Btrfs: Pass down the expected generation number when reading tree blocks
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38 if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40 (unsigned long long)extent_buffer_blocknr(buf),
41 (unsigned long long)btrfs_header_blocknr(buf));
42 return 1;
43 }
44 return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50 static struct workqueue_struct *async_submit_workqueue;
51
52 struct end_io_wq {
53 struct bio *bio;
54 bio_end_io_t *end_io;
55 void *private;
56 struct btrfs_fs_info *info;
57 int error;
58 int metadata;
59 struct list_head list;
60 };
61
62 struct async_submit_bio {
63 struct inode *inode;
64 struct bio *bio;
65 struct list_head list;
66 extent_submit_bio_hook_t *submit_bio_hook;
67 int rw;
68 int mirror_num;
69 };
70
71 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
72 size_t page_offset, u64 start, u64 len,
73 int create)
74 {
75 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
76 struct extent_map *em;
77 int ret;
78
79 spin_lock(&em_tree->lock);
80 em = lookup_extent_mapping(em_tree, start, len);
81 if (em) {
82 em->bdev =
83 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
84 spin_unlock(&em_tree->lock);
85 goto out;
86 }
87 spin_unlock(&em_tree->lock);
88
89 em = alloc_extent_map(GFP_NOFS);
90 if (!em) {
91 em = ERR_PTR(-ENOMEM);
92 goto out;
93 }
94 em->start = 0;
95 em->len = (u64)-1;
96 em->block_start = 0;
97 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
98
99 spin_lock(&em_tree->lock);
100 ret = add_extent_mapping(em_tree, em);
101 if (ret == -EEXIST) {
102 u64 failed_start = em->start;
103 u64 failed_len = em->len;
104
105 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
106 em->start, em->len, em->block_start);
107 free_extent_map(em);
108 em = lookup_extent_mapping(em_tree, start, len);
109 if (em) {
110 printk("after failing, found %Lu %Lu %Lu\n",
111 em->start, em->len, em->block_start);
112 ret = 0;
113 } else {
114 em = lookup_extent_mapping(em_tree, failed_start,
115 failed_len);
116 if (em) {
117 printk("double failure lookup gives us "
118 "%Lu %Lu -> %Lu\n", em->start,
119 em->len, em->block_start);
120 free_extent_map(em);
121 }
122 ret = -EIO;
123 }
124 } else if (ret) {
125 free_extent_map(em);
126 em = NULL;
127 }
128 spin_unlock(&em_tree->lock);
129
130 if (ret)
131 em = ERR_PTR(ret);
132 out:
133 return em;
134 }
135
136 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
137 {
138 return btrfs_crc32c(seed, data, len);
139 }
140
141 void btrfs_csum_final(u32 crc, char *result)
142 {
143 *(__le32 *)result = ~cpu_to_le32(crc);
144 }
145
146 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
147 int verify)
148 {
149 char result[BTRFS_CRC32_SIZE];
150 unsigned long len;
151 unsigned long cur_len;
152 unsigned long offset = BTRFS_CSUM_SIZE;
153 char *map_token = NULL;
154 char *kaddr;
155 unsigned long map_start;
156 unsigned long map_len;
157 int err;
158 u32 crc = ~(u32)0;
159
160 len = buf->len - offset;
161 while(len > 0) {
162 err = map_private_extent_buffer(buf, offset, 32,
163 &map_token, &kaddr,
164 &map_start, &map_len, KM_USER0);
165 if (err) {
166 printk("failed to map extent buffer! %lu\n",
167 offset);
168 return 1;
169 }
170 cur_len = min(len, map_len - (offset - map_start));
171 crc = btrfs_csum_data(root, kaddr + offset - map_start,
172 crc, cur_len);
173 len -= cur_len;
174 offset += cur_len;
175 unmap_extent_buffer(buf, map_token, KM_USER0);
176 }
177 btrfs_csum_final(crc, result);
178
179 if (verify) {
180 int from_this_trans = 0;
181
182 if (root->fs_info->running_transaction &&
183 btrfs_header_generation(buf) ==
184 root->fs_info->running_transaction->transid)
185 from_this_trans = 1;
186
187 /* FIXME, this is not good */
188 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
189 u32 val;
190 u32 found = 0;
191 memcpy(&found, result, BTRFS_CRC32_SIZE);
192
193 read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
194 printk("btrfs: %s checksum verify failed on %llu "
195 "wanted %X found %X from_this_trans %d "
196 "level %d\n",
197 root->fs_info->sb->s_id,
198 buf->start, val, found, from_this_trans,
199 btrfs_header_level(buf));
200 return 1;
201 }
202 } else {
203 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
204 }
205 return 0;
206 }
207
208 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
209 struct extent_buffer *eb,
210 u64 start, u64 parent_transid)
211 {
212 struct extent_io_tree *io_tree;
213 int ret;
214 int num_copies = 0;
215 int mirror_num = 0;
216
217 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
218 while (1) {
219 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
220 btree_get_extent, mirror_num);
221 if (!ret)
222 return ret;
223
224 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
225 eb->start, eb->len);
226 if (num_copies == 1)
227 return ret;
228
229 mirror_num++;
230 if (mirror_num > num_copies)
231 return ret;
232 }
233 return -EIO;
234 }
235
236 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
237 {
238 struct extent_io_tree *tree;
239 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
240 u64 found_start;
241 int found_level;
242 unsigned long len;
243 struct extent_buffer *eb;
244 int ret;
245
246 tree = &BTRFS_I(page->mapping->host)->io_tree;
247
248 if (page->private == EXTENT_PAGE_PRIVATE)
249 goto out;
250 if (!page->private)
251 goto out;
252 len = page->private >> 2;
253 if (len == 0) {
254 WARN_ON(1);
255 }
256 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
257 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
258 btrfs_header_generation(eb));
259 BUG_ON(ret);
260 btrfs_clear_buffer_defrag(eb);
261 found_start = btrfs_header_bytenr(eb);
262 if (found_start != start) {
263 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
264 start, found_start, len);
265 WARN_ON(1);
266 goto err;
267 }
268 if (eb->first_page != page) {
269 printk("bad first page %lu %lu\n", eb->first_page->index,
270 page->index);
271 WARN_ON(1);
272 goto err;
273 }
274 if (!PageUptodate(page)) {
275 printk("csum not up to date page %lu\n", page->index);
276 WARN_ON(1);
277 goto err;
278 }
279 found_level = btrfs_header_level(eb);
280 spin_lock(&root->fs_info->hash_lock);
281 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
282 spin_unlock(&root->fs_info->hash_lock);
283 csum_tree_block(root, eb, 0);
284 err:
285 free_extent_buffer(eb);
286 out:
287 return 0;
288 }
289
290 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
291 {
292 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
293
294 csum_dirty_buffer(root, page);
295 return 0;
296 }
297
298 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
299 struct extent_state *state)
300 {
301 struct extent_io_tree *tree;
302 u64 found_start;
303 int found_level;
304 unsigned long len;
305 struct extent_buffer *eb;
306 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
307 int ret = 0;
308
309 tree = &BTRFS_I(page->mapping->host)->io_tree;
310 if (page->private == EXTENT_PAGE_PRIVATE)
311 goto out;
312 if (!page->private)
313 goto out;
314 len = page->private >> 2;
315 if (len == 0) {
316 WARN_ON(1);
317 }
318 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
319
320 btrfs_clear_buffer_defrag(eb);
321 found_start = btrfs_header_bytenr(eb);
322 if (found_start != start) {
323 ret = -EIO;
324 goto err;
325 }
326 if (eb->first_page != page) {
327 printk("bad first page %lu %lu\n", eb->first_page->index,
328 page->index);
329 WARN_ON(1);
330 ret = -EIO;
331 goto err;
332 }
333 found_level = btrfs_header_level(eb);
334
335 ret = csum_tree_block(root, eb, 1);
336 if (ret)
337 ret = -EIO;
338
339 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
340 end = eb->start + end - 1;
341 release_extent_buffer_tail_pages(eb);
342 err:
343 free_extent_buffer(eb);
344 out:
345 return ret;
346 }
347
348 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
349 static void end_workqueue_bio(struct bio *bio, int err)
350 #else
351 static int end_workqueue_bio(struct bio *bio,
352 unsigned int bytes_done, int err)
353 #endif
354 {
355 struct end_io_wq *end_io_wq = bio->bi_private;
356 struct btrfs_fs_info *fs_info;
357 unsigned long flags;
358
359 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
360 if (bio->bi_size)
361 return 1;
362 #endif
363
364 fs_info = end_io_wq->info;
365 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
366 end_io_wq->error = err;
367 list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
368 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
369 queue_work(end_io_workqueue, &fs_info->end_io_work);
370
371 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
372 return 0;
373 #endif
374 }
375
376 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
377 int metadata)
378 {
379 struct end_io_wq *end_io_wq;
380 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
381 if (!end_io_wq)
382 return -ENOMEM;
383
384 end_io_wq->private = bio->bi_private;
385 end_io_wq->end_io = bio->bi_end_io;
386 end_io_wq->info = info;
387 end_io_wq->error = 0;
388 end_io_wq->bio = bio;
389 end_io_wq->metadata = metadata;
390
391 bio->bi_private = end_io_wq;
392 bio->bi_end_io = end_workqueue_bio;
393 return 0;
394 }
395
396 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
397 int rw, struct bio *bio, int mirror_num,
398 extent_submit_bio_hook_t *submit_bio_hook)
399 {
400 struct async_submit_bio *async;
401
402 /*
403 * inline writerback should stay inline, only hop to the async
404 * queue if we're pdflush
405 */
406 if (!current_is_pdflush())
407 return submit_bio_hook(inode, rw, bio, mirror_num);
408
409 async = kmalloc(sizeof(*async), GFP_NOFS);
410 if (!async)
411 return -ENOMEM;
412
413 async->inode = inode;
414 async->rw = rw;
415 async->bio = bio;
416 async->mirror_num = mirror_num;
417 async->submit_bio_hook = submit_bio_hook;
418
419 spin_lock(&fs_info->async_submit_work_lock);
420 list_add_tail(&async->list, &fs_info->async_submit_work_list);
421 spin_unlock(&fs_info->async_submit_work_lock);
422
423 queue_work(async_submit_workqueue, &fs_info->async_submit_work);
424 return 0;
425 }
426
427 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
428 int mirror_num)
429 {
430 struct btrfs_root *root = BTRFS_I(inode)->root;
431 u64 offset;
432 int ret;
433
434 offset = bio->bi_sector << 9;
435
436 if (rw & (1 << BIO_RW)) {
437 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
438 }
439
440 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
441 BUG_ON(ret);
442
443 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
444 }
445
446 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
447 int mirror_num)
448 {
449 if (!(rw & (1 << BIO_RW))) {
450 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
451 }
452 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
453 inode, rw, bio, mirror_num,
454 __btree_submit_bio_hook);
455 }
456
457 static int btree_writepage(struct page *page, struct writeback_control *wbc)
458 {
459 struct extent_io_tree *tree;
460 tree = &BTRFS_I(page->mapping->host)->io_tree;
461 return extent_write_full_page(tree, page, btree_get_extent, wbc);
462 }
463
464 static int btree_writepages(struct address_space *mapping,
465 struct writeback_control *wbc)
466 {
467 struct extent_io_tree *tree;
468 tree = &BTRFS_I(mapping->host)->io_tree;
469 if (wbc->sync_mode == WB_SYNC_NONE) {
470 u64 num_dirty;
471 u64 start = 0;
472 unsigned long thresh = 96 * 1024 * 1024;
473
474 if (wbc->for_kupdate)
475 return 0;
476
477 if (current_is_pdflush()) {
478 thresh = 96 * 1024 * 1024;
479 } else {
480 thresh = 8 * 1024 * 1024;
481 }
482 num_dirty = count_range_bits(tree, &start, (u64)-1,
483 thresh, EXTENT_DIRTY);
484 if (num_dirty < thresh) {
485 return 0;
486 }
487 }
488 return extent_writepages(tree, mapping, btree_get_extent, wbc);
489 }
490
491 int btree_readpage(struct file *file, struct page *page)
492 {
493 struct extent_io_tree *tree;
494 tree = &BTRFS_I(page->mapping->host)->io_tree;
495 return extent_read_full_page(tree, page, btree_get_extent);
496 }
497
498 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
499 {
500 struct extent_io_tree *tree;
501 struct extent_map_tree *map;
502 int ret;
503
504 if (page_count(page) > 3) {
505 /* once for page->private, once for the caller, once
506 * once for the page cache
507 */
508 return 0;
509 }
510 tree = &BTRFS_I(page->mapping->host)->io_tree;
511 map = &BTRFS_I(page->mapping->host)->extent_tree;
512 ret = try_release_extent_state(map, tree, page, gfp_flags);
513 if (ret == 1) {
514 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
515 ClearPagePrivate(page);
516 set_page_private(page, 0);
517 page_cache_release(page);
518 }
519 return ret;
520 }
521
522 static void btree_invalidatepage(struct page *page, unsigned long offset)
523 {
524 struct extent_io_tree *tree;
525 tree = &BTRFS_I(page->mapping->host)->io_tree;
526 extent_invalidatepage(tree, page, offset);
527 btree_releasepage(page, GFP_NOFS);
528 if (PagePrivate(page)) {
529 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
530 ClearPagePrivate(page);
531 set_page_private(page, 0);
532 page_cache_release(page);
533 }
534 }
535
536 #if 0
537 static int btree_writepage(struct page *page, struct writeback_control *wbc)
538 {
539 struct buffer_head *bh;
540 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
541 struct buffer_head *head;
542 if (!page_has_buffers(page)) {
543 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
544 (1 << BH_Dirty)|(1 << BH_Uptodate));
545 }
546 head = page_buffers(page);
547 bh = head;
548 do {
549 if (buffer_dirty(bh))
550 csum_tree_block(root, bh, 0);
551 bh = bh->b_this_page;
552 } while (bh != head);
553 return block_write_full_page(page, btree_get_block, wbc);
554 }
555 #endif
556
557 static struct address_space_operations btree_aops = {
558 .readpage = btree_readpage,
559 .writepage = btree_writepage,
560 .writepages = btree_writepages,
561 .releasepage = btree_releasepage,
562 .invalidatepage = btree_invalidatepage,
563 .sync_page = block_sync_page,
564 };
565
566 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
567 u64 parent_transid)
568 {
569 struct extent_buffer *buf = NULL;
570 struct inode *btree_inode = root->fs_info->btree_inode;
571 int ret = 0;
572
573 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
574 if (!buf)
575 return 0;
576 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
577 buf, 0, 0, btree_get_extent, 0);
578 free_extent_buffer(buf);
579 return ret;
580 }
581
582 static int close_all_devices(struct btrfs_fs_info *fs_info)
583 {
584 struct list_head *list;
585 struct list_head *next;
586 struct btrfs_device *device;
587
588 list = &fs_info->fs_devices->devices;
589 list_for_each(next, list) {
590 device = list_entry(next, struct btrfs_device, dev_list);
591 close_bdev_excl(device->bdev);
592 device->bdev = NULL;
593 }
594 return 0;
595 }
596
597 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
598 u64 bytenr, u32 blocksize)
599 {
600 struct inode *btree_inode = root->fs_info->btree_inode;
601 struct extent_buffer *eb;
602 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
603 bytenr, blocksize, GFP_NOFS);
604 return eb;
605 }
606
607 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
608 u64 bytenr, u32 blocksize)
609 {
610 struct inode *btree_inode = root->fs_info->btree_inode;
611 struct extent_buffer *eb;
612
613 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
614 bytenr, blocksize, NULL, GFP_NOFS);
615 return eb;
616 }
617
618
619 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
620 u32 blocksize, u64 parent_transid)
621 {
622 struct extent_buffer *buf = NULL;
623 struct inode *btree_inode = root->fs_info->btree_inode;
624 struct extent_io_tree *io_tree;
625 int ret;
626
627 io_tree = &BTRFS_I(btree_inode)->io_tree;
628
629 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
630 if (!buf)
631 return NULL;
632
633 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
634
635 if (ret == 0) {
636 buf->flags |= EXTENT_UPTODATE;
637 }
638 return buf;
639
640 }
641
642 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
643 struct extent_buffer *buf)
644 {
645 struct inode *btree_inode = root->fs_info->btree_inode;
646 if (btrfs_header_generation(buf) ==
647 root->fs_info->running_transaction->transid)
648 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
649 buf);
650 return 0;
651 }
652
653 int wait_on_tree_block_writeback(struct btrfs_root *root,
654 struct extent_buffer *buf)
655 {
656 struct inode *btree_inode = root->fs_info->btree_inode;
657 wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
658 buf);
659 return 0;
660 }
661
662 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
663 u32 stripesize, struct btrfs_root *root,
664 struct btrfs_fs_info *fs_info,
665 u64 objectid)
666 {
667 root->node = NULL;
668 root->inode = NULL;
669 root->commit_root = NULL;
670 root->sectorsize = sectorsize;
671 root->nodesize = nodesize;
672 root->leafsize = leafsize;
673 root->stripesize = stripesize;
674 root->ref_cows = 0;
675 root->track_dirty = 0;
676
677 root->fs_info = fs_info;
678 root->objectid = objectid;
679 root->last_trans = 0;
680 root->highest_inode = 0;
681 root->last_inode_alloc = 0;
682 root->name = NULL;
683 root->in_sysfs = 0;
684
685 INIT_LIST_HEAD(&root->dirty_list);
686 memset(&root->root_key, 0, sizeof(root->root_key));
687 memset(&root->root_item, 0, sizeof(root->root_item));
688 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
689 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
690 init_completion(&root->kobj_unregister);
691 root->defrag_running = 0;
692 root->defrag_level = 0;
693 root->root_key.objectid = objectid;
694 return 0;
695 }
696
697 static int find_and_setup_root(struct btrfs_root *tree_root,
698 struct btrfs_fs_info *fs_info,
699 u64 objectid,
700 struct btrfs_root *root)
701 {
702 int ret;
703 u32 blocksize;
704
705 __setup_root(tree_root->nodesize, tree_root->leafsize,
706 tree_root->sectorsize, tree_root->stripesize,
707 root, fs_info, objectid);
708 ret = btrfs_find_last_root(tree_root, objectid,
709 &root->root_item, &root->root_key);
710 BUG_ON(ret);
711
712 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
713 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
714 blocksize, 0);
715 BUG_ON(!root->node);
716 return 0;
717 }
718
719 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
720 struct btrfs_key *location)
721 {
722 struct btrfs_root *root;
723 struct btrfs_root *tree_root = fs_info->tree_root;
724 struct btrfs_path *path;
725 struct extent_buffer *l;
726 u64 highest_inode;
727 u32 blocksize;
728 int ret = 0;
729
730 root = kzalloc(sizeof(*root), GFP_NOFS);
731 if (!root)
732 return ERR_PTR(-ENOMEM);
733 if (location->offset == (u64)-1) {
734 ret = find_and_setup_root(tree_root, fs_info,
735 location->objectid, root);
736 if (ret) {
737 kfree(root);
738 return ERR_PTR(ret);
739 }
740 goto insert;
741 }
742
743 __setup_root(tree_root->nodesize, tree_root->leafsize,
744 tree_root->sectorsize, tree_root->stripesize,
745 root, fs_info, location->objectid);
746
747 path = btrfs_alloc_path();
748 BUG_ON(!path);
749 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
750 if (ret != 0) {
751 if (ret > 0)
752 ret = -ENOENT;
753 goto out;
754 }
755 l = path->nodes[0];
756 read_extent_buffer(l, &root->root_item,
757 btrfs_item_ptr_offset(l, path->slots[0]),
758 sizeof(root->root_item));
759 memcpy(&root->root_key, location, sizeof(*location));
760 ret = 0;
761 out:
762 btrfs_release_path(root, path);
763 btrfs_free_path(path);
764 if (ret) {
765 kfree(root);
766 return ERR_PTR(ret);
767 }
768 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
769 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
770 blocksize, 0);
771 BUG_ON(!root->node);
772 insert:
773 root->ref_cows = 1;
774 ret = btrfs_find_highest_inode(root, &highest_inode);
775 if (ret == 0) {
776 root->highest_inode = highest_inode;
777 root->last_inode_alloc = highest_inode;
778 }
779 return root;
780 }
781
782 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
783 u64 root_objectid)
784 {
785 struct btrfs_root *root;
786
787 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
788 return fs_info->tree_root;
789 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
790 return fs_info->extent_root;
791
792 root = radix_tree_lookup(&fs_info->fs_roots_radix,
793 (unsigned long)root_objectid);
794 return root;
795 }
796
797 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
798 struct btrfs_key *location)
799 {
800 struct btrfs_root *root;
801 int ret;
802
803 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
804 return fs_info->tree_root;
805 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
806 return fs_info->extent_root;
807 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
808 return fs_info->chunk_root;
809 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
810 return fs_info->dev_root;
811
812 root = radix_tree_lookup(&fs_info->fs_roots_radix,
813 (unsigned long)location->objectid);
814 if (root)
815 return root;
816
817 root = btrfs_read_fs_root_no_radix(fs_info, location);
818 if (IS_ERR(root))
819 return root;
820 ret = radix_tree_insert(&fs_info->fs_roots_radix,
821 (unsigned long)root->root_key.objectid,
822 root);
823 if (ret) {
824 free_extent_buffer(root->node);
825 kfree(root);
826 return ERR_PTR(ret);
827 }
828 ret = btrfs_find_dead_roots(fs_info->tree_root,
829 root->root_key.objectid, root);
830 BUG_ON(ret);
831
832 return root;
833 }
834
835 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
836 struct btrfs_key *location,
837 const char *name, int namelen)
838 {
839 struct btrfs_root *root;
840 int ret;
841
842 root = btrfs_read_fs_root_no_name(fs_info, location);
843 if (!root)
844 return NULL;
845
846 if (root->in_sysfs)
847 return root;
848
849 ret = btrfs_set_root_name(root, name, namelen);
850 if (ret) {
851 free_extent_buffer(root->node);
852 kfree(root);
853 return ERR_PTR(ret);
854 }
855
856 ret = btrfs_sysfs_add_root(root);
857 if (ret) {
858 free_extent_buffer(root->node);
859 kfree(root->name);
860 kfree(root);
861 return ERR_PTR(ret);
862 }
863 root->in_sysfs = 1;
864 return root;
865 }
866 #if 0
867 static int add_hasher(struct btrfs_fs_info *info, char *type) {
868 struct btrfs_hasher *hasher;
869
870 hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
871 if (!hasher)
872 return -ENOMEM;
873 hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
874 if (!hasher->hash_tfm) {
875 kfree(hasher);
876 return -EINVAL;
877 }
878 spin_lock(&info->hash_lock);
879 list_add(&hasher->list, &info->hashers);
880 spin_unlock(&info->hash_lock);
881 return 0;
882 }
883 #endif
884
885 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
886 {
887 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
888 int ret = 0;
889 struct list_head *cur;
890 struct btrfs_device *device;
891 struct backing_dev_info *bdi;
892
893 list_for_each(cur, &info->fs_devices->devices) {
894 device = list_entry(cur, struct btrfs_device, dev_list);
895 bdi = blk_get_backing_dev_info(device->bdev);
896 if (bdi && bdi_congested(bdi, bdi_bits)) {
897 ret = 1;
898 break;
899 }
900 }
901 return ret;
902 }
903
904 /*
905 * this unplugs every device on the box, and it is only used when page
906 * is null
907 */
908 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
909 {
910 struct list_head *cur;
911 struct btrfs_device *device;
912 struct btrfs_fs_info *info;
913
914 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
915 list_for_each(cur, &info->fs_devices->devices) {
916 device = list_entry(cur, struct btrfs_device, dev_list);
917 bdi = blk_get_backing_dev_info(device->bdev);
918 if (bdi->unplug_io_fn) {
919 bdi->unplug_io_fn(bdi, page);
920 }
921 }
922 }
923
924 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
925 {
926 struct inode *inode;
927 struct extent_map_tree *em_tree;
928 struct extent_map *em;
929 struct address_space *mapping;
930 u64 offset;
931
932 /* the generic O_DIRECT read code does this */
933 if (!page) {
934 __unplug_io_fn(bdi, page);
935 return;
936 }
937
938 /*
939 * page->mapping may change at any time. Get a consistent copy
940 * and use that for everything below
941 */
942 smp_mb();
943 mapping = page->mapping;
944 if (!mapping)
945 return;
946
947 inode = mapping->host;
948 offset = page_offset(page);
949
950 em_tree = &BTRFS_I(inode)->extent_tree;
951 spin_lock(&em_tree->lock);
952 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
953 spin_unlock(&em_tree->lock);
954 if (!em)
955 return;
956
957 offset = offset - em->start;
958 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
959 em->block_start + offset, page);
960 free_extent_map(em);
961 }
962
963 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
964 {
965 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
966 bdi_init(bdi);
967 #endif
968 bdi->ra_pages = default_backing_dev_info.ra_pages;
969 bdi->state = 0;
970 bdi->capabilities = default_backing_dev_info.capabilities;
971 bdi->unplug_io_fn = btrfs_unplug_io_fn;
972 bdi->unplug_io_data = info;
973 bdi->congested_fn = btrfs_congested_fn;
974 bdi->congested_data = info;
975 return 0;
976 }
977
978 static int bio_ready_for_csum(struct bio *bio)
979 {
980 u64 length = 0;
981 u64 buf_len = 0;
982 u64 start = 0;
983 struct page *page;
984 struct extent_io_tree *io_tree = NULL;
985 struct btrfs_fs_info *info = NULL;
986 struct bio_vec *bvec;
987 int i;
988 int ret;
989
990 bio_for_each_segment(bvec, bio, i) {
991 page = bvec->bv_page;
992 if (page->private == EXTENT_PAGE_PRIVATE) {
993 length += bvec->bv_len;
994 continue;
995 }
996 if (!page->private) {
997 length += bvec->bv_len;
998 continue;
999 }
1000 length = bvec->bv_len;
1001 buf_len = page->private >> 2;
1002 start = page_offset(page) + bvec->bv_offset;
1003 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1004 info = BTRFS_I(page->mapping->host)->root->fs_info;
1005 }
1006 /* are we fully contained in this bio? */
1007 if (buf_len <= length)
1008 return 1;
1009
1010 ret = extent_range_uptodate(io_tree, start + length,
1011 start + buf_len - 1);
1012 if (ret == 1)
1013 return ret;
1014 return ret;
1015 }
1016
1017 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1018 static void btrfs_end_io_csum(void *p)
1019 #else
1020 static void btrfs_end_io_csum(struct work_struct *work)
1021 #endif
1022 {
1023 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1024 struct btrfs_fs_info *fs_info = p;
1025 #else
1026 struct btrfs_fs_info *fs_info = container_of(work,
1027 struct btrfs_fs_info,
1028 end_io_work);
1029 #endif
1030 unsigned long flags;
1031 struct end_io_wq *end_io_wq;
1032 struct bio *bio;
1033 struct list_head *next;
1034 int error;
1035 int was_empty;
1036
1037 while(1) {
1038 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1039 if (list_empty(&fs_info->end_io_work_list)) {
1040 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1041 flags);
1042 return;
1043 }
1044 next = fs_info->end_io_work_list.next;
1045 list_del(next);
1046 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
1047
1048 end_io_wq = list_entry(next, struct end_io_wq, list);
1049
1050 bio = end_io_wq->bio;
1051 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1052 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1053 was_empty = list_empty(&fs_info->end_io_work_list);
1054 list_add_tail(&end_io_wq->list,
1055 &fs_info->end_io_work_list);
1056 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1057 flags);
1058 if (was_empty)
1059 return;
1060 continue;
1061 }
1062 error = end_io_wq->error;
1063 bio->bi_private = end_io_wq->private;
1064 bio->bi_end_io = end_io_wq->end_io;
1065 kfree(end_io_wq);
1066 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1067 bio_endio(bio, bio->bi_size, error);
1068 #else
1069 bio_endio(bio, error);
1070 #endif
1071 }
1072 }
1073
1074 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1075 static void btrfs_async_submit_work(void *p)
1076 #else
1077 static void btrfs_async_submit_work(struct work_struct *work)
1078 #endif
1079 {
1080 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1081 struct btrfs_fs_info *fs_info = p;
1082 #else
1083 struct btrfs_fs_info *fs_info = container_of(work,
1084 struct btrfs_fs_info,
1085 async_submit_work);
1086 #endif
1087 struct async_submit_bio *async;
1088 struct list_head *next;
1089
1090 while(1) {
1091 spin_lock(&fs_info->async_submit_work_lock);
1092 if (list_empty(&fs_info->async_submit_work_list)) {
1093 spin_unlock(&fs_info->async_submit_work_lock);
1094 return;
1095 }
1096 next = fs_info->async_submit_work_list.next;
1097 list_del(next);
1098 spin_unlock(&fs_info->async_submit_work_lock);
1099
1100 async = list_entry(next, struct async_submit_bio, list);
1101 async->submit_bio_hook(async->inode, async->rw, async->bio,
1102 async->mirror_num);
1103 kfree(async);
1104 }
1105 }
1106
1107 struct btrfs_root *open_ctree(struct super_block *sb,
1108 struct btrfs_fs_devices *fs_devices)
1109 {
1110 u32 sectorsize;
1111 u32 nodesize;
1112 u32 leafsize;
1113 u32 blocksize;
1114 u32 stripesize;
1115 struct buffer_head *bh;
1116 struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1117 GFP_NOFS);
1118 struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1119 GFP_NOFS);
1120 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1121 GFP_NOFS);
1122 struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1123 GFP_NOFS);
1124 struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1125 GFP_NOFS);
1126 int ret;
1127 int err = -EINVAL;
1128 struct btrfs_super_block *disk_super;
1129
1130 if (!extent_root || !tree_root || !fs_info) {
1131 err = -ENOMEM;
1132 goto fail;
1133 }
1134 end_io_workqueue = create_workqueue("btrfs-end-io");
1135 BUG_ON(!end_io_workqueue);
1136 async_submit_workqueue = create_workqueue("btrfs-async-submit");
1137
1138 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1139 INIT_LIST_HEAD(&fs_info->trans_list);
1140 INIT_LIST_HEAD(&fs_info->dead_roots);
1141 INIT_LIST_HEAD(&fs_info->hashers);
1142 INIT_LIST_HEAD(&fs_info->end_io_work_list);
1143 INIT_LIST_HEAD(&fs_info->async_submit_work_list);
1144 spin_lock_init(&fs_info->hash_lock);
1145 spin_lock_init(&fs_info->end_io_work_lock);
1146 spin_lock_init(&fs_info->async_submit_work_lock);
1147 spin_lock_init(&fs_info->delalloc_lock);
1148 spin_lock_init(&fs_info->new_trans_lock);
1149
1150 init_completion(&fs_info->kobj_unregister);
1151 fs_info->tree_root = tree_root;
1152 fs_info->extent_root = extent_root;
1153 fs_info->chunk_root = chunk_root;
1154 fs_info->dev_root = dev_root;
1155 fs_info->fs_devices = fs_devices;
1156 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1157 INIT_LIST_HEAD(&fs_info->space_info);
1158 btrfs_mapping_init(&fs_info->mapping_tree);
1159 fs_info->sb = sb;
1160 fs_info->max_extent = (u64)-1;
1161 fs_info->max_inline = 8192 * 1024;
1162 setup_bdi(fs_info, &fs_info->bdi);
1163 fs_info->btree_inode = new_inode(sb);
1164 fs_info->btree_inode->i_ino = 1;
1165 fs_info->btree_inode->i_nlink = 1;
1166
1167 sb->s_blocksize = 4096;
1168 sb->s_blocksize_bits = blksize_bits(4096);
1169
1170 /*
1171 * we set the i_size on the btree inode to the max possible int.
1172 * the real end of the address space is determined by all of
1173 * the devices in the system
1174 */
1175 fs_info->btree_inode->i_size = OFFSET_MAX;
1176 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1177 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1178
1179 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1180 fs_info->btree_inode->i_mapping,
1181 GFP_NOFS);
1182 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1183 GFP_NOFS);
1184
1185 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1186
1187 extent_io_tree_init(&fs_info->free_space_cache,
1188 fs_info->btree_inode->i_mapping, GFP_NOFS);
1189 extent_io_tree_init(&fs_info->block_group_cache,
1190 fs_info->btree_inode->i_mapping, GFP_NOFS);
1191 extent_io_tree_init(&fs_info->pinned_extents,
1192 fs_info->btree_inode->i_mapping, GFP_NOFS);
1193 extent_io_tree_init(&fs_info->pending_del,
1194 fs_info->btree_inode->i_mapping, GFP_NOFS);
1195 extent_io_tree_init(&fs_info->extent_ins,
1196 fs_info->btree_inode->i_mapping, GFP_NOFS);
1197 fs_info->do_barriers = 1;
1198
1199 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1200 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1201 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work,
1202 fs_info);
1203 INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1204 #else
1205 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1206 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work);
1207 INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1208 #endif
1209 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1210 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1211 sizeof(struct btrfs_key));
1212 insert_inode_hash(fs_info->btree_inode);
1213 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1214
1215 mutex_init(&fs_info->trans_mutex);
1216 mutex_init(&fs_info->fs_mutex);
1217
1218 #if 0
1219 ret = add_hasher(fs_info, "crc32c");
1220 if (ret) {
1221 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1222 err = -ENOMEM;
1223 goto fail_iput;
1224 }
1225 #endif
1226 __setup_root(4096, 4096, 4096, 4096, tree_root,
1227 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1228
1229
1230 bh = __bread(fs_devices->latest_bdev,
1231 BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1232 if (!bh)
1233 goto fail_iput;
1234
1235 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1236 brelse(bh);
1237
1238 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1239
1240 disk_super = &fs_info->super_copy;
1241 if (!btrfs_super_root(disk_super))
1242 goto fail_sb_buffer;
1243
1244 if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1245 printk("Btrfs: wanted %llu devices, but found %llu\n",
1246 (unsigned long long)btrfs_super_num_devices(disk_super),
1247 (unsigned long long)fs_devices->num_devices);
1248 goto fail_sb_buffer;
1249 }
1250 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1251
1252 nodesize = btrfs_super_nodesize(disk_super);
1253 leafsize = btrfs_super_leafsize(disk_super);
1254 sectorsize = btrfs_super_sectorsize(disk_super);
1255 stripesize = btrfs_super_stripesize(disk_super);
1256 tree_root->nodesize = nodesize;
1257 tree_root->leafsize = leafsize;
1258 tree_root->sectorsize = sectorsize;
1259 tree_root->stripesize = stripesize;
1260
1261 sb->s_blocksize = sectorsize;
1262 sb->s_blocksize_bits = blksize_bits(sectorsize);
1263
1264 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1265 sizeof(disk_super->magic))) {
1266 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1267 goto fail_sb_buffer;
1268 }
1269
1270 mutex_lock(&fs_info->fs_mutex);
1271
1272 ret = btrfs_read_sys_array(tree_root);
1273 if (ret) {
1274 printk("btrfs: failed to read the system array on %s\n",
1275 sb->s_id);
1276 goto fail_sys_array;
1277 }
1278
1279 blocksize = btrfs_level_size(tree_root,
1280 btrfs_super_chunk_root_level(disk_super));
1281
1282 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1283 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1284
1285 chunk_root->node = read_tree_block(chunk_root,
1286 btrfs_super_chunk_root(disk_super),
1287 blocksize, 0);
1288 BUG_ON(!chunk_root->node);
1289
1290 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1291 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1292 BTRFS_UUID_SIZE);
1293
1294 ret = btrfs_read_chunk_tree(chunk_root);
1295 BUG_ON(ret);
1296
1297 blocksize = btrfs_level_size(tree_root,
1298 btrfs_super_root_level(disk_super));
1299
1300
1301 tree_root->node = read_tree_block(tree_root,
1302 btrfs_super_root(disk_super),
1303 blocksize, 0);
1304 if (!tree_root->node)
1305 goto fail_sb_buffer;
1306
1307
1308 ret = find_and_setup_root(tree_root, fs_info,
1309 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1310 if (ret)
1311 goto fail_tree_root;
1312 extent_root->track_dirty = 1;
1313
1314 ret = find_and_setup_root(tree_root, fs_info,
1315 BTRFS_DEV_TREE_OBJECTID, dev_root);
1316 dev_root->track_dirty = 1;
1317
1318 if (ret)
1319 goto fail_extent_root;
1320
1321 btrfs_read_block_groups(extent_root);
1322
1323 fs_info->generation = btrfs_super_generation(disk_super) + 1;
1324 fs_info->data_alloc_profile = (u64)-1;
1325 fs_info->metadata_alloc_profile = (u64)-1;
1326 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1327
1328 mutex_unlock(&fs_info->fs_mutex);
1329 return tree_root;
1330
1331 fail_extent_root:
1332 free_extent_buffer(extent_root->node);
1333 fail_tree_root:
1334 free_extent_buffer(tree_root->node);
1335 fail_sys_array:
1336 mutex_unlock(&fs_info->fs_mutex);
1337 fail_sb_buffer:
1338 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1339 fail_iput:
1340 iput(fs_info->btree_inode);
1341 fail:
1342 close_all_devices(fs_info);
1343 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1344
1345 kfree(extent_root);
1346 kfree(tree_root);
1347 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1348 bdi_destroy(&fs_info->bdi);
1349 #endif
1350 kfree(fs_info);
1351 return ERR_PTR(err);
1352 }
1353
1354 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1355 {
1356 char b[BDEVNAME_SIZE];
1357
1358 if (uptodate) {
1359 set_buffer_uptodate(bh);
1360 } else {
1361 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1362 printk(KERN_WARNING "lost page write due to "
1363 "I/O error on %s\n",
1364 bdevname(bh->b_bdev, b));
1365 }
1366 set_buffer_write_io_error(bh);
1367 clear_buffer_uptodate(bh);
1368 }
1369 unlock_buffer(bh);
1370 put_bh(bh);
1371 }
1372
1373 int write_all_supers(struct btrfs_root *root)
1374 {
1375 struct list_head *cur;
1376 struct list_head *head = &root->fs_info->fs_devices->devices;
1377 struct btrfs_device *dev;
1378 struct btrfs_super_block *sb;
1379 struct btrfs_dev_item *dev_item;
1380 struct buffer_head *bh;
1381 int ret;
1382 int do_barriers;
1383 int max_errors;
1384 int total_errors = 0;
1385 u32 crc;
1386 u64 flags;
1387
1388 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1389 do_barriers = !btrfs_test_opt(root, NOBARRIER);
1390
1391 sb = &root->fs_info->super_for_commit;
1392 dev_item = &sb->dev_item;
1393 list_for_each(cur, head) {
1394 dev = list_entry(cur, struct btrfs_device, dev_list);
1395 btrfs_set_stack_device_type(dev_item, dev->type);
1396 btrfs_set_stack_device_id(dev_item, dev->devid);
1397 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1398 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1399 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1400 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1401 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1402 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1403 flags = btrfs_super_flags(sb);
1404 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1405
1406
1407 crc = ~(u32)0;
1408 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1409 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1410 btrfs_csum_final(crc, sb->csum);
1411
1412 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1413 BTRFS_SUPER_INFO_SIZE);
1414
1415 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1416 dev->pending_io = bh;
1417
1418 get_bh(bh);
1419 set_buffer_uptodate(bh);
1420 lock_buffer(bh);
1421 bh->b_end_io = btrfs_end_buffer_write_sync;
1422
1423 if (do_barriers && dev->barriers) {
1424 ret = submit_bh(WRITE_BARRIER, bh);
1425 if (ret == -EOPNOTSUPP) {
1426 printk("btrfs: disabling barriers on dev %s\n",
1427 dev->name);
1428 set_buffer_uptodate(bh);
1429 dev->barriers = 0;
1430 get_bh(bh);
1431 lock_buffer(bh);
1432 ret = submit_bh(WRITE, bh);
1433 }
1434 } else {
1435 ret = submit_bh(WRITE, bh);
1436 }
1437 if (ret)
1438 total_errors++;
1439 }
1440 if (total_errors > max_errors) {
1441 printk("btrfs: %d errors while writing supers\n", total_errors);
1442 BUG();
1443 }
1444 total_errors = 0;
1445
1446 list_for_each(cur, head) {
1447 dev = list_entry(cur, struct btrfs_device, dev_list);
1448 BUG_ON(!dev->pending_io);
1449 bh = dev->pending_io;
1450 wait_on_buffer(bh);
1451 if (!buffer_uptodate(dev->pending_io)) {
1452 if (do_barriers && dev->barriers) {
1453 printk("btrfs: disabling barriers on dev %s\n",
1454 dev->name);
1455 set_buffer_uptodate(bh);
1456 get_bh(bh);
1457 lock_buffer(bh);
1458 dev->barriers = 0;
1459 ret = submit_bh(WRITE, bh);
1460 BUG_ON(ret);
1461 wait_on_buffer(bh);
1462 BUG_ON(!buffer_uptodate(bh));
1463 } else {
1464 total_errors++;
1465 }
1466
1467 }
1468 dev->pending_io = NULL;
1469 brelse(bh);
1470 }
1471 if (total_errors > max_errors) {
1472 printk("btrfs: %d errors while writing supers\n", total_errors);
1473 BUG();
1474 }
1475 return 0;
1476 }
1477
1478 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1479 *root)
1480 {
1481 int ret;
1482
1483 ret = write_all_supers(root);
1484 return ret;
1485 }
1486
1487 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1488 {
1489 radix_tree_delete(&fs_info->fs_roots_radix,
1490 (unsigned long)root->root_key.objectid);
1491 if (root->in_sysfs)
1492 btrfs_sysfs_del_root(root);
1493 if (root->inode)
1494 iput(root->inode);
1495 if (root->node)
1496 free_extent_buffer(root->node);
1497 if (root->commit_root)
1498 free_extent_buffer(root->commit_root);
1499 if (root->name)
1500 kfree(root->name);
1501 kfree(root);
1502 return 0;
1503 }
1504
1505 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1506 {
1507 int ret;
1508 struct btrfs_root *gang[8];
1509 int i;
1510
1511 while(1) {
1512 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1513 (void **)gang, 0,
1514 ARRAY_SIZE(gang));
1515 if (!ret)
1516 break;
1517 for (i = 0; i < ret; i++)
1518 btrfs_free_fs_root(fs_info, gang[i]);
1519 }
1520 return 0;
1521 }
1522
1523 int close_ctree(struct btrfs_root *root)
1524 {
1525 int ret;
1526 struct btrfs_trans_handle *trans;
1527 struct btrfs_fs_info *fs_info = root->fs_info;
1528
1529 fs_info->closing = 1;
1530 btrfs_transaction_flush_work(root);
1531 mutex_lock(&fs_info->fs_mutex);
1532 btrfs_defrag_dirty_roots(root->fs_info);
1533 trans = btrfs_start_transaction(root, 1);
1534 ret = btrfs_commit_transaction(trans, root);
1535 /* run commit again to drop the original snapshot */
1536 trans = btrfs_start_transaction(root, 1);
1537 btrfs_commit_transaction(trans, root);
1538 ret = btrfs_write_and_wait_transaction(NULL, root);
1539 BUG_ON(ret);
1540
1541 write_ctree_super(NULL, root);
1542 mutex_unlock(&fs_info->fs_mutex);
1543
1544 btrfs_transaction_flush_work(root);
1545
1546 if (fs_info->delalloc_bytes) {
1547 printk("btrfs: at unmount delalloc count %Lu\n",
1548 fs_info->delalloc_bytes);
1549 }
1550 if (fs_info->extent_root->node)
1551 free_extent_buffer(fs_info->extent_root->node);
1552
1553 if (fs_info->tree_root->node)
1554 free_extent_buffer(fs_info->tree_root->node);
1555
1556 if (root->fs_info->chunk_root->node);
1557 free_extent_buffer(root->fs_info->chunk_root->node);
1558
1559 if (root->fs_info->dev_root->node);
1560 free_extent_buffer(root->fs_info->dev_root->node);
1561
1562 btrfs_free_block_groups(root->fs_info);
1563 del_fs_roots(fs_info);
1564
1565 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1566
1567 extent_io_tree_empty_lru(&fs_info->free_space_cache);
1568 extent_io_tree_empty_lru(&fs_info->block_group_cache);
1569 extent_io_tree_empty_lru(&fs_info->pinned_extents);
1570 extent_io_tree_empty_lru(&fs_info->pending_del);
1571 extent_io_tree_empty_lru(&fs_info->extent_ins);
1572 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1573
1574 flush_workqueue(async_submit_workqueue);
1575 flush_workqueue(end_io_workqueue);
1576
1577 truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1578
1579 flush_workqueue(async_submit_workqueue);
1580 destroy_workqueue(async_submit_workqueue);
1581
1582 flush_workqueue(end_io_workqueue);
1583 destroy_workqueue(end_io_workqueue);
1584
1585 iput(fs_info->btree_inode);
1586 #if 0
1587 while(!list_empty(&fs_info->hashers)) {
1588 struct btrfs_hasher *hasher;
1589 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1590 hashers);
1591 list_del(&hasher->hashers);
1592 crypto_free_hash(&fs_info->hash_tfm);
1593 kfree(hasher);
1594 }
1595 #endif
1596 close_all_devices(fs_info);
1597 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1598
1599 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1600 bdi_destroy(&fs_info->bdi);
1601 #endif
1602
1603 kfree(fs_info->extent_root);
1604 kfree(fs_info->tree_root);
1605 kfree(fs_info->chunk_root);
1606 kfree(fs_info->dev_root);
1607 return 0;
1608 }
1609
1610 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1611 {
1612 struct inode *btree_inode = buf->first_page->mapping->host;
1613 return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1614 }
1615
1616 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1617 {
1618 struct inode *btree_inode = buf->first_page->mapping->host;
1619 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1620 buf);
1621 }
1622
1623 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1624 {
1625 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1626 u64 transid = btrfs_header_generation(buf);
1627 struct inode *btree_inode = root->fs_info->btree_inode;
1628
1629 if (transid != root->fs_info->generation) {
1630 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1631 (unsigned long long)buf->start,
1632 transid, root->fs_info->generation);
1633 WARN_ON(1);
1634 }
1635 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1636 }
1637
1638 void btrfs_throttle(struct btrfs_root *root)
1639 {
1640 struct backing_dev_info *bdi;
1641
1642 bdi = &root->fs_info->bdi;
1643 if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1644 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1645 congestion_wait(WRITE, HZ/20);
1646 #else
1647 blk_congestion_wait(WRITE, HZ/20);
1648 #endif
1649 }
1650 }
1651
1652 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1653 {
1654 /*
1655 * looks as though older kernels can get into trouble with
1656 * this code, they end up stuck in balance_dirty_pages forever
1657 */
1658 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1659 struct extent_io_tree *tree;
1660 u64 num_dirty;
1661 u64 start = 0;
1662 unsigned long thresh = 16 * 1024 * 1024;
1663 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
1664
1665 if (current_is_pdflush())
1666 return;
1667
1668 num_dirty = count_range_bits(tree, &start, (u64)-1,
1669 thresh, EXTENT_DIRTY);
1670 if (num_dirty > thresh) {
1671 balance_dirty_pages_ratelimited_nr(
1672 root->fs_info->btree_inode->i_mapping, 1);
1673 }
1674 #else
1675 return;
1676 #endif
1677 }
1678
1679 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1680 {
1681 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1682 struct inode *btree_inode = root->fs_info->btree_inode;
1683 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1684 buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1685 }
1686
1687 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1688 {
1689 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1690 struct inode *btree_inode = root->fs_info->btree_inode;
1691 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1692 buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1693 GFP_NOFS);
1694 }
1695
1696 int btrfs_buffer_defrag(struct extent_buffer *buf)
1697 {
1698 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1699 struct inode *btree_inode = root->fs_info->btree_inode;
1700 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1701 buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1702 }
1703
1704 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1705 {
1706 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1707 struct inode *btree_inode = root->fs_info->btree_inode;
1708 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1709 buf->start, buf->start + buf->len - 1,
1710 EXTENT_DEFRAG_DONE, 0);
1711 }
1712
1713 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1714 {
1715 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1716 struct inode *btree_inode = root->fs_info->btree_inode;
1717 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1718 buf->start, buf->start + buf->len - 1,
1719 EXTENT_DEFRAG_DONE, GFP_NOFS);
1720 }
1721
1722 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1723 {
1724 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1725 struct inode *btree_inode = root->fs_info->btree_inode;
1726 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1727 buf->start, buf->start + buf->len - 1,
1728 EXTENT_DEFRAG, GFP_NOFS);
1729 }
1730
1731 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
1732 {
1733 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1734 int ret;
1735 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1736 if (ret == 0) {
1737 buf->flags |= EXTENT_UPTODATE;
1738 }
1739 return ret;
1740 }
1741
1742 static struct extent_io_ops btree_extent_io_ops = {
1743 .writepage_io_hook = btree_writepage_io_hook,
1744 .readpage_end_io_hook = btree_readpage_end_io_hook,
1745 .submit_bio_hook = btree_submit_bio_hook,
1746 /* note we're sharing with inode.c for the merge bio hook */
1747 .merge_bio_hook = btrfs_merge_bio_hook,
1748 };
This page took 0.065084 seconds and 6 git commands to generate.