Btrfs: Add support for online device removal
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38 if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40 (unsigned long long)extent_buffer_blocknr(buf),
41 (unsigned long long)btrfs_header_blocknr(buf));
42 return 1;
43 }
44 return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50 static struct workqueue_struct *async_submit_workqueue;
51
52 struct end_io_wq {
53 struct bio *bio;
54 bio_end_io_t *end_io;
55 void *private;
56 struct btrfs_fs_info *info;
57 int error;
58 int metadata;
59 struct list_head list;
60 };
61
62 struct async_submit_bio {
63 struct inode *inode;
64 struct bio *bio;
65 struct list_head list;
66 extent_submit_bio_hook_t *submit_bio_hook;
67 int rw;
68 int mirror_num;
69 };
70
71 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
72 size_t page_offset, u64 start, u64 len,
73 int create)
74 {
75 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
76 struct extent_map *em;
77 int ret;
78
79 spin_lock(&em_tree->lock);
80 em = lookup_extent_mapping(em_tree, start, len);
81 if (em) {
82 em->bdev =
83 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
84 spin_unlock(&em_tree->lock);
85 goto out;
86 }
87 spin_unlock(&em_tree->lock);
88
89 em = alloc_extent_map(GFP_NOFS);
90 if (!em) {
91 em = ERR_PTR(-ENOMEM);
92 goto out;
93 }
94 em->start = 0;
95 em->len = (u64)-1;
96 em->block_start = 0;
97 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
98
99 spin_lock(&em_tree->lock);
100 ret = add_extent_mapping(em_tree, em);
101 if (ret == -EEXIST) {
102 u64 failed_start = em->start;
103 u64 failed_len = em->len;
104
105 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
106 em->start, em->len, em->block_start);
107 free_extent_map(em);
108 em = lookup_extent_mapping(em_tree, start, len);
109 if (em) {
110 printk("after failing, found %Lu %Lu %Lu\n",
111 em->start, em->len, em->block_start);
112 ret = 0;
113 } else {
114 em = lookup_extent_mapping(em_tree, failed_start,
115 failed_len);
116 if (em) {
117 printk("double failure lookup gives us "
118 "%Lu %Lu -> %Lu\n", em->start,
119 em->len, em->block_start);
120 free_extent_map(em);
121 }
122 ret = -EIO;
123 }
124 } else if (ret) {
125 free_extent_map(em);
126 em = NULL;
127 }
128 spin_unlock(&em_tree->lock);
129
130 if (ret)
131 em = ERR_PTR(ret);
132 out:
133 return em;
134 }
135
136 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
137 {
138 return btrfs_crc32c(seed, data, len);
139 }
140
141 void btrfs_csum_final(u32 crc, char *result)
142 {
143 *(__le32 *)result = ~cpu_to_le32(crc);
144 }
145
146 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
147 int verify)
148 {
149 char result[BTRFS_CRC32_SIZE];
150 unsigned long len;
151 unsigned long cur_len;
152 unsigned long offset = BTRFS_CSUM_SIZE;
153 char *map_token = NULL;
154 char *kaddr;
155 unsigned long map_start;
156 unsigned long map_len;
157 int err;
158 u32 crc = ~(u32)0;
159
160 len = buf->len - offset;
161 while(len > 0) {
162 err = map_private_extent_buffer(buf, offset, 32,
163 &map_token, &kaddr,
164 &map_start, &map_len, KM_USER0);
165 if (err) {
166 printk("failed to map extent buffer! %lu\n",
167 offset);
168 return 1;
169 }
170 cur_len = min(len, map_len - (offset - map_start));
171 crc = btrfs_csum_data(root, kaddr + offset - map_start,
172 crc, cur_len);
173 len -= cur_len;
174 offset += cur_len;
175 unmap_extent_buffer(buf, map_token, KM_USER0);
176 }
177 btrfs_csum_final(crc, result);
178
179 if (verify) {
180 int from_this_trans = 0;
181
182 if (root->fs_info->running_transaction &&
183 btrfs_header_generation(buf) ==
184 root->fs_info->running_transaction->transid)
185 from_this_trans = 1;
186
187 /* FIXME, this is not good */
188 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
189 u32 val;
190 u32 found = 0;
191 memcpy(&found, result, BTRFS_CRC32_SIZE);
192
193 read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
194 printk("btrfs: %s checksum verify failed on %llu "
195 "wanted %X found %X from_this_trans %d "
196 "level %d\n",
197 root->fs_info->sb->s_id,
198 buf->start, val, found, from_this_trans,
199 btrfs_header_level(buf));
200 return 1;
201 }
202 } else {
203 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
204 }
205 return 0;
206 }
207
208 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
209 struct extent_buffer *eb,
210 u64 start)
211 {
212 struct extent_io_tree *io_tree;
213 int ret;
214 int num_copies = 0;
215 int mirror_num = 0;
216
217 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
218 while (1) {
219 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
220 btree_get_extent, mirror_num);
221 if (!ret)
222 return ret;
223
224 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
225 eb->start, eb->len);
226 if (num_copies == 1)
227 return ret;
228
229 mirror_num++;
230 if (mirror_num > num_copies)
231 return ret;
232 }
233 return -EIO;
234 }
235
236 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
237 {
238 struct extent_io_tree *tree;
239 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
240 u64 found_start;
241 int found_level;
242 unsigned long len;
243 struct extent_buffer *eb;
244 int ret;
245
246 tree = &BTRFS_I(page->mapping->host)->io_tree;
247
248 if (page->private == EXTENT_PAGE_PRIVATE)
249 goto out;
250 if (!page->private)
251 goto out;
252 len = page->private >> 2;
253 if (len == 0) {
254 WARN_ON(1);
255 }
256 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
257 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE);
258 BUG_ON(ret);
259 btrfs_clear_buffer_defrag(eb);
260 found_start = btrfs_header_bytenr(eb);
261 if (found_start != start) {
262 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
263 start, found_start, len);
264 WARN_ON(1);
265 goto err;
266 }
267 if (eb->first_page != page) {
268 printk("bad first page %lu %lu\n", eb->first_page->index,
269 page->index);
270 WARN_ON(1);
271 goto err;
272 }
273 if (!PageUptodate(page)) {
274 printk("csum not up to date page %lu\n", page->index);
275 WARN_ON(1);
276 goto err;
277 }
278 found_level = btrfs_header_level(eb);
279 spin_lock(&root->fs_info->hash_lock);
280 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
281 spin_unlock(&root->fs_info->hash_lock);
282 csum_tree_block(root, eb, 0);
283 err:
284 free_extent_buffer(eb);
285 out:
286 return 0;
287 }
288
289 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
290 {
291 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
292
293 csum_dirty_buffer(root, page);
294 return 0;
295 }
296
297 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
298 struct extent_state *state)
299 {
300 struct extent_io_tree *tree;
301 u64 found_start;
302 int found_level;
303 unsigned long len;
304 struct extent_buffer *eb;
305 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
306 int ret = 0;
307
308 tree = &BTRFS_I(page->mapping->host)->io_tree;
309 if (page->private == EXTENT_PAGE_PRIVATE)
310 goto out;
311 if (!page->private)
312 goto out;
313 len = page->private >> 2;
314 if (len == 0) {
315 WARN_ON(1);
316 }
317 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
318
319 btrfs_clear_buffer_defrag(eb);
320 found_start = btrfs_header_bytenr(eb);
321 if (found_start != start) {
322 ret = -EIO;
323 goto err;
324 }
325 if (eb->first_page != page) {
326 printk("bad first page %lu %lu\n", eb->first_page->index,
327 page->index);
328 WARN_ON(1);
329 ret = -EIO;
330 goto err;
331 }
332 found_level = btrfs_header_level(eb);
333
334 ret = csum_tree_block(root, eb, 1);
335 if (ret)
336 ret = -EIO;
337
338 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
339 end = eb->start + end - 1;
340 release_extent_buffer_tail_pages(eb);
341 err:
342 free_extent_buffer(eb);
343 out:
344 return ret;
345 }
346
347 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
348 static void end_workqueue_bio(struct bio *bio, int err)
349 #else
350 static int end_workqueue_bio(struct bio *bio,
351 unsigned int bytes_done, int err)
352 #endif
353 {
354 struct end_io_wq *end_io_wq = bio->bi_private;
355 struct btrfs_fs_info *fs_info;
356 unsigned long flags;
357
358 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
359 if (bio->bi_size)
360 return 1;
361 #endif
362
363 fs_info = end_io_wq->info;
364 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
365 end_io_wq->error = err;
366 list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
367 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
368 queue_work(end_io_workqueue, &fs_info->end_io_work);
369
370 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
371 return 0;
372 #endif
373 }
374
375 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
376 int metadata)
377 {
378 struct end_io_wq *end_io_wq;
379 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
380 if (!end_io_wq)
381 return -ENOMEM;
382
383 end_io_wq->private = bio->bi_private;
384 end_io_wq->end_io = bio->bi_end_io;
385 end_io_wq->info = info;
386 end_io_wq->error = 0;
387 end_io_wq->bio = bio;
388 end_io_wq->metadata = metadata;
389
390 bio->bi_private = end_io_wq;
391 bio->bi_end_io = end_workqueue_bio;
392 return 0;
393 }
394
395 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
396 int rw, struct bio *bio, int mirror_num,
397 extent_submit_bio_hook_t *submit_bio_hook)
398 {
399 struct async_submit_bio *async;
400
401 /*
402 * inline writerback should stay inline, only hop to the async
403 * queue if we're pdflush
404 */
405 if (!current_is_pdflush())
406 return submit_bio_hook(inode, rw, bio, mirror_num);
407
408 async = kmalloc(sizeof(*async), GFP_NOFS);
409 if (!async)
410 return -ENOMEM;
411
412 async->inode = inode;
413 async->rw = rw;
414 async->bio = bio;
415 async->mirror_num = mirror_num;
416 async->submit_bio_hook = submit_bio_hook;
417
418 spin_lock(&fs_info->async_submit_work_lock);
419 list_add_tail(&async->list, &fs_info->async_submit_work_list);
420 spin_unlock(&fs_info->async_submit_work_lock);
421
422 queue_work(async_submit_workqueue, &fs_info->async_submit_work);
423 return 0;
424 }
425
426 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
427 int mirror_num)
428 {
429 struct btrfs_root *root = BTRFS_I(inode)->root;
430 u64 offset;
431 int ret;
432
433 offset = bio->bi_sector << 9;
434
435 if (rw & (1 << BIO_RW)) {
436 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
437 }
438
439 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
440 BUG_ON(ret);
441
442 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
443 }
444
445 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
446 int mirror_num)
447 {
448 if (!(rw & (1 << BIO_RW))) {
449 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
450 }
451 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
452 inode, rw, bio, mirror_num,
453 __btree_submit_bio_hook);
454 }
455
456 static int btree_writepage(struct page *page, struct writeback_control *wbc)
457 {
458 struct extent_io_tree *tree;
459 tree = &BTRFS_I(page->mapping->host)->io_tree;
460 return extent_write_full_page(tree, page, btree_get_extent, wbc);
461 }
462
463 static int btree_writepages(struct address_space *mapping,
464 struct writeback_control *wbc)
465 {
466 struct extent_io_tree *tree;
467 tree = &BTRFS_I(mapping->host)->io_tree;
468 if (wbc->sync_mode == WB_SYNC_NONE) {
469 u64 num_dirty;
470 u64 start = 0;
471 unsigned long thresh = 96 * 1024 * 1024;
472
473 if (wbc->for_kupdate)
474 return 0;
475
476 if (current_is_pdflush()) {
477 thresh = 96 * 1024 * 1024;
478 } else {
479 thresh = 8 * 1024 * 1024;
480 }
481 num_dirty = count_range_bits(tree, &start, (u64)-1,
482 thresh, EXTENT_DIRTY);
483 if (num_dirty < thresh) {
484 return 0;
485 }
486 }
487 return extent_writepages(tree, mapping, btree_get_extent, wbc);
488 }
489
490 int btree_readpage(struct file *file, struct page *page)
491 {
492 struct extent_io_tree *tree;
493 tree = &BTRFS_I(page->mapping->host)->io_tree;
494 return extent_read_full_page(tree, page, btree_get_extent);
495 }
496
497 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
498 {
499 struct extent_io_tree *tree;
500 struct extent_map_tree *map;
501 int ret;
502
503 if (page_count(page) > 3) {
504 /* once for page->private, once for the caller, once
505 * once for the page cache
506 */
507 return 0;
508 }
509 tree = &BTRFS_I(page->mapping->host)->io_tree;
510 map = &BTRFS_I(page->mapping->host)->extent_tree;
511 ret = try_release_extent_state(map, tree, page, gfp_flags);
512 if (ret == 1) {
513 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
514 ClearPagePrivate(page);
515 set_page_private(page, 0);
516 page_cache_release(page);
517 }
518 return ret;
519 }
520
521 static void btree_invalidatepage(struct page *page, unsigned long offset)
522 {
523 struct extent_io_tree *tree;
524 tree = &BTRFS_I(page->mapping->host)->io_tree;
525 extent_invalidatepage(tree, page, offset);
526 btree_releasepage(page, GFP_NOFS);
527 if (PagePrivate(page)) {
528 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
529 ClearPagePrivate(page);
530 set_page_private(page, 0);
531 page_cache_release(page);
532 }
533 }
534
535 #if 0
536 static int btree_writepage(struct page *page, struct writeback_control *wbc)
537 {
538 struct buffer_head *bh;
539 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
540 struct buffer_head *head;
541 if (!page_has_buffers(page)) {
542 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
543 (1 << BH_Dirty)|(1 << BH_Uptodate));
544 }
545 head = page_buffers(page);
546 bh = head;
547 do {
548 if (buffer_dirty(bh))
549 csum_tree_block(root, bh, 0);
550 bh = bh->b_this_page;
551 } while (bh != head);
552 return block_write_full_page(page, btree_get_block, wbc);
553 }
554 #endif
555
556 static struct address_space_operations btree_aops = {
557 .readpage = btree_readpage,
558 .writepage = btree_writepage,
559 .writepages = btree_writepages,
560 .releasepage = btree_releasepage,
561 .invalidatepage = btree_invalidatepage,
562 .sync_page = block_sync_page,
563 };
564
565 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
566 {
567 struct extent_buffer *buf = NULL;
568 struct inode *btree_inode = root->fs_info->btree_inode;
569 int ret = 0;
570
571 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
572 if (!buf)
573 return 0;
574 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
575 buf, 0, 0, btree_get_extent, 0);
576 free_extent_buffer(buf);
577 return ret;
578 }
579
580 static int close_all_devices(struct btrfs_fs_info *fs_info)
581 {
582 struct list_head *list;
583 struct list_head *next;
584 struct btrfs_device *device;
585
586 list = &fs_info->fs_devices->devices;
587 list_for_each(next, list) {
588 device = list_entry(next, struct btrfs_device, dev_list);
589 close_bdev_excl(device->bdev);
590 device->bdev = NULL;
591 }
592 return 0;
593 }
594
595 int btrfs_verify_block_csum(struct btrfs_root *root,
596 struct extent_buffer *buf)
597 {
598 return btrfs_buffer_uptodate(buf);
599 }
600
601 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
602 u64 bytenr, u32 blocksize)
603 {
604 struct inode *btree_inode = root->fs_info->btree_inode;
605 struct extent_buffer *eb;
606 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
607 bytenr, blocksize, GFP_NOFS);
608 return eb;
609 }
610
611 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
612 u64 bytenr, u32 blocksize)
613 {
614 struct inode *btree_inode = root->fs_info->btree_inode;
615 struct extent_buffer *eb;
616
617 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
618 bytenr, blocksize, NULL, GFP_NOFS);
619 return eb;
620 }
621
622
623 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
624 u32 blocksize)
625 {
626 struct extent_buffer *buf = NULL;
627 struct inode *btree_inode = root->fs_info->btree_inode;
628 struct extent_io_tree *io_tree;
629 int ret;
630
631 io_tree = &BTRFS_I(btree_inode)->io_tree;
632
633 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
634 if (!buf)
635 return NULL;
636
637 ret = btree_read_extent_buffer_pages(root, buf, 0);
638
639 if (ret == 0) {
640 buf->flags |= EXTENT_UPTODATE;
641 }
642 return buf;
643
644 }
645
646 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
647 struct extent_buffer *buf)
648 {
649 struct inode *btree_inode = root->fs_info->btree_inode;
650 if (btrfs_header_generation(buf) ==
651 root->fs_info->running_transaction->transid)
652 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
653 buf);
654 return 0;
655 }
656
657 int wait_on_tree_block_writeback(struct btrfs_root *root,
658 struct extent_buffer *buf)
659 {
660 struct inode *btree_inode = root->fs_info->btree_inode;
661 wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
662 buf);
663 return 0;
664 }
665
666 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
667 u32 stripesize, struct btrfs_root *root,
668 struct btrfs_fs_info *fs_info,
669 u64 objectid)
670 {
671 root->node = NULL;
672 root->inode = NULL;
673 root->commit_root = NULL;
674 root->sectorsize = sectorsize;
675 root->nodesize = nodesize;
676 root->leafsize = leafsize;
677 root->stripesize = stripesize;
678 root->ref_cows = 0;
679 root->track_dirty = 0;
680
681 root->fs_info = fs_info;
682 root->objectid = objectid;
683 root->last_trans = 0;
684 root->highest_inode = 0;
685 root->last_inode_alloc = 0;
686 root->name = NULL;
687 root->in_sysfs = 0;
688
689 INIT_LIST_HEAD(&root->dirty_list);
690 memset(&root->root_key, 0, sizeof(root->root_key));
691 memset(&root->root_item, 0, sizeof(root->root_item));
692 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
693 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
694 init_completion(&root->kobj_unregister);
695 root->defrag_running = 0;
696 root->defrag_level = 0;
697 root->root_key.objectid = objectid;
698 return 0;
699 }
700
701 static int find_and_setup_root(struct btrfs_root *tree_root,
702 struct btrfs_fs_info *fs_info,
703 u64 objectid,
704 struct btrfs_root *root)
705 {
706 int ret;
707 u32 blocksize;
708
709 __setup_root(tree_root->nodesize, tree_root->leafsize,
710 tree_root->sectorsize, tree_root->stripesize,
711 root, fs_info, objectid);
712 ret = btrfs_find_last_root(tree_root, objectid,
713 &root->root_item, &root->root_key);
714 BUG_ON(ret);
715
716 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
717 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
718 blocksize);
719 BUG_ON(!root->node);
720 return 0;
721 }
722
723 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
724 struct btrfs_key *location)
725 {
726 struct btrfs_root *root;
727 struct btrfs_root *tree_root = fs_info->tree_root;
728 struct btrfs_path *path;
729 struct extent_buffer *l;
730 u64 highest_inode;
731 u32 blocksize;
732 int ret = 0;
733
734 root = kzalloc(sizeof(*root), GFP_NOFS);
735 if (!root)
736 return ERR_PTR(-ENOMEM);
737 if (location->offset == (u64)-1) {
738 ret = find_and_setup_root(tree_root, fs_info,
739 location->objectid, root);
740 if (ret) {
741 kfree(root);
742 return ERR_PTR(ret);
743 }
744 goto insert;
745 }
746
747 __setup_root(tree_root->nodesize, tree_root->leafsize,
748 tree_root->sectorsize, tree_root->stripesize,
749 root, fs_info, location->objectid);
750
751 path = btrfs_alloc_path();
752 BUG_ON(!path);
753 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
754 if (ret != 0) {
755 if (ret > 0)
756 ret = -ENOENT;
757 goto out;
758 }
759 l = path->nodes[0];
760 read_extent_buffer(l, &root->root_item,
761 btrfs_item_ptr_offset(l, path->slots[0]),
762 sizeof(root->root_item));
763 memcpy(&root->root_key, location, sizeof(*location));
764 ret = 0;
765 out:
766 btrfs_release_path(root, path);
767 btrfs_free_path(path);
768 if (ret) {
769 kfree(root);
770 return ERR_PTR(ret);
771 }
772 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
773 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
774 blocksize);
775 BUG_ON(!root->node);
776 insert:
777 root->ref_cows = 1;
778 ret = btrfs_find_highest_inode(root, &highest_inode);
779 if (ret == 0) {
780 root->highest_inode = highest_inode;
781 root->last_inode_alloc = highest_inode;
782 }
783 return root;
784 }
785
786 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
787 u64 root_objectid)
788 {
789 struct btrfs_root *root;
790
791 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
792 return fs_info->tree_root;
793 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
794 return fs_info->extent_root;
795
796 root = radix_tree_lookup(&fs_info->fs_roots_radix,
797 (unsigned long)root_objectid);
798 return root;
799 }
800
801 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
802 struct btrfs_key *location)
803 {
804 struct btrfs_root *root;
805 int ret;
806
807 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
808 return fs_info->tree_root;
809 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
810 return fs_info->extent_root;
811 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
812 return fs_info->chunk_root;
813 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
814 return fs_info->dev_root;
815
816 root = radix_tree_lookup(&fs_info->fs_roots_radix,
817 (unsigned long)location->objectid);
818 if (root)
819 return root;
820
821 root = btrfs_read_fs_root_no_radix(fs_info, location);
822 if (IS_ERR(root))
823 return root;
824 ret = radix_tree_insert(&fs_info->fs_roots_radix,
825 (unsigned long)root->root_key.objectid,
826 root);
827 if (ret) {
828 free_extent_buffer(root->node);
829 kfree(root);
830 return ERR_PTR(ret);
831 }
832 ret = btrfs_find_dead_roots(fs_info->tree_root,
833 root->root_key.objectid, root);
834 BUG_ON(ret);
835
836 return root;
837 }
838
839 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
840 struct btrfs_key *location,
841 const char *name, int namelen)
842 {
843 struct btrfs_root *root;
844 int ret;
845
846 root = btrfs_read_fs_root_no_name(fs_info, location);
847 if (!root)
848 return NULL;
849
850 if (root->in_sysfs)
851 return root;
852
853 ret = btrfs_set_root_name(root, name, namelen);
854 if (ret) {
855 free_extent_buffer(root->node);
856 kfree(root);
857 return ERR_PTR(ret);
858 }
859
860 ret = btrfs_sysfs_add_root(root);
861 if (ret) {
862 free_extent_buffer(root->node);
863 kfree(root->name);
864 kfree(root);
865 return ERR_PTR(ret);
866 }
867 root->in_sysfs = 1;
868 return root;
869 }
870 #if 0
871 static int add_hasher(struct btrfs_fs_info *info, char *type) {
872 struct btrfs_hasher *hasher;
873
874 hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
875 if (!hasher)
876 return -ENOMEM;
877 hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
878 if (!hasher->hash_tfm) {
879 kfree(hasher);
880 return -EINVAL;
881 }
882 spin_lock(&info->hash_lock);
883 list_add(&hasher->list, &info->hashers);
884 spin_unlock(&info->hash_lock);
885 return 0;
886 }
887 #endif
888
889 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
890 {
891 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
892 int ret = 0;
893 struct list_head *cur;
894 struct btrfs_device *device;
895 struct backing_dev_info *bdi;
896
897 list_for_each(cur, &info->fs_devices->devices) {
898 device = list_entry(cur, struct btrfs_device, dev_list);
899 bdi = blk_get_backing_dev_info(device->bdev);
900 if (bdi && bdi_congested(bdi, bdi_bits)) {
901 ret = 1;
902 break;
903 }
904 }
905 return ret;
906 }
907
908 /*
909 * this unplugs every device on the box, and it is only used when page
910 * is null
911 */
912 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
913 {
914 struct list_head *cur;
915 struct btrfs_device *device;
916 struct btrfs_fs_info *info;
917
918 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
919 list_for_each(cur, &info->fs_devices->devices) {
920 device = list_entry(cur, struct btrfs_device, dev_list);
921 bdi = blk_get_backing_dev_info(device->bdev);
922 if (bdi->unplug_io_fn) {
923 bdi->unplug_io_fn(bdi, page);
924 }
925 }
926 }
927
928 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
929 {
930 struct inode *inode;
931 struct extent_map_tree *em_tree;
932 struct extent_map *em;
933 struct address_space *mapping;
934 u64 offset;
935
936 /* the generic O_DIRECT read code does this */
937 if (!page) {
938 __unplug_io_fn(bdi, page);
939 return;
940 }
941
942 /*
943 * page->mapping may change at any time. Get a consistent copy
944 * and use that for everything below
945 */
946 smp_mb();
947 mapping = page->mapping;
948 if (!mapping)
949 return;
950
951 inode = mapping->host;
952 offset = page_offset(page);
953
954 em_tree = &BTRFS_I(inode)->extent_tree;
955 spin_lock(&em_tree->lock);
956 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
957 spin_unlock(&em_tree->lock);
958 if (!em)
959 return;
960
961 offset = offset - em->start;
962 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
963 em->block_start + offset, page);
964 free_extent_map(em);
965 }
966
967 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
968 {
969 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
970 bdi_init(bdi);
971 #endif
972 bdi->ra_pages = default_backing_dev_info.ra_pages;
973 bdi->state = 0;
974 bdi->capabilities = default_backing_dev_info.capabilities;
975 bdi->unplug_io_fn = btrfs_unplug_io_fn;
976 bdi->unplug_io_data = info;
977 bdi->congested_fn = btrfs_congested_fn;
978 bdi->congested_data = info;
979 return 0;
980 }
981
982 static int bio_ready_for_csum(struct bio *bio)
983 {
984 u64 length = 0;
985 u64 buf_len = 0;
986 u64 start = 0;
987 struct page *page;
988 struct extent_io_tree *io_tree = NULL;
989 struct btrfs_fs_info *info = NULL;
990 struct bio_vec *bvec;
991 int i;
992 int ret;
993
994 bio_for_each_segment(bvec, bio, i) {
995 page = bvec->bv_page;
996 if (page->private == EXTENT_PAGE_PRIVATE) {
997 length += bvec->bv_len;
998 continue;
999 }
1000 if (!page->private) {
1001 length += bvec->bv_len;
1002 continue;
1003 }
1004 length = bvec->bv_len;
1005 buf_len = page->private >> 2;
1006 start = page_offset(page) + bvec->bv_offset;
1007 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1008 info = BTRFS_I(page->mapping->host)->root->fs_info;
1009 }
1010 /* are we fully contained in this bio? */
1011 if (buf_len <= length)
1012 return 1;
1013
1014 ret = extent_range_uptodate(io_tree, start + length,
1015 start + buf_len - 1);
1016 if (ret == 1)
1017 return ret;
1018 return ret;
1019 }
1020
1021 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1022 static void btrfs_end_io_csum(void *p)
1023 #else
1024 static void btrfs_end_io_csum(struct work_struct *work)
1025 #endif
1026 {
1027 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1028 struct btrfs_fs_info *fs_info = p;
1029 #else
1030 struct btrfs_fs_info *fs_info = container_of(work,
1031 struct btrfs_fs_info,
1032 end_io_work);
1033 #endif
1034 unsigned long flags;
1035 struct end_io_wq *end_io_wq;
1036 struct bio *bio;
1037 struct list_head *next;
1038 int error;
1039 int was_empty;
1040
1041 while(1) {
1042 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1043 if (list_empty(&fs_info->end_io_work_list)) {
1044 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1045 flags);
1046 return;
1047 }
1048 next = fs_info->end_io_work_list.next;
1049 list_del(next);
1050 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
1051
1052 end_io_wq = list_entry(next, struct end_io_wq, list);
1053
1054 bio = end_io_wq->bio;
1055 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1056 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1057 was_empty = list_empty(&fs_info->end_io_work_list);
1058 list_add_tail(&end_io_wq->list,
1059 &fs_info->end_io_work_list);
1060 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1061 flags);
1062 if (was_empty)
1063 return;
1064 continue;
1065 }
1066 error = end_io_wq->error;
1067 bio->bi_private = end_io_wq->private;
1068 bio->bi_end_io = end_io_wq->end_io;
1069 kfree(end_io_wq);
1070 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1071 bio_endio(bio, bio->bi_size, error);
1072 #else
1073 bio_endio(bio, error);
1074 #endif
1075 }
1076 }
1077
1078 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1079 static void btrfs_async_submit_work(void *p)
1080 #else
1081 static void btrfs_async_submit_work(struct work_struct *work)
1082 #endif
1083 {
1084 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1085 struct btrfs_fs_info *fs_info = p;
1086 #else
1087 struct btrfs_fs_info *fs_info = container_of(work,
1088 struct btrfs_fs_info,
1089 async_submit_work);
1090 #endif
1091 struct async_submit_bio *async;
1092 struct list_head *next;
1093
1094 while(1) {
1095 spin_lock(&fs_info->async_submit_work_lock);
1096 if (list_empty(&fs_info->async_submit_work_list)) {
1097 spin_unlock(&fs_info->async_submit_work_lock);
1098 return;
1099 }
1100 next = fs_info->async_submit_work_list.next;
1101 list_del(next);
1102 spin_unlock(&fs_info->async_submit_work_lock);
1103
1104 async = list_entry(next, struct async_submit_bio, list);
1105 async->submit_bio_hook(async->inode, async->rw, async->bio,
1106 async->mirror_num);
1107 kfree(async);
1108 }
1109 }
1110
1111 struct btrfs_root *open_ctree(struct super_block *sb,
1112 struct btrfs_fs_devices *fs_devices)
1113 {
1114 u32 sectorsize;
1115 u32 nodesize;
1116 u32 leafsize;
1117 u32 blocksize;
1118 u32 stripesize;
1119 struct buffer_head *bh;
1120 struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1121 GFP_NOFS);
1122 struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1123 GFP_NOFS);
1124 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1125 GFP_NOFS);
1126 struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1127 GFP_NOFS);
1128 struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1129 GFP_NOFS);
1130 int ret;
1131 int err = -EINVAL;
1132 struct btrfs_super_block *disk_super;
1133
1134 if (!extent_root || !tree_root || !fs_info) {
1135 err = -ENOMEM;
1136 goto fail;
1137 }
1138 end_io_workqueue = create_workqueue("btrfs-end-io");
1139 BUG_ON(!end_io_workqueue);
1140 async_submit_workqueue = create_workqueue("btrfs-async-submit");
1141
1142 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1143 INIT_LIST_HEAD(&fs_info->trans_list);
1144 INIT_LIST_HEAD(&fs_info->dead_roots);
1145 INIT_LIST_HEAD(&fs_info->hashers);
1146 INIT_LIST_HEAD(&fs_info->end_io_work_list);
1147 INIT_LIST_HEAD(&fs_info->async_submit_work_list);
1148 spin_lock_init(&fs_info->hash_lock);
1149 spin_lock_init(&fs_info->end_io_work_lock);
1150 spin_lock_init(&fs_info->async_submit_work_lock);
1151 spin_lock_init(&fs_info->delalloc_lock);
1152 spin_lock_init(&fs_info->new_trans_lock);
1153
1154 init_completion(&fs_info->kobj_unregister);
1155 fs_info->tree_root = tree_root;
1156 fs_info->extent_root = extent_root;
1157 fs_info->chunk_root = chunk_root;
1158 fs_info->dev_root = dev_root;
1159 fs_info->fs_devices = fs_devices;
1160 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1161 INIT_LIST_HEAD(&fs_info->space_info);
1162 btrfs_mapping_init(&fs_info->mapping_tree);
1163 fs_info->sb = sb;
1164 fs_info->max_extent = (u64)-1;
1165 fs_info->max_inline = 8192 * 1024;
1166 setup_bdi(fs_info, &fs_info->bdi);
1167 fs_info->btree_inode = new_inode(sb);
1168 fs_info->btree_inode->i_ino = 1;
1169 fs_info->btree_inode->i_nlink = 1;
1170
1171 sb->s_blocksize = 4096;
1172 sb->s_blocksize_bits = blksize_bits(4096);
1173
1174 /*
1175 * we set the i_size on the btree inode to the max possible int.
1176 * the real end of the address space is determined by all of
1177 * the devices in the system
1178 */
1179 fs_info->btree_inode->i_size = OFFSET_MAX;
1180 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1181 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1182
1183 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1184 fs_info->btree_inode->i_mapping,
1185 GFP_NOFS);
1186 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1187 GFP_NOFS);
1188
1189 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1190
1191 extent_io_tree_init(&fs_info->free_space_cache,
1192 fs_info->btree_inode->i_mapping, GFP_NOFS);
1193 extent_io_tree_init(&fs_info->block_group_cache,
1194 fs_info->btree_inode->i_mapping, GFP_NOFS);
1195 extent_io_tree_init(&fs_info->pinned_extents,
1196 fs_info->btree_inode->i_mapping, GFP_NOFS);
1197 extent_io_tree_init(&fs_info->pending_del,
1198 fs_info->btree_inode->i_mapping, GFP_NOFS);
1199 extent_io_tree_init(&fs_info->extent_ins,
1200 fs_info->btree_inode->i_mapping, GFP_NOFS);
1201 fs_info->do_barriers = 1;
1202
1203 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1204 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1205 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work,
1206 fs_info);
1207 INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1208 #else
1209 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1210 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work);
1211 INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1212 #endif
1213 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1214 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1215 sizeof(struct btrfs_key));
1216 insert_inode_hash(fs_info->btree_inode);
1217 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1218
1219 mutex_init(&fs_info->trans_mutex);
1220 mutex_init(&fs_info->fs_mutex);
1221
1222 #if 0
1223 ret = add_hasher(fs_info, "crc32c");
1224 if (ret) {
1225 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1226 err = -ENOMEM;
1227 goto fail_iput;
1228 }
1229 #endif
1230 __setup_root(4096, 4096, 4096, 4096, tree_root,
1231 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1232
1233
1234 bh = __bread(fs_devices->latest_bdev,
1235 BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1236 if (!bh)
1237 goto fail_iput;
1238
1239 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1240 brelse(bh);
1241
1242 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1243
1244 disk_super = &fs_info->super_copy;
1245 if (!btrfs_super_root(disk_super))
1246 goto fail_sb_buffer;
1247
1248 if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1249 printk("Btrfs: wanted %llu devices, but found %llu\n",
1250 (unsigned long long)btrfs_super_num_devices(disk_super),
1251 (unsigned long long)fs_devices->num_devices);
1252 goto fail_sb_buffer;
1253 }
1254 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1255
1256 nodesize = btrfs_super_nodesize(disk_super);
1257 leafsize = btrfs_super_leafsize(disk_super);
1258 sectorsize = btrfs_super_sectorsize(disk_super);
1259 stripesize = btrfs_super_stripesize(disk_super);
1260 tree_root->nodesize = nodesize;
1261 tree_root->leafsize = leafsize;
1262 tree_root->sectorsize = sectorsize;
1263 tree_root->stripesize = stripesize;
1264
1265 sb->s_blocksize = sectorsize;
1266 sb->s_blocksize_bits = blksize_bits(sectorsize);
1267
1268 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1269 sizeof(disk_super->magic))) {
1270 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1271 goto fail_sb_buffer;
1272 }
1273
1274 mutex_lock(&fs_info->fs_mutex);
1275
1276 ret = btrfs_read_sys_array(tree_root);
1277 if (ret) {
1278 printk("btrfs: failed to read the system array on %s\n",
1279 sb->s_id);
1280 goto fail_sys_array;
1281 }
1282
1283 blocksize = btrfs_level_size(tree_root,
1284 btrfs_super_chunk_root_level(disk_super));
1285
1286 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1287 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1288
1289 chunk_root->node = read_tree_block(chunk_root,
1290 btrfs_super_chunk_root(disk_super),
1291 blocksize);
1292 BUG_ON(!chunk_root->node);
1293
1294 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1295 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1296 BTRFS_UUID_SIZE);
1297
1298 ret = btrfs_read_chunk_tree(chunk_root);
1299 BUG_ON(ret);
1300
1301 blocksize = btrfs_level_size(tree_root,
1302 btrfs_super_root_level(disk_super));
1303
1304
1305 tree_root->node = read_tree_block(tree_root,
1306 btrfs_super_root(disk_super),
1307 blocksize);
1308 if (!tree_root->node)
1309 goto fail_sb_buffer;
1310
1311
1312 ret = find_and_setup_root(tree_root, fs_info,
1313 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1314 if (ret)
1315 goto fail_tree_root;
1316 extent_root->track_dirty = 1;
1317
1318 ret = find_and_setup_root(tree_root, fs_info,
1319 BTRFS_DEV_TREE_OBJECTID, dev_root);
1320 dev_root->track_dirty = 1;
1321
1322 if (ret)
1323 goto fail_extent_root;
1324
1325 btrfs_read_block_groups(extent_root);
1326
1327 fs_info->generation = btrfs_super_generation(disk_super) + 1;
1328 fs_info->data_alloc_profile = (u64)-1;
1329 fs_info->metadata_alloc_profile = (u64)-1;
1330 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1331
1332 mutex_unlock(&fs_info->fs_mutex);
1333 return tree_root;
1334
1335 fail_extent_root:
1336 free_extent_buffer(extent_root->node);
1337 fail_tree_root:
1338 free_extent_buffer(tree_root->node);
1339 fail_sys_array:
1340 mutex_unlock(&fs_info->fs_mutex);
1341 fail_sb_buffer:
1342 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1343 fail_iput:
1344 iput(fs_info->btree_inode);
1345 fail:
1346 close_all_devices(fs_info);
1347 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1348
1349 kfree(extent_root);
1350 kfree(tree_root);
1351 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1352 bdi_destroy(&fs_info->bdi);
1353 #endif
1354 kfree(fs_info);
1355 return ERR_PTR(err);
1356 }
1357
1358 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1359 {
1360 char b[BDEVNAME_SIZE];
1361
1362 if (uptodate) {
1363 set_buffer_uptodate(bh);
1364 } else {
1365 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1366 printk(KERN_WARNING "lost page write due to "
1367 "I/O error on %s\n",
1368 bdevname(bh->b_bdev, b));
1369 }
1370 set_buffer_write_io_error(bh);
1371 clear_buffer_uptodate(bh);
1372 }
1373 unlock_buffer(bh);
1374 put_bh(bh);
1375 }
1376
1377 int write_all_supers(struct btrfs_root *root)
1378 {
1379 struct list_head *cur;
1380 struct list_head *head = &root->fs_info->fs_devices->devices;
1381 struct btrfs_device *dev;
1382 struct btrfs_super_block *sb;
1383 struct btrfs_dev_item *dev_item;
1384 struct buffer_head *bh;
1385 int ret;
1386 int do_barriers;
1387 int max_errors;
1388 int total_errors = 0;
1389 u32 crc;
1390 u64 flags;
1391
1392 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1393 do_barriers = !btrfs_test_opt(root, NOBARRIER);
1394
1395 sb = &root->fs_info->super_for_commit;
1396 dev_item = &sb->dev_item;
1397 list_for_each(cur, head) {
1398 dev = list_entry(cur, struct btrfs_device, dev_list);
1399 btrfs_set_stack_device_type(dev_item, dev->type);
1400 btrfs_set_stack_device_id(dev_item, dev->devid);
1401 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1402 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1403 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1404 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1405 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1406 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1407 flags = btrfs_super_flags(sb);
1408 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1409
1410
1411 crc = ~(u32)0;
1412 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1413 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1414 btrfs_csum_final(crc, sb->csum);
1415
1416 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1417 BTRFS_SUPER_INFO_SIZE);
1418
1419 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1420 dev->pending_io = bh;
1421
1422 get_bh(bh);
1423 set_buffer_uptodate(bh);
1424 lock_buffer(bh);
1425 bh->b_end_io = btrfs_end_buffer_write_sync;
1426
1427 if (do_barriers && dev->barriers) {
1428 ret = submit_bh(WRITE_BARRIER, bh);
1429 if (ret == -EOPNOTSUPP) {
1430 printk("btrfs: disabling barriers on dev %s\n",
1431 dev->name);
1432 set_buffer_uptodate(bh);
1433 dev->barriers = 0;
1434 get_bh(bh);
1435 lock_buffer(bh);
1436 ret = submit_bh(WRITE, bh);
1437 }
1438 } else {
1439 ret = submit_bh(WRITE, bh);
1440 }
1441 if (ret)
1442 total_errors++;
1443 }
1444 if (total_errors > max_errors) {
1445 printk("btrfs: %d errors while writing supers\n", total_errors);
1446 BUG();
1447 }
1448 total_errors = 0;
1449
1450 list_for_each(cur, head) {
1451 dev = list_entry(cur, struct btrfs_device, dev_list);
1452 BUG_ON(!dev->pending_io);
1453 bh = dev->pending_io;
1454 wait_on_buffer(bh);
1455 if (!buffer_uptodate(dev->pending_io)) {
1456 if (do_barriers && dev->barriers) {
1457 printk("btrfs: disabling barriers on dev %s\n",
1458 dev->name);
1459 set_buffer_uptodate(bh);
1460 get_bh(bh);
1461 lock_buffer(bh);
1462 dev->barriers = 0;
1463 ret = submit_bh(WRITE, bh);
1464 BUG_ON(ret);
1465 wait_on_buffer(bh);
1466 BUG_ON(!buffer_uptodate(bh));
1467 } else {
1468 total_errors++;
1469 }
1470
1471 }
1472 dev->pending_io = NULL;
1473 brelse(bh);
1474 }
1475 if (total_errors > max_errors) {
1476 printk("btrfs: %d errors while writing supers\n", total_errors);
1477 BUG();
1478 }
1479 return 0;
1480 }
1481
1482 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1483 *root)
1484 {
1485 int ret;
1486
1487 ret = write_all_supers(root);
1488 return ret;
1489 }
1490
1491 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1492 {
1493 radix_tree_delete(&fs_info->fs_roots_radix,
1494 (unsigned long)root->root_key.objectid);
1495 if (root->in_sysfs)
1496 btrfs_sysfs_del_root(root);
1497 if (root->inode)
1498 iput(root->inode);
1499 if (root->node)
1500 free_extent_buffer(root->node);
1501 if (root->commit_root)
1502 free_extent_buffer(root->commit_root);
1503 if (root->name)
1504 kfree(root->name);
1505 kfree(root);
1506 return 0;
1507 }
1508
1509 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1510 {
1511 int ret;
1512 struct btrfs_root *gang[8];
1513 int i;
1514
1515 while(1) {
1516 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1517 (void **)gang, 0,
1518 ARRAY_SIZE(gang));
1519 if (!ret)
1520 break;
1521 for (i = 0; i < ret; i++)
1522 btrfs_free_fs_root(fs_info, gang[i]);
1523 }
1524 return 0;
1525 }
1526
1527 int close_ctree(struct btrfs_root *root)
1528 {
1529 int ret;
1530 struct btrfs_trans_handle *trans;
1531 struct btrfs_fs_info *fs_info = root->fs_info;
1532
1533 fs_info->closing = 1;
1534 btrfs_transaction_flush_work(root);
1535 mutex_lock(&fs_info->fs_mutex);
1536 btrfs_defrag_dirty_roots(root->fs_info);
1537 trans = btrfs_start_transaction(root, 1);
1538 ret = btrfs_commit_transaction(trans, root);
1539 /* run commit again to drop the original snapshot */
1540 trans = btrfs_start_transaction(root, 1);
1541 btrfs_commit_transaction(trans, root);
1542 ret = btrfs_write_and_wait_transaction(NULL, root);
1543 BUG_ON(ret);
1544
1545 write_ctree_super(NULL, root);
1546 mutex_unlock(&fs_info->fs_mutex);
1547
1548 btrfs_transaction_flush_work(root);
1549
1550 if (fs_info->delalloc_bytes) {
1551 printk("btrfs: at unmount delalloc count %Lu\n",
1552 fs_info->delalloc_bytes);
1553 }
1554 if (fs_info->extent_root->node)
1555 free_extent_buffer(fs_info->extent_root->node);
1556
1557 if (fs_info->tree_root->node)
1558 free_extent_buffer(fs_info->tree_root->node);
1559
1560 if (root->fs_info->chunk_root->node);
1561 free_extent_buffer(root->fs_info->chunk_root->node);
1562
1563 if (root->fs_info->dev_root->node);
1564 free_extent_buffer(root->fs_info->dev_root->node);
1565
1566 btrfs_free_block_groups(root->fs_info);
1567 del_fs_roots(fs_info);
1568
1569 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1570
1571 extent_io_tree_empty_lru(&fs_info->free_space_cache);
1572 extent_io_tree_empty_lru(&fs_info->block_group_cache);
1573 extent_io_tree_empty_lru(&fs_info->pinned_extents);
1574 extent_io_tree_empty_lru(&fs_info->pending_del);
1575 extent_io_tree_empty_lru(&fs_info->extent_ins);
1576 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1577
1578 flush_workqueue(async_submit_workqueue);
1579 flush_workqueue(end_io_workqueue);
1580
1581 truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1582
1583 flush_workqueue(async_submit_workqueue);
1584 destroy_workqueue(async_submit_workqueue);
1585
1586 flush_workqueue(end_io_workqueue);
1587 destroy_workqueue(end_io_workqueue);
1588
1589 iput(fs_info->btree_inode);
1590 #if 0
1591 while(!list_empty(&fs_info->hashers)) {
1592 struct btrfs_hasher *hasher;
1593 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1594 hashers);
1595 list_del(&hasher->hashers);
1596 crypto_free_hash(&fs_info->hash_tfm);
1597 kfree(hasher);
1598 }
1599 #endif
1600 close_all_devices(fs_info);
1601 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1602
1603 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1604 bdi_destroy(&fs_info->bdi);
1605 #endif
1606
1607 kfree(fs_info->extent_root);
1608 kfree(fs_info->tree_root);
1609 kfree(fs_info->chunk_root);
1610 kfree(fs_info->dev_root);
1611 return 0;
1612 }
1613
1614 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1615 {
1616 struct inode *btree_inode = buf->first_page->mapping->host;
1617 return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1618 }
1619
1620 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1621 {
1622 struct inode *btree_inode = buf->first_page->mapping->host;
1623 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1624 buf);
1625 }
1626
1627 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1628 {
1629 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1630 u64 transid = btrfs_header_generation(buf);
1631 struct inode *btree_inode = root->fs_info->btree_inode;
1632
1633 if (transid != root->fs_info->generation) {
1634 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1635 (unsigned long long)buf->start,
1636 transid, root->fs_info->generation);
1637 WARN_ON(1);
1638 }
1639 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1640 }
1641
1642 void btrfs_throttle(struct btrfs_root *root)
1643 {
1644 struct backing_dev_info *bdi;
1645
1646 bdi = &root->fs_info->bdi;
1647 if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1648 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1649 congestion_wait(WRITE, HZ/20);
1650 #else
1651 blk_congestion_wait(WRITE, HZ/20);
1652 #endif
1653 }
1654 }
1655
1656 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1657 {
1658 struct extent_io_tree *tree;
1659 u64 num_dirty;
1660 u64 start = 0;
1661 unsigned long thresh = 16 * 1024 * 1024;
1662 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
1663
1664 if (current_is_pdflush())
1665 return;
1666
1667 num_dirty = count_range_bits(tree, &start, (u64)-1,
1668 thresh, EXTENT_DIRTY);
1669 if (num_dirty > thresh) {
1670 balance_dirty_pages_ratelimited_nr(
1671 root->fs_info->btree_inode->i_mapping, 1);
1672 }
1673 }
1674
1675 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1676 {
1677 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1678 struct inode *btree_inode = root->fs_info->btree_inode;
1679 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1680 buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1681 }
1682
1683 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1684 {
1685 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1686 struct inode *btree_inode = root->fs_info->btree_inode;
1687 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1688 buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1689 GFP_NOFS);
1690 }
1691
1692 int btrfs_buffer_defrag(struct extent_buffer *buf)
1693 {
1694 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1695 struct inode *btree_inode = root->fs_info->btree_inode;
1696 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1697 buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1698 }
1699
1700 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1701 {
1702 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1703 struct inode *btree_inode = root->fs_info->btree_inode;
1704 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1705 buf->start, buf->start + buf->len - 1,
1706 EXTENT_DEFRAG_DONE, 0);
1707 }
1708
1709 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1710 {
1711 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1712 struct inode *btree_inode = root->fs_info->btree_inode;
1713 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1714 buf->start, buf->start + buf->len - 1,
1715 EXTENT_DEFRAG_DONE, GFP_NOFS);
1716 }
1717
1718 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1719 {
1720 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1721 struct inode *btree_inode = root->fs_info->btree_inode;
1722 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1723 buf->start, buf->start + buf->len - 1,
1724 EXTENT_DEFRAG, GFP_NOFS);
1725 }
1726
1727 int btrfs_read_buffer(struct extent_buffer *buf)
1728 {
1729 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1730 int ret;
1731 ret = btree_read_extent_buffer_pages(root, buf, 0);
1732 if (ret == 0) {
1733 buf->flags |= EXTENT_UPTODATE;
1734 }
1735 return ret;
1736 }
1737
1738 static struct extent_io_ops btree_extent_io_ops = {
1739 .writepage_io_hook = btree_writepage_io_hook,
1740 .readpage_end_io_hook = btree_readpage_end_io_hook,
1741 .submit_bio_hook = btree_submit_bio_hook,
1742 /* note we're sharing with inode.c for the merge bio hook */
1743 .merge_bio_hook = btrfs_merge_bio_hook,
1744 };
This page took 0.070778 seconds and 6 git commands to generate.