Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86 struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121 struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int rw;
128 int mirror_num;
129 unsigned long bio_flags;
130 /*
131 * bio_offset is optional, can be used if the pages in the bio
132 * can't tell us where in the file the bio should go
133 */
134 u64 bio_offset;
135 struct btrfs_work work;
136 int error;
137 };
138
139 /*
140 * Lockdep class keys for extent_buffer->lock's in this root. For a given
141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
142 * the level the eb occupies in the tree.
143 *
144 * Different roots are used for different purposes and may nest inside each
145 * other and they require separate keysets. As lockdep keys should be
146 * static, assign keysets according to the purpose of the root as indicated
147 * by btrfs_root->objectid. This ensures that all special purpose roots
148 * have separate keysets.
149 *
150 * Lock-nesting across peer nodes is always done with the immediate parent
151 * node locked thus preventing deadlock. As lockdep doesn't know this, use
152 * subclass to avoid triggering lockdep warning in such cases.
153 *
154 * The key is set by the readpage_end_io_hook after the buffer has passed
155 * csum validation but before the pages are unlocked. It is also set by
156 * btrfs_init_new_buffer on freshly allocated blocks.
157 *
158 * We also add a check to make sure the highest level of the tree is the
159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
160 * needs update as well.
161 */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 # error
165 # endif
166
167 static struct btrfs_lockdep_keyset {
168 u64 id; /* root objectid */
169 const char *name_stem; /* lock name stem */
170 char names[BTRFS_MAX_LEVEL + 1][20];
171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
185 { .id = 0, .name_stem = "tree" },
186 };
187
188 void __init btrfs_init_lockdep(void)
189 {
190 int i, j;
191
192 /* initialize lockdep class names */
193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 snprintf(ks->names[j], sizeof(ks->names[j]),
198 "btrfs-%s-%02d", ks->name_stem, j);
199 }
200 }
201
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 int level)
204 {
205 struct btrfs_lockdep_keyset *ks;
206
207 BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209 /* find the matching keyset, id 0 is the default entry */
210 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 if (ks->id == objectid)
212 break;
213
214 lockdep_set_class_and_name(&eb->lock,
215 &ks->keys[level], ks->names[level]);
216 }
217
218 #endif
219
220 /*
221 * extents on the btree inode are pretty simple, there's one extent
222 * that covers the entire device
223 */
224 static struct extent_map *btree_get_extent(struct inode *inode,
225 struct page *page, size_t pg_offset, u64 start, u64 len,
226 int create)
227 {
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
232 read_lock(&em_tree->lock);
233 em = lookup_extent_mapping(em_tree, start, len);
234 if (em) {
235 em->bdev =
236 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
237 read_unlock(&em_tree->lock);
238 goto out;
239 }
240 read_unlock(&em_tree->lock);
241
242 em = alloc_extent_map();
243 if (!em) {
244 em = ERR_PTR(-ENOMEM);
245 goto out;
246 }
247 em->start = 0;
248 em->len = (u64)-1;
249 em->block_len = (u64)-1;
250 em->block_start = 0;
251 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
252
253 write_lock(&em_tree->lock);
254 ret = add_extent_mapping(em_tree, em, 0);
255 if (ret == -EEXIST) {
256 free_extent_map(em);
257 em = lookup_extent_mapping(em_tree, start, len);
258 if (!em)
259 em = ERR_PTR(-EIO);
260 } else if (ret) {
261 free_extent_map(em);
262 em = ERR_PTR(ret);
263 }
264 write_unlock(&em_tree->lock);
265
266 out:
267 return em;
268 }
269
270 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
271 {
272 return btrfs_crc32c(seed, data, len);
273 }
274
275 void btrfs_csum_final(u32 crc, char *result)
276 {
277 put_unaligned_le32(~crc, result);
278 }
279
280 /*
281 * compute the csum for a btree block, and either verify it or write it
282 * into the csum field of the block.
283 */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 struct extent_buffer *buf,
286 int verify)
287 {
288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289 char *result = NULL;
290 unsigned long len;
291 unsigned long cur_len;
292 unsigned long offset = BTRFS_CSUM_SIZE;
293 char *kaddr;
294 unsigned long map_start;
295 unsigned long map_len;
296 int err;
297 u32 crc = ~(u32)0;
298 unsigned long inline_result;
299
300 len = buf->len - offset;
301 while (len > 0) {
302 err = map_private_extent_buffer(buf, offset, 32,
303 &kaddr, &map_start, &map_len);
304 if (err)
305 return err;
306 cur_len = min(len, map_len - (offset - map_start));
307 crc = btrfs_csum_data(kaddr + offset - map_start,
308 crc, cur_len);
309 len -= cur_len;
310 offset += cur_len;
311 }
312 if (csum_size > sizeof(inline_result)) {
313 result = kzalloc(csum_size, GFP_NOFS);
314 if (!result)
315 return -ENOMEM;
316 } else {
317 result = (char *)&inline_result;
318 }
319
320 btrfs_csum_final(crc, result);
321
322 if (verify) {
323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324 u32 val;
325 u32 found = 0;
326 memcpy(&found, result, csum_size);
327
328 read_extent_buffer(buf, &val, 0, csum_size);
329 btrfs_warn_rl(fs_info,
330 "%s checksum verify failed on %llu wanted %X found %X "
331 "level %d",
332 fs_info->sb->s_id, buf->start,
333 val, found, btrfs_header_level(buf));
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return -EUCLEAN;
337 }
338 } else {
339 write_extent_buffer(buf, result, 0, csum_size);
340 }
341 if (result != (char *)&inline_result)
342 kfree(result);
343 return 0;
344 }
345
346 /*
347 * we can't consider a given block up to date unless the transid of the
348 * block matches the transid in the parent node's pointer. This is how we
349 * detect blocks that either didn't get written at all or got written
350 * in the wrong place.
351 */
352 static int verify_parent_transid(struct extent_io_tree *io_tree,
353 struct extent_buffer *eb, u64 parent_transid,
354 int atomic)
355 {
356 struct extent_state *cached_state = NULL;
357 int ret;
358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
359
360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361 return 0;
362
363 if (atomic)
364 return -EAGAIN;
365
366 if (need_lock) {
367 btrfs_tree_read_lock(eb);
368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 }
370
371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
372 &cached_state);
373 if (extent_buffer_uptodate(eb) &&
374 btrfs_header_generation(eb) == parent_transid) {
375 ret = 0;
376 goto out;
377 }
378 btrfs_err_rl(eb->fs_info,
379 "parent transid verify failed on %llu wanted %llu found %llu",
380 eb->start,
381 parent_transid, btrfs_header_generation(eb));
382 ret = 1;
383
384 /*
385 * Things reading via commit roots that don't have normal protection,
386 * like send, can have a really old block in cache that may point at a
387 * block that has been freed and re-allocated. So don't clear uptodate
388 * if we find an eb that is under IO (dirty/writeback) because we could
389 * end up reading in the stale data and then writing it back out and
390 * making everybody very sad.
391 */
392 if (!extent_buffer_under_io(eb))
393 clear_extent_buffer_uptodate(eb);
394 out:
395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 &cached_state, GFP_NOFS);
397 if (need_lock)
398 btrfs_tree_read_unlock_blocking(eb);
399 return ret;
400 }
401
402 /*
403 * Return 0 if the superblock checksum type matches the checksum value of that
404 * algorithm. Pass the raw disk superblock data.
405 */
406 static int btrfs_check_super_csum(char *raw_disk_sb)
407 {
408 struct btrfs_super_block *disk_sb =
409 (struct btrfs_super_block *)raw_disk_sb;
410 u16 csum_type = btrfs_super_csum_type(disk_sb);
411 int ret = 0;
412
413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 u32 crc = ~(u32)0;
415 const int csum_size = sizeof(crc);
416 char result[csum_size];
417
418 /*
419 * The super_block structure does not span the whole
420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421 * is filled with zeros and is included in the checksum.
422 */
423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 btrfs_csum_final(crc, result);
426
427 if (memcmp(raw_disk_sb, result, csum_size))
428 ret = 1;
429 }
430
431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
433 csum_type);
434 ret = 1;
435 }
436
437 return ret;
438 }
439
440 /*
441 * helper to read a given tree block, doing retries as required when
442 * the checksums don't match and we have alternate mirrors to try.
443 */
444 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445 struct extent_buffer *eb,
446 u64 start, u64 parent_transid)
447 {
448 struct extent_io_tree *io_tree;
449 int failed = 0;
450 int ret;
451 int num_copies = 0;
452 int mirror_num = 0;
453 int failed_mirror = 0;
454
455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457 while (1) {
458 ret = read_extent_buffer_pages(io_tree, eb, start,
459 WAIT_COMPLETE,
460 btree_get_extent, mirror_num);
461 if (!ret) {
462 if (!verify_parent_transid(io_tree, eb,
463 parent_transid, 0))
464 break;
465 else
466 ret = -EIO;
467 }
468
469 /*
470 * This buffer's crc is fine, but its contents are corrupted, so
471 * there is no reason to read the other copies, they won't be
472 * any less wrong.
473 */
474 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
475 break;
476
477 num_copies = btrfs_num_copies(root->fs_info,
478 eb->start, eb->len);
479 if (num_copies == 1)
480 break;
481
482 if (!failed_mirror) {
483 failed = 1;
484 failed_mirror = eb->read_mirror;
485 }
486
487 mirror_num++;
488 if (mirror_num == failed_mirror)
489 mirror_num++;
490
491 if (mirror_num > num_copies)
492 break;
493 }
494
495 if (failed && !ret && failed_mirror)
496 repair_eb_io_failure(root, eb, failed_mirror);
497
498 return ret;
499 }
500
501 /*
502 * checksum a dirty tree block before IO. This has extra checks to make sure
503 * we only fill in the checksum field in the first page of a multi-page block
504 */
505
506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
507 {
508 u64 start = page_offset(page);
509 u64 found_start;
510 struct extent_buffer *eb;
511
512 eb = (struct extent_buffer *)page->private;
513 if (page != eb->pages[0])
514 return 0;
515
516 found_start = btrfs_header_bytenr(eb);
517 /*
518 * Please do not consolidate these warnings into a single if.
519 * It is useful to know what went wrong.
520 */
521 if (WARN_ON(found_start != start))
522 return -EUCLEAN;
523 if (WARN_ON(!PageUptodate(page)))
524 return -EUCLEAN;
525
526 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528
529 return csum_tree_block(fs_info, eb, 0);
530 }
531
532 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb)
534 {
535 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
536 u8 fsid[BTRFS_UUID_SIZE];
537 int ret = 1;
538
539 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
540 while (fs_devices) {
541 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542 ret = 0;
543 break;
544 }
545 fs_devices = fs_devices->seed;
546 }
547 return ret;
548 }
549
550 #define CORRUPT(reason, eb, root, slot) \
551 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
552 "root=%llu, slot=%d", reason, \
553 btrfs_header_bytenr(eb), root->objectid, slot)
554
555 static noinline int check_leaf(struct btrfs_root *root,
556 struct extent_buffer *leaf)
557 {
558 struct btrfs_key key;
559 struct btrfs_key leaf_key;
560 u32 nritems = btrfs_header_nritems(leaf);
561 int slot;
562
563 if (nritems == 0)
564 return 0;
565
566 /* Check the 0 item */
567 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
568 BTRFS_LEAF_DATA_SIZE(root)) {
569 CORRUPT("invalid item offset size pair", leaf, root, 0);
570 return -EIO;
571 }
572
573 /*
574 * Check to make sure each items keys are in the correct order and their
575 * offsets make sense. We only have to loop through nritems-1 because
576 * we check the current slot against the next slot, which verifies the
577 * next slot's offset+size makes sense and that the current's slot
578 * offset is correct.
579 */
580 for (slot = 0; slot < nritems - 1; slot++) {
581 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
582 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
583
584 /* Make sure the keys are in the right order */
585 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
586 CORRUPT("bad key order", leaf, root, slot);
587 return -EIO;
588 }
589
590 /*
591 * Make sure the offset and ends are right, remember that the
592 * item data starts at the end of the leaf and grows towards the
593 * front.
594 */
595 if (btrfs_item_offset_nr(leaf, slot) !=
596 btrfs_item_end_nr(leaf, slot + 1)) {
597 CORRUPT("slot offset bad", leaf, root, slot);
598 return -EIO;
599 }
600
601 /*
602 * Check to make sure that we don't point outside of the leaf,
603 * just in case all the items are consistent to each other, but
604 * all point outside of the leaf.
605 */
606 if (btrfs_item_end_nr(leaf, slot) >
607 BTRFS_LEAF_DATA_SIZE(root)) {
608 CORRUPT("slot end outside of leaf", leaf, root, slot);
609 return -EIO;
610 }
611 }
612
613 return 0;
614 }
615
616 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
617 u64 phy_offset, struct page *page,
618 u64 start, u64 end, int mirror)
619 {
620 u64 found_start;
621 int found_level;
622 struct extent_buffer *eb;
623 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
624 struct btrfs_fs_info *fs_info = root->fs_info;
625 int ret = 0;
626 int reads_done;
627
628 if (!page->private)
629 goto out;
630
631 eb = (struct extent_buffer *)page->private;
632
633 /* the pending IO might have been the only thing that kept this buffer
634 * in memory. Make sure we have a ref for all this other checks
635 */
636 extent_buffer_get(eb);
637
638 reads_done = atomic_dec_and_test(&eb->io_pages);
639 if (!reads_done)
640 goto err;
641
642 eb->read_mirror = mirror;
643 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
644 ret = -EIO;
645 goto err;
646 }
647
648 found_start = btrfs_header_bytenr(eb);
649 if (found_start != eb->start) {
650 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
651 found_start, eb->start);
652 ret = -EIO;
653 goto err;
654 }
655 if (check_tree_block_fsid(fs_info, eb)) {
656 btrfs_err_rl(fs_info, "bad fsid on block %llu",
657 eb->start);
658 ret = -EIO;
659 goto err;
660 }
661 found_level = btrfs_header_level(eb);
662 if (found_level >= BTRFS_MAX_LEVEL) {
663 btrfs_err(fs_info, "bad tree block level %d",
664 (int)btrfs_header_level(eb));
665 ret = -EIO;
666 goto err;
667 }
668
669 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
670 eb, found_level);
671
672 ret = csum_tree_block(fs_info, eb, 1);
673 if (ret)
674 goto err;
675
676 /*
677 * If this is a leaf block and it is corrupt, set the corrupt bit so
678 * that we don't try and read the other copies of this block, just
679 * return -EIO.
680 */
681 if (found_level == 0 && check_leaf(root, eb)) {
682 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
683 ret = -EIO;
684 }
685
686 if (!ret)
687 set_extent_buffer_uptodate(eb);
688 err:
689 if (reads_done &&
690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691 btree_readahead_hook(fs_info, eb, eb->start, ret);
692
693 if (ret) {
694 /*
695 * our io error hook is going to dec the io pages
696 * again, we have to make sure it has something
697 * to decrement
698 */
699 atomic_inc(&eb->io_pages);
700 clear_extent_buffer_uptodate(eb);
701 }
702 free_extent_buffer(eb);
703 out:
704 return ret;
705 }
706
707 static int btree_io_failed_hook(struct page *page, int failed_mirror)
708 {
709 struct extent_buffer *eb;
710
711 eb = (struct extent_buffer *)page->private;
712 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
713 eb->read_mirror = failed_mirror;
714 atomic_dec(&eb->io_pages);
715 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
716 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
717 return -EIO; /* we fixed nothing */
718 }
719
720 static void end_workqueue_bio(struct bio *bio)
721 {
722 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
723 struct btrfs_fs_info *fs_info;
724 struct btrfs_workqueue *wq;
725 btrfs_work_func_t func;
726
727 fs_info = end_io_wq->info;
728 end_io_wq->error = bio->bi_error;
729
730 if (bio->bi_rw & REQ_WRITE) {
731 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
732 wq = fs_info->endio_meta_write_workers;
733 func = btrfs_endio_meta_write_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
735 wq = fs_info->endio_freespace_worker;
736 func = btrfs_freespace_write_helper;
737 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
738 wq = fs_info->endio_raid56_workers;
739 func = btrfs_endio_raid56_helper;
740 } else {
741 wq = fs_info->endio_write_workers;
742 func = btrfs_endio_write_helper;
743 }
744 } else {
745 if (unlikely(end_io_wq->metadata ==
746 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
747 wq = fs_info->endio_repair_workers;
748 func = btrfs_endio_repair_helper;
749 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
750 wq = fs_info->endio_raid56_workers;
751 func = btrfs_endio_raid56_helper;
752 } else if (end_io_wq->metadata) {
753 wq = fs_info->endio_meta_workers;
754 func = btrfs_endio_meta_helper;
755 } else {
756 wq = fs_info->endio_workers;
757 func = btrfs_endio_helper;
758 }
759 }
760
761 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
762 btrfs_queue_work(wq, &end_io_wq->work);
763 }
764
765 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
766 enum btrfs_wq_endio_type metadata)
767 {
768 struct btrfs_end_io_wq *end_io_wq;
769
770 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
771 if (!end_io_wq)
772 return -ENOMEM;
773
774 end_io_wq->private = bio->bi_private;
775 end_io_wq->end_io = bio->bi_end_io;
776 end_io_wq->info = info;
777 end_io_wq->error = 0;
778 end_io_wq->bio = bio;
779 end_io_wq->metadata = metadata;
780
781 bio->bi_private = end_io_wq;
782 bio->bi_end_io = end_workqueue_bio;
783 return 0;
784 }
785
786 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
787 {
788 unsigned long limit = min_t(unsigned long,
789 info->thread_pool_size,
790 info->fs_devices->open_devices);
791 return 256 * limit;
792 }
793
794 static void run_one_async_start(struct btrfs_work *work)
795 {
796 struct async_submit_bio *async;
797 int ret;
798
799 async = container_of(work, struct async_submit_bio, work);
800 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
801 async->mirror_num, async->bio_flags,
802 async->bio_offset);
803 if (ret)
804 async->error = ret;
805 }
806
807 static void run_one_async_done(struct btrfs_work *work)
808 {
809 struct btrfs_fs_info *fs_info;
810 struct async_submit_bio *async;
811 int limit;
812
813 async = container_of(work, struct async_submit_bio, work);
814 fs_info = BTRFS_I(async->inode)->root->fs_info;
815
816 limit = btrfs_async_submit_limit(fs_info);
817 limit = limit * 2 / 3;
818
819 /*
820 * atomic_dec_return implies a barrier for waitqueue_active
821 */
822 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
823 waitqueue_active(&fs_info->async_submit_wait))
824 wake_up(&fs_info->async_submit_wait);
825
826 /* If an error occurred we just want to clean up the bio and move on */
827 if (async->error) {
828 async->bio->bi_error = async->error;
829 bio_endio(async->bio);
830 return;
831 }
832
833 async->submit_bio_done(async->inode, async->rw, async->bio,
834 async->mirror_num, async->bio_flags,
835 async->bio_offset);
836 }
837
838 static void run_one_async_free(struct btrfs_work *work)
839 {
840 struct async_submit_bio *async;
841
842 async = container_of(work, struct async_submit_bio, work);
843 kfree(async);
844 }
845
846 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
847 int rw, struct bio *bio, int mirror_num,
848 unsigned long bio_flags,
849 u64 bio_offset,
850 extent_submit_bio_hook_t *submit_bio_start,
851 extent_submit_bio_hook_t *submit_bio_done)
852 {
853 struct async_submit_bio *async;
854
855 async = kmalloc(sizeof(*async), GFP_NOFS);
856 if (!async)
857 return -ENOMEM;
858
859 async->inode = inode;
860 async->rw = rw;
861 async->bio = bio;
862 async->mirror_num = mirror_num;
863 async->submit_bio_start = submit_bio_start;
864 async->submit_bio_done = submit_bio_done;
865
866 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
867 run_one_async_done, run_one_async_free);
868
869 async->bio_flags = bio_flags;
870 async->bio_offset = bio_offset;
871
872 async->error = 0;
873
874 atomic_inc(&fs_info->nr_async_submits);
875
876 if (rw & REQ_SYNC)
877 btrfs_set_work_high_priority(&async->work);
878
879 btrfs_queue_work(fs_info->workers, &async->work);
880
881 while (atomic_read(&fs_info->async_submit_draining) &&
882 atomic_read(&fs_info->nr_async_submits)) {
883 wait_event(fs_info->async_submit_wait,
884 (atomic_read(&fs_info->nr_async_submits) == 0));
885 }
886
887 return 0;
888 }
889
890 static int btree_csum_one_bio(struct bio *bio)
891 {
892 struct bio_vec *bvec;
893 struct btrfs_root *root;
894 int i, ret = 0;
895
896 bio_for_each_segment_all(bvec, bio, i) {
897 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
898 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
899 if (ret)
900 break;
901 }
902
903 return ret;
904 }
905
906 static int __btree_submit_bio_start(struct inode *inode, int rw,
907 struct bio *bio, int mirror_num,
908 unsigned long bio_flags,
909 u64 bio_offset)
910 {
911 /*
912 * when we're called for a write, we're already in the async
913 * submission context. Just jump into btrfs_map_bio
914 */
915 return btree_csum_one_bio(bio);
916 }
917
918 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
919 int mirror_num, unsigned long bio_flags,
920 u64 bio_offset)
921 {
922 int ret;
923
924 /*
925 * when we're called for a write, we're already in the async
926 * submission context. Just jump into btrfs_map_bio
927 */
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
929 if (ret) {
930 bio->bi_error = ret;
931 bio_endio(bio);
932 }
933 return ret;
934 }
935
936 static int check_async_write(struct inode *inode, unsigned long bio_flags)
937 {
938 if (bio_flags & EXTENT_BIO_TREE_LOG)
939 return 0;
940 #ifdef CONFIG_X86
941 if (static_cpu_has(X86_FEATURE_XMM4_2))
942 return 0;
943 #endif
944 return 1;
945 }
946
947 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
948 int mirror_num, unsigned long bio_flags,
949 u64 bio_offset)
950 {
951 int async = check_async_write(inode, bio_flags);
952 int ret;
953
954 if (!(rw & REQ_WRITE)) {
955 /*
956 * called for a read, do the setup so that checksum validation
957 * can happen in the async kernel threads
958 */
959 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
960 bio, BTRFS_WQ_ENDIO_METADATA);
961 if (ret)
962 goto out_w_error;
963 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
964 mirror_num, 0);
965 } else if (!async) {
966 ret = btree_csum_one_bio(bio);
967 if (ret)
968 goto out_w_error;
969 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
970 mirror_num, 0);
971 } else {
972 /*
973 * kthread helpers are used to submit writes so that
974 * checksumming can happen in parallel across all CPUs
975 */
976 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
977 inode, rw, bio, mirror_num, 0,
978 bio_offset,
979 __btree_submit_bio_start,
980 __btree_submit_bio_done);
981 }
982
983 if (ret)
984 goto out_w_error;
985 return 0;
986
987 out_w_error:
988 bio->bi_error = ret;
989 bio_endio(bio);
990 return ret;
991 }
992
993 #ifdef CONFIG_MIGRATION
994 static int btree_migratepage(struct address_space *mapping,
995 struct page *newpage, struct page *page,
996 enum migrate_mode mode)
997 {
998 /*
999 * we can't safely write a btree page from here,
1000 * we haven't done the locking hook
1001 */
1002 if (PageDirty(page))
1003 return -EAGAIN;
1004 /*
1005 * Buffers may be managed in a filesystem specific way.
1006 * We must have no buffers or drop them.
1007 */
1008 if (page_has_private(page) &&
1009 !try_to_release_page(page, GFP_KERNEL))
1010 return -EAGAIN;
1011 return migrate_page(mapping, newpage, page, mode);
1012 }
1013 #endif
1014
1015
1016 static int btree_writepages(struct address_space *mapping,
1017 struct writeback_control *wbc)
1018 {
1019 struct btrfs_fs_info *fs_info;
1020 int ret;
1021
1022 if (wbc->sync_mode == WB_SYNC_NONE) {
1023
1024 if (wbc->for_kupdate)
1025 return 0;
1026
1027 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028 /* this is a bit racy, but that's ok */
1029 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030 BTRFS_DIRTY_METADATA_THRESH);
1031 if (ret < 0)
1032 return 0;
1033 }
1034 return btree_write_cache_pages(mapping, wbc);
1035 }
1036
1037 static int btree_readpage(struct file *file, struct page *page)
1038 {
1039 struct extent_io_tree *tree;
1040 tree = &BTRFS_I(page->mapping->host)->io_tree;
1041 return extent_read_full_page(tree, page, btree_get_extent, 0);
1042 }
1043
1044 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045 {
1046 if (PageWriteback(page) || PageDirty(page))
1047 return 0;
1048
1049 return try_release_extent_buffer(page);
1050 }
1051
1052 static void btree_invalidatepage(struct page *page, unsigned int offset,
1053 unsigned int length)
1054 {
1055 struct extent_io_tree *tree;
1056 tree = &BTRFS_I(page->mapping->host)->io_tree;
1057 extent_invalidatepage(tree, page, offset);
1058 btree_releasepage(page, GFP_NOFS);
1059 if (PagePrivate(page)) {
1060 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061 "page private not zero on page %llu",
1062 (unsigned long long)page_offset(page));
1063 ClearPagePrivate(page);
1064 set_page_private(page, 0);
1065 put_page(page);
1066 }
1067 }
1068
1069 static int btree_set_page_dirty(struct page *page)
1070 {
1071 #ifdef DEBUG
1072 struct extent_buffer *eb;
1073
1074 BUG_ON(!PagePrivate(page));
1075 eb = (struct extent_buffer *)page->private;
1076 BUG_ON(!eb);
1077 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078 BUG_ON(!atomic_read(&eb->refs));
1079 btrfs_assert_tree_locked(eb);
1080 #endif
1081 return __set_page_dirty_nobuffers(page);
1082 }
1083
1084 static const struct address_space_operations btree_aops = {
1085 .readpage = btree_readpage,
1086 .writepages = btree_writepages,
1087 .releasepage = btree_releasepage,
1088 .invalidatepage = btree_invalidatepage,
1089 #ifdef CONFIG_MIGRATION
1090 .migratepage = btree_migratepage,
1091 #endif
1092 .set_page_dirty = btree_set_page_dirty,
1093 };
1094
1095 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096 {
1097 struct extent_buffer *buf = NULL;
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099
1100 buf = btrfs_find_create_tree_block(root, bytenr);
1101 if (IS_ERR(buf))
1102 return;
1103 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104 buf, 0, WAIT_NONE, btree_get_extent, 0);
1105 free_extent_buffer(buf);
1106 }
1107
1108 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109 int mirror_num, struct extent_buffer **eb)
1110 {
1111 struct extent_buffer *buf = NULL;
1112 struct inode *btree_inode = root->fs_info->btree_inode;
1113 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114 int ret;
1115
1116 buf = btrfs_find_create_tree_block(root, bytenr);
1117 if (IS_ERR(buf))
1118 return 0;
1119
1120 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123 btree_get_extent, mirror_num);
1124 if (ret) {
1125 free_extent_buffer(buf);
1126 return ret;
1127 }
1128
1129 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130 free_extent_buffer(buf);
1131 return -EIO;
1132 } else if (extent_buffer_uptodate(buf)) {
1133 *eb = buf;
1134 } else {
1135 free_extent_buffer(buf);
1136 }
1137 return 0;
1138 }
1139
1140 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141 u64 bytenr)
1142 {
1143 return find_extent_buffer(fs_info, bytenr);
1144 }
1145
1146 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147 u64 bytenr)
1148 {
1149 if (btrfs_test_is_dummy_root(root))
1150 return alloc_test_extent_buffer(root->fs_info, bytenr,
1151 root->nodesize);
1152 return alloc_extent_buffer(root->fs_info, bytenr);
1153 }
1154
1155
1156 int btrfs_write_tree_block(struct extent_buffer *buf)
1157 {
1158 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1159 buf->start + buf->len - 1);
1160 }
1161
1162 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1163 {
1164 return filemap_fdatawait_range(buf->pages[0]->mapping,
1165 buf->start, buf->start + buf->len - 1);
1166 }
1167
1168 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1169 u64 parent_transid)
1170 {
1171 struct extent_buffer *buf = NULL;
1172 int ret;
1173
1174 buf = btrfs_find_create_tree_block(root, bytenr);
1175 if (IS_ERR(buf))
1176 return buf;
1177
1178 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1179 if (ret) {
1180 free_extent_buffer(buf);
1181 return ERR_PTR(ret);
1182 }
1183 return buf;
1184
1185 }
1186
1187 void clean_tree_block(struct btrfs_trans_handle *trans,
1188 struct btrfs_fs_info *fs_info,
1189 struct extent_buffer *buf)
1190 {
1191 if (btrfs_header_generation(buf) ==
1192 fs_info->running_transaction->transid) {
1193 btrfs_assert_tree_locked(buf);
1194
1195 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1196 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1197 -buf->len,
1198 fs_info->dirty_metadata_batch);
1199 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1200 btrfs_set_lock_blocking(buf);
1201 clear_extent_buffer_dirty(buf);
1202 }
1203 }
1204 }
1205
1206 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1207 {
1208 struct btrfs_subvolume_writers *writers;
1209 int ret;
1210
1211 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1212 if (!writers)
1213 return ERR_PTR(-ENOMEM);
1214
1215 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1216 if (ret < 0) {
1217 kfree(writers);
1218 return ERR_PTR(ret);
1219 }
1220
1221 init_waitqueue_head(&writers->wait);
1222 return writers;
1223 }
1224
1225 static void
1226 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1227 {
1228 percpu_counter_destroy(&writers->counter);
1229 kfree(writers);
1230 }
1231
1232 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1233 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1234 u64 objectid)
1235 {
1236 root->node = NULL;
1237 root->commit_root = NULL;
1238 root->sectorsize = sectorsize;
1239 root->nodesize = nodesize;
1240 root->stripesize = stripesize;
1241 root->state = 0;
1242 root->orphan_cleanup_state = 0;
1243
1244 root->objectid = objectid;
1245 root->last_trans = 0;
1246 root->highest_objectid = 0;
1247 root->nr_delalloc_inodes = 0;
1248 root->nr_ordered_extents = 0;
1249 root->name = NULL;
1250 root->inode_tree = RB_ROOT;
1251 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1252 root->block_rsv = NULL;
1253 root->orphan_block_rsv = NULL;
1254
1255 INIT_LIST_HEAD(&root->dirty_list);
1256 INIT_LIST_HEAD(&root->root_list);
1257 INIT_LIST_HEAD(&root->delalloc_inodes);
1258 INIT_LIST_HEAD(&root->delalloc_root);
1259 INIT_LIST_HEAD(&root->ordered_extents);
1260 INIT_LIST_HEAD(&root->ordered_root);
1261 INIT_LIST_HEAD(&root->logged_list[0]);
1262 INIT_LIST_HEAD(&root->logged_list[1]);
1263 spin_lock_init(&root->orphan_lock);
1264 spin_lock_init(&root->inode_lock);
1265 spin_lock_init(&root->delalloc_lock);
1266 spin_lock_init(&root->ordered_extent_lock);
1267 spin_lock_init(&root->accounting_lock);
1268 spin_lock_init(&root->log_extents_lock[0]);
1269 spin_lock_init(&root->log_extents_lock[1]);
1270 mutex_init(&root->objectid_mutex);
1271 mutex_init(&root->log_mutex);
1272 mutex_init(&root->ordered_extent_mutex);
1273 mutex_init(&root->delalloc_mutex);
1274 init_waitqueue_head(&root->log_writer_wait);
1275 init_waitqueue_head(&root->log_commit_wait[0]);
1276 init_waitqueue_head(&root->log_commit_wait[1]);
1277 INIT_LIST_HEAD(&root->log_ctxs[0]);
1278 INIT_LIST_HEAD(&root->log_ctxs[1]);
1279 atomic_set(&root->log_commit[0], 0);
1280 atomic_set(&root->log_commit[1], 0);
1281 atomic_set(&root->log_writers, 0);
1282 atomic_set(&root->log_batch, 0);
1283 atomic_set(&root->orphan_inodes, 0);
1284 atomic_set(&root->refs, 1);
1285 atomic_set(&root->will_be_snapshoted, 0);
1286 atomic_set(&root->qgroup_meta_rsv, 0);
1287 root->log_transid = 0;
1288 root->log_transid_committed = -1;
1289 root->last_log_commit = 0;
1290 if (fs_info)
1291 extent_io_tree_init(&root->dirty_log_pages,
1292 fs_info->btree_inode->i_mapping);
1293
1294 memset(&root->root_key, 0, sizeof(root->root_key));
1295 memset(&root->root_item, 0, sizeof(root->root_item));
1296 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1297 if (fs_info)
1298 root->defrag_trans_start = fs_info->generation;
1299 else
1300 root->defrag_trans_start = 0;
1301 root->root_key.objectid = objectid;
1302 root->anon_dev = 0;
1303
1304 spin_lock_init(&root->root_item_lock);
1305 }
1306
1307 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1308 gfp_t flags)
1309 {
1310 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1311 if (root)
1312 root->fs_info = fs_info;
1313 return root;
1314 }
1315
1316 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1317 /* Should only be used by the testing infrastructure */
1318 struct btrfs_root *btrfs_alloc_dummy_root(u32 sectorsize, u32 nodesize)
1319 {
1320 struct btrfs_root *root;
1321
1322 root = btrfs_alloc_root(NULL, GFP_KERNEL);
1323 if (!root)
1324 return ERR_PTR(-ENOMEM);
1325 /* We don't use the stripesize in selftest, set it as sectorsize */
1326 __setup_root(nodesize, sectorsize, sectorsize, root, NULL,
1327 BTRFS_ROOT_TREE_OBJECTID);
1328 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1329 root->alloc_bytenr = 0;
1330
1331 return root;
1332 }
1333 #endif
1334
1335 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1336 struct btrfs_fs_info *fs_info,
1337 u64 objectid)
1338 {
1339 struct extent_buffer *leaf;
1340 struct btrfs_root *tree_root = fs_info->tree_root;
1341 struct btrfs_root *root;
1342 struct btrfs_key key;
1343 int ret = 0;
1344 uuid_le uuid;
1345
1346 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1347 if (!root)
1348 return ERR_PTR(-ENOMEM);
1349
1350 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1351 tree_root->stripesize, root, fs_info, objectid);
1352 root->root_key.objectid = objectid;
1353 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354 root->root_key.offset = 0;
1355
1356 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1357 if (IS_ERR(leaf)) {
1358 ret = PTR_ERR(leaf);
1359 leaf = NULL;
1360 goto fail;
1361 }
1362
1363 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1364 btrfs_set_header_bytenr(leaf, leaf->start);
1365 btrfs_set_header_generation(leaf, trans->transid);
1366 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1367 btrfs_set_header_owner(leaf, objectid);
1368 root->node = leaf;
1369
1370 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1371 BTRFS_FSID_SIZE);
1372 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1373 btrfs_header_chunk_tree_uuid(leaf),
1374 BTRFS_UUID_SIZE);
1375 btrfs_mark_buffer_dirty(leaf);
1376
1377 root->commit_root = btrfs_root_node(root);
1378 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1379
1380 root->root_item.flags = 0;
1381 root->root_item.byte_limit = 0;
1382 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1383 btrfs_set_root_generation(&root->root_item, trans->transid);
1384 btrfs_set_root_level(&root->root_item, 0);
1385 btrfs_set_root_refs(&root->root_item, 1);
1386 btrfs_set_root_used(&root->root_item, leaf->len);
1387 btrfs_set_root_last_snapshot(&root->root_item, 0);
1388 btrfs_set_root_dirid(&root->root_item, 0);
1389 uuid_le_gen(&uuid);
1390 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1391 root->root_item.drop_level = 0;
1392
1393 key.objectid = objectid;
1394 key.type = BTRFS_ROOT_ITEM_KEY;
1395 key.offset = 0;
1396 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1397 if (ret)
1398 goto fail;
1399
1400 btrfs_tree_unlock(leaf);
1401
1402 return root;
1403
1404 fail:
1405 if (leaf) {
1406 btrfs_tree_unlock(leaf);
1407 free_extent_buffer(root->commit_root);
1408 free_extent_buffer(leaf);
1409 }
1410 kfree(root);
1411
1412 return ERR_PTR(ret);
1413 }
1414
1415 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1416 struct btrfs_fs_info *fs_info)
1417 {
1418 struct btrfs_root *root;
1419 struct btrfs_root *tree_root = fs_info->tree_root;
1420 struct extent_buffer *leaf;
1421
1422 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1423 if (!root)
1424 return ERR_PTR(-ENOMEM);
1425
1426 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1427 tree_root->stripesize, root, fs_info,
1428 BTRFS_TREE_LOG_OBJECTID);
1429
1430 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1431 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1432 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1433
1434 /*
1435 * DON'T set REF_COWS for log trees
1436 *
1437 * log trees do not get reference counted because they go away
1438 * before a real commit is actually done. They do store pointers
1439 * to file data extents, and those reference counts still get
1440 * updated (along with back refs to the log tree).
1441 */
1442
1443 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1444 NULL, 0, 0, 0);
1445 if (IS_ERR(leaf)) {
1446 kfree(root);
1447 return ERR_CAST(leaf);
1448 }
1449
1450 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1451 btrfs_set_header_bytenr(leaf, leaf->start);
1452 btrfs_set_header_generation(leaf, trans->transid);
1453 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1454 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1455 root->node = leaf;
1456
1457 write_extent_buffer(root->node, root->fs_info->fsid,
1458 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1459 btrfs_mark_buffer_dirty(root->node);
1460 btrfs_tree_unlock(root->node);
1461 return root;
1462 }
1463
1464 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1465 struct btrfs_fs_info *fs_info)
1466 {
1467 struct btrfs_root *log_root;
1468
1469 log_root = alloc_log_tree(trans, fs_info);
1470 if (IS_ERR(log_root))
1471 return PTR_ERR(log_root);
1472 WARN_ON(fs_info->log_root_tree);
1473 fs_info->log_root_tree = log_root;
1474 return 0;
1475 }
1476
1477 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1478 struct btrfs_root *root)
1479 {
1480 struct btrfs_root *log_root;
1481 struct btrfs_inode_item *inode_item;
1482
1483 log_root = alloc_log_tree(trans, root->fs_info);
1484 if (IS_ERR(log_root))
1485 return PTR_ERR(log_root);
1486
1487 log_root->last_trans = trans->transid;
1488 log_root->root_key.offset = root->root_key.objectid;
1489
1490 inode_item = &log_root->root_item.inode;
1491 btrfs_set_stack_inode_generation(inode_item, 1);
1492 btrfs_set_stack_inode_size(inode_item, 3);
1493 btrfs_set_stack_inode_nlink(inode_item, 1);
1494 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1495 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1496
1497 btrfs_set_root_node(&log_root->root_item, log_root->node);
1498
1499 WARN_ON(root->log_root);
1500 root->log_root = log_root;
1501 root->log_transid = 0;
1502 root->log_transid_committed = -1;
1503 root->last_log_commit = 0;
1504 return 0;
1505 }
1506
1507 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1508 struct btrfs_key *key)
1509 {
1510 struct btrfs_root *root;
1511 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1512 struct btrfs_path *path;
1513 u64 generation;
1514 int ret;
1515
1516 path = btrfs_alloc_path();
1517 if (!path)
1518 return ERR_PTR(-ENOMEM);
1519
1520 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1521 if (!root) {
1522 ret = -ENOMEM;
1523 goto alloc_fail;
1524 }
1525
1526 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1527 tree_root->stripesize, root, fs_info, key->objectid);
1528
1529 ret = btrfs_find_root(tree_root, key, path,
1530 &root->root_item, &root->root_key);
1531 if (ret) {
1532 if (ret > 0)
1533 ret = -ENOENT;
1534 goto find_fail;
1535 }
1536
1537 generation = btrfs_root_generation(&root->root_item);
1538 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1539 generation);
1540 if (IS_ERR(root->node)) {
1541 ret = PTR_ERR(root->node);
1542 goto find_fail;
1543 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1544 ret = -EIO;
1545 free_extent_buffer(root->node);
1546 goto find_fail;
1547 }
1548 root->commit_root = btrfs_root_node(root);
1549 out:
1550 btrfs_free_path(path);
1551 return root;
1552
1553 find_fail:
1554 kfree(root);
1555 alloc_fail:
1556 root = ERR_PTR(ret);
1557 goto out;
1558 }
1559
1560 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1561 struct btrfs_key *location)
1562 {
1563 struct btrfs_root *root;
1564
1565 root = btrfs_read_tree_root(tree_root, location);
1566 if (IS_ERR(root))
1567 return root;
1568
1569 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1570 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1571 btrfs_check_and_init_root_item(&root->root_item);
1572 }
1573
1574 return root;
1575 }
1576
1577 int btrfs_init_fs_root(struct btrfs_root *root)
1578 {
1579 int ret;
1580 struct btrfs_subvolume_writers *writers;
1581
1582 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1583 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1584 GFP_NOFS);
1585 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1586 ret = -ENOMEM;
1587 goto fail;
1588 }
1589
1590 writers = btrfs_alloc_subvolume_writers();
1591 if (IS_ERR(writers)) {
1592 ret = PTR_ERR(writers);
1593 goto fail;
1594 }
1595 root->subv_writers = writers;
1596
1597 btrfs_init_free_ino_ctl(root);
1598 spin_lock_init(&root->ino_cache_lock);
1599 init_waitqueue_head(&root->ino_cache_wait);
1600
1601 ret = get_anon_bdev(&root->anon_dev);
1602 if (ret)
1603 goto free_writers;
1604
1605 mutex_lock(&root->objectid_mutex);
1606 ret = btrfs_find_highest_objectid(root,
1607 &root->highest_objectid);
1608 if (ret) {
1609 mutex_unlock(&root->objectid_mutex);
1610 goto free_root_dev;
1611 }
1612
1613 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1614
1615 mutex_unlock(&root->objectid_mutex);
1616
1617 return 0;
1618
1619 free_root_dev:
1620 free_anon_bdev(root->anon_dev);
1621 free_writers:
1622 btrfs_free_subvolume_writers(root->subv_writers);
1623 fail:
1624 kfree(root->free_ino_ctl);
1625 kfree(root->free_ino_pinned);
1626 return ret;
1627 }
1628
1629 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1630 u64 root_id)
1631 {
1632 struct btrfs_root *root;
1633
1634 spin_lock(&fs_info->fs_roots_radix_lock);
1635 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1636 (unsigned long)root_id);
1637 spin_unlock(&fs_info->fs_roots_radix_lock);
1638 return root;
1639 }
1640
1641 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1642 struct btrfs_root *root)
1643 {
1644 int ret;
1645
1646 ret = radix_tree_preload(GFP_NOFS);
1647 if (ret)
1648 return ret;
1649
1650 spin_lock(&fs_info->fs_roots_radix_lock);
1651 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1652 (unsigned long)root->root_key.objectid,
1653 root);
1654 if (ret == 0)
1655 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1656 spin_unlock(&fs_info->fs_roots_radix_lock);
1657 radix_tree_preload_end();
1658
1659 return ret;
1660 }
1661
1662 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1663 struct btrfs_key *location,
1664 bool check_ref)
1665 {
1666 struct btrfs_root *root;
1667 struct btrfs_path *path;
1668 struct btrfs_key key;
1669 int ret;
1670
1671 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1672 return fs_info->tree_root;
1673 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1674 return fs_info->extent_root;
1675 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1676 return fs_info->chunk_root;
1677 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1678 return fs_info->dev_root;
1679 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1680 return fs_info->csum_root;
1681 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1682 return fs_info->quota_root ? fs_info->quota_root :
1683 ERR_PTR(-ENOENT);
1684 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1685 return fs_info->uuid_root ? fs_info->uuid_root :
1686 ERR_PTR(-ENOENT);
1687 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1688 return fs_info->free_space_root ? fs_info->free_space_root :
1689 ERR_PTR(-ENOENT);
1690 again:
1691 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1692 if (root) {
1693 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1694 return ERR_PTR(-ENOENT);
1695 return root;
1696 }
1697
1698 root = btrfs_read_fs_root(fs_info->tree_root, location);
1699 if (IS_ERR(root))
1700 return root;
1701
1702 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1703 ret = -ENOENT;
1704 goto fail;
1705 }
1706
1707 ret = btrfs_init_fs_root(root);
1708 if (ret)
1709 goto fail;
1710
1711 path = btrfs_alloc_path();
1712 if (!path) {
1713 ret = -ENOMEM;
1714 goto fail;
1715 }
1716 key.objectid = BTRFS_ORPHAN_OBJECTID;
1717 key.type = BTRFS_ORPHAN_ITEM_KEY;
1718 key.offset = location->objectid;
1719
1720 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1721 btrfs_free_path(path);
1722 if (ret < 0)
1723 goto fail;
1724 if (ret == 0)
1725 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1726
1727 ret = btrfs_insert_fs_root(fs_info, root);
1728 if (ret) {
1729 if (ret == -EEXIST) {
1730 free_fs_root(root);
1731 goto again;
1732 }
1733 goto fail;
1734 }
1735 return root;
1736 fail:
1737 free_fs_root(root);
1738 return ERR_PTR(ret);
1739 }
1740
1741 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1742 {
1743 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1744 int ret = 0;
1745 struct btrfs_device *device;
1746 struct backing_dev_info *bdi;
1747
1748 rcu_read_lock();
1749 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1750 if (!device->bdev)
1751 continue;
1752 bdi = blk_get_backing_dev_info(device->bdev);
1753 if (bdi_congested(bdi, bdi_bits)) {
1754 ret = 1;
1755 break;
1756 }
1757 }
1758 rcu_read_unlock();
1759 return ret;
1760 }
1761
1762 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1763 {
1764 int err;
1765
1766 err = bdi_setup_and_register(bdi, "btrfs");
1767 if (err)
1768 return err;
1769
1770 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1771 bdi->congested_fn = btrfs_congested_fn;
1772 bdi->congested_data = info;
1773 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1774 return 0;
1775 }
1776
1777 /*
1778 * called by the kthread helper functions to finally call the bio end_io
1779 * functions. This is where read checksum verification actually happens
1780 */
1781 static void end_workqueue_fn(struct btrfs_work *work)
1782 {
1783 struct bio *bio;
1784 struct btrfs_end_io_wq *end_io_wq;
1785
1786 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1787 bio = end_io_wq->bio;
1788
1789 bio->bi_error = end_io_wq->error;
1790 bio->bi_private = end_io_wq->private;
1791 bio->bi_end_io = end_io_wq->end_io;
1792 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1793 bio_endio(bio);
1794 }
1795
1796 static int cleaner_kthread(void *arg)
1797 {
1798 struct btrfs_root *root = arg;
1799 int again;
1800 struct btrfs_trans_handle *trans;
1801
1802 do {
1803 again = 0;
1804
1805 /* Make the cleaner go to sleep early. */
1806 if (btrfs_need_cleaner_sleep(root))
1807 goto sleep;
1808
1809 /*
1810 * Do not do anything if we might cause open_ctree() to block
1811 * before we have finished mounting the filesystem.
1812 */
1813 if (!root->fs_info->open)
1814 goto sleep;
1815
1816 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1817 goto sleep;
1818
1819 /*
1820 * Avoid the problem that we change the status of the fs
1821 * during the above check and trylock.
1822 */
1823 if (btrfs_need_cleaner_sleep(root)) {
1824 mutex_unlock(&root->fs_info->cleaner_mutex);
1825 goto sleep;
1826 }
1827
1828 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1829 btrfs_run_delayed_iputs(root);
1830 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1831
1832 again = btrfs_clean_one_deleted_snapshot(root);
1833 mutex_unlock(&root->fs_info->cleaner_mutex);
1834
1835 /*
1836 * The defragger has dealt with the R/O remount and umount,
1837 * needn't do anything special here.
1838 */
1839 btrfs_run_defrag_inodes(root->fs_info);
1840
1841 /*
1842 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1843 * with relocation (btrfs_relocate_chunk) and relocation
1844 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1845 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1846 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1847 * unused block groups.
1848 */
1849 btrfs_delete_unused_bgs(root->fs_info);
1850 sleep:
1851 if (!again) {
1852 set_current_state(TASK_INTERRUPTIBLE);
1853 if (!kthread_should_stop())
1854 schedule();
1855 __set_current_state(TASK_RUNNING);
1856 }
1857 } while (!kthread_should_stop());
1858
1859 /*
1860 * Transaction kthread is stopped before us and wakes us up.
1861 * However we might have started a new transaction and COWed some
1862 * tree blocks when deleting unused block groups for example. So
1863 * make sure we commit the transaction we started to have a clean
1864 * shutdown when evicting the btree inode - if it has dirty pages
1865 * when we do the final iput() on it, eviction will trigger a
1866 * writeback for it which will fail with null pointer dereferences
1867 * since work queues and other resources were already released and
1868 * destroyed by the time the iput/eviction/writeback is made.
1869 */
1870 trans = btrfs_attach_transaction(root);
1871 if (IS_ERR(trans)) {
1872 if (PTR_ERR(trans) != -ENOENT)
1873 btrfs_err(root->fs_info,
1874 "cleaner transaction attach returned %ld",
1875 PTR_ERR(trans));
1876 } else {
1877 int ret;
1878
1879 ret = btrfs_commit_transaction(trans, root);
1880 if (ret)
1881 btrfs_err(root->fs_info,
1882 "cleaner open transaction commit returned %d",
1883 ret);
1884 }
1885
1886 return 0;
1887 }
1888
1889 static int transaction_kthread(void *arg)
1890 {
1891 struct btrfs_root *root = arg;
1892 struct btrfs_trans_handle *trans;
1893 struct btrfs_transaction *cur;
1894 u64 transid;
1895 unsigned long now;
1896 unsigned long delay;
1897 bool cannot_commit;
1898
1899 do {
1900 cannot_commit = false;
1901 delay = HZ * root->fs_info->commit_interval;
1902 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1903
1904 spin_lock(&root->fs_info->trans_lock);
1905 cur = root->fs_info->running_transaction;
1906 if (!cur) {
1907 spin_unlock(&root->fs_info->trans_lock);
1908 goto sleep;
1909 }
1910
1911 now = get_seconds();
1912 if (cur->state < TRANS_STATE_BLOCKED &&
1913 (now < cur->start_time ||
1914 now - cur->start_time < root->fs_info->commit_interval)) {
1915 spin_unlock(&root->fs_info->trans_lock);
1916 delay = HZ * 5;
1917 goto sleep;
1918 }
1919 transid = cur->transid;
1920 spin_unlock(&root->fs_info->trans_lock);
1921
1922 /* If the file system is aborted, this will always fail. */
1923 trans = btrfs_attach_transaction(root);
1924 if (IS_ERR(trans)) {
1925 if (PTR_ERR(trans) != -ENOENT)
1926 cannot_commit = true;
1927 goto sleep;
1928 }
1929 if (transid == trans->transid) {
1930 btrfs_commit_transaction(trans, root);
1931 } else {
1932 btrfs_end_transaction(trans, root);
1933 }
1934 sleep:
1935 wake_up_process(root->fs_info->cleaner_kthread);
1936 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1937
1938 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1939 &root->fs_info->fs_state)))
1940 btrfs_cleanup_transaction(root);
1941 set_current_state(TASK_INTERRUPTIBLE);
1942 if (!kthread_should_stop() &&
1943 (!btrfs_transaction_blocked(root->fs_info) ||
1944 cannot_commit))
1945 schedule_timeout(delay);
1946 __set_current_state(TASK_RUNNING);
1947 } while (!kthread_should_stop());
1948 return 0;
1949 }
1950
1951 /*
1952 * this will find the highest generation in the array of
1953 * root backups. The index of the highest array is returned,
1954 * or -1 if we can't find anything.
1955 *
1956 * We check to make sure the array is valid by comparing the
1957 * generation of the latest root in the array with the generation
1958 * in the super block. If they don't match we pitch it.
1959 */
1960 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1961 {
1962 u64 cur;
1963 int newest_index = -1;
1964 struct btrfs_root_backup *root_backup;
1965 int i;
1966
1967 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1968 root_backup = info->super_copy->super_roots + i;
1969 cur = btrfs_backup_tree_root_gen(root_backup);
1970 if (cur == newest_gen)
1971 newest_index = i;
1972 }
1973
1974 /* check to see if we actually wrapped around */
1975 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1976 root_backup = info->super_copy->super_roots;
1977 cur = btrfs_backup_tree_root_gen(root_backup);
1978 if (cur == newest_gen)
1979 newest_index = 0;
1980 }
1981 return newest_index;
1982 }
1983
1984
1985 /*
1986 * find the oldest backup so we know where to store new entries
1987 * in the backup array. This will set the backup_root_index
1988 * field in the fs_info struct
1989 */
1990 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1991 u64 newest_gen)
1992 {
1993 int newest_index = -1;
1994
1995 newest_index = find_newest_super_backup(info, newest_gen);
1996 /* if there was garbage in there, just move along */
1997 if (newest_index == -1) {
1998 info->backup_root_index = 0;
1999 } else {
2000 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2001 }
2002 }
2003
2004 /*
2005 * copy all the root pointers into the super backup array.
2006 * this will bump the backup pointer by one when it is
2007 * done
2008 */
2009 static void backup_super_roots(struct btrfs_fs_info *info)
2010 {
2011 int next_backup;
2012 struct btrfs_root_backup *root_backup;
2013 int last_backup;
2014
2015 next_backup = info->backup_root_index;
2016 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2017 BTRFS_NUM_BACKUP_ROOTS;
2018
2019 /*
2020 * just overwrite the last backup if we're at the same generation
2021 * this happens only at umount
2022 */
2023 root_backup = info->super_for_commit->super_roots + last_backup;
2024 if (btrfs_backup_tree_root_gen(root_backup) ==
2025 btrfs_header_generation(info->tree_root->node))
2026 next_backup = last_backup;
2027
2028 root_backup = info->super_for_commit->super_roots + next_backup;
2029
2030 /*
2031 * make sure all of our padding and empty slots get zero filled
2032 * regardless of which ones we use today
2033 */
2034 memset(root_backup, 0, sizeof(*root_backup));
2035
2036 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2037
2038 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2039 btrfs_set_backup_tree_root_gen(root_backup,
2040 btrfs_header_generation(info->tree_root->node));
2041
2042 btrfs_set_backup_tree_root_level(root_backup,
2043 btrfs_header_level(info->tree_root->node));
2044
2045 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2046 btrfs_set_backup_chunk_root_gen(root_backup,
2047 btrfs_header_generation(info->chunk_root->node));
2048 btrfs_set_backup_chunk_root_level(root_backup,
2049 btrfs_header_level(info->chunk_root->node));
2050
2051 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2052 btrfs_set_backup_extent_root_gen(root_backup,
2053 btrfs_header_generation(info->extent_root->node));
2054 btrfs_set_backup_extent_root_level(root_backup,
2055 btrfs_header_level(info->extent_root->node));
2056
2057 /*
2058 * we might commit during log recovery, which happens before we set
2059 * the fs_root. Make sure it is valid before we fill it in.
2060 */
2061 if (info->fs_root && info->fs_root->node) {
2062 btrfs_set_backup_fs_root(root_backup,
2063 info->fs_root->node->start);
2064 btrfs_set_backup_fs_root_gen(root_backup,
2065 btrfs_header_generation(info->fs_root->node));
2066 btrfs_set_backup_fs_root_level(root_backup,
2067 btrfs_header_level(info->fs_root->node));
2068 }
2069
2070 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2071 btrfs_set_backup_dev_root_gen(root_backup,
2072 btrfs_header_generation(info->dev_root->node));
2073 btrfs_set_backup_dev_root_level(root_backup,
2074 btrfs_header_level(info->dev_root->node));
2075
2076 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2077 btrfs_set_backup_csum_root_gen(root_backup,
2078 btrfs_header_generation(info->csum_root->node));
2079 btrfs_set_backup_csum_root_level(root_backup,
2080 btrfs_header_level(info->csum_root->node));
2081
2082 btrfs_set_backup_total_bytes(root_backup,
2083 btrfs_super_total_bytes(info->super_copy));
2084 btrfs_set_backup_bytes_used(root_backup,
2085 btrfs_super_bytes_used(info->super_copy));
2086 btrfs_set_backup_num_devices(root_backup,
2087 btrfs_super_num_devices(info->super_copy));
2088
2089 /*
2090 * if we don't copy this out to the super_copy, it won't get remembered
2091 * for the next commit
2092 */
2093 memcpy(&info->super_copy->super_roots,
2094 &info->super_for_commit->super_roots,
2095 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2096 }
2097
2098 /*
2099 * this copies info out of the root backup array and back into
2100 * the in-memory super block. It is meant to help iterate through
2101 * the array, so you send it the number of backups you've already
2102 * tried and the last backup index you used.
2103 *
2104 * this returns -1 when it has tried all the backups
2105 */
2106 static noinline int next_root_backup(struct btrfs_fs_info *info,
2107 struct btrfs_super_block *super,
2108 int *num_backups_tried, int *backup_index)
2109 {
2110 struct btrfs_root_backup *root_backup;
2111 int newest = *backup_index;
2112
2113 if (*num_backups_tried == 0) {
2114 u64 gen = btrfs_super_generation(super);
2115
2116 newest = find_newest_super_backup(info, gen);
2117 if (newest == -1)
2118 return -1;
2119
2120 *backup_index = newest;
2121 *num_backups_tried = 1;
2122 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2123 /* we've tried all the backups, all done */
2124 return -1;
2125 } else {
2126 /* jump to the next oldest backup */
2127 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2128 BTRFS_NUM_BACKUP_ROOTS;
2129 *backup_index = newest;
2130 *num_backups_tried += 1;
2131 }
2132 root_backup = super->super_roots + newest;
2133
2134 btrfs_set_super_generation(super,
2135 btrfs_backup_tree_root_gen(root_backup));
2136 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2137 btrfs_set_super_root_level(super,
2138 btrfs_backup_tree_root_level(root_backup));
2139 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2140
2141 /*
2142 * fixme: the total bytes and num_devices need to match or we should
2143 * need a fsck
2144 */
2145 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2146 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2147 return 0;
2148 }
2149
2150 /* helper to cleanup workers */
2151 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2152 {
2153 btrfs_destroy_workqueue(fs_info->fixup_workers);
2154 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2155 btrfs_destroy_workqueue(fs_info->workers);
2156 btrfs_destroy_workqueue(fs_info->endio_workers);
2157 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2158 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2159 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2160 btrfs_destroy_workqueue(fs_info->rmw_workers);
2161 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2162 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2163 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2164 btrfs_destroy_workqueue(fs_info->submit_workers);
2165 btrfs_destroy_workqueue(fs_info->delayed_workers);
2166 btrfs_destroy_workqueue(fs_info->caching_workers);
2167 btrfs_destroy_workqueue(fs_info->readahead_workers);
2168 btrfs_destroy_workqueue(fs_info->flush_workers);
2169 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2170 btrfs_destroy_workqueue(fs_info->extent_workers);
2171 }
2172
2173 static void free_root_extent_buffers(struct btrfs_root *root)
2174 {
2175 if (root) {
2176 free_extent_buffer(root->node);
2177 free_extent_buffer(root->commit_root);
2178 root->node = NULL;
2179 root->commit_root = NULL;
2180 }
2181 }
2182
2183 /* helper to cleanup tree roots */
2184 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2185 {
2186 free_root_extent_buffers(info->tree_root);
2187
2188 free_root_extent_buffers(info->dev_root);
2189 free_root_extent_buffers(info->extent_root);
2190 free_root_extent_buffers(info->csum_root);
2191 free_root_extent_buffers(info->quota_root);
2192 free_root_extent_buffers(info->uuid_root);
2193 if (chunk_root)
2194 free_root_extent_buffers(info->chunk_root);
2195 free_root_extent_buffers(info->free_space_root);
2196 }
2197
2198 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2199 {
2200 int ret;
2201 struct btrfs_root *gang[8];
2202 int i;
2203
2204 while (!list_empty(&fs_info->dead_roots)) {
2205 gang[0] = list_entry(fs_info->dead_roots.next,
2206 struct btrfs_root, root_list);
2207 list_del(&gang[0]->root_list);
2208
2209 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2210 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2211 } else {
2212 free_extent_buffer(gang[0]->node);
2213 free_extent_buffer(gang[0]->commit_root);
2214 btrfs_put_fs_root(gang[0]);
2215 }
2216 }
2217
2218 while (1) {
2219 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2220 (void **)gang, 0,
2221 ARRAY_SIZE(gang));
2222 if (!ret)
2223 break;
2224 for (i = 0; i < ret; i++)
2225 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2226 }
2227
2228 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2229 btrfs_free_log_root_tree(NULL, fs_info);
2230 btrfs_destroy_pinned_extent(fs_info->tree_root,
2231 fs_info->pinned_extents);
2232 }
2233 }
2234
2235 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2236 {
2237 mutex_init(&fs_info->scrub_lock);
2238 atomic_set(&fs_info->scrubs_running, 0);
2239 atomic_set(&fs_info->scrub_pause_req, 0);
2240 atomic_set(&fs_info->scrubs_paused, 0);
2241 atomic_set(&fs_info->scrub_cancel_req, 0);
2242 init_waitqueue_head(&fs_info->scrub_pause_wait);
2243 fs_info->scrub_workers_refcnt = 0;
2244 }
2245
2246 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2247 {
2248 spin_lock_init(&fs_info->balance_lock);
2249 mutex_init(&fs_info->balance_mutex);
2250 atomic_set(&fs_info->balance_running, 0);
2251 atomic_set(&fs_info->balance_pause_req, 0);
2252 atomic_set(&fs_info->balance_cancel_req, 0);
2253 fs_info->balance_ctl = NULL;
2254 init_waitqueue_head(&fs_info->balance_wait_q);
2255 }
2256
2257 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2258 struct btrfs_root *tree_root)
2259 {
2260 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2261 set_nlink(fs_info->btree_inode, 1);
2262 /*
2263 * we set the i_size on the btree inode to the max possible int.
2264 * the real end of the address space is determined by all of
2265 * the devices in the system
2266 */
2267 fs_info->btree_inode->i_size = OFFSET_MAX;
2268 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2269
2270 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2271 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2272 fs_info->btree_inode->i_mapping);
2273 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2274 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2275
2276 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2277
2278 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2279 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2280 sizeof(struct btrfs_key));
2281 set_bit(BTRFS_INODE_DUMMY,
2282 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2283 btrfs_insert_inode_hash(fs_info->btree_inode);
2284 }
2285
2286 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2287 {
2288 fs_info->dev_replace.lock_owner = 0;
2289 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2290 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2291 rwlock_init(&fs_info->dev_replace.lock);
2292 atomic_set(&fs_info->dev_replace.read_locks, 0);
2293 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2294 init_waitqueue_head(&fs_info->replace_wait);
2295 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2296 }
2297
2298 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2299 {
2300 spin_lock_init(&fs_info->qgroup_lock);
2301 mutex_init(&fs_info->qgroup_ioctl_lock);
2302 fs_info->qgroup_tree = RB_ROOT;
2303 fs_info->qgroup_op_tree = RB_ROOT;
2304 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2305 fs_info->qgroup_seq = 1;
2306 fs_info->quota_enabled = 0;
2307 fs_info->pending_quota_state = 0;
2308 fs_info->qgroup_ulist = NULL;
2309 mutex_init(&fs_info->qgroup_rescan_lock);
2310 }
2311
2312 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2313 struct btrfs_fs_devices *fs_devices)
2314 {
2315 int max_active = fs_info->thread_pool_size;
2316 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2317
2318 fs_info->workers =
2319 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2320 max_active, 16);
2321
2322 fs_info->delalloc_workers =
2323 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2324
2325 fs_info->flush_workers =
2326 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2327
2328 fs_info->caching_workers =
2329 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2330
2331 /*
2332 * a higher idle thresh on the submit workers makes it much more
2333 * likely that bios will be send down in a sane order to the
2334 * devices
2335 */
2336 fs_info->submit_workers =
2337 btrfs_alloc_workqueue("submit", flags,
2338 min_t(u64, fs_devices->num_devices,
2339 max_active), 64);
2340
2341 fs_info->fixup_workers =
2342 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2343
2344 /*
2345 * endios are largely parallel and should have a very
2346 * low idle thresh
2347 */
2348 fs_info->endio_workers =
2349 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2350 fs_info->endio_meta_workers =
2351 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2352 fs_info->endio_meta_write_workers =
2353 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2354 fs_info->endio_raid56_workers =
2355 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2356 fs_info->endio_repair_workers =
2357 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2358 fs_info->rmw_workers =
2359 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2360 fs_info->endio_write_workers =
2361 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2362 fs_info->endio_freespace_worker =
2363 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2364 fs_info->delayed_workers =
2365 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2366 fs_info->readahead_workers =
2367 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2368 fs_info->qgroup_rescan_workers =
2369 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2370 fs_info->extent_workers =
2371 btrfs_alloc_workqueue("extent-refs", flags,
2372 min_t(u64, fs_devices->num_devices,
2373 max_active), 8);
2374
2375 if (!(fs_info->workers && fs_info->delalloc_workers &&
2376 fs_info->submit_workers && fs_info->flush_workers &&
2377 fs_info->endio_workers && fs_info->endio_meta_workers &&
2378 fs_info->endio_meta_write_workers &&
2379 fs_info->endio_repair_workers &&
2380 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2381 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2382 fs_info->caching_workers && fs_info->readahead_workers &&
2383 fs_info->fixup_workers && fs_info->delayed_workers &&
2384 fs_info->extent_workers &&
2385 fs_info->qgroup_rescan_workers)) {
2386 return -ENOMEM;
2387 }
2388
2389 return 0;
2390 }
2391
2392 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2393 struct btrfs_fs_devices *fs_devices)
2394 {
2395 int ret;
2396 struct btrfs_root *tree_root = fs_info->tree_root;
2397 struct btrfs_root *log_tree_root;
2398 struct btrfs_super_block *disk_super = fs_info->super_copy;
2399 u64 bytenr = btrfs_super_log_root(disk_super);
2400
2401 if (fs_devices->rw_devices == 0) {
2402 btrfs_warn(fs_info, "log replay required on RO media");
2403 return -EIO;
2404 }
2405
2406 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2407 if (!log_tree_root)
2408 return -ENOMEM;
2409
2410 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2411 tree_root->stripesize, log_tree_root, fs_info,
2412 BTRFS_TREE_LOG_OBJECTID);
2413
2414 log_tree_root->node = read_tree_block(tree_root, bytenr,
2415 fs_info->generation + 1);
2416 if (IS_ERR(log_tree_root->node)) {
2417 btrfs_warn(fs_info, "failed to read log tree");
2418 ret = PTR_ERR(log_tree_root->node);
2419 kfree(log_tree_root);
2420 return ret;
2421 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2422 btrfs_err(fs_info, "failed to read log tree");
2423 free_extent_buffer(log_tree_root->node);
2424 kfree(log_tree_root);
2425 return -EIO;
2426 }
2427 /* returns with log_tree_root freed on success */
2428 ret = btrfs_recover_log_trees(log_tree_root);
2429 if (ret) {
2430 btrfs_handle_fs_error(tree_root->fs_info, ret,
2431 "Failed to recover log tree");
2432 free_extent_buffer(log_tree_root->node);
2433 kfree(log_tree_root);
2434 return ret;
2435 }
2436
2437 if (fs_info->sb->s_flags & MS_RDONLY) {
2438 ret = btrfs_commit_super(tree_root);
2439 if (ret)
2440 return ret;
2441 }
2442
2443 return 0;
2444 }
2445
2446 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2447 struct btrfs_root *tree_root)
2448 {
2449 struct btrfs_root *root;
2450 struct btrfs_key location;
2451 int ret;
2452
2453 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2454 location.type = BTRFS_ROOT_ITEM_KEY;
2455 location.offset = 0;
2456
2457 root = btrfs_read_tree_root(tree_root, &location);
2458 if (IS_ERR(root))
2459 return PTR_ERR(root);
2460 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2461 fs_info->extent_root = root;
2462
2463 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2464 root = btrfs_read_tree_root(tree_root, &location);
2465 if (IS_ERR(root))
2466 return PTR_ERR(root);
2467 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2468 fs_info->dev_root = root;
2469 btrfs_init_devices_late(fs_info);
2470
2471 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2472 root = btrfs_read_tree_root(tree_root, &location);
2473 if (IS_ERR(root))
2474 return PTR_ERR(root);
2475 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2476 fs_info->csum_root = root;
2477
2478 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2479 root = btrfs_read_tree_root(tree_root, &location);
2480 if (!IS_ERR(root)) {
2481 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2482 fs_info->quota_enabled = 1;
2483 fs_info->pending_quota_state = 1;
2484 fs_info->quota_root = root;
2485 }
2486
2487 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2488 root = btrfs_read_tree_root(tree_root, &location);
2489 if (IS_ERR(root)) {
2490 ret = PTR_ERR(root);
2491 if (ret != -ENOENT)
2492 return ret;
2493 } else {
2494 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2495 fs_info->uuid_root = root;
2496 }
2497
2498 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2499 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2500 root = btrfs_read_tree_root(tree_root, &location);
2501 if (IS_ERR(root))
2502 return PTR_ERR(root);
2503 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2504 fs_info->free_space_root = root;
2505 }
2506
2507 return 0;
2508 }
2509
2510 int open_ctree(struct super_block *sb,
2511 struct btrfs_fs_devices *fs_devices,
2512 char *options)
2513 {
2514 u32 sectorsize;
2515 u32 nodesize;
2516 u32 stripesize;
2517 u64 generation;
2518 u64 features;
2519 struct btrfs_key location;
2520 struct buffer_head *bh;
2521 struct btrfs_super_block *disk_super;
2522 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2523 struct btrfs_root *tree_root;
2524 struct btrfs_root *chunk_root;
2525 int ret;
2526 int err = -EINVAL;
2527 int num_backups_tried = 0;
2528 int backup_index = 0;
2529 int max_active;
2530
2531 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2532 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2533 if (!tree_root || !chunk_root) {
2534 err = -ENOMEM;
2535 goto fail;
2536 }
2537
2538 ret = init_srcu_struct(&fs_info->subvol_srcu);
2539 if (ret) {
2540 err = ret;
2541 goto fail;
2542 }
2543
2544 ret = setup_bdi(fs_info, &fs_info->bdi);
2545 if (ret) {
2546 err = ret;
2547 goto fail_srcu;
2548 }
2549
2550 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2551 if (ret) {
2552 err = ret;
2553 goto fail_bdi;
2554 }
2555 fs_info->dirty_metadata_batch = PAGE_SIZE *
2556 (1 + ilog2(nr_cpu_ids));
2557
2558 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2559 if (ret) {
2560 err = ret;
2561 goto fail_dirty_metadata_bytes;
2562 }
2563
2564 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2565 if (ret) {
2566 err = ret;
2567 goto fail_delalloc_bytes;
2568 }
2569
2570 fs_info->btree_inode = new_inode(sb);
2571 if (!fs_info->btree_inode) {
2572 err = -ENOMEM;
2573 goto fail_bio_counter;
2574 }
2575
2576 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2577
2578 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2579 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2580 INIT_LIST_HEAD(&fs_info->trans_list);
2581 INIT_LIST_HEAD(&fs_info->dead_roots);
2582 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2583 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2584 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2585 spin_lock_init(&fs_info->delalloc_root_lock);
2586 spin_lock_init(&fs_info->trans_lock);
2587 spin_lock_init(&fs_info->fs_roots_radix_lock);
2588 spin_lock_init(&fs_info->delayed_iput_lock);
2589 spin_lock_init(&fs_info->defrag_inodes_lock);
2590 spin_lock_init(&fs_info->free_chunk_lock);
2591 spin_lock_init(&fs_info->tree_mod_seq_lock);
2592 spin_lock_init(&fs_info->super_lock);
2593 spin_lock_init(&fs_info->qgroup_op_lock);
2594 spin_lock_init(&fs_info->buffer_lock);
2595 spin_lock_init(&fs_info->unused_bgs_lock);
2596 rwlock_init(&fs_info->tree_mod_log_lock);
2597 mutex_init(&fs_info->unused_bg_unpin_mutex);
2598 mutex_init(&fs_info->delete_unused_bgs_mutex);
2599 mutex_init(&fs_info->reloc_mutex);
2600 mutex_init(&fs_info->delalloc_root_mutex);
2601 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2602 seqlock_init(&fs_info->profiles_lock);
2603
2604 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2605 INIT_LIST_HEAD(&fs_info->space_info);
2606 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2607 INIT_LIST_HEAD(&fs_info->unused_bgs);
2608 btrfs_mapping_init(&fs_info->mapping_tree);
2609 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2610 BTRFS_BLOCK_RSV_GLOBAL);
2611 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2612 BTRFS_BLOCK_RSV_DELALLOC);
2613 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2614 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2615 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2616 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2617 BTRFS_BLOCK_RSV_DELOPS);
2618 atomic_set(&fs_info->nr_async_submits, 0);
2619 atomic_set(&fs_info->async_delalloc_pages, 0);
2620 atomic_set(&fs_info->async_submit_draining, 0);
2621 atomic_set(&fs_info->nr_async_bios, 0);
2622 atomic_set(&fs_info->defrag_running, 0);
2623 atomic_set(&fs_info->qgroup_op_seq, 0);
2624 atomic_set(&fs_info->reada_works_cnt, 0);
2625 atomic64_set(&fs_info->tree_mod_seq, 0);
2626 fs_info->sb = sb;
2627 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2628 fs_info->metadata_ratio = 0;
2629 fs_info->defrag_inodes = RB_ROOT;
2630 fs_info->free_chunk_space = 0;
2631 fs_info->tree_mod_log = RB_ROOT;
2632 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2633 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2634 /* readahead state */
2635 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2636 spin_lock_init(&fs_info->reada_lock);
2637
2638 fs_info->thread_pool_size = min_t(unsigned long,
2639 num_online_cpus() + 2, 8);
2640
2641 INIT_LIST_HEAD(&fs_info->ordered_roots);
2642 spin_lock_init(&fs_info->ordered_root_lock);
2643 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2644 GFP_KERNEL);
2645 if (!fs_info->delayed_root) {
2646 err = -ENOMEM;
2647 goto fail_iput;
2648 }
2649 btrfs_init_delayed_root(fs_info->delayed_root);
2650
2651 btrfs_init_scrub(fs_info);
2652 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2653 fs_info->check_integrity_print_mask = 0;
2654 #endif
2655 btrfs_init_balance(fs_info);
2656 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2657
2658 sb->s_blocksize = 4096;
2659 sb->s_blocksize_bits = blksize_bits(4096);
2660 sb->s_bdi = &fs_info->bdi;
2661
2662 btrfs_init_btree_inode(fs_info, tree_root);
2663
2664 spin_lock_init(&fs_info->block_group_cache_lock);
2665 fs_info->block_group_cache_tree = RB_ROOT;
2666 fs_info->first_logical_byte = (u64)-1;
2667
2668 extent_io_tree_init(&fs_info->freed_extents[0],
2669 fs_info->btree_inode->i_mapping);
2670 extent_io_tree_init(&fs_info->freed_extents[1],
2671 fs_info->btree_inode->i_mapping);
2672 fs_info->pinned_extents = &fs_info->freed_extents[0];
2673 fs_info->do_barriers = 1;
2674
2675
2676 mutex_init(&fs_info->ordered_operations_mutex);
2677 mutex_init(&fs_info->tree_log_mutex);
2678 mutex_init(&fs_info->chunk_mutex);
2679 mutex_init(&fs_info->transaction_kthread_mutex);
2680 mutex_init(&fs_info->cleaner_mutex);
2681 mutex_init(&fs_info->volume_mutex);
2682 mutex_init(&fs_info->ro_block_group_mutex);
2683 init_rwsem(&fs_info->commit_root_sem);
2684 init_rwsem(&fs_info->cleanup_work_sem);
2685 init_rwsem(&fs_info->subvol_sem);
2686 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2687
2688 btrfs_init_dev_replace_locks(fs_info);
2689 btrfs_init_qgroup(fs_info);
2690
2691 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2692 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2693
2694 init_waitqueue_head(&fs_info->transaction_throttle);
2695 init_waitqueue_head(&fs_info->transaction_wait);
2696 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2697 init_waitqueue_head(&fs_info->async_submit_wait);
2698
2699 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2700
2701 ret = btrfs_alloc_stripe_hash_table(fs_info);
2702 if (ret) {
2703 err = ret;
2704 goto fail_alloc;
2705 }
2706
2707 __setup_root(4096, 4096, 4096, tree_root,
2708 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2709
2710 invalidate_bdev(fs_devices->latest_bdev);
2711
2712 /*
2713 * Read super block and check the signature bytes only
2714 */
2715 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2716 if (IS_ERR(bh)) {
2717 err = PTR_ERR(bh);
2718 goto fail_alloc;
2719 }
2720
2721 /*
2722 * We want to check superblock checksum, the type is stored inside.
2723 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2724 */
2725 if (btrfs_check_super_csum(bh->b_data)) {
2726 btrfs_err(fs_info, "superblock checksum mismatch");
2727 err = -EINVAL;
2728 brelse(bh);
2729 goto fail_alloc;
2730 }
2731
2732 /*
2733 * super_copy is zeroed at allocation time and we never touch the
2734 * following bytes up to INFO_SIZE, the checksum is calculated from
2735 * the whole block of INFO_SIZE
2736 */
2737 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2738 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2739 sizeof(*fs_info->super_for_commit));
2740 brelse(bh);
2741
2742 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2743
2744 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2745 if (ret) {
2746 btrfs_err(fs_info, "superblock contains fatal errors");
2747 err = -EINVAL;
2748 goto fail_alloc;
2749 }
2750
2751 disk_super = fs_info->super_copy;
2752 if (!btrfs_super_root(disk_super))
2753 goto fail_alloc;
2754
2755 /* check FS state, whether FS is broken. */
2756 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2757 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2758
2759 /*
2760 * run through our array of backup supers and setup
2761 * our ring pointer to the oldest one
2762 */
2763 generation = btrfs_super_generation(disk_super);
2764 find_oldest_super_backup(fs_info, generation);
2765
2766 /*
2767 * In the long term, we'll store the compression type in the super
2768 * block, and it'll be used for per file compression control.
2769 */
2770 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2771
2772 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2773 if (ret) {
2774 err = ret;
2775 goto fail_alloc;
2776 }
2777
2778 features = btrfs_super_incompat_flags(disk_super) &
2779 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2780 if (features) {
2781 btrfs_err(fs_info,
2782 "cannot mount because of unsupported optional features (%llx)",
2783 features);
2784 err = -EINVAL;
2785 goto fail_alloc;
2786 }
2787
2788 features = btrfs_super_incompat_flags(disk_super);
2789 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2790 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2791 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2792
2793 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2794 btrfs_info(fs_info, "has skinny extents");
2795
2796 /*
2797 * flag our filesystem as having big metadata blocks if
2798 * they are bigger than the page size
2799 */
2800 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2801 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2802 btrfs_info(fs_info,
2803 "flagging fs with big metadata feature");
2804 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2805 }
2806
2807 nodesize = btrfs_super_nodesize(disk_super);
2808 sectorsize = btrfs_super_sectorsize(disk_super);
2809 stripesize = sectorsize;
2810 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2811 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2812
2813 /*
2814 * mixed block groups end up with duplicate but slightly offset
2815 * extent buffers for the same range. It leads to corruptions
2816 */
2817 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2818 (sectorsize != nodesize)) {
2819 btrfs_err(fs_info,
2820 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2821 nodesize, sectorsize);
2822 goto fail_alloc;
2823 }
2824
2825 /*
2826 * Needn't use the lock because there is no other task which will
2827 * update the flag.
2828 */
2829 btrfs_set_super_incompat_flags(disk_super, features);
2830
2831 features = btrfs_super_compat_ro_flags(disk_super) &
2832 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2833 if (!(sb->s_flags & MS_RDONLY) && features) {
2834 btrfs_err(fs_info,
2835 "cannot mount read-write because of unsupported optional features (%llx)",
2836 features);
2837 err = -EINVAL;
2838 goto fail_alloc;
2839 }
2840
2841 max_active = fs_info->thread_pool_size;
2842
2843 ret = btrfs_init_workqueues(fs_info, fs_devices);
2844 if (ret) {
2845 err = ret;
2846 goto fail_sb_buffer;
2847 }
2848
2849 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2850 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2851 SZ_4M / PAGE_SIZE);
2852
2853 tree_root->nodesize = nodesize;
2854 tree_root->sectorsize = sectorsize;
2855 tree_root->stripesize = stripesize;
2856
2857 sb->s_blocksize = sectorsize;
2858 sb->s_blocksize_bits = blksize_bits(sectorsize);
2859
2860 mutex_lock(&fs_info->chunk_mutex);
2861 ret = btrfs_read_sys_array(tree_root);
2862 mutex_unlock(&fs_info->chunk_mutex);
2863 if (ret) {
2864 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2865 goto fail_sb_buffer;
2866 }
2867
2868 generation = btrfs_super_chunk_root_generation(disk_super);
2869
2870 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2871 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2872
2873 chunk_root->node = read_tree_block(chunk_root,
2874 btrfs_super_chunk_root(disk_super),
2875 generation);
2876 if (IS_ERR(chunk_root->node) ||
2877 !extent_buffer_uptodate(chunk_root->node)) {
2878 btrfs_err(fs_info, "failed to read chunk root");
2879 if (!IS_ERR(chunk_root->node))
2880 free_extent_buffer(chunk_root->node);
2881 chunk_root->node = NULL;
2882 goto fail_tree_roots;
2883 }
2884 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2885 chunk_root->commit_root = btrfs_root_node(chunk_root);
2886
2887 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2888 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2889
2890 ret = btrfs_read_chunk_tree(chunk_root);
2891 if (ret) {
2892 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2893 goto fail_tree_roots;
2894 }
2895
2896 /*
2897 * keep the device that is marked to be the target device for the
2898 * dev_replace procedure
2899 */
2900 btrfs_close_extra_devices(fs_devices, 0);
2901
2902 if (!fs_devices->latest_bdev) {
2903 btrfs_err(fs_info, "failed to read devices");
2904 goto fail_tree_roots;
2905 }
2906
2907 retry_root_backup:
2908 generation = btrfs_super_generation(disk_super);
2909
2910 tree_root->node = read_tree_block(tree_root,
2911 btrfs_super_root(disk_super),
2912 generation);
2913 if (IS_ERR(tree_root->node) ||
2914 !extent_buffer_uptodate(tree_root->node)) {
2915 btrfs_warn(fs_info, "failed to read tree root");
2916 if (!IS_ERR(tree_root->node))
2917 free_extent_buffer(tree_root->node);
2918 tree_root->node = NULL;
2919 goto recovery_tree_root;
2920 }
2921
2922 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2923 tree_root->commit_root = btrfs_root_node(tree_root);
2924 btrfs_set_root_refs(&tree_root->root_item, 1);
2925
2926 mutex_lock(&tree_root->objectid_mutex);
2927 ret = btrfs_find_highest_objectid(tree_root,
2928 &tree_root->highest_objectid);
2929 if (ret) {
2930 mutex_unlock(&tree_root->objectid_mutex);
2931 goto recovery_tree_root;
2932 }
2933
2934 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2935
2936 mutex_unlock(&tree_root->objectid_mutex);
2937
2938 ret = btrfs_read_roots(fs_info, tree_root);
2939 if (ret)
2940 goto recovery_tree_root;
2941
2942 fs_info->generation = generation;
2943 fs_info->last_trans_committed = generation;
2944
2945 ret = btrfs_recover_balance(fs_info);
2946 if (ret) {
2947 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2948 goto fail_block_groups;
2949 }
2950
2951 ret = btrfs_init_dev_stats(fs_info);
2952 if (ret) {
2953 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2954 goto fail_block_groups;
2955 }
2956
2957 ret = btrfs_init_dev_replace(fs_info);
2958 if (ret) {
2959 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2960 goto fail_block_groups;
2961 }
2962
2963 btrfs_close_extra_devices(fs_devices, 1);
2964
2965 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2966 if (ret) {
2967 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2968 ret);
2969 goto fail_block_groups;
2970 }
2971
2972 ret = btrfs_sysfs_add_device(fs_devices);
2973 if (ret) {
2974 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2975 ret);
2976 goto fail_fsdev_sysfs;
2977 }
2978
2979 ret = btrfs_sysfs_add_mounted(fs_info);
2980 if (ret) {
2981 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2982 goto fail_fsdev_sysfs;
2983 }
2984
2985 ret = btrfs_init_space_info(fs_info);
2986 if (ret) {
2987 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2988 goto fail_sysfs;
2989 }
2990
2991 ret = btrfs_read_block_groups(fs_info->extent_root);
2992 if (ret) {
2993 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2994 goto fail_sysfs;
2995 }
2996 fs_info->num_tolerated_disk_barrier_failures =
2997 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2998 if (fs_info->fs_devices->missing_devices >
2999 fs_info->num_tolerated_disk_barrier_failures &&
3000 !(sb->s_flags & MS_RDONLY)) {
3001 btrfs_warn(fs_info,
3002 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3003 fs_info->fs_devices->missing_devices,
3004 fs_info->num_tolerated_disk_barrier_failures);
3005 goto fail_sysfs;
3006 }
3007
3008 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3009 "btrfs-cleaner");
3010 if (IS_ERR(fs_info->cleaner_kthread))
3011 goto fail_sysfs;
3012
3013 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3014 tree_root,
3015 "btrfs-transaction");
3016 if (IS_ERR(fs_info->transaction_kthread))
3017 goto fail_cleaner;
3018
3019 if (!btrfs_test_opt(tree_root, SSD) &&
3020 !btrfs_test_opt(tree_root, NOSSD) &&
3021 !fs_info->fs_devices->rotating) {
3022 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3023 btrfs_set_opt(fs_info->mount_opt, SSD);
3024 }
3025
3026 /*
3027 * Mount does not set all options immediately, we can do it now and do
3028 * not have to wait for transaction commit
3029 */
3030 btrfs_apply_pending_changes(fs_info);
3031
3032 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3033 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3034 ret = btrfsic_mount(tree_root, fs_devices,
3035 btrfs_test_opt(tree_root,
3036 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3037 1 : 0,
3038 fs_info->check_integrity_print_mask);
3039 if (ret)
3040 btrfs_warn(fs_info,
3041 "failed to initialize integrity check module: %d",
3042 ret);
3043 }
3044 #endif
3045 ret = btrfs_read_qgroup_config(fs_info);
3046 if (ret)
3047 goto fail_trans_kthread;
3048
3049 /* do not make disk changes in broken FS or nologreplay is given */
3050 if (btrfs_super_log_root(disk_super) != 0 &&
3051 !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3052 ret = btrfs_replay_log(fs_info, fs_devices);
3053 if (ret) {
3054 err = ret;
3055 goto fail_qgroup;
3056 }
3057 }
3058
3059 ret = btrfs_find_orphan_roots(tree_root);
3060 if (ret)
3061 goto fail_qgroup;
3062
3063 if (!(sb->s_flags & MS_RDONLY)) {
3064 ret = btrfs_cleanup_fs_roots(fs_info);
3065 if (ret)
3066 goto fail_qgroup;
3067
3068 mutex_lock(&fs_info->cleaner_mutex);
3069 ret = btrfs_recover_relocation(tree_root);
3070 mutex_unlock(&fs_info->cleaner_mutex);
3071 if (ret < 0) {
3072 btrfs_warn(fs_info, "failed to recover relocation: %d",
3073 ret);
3074 err = -EINVAL;
3075 goto fail_qgroup;
3076 }
3077 }
3078
3079 location.objectid = BTRFS_FS_TREE_OBJECTID;
3080 location.type = BTRFS_ROOT_ITEM_KEY;
3081 location.offset = 0;
3082
3083 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3084 if (IS_ERR(fs_info->fs_root)) {
3085 err = PTR_ERR(fs_info->fs_root);
3086 goto fail_qgroup;
3087 }
3088
3089 if (sb->s_flags & MS_RDONLY)
3090 return 0;
3091
3092 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3093 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3094 btrfs_info(fs_info, "creating free space tree");
3095 ret = btrfs_create_free_space_tree(fs_info);
3096 if (ret) {
3097 btrfs_warn(fs_info,
3098 "failed to create free space tree: %d", ret);
3099 close_ctree(tree_root);
3100 return ret;
3101 }
3102 }
3103
3104 down_read(&fs_info->cleanup_work_sem);
3105 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3106 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3107 up_read(&fs_info->cleanup_work_sem);
3108 close_ctree(tree_root);
3109 return ret;
3110 }
3111 up_read(&fs_info->cleanup_work_sem);
3112
3113 ret = btrfs_resume_balance_async(fs_info);
3114 if (ret) {
3115 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3116 close_ctree(tree_root);
3117 return ret;
3118 }
3119
3120 ret = btrfs_resume_dev_replace_async(fs_info);
3121 if (ret) {
3122 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3123 close_ctree(tree_root);
3124 return ret;
3125 }
3126
3127 btrfs_qgroup_rescan_resume(fs_info);
3128
3129 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3130 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3131 btrfs_info(fs_info, "clearing free space tree");
3132 ret = btrfs_clear_free_space_tree(fs_info);
3133 if (ret) {
3134 btrfs_warn(fs_info,
3135 "failed to clear free space tree: %d", ret);
3136 close_ctree(tree_root);
3137 return ret;
3138 }
3139 }
3140
3141 if (!fs_info->uuid_root) {
3142 btrfs_info(fs_info, "creating UUID tree");
3143 ret = btrfs_create_uuid_tree(fs_info);
3144 if (ret) {
3145 btrfs_warn(fs_info,
3146 "failed to create the UUID tree: %d", ret);
3147 close_ctree(tree_root);
3148 return ret;
3149 }
3150 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3151 fs_info->generation !=
3152 btrfs_super_uuid_tree_generation(disk_super)) {
3153 btrfs_info(fs_info, "checking UUID tree");
3154 ret = btrfs_check_uuid_tree(fs_info);
3155 if (ret) {
3156 btrfs_warn(fs_info,
3157 "failed to check the UUID tree: %d", ret);
3158 close_ctree(tree_root);
3159 return ret;
3160 }
3161 } else {
3162 fs_info->update_uuid_tree_gen = 1;
3163 }
3164
3165 fs_info->open = 1;
3166
3167 /*
3168 * backuproot only affect mount behavior, and if open_ctree succeeded,
3169 * no need to keep the flag
3170 */
3171 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3172
3173 return 0;
3174
3175 fail_qgroup:
3176 btrfs_free_qgroup_config(fs_info);
3177 fail_trans_kthread:
3178 kthread_stop(fs_info->transaction_kthread);
3179 btrfs_cleanup_transaction(fs_info->tree_root);
3180 btrfs_free_fs_roots(fs_info);
3181 fail_cleaner:
3182 kthread_stop(fs_info->cleaner_kthread);
3183
3184 /*
3185 * make sure we're done with the btree inode before we stop our
3186 * kthreads
3187 */
3188 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3189
3190 fail_sysfs:
3191 btrfs_sysfs_remove_mounted(fs_info);
3192
3193 fail_fsdev_sysfs:
3194 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3195
3196 fail_block_groups:
3197 btrfs_put_block_group_cache(fs_info);
3198 btrfs_free_block_groups(fs_info);
3199
3200 fail_tree_roots:
3201 free_root_pointers(fs_info, 1);
3202 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3203
3204 fail_sb_buffer:
3205 btrfs_stop_all_workers(fs_info);
3206 fail_alloc:
3207 fail_iput:
3208 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3209
3210 iput(fs_info->btree_inode);
3211 fail_bio_counter:
3212 percpu_counter_destroy(&fs_info->bio_counter);
3213 fail_delalloc_bytes:
3214 percpu_counter_destroy(&fs_info->delalloc_bytes);
3215 fail_dirty_metadata_bytes:
3216 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3217 fail_bdi:
3218 bdi_destroy(&fs_info->bdi);
3219 fail_srcu:
3220 cleanup_srcu_struct(&fs_info->subvol_srcu);
3221 fail:
3222 btrfs_free_stripe_hash_table(fs_info);
3223 btrfs_close_devices(fs_info->fs_devices);
3224 return err;
3225
3226 recovery_tree_root:
3227 if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3228 goto fail_tree_roots;
3229
3230 free_root_pointers(fs_info, 0);
3231
3232 /* don't use the log in recovery mode, it won't be valid */
3233 btrfs_set_super_log_root(disk_super, 0);
3234
3235 /* we can't trust the free space cache either */
3236 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3237
3238 ret = next_root_backup(fs_info, fs_info->super_copy,
3239 &num_backups_tried, &backup_index);
3240 if (ret == -1)
3241 goto fail_block_groups;
3242 goto retry_root_backup;
3243 }
3244
3245 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3246 {
3247 if (uptodate) {
3248 set_buffer_uptodate(bh);
3249 } else {
3250 struct btrfs_device *device = (struct btrfs_device *)
3251 bh->b_private;
3252
3253 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3254 "lost page write due to IO error on %s",
3255 rcu_str_deref(device->name));
3256 /* note, we don't set_buffer_write_io_error because we have
3257 * our own ways of dealing with the IO errors
3258 */
3259 clear_buffer_uptodate(bh);
3260 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3261 }
3262 unlock_buffer(bh);
3263 put_bh(bh);
3264 }
3265
3266 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3267 struct buffer_head **bh_ret)
3268 {
3269 struct buffer_head *bh;
3270 struct btrfs_super_block *super;
3271 u64 bytenr;
3272
3273 bytenr = btrfs_sb_offset(copy_num);
3274 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3275 return -EINVAL;
3276
3277 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3278 /*
3279 * If we fail to read from the underlying devices, as of now
3280 * the best option we have is to mark it EIO.
3281 */
3282 if (!bh)
3283 return -EIO;
3284
3285 super = (struct btrfs_super_block *)bh->b_data;
3286 if (btrfs_super_bytenr(super) != bytenr ||
3287 btrfs_super_magic(super) != BTRFS_MAGIC) {
3288 brelse(bh);
3289 return -EINVAL;
3290 }
3291
3292 *bh_ret = bh;
3293 return 0;
3294 }
3295
3296
3297 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3298 {
3299 struct buffer_head *bh;
3300 struct buffer_head *latest = NULL;
3301 struct btrfs_super_block *super;
3302 int i;
3303 u64 transid = 0;
3304 int ret = -EINVAL;
3305
3306 /* we would like to check all the supers, but that would make
3307 * a btrfs mount succeed after a mkfs from a different FS.
3308 * So, we need to add a special mount option to scan for
3309 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3310 */
3311 for (i = 0; i < 1; i++) {
3312 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3313 if (ret)
3314 continue;
3315
3316 super = (struct btrfs_super_block *)bh->b_data;
3317
3318 if (!latest || btrfs_super_generation(super) > transid) {
3319 brelse(latest);
3320 latest = bh;
3321 transid = btrfs_super_generation(super);
3322 } else {
3323 brelse(bh);
3324 }
3325 }
3326
3327 if (!latest)
3328 return ERR_PTR(ret);
3329
3330 return latest;
3331 }
3332
3333 /*
3334 * this should be called twice, once with wait == 0 and
3335 * once with wait == 1. When wait == 0 is done, all the buffer heads
3336 * we write are pinned.
3337 *
3338 * They are released when wait == 1 is done.
3339 * max_mirrors must be the same for both runs, and it indicates how
3340 * many supers on this one device should be written.
3341 *
3342 * max_mirrors == 0 means to write them all.
3343 */
3344 static int write_dev_supers(struct btrfs_device *device,
3345 struct btrfs_super_block *sb,
3346 int do_barriers, int wait, int max_mirrors)
3347 {
3348 struct buffer_head *bh;
3349 int i;
3350 int ret;
3351 int errors = 0;
3352 u32 crc;
3353 u64 bytenr;
3354
3355 if (max_mirrors == 0)
3356 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3357
3358 for (i = 0; i < max_mirrors; i++) {
3359 bytenr = btrfs_sb_offset(i);
3360 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3361 device->commit_total_bytes)
3362 break;
3363
3364 if (wait) {
3365 bh = __find_get_block(device->bdev, bytenr / 4096,
3366 BTRFS_SUPER_INFO_SIZE);
3367 if (!bh) {
3368 errors++;
3369 continue;
3370 }
3371 wait_on_buffer(bh);
3372 if (!buffer_uptodate(bh))
3373 errors++;
3374
3375 /* drop our reference */
3376 brelse(bh);
3377
3378 /* drop the reference from the wait == 0 run */
3379 brelse(bh);
3380 continue;
3381 } else {
3382 btrfs_set_super_bytenr(sb, bytenr);
3383
3384 crc = ~(u32)0;
3385 crc = btrfs_csum_data((char *)sb +
3386 BTRFS_CSUM_SIZE, crc,
3387 BTRFS_SUPER_INFO_SIZE -
3388 BTRFS_CSUM_SIZE);
3389 btrfs_csum_final(crc, sb->csum);
3390
3391 /*
3392 * one reference for us, and we leave it for the
3393 * caller
3394 */
3395 bh = __getblk(device->bdev, bytenr / 4096,
3396 BTRFS_SUPER_INFO_SIZE);
3397 if (!bh) {
3398 btrfs_err(device->dev_root->fs_info,
3399 "couldn't get super buffer head for bytenr %llu",
3400 bytenr);
3401 errors++;
3402 continue;
3403 }
3404
3405 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3406
3407 /* one reference for submit_bh */
3408 get_bh(bh);
3409
3410 set_buffer_uptodate(bh);
3411 lock_buffer(bh);
3412 bh->b_end_io = btrfs_end_buffer_write_sync;
3413 bh->b_private = device;
3414 }
3415
3416 /*
3417 * we fua the first super. The others we allow
3418 * to go down lazy.
3419 */
3420 if (i == 0)
3421 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3422 else
3423 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3424 if (ret)
3425 errors++;
3426 }
3427 return errors < i ? 0 : -1;
3428 }
3429
3430 /*
3431 * endio for the write_dev_flush, this will wake anyone waiting
3432 * for the barrier when it is done
3433 */
3434 static void btrfs_end_empty_barrier(struct bio *bio)
3435 {
3436 if (bio->bi_private)
3437 complete(bio->bi_private);
3438 bio_put(bio);
3439 }
3440
3441 /*
3442 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3443 * sent down. With wait == 1, it waits for the previous flush.
3444 *
3445 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3446 * capable
3447 */
3448 static int write_dev_flush(struct btrfs_device *device, int wait)
3449 {
3450 struct bio *bio;
3451 int ret = 0;
3452
3453 if (device->nobarriers)
3454 return 0;
3455
3456 if (wait) {
3457 bio = device->flush_bio;
3458 if (!bio)
3459 return 0;
3460
3461 wait_for_completion(&device->flush_wait);
3462
3463 if (bio->bi_error) {
3464 ret = bio->bi_error;
3465 btrfs_dev_stat_inc_and_print(device,
3466 BTRFS_DEV_STAT_FLUSH_ERRS);
3467 }
3468
3469 /* drop the reference from the wait == 0 run */
3470 bio_put(bio);
3471 device->flush_bio = NULL;
3472
3473 return ret;
3474 }
3475
3476 /*
3477 * one reference for us, and we leave it for the
3478 * caller
3479 */
3480 device->flush_bio = NULL;
3481 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3482 if (!bio)
3483 return -ENOMEM;
3484
3485 bio->bi_end_io = btrfs_end_empty_barrier;
3486 bio->bi_bdev = device->bdev;
3487 init_completion(&device->flush_wait);
3488 bio->bi_private = &device->flush_wait;
3489 device->flush_bio = bio;
3490
3491 bio_get(bio);
3492 btrfsic_submit_bio(WRITE_FLUSH, bio);
3493
3494 return 0;
3495 }
3496
3497 /*
3498 * send an empty flush down to each device in parallel,
3499 * then wait for them
3500 */
3501 static int barrier_all_devices(struct btrfs_fs_info *info)
3502 {
3503 struct list_head *head;
3504 struct btrfs_device *dev;
3505 int errors_send = 0;
3506 int errors_wait = 0;
3507 int ret;
3508
3509 /* send down all the barriers */
3510 head = &info->fs_devices->devices;
3511 list_for_each_entry_rcu(dev, head, dev_list) {
3512 if (dev->missing)
3513 continue;
3514 if (!dev->bdev) {
3515 errors_send++;
3516 continue;
3517 }
3518 if (!dev->in_fs_metadata || !dev->writeable)
3519 continue;
3520
3521 ret = write_dev_flush(dev, 0);
3522 if (ret)
3523 errors_send++;
3524 }
3525
3526 /* wait for all the barriers */
3527 list_for_each_entry_rcu(dev, head, dev_list) {
3528 if (dev->missing)
3529 continue;
3530 if (!dev->bdev) {
3531 errors_wait++;
3532 continue;
3533 }
3534 if (!dev->in_fs_metadata || !dev->writeable)
3535 continue;
3536
3537 ret = write_dev_flush(dev, 1);
3538 if (ret)
3539 errors_wait++;
3540 }
3541 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3542 errors_wait > info->num_tolerated_disk_barrier_failures)
3543 return -EIO;
3544 return 0;
3545 }
3546
3547 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3548 {
3549 int raid_type;
3550 int min_tolerated = INT_MAX;
3551
3552 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3553 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3554 min_tolerated = min(min_tolerated,
3555 btrfs_raid_array[BTRFS_RAID_SINGLE].
3556 tolerated_failures);
3557
3558 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3559 if (raid_type == BTRFS_RAID_SINGLE)
3560 continue;
3561 if (!(flags & btrfs_raid_group[raid_type]))
3562 continue;
3563 min_tolerated = min(min_tolerated,
3564 btrfs_raid_array[raid_type].
3565 tolerated_failures);
3566 }
3567
3568 if (min_tolerated == INT_MAX) {
3569 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3570 min_tolerated = 0;
3571 }
3572
3573 return min_tolerated;
3574 }
3575
3576 int btrfs_calc_num_tolerated_disk_barrier_failures(
3577 struct btrfs_fs_info *fs_info)
3578 {
3579 struct btrfs_ioctl_space_info space;
3580 struct btrfs_space_info *sinfo;
3581 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3582 BTRFS_BLOCK_GROUP_SYSTEM,
3583 BTRFS_BLOCK_GROUP_METADATA,
3584 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3585 int i;
3586 int c;
3587 int num_tolerated_disk_barrier_failures =
3588 (int)fs_info->fs_devices->num_devices;
3589
3590 for (i = 0; i < ARRAY_SIZE(types); i++) {
3591 struct btrfs_space_info *tmp;
3592
3593 sinfo = NULL;
3594 rcu_read_lock();
3595 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3596 if (tmp->flags == types[i]) {
3597 sinfo = tmp;
3598 break;
3599 }
3600 }
3601 rcu_read_unlock();
3602
3603 if (!sinfo)
3604 continue;
3605
3606 down_read(&sinfo->groups_sem);
3607 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3608 u64 flags;
3609
3610 if (list_empty(&sinfo->block_groups[c]))
3611 continue;
3612
3613 btrfs_get_block_group_info(&sinfo->block_groups[c],
3614 &space);
3615 if (space.total_bytes == 0 || space.used_bytes == 0)
3616 continue;
3617 flags = space.flags;
3618
3619 num_tolerated_disk_barrier_failures = min(
3620 num_tolerated_disk_barrier_failures,
3621 btrfs_get_num_tolerated_disk_barrier_failures(
3622 flags));
3623 }
3624 up_read(&sinfo->groups_sem);
3625 }
3626
3627 return num_tolerated_disk_barrier_failures;
3628 }
3629
3630 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3631 {
3632 struct list_head *head;
3633 struct btrfs_device *dev;
3634 struct btrfs_super_block *sb;
3635 struct btrfs_dev_item *dev_item;
3636 int ret;
3637 int do_barriers;
3638 int max_errors;
3639 int total_errors = 0;
3640 u64 flags;
3641
3642 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3643 backup_super_roots(root->fs_info);
3644
3645 sb = root->fs_info->super_for_commit;
3646 dev_item = &sb->dev_item;
3647
3648 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3649 head = &root->fs_info->fs_devices->devices;
3650 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3651
3652 if (do_barriers) {
3653 ret = barrier_all_devices(root->fs_info);
3654 if (ret) {
3655 mutex_unlock(
3656 &root->fs_info->fs_devices->device_list_mutex);
3657 btrfs_handle_fs_error(root->fs_info, ret,
3658 "errors while submitting device barriers.");
3659 return ret;
3660 }
3661 }
3662
3663 list_for_each_entry_rcu(dev, head, dev_list) {
3664 if (!dev->bdev) {
3665 total_errors++;
3666 continue;
3667 }
3668 if (!dev->in_fs_metadata || !dev->writeable)
3669 continue;
3670
3671 btrfs_set_stack_device_generation(dev_item, 0);
3672 btrfs_set_stack_device_type(dev_item, dev->type);
3673 btrfs_set_stack_device_id(dev_item, dev->devid);
3674 btrfs_set_stack_device_total_bytes(dev_item,
3675 dev->commit_total_bytes);
3676 btrfs_set_stack_device_bytes_used(dev_item,
3677 dev->commit_bytes_used);
3678 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3679 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3680 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3681 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3682 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3683
3684 flags = btrfs_super_flags(sb);
3685 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3686
3687 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3688 if (ret)
3689 total_errors++;
3690 }
3691 if (total_errors > max_errors) {
3692 btrfs_err(root->fs_info, "%d errors while writing supers",
3693 total_errors);
3694 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3695
3696 /* FUA is masked off if unsupported and can't be the reason */
3697 btrfs_handle_fs_error(root->fs_info, -EIO,
3698 "%d errors while writing supers", total_errors);
3699 return -EIO;
3700 }
3701
3702 total_errors = 0;
3703 list_for_each_entry_rcu(dev, head, dev_list) {
3704 if (!dev->bdev)
3705 continue;
3706 if (!dev->in_fs_metadata || !dev->writeable)
3707 continue;
3708
3709 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3710 if (ret)
3711 total_errors++;
3712 }
3713 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3714 if (total_errors > max_errors) {
3715 btrfs_handle_fs_error(root->fs_info, -EIO,
3716 "%d errors while writing supers", total_errors);
3717 return -EIO;
3718 }
3719 return 0;
3720 }
3721
3722 int write_ctree_super(struct btrfs_trans_handle *trans,
3723 struct btrfs_root *root, int max_mirrors)
3724 {
3725 return write_all_supers(root, max_mirrors);
3726 }
3727
3728 /* Drop a fs root from the radix tree and free it. */
3729 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3730 struct btrfs_root *root)
3731 {
3732 spin_lock(&fs_info->fs_roots_radix_lock);
3733 radix_tree_delete(&fs_info->fs_roots_radix,
3734 (unsigned long)root->root_key.objectid);
3735 spin_unlock(&fs_info->fs_roots_radix_lock);
3736
3737 if (btrfs_root_refs(&root->root_item) == 0)
3738 synchronize_srcu(&fs_info->subvol_srcu);
3739
3740 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3741 btrfs_free_log(NULL, root);
3742
3743 if (root->free_ino_pinned)
3744 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3745 if (root->free_ino_ctl)
3746 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3747 free_fs_root(root);
3748 }
3749
3750 static void free_fs_root(struct btrfs_root *root)
3751 {
3752 iput(root->ino_cache_inode);
3753 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3754 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3755 root->orphan_block_rsv = NULL;
3756 if (root->anon_dev)
3757 free_anon_bdev(root->anon_dev);
3758 if (root->subv_writers)
3759 btrfs_free_subvolume_writers(root->subv_writers);
3760 free_extent_buffer(root->node);
3761 free_extent_buffer(root->commit_root);
3762 kfree(root->free_ino_ctl);
3763 kfree(root->free_ino_pinned);
3764 kfree(root->name);
3765 btrfs_put_fs_root(root);
3766 }
3767
3768 void btrfs_free_fs_root(struct btrfs_root *root)
3769 {
3770 free_fs_root(root);
3771 }
3772
3773 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3774 {
3775 u64 root_objectid = 0;
3776 struct btrfs_root *gang[8];
3777 int i = 0;
3778 int err = 0;
3779 unsigned int ret = 0;
3780 int index;
3781
3782 while (1) {
3783 index = srcu_read_lock(&fs_info->subvol_srcu);
3784 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3785 (void **)gang, root_objectid,
3786 ARRAY_SIZE(gang));
3787 if (!ret) {
3788 srcu_read_unlock(&fs_info->subvol_srcu, index);
3789 break;
3790 }
3791 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3792
3793 for (i = 0; i < ret; i++) {
3794 /* Avoid to grab roots in dead_roots */
3795 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3796 gang[i] = NULL;
3797 continue;
3798 }
3799 /* grab all the search result for later use */
3800 gang[i] = btrfs_grab_fs_root(gang[i]);
3801 }
3802 srcu_read_unlock(&fs_info->subvol_srcu, index);
3803
3804 for (i = 0; i < ret; i++) {
3805 if (!gang[i])
3806 continue;
3807 root_objectid = gang[i]->root_key.objectid;
3808 err = btrfs_orphan_cleanup(gang[i]);
3809 if (err)
3810 break;
3811 btrfs_put_fs_root(gang[i]);
3812 }
3813 root_objectid++;
3814 }
3815
3816 /* release the uncleaned roots due to error */
3817 for (; i < ret; i++) {
3818 if (gang[i])
3819 btrfs_put_fs_root(gang[i]);
3820 }
3821 return err;
3822 }
3823
3824 int btrfs_commit_super(struct btrfs_root *root)
3825 {
3826 struct btrfs_trans_handle *trans;
3827
3828 mutex_lock(&root->fs_info->cleaner_mutex);
3829 btrfs_run_delayed_iputs(root);
3830 mutex_unlock(&root->fs_info->cleaner_mutex);
3831 wake_up_process(root->fs_info->cleaner_kthread);
3832
3833 /* wait until ongoing cleanup work done */
3834 down_write(&root->fs_info->cleanup_work_sem);
3835 up_write(&root->fs_info->cleanup_work_sem);
3836
3837 trans = btrfs_join_transaction(root);
3838 if (IS_ERR(trans))
3839 return PTR_ERR(trans);
3840 return btrfs_commit_transaction(trans, root);
3841 }
3842
3843 void close_ctree(struct btrfs_root *root)
3844 {
3845 struct btrfs_fs_info *fs_info = root->fs_info;
3846 int ret;
3847
3848 fs_info->closing = 1;
3849 smp_mb();
3850
3851 /* wait for the qgroup rescan worker to stop */
3852 btrfs_qgroup_wait_for_completion(fs_info);
3853
3854 /* wait for the uuid_scan task to finish */
3855 down(&fs_info->uuid_tree_rescan_sem);
3856 /* avoid complains from lockdep et al., set sem back to initial state */
3857 up(&fs_info->uuid_tree_rescan_sem);
3858
3859 /* pause restriper - we want to resume on mount */
3860 btrfs_pause_balance(fs_info);
3861
3862 btrfs_dev_replace_suspend_for_unmount(fs_info);
3863
3864 btrfs_scrub_cancel(fs_info);
3865
3866 /* wait for any defraggers to finish */
3867 wait_event(fs_info->transaction_wait,
3868 (atomic_read(&fs_info->defrag_running) == 0));
3869
3870 /* clear out the rbtree of defraggable inodes */
3871 btrfs_cleanup_defrag_inodes(fs_info);
3872
3873 cancel_work_sync(&fs_info->async_reclaim_work);
3874
3875 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3876 /*
3877 * If the cleaner thread is stopped and there are
3878 * block groups queued for removal, the deletion will be
3879 * skipped when we quit the cleaner thread.
3880 */
3881 btrfs_delete_unused_bgs(root->fs_info);
3882
3883 ret = btrfs_commit_super(root);
3884 if (ret)
3885 btrfs_err(fs_info, "commit super ret %d", ret);
3886 }
3887
3888 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3889 btrfs_error_commit_super(root);
3890
3891 kthread_stop(fs_info->transaction_kthread);
3892 kthread_stop(fs_info->cleaner_kthread);
3893
3894 fs_info->closing = 2;
3895 smp_mb();
3896
3897 btrfs_free_qgroup_config(fs_info);
3898
3899 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3900 btrfs_info(fs_info, "at unmount delalloc count %lld",
3901 percpu_counter_sum(&fs_info->delalloc_bytes));
3902 }
3903
3904 btrfs_sysfs_remove_mounted(fs_info);
3905 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3906
3907 btrfs_free_fs_roots(fs_info);
3908
3909 btrfs_put_block_group_cache(fs_info);
3910
3911 btrfs_free_block_groups(fs_info);
3912
3913 /*
3914 * we must make sure there is not any read request to
3915 * submit after we stopping all workers.
3916 */
3917 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3918 btrfs_stop_all_workers(fs_info);
3919
3920 fs_info->open = 0;
3921 free_root_pointers(fs_info, 1);
3922
3923 iput(fs_info->btree_inode);
3924
3925 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3926 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3927 btrfsic_unmount(root, fs_info->fs_devices);
3928 #endif
3929
3930 btrfs_close_devices(fs_info->fs_devices);
3931 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3932
3933 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3934 percpu_counter_destroy(&fs_info->delalloc_bytes);
3935 percpu_counter_destroy(&fs_info->bio_counter);
3936 bdi_destroy(&fs_info->bdi);
3937 cleanup_srcu_struct(&fs_info->subvol_srcu);
3938
3939 btrfs_free_stripe_hash_table(fs_info);
3940
3941 __btrfs_free_block_rsv(root->orphan_block_rsv);
3942 root->orphan_block_rsv = NULL;
3943
3944 lock_chunks(root);
3945 while (!list_empty(&fs_info->pinned_chunks)) {
3946 struct extent_map *em;
3947
3948 em = list_first_entry(&fs_info->pinned_chunks,
3949 struct extent_map, list);
3950 list_del_init(&em->list);
3951 free_extent_map(em);
3952 }
3953 unlock_chunks(root);
3954 }
3955
3956 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3957 int atomic)
3958 {
3959 int ret;
3960 struct inode *btree_inode = buf->pages[0]->mapping->host;
3961
3962 ret = extent_buffer_uptodate(buf);
3963 if (!ret)
3964 return ret;
3965
3966 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3967 parent_transid, atomic);
3968 if (ret == -EAGAIN)
3969 return ret;
3970 return !ret;
3971 }
3972
3973 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3974 {
3975 struct btrfs_root *root;
3976 u64 transid = btrfs_header_generation(buf);
3977 int was_dirty;
3978
3979 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3980 /*
3981 * This is a fast path so only do this check if we have sanity tests
3982 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3983 * outside of the sanity tests.
3984 */
3985 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3986 return;
3987 #endif
3988 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3989 btrfs_assert_tree_locked(buf);
3990 if (transid != root->fs_info->generation)
3991 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3992 "found %llu running %llu\n",
3993 buf->start, transid, root->fs_info->generation);
3994 was_dirty = set_extent_buffer_dirty(buf);
3995 if (!was_dirty)
3996 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3997 buf->len,
3998 root->fs_info->dirty_metadata_batch);
3999 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4000 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4001 btrfs_print_leaf(root, buf);
4002 ASSERT(0);
4003 }
4004 #endif
4005 }
4006
4007 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4008 int flush_delayed)
4009 {
4010 /*
4011 * looks as though older kernels can get into trouble with
4012 * this code, they end up stuck in balance_dirty_pages forever
4013 */
4014 int ret;
4015
4016 if (current->flags & PF_MEMALLOC)
4017 return;
4018
4019 if (flush_delayed)
4020 btrfs_balance_delayed_items(root);
4021
4022 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4023 BTRFS_DIRTY_METADATA_THRESH);
4024 if (ret > 0) {
4025 balance_dirty_pages_ratelimited(
4026 root->fs_info->btree_inode->i_mapping);
4027 }
4028 }
4029
4030 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4031 {
4032 __btrfs_btree_balance_dirty(root, 1);
4033 }
4034
4035 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4036 {
4037 __btrfs_btree_balance_dirty(root, 0);
4038 }
4039
4040 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4041 {
4042 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4043 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4044 }
4045
4046 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4047 int read_only)
4048 {
4049 struct btrfs_super_block *sb = fs_info->super_copy;
4050 u64 nodesize = btrfs_super_nodesize(sb);
4051 u64 sectorsize = btrfs_super_sectorsize(sb);
4052 int ret = 0;
4053
4054 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4055 printk(KERN_ERR "BTRFS: no valid FS found\n");
4056 ret = -EINVAL;
4057 }
4058 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4059 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4060 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4061 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4062 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4063 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4064 ret = -EINVAL;
4065 }
4066 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4067 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4068 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4069 ret = -EINVAL;
4070 }
4071 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4072 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4073 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4074 ret = -EINVAL;
4075 }
4076
4077 /*
4078 * Check sectorsize and nodesize first, other check will need it.
4079 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4080 */
4081 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4082 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4083 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4084 ret = -EINVAL;
4085 }
4086 /* Only PAGE SIZE is supported yet */
4087 if (sectorsize != PAGE_SIZE) {
4088 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4089 sectorsize, PAGE_SIZE);
4090 ret = -EINVAL;
4091 }
4092 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4093 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4094 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4095 ret = -EINVAL;
4096 }
4097 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4098 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4099 le32_to_cpu(sb->__unused_leafsize),
4100 nodesize);
4101 ret = -EINVAL;
4102 }
4103
4104 /* Root alignment check */
4105 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4106 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4107 btrfs_super_root(sb));
4108 ret = -EINVAL;
4109 }
4110 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4111 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4112 btrfs_super_chunk_root(sb));
4113 ret = -EINVAL;
4114 }
4115 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4116 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4117 btrfs_super_log_root(sb));
4118 ret = -EINVAL;
4119 }
4120
4121 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4122 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4123 fs_info->fsid, sb->dev_item.fsid);
4124 ret = -EINVAL;
4125 }
4126
4127 /*
4128 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4129 * done later
4130 */
4131 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4132 btrfs_err(fs_info, "bytes_used is too small %llu",
4133 btrfs_super_bytes_used(sb));
4134 ret = -EINVAL;
4135 }
4136 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4137 btrfs_err(fs_info, "invalid stripesize %u",
4138 btrfs_super_stripesize(sb));
4139 ret = -EINVAL;
4140 }
4141 if (btrfs_super_num_devices(sb) > (1UL << 31))
4142 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4143 btrfs_super_num_devices(sb));
4144 if (btrfs_super_num_devices(sb) == 0) {
4145 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4146 ret = -EINVAL;
4147 }
4148
4149 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4150 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4151 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4152 ret = -EINVAL;
4153 }
4154
4155 /*
4156 * Obvious sys_chunk_array corruptions, it must hold at least one key
4157 * and one chunk
4158 */
4159 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4160 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4161 btrfs_super_sys_array_size(sb),
4162 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4163 ret = -EINVAL;
4164 }
4165 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4166 + sizeof(struct btrfs_chunk)) {
4167 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4168 btrfs_super_sys_array_size(sb),
4169 sizeof(struct btrfs_disk_key)
4170 + sizeof(struct btrfs_chunk));
4171 ret = -EINVAL;
4172 }
4173
4174 /*
4175 * The generation is a global counter, we'll trust it more than the others
4176 * but it's still possible that it's the one that's wrong.
4177 */
4178 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4179 printk(KERN_WARNING
4180 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4181 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4182 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4183 && btrfs_super_cache_generation(sb) != (u64)-1)
4184 printk(KERN_WARNING
4185 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4186 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4187
4188 return ret;
4189 }
4190
4191 static void btrfs_error_commit_super(struct btrfs_root *root)
4192 {
4193 mutex_lock(&root->fs_info->cleaner_mutex);
4194 btrfs_run_delayed_iputs(root);
4195 mutex_unlock(&root->fs_info->cleaner_mutex);
4196
4197 down_write(&root->fs_info->cleanup_work_sem);
4198 up_write(&root->fs_info->cleanup_work_sem);
4199
4200 /* cleanup FS via transaction */
4201 btrfs_cleanup_transaction(root);
4202 }
4203
4204 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4205 {
4206 struct btrfs_ordered_extent *ordered;
4207
4208 spin_lock(&root->ordered_extent_lock);
4209 /*
4210 * This will just short circuit the ordered completion stuff which will
4211 * make sure the ordered extent gets properly cleaned up.
4212 */
4213 list_for_each_entry(ordered, &root->ordered_extents,
4214 root_extent_list)
4215 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4216 spin_unlock(&root->ordered_extent_lock);
4217 }
4218
4219 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4220 {
4221 struct btrfs_root *root;
4222 struct list_head splice;
4223
4224 INIT_LIST_HEAD(&splice);
4225
4226 spin_lock(&fs_info->ordered_root_lock);
4227 list_splice_init(&fs_info->ordered_roots, &splice);
4228 while (!list_empty(&splice)) {
4229 root = list_first_entry(&splice, struct btrfs_root,
4230 ordered_root);
4231 list_move_tail(&root->ordered_root,
4232 &fs_info->ordered_roots);
4233
4234 spin_unlock(&fs_info->ordered_root_lock);
4235 btrfs_destroy_ordered_extents(root);
4236
4237 cond_resched();
4238 spin_lock(&fs_info->ordered_root_lock);
4239 }
4240 spin_unlock(&fs_info->ordered_root_lock);
4241 }
4242
4243 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4244 struct btrfs_root *root)
4245 {
4246 struct rb_node *node;
4247 struct btrfs_delayed_ref_root *delayed_refs;
4248 struct btrfs_delayed_ref_node *ref;
4249 int ret = 0;
4250
4251 delayed_refs = &trans->delayed_refs;
4252
4253 spin_lock(&delayed_refs->lock);
4254 if (atomic_read(&delayed_refs->num_entries) == 0) {
4255 spin_unlock(&delayed_refs->lock);
4256 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4257 return ret;
4258 }
4259
4260 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4261 struct btrfs_delayed_ref_head *head;
4262 struct btrfs_delayed_ref_node *tmp;
4263 bool pin_bytes = false;
4264
4265 head = rb_entry(node, struct btrfs_delayed_ref_head,
4266 href_node);
4267 if (!mutex_trylock(&head->mutex)) {
4268 atomic_inc(&head->node.refs);
4269 spin_unlock(&delayed_refs->lock);
4270
4271 mutex_lock(&head->mutex);
4272 mutex_unlock(&head->mutex);
4273 btrfs_put_delayed_ref(&head->node);
4274 spin_lock(&delayed_refs->lock);
4275 continue;
4276 }
4277 spin_lock(&head->lock);
4278 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4279 list) {
4280 ref->in_tree = 0;
4281 list_del(&ref->list);
4282 atomic_dec(&delayed_refs->num_entries);
4283 btrfs_put_delayed_ref(ref);
4284 }
4285 if (head->must_insert_reserved)
4286 pin_bytes = true;
4287 btrfs_free_delayed_extent_op(head->extent_op);
4288 delayed_refs->num_heads--;
4289 if (head->processing == 0)
4290 delayed_refs->num_heads_ready--;
4291 atomic_dec(&delayed_refs->num_entries);
4292 head->node.in_tree = 0;
4293 rb_erase(&head->href_node, &delayed_refs->href_root);
4294 spin_unlock(&head->lock);
4295 spin_unlock(&delayed_refs->lock);
4296 mutex_unlock(&head->mutex);
4297
4298 if (pin_bytes)
4299 btrfs_pin_extent(root, head->node.bytenr,
4300 head->node.num_bytes, 1);
4301 btrfs_put_delayed_ref(&head->node);
4302 cond_resched();
4303 spin_lock(&delayed_refs->lock);
4304 }
4305
4306 spin_unlock(&delayed_refs->lock);
4307
4308 return ret;
4309 }
4310
4311 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4312 {
4313 struct btrfs_inode *btrfs_inode;
4314 struct list_head splice;
4315
4316 INIT_LIST_HEAD(&splice);
4317
4318 spin_lock(&root->delalloc_lock);
4319 list_splice_init(&root->delalloc_inodes, &splice);
4320
4321 while (!list_empty(&splice)) {
4322 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4323 delalloc_inodes);
4324
4325 list_del_init(&btrfs_inode->delalloc_inodes);
4326 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4327 &btrfs_inode->runtime_flags);
4328 spin_unlock(&root->delalloc_lock);
4329
4330 btrfs_invalidate_inodes(btrfs_inode->root);
4331
4332 spin_lock(&root->delalloc_lock);
4333 }
4334
4335 spin_unlock(&root->delalloc_lock);
4336 }
4337
4338 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4339 {
4340 struct btrfs_root *root;
4341 struct list_head splice;
4342
4343 INIT_LIST_HEAD(&splice);
4344
4345 spin_lock(&fs_info->delalloc_root_lock);
4346 list_splice_init(&fs_info->delalloc_roots, &splice);
4347 while (!list_empty(&splice)) {
4348 root = list_first_entry(&splice, struct btrfs_root,
4349 delalloc_root);
4350 list_del_init(&root->delalloc_root);
4351 root = btrfs_grab_fs_root(root);
4352 BUG_ON(!root);
4353 spin_unlock(&fs_info->delalloc_root_lock);
4354
4355 btrfs_destroy_delalloc_inodes(root);
4356 btrfs_put_fs_root(root);
4357
4358 spin_lock(&fs_info->delalloc_root_lock);
4359 }
4360 spin_unlock(&fs_info->delalloc_root_lock);
4361 }
4362
4363 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4364 struct extent_io_tree *dirty_pages,
4365 int mark)
4366 {
4367 int ret;
4368 struct extent_buffer *eb;
4369 u64 start = 0;
4370 u64 end;
4371
4372 while (1) {
4373 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4374 mark, NULL);
4375 if (ret)
4376 break;
4377
4378 clear_extent_bits(dirty_pages, start, end, mark);
4379 while (start <= end) {
4380 eb = btrfs_find_tree_block(root->fs_info, start);
4381 start += root->nodesize;
4382 if (!eb)
4383 continue;
4384 wait_on_extent_buffer_writeback(eb);
4385
4386 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4387 &eb->bflags))
4388 clear_extent_buffer_dirty(eb);
4389 free_extent_buffer_stale(eb);
4390 }
4391 }
4392
4393 return ret;
4394 }
4395
4396 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4397 struct extent_io_tree *pinned_extents)
4398 {
4399 struct extent_io_tree *unpin;
4400 u64 start;
4401 u64 end;
4402 int ret;
4403 bool loop = true;
4404
4405 unpin = pinned_extents;
4406 again:
4407 while (1) {
4408 ret = find_first_extent_bit(unpin, 0, &start, &end,
4409 EXTENT_DIRTY, NULL);
4410 if (ret)
4411 break;
4412
4413 clear_extent_dirty(unpin, start, end);
4414 btrfs_error_unpin_extent_range(root, start, end);
4415 cond_resched();
4416 }
4417
4418 if (loop) {
4419 if (unpin == &root->fs_info->freed_extents[0])
4420 unpin = &root->fs_info->freed_extents[1];
4421 else
4422 unpin = &root->fs_info->freed_extents[0];
4423 loop = false;
4424 goto again;
4425 }
4426
4427 return 0;
4428 }
4429
4430 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4431 struct btrfs_root *root)
4432 {
4433 btrfs_destroy_delayed_refs(cur_trans, root);
4434
4435 cur_trans->state = TRANS_STATE_COMMIT_START;
4436 wake_up(&root->fs_info->transaction_blocked_wait);
4437
4438 cur_trans->state = TRANS_STATE_UNBLOCKED;
4439 wake_up(&root->fs_info->transaction_wait);
4440
4441 btrfs_destroy_delayed_inodes(root);
4442 btrfs_assert_delayed_root_empty(root);
4443
4444 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4445 EXTENT_DIRTY);
4446 btrfs_destroy_pinned_extent(root,
4447 root->fs_info->pinned_extents);
4448
4449 cur_trans->state =TRANS_STATE_COMPLETED;
4450 wake_up(&cur_trans->commit_wait);
4451
4452 /*
4453 memset(cur_trans, 0, sizeof(*cur_trans));
4454 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4455 */
4456 }
4457
4458 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4459 {
4460 struct btrfs_transaction *t;
4461
4462 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4463
4464 spin_lock(&root->fs_info->trans_lock);
4465 while (!list_empty(&root->fs_info->trans_list)) {
4466 t = list_first_entry(&root->fs_info->trans_list,
4467 struct btrfs_transaction, list);
4468 if (t->state >= TRANS_STATE_COMMIT_START) {
4469 atomic_inc(&t->use_count);
4470 spin_unlock(&root->fs_info->trans_lock);
4471 btrfs_wait_for_commit(root, t->transid);
4472 btrfs_put_transaction(t);
4473 spin_lock(&root->fs_info->trans_lock);
4474 continue;
4475 }
4476 if (t == root->fs_info->running_transaction) {
4477 t->state = TRANS_STATE_COMMIT_DOING;
4478 spin_unlock(&root->fs_info->trans_lock);
4479 /*
4480 * We wait for 0 num_writers since we don't hold a trans
4481 * handle open currently for this transaction.
4482 */
4483 wait_event(t->writer_wait,
4484 atomic_read(&t->num_writers) == 0);
4485 } else {
4486 spin_unlock(&root->fs_info->trans_lock);
4487 }
4488 btrfs_cleanup_one_transaction(t, root);
4489
4490 spin_lock(&root->fs_info->trans_lock);
4491 if (t == root->fs_info->running_transaction)
4492 root->fs_info->running_transaction = NULL;
4493 list_del_init(&t->list);
4494 spin_unlock(&root->fs_info->trans_lock);
4495
4496 btrfs_put_transaction(t);
4497 trace_btrfs_transaction_commit(root);
4498 spin_lock(&root->fs_info->trans_lock);
4499 }
4500 spin_unlock(&root->fs_info->trans_lock);
4501 btrfs_destroy_all_ordered_extents(root->fs_info);
4502 btrfs_destroy_delayed_inodes(root);
4503 btrfs_assert_delayed_root_empty(root);
4504 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4505 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4506 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4507
4508 return 0;
4509 }
4510
4511 static const struct extent_io_ops btree_extent_io_ops = {
4512 .readpage_end_io_hook = btree_readpage_end_io_hook,
4513 .readpage_io_failed_hook = btree_io_failed_hook,
4514 .submit_bio_hook = btree_submit_bio_hook,
4515 /* note we're sharing with inode.c for the merge bio hook */
4516 .merge_bio_hook = btrfs_merge_bio_hook,
4517 };
This page took 0.218062 seconds and 6 git commands to generate.