1b831ac4c0798c8b181a1ae891ab436e79d19961
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 /*
38 * control flags for do_chunk_alloc's force field
39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40 * if we really need one.
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 *
50 */
51 enum {
52 CHUNK_ALLOC_NO_FORCE = 0,
53 CHUNK_ALLOC_LIMITED = 1,
54 CHUNK_ALLOC_FORCE = 2,
55 };
56
57 /*
58 * Control how reservations are dealt with.
59 *
60 * RESERVE_FREE - freeing a reservation.
61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62 * ENOSPC accounting
63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64 * bytes_may_use as the ENOSPC accounting is done elsewhere
65 */
66 enum {
67 RESERVE_FREE = 0,
68 RESERVE_ALLOC = 1,
69 RESERVE_ALLOC_NO_ACCOUNT = 2,
70 };
71
72 static int update_block_group(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 bytenr, u64 num_bytes, int alloc);
75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, u64 parent,
78 u64 root_objectid, u64 owner_objectid,
79 u64 owner_offset, int refs_to_drop,
80 struct btrfs_delayed_extent_op *extra_op);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
82 struct extent_buffer *leaf,
83 struct btrfs_extent_item *ei);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
85 struct btrfs_root *root,
86 u64 parent, u64 root_objectid,
87 u64 flags, u64 owner, u64 offset,
88 struct btrfs_key *ins, int ref_mod);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, struct btrfs_disk_key *key,
93 int level, struct btrfs_key *ins);
94 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
95 struct btrfs_root *extent_root, u64 alloc_bytes,
96 u64 flags, int force);
97 static int find_next_key(struct btrfs_path *path, int level,
98 struct btrfs_key *key);
99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
100 int dump_block_groups);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
102 u64 num_bytes, int reserve);
103
104 static noinline int
105 block_group_cache_done(struct btrfs_block_group_cache *cache)
106 {
107 smp_mb();
108 return cache->cached == BTRFS_CACHE_FINISHED;
109 }
110
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113 return (cache->flags & bits) == bits;
114 }
115
116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118 atomic_inc(&cache->count);
119 }
120
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
126 kfree(cache->free_space_ctl);
127 kfree(cache);
128 }
129 }
130
131 /*
132 * this adds the block group to the fs_info rb tree for the block group
133 * cache
134 */
135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
136 struct btrfs_block_group_cache *block_group)
137 {
138 struct rb_node **p;
139 struct rb_node *parent = NULL;
140 struct btrfs_block_group_cache *cache;
141
142 spin_lock(&info->block_group_cache_lock);
143 p = &info->block_group_cache_tree.rb_node;
144
145 while (*p) {
146 parent = *p;
147 cache = rb_entry(parent, struct btrfs_block_group_cache,
148 cache_node);
149 if (block_group->key.objectid < cache->key.objectid) {
150 p = &(*p)->rb_left;
151 } else if (block_group->key.objectid > cache->key.objectid) {
152 p = &(*p)->rb_right;
153 } else {
154 spin_unlock(&info->block_group_cache_lock);
155 return -EEXIST;
156 }
157 }
158
159 rb_link_node(&block_group->cache_node, parent, p);
160 rb_insert_color(&block_group->cache_node,
161 &info->block_group_cache_tree);
162 spin_unlock(&info->block_group_cache_lock);
163
164 return 0;
165 }
166
167 /*
168 * This will return the block group at or after bytenr if contains is 0, else
169 * it will return the block group that contains the bytenr
170 */
171 static struct btrfs_block_group_cache *
172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
173 int contains)
174 {
175 struct btrfs_block_group_cache *cache, *ret = NULL;
176 struct rb_node *n;
177 u64 end, start;
178
179 spin_lock(&info->block_group_cache_lock);
180 n = info->block_group_cache_tree.rb_node;
181
182 while (n) {
183 cache = rb_entry(n, struct btrfs_block_group_cache,
184 cache_node);
185 end = cache->key.objectid + cache->key.offset - 1;
186 start = cache->key.objectid;
187
188 if (bytenr < start) {
189 if (!contains && (!ret || start < ret->key.objectid))
190 ret = cache;
191 n = n->rb_left;
192 } else if (bytenr > start) {
193 if (contains && bytenr <= end) {
194 ret = cache;
195 break;
196 }
197 n = n->rb_right;
198 } else {
199 ret = cache;
200 break;
201 }
202 }
203 if (ret)
204 btrfs_get_block_group(ret);
205 spin_unlock(&info->block_group_cache_lock);
206
207 return ret;
208 }
209
210 static int add_excluded_extent(struct btrfs_root *root,
211 u64 start, u64 num_bytes)
212 {
213 u64 end = start + num_bytes - 1;
214 set_extent_bits(&root->fs_info->freed_extents[0],
215 start, end, EXTENT_UPTODATE, GFP_NOFS);
216 set_extent_bits(&root->fs_info->freed_extents[1],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 return 0;
219 }
220
221 static void free_excluded_extents(struct btrfs_root *root,
222 struct btrfs_block_group_cache *cache)
223 {
224 u64 start, end;
225
226 start = cache->key.objectid;
227 end = start + cache->key.offset - 1;
228
229 clear_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 clear_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 }
234
235 static int exclude_super_stripes(struct btrfs_root *root,
236 struct btrfs_block_group_cache *cache)
237 {
238 u64 bytenr;
239 u64 *logical;
240 int stripe_len;
241 int i, nr, ret;
242
243 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 cache->bytes_super += stripe_len;
246 ret = add_excluded_extent(root, cache->key.objectid,
247 stripe_len);
248 BUG_ON(ret);
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
254 cache->key.objectid, bytenr,
255 0, &logical, &nr, &stripe_len);
256 BUG_ON(ret);
257
258 while (nr--) {
259 cache->bytes_super += stripe_len;
260 ret = add_excluded_extent(root, logical[nr],
261 stripe_len);
262 BUG_ON(ret);
263 }
264
265 kfree(logical);
266 }
267 return 0;
268 }
269
270 static struct btrfs_caching_control *
271 get_caching_control(struct btrfs_block_group_cache *cache)
272 {
273 struct btrfs_caching_control *ctl;
274
275 spin_lock(&cache->lock);
276 if (cache->cached != BTRFS_CACHE_STARTED) {
277 spin_unlock(&cache->lock);
278 return NULL;
279 }
280
281 /* We're loading it the fast way, so we don't have a caching_ctl. */
282 if (!cache->caching_ctl) {
283 spin_unlock(&cache->lock);
284 return NULL;
285 }
286
287 ctl = cache->caching_ctl;
288 atomic_inc(&ctl->count);
289 spin_unlock(&cache->lock);
290 return ctl;
291 }
292
293 static void put_caching_control(struct btrfs_caching_control *ctl)
294 {
295 if (atomic_dec_and_test(&ctl->count))
296 kfree(ctl);
297 }
298
299 /*
300 * this is only called by cache_block_group, since we could have freed extents
301 * we need to check the pinned_extents for any extents that can't be used yet
302 * since their free space will be released as soon as the transaction commits.
303 */
304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
305 struct btrfs_fs_info *info, u64 start, u64 end)
306 {
307 u64 extent_start, extent_end, size, total_added = 0;
308 int ret;
309
310 while (start < end) {
311 ret = find_first_extent_bit(info->pinned_extents, start,
312 &extent_start, &extent_end,
313 EXTENT_DIRTY | EXTENT_UPTODATE);
314 if (ret)
315 break;
316
317 if (extent_start <= start) {
318 start = extent_end + 1;
319 } else if (extent_start > start && extent_start < end) {
320 size = extent_start - start;
321 total_added += size;
322 ret = btrfs_add_free_space(block_group, start,
323 size);
324 BUG_ON(ret);
325 start = extent_end + 1;
326 } else {
327 break;
328 }
329 }
330
331 if (start < end) {
332 size = end - start;
333 total_added += size;
334 ret = btrfs_add_free_space(block_group, start, size);
335 BUG_ON(ret);
336 }
337
338 return total_added;
339 }
340
341 static noinline void caching_thread(struct btrfs_work *work)
342 {
343 struct btrfs_block_group_cache *block_group;
344 struct btrfs_fs_info *fs_info;
345 struct btrfs_caching_control *caching_ctl;
346 struct btrfs_root *extent_root;
347 struct btrfs_path *path;
348 struct extent_buffer *leaf;
349 struct btrfs_key key;
350 u64 total_found = 0;
351 u64 last = 0;
352 u32 nritems;
353 int ret = 0;
354
355 caching_ctl = container_of(work, struct btrfs_caching_control, work);
356 block_group = caching_ctl->block_group;
357 fs_info = block_group->fs_info;
358 extent_root = fs_info->extent_root;
359
360 path = btrfs_alloc_path();
361 if (!path)
362 goto out;
363
364 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
365
366 /*
367 * We don't want to deadlock with somebody trying to allocate a new
368 * extent for the extent root while also trying to search the extent
369 * root to add free space. So we skip locking and search the commit
370 * root, since its read-only
371 */
372 path->skip_locking = 1;
373 path->search_commit_root = 1;
374 path->reada = 1;
375
376 key.objectid = last;
377 key.offset = 0;
378 key.type = BTRFS_EXTENT_ITEM_KEY;
379 again:
380 mutex_lock(&caching_ctl->mutex);
381 /* need to make sure the commit_root doesn't disappear */
382 down_read(&fs_info->extent_commit_sem);
383
384 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
385 if (ret < 0)
386 goto err;
387
388 leaf = path->nodes[0];
389 nritems = btrfs_header_nritems(leaf);
390
391 while (1) {
392 if (btrfs_fs_closing(fs_info) > 1) {
393 last = (u64)-1;
394 break;
395 }
396
397 if (path->slots[0] < nritems) {
398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
399 } else {
400 ret = find_next_key(path, 0, &key);
401 if (ret)
402 break;
403
404 if (need_resched() ||
405 btrfs_next_leaf(extent_root, path)) {
406 caching_ctl->progress = last;
407 btrfs_release_path(path);
408 up_read(&fs_info->extent_commit_sem);
409 mutex_unlock(&caching_ctl->mutex);
410 cond_resched();
411 goto again;
412 }
413 leaf = path->nodes[0];
414 nritems = btrfs_header_nritems(leaf);
415 continue;
416 }
417
418 if (key.objectid < block_group->key.objectid) {
419 path->slots[0]++;
420 continue;
421 }
422
423 if (key.objectid >= block_group->key.objectid +
424 block_group->key.offset)
425 break;
426
427 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
428 total_found += add_new_free_space(block_group,
429 fs_info, last,
430 key.objectid);
431 last = key.objectid + key.offset;
432
433 if (total_found > (1024 * 1024 * 2)) {
434 total_found = 0;
435 wake_up(&caching_ctl->wait);
436 }
437 }
438 path->slots[0]++;
439 }
440 ret = 0;
441
442 total_found += add_new_free_space(block_group, fs_info, last,
443 block_group->key.objectid +
444 block_group->key.offset);
445 caching_ctl->progress = (u64)-1;
446
447 spin_lock(&block_group->lock);
448 block_group->caching_ctl = NULL;
449 block_group->cached = BTRFS_CACHE_FINISHED;
450 spin_unlock(&block_group->lock);
451
452 err:
453 btrfs_free_path(path);
454 up_read(&fs_info->extent_commit_sem);
455
456 free_excluded_extents(extent_root, block_group);
457
458 mutex_unlock(&caching_ctl->mutex);
459 out:
460 wake_up(&caching_ctl->wait);
461
462 put_caching_control(caching_ctl);
463 btrfs_put_block_group(block_group);
464 }
465
466 static int cache_block_group(struct btrfs_block_group_cache *cache,
467 struct btrfs_trans_handle *trans,
468 struct btrfs_root *root,
469 int load_cache_only)
470 {
471 DEFINE_WAIT(wait);
472 struct btrfs_fs_info *fs_info = cache->fs_info;
473 struct btrfs_caching_control *caching_ctl;
474 int ret = 0;
475
476 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
477 BUG_ON(!caching_ctl);
478
479 INIT_LIST_HEAD(&caching_ctl->list);
480 mutex_init(&caching_ctl->mutex);
481 init_waitqueue_head(&caching_ctl->wait);
482 caching_ctl->block_group = cache;
483 caching_ctl->progress = cache->key.objectid;
484 atomic_set(&caching_ctl->count, 1);
485 caching_ctl->work.func = caching_thread;
486
487 spin_lock(&cache->lock);
488 /*
489 * This should be a rare occasion, but this could happen I think in the
490 * case where one thread starts to load the space cache info, and then
491 * some other thread starts a transaction commit which tries to do an
492 * allocation while the other thread is still loading the space cache
493 * info. The previous loop should have kept us from choosing this block
494 * group, but if we've moved to the state where we will wait on caching
495 * block groups we need to first check if we're doing a fast load here,
496 * so we can wait for it to finish, otherwise we could end up allocating
497 * from a block group who's cache gets evicted for one reason or
498 * another.
499 */
500 while (cache->cached == BTRFS_CACHE_FAST) {
501 struct btrfs_caching_control *ctl;
502
503 ctl = cache->caching_ctl;
504 atomic_inc(&ctl->count);
505 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
506 spin_unlock(&cache->lock);
507
508 schedule();
509
510 finish_wait(&ctl->wait, &wait);
511 put_caching_control(ctl);
512 spin_lock(&cache->lock);
513 }
514
515 if (cache->cached != BTRFS_CACHE_NO) {
516 spin_unlock(&cache->lock);
517 kfree(caching_ctl);
518 return 0;
519 }
520 WARN_ON(cache->caching_ctl);
521 cache->caching_ctl = caching_ctl;
522 cache->cached = BTRFS_CACHE_FAST;
523 spin_unlock(&cache->lock);
524
525 /*
526 * We can't do the read from on-disk cache during a commit since we need
527 * to have the normal tree locking. Also if we are currently trying to
528 * allocate blocks for the tree root we can't do the fast caching since
529 * we likely hold important locks.
530 */
531 if (trans && (!trans->transaction->in_commit) &&
532 (root && root != root->fs_info->tree_root) &&
533 btrfs_test_opt(root, SPACE_CACHE)) {
534 ret = load_free_space_cache(fs_info, cache);
535
536 spin_lock(&cache->lock);
537 if (ret == 1) {
538 cache->caching_ctl = NULL;
539 cache->cached = BTRFS_CACHE_FINISHED;
540 cache->last_byte_to_unpin = (u64)-1;
541 } else {
542 if (load_cache_only) {
543 cache->caching_ctl = NULL;
544 cache->cached = BTRFS_CACHE_NO;
545 } else {
546 cache->cached = BTRFS_CACHE_STARTED;
547 }
548 }
549 spin_unlock(&cache->lock);
550 wake_up(&caching_ctl->wait);
551 if (ret == 1) {
552 put_caching_control(caching_ctl);
553 free_excluded_extents(fs_info->extent_root, cache);
554 return 0;
555 }
556 } else {
557 /*
558 * We are not going to do the fast caching, set cached to the
559 * appropriate value and wakeup any waiters.
560 */
561 spin_lock(&cache->lock);
562 if (load_cache_only) {
563 cache->caching_ctl = NULL;
564 cache->cached = BTRFS_CACHE_NO;
565 } else {
566 cache->cached = BTRFS_CACHE_STARTED;
567 }
568 spin_unlock(&cache->lock);
569 wake_up(&caching_ctl->wait);
570 }
571
572 if (load_cache_only) {
573 put_caching_control(caching_ctl);
574 return 0;
575 }
576
577 down_write(&fs_info->extent_commit_sem);
578 atomic_inc(&caching_ctl->count);
579 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
580 up_write(&fs_info->extent_commit_sem);
581
582 btrfs_get_block_group(cache);
583
584 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
585
586 return ret;
587 }
588
589 /*
590 * return the block group that starts at or after bytenr
591 */
592 static struct btrfs_block_group_cache *
593 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
594 {
595 struct btrfs_block_group_cache *cache;
596
597 cache = block_group_cache_tree_search(info, bytenr, 0);
598
599 return cache;
600 }
601
602 /*
603 * return the block group that contains the given bytenr
604 */
605 struct btrfs_block_group_cache *btrfs_lookup_block_group(
606 struct btrfs_fs_info *info,
607 u64 bytenr)
608 {
609 struct btrfs_block_group_cache *cache;
610
611 cache = block_group_cache_tree_search(info, bytenr, 1);
612
613 return cache;
614 }
615
616 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
617 u64 flags)
618 {
619 struct list_head *head = &info->space_info;
620 struct btrfs_space_info *found;
621
622 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
623
624 rcu_read_lock();
625 list_for_each_entry_rcu(found, head, list) {
626 if (found->flags & flags) {
627 rcu_read_unlock();
628 return found;
629 }
630 }
631 rcu_read_unlock();
632 return NULL;
633 }
634
635 /*
636 * after adding space to the filesystem, we need to clear the full flags
637 * on all the space infos.
638 */
639 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
640 {
641 struct list_head *head = &info->space_info;
642 struct btrfs_space_info *found;
643
644 rcu_read_lock();
645 list_for_each_entry_rcu(found, head, list)
646 found->full = 0;
647 rcu_read_unlock();
648 }
649
650 static u64 div_factor(u64 num, int factor)
651 {
652 if (factor == 10)
653 return num;
654 num *= factor;
655 do_div(num, 10);
656 return num;
657 }
658
659 static u64 div_factor_fine(u64 num, int factor)
660 {
661 if (factor == 100)
662 return num;
663 num *= factor;
664 do_div(num, 100);
665 return num;
666 }
667
668 u64 btrfs_find_block_group(struct btrfs_root *root,
669 u64 search_start, u64 search_hint, int owner)
670 {
671 struct btrfs_block_group_cache *cache;
672 u64 used;
673 u64 last = max(search_hint, search_start);
674 u64 group_start = 0;
675 int full_search = 0;
676 int factor = 9;
677 int wrapped = 0;
678 again:
679 while (1) {
680 cache = btrfs_lookup_first_block_group(root->fs_info, last);
681 if (!cache)
682 break;
683
684 spin_lock(&cache->lock);
685 last = cache->key.objectid + cache->key.offset;
686 used = btrfs_block_group_used(&cache->item);
687
688 if ((full_search || !cache->ro) &&
689 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
690 if (used + cache->pinned + cache->reserved <
691 div_factor(cache->key.offset, factor)) {
692 group_start = cache->key.objectid;
693 spin_unlock(&cache->lock);
694 btrfs_put_block_group(cache);
695 goto found;
696 }
697 }
698 spin_unlock(&cache->lock);
699 btrfs_put_block_group(cache);
700 cond_resched();
701 }
702 if (!wrapped) {
703 last = search_start;
704 wrapped = 1;
705 goto again;
706 }
707 if (!full_search && factor < 10) {
708 last = search_start;
709 full_search = 1;
710 factor = 10;
711 goto again;
712 }
713 found:
714 return group_start;
715 }
716
717 /* simple helper to search for an existing extent at a given offset */
718 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
719 {
720 int ret;
721 struct btrfs_key key;
722 struct btrfs_path *path;
723
724 path = btrfs_alloc_path();
725 if (!path)
726 return -ENOMEM;
727
728 key.objectid = start;
729 key.offset = len;
730 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
731 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
732 0, 0);
733 btrfs_free_path(path);
734 return ret;
735 }
736
737 /*
738 * helper function to lookup reference count and flags of extent.
739 *
740 * the head node for delayed ref is used to store the sum of all the
741 * reference count modifications queued up in the rbtree. the head
742 * node may also store the extent flags to set. This way you can check
743 * to see what the reference count and extent flags would be if all of
744 * the delayed refs are not processed.
745 */
746 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root, u64 bytenr,
748 u64 num_bytes, u64 *refs, u64 *flags)
749 {
750 struct btrfs_delayed_ref_head *head;
751 struct btrfs_delayed_ref_root *delayed_refs;
752 struct btrfs_path *path;
753 struct btrfs_extent_item *ei;
754 struct extent_buffer *leaf;
755 struct btrfs_key key;
756 u32 item_size;
757 u64 num_refs;
758 u64 extent_flags;
759 int ret;
760
761 path = btrfs_alloc_path();
762 if (!path)
763 return -ENOMEM;
764
765 key.objectid = bytenr;
766 key.type = BTRFS_EXTENT_ITEM_KEY;
767 key.offset = num_bytes;
768 if (!trans) {
769 path->skip_locking = 1;
770 path->search_commit_root = 1;
771 }
772 again:
773 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
774 &key, path, 0, 0);
775 if (ret < 0)
776 goto out_free;
777
778 if (ret == 0) {
779 leaf = path->nodes[0];
780 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
781 if (item_size >= sizeof(*ei)) {
782 ei = btrfs_item_ptr(leaf, path->slots[0],
783 struct btrfs_extent_item);
784 num_refs = btrfs_extent_refs(leaf, ei);
785 extent_flags = btrfs_extent_flags(leaf, ei);
786 } else {
787 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
788 struct btrfs_extent_item_v0 *ei0;
789 BUG_ON(item_size != sizeof(*ei0));
790 ei0 = btrfs_item_ptr(leaf, path->slots[0],
791 struct btrfs_extent_item_v0);
792 num_refs = btrfs_extent_refs_v0(leaf, ei0);
793 /* FIXME: this isn't correct for data */
794 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
795 #else
796 BUG();
797 #endif
798 }
799 BUG_ON(num_refs == 0);
800 } else {
801 num_refs = 0;
802 extent_flags = 0;
803 ret = 0;
804 }
805
806 if (!trans)
807 goto out;
808
809 delayed_refs = &trans->transaction->delayed_refs;
810 spin_lock(&delayed_refs->lock);
811 head = btrfs_find_delayed_ref_head(trans, bytenr);
812 if (head) {
813 if (!mutex_trylock(&head->mutex)) {
814 atomic_inc(&head->node.refs);
815 spin_unlock(&delayed_refs->lock);
816
817 btrfs_release_path(path);
818
819 /*
820 * Mutex was contended, block until it's released and try
821 * again
822 */
823 mutex_lock(&head->mutex);
824 mutex_unlock(&head->mutex);
825 btrfs_put_delayed_ref(&head->node);
826 goto again;
827 }
828 if (head->extent_op && head->extent_op->update_flags)
829 extent_flags |= head->extent_op->flags_to_set;
830 else
831 BUG_ON(num_refs == 0);
832
833 num_refs += head->node.ref_mod;
834 mutex_unlock(&head->mutex);
835 }
836 spin_unlock(&delayed_refs->lock);
837 out:
838 WARN_ON(num_refs == 0);
839 if (refs)
840 *refs = num_refs;
841 if (flags)
842 *flags = extent_flags;
843 out_free:
844 btrfs_free_path(path);
845 return ret;
846 }
847
848 /*
849 * Back reference rules. Back refs have three main goals:
850 *
851 * 1) differentiate between all holders of references to an extent so that
852 * when a reference is dropped we can make sure it was a valid reference
853 * before freeing the extent.
854 *
855 * 2) Provide enough information to quickly find the holders of an extent
856 * if we notice a given block is corrupted or bad.
857 *
858 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
859 * maintenance. This is actually the same as #2, but with a slightly
860 * different use case.
861 *
862 * There are two kinds of back refs. The implicit back refs is optimized
863 * for pointers in non-shared tree blocks. For a given pointer in a block,
864 * back refs of this kind provide information about the block's owner tree
865 * and the pointer's key. These information allow us to find the block by
866 * b-tree searching. The full back refs is for pointers in tree blocks not
867 * referenced by their owner trees. The location of tree block is recorded
868 * in the back refs. Actually the full back refs is generic, and can be
869 * used in all cases the implicit back refs is used. The major shortcoming
870 * of the full back refs is its overhead. Every time a tree block gets
871 * COWed, we have to update back refs entry for all pointers in it.
872 *
873 * For a newly allocated tree block, we use implicit back refs for
874 * pointers in it. This means most tree related operations only involve
875 * implicit back refs. For a tree block created in old transaction, the
876 * only way to drop a reference to it is COW it. So we can detect the
877 * event that tree block loses its owner tree's reference and do the
878 * back refs conversion.
879 *
880 * When a tree block is COW'd through a tree, there are four cases:
881 *
882 * The reference count of the block is one and the tree is the block's
883 * owner tree. Nothing to do in this case.
884 *
885 * The reference count of the block is one and the tree is not the
886 * block's owner tree. In this case, full back refs is used for pointers
887 * in the block. Remove these full back refs, add implicit back refs for
888 * every pointers in the new block.
889 *
890 * The reference count of the block is greater than one and the tree is
891 * the block's owner tree. In this case, implicit back refs is used for
892 * pointers in the block. Add full back refs for every pointers in the
893 * block, increase lower level extents' reference counts. The original
894 * implicit back refs are entailed to the new block.
895 *
896 * The reference count of the block is greater than one and the tree is
897 * not the block's owner tree. Add implicit back refs for every pointer in
898 * the new block, increase lower level extents' reference count.
899 *
900 * Back Reference Key composing:
901 *
902 * The key objectid corresponds to the first byte in the extent,
903 * The key type is used to differentiate between types of back refs.
904 * There are different meanings of the key offset for different types
905 * of back refs.
906 *
907 * File extents can be referenced by:
908 *
909 * - multiple snapshots, subvolumes, or different generations in one subvol
910 * - different files inside a single subvolume
911 * - different offsets inside a file (bookend extents in file.c)
912 *
913 * The extent ref structure for the implicit back refs has fields for:
914 *
915 * - Objectid of the subvolume root
916 * - objectid of the file holding the reference
917 * - original offset in the file
918 * - how many bookend extents
919 *
920 * The key offset for the implicit back refs is hash of the first
921 * three fields.
922 *
923 * The extent ref structure for the full back refs has field for:
924 *
925 * - number of pointers in the tree leaf
926 *
927 * The key offset for the implicit back refs is the first byte of
928 * the tree leaf
929 *
930 * When a file extent is allocated, The implicit back refs is used.
931 * the fields are filled in:
932 *
933 * (root_key.objectid, inode objectid, offset in file, 1)
934 *
935 * When a file extent is removed file truncation, we find the
936 * corresponding implicit back refs and check the following fields:
937 *
938 * (btrfs_header_owner(leaf), inode objectid, offset in file)
939 *
940 * Btree extents can be referenced by:
941 *
942 * - Different subvolumes
943 *
944 * Both the implicit back refs and the full back refs for tree blocks
945 * only consist of key. The key offset for the implicit back refs is
946 * objectid of block's owner tree. The key offset for the full back refs
947 * is the first byte of parent block.
948 *
949 * When implicit back refs is used, information about the lowest key and
950 * level of the tree block are required. These information are stored in
951 * tree block info structure.
952 */
953
954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
955 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
956 struct btrfs_root *root,
957 struct btrfs_path *path,
958 u64 owner, u32 extra_size)
959 {
960 struct btrfs_extent_item *item;
961 struct btrfs_extent_item_v0 *ei0;
962 struct btrfs_extent_ref_v0 *ref0;
963 struct btrfs_tree_block_info *bi;
964 struct extent_buffer *leaf;
965 struct btrfs_key key;
966 struct btrfs_key found_key;
967 u32 new_size = sizeof(*item);
968 u64 refs;
969 int ret;
970
971 leaf = path->nodes[0];
972 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
973
974 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
975 ei0 = btrfs_item_ptr(leaf, path->slots[0],
976 struct btrfs_extent_item_v0);
977 refs = btrfs_extent_refs_v0(leaf, ei0);
978
979 if (owner == (u64)-1) {
980 while (1) {
981 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982 ret = btrfs_next_leaf(root, path);
983 if (ret < 0)
984 return ret;
985 BUG_ON(ret > 0);
986 leaf = path->nodes[0];
987 }
988 btrfs_item_key_to_cpu(leaf, &found_key,
989 path->slots[0]);
990 BUG_ON(key.objectid != found_key.objectid);
991 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
992 path->slots[0]++;
993 continue;
994 }
995 ref0 = btrfs_item_ptr(leaf, path->slots[0],
996 struct btrfs_extent_ref_v0);
997 owner = btrfs_ref_objectid_v0(leaf, ref0);
998 break;
999 }
1000 }
1001 btrfs_release_path(path);
1002
1003 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1004 new_size += sizeof(*bi);
1005
1006 new_size -= sizeof(*ei0);
1007 ret = btrfs_search_slot(trans, root, &key, path,
1008 new_size + extra_size, 1);
1009 if (ret < 0)
1010 return ret;
1011 BUG_ON(ret);
1012
1013 ret = btrfs_extend_item(trans, root, path, new_size);
1014
1015 leaf = path->nodes[0];
1016 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017 btrfs_set_extent_refs(leaf, item, refs);
1018 /* FIXME: get real generation */
1019 btrfs_set_extent_generation(leaf, item, 0);
1020 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1021 btrfs_set_extent_flags(leaf, item,
1022 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1023 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1024 bi = (struct btrfs_tree_block_info *)(item + 1);
1025 /* FIXME: get first key of the block */
1026 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1027 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1028 } else {
1029 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1030 }
1031 btrfs_mark_buffer_dirty(leaf);
1032 return 0;
1033 }
1034 #endif
1035
1036 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1037 {
1038 u32 high_crc = ~(u32)0;
1039 u32 low_crc = ~(u32)0;
1040 __le64 lenum;
1041
1042 lenum = cpu_to_le64(root_objectid);
1043 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1044 lenum = cpu_to_le64(owner);
1045 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1046 lenum = cpu_to_le64(offset);
1047 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1048
1049 return ((u64)high_crc << 31) ^ (u64)low_crc;
1050 }
1051
1052 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1053 struct btrfs_extent_data_ref *ref)
1054 {
1055 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1056 btrfs_extent_data_ref_objectid(leaf, ref),
1057 btrfs_extent_data_ref_offset(leaf, ref));
1058 }
1059
1060 static int match_extent_data_ref(struct extent_buffer *leaf,
1061 struct btrfs_extent_data_ref *ref,
1062 u64 root_objectid, u64 owner, u64 offset)
1063 {
1064 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1065 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1066 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1067 return 0;
1068 return 1;
1069 }
1070
1071 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root,
1073 struct btrfs_path *path,
1074 u64 bytenr, u64 parent,
1075 u64 root_objectid,
1076 u64 owner, u64 offset)
1077 {
1078 struct btrfs_key key;
1079 struct btrfs_extent_data_ref *ref;
1080 struct extent_buffer *leaf;
1081 u32 nritems;
1082 int ret;
1083 int recow;
1084 int err = -ENOENT;
1085
1086 key.objectid = bytenr;
1087 if (parent) {
1088 key.type = BTRFS_SHARED_DATA_REF_KEY;
1089 key.offset = parent;
1090 } else {
1091 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1092 key.offset = hash_extent_data_ref(root_objectid,
1093 owner, offset);
1094 }
1095 again:
1096 recow = 0;
1097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098 if (ret < 0) {
1099 err = ret;
1100 goto fail;
1101 }
1102
1103 if (parent) {
1104 if (!ret)
1105 return 0;
1106 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1107 key.type = BTRFS_EXTENT_REF_V0_KEY;
1108 btrfs_release_path(path);
1109 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1110 if (ret < 0) {
1111 err = ret;
1112 goto fail;
1113 }
1114 if (!ret)
1115 return 0;
1116 #endif
1117 goto fail;
1118 }
1119
1120 leaf = path->nodes[0];
1121 nritems = btrfs_header_nritems(leaf);
1122 while (1) {
1123 if (path->slots[0] >= nritems) {
1124 ret = btrfs_next_leaf(root, path);
1125 if (ret < 0)
1126 err = ret;
1127 if (ret)
1128 goto fail;
1129
1130 leaf = path->nodes[0];
1131 nritems = btrfs_header_nritems(leaf);
1132 recow = 1;
1133 }
1134
1135 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136 if (key.objectid != bytenr ||
1137 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1138 goto fail;
1139
1140 ref = btrfs_item_ptr(leaf, path->slots[0],
1141 struct btrfs_extent_data_ref);
1142
1143 if (match_extent_data_ref(leaf, ref, root_objectid,
1144 owner, offset)) {
1145 if (recow) {
1146 btrfs_release_path(path);
1147 goto again;
1148 }
1149 err = 0;
1150 break;
1151 }
1152 path->slots[0]++;
1153 }
1154 fail:
1155 return err;
1156 }
1157
1158 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1159 struct btrfs_root *root,
1160 struct btrfs_path *path,
1161 u64 bytenr, u64 parent,
1162 u64 root_objectid, u64 owner,
1163 u64 offset, int refs_to_add)
1164 {
1165 struct btrfs_key key;
1166 struct extent_buffer *leaf;
1167 u32 size;
1168 u32 num_refs;
1169 int ret;
1170
1171 key.objectid = bytenr;
1172 if (parent) {
1173 key.type = BTRFS_SHARED_DATA_REF_KEY;
1174 key.offset = parent;
1175 size = sizeof(struct btrfs_shared_data_ref);
1176 } else {
1177 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1178 key.offset = hash_extent_data_ref(root_objectid,
1179 owner, offset);
1180 size = sizeof(struct btrfs_extent_data_ref);
1181 }
1182
1183 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1184 if (ret && ret != -EEXIST)
1185 goto fail;
1186
1187 leaf = path->nodes[0];
1188 if (parent) {
1189 struct btrfs_shared_data_ref *ref;
1190 ref = btrfs_item_ptr(leaf, path->slots[0],
1191 struct btrfs_shared_data_ref);
1192 if (ret == 0) {
1193 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1194 } else {
1195 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1196 num_refs += refs_to_add;
1197 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1198 }
1199 } else {
1200 struct btrfs_extent_data_ref *ref;
1201 while (ret == -EEXIST) {
1202 ref = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_extent_data_ref);
1204 if (match_extent_data_ref(leaf, ref, root_objectid,
1205 owner, offset))
1206 break;
1207 btrfs_release_path(path);
1208 key.offset++;
1209 ret = btrfs_insert_empty_item(trans, root, path, &key,
1210 size);
1211 if (ret && ret != -EEXIST)
1212 goto fail;
1213
1214 leaf = path->nodes[0];
1215 }
1216 ref = btrfs_item_ptr(leaf, path->slots[0],
1217 struct btrfs_extent_data_ref);
1218 if (ret == 0) {
1219 btrfs_set_extent_data_ref_root(leaf, ref,
1220 root_objectid);
1221 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1222 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1223 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1224 } else {
1225 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1226 num_refs += refs_to_add;
1227 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1228 }
1229 }
1230 btrfs_mark_buffer_dirty(leaf);
1231 ret = 0;
1232 fail:
1233 btrfs_release_path(path);
1234 return ret;
1235 }
1236
1237 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root,
1239 struct btrfs_path *path,
1240 int refs_to_drop)
1241 {
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref1 = NULL;
1244 struct btrfs_shared_data_ref *ref2 = NULL;
1245 struct extent_buffer *leaf;
1246 u32 num_refs = 0;
1247 int ret = 0;
1248
1249 leaf = path->nodes[0];
1250 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1251
1252 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1253 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_extent_data_ref);
1255 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1256 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1257 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_shared_data_ref);
1259 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1261 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1262 struct btrfs_extent_ref_v0 *ref0;
1263 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_extent_ref_v0);
1265 num_refs = btrfs_ref_count_v0(leaf, ref0);
1266 #endif
1267 } else {
1268 BUG();
1269 }
1270
1271 BUG_ON(num_refs < refs_to_drop);
1272 num_refs -= refs_to_drop;
1273
1274 if (num_refs == 0) {
1275 ret = btrfs_del_item(trans, root, path);
1276 } else {
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1278 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1279 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1280 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1282 else {
1283 struct btrfs_extent_ref_v0 *ref0;
1284 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_extent_ref_v0);
1286 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1287 }
1288 #endif
1289 btrfs_mark_buffer_dirty(leaf);
1290 }
1291 return ret;
1292 }
1293
1294 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1295 struct btrfs_path *path,
1296 struct btrfs_extent_inline_ref *iref)
1297 {
1298 struct btrfs_key key;
1299 struct extent_buffer *leaf;
1300 struct btrfs_extent_data_ref *ref1;
1301 struct btrfs_shared_data_ref *ref2;
1302 u32 num_refs = 0;
1303
1304 leaf = path->nodes[0];
1305 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1306 if (iref) {
1307 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1308 BTRFS_EXTENT_DATA_REF_KEY) {
1309 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1310 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1311 } else {
1312 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1313 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1314 }
1315 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1316 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1317 struct btrfs_extent_data_ref);
1318 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1319 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1320 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1321 struct btrfs_shared_data_ref);
1322 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1323 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1324 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1325 struct btrfs_extent_ref_v0 *ref0;
1326 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1327 struct btrfs_extent_ref_v0);
1328 num_refs = btrfs_ref_count_v0(leaf, ref0);
1329 #endif
1330 } else {
1331 WARN_ON(1);
1332 }
1333 return num_refs;
1334 }
1335
1336 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1337 struct btrfs_root *root,
1338 struct btrfs_path *path,
1339 u64 bytenr, u64 parent,
1340 u64 root_objectid)
1341 {
1342 struct btrfs_key key;
1343 int ret;
1344
1345 key.objectid = bytenr;
1346 if (parent) {
1347 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1348 key.offset = parent;
1349 } else {
1350 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1351 key.offset = root_objectid;
1352 }
1353
1354 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1355 if (ret > 0)
1356 ret = -ENOENT;
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (ret == -ENOENT && parent) {
1359 btrfs_release_path(path);
1360 key.type = BTRFS_EXTENT_REF_V0_KEY;
1361 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1362 if (ret > 0)
1363 ret = -ENOENT;
1364 }
1365 #endif
1366 return ret;
1367 }
1368
1369 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *root,
1371 struct btrfs_path *path,
1372 u64 bytenr, u64 parent,
1373 u64 root_objectid)
1374 {
1375 struct btrfs_key key;
1376 int ret;
1377
1378 key.objectid = bytenr;
1379 if (parent) {
1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 key.offset = parent;
1382 } else {
1383 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 key.offset = root_objectid;
1385 }
1386
1387 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1388 btrfs_release_path(path);
1389 return ret;
1390 }
1391
1392 static inline int extent_ref_type(u64 parent, u64 owner)
1393 {
1394 int type;
1395 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1396 if (parent > 0)
1397 type = BTRFS_SHARED_BLOCK_REF_KEY;
1398 else
1399 type = BTRFS_TREE_BLOCK_REF_KEY;
1400 } else {
1401 if (parent > 0)
1402 type = BTRFS_SHARED_DATA_REF_KEY;
1403 else
1404 type = BTRFS_EXTENT_DATA_REF_KEY;
1405 }
1406 return type;
1407 }
1408
1409 static int find_next_key(struct btrfs_path *path, int level,
1410 struct btrfs_key *key)
1411
1412 {
1413 for (; level < BTRFS_MAX_LEVEL; level++) {
1414 if (!path->nodes[level])
1415 break;
1416 if (path->slots[level] + 1 >=
1417 btrfs_header_nritems(path->nodes[level]))
1418 continue;
1419 if (level == 0)
1420 btrfs_item_key_to_cpu(path->nodes[level], key,
1421 path->slots[level] + 1);
1422 else
1423 btrfs_node_key_to_cpu(path->nodes[level], key,
1424 path->slots[level] + 1);
1425 return 0;
1426 }
1427 return 1;
1428 }
1429
1430 /*
1431 * look for inline back ref. if back ref is found, *ref_ret is set
1432 * to the address of inline back ref, and 0 is returned.
1433 *
1434 * if back ref isn't found, *ref_ret is set to the address where it
1435 * should be inserted, and -ENOENT is returned.
1436 *
1437 * if insert is true and there are too many inline back refs, the path
1438 * points to the extent item, and -EAGAIN is returned.
1439 *
1440 * NOTE: inline back refs are ordered in the same way that back ref
1441 * items in the tree are ordered.
1442 */
1443 static noinline_for_stack
1444 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1445 struct btrfs_root *root,
1446 struct btrfs_path *path,
1447 struct btrfs_extent_inline_ref **ref_ret,
1448 u64 bytenr, u64 num_bytes,
1449 u64 parent, u64 root_objectid,
1450 u64 owner, u64 offset, int insert)
1451 {
1452 struct btrfs_key key;
1453 struct extent_buffer *leaf;
1454 struct btrfs_extent_item *ei;
1455 struct btrfs_extent_inline_ref *iref;
1456 u64 flags;
1457 u64 item_size;
1458 unsigned long ptr;
1459 unsigned long end;
1460 int extra_size;
1461 int type;
1462 int want;
1463 int ret;
1464 int err = 0;
1465
1466 key.objectid = bytenr;
1467 key.type = BTRFS_EXTENT_ITEM_KEY;
1468 key.offset = num_bytes;
1469
1470 want = extent_ref_type(parent, owner);
1471 if (insert) {
1472 extra_size = btrfs_extent_inline_ref_size(want);
1473 path->keep_locks = 1;
1474 } else
1475 extra_size = -1;
1476 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1477 if (ret < 0) {
1478 err = ret;
1479 goto out;
1480 }
1481 BUG_ON(ret);
1482
1483 leaf = path->nodes[0];
1484 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1486 if (item_size < sizeof(*ei)) {
1487 if (!insert) {
1488 err = -ENOENT;
1489 goto out;
1490 }
1491 ret = convert_extent_item_v0(trans, root, path, owner,
1492 extra_size);
1493 if (ret < 0) {
1494 err = ret;
1495 goto out;
1496 }
1497 leaf = path->nodes[0];
1498 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1499 }
1500 #endif
1501 BUG_ON(item_size < sizeof(*ei));
1502
1503 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1504 flags = btrfs_extent_flags(leaf, ei);
1505
1506 ptr = (unsigned long)(ei + 1);
1507 end = (unsigned long)ei + item_size;
1508
1509 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1510 ptr += sizeof(struct btrfs_tree_block_info);
1511 BUG_ON(ptr > end);
1512 } else {
1513 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1514 }
1515
1516 err = -ENOENT;
1517 while (1) {
1518 if (ptr >= end) {
1519 WARN_ON(ptr > end);
1520 break;
1521 }
1522 iref = (struct btrfs_extent_inline_ref *)ptr;
1523 type = btrfs_extent_inline_ref_type(leaf, iref);
1524 if (want < type)
1525 break;
1526 if (want > type) {
1527 ptr += btrfs_extent_inline_ref_size(type);
1528 continue;
1529 }
1530
1531 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1532 struct btrfs_extent_data_ref *dref;
1533 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1534 if (match_extent_data_ref(leaf, dref, root_objectid,
1535 owner, offset)) {
1536 err = 0;
1537 break;
1538 }
1539 if (hash_extent_data_ref_item(leaf, dref) <
1540 hash_extent_data_ref(root_objectid, owner, offset))
1541 break;
1542 } else {
1543 u64 ref_offset;
1544 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1545 if (parent > 0) {
1546 if (parent == ref_offset) {
1547 err = 0;
1548 break;
1549 }
1550 if (ref_offset < parent)
1551 break;
1552 } else {
1553 if (root_objectid == ref_offset) {
1554 err = 0;
1555 break;
1556 }
1557 if (ref_offset < root_objectid)
1558 break;
1559 }
1560 }
1561 ptr += btrfs_extent_inline_ref_size(type);
1562 }
1563 if (err == -ENOENT && insert) {
1564 if (item_size + extra_size >=
1565 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1566 err = -EAGAIN;
1567 goto out;
1568 }
1569 /*
1570 * To add new inline back ref, we have to make sure
1571 * there is no corresponding back ref item.
1572 * For simplicity, we just do not add new inline back
1573 * ref if there is any kind of item for this block
1574 */
1575 if (find_next_key(path, 0, &key) == 0 &&
1576 key.objectid == bytenr &&
1577 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1578 err = -EAGAIN;
1579 goto out;
1580 }
1581 }
1582 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1583 out:
1584 if (insert) {
1585 path->keep_locks = 0;
1586 btrfs_unlock_up_safe(path, 1);
1587 }
1588 return err;
1589 }
1590
1591 /*
1592 * helper to add new inline back ref
1593 */
1594 static noinline_for_stack
1595 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1596 struct btrfs_root *root,
1597 struct btrfs_path *path,
1598 struct btrfs_extent_inline_ref *iref,
1599 u64 parent, u64 root_objectid,
1600 u64 owner, u64 offset, int refs_to_add,
1601 struct btrfs_delayed_extent_op *extent_op)
1602 {
1603 struct extent_buffer *leaf;
1604 struct btrfs_extent_item *ei;
1605 unsigned long ptr;
1606 unsigned long end;
1607 unsigned long item_offset;
1608 u64 refs;
1609 int size;
1610 int type;
1611 int ret;
1612
1613 leaf = path->nodes[0];
1614 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1615 item_offset = (unsigned long)iref - (unsigned long)ei;
1616
1617 type = extent_ref_type(parent, owner);
1618 size = btrfs_extent_inline_ref_size(type);
1619
1620 ret = btrfs_extend_item(trans, root, path, size);
1621
1622 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1623 refs = btrfs_extent_refs(leaf, ei);
1624 refs += refs_to_add;
1625 btrfs_set_extent_refs(leaf, ei, refs);
1626 if (extent_op)
1627 __run_delayed_extent_op(extent_op, leaf, ei);
1628
1629 ptr = (unsigned long)ei + item_offset;
1630 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1631 if (ptr < end - size)
1632 memmove_extent_buffer(leaf, ptr + size, ptr,
1633 end - size - ptr);
1634
1635 iref = (struct btrfs_extent_inline_ref *)ptr;
1636 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1637 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1638 struct btrfs_extent_data_ref *dref;
1639 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1640 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1641 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1642 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1643 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1644 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1645 struct btrfs_shared_data_ref *sref;
1646 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1647 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1648 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1649 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1650 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 } else {
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1653 }
1654 btrfs_mark_buffer_dirty(leaf);
1655 return 0;
1656 }
1657
1658 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1659 struct btrfs_root *root,
1660 struct btrfs_path *path,
1661 struct btrfs_extent_inline_ref **ref_ret,
1662 u64 bytenr, u64 num_bytes, u64 parent,
1663 u64 root_objectid, u64 owner, u64 offset)
1664 {
1665 int ret;
1666
1667 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1668 bytenr, num_bytes, parent,
1669 root_objectid, owner, offset, 0);
1670 if (ret != -ENOENT)
1671 return ret;
1672
1673 btrfs_release_path(path);
1674 *ref_ret = NULL;
1675
1676 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1677 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1678 root_objectid);
1679 } else {
1680 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1681 root_objectid, owner, offset);
1682 }
1683 return ret;
1684 }
1685
1686 /*
1687 * helper to update/remove inline back ref
1688 */
1689 static noinline_for_stack
1690 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1691 struct btrfs_root *root,
1692 struct btrfs_path *path,
1693 struct btrfs_extent_inline_ref *iref,
1694 int refs_to_mod,
1695 struct btrfs_delayed_extent_op *extent_op)
1696 {
1697 struct extent_buffer *leaf;
1698 struct btrfs_extent_item *ei;
1699 struct btrfs_extent_data_ref *dref = NULL;
1700 struct btrfs_shared_data_ref *sref = NULL;
1701 unsigned long ptr;
1702 unsigned long end;
1703 u32 item_size;
1704 int size;
1705 int type;
1706 int ret;
1707 u64 refs;
1708
1709 leaf = path->nodes[0];
1710 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 refs = btrfs_extent_refs(leaf, ei);
1712 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 refs += refs_to_mod;
1714 btrfs_set_extent_refs(leaf, ei, refs);
1715 if (extent_op)
1716 __run_delayed_extent_op(extent_op, leaf, ei);
1717
1718 type = btrfs_extent_inline_ref_type(leaf, iref);
1719
1720 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 refs = btrfs_extent_data_ref_count(leaf, dref);
1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 refs = btrfs_shared_data_ref_count(leaf, sref);
1726 } else {
1727 refs = 1;
1728 BUG_ON(refs_to_mod != -1);
1729 }
1730
1731 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 refs += refs_to_mod;
1733
1734 if (refs > 0) {
1735 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 else
1738 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 } else {
1740 size = btrfs_extent_inline_ref_size(type);
1741 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 ptr = (unsigned long)iref;
1743 end = (unsigned long)ei + item_size;
1744 if (ptr + size < end)
1745 memmove_extent_buffer(leaf, ptr, ptr + size,
1746 end - ptr - size);
1747 item_size -= size;
1748 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1749 }
1750 btrfs_mark_buffer_dirty(leaf);
1751 return 0;
1752 }
1753
1754 static noinline_for_stack
1755 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
1757 struct btrfs_path *path,
1758 u64 bytenr, u64 num_bytes, u64 parent,
1759 u64 root_objectid, u64 owner,
1760 u64 offset, int refs_to_add,
1761 struct btrfs_delayed_extent_op *extent_op)
1762 {
1763 struct btrfs_extent_inline_ref *iref;
1764 int ret;
1765
1766 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1767 bytenr, num_bytes, parent,
1768 root_objectid, owner, offset, 1);
1769 if (ret == 0) {
1770 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1771 ret = update_inline_extent_backref(trans, root, path, iref,
1772 refs_to_add, extent_op);
1773 } else if (ret == -ENOENT) {
1774 ret = setup_inline_extent_backref(trans, root, path, iref,
1775 parent, root_objectid,
1776 owner, offset, refs_to_add,
1777 extent_op);
1778 }
1779 return ret;
1780 }
1781
1782 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root,
1784 struct btrfs_path *path,
1785 u64 bytenr, u64 parent, u64 root_objectid,
1786 u64 owner, u64 offset, int refs_to_add)
1787 {
1788 int ret;
1789 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1790 BUG_ON(refs_to_add != 1);
1791 ret = insert_tree_block_ref(trans, root, path, bytenr,
1792 parent, root_objectid);
1793 } else {
1794 ret = insert_extent_data_ref(trans, root, path, bytenr,
1795 parent, root_objectid,
1796 owner, offset, refs_to_add);
1797 }
1798 return ret;
1799 }
1800
1801 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1802 struct btrfs_root *root,
1803 struct btrfs_path *path,
1804 struct btrfs_extent_inline_ref *iref,
1805 int refs_to_drop, int is_data)
1806 {
1807 int ret;
1808
1809 BUG_ON(!is_data && refs_to_drop != 1);
1810 if (iref) {
1811 ret = update_inline_extent_backref(trans, root, path, iref,
1812 -refs_to_drop, NULL);
1813 } else if (is_data) {
1814 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1815 } else {
1816 ret = btrfs_del_item(trans, root, path);
1817 }
1818 return ret;
1819 }
1820
1821 static int btrfs_issue_discard(struct block_device *bdev,
1822 u64 start, u64 len)
1823 {
1824 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1825 }
1826
1827 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1828 u64 num_bytes, u64 *actual_bytes)
1829 {
1830 int ret;
1831 u64 discarded_bytes = 0;
1832 struct btrfs_bio *bbio = NULL;
1833
1834
1835 /* Tell the block device(s) that the sectors can be discarded */
1836 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1837 bytenr, &num_bytes, &bbio, 0);
1838 if (!ret) {
1839 struct btrfs_bio_stripe *stripe = bbio->stripes;
1840 int i;
1841
1842
1843 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 if (!stripe->dev->can_discard)
1845 continue;
1846
1847 ret = btrfs_issue_discard(stripe->dev->bdev,
1848 stripe->physical,
1849 stripe->length);
1850 if (!ret)
1851 discarded_bytes += stripe->length;
1852 else if (ret != -EOPNOTSUPP)
1853 break;
1854
1855 /*
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1859 */
1860 ret = 0;
1861 }
1862 kfree(bbio);
1863 }
1864
1865 if (actual_bytes)
1866 *actual_bytes = discarded_bytes;
1867
1868
1869 return ret;
1870 }
1871
1872 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1873 struct btrfs_root *root,
1874 u64 bytenr, u64 num_bytes, u64 parent,
1875 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1876 {
1877 int ret;
1878 struct btrfs_fs_info *fs_info = root->fs_info;
1879
1880 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1881 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1882
1883 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1884 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1885 num_bytes,
1886 parent, root_objectid, (int)owner,
1887 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1888 } else {
1889 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1890 num_bytes,
1891 parent, root_objectid, owner, offset,
1892 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1893 }
1894 return ret;
1895 }
1896
1897 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1898 struct btrfs_root *root,
1899 u64 bytenr, u64 num_bytes,
1900 u64 parent, u64 root_objectid,
1901 u64 owner, u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903 {
1904 struct btrfs_path *path;
1905 struct extent_buffer *leaf;
1906 struct btrfs_extent_item *item;
1907 u64 refs;
1908 int ret;
1909 int err = 0;
1910
1911 path = btrfs_alloc_path();
1912 if (!path)
1913 return -ENOMEM;
1914
1915 path->reada = 1;
1916 path->leave_spinning = 1;
1917 /* this will setup the path even if it fails to insert the back ref */
1918 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1919 path, bytenr, num_bytes, parent,
1920 root_objectid, owner, offset,
1921 refs_to_add, extent_op);
1922 if (ret == 0)
1923 goto out;
1924
1925 if (ret != -EAGAIN) {
1926 err = ret;
1927 goto out;
1928 }
1929
1930 leaf = path->nodes[0];
1931 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1932 refs = btrfs_extent_refs(leaf, item);
1933 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1934 if (extent_op)
1935 __run_delayed_extent_op(extent_op, leaf, item);
1936
1937 btrfs_mark_buffer_dirty(leaf);
1938 btrfs_release_path(path);
1939
1940 path->reada = 1;
1941 path->leave_spinning = 1;
1942
1943 /* now insert the actual backref */
1944 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1945 path, bytenr, parent, root_objectid,
1946 owner, offset, refs_to_add);
1947 BUG_ON(ret);
1948 out:
1949 btrfs_free_path(path);
1950 return err;
1951 }
1952
1953 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1954 struct btrfs_root *root,
1955 struct btrfs_delayed_ref_node *node,
1956 struct btrfs_delayed_extent_op *extent_op,
1957 int insert_reserved)
1958 {
1959 int ret = 0;
1960 struct btrfs_delayed_data_ref *ref;
1961 struct btrfs_key ins;
1962 u64 parent = 0;
1963 u64 ref_root = 0;
1964 u64 flags = 0;
1965
1966 ins.objectid = node->bytenr;
1967 ins.offset = node->num_bytes;
1968 ins.type = BTRFS_EXTENT_ITEM_KEY;
1969
1970 ref = btrfs_delayed_node_to_data_ref(node);
1971 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1972 parent = ref->parent;
1973 else
1974 ref_root = ref->root;
1975
1976 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1977 if (extent_op) {
1978 BUG_ON(extent_op->update_key);
1979 flags |= extent_op->flags_to_set;
1980 }
1981 ret = alloc_reserved_file_extent(trans, root,
1982 parent, ref_root, flags,
1983 ref->objectid, ref->offset,
1984 &ins, node->ref_mod);
1985 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1986 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1987 node->num_bytes, parent,
1988 ref_root, ref->objectid,
1989 ref->offset, node->ref_mod,
1990 extent_op);
1991 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1992 ret = __btrfs_free_extent(trans, root, node->bytenr,
1993 node->num_bytes, parent,
1994 ref_root, ref->objectid,
1995 ref->offset, node->ref_mod,
1996 extent_op);
1997 } else {
1998 BUG();
1999 }
2000 return ret;
2001 }
2002
2003 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2004 struct extent_buffer *leaf,
2005 struct btrfs_extent_item *ei)
2006 {
2007 u64 flags = btrfs_extent_flags(leaf, ei);
2008 if (extent_op->update_flags) {
2009 flags |= extent_op->flags_to_set;
2010 btrfs_set_extent_flags(leaf, ei, flags);
2011 }
2012
2013 if (extent_op->update_key) {
2014 struct btrfs_tree_block_info *bi;
2015 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2016 bi = (struct btrfs_tree_block_info *)(ei + 1);
2017 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2018 }
2019 }
2020
2021 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2022 struct btrfs_root *root,
2023 struct btrfs_delayed_ref_node *node,
2024 struct btrfs_delayed_extent_op *extent_op)
2025 {
2026 struct btrfs_key key;
2027 struct btrfs_path *path;
2028 struct btrfs_extent_item *ei;
2029 struct extent_buffer *leaf;
2030 u32 item_size;
2031 int ret;
2032 int err = 0;
2033
2034 path = btrfs_alloc_path();
2035 if (!path)
2036 return -ENOMEM;
2037
2038 key.objectid = node->bytenr;
2039 key.type = BTRFS_EXTENT_ITEM_KEY;
2040 key.offset = node->num_bytes;
2041
2042 path->reada = 1;
2043 path->leave_spinning = 1;
2044 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2045 path, 0, 1);
2046 if (ret < 0) {
2047 err = ret;
2048 goto out;
2049 }
2050 if (ret > 0) {
2051 err = -EIO;
2052 goto out;
2053 }
2054
2055 leaf = path->nodes[0];
2056 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2058 if (item_size < sizeof(*ei)) {
2059 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2060 path, (u64)-1, 0);
2061 if (ret < 0) {
2062 err = ret;
2063 goto out;
2064 }
2065 leaf = path->nodes[0];
2066 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2067 }
2068 #endif
2069 BUG_ON(item_size < sizeof(*ei));
2070 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2071 __run_delayed_extent_op(extent_op, leaf, ei);
2072
2073 btrfs_mark_buffer_dirty(leaf);
2074 out:
2075 btrfs_free_path(path);
2076 return err;
2077 }
2078
2079 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2080 struct btrfs_root *root,
2081 struct btrfs_delayed_ref_node *node,
2082 struct btrfs_delayed_extent_op *extent_op,
2083 int insert_reserved)
2084 {
2085 int ret = 0;
2086 struct btrfs_delayed_tree_ref *ref;
2087 struct btrfs_key ins;
2088 u64 parent = 0;
2089 u64 ref_root = 0;
2090
2091 ins.objectid = node->bytenr;
2092 ins.offset = node->num_bytes;
2093 ins.type = BTRFS_EXTENT_ITEM_KEY;
2094
2095 ref = btrfs_delayed_node_to_tree_ref(node);
2096 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2097 parent = ref->parent;
2098 else
2099 ref_root = ref->root;
2100
2101 BUG_ON(node->ref_mod != 1);
2102 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2103 BUG_ON(!extent_op || !extent_op->update_flags ||
2104 !extent_op->update_key);
2105 ret = alloc_reserved_tree_block(trans, root,
2106 parent, ref_root,
2107 extent_op->flags_to_set,
2108 &extent_op->key,
2109 ref->level, &ins);
2110 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2111 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2112 node->num_bytes, parent, ref_root,
2113 ref->level, 0, 1, extent_op);
2114 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2115 ret = __btrfs_free_extent(trans, root, node->bytenr,
2116 node->num_bytes, parent, ref_root,
2117 ref->level, 0, 1, extent_op);
2118 } else {
2119 BUG();
2120 }
2121 return ret;
2122 }
2123
2124 /* helper function to actually process a single delayed ref entry */
2125 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op,
2129 int insert_reserved)
2130 {
2131 int ret;
2132 if (btrfs_delayed_ref_is_head(node)) {
2133 struct btrfs_delayed_ref_head *head;
2134 /*
2135 * we've hit the end of the chain and we were supposed
2136 * to insert this extent into the tree. But, it got
2137 * deleted before we ever needed to insert it, so all
2138 * we have to do is clean up the accounting
2139 */
2140 BUG_ON(extent_op);
2141 head = btrfs_delayed_node_to_head(node);
2142 if (insert_reserved) {
2143 btrfs_pin_extent(root, node->bytenr,
2144 node->num_bytes, 1);
2145 if (head->is_data) {
2146 ret = btrfs_del_csums(trans, root,
2147 node->bytenr,
2148 node->num_bytes);
2149 BUG_ON(ret);
2150 }
2151 }
2152 mutex_unlock(&head->mutex);
2153 return 0;
2154 }
2155
2156 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2157 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2158 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2159 insert_reserved);
2160 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2161 node->type == BTRFS_SHARED_DATA_REF_KEY)
2162 ret = run_delayed_data_ref(trans, root, node, extent_op,
2163 insert_reserved);
2164 else
2165 BUG();
2166 return ret;
2167 }
2168
2169 static noinline struct btrfs_delayed_ref_node *
2170 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2171 {
2172 struct rb_node *node;
2173 struct btrfs_delayed_ref_node *ref;
2174 int action = BTRFS_ADD_DELAYED_REF;
2175 again:
2176 /*
2177 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2178 * this prevents ref count from going down to zero when
2179 * there still are pending delayed ref.
2180 */
2181 node = rb_prev(&head->node.rb_node);
2182 while (1) {
2183 if (!node)
2184 break;
2185 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2186 rb_node);
2187 if (ref->bytenr != head->node.bytenr)
2188 break;
2189 if (ref->action == action)
2190 return ref;
2191 node = rb_prev(node);
2192 }
2193 if (action == BTRFS_ADD_DELAYED_REF) {
2194 action = BTRFS_DROP_DELAYED_REF;
2195 goto again;
2196 }
2197 return NULL;
2198 }
2199
2200 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2201 struct btrfs_root *root,
2202 struct list_head *cluster)
2203 {
2204 struct btrfs_delayed_ref_root *delayed_refs;
2205 struct btrfs_delayed_ref_node *ref;
2206 struct btrfs_delayed_ref_head *locked_ref = NULL;
2207 struct btrfs_delayed_extent_op *extent_op;
2208 int ret;
2209 int count = 0;
2210 int must_insert_reserved = 0;
2211
2212 delayed_refs = &trans->transaction->delayed_refs;
2213 while (1) {
2214 if (!locked_ref) {
2215 /* pick a new head ref from the cluster list */
2216 if (list_empty(cluster))
2217 break;
2218
2219 locked_ref = list_entry(cluster->next,
2220 struct btrfs_delayed_ref_head, cluster);
2221
2222 /* grab the lock that says we are going to process
2223 * all the refs for this head */
2224 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2225
2226 /*
2227 * we may have dropped the spin lock to get the head
2228 * mutex lock, and that might have given someone else
2229 * time to free the head. If that's true, it has been
2230 * removed from our list and we can move on.
2231 */
2232 if (ret == -EAGAIN) {
2233 locked_ref = NULL;
2234 count++;
2235 continue;
2236 }
2237 }
2238
2239 /*
2240 * locked_ref is the head node, so we have to go one
2241 * node back for any delayed ref updates
2242 */
2243 ref = select_delayed_ref(locked_ref);
2244
2245 if (ref && ref->seq &&
2246 btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2247 /*
2248 * there are still refs with lower seq numbers in the
2249 * process of being added. Don't run this ref yet.
2250 */
2251 list_del_init(&locked_ref->cluster);
2252 mutex_unlock(&locked_ref->mutex);
2253 locked_ref = NULL;
2254 delayed_refs->num_heads_ready++;
2255 spin_unlock(&delayed_refs->lock);
2256 cond_resched();
2257 spin_lock(&delayed_refs->lock);
2258 continue;
2259 }
2260
2261 /*
2262 * record the must insert reserved flag before we
2263 * drop the spin lock.
2264 */
2265 must_insert_reserved = locked_ref->must_insert_reserved;
2266 locked_ref->must_insert_reserved = 0;
2267
2268 extent_op = locked_ref->extent_op;
2269 locked_ref->extent_op = NULL;
2270
2271 if (!ref) {
2272 /* All delayed refs have been processed, Go ahead
2273 * and send the head node to run_one_delayed_ref,
2274 * so that any accounting fixes can happen
2275 */
2276 ref = &locked_ref->node;
2277
2278 if (extent_op && must_insert_reserved) {
2279 kfree(extent_op);
2280 extent_op = NULL;
2281 }
2282
2283 if (extent_op) {
2284 spin_unlock(&delayed_refs->lock);
2285
2286 ret = run_delayed_extent_op(trans, root,
2287 ref, extent_op);
2288 BUG_ON(ret);
2289 kfree(extent_op);
2290
2291 goto next;
2292 }
2293
2294 list_del_init(&locked_ref->cluster);
2295 locked_ref = NULL;
2296 }
2297
2298 ref->in_tree = 0;
2299 rb_erase(&ref->rb_node, &delayed_refs->root);
2300 delayed_refs->num_entries--;
2301 /*
2302 * we modified num_entries, but as we're currently running
2303 * delayed refs, skip
2304 * wake_up(&delayed_refs->seq_wait);
2305 * here.
2306 */
2307 spin_unlock(&delayed_refs->lock);
2308
2309 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2310 must_insert_reserved);
2311 BUG_ON(ret);
2312
2313 btrfs_put_delayed_ref(ref);
2314 kfree(extent_op);
2315 count++;
2316 next:
2317 do_chunk_alloc(trans, root->fs_info->extent_root,
2318 2 * 1024 * 1024,
2319 btrfs_get_alloc_profile(root, 0),
2320 CHUNK_ALLOC_NO_FORCE);
2321 cond_resched();
2322 spin_lock(&delayed_refs->lock);
2323 }
2324 return count;
2325 }
2326
2327
2328 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2329 unsigned long num_refs)
2330 {
2331 struct list_head *first_seq = delayed_refs->seq_head.next;
2332
2333 spin_unlock(&delayed_refs->lock);
2334 pr_debug("waiting for more refs (num %ld, first %p)\n",
2335 num_refs, first_seq);
2336 wait_event(delayed_refs->seq_wait,
2337 num_refs != delayed_refs->num_entries ||
2338 delayed_refs->seq_head.next != first_seq);
2339 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2340 delayed_refs->num_entries, delayed_refs->seq_head.next);
2341 spin_lock(&delayed_refs->lock);
2342 }
2343
2344 /*
2345 * this starts processing the delayed reference count updates and
2346 * extent insertions we have queued up so far. count can be
2347 * 0, which means to process everything in the tree at the start
2348 * of the run (but not newly added entries), or it can be some target
2349 * number you'd like to process.
2350 */
2351 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2352 struct btrfs_root *root, unsigned long count)
2353 {
2354 struct rb_node *node;
2355 struct btrfs_delayed_ref_root *delayed_refs;
2356 struct btrfs_delayed_ref_node *ref;
2357 struct list_head cluster;
2358 int ret;
2359 u64 delayed_start;
2360 int run_all = count == (unsigned long)-1;
2361 int run_most = 0;
2362 unsigned long num_refs = 0;
2363 int consider_waiting;
2364
2365 if (root == root->fs_info->extent_root)
2366 root = root->fs_info->tree_root;
2367
2368 do_chunk_alloc(trans, root->fs_info->extent_root,
2369 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2370 CHUNK_ALLOC_NO_FORCE);
2371
2372 delayed_refs = &trans->transaction->delayed_refs;
2373 INIT_LIST_HEAD(&cluster);
2374 again:
2375 consider_waiting = 0;
2376 spin_lock(&delayed_refs->lock);
2377 if (count == 0) {
2378 count = delayed_refs->num_entries * 2;
2379 run_most = 1;
2380 }
2381 while (1) {
2382 if (!(run_all || run_most) &&
2383 delayed_refs->num_heads_ready < 64)
2384 break;
2385
2386 /*
2387 * go find something we can process in the rbtree. We start at
2388 * the beginning of the tree, and then build a cluster
2389 * of refs to process starting at the first one we are able to
2390 * lock
2391 */
2392 delayed_start = delayed_refs->run_delayed_start;
2393 ret = btrfs_find_ref_cluster(trans, &cluster,
2394 delayed_refs->run_delayed_start);
2395 if (ret)
2396 break;
2397
2398 if (delayed_start >= delayed_refs->run_delayed_start) {
2399 if (consider_waiting == 0) {
2400 /*
2401 * btrfs_find_ref_cluster looped. let's do one
2402 * more cycle. if we don't run any delayed ref
2403 * during that cycle (because we can't because
2404 * all of them are blocked) and if the number of
2405 * refs doesn't change, we avoid busy waiting.
2406 */
2407 consider_waiting = 1;
2408 num_refs = delayed_refs->num_entries;
2409 } else {
2410 wait_for_more_refs(delayed_refs, num_refs);
2411 /*
2412 * after waiting, things have changed. we
2413 * dropped the lock and someone else might have
2414 * run some refs, built new clusters and so on.
2415 * therefore, we restart staleness detection.
2416 */
2417 consider_waiting = 0;
2418 }
2419 }
2420
2421 ret = run_clustered_refs(trans, root, &cluster);
2422 BUG_ON(ret < 0);
2423
2424 count -= min_t(unsigned long, ret, count);
2425
2426 if (count == 0)
2427 break;
2428
2429 if (ret || delayed_refs->run_delayed_start == 0) {
2430 /* refs were run, let's reset staleness detection */
2431 consider_waiting = 0;
2432 }
2433 }
2434
2435 if (run_all) {
2436 node = rb_first(&delayed_refs->root);
2437 if (!node)
2438 goto out;
2439 count = (unsigned long)-1;
2440
2441 while (node) {
2442 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2443 rb_node);
2444 if (btrfs_delayed_ref_is_head(ref)) {
2445 struct btrfs_delayed_ref_head *head;
2446
2447 head = btrfs_delayed_node_to_head(ref);
2448 atomic_inc(&ref->refs);
2449
2450 spin_unlock(&delayed_refs->lock);
2451 /*
2452 * Mutex was contended, block until it's
2453 * released and try again
2454 */
2455 mutex_lock(&head->mutex);
2456 mutex_unlock(&head->mutex);
2457
2458 btrfs_put_delayed_ref(ref);
2459 cond_resched();
2460 goto again;
2461 }
2462 node = rb_next(node);
2463 }
2464 spin_unlock(&delayed_refs->lock);
2465 schedule_timeout(1);
2466 goto again;
2467 }
2468 out:
2469 spin_unlock(&delayed_refs->lock);
2470 return 0;
2471 }
2472
2473 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2474 struct btrfs_root *root,
2475 u64 bytenr, u64 num_bytes, u64 flags,
2476 int is_data)
2477 {
2478 struct btrfs_delayed_extent_op *extent_op;
2479 int ret;
2480
2481 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2482 if (!extent_op)
2483 return -ENOMEM;
2484
2485 extent_op->flags_to_set = flags;
2486 extent_op->update_flags = 1;
2487 extent_op->update_key = 0;
2488 extent_op->is_data = is_data ? 1 : 0;
2489
2490 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2491 num_bytes, extent_op);
2492 if (ret)
2493 kfree(extent_op);
2494 return ret;
2495 }
2496
2497 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2498 struct btrfs_root *root,
2499 struct btrfs_path *path,
2500 u64 objectid, u64 offset, u64 bytenr)
2501 {
2502 struct btrfs_delayed_ref_head *head;
2503 struct btrfs_delayed_ref_node *ref;
2504 struct btrfs_delayed_data_ref *data_ref;
2505 struct btrfs_delayed_ref_root *delayed_refs;
2506 struct rb_node *node;
2507 int ret = 0;
2508
2509 ret = -ENOENT;
2510 delayed_refs = &trans->transaction->delayed_refs;
2511 spin_lock(&delayed_refs->lock);
2512 head = btrfs_find_delayed_ref_head(trans, bytenr);
2513 if (!head)
2514 goto out;
2515
2516 if (!mutex_trylock(&head->mutex)) {
2517 atomic_inc(&head->node.refs);
2518 spin_unlock(&delayed_refs->lock);
2519
2520 btrfs_release_path(path);
2521
2522 /*
2523 * Mutex was contended, block until it's released and let
2524 * caller try again
2525 */
2526 mutex_lock(&head->mutex);
2527 mutex_unlock(&head->mutex);
2528 btrfs_put_delayed_ref(&head->node);
2529 return -EAGAIN;
2530 }
2531
2532 node = rb_prev(&head->node.rb_node);
2533 if (!node)
2534 goto out_unlock;
2535
2536 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2537
2538 if (ref->bytenr != bytenr)
2539 goto out_unlock;
2540
2541 ret = 1;
2542 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2543 goto out_unlock;
2544
2545 data_ref = btrfs_delayed_node_to_data_ref(ref);
2546
2547 node = rb_prev(node);
2548 if (node) {
2549 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2550 if (ref->bytenr == bytenr)
2551 goto out_unlock;
2552 }
2553
2554 if (data_ref->root != root->root_key.objectid ||
2555 data_ref->objectid != objectid || data_ref->offset != offset)
2556 goto out_unlock;
2557
2558 ret = 0;
2559 out_unlock:
2560 mutex_unlock(&head->mutex);
2561 out:
2562 spin_unlock(&delayed_refs->lock);
2563 return ret;
2564 }
2565
2566 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2567 struct btrfs_root *root,
2568 struct btrfs_path *path,
2569 u64 objectid, u64 offset, u64 bytenr)
2570 {
2571 struct btrfs_root *extent_root = root->fs_info->extent_root;
2572 struct extent_buffer *leaf;
2573 struct btrfs_extent_data_ref *ref;
2574 struct btrfs_extent_inline_ref *iref;
2575 struct btrfs_extent_item *ei;
2576 struct btrfs_key key;
2577 u32 item_size;
2578 int ret;
2579
2580 key.objectid = bytenr;
2581 key.offset = (u64)-1;
2582 key.type = BTRFS_EXTENT_ITEM_KEY;
2583
2584 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2585 if (ret < 0)
2586 goto out;
2587 BUG_ON(ret == 0);
2588
2589 ret = -ENOENT;
2590 if (path->slots[0] == 0)
2591 goto out;
2592
2593 path->slots[0]--;
2594 leaf = path->nodes[0];
2595 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2596
2597 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2598 goto out;
2599
2600 ret = 1;
2601 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2602 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2603 if (item_size < sizeof(*ei)) {
2604 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2605 goto out;
2606 }
2607 #endif
2608 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2609
2610 if (item_size != sizeof(*ei) +
2611 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2612 goto out;
2613
2614 if (btrfs_extent_generation(leaf, ei) <=
2615 btrfs_root_last_snapshot(&root->root_item))
2616 goto out;
2617
2618 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2619 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2620 BTRFS_EXTENT_DATA_REF_KEY)
2621 goto out;
2622
2623 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2624 if (btrfs_extent_refs(leaf, ei) !=
2625 btrfs_extent_data_ref_count(leaf, ref) ||
2626 btrfs_extent_data_ref_root(leaf, ref) !=
2627 root->root_key.objectid ||
2628 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2629 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2630 goto out;
2631
2632 ret = 0;
2633 out:
2634 return ret;
2635 }
2636
2637 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2638 struct btrfs_root *root,
2639 u64 objectid, u64 offset, u64 bytenr)
2640 {
2641 struct btrfs_path *path;
2642 int ret;
2643 int ret2;
2644
2645 path = btrfs_alloc_path();
2646 if (!path)
2647 return -ENOENT;
2648
2649 do {
2650 ret = check_committed_ref(trans, root, path, objectid,
2651 offset, bytenr);
2652 if (ret && ret != -ENOENT)
2653 goto out;
2654
2655 ret2 = check_delayed_ref(trans, root, path, objectid,
2656 offset, bytenr);
2657 } while (ret2 == -EAGAIN);
2658
2659 if (ret2 && ret2 != -ENOENT) {
2660 ret = ret2;
2661 goto out;
2662 }
2663
2664 if (ret != -ENOENT || ret2 != -ENOENT)
2665 ret = 0;
2666 out:
2667 btrfs_free_path(path);
2668 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2669 WARN_ON(ret > 0);
2670 return ret;
2671 }
2672
2673 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2674 struct btrfs_root *root,
2675 struct extent_buffer *buf,
2676 int full_backref, int inc, int for_cow)
2677 {
2678 u64 bytenr;
2679 u64 num_bytes;
2680 u64 parent;
2681 u64 ref_root;
2682 u32 nritems;
2683 struct btrfs_key key;
2684 struct btrfs_file_extent_item *fi;
2685 int i;
2686 int level;
2687 int ret = 0;
2688 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2689 u64, u64, u64, u64, u64, u64, int);
2690
2691 ref_root = btrfs_header_owner(buf);
2692 nritems = btrfs_header_nritems(buf);
2693 level = btrfs_header_level(buf);
2694
2695 if (!root->ref_cows && level == 0)
2696 return 0;
2697
2698 if (inc)
2699 process_func = btrfs_inc_extent_ref;
2700 else
2701 process_func = btrfs_free_extent;
2702
2703 if (full_backref)
2704 parent = buf->start;
2705 else
2706 parent = 0;
2707
2708 for (i = 0; i < nritems; i++) {
2709 if (level == 0) {
2710 btrfs_item_key_to_cpu(buf, &key, i);
2711 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2712 continue;
2713 fi = btrfs_item_ptr(buf, i,
2714 struct btrfs_file_extent_item);
2715 if (btrfs_file_extent_type(buf, fi) ==
2716 BTRFS_FILE_EXTENT_INLINE)
2717 continue;
2718 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2719 if (bytenr == 0)
2720 continue;
2721
2722 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2723 key.offset -= btrfs_file_extent_offset(buf, fi);
2724 ret = process_func(trans, root, bytenr, num_bytes,
2725 parent, ref_root, key.objectid,
2726 key.offset, for_cow);
2727 if (ret)
2728 goto fail;
2729 } else {
2730 bytenr = btrfs_node_blockptr(buf, i);
2731 num_bytes = btrfs_level_size(root, level - 1);
2732 ret = process_func(trans, root, bytenr, num_bytes,
2733 parent, ref_root, level - 1, 0,
2734 for_cow);
2735 if (ret)
2736 goto fail;
2737 }
2738 }
2739 return 0;
2740 fail:
2741 BUG();
2742 return ret;
2743 }
2744
2745 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2746 struct extent_buffer *buf, int full_backref, int for_cow)
2747 {
2748 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2749 }
2750
2751 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2752 struct extent_buffer *buf, int full_backref, int for_cow)
2753 {
2754 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2755 }
2756
2757 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2758 struct btrfs_root *root,
2759 struct btrfs_path *path,
2760 struct btrfs_block_group_cache *cache)
2761 {
2762 int ret;
2763 struct btrfs_root *extent_root = root->fs_info->extent_root;
2764 unsigned long bi;
2765 struct extent_buffer *leaf;
2766
2767 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2768 if (ret < 0)
2769 goto fail;
2770 BUG_ON(ret);
2771
2772 leaf = path->nodes[0];
2773 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2774 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2775 btrfs_mark_buffer_dirty(leaf);
2776 btrfs_release_path(path);
2777 fail:
2778 if (ret)
2779 return ret;
2780 return 0;
2781
2782 }
2783
2784 static struct btrfs_block_group_cache *
2785 next_block_group(struct btrfs_root *root,
2786 struct btrfs_block_group_cache *cache)
2787 {
2788 struct rb_node *node;
2789 spin_lock(&root->fs_info->block_group_cache_lock);
2790 node = rb_next(&cache->cache_node);
2791 btrfs_put_block_group(cache);
2792 if (node) {
2793 cache = rb_entry(node, struct btrfs_block_group_cache,
2794 cache_node);
2795 btrfs_get_block_group(cache);
2796 } else
2797 cache = NULL;
2798 spin_unlock(&root->fs_info->block_group_cache_lock);
2799 return cache;
2800 }
2801
2802 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2803 struct btrfs_trans_handle *trans,
2804 struct btrfs_path *path)
2805 {
2806 struct btrfs_root *root = block_group->fs_info->tree_root;
2807 struct inode *inode = NULL;
2808 u64 alloc_hint = 0;
2809 int dcs = BTRFS_DC_ERROR;
2810 int num_pages = 0;
2811 int retries = 0;
2812 int ret = 0;
2813
2814 /*
2815 * If this block group is smaller than 100 megs don't bother caching the
2816 * block group.
2817 */
2818 if (block_group->key.offset < (100 * 1024 * 1024)) {
2819 spin_lock(&block_group->lock);
2820 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2821 spin_unlock(&block_group->lock);
2822 return 0;
2823 }
2824
2825 again:
2826 inode = lookup_free_space_inode(root, block_group, path);
2827 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2828 ret = PTR_ERR(inode);
2829 btrfs_release_path(path);
2830 goto out;
2831 }
2832
2833 if (IS_ERR(inode)) {
2834 BUG_ON(retries);
2835 retries++;
2836
2837 if (block_group->ro)
2838 goto out_free;
2839
2840 ret = create_free_space_inode(root, trans, block_group, path);
2841 if (ret)
2842 goto out_free;
2843 goto again;
2844 }
2845
2846 /* We've already setup this transaction, go ahead and exit */
2847 if (block_group->cache_generation == trans->transid &&
2848 i_size_read(inode)) {
2849 dcs = BTRFS_DC_SETUP;
2850 goto out_put;
2851 }
2852
2853 /*
2854 * We want to set the generation to 0, that way if anything goes wrong
2855 * from here on out we know not to trust this cache when we load up next
2856 * time.
2857 */
2858 BTRFS_I(inode)->generation = 0;
2859 ret = btrfs_update_inode(trans, root, inode);
2860 WARN_ON(ret);
2861
2862 if (i_size_read(inode) > 0) {
2863 ret = btrfs_truncate_free_space_cache(root, trans, path,
2864 inode);
2865 if (ret)
2866 goto out_put;
2867 }
2868
2869 spin_lock(&block_group->lock);
2870 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2871 /* We're not cached, don't bother trying to write stuff out */
2872 dcs = BTRFS_DC_WRITTEN;
2873 spin_unlock(&block_group->lock);
2874 goto out_put;
2875 }
2876 spin_unlock(&block_group->lock);
2877
2878 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2879 if (!num_pages)
2880 num_pages = 1;
2881
2882 /*
2883 * Just to make absolutely sure we have enough space, we're going to
2884 * preallocate 12 pages worth of space for each block group. In
2885 * practice we ought to use at most 8, but we need extra space so we can
2886 * add our header and have a terminator between the extents and the
2887 * bitmaps.
2888 */
2889 num_pages *= 16;
2890 num_pages *= PAGE_CACHE_SIZE;
2891
2892 ret = btrfs_check_data_free_space(inode, num_pages);
2893 if (ret)
2894 goto out_put;
2895
2896 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2897 num_pages, num_pages,
2898 &alloc_hint);
2899 if (!ret)
2900 dcs = BTRFS_DC_SETUP;
2901 btrfs_free_reserved_data_space(inode, num_pages);
2902
2903 out_put:
2904 iput(inode);
2905 out_free:
2906 btrfs_release_path(path);
2907 out:
2908 spin_lock(&block_group->lock);
2909 if (!ret && dcs == BTRFS_DC_SETUP)
2910 block_group->cache_generation = trans->transid;
2911 block_group->disk_cache_state = dcs;
2912 spin_unlock(&block_group->lock);
2913
2914 return ret;
2915 }
2916
2917 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2918 struct btrfs_root *root)
2919 {
2920 struct btrfs_block_group_cache *cache;
2921 int err = 0;
2922 struct btrfs_path *path;
2923 u64 last = 0;
2924
2925 path = btrfs_alloc_path();
2926 if (!path)
2927 return -ENOMEM;
2928
2929 again:
2930 while (1) {
2931 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2932 while (cache) {
2933 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2934 break;
2935 cache = next_block_group(root, cache);
2936 }
2937 if (!cache) {
2938 if (last == 0)
2939 break;
2940 last = 0;
2941 continue;
2942 }
2943 err = cache_save_setup(cache, trans, path);
2944 last = cache->key.objectid + cache->key.offset;
2945 btrfs_put_block_group(cache);
2946 }
2947
2948 while (1) {
2949 if (last == 0) {
2950 err = btrfs_run_delayed_refs(trans, root,
2951 (unsigned long)-1);
2952 BUG_ON(err);
2953 }
2954
2955 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2956 while (cache) {
2957 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2958 btrfs_put_block_group(cache);
2959 goto again;
2960 }
2961
2962 if (cache->dirty)
2963 break;
2964 cache = next_block_group(root, cache);
2965 }
2966 if (!cache) {
2967 if (last == 0)
2968 break;
2969 last = 0;
2970 continue;
2971 }
2972
2973 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2974 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2975 cache->dirty = 0;
2976 last = cache->key.objectid + cache->key.offset;
2977
2978 err = write_one_cache_group(trans, root, path, cache);
2979 BUG_ON(err);
2980 btrfs_put_block_group(cache);
2981 }
2982
2983 while (1) {
2984 /*
2985 * I don't think this is needed since we're just marking our
2986 * preallocated extent as written, but just in case it can't
2987 * hurt.
2988 */
2989 if (last == 0) {
2990 err = btrfs_run_delayed_refs(trans, root,
2991 (unsigned long)-1);
2992 BUG_ON(err);
2993 }
2994
2995 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2996 while (cache) {
2997 /*
2998 * Really this shouldn't happen, but it could if we
2999 * couldn't write the entire preallocated extent and
3000 * splitting the extent resulted in a new block.
3001 */
3002 if (cache->dirty) {
3003 btrfs_put_block_group(cache);
3004 goto again;
3005 }
3006 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3007 break;
3008 cache = next_block_group(root, cache);
3009 }
3010 if (!cache) {
3011 if (last == 0)
3012 break;
3013 last = 0;
3014 continue;
3015 }
3016
3017 btrfs_write_out_cache(root, trans, cache, path);
3018
3019 /*
3020 * If we didn't have an error then the cache state is still
3021 * NEED_WRITE, so we can set it to WRITTEN.
3022 */
3023 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3024 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3025 last = cache->key.objectid + cache->key.offset;
3026 btrfs_put_block_group(cache);
3027 }
3028
3029 btrfs_free_path(path);
3030 return 0;
3031 }
3032
3033 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3034 {
3035 struct btrfs_block_group_cache *block_group;
3036 int readonly = 0;
3037
3038 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3039 if (!block_group || block_group->ro)
3040 readonly = 1;
3041 if (block_group)
3042 btrfs_put_block_group(block_group);
3043 return readonly;
3044 }
3045
3046 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3047 u64 total_bytes, u64 bytes_used,
3048 struct btrfs_space_info **space_info)
3049 {
3050 struct btrfs_space_info *found;
3051 int i;
3052 int factor;
3053
3054 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3055 BTRFS_BLOCK_GROUP_RAID10))
3056 factor = 2;
3057 else
3058 factor = 1;
3059
3060 found = __find_space_info(info, flags);
3061 if (found) {
3062 spin_lock(&found->lock);
3063 found->total_bytes += total_bytes;
3064 found->disk_total += total_bytes * factor;
3065 found->bytes_used += bytes_used;
3066 found->disk_used += bytes_used * factor;
3067 found->full = 0;
3068 spin_unlock(&found->lock);
3069 *space_info = found;
3070 return 0;
3071 }
3072 found = kzalloc(sizeof(*found), GFP_NOFS);
3073 if (!found)
3074 return -ENOMEM;
3075
3076 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3077 INIT_LIST_HEAD(&found->block_groups[i]);
3078 init_rwsem(&found->groups_sem);
3079 spin_lock_init(&found->lock);
3080 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3081 found->total_bytes = total_bytes;
3082 found->disk_total = total_bytes * factor;
3083 found->bytes_used = bytes_used;
3084 found->disk_used = bytes_used * factor;
3085 found->bytes_pinned = 0;
3086 found->bytes_reserved = 0;
3087 found->bytes_readonly = 0;
3088 found->bytes_may_use = 0;
3089 found->full = 0;
3090 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3091 found->chunk_alloc = 0;
3092 found->flush = 0;
3093 init_waitqueue_head(&found->wait);
3094 *space_info = found;
3095 list_add_rcu(&found->list, &info->space_info);
3096 return 0;
3097 }
3098
3099 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3100 {
3101 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3102
3103 /* chunk -> extended profile */
3104 if (extra_flags == 0)
3105 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3106
3107 if (flags & BTRFS_BLOCK_GROUP_DATA)
3108 fs_info->avail_data_alloc_bits |= extra_flags;
3109 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3110 fs_info->avail_metadata_alloc_bits |= extra_flags;
3111 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3112 fs_info->avail_system_alloc_bits |= extra_flags;
3113 }
3114
3115 /*
3116 * @flags: available profiles in extended format (see ctree.h)
3117 *
3118 * Returns reduced profile in chunk format. If profile changing is in
3119 * progress (either running or paused) picks the target profile (if it's
3120 * already available), otherwise falls back to plain reducing.
3121 */
3122 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3123 {
3124 /*
3125 * we add in the count of missing devices because we want
3126 * to make sure that any RAID levels on a degraded FS
3127 * continue to be honored.
3128 */
3129 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3130 root->fs_info->fs_devices->missing_devices;
3131
3132 /* pick restriper's target profile if it's available */
3133 spin_lock(&root->fs_info->balance_lock);
3134 if (root->fs_info->balance_ctl) {
3135 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3136 u64 tgt = 0;
3137
3138 if ((flags & BTRFS_BLOCK_GROUP_DATA) &&
3139 (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3140 (flags & bctl->data.target)) {
3141 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3142 } else if ((flags & BTRFS_BLOCK_GROUP_SYSTEM) &&
3143 (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3144 (flags & bctl->sys.target)) {
3145 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3146 } else if ((flags & BTRFS_BLOCK_GROUP_METADATA) &&
3147 (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3148 (flags & bctl->meta.target)) {
3149 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3150 }
3151
3152 if (tgt) {
3153 spin_unlock(&root->fs_info->balance_lock);
3154 flags = tgt;
3155 goto out;
3156 }
3157 }
3158 spin_unlock(&root->fs_info->balance_lock);
3159
3160 if (num_devices == 1)
3161 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3162 if (num_devices < 4)
3163 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3164
3165 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3166 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3167 BTRFS_BLOCK_GROUP_RAID10))) {
3168 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3169 }
3170
3171 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3172 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3173 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3174 }
3175
3176 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3177 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3178 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3179 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3180 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3181 }
3182
3183 out:
3184 /* extended -> chunk profile */
3185 flags &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3186 return flags;
3187 }
3188
3189 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3190 {
3191 if (flags & BTRFS_BLOCK_GROUP_DATA)
3192 flags |= root->fs_info->avail_data_alloc_bits;
3193 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3194 flags |= root->fs_info->avail_system_alloc_bits;
3195 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3196 flags |= root->fs_info->avail_metadata_alloc_bits;
3197
3198 return btrfs_reduce_alloc_profile(root, flags);
3199 }
3200
3201 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3202 {
3203 u64 flags;
3204
3205 if (data)
3206 flags = BTRFS_BLOCK_GROUP_DATA;
3207 else if (root == root->fs_info->chunk_root)
3208 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3209 else
3210 flags = BTRFS_BLOCK_GROUP_METADATA;
3211
3212 return get_alloc_profile(root, flags);
3213 }
3214
3215 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3216 {
3217 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3218 BTRFS_BLOCK_GROUP_DATA);
3219 }
3220
3221 /*
3222 * This will check the space that the inode allocates from to make sure we have
3223 * enough space for bytes.
3224 */
3225 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3226 {
3227 struct btrfs_space_info *data_sinfo;
3228 struct btrfs_root *root = BTRFS_I(inode)->root;
3229 u64 used;
3230 int ret = 0, committed = 0, alloc_chunk = 1;
3231
3232 /* make sure bytes are sectorsize aligned */
3233 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3234
3235 if (root == root->fs_info->tree_root ||
3236 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3237 alloc_chunk = 0;
3238 committed = 1;
3239 }
3240
3241 data_sinfo = BTRFS_I(inode)->space_info;
3242 if (!data_sinfo)
3243 goto alloc;
3244
3245 again:
3246 /* make sure we have enough space to handle the data first */
3247 spin_lock(&data_sinfo->lock);
3248 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3249 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3250 data_sinfo->bytes_may_use;
3251
3252 if (used + bytes > data_sinfo->total_bytes) {
3253 struct btrfs_trans_handle *trans;
3254
3255 /*
3256 * if we don't have enough free bytes in this space then we need
3257 * to alloc a new chunk.
3258 */
3259 if (!data_sinfo->full && alloc_chunk) {
3260 u64 alloc_target;
3261
3262 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3263 spin_unlock(&data_sinfo->lock);
3264 alloc:
3265 alloc_target = btrfs_get_alloc_profile(root, 1);
3266 trans = btrfs_join_transaction(root);
3267 if (IS_ERR(trans))
3268 return PTR_ERR(trans);
3269
3270 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3271 bytes + 2 * 1024 * 1024,
3272 alloc_target,
3273 CHUNK_ALLOC_NO_FORCE);
3274 btrfs_end_transaction(trans, root);
3275 if (ret < 0) {
3276 if (ret != -ENOSPC)
3277 return ret;
3278 else
3279 goto commit_trans;
3280 }
3281
3282 if (!data_sinfo) {
3283 btrfs_set_inode_space_info(root, inode);
3284 data_sinfo = BTRFS_I(inode)->space_info;
3285 }
3286 goto again;
3287 }
3288
3289 /*
3290 * If we have less pinned bytes than we want to allocate then
3291 * don't bother committing the transaction, it won't help us.
3292 */
3293 if (data_sinfo->bytes_pinned < bytes)
3294 committed = 1;
3295 spin_unlock(&data_sinfo->lock);
3296
3297 /* commit the current transaction and try again */
3298 commit_trans:
3299 if (!committed &&
3300 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3301 committed = 1;
3302 trans = btrfs_join_transaction(root);
3303 if (IS_ERR(trans))
3304 return PTR_ERR(trans);
3305 ret = btrfs_commit_transaction(trans, root);
3306 if (ret)
3307 return ret;
3308 goto again;
3309 }
3310
3311 return -ENOSPC;
3312 }
3313 data_sinfo->bytes_may_use += bytes;
3314 trace_btrfs_space_reservation(root->fs_info, "space_info",
3315 (u64)(unsigned long)data_sinfo,
3316 bytes, 1);
3317 spin_unlock(&data_sinfo->lock);
3318
3319 return 0;
3320 }
3321
3322 /*
3323 * Called if we need to clear a data reservation for this inode.
3324 */
3325 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3326 {
3327 struct btrfs_root *root = BTRFS_I(inode)->root;
3328 struct btrfs_space_info *data_sinfo;
3329
3330 /* make sure bytes are sectorsize aligned */
3331 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3332
3333 data_sinfo = BTRFS_I(inode)->space_info;
3334 spin_lock(&data_sinfo->lock);
3335 data_sinfo->bytes_may_use -= bytes;
3336 trace_btrfs_space_reservation(root->fs_info, "space_info",
3337 (u64)(unsigned long)data_sinfo,
3338 bytes, 0);
3339 spin_unlock(&data_sinfo->lock);
3340 }
3341
3342 static void force_metadata_allocation(struct btrfs_fs_info *info)
3343 {
3344 struct list_head *head = &info->space_info;
3345 struct btrfs_space_info *found;
3346
3347 rcu_read_lock();
3348 list_for_each_entry_rcu(found, head, list) {
3349 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3350 found->force_alloc = CHUNK_ALLOC_FORCE;
3351 }
3352 rcu_read_unlock();
3353 }
3354
3355 static int should_alloc_chunk(struct btrfs_root *root,
3356 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3357 int force)
3358 {
3359 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3360 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3361 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3362 u64 thresh;
3363
3364 if (force == CHUNK_ALLOC_FORCE)
3365 return 1;
3366
3367 /*
3368 * We need to take into account the global rsv because for all intents
3369 * and purposes it's used space. Don't worry about locking the
3370 * global_rsv, it doesn't change except when the transaction commits.
3371 */
3372 num_allocated += global_rsv->size;
3373
3374 /*
3375 * in limited mode, we want to have some free space up to
3376 * about 1% of the FS size.
3377 */
3378 if (force == CHUNK_ALLOC_LIMITED) {
3379 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3380 thresh = max_t(u64, 64 * 1024 * 1024,
3381 div_factor_fine(thresh, 1));
3382
3383 if (num_bytes - num_allocated < thresh)
3384 return 1;
3385 }
3386 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3387
3388 /* 256MB or 2% of the FS */
3389 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3390 /* system chunks need a much small threshold */
3391 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3392 thresh = 32 * 1024 * 1024;
3393
3394 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3395 return 0;
3396 return 1;
3397 }
3398
3399 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3400 struct btrfs_root *extent_root, u64 alloc_bytes,
3401 u64 flags, int force)
3402 {
3403 struct btrfs_space_info *space_info;
3404 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3405 int wait_for_alloc = 0;
3406 int ret = 0;
3407
3408 BUG_ON(!profile_is_valid(flags, 0));
3409
3410 space_info = __find_space_info(extent_root->fs_info, flags);
3411 if (!space_info) {
3412 ret = update_space_info(extent_root->fs_info, flags,
3413 0, 0, &space_info);
3414 BUG_ON(ret);
3415 }
3416 BUG_ON(!space_info);
3417
3418 again:
3419 spin_lock(&space_info->lock);
3420 if (force < space_info->force_alloc)
3421 force = space_info->force_alloc;
3422 if (space_info->full) {
3423 spin_unlock(&space_info->lock);
3424 return 0;
3425 }
3426
3427 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3428 spin_unlock(&space_info->lock);
3429 return 0;
3430 } else if (space_info->chunk_alloc) {
3431 wait_for_alloc = 1;
3432 } else {
3433 space_info->chunk_alloc = 1;
3434 }
3435
3436 spin_unlock(&space_info->lock);
3437
3438 mutex_lock(&fs_info->chunk_mutex);
3439
3440 /*
3441 * The chunk_mutex is held throughout the entirety of a chunk
3442 * allocation, so once we've acquired the chunk_mutex we know that the
3443 * other guy is done and we need to recheck and see if we should
3444 * allocate.
3445 */
3446 if (wait_for_alloc) {
3447 mutex_unlock(&fs_info->chunk_mutex);
3448 wait_for_alloc = 0;
3449 goto again;
3450 }
3451
3452 /*
3453 * If we have mixed data/metadata chunks we want to make sure we keep
3454 * allocating mixed chunks instead of individual chunks.
3455 */
3456 if (btrfs_mixed_space_info(space_info))
3457 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3458
3459 /*
3460 * if we're doing a data chunk, go ahead and make sure that
3461 * we keep a reasonable number of metadata chunks allocated in the
3462 * FS as well.
3463 */
3464 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3465 fs_info->data_chunk_allocations++;
3466 if (!(fs_info->data_chunk_allocations %
3467 fs_info->metadata_ratio))
3468 force_metadata_allocation(fs_info);
3469 }
3470
3471 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3472 if (ret < 0 && ret != -ENOSPC)
3473 goto out;
3474
3475 spin_lock(&space_info->lock);
3476 if (ret)
3477 space_info->full = 1;
3478 else
3479 ret = 1;
3480
3481 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3482 space_info->chunk_alloc = 0;
3483 spin_unlock(&space_info->lock);
3484 out:
3485 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3486 return ret;
3487 }
3488
3489 /*
3490 * shrink metadata reservation for delalloc
3491 */
3492 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3493 bool wait_ordered)
3494 {
3495 struct btrfs_block_rsv *block_rsv;
3496 struct btrfs_space_info *space_info;
3497 struct btrfs_trans_handle *trans;
3498 u64 reserved;
3499 u64 max_reclaim;
3500 u64 reclaimed = 0;
3501 long time_left;
3502 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3503 int loops = 0;
3504 unsigned long progress;
3505
3506 trans = (struct btrfs_trans_handle *)current->journal_info;
3507 block_rsv = &root->fs_info->delalloc_block_rsv;
3508 space_info = block_rsv->space_info;
3509
3510 smp_mb();
3511 reserved = space_info->bytes_may_use;
3512 progress = space_info->reservation_progress;
3513
3514 if (reserved == 0)
3515 return 0;
3516
3517 smp_mb();
3518 if (root->fs_info->delalloc_bytes == 0) {
3519 if (trans)
3520 return 0;
3521 btrfs_wait_ordered_extents(root, 0, 0);
3522 return 0;
3523 }
3524
3525 max_reclaim = min(reserved, to_reclaim);
3526 nr_pages = max_t(unsigned long, nr_pages,
3527 max_reclaim >> PAGE_CACHE_SHIFT);
3528 while (loops < 1024) {
3529 /* have the flusher threads jump in and do some IO */
3530 smp_mb();
3531 nr_pages = min_t(unsigned long, nr_pages,
3532 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3533 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3534 WB_REASON_FS_FREE_SPACE);
3535
3536 spin_lock(&space_info->lock);
3537 if (reserved > space_info->bytes_may_use)
3538 reclaimed += reserved - space_info->bytes_may_use;
3539 reserved = space_info->bytes_may_use;
3540 spin_unlock(&space_info->lock);
3541
3542 loops++;
3543
3544 if (reserved == 0 || reclaimed >= max_reclaim)
3545 break;
3546
3547 if (trans && trans->transaction->blocked)
3548 return -EAGAIN;
3549
3550 if (wait_ordered && !trans) {
3551 btrfs_wait_ordered_extents(root, 0, 0);
3552 } else {
3553 time_left = schedule_timeout_interruptible(1);
3554
3555 /* We were interrupted, exit */
3556 if (time_left)
3557 break;
3558 }
3559
3560 /* we've kicked the IO a few times, if anything has been freed,
3561 * exit. There is no sense in looping here for a long time
3562 * when we really need to commit the transaction, or there are
3563 * just too many writers without enough free space
3564 */
3565
3566 if (loops > 3) {
3567 smp_mb();
3568 if (progress != space_info->reservation_progress)
3569 break;
3570 }
3571
3572 }
3573
3574 return reclaimed >= to_reclaim;
3575 }
3576
3577 /**
3578 * maybe_commit_transaction - possibly commit the transaction if its ok to
3579 * @root - the root we're allocating for
3580 * @bytes - the number of bytes we want to reserve
3581 * @force - force the commit
3582 *
3583 * This will check to make sure that committing the transaction will actually
3584 * get us somewhere and then commit the transaction if it does. Otherwise it
3585 * will return -ENOSPC.
3586 */
3587 static int may_commit_transaction(struct btrfs_root *root,
3588 struct btrfs_space_info *space_info,
3589 u64 bytes, int force)
3590 {
3591 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3592 struct btrfs_trans_handle *trans;
3593
3594 trans = (struct btrfs_trans_handle *)current->journal_info;
3595 if (trans)
3596 return -EAGAIN;
3597
3598 if (force)
3599 goto commit;
3600
3601 /* See if there is enough pinned space to make this reservation */
3602 spin_lock(&space_info->lock);
3603 if (space_info->bytes_pinned >= bytes) {
3604 spin_unlock(&space_info->lock);
3605 goto commit;
3606 }
3607 spin_unlock(&space_info->lock);
3608
3609 /*
3610 * See if there is some space in the delayed insertion reservation for
3611 * this reservation.
3612 */
3613 if (space_info != delayed_rsv->space_info)
3614 return -ENOSPC;
3615
3616 spin_lock(&space_info->lock);
3617 spin_lock(&delayed_rsv->lock);
3618 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3619 spin_unlock(&delayed_rsv->lock);
3620 spin_unlock(&space_info->lock);
3621 return -ENOSPC;
3622 }
3623 spin_unlock(&delayed_rsv->lock);
3624 spin_unlock(&space_info->lock);
3625
3626 commit:
3627 trans = btrfs_join_transaction(root);
3628 if (IS_ERR(trans))
3629 return -ENOSPC;
3630
3631 return btrfs_commit_transaction(trans, root);
3632 }
3633
3634 /**
3635 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3636 * @root - the root we're allocating for
3637 * @block_rsv - the block_rsv we're allocating for
3638 * @orig_bytes - the number of bytes we want
3639 * @flush - wether or not we can flush to make our reservation
3640 *
3641 * This will reserve orgi_bytes number of bytes from the space info associated
3642 * with the block_rsv. If there is not enough space it will make an attempt to
3643 * flush out space to make room. It will do this by flushing delalloc if
3644 * possible or committing the transaction. If flush is 0 then no attempts to
3645 * regain reservations will be made and this will fail if there is not enough
3646 * space already.
3647 */
3648 static int reserve_metadata_bytes(struct btrfs_root *root,
3649 struct btrfs_block_rsv *block_rsv,
3650 u64 orig_bytes, int flush)
3651 {
3652 struct btrfs_space_info *space_info = block_rsv->space_info;
3653 u64 used;
3654 u64 num_bytes = orig_bytes;
3655 int retries = 0;
3656 int ret = 0;
3657 bool committed = false;
3658 bool flushing = false;
3659 bool wait_ordered = false;
3660
3661 again:
3662 ret = 0;
3663 spin_lock(&space_info->lock);
3664 /*
3665 * We only want to wait if somebody other than us is flushing and we are
3666 * actually alloed to flush.
3667 */
3668 while (flush && !flushing && space_info->flush) {
3669 spin_unlock(&space_info->lock);
3670 /*
3671 * If we have a trans handle we can't wait because the flusher
3672 * may have to commit the transaction, which would mean we would
3673 * deadlock since we are waiting for the flusher to finish, but
3674 * hold the current transaction open.
3675 */
3676 if (current->journal_info)
3677 return -EAGAIN;
3678 ret = wait_event_interruptible(space_info->wait,
3679 !space_info->flush);
3680 /* Must have been interrupted, return */
3681 if (ret)
3682 return -EINTR;
3683
3684 spin_lock(&space_info->lock);
3685 }
3686
3687 ret = -ENOSPC;
3688 used = space_info->bytes_used + space_info->bytes_reserved +
3689 space_info->bytes_pinned + space_info->bytes_readonly +
3690 space_info->bytes_may_use;
3691
3692 /*
3693 * The idea here is that we've not already over-reserved the block group
3694 * then we can go ahead and save our reservation first and then start
3695 * flushing if we need to. Otherwise if we've already overcommitted
3696 * lets start flushing stuff first and then come back and try to make
3697 * our reservation.
3698 */
3699 if (used <= space_info->total_bytes) {
3700 if (used + orig_bytes <= space_info->total_bytes) {
3701 space_info->bytes_may_use += orig_bytes;
3702 trace_btrfs_space_reservation(root->fs_info,
3703 "space_info",
3704 (u64)(unsigned long)space_info,
3705 orig_bytes, 1);
3706 ret = 0;
3707 } else {
3708 /*
3709 * Ok set num_bytes to orig_bytes since we aren't
3710 * overocmmitted, this way we only try and reclaim what
3711 * we need.
3712 */
3713 num_bytes = orig_bytes;
3714 }
3715 } else {
3716 /*
3717 * Ok we're over committed, set num_bytes to the overcommitted
3718 * amount plus the amount of bytes that we need for this
3719 * reservation.
3720 */
3721 wait_ordered = true;
3722 num_bytes = used - space_info->total_bytes +
3723 (orig_bytes * (retries + 1));
3724 }
3725
3726 if (ret) {
3727 u64 profile = btrfs_get_alloc_profile(root, 0);
3728 u64 avail;
3729
3730 /*
3731 * If we have a lot of space that's pinned, don't bother doing
3732 * the overcommit dance yet and just commit the transaction.
3733 */
3734 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3735 do_div(avail, 10);
3736 if (space_info->bytes_pinned >= avail && flush && !committed) {
3737 space_info->flush = 1;
3738 flushing = true;
3739 spin_unlock(&space_info->lock);
3740 ret = may_commit_transaction(root, space_info,
3741 orig_bytes, 1);
3742 if (ret)
3743 goto out;
3744 committed = true;
3745 goto again;
3746 }
3747
3748 spin_lock(&root->fs_info->free_chunk_lock);
3749 avail = root->fs_info->free_chunk_space;
3750
3751 /*
3752 * If we have dup, raid1 or raid10 then only half of the free
3753 * space is actually useable.
3754 */
3755 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3756 BTRFS_BLOCK_GROUP_RAID1 |
3757 BTRFS_BLOCK_GROUP_RAID10))
3758 avail >>= 1;
3759
3760 /*
3761 * If we aren't flushing don't let us overcommit too much, say
3762 * 1/8th of the space. If we can flush, let it overcommit up to
3763 * 1/2 of the space.
3764 */
3765 if (flush)
3766 avail >>= 3;
3767 else
3768 avail >>= 1;
3769 spin_unlock(&root->fs_info->free_chunk_lock);
3770
3771 if (used + num_bytes < space_info->total_bytes + avail) {
3772 space_info->bytes_may_use += orig_bytes;
3773 trace_btrfs_space_reservation(root->fs_info,
3774 "space_info",
3775 (u64)(unsigned long)space_info,
3776 orig_bytes, 1);
3777 ret = 0;
3778 } else {
3779 wait_ordered = true;
3780 }
3781 }
3782
3783 /*
3784 * Couldn't make our reservation, save our place so while we're trying
3785 * to reclaim space we can actually use it instead of somebody else
3786 * stealing it from us.
3787 */
3788 if (ret && flush) {
3789 flushing = true;
3790 space_info->flush = 1;
3791 }
3792
3793 spin_unlock(&space_info->lock);
3794
3795 if (!ret || !flush)
3796 goto out;
3797
3798 /*
3799 * We do synchronous shrinking since we don't actually unreserve
3800 * metadata until after the IO is completed.
3801 */
3802 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3803 if (ret < 0)
3804 goto out;
3805
3806 ret = 0;
3807
3808 /*
3809 * So if we were overcommitted it's possible that somebody else flushed
3810 * out enough space and we simply didn't have enough space to reclaim,
3811 * so go back around and try again.
3812 */
3813 if (retries < 2) {
3814 wait_ordered = true;
3815 retries++;
3816 goto again;
3817 }
3818
3819 ret = -ENOSPC;
3820 if (committed)
3821 goto out;
3822
3823 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3824 if (!ret) {
3825 committed = true;
3826 goto again;
3827 }
3828
3829 out:
3830 if (flushing) {
3831 spin_lock(&space_info->lock);
3832 space_info->flush = 0;
3833 wake_up_all(&space_info->wait);
3834 spin_unlock(&space_info->lock);
3835 }
3836 return ret;
3837 }
3838
3839 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3840 struct btrfs_root *root)
3841 {
3842 struct btrfs_block_rsv *block_rsv = NULL;
3843
3844 if (root->ref_cows || root == root->fs_info->csum_root)
3845 block_rsv = trans->block_rsv;
3846
3847 if (!block_rsv)
3848 block_rsv = root->block_rsv;
3849
3850 if (!block_rsv)
3851 block_rsv = &root->fs_info->empty_block_rsv;
3852
3853 return block_rsv;
3854 }
3855
3856 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3857 u64 num_bytes)
3858 {
3859 int ret = -ENOSPC;
3860 spin_lock(&block_rsv->lock);
3861 if (block_rsv->reserved >= num_bytes) {
3862 block_rsv->reserved -= num_bytes;
3863 if (block_rsv->reserved < block_rsv->size)
3864 block_rsv->full = 0;
3865 ret = 0;
3866 }
3867 spin_unlock(&block_rsv->lock);
3868 return ret;
3869 }
3870
3871 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3872 u64 num_bytes, int update_size)
3873 {
3874 spin_lock(&block_rsv->lock);
3875 block_rsv->reserved += num_bytes;
3876 if (update_size)
3877 block_rsv->size += num_bytes;
3878 else if (block_rsv->reserved >= block_rsv->size)
3879 block_rsv->full = 1;
3880 spin_unlock(&block_rsv->lock);
3881 }
3882
3883 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3884 struct btrfs_block_rsv *block_rsv,
3885 struct btrfs_block_rsv *dest, u64 num_bytes)
3886 {
3887 struct btrfs_space_info *space_info = block_rsv->space_info;
3888
3889 spin_lock(&block_rsv->lock);
3890 if (num_bytes == (u64)-1)
3891 num_bytes = block_rsv->size;
3892 block_rsv->size -= num_bytes;
3893 if (block_rsv->reserved >= block_rsv->size) {
3894 num_bytes = block_rsv->reserved - block_rsv->size;
3895 block_rsv->reserved = block_rsv->size;
3896 block_rsv->full = 1;
3897 } else {
3898 num_bytes = 0;
3899 }
3900 spin_unlock(&block_rsv->lock);
3901
3902 if (num_bytes > 0) {
3903 if (dest) {
3904 spin_lock(&dest->lock);
3905 if (!dest->full) {
3906 u64 bytes_to_add;
3907
3908 bytes_to_add = dest->size - dest->reserved;
3909 bytes_to_add = min(num_bytes, bytes_to_add);
3910 dest->reserved += bytes_to_add;
3911 if (dest->reserved >= dest->size)
3912 dest->full = 1;
3913 num_bytes -= bytes_to_add;
3914 }
3915 spin_unlock(&dest->lock);
3916 }
3917 if (num_bytes) {
3918 spin_lock(&space_info->lock);
3919 space_info->bytes_may_use -= num_bytes;
3920 trace_btrfs_space_reservation(fs_info, "space_info",
3921 (u64)(unsigned long)space_info,
3922 num_bytes, 0);
3923 space_info->reservation_progress++;
3924 spin_unlock(&space_info->lock);
3925 }
3926 }
3927 }
3928
3929 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3930 struct btrfs_block_rsv *dst, u64 num_bytes)
3931 {
3932 int ret;
3933
3934 ret = block_rsv_use_bytes(src, num_bytes);
3935 if (ret)
3936 return ret;
3937
3938 block_rsv_add_bytes(dst, num_bytes, 1);
3939 return 0;
3940 }
3941
3942 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3943 {
3944 memset(rsv, 0, sizeof(*rsv));
3945 spin_lock_init(&rsv->lock);
3946 }
3947
3948 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3949 {
3950 struct btrfs_block_rsv *block_rsv;
3951 struct btrfs_fs_info *fs_info = root->fs_info;
3952
3953 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3954 if (!block_rsv)
3955 return NULL;
3956
3957 btrfs_init_block_rsv(block_rsv);
3958 block_rsv->space_info = __find_space_info(fs_info,
3959 BTRFS_BLOCK_GROUP_METADATA);
3960 return block_rsv;
3961 }
3962
3963 void btrfs_free_block_rsv(struct btrfs_root *root,
3964 struct btrfs_block_rsv *rsv)
3965 {
3966 btrfs_block_rsv_release(root, rsv, (u64)-1);
3967 kfree(rsv);
3968 }
3969
3970 static inline int __block_rsv_add(struct btrfs_root *root,
3971 struct btrfs_block_rsv *block_rsv,
3972 u64 num_bytes, int flush)
3973 {
3974 int ret;
3975
3976 if (num_bytes == 0)
3977 return 0;
3978
3979 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3980 if (!ret) {
3981 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3982 return 0;
3983 }
3984
3985 return ret;
3986 }
3987
3988 int btrfs_block_rsv_add(struct btrfs_root *root,
3989 struct btrfs_block_rsv *block_rsv,
3990 u64 num_bytes)
3991 {
3992 return __block_rsv_add(root, block_rsv, num_bytes, 1);
3993 }
3994
3995 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3996 struct btrfs_block_rsv *block_rsv,
3997 u64 num_bytes)
3998 {
3999 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4000 }
4001
4002 int btrfs_block_rsv_check(struct btrfs_root *root,
4003 struct btrfs_block_rsv *block_rsv, int min_factor)
4004 {
4005 u64 num_bytes = 0;
4006 int ret = -ENOSPC;
4007
4008 if (!block_rsv)
4009 return 0;
4010
4011 spin_lock(&block_rsv->lock);
4012 num_bytes = div_factor(block_rsv->size, min_factor);
4013 if (block_rsv->reserved >= num_bytes)
4014 ret = 0;
4015 spin_unlock(&block_rsv->lock);
4016
4017 return ret;
4018 }
4019
4020 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4021 struct btrfs_block_rsv *block_rsv,
4022 u64 min_reserved, int flush)
4023 {
4024 u64 num_bytes = 0;
4025 int ret = -ENOSPC;
4026
4027 if (!block_rsv)
4028 return 0;
4029
4030 spin_lock(&block_rsv->lock);
4031 num_bytes = min_reserved;
4032 if (block_rsv->reserved >= num_bytes)
4033 ret = 0;
4034 else
4035 num_bytes -= block_rsv->reserved;
4036 spin_unlock(&block_rsv->lock);
4037
4038 if (!ret)
4039 return 0;
4040
4041 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4042 if (!ret) {
4043 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4044 return 0;
4045 }
4046
4047 return ret;
4048 }
4049
4050 int btrfs_block_rsv_refill(struct btrfs_root *root,
4051 struct btrfs_block_rsv *block_rsv,
4052 u64 min_reserved)
4053 {
4054 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4055 }
4056
4057 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4058 struct btrfs_block_rsv *block_rsv,
4059 u64 min_reserved)
4060 {
4061 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4062 }
4063
4064 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4065 struct btrfs_block_rsv *dst_rsv,
4066 u64 num_bytes)
4067 {
4068 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4069 }
4070
4071 void btrfs_block_rsv_release(struct btrfs_root *root,
4072 struct btrfs_block_rsv *block_rsv,
4073 u64 num_bytes)
4074 {
4075 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4076 if (global_rsv->full || global_rsv == block_rsv ||
4077 block_rsv->space_info != global_rsv->space_info)
4078 global_rsv = NULL;
4079 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4080 num_bytes);
4081 }
4082
4083 /*
4084 * helper to calculate size of global block reservation.
4085 * the desired value is sum of space used by extent tree,
4086 * checksum tree and root tree
4087 */
4088 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4089 {
4090 struct btrfs_space_info *sinfo;
4091 u64 num_bytes;
4092 u64 meta_used;
4093 u64 data_used;
4094 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4095
4096 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4097 spin_lock(&sinfo->lock);
4098 data_used = sinfo->bytes_used;
4099 spin_unlock(&sinfo->lock);
4100
4101 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4102 spin_lock(&sinfo->lock);
4103 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4104 data_used = 0;
4105 meta_used = sinfo->bytes_used;
4106 spin_unlock(&sinfo->lock);
4107
4108 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4109 csum_size * 2;
4110 num_bytes += div64_u64(data_used + meta_used, 50);
4111
4112 if (num_bytes * 3 > meta_used)
4113 num_bytes = div64_u64(meta_used, 3) * 2;
4114
4115 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4116 }
4117
4118 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4119 {
4120 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4121 struct btrfs_space_info *sinfo = block_rsv->space_info;
4122 u64 num_bytes;
4123
4124 num_bytes = calc_global_metadata_size(fs_info);
4125
4126 spin_lock(&block_rsv->lock);
4127 spin_lock(&sinfo->lock);
4128
4129 block_rsv->size = num_bytes;
4130
4131 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4132 sinfo->bytes_reserved + sinfo->bytes_readonly +
4133 sinfo->bytes_may_use;
4134
4135 if (sinfo->total_bytes > num_bytes) {
4136 num_bytes = sinfo->total_bytes - num_bytes;
4137 block_rsv->reserved += num_bytes;
4138 sinfo->bytes_may_use += num_bytes;
4139 trace_btrfs_space_reservation(fs_info, "space_info",
4140 (u64)(unsigned long)sinfo, num_bytes, 1);
4141 }
4142
4143 if (block_rsv->reserved >= block_rsv->size) {
4144 num_bytes = block_rsv->reserved - block_rsv->size;
4145 sinfo->bytes_may_use -= num_bytes;
4146 trace_btrfs_space_reservation(fs_info, "space_info",
4147 (u64)(unsigned long)sinfo, num_bytes, 0);
4148 sinfo->reservation_progress++;
4149 block_rsv->reserved = block_rsv->size;
4150 block_rsv->full = 1;
4151 }
4152
4153 spin_unlock(&sinfo->lock);
4154 spin_unlock(&block_rsv->lock);
4155 }
4156
4157 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4158 {
4159 struct btrfs_space_info *space_info;
4160
4161 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4162 fs_info->chunk_block_rsv.space_info = space_info;
4163
4164 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4165 fs_info->global_block_rsv.space_info = space_info;
4166 fs_info->delalloc_block_rsv.space_info = space_info;
4167 fs_info->trans_block_rsv.space_info = space_info;
4168 fs_info->empty_block_rsv.space_info = space_info;
4169 fs_info->delayed_block_rsv.space_info = space_info;
4170
4171 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4172 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4173 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4174 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4175 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4176
4177 update_global_block_rsv(fs_info);
4178 }
4179
4180 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4181 {
4182 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4183 (u64)-1);
4184 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4185 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4186 WARN_ON(fs_info->trans_block_rsv.size > 0);
4187 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4188 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4189 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4190 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4191 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4192 }
4193
4194 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4195 struct btrfs_root *root)
4196 {
4197 if (!trans->bytes_reserved)
4198 return;
4199
4200 trace_btrfs_space_reservation(root->fs_info, "transaction",
4201 (u64)(unsigned long)trans,
4202 trans->bytes_reserved, 0);
4203 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4204 trans->bytes_reserved = 0;
4205 }
4206
4207 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4208 struct inode *inode)
4209 {
4210 struct btrfs_root *root = BTRFS_I(inode)->root;
4211 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4212 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4213
4214 /*
4215 * We need to hold space in order to delete our orphan item once we've
4216 * added it, so this takes the reservation so we can release it later
4217 * when we are truly done with the orphan item.
4218 */
4219 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4220 trace_btrfs_space_reservation(root->fs_info, "orphan",
4221 btrfs_ino(inode), num_bytes, 1);
4222 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4223 }
4224
4225 void btrfs_orphan_release_metadata(struct inode *inode)
4226 {
4227 struct btrfs_root *root = BTRFS_I(inode)->root;
4228 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4229 trace_btrfs_space_reservation(root->fs_info, "orphan",
4230 btrfs_ino(inode), num_bytes, 0);
4231 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4232 }
4233
4234 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4235 struct btrfs_pending_snapshot *pending)
4236 {
4237 struct btrfs_root *root = pending->root;
4238 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4239 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4240 /*
4241 * two for root back/forward refs, two for directory entries
4242 * and one for root of the snapshot.
4243 */
4244 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4245 dst_rsv->space_info = src_rsv->space_info;
4246 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4247 }
4248
4249 /**
4250 * drop_outstanding_extent - drop an outstanding extent
4251 * @inode: the inode we're dropping the extent for
4252 *
4253 * This is called when we are freeing up an outstanding extent, either called
4254 * after an error or after an extent is written. This will return the number of
4255 * reserved extents that need to be freed. This must be called with
4256 * BTRFS_I(inode)->lock held.
4257 */
4258 static unsigned drop_outstanding_extent(struct inode *inode)
4259 {
4260 unsigned drop_inode_space = 0;
4261 unsigned dropped_extents = 0;
4262
4263 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4264 BTRFS_I(inode)->outstanding_extents--;
4265
4266 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4267 BTRFS_I(inode)->delalloc_meta_reserved) {
4268 drop_inode_space = 1;
4269 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4270 }
4271
4272 /*
4273 * If we have more or the same amount of outsanding extents than we have
4274 * reserved then we need to leave the reserved extents count alone.
4275 */
4276 if (BTRFS_I(inode)->outstanding_extents >=
4277 BTRFS_I(inode)->reserved_extents)
4278 return drop_inode_space;
4279
4280 dropped_extents = BTRFS_I(inode)->reserved_extents -
4281 BTRFS_I(inode)->outstanding_extents;
4282 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4283 return dropped_extents + drop_inode_space;
4284 }
4285
4286 /**
4287 * calc_csum_metadata_size - return the amount of metada space that must be
4288 * reserved/free'd for the given bytes.
4289 * @inode: the inode we're manipulating
4290 * @num_bytes: the number of bytes in question
4291 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4292 *
4293 * This adjusts the number of csum_bytes in the inode and then returns the
4294 * correct amount of metadata that must either be reserved or freed. We
4295 * calculate how many checksums we can fit into one leaf and then divide the
4296 * number of bytes that will need to be checksumed by this value to figure out
4297 * how many checksums will be required. If we are adding bytes then the number
4298 * may go up and we will return the number of additional bytes that must be
4299 * reserved. If it is going down we will return the number of bytes that must
4300 * be freed.
4301 *
4302 * This must be called with BTRFS_I(inode)->lock held.
4303 */
4304 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4305 int reserve)
4306 {
4307 struct btrfs_root *root = BTRFS_I(inode)->root;
4308 u64 csum_size;
4309 int num_csums_per_leaf;
4310 int num_csums;
4311 int old_csums;
4312
4313 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4314 BTRFS_I(inode)->csum_bytes == 0)
4315 return 0;
4316
4317 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4318 if (reserve)
4319 BTRFS_I(inode)->csum_bytes += num_bytes;
4320 else
4321 BTRFS_I(inode)->csum_bytes -= num_bytes;
4322 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4323 num_csums_per_leaf = (int)div64_u64(csum_size,
4324 sizeof(struct btrfs_csum_item) +
4325 sizeof(struct btrfs_disk_key));
4326 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4327 num_csums = num_csums + num_csums_per_leaf - 1;
4328 num_csums = num_csums / num_csums_per_leaf;
4329
4330 old_csums = old_csums + num_csums_per_leaf - 1;
4331 old_csums = old_csums / num_csums_per_leaf;
4332
4333 /* No change, no need to reserve more */
4334 if (old_csums == num_csums)
4335 return 0;
4336
4337 if (reserve)
4338 return btrfs_calc_trans_metadata_size(root,
4339 num_csums - old_csums);
4340
4341 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4342 }
4343
4344 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4345 {
4346 struct btrfs_root *root = BTRFS_I(inode)->root;
4347 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4348 u64 to_reserve = 0;
4349 u64 csum_bytes;
4350 unsigned nr_extents = 0;
4351 int extra_reserve = 0;
4352 int flush = 1;
4353 int ret;
4354
4355 /* Need to be holding the i_mutex here if we aren't free space cache */
4356 if (btrfs_is_free_space_inode(root, inode))
4357 flush = 0;
4358
4359 if (flush && btrfs_transaction_in_commit(root->fs_info))
4360 schedule_timeout(1);
4361
4362 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4363 num_bytes = ALIGN(num_bytes, root->sectorsize);
4364
4365 spin_lock(&BTRFS_I(inode)->lock);
4366 BTRFS_I(inode)->outstanding_extents++;
4367
4368 if (BTRFS_I(inode)->outstanding_extents >
4369 BTRFS_I(inode)->reserved_extents)
4370 nr_extents = BTRFS_I(inode)->outstanding_extents -
4371 BTRFS_I(inode)->reserved_extents;
4372
4373 /*
4374 * Add an item to reserve for updating the inode when we complete the
4375 * delalloc io.
4376 */
4377 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4378 nr_extents++;
4379 extra_reserve = 1;
4380 }
4381
4382 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4383 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4384 csum_bytes = BTRFS_I(inode)->csum_bytes;
4385 spin_unlock(&BTRFS_I(inode)->lock);
4386
4387 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4388 if (ret) {
4389 u64 to_free = 0;
4390 unsigned dropped;
4391
4392 spin_lock(&BTRFS_I(inode)->lock);
4393 dropped = drop_outstanding_extent(inode);
4394 /*
4395 * If the inodes csum_bytes is the same as the original
4396 * csum_bytes then we know we haven't raced with any free()ers
4397 * so we can just reduce our inodes csum bytes and carry on.
4398 * Otherwise we have to do the normal free thing to account for
4399 * the case that the free side didn't free up its reserve
4400 * because of this outstanding reservation.
4401 */
4402 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4403 calc_csum_metadata_size(inode, num_bytes, 0);
4404 else
4405 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4406 spin_unlock(&BTRFS_I(inode)->lock);
4407 if (dropped)
4408 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4409
4410 if (to_free) {
4411 btrfs_block_rsv_release(root, block_rsv, to_free);
4412 trace_btrfs_space_reservation(root->fs_info,
4413 "delalloc",
4414 btrfs_ino(inode),
4415 to_free, 0);
4416 }
4417 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4418 return ret;
4419 }
4420
4421 spin_lock(&BTRFS_I(inode)->lock);
4422 if (extra_reserve) {
4423 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4424 nr_extents--;
4425 }
4426 BTRFS_I(inode)->reserved_extents += nr_extents;
4427 spin_unlock(&BTRFS_I(inode)->lock);
4428 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4429
4430 if (to_reserve)
4431 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4432 btrfs_ino(inode), to_reserve, 1);
4433 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4434
4435 return 0;
4436 }
4437
4438 /**
4439 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4440 * @inode: the inode to release the reservation for
4441 * @num_bytes: the number of bytes we're releasing
4442 *
4443 * This will release the metadata reservation for an inode. This can be called
4444 * once we complete IO for a given set of bytes to release their metadata
4445 * reservations.
4446 */
4447 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4448 {
4449 struct btrfs_root *root = BTRFS_I(inode)->root;
4450 u64 to_free = 0;
4451 unsigned dropped;
4452
4453 num_bytes = ALIGN(num_bytes, root->sectorsize);
4454 spin_lock(&BTRFS_I(inode)->lock);
4455 dropped = drop_outstanding_extent(inode);
4456
4457 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4458 spin_unlock(&BTRFS_I(inode)->lock);
4459 if (dropped > 0)
4460 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4461
4462 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4463 btrfs_ino(inode), to_free, 0);
4464 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4465 to_free);
4466 }
4467
4468 /**
4469 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4470 * @inode: inode we're writing to
4471 * @num_bytes: the number of bytes we want to allocate
4472 *
4473 * This will do the following things
4474 *
4475 * o reserve space in the data space info for num_bytes
4476 * o reserve space in the metadata space info based on number of outstanding
4477 * extents and how much csums will be needed
4478 * o add to the inodes ->delalloc_bytes
4479 * o add it to the fs_info's delalloc inodes list.
4480 *
4481 * This will return 0 for success and -ENOSPC if there is no space left.
4482 */
4483 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4484 {
4485 int ret;
4486
4487 ret = btrfs_check_data_free_space(inode, num_bytes);
4488 if (ret)
4489 return ret;
4490
4491 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4492 if (ret) {
4493 btrfs_free_reserved_data_space(inode, num_bytes);
4494 return ret;
4495 }
4496
4497 return 0;
4498 }
4499
4500 /**
4501 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4502 * @inode: inode we're releasing space for
4503 * @num_bytes: the number of bytes we want to free up
4504 *
4505 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4506 * called in the case that we don't need the metadata AND data reservations
4507 * anymore. So if there is an error or we insert an inline extent.
4508 *
4509 * This function will release the metadata space that was not used and will
4510 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4511 * list if there are no delalloc bytes left.
4512 */
4513 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4514 {
4515 btrfs_delalloc_release_metadata(inode, num_bytes);
4516 btrfs_free_reserved_data_space(inode, num_bytes);
4517 }
4518
4519 static int update_block_group(struct btrfs_trans_handle *trans,
4520 struct btrfs_root *root,
4521 u64 bytenr, u64 num_bytes, int alloc)
4522 {
4523 struct btrfs_block_group_cache *cache = NULL;
4524 struct btrfs_fs_info *info = root->fs_info;
4525 u64 total = num_bytes;
4526 u64 old_val;
4527 u64 byte_in_group;
4528 int factor;
4529
4530 /* block accounting for super block */
4531 spin_lock(&info->delalloc_lock);
4532 old_val = btrfs_super_bytes_used(info->super_copy);
4533 if (alloc)
4534 old_val += num_bytes;
4535 else
4536 old_val -= num_bytes;
4537 btrfs_set_super_bytes_used(info->super_copy, old_val);
4538 spin_unlock(&info->delalloc_lock);
4539
4540 while (total) {
4541 cache = btrfs_lookup_block_group(info, bytenr);
4542 if (!cache)
4543 return -1;
4544 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4545 BTRFS_BLOCK_GROUP_RAID1 |
4546 BTRFS_BLOCK_GROUP_RAID10))
4547 factor = 2;
4548 else
4549 factor = 1;
4550 /*
4551 * If this block group has free space cache written out, we
4552 * need to make sure to load it if we are removing space. This
4553 * is because we need the unpinning stage to actually add the
4554 * space back to the block group, otherwise we will leak space.
4555 */
4556 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4557 cache_block_group(cache, trans, NULL, 1);
4558
4559 byte_in_group = bytenr - cache->key.objectid;
4560 WARN_ON(byte_in_group > cache->key.offset);
4561
4562 spin_lock(&cache->space_info->lock);
4563 spin_lock(&cache->lock);
4564
4565 if (btrfs_test_opt(root, SPACE_CACHE) &&
4566 cache->disk_cache_state < BTRFS_DC_CLEAR)
4567 cache->disk_cache_state = BTRFS_DC_CLEAR;
4568
4569 cache->dirty = 1;
4570 old_val = btrfs_block_group_used(&cache->item);
4571 num_bytes = min(total, cache->key.offset - byte_in_group);
4572 if (alloc) {
4573 old_val += num_bytes;
4574 btrfs_set_block_group_used(&cache->item, old_val);
4575 cache->reserved -= num_bytes;
4576 cache->space_info->bytes_reserved -= num_bytes;
4577 cache->space_info->bytes_used += num_bytes;
4578 cache->space_info->disk_used += num_bytes * factor;
4579 spin_unlock(&cache->lock);
4580 spin_unlock(&cache->space_info->lock);
4581 } else {
4582 old_val -= num_bytes;
4583 btrfs_set_block_group_used(&cache->item, old_val);
4584 cache->pinned += num_bytes;
4585 cache->space_info->bytes_pinned += num_bytes;
4586 cache->space_info->bytes_used -= num_bytes;
4587 cache->space_info->disk_used -= num_bytes * factor;
4588 spin_unlock(&cache->lock);
4589 spin_unlock(&cache->space_info->lock);
4590
4591 set_extent_dirty(info->pinned_extents,
4592 bytenr, bytenr + num_bytes - 1,
4593 GFP_NOFS | __GFP_NOFAIL);
4594 }
4595 btrfs_put_block_group(cache);
4596 total -= num_bytes;
4597 bytenr += num_bytes;
4598 }
4599 return 0;
4600 }
4601
4602 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4603 {
4604 struct btrfs_block_group_cache *cache;
4605 u64 bytenr;
4606
4607 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4608 if (!cache)
4609 return 0;
4610
4611 bytenr = cache->key.objectid;
4612 btrfs_put_block_group(cache);
4613
4614 return bytenr;
4615 }
4616
4617 static int pin_down_extent(struct btrfs_root *root,
4618 struct btrfs_block_group_cache *cache,
4619 u64 bytenr, u64 num_bytes, int reserved)
4620 {
4621 spin_lock(&cache->space_info->lock);
4622 spin_lock(&cache->lock);
4623 cache->pinned += num_bytes;
4624 cache->space_info->bytes_pinned += num_bytes;
4625 if (reserved) {
4626 cache->reserved -= num_bytes;
4627 cache->space_info->bytes_reserved -= num_bytes;
4628 }
4629 spin_unlock(&cache->lock);
4630 spin_unlock(&cache->space_info->lock);
4631
4632 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4633 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4634 return 0;
4635 }
4636
4637 /*
4638 * this function must be called within transaction
4639 */
4640 int btrfs_pin_extent(struct btrfs_root *root,
4641 u64 bytenr, u64 num_bytes, int reserved)
4642 {
4643 struct btrfs_block_group_cache *cache;
4644
4645 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4646 BUG_ON(!cache);
4647
4648 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4649
4650 btrfs_put_block_group(cache);
4651 return 0;
4652 }
4653
4654 /*
4655 * this function must be called within transaction
4656 */
4657 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4658 struct btrfs_root *root,
4659 u64 bytenr, u64 num_bytes)
4660 {
4661 struct btrfs_block_group_cache *cache;
4662
4663 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4664 BUG_ON(!cache);
4665
4666 /*
4667 * pull in the free space cache (if any) so that our pin
4668 * removes the free space from the cache. We have load_only set
4669 * to one because the slow code to read in the free extents does check
4670 * the pinned extents.
4671 */
4672 cache_block_group(cache, trans, root, 1);
4673
4674 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4675
4676 /* remove us from the free space cache (if we're there at all) */
4677 btrfs_remove_free_space(cache, bytenr, num_bytes);
4678 btrfs_put_block_group(cache);
4679 return 0;
4680 }
4681
4682 /**
4683 * btrfs_update_reserved_bytes - update the block_group and space info counters
4684 * @cache: The cache we are manipulating
4685 * @num_bytes: The number of bytes in question
4686 * @reserve: One of the reservation enums
4687 *
4688 * This is called by the allocator when it reserves space, or by somebody who is
4689 * freeing space that was never actually used on disk. For example if you
4690 * reserve some space for a new leaf in transaction A and before transaction A
4691 * commits you free that leaf, you call this with reserve set to 0 in order to
4692 * clear the reservation.
4693 *
4694 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4695 * ENOSPC accounting. For data we handle the reservation through clearing the
4696 * delalloc bits in the io_tree. We have to do this since we could end up
4697 * allocating less disk space for the amount of data we have reserved in the
4698 * case of compression.
4699 *
4700 * If this is a reservation and the block group has become read only we cannot
4701 * make the reservation and return -EAGAIN, otherwise this function always
4702 * succeeds.
4703 */
4704 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4705 u64 num_bytes, int reserve)
4706 {
4707 struct btrfs_space_info *space_info = cache->space_info;
4708 int ret = 0;
4709 spin_lock(&space_info->lock);
4710 spin_lock(&cache->lock);
4711 if (reserve != RESERVE_FREE) {
4712 if (cache->ro) {
4713 ret = -EAGAIN;
4714 } else {
4715 cache->reserved += num_bytes;
4716 space_info->bytes_reserved += num_bytes;
4717 if (reserve == RESERVE_ALLOC) {
4718 trace_btrfs_space_reservation(cache->fs_info,
4719 "space_info",
4720 (u64)(unsigned long)space_info,
4721 num_bytes, 0);
4722 space_info->bytes_may_use -= num_bytes;
4723 }
4724 }
4725 } else {
4726 if (cache->ro)
4727 space_info->bytes_readonly += num_bytes;
4728 cache->reserved -= num_bytes;
4729 space_info->bytes_reserved -= num_bytes;
4730 space_info->reservation_progress++;
4731 }
4732 spin_unlock(&cache->lock);
4733 spin_unlock(&space_info->lock);
4734 return ret;
4735 }
4736
4737 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4738 struct btrfs_root *root)
4739 {
4740 struct btrfs_fs_info *fs_info = root->fs_info;
4741 struct btrfs_caching_control *next;
4742 struct btrfs_caching_control *caching_ctl;
4743 struct btrfs_block_group_cache *cache;
4744
4745 down_write(&fs_info->extent_commit_sem);
4746
4747 list_for_each_entry_safe(caching_ctl, next,
4748 &fs_info->caching_block_groups, list) {
4749 cache = caching_ctl->block_group;
4750 if (block_group_cache_done(cache)) {
4751 cache->last_byte_to_unpin = (u64)-1;
4752 list_del_init(&caching_ctl->list);
4753 put_caching_control(caching_ctl);
4754 } else {
4755 cache->last_byte_to_unpin = caching_ctl->progress;
4756 }
4757 }
4758
4759 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4760 fs_info->pinned_extents = &fs_info->freed_extents[1];
4761 else
4762 fs_info->pinned_extents = &fs_info->freed_extents[0];
4763
4764 up_write(&fs_info->extent_commit_sem);
4765
4766 update_global_block_rsv(fs_info);
4767 return 0;
4768 }
4769
4770 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4771 {
4772 struct btrfs_fs_info *fs_info = root->fs_info;
4773 struct btrfs_block_group_cache *cache = NULL;
4774 u64 len;
4775
4776 while (start <= end) {
4777 if (!cache ||
4778 start >= cache->key.objectid + cache->key.offset) {
4779 if (cache)
4780 btrfs_put_block_group(cache);
4781 cache = btrfs_lookup_block_group(fs_info, start);
4782 BUG_ON(!cache);
4783 }
4784
4785 len = cache->key.objectid + cache->key.offset - start;
4786 len = min(len, end + 1 - start);
4787
4788 if (start < cache->last_byte_to_unpin) {
4789 len = min(len, cache->last_byte_to_unpin - start);
4790 btrfs_add_free_space(cache, start, len);
4791 }
4792
4793 start += len;
4794
4795 spin_lock(&cache->space_info->lock);
4796 spin_lock(&cache->lock);
4797 cache->pinned -= len;
4798 cache->space_info->bytes_pinned -= len;
4799 if (cache->ro)
4800 cache->space_info->bytes_readonly += len;
4801 spin_unlock(&cache->lock);
4802 spin_unlock(&cache->space_info->lock);
4803 }
4804
4805 if (cache)
4806 btrfs_put_block_group(cache);
4807 return 0;
4808 }
4809
4810 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4811 struct btrfs_root *root)
4812 {
4813 struct btrfs_fs_info *fs_info = root->fs_info;
4814 struct extent_io_tree *unpin;
4815 u64 start;
4816 u64 end;
4817 int ret;
4818
4819 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4820 unpin = &fs_info->freed_extents[1];
4821 else
4822 unpin = &fs_info->freed_extents[0];
4823
4824 while (1) {
4825 ret = find_first_extent_bit(unpin, 0, &start, &end,
4826 EXTENT_DIRTY);
4827 if (ret)
4828 break;
4829
4830 if (btrfs_test_opt(root, DISCARD))
4831 ret = btrfs_discard_extent(root, start,
4832 end + 1 - start, NULL);
4833
4834 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4835 unpin_extent_range(root, start, end);
4836 cond_resched();
4837 }
4838
4839 return 0;
4840 }
4841
4842 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4843 struct btrfs_root *root,
4844 u64 bytenr, u64 num_bytes, u64 parent,
4845 u64 root_objectid, u64 owner_objectid,
4846 u64 owner_offset, int refs_to_drop,
4847 struct btrfs_delayed_extent_op *extent_op)
4848 {
4849 struct btrfs_key key;
4850 struct btrfs_path *path;
4851 struct btrfs_fs_info *info = root->fs_info;
4852 struct btrfs_root *extent_root = info->extent_root;
4853 struct extent_buffer *leaf;
4854 struct btrfs_extent_item *ei;
4855 struct btrfs_extent_inline_ref *iref;
4856 int ret;
4857 int is_data;
4858 int extent_slot = 0;
4859 int found_extent = 0;
4860 int num_to_del = 1;
4861 u32 item_size;
4862 u64 refs;
4863
4864 path = btrfs_alloc_path();
4865 if (!path)
4866 return -ENOMEM;
4867
4868 path->reada = 1;
4869 path->leave_spinning = 1;
4870
4871 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4872 BUG_ON(!is_data && refs_to_drop != 1);
4873
4874 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4875 bytenr, num_bytes, parent,
4876 root_objectid, owner_objectid,
4877 owner_offset);
4878 if (ret == 0) {
4879 extent_slot = path->slots[0];
4880 while (extent_slot >= 0) {
4881 btrfs_item_key_to_cpu(path->nodes[0], &key,
4882 extent_slot);
4883 if (key.objectid != bytenr)
4884 break;
4885 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4886 key.offset == num_bytes) {
4887 found_extent = 1;
4888 break;
4889 }
4890 if (path->slots[0] - extent_slot > 5)
4891 break;
4892 extent_slot--;
4893 }
4894 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4895 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4896 if (found_extent && item_size < sizeof(*ei))
4897 found_extent = 0;
4898 #endif
4899 if (!found_extent) {
4900 BUG_ON(iref);
4901 ret = remove_extent_backref(trans, extent_root, path,
4902 NULL, refs_to_drop,
4903 is_data);
4904 BUG_ON(ret);
4905 btrfs_release_path(path);
4906 path->leave_spinning = 1;
4907
4908 key.objectid = bytenr;
4909 key.type = BTRFS_EXTENT_ITEM_KEY;
4910 key.offset = num_bytes;
4911
4912 ret = btrfs_search_slot(trans, extent_root,
4913 &key, path, -1, 1);
4914 if (ret) {
4915 printk(KERN_ERR "umm, got %d back from search"
4916 ", was looking for %llu\n", ret,
4917 (unsigned long long)bytenr);
4918 if (ret > 0)
4919 btrfs_print_leaf(extent_root,
4920 path->nodes[0]);
4921 }
4922 BUG_ON(ret);
4923 extent_slot = path->slots[0];
4924 }
4925 } else {
4926 btrfs_print_leaf(extent_root, path->nodes[0]);
4927 WARN_ON(1);
4928 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4929 "parent %llu root %llu owner %llu offset %llu\n",
4930 (unsigned long long)bytenr,
4931 (unsigned long long)parent,
4932 (unsigned long long)root_objectid,
4933 (unsigned long long)owner_objectid,
4934 (unsigned long long)owner_offset);
4935 }
4936
4937 leaf = path->nodes[0];
4938 item_size = btrfs_item_size_nr(leaf, extent_slot);
4939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4940 if (item_size < sizeof(*ei)) {
4941 BUG_ON(found_extent || extent_slot != path->slots[0]);
4942 ret = convert_extent_item_v0(trans, extent_root, path,
4943 owner_objectid, 0);
4944 BUG_ON(ret < 0);
4945
4946 btrfs_release_path(path);
4947 path->leave_spinning = 1;
4948
4949 key.objectid = bytenr;
4950 key.type = BTRFS_EXTENT_ITEM_KEY;
4951 key.offset = num_bytes;
4952
4953 ret = btrfs_search_slot(trans, extent_root, &key, path,
4954 -1, 1);
4955 if (ret) {
4956 printk(KERN_ERR "umm, got %d back from search"
4957 ", was looking for %llu\n", ret,
4958 (unsigned long long)bytenr);
4959 btrfs_print_leaf(extent_root, path->nodes[0]);
4960 }
4961 BUG_ON(ret);
4962 extent_slot = path->slots[0];
4963 leaf = path->nodes[0];
4964 item_size = btrfs_item_size_nr(leaf, extent_slot);
4965 }
4966 #endif
4967 BUG_ON(item_size < sizeof(*ei));
4968 ei = btrfs_item_ptr(leaf, extent_slot,
4969 struct btrfs_extent_item);
4970 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4971 struct btrfs_tree_block_info *bi;
4972 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4973 bi = (struct btrfs_tree_block_info *)(ei + 1);
4974 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4975 }
4976
4977 refs = btrfs_extent_refs(leaf, ei);
4978 BUG_ON(refs < refs_to_drop);
4979 refs -= refs_to_drop;
4980
4981 if (refs > 0) {
4982 if (extent_op)
4983 __run_delayed_extent_op(extent_op, leaf, ei);
4984 /*
4985 * In the case of inline back ref, reference count will
4986 * be updated by remove_extent_backref
4987 */
4988 if (iref) {
4989 BUG_ON(!found_extent);
4990 } else {
4991 btrfs_set_extent_refs(leaf, ei, refs);
4992 btrfs_mark_buffer_dirty(leaf);
4993 }
4994 if (found_extent) {
4995 ret = remove_extent_backref(trans, extent_root, path,
4996 iref, refs_to_drop,
4997 is_data);
4998 BUG_ON(ret);
4999 }
5000 } else {
5001 if (found_extent) {
5002 BUG_ON(is_data && refs_to_drop !=
5003 extent_data_ref_count(root, path, iref));
5004 if (iref) {
5005 BUG_ON(path->slots[0] != extent_slot);
5006 } else {
5007 BUG_ON(path->slots[0] != extent_slot + 1);
5008 path->slots[0] = extent_slot;
5009 num_to_del = 2;
5010 }
5011 }
5012
5013 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5014 num_to_del);
5015 BUG_ON(ret);
5016 btrfs_release_path(path);
5017
5018 if (is_data) {
5019 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5020 BUG_ON(ret);
5021 }
5022
5023 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5024 BUG_ON(ret);
5025 }
5026 btrfs_free_path(path);
5027 return ret;
5028 }
5029
5030 /*
5031 * when we free an block, it is possible (and likely) that we free the last
5032 * delayed ref for that extent as well. This searches the delayed ref tree for
5033 * a given extent, and if there are no other delayed refs to be processed, it
5034 * removes it from the tree.
5035 */
5036 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5037 struct btrfs_root *root, u64 bytenr)
5038 {
5039 struct btrfs_delayed_ref_head *head;
5040 struct btrfs_delayed_ref_root *delayed_refs;
5041 struct btrfs_delayed_ref_node *ref;
5042 struct rb_node *node;
5043 int ret = 0;
5044
5045 delayed_refs = &trans->transaction->delayed_refs;
5046 spin_lock(&delayed_refs->lock);
5047 head = btrfs_find_delayed_ref_head(trans, bytenr);
5048 if (!head)
5049 goto out;
5050
5051 node = rb_prev(&head->node.rb_node);
5052 if (!node)
5053 goto out;
5054
5055 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5056
5057 /* there are still entries for this ref, we can't drop it */
5058 if (ref->bytenr == bytenr)
5059 goto out;
5060
5061 if (head->extent_op) {
5062 if (!head->must_insert_reserved)
5063 goto out;
5064 kfree(head->extent_op);
5065 head->extent_op = NULL;
5066 }
5067
5068 /*
5069 * waiting for the lock here would deadlock. If someone else has it
5070 * locked they are already in the process of dropping it anyway
5071 */
5072 if (!mutex_trylock(&head->mutex))
5073 goto out;
5074
5075 /*
5076 * at this point we have a head with no other entries. Go
5077 * ahead and process it.
5078 */
5079 head->node.in_tree = 0;
5080 rb_erase(&head->node.rb_node, &delayed_refs->root);
5081
5082 delayed_refs->num_entries--;
5083 if (waitqueue_active(&delayed_refs->seq_wait))
5084 wake_up(&delayed_refs->seq_wait);
5085
5086 /*
5087 * we don't take a ref on the node because we're removing it from the
5088 * tree, so we just steal the ref the tree was holding.
5089 */
5090 delayed_refs->num_heads--;
5091 if (list_empty(&head->cluster))
5092 delayed_refs->num_heads_ready--;
5093
5094 list_del_init(&head->cluster);
5095 spin_unlock(&delayed_refs->lock);
5096
5097 BUG_ON(head->extent_op);
5098 if (head->must_insert_reserved)
5099 ret = 1;
5100
5101 mutex_unlock(&head->mutex);
5102 btrfs_put_delayed_ref(&head->node);
5103 return ret;
5104 out:
5105 spin_unlock(&delayed_refs->lock);
5106 return 0;
5107 }
5108
5109 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5110 struct btrfs_root *root,
5111 struct extent_buffer *buf,
5112 u64 parent, int last_ref, int for_cow)
5113 {
5114 struct btrfs_block_group_cache *cache = NULL;
5115 int ret;
5116
5117 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5118 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5119 buf->start, buf->len,
5120 parent, root->root_key.objectid,
5121 btrfs_header_level(buf),
5122 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5123 BUG_ON(ret);
5124 }
5125
5126 if (!last_ref)
5127 return;
5128
5129 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5130
5131 if (btrfs_header_generation(buf) == trans->transid) {
5132 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5133 ret = check_ref_cleanup(trans, root, buf->start);
5134 if (!ret)
5135 goto out;
5136 }
5137
5138 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5139 pin_down_extent(root, cache, buf->start, buf->len, 1);
5140 goto out;
5141 }
5142
5143 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5144
5145 btrfs_add_free_space(cache, buf->start, buf->len);
5146 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5147 }
5148 out:
5149 /*
5150 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5151 * anymore.
5152 */
5153 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5154 btrfs_put_block_group(cache);
5155 }
5156
5157 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5158 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5159 u64 owner, u64 offset, int for_cow)
5160 {
5161 int ret;
5162 struct btrfs_fs_info *fs_info = root->fs_info;
5163
5164 /*
5165 * tree log blocks never actually go into the extent allocation
5166 * tree, just update pinning info and exit early.
5167 */
5168 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5169 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5170 /* unlocks the pinned mutex */
5171 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5172 ret = 0;
5173 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5174 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5175 num_bytes,
5176 parent, root_objectid, (int)owner,
5177 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5178 BUG_ON(ret);
5179 } else {
5180 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5181 num_bytes,
5182 parent, root_objectid, owner,
5183 offset, BTRFS_DROP_DELAYED_REF,
5184 NULL, for_cow);
5185 BUG_ON(ret);
5186 }
5187 return ret;
5188 }
5189
5190 static u64 stripe_align(struct btrfs_root *root, u64 val)
5191 {
5192 u64 mask = ((u64)root->stripesize - 1);
5193 u64 ret = (val + mask) & ~mask;
5194 return ret;
5195 }
5196
5197 /*
5198 * when we wait for progress in the block group caching, its because
5199 * our allocation attempt failed at least once. So, we must sleep
5200 * and let some progress happen before we try again.
5201 *
5202 * This function will sleep at least once waiting for new free space to
5203 * show up, and then it will check the block group free space numbers
5204 * for our min num_bytes. Another option is to have it go ahead
5205 * and look in the rbtree for a free extent of a given size, but this
5206 * is a good start.
5207 */
5208 static noinline int
5209 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5210 u64 num_bytes)
5211 {
5212 struct btrfs_caching_control *caching_ctl;
5213 DEFINE_WAIT(wait);
5214
5215 caching_ctl = get_caching_control(cache);
5216 if (!caching_ctl)
5217 return 0;
5218
5219 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5220 (cache->free_space_ctl->free_space >= num_bytes));
5221
5222 put_caching_control(caching_ctl);
5223 return 0;
5224 }
5225
5226 static noinline int
5227 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5228 {
5229 struct btrfs_caching_control *caching_ctl;
5230 DEFINE_WAIT(wait);
5231
5232 caching_ctl = get_caching_control(cache);
5233 if (!caching_ctl)
5234 return 0;
5235
5236 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5237
5238 put_caching_control(caching_ctl);
5239 return 0;
5240 }
5241
5242 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5243 {
5244 int index;
5245 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5246 index = 0;
5247 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5248 index = 1;
5249 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5250 index = 2;
5251 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5252 index = 3;
5253 else
5254 index = 4;
5255 return index;
5256 }
5257
5258 enum btrfs_loop_type {
5259 LOOP_CACHING_NOWAIT = 0,
5260 LOOP_CACHING_WAIT = 1,
5261 LOOP_ALLOC_CHUNK = 2,
5262 LOOP_NO_EMPTY_SIZE = 3,
5263 };
5264
5265 /*
5266 * walks the btree of allocated extents and find a hole of a given size.
5267 * The key ins is changed to record the hole:
5268 * ins->objectid == block start
5269 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5270 * ins->offset == number of blocks
5271 * Any available blocks before search_start are skipped.
5272 */
5273 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5274 struct btrfs_root *orig_root,
5275 u64 num_bytes, u64 empty_size,
5276 u64 hint_byte, struct btrfs_key *ins,
5277 u64 data)
5278 {
5279 int ret = 0;
5280 struct btrfs_root *root = orig_root->fs_info->extent_root;
5281 struct btrfs_free_cluster *last_ptr = NULL;
5282 struct btrfs_block_group_cache *block_group = NULL;
5283 struct btrfs_block_group_cache *used_block_group;
5284 u64 search_start = 0;
5285 int empty_cluster = 2 * 1024 * 1024;
5286 int allowed_chunk_alloc = 0;
5287 int done_chunk_alloc = 0;
5288 struct btrfs_space_info *space_info;
5289 int loop = 0;
5290 int index = 0;
5291 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5292 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5293 bool found_uncached_bg = false;
5294 bool failed_cluster_refill = false;
5295 bool failed_alloc = false;
5296 bool use_cluster = true;
5297 bool have_caching_bg = false;
5298
5299 WARN_ON(num_bytes < root->sectorsize);
5300 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5301 ins->objectid = 0;
5302 ins->offset = 0;
5303
5304 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5305
5306 space_info = __find_space_info(root->fs_info, data);
5307 if (!space_info) {
5308 printk(KERN_ERR "No space info for %llu\n", data);
5309 return -ENOSPC;
5310 }
5311
5312 /*
5313 * If the space info is for both data and metadata it means we have a
5314 * small filesystem and we can't use the clustering stuff.
5315 */
5316 if (btrfs_mixed_space_info(space_info))
5317 use_cluster = false;
5318
5319 if (orig_root->ref_cows || empty_size)
5320 allowed_chunk_alloc = 1;
5321
5322 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5323 last_ptr = &root->fs_info->meta_alloc_cluster;
5324 if (!btrfs_test_opt(root, SSD))
5325 empty_cluster = 64 * 1024;
5326 }
5327
5328 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5329 btrfs_test_opt(root, SSD)) {
5330 last_ptr = &root->fs_info->data_alloc_cluster;
5331 }
5332
5333 if (last_ptr) {
5334 spin_lock(&last_ptr->lock);
5335 if (last_ptr->block_group)
5336 hint_byte = last_ptr->window_start;
5337 spin_unlock(&last_ptr->lock);
5338 }
5339
5340 search_start = max(search_start, first_logical_byte(root, 0));
5341 search_start = max(search_start, hint_byte);
5342
5343 if (!last_ptr)
5344 empty_cluster = 0;
5345
5346 if (search_start == hint_byte) {
5347 block_group = btrfs_lookup_block_group(root->fs_info,
5348 search_start);
5349 used_block_group = block_group;
5350 /*
5351 * we don't want to use the block group if it doesn't match our
5352 * allocation bits, or if its not cached.
5353 *
5354 * However if we are re-searching with an ideal block group
5355 * picked out then we don't care that the block group is cached.
5356 */
5357 if (block_group && block_group_bits(block_group, data) &&
5358 block_group->cached != BTRFS_CACHE_NO) {
5359 down_read(&space_info->groups_sem);
5360 if (list_empty(&block_group->list) ||
5361 block_group->ro) {
5362 /*
5363 * someone is removing this block group,
5364 * we can't jump into the have_block_group
5365 * target because our list pointers are not
5366 * valid
5367 */
5368 btrfs_put_block_group(block_group);
5369 up_read(&space_info->groups_sem);
5370 } else {
5371 index = get_block_group_index(block_group);
5372 goto have_block_group;
5373 }
5374 } else if (block_group) {
5375 btrfs_put_block_group(block_group);
5376 }
5377 }
5378 search:
5379 have_caching_bg = false;
5380 down_read(&space_info->groups_sem);
5381 list_for_each_entry(block_group, &space_info->block_groups[index],
5382 list) {
5383 u64 offset;
5384 int cached;
5385
5386 used_block_group = block_group;
5387 btrfs_get_block_group(block_group);
5388 search_start = block_group->key.objectid;
5389
5390 /*
5391 * this can happen if we end up cycling through all the
5392 * raid types, but we want to make sure we only allocate
5393 * for the proper type.
5394 */
5395 if (!block_group_bits(block_group, data)) {
5396 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5397 BTRFS_BLOCK_GROUP_RAID1 |
5398 BTRFS_BLOCK_GROUP_RAID10;
5399
5400 /*
5401 * if they asked for extra copies and this block group
5402 * doesn't provide them, bail. This does allow us to
5403 * fill raid0 from raid1.
5404 */
5405 if ((data & extra) && !(block_group->flags & extra))
5406 goto loop;
5407 }
5408
5409 have_block_group:
5410 cached = block_group_cache_done(block_group);
5411 if (unlikely(!cached)) {
5412 found_uncached_bg = true;
5413 ret = cache_block_group(block_group, trans,
5414 orig_root, 0);
5415 BUG_ON(ret);
5416 }
5417
5418 if (unlikely(block_group->ro))
5419 goto loop;
5420
5421 /*
5422 * Ok we want to try and use the cluster allocator, so
5423 * lets look there
5424 */
5425 if (last_ptr) {
5426 /*
5427 * the refill lock keeps out other
5428 * people trying to start a new cluster
5429 */
5430 spin_lock(&last_ptr->refill_lock);
5431 used_block_group = last_ptr->block_group;
5432 if (used_block_group != block_group &&
5433 (!used_block_group ||
5434 used_block_group->ro ||
5435 !block_group_bits(used_block_group, data))) {
5436 used_block_group = block_group;
5437 goto refill_cluster;
5438 }
5439
5440 if (used_block_group != block_group)
5441 btrfs_get_block_group(used_block_group);
5442
5443 offset = btrfs_alloc_from_cluster(used_block_group,
5444 last_ptr, num_bytes, used_block_group->key.objectid);
5445 if (offset) {
5446 /* we have a block, we're done */
5447 spin_unlock(&last_ptr->refill_lock);
5448 trace_btrfs_reserve_extent_cluster(root,
5449 block_group, search_start, num_bytes);
5450 goto checks;
5451 }
5452
5453 WARN_ON(last_ptr->block_group != used_block_group);
5454 if (used_block_group != block_group) {
5455 btrfs_put_block_group(used_block_group);
5456 used_block_group = block_group;
5457 }
5458 refill_cluster:
5459 BUG_ON(used_block_group != block_group);
5460 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5461 * set up a new clusters, so lets just skip it
5462 * and let the allocator find whatever block
5463 * it can find. If we reach this point, we
5464 * will have tried the cluster allocator
5465 * plenty of times and not have found
5466 * anything, so we are likely way too
5467 * fragmented for the clustering stuff to find
5468 * anything.
5469 *
5470 * However, if the cluster is taken from the
5471 * current block group, release the cluster
5472 * first, so that we stand a better chance of
5473 * succeeding in the unclustered
5474 * allocation. */
5475 if (loop >= LOOP_NO_EMPTY_SIZE &&
5476 last_ptr->block_group != block_group) {
5477 spin_unlock(&last_ptr->refill_lock);
5478 goto unclustered_alloc;
5479 }
5480
5481 /*
5482 * this cluster didn't work out, free it and
5483 * start over
5484 */
5485 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5486
5487 if (loop >= LOOP_NO_EMPTY_SIZE) {
5488 spin_unlock(&last_ptr->refill_lock);
5489 goto unclustered_alloc;
5490 }
5491
5492 /* allocate a cluster in this block group */
5493 ret = btrfs_find_space_cluster(trans, root,
5494 block_group, last_ptr,
5495 search_start, num_bytes,
5496 empty_cluster + empty_size);
5497 if (ret == 0) {
5498 /*
5499 * now pull our allocation out of this
5500 * cluster
5501 */
5502 offset = btrfs_alloc_from_cluster(block_group,
5503 last_ptr, num_bytes,
5504 search_start);
5505 if (offset) {
5506 /* we found one, proceed */
5507 spin_unlock(&last_ptr->refill_lock);
5508 trace_btrfs_reserve_extent_cluster(root,
5509 block_group, search_start,
5510 num_bytes);
5511 goto checks;
5512 }
5513 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5514 && !failed_cluster_refill) {
5515 spin_unlock(&last_ptr->refill_lock);
5516
5517 failed_cluster_refill = true;
5518 wait_block_group_cache_progress(block_group,
5519 num_bytes + empty_cluster + empty_size);
5520 goto have_block_group;
5521 }
5522
5523 /*
5524 * at this point we either didn't find a cluster
5525 * or we weren't able to allocate a block from our
5526 * cluster. Free the cluster we've been trying
5527 * to use, and go to the next block group
5528 */
5529 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5530 spin_unlock(&last_ptr->refill_lock);
5531 goto loop;
5532 }
5533
5534 unclustered_alloc:
5535 spin_lock(&block_group->free_space_ctl->tree_lock);
5536 if (cached &&
5537 block_group->free_space_ctl->free_space <
5538 num_bytes + empty_cluster + empty_size) {
5539 spin_unlock(&block_group->free_space_ctl->tree_lock);
5540 goto loop;
5541 }
5542 spin_unlock(&block_group->free_space_ctl->tree_lock);
5543
5544 offset = btrfs_find_space_for_alloc(block_group, search_start,
5545 num_bytes, empty_size);
5546 /*
5547 * If we didn't find a chunk, and we haven't failed on this
5548 * block group before, and this block group is in the middle of
5549 * caching and we are ok with waiting, then go ahead and wait
5550 * for progress to be made, and set failed_alloc to true.
5551 *
5552 * If failed_alloc is true then we've already waited on this
5553 * block group once and should move on to the next block group.
5554 */
5555 if (!offset && !failed_alloc && !cached &&
5556 loop > LOOP_CACHING_NOWAIT) {
5557 wait_block_group_cache_progress(block_group,
5558 num_bytes + empty_size);
5559 failed_alloc = true;
5560 goto have_block_group;
5561 } else if (!offset) {
5562 if (!cached)
5563 have_caching_bg = true;
5564 goto loop;
5565 }
5566 checks:
5567 search_start = stripe_align(root, offset);
5568
5569 /* move on to the next group */
5570 if (search_start + num_bytes >
5571 used_block_group->key.objectid + used_block_group->key.offset) {
5572 btrfs_add_free_space(used_block_group, offset, num_bytes);
5573 goto loop;
5574 }
5575
5576 if (offset < search_start)
5577 btrfs_add_free_space(used_block_group, offset,
5578 search_start - offset);
5579 BUG_ON(offset > search_start);
5580
5581 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5582 alloc_type);
5583 if (ret == -EAGAIN) {
5584 btrfs_add_free_space(used_block_group, offset, num_bytes);
5585 goto loop;
5586 }
5587
5588 /* we are all good, lets return */
5589 ins->objectid = search_start;
5590 ins->offset = num_bytes;
5591
5592 trace_btrfs_reserve_extent(orig_root, block_group,
5593 search_start, num_bytes);
5594 if (offset < search_start)
5595 btrfs_add_free_space(used_block_group, offset,
5596 search_start - offset);
5597 BUG_ON(offset > search_start);
5598 if (used_block_group != block_group)
5599 btrfs_put_block_group(used_block_group);
5600 btrfs_put_block_group(block_group);
5601 break;
5602 loop:
5603 failed_cluster_refill = false;
5604 failed_alloc = false;
5605 BUG_ON(index != get_block_group_index(block_group));
5606 if (used_block_group != block_group)
5607 btrfs_put_block_group(used_block_group);
5608 btrfs_put_block_group(block_group);
5609 }
5610 up_read(&space_info->groups_sem);
5611
5612 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5613 goto search;
5614
5615 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5616 goto search;
5617
5618 /*
5619 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5620 * caching kthreads as we move along
5621 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5622 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5623 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5624 * again
5625 */
5626 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5627 index = 0;
5628 loop++;
5629 if (loop == LOOP_ALLOC_CHUNK) {
5630 if (allowed_chunk_alloc) {
5631 ret = do_chunk_alloc(trans, root, num_bytes +
5632 2 * 1024 * 1024, data,
5633 CHUNK_ALLOC_LIMITED);
5634 allowed_chunk_alloc = 0;
5635 if (ret == 1)
5636 done_chunk_alloc = 1;
5637 } else if (!done_chunk_alloc &&
5638 space_info->force_alloc ==
5639 CHUNK_ALLOC_NO_FORCE) {
5640 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5641 }
5642
5643 /*
5644 * We didn't allocate a chunk, go ahead and drop the
5645 * empty size and loop again.
5646 */
5647 if (!done_chunk_alloc)
5648 loop = LOOP_NO_EMPTY_SIZE;
5649 }
5650
5651 if (loop == LOOP_NO_EMPTY_SIZE) {
5652 empty_size = 0;
5653 empty_cluster = 0;
5654 }
5655
5656 goto search;
5657 } else if (!ins->objectid) {
5658 ret = -ENOSPC;
5659 } else if (ins->objectid) {
5660 ret = 0;
5661 }
5662
5663 return ret;
5664 }
5665
5666 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5667 int dump_block_groups)
5668 {
5669 struct btrfs_block_group_cache *cache;
5670 int index = 0;
5671
5672 spin_lock(&info->lock);
5673 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5674 (unsigned long long)info->flags,
5675 (unsigned long long)(info->total_bytes - info->bytes_used -
5676 info->bytes_pinned - info->bytes_reserved -
5677 info->bytes_readonly),
5678 (info->full) ? "" : "not ");
5679 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5680 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5681 (unsigned long long)info->total_bytes,
5682 (unsigned long long)info->bytes_used,
5683 (unsigned long long)info->bytes_pinned,
5684 (unsigned long long)info->bytes_reserved,
5685 (unsigned long long)info->bytes_may_use,
5686 (unsigned long long)info->bytes_readonly);
5687 spin_unlock(&info->lock);
5688
5689 if (!dump_block_groups)
5690 return;
5691
5692 down_read(&info->groups_sem);
5693 again:
5694 list_for_each_entry(cache, &info->block_groups[index], list) {
5695 spin_lock(&cache->lock);
5696 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5697 "%llu pinned %llu reserved\n",
5698 (unsigned long long)cache->key.objectid,
5699 (unsigned long long)cache->key.offset,
5700 (unsigned long long)btrfs_block_group_used(&cache->item),
5701 (unsigned long long)cache->pinned,
5702 (unsigned long long)cache->reserved);
5703 btrfs_dump_free_space(cache, bytes);
5704 spin_unlock(&cache->lock);
5705 }
5706 if (++index < BTRFS_NR_RAID_TYPES)
5707 goto again;
5708 up_read(&info->groups_sem);
5709 }
5710
5711 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5712 struct btrfs_root *root,
5713 u64 num_bytes, u64 min_alloc_size,
5714 u64 empty_size, u64 hint_byte,
5715 struct btrfs_key *ins, u64 data)
5716 {
5717 bool final_tried = false;
5718 int ret;
5719
5720 data = btrfs_get_alloc_profile(root, data);
5721 again:
5722 /*
5723 * the only place that sets empty_size is btrfs_realloc_node, which
5724 * is not called recursively on allocations
5725 */
5726 if (empty_size || root->ref_cows)
5727 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5728 num_bytes + 2 * 1024 * 1024, data,
5729 CHUNK_ALLOC_NO_FORCE);
5730
5731 WARN_ON(num_bytes < root->sectorsize);
5732 ret = find_free_extent(trans, root, num_bytes, empty_size,
5733 hint_byte, ins, data);
5734
5735 if (ret == -ENOSPC) {
5736 if (!final_tried) {
5737 num_bytes = num_bytes >> 1;
5738 num_bytes = num_bytes & ~(root->sectorsize - 1);
5739 num_bytes = max(num_bytes, min_alloc_size);
5740 do_chunk_alloc(trans, root->fs_info->extent_root,
5741 num_bytes, data, CHUNK_ALLOC_FORCE);
5742 if (num_bytes == min_alloc_size)
5743 final_tried = true;
5744 goto again;
5745 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5746 struct btrfs_space_info *sinfo;
5747
5748 sinfo = __find_space_info(root->fs_info, data);
5749 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5750 "wanted %llu\n", (unsigned long long)data,
5751 (unsigned long long)num_bytes);
5752 dump_space_info(sinfo, num_bytes, 1);
5753 }
5754 }
5755
5756 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5757
5758 return ret;
5759 }
5760
5761 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5762 u64 start, u64 len, int pin)
5763 {
5764 struct btrfs_block_group_cache *cache;
5765 int ret = 0;
5766
5767 cache = btrfs_lookup_block_group(root->fs_info, start);
5768 if (!cache) {
5769 printk(KERN_ERR "Unable to find block group for %llu\n",
5770 (unsigned long long)start);
5771 return -ENOSPC;
5772 }
5773
5774 if (btrfs_test_opt(root, DISCARD))
5775 ret = btrfs_discard_extent(root, start, len, NULL);
5776
5777 if (pin)
5778 pin_down_extent(root, cache, start, len, 1);
5779 else {
5780 btrfs_add_free_space(cache, start, len);
5781 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5782 }
5783 btrfs_put_block_group(cache);
5784
5785 trace_btrfs_reserved_extent_free(root, start, len);
5786
5787 return ret;
5788 }
5789
5790 int btrfs_free_reserved_extent(struct btrfs_root *root,
5791 u64 start, u64 len)
5792 {
5793 return __btrfs_free_reserved_extent(root, start, len, 0);
5794 }
5795
5796 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5797 u64 start, u64 len)
5798 {
5799 return __btrfs_free_reserved_extent(root, start, len, 1);
5800 }
5801
5802 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5803 struct btrfs_root *root,
5804 u64 parent, u64 root_objectid,
5805 u64 flags, u64 owner, u64 offset,
5806 struct btrfs_key *ins, int ref_mod)
5807 {
5808 int ret;
5809 struct btrfs_fs_info *fs_info = root->fs_info;
5810 struct btrfs_extent_item *extent_item;
5811 struct btrfs_extent_inline_ref *iref;
5812 struct btrfs_path *path;
5813 struct extent_buffer *leaf;
5814 int type;
5815 u32 size;
5816
5817 if (parent > 0)
5818 type = BTRFS_SHARED_DATA_REF_KEY;
5819 else
5820 type = BTRFS_EXTENT_DATA_REF_KEY;
5821
5822 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5823
5824 path = btrfs_alloc_path();
5825 if (!path)
5826 return -ENOMEM;
5827
5828 path->leave_spinning = 1;
5829 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5830 ins, size);
5831 BUG_ON(ret);
5832
5833 leaf = path->nodes[0];
5834 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5835 struct btrfs_extent_item);
5836 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5837 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5838 btrfs_set_extent_flags(leaf, extent_item,
5839 flags | BTRFS_EXTENT_FLAG_DATA);
5840
5841 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5842 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5843 if (parent > 0) {
5844 struct btrfs_shared_data_ref *ref;
5845 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5846 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5847 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5848 } else {
5849 struct btrfs_extent_data_ref *ref;
5850 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5851 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5852 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5853 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5854 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5855 }
5856
5857 btrfs_mark_buffer_dirty(path->nodes[0]);
5858 btrfs_free_path(path);
5859
5860 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5861 if (ret) {
5862 printk(KERN_ERR "btrfs update block group failed for %llu "
5863 "%llu\n", (unsigned long long)ins->objectid,
5864 (unsigned long long)ins->offset);
5865 BUG();
5866 }
5867 return ret;
5868 }
5869
5870 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5871 struct btrfs_root *root,
5872 u64 parent, u64 root_objectid,
5873 u64 flags, struct btrfs_disk_key *key,
5874 int level, struct btrfs_key *ins)
5875 {
5876 int ret;
5877 struct btrfs_fs_info *fs_info = root->fs_info;
5878 struct btrfs_extent_item *extent_item;
5879 struct btrfs_tree_block_info *block_info;
5880 struct btrfs_extent_inline_ref *iref;
5881 struct btrfs_path *path;
5882 struct extent_buffer *leaf;
5883 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5884
5885 path = btrfs_alloc_path();
5886 if (!path)
5887 return -ENOMEM;
5888
5889 path->leave_spinning = 1;
5890 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5891 ins, size);
5892 BUG_ON(ret);
5893
5894 leaf = path->nodes[0];
5895 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5896 struct btrfs_extent_item);
5897 btrfs_set_extent_refs(leaf, extent_item, 1);
5898 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5899 btrfs_set_extent_flags(leaf, extent_item,
5900 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5901 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5902
5903 btrfs_set_tree_block_key(leaf, block_info, key);
5904 btrfs_set_tree_block_level(leaf, block_info, level);
5905
5906 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5907 if (parent > 0) {
5908 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5909 btrfs_set_extent_inline_ref_type(leaf, iref,
5910 BTRFS_SHARED_BLOCK_REF_KEY);
5911 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5912 } else {
5913 btrfs_set_extent_inline_ref_type(leaf, iref,
5914 BTRFS_TREE_BLOCK_REF_KEY);
5915 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5916 }
5917
5918 btrfs_mark_buffer_dirty(leaf);
5919 btrfs_free_path(path);
5920
5921 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5922 if (ret) {
5923 printk(KERN_ERR "btrfs update block group failed for %llu "
5924 "%llu\n", (unsigned long long)ins->objectid,
5925 (unsigned long long)ins->offset);
5926 BUG();
5927 }
5928 return ret;
5929 }
5930
5931 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5932 struct btrfs_root *root,
5933 u64 root_objectid, u64 owner,
5934 u64 offset, struct btrfs_key *ins)
5935 {
5936 int ret;
5937
5938 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5939
5940 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
5941 ins->offset, 0,
5942 root_objectid, owner, offset,
5943 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
5944 return ret;
5945 }
5946
5947 /*
5948 * this is used by the tree logging recovery code. It records that
5949 * an extent has been allocated and makes sure to clear the free
5950 * space cache bits as well
5951 */
5952 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5953 struct btrfs_root *root,
5954 u64 root_objectid, u64 owner, u64 offset,
5955 struct btrfs_key *ins)
5956 {
5957 int ret;
5958 struct btrfs_block_group_cache *block_group;
5959 struct btrfs_caching_control *caching_ctl;
5960 u64 start = ins->objectid;
5961 u64 num_bytes = ins->offset;
5962
5963 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5964 cache_block_group(block_group, trans, NULL, 0);
5965 caching_ctl = get_caching_control(block_group);
5966
5967 if (!caching_ctl) {
5968 BUG_ON(!block_group_cache_done(block_group));
5969 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5970 BUG_ON(ret);
5971 } else {
5972 mutex_lock(&caching_ctl->mutex);
5973
5974 if (start >= caching_ctl->progress) {
5975 ret = add_excluded_extent(root, start, num_bytes);
5976 BUG_ON(ret);
5977 } else if (start + num_bytes <= caching_ctl->progress) {
5978 ret = btrfs_remove_free_space(block_group,
5979 start, num_bytes);
5980 BUG_ON(ret);
5981 } else {
5982 num_bytes = caching_ctl->progress - start;
5983 ret = btrfs_remove_free_space(block_group,
5984 start, num_bytes);
5985 BUG_ON(ret);
5986
5987 start = caching_ctl->progress;
5988 num_bytes = ins->objectid + ins->offset -
5989 caching_ctl->progress;
5990 ret = add_excluded_extent(root, start, num_bytes);
5991 BUG_ON(ret);
5992 }
5993
5994 mutex_unlock(&caching_ctl->mutex);
5995 put_caching_control(caching_ctl);
5996 }
5997
5998 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5999 RESERVE_ALLOC_NO_ACCOUNT);
6000 BUG_ON(ret);
6001 btrfs_put_block_group(block_group);
6002 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6003 0, owner, offset, ins, 1);
6004 return ret;
6005 }
6006
6007 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6008 struct btrfs_root *root,
6009 u64 bytenr, u32 blocksize,
6010 int level)
6011 {
6012 struct extent_buffer *buf;
6013
6014 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6015 if (!buf)
6016 return ERR_PTR(-ENOMEM);
6017 btrfs_set_header_generation(buf, trans->transid);
6018 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6019 btrfs_tree_lock(buf);
6020 clean_tree_block(trans, root, buf);
6021 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6022
6023 btrfs_set_lock_blocking(buf);
6024 btrfs_set_buffer_uptodate(buf);
6025
6026 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6027 /*
6028 * we allow two log transactions at a time, use different
6029 * EXENT bit to differentiate dirty pages.
6030 */
6031 if (root->log_transid % 2 == 0)
6032 set_extent_dirty(&root->dirty_log_pages, buf->start,
6033 buf->start + buf->len - 1, GFP_NOFS);
6034 else
6035 set_extent_new(&root->dirty_log_pages, buf->start,
6036 buf->start + buf->len - 1, GFP_NOFS);
6037 } else {
6038 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6039 buf->start + buf->len - 1, GFP_NOFS);
6040 }
6041 trans->blocks_used++;
6042 /* this returns a buffer locked for blocking */
6043 return buf;
6044 }
6045
6046 static struct btrfs_block_rsv *
6047 use_block_rsv(struct btrfs_trans_handle *trans,
6048 struct btrfs_root *root, u32 blocksize)
6049 {
6050 struct btrfs_block_rsv *block_rsv;
6051 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6052 int ret;
6053
6054 block_rsv = get_block_rsv(trans, root);
6055
6056 if (block_rsv->size == 0) {
6057 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6058 /*
6059 * If we couldn't reserve metadata bytes try and use some from
6060 * the global reserve.
6061 */
6062 if (ret && block_rsv != global_rsv) {
6063 ret = block_rsv_use_bytes(global_rsv, blocksize);
6064 if (!ret)
6065 return global_rsv;
6066 return ERR_PTR(ret);
6067 } else if (ret) {
6068 return ERR_PTR(ret);
6069 }
6070 return block_rsv;
6071 }
6072
6073 ret = block_rsv_use_bytes(block_rsv, blocksize);
6074 if (!ret)
6075 return block_rsv;
6076 if (ret) {
6077 static DEFINE_RATELIMIT_STATE(_rs,
6078 DEFAULT_RATELIMIT_INTERVAL,
6079 /*DEFAULT_RATELIMIT_BURST*/ 2);
6080 if (__ratelimit(&_rs)) {
6081 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6082 WARN_ON(1);
6083 }
6084 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6085 if (!ret) {
6086 return block_rsv;
6087 } else if (ret && block_rsv != global_rsv) {
6088 ret = block_rsv_use_bytes(global_rsv, blocksize);
6089 if (!ret)
6090 return global_rsv;
6091 }
6092 }
6093
6094 return ERR_PTR(-ENOSPC);
6095 }
6096
6097 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6098 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6099 {
6100 block_rsv_add_bytes(block_rsv, blocksize, 0);
6101 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6102 }
6103
6104 /*
6105 * finds a free extent and does all the dirty work required for allocation
6106 * returns the key for the extent through ins, and a tree buffer for
6107 * the first block of the extent through buf.
6108 *
6109 * returns the tree buffer or NULL.
6110 */
6111 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6112 struct btrfs_root *root, u32 blocksize,
6113 u64 parent, u64 root_objectid,
6114 struct btrfs_disk_key *key, int level,
6115 u64 hint, u64 empty_size, int for_cow)
6116 {
6117 struct btrfs_key ins;
6118 struct btrfs_block_rsv *block_rsv;
6119 struct extent_buffer *buf;
6120 u64 flags = 0;
6121 int ret;
6122
6123
6124 block_rsv = use_block_rsv(trans, root, blocksize);
6125 if (IS_ERR(block_rsv))
6126 return ERR_CAST(block_rsv);
6127
6128 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6129 empty_size, hint, &ins, 0);
6130 if (ret) {
6131 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6132 return ERR_PTR(ret);
6133 }
6134
6135 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6136 blocksize, level);
6137 BUG_ON(IS_ERR(buf));
6138
6139 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6140 if (parent == 0)
6141 parent = ins.objectid;
6142 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6143 } else
6144 BUG_ON(parent > 0);
6145
6146 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6147 struct btrfs_delayed_extent_op *extent_op;
6148 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6149 BUG_ON(!extent_op);
6150 if (key)
6151 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6152 else
6153 memset(&extent_op->key, 0, sizeof(extent_op->key));
6154 extent_op->flags_to_set = flags;
6155 extent_op->update_key = 1;
6156 extent_op->update_flags = 1;
6157 extent_op->is_data = 0;
6158
6159 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6160 ins.objectid,
6161 ins.offset, parent, root_objectid,
6162 level, BTRFS_ADD_DELAYED_EXTENT,
6163 extent_op, for_cow);
6164 BUG_ON(ret);
6165 }
6166 return buf;
6167 }
6168
6169 struct walk_control {
6170 u64 refs[BTRFS_MAX_LEVEL];
6171 u64 flags[BTRFS_MAX_LEVEL];
6172 struct btrfs_key update_progress;
6173 int stage;
6174 int level;
6175 int shared_level;
6176 int update_ref;
6177 int keep_locks;
6178 int reada_slot;
6179 int reada_count;
6180 int for_reloc;
6181 };
6182
6183 #define DROP_REFERENCE 1
6184 #define UPDATE_BACKREF 2
6185
6186 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6187 struct btrfs_root *root,
6188 struct walk_control *wc,
6189 struct btrfs_path *path)
6190 {
6191 u64 bytenr;
6192 u64 generation;
6193 u64 refs;
6194 u64 flags;
6195 u32 nritems;
6196 u32 blocksize;
6197 struct btrfs_key key;
6198 struct extent_buffer *eb;
6199 int ret;
6200 int slot;
6201 int nread = 0;
6202
6203 if (path->slots[wc->level] < wc->reada_slot) {
6204 wc->reada_count = wc->reada_count * 2 / 3;
6205 wc->reada_count = max(wc->reada_count, 2);
6206 } else {
6207 wc->reada_count = wc->reada_count * 3 / 2;
6208 wc->reada_count = min_t(int, wc->reada_count,
6209 BTRFS_NODEPTRS_PER_BLOCK(root));
6210 }
6211
6212 eb = path->nodes[wc->level];
6213 nritems = btrfs_header_nritems(eb);
6214 blocksize = btrfs_level_size(root, wc->level - 1);
6215
6216 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6217 if (nread >= wc->reada_count)
6218 break;
6219
6220 cond_resched();
6221 bytenr = btrfs_node_blockptr(eb, slot);
6222 generation = btrfs_node_ptr_generation(eb, slot);
6223
6224 if (slot == path->slots[wc->level])
6225 goto reada;
6226
6227 if (wc->stage == UPDATE_BACKREF &&
6228 generation <= root->root_key.offset)
6229 continue;
6230
6231 /* We don't lock the tree block, it's OK to be racy here */
6232 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6233 &refs, &flags);
6234 BUG_ON(ret);
6235 BUG_ON(refs == 0);
6236
6237 if (wc->stage == DROP_REFERENCE) {
6238 if (refs == 1)
6239 goto reada;
6240
6241 if (wc->level == 1 &&
6242 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6243 continue;
6244 if (!wc->update_ref ||
6245 generation <= root->root_key.offset)
6246 continue;
6247 btrfs_node_key_to_cpu(eb, &key, slot);
6248 ret = btrfs_comp_cpu_keys(&key,
6249 &wc->update_progress);
6250 if (ret < 0)
6251 continue;
6252 } else {
6253 if (wc->level == 1 &&
6254 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6255 continue;
6256 }
6257 reada:
6258 ret = readahead_tree_block(root, bytenr, blocksize,
6259 generation);
6260 if (ret)
6261 break;
6262 nread++;
6263 }
6264 wc->reada_slot = slot;
6265 }
6266
6267 /*
6268 * hepler to process tree block while walking down the tree.
6269 *
6270 * when wc->stage == UPDATE_BACKREF, this function updates
6271 * back refs for pointers in the block.
6272 *
6273 * NOTE: return value 1 means we should stop walking down.
6274 */
6275 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6276 struct btrfs_root *root,
6277 struct btrfs_path *path,
6278 struct walk_control *wc, int lookup_info)
6279 {
6280 int level = wc->level;
6281 struct extent_buffer *eb = path->nodes[level];
6282 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6283 int ret;
6284
6285 if (wc->stage == UPDATE_BACKREF &&
6286 btrfs_header_owner(eb) != root->root_key.objectid)
6287 return 1;
6288
6289 /*
6290 * when reference count of tree block is 1, it won't increase
6291 * again. once full backref flag is set, we never clear it.
6292 */
6293 if (lookup_info &&
6294 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6295 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6296 BUG_ON(!path->locks[level]);
6297 ret = btrfs_lookup_extent_info(trans, root,
6298 eb->start, eb->len,
6299 &wc->refs[level],
6300 &wc->flags[level]);
6301 BUG_ON(ret);
6302 BUG_ON(wc->refs[level] == 0);
6303 }
6304
6305 if (wc->stage == DROP_REFERENCE) {
6306 if (wc->refs[level] > 1)
6307 return 1;
6308
6309 if (path->locks[level] && !wc->keep_locks) {
6310 btrfs_tree_unlock_rw(eb, path->locks[level]);
6311 path->locks[level] = 0;
6312 }
6313 return 0;
6314 }
6315
6316 /* wc->stage == UPDATE_BACKREF */
6317 if (!(wc->flags[level] & flag)) {
6318 BUG_ON(!path->locks[level]);
6319 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6320 BUG_ON(ret);
6321 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6322 BUG_ON(ret);
6323 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6324 eb->len, flag, 0);
6325 BUG_ON(ret);
6326 wc->flags[level] |= flag;
6327 }
6328
6329 /*
6330 * the block is shared by multiple trees, so it's not good to
6331 * keep the tree lock
6332 */
6333 if (path->locks[level] && level > 0) {
6334 btrfs_tree_unlock_rw(eb, path->locks[level]);
6335 path->locks[level] = 0;
6336 }
6337 return 0;
6338 }
6339
6340 /*
6341 * hepler to process tree block pointer.
6342 *
6343 * when wc->stage == DROP_REFERENCE, this function checks
6344 * reference count of the block pointed to. if the block
6345 * is shared and we need update back refs for the subtree
6346 * rooted at the block, this function changes wc->stage to
6347 * UPDATE_BACKREF. if the block is shared and there is no
6348 * need to update back, this function drops the reference
6349 * to the block.
6350 *
6351 * NOTE: return value 1 means we should stop walking down.
6352 */
6353 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6354 struct btrfs_root *root,
6355 struct btrfs_path *path,
6356 struct walk_control *wc, int *lookup_info)
6357 {
6358 u64 bytenr;
6359 u64 generation;
6360 u64 parent;
6361 u32 blocksize;
6362 struct btrfs_key key;
6363 struct extent_buffer *next;
6364 int level = wc->level;
6365 int reada = 0;
6366 int ret = 0;
6367
6368 generation = btrfs_node_ptr_generation(path->nodes[level],
6369 path->slots[level]);
6370 /*
6371 * if the lower level block was created before the snapshot
6372 * was created, we know there is no need to update back refs
6373 * for the subtree
6374 */
6375 if (wc->stage == UPDATE_BACKREF &&
6376 generation <= root->root_key.offset) {
6377 *lookup_info = 1;
6378 return 1;
6379 }
6380
6381 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6382 blocksize = btrfs_level_size(root, level - 1);
6383
6384 next = btrfs_find_tree_block(root, bytenr, blocksize);
6385 if (!next) {
6386 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6387 if (!next)
6388 return -ENOMEM;
6389 reada = 1;
6390 }
6391 btrfs_tree_lock(next);
6392 btrfs_set_lock_blocking(next);
6393
6394 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6395 &wc->refs[level - 1],
6396 &wc->flags[level - 1]);
6397 BUG_ON(ret);
6398 BUG_ON(wc->refs[level - 1] == 0);
6399 *lookup_info = 0;
6400
6401 if (wc->stage == DROP_REFERENCE) {
6402 if (wc->refs[level - 1] > 1) {
6403 if (level == 1 &&
6404 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6405 goto skip;
6406
6407 if (!wc->update_ref ||
6408 generation <= root->root_key.offset)
6409 goto skip;
6410
6411 btrfs_node_key_to_cpu(path->nodes[level], &key,
6412 path->slots[level]);
6413 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6414 if (ret < 0)
6415 goto skip;
6416
6417 wc->stage = UPDATE_BACKREF;
6418 wc->shared_level = level - 1;
6419 }
6420 } else {
6421 if (level == 1 &&
6422 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6423 goto skip;
6424 }
6425
6426 if (!btrfs_buffer_uptodate(next, generation)) {
6427 btrfs_tree_unlock(next);
6428 free_extent_buffer(next);
6429 next = NULL;
6430 *lookup_info = 1;
6431 }
6432
6433 if (!next) {
6434 if (reada && level == 1)
6435 reada_walk_down(trans, root, wc, path);
6436 next = read_tree_block(root, bytenr, blocksize, generation);
6437 if (!next)
6438 return -EIO;
6439 btrfs_tree_lock(next);
6440 btrfs_set_lock_blocking(next);
6441 }
6442
6443 level--;
6444 BUG_ON(level != btrfs_header_level(next));
6445 path->nodes[level] = next;
6446 path->slots[level] = 0;
6447 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6448 wc->level = level;
6449 if (wc->level == 1)
6450 wc->reada_slot = 0;
6451 return 0;
6452 skip:
6453 wc->refs[level - 1] = 0;
6454 wc->flags[level - 1] = 0;
6455 if (wc->stage == DROP_REFERENCE) {
6456 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6457 parent = path->nodes[level]->start;
6458 } else {
6459 BUG_ON(root->root_key.objectid !=
6460 btrfs_header_owner(path->nodes[level]));
6461 parent = 0;
6462 }
6463
6464 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6465 root->root_key.objectid, level - 1, 0, 0);
6466 BUG_ON(ret);
6467 }
6468 btrfs_tree_unlock(next);
6469 free_extent_buffer(next);
6470 *lookup_info = 1;
6471 return 1;
6472 }
6473
6474 /*
6475 * hepler to process tree block while walking up the tree.
6476 *
6477 * when wc->stage == DROP_REFERENCE, this function drops
6478 * reference count on the block.
6479 *
6480 * when wc->stage == UPDATE_BACKREF, this function changes
6481 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6482 * to UPDATE_BACKREF previously while processing the block.
6483 *
6484 * NOTE: return value 1 means we should stop walking up.
6485 */
6486 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6487 struct btrfs_root *root,
6488 struct btrfs_path *path,
6489 struct walk_control *wc)
6490 {
6491 int ret;
6492 int level = wc->level;
6493 struct extent_buffer *eb = path->nodes[level];
6494 u64 parent = 0;
6495
6496 if (wc->stage == UPDATE_BACKREF) {
6497 BUG_ON(wc->shared_level < level);
6498 if (level < wc->shared_level)
6499 goto out;
6500
6501 ret = find_next_key(path, level + 1, &wc->update_progress);
6502 if (ret > 0)
6503 wc->update_ref = 0;
6504
6505 wc->stage = DROP_REFERENCE;
6506 wc->shared_level = -1;
6507 path->slots[level] = 0;
6508
6509 /*
6510 * check reference count again if the block isn't locked.
6511 * we should start walking down the tree again if reference
6512 * count is one.
6513 */
6514 if (!path->locks[level]) {
6515 BUG_ON(level == 0);
6516 btrfs_tree_lock(eb);
6517 btrfs_set_lock_blocking(eb);
6518 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6519
6520 ret = btrfs_lookup_extent_info(trans, root,
6521 eb->start, eb->len,
6522 &wc->refs[level],
6523 &wc->flags[level]);
6524 BUG_ON(ret);
6525 BUG_ON(wc->refs[level] == 0);
6526 if (wc->refs[level] == 1) {
6527 btrfs_tree_unlock_rw(eb, path->locks[level]);
6528 return 1;
6529 }
6530 }
6531 }
6532
6533 /* wc->stage == DROP_REFERENCE */
6534 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6535
6536 if (wc->refs[level] == 1) {
6537 if (level == 0) {
6538 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6539 ret = btrfs_dec_ref(trans, root, eb, 1,
6540 wc->for_reloc);
6541 else
6542 ret = btrfs_dec_ref(trans, root, eb, 0,
6543 wc->for_reloc);
6544 BUG_ON(ret);
6545 }
6546 /* make block locked assertion in clean_tree_block happy */
6547 if (!path->locks[level] &&
6548 btrfs_header_generation(eb) == trans->transid) {
6549 btrfs_tree_lock(eb);
6550 btrfs_set_lock_blocking(eb);
6551 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6552 }
6553 clean_tree_block(trans, root, eb);
6554 }
6555
6556 if (eb == root->node) {
6557 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6558 parent = eb->start;
6559 else
6560 BUG_ON(root->root_key.objectid !=
6561 btrfs_header_owner(eb));
6562 } else {
6563 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6564 parent = path->nodes[level + 1]->start;
6565 else
6566 BUG_ON(root->root_key.objectid !=
6567 btrfs_header_owner(path->nodes[level + 1]));
6568 }
6569
6570 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
6571 out:
6572 wc->refs[level] = 0;
6573 wc->flags[level] = 0;
6574 return 0;
6575 }
6576
6577 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6578 struct btrfs_root *root,
6579 struct btrfs_path *path,
6580 struct walk_control *wc)
6581 {
6582 int level = wc->level;
6583 int lookup_info = 1;
6584 int ret;
6585
6586 while (level >= 0) {
6587 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6588 if (ret > 0)
6589 break;
6590
6591 if (level == 0)
6592 break;
6593
6594 if (path->slots[level] >=
6595 btrfs_header_nritems(path->nodes[level]))
6596 break;
6597
6598 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6599 if (ret > 0) {
6600 path->slots[level]++;
6601 continue;
6602 } else if (ret < 0)
6603 return ret;
6604 level = wc->level;
6605 }
6606 return 0;
6607 }
6608
6609 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6610 struct btrfs_root *root,
6611 struct btrfs_path *path,
6612 struct walk_control *wc, int max_level)
6613 {
6614 int level = wc->level;
6615 int ret;
6616
6617 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6618 while (level < max_level && path->nodes[level]) {
6619 wc->level = level;
6620 if (path->slots[level] + 1 <
6621 btrfs_header_nritems(path->nodes[level])) {
6622 path->slots[level]++;
6623 return 0;
6624 } else {
6625 ret = walk_up_proc(trans, root, path, wc);
6626 if (ret > 0)
6627 return 0;
6628
6629 if (path->locks[level]) {
6630 btrfs_tree_unlock_rw(path->nodes[level],
6631 path->locks[level]);
6632 path->locks[level] = 0;
6633 }
6634 free_extent_buffer(path->nodes[level]);
6635 path->nodes[level] = NULL;
6636 level++;
6637 }
6638 }
6639 return 1;
6640 }
6641
6642 /*
6643 * drop a subvolume tree.
6644 *
6645 * this function traverses the tree freeing any blocks that only
6646 * referenced by the tree.
6647 *
6648 * when a shared tree block is found. this function decreases its
6649 * reference count by one. if update_ref is true, this function
6650 * also make sure backrefs for the shared block and all lower level
6651 * blocks are properly updated.
6652 */
6653 void btrfs_drop_snapshot(struct btrfs_root *root,
6654 struct btrfs_block_rsv *block_rsv, int update_ref,
6655 int for_reloc)
6656 {
6657 struct btrfs_path *path;
6658 struct btrfs_trans_handle *trans;
6659 struct btrfs_root *tree_root = root->fs_info->tree_root;
6660 struct btrfs_root_item *root_item = &root->root_item;
6661 struct walk_control *wc;
6662 struct btrfs_key key;
6663 int err = 0;
6664 int ret;
6665 int level;
6666
6667 path = btrfs_alloc_path();
6668 if (!path) {
6669 err = -ENOMEM;
6670 goto out;
6671 }
6672
6673 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6674 if (!wc) {
6675 btrfs_free_path(path);
6676 err = -ENOMEM;
6677 goto out;
6678 }
6679
6680 trans = btrfs_start_transaction(tree_root, 0);
6681 BUG_ON(IS_ERR(trans));
6682
6683 if (block_rsv)
6684 trans->block_rsv = block_rsv;
6685
6686 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6687 level = btrfs_header_level(root->node);
6688 path->nodes[level] = btrfs_lock_root_node(root);
6689 btrfs_set_lock_blocking(path->nodes[level]);
6690 path->slots[level] = 0;
6691 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6692 memset(&wc->update_progress, 0,
6693 sizeof(wc->update_progress));
6694 } else {
6695 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6696 memcpy(&wc->update_progress, &key,
6697 sizeof(wc->update_progress));
6698
6699 level = root_item->drop_level;
6700 BUG_ON(level == 0);
6701 path->lowest_level = level;
6702 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6703 path->lowest_level = 0;
6704 if (ret < 0) {
6705 err = ret;
6706 goto out_free;
6707 }
6708 WARN_ON(ret > 0);
6709
6710 /*
6711 * unlock our path, this is safe because only this
6712 * function is allowed to delete this snapshot
6713 */
6714 btrfs_unlock_up_safe(path, 0);
6715
6716 level = btrfs_header_level(root->node);
6717 while (1) {
6718 btrfs_tree_lock(path->nodes[level]);
6719 btrfs_set_lock_blocking(path->nodes[level]);
6720
6721 ret = btrfs_lookup_extent_info(trans, root,
6722 path->nodes[level]->start,
6723 path->nodes[level]->len,
6724 &wc->refs[level],
6725 &wc->flags[level]);
6726 BUG_ON(ret);
6727 BUG_ON(wc->refs[level] == 0);
6728
6729 if (level == root_item->drop_level)
6730 break;
6731
6732 btrfs_tree_unlock(path->nodes[level]);
6733 WARN_ON(wc->refs[level] != 1);
6734 level--;
6735 }
6736 }
6737
6738 wc->level = level;
6739 wc->shared_level = -1;
6740 wc->stage = DROP_REFERENCE;
6741 wc->update_ref = update_ref;
6742 wc->keep_locks = 0;
6743 wc->for_reloc = for_reloc;
6744 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6745
6746 while (1) {
6747 ret = walk_down_tree(trans, root, path, wc);
6748 if (ret < 0) {
6749 err = ret;
6750 break;
6751 }
6752
6753 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6754 if (ret < 0) {
6755 err = ret;
6756 break;
6757 }
6758
6759 if (ret > 0) {
6760 BUG_ON(wc->stage != DROP_REFERENCE);
6761 break;
6762 }
6763
6764 if (wc->stage == DROP_REFERENCE) {
6765 level = wc->level;
6766 btrfs_node_key(path->nodes[level],
6767 &root_item->drop_progress,
6768 path->slots[level]);
6769 root_item->drop_level = level;
6770 }
6771
6772 BUG_ON(wc->level == 0);
6773 if (btrfs_should_end_transaction(trans, tree_root)) {
6774 ret = btrfs_update_root(trans, tree_root,
6775 &root->root_key,
6776 root_item);
6777 BUG_ON(ret);
6778
6779 btrfs_end_transaction_throttle(trans, tree_root);
6780 trans = btrfs_start_transaction(tree_root, 0);
6781 BUG_ON(IS_ERR(trans));
6782 if (block_rsv)
6783 trans->block_rsv = block_rsv;
6784 }
6785 }
6786 btrfs_release_path(path);
6787 BUG_ON(err);
6788
6789 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6790 BUG_ON(ret);
6791
6792 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6793 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6794 NULL, NULL);
6795 BUG_ON(ret < 0);
6796 if (ret > 0) {
6797 /* if we fail to delete the orphan item this time
6798 * around, it'll get picked up the next time.
6799 *
6800 * The most common failure here is just -ENOENT.
6801 */
6802 btrfs_del_orphan_item(trans, tree_root,
6803 root->root_key.objectid);
6804 }
6805 }
6806
6807 if (root->in_radix) {
6808 btrfs_free_fs_root(tree_root->fs_info, root);
6809 } else {
6810 free_extent_buffer(root->node);
6811 free_extent_buffer(root->commit_root);
6812 kfree(root);
6813 }
6814 out_free:
6815 btrfs_end_transaction_throttle(trans, tree_root);
6816 kfree(wc);
6817 btrfs_free_path(path);
6818 out:
6819 if (err)
6820 btrfs_std_error(root->fs_info, err);
6821 return;
6822 }
6823
6824 /*
6825 * drop subtree rooted at tree block 'node'.
6826 *
6827 * NOTE: this function will unlock and release tree block 'node'
6828 * only used by relocation code
6829 */
6830 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6831 struct btrfs_root *root,
6832 struct extent_buffer *node,
6833 struct extent_buffer *parent)
6834 {
6835 struct btrfs_path *path;
6836 struct walk_control *wc;
6837 int level;
6838 int parent_level;
6839 int ret = 0;
6840 int wret;
6841
6842 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6843
6844 path = btrfs_alloc_path();
6845 if (!path)
6846 return -ENOMEM;
6847
6848 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6849 if (!wc) {
6850 btrfs_free_path(path);
6851 return -ENOMEM;
6852 }
6853
6854 btrfs_assert_tree_locked(parent);
6855 parent_level = btrfs_header_level(parent);
6856 extent_buffer_get(parent);
6857 path->nodes[parent_level] = parent;
6858 path->slots[parent_level] = btrfs_header_nritems(parent);
6859
6860 btrfs_assert_tree_locked(node);
6861 level = btrfs_header_level(node);
6862 path->nodes[level] = node;
6863 path->slots[level] = 0;
6864 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6865
6866 wc->refs[parent_level] = 1;
6867 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6868 wc->level = level;
6869 wc->shared_level = -1;
6870 wc->stage = DROP_REFERENCE;
6871 wc->update_ref = 0;
6872 wc->keep_locks = 1;
6873 wc->for_reloc = 1;
6874 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6875
6876 while (1) {
6877 wret = walk_down_tree(trans, root, path, wc);
6878 if (wret < 0) {
6879 ret = wret;
6880 break;
6881 }
6882
6883 wret = walk_up_tree(trans, root, path, wc, parent_level);
6884 if (wret < 0)
6885 ret = wret;
6886 if (wret != 0)
6887 break;
6888 }
6889
6890 kfree(wc);
6891 btrfs_free_path(path);
6892 return ret;
6893 }
6894
6895 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6896 {
6897 u64 num_devices;
6898 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6899 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6900
6901 if (root->fs_info->balance_ctl) {
6902 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
6903 u64 tgt = 0;
6904
6905 /* pick restriper's target profile and return */
6906 if (flags & BTRFS_BLOCK_GROUP_DATA &&
6907 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6908 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
6909 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
6910 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6911 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
6912 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
6913 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6914 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
6915 }
6916
6917 if (tgt) {
6918 /* extended -> chunk profile */
6919 tgt &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
6920 return tgt;
6921 }
6922 }
6923
6924 /*
6925 * we add in the count of missing devices because we want
6926 * to make sure that any RAID levels on a degraded FS
6927 * continue to be honored.
6928 */
6929 num_devices = root->fs_info->fs_devices->rw_devices +
6930 root->fs_info->fs_devices->missing_devices;
6931
6932 if (num_devices == 1) {
6933 stripped |= BTRFS_BLOCK_GROUP_DUP;
6934 stripped = flags & ~stripped;
6935
6936 /* turn raid0 into single device chunks */
6937 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6938 return stripped;
6939
6940 /* turn mirroring into duplication */
6941 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6942 BTRFS_BLOCK_GROUP_RAID10))
6943 return stripped | BTRFS_BLOCK_GROUP_DUP;
6944 return flags;
6945 } else {
6946 /* they already had raid on here, just return */
6947 if (flags & stripped)
6948 return flags;
6949
6950 stripped |= BTRFS_BLOCK_GROUP_DUP;
6951 stripped = flags & ~stripped;
6952
6953 /* switch duplicated blocks with raid1 */
6954 if (flags & BTRFS_BLOCK_GROUP_DUP)
6955 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6956
6957 /* turn single device chunks into raid0 */
6958 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6959 }
6960 return flags;
6961 }
6962
6963 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6964 {
6965 struct btrfs_space_info *sinfo = cache->space_info;
6966 u64 num_bytes;
6967 u64 min_allocable_bytes;
6968 int ret = -ENOSPC;
6969
6970
6971 /*
6972 * We need some metadata space and system metadata space for
6973 * allocating chunks in some corner cases until we force to set
6974 * it to be readonly.
6975 */
6976 if ((sinfo->flags &
6977 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6978 !force)
6979 min_allocable_bytes = 1 * 1024 * 1024;
6980 else
6981 min_allocable_bytes = 0;
6982
6983 spin_lock(&sinfo->lock);
6984 spin_lock(&cache->lock);
6985
6986 if (cache->ro) {
6987 ret = 0;
6988 goto out;
6989 }
6990
6991 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6992 cache->bytes_super - btrfs_block_group_used(&cache->item);
6993
6994 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6995 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6996 min_allocable_bytes <= sinfo->total_bytes) {
6997 sinfo->bytes_readonly += num_bytes;
6998 cache->ro = 1;
6999 ret = 0;
7000 }
7001 out:
7002 spin_unlock(&cache->lock);
7003 spin_unlock(&sinfo->lock);
7004 return ret;
7005 }
7006
7007 int btrfs_set_block_group_ro(struct btrfs_root *root,
7008 struct btrfs_block_group_cache *cache)
7009
7010 {
7011 struct btrfs_trans_handle *trans;
7012 u64 alloc_flags;
7013 int ret;
7014
7015 BUG_ON(cache->ro);
7016
7017 trans = btrfs_join_transaction(root);
7018 BUG_ON(IS_ERR(trans));
7019
7020 alloc_flags = update_block_group_flags(root, cache->flags);
7021 if (alloc_flags != cache->flags)
7022 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7023 CHUNK_ALLOC_FORCE);
7024
7025 ret = set_block_group_ro(cache, 0);
7026 if (!ret)
7027 goto out;
7028 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7029 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7030 CHUNK_ALLOC_FORCE);
7031 if (ret < 0)
7032 goto out;
7033 ret = set_block_group_ro(cache, 0);
7034 out:
7035 btrfs_end_transaction(trans, root);
7036 return ret;
7037 }
7038
7039 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7040 struct btrfs_root *root, u64 type)
7041 {
7042 u64 alloc_flags = get_alloc_profile(root, type);
7043 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7044 CHUNK_ALLOC_FORCE);
7045 }
7046
7047 /*
7048 * helper to account the unused space of all the readonly block group in the
7049 * list. takes mirrors into account.
7050 */
7051 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7052 {
7053 struct btrfs_block_group_cache *block_group;
7054 u64 free_bytes = 0;
7055 int factor;
7056
7057 list_for_each_entry(block_group, groups_list, list) {
7058 spin_lock(&block_group->lock);
7059
7060 if (!block_group->ro) {
7061 spin_unlock(&block_group->lock);
7062 continue;
7063 }
7064
7065 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7066 BTRFS_BLOCK_GROUP_RAID10 |
7067 BTRFS_BLOCK_GROUP_DUP))
7068 factor = 2;
7069 else
7070 factor = 1;
7071
7072 free_bytes += (block_group->key.offset -
7073 btrfs_block_group_used(&block_group->item)) *
7074 factor;
7075
7076 spin_unlock(&block_group->lock);
7077 }
7078
7079 return free_bytes;
7080 }
7081
7082 /*
7083 * helper to account the unused space of all the readonly block group in the
7084 * space_info. takes mirrors into account.
7085 */
7086 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7087 {
7088 int i;
7089 u64 free_bytes = 0;
7090
7091 spin_lock(&sinfo->lock);
7092
7093 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7094 if (!list_empty(&sinfo->block_groups[i]))
7095 free_bytes += __btrfs_get_ro_block_group_free_space(
7096 &sinfo->block_groups[i]);
7097
7098 spin_unlock(&sinfo->lock);
7099
7100 return free_bytes;
7101 }
7102
7103 int btrfs_set_block_group_rw(struct btrfs_root *root,
7104 struct btrfs_block_group_cache *cache)
7105 {
7106 struct btrfs_space_info *sinfo = cache->space_info;
7107 u64 num_bytes;
7108
7109 BUG_ON(!cache->ro);
7110
7111 spin_lock(&sinfo->lock);
7112 spin_lock(&cache->lock);
7113 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7114 cache->bytes_super - btrfs_block_group_used(&cache->item);
7115 sinfo->bytes_readonly -= num_bytes;
7116 cache->ro = 0;
7117 spin_unlock(&cache->lock);
7118 spin_unlock(&sinfo->lock);
7119 return 0;
7120 }
7121
7122 /*
7123 * checks to see if its even possible to relocate this block group.
7124 *
7125 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7126 * ok to go ahead and try.
7127 */
7128 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7129 {
7130 struct btrfs_block_group_cache *block_group;
7131 struct btrfs_space_info *space_info;
7132 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7133 struct btrfs_device *device;
7134 u64 min_free;
7135 u64 dev_min = 1;
7136 u64 dev_nr = 0;
7137 int index;
7138 int full = 0;
7139 int ret = 0;
7140
7141 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7142
7143 /* odd, couldn't find the block group, leave it alone */
7144 if (!block_group)
7145 return -1;
7146
7147 min_free = btrfs_block_group_used(&block_group->item);
7148
7149 /* no bytes used, we're good */
7150 if (!min_free)
7151 goto out;
7152
7153 space_info = block_group->space_info;
7154 spin_lock(&space_info->lock);
7155
7156 full = space_info->full;
7157
7158 /*
7159 * if this is the last block group we have in this space, we can't
7160 * relocate it unless we're able to allocate a new chunk below.
7161 *
7162 * Otherwise, we need to make sure we have room in the space to handle
7163 * all of the extents from this block group. If we can, we're good
7164 */
7165 if ((space_info->total_bytes != block_group->key.offset) &&
7166 (space_info->bytes_used + space_info->bytes_reserved +
7167 space_info->bytes_pinned + space_info->bytes_readonly +
7168 min_free < space_info->total_bytes)) {
7169 spin_unlock(&space_info->lock);
7170 goto out;
7171 }
7172 spin_unlock(&space_info->lock);
7173
7174 /*
7175 * ok we don't have enough space, but maybe we have free space on our
7176 * devices to allocate new chunks for relocation, so loop through our
7177 * alloc devices and guess if we have enough space. However, if we
7178 * were marked as full, then we know there aren't enough chunks, and we
7179 * can just return.
7180 */
7181 ret = -1;
7182 if (full)
7183 goto out;
7184
7185 /*
7186 * index:
7187 * 0: raid10
7188 * 1: raid1
7189 * 2: dup
7190 * 3: raid0
7191 * 4: single
7192 */
7193 index = get_block_group_index(block_group);
7194 if (index == 0) {
7195 dev_min = 4;
7196 /* Divide by 2 */
7197 min_free >>= 1;
7198 } else if (index == 1) {
7199 dev_min = 2;
7200 } else if (index == 2) {
7201 /* Multiply by 2 */
7202 min_free <<= 1;
7203 } else if (index == 3) {
7204 dev_min = fs_devices->rw_devices;
7205 do_div(min_free, dev_min);
7206 }
7207
7208 mutex_lock(&root->fs_info->chunk_mutex);
7209 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7210 u64 dev_offset;
7211
7212 /*
7213 * check to make sure we can actually find a chunk with enough
7214 * space to fit our block group in.
7215 */
7216 if (device->total_bytes > device->bytes_used + min_free) {
7217 ret = find_free_dev_extent(device, min_free,
7218 &dev_offset, NULL);
7219 if (!ret)
7220 dev_nr++;
7221
7222 if (dev_nr >= dev_min)
7223 break;
7224
7225 ret = -1;
7226 }
7227 }
7228 mutex_unlock(&root->fs_info->chunk_mutex);
7229 out:
7230 btrfs_put_block_group(block_group);
7231 return ret;
7232 }
7233
7234 static int find_first_block_group(struct btrfs_root *root,
7235 struct btrfs_path *path, struct btrfs_key *key)
7236 {
7237 int ret = 0;
7238 struct btrfs_key found_key;
7239 struct extent_buffer *leaf;
7240 int slot;
7241
7242 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7243 if (ret < 0)
7244 goto out;
7245
7246 while (1) {
7247 slot = path->slots[0];
7248 leaf = path->nodes[0];
7249 if (slot >= btrfs_header_nritems(leaf)) {
7250 ret = btrfs_next_leaf(root, path);
7251 if (ret == 0)
7252 continue;
7253 if (ret < 0)
7254 goto out;
7255 break;
7256 }
7257 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7258
7259 if (found_key.objectid >= key->objectid &&
7260 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7261 ret = 0;
7262 goto out;
7263 }
7264 path->slots[0]++;
7265 }
7266 out:
7267 return ret;
7268 }
7269
7270 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7271 {
7272 struct btrfs_block_group_cache *block_group;
7273 u64 last = 0;
7274
7275 while (1) {
7276 struct inode *inode;
7277
7278 block_group = btrfs_lookup_first_block_group(info, last);
7279 while (block_group) {
7280 spin_lock(&block_group->lock);
7281 if (block_group->iref)
7282 break;
7283 spin_unlock(&block_group->lock);
7284 block_group = next_block_group(info->tree_root,
7285 block_group);
7286 }
7287 if (!block_group) {
7288 if (last == 0)
7289 break;
7290 last = 0;
7291 continue;
7292 }
7293
7294 inode = block_group->inode;
7295 block_group->iref = 0;
7296 block_group->inode = NULL;
7297 spin_unlock(&block_group->lock);
7298 iput(inode);
7299 last = block_group->key.objectid + block_group->key.offset;
7300 btrfs_put_block_group(block_group);
7301 }
7302 }
7303
7304 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7305 {
7306 struct btrfs_block_group_cache *block_group;
7307 struct btrfs_space_info *space_info;
7308 struct btrfs_caching_control *caching_ctl;
7309 struct rb_node *n;
7310
7311 down_write(&info->extent_commit_sem);
7312 while (!list_empty(&info->caching_block_groups)) {
7313 caching_ctl = list_entry(info->caching_block_groups.next,
7314 struct btrfs_caching_control, list);
7315 list_del(&caching_ctl->list);
7316 put_caching_control(caching_ctl);
7317 }
7318 up_write(&info->extent_commit_sem);
7319
7320 spin_lock(&info->block_group_cache_lock);
7321 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7322 block_group = rb_entry(n, struct btrfs_block_group_cache,
7323 cache_node);
7324 rb_erase(&block_group->cache_node,
7325 &info->block_group_cache_tree);
7326 spin_unlock(&info->block_group_cache_lock);
7327
7328 down_write(&block_group->space_info->groups_sem);
7329 list_del(&block_group->list);
7330 up_write(&block_group->space_info->groups_sem);
7331
7332 if (block_group->cached == BTRFS_CACHE_STARTED)
7333 wait_block_group_cache_done(block_group);
7334
7335 /*
7336 * We haven't cached this block group, which means we could
7337 * possibly have excluded extents on this block group.
7338 */
7339 if (block_group->cached == BTRFS_CACHE_NO)
7340 free_excluded_extents(info->extent_root, block_group);
7341
7342 btrfs_remove_free_space_cache(block_group);
7343 btrfs_put_block_group(block_group);
7344
7345 spin_lock(&info->block_group_cache_lock);
7346 }
7347 spin_unlock(&info->block_group_cache_lock);
7348
7349 /* now that all the block groups are freed, go through and
7350 * free all the space_info structs. This is only called during
7351 * the final stages of unmount, and so we know nobody is
7352 * using them. We call synchronize_rcu() once before we start,
7353 * just to be on the safe side.
7354 */
7355 synchronize_rcu();
7356
7357 release_global_block_rsv(info);
7358
7359 while(!list_empty(&info->space_info)) {
7360 space_info = list_entry(info->space_info.next,
7361 struct btrfs_space_info,
7362 list);
7363 if (space_info->bytes_pinned > 0 ||
7364 space_info->bytes_reserved > 0 ||
7365 space_info->bytes_may_use > 0) {
7366 WARN_ON(1);
7367 dump_space_info(space_info, 0, 0);
7368 }
7369 list_del(&space_info->list);
7370 kfree(space_info);
7371 }
7372 return 0;
7373 }
7374
7375 static void __link_block_group(struct btrfs_space_info *space_info,
7376 struct btrfs_block_group_cache *cache)
7377 {
7378 int index = get_block_group_index(cache);
7379
7380 down_write(&space_info->groups_sem);
7381 list_add_tail(&cache->list, &space_info->block_groups[index]);
7382 up_write(&space_info->groups_sem);
7383 }
7384
7385 int btrfs_read_block_groups(struct btrfs_root *root)
7386 {
7387 struct btrfs_path *path;
7388 int ret;
7389 struct btrfs_block_group_cache *cache;
7390 struct btrfs_fs_info *info = root->fs_info;
7391 struct btrfs_space_info *space_info;
7392 struct btrfs_key key;
7393 struct btrfs_key found_key;
7394 struct extent_buffer *leaf;
7395 int need_clear = 0;
7396 u64 cache_gen;
7397
7398 root = info->extent_root;
7399 key.objectid = 0;
7400 key.offset = 0;
7401 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7402 path = btrfs_alloc_path();
7403 if (!path)
7404 return -ENOMEM;
7405 path->reada = 1;
7406
7407 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7408 if (btrfs_test_opt(root, SPACE_CACHE) &&
7409 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7410 need_clear = 1;
7411 if (btrfs_test_opt(root, CLEAR_CACHE))
7412 need_clear = 1;
7413
7414 while (1) {
7415 ret = find_first_block_group(root, path, &key);
7416 if (ret > 0)
7417 break;
7418 if (ret != 0)
7419 goto error;
7420 leaf = path->nodes[0];
7421 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7422 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7423 if (!cache) {
7424 ret = -ENOMEM;
7425 goto error;
7426 }
7427 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7428 GFP_NOFS);
7429 if (!cache->free_space_ctl) {
7430 kfree(cache);
7431 ret = -ENOMEM;
7432 goto error;
7433 }
7434
7435 atomic_set(&cache->count, 1);
7436 spin_lock_init(&cache->lock);
7437 cache->fs_info = info;
7438 INIT_LIST_HEAD(&cache->list);
7439 INIT_LIST_HEAD(&cache->cluster_list);
7440
7441 if (need_clear)
7442 cache->disk_cache_state = BTRFS_DC_CLEAR;
7443
7444 read_extent_buffer(leaf, &cache->item,
7445 btrfs_item_ptr_offset(leaf, path->slots[0]),
7446 sizeof(cache->item));
7447 memcpy(&cache->key, &found_key, sizeof(found_key));
7448
7449 key.objectid = found_key.objectid + found_key.offset;
7450 btrfs_release_path(path);
7451 cache->flags = btrfs_block_group_flags(&cache->item);
7452 cache->sectorsize = root->sectorsize;
7453
7454 btrfs_init_free_space_ctl(cache);
7455
7456 /*
7457 * We need to exclude the super stripes now so that the space
7458 * info has super bytes accounted for, otherwise we'll think
7459 * we have more space than we actually do.
7460 */
7461 exclude_super_stripes(root, cache);
7462
7463 /*
7464 * check for two cases, either we are full, and therefore
7465 * don't need to bother with the caching work since we won't
7466 * find any space, or we are empty, and we can just add all
7467 * the space in and be done with it. This saves us _alot_ of
7468 * time, particularly in the full case.
7469 */
7470 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7471 cache->last_byte_to_unpin = (u64)-1;
7472 cache->cached = BTRFS_CACHE_FINISHED;
7473 free_excluded_extents(root, cache);
7474 } else if (btrfs_block_group_used(&cache->item) == 0) {
7475 cache->last_byte_to_unpin = (u64)-1;
7476 cache->cached = BTRFS_CACHE_FINISHED;
7477 add_new_free_space(cache, root->fs_info,
7478 found_key.objectid,
7479 found_key.objectid +
7480 found_key.offset);
7481 free_excluded_extents(root, cache);
7482 }
7483
7484 ret = update_space_info(info, cache->flags, found_key.offset,
7485 btrfs_block_group_used(&cache->item),
7486 &space_info);
7487 BUG_ON(ret);
7488 cache->space_info = space_info;
7489 spin_lock(&cache->space_info->lock);
7490 cache->space_info->bytes_readonly += cache->bytes_super;
7491 spin_unlock(&cache->space_info->lock);
7492
7493 __link_block_group(space_info, cache);
7494
7495 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7496 BUG_ON(ret);
7497
7498 set_avail_alloc_bits(root->fs_info, cache->flags);
7499 if (btrfs_chunk_readonly(root, cache->key.objectid))
7500 set_block_group_ro(cache, 1);
7501 }
7502
7503 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7504 if (!(get_alloc_profile(root, space_info->flags) &
7505 (BTRFS_BLOCK_GROUP_RAID10 |
7506 BTRFS_BLOCK_GROUP_RAID1 |
7507 BTRFS_BLOCK_GROUP_DUP)))
7508 continue;
7509 /*
7510 * avoid allocating from un-mirrored block group if there are
7511 * mirrored block groups.
7512 */
7513 list_for_each_entry(cache, &space_info->block_groups[3], list)
7514 set_block_group_ro(cache, 1);
7515 list_for_each_entry(cache, &space_info->block_groups[4], list)
7516 set_block_group_ro(cache, 1);
7517 }
7518
7519 init_global_block_rsv(info);
7520 ret = 0;
7521 error:
7522 btrfs_free_path(path);
7523 return ret;
7524 }
7525
7526 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7527 struct btrfs_root *root, u64 bytes_used,
7528 u64 type, u64 chunk_objectid, u64 chunk_offset,
7529 u64 size)
7530 {
7531 int ret;
7532 struct btrfs_root *extent_root;
7533 struct btrfs_block_group_cache *cache;
7534
7535 extent_root = root->fs_info->extent_root;
7536
7537 root->fs_info->last_trans_log_full_commit = trans->transid;
7538
7539 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7540 if (!cache)
7541 return -ENOMEM;
7542 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7543 GFP_NOFS);
7544 if (!cache->free_space_ctl) {
7545 kfree(cache);
7546 return -ENOMEM;
7547 }
7548
7549 cache->key.objectid = chunk_offset;
7550 cache->key.offset = size;
7551 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7552 cache->sectorsize = root->sectorsize;
7553 cache->fs_info = root->fs_info;
7554
7555 atomic_set(&cache->count, 1);
7556 spin_lock_init(&cache->lock);
7557 INIT_LIST_HEAD(&cache->list);
7558 INIT_LIST_HEAD(&cache->cluster_list);
7559
7560 btrfs_init_free_space_ctl(cache);
7561
7562 btrfs_set_block_group_used(&cache->item, bytes_used);
7563 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7564 cache->flags = type;
7565 btrfs_set_block_group_flags(&cache->item, type);
7566
7567 cache->last_byte_to_unpin = (u64)-1;
7568 cache->cached = BTRFS_CACHE_FINISHED;
7569 exclude_super_stripes(root, cache);
7570
7571 add_new_free_space(cache, root->fs_info, chunk_offset,
7572 chunk_offset + size);
7573
7574 free_excluded_extents(root, cache);
7575
7576 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7577 &cache->space_info);
7578 BUG_ON(ret);
7579 update_global_block_rsv(root->fs_info);
7580
7581 spin_lock(&cache->space_info->lock);
7582 cache->space_info->bytes_readonly += cache->bytes_super;
7583 spin_unlock(&cache->space_info->lock);
7584
7585 __link_block_group(cache->space_info, cache);
7586
7587 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7588 BUG_ON(ret);
7589
7590 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7591 sizeof(cache->item));
7592 BUG_ON(ret);
7593
7594 set_avail_alloc_bits(extent_root->fs_info, type);
7595
7596 return 0;
7597 }
7598
7599 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7600 {
7601 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
7602
7603 /* chunk -> extended profile */
7604 if (extra_flags == 0)
7605 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7606
7607 if (flags & BTRFS_BLOCK_GROUP_DATA)
7608 fs_info->avail_data_alloc_bits &= ~extra_flags;
7609 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7610 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7611 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7612 fs_info->avail_system_alloc_bits &= ~extra_flags;
7613 }
7614
7615 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7616 struct btrfs_root *root, u64 group_start)
7617 {
7618 struct btrfs_path *path;
7619 struct btrfs_block_group_cache *block_group;
7620 struct btrfs_free_cluster *cluster;
7621 struct btrfs_root *tree_root = root->fs_info->tree_root;
7622 struct btrfs_key key;
7623 struct inode *inode;
7624 int ret;
7625 int index;
7626 int factor;
7627
7628 root = root->fs_info->extent_root;
7629
7630 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7631 BUG_ON(!block_group);
7632 BUG_ON(!block_group->ro);
7633
7634 /*
7635 * Free the reserved super bytes from this block group before
7636 * remove it.
7637 */
7638 free_excluded_extents(root, block_group);
7639
7640 memcpy(&key, &block_group->key, sizeof(key));
7641 index = get_block_group_index(block_group);
7642 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7643 BTRFS_BLOCK_GROUP_RAID1 |
7644 BTRFS_BLOCK_GROUP_RAID10))
7645 factor = 2;
7646 else
7647 factor = 1;
7648
7649 /* make sure this block group isn't part of an allocation cluster */
7650 cluster = &root->fs_info->data_alloc_cluster;
7651 spin_lock(&cluster->refill_lock);
7652 btrfs_return_cluster_to_free_space(block_group, cluster);
7653 spin_unlock(&cluster->refill_lock);
7654
7655 /*
7656 * make sure this block group isn't part of a metadata
7657 * allocation cluster
7658 */
7659 cluster = &root->fs_info->meta_alloc_cluster;
7660 spin_lock(&cluster->refill_lock);
7661 btrfs_return_cluster_to_free_space(block_group, cluster);
7662 spin_unlock(&cluster->refill_lock);
7663
7664 path = btrfs_alloc_path();
7665 if (!path) {
7666 ret = -ENOMEM;
7667 goto out;
7668 }
7669
7670 inode = lookup_free_space_inode(tree_root, block_group, path);
7671 if (!IS_ERR(inode)) {
7672 ret = btrfs_orphan_add(trans, inode);
7673 BUG_ON(ret);
7674 clear_nlink(inode);
7675 /* One for the block groups ref */
7676 spin_lock(&block_group->lock);
7677 if (block_group->iref) {
7678 block_group->iref = 0;
7679 block_group->inode = NULL;
7680 spin_unlock(&block_group->lock);
7681 iput(inode);
7682 } else {
7683 spin_unlock(&block_group->lock);
7684 }
7685 /* One for our lookup ref */
7686 btrfs_add_delayed_iput(inode);
7687 }
7688
7689 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7690 key.offset = block_group->key.objectid;
7691 key.type = 0;
7692
7693 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7694 if (ret < 0)
7695 goto out;
7696 if (ret > 0)
7697 btrfs_release_path(path);
7698 if (ret == 0) {
7699 ret = btrfs_del_item(trans, tree_root, path);
7700 if (ret)
7701 goto out;
7702 btrfs_release_path(path);
7703 }
7704
7705 spin_lock(&root->fs_info->block_group_cache_lock);
7706 rb_erase(&block_group->cache_node,
7707 &root->fs_info->block_group_cache_tree);
7708 spin_unlock(&root->fs_info->block_group_cache_lock);
7709
7710 down_write(&block_group->space_info->groups_sem);
7711 /*
7712 * we must use list_del_init so people can check to see if they
7713 * are still on the list after taking the semaphore
7714 */
7715 list_del_init(&block_group->list);
7716 if (list_empty(&block_group->space_info->block_groups[index]))
7717 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7718 up_write(&block_group->space_info->groups_sem);
7719
7720 if (block_group->cached == BTRFS_CACHE_STARTED)
7721 wait_block_group_cache_done(block_group);
7722
7723 btrfs_remove_free_space_cache(block_group);
7724
7725 spin_lock(&block_group->space_info->lock);
7726 block_group->space_info->total_bytes -= block_group->key.offset;
7727 block_group->space_info->bytes_readonly -= block_group->key.offset;
7728 block_group->space_info->disk_total -= block_group->key.offset * factor;
7729 spin_unlock(&block_group->space_info->lock);
7730
7731 memcpy(&key, &block_group->key, sizeof(key));
7732
7733 btrfs_clear_space_info_full(root->fs_info);
7734
7735 btrfs_put_block_group(block_group);
7736 btrfs_put_block_group(block_group);
7737
7738 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7739 if (ret > 0)
7740 ret = -EIO;
7741 if (ret < 0)
7742 goto out;
7743
7744 ret = btrfs_del_item(trans, root, path);
7745 out:
7746 btrfs_free_path(path);
7747 return ret;
7748 }
7749
7750 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7751 {
7752 struct btrfs_space_info *space_info;
7753 struct btrfs_super_block *disk_super;
7754 u64 features;
7755 u64 flags;
7756 int mixed = 0;
7757 int ret;
7758
7759 disk_super = fs_info->super_copy;
7760 if (!btrfs_super_root(disk_super))
7761 return 1;
7762
7763 features = btrfs_super_incompat_flags(disk_super);
7764 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7765 mixed = 1;
7766
7767 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7768 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7769 if (ret)
7770 goto out;
7771
7772 if (mixed) {
7773 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7774 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7775 } else {
7776 flags = BTRFS_BLOCK_GROUP_METADATA;
7777 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7778 if (ret)
7779 goto out;
7780
7781 flags = BTRFS_BLOCK_GROUP_DATA;
7782 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7783 }
7784 out:
7785 return ret;
7786 }
7787
7788 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7789 {
7790 return unpin_extent_range(root, start, end);
7791 }
7792
7793 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7794 u64 num_bytes, u64 *actual_bytes)
7795 {
7796 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7797 }
7798
7799 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7800 {
7801 struct btrfs_fs_info *fs_info = root->fs_info;
7802 struct btrfs_block_group_cache *cache = NULL;
7803 u64 group_trimmed;
7804 u64 start;
7805 u64 end;
7806 u64 trimmed = 0;
7807 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
7808 int ret = 0;
7809
7810 /*
7811 * try to trim all FS space, our block group may start from non-zero.
7812 */
7813 if (range->len == total_bytes)
7814 cache = btrfs_lookup_first_block_group(fs_info, range->start);
7815 else
7816 cache = btrfs_lookup_block_group(fs_info, range->start);
7817
7818 while (cache) {
7819 if (cache->key.objectid >= (range->start + range->len)) {
7820 btrfs_put_block_group(cache);
7821 break;
7822 }
7823
7824 start = max(range->start, cache->key.objectid);
7825 end = min(range->start + range->len,
7826 cache->key.objectid + cache->key.offset);
7827
7828 if (end - start >= range->minlen) {
7829 if (!block_group_cache_done(cache)) {
7830 ret = cache_block_group(cache, NULL, root, 0);
7831 if (!ret)
7832 wait_block_group_cache_done(cache);
7833 }
7834 ret = btrfs_trim_block_group(cache,
7835 &group_trimmed,
7836 start,
7837 end,
7838 range->minlen);
7839
7840 trimmed += group_trimmed;
7841 if (ret) {
7842 btrfs_put_block_group(cache);
7843 break;
7844 }
7845 }
7846
7847 cache = next_block_group(fs_info->tree_root, cache);
7848 }
7849
7850 range->len = trimmed;
7851 return ret;
7852 }
This page took 0.226231 seconds and 5 git commands to generate.