Merge branch 'misc-cleanups-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 static const struct extent_io_ops btree_extent_io_ops;
59 static void end_workqueue_fn(struct btrfs_work *work);
60 static void free_fs_root(struct btrfs_root *root);
61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62 int read_only);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_root *root);
73 static void btrfs_error_commit_super(struct btrfs_root *root);
74
75 /*
76 * btrfs_end_io_wq structs are used to do processing in task context when an IO
77 * is complete. This is used during reads to verify checksums, and it is used
78 * by writes to insert metadata for new file extents after IO is complete.
79 */
80 struct btrfs_end_io_wq {
81 struct bio *bio;
82 bio_end_io_t *end_io;
83 void *private;
84 struct btrfs_fs_info *info;
85 int error;
86 enum btrfs_wq_endio_type metadata;
87 struct list_head list;
88 struct btrfs_work work;
89 };
90
91 static struct kmem_cache *btrfs_end_io_wq_cache;
92
93 int __init btrfs_end_io_wq_init(void)
94 {
95 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
96 sizeof(struct btrfs_end_io_wq),
97 0,
98 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
99 NULL);
100 if (!btrfs_end_io_wq_cache)
101 return -ENOMEM;
102 return 0;
103 }
104
105 void btrfs_end_io_wq_exit(void)
106 {
107 if (btrfs_end_io_wq_cache)
108 kmem_cache_destroy(btrfs_end_io_wq_cache);
109 }
110
111 /*
112 * async submit bios are used to offload expensive checksumming
113 * onto the worker threads. They checksum file and metadata bios
114 * just before they are sent down the IO stack.
115 */
116 struct async_submit_bio {
117 struct inode *inode;
118 struct bio *bio;
119 struct list_head list;
120 extent_submit_bio_hook_t *submit_bio_start;
121 extent_submit_bio_hook_t *submit_bio_done;
122 int rw;
123 int mirror_num;
124 unsigned long bio_flags;
125 /*
126 * bio_offset is optional, can be used if the pages in the bio
127 * can't tell us where in the file the bio should go
128 */
129 u64 bio_offset;
130 struct btrfs_work work;
131 int error;
132 };
133
134 /*
135 * Lockdep class keys for extent_buffer->lock's in this root. For a given
136 * eb, the lockdep key is determined by the btrfs_root it belongs to and
137 * the level the eb occupies in the tree.
138 *
139 * Different roots are used for different purposes and may nest inside each
140 * other and they require separate keysets. As lockdep keys should be
141 * static, assign keysets according to the purpose of the root as indicated
142 * by btrfs_root->objectid. This ensures that all special purpose roots
143 * have separate keysets.
144 *
145 * Lock-nesting across peer nodes is always done with the immediate parent
146 * node locked thus preventing deadlock. As lockdep doesn't know this, use
147 * subclass to avoid triggering lockdep warning in such cases.
148 *
149 * The key is set by the readpage_end_io_hook after the buffer has passed
150 * csum validation but before the pages are unlocked. It is also set by
151 * btrfs_init_new_buffer on freshly allocated blocks.
152 *
153 * We also add a check to make sure the highest level of the tree is the
154 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
155 * needs update as well.
156 */
157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
158 # if BTRFS_MAX_LEVEL != 8
159 # error
160 # endif
161
162 static struct btrfs_lockdep_keyset {
163 u64 id; /* root objectid */
164 const char *name_stem; /* lock name stem */
165 char names[BTRFS_MAX_LEVEL + 1][20];
166 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
167 } btrfs_lockdep_keysets[] = {
168 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
169 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
170 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
171 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
172 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
173 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
174 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
175 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
176 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
177 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
178 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
179 { .id = 0, .name_stem = "tree" },
180 };
181
182 void __init btrfs_init_lockdep(void)
183 {
184 int i, j;
185
186 /* initialize lockdep class names */
187 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
188 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
189
190 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
191 snprintf(ks->names[j], sizeof(ks->names[j]),
192 "btrfs-%s-%02d", ks->name_stem, j);
193 }
194 }
195
196 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
197 int level)
198 {
199 struct btrfs_lockdep_keyset *ks;
200
201 BUG_ON(level >= ARRAY_SIZE(ks->keys));
202
203 /* find the matching keyset, id 0 is the default entry */
204 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
205 if (ks->id == objectid)
206 break;
207
208 lockdep_set_class_and_name(&eb->lock,
209 &ks->keys[level], ks->names[level]);
210 }
211
212 #endif
213
214 /*
215 * extents on the btree inode are pretty simple, there's one extent
216 * that covers the entire device
217 */
218 static struct extent_map *btree_get_extent(struct inode *inode,
219 struct page *page, size_t pg_offset, u64 start, u64 len,
220 int create)
221 {
222 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
223 struct extent_map *em;
224 int ret;
225
226 read_lock(&em_tree->lock);
227 em = lookup_extent_mapping(em_tree, start, len);
228 if (em) {
229 em->bdev =
230 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
231 read_unlock(&em_tree->lock);
232 goto out;
233 }
234 read_unlock(&em_tree->lock);
235
236 em = alloc_extent_map();
237 if (!em) {
238 em = ERR_PTR(-ENOMEM);
239 goto out;
240 }
241 em->start = 0;
242 em->len = (u64)-1;
243 em->block_len = (u64)-1;
244 em->block_start = 0;
245 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
246
247 write_lock(&em_tree->lock);
248 ret = add_extent_mapping(em_tree, em, 0);
249 if (ret == -EEXIST) {
250 free_extent_map(em);
251 em = lookup_extent_mapping(em_tree, start, len);
252 if (!em)
253 em = ERR_PTR(-EIO);
254 } else if (ret) {
255 free_extent_map(em);
256 em = ERR_PTR(ret);
257 }
258 write_unlock(&em_tree->lock);
259
260 out:
261 return em;
262 }
263
264 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
265 {
266 return btrfs_crc32c(seed, data, len);
267 }
268
269 void btrfs_csum_final(u32 crc, char *result)
270 {
271 put_unaligned_le32(~crc, result);
272 }
273
274 /*
275 * compute the csum for a btree block, and either verify it or write it
276 * into the csum field of the block.
277 */
278 static int csum_tree_block(struct btrfs_fs_info *fs_info,
279 struct extent_buffer *buf,
280 int verify)
281 {
282 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
283 char *result = NULL;
284 unsigned long len;
285 unsigned long cur_len;
286 unsigned long offset = BTRFS_CSUM_SIZE;
287 char *kaddr;
288 unsigned long map_start;
289 unsigned long map_len;
290 int err;
291 u32 crc = ~(u32)0;
292 unsigned long inline_result;
293
294 len = buf->len - offset;
295 while (len > 0) {
296 err = map_private_extent_buffer(buf, offset, 32,
297 &kaddr, &map_start, &map_len);
298 if (err)
299 return 1;
300 cur_len = min(len, map_len - (offset - map_start));
301 crc = btrfs_csum_data(kaddr + offset - map_start,
302 crc, cur_len);
303 len -= cur_len;
304 offset += cur_len;
305 }
306 if (csum_size > sizeof(inline_result)) {
307 result = kzalloc(csum_size, GFP_NOFS);
308 if (!result)
309 return 1;
310 } else {
311 result = (char *)&inline_result;
312 }
313
314 btrfs_csum_final(crc, result);
315
316 if (verify) {
317 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
318 u32 val;
319 u32 found = 0;
320 memcpy(&found, result, csum_size);
321
322 read_extent_buffer(buf, &val, 0, csum_size);
323 btrfs_warn_rl(fs_info,
324 "%s checksum verify failed on %llu wanted %X found %X "
325 "level %d",
326 fs_info->sb->s_id, buf->start,
327 val, found, btrfs_header_level(buf));
328 if (result != (char *)&inline_result)
329 kfree(result);
330 return 1;
331 }
332 } else {
333 write_extent_buffer(buf, result, 0, csum_size);
334 }
335 if (result != (char *)&inline_result)
336 kfree(result);
337 return 0;
338 }
339
340 /*
341 * we can't consider a given block up to date unless the transid of the
342 * block matches the transid in the parent node's pointer. This is how we
343 * detect blocks that either didn't get written at all or got written
344 * in the wrong place.
345 */
346 static int verify_parent_transid(struct extent_io_tree *io_tree,
347 struct extent_buffer *eb, u64 parent_transid,
348 int atomic)
349 {
350 struct extent_state *cached_state = NULL;
351 int ret;
352 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
353
354 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
355 return 0;
356
357 if (atomic)
358 return -EAGAIN;
359
360 if (need_lock) {
361 btrfs_tree_read_lock(eb);
362 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
363 }
364
365 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
366 &cached_state);
367 if (extent_buffer_uptodate(eb) &&
368 btrfs_header_generation(eb) == parent_transid) {
369 ret = 0;
370 goto out;
371 }
372 btrfs_err_rl(eb->fs_info,
373 "parent transid verify failed on %llu wanted %llu found %llu",
374 eb->start,
375 parent_transid, btrfs_header_generation(eb));
376 ret = 1;
377
378 /*
379 * Things reading via commit roots that don't have normal protection,
380 * like send, can have a really old block in cache that may point at a
381 * block that has been free'd and re-allocated. So don't clear uptodate
382 * if we find an eb that is under IO (dirty/writeback) because we could
383 * end up reading in the stale data and then writing it back out and
384 * making everybody very sad.
385 */
386 if (!extent_buffer_under_io(eb))
387 clear_extent_buffer_uptodate(eb);
388 out:
389 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
390 &cached_state, GFP_NOFS);
391 if (need_lock)
392 btrfs_tree_read_unlock_blocking(eb);
393 return ret;
394 }
395
396 /*
397 * Return 0 if the superblock checksum type matches the checksum value of that
398 * algorithm. Pass the raw disk superblock data.
399 */
400 static int btrfs_check_super_csum(char *raw_disk_sb)
401 {
402 struct btrfs_super_block *disk_sb =
403 (struct btrfs_super_block *)raw_disk_sb;
404 u16 csum_type = btrfs_super_csum_type(disk_sb);
405 int ret = 0;
406
407 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
408 u32 crc = ~(u32)0;
409 const int csum_size = sizeof(crc);
410 char result[csum_size];
411
412 /*
413 * The super_block structure does not span the whole
414 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
415 * is filled with zeros and is included in the checkum.
416 */
417 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
418 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
419 btrfs_csum_final(crc, result);
420
421 if (memcmp(raw_disk_sb, result, csum_size))
422 ret = 1;
423 }
424
425 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
426 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
427 csum_type);
428 ret = 1;
429 }
430
431 return ret;
432 }
433
434 /*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
437 */
438 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
439 struct extent_buffer *eb,
440 u64 start, u64 parent_transid)
441 {
442 struct extent_io_tree *io_tree;
443 int failed = 0;
444 int ret;
445 int num_copies = 0;
446 int mirror_num = 0;
447 int failed_mirror = 0;
448
449 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
450 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
451 while (1) {
452 ret = read_extent_buffer_pages(io_tree, eb, start,
453 WAIT_COMPLETE,
454 btree_get_extent, mirror_num);
455 if (!ret) {
456 if (!verify_parent_transid(io_tree, eb,
457 parent_transid, 0))
458 break;
459 else
460 ret = -EIO;
461 }
462
463 /*
464 * This buffer's crc is fine, but its contents are corrupted, so
465 * there is no reason to read the other copies, they won't be
466 * any less wrong.
467 */
468 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
469 break;
470
471 num_copies = btrfs_num_copies(root->fs_info,
472 eb->start, eb->len);
473 if (num_copies == 1)
474 break;
475
476 if (!failed_mirror) {
477 failed = 1;
478 failed_mirror = eb->read_mirror;
479 }
480
481 mirror_num++;
482 if (mirror_num == failed_mirror)
483 mirror_num++;
484
485 if (mirror_num > num_copies)
486 break;
487 }
488
489 if (failed && !ret && failed_mirror)
490 repair_eb_io_failure(root, eb, failed_mirror);
491
492 return ret;
493 }
494
495 /*
496 * checksum a dirty tree block before IO. This has extra checks to make sure
497 * we only fill in the checksum field in the first page of a multi-page block
498 */
499
500 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
501 {
502 u64 start = page_offset(page);
503 u64 found_start;
504 struct extent_buffer *eb;
505
506 eb = (struct extent_buffer *)page->private;
507 if (page != eb->pages[0])
508 return 0;
509 found_start = btrfs_header_bytenr(eb);
510 if (WARN_ON(found_start != start || !PageUptodate(page)))
511 return 0;
512 csum_tree_block(fs_info, eb, 0);
513 return 0;
514 }
515
516 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
517 struct extent_buffer *eb)
518 {
519 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
520 u8 fsid[BTRFS_UUID_SIZE];
521 int ret = 1;
522
523 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
524 while (fs_devices) {
525 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
526 ret = 0;
527 break;
528 }
529 fs_devices = fs_devices->seed;
530 }
531 return ret;
532 }
533
534 #define CORRUPT(reason, eb, root, slot) \
535 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
536 "root=%llu, slot=%d", reason, \
537 btrfs_header_bytenr(eb), root->objectid, slot)
538
539 static noinline int check_leaf(struct btrfs_root *root,
540 struct extent_buffer *leaf)
541 {
542 struct btrfs_key key;
543 struct btrfs_key leaf_key;
544 u32 nritems = btrfs_header_nritems(leaf);
545 int slot;
546
547 if (nritems == 0)
548 return 0;
549
550 /* Check the 0 item */
551 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
552 BTRFS_LEAF_DATA_SIZE(root)) {
553 CORRUPT("invalid item offset size pair", leaf, root, 0);
554 return -EIO;
555 }
556
557 /*
558 * Check to make sure each items keys are in the correct order and their
559 * offsets make sense. We only have to loop through nritems-1 because
560 * we check the current slot against the next slot, which verifies the
561 * next slot's offset+size makes sense and that the current's slot
562 * offset is correct.
563 */
564 for (slot = 0; slot < nritems - 1; slot++) {
565 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
566 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
567
568 /* Make sure the keys are in the right order */
569 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
570 CORRUPT("bad key order", leaf, root, slot);
571 return -EIO;
572 }
573
574 /*
575 * Make sure the offset and ends are right, remember that the
576 * item data starts at the end of the leaf and grows towards the
577 * front.
578 */
579 if (btrfs_item_offset_nr(leaf, slot) !=
580 btrfs_item_end_nr(leaf, slot + 1)) {
581 CORRUPT("slot offset bad", leaf, root, slot);
582 return -EIO;
583 }
584
585 /*
586 * Check to make sure that we don't point outside of the leaf,
587 * just incase all the items are consistent to eachother, but
588 * all point outside of the leaf.
589 */
590 if (btrfs_item_end_nr(leaf, slot) >
591 BTRFS_LEAF_DATA_SIZE(root)) {
592 CORRUPT("slot end outside of leaf", leaf, root, slot);
593 return -EIO;
594 }
595 }
596
597 return 0;
598 }
599
600 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
601 u64 phy_offset, struct page *page,
602 u64 start, u64 end, int mirror)
603 {
604 u64 found_start;
605 int found_level;
606 struct extent_buffer *eb;
607 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
608 int ret = 0;
609 int reads_done;
610
611 if (!page->private)
612 goto out;
613
614 eb = (struct extent_buffer *)page->private;
615
616 /* the pending IO might have been the only thing that kept this buffer
617 * in memory. Make sure we have a ref for all this other checks
618 */
619 extent_buffer_get(eb);
620
621 reads_done = atomic_dec_and_test(&eb->io_pages);
622 if (!reads_done)
623 goto err;
624
625 eb->read_mirror = mirror;
626 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
627 ret = -EIO;
628 goto err;
629 }
630
631 found_start = btrfs_header_bytenr(eb);
632 if (found_start != eb->start) {
633 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
634 found_start, eb->start);
635 ret = -EIO;
636 goto err;
637 }
638 if (check_tree_block_fsid(root->fs_info, eb)) {
639 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
640 eb->start);
641 ret = -EIO;
642 goto err;
643 }
644 found_level = btrfs_header_level(eb);
645 if (found_level >= BTRFS_MAX_LEVEL) {
646 btrfs_err(root->fs_info, "bad tree block level %d",
647 (int)btrfs_header_level(eb));
648 ret = -EIO;
649 goto err;
650 }
651
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 eb, found_level);
654
655 ret = csum_tree_block(root->fs_info, eb, 1);
656 if (ret) {
657 ret = -EIO;
658 goto err;
659 }
660
661 /*
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
664 * return -EIO.
665 */
666 if (found_level == 0 && check_leaf(root, eb)) {
667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 ret = -EIO;
669 }
670
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
673 err:
674 if (reads_done &&
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
676 btree_readahead_hook(root, eb, eb->start, ret);
677
678 if (ret) {
679 /*
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
682 * to decrement
683 */
684 atomic_inc(&eb->io_pages);
685 clear_extent_buffer_uptodate(eb);
686 }
687 free_extent_buffer(eb);
688 out:
689 return ret;
690 }
691
692 static int btree_io_failed_hook(struct page *page, int failed_mirror)
693 {
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
697 eb = (struct extent_buffer *)page->private;
698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
699 eb->read_mirror = failed_mirror;
700 atomic_dec(&eb->io_pages);
701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
702 btree_readahead_hook(root, eb, eb->start, -EIO);
703 return -EIO; /* we fixed nothing */
704 }
705
706 static void end_workqueue_bio(struct bio *bio)
707 {
708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709 struct btrfs_fs_info *fs_info;
710 struct btrfs_workqueue *wq;
711 btrfs_work_func_t func;
712
713 fs_info = end_io_wq->info;
714 end_io_wq->error = bio->bi_error;
715
716 if (bio->bi_rw & REQ_WRITE) {
717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 wq = fs_info->endio_meta_write_workers;
719 func = btrfs_endio_meta_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 wq = fs_info->endio_freespace_worker;
722 func = btrfs_freespace_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 wq = fs_info->endio_raid56_workers;
725 func = btrfs_endio_raid56_helper;
726 } else {
727 wq = fs_info->endio_write_workers;
728 func = btrfs_endio_write_helper;
729 }
730 } else {
731 if (unlikely(end_io_wq->metadata ==
732 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 wq = fs_info->endio_repair_workers;
734 func = btrfs_endio_repair_helper;
735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
736 wq = fs_info->endio_raid56_workers;
737 func = btrfs_endio_raid56_helper;
738 } else if (end_io_wq->metadata) {
739 wq = fs_info->endio_meta_workers;
740 func = btrfs_endio_meta_helper;
741 } else {
742 wq = fs_info->endio_workers;
743 func = btrfs_endio_helper;
744 }
745 }
746
747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 btrfs_queue_work(wq, &end_io_wq->work);
749 }
750
751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
752 enum btrfs_wq_endio_type metadata)
753 {
754 struct btrfs_end_io_wq *end_io_wq;
755
756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
757 if (!end_io_wq)
758 return -ENOMEM;
759
760 end_io_wq->private = bio->bi_private;
761 end_io_wq->end_io = bio->bi_end_io;
762 end_io_wq->info = info;
763 end_io_wq->error = 0;
764 end_io_wq->bio = bio;
765 end_io_wq->metadata = metadata;
766
767 bio->bi_private = end_io_wq;
768 bio->bi_end_io = end_workqueue_bio;
769 return 0;
770 }
771
772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
773 {
774 unsigned long limit = min_t(unsigned long,
775 info->thread_pool_size,
776 info->fs_devices->open_devices);
777 return 256 * limit;
778 }
779
780 static void run_one_async_start(struct btrfs_work *work)
781 {
782 struct async_submit_bio *async;
783 int ret;
784
785 async = container_of(work, struct async_submit_bio, work);
786 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 async->mirror_num, async->bio_flags,
788 async->bio_offset);
789 if (ret)
790 async->error = ret;
791 }
792
793 static void run_one_async_done(struct btrfs_work *work)
794 {
795 struct btrfs_fs_info *fs_info;
796 struct async_submit_bio *async;
797 int limit;
798
799 async = container_of(work, struct async_submit_bio, work);
800 fs_info = BTRFS_I(async->inode)->root->fs_info;
801
802 limit = btrfs_async_submit_limit(fs_info);
803 limit = limit * 2 / 3;
804
805 /*
806 * atomic_dec_return implies a barrier for waitqueue_active
807 */
808 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
809 waitqueue_active(&fs_info->async_submit_wait))
810 wake_up(&fs_info->async_submit_wait);
811
812 /* If an error occured we just want to clean up the bio and move on */
813 if (async->error) {
814 async->bio->bi_error = async->error;
815 bio_endio(async->bio);
816 return;
817 }
818
819 async->submit_bio_done(async->inode, async->rw, async->bio,
820 async->mirror_num, async->bio_flags,
821 async->bio_offset);
822 }
823
824 static void run_one_async_free(struct btrfs_work *work)
825 {
826 struct async_submit_bio *async;
827
828 async = container_of(work, struct async_submit_bio, work);
829 kfree(async);
830 }
831
832 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
833 int rw, struct bio *bio, int mirror_num,
834 unsigned long bio_flags,
835 u64 bio_offset,
836 extent_submit_bio_hook_t *submit_bio_start,
837 extent_submit_bio_hook_t *submit_bio_done)
838 {
839 struct async_submit_bio *async;
840
841 async = kmalloc(sizeof(*async), GFP_NOFS);
842 if (!async)
843 return -ENOMEM;
844
845 async->inode = inode;
846 async->rw = rw;
847 async->bio = bio;
848 async->mirror_num = mirror_num;
849 async->submit_bio_start = submit_bio_start;
850 async->submit_bio_done = submit_bio_done;
851
852 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
853 run_one_async_done, run_one_async_free);
854
855 async->bio_flags = bio_flags;
856 async->bio_offset = bio_offset;
857
858 async->error = 0;
859
860 atomic_inc(&fs_info->nr_async_submits);
861
862 if (rw & REQ_SYNC)
863 btrfs_set_work_high_priority(&async->work);
864
865 btrfs_queue_work(fs_info->workers, &async->work);
866
867 while (atomic_read(&fs_info->async_submit_draining) &&
868 atomic_read(&fs_info->nr_async_submits)) {
869 wait_event(fs_info->async_submit_wait,
870 (atomic_read(&fs_info->nr_async_submits) == 0));
871 }
872
873 return 0;
874 }
875
876 static int btree_csum_one_bio(struct bio *bio)
877 {
878 struct bio_vec *bvec;
879 struct btrfs_root *root;
880 int i, ret = 0;
881
882 bio_for_each_segment_all(bvec, bio, i) {
883 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
884 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
885 if (ret)
886 break;
887 }
888
889 return ret;
890 }
891
892 static int __btree_submit_bio_start(struct inode *inode, int rw,
893 struct bio *bio, int mirror_num,
894 unsigned long bio_flags,
895 u64 bio_offset)
896 {
897 /*
898 * when we're called for a write, we're already in the async
899 * submission context. Just jump into btrfs_map_bio
900 */
901 return btree_csum_one_bio(bio);
902 }
903
904 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
905 int mirror_num, unsigned long bio_flags,
906 u64 bio_offset)
907 {
908 int ret;
909
910 /*
911 * when we're called for a write, we're already in the async
912 * submission context. Just jump into btrfs_map_bio
913 */
914 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
915 if (ret) {
916 bio->bi_error = ret;
917 bio_endio(bio);
918 }
919 return ret;
920 }
921
922 static int check_async_write(struct inode *inode, unsigned long bio_flags)
923 {
924 if (bio_flags & EXTENT_BIO_TREE_LOG)
925 return 0;
926 #ifdef CONFIG_X86
927 if (cpu_has_xmm4_2)
928 return 0;
929 #endif
930 return 1;
931 }
932
933 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
934 int mirror_num, unsigned long bio_flags,
935 u64 bio_offset)
936 {
937 int async = check_async_write(inode, bio_flags);
938 int ret;
939
940 if (!(rw & REQ_WRITE)) {
941 /*
942 * called for a read, do the setup so that checksum validation
943 * can happen in the async kernel threads
944 */
945 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
946 bio, BTRFS_WQ_ENDIO_METADATA);
947 if (ret)
948 goto out_w_error;
949 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 mirror_num, 0);
951 } else if (!async) {
952 ret = btree_csum_one_bio(bio);
953 if (ret)
954 goto out_w_error;
955 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
956 mirror_num, 0);
957 } else {
958 /*
959 * kthread helpers are used to submit writes so that
960 * checksumming can happen in parallel across all CPUs
961 */
962 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
963 inode, rw, bio, mirror_num, 0,
964 bio_offset,
965 __btree_submit_bio_start,
966 __btree_submit_bio_done);
967 }
968
969 if (ret)
970 goto out_w_error;
971 return 0;
972
973 out_w_error:
974 bio->bi_error = ret;
975 bio_endio(bio);
976 return ret;
977 }
978
979 #ifdef CONFIG_MIGRATION
980 static int btree_migratepage(struct address_space *mapping,
981 struct page *newpage, struct page *page,
982 enum migrate_mode mode)
983 {
984 /*
985 * we can't safely write a btree page from here,
986 * we haven't done the locking hook
987 */
988 if (PageDirty(page))
989 return -EAGAIN;
990 /*
991 * Buffers may be managed in a filesystem specific way.
992 * We must have no buffers or drop them.
993 */
994 if (page_has_private(page) &&
995 !try_to_release_page(page, GFP_KERNEL))
996 return -EAGAIN;
997 return migrate_page(mapping, newpage, page, mode);
998 }
999 #endif
1000
1001
1002 static int btree_writepages(struct address_space *mapping,
1003 struct writeback_control *wbc)
1004 {
1005 struct btrfs_fs_info *fs_info;
1006 int ret;
1007
1008 if (wbc->sync_mode == WB_SYNC_NONE) {
1009
1010 if (wbc->for_kupdate)
1011 return 0;
1012
1013 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1014 /* this is a bit racy, but that's ok */
1015 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1016 BTRFS_DIRTY_METADATA_THRESH);
1017 if (ret < 0)
1018 return 0;
1019 }
1020 return btree_write_cache_pages(mapping, wbc);
1021 }
1022
1023 static int btree_readpage(struct file *file, struct page *page)
1024 {
1025 struct extent_io_tree *tree;
1026 tree = &BTRFS_I(page->mapping->host)->io_tree;
1027 return extent_read_full_page(tree, page, btree_get_extent, 0);
1028 }
1029
1030 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1031 {
1032 if (PageWriteback(page) || PageDirty(page))
1033 return 0;
1034
1035 return try_release_extent_buffer(page);
1036 }
1037
1038 static void btree_invalidatepage(struct page *page, unsigned int offset,
1039 unsigned int length)
1040 {
1041 struct extent_io_tree *tree;
1042 tree = &BTRFS_I(page->mapping->host)->io_tree;
1043 extent_invalidatepage(tree, page, offset);
1044 btree_releasepage(page, GFP_NOFS);
1045 if (PagePrivate(page)) {
1046 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1047 "page private not zero on page %llu",
1048 (unsigned long long)page_offset(page));
1049 ClearPagePrivate(page);
1050 set_page_private(page, 0);
1051 page_cache_release(page);
1052 }
1053 }
1054
1055 static int btree_set_page_dirty(struct page *page)
1056 {
1057 #ifdef DEBUG
1058 struct extent_buffer *eb;
1059
1060 BUG_ON(!PagePrivate(page));
1061 eb = (struct extent_buffer *)page->private;
1062 BUG_ON(!eb);
1063 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1064 BUG_ON(!atomic_read(&eb->refs));
1065 btrfs_assert_tree_locked(eb);
1066 #endif
1067 return __set_page_dirty_nobuffers(page);
1068 }
1069
1070 static const struct address_space_operations btree_aops = {
1071 .readpage = btree_readpage,
1072 .writepages = btree_writepages,
1073 .releasepage = btree_releasepage,
1074 .invalidatepage = btree_invalidatepage,
1075 #ifdef CONFIG_MIGRATION
1076 .migratepage = btree_migratepage,
1077 #endif
1078 .set_page_dirty = btree_set_page_dirty,
1079 };
1080
1081 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1082 {
1083 struct extent_buffer *buf = NULL;
1084 struct inode *btree_inode = root->fs_info->btree_inode;
1085
1086 buf = btrfs_find_create_tree_block(root, bytenr);
1087 if (!buf)
1088 return;
1089 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1090 buf, 0, WAIT_NONE, btree_get_extent, 0);
1091 free_extent_buffer(buf);
1092 }
1093
1094 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1095 int mirror_num, struct extent_buffer **eb)
1096 {
1097 struct extent_buffer *buf = NULL;
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1100 int ret;
1101
1102 buf = btrfs_find_create_tree_block(root, bytenr);
1103 if (!buf)
1104 return 0;
1105
1106 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1107
1108 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1109 btree_get_extent, mirror_num);
1110 if (ret) {
1111 free_extent_buffer(buf);
1112 return ret;
1113 }
1114
1115 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1116 free_extent_buffer(buf);
1117 return -EIO;
1118 } else if (extent_buffer_uptodate(buf)) {
1119 *eb = buf;
1120 } else {
1121 free_extent_buffer(buf);
1122 }
1123 return 0;
1124 }
1125
1126 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1127 u64 bytenr)
1128 {
1129 return find_extent_buffer(fs_info, bytenr);
1130 }
1131
1132 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1133 u64 bytenr)
1134 {
1135 if (btrfs_test_is_dummy_root(root))
1136 return alloc_test_extent_buffer(root->fs_info, bytenr);
1137 return alloc_extent_buffer(root->fs_info, bytenr);
1138 }
1139
1140
1141 int btrfs_write_tree_block(struct extent_buffer *buf)
1142 {
1143 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1144 buf->start + buf->len - 1);
1145 }
1146
1147 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1148 {
1149 return filemap_fdatawait_range(buf->pages[0]->mapping,
1150 buf->start, buf->start + buf->len - 1);
1151 }
1152
1153 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1154 u64 parent_transid)
1155 {
1156 struct extent_buffer *buf = NULL;
1157 int ret;
1158
1159 buf = btrfs_find_create_tree_block(root, bytenr);
1160 if (!buf)
1161 return ERR_PTR(-ENOMEM);
1162
1163 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1164 if (ret) {
1165 free_extent_buffer(buf);
1166 return ERR_PTR(ret);
1167 }
1168 return buf;
1169
1170 }
1171
1172 void clean_tree_block(struct btrfs_trans_handle *trans,
1173 struct btrfs_fs_info *fs_info,
1174 struct extent_buffer *buf)
1175 {
1176 if (btrfs_header_generation(buf) ==
1177 fs_info->running_transaction->transid) {
1178 btrfs_assert_tree_locked(buf);
1179
1180 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1181 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1182 -buf->len,
1183 fs_info->dirty_metadata_batch);
1184 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1185 btrfs_set_lock_blocking(buf);
1186 clear_extent_buffer_dirty(buf);
1187 }
1188 }
1189 }
1190
1191 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1192 {
1193 struct btrfs_subvolume_writers *writers;
1194 int ret;
1195
1196 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1197 if (!writers)
1198 return ERR_PTR(-ENOMEM);
1199
1200 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1201 if (ret < 0) {
1202 kfree(writers);
1203 return ERR_PTR(ret);
1204 }
1205
1206 init_waitqueue_head(&writers->wait);
1207 return writers;
1208 }
1209
1210 static void
1211 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1212 {
1213 percpu_counter_destroy(&writers->counter);
1214 kfree(writers);
1215 }
1216
1217 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1218 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1219 u64 objectid)
1220 {
1221 root->node = NULL;
1222 root->commit_root = NULL;
1223 root->sectorsize = sectorsize;
1224 root->nodesize = nodesize;
1225 root->stripesize = stripesize;
1226 root->state = 0;
1227 root->orphan_cleanup_state = 0;
1228
1229 root->objectid = objectid;
1230 root->last_trans = 0;
1231 root->highest_objectid = 0;
1232 root->nr_delalloc_inodes = 0;
1233 root->nr_ordered_extents = 0;
1234 root->name = NULL;
1235 root->inode_tree = RB_ROOT;
1236 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1237 root->block_rsv = NULL;
1238 root->orphan_block_rsv = NULL;
1239
1240 INIT_LIST_HEAD(&root->dirty_list);
1241 INIT_LIST_HEAD(&root->root_list);
1242 INIT_LIST_HEAD(&root->delalloc_inodes);
1243 INIT_LIST_HEAD(&root->delalloc_root);
1244 INIT_LIST_HEAD(&root->ordered_extents);
1245 INIT_LIST_HEAD(&root->ordered_root);
1246 INIT_LIST_HEAD(&root->logged_list[0]);
1247 INIT_LIST_HEAD(&root->logged_list[1]);
1248 spin_lock_init(&root->orphan_lock);
1249 spin_lock_init(&root->inode_lock);
1250 spin_lock_init(&root->delalloc_lock);
1251 spin_lock_init(&root->ordered_extent_lock);
1252 spin_lock_init(&root->accounting_lock);
1253 spin_lock_init(&root->log_extents_lock[0]);
1254 spin_lock_init(&root->log_extents_lock[1]);
1255 mutex_init(&root->objectid_mutex);
1256 mutex_init(&root->log_mutex);
1257 mutex_init(&root->ordered_extent_mutex);
1258 mutex_init(&root->delalloc_mutex);
1259 init_waitqueue_head(&root->log_writer_wait);
1260 init_waitqueue_head(&root->log_commit_wait[0]);
1261 init_waitqueue_head(&root->log_commit_wait[1]);
1262 INIT_LIST_HEAD(&root->log_ctxs[0]);
1263 INIT_LIST_HEAD(&root->log_ctxs[1]);
1264 atomic_set(&root->log_commit[0], 0);
1265 atomic_set(&root->log_commit[1], 0);
1266 atomic_set(&root->log_writers, 0);
1267 atomic_set(&root->log_batch, 0);
1268 atomic_set(&root->orphan_inodes, 0);
1269 atomic_set(&root->refs, 1);
1270 atomic_set(&root->will_be_snapshoted, 0);
1271 atomic_set(&root->qgroup_meta_rsv, 0);
1272 root->log_transid = 0;
1273 root->log_transid_committed = -1;
1274 root->last_log_commit = 0;
1275 if (fs_info)
1276 extent_io_tree_init(&root->dirty_log_pages,
1277 fs_info->btree_inode->i_mapping);
1278
1279 memset(&root->root_key, 0, sizeof(root->root_key));
1280 memset(&root->root_item, 0, sizeof(root->root_item));
1281 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1282 if (fs_info)
1283 root->defrag_trans_start = fs_info->generation;
1284 else
1285 root->defrag_trans_start = 0;
1286 root->root_key.objectid = objectid;
1287 root->anon_dev = 0;
1288
1289 spin_lock_init(&root->root_item_lock);
1290 }
1291
1292 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1293 {
1294 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1295 if (root)
1296 root->fs_info = fs_info;
1297 return root;
1298 }
1299
1300 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1301 /* Should only be used by the testing infrastructure */
1302 struct btrfs_root *btrfs_alloc_dummy_root(void)
1303 {
1304 struct btrfs_root *root;
1305
1306 root = btrfs_alloc_root(NULL);
1307 if (!root)
1308 return ERR_PTR(-ENOMEM);
1309 __setup_root(4096, 4096, 4096, root, NULL, 1);
1310 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1311 root->alloc_bytenr = 0;
1312
1313 return root;
1314 }
1315 #endif
1316
1317 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1318 struct btrfs_fs_info *fs_info,
1319 u64 objectid)
1320 {
1321 struct extent_buffer *leaf;
1322 struct btrfs_root *tree_root = fs_info->tree_root;
1323 struct btrfs_root *root;
1324 struct btrfs_key key;
1325 int ret = 0;
1326 uuid_le uuid;
1327
1328 root = btrfs_alloc_root(fs_info);
1329 if (!root)
1330 return ERR_PTR(-ENOMEM);
1331
1332 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1333 tree_root->stripesize, root, fs_info, objectid);
1334 root->root_key.objectid = objectid;
1335 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1336 root->root_key.offset = 0;
1337
1338 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1339 if (IS_ERR(leaf)) {
1340 ret = PTR_ERR(leaf);
1341 leaf = NULL;
1342 goto fail;
1343 }
1344
1345 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1346 btrfs_set_header_bytenr(leaf, leaf->start);
1347 btrfs_set_header_generation(leaf, trans->transid);
1348 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1349 btrfs_set_header_owner(leaf, objectid);
1350 root->node = leaf;
1351
1352 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1353 BTRFS_FSID_SIZE);
1354 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1355 btrfs_header_chunk_tree_uuid(leaf),
1356 BTRFS_UUID_SIZE);
1357 btrfs_mark_buffer_dirty(leaf);
1358
1359 root->commit_root = btrfs_root_node(root);
1360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1361
1362 root->root_item.flags = 0;
1363 root->root_item.byte_limit = 0;
1364 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1365 btrfs_set_root_generation(&root->root_item, trans->transid);
1366 btrfs_set_root_level(&root->root_item, 0);
1367 btrfs_set_root_refs(&root->root_item, 1);
1368 btrfs_set_root_used(&root->root_item, leaf->len);
1369 btrfs_set_root_last_snapshot(&root->root_item, 0);
1370 btrfs_set_root_dirid(&root->root_item, 0);
1371 uuid_le_gen(&uuid);
1372 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1373 root->root_item.drop_level = 0;
1374
1375 key.objectid = objectid;
1376 key.type = BTRFS_ROOT_ITEM_KEY;
1377 key.offset = 0;
1378 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1379 if (ret)
1380 goto fail;
1381
1382 btrfs_tree_unlock(leaf);
1383
1384 return root;
1385
1386 fail:
1387 if (leaf) {
1388 btrfs_tree_unlock(leaf);
1389 free_extent_buffer(root->commit_root);
1390 free_extent_buffer(leaf);
1391 }
1392 kfree(root);
1393
1394 return ERR_PTR(ret);
1395 }
1396
1397 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1398 struct btrfs_fs_info *fs_info)
1399 {
1400 struct btrfs_root *root;
1401 struct btrfs_root *tree_root = fs_info->tree_root;
1402 struct extent_buffer *leaf;
1403
1404 root = btrfs_alloc_root(fs_info);
1405 if (!root)
1406 return ERR_PTR(-ENOMEM);
1407
1408 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1409 tree_root->stripesize, root, fs_info,
1410 BTRFS_TREE_LOG_OBJECTID);
1411
1412 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1413 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1414 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1415
1416 /*
1417 * DON'T set REF_COWS for log trees
1418 *
1419 * log trees do not get reference counted because they go away
1420 * before a real commit is actually done. They do store pointers
1421 * to file data extents, and those reference counts still get
1422 * updated (along with back refs to the log tree).
1423 */
1424
1425 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1426 NULL, 0, 0, 0);
1427 if (IS_ERR(leaf)) {
1428 kfree(root);
1429 return ERR_CAST(leaf);
1430 }
1431
1432 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1433 btrfs_set_header_bytenr(leaf, leaf->start);
1434 btrfs_set_header_generation(leaf, trans->transid);
1435 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1436 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1437 root->node = leaf;
1438
1439 write_extent_buffer(root->node, root->fs_info->fsid,
1440 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1441 btrfs_mark_buffer_dirty(root->node);
1442 btrfs_tree_unlock(root->node);
1443 return root;
1444 }
1445
1446 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1447 struct btrfs_fs_info *fs_info)
1448 {
1449 struct btrfs_root *log_root;
1450
1451 log_root = alloc_log_tree(trans, fs_info);
1452 if (IS_ERR(log_root))
1453 return PTR_ERR(log_root);
1454 WARN_ON(fs_info->log_root_tree);
1455 fs_info->log_root_tree = log_root;
1456 return 0;
1457 }
1458
1459 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1460 struct btrfs_root *root)
1461 {
1462 struct btrfs_root *log_root;
1463 struct btrfs_inode_item *inode_item;
1464
1465 log_root = alloc_log_tree(trans, root->fs_info);
1466 if (IS_ERR(log_root))
1467 return PTR_ERR(log_root);
1468
1469 log_root->last_trans = trans->transid;
1470 log_root->root_key.offset = root->root_key.objectid;
1471
1472 inode_item = &log_root->root_item.inode;
1473 btrfs_set_stack_inode_generation(inode_item, 1);
1474 btrfs_set_stack_inode_size(inode_item, 3);
1475 btrfs_set_stack_inode_nlink(inode_item, 1);
1476 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1477 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1478
1479 btrfs_set_root_node(&log_root->root_item, log_root->node);
1480
1481 WARN_ON(root->log_root);
1482 root->log_root = log_root;
1483 root->log_transid = 0;
1484 root->log_transid_committed = -1;
1485 root->last_log_commit = 0;
1486 return 0;
1487 }
1488
1489 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1490 struct btrfs_key *key)
1491 {
1492 struct btrfs_root *root;
1493 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1494 struct btrfs_path *path;
1495 u64 generation;
1496 int ret;
1497
1498 path = btrfs_alloc_path();
1499 if (!path)
1500 return ERR_PTR(-ENOMEM);
1501
1502 root = btrfs_alloc_root(fs_info);
1503 if (!root) {
1504 ret = -ENOMEM;
1505 goto alloc_fail;
1506 }
1507
1508 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1509 tree_root->stripesize, root, fs_info, key->objectid);
1510
1511 ret = btrfs_find_root(tree_root, key, path,
1512 &root->root_item, &root->root_key);
1513 if (ret) {
1514 if (ret > 0)
1515 ret = -ENOENT;
1516 goto find_fail;
1517 }
1518
1519 generation = btrfs_root_generation(&root->root_item);
1520 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1521 generation);
1522 if (IS_ERR(root->node)) {
1523 ret = PTR_ERR(root->node);
1524 goto find_fail;
1525 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1526 ret = -EIO;
1527 free_extent_buffer(root->node);
1528 goto find_fail;
1529 }
1530 root->commit_root = btrfs_root_node(root);
1531 out:
1532 btrfs_free_path(path);
1533 return root;
1534
1535 find_fail:
1536 kfree(root);
1537 alloc_fail:
1538 root = ERR_PTR(ret);
1539 goto out;
1540 }
1541
1542 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1543 struct btrfs_key *location)
1544 {
1545 struct btrfs_root *root;
1546
1547 root = btrfs_read_tree_root(tree_root, location);
1548 if (IS_ERR(root))
1549 return root;
1550
1551 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1552 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1553 btrfs_check_and_init_root_item(&root->root_item);
1554 }
1555
1556 return root;
1557 }
1558
1559 int btrfs_init_fs_root(struct btrfs_root *root)
1560 {
1561 int ret;
1562 struct btrfs_subvolume_writers *writers;
1563
1564 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1565 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1566 GFP_NOFS);
1567 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1568 ret = -ENOMEM;
1569 goto fail;
1570 }
1571
1572 writers = btrfs_alloc_subvolume_writers();
1573 if (IS_ERR(writers)) {
1574 ret = PTR_ERR(writers);
1575 goto fail;
1576 }
1577 root->subv_writers = writers;
1578
1579 btrfs_init_free_ino_ctl(root);
1580 spin_lock_init(&root->ino_cache_lock);
1581 init_waitqueue_head(&root->ino_cache_wait);
1582
1583 ret = get_anon_bdev(&root->anon_dev);
1584 if (ret)
1585 goto free_writers;
1586 return 0;
1587
1588 free_writers:
1589 btrfs_free_subvolume_writers(root->subv_writers);
1590 fail:
1591 kfree(root->free_ino_ctl);
1592 kfree(root->free_ino_pinned);
1593 return ret;
1594 }
1595
1596 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1597 u64 root_id)
1598 {
1599 struct btrfs_root *root;
1600
1601 spin_lock(&fs_info->fs_roots_radix_lock);
1602 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1603 (unsigned long)root_id);
1604 spin_unlock(&fs_info->fs_roots_radix_lock);
1605 return root;
1606 }
1607
1608 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1609 struct btrfs_root *root)
1610 {
1611 int ret;
1612
1613 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1614 if (ret)
1615 return ret;
1616
1617 spin_lock(&fs_info->fs_roots_radix_lock);
1618 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1619 (unsigned long)root->root_key.objectid,
1620 root);
1621 if (ret == 0)
1622 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1623 spin_unlock(&fs_info->fs_roots_radix_lock);
1624 radix_tree_preload_end();
1625
1626 return ret;
1627 }
1628
1629 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1630 struct btrfs_key *location,
1631 bool check_ref)
1632 {
1633 struct btrfs_root *root;
1634 struct btrfs_path *path;
1635 struct btrfs_key key;
1636 int ret;
1637
1638 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1639 return fs_info->tree_root;
1640 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1641 return fs_info->extent_root;
1642 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1643 return fs_info->chunk_root;
1644 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1645 return fs_info->dev_root;
1646 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1647 return fs_info->csum_root;
1648 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1649 return fs_info->quota_root ? fs_info->quota_root :
1650 ERR_PTR(-ENOENT);
1651 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1652 return fs_info->uuid_root ? fs_info->uuid_root :
1653 ERR_PTR(-ENOENT);
1654 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1655 return fs_info->free_space_root ? fs_info->free_space_root :
1656 ERR_PTR(-ENOENT);
1657 again:
1658 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1659 if (root) {
1660 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1661 return ERR_PTR(-ENOENT);
1662 return root;
1663 }
1664
1665 root = btrfs_read_fs_root(fs_info->tree_root, location);
1666 if (IS_ERR(root))
1667 return root;
1668
1669 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1670 ret = -ENOENT;
1671 goto fail;
1672 }
1673
1674 ret = btrfs_init_fs_root(root);
1675 if (ret)
1676 goto fail;
1677
1678 path = btrfs_alloc_path();
1679 if (!path) {
1680 ret = -ENOMEM;
1681 goto fail;
1682 }
1683 key.objectid = BTRFS_ORPHAN_OBJECTID;
1684 key.type = BTRFS_ORPHAN_ITEM_KEY;
1685 key.offset = location->objectid;
1686
1687 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1688 btrfs_free_path(path);
1689 if (ret < 0)
1690 goto fail;
1691 if (ret == 0)
1692 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1693
1694 ret = btrfs_insert_fs_root(fs_info, root);
1695 if (ret) {
1696 if (ret == -EEXIST) {
1697 free_fs_root(root);
1698 goto again;
1699 }
1700 goto fail;
1701 }
1702 return root;
1703 fail:
1704 free_fs_root(root);
1705 return ERR_PTR(ret);
1706 }
1707
1708 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1709 {
1710 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1711 int ret = 0;
1712 struct btrfs_device *device;
1713 struct backing_dev_info *bdi;
1714
1715 rcu_read_lock();
1716 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1717 if (!device->bdev)
1718 continue;
1719 bdi = blk_get_backing_dev_info(device->bdev);
1720 if (bdi_congested(bdi, bdi_bits)) {
1721 ret = 1;
1722 break;
1723 }
1724 }
1725 rcu_read_unlock();
1726 return ret;
1727 }
1728
1729 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1730 {
1731 int err;
1732
1733 err = bdi_setup_and_register(bdi, "btrfs");
1734 if (err)
1735 return err;
1736
1737 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1738 bdi->congested_fn = btrfs_congested_fn;
1739 bdi->congested_data = info;
1740 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1741 return 0;
1742 }
1743
1744 /*
1745 * called by the kthread helper functions to finally call the bio end_io
1746 * functions. This is where read checksum verification actually happens
1747 */
1748 static void end_workqueue_fn(struct btrfs_work *work)
1749 {
1750 struct bio *bio;
1751 struct btrfs_end_io_wq *end_io_wq;
1752
1753 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1754 bio = end_io_wq->bio;
1755
1756 bio->bi_error = end_io_wq->error;
1757 bio->bi_private = end_io_wq->private;
1758 bio->bi_end_io = end_io_wq->end_io;
1759 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1760 bio_endio(bio);
1761 }
1762
1763 static int cleaner_kthread(void *arg)
1764 {
1765 struct btrfs_root *root = arg;
1766 int again;
1767 struct btrfs_trans_handle *trans;
1768
1769 set_freezable();
1770 do {
1771 again = 0;
1772
1773 /* Make the cleaner go to sleep early. */
1774 if (btrfs_need_cleaner_sleep(root))
1775 goto sleep;
1776
1777 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1778 goto sleep;
1779
1780 /*
1781 * Avoid the problem that we change the status of the fs
1782 * during the above check and trylock.
1783 */
1784 if (btrfs_need_cleaner_sleep(root)) {
1785 mutex_unlock(&root->fs_info->cleaner_mutex);
1786 goto sleep;
1787 }
1788
1789 btrfs_run_delayed_iputs(root);
1790 again = btrfs_clean_one_deleted_snapshot(root);
1791 mutex_unlock(&root->fs_info->cleaner_mutex);
1792
1793 /*
1794 * The defragger has dealt with the R/O remount and umount,
1795 * needn't do anything special here.
1796 */
1797 btrfs_run_defrag_inodes(root->fs_info);
1798
1799 /*
1800 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1801 * with relocation (btrfs_relocate_chunk) and relocation
1802 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1803 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1804 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1805 * unused block groups.
1806 */
1807 btrfs_delete_unused_bgs(root->fs_info);
1808 sleep:
1809 if (!try_to_freeze() && !again) {
1810 set_current_state(TASK_INTERRUPTIBLE);
1811 if (!kthread_should_stop())
1812 schedule();
1813 __set_current_state(TASK_RUNNING);
1814 }
1815 } while (!kthread_should_stop());
1816
1817 /*
1818 * Transaction kthread is stopped before us and wakes us up.
1819 * However we might have started a new transaction and COWed some
1820 * tree blocks when deleting unused block groups for example. So
1821 * make sure we commit the transaction we started to have a clean
1822 * shutdown when evicting the btree inode - if it has dirty pages
1823 * when we do the final iput() on it, eviction will trigger a
1824 * writeback for it which will fail with null pointer dereferences
1825 * since work queues and other resources were already released and
1826 * destroyed by the time the iput/eviction/writeback is made.
1827 */
1828 trans = btrfs_attach_transaction(root);
1829 if (IS_ERR(trans)) {
1830 if (PTR_ERR(trans) != -ENOENT)
1831 btrfs_err(root->fs_info,
1832 "cleaner transaction attach returned %ld",
1833 PTR_ERR(trans));
1834 } else {
1835 int ret;
1836
1837 ret = btrfs_commit_transaction(trans, root);
1838 if (ret)
1839 btrfs_err(root->fs_info,
1840 "cleaner open transaction commit returned %d",
1841 ret);
1842 }
1843
1844 return 0;
1845 }
1846
1847 static int transaction_kthread(void *arg)
1848 {
1849 struct btrfs_root *root = arg;
1850 struct btrfs_trans_handle *trans;
1851 struct btrfs_transaction *cur;
1852 u64 transid;
1853 unsigned long now;
1854 unsigned long delay;
1855 bool cannot_commit;
1856
1857 do {
1858 cannot_commit = false;
1859 delay = HZ * root->fs_info->commit_interval;
1860 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1861
1862 spin_lock(&root->fs_info->trans_lock);
1863 cur = root->fs_info->running_transaction;
1864 if (!cur) {
1865 spin_unlock(&root->fs_info->trans_lock);
1866 goto sleep;
1867 }
1868
1869 now = get_seconds();
1870 if (cur->state < TRANS_STATE_BLOCKED &&
1871 (now < cur->start_time ||
1872 now - cur->start_time < root->fs_info->commit_interval)) {
1873 spin_unlock(&root->fs_info->trans_lock);
1874 delay = HZ * 5;
1875 goto sleep;
1876 }
1877 transid = cur->transid;
1878 spin_unlock(&root->fs_info->trans_lock);
1879
1880 /* If the file system is aborted, this will always fail. */
1881 trans = btrfs_attach_transaction(root);
1882 if (IS_ERR(trans)) {
1883 if (PTR_ERR(trans) != -ENOENT)
1884 cannot_commit = true;
1885 goto sleep;
1886 }
1887 if (transid == trans->transid) {
1888 btrfs_commit_transaction(trans, root);
1889 } else {
1890 btrfs_end_transaction(trans, root);
1891 }
1892 sleep:
1893 wake_up_process(root->fs_info->cleaner_kthread);
1894 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1895
1896 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1897 &root->fs_info->fs_state)))
1898 btrfs_cleanup_transaction(root);
1899 if (!try_to_freeze()) {
1900 set_current_state(TASK_INTERRUPTIBLE);
1901 if (!kthread_should_stop() &&
1902 (!btrfs_transaction_blocked(root->fs_info) ||
1903 cannot_commit))
1904 schedule_timeout(delay);
1905 __set_current_state(TASK_RUNNING);
1906 }
1907 } while (!kthread_should_stop());
1908 return 0;
1909 }
1910
1911 /*
1912 * this will find the highest generation in the array of
1913 * root backups. The index of the highest array is returned,
1914 * or -1 if we can't find anything.
1915 *
1916 * We check to make sure the array is valid by comparing the
1917 * generation of the latest root in the array with the generation
1918 * in the super block. If they don't match we pitch it.
1919 */
1920 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1921 {
1922 u64 cur;
1923 int newest_index = -1;
1924 struct btrfs_root_backup *root_backup;
1925 int i;
1926
1927 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1928 root_backup = info->super_copy->super_roots + i;
1929 cur = btrfs_backup_tree_root_gen(root_backup);
1930 if (cur == newest_gen)
1931 newest_index = i;
1932 }
1933
1934 /* check to see if we actually wrapped around */
1935 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1936 root_backup = info->super_copy->super_roots;
1937 cur = btrfs_backup_tree_root_gen(root_backup);
1938 if (cur == newest_gen)
1939 newest_index = 0;
1940 }
1941 return newest_index;
1942 }
1943
1944
1945 /*
1946 * find the oldest backup so we know where to store new entries
1947 * in the backup array. This will set the backup_root_index
1948 * field in the fs_info struct
1949 */
1950 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1951 u64 newest_gen)
1952 {
1953 int newest_index = -1;
1954
1955 newest_index = find_newest_super_backup(info, newest_gen);
1956 /* if there was garbage in there, just move along */
1957 if (newest_index == -1) {
1958 info->backup_root_index = 0;
1959 } else {
1960 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1961 }
1962 }
1963
1964 /*
1965 * copy all the root pointers into the super backup array.
1966 * this will bump the backup pointer by one when it is
1967 * done
1968 */
1969 static void backup_super_roots(struct btrfs_fs_info *info)
1970 {
1971 int next_backup;
1972 struct btrfs_root_backup *root_backup;
1973 int last_backup;
1974
1975 next_backup = info->backup_root_index;
1976 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1977 BTRFS_NUM_BACKUP_ROOTS;
1978
1979 /*
1980 * just overwrite the last backup if we're at the same generation
1981 * this happens only at umount
1982 */
1983 root_backup = info->super_for_commit->super_roots + last_backup;
1984 if (btrfs_backup_tree_root_gen(root_backup) ==
1985 btrfs_header_generation(info->tree_root->node))
1986 next_backup = last_backup;
1987
1988 root_backup = info->super_for_commit->super_roots + next_backup;
1989
1990 /*
1991 * make sure all of our padding and empty slots get zero filled
1992 * regardless of which ones we use today
1993 */
1994 memset(root_backup, 0, sizeof(*root_backup));
1995
1996 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1997
1998 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1999 btrfs_set_backup_tree_root_gen(root_backup,
2000 btrfs_header_generation(info->tree_root->node));
2001
2002 btrfs_set_backup_tree_root_level(root_backup,
2003 btrfs_header_level(info->tree_root->node));
2004
2005 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2006 btrfs_set_backup_chunk_root_gen(root_backup,
2007 btrfs_header_generation(info->chunk_root->node));
2008 btrfs_set_backup_chunk_root_level(root_backup,
2009 btrfs_header_level(info->chunk_root->node));
2010
2011 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2012 btrfs_set_backup_extent_root_gen(root_backup,
2013 btrfs_header_generation(info->extent_root->node));
2014 btrfs_set_backup_extent_root_level(root_backup,
2015 btrfs_header_level(info->extent_root->node));
2016
2017 /*
2018 * we might commit during log recovery, which happens before we set
2019 * the fs_root. Make sure it is valid before we fill it in.
2020 */
2021 if (info->fs_root && info->fs_root->node) {
2022 btrfs_set_backup_fs_root(root_backup,
2023 info->fs_root->node->start);
2024 btrfs_set_backup_fs_root_gen(root_backup,
2025 btrfs_header_generation(info->fs_root->node));
2026 btrfs_set_backup_fs_root_level(root_backup,
2027 btrfs_header_level(info->fs_root->node));
2028 }
2029
2030 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2031 btrfs_set_backup_dev_root_gen(root_backup,
2032 btrfs_header_generation(info->dev_root->node));
2033 btrfs_set_backup_dev_root_level(root_backup,
2034 btrfs_header_level(info->dev_root->node));
2035
2036 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2037 btrfs_set_backup_csum_root_gen(root_backup,
2038 btrfs_header_generation(info->csum_root->node));
2039 btrfs_set_backup_csum_root_level(root_backup,
2040 btrfs_header_level(info->csum_root->node));
2041
2042 btrfs_set_backup_total_bytes(root_backup,
2043 btrfs_super_total_bytes(info->super_copy));
2044 btrfs_set_backup_bytes_used(root_backup,
2045 btrfs_super_bytes_used(info->super_copy));
2046 btrfs_set_backup_num_devices(root_backup,
2047 btrfs_super_num_devices(info->super_copy));
2048
2049 /*
2050 * if we don't copy this out to the super_copy, it won't get remembered
2051 * for the next commit
2052 */
2053 memcpy(&info->super_copy->super_roots,
2054 &info->super_for_commit->super_roots,
2055 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2056 }
2057
2058 /*
2059 * this copies info out of the root backup array and back into
2060 * the in-memory super block. It is meant to help iterate through
2061 * the array, so you send it the number of backups you've already
2062 * tried and the last backup index you used.
2063 *
2064 * this returns -1 when it has tried all the backups
2065 */
2066 static noinline int next_root_backup(struct btrfs_fs_info *info,
2067 struct btrfs_super_block *super,
2068 int *num_backups_tried, int *backup_index)
2069 {
2070 struct btrfs_root_backup *root_backup;
2071 int newest = *backup_index;
2072
2073 if (*num_backups_tried == 0) {
2074 u64 gen = btrfs_super_generation(super);
2075
2076 newest = find_newest_super_backup(info, gen);
2077 if (newest == -1)
2078 return -1;
2079
2080 *backup_index = newest;
2081 *num_backups_tried = 1;
2082 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2083 /* we've tried all the backups, all done */
2084 return -1;
2085 } else {
2086 /* jump to the next oldest backup */
2087 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2088 BTRFS_NUM_BACKUP_ROOTS;
2089 *backup_index = newest;
2090 *num_backups_tried += 1;
2091 }
2092 root_backup = super->super_roots + newest;
2093
2094 btrfs_set_super_generation(super,
2095 btrfs_backup_tree_root_gen(root_backup));
2096 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2097 btrfs_set_super_root_level(super,
2098 btrfs_backup_tree_root_level(root_backup));
2099 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2100
2101 /*
2102 * fixme: the total bytes and num_devices need to match or we should
2103 * need a fsck
2104 */
2105 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2106 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2107 return 0;
2108 }
2109
2110 /* helper to cleanup workers */
2111 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2112 {
2113 btrfs_destroy_workqueue(fs_info->fixup_workers);
2114 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2115 btrfs_destroy_workqueue(fs_info->workers);
2116 btrfs_destroy_workqueue(fs_info->endio_workers);
2117 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2118 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2119 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2120 btrfs_destroy_workqueue(fs_info->rmw_workers);
2121 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2122 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2123 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2124 btrfs_destroy_workqueue(fs_info->submit_workers);
2125 btrfs_destroy_workqueue(fs_info->delayed_workers);
2126 btrfs_destroy_workqueue(fs_info->caching_workers);
2127 btrfs_destroy_workqueue(fs_info->readahead_workers);
2128 btrfs_destroy_workqueue(fs_info->flush_workers);
2129 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2130 btrfs_destroy_workqueue(fs_info->extent_workers);
2131 }
2132
2133 static void free_root_extent_buffers(struct btrfs_root *root)
2134 {
2135 if (root) {
2136 free_extent_buffer(root->node);
2137 free_extent_buffer(root->commit_root);
2138 root->node = NULL;
2139 root->commit_root = NULL;
2140 }
2141 }
2142
2143 /* helper to cleanup tree roots */
2144 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2145 {
2146 free_root_extent_buffers(info->tree_root);
2147
2148 free_root_extent_buffers(info->dev_root);
2149 free_root_extent_buffers(info->extent_root);
2150 free_root_extent_buffers(info->csum_root);
2151 free_root_extent_buffers(info->quota_root);
2152 free_root_extent_buffers(info->uuid_root);
2153 if (chunk_root)
2154 free_root_extent_buffers(info->chunk_root);
2155 free_root_extent_buffers(info->free_space_root);
2156 }
2157
2158 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2159 {
2160 int ret;
2161 struct btrfs_root *gang[8];
2162 int i;
2163
2164 while (!list_empty(&fs_info->dead_roots)) {
2165 gang[0] = list_entry(fs_info->dead_roots.next,
2166 struct btrfs_root, root_list);
2167 list_del(&gang[0]->root_list);
2168
2169 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2170 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2171 } else {
2172 free_extent_buffer(gang[0]->node);
2173 free_extent_buffer(gang[0]->commit_root);
2174 btrfs_put_fs_root(gang[0]);
2175 }
2176 }
2177
2178 while (1) {
2179 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2180 (void **)gang, 0,
2181 ARRAY_SIZE(gang));
2182 if (!ret)
2183 break;
2184 for (i = 0; i < ret; i++)
2185 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2186 }
2187
2188 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2189 btrfs_free_log_root_tree(NULL, fs_info);
2190 btrfs_destroy_pinned_extent(fs_info->tree_root,
2191 fs_info->pinned_extents);
2192 }
2193 }
2194
2195 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2196 {
2197 mutex_init(&fs_info->scrub_lock);
2198 atomic_set(&fs_info->scrubs_running, 0);
2199 atomic_set(&fs_info->scrub_pause_req, 0);
2200 atomic_set(&fs_info->scrubs_paused, 0);
2201 atomic_set(&fs_info->scrub_cancel_req, 0);
2202 init_waitqueue_head(&fs_info->scrub_pause_wait);
2203 fs_info->scrub_workers_refcnt = 0;
2204 }
2205
2206 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2207 {
2208 spin_lock_init(&fs_info->balance_lock);
2209 mutex_init(&fs_info->balance_mutex);
2210 atomic_set(&fs_info->balance_running, 0);
2211 atomic_set(&fs_info->balance_pause_req, 0);
2212 atomic_set(&fs_info->balance_cancel_req, 0);
2213 fs_info->balance_ctl = NULL;
2214 init_waitqueue_head(&fs_info->balance_wait_q);
2215 }
2216
2217 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2218 struct btrfs_root *tree_root)
2219 {
2220 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2221 set_nlink(fs_info->btree_inode, 1);
2222 /*
2223 * we set the i_size on the btree inode to the max possible int.
2224 * the real end of the address space is determined by all of
2225 * the devices in the system
2226 */
2227 fs_info->btree_inode->i_size = OFFSET_MAX;
2228 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2229
2230 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2231 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2232 fs_info->btree_inode->i_mapping);
2233 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2234 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2235
2236 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2237
2238 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2239 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2240 sizeof(struct btrfs_key));
2241 set_bit(BTRFS_INODE_DUMMY,
2242 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2243 btrfs_insert_inode_hash(fs_info->btree_inode);
2244 }
2245
2246 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2247 {
2248 fs_info->dev_replace.lock_owner = 0;
2249 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2250 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2251 mutex_init(&fs_info->dev_replace.lock_management_lock);
2252 mutex_init(&fs_info->dev_replace.lock);
2253 init_waitqueue_head(&fs_info->replace_wait);
2254 }
2255
2256 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2257 {
2258 spin_lock_init(&fs_info->qgroup_lock);
2259 mutex_init(&fs_info->qgroup_ioctl_lock);
2260 fs_info->qgroup_tree = RB_ROOT;
2261 fs_info->qgroup_op_tree = RB_ROOT;
2262 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2263 fs_info->qgroup_seq = 1;
2264 fs_info->quota_enabled = 0;
2265 fs_info->pending_quota_state = 0;
2266 fs_info->qgroup_ulist = NULL;
2267 mutex_init(&fs_info->qgroup_rescan_lock);
2268 }
2269
2270 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2271 struct btrfs_fs_devices *fs_devices)
2272 {
2273 int max_active = fs_info->thread_pool_size;
2274 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2275
2276 fs_info->workers =
2277 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2278 max_active, 16);
2279
2280 fs_info->delalloc_workers =
2281 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2282
2283 fs_info->flush_workers =
2284 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2285
2286 fs_info->caching_workers =
2287 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2288
2289 /*
2290 * a higher idle thresh on the submit workers makes it much more
2291 * likely that bios will be send down in a sane order to the
2292 * devices
2293 */
2294 fs_info->submit_workers =
2295 btrfs_alloc_workqueue("submit", flags,
2296 min_t(u64, fs_devices->num_devices,
2297 max_active), 64);
2298
2299 fs_info->fixup_workers =
2300 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2301
2302 /*
2303 * endios are largely parallel and should have a very
2304 * low idle thresh
2305 */
2306 fs_info->endio_workers =
2307 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2308 fs_info->endio_meta_workers =
2309 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2310 fs_info->endio_meta_write_workers =
2311 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2312 fs_info->endio_raid56_workers =
2313 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2314 fs_info->endio_repair_workers =
2315 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2316 fs_info->rmw_workers =
2317 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2318 fs_info->endio_write_workers =
2319 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2320 fs_info->endio_freespace_worker =
2321 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2322 fs_info->delayed_workers =
2323 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2324 fs_info->readahead_workers =
2325 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2326 fs_info->qgroup_rescan_workers =
2327 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2328 fs_info->extent_workers =
2329 btrfs_alloc_workqueue("extent-refs", flags,
2330 min_t(u64, fs_devices->num_devices,
2331 max_active), 8);
2332
2333 if (!(fs_info->workers && fs_info->delalloc_workers &&
2334 fs_info->submit_workers && fs_info->flush_workers &&
2335 fs_info->endio_workers && fs_info->endio_meta_workers &&
2336 fs_info->endio_meta_write_workers &&
2337 fs_info->endio_repair_workers &&
2338 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2339 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2340 fs_info->caching_workers && fs_info->readahead_workers &&
2341 fs_info->fixup_workers && fs_info->delayed_workers &&
2342 fs_info->extent_workers &&
2343 fs_info->qgroup_rescan_workers)) {
2344 return -ENOMEM;
2345 }
2346
2347 return 0;
2348 }
2349
2350 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2351 struct btrfs_fs_devices *fs_devices)
2352 {
2353 int ret;
2354 struct btrfs_root *tree_root = fs_info->tree_root;
2355 struct btrfs_root *log_tree_root;
2356 struct btrfs_super_block *disk_super = fs_info->super_copy;
2357 u64 bytenr = btrfs_super_log_root(disk_super);
2358
2359 if (fs_devices->rw_devices == 0) {
2360 btrfs_warn(fs_info, "log replay required on RO media");
2361 return -EIO;
2362 }
2363
2364 log_tree_root = btrfs_alloc_root(fs_info);
2365 if (!log_tree_root)
2366 return -ENOMEM;
2367
2368 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2369 tree_root->stripesize, log_tree_root, fs_info,
2370 BTRFS_TREE_LOG_OBJECTID);
2371
2372 log_tree_root->node = read_tree_block(tree_root, bytenr,
2373 fs_info->generation + 1);
2374 if (IS_ERR(log_tree_root->node)) {
2375 btrfs_warn(fs_info, "failed to read log tree");
2376 ret = PTR_ERR(log_tree_root->node);
2377 kfree(log_tree_root);
2378 return ret;
2379 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2380 btrfs_err(fs_info, "failed to read log tree");
2381 free_extent_buffer(log_tree_root->node);
2382 kfree(log_tree_root);
2383 return -EIO;
2384 }
2385 /* returns with log_tree_root freed on success */
2386 ret = btrfs_recover_log_trees(log_tree_root);
2387 if (ret) {
2388 btrfs_std_error(tree_root->fs_info, ret,
2389 "Failed to recover log tree");
2390 free_extent_buffer(log_tree_root->node);
2391 kfree(log_tree_root);
2392 return ret;
2393 }
2394
2395 if (fs_info->sb->s_flags & MS_RDONLY) {
2396 ret = btrfs_commit_super(tree_root);
2397 if (ret)
2398 return ret;
2399 }
2400
2401 return 0;
2402 }
2403
2404 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2405 struct btrfs_root *tree_root)
2406 {
2407 struct btrfs_root *root;
2408 struct btrfs_key location;
2409 int ret;
2410
2411 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2412 location.type = BTRFS_ROOT_ITEM_KEY;
2413 location.offset = 0;
2414
2415 root = btrfs_read_tree_root(tree_root, &location);
2416 if (IS_ERR(root))
2417 return PTR_ERR(root);
2418 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2419 fs_info->extent_root = root;
2420
2421 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2422 root = btrfs_read_tree_root(tree_root, &location);
2423 if (IS_ERR(root))
2424 return PTR_ERR(root);
2425 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2426 fs_info->dev_root = root;
2427 btrfs_init_devices_late(fs_info);
2428
2429 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2430 root = btrfs_read_tree_root(tree_root, &location);
2431 if (IS_ERR(root))
2432 return PTR_ERR(root);
2433 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2434 fs_info->csum_root = root;
2435
2436 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2437 root = btrfs_read_tree_root(tree_root, &location);
2438 if (!IS_ERR(root)) {
2439 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2440 fs_info->quota_enabled = 1;
2441 fs_info->pending_quota_state = 1;
2442 fs_info->quota_root = root;
2443 }
2444
2445 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2446 root = btrfs_read_tree_root(tree_root, &location);
2447 if (IS_ERR(root)) {
2448 ret = PTR_ERR(root);
2449 if (ret != -ENOENT)
2450 return ret;
2451 } else {
2452 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2453 fs_info->uuid_root = root;
2454 }
2455
2456 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2457 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2458 root = btrfs_read_tree_root(tree_root, &location);
2459 if (IS_ERR(root))
2460 return PTR_ERR(root);
2461 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462 fs_info->free_space_root = root;
2463 }
2464
2465 return 0;
2466 }
2467
2468 int open_ctree(struct super_block *sb,
2469 struct btrfs_fs_devices *fs_devices,
2470 char *options)
2471 {
2472 u32 sectorsize;
2473 u32 nodesize;
2474 u32 stripesize;
2475 u64 generation;
2476 u64 features;
2477 struct btrfs_key location;
2478 struct buffer_head *bh;
2479 struct btrfs_super_block *disk_super;
2480 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2481 struct btrfs_root *tree_root;
2482 struct btrfs_root *chunk_root;
2483 int ret;
2484 int err = -EINVAL;
2485 int num_backups_tried = 0;
2486 int backup_index = 0;
2487 int max_active;
2488
2489 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2490 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2491 if (!tree_root || !chunk_root) {
2492 err = -ENOMEM;
2493 goto fail;
2494 }
2495
2496 ret = init_srcu_struct(&fs_info->subvol_srcu);
2497 if (ret) {
2498 err = ret;
2499 goto fail;
2500 }
2501
2502 ret = setup_bdi(fs_info, &fs_info->bdi);
2503 if (ret) {
2504 err = ret;
2505 goto fail_srcu;
2506 }
2507
2508 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2509 if (ret) {
2510 err = ret;
2511 goto fail_bdi;
2512 }
2513 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2514 (1 + ilog2(nr_cpu_ids));
2515
2516 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2517 if (ret) {
2518 err = ret;
2519 goto fail_dirty_metadata_bytes;
2520 }
2521
2522 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2523 if (ret) {
2524 err = ret;
2525 goto fail_delalloc_bytes;
2526 }
2527
2528 fs_info->btree_inode = new_inode(sb);
2529 if (!fs_info->btree_inode) {
2530 err = -ENOMEM;
2531 goto fail_bio_counter;
2532 }
2533
2534 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2535
2536 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2537 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2538 INIT_LIST_HEAD(&fs_info->trans_list);
2539 INIT_LIST_HEAD(&fs_info->dead_roots);
2540 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2541 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2542 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2543 spin_lock_init(&fs_info->delalloc_root_lock);
2544 spin_lock_init(&fs_info->trans_lock);
2545 spin_lock_init(&fs_info->fs_roots_radix_lock);
2546 spin_lock_init(&fs_info->delayed_iput_lock);
2547 spin_lock_init(&fs_info->defrag_inodes_lock);
2548 spin_lock_init(&fs_info->free_chunk_lock);
2549 spin_lock_init(&fs_info->tree_mod_seq_lock);
2550 spin_lock_init(&fs_info->super_lock);
2551 spin_lock_init(&fs_info->qgroup_op_lock);
2552 spin_lock_init(&fs_info->buffer_lock);
2553 spin_lock_init(&fs_info->unused_bgs_lock);
2554 rwlock_init(&fs_info->tree_mod_log_lock);
2555 mutex_init(&fs_info->unused_bg_unpin_mutex);
2556 mutex_init(&fs_info->delete_unused_bgs_mutex);
2557 mutex_init(&fs_info->reloc_mutex);
2558 mutex_init(&fs_info->delalloc_root_mutex);
2559 seqlock_init(&fs_info->profiles_lock);
2560 init_rwsem(&fs_info->delayed_iput_sem);
2561
2562 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2563 INIT_LIST_HEAD(&fs_info->space_info);
2564 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2565 INIT_LIST_HEAD(&fs_info->unused_bgs);
2566 btrfs_mapping_init(&fs_info->mapping_tree);
2567 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2568 BTRFS_BLOCK_RSV_GLOBAL);
2569 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2570 BTRFS_BLOCK_RSV_DELALLOC);
2571 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2572 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2573 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2574 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2575 BTRFS_BLOCK_RSV_DELOPS);
2576 atomic_set(&fs_info->nr_async_submits, 0);
2577 atomic_set(&fs_info->async_delalloc_pages, 0);
2578 atomic_set(&fs_info->async_submit_draining, 0);
2579 atomic_set(&fs_info->nr_async_bios, 0);
2580 atomic_set(&fs_info->defrag_running, 0);
2581 atomic_set(&fs_info->qgroup_op_seq, 0);
2582 atomic64_set(&fs_info->tree_mod_seq, 0);
2583 fs_info->sb = sb;
2584 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2585 fs_info->metadata_ratio = 0;
2586 fs_info->defrag_inodes = RB_ROOT;
2587 fs_info->free_chunk_space = 0;
2588 fs_info->tree_mod_log = RB_ROOT;
2589 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2590 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2591 /* readahead state */
2592 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2593 spin_lock_init(&fs_info->reada_lock);
2594
2595 fs_info->thread_pool_size = min_t(unsigned long,
2596 num_online_cpus() + 2, 8);
2597
2598 INIT_LIST_HEAD(&fs_info->ordered_roots);
2599 spin_lock_init(&fs_info->ordered_root_lock);
2600 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2601 GFP_NOFS);
2602 if (!fs_info->delayed_root) {
2603 err = -ENOMEM;
2604 goto fail_iput;
2605 }
2606 btrfs_init_delayed_root(fs_info->delayed_root);
2607
2608 btrfs_init_scrub(fs_info);
2609 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2610 fs_info->check_integrity_print_mask = 0;
2611 #endif
2612 btrfs_init_balance(fs_info);
2613 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2614
2615 sb->s_blocksize = 4096;
2616 sb->s_blocksize_bits = blksize_bits(4096);
2617 sb->s_bdi = &fs_info->bdi;
2618
2619 btrfs_init_btree_inode(fs_info, tree_root);
2620
2621 spin_lock_init(&fs_info->block_group_cache_lock);
2622 fs_info->block_group_cache_tree = RB_ROOT;
2623 fs_info->first_logical_byte = (u64)-1;
2624
2625 extent_io_tree_init(&fs_info->freed_extents[0],
2626 fs_info->btree_inode->i_mapping);
2627 extent_io_tree_init(&fs_info->freed_extents[1],
2628 fs_info->btree_inode->i_mapping);
2629 fs_info->pinned_extents = &fs_info->freed_extents[0];
2630 fs_info->do_barriers = 1;
2631
2632
2633 mutex_init(&fs_info->ordered_operations_mutex);
2634 mutex_init(&fs_info->tree_log_mutex);
2635 mutex_init(&fs_info->chunk_mutex);
2636 mutex_init(&fs_info->transaction_kthread_mutex);
2637 mutex_init(&fs_info->cleaner_mutex);
2638 mutex_init(&fs_info->volume_mutex);
2639 mutex_init(&fs_info->ro_block_group_mutex);
2640 init_rwsem(&fs_info->commit_root_sem);
2641 init_rwsem(&fs_info->cleanup_work_sem);
2642 init_rwsem(&fs_info->subvol_sem);
2643 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2644
2645 btrfs_init_dev_replace_locks(fs_info);
2646 btrfs_init_qgroup(fs_info);
2647
2648 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2649 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2650
2651 init_waitqueue_head(&fs_info->transaction_throttle);
2652 init_waitqueue_head(&fs_info->transaction_wait);
2653 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2654 init_waitqueue_head(&fs_info->async_submit_wait);
2655
2656 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2657
2658 ret = btrfs_alloc_stripe_hash_table(fs_info);
2659 if (ret) {
2660 err = ret;
2661 goto fail_alloc;
2662 }
2663
2664 __setup_root(4096, 4096, 4096, tree_root,
2665 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2666
2667 invalidate_bdev(fs_devices->latest_bdev);
2668
2669 /*
2670 * Read super block and check the signature bytes only
2671 */
2672 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2673 if (IS_ERR(bh)) {
2674 err = PTR_ERR(bh);
2675 goto fail_alloc;
2676 }
2677
2678 /*
2679 * We want to check superblock checksum, the type is stored inside.
2680 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2681 */
2682 if (btrfs_check_super_csum(bh->b_data)) {
2683 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2684 err = -EINVAL;
2685 brelse(bh);
2686 goto fail_alloc;
2687 }
2688
2689 /*
2690 * super_copy is zeroed at allocation time and we never touch the
2691 * following bytes up to INFO_SIZE, the checksum is calculated from
2692 * the whole block of INFO_SIZE
2693 */
2694 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2695 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2696 sizeof(*fs_info->super_for_commit));
2697 brelse(bh);
2698
2699 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2700
2701 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2702 if (ret) {
2703 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2704 err = -EINVAL;
2705 goto fail_alloc;
2706 }
2707
2708 disk_super = fs_info->super_copy;
2709 if (!btrfs_super_root(disk_super))
2710 goto fail_alloc;
2711
2712 /* check FS state, whether FS is broken. */
2713 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2714 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2715
2716 /*
2717 * run through our array of backup supers and setup
2718 * our ring pointer to the oldest one
2719 */
2720 generation = btrfs_super_generation(disk_super);
2721 find_oldest_super_backup(fs_info, generation);
2722
2723 /*
2724 * In the long term, we'll store the compression type in the super
2725 * block, and it'll be used for per file compression control.
2726 */
2727 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2728
2729 ret = btrfs_parse_options(tree_root, options);
2730 if (ret) {
2731 err = ret;
2732 goto fail_alloc;
2733 }
2734
2735 features = btrfs_super_incompat_flags(disk_super) &
2736 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2737 if (features) {
2738 printk(KERN_ERR "BTRFS: couldn't mount because of "
2739 "unsupported optional features (%Lx).\n",
2740 features);
2741 err = -EINVAL;
2742 goto fail_alloc;
2743 }
2744
2745 /*
2746 * Leafsize and nodesize were always equal, this is only a sanity check.
2747 */
2748 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2749 btrfs_super_nodesize(disk_super)) {
2750 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2751 "blocksizes don't match. node %d leaf %d\n",
2752 btrfs_super_nodesize(disk_super),
2753 le32_to_cpu(disk_super->__unused_leafsize));
2754 err = -EINVAL;
2755 goto fail_alloc;
2756 }
2757 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2758 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2759 "blocksize (%d) was too large\n",
2760 btrfs_super_nodesize(disk_super));
2761 err = -EINVAL;
2762 goto fail_alloc;
2763 }
2764
2765 features = btrfs_super_incompat_flags(disk_super);
2766 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2767 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2768 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2769
2770 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2771 printk(KERN_INFO "BTRFS: has skinny extents\n");
2772
2773 /*
2774 * flag our filesystem as having big metadata blocks if
2775 * they are bigger than the page size
2776 */
2777 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2778 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2779 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2780 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2781 }
2782
2783 nodesize = btrfs_super_nodesize(disk_super);
2784 sectorsize = btrfs_super_sectorsize(disk_super);
2785 stripesize = btrfs_super_stripesize(disk_super);
2786 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2787 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2788
2789 /*
2790 * mixed block groups end up with duplicate but slightly offset
2791 * extent buffers for the same range. It leads to corruptions
2792 */
2793 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2794 (sectorsize != nodesize)) {
2795 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2796 "are not allowed for mixed block groups on %s\n",
2797 sb->s_id);
2798 goto fail_alloc;
2799 }
2800
2801 /*
2802 * Needn't use the lock because there is no other task which will
2803 * update the flag.
2804 */
2805 btrfs_set_super_incompat_flags(disk_super, features);
2806
2807 features = btrfs_super_compat_ro_flags(disk_super) &
2808 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2809 if (!(sb->s_flags & MS_RDONLY) && features) {
2810 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2811 "unsupported option features (%Lx).\n",
2812 features);
2813 err = -EINVAL;
2814 goto fail_alloc;
2815 }
2816
2817 max_active = fs_info->thread_pool_size;
2818
2819 ret = btrfs_init_workqueues(fs_info, fs_devices);
2820 if (ret) {
2821 err = ret;
2822 goto fail_sb_buffer;
2823 }
2824
2825 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2826 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2827 SZ_4M / PAGE_CACHE_SIZE);
2828
2829 tree_root->nodesize = nodesize;
2830 tree_root->sectorsize = sectorsize;
2831 tree_root->stripesize = stripesize;
2832
2833 sb->s_blocksize = sectorsize;
2834 sb->s_blocksize_bits = blksize_bits(sectorsize);
2835
2836 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2837 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2838 goto fail_sb_buffer;
2839 }
2840
2841 if (sectorsize != PAGE_SIZE) {
2842 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2843 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2844 goto fail_sb_buffer;
2845 }
2846
2847 mutex_lock(&fs_info->chunk_mutex);
2848 ret = btrfs_read_sys_array(tree_root);
2849 mutex_unlock(&fs_info->chunk_mutex);
2850 if (ret) {
2851 printk(KERN_ERR "BTRFS: failed to read the system "
2852 "array on %s\n", sb->s_id);
2853 goto fail_sb_buffer;
2854 }
2855
2856 generation = btrfs_super_chunk_root_generation(disk_super);
2857
2858 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2859 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2860
2861 chunk_root->node = read_tree_block(chunk_root,
2862 btrfs_super_chunk_root(disk_super),
2863 generation);
2864 if (IS_ERR(chunk_root->node) ||
2865 !extent_buffer_uptodate(chunk_root->node)) {
2866 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2867 sb->s_id);
2868 if (!IS_ERR(chunk_root->node))
2869 free_extent_buffer(chunk_root->node);
2870 chunk_root->node = NULL;
2871 goto fail_tree_roots;
2872 }
2873 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2874 chunk_root->commit_root = btrfs_root_node(chunk_root);
2875
2876 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2877 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2878
2879 ret = btrfs_read_chunk_tree(chunk_root);
2880 if (ret) {
2881 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2882 sb->s_id);
2883 goto fail_tree_roots;
2884 }
2885
2886 /*
2887 * keep the device that is marked to be the target device for the
2888 * dev_replace procedure
2889 */
2890 btrfs_close_extra_devices(fs_devices, 0);
2891
2892 if (!fs_devices->latest_bdev) {
2893 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2894 sb->s_id);
2895 goto fail_tree_roots;
2896 }
2897
2898 retry_root_backup:
2899 generation = btrfs_super_generation(disk_super);
2900
2901 tree_root->node = read_tree_block(tree_root,
2902 btrfs_super_root(disk_super),
2903 generation);
2904 if (IS_ERR(tree_root->node) ||
2905 !extent_buffer_uptodate(tree_root->node)) {
2906 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2907 sb->s_id);
2908 if (!IS_ERR(tree_root->node))
2909 free_extent_buffer(tree_root->node);
2910 tree_root->node = NULL;
2911 goto recovery_tree_root;
2912 }
2913
2914 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2915 tree_root->commit_root = btrfs_root_node(tree_root);
2916 btrfs_set_root_refs(&tree_root->root_item, 1);
2917
2918 ret = btrfs_read_roots(fs_info, tree_root);
2919 if (ret)
2920 goto recovery_tree_root;
2921
2922 fs_info->generation = generation;
2923 fs_info->last_trans_committed = generation;
2924
2925 ret = btrfs_recover_balance(fs_info);
2926 if (ret) {
2927 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2928 goto fail_block_groups;
2929 }
2930
2931 ret = btrfs_init_dev_stats(fs_info);
2932 if (ret) {
2933 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2934 ret);
2935 goto fail_block_groups;
2936 }
2937
2938 ret = btrfs_init_dev_replace(fs_info);
2939 if (ret) {
2940 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2941 goto fail_block_groups;
2942 }
2943
2944 btrfs_close_extra_devices(fs_devices, 1);
2945
2946 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2947 if (ret) {
2948 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2949 goto fail_block_groups;
2950 }
2951
2952 ret = btrfs_sysfs_add_device(fs_devices);
2953 if (ret) {
2954 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2955 goto fail_fsdev_sysfs;
2956 }
2957
2958 ret = btrfs_sysfs_add_mounted(fs_info);
2959 if (ret) {
2960 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2961 goto fail_fsdev_sysfs;
2962 }
2963
2964 ret = btrfs_init_space_info(fs_info);
2965 if (ret) {
2966 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2967 goto fail_sysfs;
2968 }
2969
2970 ret = btrfs_read_block_groups(fs_info->extent_root);
2971 if (ret) {
2972 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2973 goto fail_sysfs;
2974 }
2975 fs_info->num_tolerated_disk_barrier_failures =
2976 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2977 if (fs_info->fs_devices->missing_devices >
2978 fs_info->num_tolerated_disk_barrier_failures &&
2979 !(sb->s_flags & MS_RDONLY)) {
2980 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2981 fs_info->fs_devices->missing_devices,
2982 fs_info->num_tolerated_disk_barrier_failures);
2983 goto fail_sysfs;
2984 }
2985
2986 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2987 "btrfs-cleaner");
2988 if (IS_ERR(fs_info->cleaner_kthread))
2989 goto fail_sysfs;
2990
2991 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2992 tree_root,
2993 "btrfs-transaction");
2994 if (IS_ERR(fs_info->transaction_kthread))
2995 goto fail_cleaner;
2996
2997 if (!btrfs_test_opt(tree_root, SSD) &&
2998 !btrfs_test_opt(tree_root, NOSSD) &&
2999 !fs_info->fs_devices->rotating) {
3000 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3001 "mode\n");
3002 btrfs_set_opt(fs_info->mount_opt, SSD);
3003 }
3004
3005 /*
3006 * Mount does not set all options immediatelly, we can do it now and do
3007 * not have to wait for transaction commit
3008 */
3009 btrfs_apply_pending_changes(fs_info);
3010
3011 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3012 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3013 ret = btrfsic_mount(tree_root, fs_devices,
3014 btrfs_test_opt(tree_root,
3015 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3016 1 : 0,
3017 fs_info->check_integrity_print_mask);
3018 if (ret)
3019 printk(KERN_WARNING "BTRFS: failed to initialize"
3020 " integrity check module %s\n", sb->s_id);
3021 }
3022 #endif
3023 ret = btrfs_read_qgroup_config(fs_info);
3024 if (ret)
3025 goto fail_trans_kthread;
3026
3027 /* do not make disk changes in broken FS */
3028 if (btrfs_super_log_root(disk_super) != 0) {
3029 ret = btrfs_replay_log(fs_info, fs_devices);
3030 if (ret) {
3031 err = ret;
3032 goto fail_qgroup;
3033 }
3034 }
3035
3036 ret = btrfs_find_orphan_roots(tree_root);
3037 if (ret)
3038 goto fail_qgroup;
3039
3040 if (!(sb->s_flags & MS_RDONLY)) {
3041 ret = btrfs_cleanup_fs_roots(fs_info);
3042 if (ret)
3043 goto fail_qgroup;
3044
3045 mutex_lock(&fs_info->cleaner_mutex);
3046 ret = btrfs_recover_relocation(tree_root);
3047 mutex_unlock(&fs_info->cleaner_mutex);
3048 if (ret < 0) {
3049 printk(KERN_WARNING
3050 "BTRFS: failed to recover relocation\n");
3051 err = -EINVAL;
3052 goto fail_qgroup;
3053 }
3054 }
3055
3056 location.objectid = BTRFS_FS_TREE_OBJECTID;
3057 location.type = BTRFS_ROOT_ITEM_KEY;
3058 location.offset = 0;
3059
3060 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3061 if (IS_ERR(fs_info->fs_root)) {
3062 err = PTR_ERR(fs_info->fs_root);
3063 goto fail_qgroup;
3064 }
3065
3066 if (sb->s_flags & MS_RDONLY)
3067 return 0;
3068
3069 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3070 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3071 pr_info("BTRFS: creating free space tree\n");
3072 ret = btrfs_create_free_space_tree(fs_info);
3073 if (ret) {
3074 pr_warn("BTRFS: failed to create free space tree %d\n",
3075 ret);
3076 close_ctree(tree_root);
3077 return ret;
3078 }
3079 }
3080
3081 down_read(&fs_info->cleanup_work_sem);
3082 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3083 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3084 up_read(&fs_info->cleanup_work_sem);
3085 close_ctree(tree_root);
3086 return ret;
3087 }
3088 up_read(&fs_info->cleanup_work_sem);
3089
3090 ret = btrfs_resume_balance_async(fs_info);
3091 if (ret) {
3092 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3093 close_ctree(tree_root);
3094 return ret;
3095 }
3096
3097 ret = btrfs_resume_dev_replace_async(fs_info);
3098 if (ret) {
3099 pr_warn("BTRFS: failed to resume dev_replace\n");
3100 close_ctree(tree_root);
3101 return ret;
3102 }
3103
3104 btrfs_qgroup_rescan_resume(fs_info);
3105
3106 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3107 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3108 pr_info("BTRFS: clearing free space tree\n");
3109 ret = btrfs_clear_free_space_tree(fs_info);
3110 if (ret) {
3111 pr_warn("BTRFS: failed to clear free space tree %d\n",
3112 ret);
3113 close_ctree(tree_root);
3114 return ret;
3115 }
3116 }
3117
3118 if (!fs_info->uuid_root) {
3119 pr_info("BTRFS: creating UUID tree\n");
3120 ret = btrfs_create_uuid_tree(fs_info);
3121 if (ret) {
3122 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3123 ret);
3124 close_ctree(tree_root);
3125 return ret;
3126 }
3127 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3128 fs_info->generation !=
3129 btrfs_super_uuid_tree_generation(disk_super)) {
3130 pr_info("BTRFS: checking UUID tree\n");
3131 ret = btrfs_check_uuid_tree(fs_info);
3132 if (ret) {
3133 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3134 ret);
3135 close_ctree(tree_root);
3136 return ret;
3137 }
3138 } else {
3139 fs_info->update_uuid_tree_gen = 1;
3140 }
3141
3142 fs_info->open = 1;
3143
3144 return 0;
3145
3146 fail_qgroup:
3147 btrfs_free_qgroup_config(fs_info);
3148 fail_trans_kthread:
3149 kthread_stop(fs_info->transaction_kthread);
3150 btrfs_cleanup_transaction(fs_info->tree_root);
3151 btrfs_free_fs_roots(fs_info);
3152 fail_cleaner:
3153 kthread_stop(fs_info->cleaner_kthread);
3154
3155 /*
3156 * make sure we're done with the btree inode before we stop our
3157 * kthreads
3158 */
3159 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3160
3161 fail_sysfs:
3162 btrfs_sysfs_remove_mounted(fs_info);
3163
3164 fail_fsdev_sysfs:
3165 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3166
3167 fail_block_groups:
3168 btrfs_put_block_group_cache(fs_info);
3169 btrfs_free_block_groups(fs_info);
3170
3171 fail_tree_roots:
3172 free_root_pointers(fs_info, 1);
3173 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3174
3175 fail_sb_buffer:
3176 btrfs_stop_all_workers(fs_info);
3177 fail_alloc:
3178 fail_iput:
3179 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3180
3181 iput(fs_info->btree_inode);
3182 fail_bio_counter:
3183 percpu_counter_destroy(&fs_info->bio_counter);
3184 fail_delalloc_bytes:
3185 percpu_counter_destroy(&fs_info->delalloc_bytes);
3186 fail_dirty_metadata_bytes:
3187 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3188 fail_bdi:
3189 bdi_destroy(&fs_info->bdi);
3190 fail_srcu:
3191 cleanup_srcu_struct(&fs_info->subvol_srcu);
3192 fail:
3193 btrfs_free_stripe_hash_table(fs_info);
3194 btrfs_close_devices(fs_info->fs_devices);
3195 return err;
3196
3197 recovery_tree_root:
3198 if (!btrfs_test_opt(tree_root, RECOVERY))
3199 goto fail_tree_roots;
3200
3201 free_root_pointers(fs_info, 0);
3202
3203 /* don't use the log in recovery mode, it won't be valid */
3204 btrfs_set_super_log_root(disk_super, 0);
3205
3206 /* we can't trust the free space cache either */
3207 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3208
3209 ret = next_root_backup(fs_info, fs_info->super_copy,
3210 &num_backups_tried, &backup_index);
3211 if (ret == -1)
3212 goto fail_block_groups;
3213 goto retry_root_backup;
3214 }
3215
3216 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3217 {
3218 if (uptodate) {
3219 set_buffer_uptodate(bh);
3220 } else {
3221 struct btrfs_device *device = (struct btrfs_device *)
3222 bh->b_private;
3223
3224 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3225 "lost page write due to IO error on %s",
3226 rcu_str_deref(device->name));
3227 /* note, we dont' set_buffer_write_io_error because we have
3228 * our own ways of dealing with the IO errors
3229 */
3230 clear_buffer_uptodate(bh);
3231 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3232 }
3233 unlock_buffer(bh);
3234 put_bh(bh);
3235 }
3236
3237 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3238 struct buffer_head **bh_ret)
3239 {
3240 struct buffer_head *bh;
3241 struct btrfs_super_block *super;
3242 u64 bytenr;
3243
3244 bytenr = btrfs_sb_offset(copy_num);
3245 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3246 return -EINVAL;
3247
3248 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3249 /*
3250 * If we fail to read from the underlying devices, as of now
3251 * the best option we have is to mark it EIO.
3252 */
3253 if (!bh)
3254 return -EIO;
3255
3256 super = (struct btrfs_super_block *)bh->b_data;
3257 if (btrfs_super_bytenr(super) != bytenr ||
3258 btrfs_super_magic(super) != BTRFS_MAGIC) {
3259 brelse(bh);
3260 return -EINVAL;
3261 }
3262
3263 *bh_ret = bh;
3264 return 0;
3265 }
3266
3267
3268 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3269 {
3270 struct buffer_head *bh;
3271 struct buffer_head *latest = NULL;
3272 struct btrfs_super_block *super;
3273 int i;
3274 u64 transid = 0;
3275 int ret = -EINVAL;
3276
3277 /* we would like to check all the supers, but that would make
3278 * a btrfs mount succeed after a mkfs from a different FS.
3279 * So, we need to add a special mount option to scan for
3280 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3281 */
3282 for (i = 0; i < 1; i++) {
3283 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3284 if (ret)
3285 continue;
3286
3287 super = (struct btrfs_super_block *)bh->b_data;
3288
3289 if (!latest || btrfs_super_generation(super) > transid) {
3290 brelse(latest);
3291 latest = bh;
3292 transid = btrfs_super_generation(super);
3293 } else {
3294 brelse(bh);
3295 }
3296 }
3297
3298 if (!latest)
3299 return ERR_PTR(ret);
3300
3301 return latest;
3302 }
3303
3304 /*
3305 * this should be called twice, once with wait == 0 and
3306 * once with wait == 1. When wait == 0 is done, all the buffer heads
3307 * we write are pinned.
3308 *
3309 * They are released when wait == 1 is done.
3310 * max_mirrors must be the same for both runs, and it indicates how
3311 * many supers on this one device should be written.
3312 *
3313 * max_mirrors == 0 means to write them all.
3314 */
3315 static int write_dev_supers(struct btrfs_device *device,
3316 struct btrfs_super_block *sb,
3317 int do_barriers, int wait, int max_mirrors)
3318 {
3319 struct buffer_head *bh;
3320 int i;
3321 int ret;
3322 int errors = 0;
3323 u32 crc;
3324 u64 bytenr;
3325
3326 if (max_mirrors == 0)
3327 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3328
3329 for (i = 0; i < max_mirrors; i++) {
3330 bytenr = btrfs_sb_offset(i);
3331 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3332 device->commit_total_bytes)
3333 break;
3334
3335 if (wait) {
3336 bh = __find_get_block(device->bdev, bytenr / 4096,
3337 BTRFS_SUPER_INFO_SIZE);
3338 if (!bh) {
3339 errors++;
3340 continue;
3341 }
3342 wait_on_buffer(bh);
3343 if (!buffer_uptodate(bh))
3344 errors++;
3345
3346 /* drop our reference */
3347 brelse(bh);
3348
3349 /* drop the reference from the wait == 0 run */
3350 brelse(bh);
3351 continue;
3352 } else {
3353 btrfs_set_super_bytenr(sb, bytenr);
3354
3355 crc = ~(u32)0;
3356 crc = btrfs_csum_data((char *)sb +
3357 BTRFS_CSUM_SIZE, crc,
3358 BTRFS_SUPER_INFO_SIZE -
3359 BTRFS_CSUM_SIZE);
3360 btrfs_csum_final(crc, sb->csum);
3361
3362 /*
3363 * one reference for us, and we leave it for the
3364 * caller
3365 */
3366 bh = __getblk(device->bdev, bytenr / 4096,
3367 BTRFS_SUPER_INFO_SIZE);
3368 if (!bh) {
3369 btrfs_err(device->dev_root->fs_info,
3370 "couldn't get super buffer head for bytenr %llu",
3371 bytenr);
3372 errors++;
3373 continue;
3374 }
3375
3376 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3377
3378 /* one reference for submit_bh */
3379 get_bh(bh);
3380
3381 set_buffer_uptodate(bh);
3382 lock_buffer(bh);
3383 bh->b_end_io = btrfs_end_buffer_write_sync;
3384 bh->b_private = device;
3385 }
3386
3387 /*
3388 * we fua the first super. The others we allow
3389 * to go down lazy.
3390 */
3391 if (i == 0)
3392 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3393 else
3394 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3395 if (ret)
3396 errors++;
3397 }
3398 return errors < i ? 0 : -1;
3399 }
3400
3401 /*
3402 * endio for the write_dev_flush, this will wake anyone waiting
3403 * for the barrier when it is done
3404 */
3405 static void btrfs_end_empty_barrier(struct bio *bio)
3406 {
3407 if (bio->bi_private)
3408 complete(bio->bi_private);
3409 bio_put(bio);
3410 }
3411
3412 /*
3413 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3414 * sent down. With wait == 1, it waits for the previous flush.
3415 *
3416 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3417 * capable
3418 */
3419 static int write_dev_flush(struct btrfs_device *device, int wait)
3420 {
3421 struct bio *bio;
3422 int ret = 0;
3423
3424 if (device->nobarriers)
3425 return 0;
3426
3427 if (wait) {
3428 bio = device->flush_bio;
3429 if (!bio)
3430 return 0;
3431
3432 wait_for_completion(&device->flush_wait);
3433
3434 if (bio->bi_error) {
3435 ret = bio->bi_error;
3436 btrfs_dev_stat_inc_and_print(device,
3437 BTRFS_DEV_STAT_FLUSH_ERRS);
3438 }
3439
3440 /* drop the reference from the wait == 0 run */
3441 bio_put(bio);
3442 device->flush_bio = NULL;
3443
3444 return ret;
3445 }
3446
3447 /*
3448 * one reference for us, and we leave it for the
3449 * caller
3450 */
3451 device->flush_bio = NULL;
3452 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3453 if (!bio)
3454 return -ENOMEM;
3455
3456 bio->bi_end_io = btrfs_end_empty_barrier;
3457 bio->bi_bdev = device->bdev;
3458 init_completion(&device->flush_wait);
3459 bio->bi_private = &device->flush_wait;
3460 device->flush_bio = bio;
3461
3462 bio_get(bio);
3463 btrfsic_submit_bio(WRITE_FLUSH, bio);
3464
3465 return 0;
3466 }
3467
3468 /*
3469 * send an empty flush down to each device in parallel,
3470 * then wait for them
3471 */
3472 static int barrier_all_devices(struct btrfs_fs_info *info)
3473 {
3474 struct list_head *head;
3475 struct btrfs_device *dev;
3476 int errors_send = 0;
3477 int errors_wait = 0;
3478 int ret;
3479
3480 /* send down all the barriers */
3481 head = &info->fs_devices->devices;
3482 list_for_each_entry_rcu(dev, head, dev_list) {
3483 if (dev->missing)
3484 continue;
3485 if (!dev->bdev) {
3486 errors_send++;
3487 continue;
3488 }
3489 if (!dev->in_fs_metadata || !dev->writeable)
3490 continue;
3491
3492 ret = write_dev_flush(dev, 0);
3493 if (ret)
3494 errors_send++;
3495 }
3496
3497 /* wait for all the barriers */
3498 list_for_each_entry_rcu(dev, head, dev_list) {
3499 if (dev->missing)
3500 continue;
3501 if (!dev->bdev) {
3502 errors_wait++;
3503 continue;
3504 }
3505 if (!dev->in_fs_metadata || !dev->writeable)
3506 continue;
3507
3508 ret = write_dev_flush(dev, 1);
3509 if (ret)
3510 errors_wait++;
3511 }
3512 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3513 errors_wait > info->num_tolerated_disk_barrier_failures)
3514 return -EIO;
3515 return 0;
3516 }
3517
3518 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3519 {
3520 int raid_type;
3521 int min_tolerated = INT_MAX;
3522
3523 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3524 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3525 min_tolerated = min(min_tolerated,
3526 btrfs_raid_array[BTRFS_RAID_SINGLE].
3527 tolerated_failures);
3528
3529 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3530 if (raid_type == BTRFS_RAID_SINGLE)
3531 continue;
3532 if (!(flags & btrfs_raid_group[raid_type]))
3533 continue;
3534 min_tolerated = min(min_tolerated,
3535 btrfs_raid_array[raid_type].
3536 tolerated_failures);
3537 }
3538
3539 if (min_tolerated == INT_MAX) {
3540 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3541 min_tolerated = 0;
3542 }
3543
3544 return min_tolerated;
3545 }
3546
3547 int btrfs_calc_num_tolerated_disk_barrier_failures(
3548 struct btrfs_fs_info *fs_info)
3549 {
3550 struct btrfs_ioctl_space_info space;
3551 struct btrfs_space_info *sinfo;
3552 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3553 BTRFS_BLOCK_GROUP_SYSTEM,
3554 BTRFS_BLOCK_GROUP_METADATA,
3555 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3556 int i;
3557 int c;
3558 int num_tolerated_disk_barrier_failures =
3559 (int)fs_info->fs_devices->num_devices;
3560
3561 for (i = 0; i < ARRAY_SIZE(types); i++) {
3562 struct btrfs_space_info *tmp;
3563
3564 sinfo = NULL;
3565 rcu_read_lock();
3566 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3567 if (tmp->flags == types[i]) {
3568 sinfo = tmp;
3569 break;
3570 }
3571 }
3572 rcu_read_unlock();
3573
3574 if (!sinfo)
3575 continue;
3576
3577 down_read(&sinfo->groups_sem);
3578 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3579 u64 flags;
3580
3581 if (list_empty(&sinfo->block_groups[c]))
3582 continue;
3583
3584 btrfs_get_block_group_info(&sinfo->block_groups[c],
3585 &space);
3586 if (space.total_bytes == 0 || space.used_bytes == 0)
3587 continue;
3588 flags = space.flags;
3589
3590 num_tolerated_disk_barrier_failures = min(
3591 num_tolerated_disk_barrier_failures,
3592 btrfs_get_num_tolerated_disk_barrier_failures(
3593 flags));
3594 }
3595 up_read(&sinfo->groups_sem);
3596 }
3597
3598 return num_tolerated_disk_barrier_failures;
3599 }
3600
3601 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3602 {
3603 struct list_head *head;
3604 struct btrfs_device *dev;
3605 struct btrfs_super_block *sb;
3606 struct btrfs_dev_item *dev_item;
3607 int ret;
3608 int do_barriers;
3609 int max_errors;
3610 int total_errors = 0;
3611 u64 flags;
3612
3613 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3614 backup_super_roots(root->fs_info);
3615
3616 sb = root->fs_info->super_for_commit;
3617 dev_item = &sb->dev_item;
3618
3619 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3620 head = &root->fs_info->fs_devices->devices;
3621 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3622
3623 if (do_barriers) {
3624 ret = barrier_all_devices(root->fs_info);
3625 if (ret) {
3626 mutex_unlock(
3627 &root->fs_info->fs_devices->device_list_mutex);
3628 btrfs_std_error(root->fs_info, ret,
3629 "errors while submitting device barriers.");
3630 return ret;
3631 }
3632 }
3633
3634 list_for_each_entry_rcu(dev, head, dev_list) {
3635 if (!dev->bdev) {
3636 total_errors++;
3637 continue;
3638 }
3639 if (!dev->in_fs_metadata || !dev->writeable)
3640 continue;
3641
3642 btrfs_set_stack_device_generation(dev_item, 0);
3643 btrfs_set_stack_device_type(dev_item, dev->type);
3644 btrfs_set_stack_device_id(dev_item, dev->devid);
3645 btrfs_set_stack_device_total_bytes(dev_item,
3646 dev->commit_total_bytes);
3647 btrfs_set_stack_device_bytes_used(dev_item,
3648 dev->commit_bytes_used);
3649 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3650 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3651 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3652 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3653 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3654
3655 flags = btrfs_super_flags(sb);
3656 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3657
3658 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3659 if (ret)
3660 total_errors++;
3661 }
3662 if (total_errors > max_errors) {
3663 btrfs_err(root->fs_info, "%d errors while writing supers",
3664 total_errors);
3665 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3666
3667 /* FUA is masked off if unsupported and can't be the reason */
3668 btrfs_std_error(root->fs_info, -EIO,
3669 "%d errors while writing supers", total_errors);
3670 return -EIO;
3671 }
3672
3673 total_errors = 0;
3674 list_for_each_entry_rcu(dev, head, dev_list) {
3675 if (!dev->bdev)
3676 continue;
3677 if (!dev->in_fs_metadata || !dev->writeable)
3678 continue;
3679
3680 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3681 if (ret)
3682 total_errors++;
3683 }
3684 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3685 if (total_errors > max_errors) {
3686 btrfs_std_error(root->fs_info, -EIO,
3687 "%d errors while writing supers", total_errors);
3688 return -EIO;
3689 }
3690 return 0;
3691 }
3692
3693 int write_ctree_super(struct btrfs_trans_handle *trans,
3694 struct btrfs_root *root, int max_mirrors)
3695 {
3696 return write_all_supers(root, max_mirrors);
3697 }
3698
3699 /* Drop a fs root from the radix tree and free it. */
3700 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3701 struct btrfs_root *root)
3702 {
3703 spin_lock(&fs_info->fs_roots_radix_lock);
3704 radix_tree_delete(&fs_info->fs_roots_radix,
3705 (unsigned long)root->root_key.objectid);
3706 spin_unlock(&fs_info->fs_roots_radix_lock);
3707
3708 if (btrfs_root_refs(&root->root_item) == 0)
3709 synchronize_srcu(&fs_info->subvol_srcu);
3710
3711 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3712 btrfs_free_log(NULL, root);
3713
3714 if (root->free_ino_pinned)
3715 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3716 if (root->free_ino_ctl)
3717 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3718 free_fs_root(root);
3719 }
3720
3721 static void free_fs_root(struct btrfs_root *root)
3722 {
3723 iput(root->ino_cache_inode);
3724 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3725 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3726 root->orphan_block_rsv = NULL;
3727 if (root->anon_dev)
3728 free_anon_bdev(root->anon_dev);
3729 if (root->subv_writers)
3730 btrfs_free_subvolume_writers(root->subv_writers);
3731 free_extent_buffer(root->node);
3732 free_extent_buffer(root->commit_root);
3733 kfree(root->free_ino_ctl);
3734 kfree(root->free_ino_pinned);
3735 kfree(root->name);
3736 btrfs_put_fs_root(root);
3737 }
3738
3739 void btrfs_free_fs_root(struct btrfs_root *root)
3740 {
3741 free_fs_root(root);
3742 }
3743
3744 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3745 {
3746 u64 root_objectid = 0;
3747 struct btrfs_root *gang[8];
3748 int i = 0;
3749 int err = 0;
3750 unsigned int ret = 0;
3751 int index;
3752
3753 while (1) {
3754 index = srcu_read_lock(&fs_info->subvol_srcu);
3755 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3756 (void **)gang, root_objectid,
3757 ARRAY_SIZE(gang));
3758 if (!ret) {
3759 srcu_read_unlock(&fs_info->subvol_srcu, index);
3760 break;
3761 }
3762 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3763
3764 for (i = 0; i < ret; i++) {
3765 /* Avoid to grab roots in dead_roots */
3766 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3767 gang[i] = NULL;
3768 continue;
3769 }
3770 /* grab all the search result for later use */
3771 gang[i] = btrfs_grab_fs_root(gang[i]);
3772 }
3773 srcu_read_unlock(&fs_info->subvol_srcu, index);
3774
3775 for (i = 0; i < ret; i++) {
3776 if (!gang[i])
3777 continue;
3778 root_objectid = gang[i]->root_key.objectid;
3779 err = btrfs_orphan_cleanup(gang[i]);
3780 if (err)
3781 break;
3782 btrfs_put_fs_root(gang[i]);
3783 }
3784 root_objectid++;
3785 }
3786
3787 /* release the uncleaned roots due to error */
3788 for (; i < ret; i++) {
3789 if (gang[i])
3790 btrfs_put_fs_root(gang[i]);
3791 }
3792 return err;
3793 }
3794
3795 int btrfs_commit_super(struct btrfs_root *root)
3796 {
3797 struct btrfs_trans_handle *trans;
3798
3799 mutex_lock(&root->fs_info->cleaner_mutex);
3800 btrfs_run_delayed_iputs(root);
3801 mutex_unlock(&root->fs_info->cleaner_mutex);
3802 wake_up_process(root->fs_info->cleaner_kthread);
3803
3804 /* wait until ongoing cleanup work done */
3805 down_write(&root->fs_info->cleanup_work_sem);
3806 up_write(&root->fs_info->cleanup_work_sem);
3807
3808 trans = btrfs_join_transaction(root);
3809 if (IS_ERR(trans))
3810 return PTR_ERR(trans);
3811 return btrfs_commit_transaction(trans, root);
3812 }
3813
3814 void close_ctree(struct btrfs_root *root)
3815 {
3816 struct btrfs_fs_info *fs_info = root->fs_info;
3817 int ret;
3818
3819 fs_info->closing = 1;
3820 smp_mb();
3821
3822 /* wait for the qgroup rescan worker to stop */
3823 btrfs_qgroup_wait_for_completion(fs_info);
3824
3825 /* wait for the uuid_scan task to finish */
3826 down(&fs_info->uuid_tree_rescan_sem);
3827 /* avoid complains from lockdep et al., set sem back to initial state */
3828 up(&fs_info->uuid_tree_rescan_sem);
3829
3830 /* pause restriper - we want to resume on mount */
3831 btrfs_pause_balance(fs_info);
3832
3833 btrfs_dev_replace_suspend_for_unmount(fs_info);
3834
3835 btrfs_scrub_cancel(fs_info);
3836
3837 /* wait for any defraggers to finish */
3838 wait_event(fs_info->transaction_wait,
3839 (atomic_read(&fs_info->defrag_running) == 0));
3840
3841 /* clear out the rbtree of defraggable inodes */
3842 btrfs_cleanup_defrag_inodes(fs_info);
3843
3844 cancel_work_sync(&fs_info->async_reclaim_work);
3845
3846 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3847 /*
3848 * If the cleaner thread is stopped and there are
3849 * block groups queued for removal, the deletion will be
3850 * skipped when we quit the cleaner thread.
3851 */
3852 btrfs_delete_unused_bgs(root->fs_info);
3853
3854 ret = btrfs_commit_super(root);
3855 if (ret)
3856 btrfs_err(fs_info, "commit super ret %d", ret);
3857 }
3858
3859 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3860 btrfs_error_commit_super(root);
3861
3862 kthread_stop(fs_info->transaction_kthread);
3863 kthread_stop(fs_info->cleaner_kthread);
3864
3865 fs_info->closing = 2;
3866 smp_mb();
3867
3868 btrfs_free_qgroup_config(fs_info);
3869
3870 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3871 btrfs_info(fs_info, "at unmount delalloc count %lld",
3872 percpu_counter_sum(&fs_info->delalloc_bytes));
3873 }
3874
3875 btrfs_sysfs_remove_mounted(fs_info);
3876 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3877
3878 btrfs_free_fs_roots(fs_info);
3879
3880 btrfs_put_block_group_cache(fs_info);
3881
3882 btrfs_free_block_groups(fs_info);
3883
3884 /*
3885 * we must make sure there is not any read request to
3886 * submit after we stopping all workers.
3887 */
3888 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3889 btrfs_stop_all_workers(fs_info);
3890
3891 fs_info->open = 0;
3892 free_root_pointers(fs_info, 1);
3893
3894 iput(fs_info->btree_inode);
3895
3896 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3897 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3898 btrfsic_unmount(root, fs_info->fs_devices);
3899 #endif
3900
3901 btrfs_close_devices(fs_info->fs_devices);
3902 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3903
3904 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3905 percpu_counter_destroy(&fs_info->delalloc_bytes);
3906 percpu_counter_destroy(&fs_info->bio_counter);
3907 bdi_destroy(&fs_info->bdi);
3908 cleanup_srcu_struct(&fs_info->subvol_srcu);
3909
3910 btrfs_free_stripe_hash_table(fs_info);
3911
3912 __btrfs_free_block_rsv(root->orphan_block_rsv);
3913 root->orphan_block_rsv = NULL;
3914
3915 lock_chunks(root);
3916 while (!list_empty(&fs_info->pinned_chunks)) {
3917 struct extent_map *em;
3918
3919 em = list_first_entry(&fs_info->pinned_chunks,
3920 struct extent_map, list);
3921 list_del_init(&em->list);
3922 free_extent_map(em);
3923 }
3924 unlock_chunks(root);
3925 }
3926
3927 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3928 int atomic)
3929 {
3930 int ret;
3931 struct inode *btree_inode = buf->pages[0]->mapping->host;
3932
3933 ret = extent_buffer_uptodate(buf);
3934 if (!ret)
3935 return ret;
3936
3937 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3938 parent_transid, atomic);
3939 if (ret == -EAGAIN)
3940 return ret;
3941 return !ret;
3942 }
3943
3944 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3945 {
3946 struct btrfs_root *root;
3947 u64 transid = btrfs_header_generation(buf);
3948 int was_dirty;
3949
3950 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3951 /*
3952 * This is a fast path so only do this check if we have sanity tests
3953 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3954 * outside of the sanity tests.
3955 */
3956 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3957 return;
3958 #endif
3959 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3960 btrfs_assert_tree_locked(buf);
3961 if (transid != root->fs_info->generation)
3962 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3963 "found %llu running %llu\n",
3964 buf->start, transid, root->fs_info->generation);
3965 was_dirty = set_extent_buffer_dirty(buf);
3966 if (!was_dirty)
3967 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3968 buf->len,
3969 root->fs_info->dirty_metadata_batch);
3970 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3971 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3972 btrfs_print_leaf(root, buf);
3973 ASSERT(0);
3974 }
3975 #endif
3976 }
3977
3978 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3979 int flush_delayed)
3980 {
3981 /*
3982 * looks as though older kernels can get into trouble with
3983 * this code, they end up stuck in balance_dirty_pages forever
3984 */
3985 int ret;
3986
3987 if (current->flags & PF_MEMALLOC)
3988 return;
3989
3990 if (flush_delayed)
3991 btrfs_balance_delayed_items(root);
3992
3993 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3994 BTRFS_DIRTY_METADATA_THRESH);
3995 if (ret > 0) {
3996 balance_dirty_pages_ratelimited(
3997 root->fs_info->btree_inode->i_mapping);
3998 }
3999 }
4000
4001 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4002 {
4003 __btrfs_btree_balance_dirty(root, 1);
4004 }
4005
4006 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4007 {
4008 __btrfs_btree_balance_dirty(root, 0);
4009 }
4010
4011 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4012 {
4013 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4014 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4015 }
4016
4017 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4018 int read_only)
4019 {
4020 struct btrfs_super_block *sb = fs_info->super_copy;
4021 int ret = 0;
4022
4023 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4024 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4025 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4026 ret = -EINVAL;
4027 }
4028 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4029 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4030 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4031 ret = -EINVAL;
4032 }
4033 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4034 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4035 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4036 ret = -EINVAL;
4037 }
4038
4039 /*
4040 * The common minimum, we don't know if we can trust the nodesize/sectorsize
4041 * items yet, they'll be verified later. Issue just a warning.
4042 */
4043 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
4044 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4045 btrfs_super_root(sb));
4046 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4047 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4048 btrfs_super_chunk_root(sb));
4049 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4050 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4051 btrfs_super_log_root(sb));
4052
4053 /*
4054 * Check the lower bound, the alignment and other constraints are
4055 * checked later.
4056 */
4057 if (btrfs_super_nodesize(sb) < 4096) {
4058 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4059 btrfs_super_nodesize(sb));
4060 ret = -EINVAL;
4061 }
4062 if (btrfs_super_sectorsize(sb) < 4096) {
4063 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4064 btrfs_super_sectorsize(sb));
4065 ret = -EINVAL;
4066 }
4067
4068 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4069 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4070 fs_info->fsid, sb->dev_item.fsid);
4071 ret = -EINVAL;
4072 }
4073
4074 /*
4075 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4076 * done later
4077 */
4078 if (btrfs_super_num_devices(sb) > (1UL << 31))
4079 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4080 btrfs_super_num_devices(sb));
4081 if (btrfs_super_num_devices(sb) == 0) {
4082 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4083 ret = -EINVAL;
4084 }
4085
4086 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4087 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4088 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4089 ret = -EINVAL;
4090 }
4091
4092 /*
4093 * Obvious sys_chunk_array corruptions, it must hold at least one key
4094 * and one chunk
4095 */
4096 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4097 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4098 btrfs_super_sys_array_size(sb),
4099 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4100 ret = -EINVAL;
4101 }
4102 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4103 + sizeof(struct btrfs_chunk)) {
4104 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4105 btrfs_super_sys_array_size(sb),
4106 sizeof(struct btrfs_disk_key)
4107 + sizeof(struct btrfs_chunk));
4108 ret = -EINVAL;
4109 }
4110
4111 /*
4112 * The generation is a global counter, we'll trust it more than the others
4113 * but it's still possible that it's the one that's wrong.
4114 */
4115 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4116 printk(KERN_WARNING
4117 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4118 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4119 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4120 && btrfs_super_cache_generation(sb) != (u64)-1)
4121 printk(KERN_WARNING
4122 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4123 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4124
4125 return ret;
4126 }
4127
4128 static void btrfs_error_commit_super(struct btrfs_root *root)
4129 {
4130 mutex_lock(&root->fs_info->cleaner_mutex);
4131 btrfs_run_delayed_iputs(root);
4132 mutex_unlock(&root->fs_info->cleaner_mutex);
4133
4134 down_write(&root->fs_info->cleanup_work_sem);
4135 up_write(&root->fs_info->cleanup_work_sem);
4136
4137 /* cleanup FS via transaction */
4138 btrfs_cleanup_transaction(root);
4139 }
4140
4141 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4142 {
4143 struct btrfs_ordered_extent *ordered;
4144
4145 spin_lock(&root->ordered_extent_lock);
4146 /*
4147 * This will just short circuit the ordered completion stuff which will
4148 * make sure the ordered extent gets properly cleaned up.
4149 */
4150 list_for_each_entry(ordered, &root->ordered_extents,
4151 root_extent_list)
4152 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4153 spin_unlock(&root->ordered_extent_lock);
4154 }
4155
4156 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4157 {
4158 struct btrfs_root *root;
4159 struct list_head splice;
4160
4161 INIT_LIST_HEAD(&splice);
4162
4163 spin_lock(&fs_info->ordered_root_lock);
4164 list_splice_init(&fs_info->ordered_roots, &splice);
4165 while (!list_empty(&splice)) {
4166 root = list_first_entry(&splice, struct btrfs_root,
4167 ordered_root);
4168 list_move_tail(&root->ordered_root,
4169 &fs_info->ordered_roots);
4170
4171 spin_unlock(&fs_info->ordered_root_lock);
4172 btrfs_destroy_ordered_extents(root);
4173
4174 cond_resched();
4175 spin_lock(&fs_info->ordered_root_lock);
4176 }
4177 spin_unlock(&fs_info->ordered_root_lock);
4178 }
4179
4180 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4181 struct btrfs_root *root)
4182 {
4183 struct rb_node *node;
4184 struct btrfs_delayed_ref_root *delayed_refs;
4185 struct btrfs_delayed_ref_node *ref;
4186 int ret = 0;
4187
4188 delayed_refs = &trans->delayed_refs;
4189
4190 spin_lock(&delayed_refs->lock);
4191 if (atomic_read(&delayed_refs->num_entries) == 0) {
4192 spin_unlock(&delayed_refs->lock);
4193 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4194 return ret;
4195 }
4196
4197 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4198 struct btrfs_delayed_ref_head *head;
4199 struct btrfs_delayed_ref_node *tmp;
4200 bool pin_bytes = false;
4201
4202 head = rb_entry(node, struct btrfs_delayed_ref_head,
4203 href_node);
4204 if (!mutex_trylock(&head->mutex)) {
4205 atomic_inc(&head->node.refs);
4206 spin_unlock(&delayed_refs->lock);
4207
4208 mutex_lock(&head->mutex);
4209 mutex_unlock(&head->mutex);
4210 btrfs_put_delayed_ref(&head->node);
4211 spin_lock(&delayed_refs->lock);
4212 continue;
4213 }
4214 spin_lock(&head->lock);
4215 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4216 list) {
4217 ref->in_tree = 0;
4218 list_del(&ref->list);
4219 atomic_dec(&delayed_refs->num_entries);
4220 btrfs_put_delayed_ref(ref);
4221 }
4222 if (head->must_insert_reserved)
4223 pin_bytes = true;
4224 btrfs_free_delayed_extent_op(head->extent_op);
4225 delayed_refs->num_heads--;
4226 if (head->processing == 0)
4227 delayed_refs->num_heads_ready--;
4228 atomic_dec(&delayed_refs->num_entries);
4229 head->node.in_tree = 0;
4230 rb_erase(&head->href_node, &delayed_refs->href_root);
4231 spin_unlock(&head->lock);
4232 spin_unlock(&delayed_refs->lock);
4233 mutex_unlock(&head->mutex);
4234
4235 if (pin_bytes)
4236 btrfs_pin_extent(root, head->node.bytenr,
4237 head->node.num_bytes, 1);
4238 btrfs_put_delayed_ref(&head->node);
4239 cond_resched();
4240 spin_lock(&delayed_refs->lock);
4241 }
4242
4243 spin_unlock(&delayed_refs->lock);
4244
4245 return ret;
4246 }
4247
4248 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4249 {
4250 struct btrfs_inode *btrfs_inode;
4251 struct list_head splice;
4252
4253 INIT_LIST_HEAD(&splice);
4254
4255 spin_lock(&root->delalloc_lock);
4256 list_splice_init(&root->delalloc_inodes, &splice);
4257
4258 while (!list_empty(&splice)) {
4259 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4260 delalloc_inodes);
4261
4262 list_del_init(&btrfs_inode->delalloc_inodes);
4263 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4264 &btrfs_inode->runtime_flags);
4265 spin_unlock(&root->delalloc_lock);
4266
4267 btrfs_invalidate_inodes(btrfs_inode->root);
4268
4269 spin_lock(&root->delalloc_lock);
4270 }
4271
4272 spin_unlock(&root->delalloc_lock);
4273 }
4274
4275 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4276 {
4277 struct btrfs_root *root;
4278 struct list_head splice;
4279
4280 INIT_LIST_HEAD(&splice);
4281
4282 spin_lock(&fs_info->delalloc_root_lock);
4283 list_splice_init(&fs_info->delalloc_roots, &splice);
4284 while (!list_empty(&splice)) {
4285 root = list_first_entry(&splice, struct btrfs_root,
4286 delalloc_root);
4287 list_del_init(&root->delalloc_root);
4288 root = btrfs_grab_fs_root(root);
4289 BUG_ON(!root);
4290 spin_unlock(&fs_info->delalloc_root_lock);
4291
4292 btrfs_destroy_delalloc_inodes(root);
4293 btrfs_put_fs_root(root);
4294
4295 spin_lock(&fs_info->delalloc_root_lock);
4296 }
4297 spin_unlock(&fs_info->delalloc_root_lock);
4298 }
4299
4300 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4301 struct extent_io_tree *dirty_pages,
4302 int mark)
4303 {
4304 int ret;
4305 struct extent_buffer *eb;
4306 u64 start = 0;
4307 u64 end;
4308
4309 while (1) {
4310 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4311 mark, NULL);
4312 if (ret)
4313 break;
4314
4315 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4316 while (start <= end) {
4317 eb = btrfs_find_tree_block(root->fs_info, start);
4318 start += root->nodesize;
4319 if (!eb)
4320 continue;
4321 wait_on_extent_buffer_writeback(eb);
4322
4323 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4324 &eb->bflags))
4325 clear_extent_buffer_dirty(eb);
4326 free_extent_buffer_stale(eb);
4327 }
4328 }
4329
4330 return ret;
4331 }
4332
4333 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4334 struct extent_io_tree *pinned_extents)
4335 {
4336 struct extent_io_tree *unpin;
4337 u64 start;
4338 u64 end;
4339 int ret;
4340 bool loop = true;
4341
4342 unpin = pinned_extents;
4343 again:
4344 while (1) {
4345 ret = find_first_extent_bit(unpin, 0, &start, &end,
4346 EXTENT_DIRTY, NULL);
4347 if (ret)
4348 break;
4349
4350 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4351 btrfs_error_unpin_extent_range(root, start, end);
4352 cond_resched();
4353 }
4354
4355 if (loop) {
4356 if (unpin == &root->fs_info->freed_extents[0])
4357 unpin = &root->fs_info->freed_extents[1];
4358 else
4359 unpin = &root->fs_info->freed_extents[0];
4360 loop = false;
4361 goto again;
4362 }
4363
4364 return 0;
4365 }
4366
4367 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4368 struct btrfs_root *root)
4369 {
4370 btrfs_destroy_delayed_refs(cur_trans, root);
4371
4372 cur_trans->state = TRANS_STATE_COMMIT_START;
4373 wake_up(&root->fs_info->transaction_blocked_wait);
4374
4375 cur_trans->state = TRANS_STATE_UNBLOCKED;
4376 wake_up(&root->fs_info->transaction_wait);
4377
4378 btrfs_destroy_delayed_inodes(root);
4379 btrfs_assert_delayed_root_empty(root);
4380
4381 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4382 EXTENT_DIRTY);
4383 btrfs_destroy_pinned_extent(root,
4384 root->fs_info->pinned_extents);
4385
4386 cur_trans->state =TRANS_STATE_COMPLETED;
4387 wake_up(&cur_trans->commit_wait);
4388
4389 /*
4390 memset(cur_trans, 0, sizeof(*cur_trans));
4391 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4392 */
4393 }
4394
4395 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4396 {
4397 struct btrfs_transaction *t;
4398
4399 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4400
4401 spin_lock(&root->fs_info->trans_lock);
4402 while (!list_empty(&root->fs_info->trans_list)) {
4403 t = list_first_entry(&root->fs_info->trans_list,
4404 struct btrfs_transaction, list);
4405 if (t->state >= TRANS_STATE_COMMIT_START) {
4406 atomic_inc(&t->use_count);
4407 spin_unlock(&root->fs_info->trans_lock);
4408 btrfs_wait_for_commit(root, t->transid);
4409 btrfs_put_transaction(t);
4410 spin_lock(&root->fs_info->trans_lock);
4411 continue;
4412 }
4413 if (t == root->fs_info->running_transaction) {
4414 t->state = TRANS_STATE_COMMIT_DOING;
4415 spin_unlock(&root->fs_info->trans_lock);
4416 /*
4417 * We wait for 0 num_writers since we don't hold a trans
4418 * handle open currently for this transaction.
4419 */
4420 wait_event(t->writer_wait,
4421 atomic_read(&t->num_writers) == 0);
4422 } else {
4423 spin_unlock(&root->fs_info->trans_lock);
4424 }
4425 btrfs_cleanup_one_transaction(t, root);
4426
4427 spin_lock(&root->fs_info->trans_lock);
4428 if (t == root->fs_info->running_transaction)
4429 root->fs_info->running_transaction = NULL;
4430 list_del_init(&t->list);
4431 spin_unlock(&root->fs_info->trans_lock);
4432
4433 btrfs_put_transaction(t);
4434 trace_btrfs_transaction_commit(root);
4435 spin_lock(&root->fs_info->trans_lock);
4436 }
4437 spin_unlock(&root->fs_info->trans_lock);
4438 btrfs_destroy_all_ordered_extents(root->fs_info);
4439 btrfs_destroy_delayed_inodes(root);
4440 btrfs_assert_delayed_root_empty(root);
4441 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4442 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4443 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4444
4445 return 0;
4446 }
4447
4448 static const struct extent_io_ops btree_extent_io_ops = {
4449 .readpage_end_io_hook = btree_readpage_end_io_hook,
4450 .readpage_io_failed_hook = btree_io_failed_hook,
4451 .submit_bio_hook = btree_submit_bio_hook,
4452 /* note we're sharing with inode.c for the merge bio hook */
4453 .merge_bio_hook = btrfs_merge_bio_hook,
4454 };
This page took 0.175347 seconds and 6 git commands to generate.