btrfs: make static code static & remove dead code
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38
39 #undef SCRAMBLE_DELAYED_REFS
40
41 /*
42 * control flags for do_chunk_alloc's force field
43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44 * if we really need one.
45 *
46 * CHUNK_ALLOC_LIMITED means to only try and allocate one
47 * if we have very few chunks already allocated. This is
48 * used as part of the clustering code to help make sure
49 * we have a good pool of storage to cluster in, without
50 * filling the FS with empty chunks
51 *
52 * CHUNK_ALLOC_FORCE means it must try to allocate one
53 *
54 */
55 enum {
56 CHUNK_ALLOC_NO_FORCE = 0,
57 CHUNK_ALLOC_LIMITED = 1,
58 CHUNK_ALLOC_FORCE = 2,
59 };
60
61 /*
62 * Control how reservations are dealt with.
63 *
64 * RESERVE_FREE - freeing a reservation.
65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66 * ENOSPC accounting
67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 */
70 enum {
71 RESERVE_FREE = 0,
72 RESERVE_ALLOC = 1,
73 RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75
76 static int update_block_group(struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
99 int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 u64 num_bytes);
108 int btrfs_pin_extent(struct btrfs_root *root,
109 u64 bytenr, u64 num_bytes, int reserved);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED;
116 }
117
118 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
119 {
120 return (cache->flags & bits) == bits;
121 }
122
123 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
124 {
125 atomic_inc(&cache->count);
126 }
127
128 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
129 {
130 if (atomic_dec_and_test(&cache->count)) {
131 WARN_ON(cache->pinned > 0);
132 WARN_ON(cache->reserved > 0);
133 kfree(cache->free_space_ctl);
134 kfree(cache);
135 }
136 }
137
138 /*
139 * this adds the block group to the fs_info rb tree for the block group
140 * cache
141 */
142 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
143 struct btrfs_block_group_cache *block_group)
144 {
145 struct rb_node **p;
146 struct rb_node *parent = NULL;
147 struct btrfs_block_group_cache *cache;
148
149 spin_lock(&info->block_group_cache_lock);
150 p = &info->block_group_cache_tree.rb_node;
151
152 while (*p) {
153 parent = *p;
154 cache = rb_entry(parent, struct btrfs_block_group_cache,
155 cache_node);
156 if (block_group->key.objectid < cache->key.objectid) {
157 p = &(*p)->rb_left;
158 } else if (block_group->key.objectid > cache->key.objectid) {
159 p = &(*p)->rb_right;
160 } else {
161 spin_unlock(&info->block_group_cache_lock);
162 return -EEXIST;
163 }
164 }
165
166 rb_link_node(&block_group->cache_node, parent, p);
167 rb_insert_color(&block_group->cache_node,
168 &info->block_group_cache_tree);
169
170 if (info->first_logical_byte > block_group->key.objectid)
171 info->first_logical_byte = block_group->key.objectid;
172
173 spin_unlock(&info->block_group_cache_lock);
174
175 return 0;
176 }
177
178 /*
179 * This will return the block group at or after bytenr if contains is 0, else
180 * it will return the block group that contains the bytenr
181 */
182 static struct btrfs_block_group_cache *
183 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
184 int contains)
185 {
186 struct btrfs_block_group_cache *cache, *ret = NULL;
187 struct rb_node *n;
188 u64 end, start;
189
190 spin_lock(&info->block_group_cache_lock);
191 n = info->block_group_cache_tree.rb_node;
192
193 while (n) {
194 cache = rb_entry(n, struct btrfs_block_group_cache,
195 cache_node);
196 end = cache->key.objectid + cache->key.offset - 1;
197 start = cache->key.objectid;
198
199 if (bytenr < start) {
200 if (!contains && (!ret || start < ret->key.objectid))
201 ret = cache;
202 n = n->rb_left;
203 } else if (bytenr > start) {
204 if (contains && bytenr <= end) {
205 ret = cache;
206 break;
207 }
208 n = n->rb_right;
209 } else {
210 ret = cache;
211 break;
212 }
213 }
214 if (ret) {
215 btrfs_get_block_group(ret);
216 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
217 info->first_logical_byte = ret->key.objectid;
218 }
219 spin_unlock(&info->block_group_cache_lock);
220
221 return ret;
222 }
223
224 static int add_excluded_extent(struct btrfs_root *root,
225 u64 start, u64 num_bytes)
226 {
227 u64 end = start + num_bytes - 1;
228 set_extent_bits(&root->fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 set_extent_bits(&root->fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 return 0;
233 }
234
235 static void free_excluded_extents(struct btrfs_root *root,
236 struct btrfs_block_group_cache *cache)
237 {
238 u64 start, end;
239
240 start = cache->key.objectid;
241 end = start + cache->key.offset - 1;
242
243 clear_extent_bits(&root->fs_info->freed_extents[0],
244 start, end, EXTENT_UPTODATE, GFP_NOFS);
245 clear_extent_bits(&root->fs_info->freed_extents[1],
246 start, end, EXTENT_UPTODATE, GFP_NOFS);
247 }
248
249 static int exclude_super_stripes(struct btrfs_root *root,
250 struct btrfs_block_group_cache *cache)
251 {
252 u64 bytenr;
253 u64 *logical;
254 int stripe_len;
255 int i, nr, ret;
256
257 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
258 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
259 cache->bytes_super += stripe_len;
260 ret = add_excluded_extent(root, cache->key.objectid,
261 stripe_len);
262 if (ret)
263 return ret;
264 }
265
266 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
267 bytenr = btrfs_sb_offset(i);
268 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
269 cache->key.objectid, bytenr,
270 0, &logical, &nr, &stripe_len);
271 if (ret)
272 return ret;
273
274 while (nr--) {
275 u64 start, len;
276
277 if (logical[nr] > cache->key.objectid +
278 cache->key.offset)
279 continue;
280
281 if (logical[nr] + stripe_len <= cache->key.objectid)
282 continue;
283
284 start = logical[nr];
285 if (start < cache->key.objectid) {
286 start = cache->key.objectid;
287 len = (logical[nr] + stripe_len) - start;
288 } else {
289 len = min_t(u64, stripe_len,
290 cache->key.objectid +
291 cache->key.offset - start);
292 }
293
294 cache->bytes_super += len;
295 ret = add_excluded_extent(root, start, len);
296 if (ret) {
297 kfree(logical);
298 return ret;
299 }
300 }
301
302 kfree(logical);
303 }
304 return 0;
305 }
306
307 static struct btrfs_caching_control *
308 get_caching_control(struct btrfs_block_group_cache *cache)
309 {
310 struct btrfs_caching_control *ctl;
311
312 spin_lock(&cache->lock);
313 if (cache->cached != BTRFS_CACHE_STARTED) {
314 spin_unlock(&cache->lock);
315 return NULL;
316 }
317
318 /* We're loading it the fast way, so we don't have a caching_ctl. */
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = 0;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->extent_commit_sem);
421
422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 if (ret < 0)
424 goto err;
425
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
429 while (1) {
430 if (btrfs_fs_closing(fs_info) > 1) {
431 last = (u64)-1;
432 break;
433 }
434
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
440 break;
441
442 if (need_resched()) {
443 caching_ctl->progress = last;
444 btrfs_release_path(path);
445 up_read(&fs_info->extent_commit_sem);
446 mutex_unlock(&caching_ctl->mutex);
447 cond_resched();
448 goto again;
449 }
450
451 ret = btrfs_next_leaf(extent_root, path);
452 if (ret < 0)
453 goto err;
454 if (ret)
455 break;
456 leaf = path->nodes[0];
457 nritems = btrfs_header_nritems(leaf);
458 continue;
459 }
460
461 if (key.objectid < block_group->key.objectid) {
462 path->slots[0]++;
463 continue;
464 }
465
466 if (key.objectid >= block_group->key.objectid +
467 block_group->key.offset)
468 break;
469
470 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
471 key.type == BTRFS_METADATA_ITEM_KEY) {
472 total_found += add_new_free_space(block_group,
473 fs_info, last,
474 key.objectid);
475 if (key.type == BTRFS_METADATA_ITEM_KEY)
476 last = key.objectid +
477 fs_info->tree_root->leafsize;
478 else
479 last = key.objectid + key.offset;
480
481 if (total_found > (1024 * 1024 * 2)) {
482 total_found = 0;
483 wake_up(&caching_ctl->wait);
484 }
485 }
486 path->slots[0]++;
487 }
488 ret = 0;
489
490 total_found += add_new_free_space(block_group, fs_info, last,
491 block_group->key.objectid +
492 block_group->key.offset);
493 caching_ctl->progress = (u64)-1;
494
495 spin_lock(&block_group->lock);
496 block_group->caching_ctl = NULL;
497 block_group->cached = BTRFS_CACHE_FINISHED;
498 spin_unlock(&block_group->lock);
499
500 err:
501 btrfs_free_path(path);
502 up_read(&fs_info->extent_commit_sem);
503
504 free_excluded_extents(extent_root, block_group);
505
506 mutex_unlock(&caching_ctl->mutex);
507 out:
508 wake_up(&caching_ctl->wait);
509
510 put_caching_control(caching_ctl);
511 btrfs_put_block_group(block_group);
512 }
513
514 static int cache_block_group(struct btrfs_block_group_cache *cache,
515 int load_cache_only)
516 {
517 DEFINE_WAIT(wait);
518 struct btrfs_fs_info *fs_info = cache->fs_info;
519 struct btrfs_caching_control *caching_ctl;
520 int ret = 0;
521
522 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
523 if (!caching_ctl)
524 return -ENOMEM;
525
526 INIT_LIST_HEAD(&caching_ctl->list);
527 mutex_init(&caching_ctl->mutex);
528 init_waitqueue_head(&caching_ctl->wait);
529 caching_ctl->block_group = cache;
530 caching_ctl->progress = cache->key.objectid;
531 atomic_set(&caching_ctl->count, 1);
532 caching_ctl->work.func = caching_thread;
533
534 spin_lock(&cache->lock);
535 /*
536 * This should be a rare occasion, but this could happen I think in the
537 * case where one thread starts to load the space cache info, and then
538 * some other thread starts a transaction commit which tries to do an
539 * allocation while the other thread is still loading the space cache
540 * info. The previous loop should have kept us from choosing this block
541 * group, but if we've moved to the state where we will wait on caching
542 * block groups we need to first check if we're doing a fast load here,
543 * so we can wait for it to finish, otherwise we could end up allocating
544 * from a block group who's cache gets evicted for one reason or
545 * another.
546 */
547 while (cache->cached == BTRFS_CACHE_FAST) {
548 struct btrfs_caching_control *ctl;
549
550 ctl = cache->caching_ctl;
551 atomic_inc(&ctl->count);
552 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
553 spin_unlock(&cache->lock);
554
555 schedule();
556
557 finish_wait(&ctl->wait, &wait);
558 put_caching_control(ctl);
559 spin_lock(&cache->lock);
560 }
561
562 if (cache->cached != BTRFS_CACHE_NO) {
563 spin_unlock(&cache->lock);
564 kfree(caching_ctl);
565 return 0;
566 }
567 WARN_ON(cache->caching_ctl);
568 cache->caching_ctl = caching_ctl;
569 cache->cached = BTRFS_CACHE_FAST;
570 spin_unlock(&cache->lock);
571
572 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
573 ret = load_free_space_cache(fs_info, cache);
574
575 spin_lock(&cache->lock);
576 if (ret == 1) {
577 cache->caching_ctl = NULL;
578 cache->cached = BTRFS_CACHE_FINISHED;
579 cache->last_byte_to_unpin = (u64)-1;
580 } else {
581 if (load_cache_only) {
582 cache->caching_ctl = NULL;
583 cache->cached = BTRFS_CACHE_NO;
584 } else {
585 cache->cached = BTRFS_CACHE_STARTED;
586 }
587 }
588 spin_unlock(&cache->lock);
589 wake_up(&caching_ctl->wait);
590 if (ret == 1) {
591 put_caching_control(caching_ctl);
592 free_excluded_extents(fs_info->extent_root, cache);
593 return 0;
594 }
595 } else {
596 /*
597 * We are not going to do the fast caching, set cached to the
598 * appropriate value and wakeup any waiters.
599 */
600 spin_lock(&cache->lock);
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 }
607 spin_unlock(&cache->lock);
608 wake_up(&caching_ctl->wait);
609 }
610
611 if (load_cache_only) {
612 put_caching_control(caching_ctl);
613 return 0;
614 }
615
616 down_write(&fs_info->extent_commit_sem);
617 atomic_inc(&caching_ctl->count);
618 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
619 up_write(&fs_info->extent_commit_sem);
620
621 btrfs_get_block_group(cache);
622
623 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
624
625 return ret;
626 }
627
628 /*
629 * return the block group that starts at or after bytenr
630 */
631 static struct btrfs_block_group_cache *
632 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
633 {
634 struct btrfs_block_group_cache *cache;
635
636 cache = block_group_cache_tree_search(info, bytenr, 0);
637
638 return cache;
639 }
640
641 /*
642 * return the block group that contains the given bytenr
643 */
644 struct btrfs_block_group_cache *btrfs_lookup_block_group(
645 struct btrfs_fs_info *info,
646 u64 bytenr)
647 {
648 struct btrfs_block_group_cache *cache;
649
650 cache = block_group_cache_tree_search(info, bytenr, 1);
651
652 return cache;
653 }
654
655 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
656 u64 flags)
657 {
658 struct list_head *head = &info->space_info;
659 struct btrfs_space_info *found;
660
661 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
662
663 rcu_read_lock();
664 list_for_each_entry_rcu(found, head, list) {
665 if (found->flags & flags) {
666 rcu_read_unlock();
667 return found;
668 }
669 }
670 rcu_read_unlock();
671 return NULL;
672 }
673
674 /*
675 * after adding space to the filesystem, we need to clear the full flags
676 * on all the space infos.
677 */
678 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
679 {
680 struct list_head *head = &info->space_info;
681 struct btrfs_space_info *found;
682
683 rcu_read_lock();
684 list_for_each_entry_rcu(found, head, list)
685 found->full = 0;
686 rcu_read_unlock();
687 }
688
689 /* simple helper to search for an existing extent at a given offset */
690 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
691 {
692 int ret;
693 struct btrfs_key key;
694 struct btrfs_path *path;
695
696 path = btrfs_alloc_path();
697 if (!path)
698 return -ENOMEM;
699
700 key.objectid = start;
701 key.offset = len;
702 key.type = BTRFS_EXTENT_ITEM_KEY;
703 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
704 0, 0);
705 if (ret > 0) {
706 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
707 if (key.objectid == start &&
708 key.type == BTRFS_METADATA_ITEM_KEY)
709 ret = 0;
710 }
711 btrfs_free_path(path);
712 return ret;
713 }
714
715 /*
716 * helper function to lookup reference count and flags of a tree block.
717 *
718 * the head node for delayed ref is used to store the sum of all the
719 * reference count modifications queued up in the rbtree. the head
720 * node may also store the extent flags to set. This way you can check
721 * to see what the reference count and extent flags would be if all of
722 * the delayed refs are not processed.
723 */
724 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
725 struct btrfs_root *root, u64 bytenr,
726 u64 offset, int metadata, u64 *refs, u64 *flags)
727 {
728 struct btrfs_delayed_ref_head *head;
729 struct btrfs_delayed_ref_root *delayed_refs;
730 struct btrfs_path *path;
731 struct btrfs_extent_item *ei;
732 struct extent_buffer *leaf;
733 struct btrfs_key key;
734 u32 item_size;
735 u64 num_refs;
736 u64 extent_flags;
737 int ret;
738
739 /*
740 * If we don't have skinny metadata, don't bother doing anything
741 * different
742 */
743 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
744 offset = root->leafsize;
745 metadata = 0;
746 }
747
748 path = btrfs_alloc_path();
749 if (!path)
750 return -ENOMEM;
751
752 if (metadata) {
753 key.objectid = bytenr;
754 key.type = BTRFS_METADATA_ITEM_KEY;
755 key.offset = offset;
756 } else {
757 key.objectid = bytenr;
758 key.type = BTRFS_EXTENT_ITEM_KEY;
759 key.offset = offset;
760 }
761
762 if (!trans) {
763 path->skip_locking = 1;
764 path->search_commit_root = 1;
765 }
766 again:
767 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
768 &key, path, 0, 0);
769 if (ret < 0)
770 goto out_free;
771
772 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
773 key.type = BTRFS_EXTENT_ITEM_KEY;
774 key.offset = root->leafsize;
775 btrfs_release_path(path);
776 goto again;
777 }
778
779 if (ret == 0) {
780 leaf = path->nodes[0];
781 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
782 if (item_size >= sizeof(*ei)) {
783 ei = btrfs_item_ptr(leaf, path->slots[0],
784 struct btrfs_extent_item);
785 num_refs = btrfs_extent_refs(leaf, ei);
786 extent_flags = btrfs_extent_flags(leaf, ei);
787 } else {
788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
789 struct btrfs_extent_item_v0 *ei0;
790 BUG_ON(item_size != sizeof(*ei0));
791 ei0 = btrfs_item_ptr(leaf, path->slots[0],
792 struct btrfs_extent_item_v0);
793 num_refs = btrfs_extent_refs_v0(leaf, ei0);
794 /* FIXME: this isn't correct for data */
795 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
796 #else
797 BUG();
798 #endif
799 }
800 BUG_ON(num_refs == 0);
801 } else {
802 num_refs = 0;
803 extent_flags = 0;
804 ret = 0;
805 }
806
807 if (!trans)
808 goto out;
809
810 delayed_refs = &trans->transaction->delayed_refs;
811 spin_lock(&delayed_refs->lock);
812 head = btrfs_find_delayed_ref_head(trans, bytenr);
813 if (head) {
814 if (!mutex_trylock(&head->mutex)) {
815 atomic_inc(&head->node.refs);
816 spin_unlock(&delayed_refs->lock);
817
818 btrfs_release_path(path);
819
820 /*
821 * Mutex was contended, block until it's released and try
822 * again
823 */
824 mutex_lock(&head->mutex);
825 mutex_unlock(&head->mutex);
826 btrfs_put_delayed_ref(&head->node);
827 goto again;
828 }
829 if (head->extent_op && head->extent_op->update_flags)
830 extent_flags |= head->extent_op->flags_to_set;
831 else
832 BUG_ON(num_refs == 0);
833
834 num_refs += head->node.ref_mod;
835 mutex_unlock(&head->mutex);
836 }
837 spin_unlock(&delayed_refs->lock);
838 out:
839 WARN_ON(num_refs == 0);
840 if (refs)
841 *refs = num_refs;
842 if (flags)
843 *flags = extent_flags;
844 out_free:
845 btrfs_free_path(path);
846 return ret;
847 }
848
849 /*
850 * Back reference rules. Back refs have three main goals:
851 *
852 * 1) differentiate between all holders of references to an extent so that
853 * when a reference is dropped we can make sure it was a valid reference
854 * before freeing the extent.
855 *
856 * 2) Provide enough information to quickly find the holders of an extent
857 * if we notice a given block is corrupted or bad.
858 *
859 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
860 * maintenance. This is actually the same as #2, but with a slightly
861 * different use case.
862 *
863 * There are two kinds of back refs. The implicit back refs is optimized
864 * for pointers in non-shared tree blocks. For a given pointer in a block,
865 * back refs of this kind provide information about the block's owner tree
866 * and the pointer's key. These information allow us to find the block by
867 * b-tree searching. The full back refs is for pointers in tree blocks not
868 * referenced by their owner trees. The location of tree block is recorded
869 * in the back refs. Actually the full back refs is generic, and can be
870 * used in all cases the implicit back refs is used. The major shortcoming
871 * of the full back refs is its overhead. Every time a tree block gets
872 * COWed, we have to update back refs entry for all pointers in it.
873 *
874 * For a newly allocated tree block, we use implicit back refs for
875 * pointers in it. This means most tree related operations only involve
876 * implicit back refs. For a tree block created in old transaction, the
877 * only way to drop a reference to it is COW it. So we can detect the
878 * event that tree block loses its owner tree's reference and do the
879 * back refs conversion.
880 *
881 * When a tree block is COW'd through a tree, there are four cases:
882 *
883 * The reference count of the block is one and the tree is the block's
884 * owner tree. Nothing to do in this case.
885 *
886 * The reference count of the block is one and the tree is not the
887 * block's owner tree. In this case, full back refs is used for pointers
888 * in the block. Remove these full back refs, add implicit back refs for
889 * every pointers in the new block.
890 *
891 * The reference count of the block is greater than one and the tree is
892 * the block's owner tree. In this case, implicit back refs is used for
893 * pointers in the block. Add full back refs for every pointers in the
894 * block, increase lower level extents' reference counts. The original
895 * implicit back refs are entailed to the new block.
896 *
897 * The reference count of the block is greater than one and the tree is
898 * not the block's owner tree. Add implicit back refs for every pointer in
899 * the new block, increase lower level extents' reference count.
900 *
901 * Back Reference Key composing:
902 *
903 * The key objectid corresponds to the first byte in the extent,
904 * The key type is used to differentiate between types of back refs.
905 * There are different meanings of the key offset for different types
906 * of back refs.
907 *
908 * File extents can be referenced by:
909 *
910 * - multiple snapshots, subvolumes, or different generations in one subvol
911 * - different files inside a single subvolume
912 * - different offsets inside a file (bookend extents in file.c)
913 *
914 * The extent ref structure for the implicit back refs has fields for:
915 *
916 * - Objectid of the subvolume root
917 * - objectid of the file holding the reference
918 * - original offset in the file
919 * - how many bookend extents
920 *
921 * The key offset for the implicit back refs is hash of the first
922 * three fields.
923 *
924 * The extent ref structure for the full back refs has field for:
925 *
926 * - number of pointers in the tree leaf
927 *
928 * The key offset for the implicit back refs is the first byte of
929 * the tree leaf
930 *
931 * When a file extent is allocated, The implicit back refs is used.
932 * the fields are filled in:
933 *
934 * (root_key.objectid, inode objectid, offset in file, 1)
935 *
936 * When a file extent is removed file truncation, we find the
937 * corresponding implicit back refs and check the following fields:
938 *
939 * (btrfs_header_owner(leaf), inode objectid, offset in file)
940 *
941 * Btree extents can be referenced by:
942 *
943 * - Different subvolumes
944 *
945 * Both the implicit back refs and the full back refs for tree blocks
946 * only consist of key. The key offset for the implicit back refs is
947 * objectid of block's owner tree. The key offset for the full back refs
948 * is the first byte of parent block.
949 *
950 * When implicit back refs is used, information about the lowest key and
951 * level of the tree block are required. These information are stored in
952 * tree block info structure.
953 */
954
955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
957 struct btrfs_root *root,
958 struct btrfs_path *path,
959 u64 owner, u32 extra_size)
960 {
961 struct btrfs_extent_item *item;
962 struct btrfs_extent_item_v0 *ei0;
963 struct btrfs_extent_ref_v0 *ref0;
964 struct btrfs_tree_block_info *bi;
965 struct extent_buffer *leaf;
966 struct btrfs_key key;
967 struct btrfs_key found_key;
968 u32 new_size = sizeof(*item);
969 u64 refs;
970 int ret;
971
972 leaf = path->nodes[0];
973 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
974
975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
976 ei0 = btrfs_item_ptr(leaf, path->slots[0],
977 struct btrfs_extent_item_v0);
978 refs = btrfs_extent_refs_v0(leaf, ei0);
979
980 if (owner == (u64)-1) {
981 while (1) {
982 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
983 ret = btrfs_next_leaf(root, path);
984 if (ret < 0)
985 return ret;
986 BUG_ON(ret > 0); /* Corruption */
987 leaf = path->nodes[0];
988 }
989 btrfs_item_key_to_cpu(leaf, &found_key,
990 path->slots[0]);
991 BUG_ON(key.objectid != found_key.objectid);
992 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
993 path->slots[0]++;
994 continue;
995 }
996 ref0 = btrfs_item_ptr(leaf, path->slots[0],
997 struct btrfs_extent_ref_v0);
998 owner = btrfs_ref_objectid_v0(leaf, ref0);
999 break;
1000 }
1001 }
1002 btrfs_release_path(path);
1003
1004 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1005 new_size += sizeof(*bi);
1006
1007 new_size -= sizeof(*ei0);
1008 ret = btrfs_search_slot(trans, root, &key, path,
1009 new_size + extra_size, 1);
1010 if (ret < 0)
1011 return ret;
1012 BUG_ON(ret); /* Corruption */
1013
1014 btrfs_extend_item(root, path, new_size);
1015
1016 leaf = path->nodes[0];
1017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 btrfs_set_extent_refs(leaf, item, refs);
1019 /* FIXME: get real generation */
1020 btrfs_set_extent_generation(leaf, item, 0);
1021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1022 btrfs_set_extent_flags(leaf, item,
1023 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1024 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1025 bi = (struct btrfs_tree_block_info *)(item + 1);
1026 /* FIXME: get first key of the block */
1027 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1028 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1029 } else {
1030 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1031 }
1032 btrfs_mark_buffer_dirty(leaf);
1033 return 0;
1034 }
1035 #endif
1036
1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1038 {
1039 u32 high_crc = ~(u32)0;
1040 u32 low_crc = ~(u32)0;
1041 __le64 lenum;
1042
1043 lenum = cpu_to_le64(root_objectid);
1044 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(owner);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047 lenum = cpu_to_le64(offset);
1048 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1049
1050 return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 }
1052
1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1054 struct btrfs_extent_data_ref *ref)
1055 {
1056 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1057 btrfs_extent_data_ref_objectid(leaf, ref),
1058 btrfs_extent_data_ref_offset(leaf, ref));
1059 }
1060
1061 static int match_extent_data_ref(struct extent_buffer *leaf,
1062 struct btrfs_extent_data_ref *ref,
1063 u64 root_objectid, u64 owner, u64 offset)
1064 {
1065 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1066 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1067 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1068 return 0;
1069 return 1;
1070 }
1071
1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1073 struct btrfs_root *root,
1074 struct btrfs_path *path,
1075 u64 bytenr, u64 parent,
1076 u64 root_objectid,
1077 u64 owner, u64 offset)
1078 {
1079 struct btrfs_key key;
1080 struct btrfs_extent_data_ref *ref;
1081 struct extent_buffer *leaf;
1082 u32 nritems;
1083 int ret;
1084 int recow;
1085 int err = -ENOENT;
1086
1087 key.objectid = bytenr;
1088 if (parent) {
1089 key.type = BTRFS_SHARED_DATA_REF_KEY;
1090 key.offset = parent;
1091 } else {
1092 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1093 key.offset = hash_extent_data_ref(root_objectid,
1094 owner, offset);
1095 }
1096 again:
1097 recow = 0;
1098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1099 if (ret < 0) {
1100 err = ret;
1101 goto fail;
1102 }
1103
1104 if (parent) {
1105 if (!ret)
1106 return 0;
1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1108 key.type = BTRFS_EXTENT_REF_V0_KEY;
1109 btrfs_release_path(path);
1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 if (ret < 0) {
1112 err = ret;
1113 goto fail;
1114 }
1115 if (!ret)
1116 return 0;
1117 #endif
1118 goto fail;
1119 }
1120
1121 leaf = path->nodes[0];
1122 nritems = btrfs_header_nritems(leaf);
1123 while (1) {
1124 if (path->slots[0] >= nritems) {
1125 ret = btrfs_next_leaf(root, path);
1126 if (ret < 0)
1127 err = ret;
1128 if (ret)
1129 goto fail;
1130
1131 leaf = path->nodes[0];
1132 nritems = btrfs_header_nritems(leaf);
1133 recow = 1;
1134 }
1135
1136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1137 if (key.objectid != bytenr ||
1138 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139 goto fail;
1140
1141 ref = btrfs_item_ptr(leaf, path->slots[0],
1142 struct btrfs_extent_data_ref);
1143
1144 if (match_extent_data_ref(leaf, ref, root_objectid,
1145 owner, offset)) {
1146 if (recow) {
1147 btrfs_release_path(path);
1148 goto again;
1149 }
1150 err = 0;
1151 break;
1152 }
1153 path->slots[0]++;
1154 }
1155 fail:
1156 return err;
1157 }
1158
1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid, u64 owner,
1164 u64 offset, int refs_to_add)
1165 {
1166 struct btrfs_key key;
1167 struct extent_buffer *leaf;
1168 u32 size;
1169 u32 num_refs;
1170 int ret;
1171
1172 key.objectid = bytenr;
1173 if (parent) {
1174 key.type = BTRFS_SHARED_DATA_REF_KEY;
1175 key.offset = parent;
1176 size = sizeof(struct btrfs_shared_data_ref);
1177 } else {
1178 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 key.offset = hash_extent_data_ref(root_objectid,
1180 owner, offset);
1181 size = sizeof(struct btrfs_extent_data_ref);
1182 }
1183
1184 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1185 if (ret && ret != -EEXIST)
1186 goto fail;
1187
1188 leaf = path->nodes[0];
1189 if (parent) {
1190 struct btrfs_shared_data_ref *ref;
1191 ref = btrfs_item_ptr(leaf, path->slots[0],
1192 struct btrfs_shared_data_ref);
1193 if (ret == 0) {
1194 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1195 } else {
1196 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1197 num_refs += refs_to_add;
1198 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 }
1200 } else {
1201 struct btrfs_extent_data_ref *ref;
1202 while (ret == -EEXIST) {
1203 ref = btrfs_item_ptr(leaf, path->slots[0],
1204 struct btrfs_extent_data_ref);
1205 if (match_extent_data_ref(leaf, ref, root_objectid,
1206 owner, offset))
1207 break;
1208 btrfs_release_path(path);
1209 key.offset++;
1210 ret = btrfs_insert_empty_item(trans, root, path, &key,
1211 size);
1212 if (ret && ret != -EEXIST)
1213 goto fail;
1214
1215 leaf = path->nodes[0];
1216 }
1217 ref = btrfs_item_ptr(leaf, path->slots[0],
1218 struct btrfs_extent_data_ref);
1219 if (ret == 0) {
1220 btrfs_set_extent_data_ref_root(leaf, ref,
1221 root_objectid);
1222 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1223 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1224 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1225 } else {
1226 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1227 num_refs += refs_to_add;
1228 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 }
1230 }
1231 btrfs_mark_buffer_dirty(leaf);
1232 ret = 0;
1233 fail:
1234 btrfs_release_path(path);
1235 return ret;
1236 }
1237
1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1239 struct btrfs_root *root,
1240 struct btrfs_path *path,
1241 int refs_to_drop)
1242 {
1243 struct btrfs_key key;
1244 struct btrfs_extent_data_ref *ref1 = NULL;
1245 struct btrfs_shared_data_ref *ref2 = NULL;
1246 struct extent_buffer *leaf;
1247 u32 num_refs = 0;
1248 int ret = 0;
1249
1250 leaf = path->nodes[0];
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252
1253 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1254 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_extent_data_ref);
1256 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1257 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1258 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1259 struct btrfs_shared_data_ref);
1260 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1262 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1263 struct btrfs_extent_ref_v0 *ref0;
1264 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_extent_ref_v0);
1266 num_refs = btrfs_ref_count_v0(leaf, ref0);
1267 #endif
1268 } else {
1269 BUG();
1270 }
1271
1272 BUG_ON(num_refs < refs_to_drop);
1273 num_refs -= refs_to_drop;
1274
1275 if (num_refs == 0) {
1276 ret = btrfs_del_item(trans, root, path);
1277 } else {
1278 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1279 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1280 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1281 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 else {
1284 struct btrfs_extent_ref_v0 *ref0;
1285 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_ref_v0);
1287 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 }
1289 #endif
1290 btrfs_mark_buffer_dirty(leaf);
1291 }
1292 return ret;
1293 }
1294
1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1296 struct btrfs_path *path,
1297 struct btrfs_extent_inline_ref *iref)
1298 {
1299 struct btrfs_key key;
1300 struct extent_buffer *leaf;
1301 struct btrfs_extent_data_ref *ref1;
1302 struct btrfs_shared_data_ref *ref2;
1303 u32 num_refs = 0;
1304
1305 leaf = path->nodes[0];
1306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1307 if (iref) {
1308 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1309 BTRFS_EXTENT_DATA_REF_KEY) {
1310 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1311 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1312 } else {
1313 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1314 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1315 }
1316 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1317 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_data_ref);
1319 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1320 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1321 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1322 struct btrfs_shared_data_ref);
1323 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1325 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1326 struct btrfs_extent_ref_v0 *ref0;
1327 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1328 struct btrfs_extent_ref_v0);
1329 num_refs = btrfs_ref_count_v0(leaf, ref0);
1330 #endif
1331 } else {
1332 WARN_ON(1);
1333 }
1334 return num_refs;
1335 }
1336
1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1338 struct btrfs_root *root,
1339 struct btrfs_path *path,
1340 u64 bytenr, u64 parent,
1341 u64 root_objectid)
1342 {
1343 struct btrfs_key key;
1344 int ret;
1345
1346 key.objectid = bytenr;
1347 if (parent) {
1348 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1349 key.offset = parent;
1350 } else {
1351 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1352 key.offset = root_objectid;
1353 }
1354
1355 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1356 if (ret > 0)
1357 ret = -ENOENT;
1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1359 if (ret == -ENOENT && parent) {
1360 btrfs_release_path(path);
1361 key.type = BTRFS_EXTENT_REF_V0_KEY;
1362 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1363 if (ret > 0)
1364 ret = -ENOENT;
1365 }
1366 #endif
1367 return ret;
1368 }
1369
1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1375 {
1376 struct btrfs_key key;
1377 int ret;
1378
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1386 }
1387
1388 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1389 btrfs_release_path(path);
1390 return ret;
1391 }
1392
1393 static inline int extent_ref_type(u64 parent, u64 owner)
1394 {
1395 int type;
1396 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1397 if (parent > 0)
1398 type = BTRFS_SHARED_BLOCK_REF_KEY;
1399 else
1400 type = BTRFS_TREE_BLOCK_REF_KEY;
1401 } else {
1402 if (parent > 0)
1403 type = BTRFS_SHARED_DATA_REF_KEY;
1404 else
1405 type = BTRFS_EXTENT_DATA_REF_KEY;
1406 }
1407 return type;
1408 }
1409
1410 static int find_next_key(struct btrfs_path *path, int level,
1411 struct btrfs_key *key)
1412
1413 {
1414 for (; level < BTRFS_MAX_LEVEL; level++) {
1415 if (!path->nodes[level])
1416 break;
1417 if (path->slots[level] + 1 >=
1418 btrfs_header_nritems(path->nodes[level]))
1419 continue;
1420 if (level == 0)
1421 btrfs_item_key_to_cpu(path->nodes[level], key,
1422 path->slots[level] + 1);
1423 else
1424 btrfs_node_key_to_cpu(path->nodes[level], key,
1425 path->slots[level] + 1);
1426 return 0;
1427 }
1428 return 1;
1429 }
1430
1431 /*
1432 * look for inline back ref. if back ref is found, *ref_ret is set
1433 * to the address of inline back ref, and 0 is returned.
1434 *
1435 * if back ref isn't found, *ref_ret is set to the address where it
1436 * should be inserted, and -ENOENT is returned.
1437 *
1438 * if insert is true and there are too many inline back refs, the path
1439 * points to the extent item, and -EAGAIN is returned.
1440 *
1441 * NOTE: inline back refs are ordered in the same way that back ref
1442 * items in the tree are ordered.
1443 */
1444 static noinline_for_stack
1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1446 struct btrfs_root *root,
1447 struct btrfs_path *path,
1448 struct btrfs_extent_inline_ref **ref_ret,
1449 u64 bytenr, u64 num_bytes,
1450 u64 parent, u64 root_objectid,
1451 u64 owner, u64 offset, int insert)
1452 {
1453 struct btrfs_key key;
1454 struct extent_buffer *leaf;
1455 struct btrfs_extent_item *ei;
1456 struct btrfs_extent_inline_ref *iref;
1457 u64 flags;
1458 u64 item_size;
1459 unsigned long ptr;
1460 unsigned long end;
1461 int extra_size;
1462 int type;
1463 int want;
1464 int ret;
1465 int err = 0;
1466 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1467 SKINNY_METADATA);
1468
1469 key.objectid = bytenr;
1470 key.type = BTRFS_EXTENT_ITEM_KEY;
1471 key.offset = num_bytes;
1472
1473 want = extent_ref_type(parent, owner);
1474 if (insert) {
1475 extra_size = btrfs_extent_inline_ref_size(want);
1476 path->keep_locks = 1;
1477 } else
1478 extra_size = -1;
1479
1480 /*
1481 * Owner is our parent level, so we can just add one to get the level
1482 * for the block we are interested in.
1483 */
1484 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1485 key.type = BTRFS_METADATA_ITEM_KEY;
1486 key.offset = owner;
1487 }
1488
1489 again:
1490 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1491 if (ret < 0) {
1492 err = ret;
1493 goto out;
1494 }
1495
1496 /*
1497 * We may be a newly converted file system which still has the old fat
1498 * extent entries for metadata, so try and see if we have one of those.
1499 */
1500 if (ret > 0 && skinny_metadata) {
1501 skinny_metadata = false;
1502 if (path->slots[0]) {
1503 path->slots[0]--;
1504 btrfs_item_key_to_cpu(path->nodes[0], &key,
1505 path->slots[0]);
1506 if (key.objectid == bytenr &&
1507 key.type == BTRFS_EXTENT_ITEM_KEY &&
1508 key.offset == num_bytes)
1509 ret = 0;
1510 }
1511 if (ret) {
1512 key.type = BTRFS_EXTENT_ITEM_KEY;
1513 key.offset = num_bytes;
1514 btrfs_release_path(path);
1515 goto again;
1516 }
1517 }
1518
1519 if (ret && !insert) {
1520 err = -ENOENT;
1521 goto out;
1522 } else if (ret) {
1523 err = -EIO;
1524 WARN_ON(1);
1525 goto out;
1526 }
1527
1528 leaf = path->nodes[0];
1529 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1530 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1531 if (item_size < sizeof(*ei)) {
1532 if (!insert) {
1533 err = -ENOENT;
1534 goto out;
1535 }
1536 ret = convert_extent_item_v0(trans, root, path, owner,
1537 extra_size);
1538 if (ret < 0) {
1539 err = ret;
1540 goto out;
1541 }
1542 leaf = path->nodes[0];
1543 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1544 }
1545 #endif
1546 BUG_ON(item_size < sizeof(*ei));
1547
1548 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1549 flags = btrfs_extent_flags(leaf, ei);
1550
1551 ptr = (unsigned long)(ei + 1);
1552 end = (unsigned long)ei + item_size;
1553
1554 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1555 ptr += sizeof(struct btrfs_tree_block_info);
1556 BUG_ON(ptr > end);
1557 }
1558
1559 err = -ENOENT;
1560 while (1) {
1561 if (ptr >= end) {
1562 WARN_ON(ptr > end);
1563 break;
1564 }
1565 iref = (struct btrfs_extent_inline_ref *)ptr;
1566 type = btrfs_extent_inline_ref_type(leaf, iref);
1567 if (want < type)
1568 break;
1569 if (want > type) {
1570 ptr += btrfs_extent_inline_ref_size(type);
1571 continue;
1572 }
1573
1574 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1575 struct btrfs_extent_data_ref *dref;
1576 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1577 if (match_extent_data_ref(leaf, dref, root_objectid,
1578 owner, offset)) {
1579 err = 0;
1580 break;
1581 }
1582 if (hash_extent_data_ref_item(leaf, dref) <
1583 hash_extent_data_ref(root_objectid, owner, offset))
1584 break;
1585 } else {
1586 u64 ref_offset;
1587 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1588 if (parent > 0) {
1589 if (parent == ref_offset) {
1590 err = 0;
1591 break;
1592 }
1593 if (ref_offset < parent)
1594 break;
1595 } else {
1596 if (root_objectid == ref_offset) {
1597 err = 0;
1598 break;
1599 }
1600 if (ref_offset < root_objectid)
1601 break;
1602 }
1603 }
1604 ptr += btrfs_extent_inline_ref_size(type);
1605 }
1606 if (err == -ENOENT && insert) {
1607 if (item_size + extra_size >=
1608 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1609 err = -EAGAIN;
1610 goto out;
1611 }
1612 /*
1613 * To add new inline back ref, we have to make sure
1614 * there is no corresponding back ref item.
1615 * For simplicity, we just do not add new inline back
1616 * ref if there is any kind of item for this block
1617 */
1618 if (find_next_key(path, 0, &key) == 0 &&
1619 key.objectid == bytenr &&
1620 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1621 err = -EAGAIN;
1622 goto out;
1623 }
1624 }
1625 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1626 out:
1627 if (insert) {
1628 path->keep_locks = 0;
1629 btrfs_unlock_up_safe(path, 1);
1630 }
1631 return err;
1632 }
1633
1634 /*
1635 * helper to add new inline back ref
1636 */
1637 static noinline_for_stack
1638 void setup_inline_extent_backref(struct btrfs_root *root,
1639 struct btrfs_path *path,
1640 struct btrfs_extent_inline_ref *iref,
1641 u64 parent, u64 root_objectid,
1642 u64 owner, u64 offset, int refs_to_add,
1643 struct btrfs_delayed_extent_op *extent_op)
1644 {
1645 struct extent_buffer *leaf;
1646 struct btrfs_extent_item *ei;
1647 unsigned long ptr;
1648 unsigned long end;
1649 unsigned long item_offset;
1650 u64 refs;
1651 int size;
1652 int type;
1653
1654 leaf = path->nodes[0];
1655 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1656 item_offset = (unsigned long)iref - (unsigned long)ei;
1657
1658 type = extent_ref_type(parent, owner);
1659 size = btrfs_extent_inline_ref_size(type);
1660
1661 btrfs_extend_item(root, path, size);
1662
1663 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1664 refs = btrfs_extent_refs(leaf, ei);
1665 refs += refs_to_add;
1666 btrfs_set_extent_refs(leaf, ei, refs);
1667 if (extent_op)
1668 __run_delayed_extent_op(extent_op, leaf, ei);
1669
1670 ptr = (unsigned long)ei + item_offset;
1671 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1672 if (ptr < end - size)
1673 memmove_extent_buffer(leaf, ptr + size, ptr,
1674 end - size - ptr);
1675
1676 iref = (struct btrfs_extent_inline_ref *)ptr;
1677 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1678 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1679 struct btrfs_extent_data_ref *dref;
1680 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1681 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1682 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1683 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1684 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1685 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1686 struct btrfs_shared_data_ref *sref;
1687 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1688 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1689 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1690 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1691 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1692 } else {
1693 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1694 }
1695 btrfs_mark_buffer_dirty(leaf);
1696 }
1697
1698 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1699 struct btrfs_root *root,
1700 struct btrfs_path *path,
1701 struct btrfs_extent_inline_ref **ref_ret,
1702 u64 bytenr, u64 num_bytes, u64 parent,
1703 u64 root_objectid, u64 owner, u64 offset)
1704 {
1705 int ret;
1706
1707 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1708 bytenr, num_bytes, parent,
1709 root_objectid, owner, offset, 0);
1710 if (ret != -ENOENT)
1711 return ret;
1712
1713 btrfs_release_path(path);
1714 *ref_ret = NULL;
1715
1716 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1717 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1718 root_objectid);
1719 } else {
1720 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1721 root_objectid, owner, offset);
1722 }
1723 return ret;
1724 }
1725
1726 /*
1727 * helper to update/remove inline back ref
1728 */
1729 static noinline_for_stack
1730 void update_inline_extent_backref(struct btrfs_root *root,
1731 struct btrfs_path *path,
1732 struct btrfs_extent_inline_ref *iref,
1733 int refs_to_mod,
1734 struct btrfs_delayed_extent_op *extent_op)
1735 {
1736 struct extent_buffer *leaf;
1737 struct btrfs_extent_item *ei;
1738 struct btrfs_extent_data_ref *dref = NULL;
1739 struct btrfs_shared_data_ref *sref = NULL;
1740 unsigned long ptr;
1741 unsigned long end;
1742 u32 item_size;
1743 int size;
1744 int type;
1745 u64 refs;
1746
1747 leaf = path->nodes[0];
1748 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1749 refs = btrfs_extent_refs(leaf, ei);
1750 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1751 refs += refs_to_mod;
1752 btrfs_set_extent_refs(leaf, ei, refs);
1753 if (extent_op)
1754 __run_delayed_extent_op(extent_op, leaf, ei);
1755
1756 type = btrfs_extent_inline_ref_type(leaf, iref);
1757
1758 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 refs = btrfs_extent_data_ref_count(leaf, dref);
1761 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1762 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1763 refs = btrfs_shared_data_ref_count(leaf, sref);
1764 } else {
1765 refs = 1;
1766 BUG_ON(refs_to_mod != -1);
1767 }
1768
1769 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1770 refs += refs_to_mod;
1771
1772 if (refs > 0) {
1773 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1774 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1775 else
1776 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1777 } else {
1778 size = btrfs_extent_inline_ref_size(type);
1779 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1780 ptr = (unsigned long)iref;
1781 end = (unsigned long)ei + item_size;
1782 if (ptr + size < end)
1783 memmove_extent_buffer(leaf, ptr, ptr + size,
1784 end - ptr - size);
1785 item_size -= size;
1786 btrfs_truncate_item(root, path, item_size, 1);
1787 }
1788 btrfs_mark_buffer_dirty(leaf);
1789 }
1790
1791 static noinline_for_stack
1792 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1793 struct btrfs_root *root,
1794 struct btrfs_path *path,
1795 u64 bytenr, u64 num_bytes, u64 parent,
1796 u64 root_objectid, u64 owner,
1797 u64 offset, int refs_to_add,
1798 struct btrfs_delayed_extent_op *extent_op)
1799 {
1800 struct btrfs_extent_inline_ref *iref;
1801 int ret;
1802
1803 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1804 bytenr, num_bytes, parent,
1805 root_objectid, owner, offset, 1);
1806 if (ret == 0) {
1807 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1808 update_inline_extent_backref(root, path, iref,
1809 refs_to_add, extent_op);
1810 } else if (ret == -ENOENT) {
1811 setup_inline_extent_backref(root, path, iref, parent,
1812 root_objectid, owner, offset,
1813 refs_to_add, extent_op);
1814 ret = 0;
1815 }
1816 return ret;
1817 }
1818
1819 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 parent, u64 root_objectid,
1823 u64 owner, u64 offset, int refs_to_add)
1824 {
1825 int ret;
1826 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1827 BUG_ON(refs_to_add != 1);
1828 ret = insert_tree_block_ref(trans, root, path, bytenr,
1829 parent, root_objectid);
1830 } else {
1831 ret = insert_extent_data_ref(trans, root, path, bytenr,
1832 parent, root_objectid,
1833 owner, offset, refs_to_add);
1834 }
1835 return ret;
1836 }
1837
1838 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1839 struct btrfs_root *root,
1840 struct btrfs_path *path,
1841 struct btrfs_extent_inline_ref *iref,
1842 int refs_to_drop, int is_data)
1843 {
1844 int ret = 0;
1845
1846 BUG_ON(!is_data && refs_to_drop != 1);
1847 if (iref) {
1848 update_inline_extent_backref(root, path, iref,
1849 -refs_to_drop, NULL);
1850 } else if (is_data) {
1851 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1852 } else {
1853 ret = btrfs_del_item(trans, root, path);
1854 }
1855 return ret;
1856 }
1857
1858 static int btrfs_issue_discard(struct block_device *bdev,
1859 u64 start, u64 len)
1860 {
1861 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1862 }
1863
1864 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1865 u64 num_bytes, u64 *actual_bytes)
1866 {
1867 int ret;
1868 u64 discarded_bytes = 0;
1869 struct btrfs_bio *bbio = NULL;
1870
1871
1872 /* Tell the block device(s) that the sectors can be discarded */
1873 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1874 bytenr, &num_bytes, &bbio, 0);
1875 /* Error condition is -ENOMEM */
1876 if (!ret) {
1877 struct btrfs_bio_stripe *stripe = bbio->stripes;
1878 int i;
1879
1880
1881 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1882 if (!stripe->dev->can_discard)
1883 continue;
1884
1885 ret = btrfs_issue_discard(stripe->dev->bdev,
1886 stripe->physical,
1887 stripe->length);
1888 if (!ret)
1889 discarded_bytes += stripe->length;
1890 else if (ret != -EOPNOTSUPP)
1891 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1892
1893 /*
1894 * Just in case we get back EOPNOTSUPP for some reason,
1895 * just ignore the return value so we don't screw up
1896 * people calling discard_extent.
1897 */
1898 ret = 0;
1899 }
1900 kfree(bbio);
1901 }
1902
1903 if (actual_bytes)
1904 *actual_bytes = discarded_bytes;
1905
1906
1907 if (ret == -EOPNOTSUPP)
1908 ret = 0;
1909 return ret;
1910 }
1911
1912 /* Can return -ENOMEM */
1913 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1914 struct btrfs_root *root,
1915 u64 bytenr, u64 num_bytes, u64 parent,
1916 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1917 {
1918 int ret;
1919 struct btrfs_fs_info *fs_info = root->fs_info;
1920
1921 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1922 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1923
1924 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1925 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1926 num_bytes,
1927 parent, root_objectid, (int)owner,
1928 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1929 } else {
1930 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1931 num_bytes,
1932 parent, root_objectid, owner, offset,
1933 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1934 }
1935 return ret;
1936 }
1937
1938 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1939 struct btrfs_root *root,
1940 u64 bytenr, u64 num_bytes,
1941 u64 parent, u64 root_objectid,
1942 u64 owner, u64 offset, int refs_to_add,
1943 struct btrfs_delayed_extent_op *extent_op)
1944 {
1945 struct btrfs_path *path;
1946 struct extent_buffer *leaf;
1947 struct btrfs_extent_item *item;
1948 u64 refs;
1949 int ret;
1950 int err = 0;
1951
1952 path = btrfs_alloc_path();
1953 if (!path)
1954 return -ENOMEM;
1955
1956 path->reada = 1;
1957 path->leave_spinning = 1;
1958 /* this will setup the path even if it fails to insert the back ref */
1959 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1960 path, bytenr, num_bytes, parent,
1961 root_objectid, owner, offset,
1962 refs_to_add, extent_op);
1963 if (ret == 0)
1964 goto out;
1965
1966 if (ret != -EAGAIN) {
1967 err = ret;
1968 goto out;
1969 }
1970
1971 leaf = path->nodes[0];
1972 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1973 refs = btrfs_extent_refs(leaf, item);
1974 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1975 if (extent_op)
1976 __run_delayed_extent_op(extent_op, leaf, item);
1977
1978 btrfs_mark_buffer_dirty(leaf);
1979 btrfs_release_path(path);
1980
1981 path->reada = 1;
1982 path->leave_spinning = 1;
1983
1984 /* now insert the actual backref */
1985 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1986 path, bytenr, parent, root_objectid,
1987 owner, offset, refs_to_add);
1988 if (ret)
1989 btrfs_abort_transaction(trans, root, ret);
1990 out:
1991 btrfs_free_path(path);
1992 return err;
1993 }
1994
1995 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1996 struct btrfs_root *root,
1997 struct btrfs_delayed_ref_node *node,
1998 struct btrfs_delayed_extent_op *extent_op,
1999 int insert_reserved)
2000 {
2001 int ret = 0;
2002 struct btrfs_delayed_data_ref *ref;
2003 struct btrfs_key ins;
2004 u64 parent = 0;
2005 u64 ref_root = 0;
2006 u64 flags = 0;
2007
2008 ins.objectid = node->bytenr;
2009 ins.offset = node->num_bytes;
2010 ins.type = BTRFS_EXTENT_ITEM_KEY;
2011
2012 ref = btrfs_delayed_node_to_data_ref(node);
2013 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2014 parent = ref->parent;
2015 else
2016 ref_root = ref->root;
2017
2018 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2019 if (extent_op)
2020 flags |= extent_op->flags_to_set;
2021 ret = alloc_reserved_file_extent(trans, root,
2022 parent, ref_root, flags,
2023 ref->objectid, ref->offset,
2024 &ins, node->ref_mod);
2025 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2026 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2027 node->num_bytes, parent,
2028 ref_root, ref->objectid,
2029 ref->offset, node->ref_mod,
2030 extent_op);
2031 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2032 ret = __btrfs_free_extent(trans, root, node->bytenr,
2033 node->num_bytes, parent,
2034 ref_root, ref->objectid,
2035 ref->offset, node->ref_mod,
2036 extent_op);
2037 } else {
2038 BUG();
2039 }
2040 return ret;
2041 }
2042
2043 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2044 struct extent_buffer *leaf,
2045 struct btrfs_extent_item *ei)
2046 {
2047 u64 flags = btrfs_extent_flags(leaf, ei);
2048 if (extent_op->update_flags) {
2049 flags |= extent_op->flags_to_set;
2050 btrfs_set_extent_flags(leaf, ei, flags);
2051 }
2052
2053 if (extent_op->update_key) {
2054 struct btrfs_tree_block_info *bi;
2055 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2056 bi = (struct btrfs_tree_block_info *)(ei + 1);
2057 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2058 }
2059 }
2060
2061 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2062 struct btrfs_root *root,
2063 struct btrfs_delayed_ref_node *node,
2064 struct btrfs_delayed_extent_op *extent_op)
2065 {
2066 struct btrfs_key key;
2067 struct btrfs_path *path;
2068 struct btrfs_extent_item *ei;
2069 struct extent_buffer *leaf;
2070 u32 item_size;
2071 int ret;
2072 int err = 0;
2073 int metadata = (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2074 node->type == BTRFS_SHARED_BLOCK_REF_KEY);
2075
2076 if (trans->aborted)
2077 return 0;
2078
2079 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2080 metadata = 0;
2081
2082 path = btrfs_alloc_path();
2083 if (!path)
2084 return -ENOMEM;
2085
2086 key.objectid = node->bytenr;
2087
2088 if (metadata) {
2089 struct btrfs_delayed_tree_ref *tree_ref;
2090
2091 tree_ref = btrfs_delayed_node_to_tree_ref(node);
2092 key.type = BTRFS_METADATA_ITEM_KEY;
2093 key.offset = tree_ref->level;
2094 } else {
2095 key.type = BTRFS_EXTENT_ITEM_KEY;
2096 key.offset = node->num_bytes;
2097 }
2098
2099 again:
2100 path->reada = 1;
2101 path->leave_spinning = 1;
2102 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2103 path, 0, 1);
2104 if (ret < 0) {
2105 err = ret;
2106 goto out;
2107 }
2108 if (ret > 0) {
2109 if (metadata) {
2110 btrfs_release_path(path);
2111 metadata = 0;
2112
2113 key.offset = node->num_bytes;
2114 key.type = BTRFS_EXTENT_ITEM_KEY;
2115 goto again;
2116 }
2117 err = -EIO;
2118 goto out;
2119 }
2120
2121 leaf = path->nodes[0];
2122 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2123 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2124 if (item_size < sizeof(*ei)) {
2125 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2126 path, (u64)-1, 0);
2127 if (ret < 0) {
2128 err = ret;
2129 goto out;
2130 }
2131 leaf = path->nodes[0];
2132 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2133 }
2134 #endif
2135 BUG_ON(item_size < sizeof(*ei));
2136 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2137 __run_delayed_extent_op(extent_op, leaf, ei);
2138
2139 btrfs_mark_buffer_dirty(leaf);
2140 out:
2141 btrfs_free_path(path);
2142 return err;
2143 }
2144
2145 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2146 struct btrfs_root *root,
2147 struct btrfs_delayed_ref_node *node,
2148 struct btrfs_delayed_extent_op *extent_op,
2149 int insert_reserved)
2150 {
2151 int ret = 0;
2152 struct btrfs_delayed_tree_ref *ref;
2153 struct btrfs_key ins;
2154 u64 parent = 0;
2155 u64 ref_root = 0;
2156 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2157 SKINNY_METADATA);
2158
2159 ref = btrfs_delayed_node_to_tree_ref(node);
2160 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2161 parent = ref->parent;
2162 else
2163 ref_root = ref->root;
2164
2165 ins.objectid = node->bytenr;
2166 if (skinny_metadata) {
2167 ins.offset = ref->level;
2168 ins.type = BTRFS_METADATA_ITEM_KEY;
2169 } else {
2170 ins.offset = node->num_bytes;
2171 ins.type = BTRFS_EXTENT_ITEM_KEY;
2172 }
2173
2174 BUG_ON(node->ref_mod != 1);
2175 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2176 BUG_ON(!extent_op || !extent_op->update_flags);
2177 ret = alloc_reserved_tree_block(trans, root,
2178 parent, ref_root,
2179 extent_op->flags_to_set,
2180 &extent_op->key,
2181 ref->level, &ins);
2182 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2183 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2184 node->num_bytes, parent, ref_root,
2185 ref->level, 0, 1, extent_op);
2186 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2187 ret = __btrfs_free_extent(trans, root, node->bytenr,
2188 node->num_bytes, parent, ref_root,
2189 ref->level, 0, 1, extent_op);
2190 } else {
2191 BUG();
2192 }
2193 return ret;
2194 }
2195
2196 /* helper function to actually process a single delayed ref entry */
2197 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2198 struct btrfs_root *root,
2199 struct btrfs_delayed_ref_node *node,
2200 struct btrfs_delayed_extent_op *extent_op,
2201 int insert_reserved)
2202 {
2203 int ret = 0;
2204
2205 if (trans->aborted)
2206 return 0;
2207
2208 if (btrfs_delayed_ref_is_head(node)) {
2209 struct btrfs_delayed_ref_head *head;
2210 /*
2211 * we've hit the end of the chain and we were supposed
2212 * to insert this extent into the tree. But, it got
2213 * deleted before we ever needed to insert it, so all
2214 * we have to do is clean up the accounting
2215 */
2216 BUG_ON(extent_op);
2217 head = btrfs_delayed_node_to_head(node);
2218 if (insert_reserved) {
2219 btrfs_pin_extent(root, node->bytenr,
2220 node->num_bytes, 1);
2221 if (head->is_data) {
2222 ret = btrfs_del_csums(trans, root,
2223 node->bytenr,
2224 node->num_bytes);
2225 }
2226 }
2227 return ret;
2228 }
2229
2230 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2231 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2232 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2233 insert_reserved);
2234 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2235 node->type == BTRFS_SHARED_DATA_REF_KEY)
2236 ret = run_delayed_data_ref(trans, root, node, extent_op,
2237 insert_reserved);
2238 else
2239 BUG();
2240 return ret;
2241 }
2242
2243 static noinline struct btrfs_delayed_ref_node *
2244 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2245 {
2246 struct rb_node *node;
2247 struct btrfs_delayed_ref_node *ref;
2248 int action = BTRFS_ADD_DELAYED_REF;
2249 again:
2250 /*
2251 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2252 * this prevents ref count from going down to zero when
2253 * there still are pending delayed ref.
2254 */
2255 node = rb_prev(&head->node.rb_node);
2256 while (1) {
2257 if (!node)
2258 break;
2259 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2260 rb_node);
2261 if (ref->bytenr != head->node.bytenr)
2262 break;
2263 if (ref->action == action)
2264 return ref;
2265 node = rb_prev(node);
2266 }
2267 if (action == BTRFS_ADD_DELAYED_REF) {
2268 action = BTRFS_DROP_DELAYED_REF;
2269 goto again;
2270 }
2271 return NULL;
2272 }
2273
2274 /*
2275 * Returns 0 on success or if called with an already aborted transaction.
2276 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2277 */
2278 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2279 struct btrfs_root *root,
2280 struct list_head *cluster)
2281 {
2282 struct btrfs_delayed_ref_root *delayed_refs;
2283 struct btrfs_delayed_ref_node *ref;
2284 struct btrfs_delayed_ref_head *locked_ref = NULL;
2285 struct btrfs_delayed_extent_op *extent_op;
2286 struct btrfs_fs_info *fs_info = root->fs_info;
2287 int ret;
2288 int count = 0;
2289 int must_insert_reserved = 0;
2290
2291 delayed_refs = &trans->transaction->delayed_refs;
2292 while (1) {
2293 if (!locked_ref) {
2294 /* pick a new head ref from the cluster list */
2295 if (list_empty(cluster))
2296 break;
2297
2298 locked_ref = list_entry(cluster->next,
2299 struct btrfs_delayed_ref_head, cluster);
2300
2301 /* grab the lock that says we are going to process
2302 * all the refs for this head */
2303 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2304
2305 /*
2306 * we may have dropped the spin lock to get the head
2307 * mutex lock, and that might have given someone else
2308 * time to free the head. If that's true, it has been
2309 * removed from our list and we can move on.
2310 */
2311 if (ret == -EAGAIN) {
2312 locked_ref = NULL;
2313 count++;
2314 continue;
2315 }
2316 }
2317
2318 /*
2319 * We need to try and merge add/drops of the same ref since we
2320 * can run into issues with relocate dropping the implicit ref
2321 * and then it being added back again before the drop can
2322 * finish. If we merged anything we need to re-loop so we can
2323 * get a good ref.
2324 */
2325 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2326 locked_ref);
2327
2328 /*
2329 * locked_ref is the head node, so we have to go one
2330 * node back for any delayed ref updates
2331 */
2332 ref = select_delayed_ref(locked_ref);
2333
2334 if (ref && ref->seq &&
2335 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2336 /*
2337 * there are still refs with lower seq numbers in the
2338 * process of being added. Don't run this ref yet.
2339 */
2340 list_del_init(&locked_ref->cluster);
2341 btrfs_delayed_ref_unlock(locked_ref);
2342 locked_ref = NULL;
2343 delayed_refs->num_heads_ready++;
2344 spin_unlock(&delayed_refs->lock);
2345 cond_resched();
2346 spin_lock(&delayed_refs->lock);
2347 continue;
2348 }
2349
2350 /*
2351 * record the must insert reserved flag before we
2352 * drop the spin lock.
2353 */
2354 must_insert_reserved = locked_ref->must_insert_reserved;
2355 locked_ref->must_insert_reserved = 0;
2356
2357 extent_op = locked_ref->extent_op;
2358 locked_ref->extent_op = NULL;
2359
2360 if (!ref) {
2361 /* All delayed refs have been processed, Go ahead
2362 * and send the head node to run_one_delayed_ref,
2363 * so that any accounting fixes can happen
2364 */
2365 ref = &locked_ref->node;
2366
2367 if (extent_op && must_insert_reserved) {
2368 btrfs_free_delayed_extent_op(extent_op);
2369 extent_op = NULL;
2370 }
2371
2372 if (extent_op) {
2373 spin_unlock(&delayed_refs->lock);
2374
2375 ret = run_delayed_extent_op(trans, root,
2376 ref, extent_op);
2377 btrfs_free_delayed_extent_op(extent_op);
2378
2379 if (ret) {
2380 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2381 spin_lock(&delayed_refs->lock);
2382 btrfs_delayed_ref_unlock(locked_ref);
2383 return ret;
2384 }
2385
2386 goto next;
2387 }
2388 }
2389
2390 ref->in_tree = 0;
2391 rb_erase(&ref->rb_node, &delayed_refs->root);
2392 delayed_refs->num_entries--;
2393 if (!btrfs_delayed_ref_is_head(ref)) {
2394 /*
2395 * when we play the delayed ref, also correct the
2396 * ref_mod on head
2397 */
2398 switch (ref->action) {
2399 case BTRFS_ADD_DELAYED_REF:
2400 case BTRFS_ADD_DELAYED_EXTENT:
2401 locked_ref->node.ref_mod -= ref->ref_mod;
2402 break;
2403 case BTRFS_DROP_DELAYED_REF:
2404 locked_ref->node.ref_mod += ref->ref_mod;
2405 break;
2406 default:
2407 WARN_ON(1);
2408 }
2409 }
2410 spin_unlock(&delayed_refs->lock);
2411
2412 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2413 must_insert_reserved);
2414
2415 btrfs_free_delayed_extent_op(extent_op);
2416 if (ret) {
2417 btrfs_delayed_ref_unlock(locked_ref);
2418 btrfs_put_delayed_ref(ref);
2419 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2420 spin_lock(&delayed_refs->lock);
2421 return ret;
2422 }
2423
2424 /*
2425 * If this node is a head, that means all the refs in this head
2426 * have been dealt with, and we will pick the next head to deal
2427 * with, so we must unlock the head and drop it from the cluster
2428 * list before we release it.
2429 */
2430 if (btrfs_delayed_ref_is_head(ref)) {
2431 list_del_init(&locked_ref->cluster);
2432 btrfs_delayed_ref_unlock(locked_ref);
2433 locked_ref = NULL;
2434 }
2435 btrfs_put_delayed_ref(ref);
2436 count++;
2437 next:
2438 cond_resched();
2439 spin_lock(&delayed_refs->lock);
2440 }
2441 return count;
2442 }
2443
2444 #ifdef SCRAMBLE_DELAYED_REFS
2445 /*
2446 * Normally delayed refs get processed in ascending bytenr order. This
2447 * correlates in most cases to the order added. To expose dependencies on this
2448 * order, we start to process the tree in the middle instead of the beginning
2449 */
2450 static u64 find_middle(struct rb_root *root)
2451 {
2452 struct rb_node *n = root->rb_node;
2453 struct btrfs_delayed_ref_node *entry;
2454 int alt = 1;
2455 u64 middle;
2456 u64 first = 0, last = 0;
2457
2458 n = rb_first(root);
2459 if (n) {
2460 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2461 first = entry->bytenr;
2462 }
2463 n = rb_last(root);
2464 if (n) {
2465 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2466 last = entry->bytenr;
2467 }
2468 n = root->rb_node;
2469
2470 while (n) {
2471 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2472 WARN_ON(!entry->in_tree);
2473
2474 middle = entry->bytenr;
2475
2476 if (alt)
2477 n = n->rb_left;
2478 else
2479 n = n->rb_right;
2480
2481 alt = 1 - alt;
2482 }
2483 return middle;
2484 }
2485 #endif
2486
2487 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2488 struct btrfs_fs_info *fs_info)
2489 {
2490 struct qgroup_update *qgroup_update;
2491 int ret = 0;
2492
2493 if (list_empty(&trans->qgroup_ref_list) !=
2494 !trans->delayed_ref_elem.seq) {
2495 /* list without seq or seq without list */
2496 btrfs_err(fs_info,
2497 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2498 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2499 (u32)(trans->delayed_ref_elem.seq >> 32),
2500 (u32)trans->delayed_ref_elem.seq);
2501 BUG();
2502 }
2503
2504 if (!trans->delayed_ref_elem.seq)
2505 return 0;
2506
2507 while (!list_empty(&trans->qgroup_ref_list)) {
2508 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2509 struct qgroup_update, list);
2510 list_del(&qgroup_update->list);
2511 if (!ret)
2512 ret = btrfs_qgroup_account_ref(
2513 trans, fs_info, qgroup_update->node,
2514 qgroup_update->extent_op);
2515 kfree(qgroup_update);
2516 }
2517
2518 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2519
2520 return ret;
2521 }
2522
2523 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2524 int count)
2525 {
2526 int val = atomic_read(&delayed_refs->ref_seq);
2527
2528 if (val < seq || val >= seq + count)
2529 return 1;
2530 return 0;
2531 }
2532
2533 /*
2534 * this starts processing the delayed reference count updates and
2535 * extent insertions we have queued up so far. count can be
2536 * 0, which means to process everything in the tree at the start
2537 * of the run (but not newly added entries), or it can be some target
2538 * number you'd like to process.
2539 *
2540 * Returns 0 on success or if called with an aborted transaction
2541 * Returns <0 on error and aborts the transaction
2542 */
2543 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2544 struct btrfs_root *root, unsigned long count)
2545 {
2546 struct rb_node *node;
2547 struct btrfs_delayed_ref_root *delayed_refs;
2548 struct btrfs_delayed_ref_node *ref;
2549 struct list_head cluster;
2550 int ret;
2551 u64 delayed_start;
2552 int run_all = count == (unsigned long)-1;
2553 int run_most = 0;
2554 int loops;
2555
2556 /* We'll clean this up in btrfs_cleanup_transaction */
2557 if (trans->aborted)
2558 return 0;
2559
2560 if (root == root->fs_info->extent_root)
2561 root = root->fs_info->tree_root;
2562
2563 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2564
2565 delayed_refs = &trans->transaction->delayed_refs;
2566 INIT_LIST_HEAD(&cluster);
2567 if (count == 0) {
2568 count = delayed_refs->num_entries * 2;
2569 run_most = 1;
2570 }
2571
2572 if (!run_all && !run_most) {
2573 int old;
2574 int seq = atomic_read(&delayed_refs->ref_seq);
2575
2576 progress:
2577 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2578 if (old) {
2579 DEFINE_WAIT(__wait);
2580 if (delayed_refs->num_entries < 16348)
2581 return 0;
2582
2583 prepare_to_wait(&delayed_refs->wait, &__wait,
2584 TASK_UNINTERRUPTIBLE);
2585
2586 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2587 if (old) {
2588 schedule();
2589 finish_wait(&delayed_refs->wait, &__wait);
2590
2591 if (!refs_newer(delayed_refs, seq, 256))
2592 goto progress;
2593 else
2594 return 0;
2595 } else {
2596 finish_wait(&delayed_refs->wait, &__wait);
2597 goto again;
2598 }
2599 }
2600
2601 } else {
2602 atomic_inc(&delayed_refs->procs_running_refs);
2603 }
2604
2605 again:
2606 loops = 0;
2607 spin_lock(&delayed_refs->lock);
2608
2609 #ifdef SCRAMBLE_DELAYED_REFS
2610 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2611 #endif
2612
2613 while (1) {
2614 if (!(run_all || run_most) &&
2615 delayed_refs->num_heads_ready < 64)
2616 break;
2617
2618 /*
2619 * go find something we can process in the rbtree. We start at
2620 * the beginning of the tree, and then build a cluster
2621 * of refs to process starting at the first one we are able to
2622 * lock
2623 */
2624 delayed_start = delayed_refs->run_delayed_start;
2625 ret = btrfs_find_ref_cluster(trans, &cluster,
2626 delayed_refs->run_delayed_start);
2627 if (ret)
2628 break;
2629
2630 ret = run_clustered_refs(trans, root, &cluster);
2631 if (ret < 0) {
2632 btrfs_release_ref_cluster(&cluster);
2633 spin_unlock(&delayed_refs->lock);
2634 btrfs_abort_transaction(trans, root, ret);
2635 atomic_dec(&delayed_refs->procs_running_refs);
2636 return ret;
2637 }
2638
2639 atomic_add(ret, &delayed_refs->ref_seq);
2640
2641 count -= min_t(unsigned long, ret, count);
2642
2643 if (count == 0)
2644 break;
2645
2646 if (delayed_start >= delayed_refs->run_delayed_start) {
2647 if (loops == 0) {
2648 /*
2649 * btrfs_find_ref_cluster looped. let's do one
2650 * more cycle. if we don't run any delayed ref
2651 * during that cycle (because we can't because
2652 * all of them are blocked), bail out.
2653 */
2654 loops = 1;
2655 } else {
2656 /*
2657 * no runnable refs left, stop trying
2658 */
2659 BUG_ON(run_all);
2660 break;
2661 }
2662 }
2663 if (ret) {
2664 /* refs were run, let's reset staleness detection */
2665 loops = 0;
2666 }
2667 }
2668
2669 if (run_all) {
2670 if (!list_empty(&trans->new_bgs)) {
2671 spin_unlock(&delayed_refs->lock);
2672 btrfs_create_pending_block_groups(trans, root);
2673 spin_lock(&delayed_refs->lock);
2674 }
2675
2676 node = rb_first(&delayed_refs->root);
2677 if (!node)
2678 goto out;
2679 count = (unsigned long)-1;
2680
2681 while (node) {
2682 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2683 rb_node);
2684 if (btrfs_delayed_ref_is_head(ref)) {
2685 struct btrfs_delayed_ref_head *head;
2686
2687 head = btrfs_delayed_node_to_head(ref);
2688 atomic_inc(&ref->refs);
2689
2690 spin_unlock(&delayed_refs->lock);
2691 /*
2692 * Mutex was contended, block until it's
2693 * released and try again
2694 */
2695 mutex_lock(&head->mutex);
2696 mutex_unlock(&head->mutex);
2697
2698 btrfs_put_delayed_ref(ref);
2699 cond_resched();
2700 goto again;
2701 }
2702 node = rb_next(node);
2703 }
2704 spin_unlock(&delayed_refs->lock);
2705 schedule_timeout(1);
2706 goto again;
2707 }
2708 out:
2709 atomic_dec(&delayed_refs->procs_running_refs);
2710 smp_mb();
2711 if (waitqueue_active(&delayed_refs->wait))
2712 wake_up(&delayed_refs->wait);
2713
2714 spin_unlock(&delayed_refs->lock);
2715 assert_qgroups_uptodate(trans);
2716 return 0;
2717 }
2718
2719 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2720 struct btrfs_root *root,
2721 u64 bytenr, u64 num_bytes, u64 flags,
2722 int is_data)
2723 {
2724 struct btrfs_delayed_extent_op *extent_op;
2725 int ret;
2726
2727 extent_op = btrfs_alloc_delayed_extent_op();
2728 if (!extent_op)
2729 return -ENOMEM;
2730
2731 extent_op->flags_to_set = flags;
2732 extent_op->update_flags = 1;
2733 extent_op->update_key = 0;
2734 extent_op->is_data = is_data ? 1 : 0;
2735
2736 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2737 num_bytes, extent_op);
2738 if (ret)
2739 btrfs_free_delayed_extent_op(extent_op);
2740 return ret;
2741 }
2742
2743 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2744 struct btrfs_root *root,
2745 struct btrfs_path *path,
2746 u64 objectid, u64 offset, u64 bytenr)
2747 {
2748 struct btrfs_delayed_ref_head *head;
2749 struct btrfs_delayed_ref_node *ref;
2750 struct btrfs_delayed_data_ref *data_ref;
2751 struct btrfs_delayed_ref_root *delayed_refs;
2752 struct rb_node *node;
2753 int ret = 0;
2754
2755 ret = -ENOENT;
2756 delayed_refs = &trans->transaction->delayed_refs;
2757 spin_lock(&delayed_refs->lock);
2758 head = btrfs_find_delayed_ref_head(trans, bytenr);
2759 if (!head)
2760 goto out;
2761
2762 if (!mutex_trylock(&head->mutex)) {
2763 atomic_inc(&head->node.refs);
2764 spin_unlock(&delayed_refs->lock);
2765
2766 btrfs_release_path(path);
2767
2768 /*
2769 * Mutex was contended, block until it's released and let
2770 * caller try again
2771 */
2772 mutex_lock(&head->mutex);
2773 mutex_unlock(&head->mutex);
2774 btrfs_put_delayed_ref(&head->node);
2775 return -EAGAIN;
2776 }
2777
2778 node = rb_prev(&head->node.rb_node);
2779 if (!node)
2780 goto out_unlock;
2781
2782 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2783
2784 if (ref->bytenr != bytenr)
2785 goto out_unlock;
2786
2787 ret = 1;
2788 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2789 goto out_unlock;
2790
2791 data_ref = btrfs_delayed_node_to_data_ref(ref);
2792
2793 node = rb_prev(node);
2794 if (node) {
2795 int seq = ref->seq;
2796
2797 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2798 if (ref->bytenr == bytenr && ref->seq == seq)
2799 goto out_unlock;
2800 }
2801
2802 if (data_ref->root != root->root_key.objectid ||
2803 data_ref->objectid != objectid || data_ref->offset != offset)
2804 goto out_unlock;
2805
2806 ret = 0;
2807 out_unlock:
2808 mutex_unlock(&head->mutex);
2809 out:
2810 spin_unlock(&delayed_refs->lock);
2811 return ret;
2812 }
2813
2814 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2815 struct btrfs_root *root,
2816 struct btrfs_path *path,
2817 u64 objectid, u64 offset, u64 bytenr)
2818 {
2819 struct btrfs_root *extent_root = root->fs_info->extent_root;
2820 struct extent_buffer *leaf;
2821 struct btrfs_extent_data_ref *ref;
2822 struct btrfs_extent_inline_ref *iref;
2823 struct btrfs_extent_item *ei;
2824 struct btrfs_key key;
2825 u32 item_size;
2826 int ret;
2827
2828 key.objectid = bytenr;
2829 key.offset = (u64)-1;
2830 key.type = BTRFS_EXTENT_ITEM_KEY;
2831
2832 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2833 if (ret < 0)
2834 goto out;
2835 BUG_ON(ret == 0); /* Corruption */
2836
2837 ret = -ENOENT;
2838 if (path->slots[0] == 0)
2839 goto out;
2840
2841 path->slots[0]--;
2842 leaf = path->nodes[0];
2843 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2844
2845 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2846 goto out;
2847
2848 ret = 1;
2849 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2850 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2851 if (item_size < sizeof(*ei)) {
2852 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2853 goto out;
2854 }
2855 #endif
2856 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2857
2858 if (item_size != sizeof(*ei) +
2859 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2860 goto out;
2861
2862 if (btrfs_extent_generation(leaf, ei) <=
2863 btrfs_root_last_snapshot(&root->root_item))
2864 goto out;
2865
2866 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2867 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2868 BTRFS_EXTENT_DATA_REF_KEY)
2869 goto out;
2870
2871 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2872 if (btrfs_extent_refs(leaf, ei) !=
2873 btrfs_extent_data_ref_count(leaf, ref) ||
2874 btrfs_extent_data_ref_root(leaf, ref) !=
2875 root->root_key.objectid ||
2876 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2877 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2878 goto out;
2879
2880 ret = 0;
2881 out:
2882 return ret;
2883 }
2884
2885 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2886 struct btrfs_root *root,
2887 u64 objectid, u64 offset, u64 bytenr)
2888 {
2889 struct btrfs_path *path;
2890 int ret;
2891 int ret2;
2892
2893 path = btrfs_alloc_path();
2894 if (!path)
2895 return -ENOENT;
2896
2897 do {
2898 ret = check_committed_ref(trans, root, path, objectid,
2899 offset, bytenr);
2900 if (ret && ret != -ENOENT)
2901 goto out;
2902
2903 ret2 = check_delayed_ref(trans, root, path, objectid,
2904 offset, bytenr);
2905 } while (ret2 == -EAGAIN);
2906
2907 if (ret2 && ret2 != -ENOENT) {
2908 ret = ret2;
2909 goto out;
2910 }
2911
2912 if (ret != -ENOENT || ret2 != -ENOENT)
2913 ret = 0;
2914 out:
2915 btrfs_free_path(path);
2916 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2917 WARN_ON(ret > 0);
2918 return ret;
2919 }
2920
2921 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2922 struct btrfs_root *root,
2923 struct extent_buffer *buf,
2924 int full_backref, int inc, int for_cow)
2925 {
2926 u64 bytenr;
2927 u64 num_bytes;
2928 u64 parent;
2929 u64 ref_root;
2930 u32 nritems;
2931 struct btrfs_key key;
2932 struct btrfs_file_extent_item *fi;
2933 int i;
2934 int level;
2935 int ret = 0;
2936 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2937 u64, u64, u64, u64, u64, u64, int);
2938
2939 ref_root = btrfs_header_owner(buf);
2940 nritems = btrfs_header_nritems(buf);
2941 level = btrfs_header_level(buf);
2942
2943 if (!root->ref_cows && level == 0)
2944 return 0;
2945
2946 if (inc)
2947 process_func = btrfs_inc_extent_ref;
2948 else
2949 process_func = btrfs_free_extent;
2950
2951 if (full_backref)
2952 parent = buf->start;
2953 else
2954 parent = 0;
2955
2956 for (i = 0; i < nritems; i++) {
2957 if (level == 0) {
2958 btrfs_item_key_to_cpu(buf, &key, i);
2959 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2960 continue;
2961 fi = btrfs_item_ptr(buf, i,
2962 struct btrfs_file_extent_item);
2963 if (btrfs_file_extent_type(buf, fi) ==
2964 BTRFS_FILE_EXTENT_INLINE)
2965 continue;
2966 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2967 if (bytenr == 0)
2968 continue;
2969
2970 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2971 key.offset -= btrfs_file_extent_offset(buf, fi);
2972 ret = process_func(trans, root, bytenr, num_bytes,
2973 parent, ref_root, key.objectid,
2974 key.offset, for_cow);
2975 if (ret)
2976 goto fail;
2977 } else {
2978 bytenr = btrfs_node_blockptr(buf, i);
2979 num_bytes = btrfs_level_size(root, level - 1);
2980 ret = process_func(trans, root, bytenr, num_bytes,
2981 parent, ref_root, level - 1, 0,
2982 for_cow);
2983 if (ret)
2984 goto fail;
2985 }
2986 }
2987 return 0;
2988 fail:
2989 return ret;
2990 }
2991
2992 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2993 struct extent_buffer *buf, int full_backref, int for_cow)
2994 {
2995 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2996 }
2997
2998 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2999 struct extent_buffer *buf, int full_backref, int for_cow)
3000 {
3001 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3002 }
3003
3004 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3005 struct btrfs_root *root,
3006 struct btrfs_path *path,
3007 struct btrfs_block_group_cache *cache)
3008 {
3009 int ret;
3010 struct btrfs_root *extent_root = root->fs_info->extent_root;
3011 unsigned long bi;
3012 struct extent_buffer *leaf;
3013
3014 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3015 if (ret < 0)
3016 goto fail;
3017 BUG_ON(ret); /* Corruption */
3018
3019 leaf = path->nodes[0];
3020 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3021 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3022 btrfs_mark_buffer_dirty(leaf);
3023 btrfs_release_path(path);
3024 fail:
3025 if (ret) {
3026 btrfs_abort_transaction(trans, root, ret);
3027 return ret;
3028 }
3029 return 0;
3030
3031 }
3032
3033 static struct btrfs_block_group_cache *
3034 next_block_group(struct btrfs_root *root,
3035 struct btrfs_block_group_cache *cache)
3036 {
3037 struct rb_node *node;
3038 spin_lock(&root->fs_info->block_group_cache_lock);
3039 node = rb_next(&cache->cache_node);
3040 btrfs_put_block_group(cache);
3041 if (node) {
3042 cache = rb_entry(node, struct btrfs_block_group_cache,
3043 cache_node);
3044 btrfs_get_block_group(cache);
3045 } else
3046 cache = NULL;
3047 spin_unlock(&root->fs_info->block_group_cache_lock);
3048 return cache;
3049 }
3050
3051 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3052 struct btrfs_trans_handle *trans,
3053 struct btrfs_path *path)
3054 {
3055 struct btrfs_root *root = block_group->fs_info->tree_root;
3056 struct inode *inode = NULL;
3057 u64 alloc_hint = 0;
3058 int dcs = BTRFS_DC_ERROR;
3059 int num_pages = 0;
3060 int retries = 0;
3061 int ret = 0;
3062
3063 /*
3064 * If this block group is smaller than 100 megs don't bother caching the
3065 * block group.
3066 */
3067 if (block_group->key.offset < (100 * 1024 * 1024)) {
3068 spin_lock(&block_group->lock);
3069 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3070 spin_unlock(&block_group->lock);
3071 return 0;
3072 }
3073
3074 again:
3075 inode = lookup_free_space_inode(root, block_group, path);
3076 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3077 ret = PTR_ERR(inode);
3078 btrfs_release_path(path);
3079 goto out;
3080 }
3081
3082 if (IS_ERR(inode)) {
3083 BUG_ON(retries);
3084 retries++;
3085
3086 if (block_group->ro)
3087 goto out_free;
3088
3089 ret = create_free_space_inode(root, trans, block_group, path);
3090 if (ret)
3091 goto out_free;
3092 goto again;
3093 }
3094
3095 /* We've already setup this transaction, go ahead and exit */
3096 if (block_group->cache_generation == trans->transid &&
3097 i_size_read(inode)) {
3098 dcs = BTRFS_DC_SETUP;
3099 goto out_put;
3100 }
3101
3102 /*
3103 * We want to set the generation to 0, that way if anything goes wrong
3104 * from here on out we know not to trust this cache when we load up next
3105 * time.
3106 */
3107 BTRFS_I(inode)->generation = 0;
3108 ret = btrfs_update_inode(trans, root, inode);
3109 WARN_ON(ret);
3110
3111 if (i_size_read(inode) > 0) {
3112 ret = btrfs_truncate_free_space_cache(root, trans, path,
3113 inode);
3114 if (ret)
3115 goto out_put;
3116 }
3117
3118 spin_lock(&block_group->lock);
3119 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3120 !btrfs_test_opt(root, SPACE_CACHE)) {
3121 /*
3122 * don't bother trying to write stuff out _if_
3123 * a) we're not cached,
3124 * b) we're with nospace_cache mount option.
3125 */
3126 dcs = BTRFS_DC_WRITTEN;
3127 spin_unlock(&block_group->lock);
3128 goto out_put;
3129 }
3130 spin_unlock(&block_group->lock);
3131
3132 /*
3133 * Try to preallocate enough space based on how big the block group is.
3134 * Keep in mind this has to include any pinned space which could end up
3135 * taking up quite a bit since it's not folded into the other space
3136 * cache.
3137 */
3138 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3139 if (!num_pages)
3140 num_pages = 1;
3141
3142 num_pages *= 16;
3143 num_pages *= PAGE_CACHE_SIZE;
3144
3145 ret = btrfs_check_data_free_space(inode, num_pages);
3146 if (ret)
3147 goto out_put;
3148
3149 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3150 num_pages, num_pages,
3151 &alloc_hint);
3152 if (!ret)
3153 dcs = BTRFS_DC_SETUP;
3154 btrfs_free_reserved_data_space(inode, num_pages);
3155
3156 out_put:
3157 iput(inode);
3158 out_free:
3159 btrfs_release_path(path);
3160 out:
3161 spin_lock(&block_group->lock);
3162 if (!ret && dcs == BTRFS_DC_SETUP)
3163 block_group->cache_generation = trans->transid;
3164 block_group->disk_cache_state = dcs;
3165 spin_unlock(&block_group->lock);
3166
3167 return ret;
3168 }
3169
3170 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3171 struct btrfs_root *root)
3172 {
3173 struct btrfs_block_group_cache *cache;
3174 int err = 0;
3175 struct btrfs_path *path;
3176 u64 last = 0;
3177
3178 path = btrfs_alloc_path();
3179 if (!path)
3180 return -ENOMEM;
3181
3182 again:
3183 while (1) {
3184 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3185 while (cache) {
3186 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3187 break;
3188 cache = next_block_group(root, cache);
3189 }
3190 if (!cache) {
3191 if (last == 0)
3192 break;
3193 last = 0;
3194 continue;
3195 }
3196 err = cache_save_setup(cache, trans, path);
3197 last = cache->key.objectid + cache->key.offset;
3198 btrfs_put_block_group(cache);
3199 }
3200
3201 while (1) {
3202 if (last == 0) {
3203 err = btrfs_run_delayed_refs(trans, root,
3204 (unsigned long)-1);
3205 if (err) /* File system offline */
3206 goto out;
3207 }
3208
3209 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3210 while (cache) {
3211 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3212 btrfs_put_block_group(cache);
3213 goto again;
3214 }
3215
3216 if (cache->dirty)
3217 break;
3218 cache = next_block_group(root, cache);
3219 }
3220 if (!cache) {
3221 if (last == 0)
3222 break;
3223 last = 0;
3224 continue;
3225 }
3226
3227 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3228 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3229 cache->dirty = 0;
3230 last = cache->key.objectid + cache->key.offset;
3231
3232 err = write_one_cache_group(trans, root, path, cache);
3233 if (err) /* File system offline */
3234 goto out;
3235
3236 btrfs_put_block_group(cache);
3237 }
3238
3239 while (1) {
3240 /*
3241 * I don't think this is needed since we're just marking our
3242 * preallocated extent as written, but just in case it can't
3243 * hurt.
3244 */
3245 if (last == 0) {
3246 err = btrfs_run_delayed_refs(trans, root,
3247 (unsigned long)-1);
3248 if (err) /* File system offline */
3249 goto out;
3250 }
3251
3252 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3253 while (cache) {
3254 /*
3255 * Really this shouldn't happen, but it could if we
3256 * couldn't write the entire preallocated extent and
3257 * splitting the extent resulted in a new block.
3258 */
3259 if (cache->dirty) {
3260 btrfs_put_block_group(cache);
3261 goto again;
3262 }
3263 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3264 break;
3265 cache = next_block_group(root, cache);
3266 }
3267 if (!cache) {
3268 if (last == 0)
3269 break;
3270 last = 0;
3271 continue;
3272 }
3273
3274 err = btrfs_write_out_cache(root, trans, cache, path);
3275
3276 /*
3277 * If we didn't have an error then the cache state is still
3278 * NEED_WRITE, so we can set it to WRITTEN.
3279 */
3280 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3281 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3282 last = cache->key.objectid + cache->key.offset;
3283 btrfs_put_block_group(cache);
3284 }
3285 out:
3286
3287 btrfs_free_path(path);
3288 return err;
3289 }
3290
3291 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3292 {
3293 struct btrfs_block_group_cache *block_group;
3294 int readonly = 0;
3295
3296 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3297 if (!block_group || block_group->ro)
3298 readonly = 1;
3299 if (block_group)
3300 btrfs_put_block_group(block_group);
3301 return readonly;
3302 }
3303
3304 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3305 u64 total_bytes, u64 bytes_used,
3306 struct btrfs_space_info **space_info)
3307 {
3308 struct btrfs_space_info *found;
3309 int i;
3310 int factor;
3311
3312 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3313 BTRFS_BLOCK_GROUP_RAID10))
3314 factor = 2;
3315 else
3316 factor = 1;
3317
3318 found = __find_space_info(info, flags);
3319 if (found) {
3320 spin_lock(&found->lock);
3321 found->total_bytes += total_bytes;
3322 found->disk_total += total_bytes * factor;
3323 found->bytes_used += bytes_used;
3324 found->disk_used += bytes_used * factor;
3325 found->full = 0;
3326 spin_unlock(&found->lock);
3327 *space_info = found;
3328 return 0;
3329 }
3330 found = kzalloc(sizeof(*found), GFP_NOFS);
3331 if (!found)
3332 return -ENOMEM;
3333
3334 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3335 INIT_LIST_HEAD(&found->block_groups[i]);
3336 init_rwsem(&found->groups_sem);
3337 spin_lock_init(&found->lock);
3338 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3339 found->total_bytes = total_bytes;
3340 found->disk_total = total_bytes * factor;
3341 found->bytes_used = bytes_used;
3342 found->disk_used = bytes_used * factor;
3343 found->bytes_pinned = 0;
3344 found->bytes_reserved = 0;
3345 found->bytes_readonly = 0;
3346 found->bytes_may_use = 0;
3347 found->full = 0;
3348 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3349 found->chunk_alloc = 0;
3350 found->flush = 0;
3351 init_waitqueue_head(&found->wait);
3352 *space_info = found;
3353 list_add_rcu(&found->list, &info->space_info);
3354 if (flags & BTRFS_BLOCK_GROUP_DATA)
3355 info->data_sinfo = found;
3356 return 0;
3357 }
3358
3359 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3360 {
3361 u64 extra_flags = chunk_to_extended(flags) &
3362 BTRFS_EXTENDED_PROFILE_MASK;
3363
3364 write_seqlock(&fs_info->profiles_lock);
3365 if (flags & BTRFS_BLOCK_GROUP_DATA)
3366 fs_info->avail_data_alloc_bits |= extra_flags;
3367 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3368 fs_info->avail_metadata_alloc_bits |= extra_flags;
3369 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3370 fs_info->avail_system_alloc_bits |= extra_flags;
3371 write_sequnlock(&fs_info->profiles_lock);
3372 }
3373
3374 /*
3375 * returns target flags in extended format or 0 if restripe for this
3376 * chunk_type is not in progress
3377 *
3378 * should be called with either volume_mutex or balance_lock held
3379 */
3380 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3381 {
3382 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3383 u64 target = 0;
3384
3385 if (!bctl)
3386 return 0;
3387
3388 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3389 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3390 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3391 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3392 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3393 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3394 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3395 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3396 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3397 }
3398
3399 return target;
3400 }
3401
3402 /*
3403 * @flags: available profiles in extended format (see ctree.h)
3404 *
3405 * Returns reduced profile in chunk format. If profile changing is in
3406 * progress (either running or paused) picks the target profile (if it's
3407 * already available), otherwise falls back to plain reducing.
3408 */
3409 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3410 {
3411 /*
3412 * we add in the count of missing devices because we want
3413 * to make sure that any RAID levels on a degraded FS
3414 * continue to be honored.
3415 */
3416 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3417 root->fs_info->fs_devices->missing_devices;
3418 u64 target;
3419 u64 tmp;
3420
3421 /*
3422 * see if restripe for this chunk_type is in progress, if so
3423 * try to reduce to the target profile
3424 */
3425 spin_lock(&root->fs_info->balance_lock);
3426 target = get_restripe_target(root->fs_info, flags);
3427 if (target) {
3428 /* pick target profile only if it's already available */
3429 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3430 spin_unlock(&root->fs_info->balance_lock);
3431 return extended_to_chunk(target);
3432 }
3433 }
3434 spin_unlock(&root->fs_info->balance_lock);
3435
3436 /* First, mask out the RAID levels which aren't possible */
3437 if (num_devices == 1)
3438 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3439 BTRFS_BLOCK_GROUP_RAID5);
3440 if (num_devices < 3)
3441 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3442 if (num_devices < 4)
3443 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3444
3445 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3446 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3447 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3448 flags &= ~tmp;
3449
3450 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3451 tmp = BTRFS_BLOCK_GROUP_RAID6;
3452 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3453 tmp = BTRFS_BLOCK_GROUP_RAID5;
3454 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3455 tmp = BTRFS_BLOCK_GROUP_RAID10;
3456 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3457 tmp = BTRFS_BLOCK_GROUP_RAID1;
3458 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3459 tmp = BTRFS_BLOCK_GROUP_RAID0;
3460
3461 return extended_to_chunk(flags | tmp);
3462 }
3463
3464 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3465 {
3466 unsigned seq;
3467
3468 do {
3469 seq = read_seqbegin(&root->fs_info->profiles_lock);
3470
3471 if (flags & BTRFS_BLOCK_GROUP_DATA)
3472 flags |= root->fs_info->avail_data_alloc_bits;
3473 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3474 flags |= root->fs_info->avail_system_alloc_bits;
3475 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3476 flags |= root->fs_info->avail_metadata_alloc_bits;
3477 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3478
3479 return btrfs_reduce_alloc_profile(root, flags);
3480 }
3481
3482 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3483 {
3484 u64 flags;
3485 u64 ret;
3486
3487 if (data)
3488 flags = BTRFS_BLOCK_GROUP_DATA;
3489 else if (root == root->fs_info->chunk_root)
3490 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3491 else
3492 flags = BTRFS_BLOCK_GROUP_METADATA;
3493
3494 ret = get_alloc_profile(root, flags);
3495 return ret;
3496 }
3497
3498 /*
3499 * This will check the space that the inode allocates from to make sure we have
3500 * enough space for bytes.
3501 */
3502 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3503 {
3504 struct btrfs_space_info *data_sinfo;
3505 struct btrfs_root *root = BTRFS_I(inode)->root;
3506 struct btrfs_fs_info *fs_info = root->fs_info;
3507 u64 used;
3508 int ret = 0, committed = 0, alloc_chunk = 1;
3509
3510 /* make sure bytes are sectorsize aligned */
3511 bytes = ALIGN(bytes, root->sectorsize);
3512
3513 if (root == root->fs_info->tree_root ||
3514 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3515 alloc_chunk = 0;
3516 committed = 1;
3517 }
3518
3519 data_sinfo = fs_info->data_sinfo;
3520 if (!data_sinfo)
3521 goto alloc;
3522
3523 again:
3524 /* make sure we have enough space to handle the data first */
3525 spin_lock(&data_sinfo->lock);
3526 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3527 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3528 data_sinfo->bytes_may_use;
3529
3530 if (used + bytes > data_sinfo->total_bytes) {
3531 struct btrfs_trans_handle *trans;
3532
3533 /*
3534 * if we don't have enough free bytes in this space then we need
3535 * to alloc a new chunk.
3536 */
3537 if (!data_sinfo->full && alloc_chunk) {
3538 u64 alloc_target;
3539
3540 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3541 spin_unlock(&data_sinfo->lock);
3542 alloc:
3543 alloc_target = btrfs_get_alloc_profile(root, 1);
3544 trans = btrfs_join_transaction(root);
3545 if (IS_ERR(trans))
3546 return PTR_ERR(trans);
3547
3548 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3549 alloc_target,
3550 CHUNK_ALLOC_NO_FORCE);
3551 btrfs_end_transaction(trans, root);
3552 if (ret < 0) {
3553 if (ret != -ENOSPC)
3554 return ret;
3555 else
3556 goto commit_trans;
3557 }
3558
3559 if (!data_sinfo)
3560 data_sinfo = fs_info->data_sinfo;
3561
3562 goto again;
3563 }
3564
3565 /*
3566 * If we have less pinned bytes than we want to allocate then
3567 * don't bother committing the transaction, it won't help us.
3568 */
3569 if (data_sinfo->bytes_pinned < bytes)
3570 committed = 1;
3571 spin_unlock(&data_sinfo->lock);
3572
3573 /* commit the current transaction and try again */
3574 commit_trans:
3575 if (!committed &&
3576 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3577 committed = 1;
3578 trans = btrfs_join_transaction(root);
3579 if (IS_ERR(trans))
3580 return PTR_ERR(trans);
3581 ret = btrfs_commit_transaction(trans, root);
3582 if (ret)
3583 return ret;
3584 goto again;
3585 }
3586
3587 return -ENOSPC;
3588 }
3589 data_sinfo->bytes_may_use += bytes;
3590 trace_btrfs_space_reservation(root->fs_info, "space_info",
3591 data_sinfo->flags, bytes, 1);
3592 spin_unlock(&data_sinfo->lock);
3593
3594 return 0;
3595 }
3596
3597 /*
3598 * Called if we need to clear a data reservation for this inode.
3599 */
3600 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3601 {
3602 struct btrfs_root *root = BTRFS_I(inode)->root;
3603 struct btrfs_space_info *data_sinfo;
3604
3605 /* make sure bytes are sectorsize aligned */
3606 bytes = ALIGN(bytes, root->sectorsize);
3607
3608 data_sinfo = root->fs_info->data_sinfo;
3609 spin_lock(&data_sinfo->lock);
3610 data_sinfo->bytes_may_use -= bytes;
3611 trace_btrfs_space_reservation(root->fs_info, "space_info",
3612 data_sinfo->flags, bytes, 0);
3613 spin_unlock(&data_sinfo->lock);
3614 }
3615
3616 static void force_metadata_allocation(struct btrfs_fs_info *info)
3617 {
3618 struct list_head *head = &info->space_info;
3619 struct btrfs_space_info *found;
3620
3621 rcu_read_lock();
3622 list_for_each_entry_rcu(found, head, list) {
3623 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3624 found->force_alloc = CHUNK_ALLOC_FORCE;
3625 }
3626 rcu_read_unlock();
3627 }
3628
3629 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3630 {
3631 return (global->size << 1);
3632 }
3633
3634 static int should_alloc_chunk(struct btrfs_root *root,
3635 struct btrfs_space_info *sinfo, int force)
3636 {
3637 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3638 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3639 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3640 u64 thresh;
3641
3642 if (force == CHUNK_ALLOC_FORCE)
3643 return 1;
3644
3645 /*
3646 * We need to take into account the global rsv because for all intents
3647 * and purposes it's used space. Don't worry about locking the
3648 * global_rsv, it doesn't change except when the transaction commits.
3649 */
3650 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3651 num_allocated += calc_global_rsv_need_space(global_rsv);
3652
3653 /*
3654 * in limited mode, we want to have some free space up to
3655 * about 1% of the FS size.
3656 */
3657 if (force == CHUNK_ALLOC_LIMITED) {
3658 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3659 thresh = max_t(u64, 64 * 1024 * 1024,
3660 div_factor_fine(thresh, 1));
3661
3662 if (num_bytes - num_allocated < thresh)
3663 return 1;
3664 }
3665
3666 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3667 return 0;
3668 return 1;
3669 }
3670
3671 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3672 {
3673 u64 num_dev;
3674
3675 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3676 BTRFS_BLOCK_GROUP_RAID0 |
3677 BTRFS_BLOCK_GROUP_RAID5 |
3678 BTRFS_BLOCK_GROUP_RAID6))
3679 num_dev = root->fs_info->fs_devices->rw_devices;
3680 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3681 num_dev = 2;
3682 else
3683 num_dev = 1; /* DUP or single */
3684
3685 /* metadata for updaing devices and chunk tree */
3686 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3687 }
3688
3689 static void check_system_chunk(struct btrfs_trans_handle *trans,
3690 struct btrfs_root *root, u64 type)
3691 {
3692 struct btrfs_space_info *info;
3693 u64 left;
3694 u64 thresh;
3695
3696 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3697 spin_lock(&info->lock);
3698 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3699 info->bytes_reserved - info->bytes_readonly;
3700 spin_unlock(&info->lock);
3701
3702 thresh = get_system_chunk_thresh(root, type);
3703 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3704 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3705 left, thresh, type);
3706 dump_space_info(info, 0, 0);
3707 }
3708
3709 if (left < thresh) {
3710 u64 flags;
3711
3712 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3713 btrfs_alloc_chunk(trans, root, flags);
3714 }
3715 }
3716
3717 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3718 struct btrfs_root *extent_root, u64 flags, int force)
3719 {
3720 struct btrfs_space_info *space_info;
3721 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3722 int wait_for_alloc = 0;
3723 int ret = 0;
3724
3725 /* Don't re-enter if we're already allocating a chunk */
3726 if (trans->allocating_chunk)
3727 return -ENOSPC;
3728
3729 space_info = __find_space_info(extent_root->fs_info, flags);
3730 if (!space_info) {
3731 ret = update_space_info(extent_root->fs_info, flags,
3732 0, 0, &space_info);
3733 BUG_ON(ret); /* -ENOMEM */
3734 }
3735 BUG_ON(!space_info); /* Logic error */
3736
3737 again:
3738 spin_lock(&space_info->lock);
3739 if (force < space_info->force_alloc)
3740 force = space_info->force_alloc;
3741 if (space_info->full) {
3742 spin_unlock(&space_info->lock);
3743 return 0;
3744 }
3745
3746 if (!should_alloc_chunk(extent_root, space_info, force)) {
3747 spin_unlock(&space_info->lock);
3748 return 0;
3749 } else if (space_info->chunk_alloc) {
3750 wait_for_alloc = 1;
3751 } else {
3752 space_info->chunk_alloc = 1;
3753 }
3754
3755 spin_unlock(&space_info->lock);
3756
3757 mutex_lock(&fs_info->chunk_mutex);
3758
3759 /*
3760 * The chunk_mutex is held throughout the entirety of a chunk
3761 * allocation, so once we've acquired the chunk_mutex we know that the
3762 * other guy is done and we need to recheck and see if we should
3763 * allocate.
3764 */
3765 if (wait_for_alloc) {
3766 mutex_unlock(&fs_info->chunk_mutex);
3767 wait_for_alloc = 0;
3768 goto again;
3769 }
3770
3771 trans->allocating_chunk = true;
3772
3773 /*
3774 * If we have mixed data/metadata chunks we want to make sure we keep
3775 * allocating mixed chunks instead of individual chunks.
3776 */
3777 if (btrfs_mixed_space_info(space_info))
3778 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3779
3780 /*
3781 * if we're doing a data chunk, go ahead and make sure that
3782 * we keep a reasonable number of metadata chunks allocated in the
3783 * FS as well.
3784 */
3785 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3786 fs_info->data_chunk_allocations++;
3787 if (!(fs_info->data_chunk_allocations %
3788 fs_info->metadata_ratio))
3789 force_metadata_allocation(fs_info);
3790 }
3791
3792 /*
3793 * Check if we have enough space in SYSTEM chunk because we may need
3794 * to update devices.
3795 */
3796 check_system_chunk(trans, extent_root, flags);
3797
3798 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3799 trans->allocating_chunk = false;
3800
3801 spin_lock(&space_info->lock);
3802 if (ret < 0 && ret != -ENOSPC)
3803 goto out;
3804 if (ret)
3805 space_info->full = 1;
3806 else
3807 ret = 1;
3808
3809 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3810 out:
3811 space_info->chunk_alloc = 0;
3812 spin_unlock(&space_info->lock);
3813 mutex_unlock(&fs_info->chunk_mutex);
3814 return ret;
3815 }
3816
3817 static int can_overcommit(struct btrfs_root *root,
3818 struct btrfs_space_info *space_info, u64 bytes,
3819 enum btrfs_reserve_flush_enum flush)
3820 {
3821 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3822 u64 profile = btrfs_get_alloc_profile(root, 0);
3823 u64 space_size;
3824 u64 avail;
3825 u64 used;
3826 u64 to_add;
3827
3828 used = space_info->bytes_used + space_info->bytes_reserved +
3829 space_info->bytes_pinned + space_info->bytes_readonly;
3830
3831 /*
3832 * We only want to allow over committing if we have lots of actual space
3833 * free, but if we don't have enough space to handle the global reserve
3834 * space then we could end up having a real enospc problem when trying
3835 * to allocate a chunk or some other such important allocation.
3836 */
3837 spin_lock(&global_rsv->lock);
3838 space_size = calc_global_rsv_need_space(global_rsv);
3839 spin_unlock(&global_rsv->lock);
3840 if (used + space_size >= space_info->total_bytes)
3841 return 0;
3842
3843 used += space_info->bytes_may_use;
3844
3845 spin_lock(&root->fs_info->free_chunk_lock);
3846 avail = root->fs_info->free_chunk_space;
3847 spin_unlock(&root->fs_info->free_chunk_lock);
3848
3849 /*
3850 * If we have dup, raid1 or raid10 then only half of the free
3851 * space is actually useable. For raid56, the space info used
3852 * doesn't include the parity drive, so we don't have to
3853 * change the math
3854 */
3855 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3856 BTRFS_BLOCK_GROUP_RAID1 |
3857 BTRFS_BLOCK_GROUP_RAID10))
3858 avail >>= 1;
3859
3860 to_add = space_info->total_bytes;
3861
3862 /*
3863 * If we aren't flushing all things, let us overcommit up to
3864 * 1/2th of the space. If we can flush, don't let us overcommit
3865 * too much, let it overcommit up to 1/8 of the space.
3866 */
3867 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3868 to_add >>= 3;
3869 else
3870 to_add >>= 1;
3871
3872 /*
3873 * Limit the overcommit to the amount of free space we could possibly
3874 * allocate for chunks.
3875 */
3876 to_add = min(avail, to_add);
3877
3878 if (used + bytes < space_info->total_bytes + to_add)
3879 return 1;
3880 return 0;
3881 }
3882
3883 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3884 unsigned long nr_pages)
3885 {
3886 struct super_block *sb = root->fs_info->sb;
3887 int started;
3888
3889 /* If we can not start writeback, just sync all the delalloc file. */
3890 started = try_to_writeback_inodes_sb_nr(sb, nr_pages,
3891 WB_REASON_FS_FREE_SPACE);
3892 if (!started) {
3893 /*
3894 * We needn't worry the filesystem going from r/w to r/o though
3895 * we don't acquire ->s_umount mutex, because the filesystem
3896 * should guarantee the delalloc inodes list be empty after
3897 * the filesystem is readonly(all dirty pages are written to
3898 * the disk).
3899 */
3900 btrfs_start_delalloc_inodes(root, 0);
3901 if (!current->journal_info)
3902 btrfs_wait_ordered_extents(root, 0);
3903 }
3904 }
3905
3906 /*
3907 * shrink metadata reservation for delalloc
3908 */
3909 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3910 bool wait_ordered)
3911 {
3912 struct btrfs_block_rsv *block_rsv;
3913 struct btrfs_space_info *space_info;
3914 struct btrfs_trans_handle *trans;
3915 u64 delalloc_bytes;
3916 u64 max_reclaim;
3917 long time_left;
3918 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3919 int loops = 0;
3920 enum btrfs_reserve_flush_enum flush;
3921
3922 trans = (struct btrfs_trans_handle *)current->journal_info;
3923 block_rsv = &root->fs_info->delalloc_block_rsv;
3924 space_info = block_rsv->space_info;
3925
3926 smp_mb();
3927 delalloc_bytes = percpu_counter_sum_positive(
3928 &root->fs_info->delalloc_bytes);
3929 if (delalloc_bytes == 0) {
3930 if (trans)
3931 return;
3932 btrfs_wait_ordered_extents(root, 0);
3933 return;
3934 }
3935
3936 while (delalloc_bytes && loops < 3) {
3937 max_reclaim = min(delalloc_bytes, to_reclaim);
3938 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3939 btrfs_writeback_inodes_sb_nr(root, nr_pages);
3940 /*
3941 * We need to wait for the async pages to actually start before
3942 * we do anything.
3943 */
3944 wait_event(root->fs_info->async_submit_wait,
3945 !atomic_read(&root->fs_info->async_delalloc_pages));
3946
3947 if (!trans)
3948 flush = BTRFS_RESERVE_FLUSH_ALL;
3949 else
3950 flush = BTRFS_RESERVE_NO_FLUSH;
3951 spin_lock(&space_info->lock);
3952 if (can_overcommit(root, space_info, orig, flush)) {
3953 spin_unlock(&space_info->lock);
3954 break;
3955 }
3956 spin_unlock(&space_info->lock);
3957
3958 loops++;
3959 if (wait_ordered && !trans) {
3960 btrfs_wait_ordered_extents(root, 0);
3961 } else {
3962 time_left = schedule_timeout_killable(1);
3963 if (time_left)
3964 break;
3965 }
3966 smp_mb();
3967 delalloc_bytes = percpu_counter_sum_positive(
3968 &root->fs_info->delalloc_bytes);
3969 }
3970 }
3971
3972 /**
3973 * maybe_commit_transaction - possibly commit the transaction if its ok to
3974 * @root - the root we're allocating for
3975 * @bytes - the number of bytes we want to reserve
3976 * @force - force the commit
3977 *
3978 * This will check to make sure that committing the transaction will actually
3979 * get us somewhere and then commit the transaction if it does. Otherwise it
3980 * will return -ENOSPC.
3981 */
3982 static int may_commit_transaction(struct btrfs_root *root,
3983 struct btrfs_space_info *space_info,
3984 u64 bytes, int force)
3985 {
3986 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3987 struct btrfs_trans_handle *trans;
3988
3989 trans = (struct btrfs_trans_handle *)current->journal_info;
3990 if (trans)
3991 return -EAGAIN;
3992
3993 if (force)
3994 goto commit;
3995
3996 /* See if there is enough pinned space to make this reservation */
3997 spin_lock(&space_info->lock);
3998 if (space_info->bytes_pinned >= bytes) {
3999 spin_unlock(&space_info->lock);
4000 goto commit;
4001 }
4002 spin_unlock(&space_info->lock);
4003
4004 /*
4005 * See if there is some space in the delayed insertion reservation for
4006 * this reservation.
4007 */
4008 if (space_info != delayed_rsv->space_info)
4009 return -ENOSPC;
4010
4011 spin_lock(&space_info->lock);
4012 spin_lock(&delayed_rsv->lock);
4013 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
4014 spin_unlock(&delayed_rsv->lock);
4015 spin_unlock(&space_info->lock);
4016 return -ENOSPC;
4017 }
4018 spin_unlock(&delayed_rsv->lock);
4019 spin_unlock(&space_info->lock);
4020
4021 commit:
4022 trans = btrfs_join_transaction(root);
4023 if (IS_ERR(trans))
4024 return -ENOSPC;
4025
4026 return btrfs_commit_transaction(trans, root);
4027 }
4028
4029 enum flush_state {
4030 FLUSH_DELAYED_ITEMS_NR = 1,
4031 FLUSH_DELAYED_ITEMS = 2,
4032 FLUSH_DELALLOC = 3,
4033 FLUSH_DELALLOC_WAIT = 4,
4034 ALLOC_CHUNK = 5,
4035 COMMIT_TRANS = 6,
4036 };
4037
4038 static int flush_space(struct btrfs_root *root,
4039 struct btrfs_space_info *space_info, u64 num_bytes,
4040 u64 orig_bytes, int state)
4041 {
4042 struct btrfs_trans_handle *trans;
4043 int nr;
4044 int ret = 0;
4045
4046 switch (state) {
4047 case FLUSH_DELAYED_ITEMS_NR:
4048 case FLUSH_DELAYED_ITEMS:
4049 if (state == FLUSH_DELAYED_ITEMS_NR) {
4050 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4051
4052 nr = (int)div64_u64(num_bytes, bytes);
4053 if (!nr)
4054 nr = 1;
4055 nr *= 2;
4056 } else {
4057 nr = -1;
4058 }
4059 trans = btrfs_join_transaction(root);
4060 if (IS_ERR(trans)) {
4061 ret = PTR_ERR(trans);
4062 break;
4063 }
4064 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4065 btrfs_end_transaction(trans, root);
4066 break;
4067 case FLUSH_DELALLOC:
4068 case FLUSH_DELALLOC_WAIT:
4069 shrink_delalloc(root, num_bytes, orig_bytes,
4070 state == FLUSH_DELALLOC_WAIT);
4071 break;
4072 case ALLOC_CHUNK:
4073 trans = btrfs_join_transaction(root);
4074 if (IS_ERR(trans)) {
4075 ret = PTR_ERR(trans);
4076 break;
4077 }
4078 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4079 btrfs_get_alloc_profile(root, 0),
4080 CHUNK_ALLOC_NO_FORCE);
4081 btrfs_end_transaction(trans, root);
4082 if (ret == -ENOSPC)
4083 ret = 0;
4084 break;
4085 case COMMIT_TRANS:
4086 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4087 break;
4088 default:
4089 ret = -ENOSPC;
4090 break;
4091 }
4092
4093 return ret;
4094 }
4095 /**
4096 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4097 * @root - the root we're allocating for
4098 * @block_rsv - the block_rsv we're allocating for
4099 * @orig_bytes - the number of bytes we want
4100 * @flush - whether or not we can flush to make our reservation
4101 *
4102 * This will reserve orgi_bytes number of bytes from the space info associated
4103 * with the block_rsv. If there is not enough space it will make an attempt to
4104 * flush out space to make room. It will do this by flushing delalloc if
4105 * possible or committing the transaction. If flush is 0 then no attempts to
4106 * regain reservations will be made and this will fail if there is not enough
4107 * space already.
4108 */
4109 static int reserve_metadata_bytes(struct btrfs_root *root,
4110 struct btrfs_block_rsv *block_rsv,
4111 u64 orig_bytes,
4112 enum btrfs_reserve_flush_enum flush)
4113 {
4114 struct btrfs_space_info *space_info = block_rsv->space_info;
4115 u64 used;
4116 u64 num_bytes = orig_bytes;
4117 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4118 int ret = 0;
4119 bool flushing = false;
4120
4121 again:
4122 ret = 0;
4123 spin_lock(&space_info->lock);
4124 /*
4125 * We only want to wait if somebody other than us is flushing and we
4126 * are actually allowed to flush all things.
4127 */
4128 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4129 space_info->flush) {
4130 spin_unlock(&space_info->lock);
4131 /*
4132 * If we have a trans handle we can't wait because the flusher
4133 * may have to commit the transaction, which would mean we would
4134 * deadlock since we are waiting for the flusher to finish, but
4135 * hold the current transaction open.
4136 */
4137 if (current->journal_info)
4138 return -EAGAIN;
4139 ret = wait_event_killable(space_info->wait, !space_info->flush);
4140 /* Must have been killed, return */
4141 if (ret)
4142 return -EINTR;
4143
4144 spin_lock(&space_info->lock);
4145 }
4146
4147 ret = -ENOSPC;
4148 used = space_info->bytes_used + space_info->bytes_reserved +
4149 space_info->bytes_pinned + space_info->bytes_readonly +
4150 space_info->bytes_may_use;
4151
4152 /*
4153 * The idea here is that we've not already over-reserved the block group
4154 * then we can go ahead and save our reservation first and then start
4155 * flushing if we need to. Otherwise if we've already overcommitted
4156 * lets start flushing stuff first and then come back and try to make
4157 * our reservation.
4158 */
4159 if (used <= space_info->total_bytes) {
4160 if (used + orig_bytes <= space_info->total_bytes) {
4161 space_info->bytes_may_use += orig_bytes;
4162 trace_btrfs_space_reservation(root->fs_info,
4163 "space_info", space_info->flags, orig_bytes, 1);
4164 ret = 0;
4165 } else {
4166 /*
4167 * Ok set num_bytes to orig_bytes since we aren't
4168 * overocmmitted, this way we only try and reclaim what
4169 * we need.
4170 */
4171 num_bytes = orig_bytes;
4172 }
4173 } else {
4174 /*
4175 * Ok we're over committed, set num_bytes to the overcommitted
4176 * amount plus the amount of bytes that we need for this
4177 * reservation.
4178 */
4179 num_bytes = used - space_info->total_bytes +
4180 (orig_bytes * 2);
4181 }
4182
4183 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4184 space_info->bytes_may_use += orig_bytes;
4185 trace_btrfs_space_reservation(root->fs_info, "space_info",
4186 space_info->flags, orig_bytes,
4187 1);
4188 ret = 0;
4189 }
4190
4191 /*
4192 * Couldn't make our reservation, save our place so while we're trying
4193 * to reclaim space we can actually use it instead of somebody else
4194 * stealing it from us.
4195 *
4196 * We make the other tasks wait for the flush only when we can flush
4197 * all things.
4198 */
4199 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4200 flushing = true;
4201 space_info->flush = 1;
4202 }
4203
4204 spin_unlock(&space_info->lock);
4205
4206 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4207 goto out;
4208
4209 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4210 flush_state);
4211 flush_state++;
4212
4213 /*
4214 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4215 * would happen. So skip delalloc flush.
4216 */
4217 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4218 (flush_state == FLUSH_DELALLOC ||
4219 flush_state == FLUSH_DELALLOC_WAIT))
4220 flush_state = ALLOC_CHUNK;
4221
4222 if (!ret)
4223 goto again;
4224 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4225 flush_state < COMMIT_TRANS)
4226 goto again;
4227 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4228 flush_state <= COMMIT_TRANS)
4229 goto again;
4230
4231 out:
4232 if (ret == -ENOSPC &&
4233 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4234 struct btrfs_block_rsv *global_rsv =
4235 &root->fs_info->global_block_rsv;
4236
4237 if (block_rsv != global_rsv &&
4238 !block_rsv_use_bytes(global_rsv, orig_bytes))
4239 ret = 0;
4240 }
4241 if (flushing) {
4242 spin_lock(&space_info->lock);
4243 space_info->flush = 0;
4244 wake_up_all(&space_info->wait);
4245 spin_unlock(&space_info->lock);
4246 }
4247 return ret;
4248 }
4249
4250 static struct btrfs_block_rsv *get_block_rsv(
4251 const struct btrfs_trans_handle *trans,
4252 const struct btrfs_root *root)
4253 {
4254 struct btrfs_block_rsv *block_rsv = NULL;
4255
4256 if (root->ref_cows)
4257 block_rsv = trans->block_rsv;
4258
4259 if (root == root->fs_info->csum_root && trans->adding_csums)
4260 block_rsv = trans->block_rsv;
4261
4262 if (!block_rsv)
4263 block_rsv = root->block_rsv;
4264
4265 if (!block_rsv)
4266 block_rsv = &root->fs_info->empty_block_rsv;
4267
4268 return block_rsv;
4269 }
4270
4271 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4272 u64 num_bytes)
4273 {
4274 int ret = -ENOSPC;
4275 spin_lock(&block_rsv->lock);
4276 if (block_rsv->reserved >= num_bytes) {
4277 block_rsv->reserved -= num_bytes;
4278 if (block_rsv->reserved < block_rsv->size)
4279 block_rsv->full = 0;
4280 ret = 0;
4281 }
4282 spin_unlock(&block_rsv->lock);
4283 return ret;
4284 }
4285
4286 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4287 u64 num_bytes, int update_size)
4288 {
4289 spin_lock(&block_rsv->lock);
4290 block_rsv->reserved += num_bytes;
4291 if (update_size)
4292 block_rsv->size += num_bytes;
4293 else if (block_rsv->reserved >= block_rsv->size)
4294 block_rsv->full = 1;
4295 spin_unlock(&block_rsv->lock);
4296 }
4297
4298 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4299 struct btrfs_block_rsv *block_rsv,
4300 struct btrfs_block_rsv *dest, u64 num_bytes)
4301 {
4302 struct btrfs_space_info *space_info = block_rsv->space_info;
4303
4304 spin_lock(&block_rsv->lock);
4305 if (num_bytes == (u64)-1)
4306 num_bytes = block_rsv->size;
4307 block_rsv->size -= num_bytes;
4308 if (block_rsv->reserved >= block_rsv->size) {
4309 num_bytes = block_rsv->reserved - block_rsv->size;
4310 block_rsv->reserved = block_rsv->size;
4311 block_rsv->full = 1;
4312 } else {
4313 num_bytes = 0;
4314 }
4315 spin_unlock(&block_rsv->lock);
4316
4317 if (num_bytes > 0) {
4318 if (dest) {
4319 spin_lock(&dest->lock);
4320 if (!dest->full) {
4321 u64 bytes_to_add;
4322
4323 bytes_to_add = dest->size - dest->reserved;
4324 bytes_to_add = min(num_bytes, bytes_to_add);
4325 dest->reserved += bytes_to_add;
4326 if (dest->reserved >= dest->size)
4327 dest->full = 1;
4328 num_bytes -= bytes_to_add;
4329 }
4330 spin_unlock(&dest->lock);
4331 }
4332 if (num_bytes) {
4333 spin_lock(&space_info->lock);
4334 space_info->bytes_may_use -= num_bytes;
4335 trace_btrfs_space_reservation(fs_info, "space_info",
4336 space_info->flags, num_bytes, 0);
4337 space_info->reservation_progress++;
4338 spin_unlock(&space_info->lock);
4339 }
4340 }
4341 }
4342
4343 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4344 struct btrfs_block_rsv *dst, u64 num_bytes)
4345 {
4346 int ret;
4347
4348 ret = block_rsv_use_bytes(src, num_bytes);
4349 if (ret)
4350 return ret;
4351
4352 block_rsv_add_bytes(dst, num_bytes, 1);
4353 return 0;
4354 }
4355
4356 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4357 {
4358 memset(rsv, 0, sizeof(*rsv));
4359 spin_lock_init(&rsv->lock);
4360 rsv->type = type;
4361 }
4362
4363 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4364 unsigned short type)
4365 {
4366 struct btrfs_block_rsv *block_rsv;
4367 struct btrfs_fs_info *fs_info = root->fs_info;
4368
4369 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4370 if (!block_rsv)
4371 return NULL;
4372
4373 btrfs_init_block_rsv(block_rsv, type);
4374 block_rsv->space_info = __find_space_info(fs_info,
4375 BTRFS_BLOCK_GROUP_METADATA);
4376 return block_rsv;
4377 }
4378
4379 void btrfs_free_block_rsv(struct btrfs_root *root,
4380 struct btrfs_block_rsv *rsv)
4381 {
4382 if (!rsv)
4383 return;
4384 btrfs_block_rsv_release(root, rsv, (u64)-1);
4385 kfree(rsv);
4386 }
4387
4388 int btrfs_block_rsv_add(struct btrfs_root *root,
4389 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4390 enum btrfs_reserve_flush_enum flush)
4391 {
4392 int ret;
4393
4394 if (num_bytes == 0)
4395 return 0;
4396
4397 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4398 if (!ret) {
4399 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4400 return 0;
4401 }
4402
4403 return ret;
4404 }
4405
4406 int btrfs_block_rsv_check(struct btrfs_root *root,
4407 struct btrfs_block_rsv *block_rsv, int min_factor)
4408 {
4409 u64 num_bytes = 0;
4410 int ret = -ENOSPC;
4411
4412 if (!block_rsv)
4413 return 0;
4414
4415 spin_lock(&block_rsv->lock);
4416 num_bytes = div_factor(block_rsv->size, min_factor);
4417 if (block_rsv->reserved >= num_bytes)
4418 ret = 0;
4419 spin_unlock(&block_rsv->lock);
4420
4421 return ret;
4422 }
4423
4424 int btrfs_block_rsv_refill(struct btrfs_root *root,
4425 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4426 enum btrfs_reserve_flush_enum flush)
4427 {
4428 u64 num_bytes = 0;
4429 int ret = -ENOSPC;
4430
4431 if (!block_rsv)
4432 return 0;
4433
4434 spin_lock(&block_rsv->lock);
4435 num_bytes = min_reserved;
4436 if (block_rsv->reserved >= num_bytes)
4437 ret = 0;
4438 else
4439 num_bytes -= block_rsv->reserved;
4440 spin_unlock(&block_rsv->lock);
4441
4442 if (!ret)
4443 return 0;
4444
4445 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4446 if (!ret) {
4447 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4448 return 0;
4449 }
4450
4451 return ret;
4452 }
4453
4454 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4455 struct btrfs_block_rsv *dst_rsv,
4456 u64 num_bytes)
4457 {
4458 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4459 }
4460
4461 void btrfs_block_rsv_release(struct btrfs_root *root,
4462 struct btrfs_block_rsv *block_rsv,
4463 u64 num_bytes)
4464 {
4465 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4466 if (global_rsv->full || global_rsv == block_rsv ||
4467 block_rsv->space_info != global_rsv->space_info)
4468 global_rsv = NULL;
4469 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4470 num_bytes);
4471 }
4472
4473 /*
4474 * helper to calculate size of global block reservation.
4475 * the desired value is sum of space used by extent tree,
4476 * checksum tree and root tree
4477 */
4478 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4479 {
4480 struct btrfs_space_info *sinfo;
4481 u64 num_bytes;
4482 u64 meta_used;
4483 u64 data_used;
4484 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4485
4486 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4487 spin_lock(&sinfo->lock);
4488 data_used = sinfo->bytes_used;
4489 spin_unlock(&sinfo->lock);
4490
4491 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4492 spin_lock(&sinfo->lock);
4493 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4494 data_used = 0;
4495 meta_used = sinfo->bytes_used;
4496 spin_unlock(&sinfo->lock);
4497
4498 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4499 csum_size * 2;
4500 num_bytes += div64_u64(data_used + meta_used, 50);
4501
4502 if (num_bytes * 3 > meta_used)
4503 num_bytes = div64_u64(meta_used, 3);
4504
4505 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4506 }
4507
4508 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4509 {
4510 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4511 struct btrfs_space_info *sinfo = block_rsv->space_info;
4512 u64 num_bytes;
4513
4514 num_bytes = calc_global_metadata_size(fs_info);
4515
4516 spin_lock(&sinfo->lock);
4517 spin_lock(&block_rsv->lock);
4518
4519 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4520
4521 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4522 sinfo->bytes_reserved + sinfo->bytes_readonly +
4523 sinfo->bytes_may_use;
4524
4525 if (sinfo->total_bytes > num_bytes) {
4526 num_bytes = sinfo->total_bytes - num_bytes;
4527 block_rsv->reserved += num_bytes;
4528 sinfo->bytes_may_use += num_bytes;
4529 trace_btrfs_space_reservation(fs_info, "space_info",
4530 sinfo->flags, num_bytes, 1);
4531 }
4532
4533 if (block_rsv->reserved >= block_rsv->size) {
4534 num_bytes = block_rsv->reserved - block_rsv->size;
4535 sinfo->bytes_may_use -= num_bytes;
4536 trace_btrfs_space_reservation(fs_info, "space_info",
4537 sinfo->flags, num_bytes, 0);
4538 sinfo->reservation_progress++;
4539 block_rsv->reserved = block_rsv->size;
4540 block_rsv->full = 1;
4541 }
4542
4543 spin_unlock(&block_rsv->lock);
4544 spin_unlock(&sinfo->lock);
4545 }
4546
4547 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4548 {
4549 struct btrfs_space_info *space_info;
4550
4551 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4552 fs_info->chunk_block_rsv.space_info = space_info;
4553
4554 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4555 fs_info->global_block_rsv.space_info = space_info;
4556 fs_info->delalloc_block_rsv.space_info = space_info;
4557 fs_info->trans_block_rsv.space_info = space_info;
4558 fs_info->empty_block_rsv.space_info = space_info;
4559 fs_info->delayed_block_rsv.space_info = space_info;
4560
4561 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4562 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4563 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4564 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4565 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4566
4567 update_global_block_rsv(fs_info);
4568 }
4569
4570 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4571 {
4572 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4573 (u64)-1);
4574 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4575 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4576 WARN_ON(fs_info->trans_block_rsv.size > 0);
4577 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4578 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4579 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4580 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4581 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4582 }
4583
4584 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4585 struct btrfs_root *root)
4586 {
4587 if (!trans->block_rsv)
4588 return;
4589
4590 if (!trans->bytes_reserved)
4591 return;
4592
4593 trace_btrfs_space_reservation(root->fs_info, "transaction",
4594 trans->transid, trans->bytes_reserved, 0);
4595 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4596 trans->bytes_reserved = 0;
4597 }
4598
4599 /* Can only return 0 or -ENOSPC */
4600 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4601 struct inode *inode)
4602 {
4603 struct btrfs_root *root = BTRFS_I(inode)->root;
4604 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4605 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4606
4607 /*
4608 * We need to hold space in order to delete our orphan item once we've
4609 * added it, so this takes the reservation so we can release it later
4610 * when we are truly done with the orphan item.
4611 */
4612 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4613 trace_btrfs_space_reservation(root->fs_info, "orphan",
4614 btrfs_ino(inode), num_bytes, 1);
4615 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4616 }
4617
4618 void btrfs_orphan_release_metadata(struct inode *inode)
4619 {
4620 struct btrfs_root *root = BTRFS_I(inode)->root;
4621 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4622 trace_btrfs_space_reservation(root->fs_info, "orphan",
4623 btrfs_ino(inode), num_bytes, 0);
4624 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4625 }
4626
4627 /*
4628 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4629 * root: the root of the parent directory
4630 * rsv: block reservation
4631 * items: the number of items that we need do reservation
4632 * qgroup_reserved: used to return the reserved size in qgroup
4633 *
4634 * This function is used to reserve the space for snapshot/subvolume
4635 * creation and deletion. Those operations are different with the
4636 * common file/directory operations, they change two fs/file trees
4637 * and root tree, the number of items that the qgroup reserves is
4638 * different with the free space reservation. So we can not use
4639 * the space reseravtion mechanism in start_transaction().
4640 */
4641 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4642 struct btrfs_block_rsv *rsv,
4643 int items,
4644 u64 *qgroup_reserved)
4645 {
4646 u64 num_bytes;
4647 int ret;
4648
4649 if (root->fs_info->quota_enabled) {
4650 /* One for parent inode, two for dir entries */
4651 num_bytes = 3 * root->leafsize;
4652 ret = btrfs_qgroup_reserve(root, num_bytes);
4653 if (ret)
4654 return ret;
4655 } else {
4656 num_bytes = 0;
4657 }
4658
4659 *qgroup_reserved = num_bytes;
4660
4661 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4662 rsv->space_info = __find_space_info(root->fs_info,
4663 BTRFS_BLOCK_GROUP_METADATA);
4664 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4665 BTRFS_RESERVE_FLUSH_ALL);
4666 if (ret) {
4667 if (*qgroup_reserved)
4668 btrfs_qgroup_free(root, *qgroup_reserved);
4669 }
4670
4671 return ret;
4672 }
4673
4674 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4675 struct btrfs_block_rsv *rsv,
4676 u64 qgroup_reserved)
4677 {
4678 btrfs_block_rsv_release(root, rsv, (u64)-1);
4679 if (qgroup_reserved)
4680 btrfs_qgroup_free(root, qgroup_reserved);
4681 }
4682
4683 /**
4684 * drop_outstanding_extent - drop an outstanding extent
4685 * @inode: the inode we're dropping the extent for
4686 *
4687 * This is called when we are freeing up an outstanding extent, either called
4688 * after an error or after an extent is written. This will return the number of
4689 * reserved extents that need to be freed. This must be called with
4690 * BTRFS_I(inode)->lock held.
4691 */
4692 static unsigned drop_outstanding_extent(struct inode *inode)
4693 {
4694 unsigned drop_inode_space = 0;
4695 unsigned dropped_extents = 0;
4696
4697 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4698 BTRFS_I(inode)->outstanding_extents--;
4699
4700 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4701 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4702 &BTRFS_I(inode)->runtime_flags))
4703 drop_inode_space = 1;
4704
4705 /*
4706 * If we have more or the same amount of outsanding extents than we have
4707 * reserved then we need to leave the reserved extents count alone.
4708 */
4709 if (BTRFS_I(inode)->outstanding_extents >=
4710 BTRFS_I(inode)->reserved_extents)
4711 return drop_inode_space;
4712
4713 dropped_extents = BTRFS_I(inode)->reserved_extents -
4714 BTRFS_I(inode)->outstanding_extents;
4715 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4716 return dropped_extents + drop_inode_space;
4717 }
4718
4719 /**
4720 * calc_csum_metadata_size - return the amount of metada space that must be
4721 * reserved/free'd for the given bytes.
4722 * @inode: the inode we're manipulating
4723 * @num_bytes: the number of bytes in question
4724 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4725 *
4726 * This adjusts the number of csum_bytes in the inode and then returns the
4727 * correct amount of metadata that must either be reserved or freed. We
4728 * calculate how many checksums we can fit into one leaf and then divide the
4729 * number of bytes that will need to be checksumed by this value to figure out
4730 * how many checksums will be required. If we are adding bytes then the number
4731 * may go up and we will return the number of additional bytes that must be
4732 * reserved. If it is going down we will return the number of bytes that must
4733 * be freed.
4734 *
4735 * This must be called with BTRFS_I(inode)->lock held.
4736 */
4737 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4738 int reserve)
4739 {
4740 struct btrfs_root *root = BTRFS_I(inode)->root;
4741 u64 csum_size;
4742 int num_csums_per_leaf;
4743 int num_csums;
4744 int old_csums;
4745
4746 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4747 BTRFS_I(inode)->csum_bytes == 0)
4748 return 0;
4749
4750 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4751 if (reserve)
4752 BTRFS_I(inode)->csum_bytes += num_bytes;
4753 else
4754 BTRFS_I(inode)->csum_bytes -= num_bytes;
4755 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4756 num_csums_per_leaf = (int)div64_u64(csum_size,
4757 sizeof(struct btrfs_csum_item) +
4758 sizeof(struct btrfs_disk_key));
4759 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4760 num_csums = num_csums + num_csums_per_leaf - 1;
4761 num_csums = num_csums / num_csums_per_leaf;
4762
4763 old_csums = old_csums + num_csums_per_leaf - 1;
4764 old_csums = old_csums / num_csums_per_leaf;
4765
4766 /* No change, no need to reserve more */
4767 if (old_csums == num_csums)
4768 return 0;
4769
4770 if (reserve)
4771 return btrfs_calc_trans_metadata_size(root,
4772 num_csums - old_csums);
4773
4774 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4775 }
4776
4777 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4778 {
4779 struct btrfs_root *root = BTRFS_I(inode)->root;
4780 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4781 u64 to_reserve = 0;
4782 u64 csum_bytes;
4783 unsigned nr_extents = 0;
4784 int extra_reserve = 0;
4785 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4786 int ret = 0;
4787 bool delalloc_lock = true;
4788 u64 to_free = 0;
4789 unsigned dropped;
4790
4791 /* If we are a free space inode we need to not flush since we will be in
4792 * the middle of a transaction commit. We also don't need the delalloc
4793 * mutex since we won't race with anybody. We need this mostly to make
4794 * lockdep shut its filthy mouth.
4795 */
4796 if (btrfs_is_free_space_inode(inode)) {
4797 flush = BTRFS_RESERVE_NO_FLUSH;
4798 delalloc_lock = false;
4799 }
4800
4801 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4802 btrfs_transaction_in_commit(root->fs_info))
4803 schedule_timeout(1);
4804
4805 if (delalloc_lock)
4806 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4807
4808 num_bytes = ALIGN(num_bytes, root->sectorsize);
4809
4810 spin_lock(&BTRFS_I(inode)->lock);
4811 BTRFS_I(inode)->outstanding_extents++;
4812
4813 if (BTRFS_I(inode)->outstanding_extents >
4814 BTRFS_I(inode)->reserved_extents)
4815 nr_extents = BTRFS_I(inode)->outstanding_extents -
4816 BTRFS_I(inode)->reserved_extents;
4817
4818 /*
4819 * Add an item to reserve for updating the inode when we complete the
4820 * delalloc io.
4821 */
4822 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4823 &BTRFS_I(inode)->runtime_flags)) {
4824 nr_extents++;
4825 extra_reserve = 1;
4826 }
4827
4828 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4829 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4830 csum_bytes = BTRFS_I(inode)->csum_bytes;
4831 spin_unlock(&BTRFS_I(inode)->lock);
4832
4833 if (root->fs_info->quota_enabled) {
4834 ret = btrfs_qgroup_reserve(root, num_bytes +
4835 nr_extents * root->leafsize);
4836 if (ret)
4837 goto out_fail;
4838 }
4839
4840 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4841 if (unlikely(ret)) {
4842 if (root->fs_info->quota_enabled)
4843 btrfs_qgroup_free(root, num_bytes +
4844 nr_extents * root->leafsize);
4845 goto out_fail;
4846 }
4847
4848 spin_lock(&BTRFS_I(inode)->lock);
4849 if (extra_reserve) {
4850 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4851 &BTRFS_I(inode)->runtime_flags);
4852 nr_extents--;
4853 }
4854 BTRFS_I(inode)->reserved_extents += nr_extents;
4855 spin_unlock(&BTRFS_I(inode)->lock);
4856
4857 if (delalloc_lock)
4858 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4859
4860 if (to_reserve)
4861 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4862 btrfs_ino(inode), to_reserve, 1);
4863 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4864
4865 return 0;
4866
4867 out_fail:
4868 spin_lock(&BTRFS_I(inode)->lock);
4869 dropped = drop_outstanding_extent(inode);
4870 /*
4871 * If the inodes csum_bytes is the same as the original
4872 * csum_bytes then we know we haven't raced with any free()ers
4873 * so we can just reduce our inodes csum bytes and carry on.
4874 */
4875 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
4876 calc_csum_metadata_size(inode, num_bytes, 0);
4877 } else {
4878 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
4879 u64 bytes;
4880
4881 /*
4882 * This is tricky, but first we need to figure out how much we
4883 * free'd from any free-ers that occured during this
4884 * reservation, so we reset ->csum_bytes to the csum_bytes
4885 * before we dropped our lock, and then call the free for the
4886 * number of bytes that were freed while we were trying our
4887 * reservation.
4888 */
4889 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
4890 BTRFS_I(inode)->csum_bytes = csum_bytes;
4891 to_free = calc_csum_metadata_size(inode, bytes, 0);
4892
4893
4894 /*
4895 * Now we need to see how much we would have freed had we not
4896 * been making this reservation and our ->csum_bytes were not
4897 * artificially inflated.
4898 */
4899 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
4900 bytes = csum_bytes - orig_csum_bytes;
4901 bytes = calc_csum_metadata_size(inode, bytes, 0);
4902
4903 /*
4904 * Now reset ->csum_bytes to what it should be. If bytes is
4905 * more than to_free then we would have free'd more space had we
4906 * not had an artificially high ->csum_bytes, so we need to free
4907 * the remainder. If bytes is the same or less then we don't
4908 * need to do anything, the other free-ers did the correct
4909 * thing.
4910 */
4911 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
4912 if (bytes > to_free)
4913 to_free = bytes - to_free;
4914 else
4915 to_free = 0;
4916 }
4917 spin_unlock(&BTRFS_I(inode)->lock);
4918 if (dropped)
4919 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4920
4921 if (to_free) {
4922 btrfs_block_rsv_release(root, block_rsv, to_free);
4923 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4924 btrfs_ino(inode), to_free, 0);
4925 }
4926 if (delalloc_lock)
4927 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4928 return ret;
4929 }
4930
4931 /**
4932 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4933 * @inode: the inode to release the reservation for
4934 * @num_bytes: the number of bytes we're releasing
4935 *
4936 * This will release the metadata reservation for an inode. This can be called
4937 * once we complete IO for a given set of bytes to release their metadata
4938 * reservations.
4939 */
4940 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4941 {
4942 struct btrfs_root *root = BTRFS_I(inode)->root;
4943 u64 to_free = 0;
4944 unsigned dropped;
4945
4946 num_bytes = ALIGN(num_bytes, root->sectorsize);
4947 spin_lock(&BTRFS_I(inode)->lock);
4948 dropped = drop_outstanding_extent(inode);
4949
4950 if (num_bytes)
4951 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4952 spin_unlock(&BTRFS_I(inode)->lock);
4953 if (dropped > 0)
4954 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4955
4956 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4957 btrfs_ino(inode), to_free, 0);
4958 if (root->fs_info->quota_enabled) {
4959 btrfs_qgroup_free(root, num_bytes +
4960 dropped * root->leafsize);
4961 }
4962
4963 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4964 to_free);
4965 }
4966
4967 /**
4968 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4969 * @inode: inode we're writing to
4970 * @num_bytes: the number of bytes we want to allocate
4971 *
4972 * This will do the following things
4973 *
4974 * o reserve space in the data space info for num_bytes
4975 * o reserve space in the metadata space info based on number of outstanding
4976 * extents and how much csums will be needed
4977 * o add to the inodes ->delalloc_bytes
4978 * o add it to the fs_info's delalloc inodes list.
4979 *
4980 * This will return 0 for success and -ENOSPC if there is no space left.
4981 */
4982 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4983 {
4984 int ret;
4985
4986 ret = btrfs_check_data_free_space(inode, num_bytes);
4987 if (ret)
4988 return ret;
4989
4990 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4991 if (ret) {
4992 btrfs_free_reserved_data_space(inode, num_bytes);
4993 return ret;
4994 }
4995
4996 return 0;
4997 }
4998
4999 /**
5000 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5001 * @inode: inode we're releasing space for
5002 * @num_bytes: the number of bytes we want to free up
5003 *
5004 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5005 * called in the case that we don't need the metadata AND data reservations
5006 * anymore. So if there is an error or we insert an inline extent.
5007 *
5008 * This function will release the metadata space that was not used and will
5009 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5010 * list if there are no delalloc bytes left.
5011 */
5012 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5013 {
5014 btrfs_delalloc_release_metadata(inode, num_bytes);
5015 btrfs_free_reserved_data_space(inode, num_bytes);
5016 }
5017
5018 static int update_block_group(struct btrfs_root *root,
5019 u64 bytenr, u64 num_bytes, int alloc)
5020 {
5021 struct btrfs_block_group_cache *cache = NULL;
5022 struct btrfs_fs_info *info = root->fs_info;
5023 u64 total = num_bytes;
5024 u64 old_val;
5025 u64 byte_in_group;
5026 int factor;
5027
5028 /* block accounting for super block */
5029 spin_lock(&info->delalloc_lock);
5030 old_val = btrfs_super_bytes_used(info->super_copy);
5031 if (alloc)
5032 old_val += num_bytes;
5033 else
5034 old_val -= num_bytes;
5035 btrfs_set_super_bytes_used(info->super_copy, old_val);
5036 spin_unlock(&info->delalloc_lock);
5037
5038 while (total) {
5039 cache = btrfs_lookup_block_group(info, bytenr);
5040 if (!cache)
5041 return -ENOENT;
5042 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5043 BTRFS_BLOCK_GROUP_RAID1 |
5044 BTRFS_BLOCK_GROUP_RAID10))
5045 factor = 2;
5046 else
5047 factor = 1;
5048 /*
5049 * If this block group has free space cache written out, we
5050 * need to make sure to load it if we are removing space. This
5051 * is because we need the unpinning stage to actually add the
5052 * space back to the block group, otherwise we will leak space.
5053 */
5054 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5055 cache_block_group(cache, 1);
5056
5057 byte_in_group = bytenr - cache->key.objectid;
5058 WARN_ON(byte_in_group > cache->key.offset);
5059
5060 spin_lock(&cache->space_info->lock);
5061 spin_lock(&cache->lock);
5062
5063 if (btrfs_test_opt(root, SPACE_CACHE) &&
5064 cache->disk_cache_state < BTRFS_DC_CLEAR)
5065 cache->disk_cache_state = BTRFS_DC_CLEAR;
5066
5067 cache->dirty = 1;
5068 old_val = btrfs_block_group_used(&cache->item);
5069 num_bytes = min(total, cache->key.offset - byte_in_group);
5070 if (alloc) {
5071 old_val += num_bytes;
5072 btrfs_set_block_group_used(&cache->item, old_val);
5073 cache->reserved -= num_bytes;
5074 cache->space_info->bytes_reserved -= num_bytes;
5075 cache->space_info->bytes_used += num_bytes;
5076 cache->space_info->disk_used += num_bytes * factor;
5077 spin_unlock(&cache->lock);
5078 spin_unlock(&cache->space_info->lock);
5079 } else {
5080 old_val -= num_bytes;
5081 btrfs_set_block_group_used(&cache->item, old_val);
5082 cache->pinned += num_bytes;
5083 cache->space_info->bytes_pinned += num_bytes;
5084 cache->space_info->bytes_used -= num_bytes;
5085 cache->space_info->disk_used -= num_bytes * factor;
5086 spin_unlock(&cache->lock);
5087 spin_unlock(&cache->space_info->lock);
5088
5089 set_extent_dirty(info->pinned_extents,
5090 bytenr, bytenr + num_bytes - 1,
5091 GFP_NOFS | __GFP_NOFAIL);
5092 }
5093 btrfs_put_block_group(cache);
5094 total -= num_bytes;
5095 bytenr += num_bytes;
5096 }
5097 return 0;
5098 }
5099
5100 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5101 {
5102 struct btrfs_block_group_cache *cache;
5103 u64 bytenr;
5104
5105 spin_lock(&root->fs_info->block_group_cache_lock);
5106 bytenr = root->fs_info->first_logical_byte;
5107 spin_unlock(&root->fs_info->block_group_cache_lock);
5108
5109 if (bytenr < (u64)-1)
5110 return bytenr;
5111
5112 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5113 if (!cache)
5114 return 0;
5115
5116 bytenr = cache->key.objectid;
5117 btrfs_put_block_group(cache);
5118
5119 return bytenr;
5120 }
5121
5122 static int pin_down_extent(struct btrfs_root *root,
5123 struct btrfs_block_group_cache *cache,
5124 u64 bytenr, u64 num_bytes, int reserved)
5125 {
5126 spin_lock(&cache->space_info->lock);
5127 spin_lock(&cache->lock);
5128 cache->pinned += num_bytes;
5129 cache->space_info->bytes_pinned += num_bytes;
5130 if (reserved) {
5131 cache->reserved -= num_bytes;
5132 cache->space_info->bytes_reserved -= num_bytes;
5133 }
5134 spin_unlock(&cache->lock);
5135 spin_unlock(&cache->space_info->lock);
5136
5137 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5138 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5139 return 0;
5140 }
5141
5142 /*
5143 * this function must be called within transaction
5144 */
5145 int btrfs_pin_extent(struct btrfs_root *root,
5146 u64 bytenr, u64 num_bytes, int reserved)
5147 {
5148 struct btrfs_block_group_cache *cache;
5149
5150 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5151 BUG_ON(!cache); /* Logic error */
5152
5153 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5154
5155 btrfs_put_block_group(cache);
5156 return 0;
5157 }
5158
5159 /*
5160 * this function must be called within transaction
5161 */
5162 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5163 u64 bytenr, u64 num_bytes)
5164 {
5165 struct btrfs_block_group_cache *cache;
5166 int ret;
5167
5168 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5169 if (!cache)
5170 return -EINVAL;
5171
5172 /*
5173 * pull in the free space cache (if any) so that our pin
5174 * removes the free space from the cache. We have load_only set
5175 * to one because the slow code to read in the free extents does check
5176 * the pinned extents.
5177 */
5178 cache_block_group(cache, 1);
5179
5180 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5181
5182 /* remove us from the free space cache (if we're there at all) */
5183 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5184 btrfs_put_block_group(cache);
5185 return ret;
5186 }
5187
5188 /**
5189 * btrfs_update_reserved_bytes - update the block_group and space info counters
5190 * @cache: The cache we are manipulating
5191 * @num_bytes: The number of bytes in question
5192 * @reserve: One of the reservation enums
5193 *
5194 * This is called by the allocator when it reserves space, or by somebody who is
5195 * freeing space that was never actually used on disk. For example if you
5196 * reserve some space for a new leaf in transaction A and before transaction A
5197 * commits you free that leaf, you call this with reserve set to 0 in order to
5198 * clear the reservation.
5199 *
5200 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5201 * ENOSPC accounting. For data we handle the reservation through clearing the
5202 * delalloc bits in the io_tree. We have to do this since we could end up
5203 * allocating less disk space for the amount of data we have reserved in the
5204 * case of compression.
5205 *
5206 * If this is a reservation and the block group has become read only we cannot
5207 * make the reservation and return -EAGAIN, otherwise this function always
5208 * succeeds.
5209 */
5210 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5211 u64 num_bytes, int reserve)
5212 {
5213 struct btrfs_space_info *space_info = cache->space_info;
5214 int ret = 0;
5215
5216 spin_lock(&space_info->lock);
5217 spin_lock(&cache->lock);
5218 if (reserve != RESERVE_FREE) {
5219 if (cache->ro) {
5220 ret = -EAGAIN;
5221 } else {
5222 cache->reserved += num_bytes;
5223 space_info->bytes_reserved += num_bytes;
5224 if (reserve == RESERVE_ALLOC) {
5225 trace_btrfs_space_reservation(cache->fs_info,
5226 "space_info", space_info->flags,
5227 num_bytes, 0);
5228 space_info->bytes_may_use -= num_bytes;
5229 }
5230 }
5231 } else {
5232 if (cache->ro)
5233 space_info->bytes_readonly += num_bytes;
5234 cache->reserved -= num_bytes;
5235 space_info->bytes_reserved -= num_bytes;
5236 space_info->reservation_progress++;
5237 }
5238 spin_unlock(&cache->lock);
5239 spin_unlock(&space_info->lock);
5240 return ret;
5241 }
5242
5243 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5244 struct btrfs_root *root)
5245 {
5246 struct btrfs_fs_info *fs_info = root->fs_info;
5247 struct btrfs_caching_control *next;
5248 struct btrfs_caching_control *caching_ctl;
5249 struct btrfs_block_group_cache *cache;
5250
5251 down_write(&fs_info->extent_commit_sem);
5252
5253 list_for_each_entry_safe(caching_ctl, next,
5254 &fs_info->caching_block_groups, list) {
5255 cache = caching_ctl->block_group;
5256 if (block_group_cache_done(cache)) {
5257 cache->last_byte_to_unpin = (u64)-1;
5258 list_del_init(&caching_ctl->list);
5259 put_caching_control(caching_ctl);
5260 } else {
5261 cache->last_byte_to_unpin = caching_ctl->progress;
5262 }
5263 }
5264
5265 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5266 fs_info->pinned_extents = &fs_info->freed_extents[1];
5267 else
5268 fs_info->pinned_extents = &fs_info->freed_extents[0];
5269
5270 up_write(&fs_info->extent_commit_sem);
5271
5272 update_global_block_rsv(fs_info);
5273 }
5274
5275 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5276 {
5277 struct btrfs_fs_info *fs_info = root->fs_info;
5278 struct btrfs_block_group_cache *cache = NULL;
5279 struct btrfs_space_info *space_info;
5280 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5281 u64 len;
5282 bool readonly;
5283
5284 while (start <= end) {
5285 readonly = false;
5286 if (!cache ||
5287 start >= cache->key.objectid + cache->key.offset) {
5288 if (cache)
5289 btrfs_put_block_group(cache);
5290 cache = btrfs_lookup_block_group(fs_info, start);
5291 BUG_ON(!cache); /* Logic error */
5292 }
5293
5294 len = cache->key.objectid + cache->key.offset - start;
5295 len = min(len, end + 1 - start);
5296
5297 if (start < cache->last_byte_to_unpin) {
5298 len = min(len, cache->last_byte_to_unpin - start);
5299 btrfs_add_free_space(cache, start, len);
5300 }
5301
5302 start += len;
5303 space_info = cache->space_info;
5304
5305 spin_lock(&space_info->lock);
5306 spin_lock(&cache->lock);
5307 cache->pinned -= len;
5308 space_info->bytes_pinned -= len;
5309 if (cache->ro) {
5310 space_info->bytes_readonly += len;
5311 readonly = true;
5312 }
5313 spin_unlock(&cache->lock);
5314 if (!readonly && global_rsv->space_info == space_info) {
5315 spin_lock(&global_rsv->lock);
5316 if (!global_rsv->full) {
5317 len = min(len, global_rsv->size -
5318 global_rsv->reserved);
5319 global_rsv->reserved += len;
5320 space_info->bytes_may_use += len;
5321 if (global_rsv->reserved >= global_rsv->size)
5322 global_rsv->full = 1;
5323 }
5324 spin_unlock(&global_rsv->lock);
5325 }
5326 spin_unlock(&space_info->lock);
5327 }
5328
5329 if (cache)
5330 btrfs_put_block_group(cache);
5331 return 0;
5332 }
5333
5334 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5335 struct btrfs_root *root)
5336 {
5337 struct btrfs_fs_info *fs_info = root->fs_info;
5338 struct extent_io_tree *unpin;
5339 u64 start;
5340 u64 end;
5341 int ret;
5342
5343 if (trans->aborted)
5344 return 0;
5345
5346 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5347 unpin = &fs_info->freed_extents[1];
5348 else
5349 unpin = &fs_info->freed_extents[0];
5350
5351 while (1) {
5352 ret = find_first_extent_bit(unpin, 0, &start, &end,
5353 EXTENT_DIRTY, NULL);
5354 if (ret)
5355 break;
5356
5357 if (btrfs_test_opt(root, DISCARD))
5358 ret = btrfs_discard_extent(root, start,
5359 end + 1 - start, NULL);
5360
5361 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5362 unpin_extent_range(root, start, end);
5363 cond_resched();
5364 }
5365
5366 return 0;
5367 }
5368
5369 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5370 struct btrfs_root *root,
5371 u64 bytenr, u64 num_bytes, u64 parent,
5372 u64 root_objectid, u64 owner_objectid,
5373 u64 owner_offset, int refs_to_drop,
5374 struct btrfs_delayed_extent_op *extent_op)
5375 {
5376 struct btrfs_key key;
5377 struct btrfs_path *path;
5378 struct btrfs_fs_info *info = root->fs_info;
5379 struct btrfs_root *extent_root = info->extent_root;
5380 struct extent_buffer *leaf;
5381 struct btrfs_extent_item *ei;
5382 struct btrfs_extent_inline_ref *iref;
5383 int ret;
5384 int is_data;
5385 int extent_slot = 0;
5386 int found_extent = 0;
5387 int num_to_del = 1;
5388 u32 item_size;
5389 u64 refs;
5390 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5391 SKINNY_METADATA);
5392
5393 path = btrfs_alloc_path();
5394 if (!path)
5395 return -ENOMEM;
5396
5397 path->reada = 1;
5398 path->leave_spinning = 1;
5399
5400 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5401 BUG_ON(!is_data && refs_to_drop != 1);
5402
5403 if (is_data)
5404 skinny_metadata = 0;
5405
5406 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5407 bytenr, num_bytes, parent,
5408 root_objectid, owner_objectid,
5409 owner_offset);
5410 if (ret == 0) {
5411 extent_slot = path->slots[0];
5412 while (extent_slot >= 0) {
5413 btrfs_item_key_to_cpu(path->nodes[0], &key,
5414 extent_slot);
5415 if (key.objectid != bytenr)
5416 break;
5417 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5418 key.offset == num_bytes) {
5419 found_extent = 1;
5420 break;
5421 }
5422 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5423 key.offset == owner_objectid) {
5424 found_extent = 1;
5425 break;
5426 }
5427 if (path->slots[0] - extent_slot > 5)
5428 break;
5429 extent_slot--;
5430 }
5431 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5432 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5433 if (found_extent && item_size < sizeof(*ei))
5434 found_extent = 0;
5435 #endif
5436 if (!found_extent) {
5437 BUG_ON(iref);
5438 ret = remove_extent_backref(trans, extent_root, path,
5439 NULL, refs_to_drop,
5440 is_data);
5441 if (ret) {
5442 btrfs_abort_transaction(trans, extent_root, ret);
5443 goto out;
5444 }
5445 btrfs_release_path(path);
5446 path->leave_spinning = 1;
5447
5448 key.objectid = bytenr;
5449 key.type = BTRFS_EXTENT_ITEM_KEY;
5450 key.offset = num_bytes;
5451
5452 if (!is_data && skinny_metadata) {
5453 key.type = BTRFS_METADATA_ITEM_KEY;
5454 key.offset = owner_objectid;
5455 }
5456
5457 ret = btrfs_search_slot(trans, extent_root,
5458 &key, path, -1, 1);
5459 if (ret > 0 && skinny_metadata && path->slots[0]) {
5460 /*
5461 * Couldn't find our skinny metadata item,
5462 * see if we have ye olde extent item.
5463 */
5464 path->slots[0]--;
5465 btrfs_item_key_to_cpu(path->nodes[0], &key,
5466 path->slots[0]);
5467 if (key.objectid == bytenr &&
5468 key.type == BTRFS_EXTENT_ITEM_KEY &&
5469 key.offset == num_bytes)
5470 ret = 0;
5471 }
5472
5473 if (ret > 0 && skinny_metadata) {
5474 skinny_metadata = false;
5475 key.type = BTRFS_EXTENT_ITEM_KEY;
5476 key.offset = num_bytes;
5477 btrfs_release_path(path);
5478 ret = btrfs_search_slot(trans, extent_root,
5479 &key, path, -1, 1);
5480 }
5481
5482 if (ret) {
5483 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5484 ret, (unsigned long long)bytenr);
5485 if (ret > 0)
5486 btrfs_print_leaf(extent_root,
5487 path->nodes[0]);
5488 }
5489 if (ret < 0) {
5490 btrfs_abort_transaction(trans, extent_root, ret);
5491 goto out;
5492 }
5493 extent_slot = path->slots[0];
5494 }
5495 } else if (ret == -ENOENT) {
5496 btrfs_print_leaf(extent_root, path->nodes[0]);
5497 WARN_ON(1);
5498 btrfs_err(info,
5499 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5500 (unsigned long long)bytenr,
5501 (unsigned long long)parent,
5502 (unsigned long long)root_objectid,
5503 (unsigned long long)owner_objectid,
5504 (unsigned long long)owner_offset);
5505 } else {
5506 btrfs_abort_transaction(trans, extent_root, ret);
5507 goto out;
5508 }
5509
5510 leaf = path->nodes[0];
5511 item_size = btrfs_item_size_nr(leaf, extent_slot);
5512 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5513 if (item_size < sizeof(*ei)) {
5514 BUG_ON(found_extent || extent_slot != path->slots[0]);
5515 ret = convert_extent_item_v0(trans, extent_root, path,
5516 owner_objectid, 0);
5517 if (ret < 0) {
5518 btrfs_abort_transaction(trans, extent_root, ret);
5519 goto out;
5520 }
5521
5522 btrfs_release_path(path);
5523 path->leave_spinning = 1;
5524
5525 key.objectid = bytenr;
5526 key.type = BTRFS_EXTENT_ITEM_KEY;
5527 key.offset = num_bytes;
5528
5529 ret = btrfs_search_slot(trans, extent_root, &key, path,
5530 -1, 1);
5531 if (ret) {
5532 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5533 ret, (unsigned long long)bytenr);
5534 btrfs_print_leaf(extent_root, path->nodes[0]);
5535 }
5536 if (ret < 0) {
5537 btrfs_abort_transaction(trans, extent_root, ret);
5538 goto out;
5539 }
5540
5541 extent_slot = path->slots[0];
5542 leaf = path->nodes[0];
5543 item_size = btrfs_item_size_nr(leaf, extent_slot);
5544 }
5545 #endif
5546 BUG_ON(item_size < sizeof(*ei));
5547 ei = btrfs_item_ptr(leaf, extent_slot,
5548 struct btrfs_extent_item);
5549 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5550 key.type == BTRFS_EXTENT_ITEM_KEY) {
5551 struct btrfs_tree_block_info *bi;
5552 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5553 bi = (struct btrfs_tree_block_info *)(ei + 1);
5554 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5555 }
5556
5557 refs = btrfs_extent_refs(leaf, ei);
5558 if (refs < refs_to_drop) {
5559 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5560 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5561 ret = -EINVAL;
5562 btrfs_abort_transaction(trans, extent_root, ret);
5563 goto out;
5564 }
5565 refs -= refs_to_drop;
5566
5567 if (refs > 0) {
5568 if (extent_op)
5569 __run_delayed_extent_op(extent_op, leaf, ei);
5570 /*
5571 * In the case of inline back ref, reference count will
5572 * be updated by remove_extent_backref
5573 */
5574 if (iref) {
5575 BUG_ON(!found_extent);
5576 } else {
5577 btrfs_set_extent_refs(leaf, ei, refs);
5578 btrfs_mark_buffer_dirty(leaf);
5579 }
5580 if (found_extent) {
5581 ret = remove_extent_backref(trans, extent_root, path,
5582 iref, refs_to_drop,
5583 is_data);
5584 if (ret) {
5585 btrfs_abort_transaction(trans, extent_root, ret);
5586 goto out;
5587 }
5588 }
5589 } else {
5590 if (found_extent) {
5591 BUG_ON(is_data && refs_to_drop !=
5592 extent_data_ref_count(root, path, iref));
5593 if (iref) {
5594 BUG_ON(path->slots[0] != extent_slot);
5595 } else {
5596 BUG_ON(path->slots[0] != extent_slot + 1);
5597 path->slots[0] = extent_slot;
5598 num_to_del = 2;
5599 }
5600 }
5601
5602 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5603 num_to_del);
5604 if (ret) {
5605 btrfs_abort_transaction(trans, extent_root, ret);
5606 goto out;
5607 }
5608 btrfs_release_path(path);
5609
5610 if (is_data) {
5611 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5612 if (ret) {
5613 btrfs_abort_transaction(trans, extent_root, ret);
5614 goto out;
5615 }
5616 }
5617
5618 ret = update_block_group(root, bytenr, num_bytes, 0);
5619 if (ret) {
5620 btrfs_abort_transaction(trans, extent_root, ret);
5621 goto out;
5622 }
5623 }
5624 out:
5625 btrfs_free_path(path);
5626 return ret;
5627 }
5628
5629 /*
5630 * when we free an block, it is possible (and likely) that we free the last
5631 * delayed ref for that extent as well. This searches the delayed ref tree for
5632 * a given extent, and if there are no other delayed refs to be processed, it
5633 * removes it from the tree.
5634 */
5635 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5636 struct btrfs_root *root, u64 bytenr)
5637 {
5638 struct btrfs_delayed_ref_head *head;
5639 struct btrfs_delayed_ref_root *delayed_refs;
5640 struct btrfs_delayed_ref_node *ref;
5641 struct rb_node *node;
5642 int ret = 0;
5643
5644 delayed_refs = &trans->transaction->delayed_refs;
5645 spin_lock(&delayed_refs->lock);
5646 head = btrfs_find_delayed_ref_head(trans, bytenr);
5647 if (!head)
5648 goto out;
5649
5650 node = rb_prev(&head->node.rb_node);
5651 if (!node)
5652 goto out;
5653
5654 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5655
5656 /* there are still entries for this ref, we can't drop it */
5657 if (ref->bytenr == bytenr)
5658 goto out;
5659
5660 if (head->extent_op) {
5661 if (!head->must_insert_reserved)
5662 goto out;
5663 btrfs_free_delayed_extent_op(head->extent_op);
5664 head->extent_op = NULL;
5665 }
5666
5667 /*
5668 * waiting for the lock here would deadlock. If someone else has it
5669 * locked they are already in the process of dropping it anyway
5670 */
5671 if (!mutex_trylock(&head->mutex))
5672 goto out;
5673
5674 /*
5675 * at this point we have a head with no other entries. Go
5676 * ahead and process it.
5677 */
5678 head->node.in_tree = 0;
5679 rb_erase(&head->node.rb_node, &delayed_refs->root);
5680
5681 delayed_refs->num_entries--;
5682
5683 /*
5684 * we don't take a ref on the node because we're removing it from the
5685 * tree, so we just steal the ref the tree was holding.
5686 */
5687 delayed_refs->num_heads--;
5688 if (list_empty(&head->cluster))
5689 delayed_refs->num_heads_ready--;
5690
5691 list_del_init(&head->cluster);
5692 spin_unlock(&delayed_refs->lock);
5693
5694 BUG_ON(head->extent_op);
5695 if (head->must_insert_reserved)
5696 ret = 1;
5697
5698 mutex_unlock(&head->mutex);
5699 btrfs_put_delayed_ref(&head->node);
5700 return ret;
5701 out:
5702 spin_unlock(&delayed_refs->lock);
5703 return 0;
5704 }
5705
5706 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5707 struct btrfs_root *root,
5708 struct extent_buffer *buf,
5709 u64 parent, int last_ref)
5710 {
5711 struct btrfs_block_group_cache *cache = NULL;
5712 int ret;
5713
5714 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5715 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5716 buf->start, buf->len,
5717 parent, root->root_key.objectid,
5718 btrfs_header_level(buf),
5719 BTRFS_DROP_DELAYED_REF, NULL, 0);
5720 BUG_ON(ret); /* -ENOMEM */
5721 }
5722
5723 if (!last_ref)
5724 return;
5725
5726 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5727
5728 if (btrfs_header_generation(buf) == trans->transid) {
5729 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5730 ret = check_ref_cleanup(trans, root, buf->start);
5731 if (!ret)
5732 goto out;
5733 }
5734
5735 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5736 pin_down_extent(root, cache, buf->start, buf->len, 1);
5737 goto out;
5738 }
5739
5740 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5741
5742 btrfs_add_free_space(cache, buf->start, buf->len);
5743 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5744 }
5745 out:
5746 /*
5747 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5748 * anymore.
5749 */
5750 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5751 btrfs_put_block_group(cache);
5752 }
5753
5754 /* Can return -ENOMEM */
5755 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5756 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5757 u64 owner, u64 offset, int for_cow)
5758 {
5759 int ret;
5760 struct btrfs_fs_info *fs_info = root->fs_info;
5761
5762 /*
5763 * tree log blocks never actually go into the extent allocation
5764 * tree, just update pinning info and exit early.
5765 */
5766 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5767 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5768 /* unlocks the pinned mutex */
5769 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5770 ret = 0;
5771 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5772 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5773 num_bytes,
5774 parent, root_objectid, (int)owner,
5775 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5776 } else {
5777 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5778 num_bytes,
5779 parent, root_objectid, owner,
5780 offset, BTRFS_DROP_DELAYED_REF,
5781 NULL, for_cow);
5782 }
5783 return ret;
5784 }
5785
5786 static u64 stripe_align(struct btrfs_root *root,
5787 struct btrfs_block_group_cache *cache,
5788 u64 val, u64 num_bytes)
5789 {
5790 u64 ret = ALIGN(val, root->stripesize);
5791 return ret;
5792 }
5793
5794 /*
5795 * when we wait for progress in the block group caching, its because
5796 * our allocation attempt failed at least once. So, we must sleep
5797 * and let some progress happen before we try again.
5798 *
5799 * This function will sleep at least once waiting for new free space to
5800 * show up, and then it will check the block group free space numbers
5801 * for our min num_bytes. Another option is to have it go ahead
5802 * and look in the rbtree for a free extent of a given size, but this
5803 * is a good start.
5804 */
5805 static noinline int
5806 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5807 u64 num_bytes)
5808 {
5809 struct btrfs_caching_control *caching_ctl;
5810
5811 caching_ctl = get_caching_control(cache);
5812 if (!caching_ctl)
5813 return 0;
5814
5815 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5816 (cache->free_space_ctl->free_space >= num_bytes));
5817
5818 put_caching_control(caching_ctl);
5819 return 0;
5820 }
5821
5822 static noinline int
5823 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5824 {
5825 struct btrfs_caching_control *caching_ctl;
5826
5827 caching_ctl = get_caching_control(cache);
5828 if (!caching_ctl)
5829 return 0;
5830
5831 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5832
5833 put_caching_control(caching_ctl);
5834 return 0;
5835 }
5836
5837 int __get_raid_index(u64 flags)
5838 {
5839 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5840 return BTRFS_RAID_RAID10;
5841 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5842 return BTRFS_RAID_RAID1;
5843 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5844 return BTRFS_RAID_DUP;
5845 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5846 return BTRFS_RAID_RAID0;
5847 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
5848 return BTRFS_RAID_RAID5;
5849 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
5850 return BTRFS_RAID_RAID6;
5851
5852 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
5853 }
5854
5855 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5856 {
5857 return __get_raid_index(cache->flags);
5858 }
5859
5860 enum btrfs_loop_type {
5861 LOOP_CACHING_NOWAIT = 0,
5862 LOOP_CACHING_WAIT = 1,
5863 LOOP_ALLOC_CHUNK = 2,
5864 LOOP_NO_EMPTY_SIZE = 3,
5865 };
5866
5867 /*
5868 * walks the btree of allocated extents and find a hole of a given size.
5869 * The key ins is changed to record the hole:
5870 * ins->objectid == block start
5871 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5872 * ins->offset == number of blocks
5873 * Any available blocks before search_start are skipped.
5874 */
5875 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5876 struct btrfs_root *orig_root,
5877 u64 num_bytes, u64 empty_size,
5878 u64 hint_byte, struct btrfs_key *ins,
5879 u64 data)
5880 {
5881 int ret = 0;
5882 struct btrfs_root *root = orig_root->fs_info->extent_root;
5883 struct btrfs_free_cluster *last_ptr = NULL;
5884 struct btrfs_block_group_cache *block_group = NULL;
5885 struct btrfs_block_group_cache *used_block_group;
5886 u64 search_start = 0;
5887 int empty_cluster = 2 * 1024 * 1024;
5888 struct btrfs_space_info *space_info;
5889 int loop = 0;
5890 int index = __get_raid_index(data);
5891 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5892 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5893 bool found_uncached_bg = false;
5894 bool failed_cluster_refill = false;
5895 bool failed_alloc = false;
5896 bool use_cluster = true;
5897 bool have_caching_bg = false;
5898
5899 WARN_ON(num_bytes < root->sectorsize);
5900 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5901 ins->objectid = 0;
5902 ins->offset = 0;
5903
5904 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5905
5906 space_info = __find_space_info(root->fs_info, data);
5907 if (!space_info) {
5908 btrfs_err(root->fs_info, "No space info for %llu", data);
5909 return -ENOSPC;
5910 }
5911
5912 /*
5913 * If the space info is for both data and metadata it means we have a
5914 * small filesystem and we can't use the clustering stuff.
5915 */
5916 if (btrfs_mixed_space_info(space_info))
5917 use_cluster = false;
5918
5919 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5920 last_ptr = &root->fs_info->meta_alloc_cluster;
5921 if (!btrfs_test_opt(root, SSD))
5922 empty_cluster = 64 * 1024;
5923 }
5924
5925 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5926 btrfs_test_opt(root, SSD)) {
5927 last_ptr = &root->fs_info->data_alloc_cluster;
5928 }
5929
5930 if (last_ptr) {
5931 spin_lock(&last_ptr->lock);
5932 if (last_ptr->block_group)
5933 hint_byte = last_ptr->window_start;
5934 spin_unlock(&last_ptr->lock);
5935 }
5936
5937 search_start = max(search_start, first_logical_byte(root, 0));
5938 search_start = max(search_start, hint_byte);
5939
5940 if (!last_ptr)
5941 empty_cluster = 0;
5942
5943 if (search_start == hint_byte) {
5944 block_group = btrfs_lookup_block_group(root->fs_info,
5945 search_start);
5946 used_block_group = block_group;
5947 /*
5948 * we don't want to use the block group if it doesn't match our
5949 * allocation bits, or if its not cached.
5950 *
5951 * However if we are re-searching with an ideal block group
5952 * picked out then we don't care that the block group is cached.
5953 */
5954 if (block_group && block_group_bits(block_group, data) &&
5955 block_group->cached != BTRFS_CACHE_NO) {
5956 down_read(&space_info->groups_sem);
5957 if (list_empty(&block_group->list) ||
5958 block_group->ro) {
5959 /*
5960 * someone is removing this block group,
5961 * we can't jump into the have_block_group
5962 * target because our list pointers are not
5963 * valid
5964 */
5965 btrfs_put_block_group(block_group);
5966 up_read(&space_info->groups_sem);
5967 } else {
5968 index = get_block_group_index(block_group);
5969 goto have_block_group;
5970 }
5971 } else if (block_group) {
5972 btrfs_put_block_group(block_group);
5973 }
5974 }
5975 search:
5976 have_caching_bg = false;
5977 down_read(&space_info->groups_sem);
5978 list_for_each_entry(block_group, &space_info->block_groups[index],
5979 list) {
5980 u64 offset;
5981 int cached;
5982
5983 used_block_group = block_group;
5984 btrfs_get_block_group(block_group);
5985 search_start = block_group->key.objectid;
5986
5987 /*
5988 * this can happen if we end up cycling through all the
5989 * raid types, but we want to make sure we only allocate
5990 * for the proper type.
5991 */
5992 if (!block_group_bits(block_group, data)) {
5993 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5994 BTRFS_BLOCK_GROUP_RAID1 |
5995 BTRFS_BLOCK_GROUP_RAID5 |
5996 BTRFS_BLOCK_GROUP_RAID6 |
5997 BTRFS_BLOCK_GROUP_RAID10;
5998
5999 /*
6000 * if they asked for extra copies and this block group
6001 * doesn't provide them, bail. This does allow us to
6002 * fill raid0 from raid1.
6003 */
6004 if ((data & extra) && !(block_group->flags & extra))
6005 goto loop;
6006 }
6007
6008 have_block_group:
6009 cached = block_group_cache_done(block_group);
6010 if (unlikely(!cached)) {
6011 found_uncached_bg = true;
6012 ret = cache_block_group(block_group, 0);
6013 BUG_ON(ret < 0);
6014 ret = 0;
6015 }
6016
6017 if (unlikely(block_group->ro))
6018 goto loop;
6019
6020 /*
6021 * Ok we want to try and use the cluster allocator, so
6022 * lets look there
6023 */
6024 if (last_ptr) {
6025 unsigned long aligned_cluster;
6026 /*
6027 * the refill lock keeps out other
6028 * people trying to start a new cluster
6029 */
6030 spin_lock(&last_ptr->refill_lock);
6031 used_block_group = last_ptr->block_group;
6032 if (used_block_group != block_group &&
6033 (!used_block_group ||
6034 used_block_group->ro ||
6035 !block_group_bits(used_block_group, data))) {
6036 used_block_group = block_group;
6037 goto refill_cluster;
6038 }
6039
6040 if (used_block_group != block_group)
6041 btrfs_get_block_group(used_block_group);
6042
6043 offset = btrfs_alloc_from_cluster(used_block_group,
6044 last_ptr, num_bytes, used_block_group->key.objectid);
6045 if (offset) {
6046 /* we have a block, we're done */
6047 spin_unlock(&last_ptr->refill_lock);
6048 trace_btrfs_reserve_extent_cluster(root,
6049 block_group, search_start, num_bytes);
6050 goto checks;
6051 }
6052
6053 WARN_ON(last_ptr->block_group != used_block_group);
6054 if (used_block_group != block_group) {
6055 btrfs_put_block_group(used_block_group);
6056 used_block_group = block_group;
6057 }
6058 refill_cluster:
6059 BUG_ON(used_block_group != block_group);
6060 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6061 * set up a new clusters, so lets just skip it
6062 * and let the allocator find whatever block
6063 * it can find. If we reach this point, we
6064 * will have tried the cluster allocator
6065 * plenty of times and not have found
6066 * anything, so we are likely way too
6067 * fragmented for the clustering stuff to find
6068 * anything.
6069 *
6070 * However, if the cluster is taken from the
6071 * current block group, release the cluster
6072 * first, so that we stand a better chance of
6073 * succeeding in the unclustered
6074 * allocation. */
6075 if (loop >= LOOP_NO_EMPTY_SIZE &&
6076 last_ptr->block_group != block_group) {
6077 spin_unlock(&last_ptr->refill_lock);
6078 goto unclustered_alloc;
6079 }
6080
6081 /*
6082 * this cluster didn't work out, free it and
6083 * start over
6084 */
6085 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6086
6087 if (loop >= LOOP_NO_EMPTY_SIZE) {
6088 spin_unlock(&last_ptr->refill_lock);
6089 goto unclustered_alloc;
6090 }
6091
6092 aligned_cluster = max_t(unsigned long,
6093 empty_cluster + empty_size,
6094 block_group->full_stripe_len);
6095
6096 /* allocate a cluster in this block group */
6097 ret = btrfs_find_space_cluster(trans, root,
6098 block_group, last_ptr,
6099 search_start, num_bytes,
6100 aligned_cluster);
6101 if (ret == 0) {
6102 /*
6103 * now pull our allocation out of this
6104 * cluster
6105 */
6106 offset = btrfs_alloc_from_cluster(block_group,
6107 last_ptr, num_bytes,
6108 search_start);
6109 if (offset) {
6110 /* we found one, proceed */
6111 spin_unlock(&last_ptr->refill_lock);
6112 trace_btrfs_reserve_extent_cluster(root,
6113 block_group, search_start,
6114 num_bytes);
6115 goto checks;
6116 }
6117 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6118 && !failed_cluster_refill) {
6119 spin_unlock(&last_ptr->refill_lock);
6120
6121 failed_cluster_refill = true;
6122 wait_block_group_cache_progress(block_group,
6123 num_bytes + empty_cluster + empty_size);
6124 goto have_block_group;
6125 }
6126
6127 /*
6128 * at this point we either didn't find a cluster
6129 * or we weren't able to allocate a block from our
6130 * cluster. Free the cluster we've been trying
6131 * to use, and go to the next block group
6132 */
6133 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6134 spin_unlock(&last_ptr->refill_lock);
6135 goto loop;
6136 }
6137
6138 unclustered_alloc:
6139 spin_lock(&block_group->free_space_ctl->tree_lock);
6140 if (cached &&
6141 block_group->free_space_ctl->free_space <
6142 num_bytes + empty_cluster + empty_size) {
6143 spin_unlock(&block_group->free_space_ctl->tree_lock);
6144 goto loop;
6145 }
6146 spin_unlock(&block_group->free_space_ctl->tree_lock);
6147
6148 offset = btrfs_find_space_for_alloc(block_group, search_start,
6149 num_bytes, empty_size);
6150 /*
6151 * If we didn't find a chunk, and we haven't failed on this
6152 * block group before, and this block group is in the middle of
6153 * caching and we are ok with waiting, then go ahead and wait
6154 * for progress to be made, and set failed_alloc to true.
6155 *
6156 * If failed_alloc is true then we've already waited on this
6157 * block group once and should move on to the next block group.
6158 */
6159 if (!offset && !failed_alloc && !cached &&
6160 loop > LOOP_CACHING_NOWAIT) {
6161 wait_block_group_cache_progress(block_group,
6162 num_bytes + empty_size);
6163 failed_alloc = true;
6164 goto have_block_group;
6165 } else if (!offset) {
6166 if (!cached)
6167 have_caching_bg = true;
6168 goto loop;
6169 }
6170 checks:
6171 search_start = stripe_align(root, used_block_group,
6172 offset, num_bytes);
6173
6174 /* move on to the next group */
6175 if (search_start + num_bytes >
6176 used_block_group->key.objectid + used_block_group->key.offset) {
6177 btrfs_add_free_space(used_block_group, offset, num_bytes);
6178 goto loop;
6179 }
6180
6181 if (offset < search_start)
6182 btrfs_add_free_space(used_block_group, offset,
6183 search_start - offset);
6184 BUG_ON(offset > search_start);
6185
6186 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6187 alloc_type);
6188 if (ret == -EAGAIN) {
6189 btrfs_add_free_space(used_block_group, offset, num_bytes);
6190 goto loop;
6191 }
6192
6193 /* we are all good, lets return */
6194 ins->objectid = search_start;
6195 ins->offset = num_bytes;
6196
6197 trace_btrfs_reserve_extent(orig_root, block_group,
6198 search_start, num_bytes);
6199 if (used_block_group != block_group)
6200 btrfs_put_block_group(used_block_group);
6201 btrfs_put_block_group(block_group);
6202 break;
6203 loop:
6204 failed_cluster_refill = false;
6205 failed_alloc = false;
6206 BUG_ON(index != get_block_group_index(block_group));
6207 if (used_block_group != block_group)
6208 btrfs_put_block_group(used_block_group);
6209 btrfs_put_block_group(block_group);
6210 }
6211 up_read(&space_info->groups_sem);
6212
6213 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6214 goto search;
6215
6216 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6217 goto search;
6218
6219 /*
6220 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6221 * caching kthreads as we move along
6222 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6223 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6224 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6225 * again
6226 */
6227 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6228 index = 0;
6229 loop++;
6230 if (loop == LOOP_ALLOC_CHUNK) {
6231 ret = do_chunk_alloc(trans, root, data,
6232 CHUNK_ALLOC_FORCE);
6233 /*
6234 * Do not bail out on ENOSPC since we
6235 * can do more things.
6236 */
6237 if (ret < 0 && ret != -ENOSPC) {
6238 btrfs_abort_transaction(trans,
6239 root, ret);
6240 goto out;
6241 }
6242 }
6243
6244 if (loop == LOOP_NO_EMPTY_SIZE) {
6245 empty_size = 0;
6246 empty_cluster = 0;
6247 }
6248
6249 goto search;
6250 } else if (!ins->objectid) {
6251 ret = -ENOSPC;
6252 } else if (ins->objectid) {
6253 ret = 0;
6254 }
6255 out:
6256
6257 return ret;
6258 }
6259
6260 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6261 int dump_block_groups)
6262 {
6263 struct btrfs_block_group_cache *cache;
6264 int index = 0;
6265
6266 spin_lock(&info->lock);
6267 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6268 (unsigned long long)info->flags,
6269 (unsigned long long)(info->total_bytes - info->bytes_used -
6270 info->bytes_pinned - info->bytes_reserved -
6271 info->bytes_readonly),
6272 (info->full) ? "" : "not ");
6273 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6274 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6275 (unsigned long long)info->total_bytes,
6276 (unsigned long long)info->bytes_used,
6277 (unsigned long long)info->bytes_pinned,
6278 (unsigned long long)info->bytes_reserved,
6279 (unsigned long long)info->bytes_may_use,
6280 (unsigned long long)info->bytes_readonly);
6281 spin_unlock(&info->lock);
6282
6283 if (!dump_block_groups)
6284 return;
6285
6286 down_read(&info->groups_sem);
6287 again:
6288 list_for_each_entry(cache, &info->block_groups[index], list) {
6289 spin_lock(&cache->lock);
6290 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6291 (unsigned long long)cache->key.objectid,
6292 (unsigned long long)cache->key.offset,
6293 (unsigned long long)btrfs_block_group_used(&cache->item),
6294 (unsigned long long)cache->pinned,
6295 (unsigned long long)cache->reserved,
6296 cache->ro ? "[readonly]" : "");
6297 btrfs_dump_free_space(cache, bytes);
6298 spin_unlock(&cache->lock);
6299 }
6300 if (++index < BTRFS_NR_RAID_TYPES)
6301 goto again;
6302 up_read(&info->groups_sem);
6303 }
6304
6305 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6306 struct btrfs_root *root,
6307 u64 num_bytes, u64 min_alloc_size,
6308 u64 empty_size, u64 hint_byte,
6309 struct btrfs_key *ins, u64 data)
6310 {
6311 bool final_tried = false;
6312 int ret;
6313
6314 data = btrfs_get_alloc_profile(root, data);
6315 again:
6316 WARN_ON(num_bytes < root->sectorsize);
6317 ret = find_free_extent(trans, root, num_bytes, empty_size,
6318 hint_byte, ins, data);
6319
6320 if (ret == -ENOSPC) {
6321 if (!final_tried) {
6322 num_bytes = num_bytes >> 1;
6323 num_bytes = round_down(num_bytes, root->sectorsize);
6324 num_bytes = max(num_bytes, min_alloc_size);
6325 if (num_bytes == min_alloc_size)
6326 final_tried = true;
6327 goto again;
6328 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6329 struct btrfs_space_info *sinfo;
6330
6331 sinfo = __find_space_info(root->fs_info, data);
6332 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6333 (unsigned long long)data,
6334 (unsigned long long)num_bytes);
6335 if (sinfo)
6336 dump_space_info(sinfo, num_bytes, 1);
6337 }
6338 }
6339
6340 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6341
6342 return ret;
6343 }
6344
6345 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6346 u64 start, u64 len, int pin)
6347 {
6348 struct btrfs_block_group_cache *cache;
6349 int ret = 0;
6350
6351 cache = btrfs_lookup_block_group(root->fs_info, start);
6352 if (!cache) {
6353 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6354 (unsigned long long)start);
6355 return -ENOSPC;
6356 }
6357
6358 if (btrfs_test_opt(root, DISCARD))
6359 ret = btrfs_discard_extent(root, start, len, NULL);
6360
6361 if (pin)
6362 pin_down_extent(root, cache, start, len, 1);
6363 else {
6364 btrfs_add_free_space(cache, start, len);
6365 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6366 }
6367 btrfs_put_block_group(cache);
6368
6369 trace_btrfs_reserved_extent_free(root, start, len);
6370
6371 return ret;
6372 }
6373
6374 int btrfs_free_reserved_extent(struct btrfs_root *root,
6375 u64 start, u64 len)
6376 {
6377 return __btrfs_free_reserved_extent(root, start, len, 0);
6378 }
6379
6380 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6381 u64 start, u64 len)
6382 {
6383 return __btrfs_free_reserved_extent(root, start, len, 1);
6384 }
6385
6386 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6387 struct btrfs_root *root,
6388 u64 parent, u64 root_objectid,
6389 u64 flags, u64 owner, u64 offset,
6390 struct btrfs_key *ins, int ref_mod)
6391 {
6392 int ret;
6393 struct btrfs_fs_info *fs_info = root->fs_info;
6394 struct btrfs_extent_item *extent_item;
6395 struct btrfs_extent_inline_ref *iref;
6396 struct btrfs_path *path;
6397 struct extent_buffer *leaf;
6398 int type;
6399 u32 size;
6400
6401 if (parent > 0)
6402 type = BTRFS_SHARED_DATA_REF_KEY;
6403 else
6404 type = BTRFS_EXTENT_DATA_REF_KEY;
6405
6406 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6407
6408 path = btrfs_alloc_path();
6409 if (!path)
6410 return -ENOMEM;
6411
6412 path->leave_spinning = 1;
6413 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6414 ins, size);
6415 if (ret) {
6416 btrfs_free_path(path);
6417 return ret;
6418 }
6419
6420 leaf = path->nodes[0];
6421 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6422 struct btrfs_extent_item);
6423 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6424 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6425 btrfs_set_extent_flags(leaf, extent_item,
6426 flags | BTRFS_EXTENT_FLAG_DATA);
6427
6428 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6429 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6430 if (parent > 0) {
6431 struct btrfs_shared_data_ref *ref;
6432 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6433 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6434 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6435 } else {
6436 struct btrfs_extent_data_ref *ref;
6437 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6438 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6439 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6440 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6441 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6442 }
6443
6444 btrfs_mark_buffer_dirty(path->nodes[0]);
6445 btrfs_free_path(path);
6446
6447 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6448 if (ret) { /* -ENOENT, logic error */
6449 btrfs_err(fs_info, "update block group failed for %llu %llu",
6450 (unsigned long long)ins->objectid,
6451 (unsigned long long)ins->offset);
6452 BUG();
6453 }
6454 return ret;
6455 }
6456
6457 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6458 struct btrfs_root *root,
6459 u64 parent, u64 root_objectid,
6460 u64 flags, struct btrfs_disk_key *key,
6461 int level, struct btrfs_key *ins)
6462 {
6463 int ret;
6464 struct btrfs_fs_info *fs_info = root->fs_info;
6465 struct btrfs_extent_item *extent_item;
6466 struct btrfs_tree_block_info *block_info;
6467 struct btrfs_extent_inline_ref *iref;
6468 struct btrfs_path *path;
6469 struct extent_buffer *leaf;
6470 u32 size = sizeof(*extent_item) + sizeof(*iref);
6471 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6472 SKINNY_METADATA);
6473
6474 if (!skinny_metadata)
6475 size += sizeof(*block_info);
6476
6477 path = btrfs_alloc_path();
6478 if (!path)
6479 return -ENOMEM;
6480
6481 path->leave_spinning = 1;
6482 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6483 ins, size);
6484 if (ret) {
6485 btrfs_free_path(path);
6486 return ret;
6487 }
6488
6489 leaf = path->nodes[0];
6490 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6491 struct btrfs_extent_item);
6492 btrfs_set_extent_refs(leaf, extent_item, 1);
6493 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6494 btrfs_set_extent_flags(leaf, extent_item,
6495 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6496
6497 if (skinny_metadata) {
6498 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6499 } else {
6500 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6501 btrfs_set_tree_block_key(leaf, block_info, key);
6502 btrfs_set_tree_block_level(leaf, block_info, level);
6503 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6504 }
6505
6506 if (parent > 0) {
6507 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6508 btrfs_set_extent_inline_ref_type(leaf, iref,
6509 BTRFS_SHARED_BLOCK_REF_KEY);
6510 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6511 } else {
6512 btrfs_set_extent_inline_ref_type(leaf, iref,
6513 BTRFS_TREE_BLOCK_REF_KEY);
6514 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6515 }
6516
6517 btrfs_mark_buffer_dirty(leaf);
6518 btrfs_free_path(path);
6519
6520 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6521 if (ret) { /* -ENOENT, logic error */
6522 btrfs_err(fs_info, "update block group failed for %llu %llu",
6523 (unsigned long long)ins->objectid,
6524 (unsigned long long)ins->offset);
6525 BUG();
6526 }
6527 return ret;
6528 }
6529
6530 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6531 struct btrfs_root *root,
6532 u64 root_objectid, u64 owner,
6533 u64 offset, struct btrfs_key *ins)
6534 {
6535 int ret;
6536
6537 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6538
6539 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6540 ins->offset, 0,
6541 root_objectid, owner, offset,
6542 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6543 return ret;
6544 }
6545
6546 /*
6547 * this is used by the tree logging recovery code. It records that
6548 * an extent has been allocated and makes sure to clear the free
6549 * space cache bits as well
6550 */
6551 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6552 struct btrfs_root *root,
6553 u64 root_objectid, u64 owner, u64 offset,
6554 struct btrfs_key *ins)
6555 {
6556 int ret;
6557 struct btrfs_block_group_cache *block_group;
6558 struct btrfs_caching_control *caching_ctl;
6559 u64 start = ins->objectid;
6560 u64 num_bytes = ins->offset;
6561
6562 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6563 cache_block_group(block_group, 0);
6564 caching_ctl = get_caching_control(block_group);
6565
6566 if (!caching_ctl) {
6567 BUG_ON(!block_group_cache_done(block_group));
6568 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6569 if (ret)
6570 goto out;
6571 } else {
6572 mutex_lock(&caching_ctl->mutex);
6573
6574 if (start >= caching_ctl->progress) {
6575 ret = add_excluded_extent(root, start, num_bytes);
6576 } else if (start + num_bytes <= caching_ctl->progress) {
6577 ret = btrfs_remove_free_space(block_group,
6578 start, num_bytes);
6579 } else {
6580 num_bytes = caching_ctl->progress - start;
6581 ret = btrfs_remove_free_space(block_group,
6582 start, num_bytes);
6583 if (ret)
6584 goto out_lock;
6585
6586 start = caching_ctl->progress;
6587 num_bytes = ins->objectid + ins->offset -
6588 caching_ctl->progress;
6589 ret = add_excluded_extent(root, start, num_bytes);
6590 }
6591 out_lock:
6592 mutex_unlock(&caching_ctl->mutex);
6593 put_caching_control(caching_ctl);
6594 if (ret)
6595 goto out;
6596 }
6597
6598 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6599 RESERVE_ALLOC_NO_ACCOUNT);
6600 BUG_ON(ret); /* logic error */
6601 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6602 0, owner, offset, ins, 1);
6603 out:
6604 btrfs_put_block_group(block_group);
6605 return ret;
6606 }
6607
6608 static struct extent_buffer *
6609 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6610 u64 bytenr, u32 blocksize, int level)
6611 {
6612 struct extent_buffer *buf;
6613
6614 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6615 if (!buf)
6616 return ERR_PTR(-ENOMEM);
6617 btrfs_set_header_generation(buf, trans->transid);
6618 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6619 btrfs_tree_lock(buf);
6620 clean_tree_block(trans, root, buf);
6621 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6622
6623 btrfs_set_lock_blocking(buf);
6624 btrfs_set_buffer_uptodate(buf);
6625
6626 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6627 /*
6628 * we allow two log transactions at a time, use different
6629 * EXENT bit to differentiate dirty pages.
6630 */
6631 if (root->log_transid % 2 == 0)
6632 set_extent_dirty(&root->dirty_log_pages, buf->start,
6633 buf->start + buf->len - 1, GFP_NOFS);
6634 else
6635 set_extent_new(&root->dirty_log_pages, buf->start,
6636 buf->start + buf->len - 1, GFP_NOFS);
6637 } else {
6638 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6639 buf->start + buf->len - 1, GFP_NOFS);
6640 }
6641 trans->blocks_used++;
6642 /* this returns a buffer locked for blocking */
6643 return buf;
6644 }
6645
6646 static struct btrfs_block_rsv *
6647 use_block_rsv(struct btrfs_trans_handle *trans,
6648 struct btrfs_root *root, u32 blocksize)
6649 {
6650 struct btrfs_block_rsv *block_rsv;
6651 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6652 int ret;
6653
6654 block_rsv = get_block_rsv(trans, root);
6655
6656 if (block_rsv->size == 0) {
6657 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6658 BTRFS_RESERVE_NO_FLUSH);
6659 /*
6660 * If we couldn't reserve metadata bytes try and use some from
6661 * the global reserve.
6662 */
6663 if (ret && block_rsv != global_rsv) {
6664 ret = block_rsv_use_bytes(global_rsv, blocksize);
6665 if (!ret)
6666 return global_rsv;
6667 return ERR_PTR(ret);
6668 } else if (ret) {
6669 return ERR_PTR(ret);
6670 }
6671 return block_rsv;
6672 }
6673
6674 ret = block_rsv_use_bytes(block_rsv, blocksize);
6675 if (!ret)
6676 return block_rsv;
6677 if (ret && !block_rsv->failfast) {
6678 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6679 static DEFINE_RATELIMIT_STATE(_rs,
6680 DEFAULT_RATELIMIT_INTERVAL * 10,
6681 /*DEFAULT_RATELIMIT_BURST*/ 1);
6682 if (__ratelimit(&_rs))
6683 WARN(1, KERN_DEBUG
6684 "btrfs: block rsv returned %d\n", ret);
6685 }
6686 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6687 BTRFS_RESERVE_NO_FLUSH);
6688 if (!ret) {
6689 return block_rsv;
6690 } else if (ret && block_rsv != global_rsv) {
6691 ret = block_rsv_use_bytes(global_rsv, blocksize);
6692 if (!ret)
6693 return global_rsv;
6694 }
6695 }
6696
6697 return ERR_PTR(-ENOSPC);
6698 }
6699
6700 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6701 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6702 {
6703 block_rsv_add_bytes(block_rsv, blocksize, 0);
6704 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6705 }
6706
6707 /*
6708 * finds a free extent and does all the dirty work required for allocation
6709 * returns the key for the extent through ins, and a tree buffer for
6710 * the first block of the extent through buf.
6711 *
6712 * returns the tree buffer or NULL.
6713 */
6714 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6715 struct btrfs_root *root, u32 blocksize,
6716 u64 parent, u64 root_objectid,
6717 struct btrfs_disk_key *key, int level,
6718 u64 hint, u64 empty_size)
6719 {
6720 struct btrfs_key ins;
6721 struct btrfs_block_rsv *block_rsv;
6722 struct extent_buffer *buf;
6723 u64 flags = 0;
6724 int ret;
6725 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6726 SKINNY_METADATA);
6727
6728 block_rsv = use_block_rsv(trans, root, blocksize);
6729 if (IS_ERR(block_rsv))
6730 return ERR_CAST(block_rsv);
6731
6732 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6733 empty_size, hint, &ins, 0);
6734 if (ret) {
6735 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6736 return ERR_PTR(ret);
6737 }
6738
6739 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6740 blocksize, level);
6741 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6742
6743 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6744 if (parent == 0)
6745 parent = ins.objectid;
6746 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6747 } else
6748 BUG_ON(parent > 0);
6749
6750 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6751 struct btrfs_delayed_extent_op *extent_op;
6752 extent_op = btrfs_alloc_delayed_extent_op();
6753 BUG_ON(!extent_op); /* -ENOMEM */
6754 if (key)
6755 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6756 else
6757 memset(&extent_op->key, 0, sizeof(extent_op->key));
6758 extent_op->flags_to_set = flags;
6759 if (skinny_metadata)
6760 extent_op->update_key = 0;
6761 else
6762 extent_op->update_key = 1;
6763 extent_op->update_flags = 1;
6764 extent_op->is_data = 0;
6765
6766 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6767 ins.objectid,
6768 ins.offset, parent, root_objectid,
6769 level, BTRFS_ADD_DELAYED_EXTENT,
6770 extent_op, 0);
6771 BUG_ON(ret); /* -ENOMEM */
6772 }
6773 return buf;
6774 }
6775
6776 struct walk_control {
6777 u64 refs[BTRFS_MAX_LEVEL];
6778 u64 flags[BTRFS_MAX_LEVEL];
6779 struct btrfs_key update_progress;
6780 int stage;
6781 int level;
6782 int shared_level;
6783 int update_ref;
6784 int keep_locks;
6785 int reada_slot;
6786 int reada_count;
6787 int for_reloc;
6788 };
6789
6790 #define DROP_REFERENCE 1
6791 #define UPDATE_BACKREF 2
6792
6793 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6794 struct btrfs_root *root,
6795 struct walk_control *wc,
6796 struct btrfs_path *path)
6797 {
6798 u64 bytenr;
6799 u64 generation;
6800 u64 refs;
6801 u64 flags;
6802 u32 nritems;
6803 u32 blocksize;
6804 struct btrfs_key key;
6805 struct extent_buffer *eb;
6806 int ret;
6807 int slot;
6808 int nread = 0;
6809
6810 if (path->slots[wc->level] < wc->reada_slot) {
6811 wc->reada_count = wc->reada_count * 2 / 3;
6812 wc->reada_count = max(wc->reada_count, 2);
6813 } else {
6814 wc->reada_count = wc->reada_count * 3 / 2;
6815 wc->reada_count = min_t(int, wc->reada_count,
6816 BTRFS_NODEPTRS_PER_BLOCK(root));
6817 }
6818
6819 eb = path->nodes[wc->level];
6820 nritems = btrfs_header_nritems(eb);
6821 blocksize = btrfs_level_size(root, wc->level - 1);
6822
6823 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6824 if (nread >= wc->reada_count)
6825 break;
6826
6827 cond_resched();
6828 bytenr = btrfs_node_blockptr(eb, slot);
6829 generation = btrfs_node_ptr_generation(eb, slot);
6830
6831 if (slot == path->slots[wc->level])
6832 goto reada;
6833
6834 if (wc->stage == UPDATE_BACKREF &&
6835 generation <= root->root_key.offset)
6836 continue;
6837
6838 /* We don't lock the tree block, it's OK to be racy here */
6839 ret = btrfs_lookup_extent_info(trans, root, bytenr,
6840 wc->level - 1, 1, &refs,
6841 &flags);
6842 /* We don't care about errors in readahead. */
6843 if (ret < 0)
6844 continue;
6845 BUG_ON(refs == 0);
6846
6847 if (wc->stage == DROP_REFERENCE) {
6848 if (refs == 1)
6849 goto reada;
6850
6851 if (wc->level == 1 &&
6852 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6853 continue;
6854 if (!wc->update_ref ||
6855 generation <= root->root_key.offset)
6856 continue;
6857 btrfs_node_key_to_cpu(eb, &key, slot);
6858 ret = btrfs_comp_cpu_keys(&key,
6859 &wc->update_progress);
6860 if (ret < 0)
6861 continue;
6862 } else {
6863 if (wc->level == 1 &&
6864 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6865 continue;
6866 }
6867 reada:
6868 ret = readahead_tree_block(root, bytenr, blocksize,
6869 generation);
6870 if (ret)
6871 break;
6872 nread++;
6873 }
6874 wc->reada_slot = slot;
6875 }
6876
6877 /*
6878 * helper to process tree block while walking down the tree.
6879 *
6880 * when wc->stage == UPDATE_BACKREF, this function updates
6881 * back refs for pointers in the block.
6882 *
6883 * NOTE: return value 1 means we should stop walking down.
6884 */
6885 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6886 struct btrfs_root *root,
6887 struct btrfs_path *path,
6888 struct walk_control *wc, int lookup_info)
6889 {
6890 int level = wc->level;
6891 struct extent_buffer *eb = path->nodes[level];
6892 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6893 int ret;
6894
6895 if (wc->stage == UPDATE_BACKREF &&
6896 btrfs_header_owner(eb) != root->root_key.objectid)
6897 return 1;
6898
6899 /*
6900 * when reference count of tree block is 1, it won't increase
6901 * again. once full backref flag is set, we never clear it.
6902 */
6903 if (lookup_info &&
6904 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6905 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6906 BUG_ON(!path->locks[level]);
6907 ret = btrfs_lookup_extent_info(trans, root,
6908 eb->start, level, 1,
6909 &wc->refs[level],
6910 &wc->flags[level]);
6911 BUG_ON(ret == -ENOMEM);
6912 if (ret)
6913 return ret;
6914 BUG_ON(wc->refs[level] == 0);
6915 }
6916
6917 if (wc->stage == DROP_REFERENCE) {
6918 if (wc->refs[level] > 1)
6919 return 1;
6920
6921 if (path->locks[level] && !wc->keep_locks) {
6922 btrfs_tree_unlock_rw(eb, path->locks[level]);
6923 path->locks[level] = 0;
6924 }
6925 return 0;
6926 }
6927
6928 /* wc->stage == UPDATE_BACKREF */
6929 if (!(wc->flags[level] & flag)) {
6930 BUG_ON(!path->locks[level]);
6931 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6932 BUG_ON(ret); /* -ENOMEM */
6933 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6934 BUG_ON(ret); /* -ENOMEM */
6935 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6936 eb->len, flag, 0);
6937 BUG_ON(ret); /* -ENOMEM */
6938 wc->flags[level] |= flag;
6939 }
6940
6941 /*
6942 * the block is shared by multiple trees, so it's not good to
6943 * keep the tree lock
6944 */
6945 if (path->locks[level] && level > 0) {
6946 btrfs_tree_unlock_rw(eb, path->locks[level]);
6947 path->locks[level] = 0;
6948 }
6949 return 0;
6950 }
6951
6952 /*
6953 * helper to process tree block pointer.
6954 *
6955 * when wc->stage == DROP_REFERENCE, this function checks
6956 * reference count of the block pointed to. if the block
6957 * is shared and we need update back refs for the subtree
6958 * rooted at the block, this function changes wc->stage to
6959 * UPDATE_BACKREF. if the block is shared and there is no
6960 * need to update back, this function drops the reference
6961 * to the block.
6962 *
6963 * NOTE: return value 1 means we should stop walking down.
6964 */
6965 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6966 struct btrfs_root *root,
6967 struct btrfs_path *path,
6968 struct walk_control *wc, int *lookup_info)
6969 {
6970 u64 bytenr;
6971 u64 generation;
6972 u64 parent;
6973 u32 blocksize;
6974 struct btrfs_key key;
6975 struct extent_buffer *next;
6976 int level = wc->level;
6977 int reada = 0;
6978 int ret = 0;
6979
6980 generation = btrfs_node_ptr_generation(path->nodes[level],
6981 path->slots[level]);
6982 /*
6983 * if the lower level block was created before the snapshot
6984 * was created, we know there is no need to update back refs
6985 * for the subtree
6986 */
6987 if (wc->stage == UPDATE_BACKREF &&
6988 generation <= root->root_key.offset) {
6989 *lookup_info = 1;
6990 return 1;
6991 }
6992
6993 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6994 blocksize = btrfs_level_size(root, level - 1);
6995
6996 next = btrfs_find_tree_block(root, bytenr, blocksize);
6997 if (!next) {
6998 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6999 if (!next)
7000 return -ENOMEM;
7001 reada = 1;
7002 }
7003 btrfs_tree_lock(next);
7004 btrfs_set_lock_blocking(next);
7005
7006 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7007 &wc->refs[level - 1],
7008 &wc->flags[level - 1]);
7009 if (ret < 0) {
7010 btrfs_tree_unlock(next);
7011 return ret;
7012 }
7013
7014 if (unlikely(wc->refs[level - 1] == 0)) {
7015 btrfs_err(root->fs_info, "Missing references.");
7016 BUG();
7017 }
7018 *lookup_info = 0;
7019
7020 if (wc->stage == DROP_REFERENCE) {
7021 if (wc->refs[level - 1] > 1) {
7022 if (level == 1 &&
7023 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7024 goto skip;
7025
7026 if (!wc->update_ref ||
7027 generation <= root->root_key.offset)
7028 goto skip;
7029
7030 btrfs_node_key_to_cpu(path->nodes[level], &key,
7031 path->slots[level]);
7032 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7033 if (ret < 0)
7034 goto skip;
7035
7036 wc->stage = UPDATE_BACKREF;
7037 wc->shared_level = level - 1;
7038 }
7039 } else {
7040 if (level == 1 &&
7041 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7042 goto skip;
7043 }
7044
7045 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7046 btrfs_tree_unlock(next);
7047 free_extent_buffer(next);
7048 next = NULL;
7049 *lookup_info = 1;
7050 }
7051
7052 if (!next) {
7053 if (reada && level == 1)
7054 reada_walk_down(trans, root, wc, path);
7055 next = read_tree_block(root, bytenr, blocksize, generation);
7056 if (!next || !extent_buffer_uptodate(next)) {
7057 free_extent_buffer(next);
7058 return -EIO;
7059 }
7060 btrfs_tree_lock(next);
7061 btrfs_set_lock_blocking(next);
7062 }
7063
7064 level--;
7065 BUG_ON(level != btrfs_header_level(next));
7066 path->nodes[level] = next;
7067 path->slots[level] = 0;
7068 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7069 wc->level = level;
7070 if (wc->level == 1)
7071 wc->reada_slot = 0;
7072 return 0;
7073 skip:
7074 wc->refs[level - 1] = 0;
7075 wc->flags[level - 1] = 0;
7076 if (wc->stage == DROP_REFERENCE) {
7077 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7078 parent = path->nodes[level]->start;
7079 } else {
7080 BUG_ON(root->root_key.objectid !=
7081 btrfs_header_owner(path->nodes[level]));
7082 parent = 0;
7083 }
7084
7085 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7086 root->root_key.objectid, level - 1, 0, 0);
7087 BUG_ON(ret); /* -ENOMEM */
7088 }
7089 btrfs_tree_unlock(next);
7090 free_extent_buffer(next);
7091 *lookup_info = 1;
7092 return 1;
7093 }
7094
7095 /*
7096 * helper to process tree block while walking up the tree.
7097 *
7098 * when wc->stage == DROP_REFERENCE, this function drops
7099 * reference count on the block.
7100 *
7101 * when wc->stage == UPDATE_BACKREF, this function changes
7102 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7103 * to UPDATE_BACKREF previously while processing the block.
7104 *
7105 * NOTE: return value 1 means we should stop walking up.
7106 */
7107 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7108 struct btrfs_root *root,
7109 struct btrfs_path *path,
7110 struct walk_control *wc)
7111 {
7112 int ret;
7113 int level = wc->level;
7114 struct extent_buffer *eb = path->nodes[level];
7115 u64 parent = 0;
7116
7117 if (wc->stage == UPDATE_BACKREF) {
7118 BUG_ON(wc->shared_level < level);
7119 if (level < wc->shared_level)
7120 goto out;
7121
7122 ret = find_next_key(path, level + 1, &wc->update_progress);
7123 if (ret > 0)
7124 wc->update_ref = 0;
7125
7126 wc->stage = DROP_REFERENCE;
7127 wc->shared_level = -1;
7128 path->slots[level] = 0;
7129
7130 /*
7131 * check reference count again if the block isn't locked.
7132 * we should start walking down the tree again if reference
7133 * count is one.
7134 */
7135 if (!path->locks[level]) {
7136 BUG_ON(level == 0);
7137 btrfs_tree_lock(eb);
7138 btrfs_set_lock_blocking(eb);
7139 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7140
7141 ret = btrfs_lookup_extent_info(trans, root,
7142 eb->start, level, 1,
7143 &wc->refs[level],
7144 &wc->flags[level]);
7145 if (ret < 0) {
7146 btrfs_tree_unlock_rw(eb, path->locks[level]);
7147 path->locks[level] = 0;
7148 return ret;
7149 }
7150 BUG_ON(wc->refs[level] == 0);
7151 if (wc->refs[level] == 1) {
7152 btrfs_tree_unlock_rw(eb, path->locks[level]);
7153 path->locks[level] = 0;
7154 return 1;
7155 }
7156 }
7157 }
7158
7159 /* wc->stage == DROP_REFERENCE */
7160 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7161
7162 if (wc->refs[level] == 1) {
7163 if (level == 0) {
7164 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7165 ret = btrfs_dec_ref(trans, root, eb, 1,
7166 wc->for_reloc);
7167 else
7168 ret = btrfs_dec_ref(trans, root, eb, 0,
7169 wc->for_reloc);
7170 BUG_ON(ret); /* -ENOMEM */
7171 }
7172 /* make block locked assertion in clean_tree_block happy */
7173 if (!path->locks[level] &&
7174 btrfs_header_generation(eb) == trans->transid) {
7175 btrfs_tree_lock(eb);
7176 btrfs_set_lock_blocking(eb);
7177 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7178 }
7179 clean_tree_block(trans, root, eb);
7180 }
7181
7182 if (eb == root->node) {
7183 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7184 parent = eb->start;
7185 else
7186 BUG_ON(root->root_key.objectid !=
7187 btrfs_header_owner(eb));
7188 } else {
7189 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7190 parent = path->nodes[level + 1]->start;
7191 else
7192 BUG_ON(root->root_key.objectid !=
7193 btrfs_header_owner(path->nodes[level + 1]));
7194 }
7195
7196 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7197 out:
7198 wc->refs[level] = 0;
7199 wc->flags[level] = 0;
7200 return 0;
7201 }
7202
7203 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7204 struct btrfs_root *root,
7205 struct btrfs_path *path,
7206 struct walk_control *wc)
7207 {
7208 int level = wc->level;
7209 int lookup_info = 1;
7210 int ret;
7211
7212 while (level >= 0) {
7213 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7214 if (ret > 0)
7215 break;
7216
7217 if (level == 0)
7218 break;
7219
7220 if (path->slots[level] >=
7221 btrfs_header_nritems(path->nodes[level]))
7222 break;
7223
7224 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7225 if (ret > 0) {
7226 path->slots[level]++;
7227 continue;
7228 } else if (ret < 0)
7229 return ret;
7230 level = wc->level;
7231 }
7232 return 0;
7233 }
7234
7235 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7236 struct btrfs_root *root,
7237 struct btrfs_path *path,
7238 struct walk_control *wc, int max_level)
7239 {
7240 int level = wc->level;
7241 int ret;
7242
7243 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7244 while (level < max_level && path->nodes[level]) {
7245 wc->level = level;
7246 if (path->slots[level] + 1 <
7247 btrfs_header_nritems(path->nodes[level])) {
7248 path->slots[level]++;
7249 return 0;
7250 } else {
7251 ret = walk_up_proc(trans, root, path, wc);
7252 if (ret > 0)
7253 return 0;
7254
7255 if (path->locks[level]) {
7256 btrfs_tree_unlock_rw(path->nodes[level],
7257 path->locks[level]);
7258 path->locks[level] = 0;
7259 }
7260 free_extent_buffer(path->nodes[level]);
7261 path->nodes[level] = NULL;
7262 level++;
7263 }
7264 }
7265 return 1;
7266 }
7267
7268 /*
7269 * drop a subvolume tree.
7270 *
7271 * this function traverses the tree freeing any blocks that only
7272 * referenced by the tree.
7273 *
7274 * when a shared tree block is found. this function decreases its
7275 * reference count by one. if update_ref is true, this function
7276 * also make sure backrefs for the shared block and all lower level
7277 * blocks are properly updated.
7278 *
7279 * If called with for_reloc == 0, may exit early with -EAGAIN
7280 */
7281 int btrfs_drop_snapshot(struct btrfs_root *root,
7282 struct btrfs_block_rsv *block_rsv, int update_ref,
7283 int for_reloc)
7284 {
7285 struct btrfs_path *path;
7286 struct btrfs_trans_handle *trans;
7287 struct btrfs_root *tree_root = root->fs_info->tree_root;
7288 struct btrfs_root_item *root_item = &root->root_item;
7289 struct walk_control *wc;
7290 struct btrfs_key key;
7291 int err = 0;
7292 int ret;
7293 int level;
7294
7295 path = btrfs_alloc_path();
7296 if (!path) {
7297 err = -ENOMEM;
7298 goto out;
7299 }
7300
7301 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7302 if (!wc) {
7303 btrfs_free_path(path);
7304 err = -ENOMEM;
7305 goto out;
7306 }
7307
7308 trans = btrfs_start_transaction(tree_root, 0);
7309 if (IS_ERR(trans)) {
7310 err = PTR_ERR(trans);
7311 goto out_free;
7312 }
7313
7314 if (block_rsv)
7315 trans->block_rsv = block_rsv;
7316
7317 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7318 level = btrfs_header_level(root->node);
7319 path->nodes[level] = btrfs_lock_root_node(root);
7320 btrfs_set_lock_blocking(path->nodes[level]);
7321 path->slots[level] = 0;
7322 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7323 memset(&wc->update_progress, 0,
7324 sizeof(wc->update_progress));
7325 } else {
7326 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7327 memcpy(&wc->update_progress, &key,
7328 sizeof(wc->update_progress));
7329
7330 level = root_item->drop_level;
7331 BUG_ON(level == 0);
7332 path->lowest_level = level;
7333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7334 path->lowest_level = 0;
7335 if (ret < 0) {
7336 err = ret;
7337 goto out_end_trans;
7338 }
7339 WARN_ON(ret > 0);
7340
7341 /*
7342 * unlock our path, this is safe because only this
7343 * function is allowed to delete this snapshot
7344 */
7345 btrfs_unlock_up_safe(path, 0);
7346
7347 level = btrfs_header_level(root->node);
7348 while (1) {
7349 btrfs_tree_lock(path->nodes[level]);
7350 btrfs_set_lock_blocking(path->nodes[level]);
7351
7352 ret = btrfs_lookup_extent_info(trans, root,
7353 path->nodes[level]->start,
7354 level, 1, &wc->refs[level],
7355 &wc->flags[level]);
7356 if (ret < 0) {
7357 err = ret;
7358 goto out_end_trans;
7359 }
7360 BUG_ON(wc->refs[level] == 0);
7361
7362 if (level == root_item->drop_level)
7363 break;
7364
7365 btrfs_tree_unlock(path->nodes[level]);
7366 WARN_ON(wc->refs[level] != 1);
7367 level--;
7368 }
7369 }
7370
7371 wc->level = level;
7372 wc->shared_level = -1;
7373 wc->stage = DROP_REFERENCE;
7374 wc->update_ref = update_ref;
7375 wc->keep_locks = 0;
7376 wc->for_reloc = for_reloc;
7377 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7378
7379 while (1) {
7380 if (!for_reloc && btrfs_fs_closing(root->fs_info)) {
7381 pr_debug("btrfs: drop snapshot early exit\n");
7382 err = -EAGAIN;
7383 goto out_end_trans;
7384 }
7385
7386 ret = walk_down_tree(trans, root, path, wc);
7387 if (ret < 0) {
7388 err = ret;
7389 break;
7390 }
7391
7392 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7393 if (ret < 0) {
7394 err = ret;
7395 break;
7396 }
7397
7398 if (ret > 0) {
7399 BUG_ON(wc->stage != DROP_REFERENCE);
7400 break;
7401 }
7402
7403 if (wc->stage == DROP_REFERENCE) {
7404 level = wc->level;
7405 btrfs_node_key(path->nodes[level],
7406 &root_item->drop_progress,
7407 path->slots[level]);
7408 root_item->drop_level = level;
7409 }
7410
7411 BUG_ON(wc->level == 0);
7412 if (btrfs_should_end_transaction(trans, tree_root)) {
7413 ret = btrfs_update_root(trans, tree_root,
7414 &root->root_key,
7415 root_item);
7416 if (ret) {
7417 btrfs_abort_transaction(trans, tree_root, ret);
7418 err = ret;
7419 goto out_end_trans;
7420 }
7421
7422 btrfs_end_transaction_throttle(trans, tree_root);
7423 trans = btrfs_start_transaction(tree_root, 0);
7424 if (IS_ERR(trans)) {
7425 err = PTR_ERR(trans);
7426 goto out_free;
7427 }
7428 if (block_rsv)
7429 trans->block_rsv = block_rsv;
7430 }
7431 }
7432 btrfs_release_path(path);
7433 if (err)
7434 goto out_end_trans;
7435
7436 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7437 if (ret) {
7438 btrfs_abort_transaction(trans, tree_root, ret);
7439 goto out_end_trans;
7440 }
7441
7442 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7443 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7444 NULL, NULL);
7445 if (ret < 0) {
7446 btrfs_abort_transaction(trans, tree_root, ret);
7447 err = ret;
7448 goto out_end_trans;
7449 } else if (ret > 0) {
7450 /* if we fail to delete the orphan item this time
7451 * around, it'll get picked up the next time.
7452 *
7453 * The most common failure here is just -ENOENT.
7454 */
7455 btrfs_del_orphan_item(trans, tree_root,
7456 root->root_key.objectid);
7457 }
7458 }
7459
7460 if (root->in_radix) {
7461 btrfs_free_fs_root(tree_root->fs_info, root);
7462 } else {
7463 free_extent_buffer(root->node);
7464 free_extent_buffer(root->commit_root);
7465 kfree(root);
7466 }
7467 out_end_trans:
7468 btrfs_end_transaction_throttle(trans, tree_root);
7469 out_free:
7470 kfree(wc);
7471 btrfs_free_path(path);
7472 out:
7473 if (err)
7474 btrfs_std_error(root->fs_info, err);
7475 return err;
7476 }
7477
7478 /*
7479 * drop subtree rooted at tree block 'node'.
7480 *
7481 * NOTE: this function will unlock and release tree block 'node'
7482 * only used by relocation code
7483 */
7484 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7485 struct btrfs_root *root,
7486 struct extent_buffer *node,
7487 struct extent_buffer *parent)
7488 {
7489 struct btrfs_path *path;
7490 struct walk_control *wc;
7491 int level;
7492 int parent_level;
7493 int ret = 0;
7494 int wret;
7495
7496 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7497
7498 path = btrfs_alloc_path();
7499 if (!path)
7500 return -ENOMEM;
7501
7502 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7503 if (!wc) {
7504 btrfs_free_path(path);
7505 return -ENOMEM;
7506 }
7507
7508 btrfs_assert_tree_locked(parent);
7509 parent_level = btrfs_header_level(parent);
7510 extent_buffer_get(parent);
7511 path->nodes[parent_level] = parent;
7512 path->slots[parent_level] = btrfs_header_nritems(parent);
7513
7514 btrfs_assert_tree_locked(node);
7515 level = btrfs_header_level(node);
7516 path->nodes[level] = node;
7517 path->slots[level] = 0;
7518 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7519
7520 wc->refs[parent_level] = 1;
7521 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7522 wc->level = level;
7523 wc->shared_level = -1;
7524 wc->stage = DROP_REFERENCE;
7525 wc->update_ref = 0;
7526 wc->keep_locks = 1;
7527 wc->for_reloc = 1;
7528 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7529
7530 while (1) {
7531 wret = walk_down_tree(trans, root, path, wc);
7532 if (wret < 0) {
7533 ret = wret;
7534 break;
7535 }
7536
7537 wret = walk_up_tree(trans, root, path, wc, parent_level);
7538 if (wret < 0)
7539 ret = wret;
7540 if (wret != 0)
7541 break;
7542 }
7543
7544 kfree(wc);
7545 btrfs_free_path(path);
7546 return ret;
7547 }
7548
7549 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7550 {
7551 u64 num_devices;
7552 u64 stripped;
7553
7554 /*
7555 * if restripe for this chunk_type is on pick target profile and
7556 * return, otherwise do the usual balance
7557 */
7558 stripped = get_restripe_target(root->fs_info, flags);
7559 if (stripped)
7560 return extended_to_chunk(stripped);
7561
7562 /*
7563 * we add in the count of missing devices because we want
7564 * to make sure that any RAID levels on a degraded FS
7565 * continue to be honored.
7566 */
7567 num_devices = root->fs_info->fs_devices->rw_devices +
7568 root->fs_info->fs_devices->missing_devices;
7569
7570 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7571 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7572 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7573
7574 if (num_devices == 1) {
7575 stripped |= BTRFS_BLOCK_GROUP_DUP;
7576 stripped = flags & ~stripped;
7577
7578 /* turn raid0 into single device chunks */
7579 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7580 return stripped;
7581
7582 /* turn mirroring into duplication */
7583 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7584 BTRFS_BLOCK_GROUP_RAID10))
7585 return stripped | BTRFS_BLOCK_GROUP_DUP;
7586 } else {
7587 /* they already had raid on here, just return */
7588 if (flags & stripped)
7589 return flags;
7590
7591 stripped |= BTRFS_BLOCK_GROUP_DUP;
7592 stripped = flags & ~stripped;
7593
7594 /* switch duplicated blocks with raid1 */
7595 if (flags & BTRFS_BLOCK_GROUP_DUP)
7596 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7597
7598 /* this is drive concat, leave it alone */
7599 }
7600
7601 return flags;
7602 }
7603
7604 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7605 {
7606 struct btrfs_space_info *sinfo = cache->space_info;
7607 u64 num_bytes;
7608 u64 min_allocable_bytes;
7609 int ret = -ENOSPC;
7610
7611
7612 /*
7613 * We need some metadata space and system metadata space for
7614 * allocating chunks in some corner cases until we force to set
7615 * it to be readonly.
7616 */
7617 if ((sinfo->flags &
7618 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7619 !force)
7620 min_allocable_bytes = 1 * 1024 * 1024;
7621 else
7622 min_allocable_bytes = 0;
7623
7624 spin_lock(&sinfo->lock);
7625 spin_lock(&cache->lock);
7626
7627 if (cache->ro) {
7628 ret = 0;
7629 goto out;
7630 }
7631
7632 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7633 cache->bytes_super - btrfs_block_group_used(&cache->item);
7634
7635 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7636 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7637 min_allocable_bytes <= sinfo->total_bytes) {
7638 sinfo->bytes_readonly += num_bytes;
7639 cache->ro = 1;
7640 ret = 0;
7641 }
7642 out:
7643 spin_unlock(&cache->lock);
7644 spin_unlock(&sinfo->lock);
7645 return ret;
7646 }
7647
7648 int btrfs_set_block_group_ro(struct btrfs_root *root,
7649 struct btrfs_block_group_cache *cache)
7650
7651 {
7652 struct btrfs_trans_handle *trans;
7653 u64 alloc_flags;
7654 int ret;
7655
7656 BUG_ON(cache->ro);
7657
7658 trans = btrfs_join_transaction(root);
7659 if (IS_ERR(trans))
7660 return PTR_ERR(trans);
7661
7662 alloc_flags = update_block_group_flags(root, cache->flags);
7663 if (alloc_flags != cache->flags) {
7664 ret = do_chunk_alloc(trans, root, alloc_flags,
7665 CHUNK_ALLOC_FORCE);
7666 if (ret < 0)
7667 goto out;
7668 }
7669
7670 ret = set_block_group_ro(cache, 0);
7671 if (!ret)
7672 goto out;
7673 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7674 ret = do_chunk_alloc(trans, root, alloc_flags,
7675 CHUNK_ALLOC_FORCE);
7676 if (ret < 0)
7677 goto out;
7678 ret = set_block_group_ro(cache, 0);
7679 out:
7680 btrfs_end_transaction(trans, root);
7681 return ret;
7682 }
7683
7684 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7685 struct btrfs_root *root, u64 type)
7686 {
7687 u64 alloc_flags = get_alloc_profile(root, type);
7688 return do_chunk_alloc(trans, root, alloc_flags,
7689 CHUNK_ALLOC_FORCE);
7690 }
7691
7692 /*
7693 * helper to account the unused space of all the readonly block group in the
7694 * list. takes mirrors into account.
7695 */
7696 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7697 {
7698 struct btrfs_block_group_cache *block_group;
7699 u64 free_bytes = 0;
7700 int factor;
7701
7702 list_for_each_entry(block_group, groups_list, list) {
7703 spin_lock(&block_group->lock);
7704
7705 if (!block_group->ro) {
7706 spin_unlock(&block_group->lock);
7707 continue;
7708 }
7709
7710 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7711 BTRFS_BLOCK_GROUP_RAID10 |
7712 BTRFS_BLOCK_GROUP_DUP))
7713 factor = 2;
7714 else
7715 factor = 1;
7716
7717 free_bytes += (block_group->key.offset -
7718 btrfs_block_group_used(&block_group->item)) *
7719 factor;
7720
7721 spin_unlock(&block_group->lock);
7722 }
7723
7724 return free_bytes;
7725 }
7726
7727 /*
7728 * helper to account the unused space of all the readonly block group in the
7729 * space_info. takes mirrors into account.
7730 */
7731 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7732 {
7733 int i;
7734 u64 free_bytes = 0;
7735
7736 spin_lock(&sinfo->lock);
7737
7738 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7739 if (!list_empty(&sinfo->block_groups[i]))
7740 free_bytes += __btrfs_get_ro_block_group_free_space(
7741 &sinfo->block_groups[i]);
7742
7743 spin_unlock(&sinfo->lock);
7744
7745 return free_bytes;
7746 }
7747
7748 void btrfs_set_block_group_rw(struct btrfs_root *root,
7749 struct btrfs_block_group_cache *cache)
7750 {
7751 struct btrfs_space_info *sinfo = cache->space_info;
7752 u64 num_bytes;
7753
7754 BUG_ON(!cache->ro);
7755
7756 spin_lock(&sinfo->lock);
7757 spin_lock(&cache->lock);
7758 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7759 cache->bytes_super - btrfs_block_group_used(&cache->item);
7760 sinfo->bytes_readonly -= num_bytes;
7761 cache->ro = 0;
7762 spin_unlock(&cache->lock);
7763 spin_unlock(&sinfo->lock);
7764 }
7765
7766 /*
7767 * checks to see if its even possible to relocate this block group.
7768 *
7769 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7770 * ok to go ahead and try.
7771 */
7772 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7773 {
7774 struct btrfs_block_group_cache *block_group;
7775 struct btrfs_space_info *space_info;
7776 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7777 struct btrfs_device *device;
7778 u64 min_free;
7779 u64 dev_min = 1;
7780 u64 dev_nr = 0;
7781 u64 target;
7782 int index;
7783 int full = 0;
7784 int ret = 0;
7785
7786 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7787
7788 /* odd, couldn't find the block group, leave it alone */
7789 if (!block_group)
7790 return -1;
7791
7792 min_free = btrfs_block_group_used(&block_group->item);
7793
7794 /* no bytes used, we're good */
7795 if (!min_free)
7796 goto out;
7797
7798 space_info = block_group->space_info;
7799 spin_lock(&space_info->lock);
7800
7801 full = space_info->full;
7802
7803 /*
7804 * if this is the last block group we have in this space, we can't
7805 * relocate it unless we're able to allocate a new chunk below.
7806 *
7807 * Otherwise, we need to make sure we have room in the space to handle
7808 * all of the extents from this block group. If we can, we're good
7809 */
7810 if ((space_info->total_bytes != block_group->key.offset) &&
7811 (space_info->bytes_used + space_info->bytes_reserved +
7812 space_info->bytes_pinned + space_info->bytes_readonly +
7813 min_free < space_info->total_bytes)) {
7814 spin_unlock(&space_info->lock);
7815 goto out;
7816 }
7817 spin_unlock(&space_info->lock);
7818
7819 /*
7820 * ok we don't have enough space, but maybe we have free space on our
7821 * devices to allocate new chunks for relocation, so loop through our
7822 * alloc devices and guess if we have enough space. if this block
7823 * group is going to be restriped, run checks against the target
7824 * profile instead of the current one.
7825 */
7826 ret = -1;
7827
7828 /*
7829 * index:
7830 * 0: raid10
7831 * 1: raid1
7832 * 2: dup
7833 * 3: raid0
7834 * 4: single
7835 */
7836 target = get_restripe_target(root->fs_info, block_group->flags);
7837 if (target) {
7838 index = __get_raid_index(extended_to_chunk(target));
7839 } else {
7840 /*
7841 * this is just a balance, so if we were marked as full
7842 * we know there is no space for a new chunk
7843 */
7844 if (full)
7845 goto out;
7846
7847 index = get_block_group_index(block_group);
7848 }
7849
7850 if (index == BTRFS_RAID_RAID10) {
7851 dev_min = 4;
7852 /* Divide by 2 */
7853 min_free >>= 1;
7854 } else if (index == BTRFS_RAID_RAID1) {
7855 dev_min = 2;
7856 } else if (index == BTRFS_RAID_DUP) {
7857 /* Multiply by 2 */
7858 min_free <<= 1;
7859 } else if (index == BTRFS_RAID_RAID0) {
7860 dev_min = fs_devices->rw_devices;
7861 do_div(min_free, dev_min);
7862 }
7863
7864 mutex_lock(&root->fs_info->chunk_mutex);
7865 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7866 u64 dev_offset;
7867
7868 /*
7869 * check to make sure we can actually find a chunk with enough
7870 * space to fit our block group in.
7871 */
7872 if (device->total_bytes > device->bytes_used + min_free &&
7873 !device->is_tgtdev_for_dev_replace) {
7874 ret = find_free_dev_extent(device, min_free,
7875 &dev_offset, NULL);
7876 if (!ret)
7877 dev_nr++;
7878
7879 if (dev_nr >= dev_min)
7880 break;
7881
7882 ret = -1;
7883 }
7884 }
7885 mutex_unlock(&root->fs_info->chunk_mutex);
7886 out:
7887 btrfs_put_block_group(block_group);
7888 return ret;
7889 }
7890
7891 static int find_first_block_group(struct btrfs_root *root,
7892 struct btrfs_path *path, struct btrfs_key *key)
7893 {
7894 int ret = 0;
7895 struct btrfs_key found_key;
7896 struct extent_buffer *leaf;
7897 int slot;
7898
7899 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7900 if (ret < 0)
7901 goto out;
7902
7903 while (1) {
7904 slot = path->slots[0];
7905 leaf = path->nodes[0];
7906 if (slot >= btrfs_header_nritems(leaf)) {
7907 ret = btrfs_next_leaf(root, path);
7908 if (ret == 0)
7909 continue;
7910 if (ret < 0)
7911 goto out;
7912 break;
7913 }
7914 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7915
7916 if (found_key.objectid >= key->objectid &&
7917 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7918 ret = 0;
7919 goto out;
7920 }
7921 path->slots[0]++;
7922 }
7923 out:
7924 return ret;
7925 }
7926
7927 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7928 {
7929 struct btrfs_block_group_cache *block_group;
7930 u64 last = 0;
7931
7932 while (1) {
7933 struct inode *inode;
7934
7935 block_group = btrfs_lookup_first_block_group(info, last);
7936 while (block_group) {
7937 spin_lock(&block_group->lock);
7938 if (block_group->iref)
7939 break;
7940 spin_unlock(&block_group->lock);
7941 block_group = next_block_group(info->tree_root,
7942 block_group);
7943 }
7944 if (!block_group) {
7945 if (last == 0)
7946 break;
7947 last = 0;
7948 continue;
7949 }
7950
7951 inode = block_group->inode;
7952 block_group->iref = 0;
7953 block_group->inode = NULL;
7954 spin_unlock(&block_group->lock);
7955 iput(inode);
7956 last = block_group->key.objectid + block_group->key.offset;
7957 btrfs_put_block_group(block_group);
7958 }
7959 }
7960
7961 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7962 {
7963 struct btrfs_block_group_cache *block_group;
7964 struct btrfs_space_info *space_info;
7965 struct btrfs_caching_control *caching_ctl;
7966 struct rb_node *n;
7967
7968 down_write(&info->extent_commit_sem);
7969 while (!list_empty(&info->caching_block_groups)) {
7970 caching_ctl = list_entry(info->caching_block_groups.next,
7971 struct btrfs_caching_control, list);
7972 list_del(&caching_ctl->list);
7973 put_caching_control(caching_ctl);
7974 }
7975 up_write(&info->extent_commit_sem);
7976
7977 spin_lock(&info->block_group_cache_lock);
7978 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7979 block_group = rb_entry(n, struct btrfs_block_group_cache,
7980 cache_node);
7981 rb_erase(&block_group->cache_node,
7982 &info->block_group_cache_tree);
7983 spin_unlock(&info->block_group_cache_lock);
7984
7985 down_write(&block_group->space_info->groups_sem);
7986 list_del(&block_group->list);
7987 up_write(&block_group->space_info->groups_sem);
7988
7989 if (block_group->cached == BTRFS_CACHE_STARTED)
7990 wait_block_group_cache_done(block_group);
7991
7992 /*
7993 * We haven't cached this block group, which means we could
7994 * possibly have excluded extents on this block group.
7995 */
7996 if (block_group->cached == BTRFS_CACHE_NO)
7997 free_excluded_extents(info->extent_root, block_group);
7998
7999 btrfs_remove_free_space_cache(block_group);
8000 btrfs_put_block_group(block_group);
8001
8002 spin_lock(&info->block_group_cache_lock);
8003 }
8004 spin_unlock(&info->block_group_cache_lock);
8005
8006 /* now that all the block groups are freed, go through and
8007 * free all the space_info structs. This is only called during
8008 * the final stages of unmount, and so we know nobody is
8009 * using them. We call synchronize_rcu() once before we start,
8010 * just to be on the safe side.
8011 */
8012 synchronize_rcu();
8013
8014 release_global_block_rsv(info);
8015
8016 while(!list_empty(&info->space_info)) {
8017 space_info = list_entry(info->space_info.next,
8018 struct btrfs_space_info,
8019 list);
8020 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8021 if (space_info->bytes_pinned > 0 ||
8022 space_info->bytes_reserved > 0 ||
8023 space_info->bytes_may_use > 0) {
8024 WARN_ON(1);
8025 dump_space_info(space_info, 0, 0);
8026 }
8027 }
8028 list_del(&space_info->list);
8029 kfree(space_info);
8030 }
8031 return 0;
8032 }
8033
8034 static void __link_block_group(struct btrfs_space_info *space_info,
8035 struct btrfs_block_group_cache *cache)
8036 {
8037 int index = get_block_group_index(cache);
8038
8039 down_write(&space_info->groups_sem);
8040 list_add_tail(&cache->list, &space_info->block_groups[index]);
8041 up_write(&space_info->groups_sem);
8042 }
8043
8044 int btrfs_read_block_groups(struct btrfs_root *root)
8045 {
8046 struct btrfs_path *path;
8047 int ret;
8048 struct btrfs_block_group_cache *cache;
8049 struct btrfs_fs_info *info = root->fs_info;
8050 struct btrfs_space_info *space_info;
8051 struct btrfs_key key;
8052 struct btrfs_key found_key;
8053 struct extent_buffer *leaf;
8054 int need_clear = 0;
8055 u64 cache_gen;
8056
8057 root = info->extent_root;
8058 key.objectid = 0;
8059 key.offset = 0;
8060 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8061 path = btrfs_alloc_path();
8062 if (!path)
8063 return -ENOMEM;
8064 path->reada = 1;
8065
8066 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8067 if (btrfs_test_opt(root, SPACE_CACHE) &&
8068 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8069 need_clear = 1;
8070 if (btrfs_test_opt(root, CLEAR_CACHE))
8071 need_clear = 1;
8072
8073 while (1) {
8074 ret = find_first_block_group(root, path, &key);
8075 if (ret > 0)
8076 break;
8077 if (ret != 0)
8078 goto error;
8079 leaf = path->nodes[0];
8080 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8081 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8082 if (!cache) {
8083 ret = -ENOMEM;
8084 goto error;
8085 }
8086 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8087 GFP_NOFS);
8088 if (!cache->free_space_ctl) {
8089 kfree(cache);
8090 ret = -ENOMEM;
8091 goto error;
8092 }
8093
8094 atomic_set(&cache->count, 1);
8095 spin_lock_init(&cache->lock);
8096 cache->fs_info = info;
8097 INIT_LIST_HEAD(&cache->list);
8098 INIT_LIST_HEAD(&cache->cluster_list);
8099
8100 if (need_clear) {
8101 /*
8102 * When we mount with old space cache, we need to
8103 * set BTRFS_DC_CLEAR and set dirty flag.
8104 *
8105 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8106 * truncate the old free space cache inode and
8107 * setup a new one.
8108 * b) Setting 'dirty flag' makes sure that we flush
8109 * the new space cache info onto disk.
8110 */
8111 cache->disk_cache_state = BTRFS_DC_CLEAR;
8112 if (btrfs_test_opt(root, SPACE_CACHE))
8113 cache->dirty = 1;
8114 }
8115
8116 read_extent_buffer(leaf, &cache->item,
8117 btrfs_item_ptr_offset(leaf, path->slots[0]),
8118 sizeof(cache->item));
8119 memcpy(&cache->key, &found_key, sizeof(found_key));
8120
8121 key.objectid = found_key.objectid + found_key.offset;
8122 btrfs_release_path(path);
8123 cache->flags = btrfs_block_group_flags(&cache->item);
8124 cache->sectorsize = root->sectorsize;
8125 cache->full_stripe_len = btrfs_full_stripe_len(root,
8126 &root->fs_info->mapping_tree,
8127 found_key.objectid);
8128 btrfs_init_free_space_ctl(cache);
8129
8130 /*
8131 * We need to exclude the super stripes now so that the space
8132 * info has super bytes accounted for, otherwise we'll think
8133 * we have more space than we actually do.
8134 */
8135 ret = exclude_super_stripes(root, cache);
8136 if (ret) {
8137 /*
8138 * We may have excluded something, so call this just in
8139 * case.
8140 */
8141 free_excluded_extents(root, cache);
8142 kfree(cache->free_space_ctl);
8143 kfree(cache);
8144 goto error;
8145 }
8146
8147 /*
8148 * check for two cases, either we are full, and therefore
8149 * don't need to bother with the caching work since we won't
8150 * find any space, or we are empty, and we can just add all
8151 * the space in and be done with it. This saves us _alot_ of
8152 * time, particularly in the full case.
8153 */
8154 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8155 cache->last_byte_to_unpin = (u64)-1;
8156 cache->cached = BTRFS_CACHE_FINISHED;
8157 free_excluded_extents(root, cache);
8158 } else if (btrfs_block_group_used(&cache->item) == 0) {
8159 cache->last_byte_to_unpin = (u64)-1;
8160 cache->cached = BTRFS_CACHE_FINISHED;
8161 add_new_free_space(cache, root->fs_info,
8162 found_key.objectid,
8163 found_key.objectid +
8164 found_key.offset);
8165 free_excluded_extents(root, cache);
8166 }
8167
8168 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8169 if (ret) {
8170 btrfs_remove_free_space_cache(cache);
8171 btrfs_put_block_group(cache);
8172 goto error;
8173 }
8174
8175 ret = update_space_info(info, cache->flags, found_key.offset,
8176 btrfs_block_group_used(&cache->item),
8177 &space_info);
8178 if (ret) {
8179 btrfs_remove_free_space_cache(cache);
8180 spin_lock(&info->block_group_cache_lock);
8181 rb_erase(&cache->cache_node,
8182 &info->block_group_cache_tree);
8183 spin_unlock(&info->block_group_cache_lock);
8184 btrfs_put_block_group(cache);
8185 goto error;
8186 }
8187
8188 cache->space_info = space_info;
8189 spin_lock(&cache->space_info->lock);
8190 cache->space_info->bytes_readonly += cache->bytes_super;
8191 spin_unlock(&cache->space_info->lock);
8192
8193 __link_block_group(space_info, cache);
8194
8195 set_avail_alloc_bits(root->fs_info, cache->flags);
8196 if (btrfs_chunk_readonly(root, cache->key.objectid))
8197 set_block_group_ro(cache, 1);
8198 }
8199
8200 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8201 if (!(get_alloc_profile(root, space_info->flags) &
8202 (BTRFS_BLOCK_GROUP_RAID10 |
8203 BTRFS_BLOCK_GROUP_RAID1 |
8204 BTRFS_BLOCK_GROUP_RAID5 |
8205 BTRFS_BLOCK_GROUP_RAID6 |
8206 BTRFS_BLOCK_GROUP_DUP)))
8207 continue;
8208 /*
8209 * avoid allocating from un-mirrored block group if there are
8210 * mirrored block groups.
8211 */
8212 list_for_each_entry(cache, &space_info->block_groups[3], list)
8213 set_block_group_ro(cache, 1);
8214 list_for_each_entry(cache, &space_info->block_groups[4], list)
8215 set_block_group_ro(cache, 1);
8216 }
8217
8218 init_global_block_rsv(info);
8219 ret = 0;
8220 error:
8221 btrfs_free_path(path);
8222 return ret;
8223 }
8224
8225 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8226 struct btrfs_root *root)
8227 {
8228 struct btrfs_block_group_cache *block_group, *tmp;
8229 struct btrfs_root *extent_root = root->fs_info->extent_root;
8230 struct btrfs_block_group_item item;
8231 struct btrfs_key key;
8232 int ret = 0;
8233
8234 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8235 new_bg_list) {
8236 list_del_init(&block_group->new_bg_list);
8237
8238 if (ret)
8239 continue;
8240
8241 spin_lock(&block_group->lock);
8242 memcpy(&item, &block_group->item, sizeof(item));
8243 memcpy(&key, &block_group->key, sizeof(key));
8244 spin_unlock(&block_group->lock);
8245
8246 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8247 sizeof(item));
8248 if (ret)
8249 btrfs_abort_transaction(trans, extent_root, ret);
8250 }
8251 }
8252
8253 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8254 struct btrfs_root *root, u64 bytes_used,
8255 u64 type, u64 chunk_objectid, u64 chunk_offset,
8256 u64 size)
8257 {
8258 int ret;
8259 struct btrfs_root *extent_root;
8260 struct btrfs_block_group_cache *cache;
8261
8262 extent_root = root->fs_info->extent_root;
8263
8264 root->fs_info->last_trans_log_full_commit = trans->transid;
8265
8266 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8267 if (!cache)
8268 return -ENOMEM;
8269 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8270 GFP_NOFS);
8271 if (!cache->free_space_ctl) {
8272 kfree(cache);
8273 return -ENOMEM;
8274 }
8275
8276 cache->key.objectid = chunk_offset;
8277 cache->key.offset = size;
8278 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8279 cache->sectorsize = root->sectorsize;
8280 cache->fs_info = root->fs_info;
8281 cache->full_stripe_len = btrfs_full_stripe_len(root,
8282 &root->fs_info->mapping_tree,
8283 chunk_offset);
8284
8285 atomic_set(&cache->count, 1);
8286 spin_lock_init(&cache->lock);
8287 INIT_LIST_HEAD(&cache->list);
8288 INIT_LIST_HEAD(&cache->cluster_list);
8289 INIT_LIST_HEAD(&cache->new_bg_list);
8290
8291 btrfs_init_free_space_ctl(cache);
8292
8293 btrfs_set_block_group_used(&cache->item, bytes_used);
8294 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8295 cache->flags = type;
8296 btrfs_set_block_group_flags(&cache->item, type);
8297
8298 cache->last_byte_to_unpin = (u64)-1;
8299 cache->cached = BTRFS_CACHE_FINISHED;
8300 ret = exclude_super_stripes(root, cache);
8301 if (ret) {
8302 /*
8303 * We may have excluded something, so call this just in
8304 * case.
8305 */
8306 free_excluded_extents(root, cache);
8307 kfree(cache->free_space_ctl);
8308 kfree(cache);
8309 return ret;
8310 }
8311
8312 add_new_free_space(cache, root->fs_info, chunk_offset,
8313 chunk_offset + size);
8314
8315 free_excluded_extents(root, cache);
8316
8317 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8318 if (ret) {
8319 btrfs_remove_free_space_cache(cache);
8320 btrfs_put_block_group(cache);
8321 return ret;
8322 }
8323
8324 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8325 &cache->space_info);
8326 if (ret) {
8327 btrfs_remove_free_space_cache(cache);
8328 spin_lock(&root->fs_info->block_group_cache_lock);
8329 rb_erase(&cache->cache_node,
8330 &root->fs_info->block_group_cache_tree);
8331 spin_unlock(&root->fs_info->block_group_cache_lock);
8332 btrfs_put_block_group(cache);
8333 return ret;
8334 }
8335 update_global_block_rsv(root->fs_info);
8336
8337 spin_lock(&cache->space_info->lock);
8338 cache->space_info->bytes_readonly += cache->bytes_super;
8339 spin_unlock(&cache->space_info->lock);
8340
8341 __link_block_group(cache->space_info, cache);
8342
8343 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8344
8345 set_avail_alloc_bits(extent_root->fs_info, type);
8346
8347 return 0;
8348 }
8349
8350 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8351 {
8352 u64 extra_flags = chunk_to_extended(flags) &
8353 BTRFS_EXTENDED_PROFILE_MASK;
8354
8355 write_seqlock(&fs_info->profiles_lock);
8356 if (flags & BTRFS_BLOCK_GROUP_DATA)
8357 fs_info->avail_data_alloc_bits &= ~extra_flags;
8358 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8359 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8360 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8361 fs_info->avail_system_alloc_bits &= ~extra_flags;
8362 write_sequnlock(&fs_info->profiles_lock);
8363 }
8364
8365 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8366 struct btrfs_root *root, u64 group_start)
8367 {
8368 struct btrfs_path *path;
8369 struct btrfs_block_group_cache *block_group;
8370 struct btrfs_free_cluster *cluster;
8371 struct btrfs_root *tree_root = root->fs_info->tree_root;
8372 struct btrfs_key key;
8373 struct inode *inode;
8374 int ret;
8375 int index;
8376 int factor;
8377
8378 root = root->fs_info->extent_root;
8379
8380 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8381 BUG_ON(!block_group);
8382 BUG_ON(!block_group->ro);
8383
8384 /*
8385 * Free the reserved super bytes from this block group before
8386 * remove it.
8387 */
8388 free_excluded_extents(root, block_group);
8389
8390 memcpy(&key, &block_group->key, sizeof(key));
8391 index = get_block_group_index(block_group);
8392 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8393 BTRFS_BLOCK_GROUP_RAID1 |
8394 BTRFS_BLOCK_GROUP_RAID10))
8395 factor = 2;
8396 else
8397 factor = 1;
8398
8399 /* make sure this block group isn't part of an allocation cluster */
8400 cluster = &root->fs_info->data_alloc_cluster;
8401 spin_lock(&cluster->refill_lock);
8402 btrfs_return_cluster_to_free_space(block_group, cluster);
8403 spin_unlock(&cluster->refill_lock);
8404
8405 /*
8406 * make sure this block group isn't part of a metadata
8407 * allocation cluster
8408 */
8409 cluster = &root->fs_info->meta_alloc_cluster;
8410 spin_lock(&cluster->refill_lock);
8411 btrfs_return_cluster_to_free_space(block_group, cluster);
8412 spin_unlock(&cluster->refill_lock);
8413
8414 path = btrfs_alloc_path();
8415 if (!path) {
8416 ret = -ENOMEM;
8417 goto out;
8418 }
8419
8420 inode = lookup_free_space_inode(tree_root, block_group, path);
8421 if (!IS_ERR(inode)) {
8422 ret = btrfs_orphan_add(trans, inode);
8423 if (ret) {
8424 btrfs_add_delayed_iput(inode);
8425 goto out;
8426 }
8427 clear_nlink(inode);
8428 /* One for the block groups ref */
8429 spin_lock(&block_group->lock);
8430 if (block_group->iref) {
8431 block_group->iref = 0;
8432 block_group->inode = NULL;
8433 spin_unlock(&block_group->lock);
8434 iput(inode);
8435 } else {
8436 spin_unlock(&block_group->lock);
8437 }
8438 /* One for our lookup ref */
8439 btrfs_add_delayed_iput(inode);
8440 }
8441
8442 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8443 key.offset = block_group->key.objectid;
8444 key.type = 0;
8445
8446 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8447 if (ret < 0)
8448 goto out;
8449 if (ret > 0)
8450 btrfs_release_path(path);
8451 if (ret == 0) {
8452 ret = btrfs_del_item(trans, tree_root, path);
8453 if (ret)
8454 goto out;
8455 btrfs_release_path(path);
8456 }
8457
8458 spin_lock(&root->fs_info->block_group_cache_lock);
8459 rb_erase(&block_group->cache_node,
8460 &root->fs_info->block_group_cache_tree);
8461
8462 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8463 root->fs_info->first_logical_byte = (u64)-1;
8464 spin_unlock(&root->fs_info->block_group_cache_lock);
8465
8466 down_write(&block_group->space_info->groups_sem);
8467 /*
8468 * we must use list_del_init so people can check to see if they
8469 * are still on the list after taking the semaphore
8470 */
8471 list_del_init(&block_group->list);
8472 if (list_empty(&block_group->space_info->block_groups[index]))
8473 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8474 up_write(&block_group->space_info->groups_sem);
8475
8476 if (block_group->cached == BTRFS_CACHE_STARTED)
8477 wait_block_group_cache_done(block_group);
8478
8479 btrfs_remove_free_space_cache(block_group);
8480
8481 spin_lock(&block_group->space_info->lock);
8482 block_group->space_info->total_bytes -= block_group->key.offset;
8483 block_group->space_info->bytes_readonly -= block_group->key.offset;
8484 block_group->space_info->disk_total -= block_group->key.offset * factor;
8485 spin_unlock(&block_group->space_info->lock);
8486
8487 memcpy(&key, &block_group->key, sizeof(key));
8488
8489 btrfs_clear_space_info_full(root->fs_info);
8490
8491 btrfs_put_block_group(block_group);
8492 btrfs_put_block_group(block_group);
8493
8494 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8495 if (ret > 0)
8496 ret = -EIO;
8497 if (ret < 0)
8498 goto out;
8499
8500 ret = btrfs_del_item(trans, root, path);
8501 out:
8502 btrfs_free_path(path);
8503 return ret;
8504 }
8505
8506 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8507 {
8508 struct btrfs_space_info *space_info;
8509 struct btrfs_super_block *disk_super;
8510 u64 features;
8511 u64 flags;
8512 int mixed = 0;
8513 int ret;
8514
8515 disk_super = fs_info->super_copy;
8516 if (!btrfs_super_root(disk_super))
8517 return 1;
8518
8519 features = btrfs_super_incompat_flags(disk_super);
8520 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8521 mixed = 1;
8522
8523 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8524 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8525 if (ret)
8526 goto out;
8527
8528 if (mixed) {
8529 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8530 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8531 } else {
8532 flags = BTRFS_BLOCK_GROUP_METADATA;
8533 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8534 if (ret)
8535 goto out;
8536
8537 flags = BTRFS_BLOCK_GROUP_DATA;
8538 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8539 }
8540 out:
8541 return ret;
8542 }
8543
8544 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8545 {
8546 return unpin_extent_range(root, start, end);
8547 }
8548
8549 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8550 u64 num_bytes, u64 *actual_bytes)
8551 {
8552 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8553 }
8554
8555 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8556 {
8557 struct btrfs_fs_info *fs_info = root->fs_info;
8558 struct btrfs_block_group_cache *cache = NULL;
8559 u64 group_trimmed;
8560 u64 start;
8561 u64 end;
8562 u64 trimmed = 0;
8563 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8564 int ret = 0;
8565
8566 /*
8567 * try to trim all FS space, our block group may start from non-zero.
8568 */
8569 if (range->len == total_bytes)
8570 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8571 else
8572 cache = btrfs_lookup_block_group(fs_info, range->start);
8573
8574 while (cache) {
8575 if (cache->key.objectid >= (range->start + range->len)) {
8576 btrfs_put_block_group(cache);
8577 break;
8578 }
8579
8580 start = max(range->start, cache->key.objectid);
8581 end = min(range->start + range->len,
8582 cache->key.objectid + cache->key.offset);
8583
8584 if (end - start >= range->minlen) {
8585 if (!block_group_cache_done(cache)) {
8586 ret = cache_block_group(cache, 0);
8587 if (!ret)
8588 wait_block_group_cache_done(cache);
8589 }
8590 ret = btrfs_trim_block_group(cache,
8591 &group_trimmed,
8592 start,
8593 end,
8594 range->minlen);
8595
8596 trimmed += group_trimmed;
8597 if (ret) {
8598 btrfs_put_block_group(cache);
8599 break;
8600 }
8601 }
8602
8603 cache = next_block_group(fs_info->tree_root, cache);
8604 }
8605
8606 range->len = trimmed;
8607 return ret;
8608 }
This page took 0.475118 seconds and 5 git commands to generate.