = 0;
1482 root->log_transid_committed = -1;
1483 root->last_log_commit = 0;
1484 return 0;
1485 }
1486
1487 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1488 struct btrfs_key *key)
1489 {
1490 struct btrfs_root *root;
1491 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1492 struct btrfs_path *path;
1493 u64 generation;
1494 int ret;
1495
1496 path = btrfs_alloc_path();
1497 if (!path)
1498 return ERR_PTR(-ENOMEM);
1499
1500 root = btrfs_alloc_root(fs_info);
1501 if (!root) {
1502 ret = -ENOMEM;
1503 goto alloc_fail;
1504 }
1505
1506 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1507 tree_root->stripesize, root, fs_info, key->objectid);
1508
1509 ret = btrfs_find_root(tree_root, key, path,
1510 &root->root_item, &root->root_key);
1511 if (ret) {
1512 if (ret > 0)
1513 ret = -ENOENT;
1514 goto find_fail;
1515 }
1516
1517 generation = btrfs_root_generation(&root->root_item);
1518 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1519 generation);
1520 if (IS_ERR(root->node)) {
1521 ret = PTR_ERR(root->node);
1522 goto find_fail;
1523 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1524 ret = -EIO;
1525 free_extent_buffer(root->node);
1526 goto find_fail;
1527 }
1528 root->commit_root = btrfs_root_node(root);
1529 out:
1530 btrfs_free_path(path);
1531 return root;
1532
1533 find_fail:
1534 kfree(root);
1535 alloc_fail:
1536 root = ERR_PTR(ret);
1537 goto out;
1538 }
1539
1540 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1541 struct btrfs_key *location)
1542 {
1543 struct btrfs_root *root;
1544
1545 root = btrfs_read_tree_root(tree_root, location);
1546 if (IS_ERR(root))
1547 return root;
1548
1549 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1550 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1551 btrfs_check_and_init_root_item(&root->root_item);
1552 }
1553
1554 return root;
1555 }
1556
1557 int btrfs_init_fs_root(struct btrfs_root *root)
1558 {
1559 int ret;
1560 struct btrfs_subvolume_writers *writers;
1561
1562 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1563 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1564 GFP_NOFS);
1565 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1566 ret = -ENOMEM;
1567 goto fail;
1568 }
1569
1570 writers = btrfs_alloc_subvolume_writers();
1571 if (IS_ERR(writers)) {
1572 ret = PTR_ERR(writers);
1573 goto fail;
1574 }
1575 root->subv_writers = writers;
1576
1577 btrfs_init_free_ino_ctl(root);
1578 spin_lock_init(&root->ino_cache_lock);
1579 init_waitqueue_head(&root->ino_cache_wait);
1580
1581 ret = get_anon_bdev(&root->anon_dev);
1582 if (ret)
1583 goto free_writers;
1584 return 0;
1585
1586 free_writers:
1587 btrfs_free_subvolume_writers(root->subv_writers);
1588 fail:
1589 kfree(root->free_ino_ctl);
1590 kfree(root->free_ino_pinned);
1591 return ret;
1592 }
1593
1594 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1595 u64 root_id)
1596 {
1597 struct btrfs_root *root;
1598
1599 spin_lock(&fs_info->fs_roots_radix_lock);
1600 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1601 (unsigned long)root_id);
1602 spin_unlock(&fs_info->fs_roots_radix_lock);
1603 return root;
1604 }
1605
1606 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1607 struct btrfs_root *root)
1608 {
1609 int ret;
1610
1611 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1612 if (ret)
1613 return ret;
1614
1615 spin_lock(&fs_info->fs_roots_radix_lock);
1616 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1617 (unsigned long)root->root_key.objectid,
1618 root);
1619 if (ret == 0)
1620 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1621 spin_unlock(&fs_info->fs_roots_radix_lock);
1622 radix_tree_preload_end();
1623
1624 return ret;
1625 }
1626
1627 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1628 struct btrfs_key *location,
1629 bool check_ref)
1630 {
1631 struct btrfs_root *root;
1632 struct btrfs_path *path;
1633 struct btrfs_key key;
1634 int ret;
1635
1636 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1637 return fs_info->tree_root;
1638 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1639 return fs_info->extent_root;
1640 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1641 return fs_info->chunk_root;
1642 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1643 return fs_info->dev_root;
1644 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1645 return fs_info->csum_root;
1646 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1647 return fs_info->quota_root ? fs_info->quota_root :
1648 ERR_PTR(-ENOENT);
1649 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1650 return fs_info->uuid_root ? fs_info->uuid_root :
1651 ERR_PTR(-ENOENT);
1652 again:
1653 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1654 if (root) {
1655 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1656 return ERR_PTR(-ENOENT);
1657 return root;
1658 }
1659
1660 root = btrfs_read_fs_root(fs_info->tree_root, location);
1661 if (IS_ERR(root))
1662 return root;
1663
1664 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1665 ret = -ENOENT;
1666 goto fail;
1667 }
1668
1669 ret = btrfs_init_fs_root(root);
1670 if (ret)
1671 goto fail;
1672
1673 path = btrfs_alloc_path();
1674 if (!path) {
1675 ret = -ENOMEM;
1676 goto fail;
1677 }
1678 key.objectid = BTRFS_ORPHAN_OBJECTID;
1679 key.type = BTRFS_ORPHAN_ITEM_KEY;
1680 key.offset = location->objectid;
1681
1682 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1683 btrfs_free_path(path);
1684 if (ret < 0)
1685 goto fail;
1686 if (ret == 0)
1687 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1688
1689 ret = btrfs_insert_fs_root(fs_info, root);
1690 if (ret) {
1691 if (ret == -EEXIST) {
1692 free_fs_root(root);
1693 goto again;
1694 }
1695 goto fail;
1696 }
1697 return root;
1698 fail:
1699 free_fs_root(root);
1700 return ERR_PTR(ret);
1701 }
1702
1703 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1704 {
1705 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1706 int ret = 0;
1707 struct btrfs_device *device;
1708 struct backing_dev_info *bdi;
1709
1710 rcu_read_lock();
1711 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1712 if (!device->bdev)
1713 continue;
1714 bdi = blk_get_backing_dev_info(device->bdev);
1715 if (bdi_congested(bdi, bdi_bits)) {
1716 ret = 1;
1717 break;
1718 }
1719 }
1720 rcu_read_unlock();
1721 return ret;
1722 }
1723
1724 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1725 {
1726 int err;
1727
1728 err = bdi_setup_and_register(bdi, "btrfs");
1729 if (err)
1730 return err;
1731
1732 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1733 bdi->congested_fn = btrfs_congested_fn;
1734 bdi->congested_data = info;
1735 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1736 return 0;
1737 }
1738
1739 /*
1740 * called by the kthread helper functions to finally call the bio end_io
1741 * functions. This is where read checksum verification actually happens
1742 */
1743 static void end_workqueue_fn(struct btrfs_work *work)
1744 {
1745 struct bio *bio;
1746 struct btrfs_end_io_wq *end_io_wq;
1747
1748 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1749 bio = end_io_wq->bio;
1750
1751 bio->bi_error = end_io_wq->error;
1752 bio->bi_private = end_io_wq->private;
1753 bio->bi_end_io = end_io_wq->end_io;
1754 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1755 bio_endio(bio);
1756 }
1757
1758 static int cleaner_kthread(void *arg)
1759 {
1760 struct btrfs_root *root = arg;
1761 int again;
1762 struct btrfs_trans_handle *trans;
1763
1764 do {
1765 again = 0;
1766
1767 /* Make the cleaner go to sleep early. */
1768 if (btrfs_need_cleaner_sleep(root))
1769 goto sleep;
1770
1771 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1772 goto sleep;
1773
1774 /*
1775 * Avoid the problem that we change the status of the fs
1776 * during the above check and trylock.
1777 */
1778 if (btrfs_need_cleaner_sleep(root)) {
1779 mutex_unlock(&root->fs_info->cleaner_mutex);
1780 goto sleep;
1781 }
1782
1783 btrfs_run_delayed_iputs(root);
1784 again = btrfs_clean_one_deleted_snapshot(root);
1785 mutex_unlock(&root->fs_info->cleaner_mutex);
1786
1787 /*
1788 * The defragger has dealt with the R/O remount and umount,
1789 * needn't do anything special here.
1790 */
1791 btrfs_run_defrag_inodes(root->fs_info);
1792
1793 /*
1794 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1795 * with relocation (btrfs_relocate_chunk) and relocation
1796 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1797 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1798 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1799 * unused block groups.
1800 */
1801 btrfs_delete_unused_bgs(root->fs_info);
1802 sleep:
1803 if (!try_to_freeze() && !again) {
1804 set_current_state(TASK_INTERRUPTIBLE);
1805 if (!kthread_should_stop())
1806 schedule();
1807 __set_current_state(TASK_RUNNING);
1808 }
1809 } while (!kthread_should_stop());
1810
1811 /*
1812 * Transaction kthread is stopped before us and wakes us up.
1813 * However we might have started a new transaction and COWed some
1814 * tree blocks when deleting unused block groups for example. So
1815 * make sure we commit the transaction we started to have a clean
1816 * shutdown when evicting the btree inode - if it has dirty pages
1817 * when we do the final iput() on it, eviction will trigger a
1818 * writeback for it which will fail with null pointer dereferences
1819 * since work queues and other resources were already released and
1820 * destroyed by the time the iput/eviction/writeback is made.
1821 */
1822 trans = btrfs_attach_transaction(root);
1823 if (IS_ERR(trans)) {
1824 if (PTR_ERR(trans) != -ENOENT)
1825 btrfs_err(root->fs_info,
1826 "cleaner transaction attach returned %ld",
1827 PTR_ERR(trans));
1828 } else {
1829 int ret;
1830
1831 ret = btrfs_commit_transaction(trans, root);
1832 if (ret)
1833 btrfs_err(root->fs_info,
1834 "cleaner open transaction commit returned %d",
1835 ret);
1836 }
1837
1838 return 0;
1839 }
1840
1841 static int transaction_kthread(void *arg)
1842 {
1843 struct btrfs_root *root = arg;
1844 struct btrfs_trans_handle *trans;
1845 struct btrfs_transaction *cur;
1846 u64 transid;
1847 unsigned long now;
1848 unsigned long delay;
1849 bool cannot_commit;
1850
1851 do {
1852 cannot_commit = false;
1853 delay = HZ * root->fs_info->commit_interval;
1854 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1855
1856 spin_lock(&root->fs_info->trans_lock);
1857 cur = root->fs_info->running_transaction;
1858 if (!cur) {
1859 spin_unlock(&root->fs_info->trans_lock);
1860 goto sleep;
1861 }
1862
1863 now = get_seconds();
1864 if (cur->state < TRANS_STATE_BLOCKED &&
1865 (now < cur->start_time ||
1866 now - cur->start_time < root->fs_info->commit_interval)) {
1867 spin_unlock(&root->fs_info->trans_lock);
1868 delay = HZ * 5;
1869 goto sleep;
1870 }
1871 transid = cur->transid;
1872 spin_unlock(&root->fs_info->trans_lock);
1873
1874 /* If the file system is aborted, this will always fail. */
1875 trans = btrfs_attach_transaction(root);
1876 if (IS_ERR(trans)) {
1877 if (PTR_ERR(trans) != -ENOENT)
1878 cannot_commit = true;
1879 goto sleep;
1880 }
1881 if (transid == trans->transid) {
1882 btrfs_commit_transaction(trans, root);
1883 } else {
1884 btrfs_end_transaction(trans, root);
1885 }
1886 sleep:
1887 wake_up_process(root->fs_info->cleaner_kthread);
1888 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1889
1890 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1891 &root->fs_info->fs_state)))
1892 btrfs_cleanup_transaction(root);
1893 if (!try_to_freeze()) {
1894 set_current_state(TASK_INTERRUPTIBLE);
1895 if (!kthread_should_stop() &&
1896 (!btrfs_transaction_blocked(root->fs_info) ||
1897 cannot_commit))
1898 schedule_timeout(delay);
1899 __set_current_state(TASK_RUNNING);
1900 }
1901 } while (!kthread_should_stop());
1902 return 0;
1903 }
1904
1905 /*
1906 * this will find the highest generation in the array of
1907 * root backups. The index of the highest array is returned,
1908 * or -1 if we can't find anything.
1909 *
1910 * We check to make sure the array is valid by comparing the
1911 * generation of the latest root in the array with the generation
1912 * in the super block. If they don't match we pitch it.
1913 */
1914 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1915 {
1916 u64 cur;
1917 int newest_index = -1;
1918 struct btrfs_root_backup *root_backup;
1919 int i;
1920
1921 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1922 root_backup = info->super_copy->super_roots + i;
1923 cur = btrfs_backup_tree_root_gen(root_backup);
1924 if (cur == newest_gen)
1925 newest_index = i;
1926 }
1927
1928 /* check to see if we actually wrapped around */
1929 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1930 root_backup = info->super_copy->super_roots;
1931 cur = btrfs_backup_tree_root_gen(root_backup);
1932 if (cur == newest_gen)
1933 newest_index = 0;
1934 }
1935 return newest_index;
1936 }
1937
1938
1939 /*
1940 * find the oldest backup so we know where to store new entries
1941 * in the backup array. This will set the backup_root_index
1942 * field in the fs_info struct
1943 */
1944 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1945 u64 newest_gen)
1946 {
1947 int newest_index = -1;
1948
1949 newest_index = find_newest_super_backup(info, newest_gen);
1950 /* if there was garbage in there, just move along */
1951 if (newest_index == -1) {
1952 info->backup_root_index = 0;
1953 } else {
1954 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1955 }
1956 }
1957
1958 /*
1959 * copy all the root pointers into the super backup array.
1960 * this will bump the backup pointer by one when it is
1961 * done
1962 */
1963 static void backup_super_roots(struct btrfs_fs_info *info)
1964 {
1965 int next_backup;
1966 struct btrfs_root_backup *root_backup;
1967 int last_backup;
1968
1969 next_backup = info->backup_root_index;
1970 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971 BTRFS_NUM_BACKUP_ROOTS;
1972
1973 /*
1974 * just overwrite the last backup if we're at the same generation
1975 * this happens only at umount
1976 */
1977 root_backup = info->super_for_commit->super_roots + last_backup;
1978 if (btrfs_backup_tree_root_gen(root_backup) ==
1979 btrfs_header_generation(info->tree_root->node))
1980 next_backup = last_backup;
1981
1982 root_backup = info->super_for_commit->super_roots + next_backup;
1983
1984 /*
1985 * make sure all of our padding and empty slots get zero filled
1986 * regardless of which ones we use today
1987 */
1988 memset(root_backup, 0, sizeof(*root_backup));
1989
1990 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1991
1992 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1993 btrfs_set_backup_tree_root_gen(root_backup,
1994 btrfs_header_generation(info->tree_root->node));
1995
1996 btrfs_set_backup_tree_root_level(root_backup,
1997 btrfs_header_level(info->tree_root->node));
1998
1999 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2000 btrfs_set_backup_chunk_root_gen(root_backup,
2001 btrfs_header_generation(info->chunk_root->node));
2002 btrfs_set_backup_chunk_root_level(root_backup,
2003 btrfs_header_level(info->chunk_root->node));
2004
2005 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2006 btrfs_set_backup_extent_root_gen(root_backup,
2007 btrfs_header_generation(info->extent_root->node));
2008 btrfs_set_backup_extent_root_level(root_backup,
2009 btrfs_header_level(info->extent_root->node));
2010
2011 /*
2012 * we might commit during log recovery, which happens before we set
2013 * the fs_root. Make sure it is valid before we fill it in.
2014 */
2015 if (info->fs_root && info->fs_root->node) {
2016 btrfs_set_backup_fs_root(root_backup,
2017 info->fs_root->node->start);
2018 btrfs_set_backup_fs_root_gen(root_backup,
2019 btrfs_header_generation(info->fs_root->node));
2020 btrfs_set_backup_fs_root_level(root_backup,
2021 btrfs_header_level(info->fs_root->node));
2022 }
2023
2024 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2025 btrfs_set_backup_dev_root_gen(root_backup,
2026 btrfs_header_generation(info->dev_root->node));
2027 btrfs_set_backup_dev_root_level(root_backup,
2028 btrfs_header_level(info->dev_root->node));
2029
2030 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2031 btrfs_set_backup_csum_root_gen(root_backup,
2032 btrfs_header_generation(info->csum_root->node));
2033 btrfs_set_backup_csum_root_level(root_backup,
2034 btrfs_header_level(info->csum_root->node));
2035
2036 btrfs_set_backup_total_bytes(root_backup,
2037 btrfs_super_total_bytes(info->super_copy));
2038 btrfs_set_backup_bytes_used(root_backup,
2039 btrfs_super_bytes_used(info->super_copy));
2040 btrfs_set_backup_num_devices(root_backup,
2041 btrfs_super_num_devices(info->super_copy));
2042
2043 /*
2044 * if we don't copy this out to the super_copy, it won't get remembered
2045 * for the next commit
2046 */
2047 memcpy(&info->super_copy->super_roots,
2048 &info->super_for_commit->super_roots,
2049 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2050 }
2051
2052 /*
2053 * this copies info out of the root backup array and back into
2054 * the in-memory super block. It is meant to help iterate through
2055 * the array, so you send it the number of backups you've already
2056 * tried and the last backup index you used.
2057 *
2058 * this returns -1 when it has tried all the backups
2059 */
2060 static noinline int next_root_backup(struct btrfs_fs_info *info,
2061 struct btrfs_super_block *super,
2062 int *num_backups_tried, int *backup_index)
2063 {
2064 struct btrfs_root_backup *root_backup;
2065 int newest = *backup_index;
2066
2067 if (*num_backups_tried == 0) {
2068 u64 gen = btrfs_super_generation(super);
2069
2070 newest = find_newest_super_backup(info, gen);
2071 if (newest == -1)
2072 return -1;
2073
2074 *backup_index = newest;
2075 *num_backups_tried = 1;
2076 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2077 /* we've tried all the backups, all done */
2078 return -1;
2079 } else {
2080 /* jump to the next oldest backup */
2081 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2082 BTRFS_NUM_BACKUP_ROOTS;
2083 *backup_index = newest;
2084 *num_backups_tried += 1;
2085 }
2086 root_backup = super->super_roots + newest;
2087
2088 btrfs_set_super_generation(super,
2089 btrfs_backup_tree_root_gen(root_backup));
2090 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2091 btrfs_set_super_root_level(super,
2092 btrfs_backup_tree_root_level(root_backup));
2093 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2094
2095 /*
2096 * fixme: the total bytes and num_devices need to match or we should
2097 * need a fsck
2098 */
2099 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2100 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2101 return 0;
2102 }
2103
2104 /* helper to cleanup workers */
2105 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2106 {
2107 btrfs_destroy_workqueue(fs_info->fixup_workers);
2108 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2109 btrfs_destroy_workqueue(fs_info->workers);
2110 btrfs_destroy_workqueue(fs_info->endio_workers);
2111 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2112 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2113 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2114 btrfs_destroy_workqueue(fs_info->rmw_workers);
2115 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2116 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2117 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2118 btrfs_destroy_workqueue(fs_info->submit_workers);
2119 btrfs_destroy_workqueue(fs_info->delayed_workers);
2120 btrfs_destroy_workqueue(fs_info->caching_workers);
2121 btrfs_destroy_workqueue(fs_info->readahead_workers);
2122 btrfs_destroy_workqueue(fs_info->flush_workers);
2123 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2124 btrfs_destroy_workqueue(fs_info->extent_workers);
2125 }
2126
2127 static void free_root_extent_buffers(struct btrfs_root *root)
2128 {
2129 if (root) {
2130 free_extent_buffer(root->node);
2131 free_extent_buffer(root->commit_root);
2132 root->node = NULL;
2133 root->commit_root = NULL;
2134 }
2135 }
2136
2137 /* helper to cleanup tree roots */
2138 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2139 {
2140 free_root_extent_buffers(info->tree_root);
2141
2142 free_root_extent_buffers(info->dev_root);
2143 free_root_extent_buffers(info->extent_root);
2144 free_root_extent_buffers(info->csum_root);
2145 free_root_extent_buffers(info->quota_root);
2146 free_root_extent_buffers(info->uuid_root);
2147 if (chunk_root)
2148 free_root_extent_buffers(info->chunk_root);
2149 }
2150
2151 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2152 {
2153 int ret;
2154 struct btrfs_root *gang[8];
2155 int i;
2156
2157 while (!list_empty(&fs_info->dead_roots)) {
2158 gang[0] = list_entry(fs_info->dead_roots.next,
2159 struct btrfs_root, root_list);
2160 list_del(&gang[0]->root_list);
2161
2162 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2163 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2164 } else {
2165 free_extent_buffer(gang[0]->node);
2166 free_extent_buffer(gang[0]->commit_root);
2167 btrfs_put_fs_root(gang[0]);
2168 }
2169 }
2170
2171 while (1) {
2172 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2173 (void **)gang, 0,
2174 ARRAY_SIZE(gang));
2175 if (!ret)
2176 break;
2177 for (i = 0; i < ret; i++)
2178 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2179 }
2180
2181 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2182 btrfs_free_log_root_tree(NULL, fs_info);
2183 btrfs_destroy_pinned_extent(fs_info->tree_root,
2184 fs_info->pinned_extents);
2185 }
2186 }
2187
2188 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2189 {
2190 mutex_init(&fs_info->scrub_lock);
2191 atomic_set(&fs_info->scrubs_running, 0);
2192 atomic_set(&fs_info->scrub_pause_req, 0);
2193 atomic_set(&fs_info->scrubs_paused, 0);
2194 atomic_set(&fs_info->scrub_cancel_req, 0);
2195 init_waitqueue_head(&fs_info->scrub_pause_wait);
2196 fs_info->scrub_workers_refcnt = 0;
2197 }
2198
2199 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2200 {
2201 spin_lock_init(&fs_info->balance_lock);
2202 mutex_init(&fs_info->balance_mutex);
2203 atomic_set(&fs_info->balance_running, 0);
2204 atomic_set(&fs_info->balance_pause_req, 0);
2205 atomic_set(&fs_info->balance_cancel_req, 0);
2206 fs_info->balance_ctl = NULL;
2207 init_waitqueue_head(&fs_info->balance_wait_q);
2208 }
2209
2210 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2211 struct btrfs_root *tree_root)
2212 {
2213 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2214 set_nlink(fs_info->btree_inode, 1);
2215 /*
2216 * we set the i_size on the btree inode to the max possible int.
2217 * the real end of the address space is determined by all of
2218 * the devices in the system
2219 */
2220 fs_info->btree_inode->i_size = OFFSET_MAX;
2221 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2222
2223 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2224 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2225 fs_info->btree_inode->i_mapping);
2226 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2227 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2228
2229 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2230
2231 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2232 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2233 sizeof(struct btrfs_key));
2234 set_bit(BTRFS_INODE_DUMMY,
2235 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2236 btrfs_insert_inode_hash(fs_info->btree_inode);
2237 }
2238
2239 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2240 {
2241 fs_info->dev_replace.lock_owner = 0;
2242 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2243 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2244 mutex_init(&fs_info->dev_replace.lock_management_lock);
2245 mutex_init(&fs_info->dev_replace.lock);
2246 init_waitqueue_head(&fs_info->replace_wait);
2247 }
2248
2249 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2250 {
2251 spin_lock_init(&fs_info->qgroup_lock);
2252 mutex_init(&fs_info->qgroup_ioctl_lock);
2253 fs_info->qgroup_tree = RB_ROOT;
2254 fs_info->qgroup_op_tree = RB_ROOT;
2255 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2256 fs_info->qgroup_seq = 1;
2257 fs_info->quota_enabled = 0;
2258 fs_info->pending_quota_state = 0;
2259 fs_info->qgroup_ulist = NULL;
2260 mutex_init(&fs_info->qgroup_rescan_lock);
2261 }
2262
2263 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2264 struct btrfs_fs_devices *fs_devices)
2265 {
2266 int max_active = fs_info->thread_pool_size;
2267 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2268
2269 fs_info->workers =
2270 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2271 max_active, 16);
2272
2273 fs_info->delalloc_workers =
2274 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2275
2276 fs_info->flush_workers =
2277 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2278
2279 fs_info->caching_workers =
2280 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2281
2282 /*
2283 * a higher idle thresh on the submit workers makes it much more
2284 * likely that bios will be send down in a sane order to the
2285 * devices
2286 */
2287 fs_info->submit_workers =
2288 btrfs_alloc_workqueue("submit", flags,
2289 min_t(u64, fs_devices->num_devices,
2290 max_active), 64);
2291
2292 fs_info->fixup_workers =
2293 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2294
2295 /*
2296 * endios are largely parallel and should have a very
2297 * low idle thresh
2298 */
2299 fs_info->endio_workers =
2300 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2301 fs_info->endio_meta_workers =
2302 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2303 fs_info->endio_meta_write_workers =
2304 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2305 fs_info->endio_raid56_workers =
2306 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2307 fs_info->endio_repair_workers =
2308 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2309 fs_info->rmw_workers =
2310 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2311 fs_info->endio_write_workers =
2312 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2313 fs_info->endio_freespace_worker =
2314 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2315 fs_info->delayed_workers =
2316 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2317 fs_info->readahead_workers =
2318 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2319 fs_info->qgroup_rescan_workers =
2320 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2321 fs_info->extent_workers =
2322 btrfs_alloc_workqueue("extent-refs", flags,
2323 min_t(u64, fs_devices->num_devices,
2324 max_active), 8);
2325
2326 if (!(fs_info->workers && fs_info->delalloc_workers &&
2327 fs_info->submit_workers && fs_info->flush_workers &&
2328 fs_info->endio_workers && fs_info->endio_meta_workers &&
2329 fs_info->endio_meta_write_workers &&
2330 fs_info->endio_repair_workers &&
2331 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2332 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2333 fs_info->caching_workers && fs_info->readahead_workers &&
2334 fs_info->fixup_workers && fs_info->delayed_workers &&
2335 fs_info->extent_workers &&
2336 fs_info->qgroup_rescan_workers)) {
2337 return -ENOMEM;
2338 }
2339
2340 return 0;
2341 }
2342
2343 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2344 struct btrfs_fs_devices *fs_devices)
2345 {
2346 int ret;
2347 struct btrfs_root *tree_root = fs_info->tree_root;
2348 struct btrfs_root *log_tree_root;
2349 struct btrfs_super_block *disk_super = fs_info->super_copy;
2350 u64 bytenr = btrfs_super_log_root(disk_super);
2351
2352 if (fs_devices->rw_devices == 0) {
2353 btrfs_warn(fs_info, "log replay required on RO media");
2354 return -EIO;
2355 }
2356
2357 log_tree_root = btrfs_alloc_root(fs_info);
2358 if (!log_tree_root)
2359 return -ENOMEM;
2360
2361 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2362 tree_root->stripesize, log_tree_root, fs_info,
2363 BTRFS_TREE_LOG_OBJECTID);
2364
2365 log_tree_root->node = read_tree_block(tree_root, bytenr,
2366 fs_info->generation + 1);
2367 if (IS_ERR(log_tree_root->node)) {
2368 btrfs_warn(fs_info, "failed to read log tree");
2369 ret = PTR_ERR(log_tree_root->node);
2370 kfree(log_tree_root);
2371 return ret;
2372 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2373 btrfs_err(fs_info, "failed to read log tree");
2374 free_extent_buffer(log_tree_root->node);
2375 kfree(log_tree_root);
2376 return -EIO;
2377 }
2378 /* returns with log_tree_root freed on success */
2379 ret = btrfs_recover_log_trees(log_tree_root);
2380 if (ret) {
2381 btrfs_std_error(tree_root->fs_info, ret,
2382 "Failed to recover log tree");
2383 free_extent_buffer(log_tree_root->node);
2384 kfree(log_tree_root);
2385 return ret;
2386 }
2387
2388 if (fs_info->sb->s_flags & MS_RDONLY) {
2389 ret = btrfs_commit_super(tree_root);
2390 if (ret)
2391 return ret;
2392 }
2393
2394 return 0;
2395 }
2396
2397 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2398 struct btrfs_root *tree_root)
2399 {
2400 struct btrfs_root *root;
2401 struct btrfs_key location;
2402 int ret;
2403
2404 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2405 location.type = BTRFS_ROOT_ITEM_KEY;
2406 location.offset = 0;
2407
2408 root = btrfs_read_tree_root(tree_root, &location);
2409 if (IS_ERR(root))
2410 return PTR_ERR(root);
2411 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2412 fs_info->extent_root = root;
2413
2414 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2415 root = btrfs_read_tree_root(tree_root, &location);
2416 if (IS_ERR(root))
2417 return PTR_ERR(root);
2418 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2419 fs_info->dev_root = root;
2420 btrfs_init_devices_late(fs_info);
2421
2422 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2423 root = btrfs_read_tree_root(tree_root, &location);
2424 if (IS_ERR(root))
2425 return PTR_ERR(root);
2426 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2427 fs_info->csum_root = root;
2428
2429 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2430 root = btrfs_read_tree_root(tree_root, &location);
2431 if (!IS_ERR(root)) {
2432 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2433 fs_info->quota_enabled = 1;
2434 fs_info->pending_quota_state = 1;
2435 fs_info->quota_root = root;
2436 }
2437
2438 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2439 root = btrfs_read_tree_root(tree_root, &location);
2440 if (IS_ERR(root)) {
2441 ret = PTR_ERR(root);
2442 if (ret != -ENOENT)
2443 return ret;
2444 } else {
2445 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2446 fs_info->uuid_root = root;
2447 }
2448
2449 return 0;
2450 }
2451
2452 int open_ctree(struct super_block *sb,
2453 struct btrfs_fs_devices *fs_devices,
2454 char *options)
2455 {
2456 u32 sectorsize;
2457 u32 nodesize;
2458 u32 stripesize;
2459 u64 generation;
2460 u64 features;
2461 struct btrfs_key location;
2462 struct buffer_head *bh;
2463 struct btrfs_super_block *disk_super;
2464 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2465 struct btrfs_root *tree_root;
2466 struct btrfs_root *chunk_root;
2467 int ret;
2468 int err = -EINVAL;
2469 int num_backups_tried = 0;
2470 int backup_index = 0;
2471 int max_active;
2472
2473 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2474 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2475 if (!tree_root || !chunk_root) {
2476 err = -ENOMEM;
2477 goto fail;
2478 }
2479
2480 ret = init_srcu_struct(&fs_info->subvol_srcu);
2481 if (ret) {
2482 err = ret;
2483 goto fail;
2484 }
2485
2486 ret = setup_bdi(fs_info, &fs_info->bdi);
2487 if (ret) {
2488 err = ret;
2489 goto fail_srcu;
2490 }
2491
2492 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2493 if (ret) {
2494 err = ret;
2495 goto fail_bdi;
2496 }
2497 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2498 (1 + ilog2(nr_cpu_ids));
2499
2500 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2501 if (ret) {
2502 err = ret;
2503 goto fail_dirty_metadata_bytes;
2504 }
2505
2506 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2507 if (ret) {
2508 err = ret;
2509 goto fail_delalloc_bytes;
2510 }
2511
2512 fs_info->btree_inode = new_inode(sb);
2513 if (!fs_info->btree_inode) {
2514 err = -ENOMEM;
2515 goto fail_bio_counter;
2516 }
2517
2518 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2519
2520 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2521 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2522 INIT_LIST_HEAD(&fs_info->trans_list);
2523 INIT_LIST_HEAD(&fs_info->dead_roots);
2524 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2525 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2526 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2527 spin_lock_init(&fs_info->delalloc_root_lock);
2528 spin_lock_init(&fs_info->trans_lock);
2529 spin_lock_init(&fs_info->fs_roots_radix_lock);
2530 spin_lock_init(&fs_info->delayed_iput_lock);
2531 spin_lock_init(&fs_info->defrag_inodes_lock);
2532 spin_lock_init(&fs_info->free_chunk_lock);
2533 spin_lock_init(&fs_info->tree_mod_seq_lock);
2534 spin_lock_init(&fs_info->super_lock);
2535 spin_lock_init(&fs_info->qgroup_op_lock);
2536 spin_lock_init(&fs_info->buffer_lock);
2537 spin_lock_init(&fs_info->unused_bgs_lock);
2538 rwlock_init(&fs_info->tree_mod_log_lock);
2539 mutex_init(&fs_info->unused_bg_unpin_mutex);
2540 mutex_init(&fs_info->delete_unused_bgs_mutex);
2541 mutex_init(&fs_info->reloc_mutex);
2542 mutex_init(&fs_info->delalloc_root_mutex);
2543 seqlock_init(&fs_info->profiles_lock);
2544 init_rwsem(&fs_info->delayed_iput_sem);
2545
2546 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2547 INIT_LIST_HEAD(&fs_info->space_info);
2548 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2549 INIT_LIST_HEAD(&fs_info->unused_bgs);
2550 btrfs_mapping_init(&fs_info->mapping_tree);
2551 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2552 BTRFS_BLOCK_RSV_GLOBAL);
2553 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2554 BTRFS_BLOCK_RSV_DELALLOC);
2555 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2556 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2557 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2558 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2559 BTRFS_BLOCK_RSV_DELOPS);
2560 atomic_set(&fs_info->nr_async_submits, 0);
2561 atomic_set(&fs_info->async_delalloc_pages, 0);
2562 atomic_set(&fs_info->async_submit_draining, 0);
2563 atomic_set(&fs_info->nr_async_bios, 0);
2564 atomic_set(&fs_info->defrag_running, 0);
2565 atomic_set(&fs_info->qgroup_op_seq, 0);
2566 atomic64_set(&fs_info->tree_mod_seq, 0);
2567 fs_info->sb = sb;
2568 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2569 fs_info->metadata_ratio = 0;
2570 fs_info->defrag_inodes = RB_ROOT;
2571 fs_info->free_chunk_space = 0;
2572 fs_info->tree_mod_log = RB_ROOT;
2573 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2574 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2575 /* readahead state */
2576 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2577 spin_lock_init(&fs_info->reada_lock);
2578
2579 fs_info->thread_pool_size = min_t(unsigned long,
2580 num_online_cpus() + 2, 8);
2581
2582 INIT_LIST_HEAD(&fs_info->ordered_roots);
2583 spin_lock_init(&fs_info->ordered_root_lock);
2584 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2585 GFP_NOFS);
2586 if (!fs_info->delayed_root) {
2587 err = -ENOMEM;
2588 goto fail_iput;
2589 }
2590 btrfs_init_delayed_root(fs_info->delayed_root);
2591
2592 btrfs_init_scrub(fs_info);
2593 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2594 fs_info->check_integrity_print_mask = 0;
2595 #endif
2596 btrfs_init_balance(fs_info);
2597 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2598
2599 sb->s_blocksize = 4096;
2600 sb->s_blocksize_bits = blksize_bits(4096);
2601 sb->s_bdi = &fs_info->bdi;
2602
2603 btrfs_init_btree_inode(fs_info, tree_root);
2604
2605 spin_lock_init(&fs_info->block_group_cache_lock);
2606 fs_info->block_group_cache_tree = RB_ROOT;
2607 fs_info->first_logical_byte = (u64)-1;
2608
2609 extent_io_tree_init(&fs_info->freed_extents[0],
2610 fs_info->btree_inode->i_mapping);
2611 extent_io_tree_init(&fs_info->freed_extents[1],
2612 fs_info->btree_inode->i_mapping);
2613 fs_info->pinned_extents = &fs_info->freed_extents[0];
2614 fs_info->do_barriers = 1;
2615
2616
2617 mutex_init(&fs_info->ordered_operations_mutex);
2618 mutex_init(&fs_info->tree_log_mutex);
2619 mutex_init(&fs_info->chunk_mutex);
2620 mutex_init(&fs_info->transaction_kthread_mutex);
2621 mutex_init(&fs_info->cleaner_mutex);
2622 mutex_init(&fs_info->volume_mutex);
2623 mutex_init(&fs_info->ro_block_group_mutex);
2624 init_rwsem(&fs_info->commit_root_sem);
2625 init_rwsem(&fs_info->cleanup_work_sem);
2626 init_rwsem(&fs_info->subvol_sem);
2627 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2628
2629 btrfs_init_dev_replace_locks(fs_info);
2630 btrfs_init_qgroup(fs_info);
2631
2632 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2633 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2634
2635 init_waitqueue_head(&fs_info->transaction_throttle);
2636 init_waitqueue_head(&fs_info->transaction_wait);
2637 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2638 init_waitqueue_head(&fs_info->async_submit_wait);
2639
2640 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2641
2642 ret = btrfs_alloc_stripe_hash_table(fs_info);
2643 if (ret) {
2644 err = ret;
2645 goto fail_alloc;
2646 }
2647
2648 __setup_root(4096, 4096, 4096, tree_root,
2649 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2650
2651 invalidate_bdev(fs_devices->latest_bdev);
2652
2653 /*
2654 * Read super block and check the signature bytes only
2655 */
2656 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2657 if (IS_ERR(bh)) {
2658 err = PTR_ERR(bh);
2659 goto fail_alloc;
2660 }
2661
2662 /*
2663 * We want to check superblock checksum, the type is stored inside.
2664 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2665 */
2666 if (btrfs_check_super_csum(bh->b_data)) {
2667 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2668 err = -EINVAL;
2669 goto fail_alloc;
2670 }
2671
2672 /*
2673 * super_copy is zeroed at allocation time and we never touch the
2674 * following bytes up to INFO_SIZE, the checksum is calculated from
2675 * the whole block of INFO_SIZE
2676 */
2677 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2678 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2679 sizeof(*fs_info->super_for_commit));
2680 brelse(bh);
2681
2682 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2683
2684 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2685 if (ret) {
2686 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2687 err = -EINVAL;
2688 goto fail_alloc;
2689 }
2690
2691 disk_super = fs_info->super_copy;
2692 if (!btrfs_super_root(disk_super))
2693 goto fail_alloc;
2694
2695 /* check FS state, whether FS is broken. */
2696 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2697 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2698
2699 /*
2700 * run through our array of backup supers and setup
2701 * our ring pointer to the oldest one
2702 */
2703 generation = btrfs_super_generation(disk_super);
2704 find_oldest_super_backup(fs_info, generation);
2705
2706 /*
2707 * In the long term, we'll store the compression type in the super
2708 * block, and it'll be used for per file compression control.
2709 */
2710 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2711
2712 ret = btrfs_parse_options(tree_root, options);
2713 if (ret) {
2714 err = ret;
2715 goto fail_alloc;
2716 }
2717
2718 features = btrfs_super_incompat_flags(disk_super) &
2719 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2720 if (features) {
2721 printk(KERN_ERR "BTRFS: couldn't mount because of "
2722 "unsupported optional features (%Lx).\n",
2723 features);
2724 err = -EINVAL;
2725 goto fail_alloc;
2726 }
2727
2728 /*
2729 * Leafsize and nodesize were always equal, this is only a sanity check.
2730 */
2731 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2732 btrfs_super_nodesize(disk_super)) {
2733 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2734 "blocksizes don't match. node %d leaf %d\n",
2735 btrfs_super_nodesize(disk_super),
2736 le32_to_cpu(disk_super->__unused_leafsize));
2737 err = -EINVAL;
2738 goto fail_alloc;
2739 }
2740 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2741 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2742 "blocksize (%d) was too large\n",
2743 btrfs_super_nodesize(disk_super));
2744 err = -EINVAL;
2745 goto fail_alloc;
2746 }
2747
2748 features = btrfs_super_incompat_flags(disk_super);
2749 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2750 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2751 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2752
2753 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2754 printk(KERN_INFO "BTRFS: has skinny extents\n");
2755
2756 /*
2757 * flag our filesystem as having big metadata blocks if
2758 * they are bigger than the page size
2759 */
2760 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2761 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2762 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2763 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2764 }
2765
2766 nodesize = btrfs_super_nodesize(disk_super);
2767 sectorsize = btrfs_super_sectorsize(disk_super);
2768 stripesize = btrfs_super_stripesize(disk_super);
2769 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2770 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2771
2772 /*
2773 * mixed block groups end up with duplicate but slightly offset
2774 * extent buffers for the same range. It leads to corruptions
2775 */
2776 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2777 (sectorsize != nodesize)) {
2778 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2779 "are not allowed for mixed block groups on %s\n",
2780 sb->s_id);
2781 goto fail_alloc;
2782 }
2783
2784 /*
2785 * Needn't use the lock because there is no other task which will
2786 * update the flag.
2787 */
2788 btrfs_set_super_incompat_flags(disk_super, features);
2789
2790 features = btrfs_super_compat_ro_flags(disk_super) &
2791 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2792 if (!(sb->s_flags & MS_RDONLY) && features) {
2793 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2794 "unsupported option features (%Lx).\n",
2795 features);
2796 err = -EINVAL;
2797 goto fail_alloc;
2798 }
2799
2800 max_active = fs_info->thread_pool_size;
2801
2802 ret = btrfs_init_workqueues(fs_info, fs_devices);
2803 if (ret) {
2804 err = ret;
2805 goto fail_sb_buffer;
2806 }
2807
2808 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2809 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2810 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2811
2812 tree_root->nodesize = nodesize;
2813 tree_root->sectorsize = sectorsize;
2814 tree_root->stripesize = stripesize;
2815
2816 sb->s_blocksize = sectorsize;
2817 sb->s_blocksize_bits = blksize_bits(sectorsize);
2818
2819 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2820 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2821 goto fail_sb_buffer;
2822 }
2823
2824 if (sectorsize != PAGE_SIZE) {
2825 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2826 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2827 goto fail_sb_buffer;
2828 }
2829
2830 mutex_lock(&fs_info->chunk_mutex);
2831 ret = btrfs_read_sys_array(tree_root);
2832 mutex_unlock(&fs_info->chunk_mutex);
2833 if (ret) {
2834 printk(KERN_ERR "BTRFS: failed to read the system "
2835 "array on %s\n", sb->s_id);
2836 goto fail_sb_buffer;
2837 }
2838
2839 generation = btrfs_super_chunk_root_generation(disk_super);
2840
2841 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2842 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2843
2844 chunk_root->node = read_tree_block(chunk_root,
2845 btrfs_super_chunk_root(disk_super),
2846 generation);
2847 if (IS_ERR(chunk_root->node) ||
2848 !extent_buffer_uptodate(chunk_root->node)) {
2849 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2850 sb->s_id);
2851 if (!IS_ERR(chunk_root->node))
2852 free_extent_buffer(chunk_root->node);
2853 chunk_root->node = NULL;
2854 goto fail_tree_roots;
2855 }
2856 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2857 chunk_root->commit_root = btrfs_root_node(chunk_root);
2858
2859 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2860 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2861
2862 ret = btrfs_read_chunk_tree(chunk_root);
2863 if (ret) {
2864 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2865 sb->s_id);
2866 goto fail_tree_roots;
2867 }
2868
2869 /*
2870 * keep the device that is marked to be the target device for the
2871 * dev_replace procedure
2872 */
2873 btrfs_close_extra_devices(fs_devices, 0);
2874
2875 if (!fs_devices->latest_bdev) {
2876 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2877 sb->s_id);
2878 goto fail_tree_roots;
2879 }
2880
2881 retry_root_backup:
2882 generation = btrfs_super_generation(disk_super);
2883
2884 tree_root->node = read_tree_block(tree_root,
2885 btrfs_super_root(disk_super),
2886 generation);
2887 if (IS_ERR(tree_root->node) ||
2888 !extent_buffer_uptodate(tree_root->node)) {
2889 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2890 sb->s_id);
2891 if (!IS_ERR(tree_root->node))
2892 free_extent_buffer(tree_root->node);
2893 tree_root->node = NULL;
2894 goto recovery_tree_root;
2895 }
2896
2897 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2898 tree_root->commit_root = btrfs_root_node(tree_root);
2899 btrfs_set_root_refs(&tree_root->root_item, 1);
2900
2901 ret = btrfs_read_roots(fs_info, tree_root);
2902 if (ret)
2903 goto recovery_tree_root;
2904
2905 fs_info->generation = generation;
2906 fs_info->last_trans_committed = generation;
2907
2908 ret = btrfs_recover_balance(fs_info);
2909 if (ret) {
2910 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2911 goto fail_block_groups;
2912 }
2913
2914 ret = btrfs_init_dev_stats(fs_info);
2915 if (ret) {
2916 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2917 ret);
2918 goto fail_block_groups;
2919 }
2920
2921 ret = btrfs_init_dev_replace(fs_info);
2922 if (ret) {
2923 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2924 goto fail_block_groups;
2925 }
2926
2927 btrfs_close_extra_devices(fs_devices, 1);
2928
2929 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2930 if (ret) {
2931 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2932 goto fail_block_groups;
2933 }
2934
2935 ret = btrfs_sysfs_add_device(fs_devices);
2936 if (ret) {
2937 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2938 goto fail_fsdev_sysfs;
2939 }
2940
2941 ret = btrfs_sysfs_add_mounted(fs_info);
2942 if (ret) {
2943 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2944 goto fail_fsdev_sysfs;
2945 }
2946
2947 ret = btrfs_init_space_info(fs_info);
2948 if (ret) {
2949 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2950 goto fail_sysfs;
2951 }
2952
2953 ret = btrfs_read_block_groups(fs_info->extent_root);
2954 if (ret) {
2955 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2956 goto fail_sysfs;
2957 }
2958 fs_info->num_tolerated_disk_barrier_failures =
2959 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2960 if (fs_info->fs_devices->missing_devices >
2961 fs_info->num_tolerated_disk_barrier_failures &&
2962 !(sb->s_flags & MS_RDONLY)) {
2963 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2964 fs_info->fs_devices->missing_devices,
2965 fs_info->num_tolerated_disk_barrier_failures);
2966 goto fail_sysfs;
2967 }
2968
2969 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2970 "btrfs-cleaner");
2971 if (IS_ERR(fs_info->cleaner_kthread))
2972 goto fail_sysfs;
2973
2974 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2975 tree_root,
2976 "btrfs-transaction");
2977 if (IS_ERR(fs_info->transaction_kthread))
2978 goto fail_cleaner;
2979
2980 if (!btrfs_test_opt(tree_root, SSD) &&
2981 !btrfs_test_opt(tree_root, NOSSD) &&
2982 !fs_info->fs_devices->rotating) {
2983 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2984 "mode\n");
2985 btrfs_set_opt(fs_info->mount_opt, SSD);
2986 }
2987
2988 /*
2989 * Mount does not set all options immediatelly, we can do it now and do
2990 * not have to wait for transaction commit
2991 */
2992 btrfs_apply_pending_changes(fs_info);
2993
2994 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2995 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2996 ret = btrfsic_mount(tree_root, fs_devices,
2997 btrfs_test_opt(tree_root,
2998 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2999 1 : 0,
3000 fs_info->check_integrity_print_mask);
3001 if (ret)
3002 printk(KERN_WARNING "BTRFS: failed to initialize"
3003 " integrity check module %s\n", sb->s_id);
3004 }
3005 #endif
3006 ret = btrfs_read_qgroup_config(fs_info);
3007 if (ret)
3008 goto fail_trans_kthread;
3009
3010 /* do not make disk changes in broken FS */
3011 if (btrfs_super_log_root(disk_super) != 0) {
3012 ret = btrfs_replay_log(fs_info, fs_devices);
3013 if (ret) {
3014 err = ret;
3015 goto fail_qgroup;
3016 }
3017 }
3018
3019 ret = btrfs_find_orphan_roots(tree_root);
3020 if (ret)
3021 goto fail_qgroup;
3022
3023 if (!(sb->s_flags & MS_RDONLY)) {
3024 ret = btrfs_cleanup_fs_roots(fs_info);
3025 if (ret)
3026 goto fail_qgroup;
3027
3028 mutex_lock(&fs_info->cleaner_mutex);
3029 ret = btrfs_recover_relocation(tree_root);
3030 mutex_unlock(&fs_info->cleaner_mutex);
3031 if (ret < 0) {
3032 printk(KERN_WARNING
3033 "BTRFS: failed to recover relocation\n");
3034 err = -EINVAL;
3035 goto fail_qgroup;
3036 }
3037 }
3038
3039 location.objectid = BTRFS_FS_TREE_OBJECTID;
3040 location.type = BTRFS_ROOT_ITEM_KEY;
3041 location.offset = 0;
3042
3043 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3044 if (IS_ERR(fs_info->fs_root)) {
3045 err = PTR_ERR(fs_info->fs_root);
3046 goto fail_qgroup;
3047 }
3048
3049 if (sb->s_flags & MS_RDONLY)
3050 return 0;
3051
3052 down_read(&fs_info->cleanup_work_sem);
3053 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3054 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3055 up_read(&fs_info->cleanup_work_sem);
3056 close_ctree(tree_root);
3057 return ret;
3058 }
3059 up_read(&fs_info->cleanup_work_sem);
3060
3061 ret = btrfs_resume_balance_async(fs_info);
3062 if (ret) {
3063 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3064 close_ctree(tree_root);
3065 return ret;
3066 }
3067
3068 ret = btrfs_resume_dev_replace_async(fs_info);
3069 if (ret) {
3070 pr_warn("BTRFS: failed to resume dev_replace\n");
3071 close_ctree(tree_root);
3072 return ret;
3073 }
3074
3075 btrfs_qgroup_rescan_resume(fs_info);
3076
3077 if (!fs_info->uuid_root) {
3078 pr_info("BTRFS: creating UUID tree\n");
3079 ret = btrfs_create_uuid_tree(fs_info);
3080 if (ret) {
3081 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3082 ret);
3083 close_ctree(tree_root);
3084 return ret;
3085 }
3086 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3087 fs_info->generation !=
3088 btrfs_super_uuid_tree_generation(disk_super)) {
3089 pr_info("BTRFS: checking UUID tree\n");
3090 ret = btrfs_check_uuid_tree(fs_info);
3091 if (ret) {
3092 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3093 ret);
3094 close_ctree(tree_root);
3095 return ret;
3096 }
3097 } else {
3098 fs_info->update_uuid_tree_gen = 1;
3099 }
3100
3101 fs_info->open = 1;
3102
3103 return 0;
3104
3105 fail_qgroup:
3106 btrfs_free_qgroup_config(fs_info);
3107 fail_trans_kthread:
3108 kthread_stop(fs_info->transaction_kthread);
3109 btrfs_cleanup_transaction(fs_info->tree_root);
3110 btrfs_free_fs_roots(fs_info);
3111 fail_cleaner:
3112 kthread_stop(fs_info->cleaner_kthread);
3113
3114 /*
3115 * make sure we're done with the btree inode before we stop our
3116 * kthreads
3117 */
3118 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3119
3120 fail_sysfs:
3121 btrfs_sysfs_remove_mounted(fs_info);
3122
3123 fail_fsdev_sysfs:
3124 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3125
3126 fail_block_groups:
3127 btrfs_put_block_group_cache(fs_info);
3128 btrfs_free_block_groups(fs_info);
3129
3130 fail_tree_roots:
3131 free_root_pointers(fs_info, 1);
3132 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3133
3134 fail_sb_buffer:
3135 btrfs_stop_all_workers(fs_info);
3136 fail_alloc:
3137 fail_iput:
3138 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3139
3140 iput(fs_info->btree_inode);
3141 fail_bio_counter:
3142 percpu_counter_destroy(&fs_info->bio_counter);
3143 fail_delalloc_bytes:
3144 percpu_counter_destroy(&fs_info->delalloc_bytes);
3145 fail_dirty_metadata_bytes:
3146 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3147 fail_bdi:
3148 bdi_destroy(&fs_info->bdi);
3149 fail_srcu:
3150 cleanup_srcu_struct(&fs_info->subvol_srcu);
3151 fail:
3152 btrfs_free_stripe_hash_table(fs_info);
3153 btrfs_close_devices(fs_info->fs_devices);
3154 return err;
3155
3156 recovery_tree_root:
3157 if (!btrfs_test_opt(tree_root, RECOVERY))
3158 goto fail_tree_roots;
3159
3160 free_root_pointers(fs_info, 0);
3161
3162 /* don't use the log in recovery mode, it won't be valid */
3163 btrfs_set_super_log_root(disk_super, 0);
3164
3165 /* we can't trust the free space cache either */
3166 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3167
3168 ret = next_root_backup(fs_info, fs_info->super_copy,
3169 &num_backups_tried, &backup_index);
3170 if (ret == -1)
3171 goto fail_block_groups;
3172 goto retry_root_backup;
3173 }
3174
3175 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3176 {
3177 if (uptodate) {
3178 set_buffer_uptodate(bh);
3179 } else {
3180 struct btrfs_device *device = (struct btrfs_device *)
3181 bh->b_private;
3182
3183 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3184 "lost page write due to IO error on %s",
3185 rcu_str_deref(device->name));
3186 /* note, we dont' set_buffer_write_io_error because we have
3187 * our own ways of dealing with the IO errors
3188 */
3189 clear_buffer_uptodate(bh);
3190 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3191 }
3192 unlock_buffer(bh);
3193 put_bh(bh);
3194 }
3195
3196 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3197 struct buffer_head **bh_ret)
3198 {
3199 struct buffer_head *bh;
3200 struct btrfs_super_block *super;
3201 u64 bytenr;
3202
3203 bytenr = btrfs_sb_offset(copy_num);
3204 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3205 return -EINVAL;
3206
3207 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3208 /*
3209 * If we fail to read from the underlying devices, as of now
3210 * the best option we have is to mark it EIO.
3211 */
3212 if (!bh)
3213 return -EIO;
3214
3215 super = (struct btrfs_super_block *)bh->b_data;
3216 if (btrfs_super_bytenr(super) != bytenr ||
3217 btrfs_super_magic(super) != BTRFS_MAGIC) {
3218 brelse(bh);
3219 return -EINVAL;
3220 }
3221
3222 *bh_ret = bh;
3223 return 0;
3224 }
3225
3226
3227 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3228 {
3229 struct buffer_head *bh;
3230 struct buffer_head *latest = NULL;
3231 struct btrfs_super_block *super;
3232 int i;
3233 u64 transid = 0;
3234 int ret = -EINVAL;
3235
3236 /* we would like to check all the supers, but that would make
3237 * a btrfs mount succeed after a mkfs from a different FS.
3238 * So, we need to add a special mount option to scan for
3239 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3240 */
3241 for (i = 0; i < 1; i++) {
3242 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3243 if (ret)
3244 continue;
3245
3246 super = (struct btrfs_super_block *)bh->b_data;
3247
3248 if (!latest || btrfs_super_generation(super) > transid) {
3249 brelse(latest);
3250 latest = bh;
3251 transid = btrfs_super_generation(super);
3252 } else {
3253 brelse(bh);
3254 }
3255 }
3256
3257 if (!latest)
3258 return ERR_PTR(ret);
3259
3260 return latest;
3261 }
3262
3263 /*
3264 * this should be called twice, once with wait == 0 and
3265 * once with wait == 1. When wait == 0 is done, all the buffer heads
3266 * we write are pinned.
3267 *
3268 * They are released when wait == 1 is done.
3269 * max_mirrors must be the same for both runs, and it indicates how
3270 * many supers on this one device should be written.
3271 *
3272 * max_mirrors == 0 means to write them all.
3273 */
3274 static int write_dev_supers(struct btrfs_device *device,
3275 struct btrfs_super_block *sb,
3276 int do_barriers, int wait, int max_mirrors)
3277 {
3278 struct buffer_head *bh;
3279 int i;
3280 int ret;
3281 int errors = 0;
3282 u32 crc;
3283 u64 bytenr;
3284
3285 if (max_mirrors == 0)
3286 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3287
3288 for (i = 0; i < max_mirrors; i++) {
3289 bytenr = btrfs_sb_offset(i);
3290 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3291 device->commit_total_bytes)
3292 break;
3293
3294 if (wait) {
3295 bh = __find_get_block(device->bdev, bytenr / 4096,
3296 BTRFS_SUPER_INFO_SIZE);
3297 if (!bh) {
3298 errors++;
3299 continue;
3300 }
3301 wait_on_buffer(bh);
3302 if (!buffer_uptodate(bh))
3303 errors++;
3304
3305 /* drop our reference */
3306 brelse(bh);
3307
3308 /* drop the reference from the wait == 0 run */
3309 brelse(bh);
3310 continue;
3311 } else {
3312 btrfs_set_super_bytenr(sb, bytenr);
3313
3314 crc = ~(u32)0;
3315 crc = btrfs_csum_data((char *)sb +
3316 BTRFS_CSUM_SIZE, crc,
3317 BTRFS_SUPER_INFO_SIZE -
3318 BTRFS_CSUM_SIZE);
3319 btrfs_csum_final(crc, sb->csum);
3320
3321 /*
3322 * one reference for us, and we leave it for the
3323 * caller
3324 */
3325 bh = __getblk(device->bdev, bytenr / 4096,
3326 BTRFS_SUPER_INFO_SIZE);
3327 if (!bh) {
3328 btrfs_err(device->dev_root->fs_info,
3329 "couldn't get super buffer head for bytenr %llu",
3330 bytenr);
3331 errors++;
3332 continue;
3333 }
3334
3335 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3336
3337 /* one reference for submit_bh */
3338 get_bh(bh);
3339
3340 set_buffer_uptodate(bh);
3341 lock_buffer(bh);
3342 bh->b_end_io = btrfs_end_buffer_write_sync;
3343 bh->b_private = device;
3344 }
3345
3346 /*
3347 * we fua the first super. The others we allow
3348 * to go down lazy.
3349 */
3350 if (i == 0)
3351 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3352 else
3353 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3354 if (ret)
3355 errors++;
3356 }
3357 return errors < i ? 0 : -1;
3358 }
3359
3360 /*
3361 * endio for the write_dev_flush, this will wake anyone waiting
3362 * for the barrier when it is done
3363 */
3364 static void btrfs_end_empty_barrier(struct bio *bio)
3365 {
3366 if (bio->bi_private)
3367 complete(bio->bi_private);
3368 bio_put(bio);
3369 }
3370
3371 /*
3372 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3373 * sent down. With wait == 1, it waits for the previous flush.
3374 *
3375 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3376 * capable
3377 */
3378 static int write_dev_flush(struct btrfs_device *device, int wait)
3379 {
3380 struct bio *bio;
3381 int ret = 0;
3382
3383 if (device->nobarriers)
3384 return 0;
3385
3386 if (wait) {
3387 bio = device->flush_bio;
3388 if (!bio)
3389 return 0;
3390
3391 wait_for_completion(&device->flush_wait);
3392
3393 if (bio->bi_error) {
3394 ret = bio->bi_error;
3395 btrfs_dev_stat_inc_and_print(device,
3396 BTRFS_DEV_STAT_FLUSH_ERRS);
3397 }
3398
3399 /* drop the reference from the wait == 0 run */
3400 bio_put(bio);
3401 device->flush_bio = NULL;
3402
3403 return ret;
3404 }
3405
3406 /*
3407 * one reference for us, and we leave it for the
3408 * caller
3409 */
3410 device->flush_bio = NULL;
3411 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3412 if (!bio)
3413 return -ENOMEM;
3414
3415 bio->bi_end_io = btrfs_end_empty_barrier;
3416 bio->bi_bdev = device->bdev;
3417 init_completion(&device->flush_wait);
3418 bio->bi_private = &device->flush_wait;
3419 device->flush_bio = bio;
3420
3421 bio_get(bio);
3422 btrfsic_submit_bio(WRITE_FLUSH, bio);
3423
3424 return 0;
3425 }
3426
3427 /*
3428 * send an empty flush down to each device in parallel,
3429 * then wait for them
3430 */
3431 static int barrier_all_devices(struct btrfs_fs_info *info)
3432 {
3433 struct list_head *head;
3434 struct btrfs_device *dev;
3435 int errors_send = 0;
3436 int errors_wait = 0;
3437 int ret;
3438
3439 /* send down all the barriers */
3440 head = &info->fs_devices->devices;
3441 list_for_each_entry_rcu(dev, head, dev_list) {
3442 if (dev->missing)
3443 continue;
3444 if (!dev->bdev) {
3445 errors_send++;
3446 continue;
3447 }
3448 if (!dev->in_fs_metadata || !dev->writeable)
3449 continue;
3450
3451 ret = write_dev_flush(dev, 0);
3452 if (ret)
3453 errors_send++;
3454 }
3455
3456 /* wait for all the barriers */
3457 list_for_each_entry_rcu(dev, head, dev_list) {
3458 if (dev->missing)
3459 continue;
3460 if (!dev->bdev) {
3461 errors_wait++;
3462 continue;
3463 }
3464 if (!dev->in_fs_metadata || !dev->writeable)
3465 continue;
3466
3467 ret = write_dev_flush(dev, 1);
3468 if (ret)
3469 errors_wait++;
3470 }
3471 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3472 errors_wait > info->num_tolerated_disk_barrier_failures)
3473 return -EIO;
3474 return 0;
3475 }
3476
3477 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3478 {
3479 if ((flags & (BTRFS_BLOCK_GROUP_DUP |
3480 BTRFS_BLOCK_GROUP_RAID0 |
3481 BTRFS_AVAIL_ALLOC_BIT_SINGLE)) ||
3482 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0))
3483 return 0;
3484
3485 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3486 BTRFS_BLOCK_GROUP_RAID5 |
3487 BTRFS_BLOCK_GROUP_RAID10))
3488 return 1;
3489
3490 if (flags & BTRFS_BLOCK_GROUP_RAID6)
3491 return 2;
3492
3493 pr_warn("BTRFS: unknown raid type: %llu\n", flags);
3494 return 0;
3495 }
3496
3497 int btrfs_calc_num_tolerated_disk_barrier_failures(
3498 struct btrfs_fs_info *fs_info)
3499 {
3500 struct btrfs_ioctl_space_info space;
3501 struct btrfs_space_info *sinfo;
3502 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3503 BTRFS_BLOCK_GROUP_SYSTEM,
3504 BTRFS_BLOCK_GROUP_METADATA,
3505 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3506 int i;
3507 int c;
3508 int num_tolerated_disk_barrier_failures =
3509 (int)fs_info->fs_devices->num_devices;
3510
3511 for (i = 0; i < ARRAY_SIZE(types); i++) {
3512 struct btrfs_space_info *tmp;
3513
3514 sinfo = NULL;
3515 rcu_read_lock();
3516 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3517 if (tmp->flags == types[i]) {
3518 sinfo = tmp;
3519 break;
3520 }
3521 }
3522 rcu_read_unlock();
3523
3524 if (!sinfo)
3525 continue;
3526
3527 down_read(&sinfo->groups_sem);
3528 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3529 u64 flags;
3530
3531 if (list_empty(&sinfo->block_groups[c]))
3532 continue;
3533
3534 btrfs_get_block_group_info(&sinfo->block_groups[c],
3535 &space);
3536 if (space.total_bytes == 0 || space.used_bytes == 0)
3537 continue;
3538 flags = space.flags;
3539
3540 num_tolerated_disk_barrier_failures = min(
3541 num_tolerated_disk_barrier_failures,
3542 btrfs_get_num_tolerated_disk_barrier_failures(
3543 flags));
3544 }
3545 up_read(&sinfo->groups_sem);
3546 }
3547
3548 return num_tolerated_disk_barrier_failures;
3549 }
3550
3551 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3552 {
3553 struct list_head *head;
3554 struct btrfs_device *dev;
3555 struct btrfs_super_block *sb;
3556 struct btrfs_dev_item *dev_item;
3557 int ret;
3558 int do_barriers;
3559 int max_errors;
3560 int total_errors = 0;
3561 u64 flags;
3562
3563 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3564 backup_super_roots(root->fs_info);
3565
3566 sb = root->fs_info->super_for_commit;
3567 dev_item = &sb->dev_item;
3568
3569 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3570 head = &root->fs_info->fs_devices->devices;
3571 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3572
3573 if (do_barriers) {
3574 ret = barrier_all_devices(root->fs_info);
3575 if (ret) {
3576 mutex_unlock(
3577 &root->fs_info->fs_devices->device_list_mutex);
3578 btrfs_std_error(root->fs_info, ret,
3579 "errors while submitting device barriers.");
3580 return ret;
3581 }
3582 }
3583
3584 list_for_each_entry_rcu(dev, head, dev_list) {
3585 if (!dev->bdev) {
3586 total_errors++;
3587 continue;
3588 }
3589 if (!dev->in_fs_metadata || !dev->writeable)
3590 continue;
3591
3592 btrfs_set_stack_device_generation(dev_item, 0);
3593 btrfs_set_stack_device_type(dev_item, dev->type);
3594 btrfs_set_stack_device_id(dev_item, dev->devid);
3595 btrfs_set_stack_device_total_bytes(dev_item,
3596 dev->commit_total_bytes);
3597 btrfs_set_stack_device_bytes_used(dev_item,
3598 dev->commit_bytes_used);
3599 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3600 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3601 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3602 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3603 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3604
3605 flags = btrfs_super_flags(sb);
3606 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3607
3608 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3609 if (ret)
3610 total_errors++;
3611 }
3612 if (total_errors > max_errors) {
3613 btrfs_err(root->fs_info, "%d errors while writing supers",
3614 total_errors);
3615 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3616
3617 /* FUA is masked off if unsupported and can't be the reason */
3618 btrfs_std_error(root->fs_info, -EIO,
3619 "%d errors while writing supers", total_errors);
3620 return -EIO;
3621 }
3622
3623 total_errors = 0;
3624 list_for_each_entry_rcu(dev, head, dev_list) {
3625 if (!dev->bdev)
3626 continue;
3627 if (!dev->in_fs_metadata || !dev->writeable)
3628 continue;
3629
3630 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3631 if (ret)
3632 total_errors++;
3633 }
3634 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3635 if (total_errors > max_errors) {
3636 btrfs_std_error(root->fs_info, -EIO,
3637 "%d errors while writing supers", total_errors);
3638 return -EIO;
3639 }
3640 return 0;
3641 }
3642
3643 int write_ctree_super(struct btrfs_trans_handle *trans,
3644 struct btrfs_root *root, int max_mirrors)
3645 {
3646 return write_all_supers(root, max_mirrors);
3647 }
3648
3649 /* Drop a fs root from the radix tree and free it. */
3650 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3651 struct btrfs_root *root)
3652 {
3653 spin_lock(&fs_info->fs_roots_radix_lock);
3654 radix_tree_delete(&fs_info->fs_roots_radix,
3655 (unsigned long)root->root_key.objectid);
3656 spin_unlock(&fs_info->fs_roots_radix_lock);
3657
3658 if (btrfs_root_refs(&root->root_item) == 0)
3659 synchronize_srcu(&fs_info->subvol_srcu);
3660
3661 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3662 btrfs_free_log(NULL, root);
3663
3664 if (root->free_ino_pinned)
3665 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3666 if (root->free_ino_ctl)
3667 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3668 free_fs_root(root);
3669 }
3670
3671 static void free_fs_root(struct btrfs_root *root)
3672 {
3673 iput(root->ino_cache_inode);
3674 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3675 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3676 root->orphan_block_rsv = NULL;
3677 if (root->anon_dev)
3678 free_anon_bdev(root->anon_dev);
3679 if (root->subv_writers)
3680 btrfs_free_subvolume_writers(root->subv_writers);
3681 free_extent_buffer(root->node);
3682 free_extent_buffer(root->commit_root);
3683 kfree(root->free_ino_ctl);
3684 kfree(root->free_ino_pinned);
3685 kfree(root->name);
3686 btrfs_put_fs_root(root);
3687 }
3688
3689 void btrfs_free_fs_root(struct btrfs_root *root)
3690 {
3691 free_fs_root(root);
3692 }
3693
3694 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3695 {
3696 u64 root_objectid = 0;
3697 struct btrfs_root *gang[8];
3698 int i = 0;
3699 int err = 0;
3700 unsigned int ret = 0;
3701 int index;
3702
3703 while (1) {
3704 index = srcu_read_lock(&fs_info->subvol_srcu);
3705 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3706 (void **)gang, root_objectid,
3707 ARRAY_SIZE(gang));
3708 if (!ret) {
3709 srcu_read_unlock(&fs_info->subvol_srcu, index);
3710 break;
3711 }
3712 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3713
3714 for (i = 0; i < ret; i++) {
3715 /* Avoid to grab roots in dead_roots */
3716 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3717 gang[i] = NULL;
3718 continue;
3719 }
3720 /* grab all the search result for later use */
3721 gang[i] = btrfs_grab_fs_root(gang[i]);
3722 }
3723 srcu_read_unlock(&fs_info->subvol_srcu, index);
3724
3725 for (i = 0; i < ret; i++) {
3726 if (!gang[i])
3727 continue;
3728 root_objectid = gang[i]->root_key.objectid;
3729 err = btrfs_orphan_cleanup(gang[i]);
3730 if (err)
3731 break;
3732 btrfs_put_fs_root(gang[i]);
3733 }
3734 root_objectid++;
3735 }
3736
3737 /* release the uncleaned roots due to error */
3738 for (; i < ret; i++) {
3739 if (gang[i])
3740 btrfs_put_fs_root(gang[i]);
3741 }
3742 return err;
3743 }
3744
3745 int btrfs_commit_super(struct btrfs_root *root)
3746 {
3747 struct btrfs_trans_handle *trans;
3748
3749 mutex_lock(&root->fs_info->cleaner_mutex);
3750 btrfs_run_delayed_iputs(root);
3751 mutex_unlock(&root->fs_info->cleaner_mutex);
3752 wake_up_process(root->fs_info->cleaner_kthread);
3753
3754 /* wait until ongoing cleanup work done */
3755 down_write(&root->fs_info->cleanup_work_sem);
3756 up_write(&root->fs_info->cleanup_work_sem);
3757
3758 trans = btrfs_join_transaction(root);
3759 if (IS_ERR(trans))
3760 return PTR_ERR(trans);
3761 return btrfs_commit_transaction(trans, root);
3762 }
3763
3764 void close_ctree(struct btrfs_root *root)
3765 {
3766 struct btrfs_fs_info *fs_info = root->fs_info;
3767 int ret;
3768
3769 fs_info->closing = 1;
3770 smp_mb();
3771
3772 /* wait for the uuid_scan task to finish */
3773 down(&fs_info->uuid_tree_rescan_sem);
3774 /* avoid complains from lockdep et al., set sem back to initial state */
3775 up(&fs_info->uuid_tree_rescan_sem);
3776
3777 /* pause restriper - we want to resume on mount */
3778 btrfs_pause_balance(fs_info);
3779
3780 btrfs_dev_replace_suspend_for_unmount(fs_info);
3781
3782 btrfs_scrub_cancel(fs_info);
3783
3784 /* wait for any defraggers to finish */
3785 wait_event(fs_info->transaction_wait,
3786 (atomic_read(&fs_info->defrag_running) == 0));
3787
3788 /* clear out the rbtree of defraggable inodes */
3789 btrfs_cleanup_defrag_inodes(fs_info);
3790
3791 cancel_work_sync(&fs_info->async_reclaim_work);
3792
3793 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3794 /*
3795 * If the cleaner thread is stopped and there are
3796 * block groups queued for removal, the deletion will be
3797 * skipped when we quit the cleaner thread.
3798 */
3799 btrfs_delete_unused_bgs(root->fs_info);
3800
3801 ret = btrfs_commit_super(root);
3802 if (ret)
3803 btrfs_err(fs_info, "commit super ret %d", ret);
3804 }
3805
3806 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3807 btrfs_error_commit_super(root);
3808
3809 kthread_stop(fs_info->transaction_kthread);
3810 kthread_stop(fs_info->cleaner_kthread);
3811
3812 fs_info->closing = 2;
3813 smp_mb();
3814
3815 btrfs_free_qgroup_config(fs_info);
3816
3817 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3818 btrfs_info(fs_info, "at unmount delalloc count %lld",
3819 percpu_counter_sum(&fs_info->delalloc_bytes));
3820 }
3821
3822 btrfs_sysfs_remove_mounted(fs_info);
3823 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3824
3825 btrfs_free_fs_roots(fs_info);
3826
3827 btrfs_put_block_group_cache(fs_info);
3828
3829 btrfs_free_block_groups(fs_info);
3830
3831 /*
3832 * we must make sure there is not any read request to
3833 * submit after we stopping all workers.
3834 */
3835 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3836 btrfs_stop_all_workers(fs_info);
3837
3838 fs_info->open = 0;
3839 free_root_pointers(fs_info, 1);
3840
3841 iput(fs_info->btree_inode);
3842
3843 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3844 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3845 btrfsic_unmount(root, fs_info->fs_devices);
3846 #endif
3847
3848 btrfs_close_devices(fs_info->fs_devices);
3849 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3850
3851 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3852 percpu_counter_destroy(&fs_info->delalloc_bytes);
3853 percpu_counter_destroy(&fs_info->bio_counter);
3854 bdi_destroy(&fs_info->bdi);
3855 cleanup_srcu_struct(&fs_info->subvol_srcu);
3856
3857 btrfs_free_stripe_hash_table(fs_info);
3858
3859 __btrfs_free_block_rsv(root->orphan_block_rsv);
3860 root->orphan_block_rsv = NULL;
3861
3862 lock_chunks(root);
3863 while (!list_empty(&fs_info->pinned_chunks)) {
3864 struct extent_map *em;
3865
3866 em = list_first_entry(&fs_info->pinned_chunks,
3867 struct extent_map, list);
3868 list_del_init(&em->list);
3869 free_extent_map(em);
3870 }
3871 unlock_chunks(root);
3872 }
3873
3874 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3875 int atomic)
3876 {
3877 int ret;
3878 struct inode *btree_inode = buf->pages[0]->mapping->host;
3879
3880 ret = extent_buffer_uptodate(buf);
3881 if (!ret)
3882 return ret;
3883
3884 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3885 parent_transid, atomic);
3886 if (ret == -EAGAIN)
3887 return ret;
3888 return !ret;
3889 }
3890
3891 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3892 {
3893 return set_extent_buffer_uptodate(buf);
3894 }
3895
3896 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3897 {
3898 struct btrfs_root *root;
3899 u64 transid = btrfs_header_generation(buf);
3900 int was_dirty;
3901
3902 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3903 /*
3904 * This is a fast path so only do this check if we have sanity tests
3905 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3906 * outside of the sanity tests.
3907 */
3908 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3909 return;
3910 #endif
3911 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3912 btrfs_assert_tree_locked(buf);
3913 if (transid != root->fs_info->generation)
3914 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3915 "found %llu running %llu\n",
3916 buf->start, transid, root->fs_info->generation);
3917 was_dirty = set_extent_buffer_dirty(buf);
3918 if (!was_dirty)
3919 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3920 buf->len,
3921 root->fs_info->dirty_metadata_batch);
3922 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3923 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3924 btrfs_print_leaf(root, buf);
3925 ASSERT(0);
3926 }
3927 #endif
3928 }
3929
3930 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3931 int flush_delayed)
3932 {
3933 /*
3934 * looks as though older kernels can get into trouble with
3935 * this code, they end up stuck in balance_dirty_pages forever
3936 */
3937 int ret;
3938
3939 if (current->flags & PF_MEMALLOC)
3940 return;
3941
3942 if (flush_delayed)
3943 btrfs_balance_delayed_items(root);
3944
3945 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3946 BTRFS_DIRTY_METADATA_THRESH);
3947 if (ret > 0) {
3948 balance_dirty_pages_ratelimited(
3949 root->fs_info->btree_inode->i_mapping);
3950 }
3951 return;
3952 }
3953
3954 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3955 {
3956 __btrfs_btree_balance_dirty(root, 1);
3957 }
3958
3959 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3960 {
3961 __btrfs_btree_balance_dirty(root, 0);
3962 }
3963
3964 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3965 {
3966 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3967 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3968 }
3969
3970 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3971 int read_only)
3972 {
3973 struct btrfs_super_block *sb = fs_info->super_copy;
3974 int ret = 0;
3975
3976 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3977 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3978 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3979 ret = -EINVAL;
3980 }
3981 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3982 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3983 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3984 ret = -EINVAL;
3985 }
3986 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3987 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3988 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3989 ret = -EINVAL;
3990 }
3991
3992 /*
3993 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3994 * items yet, they'll be verified later. Issue just a warning.
3995 */
3996 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3997 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3998 btrfs_super_root(sb));
3999 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4000 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4001 btrfs_super_chunk_root(sb));
4002 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4003 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4004 btrfs_super_log_root(sb));
4005
4006 /*
4007 * Check the lower bound, the alignment and other constraints are
4008 * checked later.
4009 */
4010 if (btrfs_super_nodesize(sb) < 4096) {
4011 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4012 btrfs_super_nodesize(sb));
4013 ret = -EINVAL;
4014 }
4015 if (btrfs_super_sectorsize(sb) < 4096) {
4016 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4017 btrfs_super_sectorsize(sb));
4018 ret = -EINVAL;
4019 }
4020
4021 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4022 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4023 fs_info->fsid, sb->dev_item.fsid);
4024 ret = -EINVAL;
4025 }
4026
4027 /*
4028 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4029 * done later
4030 */
4031 if (btrfs_super_num_devices(sb) > (1UL << 31))
4032 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4033 btrfs_super_num_devices(sb));
4034 if (btrfs_super_num_devices(sb) == 0) {
4035 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4036 ret = -EINVAL;
4037 }
4038
4039 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4040 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4041 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4042 ret = -EINVAL;
4043 }
4044
4045 /*
4046 * Obvious sys_chunk_array corruptions, it must hold at least one key
4047 * and one chunk
4048 */
4049 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4050 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4051 btrfs_super_sys_array_size(sb),
4052 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4053 ret = -EINVAL;
4054 }
4055 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4056 + sizeof(struct btrfs_chunk)) {
4057 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4058 btrfs_super_sys_array_size(sb),
4059 sizeof(struct btrfs_disk_key)
4060 + sizeof(struct btrfs_chunk));
4061 ret = -EINVAL;
4062 }
4063
4064 /*
4065 * The generation is a global counter, we'll trust it more than the others
4066 * but it's still possible that it's the one that's wrong.
4067 */
4068 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4069 printk(KERN_WARNING
4070 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4071 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4072 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4073 && btrfs_super_cache_generation(sb) != (u64)-1)
4074 printk(KERN_WARNING
4075 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4076 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4077
4078 return ret;
4079 }
4080
4081 static void btrfs_error_commit_super(struct btrfs_root *root)
4082 {
4083 mutex_lock(&root->fs_info->cleaner_mutex);
4084 btrfs_run_delayed_iputs(root);
4085 mutex_unlock(&root->fs_info->cleaner_mutex);
4086
4087 down_write(&root->fs_info->cleanup_work_sem);
4088 up_write(&root->fs_info->cleanup_work_sem);
4089
4090 /* cleanup FS via transaction */
4091 btrfs_cleanup_transaction(root);
4092 }
4093
4094 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4095 {
4096 struct btrfs_ordered_extent *ordered;
4097
4098 spin_lock(&root->ordered_extent_lock);
4099 /*
4100 * This will just short circuit the ordered completion stuff which will
4101 * make sure the ordered extent gets properly cleaned up.
4102 */
4103 list_for_each_entry(ordered, &root->ordered_extents,
4104 root_extent_list)
4105 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4106 spin_unlock(&root->ordered_extent_lock);
4107 }
4108
4109 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4110 {
4111 struct btrfs_root *root;
4112 struct list_head splice;
4113
4114 INIT_LIST_HEAD(&splice);
4115
4116 spin_lock(&fs_info->ordered_root_lock);
4117 list_splice_init(&fs_info->ordered_roots, &splice);
4118 while (!list_empty(&splice)) {
4119 root = list_first_entry(&splice, struct btrfs_root,
4120 ordered_root);
4121 list_move_tail(&root->ordered_root,
4122 &fs_info->ordered_roots);
4123
4124 spin_unlock(&fs_info->ordered_root_lock);
4125 btrfs_destroy_ordered_extents(root);
4126
4127 cond_resched();
4128 spin_lock(&fs_info->ordered_root_lock);
4129 }
4130 spin_unlock(&fs_info->ordered_root_lock);
4131 }
4132
4133 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4134 struct btrfs_root *root)
4135 {
4136 struct rb_node *node;
4137 struct btrfs_delayed_ref_root *delayed_refs;
4138 struct btrfs_delayed_ref_node *ref;
4139 int ret = 0;
4140
4141 delayed_refs = &trans->delayed_refs;
4142
4143 spin_lock(&delayed_refs->lock);
4144 if (atomic_read(&delayed_refs->num_entries) == 0) {
4145 spin_unlock(&delayed_refs->lock);
4146 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4147 return ret;
4148 }
4149
4150 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4151 struct btrfs_delayed_ref_head *head;
4152 struct btrfs_delayed_ref_node *tmp;
4153 bool pin_bytes = false;
4154
4155 head = rb_entry(node, struct btrfs_delayed_ref_head,
4156 href_node);
4157 if (!mutex_trylock(&head->mutex)) {
4158 atomic_inc(&head->node.refs);
4159 spin_unlock(&delayed_refs->lock);
4160
4161 mutex_lock(&head->mutex);
4162 mutex_unlock(&head->mutex);
4163 btrfs_put_delayed_ref(&head->node);
4164 spin_lock(&delayed_refs->lock);
4165 continue;
4166 }
4167 spin_lock(&head->lock);
4168 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4169 list) {
4170 ref->in_tree = 0;
4171 list_del(&ref->list);
4172 atomic_dec(&delayed_refs->num_entries);
4173 btrfs_put_delayed_ref(ref);
4174 }
4175 if (head->must_insert_reserved)
4176 pin_bytes = true;
4177 btrfs_free_delayed_extent_op(head->extent_op);
4178 delayed_refs->num_heads--;
4179 if (head->processing == 0)
4180 delayed_refs->num_heads_ready--;
4181 atomic_dec(&delayed_refs->num_entries);
4182 head->node.in_tree = 0;
4183 rb_erase(&head->href_node, &delayed_refs->href_root);
4184 spin_unlock(&head->lock);
4185 spin_unlock(&delayed_refs->lock);
4186 mutex_unlock(&head->mutex);
4187
4188 if (pin_bytes)
4189 btrfs_pin_extent(root, head->node.bytenr,
4190 head->node.num_bytes, 1);
4191 btrfs_put_delayed_ref(&head->node);
4192 cond_resched();
4193 spin_lock(&delayed_refs->lock);
4194 }
4195
4196 spin_unlock(&delayed_refs->lock);
4197
4198 return ret;
4199 }
4200
4201 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4202 {
4203 struct btrfs_inode *btrfs_inode;
4204 struct list_head splice;
4205
4206 INIT_LIST_HEAD(&splice);
4207
4208 spin_lock(&root->delalloc_lock);
4209 list_splice_init(&root->delalloc_inodes, &splice);
4210
4211 while (!list_empty(&splice)) {
4212 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4213 delalloc_inodes);
4214
4215 list_del_init(&btrfs_inode->delalloc_inodes);
4216 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4217 &btrfs_inode->runtime_flags);
4218 spin_unlock(&root->delalloc_lock);
4219
4220 btrfs_invalidate_inodes(btrfs_inode->root);
4221
4222 spin_lock(&root->delalloc_lock);
4223 }
4224
4225 spin_unlock(&root->delalloc_lock);
4226 }
4227
4228 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4229 {
4230 struct btrfs_root *root;
4231 struct list_head splice;
4232
4233 INIT_LIST_HEAD(&splice);
4234
4235 spin_lock(&fs_info->delalloc_root_lock);
4236 list_splice_init(&fs_info->delalloc_roots, &splice);
4237 while (!list_empty(&splice)) {
4238 root = list_first_entry(&splice, struct btrfs_root,
4239 delalloc_root);
4240 list_del_init(&root->delalloc_root);
4241 root = btrfs_grab_fs_root(root);
4242 BUG_ON(!root);
4243 spin_unlock(&fs_info->delalloc_root_lock);
4244
4245 btrfs_destroy_delalloc_inodes(root);
4246 btrfs_put_fs_root(root);
4247
4248 spin_lock(&fs_info->delalloc_root_lock);
4249 }
4250 spin_unlock(&fs_info->delalloc_root_lock);
4251 }
4252
4253 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4254 struct extent_io_tree *dirty_pages,
4255 int mark)
4256 {
4257 int ret;
4258 struct extent_buffer *eb;
4259 u64 start = 0;
4260 u64 end;
4261
4262 while (1) {
4263 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4264 mark, NULL);
4265 if (ret)
4266 break;
4267
4268 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4269 while (start <= end) {
4270 eb = btrfs_find_tree_block(root->fs_info, start);
4271 start += root->nodesize;
4272 if (!eb)
4273 continue;
4274 wait_on_extent_buffer_writeback(eb);
4275
4276 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4277 &eb->bflags))
4278 clear_extent_buffer_dirty(eb);
4279 free_extent_buffer_stale(eb);
4280 }
4281 }
4282
4283 return ret;
4284 }
4285
4286 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4287 struct extent_io_tree *pinned_extents)
4288 {
4289 struct extent_io_tree *unpin;
4290 u64 start;
4291 u64 end;
4292 int ret;
4293 bool loop = true;
4294
4295 unpin = pinned_extents;
4296 again:
4297 while (1) {
4298 ret = find_first_extent_bit(unpin, 0, &start, &end,
4299 EXTENT_DIRTY, NULL);
4300 if (ret)
4301 break;
4302
4303 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4304 btrfs_error_unpin_extent_range(root, start, end);
4305 cond_resched();
4306 }
4307
4308 if (loop) {
4309 if (unpin == &root->fs_info->freed_extents[0])
4310 unpin = &root->fs_info->freed_extents[1];
4311 else
4312 unpin = &root->fs_info->freed_extents[0];
4313 loop = false;
4314 goto again;
4315 }
4316
4317 return 0;
4318 }
4319
4320 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4321 struct btrfs_fs_info *fs_info)
4322 {
4323 struct btrfs_ordered_extent *ordered;
4324
4325 spin_lock(&fs_info->trans_lock);
4326 while (!list_empty(&cur_trans->pending_ordered)) {
4327 ordered = list_first_entry(&cur_trans->pending_ordered,
4328 struct btrfs_ordered_extent,
4329 trans_list);
4330 list_del_init(&ordered->trans_list);
4331 spin_unlock(&fs_info->trans_lock);
4332
4333 btrfs_put_ordered_extent(ordered);
4334 spin_lock(&fs_info->trans_lock);
4335 }
4336 spin_unlock(&fs_info->trans_lock);
4337 }
4338
4339 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4340 struct btrfs_root *root)
4341 {
4342 btrfs_destroy_delayed_refs(cur_trans, root);
4343
4344 cur_trans->state = TRANS_STATE_COMMIT_START;
4345 wake_up(&root->fs_info->transaction_blocked_wait);
4346
4347 cur_trans->state = TRANS_STATE_UNBLOCKED;
4348 wake_up(&root->fs_info->transaction_wait);
4349
4350 btrfs_free_pending_ordered(cur_trans, root->fs_info);
4351 btrfs_destroy_delayed_inodes(root);
4352 btrfs_assert_delayed_root_empty(root);
4353
4354 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4355 EXTENT_DIRTY);
4356 btrfs_destroy_pinned_extent(root,
4357 root->fs_info->pinned_extents);
4358
4359 cur_trans->state =TRANS_STATE_COMPLETED;
4360 wake_up(&cur_trans->commit_wait);
4361
4362 /*
4363 memset(cur_trans, 0, sizeof(*cur_trans));
4364 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4365 */
4366 }
4367
4368 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4369 {
4370 struct btrfs_transaction *t;
4371
4372 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4373
4374 spin_lock(&root->fs_info->trans_lock);
4375 while (!list_empty(&root->fs_info->trans_list)) {
4376 t = list_first_entry(&root->fs_info->trans_list,
4377 struct btrfs_transaction, list);
4378 if (t->state >= TRANS_STATE_COMMIT_START) {
4379 atomic_inc(&t->use_count);
4380 spin_unlock(&root->fs_info->trans_lock);
4381 btrfs_wait_for_commit(root, t->transid);
4382 btrfs_put_transaction(t);
4383 spin_lock(&root->fs_info->trans_lock);
4384 continue;
4385 }
4386 if (t == root->fs_info->running_transaction) {
4387 t->state = TRANS_STATE_COMMIT_DOING;
4388 spin_unlock(&root->fs_info->trans_lock);
4389 /*
4390 * We wait for 0 num_writers since we don't hold a trans
4391 * handle open currently for this transaction.
4392 */
4393 wait_event(t->writer_wait,
4394 atomic_read(&t->num_writers) == 0);
4395 } else {
4396 spin_unlock(&root->fs_info->trans_lock);
4397 }
4398 btrfs_cleanup_one_transaction(t, root);
4399
4400 spin_lock(&root->fs_info->trans_lock);
4401 if (t == root->fs_info->running_transaction)
4402 root->fs_info->running_transaction = NULL;
4403 list_del_init(&t->list);
4404 spin_unlock(&root->fs_info->trans_lock);
4405
4406 btrfs_put_transaction(t);
4407 trace_btrfs_transaction_commit(root);
4408 spin_lock(&root->fs_info->trans_lock);
4409 }
4410 spin_unlock(&root->fs_info->trans_lock);
4411 btrfs_destroy_all_ordered_extents(root->fs_info);
4412 btrfs_destroy_delayed_inodes(root);
4413 btrfs_assert_delayed_root_empty(root);
4414 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4415 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4416 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4417
4418 return 0;
4419 }
4420
4421 static const struct extent_io_ops btree_extent_io_ops = {
4422 .readpage_end_io_hook = btree_readpage_end_io_hook,
4423 .readpage_io_failed_hook = btree_io_failed_hook,
4424 .submit_bio_hook = btree_submit_bio_hook,
4425 /* note we're sharing with inode.c for the merge bio hook */
4426 .merge_bio_hook = btrfs_merge_bio_hook,
4427 };
This page took 0.18481 seconds and 6 git commands to generate.