Btrfs: make get_caching_control unconditionally return the ctl
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op,
85 int no_quota);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333 }
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 u64 extent_start, extent_end, size, total_added = 0;
344 int ret;
345
346 while (start < end) {
347 ret = find_first_extent_bit(info->pinned_extents, start,
348 &extent_start, &extent_end,
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
351 if (ret)
352 break;
353
354 if (extent_start <= start) {
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
358 total_added += size;
359 ret = btrfs_add_free_space(block_group, start,
360 size);
361 BUG_ON(ret); /* -ENOMEM or logic error */
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
370 total_added += size;
371 ret = btrfs_add_free_space(block_group, start, size);
372 BUG_ON(ret); /* -ENOMEM or logic error */
373 }
374
375 return total_added;
376 }
377
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret = -ENOMEM;
391
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
397 path = btrfs_alloc_path();
398 if (!path)
399 goto out;
400
401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402
403 /*
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
408 */
409 path->skip_locking = 1;
410 path->search_commit_root = 1;
411 path->reada = 1;
412
413 key.objectid = last;
414 key.offset = 0;
415 key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 mutex_lock(&caching_ctl->mutex);
418 /* need to make sure the commit_root doesn't disappear */
419 down_read(&fs_info->commit_root_sem);
420
421 next:
422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 if (ret < 0)
424 goto err;
425
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
429 while (1) {
430 if (btrfs_fs_closing(fs_info) > 1) {
431 last = (u64)-1;
432 break;
433 }
434
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
440 break;
441
442 if (need_resched() ||
443 rwsem_is_contended(&fs_info->commit_root_sem)) {
444 caching_ctl->progress = last;
445 btrfs_release_path(path);
446 up_read(&fs_info->commit_root_sem);
447 mutex_unlock(&caching_ctl->mutex);
448 cond_resched();
449 goto again;
450 }
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
460 }
461
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
474 continue;
475 }
476
477 if (key.objectid >= block_group->key.objectid +
478 block_group->key.offset)
479 break;
480
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
488 fs_info->tree_root->nodesize;
489 else
490 last = key.objectid + key.offset;
491
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
496 }
497 path->slots[0]++;
498 }
499 ret = 0;
500
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
504 caching_ctl->progress = (u64)-1;
505
506 spin_lock(&block_group->lock);
507 block_group->caching_ctl = NULL;
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
510
511 err:
512 btrfs_free_path(path);
513 up_read(&fs_info->commit_root_sem);
514
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
518 out:
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
528 btrfs_put_block_group(block_group);
529 }
530
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 int load_cache_only)
533 {
534 DEFINE_WAIT(wait);
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
537 int ret = 0;
538
539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 if (!caching_ctl)
541 return -ENOMEM;
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
583 return 0;
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
589
590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 mutex_lock(&caching_ctl->mutex);
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 caching_ctl->progress = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 cache->has_caching_ctl = 1;
607 }
608 }
609 spin_unlock(&cache->lock);
610 mutex_unlock(&caching_ctl->mutex);
611
612 wake_up(&caching_ctl->wait);
613 if (ret == 1) {
614 put_caching_control(caching_ctl);
615 free_excluded_extents(fs_info->extent_root, cache);
616 return 0;
617 }
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
629 cache->has_caching_ctl = 1;
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
633 }
634
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
637 return 0;
638 }
639
640 down_write(&fs_info->commit_root_sem);
641 atomic_inc(&caching_ctl->count);
642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 up_write(&fs_info->commit_root_sem);
644
645 btrfs_get_block_group(cache);
646
647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648
649 return ret;
650 }
651
652 /*
653 * return the block group that starts at or after bytenr
654 */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 struct btrfs_block_group_cache *cache;
659
660 cache = block_group_cache_tree_search(info, bytenr, 0);
661
662 return cache;
663 }
664
665 /*
666 * return the block group that contains the given bytenr
667 */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
671 {
672 struct btrfs_block_group_cache *cache;
673
674 cache = block_group_cache_tree_search(info, bytenr, 1);
675
676 return cache;
677 }
678
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
681 {
682 struct list_head *head = &info->space_info;
683 struct btrfs_space_info *found;
684
685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
689 if (found->flags & flags) {
690 rcu_read_unlock();
691 return found;
692 }
693 }
694 rcu_read_unlock();
695 return NULL;
696 }
697
698 /*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711 }
712
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 int ret;
717 struct btrfs_key key;
718 struct btrfs_path *path;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = start;
725 key.offset = len;
726 key.type = BTRFS_EXTENT_ITEM_KEY;
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
729 btrfs_free_path(path);
730 return ret;
731 }
732
733 /*
734 * helper function to lookup reference count and flags of a tree block.
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 offset = root->nodesize;
763 metadata = 0;
764 }
765
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
774
775 search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
795 key.offset == root->nodesize)
796 ret = 0;
797 }
798 }
799
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 BUG();
819 #endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
839 btrfs_release_path(path);
840
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
848 goto search_again;
849 }
850 spin_lock(&head->lock);
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
857 spin_unlock(&head->lock);
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861 out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867 out_free:
868 btrfs_free_path(path);
869 return ret;
870 }
871
872 /*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
934 * - different files inside a single subvolume
935 * - different offsets inside a file (bookend extents in file.c)
936 *
937 * The extent ref structure for the implicit back refs has fields for:
938 *
939 * - Objectid of the subvolume root
940 * - objectid of the file holding the reference
941 * - original offset in the file
942 * - how many bookend extents
943 *
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
946 *
947 * The extent ref structure for the full back refs has field for:
948 *
949 * - number of pointers in the tree leaf
950 *
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
953 *
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
956 *
957 * (root_key.objectid, inode objectid, offset in file, 1)
958 *
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
961 *
962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
963 *
964 * Btree extents can be referenced by:
965 *
966 * - Different subvolumes
967 *
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
972 *
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
976 */
977
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
983 {
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
989 struct btrfs_key key;
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
1009 BUG_ON(ret > 0); /* Corruption */
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
1025 btrfs_release_path(path);
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
1035 BUG_ON(ret); /* Corruption */
1036
1037 btrfs_extend_item(root, path, new_size);
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057 }
1058 #endif
1059
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 lenum = cpu_to_le64(owner);
1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 lenum = cpu_to_le64(offset);
1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078 {
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093 }
1094
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101 {
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
1104 struct extent_buffer *leaf;
1105 u32 nritems;
1106 int ret;
1107 int recow;
1108 int err = -ENOENT;
1109
1110 key.objectid = bytenr;
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119 again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
1126
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 btrfs_release_path(path);
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140 #endif
1141 goto fail;
1142 }
1143
1144 leaf = path->nodes[0];
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
1170 btrfs_release_path(path);
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
1177 }
1178 fail:
1179 return err;
1180 }
1181
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
1188 {
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
1191 u32 size;
1192 u32 num_refs;
1193 int ret;
1194
1195 key.objectid = bytenr;
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
1206
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
1214 ref = btrfs_item_ptr(leaf, path->slots[0],
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 }
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
1231 btrfs_release_path(path);
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
1237
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 }
1253 }
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256 fail:
1257 btrfs_release_path(path);
1258 return ret;
1259 }
1260
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 int refs_to_drop, int *last_ref)
1265 {
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
1269 struct extent_buffer *leaf;
1270 u32 num_refs = 0;
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 } else {
1292 BUG();
1293 }
1294
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
1297
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
1300 *last_ref = 1;
1301 } else {
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313 #endif
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
1316 return ret;
1317 }
1318
1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 struct btrfs_path *path,
1321 struct btrfs_extent_inline_ref *iref)
1322 {
1323 struct btrfs_key key;
1324 struct extent_buffer *leaf;
1325 struct btrfs_extent_data_ref *ref1;
1326 struct btrfs_shared_data_ref *ref2;
1327 u32 num_refs = 0;
1328
1329 leaf = path->nodes[0];
1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 if (iref) {
1332 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 BTRFS_EXTENT_DATA_REF_KEY) {
1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 } else {
1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 }
1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
1354 #endif
1355 } else {
1356 WARN_ON(1);
1357 }
1358 return num_refs;
1359 }
1360
1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root,
1363 struct btrfs_path *path,
1364 u64 bytenr, u64 parent,
1365 u64 root_objectid)
1366 {
1367 struct btrfs_key key;
1368 int ret;
1369
1370 key.objectid = bytenr;
1371 if (parent) {
1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 key.offset = parent;
1374 } else {
1375 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 key.offset = root_objectid;
1377 }
1378
1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 if (ret > 0)
1381 ret = -ENOENT;
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret == -ENOENT && parent) {
1384 btrfs_release_path(path);
1385 key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 }
1390 #endif
1391 return ret;
1392 }
1393
1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 struct btrfs_root *root,
1396 struct btrfs_path *path,
1397 u64 bytenr, u64 parent,
1398 u64 root_objectid)
1399 {
1400 struct btrfs_key key;
1401 int ret;
1402
1403 key.objectid = bytenr;
1404 if (parent) {
1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 key.offset = parent;
1407 } else {
1408 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 key.offset = root_objectid;
1410 }
1411
1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1413 btrfs_release_path(path);
1414 return ret;
1415 }
1416
1417 static inline int extent_ref_type(u64 parent, u64 owner)
1418 {
1419 int type;
1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 if (parent > 0)
1422 type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 else
1424 type = BTRFS_TREE_BLOCK_REF_KEY;
1425 } else {
1426 if (parent > 0)
1427 type = BTRFS_SHARED_DATA_REF_KEY;
1428 else
1429 type = BTRFS_EXTENT_DATA_REF_KEY;
1430 }
1431 return type;
1432 }
1433
1434 static int find_next_key(struct btrfs_path *path, int level,
1435 struct btrfs_key *key)
1436
1437 {
1438 for (; level < BTRFS_MAX_LEVEL; level++) {
1439 if (!path->nodes[level])
1440 break;
1441 if (path->slots[level] + 1 >=
1442 btrfs_header_nritems(path->nodes[level]))
1443 continue;
1444 if (level == 0)
1445 btrfs_item_key_to_cpu(path->nodes[level], key,
1446 path->slots[level] + 1);
1447 else
1448 btrfs_node_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 return 0;
1451 }
1452 return 1;
1453 }
1454
1455 /*
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1458 *
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1461 *
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1464 *
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1467 */
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 struct btrfs_extent_inline_ref **ref_ret,
1473 u64 bytenr, u64 num_bytes,
1474 u64 parent, u64 root_objectid,
1475 u64 owner, u64 offset, int insert)
1476 {
1477 struct btrfs_key key;
1478 struct extent_buffer *leaf;
1479 struct btrfs_extent_item *ei;
1480 struct btrfs_extent_inline_ref *iref;
1481 u64 flags;
1482 u64 item_size;
1483 unsigned long ptr;
1484 unsigned long end;
1485 int extra_size;
1486 int type;
1487 int want;
1488 int ret;
1489 int err = 0;
1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 SKINNY_METADATA);
1492
1493 key.objectid = bytenr;
1494 key.type = BTRFS_EXTENT_ITEM_KEY;
1495 key.offset = num_bytes;
1496
1497 want = extent_ref_type(parent, owner);
1498 if (insert) {
1499 extra_size = btrfs_extent_inline_ref_size(want);
1500 path->keep_locks = 1;
1501 } else
1502 extra_size = -1;
1503
1504 /*
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1507 */
1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 key.type = BTRFS_METADATA_ITEM_KEY;
1510 key.offset = owner;
1511 }
1512
1513 again:
1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1515 if (ret < 0) {
1516 err = ret;
1517 goto out;
1518 }
1519
1520 /*
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1523 */
1524 if (ret > 0 && skinny_metadata) {
1525 skinny_metadata = false;
1526 if (path->slots[0]) {
1527 path->slots[0]--;
1528 btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 path->slots[0]);
1530 if (key.objectid == bytenr &&
1531 key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 key.offset == num_bytes)
1533 ret = 0;
1534 }
1535 if (ret) {
1536 key.objectid = bytenr;
1537 key.type = BTRFS_EXTENT_ITEM_KEY;
1538 key.offset = num_bytes;
1539 btrfs_release_path(path);
1540 goto again;
1541 }
1542 }
1543
1544 if (ret && !insert) {
1545 err = -ENOENT;
1546 goto out;
1547 } else if (WARN_ON(ret)) {
1548 err = -EIO;
1549 goto out;
1550 }
1551
1552 leaf = path->nodes[0];
1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size < sizeof(*ei)) {
1556 if (!insert) {
1557 err = -ENOENT;
1558 goto out;
1559 }
1560 ret = convert_extent_item_v0(trans, root, path, owner,
1561 extra_size);
1562 if (ret < 0) {
1563 err = ret;
1564 goto out;
1565 }
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 }
1569 #endif
1570 BUG_ON(item_size < sizeof(*ei));
1571
1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 flags = btrfs_extent_flags(leaf, ei);
1574
1575 ptr = (unsigned long)(ei + 1);
1576 end = (unsigned long)ei + item_size;
1577
1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1579 ptr += sizeof(struct btrfs_tree_block_info);
1580 BUG_ON(ptr > end);
1581 }
1582
1583 err = -ENOENT;
1584 while (1) {
1585 if (ptr >= end) {
1586 WARN_ON(ptr > end);
1587 break;
1588 }
1589 iref = (struct btrfs_extent_inline_ref *)ptr;
1590 type = btrfs_extent_inline_ref_type(leaf, iref);
1591 if (want < type)
1592 break;
1593 if (want > type) {
1594 ptr += btrfs_extent_inline_ref_size(type);
1595 continue;
1596 }
1597
1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 struct btrfs_extent_data_ref *dref;
1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 if (match_extent_data_ref(leaf, dref, root_objectid,
1602 owner, offset)) {
1603 err = 0;
1604 break;
1605 }
1606 if (hash_extent_data_ref_item(leaf, dref) <
1607 hash_extent_data_ref(root_objectid, owner, offset))
1608 break;
1609 } else {
1610 u64 ref_offset;
1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 if (parent > 0) {
1613 if (parent == ref_offset) {
1614 err = 0;
1615 break;
1616 }
1617 if (ref_offset < parent)
1618 break;
1619 } else {
1620 if (root_objectid == ref_offset) {
1621 err = 0;
1622 break;
1623 }
1624 if (ref_offset < root_objectid)
1625 break;
1626 }
1627 }
1628 ptr += btrfs_extent_inline_ref_size(type);
1629 }
1630 if (err == -ENOENT && insert) {
1631 if (item_size + extra_size >=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 err = -EAGAIN;
1634 goto out;
1635 }
1636 /*
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1641 */
1642 if (find_next_key(path, 0, &key) == 0 &&
1643 key.objectid == bytenr &&
1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1645 err = -EAGAIN;
1646 goto out;
1647 }
1648 }
1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650 out:
1651 if (insert) {
1652 path->keep_locks = 0;
1653 btrfs_unlock_up_safe(path, 1);
1654 }
1655 return err;
1656 }
1657
1658 /*
1659 * helper to add new inline back ref
1660 */
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_root *root,
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref *iref,
1665 u64 parent, u64 root_objectid,
1666 u64 owner, u64 offset, int refs_to_add,
1667 struct btrfs_delayed_extent_op *extent_op)
1668 {
1669 struct extent_buffer *leaf;
1670 struct btrfs_extent_item *ei;
1671 unsigned long ptr;
1672 unsigned long end;
1673 unsigned long item_offset;
1674 u64 refs;
1675 int size;
1676 int type;
1677
1678 leaf = path->nodes[0];
1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 item_offset = (unsigned long)iref - (unsigned long)ei;
1681
1682 type = extent_ref_type(parent, owner);
1683 size = btrfs_extent_inline_ref_size(type);
1684
1685 btrfs_extend_item(root, path, size);
1686
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 refs = btrfs_extent_refs(leaf, ei);
1689 refs += refs_to_add;
1690 btrfs_set_extent_refs(leaf, ei, refs);
1691 if (extent_op)
1692 __run_delayed_extent_op(extent_op, leaf, ei);
1693
1694 ptr = (unsigned long)ei + item_offset;
1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 if (ptr < end - size)
1697 memmove_extent_buffer(leaf, ptr + size, ptr,
1698 end - size - ptr);
1699
1700 iref = (struct btrfs_extent_inline_ref *)ptr;
1701 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 struct btrfs_extent_data_ref *dref;
1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 struct btrfs_shared_data_ref *sref;
1711 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 } else {
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 }
1719 btrfs_mark_buffer_dirty(leaf);
1720 }
1721
1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 struct btrfs_root *root,
1724 struct btrfs_path *path,
1725 struct btrfs_extent_inline_ref **ref_ret,
1726 u64 bytenr, u64 num_bytes, u64 parent,
1727 u64 root_objectid, u64 owner, u64 offset)
1728 {
1729 int ret;
1730
1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 bytenr, num_bytes, parent,
1733 root_objectid, owner, offset, 0);
1734 if (ret != -ENOENT)
1735 return ret;
1736
1737 btrfs_release_path(path);
1738 *ref_ret = NULL;
1739
1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 root_objectid);
1743 } else {
1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 root_objectid, owner, offset);
1746 }
1747 return ret;
1748 }
1749
1750 /*
1751 * helper to update/remove inline back ref
1752 */
1753 static noinline_for_stack
1754 void update_inline_extent_backref(struct btrfs_root *root,
1755 struct btrfs_path *path,
1756 struct btrfs_extent_inline_ref *iref,
1757 int refs_to_mod,
1758 struct btrfs_delayed_extent_op *extent_op,
1759 int *last_ref)
1760 {
1761 struct extent_buffer *leaf;
1762 struct btrfs_extent_item *ei;
1763 struct btrfs_extent_data_ref *dref = NULL;
1764 struct btrfs_shared_data_ref *sref = NULL;
1765 unsigned long ptr;
1766 unsigned long end;
1767 u32 item_size;
1768 int size;
1769 int type;
1770 u64 refs;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 refs = btrfs_extent_refs(leaf, ei);
1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 refs += refs_to_mod;
1777 btrfs_set_extent_refs(leaf, ei, refs);
1778 if (extent_op)
1779 __run_delayed_extent_op(extent_op, leaf, ei);
1780
1781 type = btrfs_extent_inline_ref_type(leaf, iref);
1782
1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 refs = btrfs_extent_data_ref_count(leaf, dref);
1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 refs = btrfs_shared_data_ref_count(leaf, sref);
1789 } else {
1790 refs = 1;
1791 BUG_ON(refs_to_mod != -1);
1792 }
1793
1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 refs += refs_to_mod;
1796
1797 if (refs > 0) {
1798 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 else
1801 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 } else {
1803 *last_ref = 1;
1804 size = btrfs_extent_inline_ref_size(type);
1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 ptr = (unsigned long)iref;
1807 end = (unsigned long)ei + item_size;
1808 if (ptr + size < end)
1809 memmove_extent_buffer(leaf, ptr, ptr + size,
1810 end - ptr - size);
1811 item_size -= size;
1812 btrfs_truncate_item(root, path, item_size, 1);
1813 }
1814 btrfs_mark_buffer_dirty(leaf);
1815 }
1816
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 u64 bytenr, u64 num_bytes, u64 parent,
1822 u64 root_objectid, u64 owner,
1823 u64 offset, int refs_to_add,
1824 struct btrfs_delayed_extent_op *extent_op)
1825 {
1826 struct btrfs_extent_inline_ref *iref;
1827 int ret;
1828
1829 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 bytenr, num_bytes, parent,
1831 root_objectid, owner, offset, 1);
1832 if (ret == 0) {
1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1834 update_inline_extent_backref(root, path, iref,
1835 refs_to_add, extent_op, NULL);
1836 } else if (ret == -ENOENT) {
1837 setup_inline_extent_backref(root, path, iref, parent,
1838 root_objectid, owner, offset,
1839 refs_to_add, extent_op);
1840 ret = 0;
1841 }
1842 return ret;
1843 }
1844
1845 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 struct btrfs_root *root,
1847 struct btrfs_path *path,
1848 u64 bytenr, u64 parent, u64 root_objectid,
1849 u64 owner, u64 offset, int refs_to_add)
1850 {
1851 int ret;
1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 BUG_ON(refs_to_add != 1);
1854 ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 parent, root_objectid);
1856 } else {
1857 ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 parent, root_objectid,
1859 owner, offset, refs_to_add);
1860 }
1861 return ret;
1862 }
1863
1864 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 struct btrfs_root *root,
1866 struct btrfs_path *path,
1867 struct btrfs_extent_inline_ref *iref,
1868 int refs_to_drop, int is_data, int *last_ref)
1869 {
1870 int ret = 0;
1871
1872 BUG_ON(!is_data && refs_to_drop != 1);
1873 if (iref) {
1874 update_inline_extent_backref(root, path, iref,
1875 -refs_to_drop, NULL, last_ref);
1876 } else if (is_data) {
1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 last_ref);
1879 } else {
1880 *last_ref = 1;
1881 ret = btrfs_del_item(trans, root, path);
1882 }
1883 return ret;
1884 }
1885
1886 static int btrfs_issue_discard(struct block_device *bdev,
1887 u64 start, u64 len)
1888 {
1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1890 }
1891
1892 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 u64 num_bytes, u64 *actual_bytes)
1894 {
1895 int ret;
1896 u64 discarded_bytes = 0;
1897 struct btrfs_bio *bbio = NULL;
1898
1899
1900 /* Tell the block device(s) that the sectors can be discarded */
1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1902 bytenr, &num_bytes, &bbio, 0);
1903 /* Error condition is -ENOMEM */
1904 if (!ret) {
1905 struct btrfs_bio_stripe *stripe = bbio->stripes;
1906 int i;
1907
1908
1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1910 if (!stripe->dev->can_discard)
1911 continue;
1912
1913 ret = btrfs_issue_discard(stripe->dev->bdev,
1914 stripe->physical,
1915 stripe->length);
1916 if (!ret)
1917 discarded_bytes += stripe->length;
1918 else if (ret != -EOPNOTSUPP)
1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1920
1921 /*
1922 * Just in case we get back EOPNOTSUPP for some reason,
1923 * just ignore the return value so we don't screw up
1924 * people calling discard_extent.
1925 */
1926 ret = 0;
1927 }
1928 kfree(bbio);
1929 }
1930
1931 if (actual_bytes)
1932 *actual_bytes = discarded_bytes;
1933
1934
1935 if (ret == -EOPNOTSUPP)
1936 ret = 0;
1937 return ret;
1938 }
1939
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 u64 bytenr, u64 num_bytes, u64 parent,
1944 u64 root_objectid, u64 owner, u64 offset,
1945 int no_quota)
1946 {
1947 int ret;
1948 struct btrfs_fs_info *fs_info = root->fs_info;
1949
1950 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952
1953 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1954 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 num_bytes,
1956 parent, root_objectid, (int)owner,
1957 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1958 } else {
1959 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 num_bytes,
1961 parent, root_objectid, owner, offset,
1962 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1963 }
1964 return ret;
1965 }
1966
1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 struct btrfs_root *root,
1969 u64 bytenr, u64 num_bytes,
1970 u64 parent, u64 root_objectid,
1971 u64 owner, u64 offset, int refs_to_add,
1972 int no_quota,
1973 struct btrfs_delayed_extent_op *extent_op)
1974 {
1975 struct btrfs_fs_info *fs_info = root->fs_info;
1976 struct btrfs_path *path;
1977 struct extent_buffer *leaf;
1978 struct btrfs_extent_item *item;
1979 struct btrfs_key key;
1980 u64 refs;
1981 int ret;
1982 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1983
1984 path = btrfs_alloc_path();
1985 if (!path)
1986 return -ENOMEM;
1987
1988 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1989 no_quota = 1;
1990
1991 path->reada = 1;
1992 path->leave_spinning = 1;
1993 /* this will setup the path even if it fails to insert the back ref */
1994 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1995 bytenr, num_bytes, parent,
1996 root_objectid, owner, offset,
1997 refs_to_add, extent_op);
1998 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
1999 goto out;
2000 /*
2001 * Ok we were able to insert an inline extent and it appears to be a new
2002 * reference, deal with the qgroup accounting.
2003 */
2004 if (!ret && !no_quota) {
2005 ASSERT(root->fs_info->quota_enabled);
2006 leaf = path->nodes[0];
2007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2008 item = btrfs_item_ptr(leaf, path->slots[0],
2009 struct btrfs_extent_item);
2010 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2011 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2012 btrfs_release_path(path);
2013
2014 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2015 bytenr, num_bytes, type, 0);
2016 goto out;
2017 }
2018
2019 /*
2020 * Ok we had -EAGAIN which means we didn't have space to insert and
2021 * inline extent ref, so just update the reference count and add a
2022 * normal backref.
2023 */
2024 leaf = path->nodes[0];
2025 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2026 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2027 refs = btrfs_extent_refs(leaf, item);
2028 if (refs)
2029 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2030 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2031 if (extent_op)
2032 __run_delayed_extent_op(extent_op, leaf, item);
2033
2034 btrfs_mark_buffer_dirty(leaf);
2035 btrfs_release_path(path);
2036
2037 if (!no_quota) {
2038 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2039 bytenr, num_bytes, type, 0);
2040 if (ret)
2041 goto out;
2042 }
2043
2044 path->reada = 1;
2045 path->leave_spinning = 1;
2046 /* now insert the actual backref */
2047 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2048 path, bytenr, parent, root_objectid,
2049 owner, offset, refs_to_add);
2050 if (ret)
2051 btrfs_abort_transaction(trans, root, ret);
2052 out:
2053 btrfs_free_path(path);
2054 return ret;
2055 }
2056
2057 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2058 struct btrfs_root *root,
2059 struct btrfs_delayed_ref_node *node,
2060 struct btrfs_delayed_extent_op *extent_op,
2061 int insert_reserved)
2062 {
2063 int ret = 0;
2064 struct btrfs_delayed_data_ref *ref;
2065 struct btrfs_key ins;
2066 u64 parent = 0;
2067 u64 ref_root = 0;
2068 u64 flags = 0;
2069
2070 ins.objectid = node->bytenr;
2071 ins.offset = node->num_bytes;
2072 ins.type = BTRFS_EXTENT_ITEM_KEY;
2073
2074 ref = btrfs_delayed_node_to_data_ref(node);
2075 trace_run_delayed_data_ref(node, ref, node->action);
2076
2077 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2078 parent = ref->parent;
2079 ref_root = ref->root;
2080
2081 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2082 if (extent_op)
2083 flags |= extent_op->flags_to_set;
2084 ret = alloc_reserved_file_extent(trans, root,
2085 parent, ref_root, flags,
2086 ref->objectid, ref->offset,
2087 &ins, node->ref_mod);
2088 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2089 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2090 node->num_bytes, parent,
2091 ref_root, ref->objectid,
2092 ref->offset, node->ref_mod,
2093 node->no_quota, extent_op);
2094 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2095 ret = __btrfs_free_extent(trans, root, node->bytenr,
2096 node->num_bytes, parent,
2097 ref_root, ref->objectid,
2098 ref->offset, node->ref_mod,
2099 extent_op, node->no_quota);
2100 } else {
2101 BUG();
2102 }
2103 return ret;
2104 }
2105
2106 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2107 struct extent_buffer *leaf,
2108 struct btrfs_extent_item *ei)
2109 {
2110 u64 flags = btrfs_extent_flags(leaf, ei);
2111 if (extent_op->update_flags) {
2112 flags |= extent_op->flags_to_set;
2113 btrfs_set_extent_flags(leaf, ei, flags);
2114 }
2115
2116 if (extent_op->update_key) {
2117 struct btrfs_tree_block_info *bi;
2118 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2119 bi = (struct btrfs_tree_block_info *)(ei + 1);
2120 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2121 }
2122 }
2123
2124 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2125 struct btrfs_root *root,
2126 struct btrfs_delayed_ref_node *node,
2127 struct btrfs_delayed_extent_op *extent_op)
2128 {
2129 struct btrfs_key key;
2130 struct btrfs_path *path;
2131 struct btrfs_extent_item *ei;
2132 struct extent_buffer *leaf;
2133 u32 item_size;
2134 int ret;
2135 int err = 0;
2136 int metadata = !extent_op->is_data;
2137
2138 if (trans->aborted)
2139 return 0;
2140
2141 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2142 metadata = 0;
2143
2144 path = btrfs_alloc_path();
2145 if (!path)
2146 return -ENOMEM;
2147
2148 key.objectid = node->bytenr;
2149
2150 if (metadata) {
2151 key.type = BTRFS_METADATA_ITEM_KEY;
2152 key.offset = extent_op->level;
2153 } else {
2154 key.type = BTRFS_EXTENT_ITEM_KEY;
2155 key.offset = node->num_bytes;
2156 }
2157
2158 again:
2159 path->reada = 1;
2160 path->leave_spinning = 1;
2161 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2162 path, 0, 1);
2163 if (ret < 0) {
2164 err = ret;
2165 goto out;
2166 }
2167 if (ret > 0) {
2168 if (metadata) {
2169 if (path->slots[0] > 0) {
2170 path->slots[0]--;
2171 btrfs_item_key_to_cpu(path->nodes[0], &key,
2172 path->slots[0]);
2173 if (key.objectid == node->bytenr &&
2174 key.type == BTRFS_EXTENT_ITEM_KEY &&
2175 key.offset == node->num_bytes)
2176 ret = 0;
2177 }
2178 if (ret > 0) {
2179 btrfs_release_path(path);
2180 metadata = 0;
2181
2182 key.objectid = node->bytenr;
2183 key.offset = node->num_bytes;
2184 key.type = BTRFS_EXTENT_ITEM_KEY;
2185 goto again;
2186 }
2187 } else {
2188 err = -EIO;
2189 goto out;
2190 }
2191 }
2192
2193 leaf = path->nodes[0];
2194 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2196 if (item_size < sizeof(*ei)) {
2197 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2198 path, (u64)-1, 0);
2199 if (ret < 0) {
2200 err = ret;
2201 goto out;
2202 }
2203 leaf = path->nodes[0];
2204 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2205 }
2206 #endif
2207 BUG_ON(item_size < sizeof(*ei));
2208 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2209 __run_delayed_extent_op(extent_op, leaf, ei);
2210
2211 btrfs_mark_buffer_dirty(leaf);
2212 out:
2213 btrfs_free_path(path);
2214 return err;
2215 }
2216
2217 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2218 struct btrfs_root *root,
2219 struct btrfs_delayed_ref_node *node,
2220 struct btrfs_delayed_extent_op *extent_op,
2221 int insert_reserved)
2222 {
2223 int ret = 0;
2224 struct btrfs_delayed_tree_ref *ref;
2225 struct btrfs_key ins;
2226 u64 parent = 0;
2227 u64 ref_root = 0;
2228 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2229 SKINNY_METADATA);
2230
2231 ref = btrfs_delayed_node_to_tree_ref(node);
2232 trace_run_delayed_tree_ref(node, ref, node->action);
2233
2234 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2235 parent = ref->parent;
2236 ref_root = ref->root;
2237
2238 ins.objectid = node->bytenr;
2239 if (skinny_metadata) {
2240 ins.offset = ref->level;
2241 ins.type = BTRFS_METADATA_ITEM_KEY;
2242 } else {
2243 ins.offset = node->num_bytes;
2244 ins.type = BTRFS_EXTENT_ITEM_KEY;
2245 }
2246
2247 BUG_ON(node->ref_mod != 1);
2248 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2249 BUG_ON(!extent_op || !extent_op->update_flags);
2250 ret = alloc_reserved_tree_block(trans, root,
2251 parent, ref_root,
2252 extent_op->flags_to_set,
2253 &extent_op->key,
2254 ref->level, &ins,
2255 node->no_quota);
2256 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2257 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2258 node->num_bytes, parent, ref_root,
2259 ref->level, 0, 1, node->no_quota,
2260 extent_op);
2261 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2262 ret = __btrfs_free_extent(trans, root, node->bytenr,
2263 node->num_bytes, parent, ref_root,
2264 ref->level, 0, 1, extent_op,
2265 node->no_quota);
2266 } else {
2267 BUG();
2268 }
2269 return ret;
2270 }
2271
2272 /* helper function to actually process a single delayed ref entry */
2273 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2274 struct btrfs_root *root,
2275 struct btrfs_delayed_ref_node *node,
2276 struct btrfs_delayed_extent_op *extent_op,
2277 int insert_reserved)
2278 {
2279 int ret = 0;
2280
2281 if (trans->aborted) {
2282 if (insert_reserved)
2283 btrfs_pin_extent(root, node->bytenr,
2284 node->num_bytes, 1);
2285 return 0;
2286 }
2287
2288 if (btrfs_delayed_ref_is_head(node)) {
2289 struct btrfs_delayed_ref_head *head;
2290 /*
2291 * we've hit the end of the chain and we were supposed
2292 * to insert this extent into the tree. But, it got
2293 * deleted before we ever needed to insert it, so all
2294 * we have to do is clean up the accounting
2295 */
2296 BUG_ON(extent_op);
2297 head = btrfs_delayed_node_to_head(node);
2298 trace_run_delayed_ref_head(node, head, node->action);
2299
2300 if (insert_reserved) {
2301 btrfs_pin_extent(root, node->bytenr,
2302 node->num_bytes, 1);
2303 if (head->is_data) {
2304 ret = btrfs_del_csums(trans, root,
2305 node->bytenr,
2306 node->num_bytes);
2307 }
2308 }
2309 return ret;
2310 }
2311
2312 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2313 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2314 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2315 insert_reserved);
2316 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2317 node->type == BTRFS_SHARED_DATA_REF_KEY)
2318 ret = run_delayed_data_ref(trans, root, node, extent_op,
2319 insert_reserved);
2320 else
2321 BUG();
2322 return ret;
2323 }
2324
2325 static noinline struct btrfs_delayed_ref_node *
2326 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2327 {
2328 struct rb_node *node;
2329 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2330
2331 /*
2332 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2333 * this prevents ref count from going down to zero when
2334 * there still are pending delayed ref.
2335 */
2336 node = rb_first(&head->ref_root);
2337 while (node) {
2338 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2339 rb_node);
2340 if (ref->action == BTRFS_ADD_DELAYED_REF)
2341 return ref;
2342 else if (last == NULL)
2343 last = ref;
2344 node = rb_next(node);
2345 }
2346 return last;
2347 }
2348
2349 /*
2350 * Returns 0 on success or if called with an already aborted transaction.
2351 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2352 */
2353 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2354 struct btrfs_root *root,
2355 unsigned long nr)
2356 {
2357 struct btrfs_delayed_ref_root *delayed_refs;
2358 struct btrfs_delayed_ref_node *ref;
2359 struct btrfs_delayed_ref_head *locked_ref = NULL;
2360 struct btrfs_delayed_extent_op *extent_op;
2361 struct btrfs_fs_info *fs_info = root->fs_info;
2362 ktime_t start = ktime_get();
2363 int ret;
2364 unsigned long count = 0;
2365 unsigned long actual_count = 0;
2366 int must_insert_reserved = 0;
2367
2368 delayed_refs = &trans->transaction->delayed_refs;
2369 while (1) {
2370 if (!locked_ref) {
2371 if (count >= nr)
2372 break;
2373
2374 spin_lock(&delayed_refs->lock);
2375 locked_ref = btrfs_select_ref_head(trans);
2376 if (!locked_ref) {
2377 spin_unlock(&delayed_refs->lock);
2378 break;
2379 }
2380
2381 /* grab the lock that says we are going to process
2382 * all the refs for this head */
2383 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2384 spin_unlock(&delayed_refs->lock);
2385 /*
2386 * we may have dropped the spin lock to get the head
2387 * mutex lock, and that might have given someone else
2388 * time to free the head. If that's true, it has been
2389 * removed from our list and we can move on.
2390 */
2391 if (ret == -EAGAIN) {
2392 locked_ref = NULL;
2393 count++;
2394 continue;
2395 }
2396 }
2397
2398 /*
2399 * We need to try and merge add/drops of the same ref since we
2400 * can run into issues with relocate dropping the implicit ref
2401 * and then it being added back again before the drop can
2402 * finish. If we merged anything we need to re-loop so we can
2403 * get a good ref.
2404 */
2405 spin_lock(&locked_ref->lock);
2406 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2407 locked_ref);
2408
2409 /*
2410 * locked_ref is the head node, so we have to go one
2411 * node back for any delayed ref updates
2412 */
2413 ref = select_delayed_ref(locked_ref);
2414
2415 if (ref && ref->seq &&
2416 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2417 spin_unlock(&locked_ref->lock);
2418 btrfs_delayed_ref_unlock(locked_ref);
2419 spin_lock(&delayed_refs->lock);
2420 locked_ref->processing = 0;
2421 delayed_refs->num_heads_ready++;
2422 spin_unlock(&delayed_refs->lock);
2423 locked_ref = NULL;
2424 cond_resched();
2425 count++;
2426 continue;
2427 }
2428
2429 /*
2430 * record the must insert reserved flag before we
2431 * drop the spin lock.
2432 */
2433 must_insert_reserved = locked_ref->must_insert_reserved;
2434 locked_ref->must_insert_reserved = 0;
2435
2436 extent_op = locked_ref->extent_op;
2437 locked_ref->extent_op = NULL;
2438
2439 if (!ref) {
2440
2441
2442 /* All delayed refs have been processed, Go ahead
2443 * and send the head node to run_one_delayed_ref,
2444 * so that any accounting fixes can happen
2445 */
2446 ref = &locked_ref->node;
2447
2448 if (extent_op && must_insert_reserved) {
2449 btrfs_free_delayed_extent_op(extent_op);
2450 extent_op = NULL;
2451 }
2452
2453 if (extent_op) {
2454 spin_unlock(&locked_ref->lock);
2455 ret = run_delayed_extent_op(trans, root,
2456 ref, extent_op);
2457 btrfs_free_delayed_extent_op(extent_op);
2458
2459 if (ret) {
2460 /*
2461 * Need to reset must_insert_reserved if
2462 * there was an error so the abort stuff
2463 * can cleanup the reserved space
2464 * properly.
2465 */
2466 if (must_insert_reserved)
2467 locked_ref->must_insert_reserved = 1;
2468 locked_ref->processing = 0;
2469 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2470 btrfs_delayed_ref_unlock(locked_ref);
2471 return ret;
2472 }
2473 continue;
2474 }
2475
2476 /*
2477 * Need to drop our head ref lock and re-aqcuire the
2478 * delayed ref lock and then re-check to make sure
2479 * nobody got added.
2480 */
2481 spin_unlock(&locked_ref->lock);
2482 spin_lock(&delayed_refs->lock);
2483 spin_lock(&locked_ref->lock);
2484 if (rb_first(&locked_ref->ref_root) ||
2485 locked_ref->extent_op) {
2486 spin_unlock(&locked_ref->lock);
2487 spin_unlock(&delayed_refs->lock);
2488 continue;
2489 }
2490 ref->in_tree = 0;
2491 delayed_refs->num_heads--;
2492 rb_erase(&locked_ref->href_node,
2493 &delayed_refs->href_root);
2494 spin_unlock(&delayed_refs->lock);
2495 } else {
2496 actual_count++;
2497 ref->in_tree = 0;
2498 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2499 }
2500 atomic_dec(&delayed_refs->num_entries);
2501
2502 if (!btrfs_delayed_ref_is_head(ref)) {
2503 /*
2504 * when we play the delayed ref, also correct the
2505 * ref_mod on head
2506 */
2507 switch (ref->action) {
2508 case BTRFS_ADD_DELAYED_REF:
2509 case BTRFS_ADD_DELAYED_EXTENT:
2510 locked_ref->node.ref_mod -= ref->ref_mod;
2511 break;
2512 case BTRFS_DROP_DELAYED_REF:
2513 locked_ref->node.ref_mod += ref->ref_mod;
2514 break;
2515 default:
2516 WARN_ON(1);
2517 }
2518 }
2519 spin_unlock(&locked_ref->lock);
2520
2521 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2522 must_insert_reserved);
2523
2524 btrfs_free_delayed_extent_op(extent_op);
2525 if (ret) {
2526 locked_ref->processing = 0;
2527 btrfs_delayed_ref_unlock(locked_ref);
2528 btrfs_put_delayed_ref(ref);
2529 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2530 return ret;
2531 }
2532
2533 /*
2534 * If this node is a head, that means all the refs in this head
2535 * have been dealt with, and we will pick the next head to deal
2536 * with, so we must unlock the head and drop it from the cluster
2537 * list before we release it.
2538 */
2539 if (btrfs_delayed_ref_is_head(ref)) {
2540 btrfs_delayed_ref_unlock(locked_ref);
2541 locked_ref = NULL;
2542 }
2543 btrfs_put_delayed_ref(ref);
2544 count++;
2545 cond_resched();
2546 }
2547
2548 /*
2549 * We don't want to include ref heads since we can have empty ref heads
2550 * and those will drastically skew our runtime down since we just do
2551 * accounting, no actual extent tree updates.
2552 */
2553 if (actual_count > 0) {
2554 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2555 u64 avg;
2556
2557 /*
2558 * We weigh the current average higher than our current runtime
2559 * to avoid large swings in the average.
2560 */
2561 spin_lock(&delayed_refs->lock);
2562 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2563 avg = div64_u64(avg, 4);
2564 fs_info->avg_delayed_ref_runtime = avg;
2565 spin_unlock(&delayed_refs->lock);
2566 }
2567 return 0;
2568 }
2569
2570 #ifdef SCRAMBLE_DELAYED_REFS
2571 /*
2572 * Normally delayed refs get processed in ascending bytenr order. This
2573 * correlates in most cases to the order added. To expose dependencies on this
2574 * order, we start to process the tree in the middle instead of the beginning
2575 */
2576 static u64 find_middle(struct rb_root *root)
2577 {
2578 struct rb_node *n = root->rb_node;
2579 struct btrfs_delayed_ref_node *entry;
2580 int alt = 1;
2581 u64 middle;
2582 u64 first = 0, last = 0;
2583
2584 n = rb_first(root);
2585 if (n) {
2586 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2587 first = entry->bytenr;
2588 }
2589 n = rb_last(root);
2590 if (n) {
2591 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2592 last = entry->bytenr;
2593 }
2594 n = root->rb_node;
2595
2596 while (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 WARN_ON(!entry->in_tree);
2599
2600 middle = entry->bytenr;
2601
2602 if (alt)
2603 n = n->rb_left;
2604 else
2605 n = n->rb_right;
2606
2607 alt = 1 - alt;
2608 }
2609 return middle;
2610 }
2611 #endif
2612
2613 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2614 {
2615 u64 num_bytes;
2616
2617 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2618 sizeof(struct btrfs_extent_inline_ref));
2619 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2620 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2621
2622 /*
2623 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 * closer to what we're really going to want to ouse.
2625 */
2626 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2627 }
2628
2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2630 struct btrfs_root *root)
2631 {
2632 struct btrfs_block_rsv *global_rsv;
2633 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2634 u64 num_bytes;
2635 int ret = 0;
2636
2637 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2638 num_heads = heads_to_leaves(root, num_heads);
2639 if (num_heads > 1)
2640 num_bytes += (num_heads - 1) * root->nodesize;
2641 num_bytes <<= 1;
2642 global_rsv = &root->fs_info->global_block_rsv;
2643
2644 /*
2645 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 * wiggle room since running delayed refs can create more delayed refs.
2647 */
2648 if (global_rsv->space_info->full)
2649 num_bytes <<= 1;
2650
2651 spin_lock(&global_rsv->lock);
2652 if (global_rsv->reserved <= num_bytes)
2653 ret = 1;
2654 spin_unlock(&global_rsv->lock);
2655 return ret;
2656 }
2657
2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2659 struct btrfs_root *root)
2660 {
2661 struct btrfs_fs_info *fs_info = root->fs_info;
2662 u64 num_entries =
2663 atomic_read(&trans->transaction->delayed_refs.num_entries);
2664 u64 avg_runtime;
2665 u64 val;
2666
2667 smp_mb();
2668 avg_runtime = fs_info->avg_delayed_ref_runtime;
2669 val = num_entries * avg_runtime;
2670 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2671 return 1;
2672 if (val >= NSEC_PER_SEC / 2)
2673 return 2;
2674
2675 return btrfs_check_space_for_delayed_refs(trans, root);
2676 }
2677
2678 struct async_delayed_refs {
2679 struct btrfs_root *root;
2680 int count;
2681 int error;
2682 int sync;
2683 struct completion wait;
2684 struct btrfs_work work;
2685 };
2686
2687 static void delayed_ref_async_start(struct btrfs_work *work)
2688 {
2689 struct async_delayed_refs *async;
2690 struct btrfs_trans_handle *trans;
2691 int ret;
2692
2693 async = container_of(work, struct async_delayed_refs, work);
2694
2695 trans = btrfs_join_transaction(async->root);
2696 if (IS_ERR(trans)) {
2697 async->error = PTR_ERR(trans);
2698 goto done;
2699 }
2700
2701 /*
2702 * trans->sync means that when we call end_transaciton, we won't
2703 * wait on delayed refs
2704 */
2705 trans->sync = true;
2706 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2707 if (ret)
2708 async->error = ret;
2709
2710 ret = btrfs_end_transaction(trans, async->root);
2711 if (ret && !async->error)
2712 async->error = ret;
2713 done:
2714 if (async->sync)
2715 complete(&async->wait);
2716 else
2717 kfree(async);
2718 }
2719
2720 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2721 unsigned long count, int wait)
2722 {
2723 struct async_delayed_refs *async;
2724 int ret;
2725
2726 async = kmalloc(sizeof(*async), GFP_NOFS);
2727 if (!async)
2728 return -ENOMEM;
2729
2730 async->root = root->fs_info->tree_root;
2731 async->count = count;
2732 async->error = 0;
2733 if (wait)
2734 async->sync = 1;
2735 else
2736 async->sync = 0;
2737 init_completion(&async->wait);
2738
2739 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2740 delayed_ref_async_start, NULL, NULL);
2741
2742 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2743
2744 if (wait) {
2745 wait_for_completion(&async->wait);
2746 ret = async->error;
2747 kfree(async);
2748 return ret;
2749 }
2750 return 0;
2751 }
2752
2753 /*
2754 * this starts processing the delayed reference count updates and
2755 * extent insertions we have queued up so far. count can be
2756 * 0, which means to process everything in the tree at the start
2757 * of the run (but not newly added entries), or it can be some target
2758 * number you'd like to process.
2759 *
2760 * Returns 0 on success or if called with an aborted transaction
2761 * Returns <0 on error and aborts the transaction
2762 */
2763 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2764 struct btrfs_root *root, unsigned long count)
2765 {
2766 struct rb_node *node;
2767 struct btrfs_delayed_ref_root *delayed_refs;
2768 struct btrfs_delayed_ref_head *head;
2769 int ret;
2770 int run_all = count == (unsigned long)-1;
2771 int run_most = 0;
2772
2773 /* We'll clean this up in btrfs_cleanup_transaction */
2774 if (trans->aborted)
2775 return 0;
2776
2777 if (root == root->fs_info->extent_root)
2778 root = root->fs_info->tree_root;
2779
2780 delayed_refs = &trans->transaction->delayed_refs;
2781 if (count == 0) {
2782 count = atomic_read(&delayed_refs->num_entries) * 2;
2783 run_most = 1;
2784 }
2785
2786 again:
2787 #ifdef SCRAMBLE_DELAYED_REFS
2788 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2789 #endif
2790 ret = __btrfs_run_delayed_refs(trans, root, count);
2791 if (ret < 0) {
2792 btrfs_abort_transaction(trans, root, ret);
2793 return ret;
2794 }
2795
2796 if (run_all) {
2797 if (!list_empty(&trans->new_bgs))
2798 btrfs_create_pending_block_groups(trans, root);
2799
2800 spin_lock(&delayed_refs->lock);
2801 node = rb_first(&delayed_refs->href_root);
2802 if (!node) {
2803 spin_unlock(&delayed_refs->lock);
2804 goto out;
2805 }
2806 count = (unsigned long)-1;
2807
2808 while (node) {
2809 head = rb_entry(node, struct btrfs_delayed_ref_head,
2810 href_node);
2811 if (btrfs_delayed_ref_is_head(&head->node)) {
2812 struct btrfs_delayed_ref_node *ref;
2813
2814 ref = &head->node;
2815 atomic_inc(&ref->refs);
2816
2817 spin_unlock(&delayed_refs->lock);
2818 /*
2819 * Mutex was contended, block until it's
2820 * released and try again
2821 */
2822 mutex_lock(&head->mutex);
2823 mutex_unlock(&head->mutex);
2824
2825 btrfs_put_delayed_ref(ref);
2826 cond_resched();
2827 goto again;
2828 } else {
2829 WARN_ON(1);
2830 }
2831 node = rb_next(node);
2832 }
2833 spin_unlock(&delayed_refs->lock);
2834 cond_resched();
2835 goto again;
2836 }
2837 out:
2838 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2839 if (ret)
2840 return ret;
2841 assert_qgroups_uptodate(trans);
2842 return 0;
2843 }
2844
2845 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2846 struct btrfs_root *root,
2847 u64 bytenr, u64 num_bytes, u64 flags,
2848 int level, int is_data)
2849 {
2850 struct btrfs_delayed_extent_op *extent_op;
2851 int ret;
2852
2853 extent_op = btrfs_alloc_delayed_extent_op();
2854 if (!extent_op)
2855 return -ENOMEM;
2856
2857 extent_op->flags_to_set = flags;
2858 extent_op->update_flags = 1;
2859 extent_op->update_key = 0;
2860 extent_op->is_data = is_data ? 1 : 0;
2861 extent_op->level = level;
2862
2863 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2864 num_bytes, extent_op);
2865 if (ret)
2866 btrfs_free_delayed_extent_op(extent_op);
2867 return ret;
2868 }
2869
2870 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2871 struct btrfs_root *root,
2872 struct btrfs_path *path,
2873 u64 objectid, u64 offset, u64 bytenr)
2874 {
2875 struct btrfs_delayed_ref_head *head;
2876 struct btrfs_delayed_ref_node *ref;
2877 struct btrfs_delayed_data_ref *data_ref;
2878 struct btrfs_delayed_ref_root *delayed_refs;
2879 struct rb_node *node;
2880 int ret = 0;
2881
2882 delayed_refs = &trans->transaction->delayed_refs;
2883 spin_lock(&delayed_refs->lock);
2884 head = btrfs_find_delayed_ref_head(trans, bytenr);
2885 if (!head) {
2886 spin_unlock(&delayed_refs->lock);
2887 return 0;
2888 }
2889
2890 if (!mutex_trylock(&head->mutex)) {
2891 atomic_inc(&head->node.refs);
2892 spin_unlock(&delayed_refs->lock);
2893
2894 btrfs_release_path(path);
2895
2896 /*
2897 * Mutex was contended, block until it's released and let
2898 * caller try again
2899 */
2900 mutex_lock(&head->mutex);
2901 mutex_unlock(&head->mutex);
2902 btrfs_put_delayed_ref(&head->node);
2903 return -EAGAIN;
2904 }
2905 spin_unlock(&delayed_refs->lock);
2906
2907 spin_lock(&head->lock);
2908 node = rb_first(&head->ref_root);
2909 while (node) {
2910 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2911 node = rb_next(node);
2912
2913 /* If it's a shared ref we know a cross reference exists */
2914 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2915 ret = 1;
2916 break;
2917 }
2918
2919 data_ref = btrfs_delayed_node_to_data_ref(ref);
2920
2921 /*
2922 * If our ref doesn't match the one we're currently looking at
2923 * then we have a cross reference.
2924 */
2925 if (data_ref->root != root->root_key.objectid ||
2926 data_ref->objectid != objectid ||
2927 data_ref->offset != offset) {
2928 ret = 1;
2929 break;
2930 }
2931 }
2932 spin_unlock(&head->lock);
2933 mutex_unlock(&head->mutex);
2934 return ret;
2935 }
2936
2937 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2938 struct btrfs_root *root,
2939 struct btrfs_path *path,
2940 u64 objectid, u64 offset, u64 bytenr)
2941 {
2942 struct btrfs_root *extent_root = root->fs_info->extent_root;
2943 struct extent_buffer *leaf;
2944 struct btrfs_extent_data_ref *ref;
2945 struct btrfs_extent_inline_ref *iref;
2946 struct btrfs_extent_item *ei;
2947 struct btrfs_key key;
2948 u32 item_size;
2949 int ret;
2950
2951 key.objectid = bytenr;
2952 key.offset = (u64)-1;
2953 key.type = BTRFS_EXTENT_ITEM_KEY;
2954
2955 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2956 if (ret < 0)
2957 goto out;
2958 BUG_ON(ret == 0); /* Corruption */
2959
2960 ret = -ENOENT;
2961 if (path->slots[0] == 0)
2962 goto out;
2963
2964 path->slots[0]--;
2965 leaf = path->nodes[0];
2966 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2967
2968 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2969 goto out;
2970
2971 ret = 1;
2972 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2973 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2974 if (item_size < sizeof(*ei)) {
2975 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2976 goto out;
2977 }
2978 #endif
2979 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2980
2981 if (item_size != sizeof(*ei) +
2982 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2983 goto out;
2984
2985 if (btrfs_extent_generation(leaf, ei) <=
2986 btrfs_root_last_snapshot(&root->root_item))
2987 goto out;
2988
2989 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2990 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2991 BTRFS_EXTENT_DATA_REF_KEY)
2992 goto out;
2993
2994 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2995 if (btrfs_extent_refs(leaf, ei) !=
2996 btrfs_extent_data_ref_count(leaf, ref) ||
2997 btrfs_extent_data_ref_root(leaf, ref) !=
2998 root->root_key.objectid ||
2999 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3000 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3001 goto out;
3002
3003 ret = 0;
3004 out:
3005 return ret;
3006 }
3007
3008 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3009 struct btrfs_root *root,
3010 u64 objectid, u64 offset, u64 bytenr)
3011 {
3012 struct btrfs_path *path;
3013 int ret;
3014 int ret2;
3015
3016 path = btrfs_alloc_path();
3017 if (!path)
3018 return -ENOENT;
3019
3020 do {
3021 ret = check_committed_ref(trans, root, path, objectid,
3022 offset, bytenr);
3023 if (ret && ret != -ENOENT)
3024 goto out;
3025
3026 ret2 = check_delayed_ref(trans, root, path, objectid,
3027 offset, bytenr);
3028 } while (ret2 == -EAGAIN);
3029
3030 if (ret2 && ret2 != -ENOENT) {
3031 ret = ret2;
3032 goto out;
3033 }
3034
3035 if (ret != -ENOENT || ret2 != -ENOENT)
3036 ret = 0;
3037 out:
3038 btrfs_free_path(path);
3039 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3040 WARN_ON(ret > 0);
3041 return ret;
3042 }
3043
3044 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3045 struct btrfs_root *root,
3046 struct extent_buffer *buf,
3047 int full_backref, int inc)
3048 {
3049 u64 bytenr;
3050 u64 num_bytes;
3051 u64 parent;
3052 u64 ref_root;
3053 u32 nritems;
3054 struct btrfs_key key;
3055 struct btrfs_file_extent_item *fi;
3056 int i;
3057 int level;
3058 int ret = 0;
3059 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3060 u64, u64, u64, u64, u64, u64, int);
3061
3062
3063 if (btrfs_test_is_dummy_root(root))
3064 return 0;
3065
3066 ref_root = btrfs_header_owner(buf);
3067 nritems = btrfs_header_nritems(buf);
3068 level = btrfs_header_level(buf);
3069
3070 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3071 return 0;
3072
3073 if (inc)
3074 process_func = btrfs_inc_extent_ref;
3075 else
3076 process_func = btrfs_free_extent;
3077
3078 if (full_backref)
3079 parent = buf->start;
3080 else
3081 parent = 0;
3082
3083 for (i = 0; i < nritems; i++) {
3084 if (level == 0) {
3085 btrfs_item_key_to_cpu(buf, &key, i);
3086 if (key.type != BTRFS_EXTENT_DATA_KEY)
3087 continue;
3088 fi = btrfs_item_ptr(buf, i,
3089 struct btrfs_file_extent_item);
3090 if (btrfs_file_extent_type(buf, fi) ==
3091 BTRFS_FILE_EXTENT_INLINE)
3092 continue;
3093 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3094 if (bytenr == 0)
3095 continue;
3096
3097 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3098 key.offset -= btrfs_file_extent_offset(buf, fi);
3099 ret = process_func(trans, root, bytenr, num_bytes,
3100 parent, ref_root, key.objectid,
3101 key.offset, 1);
3102 if (ret)
3103 goto fail;
3104 } else {
3105 bytenr = btrfs_node_blockptr(buf, i);
3106 num_bytes = root->nodesize;
3107 ret = process_func(trans, root, bytenr, num_bytes,
3108 parent, ref_root, level - 1, 0,
3109 1);
3110 if (ret)
3111 goto fail;
3112 }
3113 }
3114 return 0;
3115 fail:
3116 return ret;
3117 }
3118
3119 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3120 struct extent_buffer *buf, int full_backref)
3121 {
3122 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3123 }
3124
3125 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3126 struct extent_buffer *buf, int full_backref)
3127 {
3128 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3129 }
3130
3131 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3132 struct btrfs_root *root,
3133 struct btrfs_path *path,
3134 struct btrfs_block_group_cache *cache)
3135 {
3136 int ret;
3137 struct btrfs_root *extent_root = root->fs_info->extent_root;
3138 unsigned long bi;
3139 struct extent_buffer *leaf;
3140
3141 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3142 if (ret < 0)
3143 goto fail;
3144 BUG_ON(ret); /* Corruption */
3145
3146 leaf = path->nodes[0];
3147 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3148 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3149 btrfs_mark_buffer_dirty(leaf);
3150 btrfs_release_path(path);
3151 fail:
3152 if (ret) {
3153 btrfs_abort_transaction(trans, root, ret);
3154 return ret;
3155 }
3156 return 0;
3157
3158 }
3159
3160 static struct btrfs_block_group_cache *
3161 next_block_group(struct btrfs_root *root,
3162 struct btrfs_block_group_cache *cache)
3163 {
3164 struct rb_node *node;
3165
3166 spin_lock(&root->fs_info->block_group_cache_lock);
3167
3168 /* If our block group was removed, we need a full search. */
3169 if (RB_EMPTY_NODE(&cache->cache_node)) {
3170 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3171
3172 spin_unlock(&root->fs_info->block_group_cache_lock);
3173 btrfs_put_block_group(cache);
3174 cache = btrfs_lookup_first_block_group(root->fs_info,
3175 next_bytenr);
3176 return cache;
3177 }
3178 node = rb_next(&cache->cache_node);
3179 btrfs_put_block_group(cache);
3180 if (node) {
3181 cache = rb_entry(node, struct btrfs_block_group_cache,
3182 cache_node);
3183 btrfs_get_block_group(cache);
3184 } else
3185 cache = NULL;
3186 spin_unlock(&root->fs_info->block_group_cache_lock);
3187 return cache;
3188 }
3189
3190 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3191 struct btrfs_trans_handle *trans,
3192 struct btrfs_path *path)
3193 {
3194 struct btrfs_root *root = block_group->fs_info->tree_root;
3195 struct inode *inode = NULL;
3196 u64 alloc_hint = 0;
3197 int dcs = BTRFS_DC_ERROR;
3198 int num_pages = 0;
3199 int retries = 0;
3200 int ret = 0;
3201
3202 /*
3203 * If this block group is smaller than 100 megs don't bother caching the
3204 * block group.
3205 */
3206 if (block_group->key.offset < (100 * 1024 * 1024)) {
3207 spin_lock(&block_group->lock);
3208 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3209 spin_unlock(&block_group->lock);
3210 return 0;
3211 }
3212
3213 again:
3214 inode = lookup_free_space_inode(root, block_group, path);
3215 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3216 ret = PTR_ERR(inode);
3217 btrfs_release_path(path);
3218 goto out;
3219 }
3220
3221 if (IS_ERR(inode)) {
3222 BUG_ON(retries);
3223 retries++;
3224
3225 if (block_group->ro)
3226 goto out_free;
3227
3228 ret = create_free_space_inode(root, trans, block_group, path);
3229 if (ret)
3230 goto out_free;
3231 goto again;
3232 }
3233
3234 /* We've already setup this transaction, go ahead and exit */
3235 if (block_group->cache_generation == trans->transid &&
3236 i_size_read(inode)) {
3237 dcs = BTRFS_DC_SETUP;
3238 goto out_put;
3239 }
3240
3241 /*
3242 * We want to set the generation to 0, that way if anything goes wrong
3243 * from here on out we know not to trust this cache when we load up next
3244 * time.
3245 */
3246 BTRFS_I(inode)->generation = 0;
3247 ret = btrfs_update_inode(trans, root, inode);
3248 WARN_ON(ret);
3249
3250 if (i_size_read(inode) > 0) {
3251 ret = btrfs_check_trunc_cache_free_space(root,
3252 &root->fs_info->global_block_rsv);
3253 if (ret)
3254 goto out_put;
3255
3256 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3257 if (ret)
3258 goto out_put;
3259 }
3260
3261 spin_lock(&block_group->lock);
3262 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3263 !btrfs_test_opt(root, SPACE_CACHE) ||
3264 block_group->delalloc_bytes) {
3265 /*
3266 * don't bother trying to write stuff out _if_
3267 * a) we're not cached,
3268 * b) we're with nospace_cache mount option.
3269 */
3270 dcs = BTRFS_DC_WRITTEN;
3271 spin_unlock(&block_group->lock);
3272 goto out_put;
3273 }
3274 spin_unlock(&block_group->lock);
3275
3276 /*
3277 * Try to preallocate enough space based on how big the block group is.
3278 * Keep in mind this has to include any pinned space which could end up
3279 * taking up quite a bit since it's not folded into the other space
3280 * cache.
3281 */
3282 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3283 if (!num_pages)
3284 num_pages = 1;
3285
3286 num_pages *= 16;
3287 num_pages *= PAGE_CACHE_SIZE;
3288
3289 ret = btrfs_check_data_free_space(inode, num_pages);
3290 if (ret)
3291 goto out_put;
3292
3293 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3294 num_pages, num_pages,
3295 &alloc_hint);
3296 if (!ret)
3297 dcs = BTRFS_DC_SETUP;
3298 btrfs_free_reserved_data_space(inode, num_pages);
3299
3300 out_put:
3301 iput(inode);
3302 out_free:
3303 btrfs_release_path(path);
3304 out:
3305 spin_lock(&block_group->lock);
3306 if (!ret && dcs == BTRFS_DC_SETUP)
3307 block_group->cache_generation = trans->transid;
3308 block_group->disk_cache_state = dcs;
3309 spin_unlock(&block_group->lock);
3310
3311 return ret;
3312 }
3313
3314 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3315 struct btrfs_root *root)
3316 {
3317 struct btrfs_block_group_cache *cache;
3318 int err = 0;
3319 struct btrfs_path *path;
3320 u64 last = 0;
3321
3322 path = btrfs_alloc_path();
3323 if (!path)
3324 return -ENOMEM;
3325
3326 again:
3327 while (1) {
3328 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3329 while (cache) {
3330 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3331 break;
3332 cache = next_block_group(root, cache);
3333 }
3334 if (!cache) {
3335 if (last == 0)
3336 break;
3337 last = 0;
3338 continue;
3339 }
3340 err = cache_save_setup(cache, trans, path);
3341 last = cache->key.objectid + cache->key.offset;
3342 btrfs_put_block_group(cache);
3343 }
3344
3345 while (1) {
3346 if (last == 0) {
3347 err = btrfs_run_delayed_refs(trans, root,
3348 (unsigned long)-1);
3349 if (err) /* File system offline */
3350 goto out;
3351 }
3352
3353 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3354 while (cache) {
3355 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3356 btrfs_put_block_group(cache);
3357 goto again;
3358 }
3359
3360 if (cache->dirty)
3361 break;
3362 cache = next_block_group(root, cache);
3363 }
3364 if (!cache) {
3365 if (last == 0)
3366 break;
3367 last = 0;
3368 continue;
3369 }
3370
3371 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3372 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3373 cache->dirty = 0;
3374 last = cache->key.objectid + cache->key.offset;
3375
3376 err = write_one_cache_group(trans, root, path, cache);
3377 btrfs_put_block_group(cache);
3378 if (err) /* File system offline */
3379 goto out;
3380 }
3381
3382 while (1) {
3383 /*
3384 * I don't think this is needed since we're just marking our
3385 * preallocated extent as written, but just in case it can't
3386 * hurt.
3387 */
3388 if (last == 0) {
3389 err = btrfs_run_delayed_refs(trans, root,
3390 (unsigned long)-1);
3391 if (err) /* File system offline */
3392 goto out;
3393 }
3394
3395 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3396 while (cache) {
3397 /*
3398 * Really this shouldn't happen, but it could if we
3399 * couldn't write the entire preallocated extent and
3400 * splitting the extent resulted in a new block.
3401 */
3402 if (cache->dirty) {
3403 btrfs_put_block_group(cache);
3404 goto again;
3405 }
3406 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3407 break;
3408 cache = next_block_group(root, cache);
3409 }
3410 if (!cache) {
3411 if (last == 0)
3412 break;
3413 last = 0;
3414 continue;
3415 }
3416
3417 err = btrfs_write_out_cache(root, trans, cache, path);
3418
3419 /*
3420 * If we didn't have an error then the cache state is still
3421 * NEED_WRITE, so we can set it to WRITTEN.
3422 */
3423 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3424 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3425 last = cache->key.objectid + cache->key.offset;
3426 btrfs_put_block_group(cache);
3427 }
3428 out:
3429
3430 btrfs_free_path(path);
3431 return err;
3432 }
3433
3434 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3435 {
3436 struct btrfs_block_group_cache *block_group;
3437 int readonly = 0;
3438
3439 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3440 if (!block_group || block_group->ro)
3441 readonly = 1;
3442 if (block_group)
3443 btrfs_put_block_group(block_group);
3444 return readonly;
3445 }
3446
3447 static const char *alloc_name(u64 flags)
3448 {
3449 switch (flags) {
3450 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3451 return "mixed";
3452 case BTRFS_BLOCK_GROUP_METADATA:
3453 return "metadata";
3454 case BTRFS_BLOCK_GROUP_DATA:
3455 return "data";
3456 case BTRFS_BLOCK_GROUP_SYSTEM:
3457 return "system";
3458 default:
3459 WARN_ON(1);
3460 return "invalid-combination";
3461 };
3462 }
3463
3464 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3465 u64 total_bytes, u64 bytes_used,
3466 struct btrfs_space_info **space_info)
3467 {
3468 struct btrfs_space_info *found;
3469 int i;
3470 int factor;
3471 int ret;
3472
3473 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3474 BTRFS_BLOCK_GROUP_RAID10))
3475 factor = 2;
3476 else
3477 factor = 1;
3478
3479 found = __find_space_info(info, flags);
3480 if (found) {
3481 spin_lock(&found->lock);
3482 found->total_bytes += total_bytes;
3483 found->disk_total += total_bytes * factor;
3484 found->bytes_used += bytes_used;
3485 found->disk_used += bytes_used * factor;
3486 found->full = 0;
3487 spin_unlock(&found->lock);
3488 *space_info = found;
3489 return 0;
3490 }
3491 found = kzalloc(sizeof(*found), GFP_NOFS);
3492 if (!found)
3493 return -ENOMEM;
3494
3495 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3496 if (ret) {
3497 kfree(found);
3498 return ret;
3499 }
3500
3501 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3502 INIT_LIST_HEAD(&found->block_groups[i]);
3503 init_rwsem(&found->groups_sem);
3504 spin_lock_init(&found->lock);
3505 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3506 found->total_bytes = total_bytes;
3507 found->disk_total = total_bytes * factor;
3508 found->bytes_used = bytes_used;
3509 found->disk_used = bytes_used * factor;
3510 found->bytes_pinned = 0;
3511 found->bytes_reserved = 0;
3512 found->bytes_readonly = 0;
3513 found->bytes_may_use = 0;
3514 found->full = 0;
3515 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3516 found->chunk_alloc = 0;
3517 found->flush = 0;
3518 init_waitqueue_head(&found->wait);
3519 INIT_LIST_HEAD(&found->ro_bgs);
3520
3521 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3522 info->space_info_kobj, "%s",
3523 alloc_name(found->flags));
3524 if (ret) {
3525 kfree(found);
3526 return ret;
3527 }
3528
3529 *space_info = found;
3530 list_add_rcu(&found->list, &info->space_info);
3531 if (flags & BTRFS_BLOCK_GROUP_DATA)
3532 info->data_sinfo = found;
3533
3534 return ret;
3535 }
3536
3537 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3538 {
3539 u64 extra_flags = chunk_to_extended(flags) &
3540 BTRFS_EXTENDED_PROFILE_MASK;
3541
3542 write_seqlock(&fs_info->profiles_lock);
3543 if (flags & BTRFS_BLOCK_GROUP_DATA)
3544 fs_info->avail_data_alloc_bits |= extra_flags;
3545 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3546 fs_info->avail_metadata_alloc_bits |= extra_flags;
3547 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3548 fs_info->avail_system_alloc_bits |= extra_flags;
3549 write_sequnlock(&fs_info->profiles_lock);
3550 }
3551
3552 /*
3553 * returns target flags in extended format or 0 if restripe for this
3554 * chunk_type is not in progress
3555 *
3556 * should be called with either volume_mutex or balance_lock held
3557 */
3558 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3559 {
3560 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3561 u64 target = 0;
3562
3563 if (!bctl)
3564 return 0;
3565
3566 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3567 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3568 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3569 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3570 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3571 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3572 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3573 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3574 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3575 }
3576
3577 return target;
3578 }
3579
3580 /*
3581 * @flags: available profiles in extended format (see ctree.h)
3582 *
3583 * Returns reduced profile in chunk format. If profile changing is in
3584 * progress (either running or paused) picks the target profile (if it's
3585 * already available), otherwise falls back to plain reducing.
3586 */
3587 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3588 {
3589 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3590 u64 target;
3591 u64 tmp;
3592
3593 /*
3594 * see if restripe for this chunk_type is in progress, if so
3595 * try to reduce to the target profile
3596 */
3597 spin_lock(&root->fs_info->balance_lock);
3598 target = get_restripe_target(root->fs_info, flags);
3599 if (target) {
3600 /* pick target profile only if it's already available */
3601 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3602 spin_unlock(&root->fs_info->balance_lock);
3603 return extended_to_chunk(target);
3604 }
3605 }
3606 spin_unlock(&root->fs_info->balance_lock);
3607
3608 /* First, mask out the RAID levels which aren't possible */
3609 if (num_devices == 1)
3610 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3611 BTRFS_BLOCK_GROUP_RAID5);
3612 if (num_devices < 3)
3613 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3614 if (num_devices < 4)
3615 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3616
3617 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3618 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3619 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3620 flags &= ~tmp;
3621
3622 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3623 tmp = BTRFS_BLOCK_GROUP_RAID6;
3624 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3625 tmp = BTRFS_BLOCK_GROUP_RAID5;
3626 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3627 tmp = BTRFS_BLOCK_GROUP_RAID10;
3628 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3629 tmp = BTRFS_BLOCK_GROUP_RAID1;
3630 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3631 tmp = BTRFS_BLOCK_GROUP_RAID0;
3632
3633 return extended_to_chunk(flags | tmp);
3634 }
3635
3636 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3637 {
3638 unsigned seq;
3639 u64 flags;
3640
3641 do {
3642 flags = orig_flags;
3643 seq = read_seqbegin(&root->fs_info->profiles_lock);
3644
3645 if (flags & BTRFS_BLOCK_GROUP_DATA)
3646 flags |= root->fs_info->avail_data_alloc_bits;
3647 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3648 flags |= root->fs_info->avail_system_alloc_bits;
3649 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3650 flags |= root->fs_info->avail_metadata_alloc_bits;
3651 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3652
3653 return btrfs_reduce_alloc_profile(root, flags);
3654 }
3655
3656 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3657 {
3658 u64 flags;
3659 u64 ret;
3660
3661 if (data)
3662 flags = BTRFS_BLOCK_GROUP_DATA;
3663 else if (root == root->fs_info->chunk_root)
3664 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3665 else
3666 flags = BTRFS_BLOCK_GROUP_METADATA;
3667
3668 ret = get_alloc_profile(root, flags);
3669 return ret;
3670 }
3671
3672 /*
3673 * This will check the space that the inode allocates from to make sure we have
3674 * enough space for bytes.
3675 */
3676 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3677 {
3678 struct btrfs_space_info *data_sinfo;
3679 struct btrfs_root *root = BTRFS_I(inode)->root;
3680 struct btrfs_fs_info *fs_info = root->fs_info;
3681 u64 used;
3682 int ret = 0, committed = 0, alloc_chunk = 1;
3683
3684 /* make sure bytes are sectorsize aligned */
3685 bytes = ALIGN(bytes, root->sectorsize);
3686
3687 if (btrfs_is_free_space_inode(inode)) {
3688 committed = 1;
3689 ASSERT(current->journal_info);
3690 }
3691
3692 data_sinfo = fs_info->data_sinfo;
3693 if (!data_sinfo)
3694 goto alloc;
3695
3696 again:
3697 /* make sure we have enough space to handle the data first */
3698 spin_lock(&data_sinfo->lock);
3699 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3700 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3701 data_sinfo->bytes_may_use;
3702
3703 if (used + bytes > data_sinfo->total_bytes) {
3704 struct btrfs_trans_handle *trans;
3705
3706 /*
3707 * if we don't have enough free bytes in this space then we need
3708 * to alloc a new chunk.
3709 */
3710 if (!data_sinfo->full && alloc_chunk) {
3711 u64 alloc_target;
3712
3713 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3714 spin_unlock(&data_sinfo->lock);
3715 alloc:
3716 alloc_target = btrfs_get_alloc_profile(root, 1);
3717 /*
3718 * It is ugly that we don't call nolock join
3719 * transaction for the free space inode case here.
3720 * But it is safe because we only do the data space
3721 * reservation for the free space cache in the
3722 * transaction context, the common join transaction
3723 * just increase the counter of the current transaction
3724 * handler, doesn't try to acquire the trans_lock of
3725 * the fs.
3726 */
3727 trans = btrfs_join_transaction(root);
3728 if (IS_ERR(trans))
3729 return PTR_ERR(trans);
3730
3731 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3732 alloc_target,
3733 CHUNK_ALLOC_NO_FORCE);
3734 btrfs_end_transaction(trans, root);
3735 if (ret < 0) {
3736 if (ret != -ENOSPC)
3737 return ret;
3738 else
3739 goto commit_trans;
3740 }
3741
3742 if (!data_sinfo)
3743 data_sinfo = fs_info->data_sinfo;
3744
3745 goto again;
3746 }
3747
3748 /*
3749 * If we don't have enough pinned space to deal with this
3750 * allocation don't bother committing the transaction.
3751 */
3752 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3753 bytes) < 0)
3754 committed = 1;
3755 spin_unlock(&data_sinfo->lock);
3756
3757 /* commit the current transaction and try again */
3758 commit_trans:
3759 if (!committed &&
3760 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3761 committed = 1;
3762
3763 trans = btrfs_join_transaction(root);
3764 if (IS_ERR(trans))
3765 return PTR_ERR(trans);
3766 ret = btrfs_commit_transaction(trans, root);
3767 if (ret)
3768 return ret;
3769 goto again;
3770 }
3771
3772 trace_btrfs_space_reservation(root->fs_info,
3773 "space_info:enospc",
3774 data_sinfo->flags, bytes, 1);
3775 return -ENOSPC;
3776 }
3777 data_sinfo->bytes_may_use += bytes;
3778 trace_btrfs_space_reservation(root->fs_info, "space_info",
3779 data_sinfo->flags, bytes, 1);
3780 spin_unlock(&data_sinfo->lock);
3781
3782 return 0;
3783 }
3784
3785 /*
3786 * Called if we need to clear a data reservation for this inode.
3787 */
3788 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3789 {
3790 struct btrfs_root *root = BTRFS_I(inode)->root;
3791 struct btrfs_space_info *data_sinfo;
3792
3793 /* make sure bytes are sectorsize aligned */
3794 bytes = ALIGN(bytes, root->sectorsize);
3795
3796 data_sinfo = root->fs_info->data_sinfo;
3797 spin_lock(&data_sinfo->lock);
3798 WARN_ON(data_sinfo->bytes_may_use < bytes);
3799 data_sinfo->bytes_may_use -= bytes;
3800 trace_btrfs_space_reservation(root->fs_info, "space_info",
3801 data_sinfo->flags, bytes, 0);
3802 spin_unlock(&data_sinfo->lock);
3803 }
3804
3805 static void force_metadata_allocation(struct btrfs_fs_info *info)
3806 {
3807 struct list_head *head = &info->space_info;
3808 struct btrfs_space_info *found;
3809
3810 rcu_read_lock();
3811 list_for_each_entry_rcu(found, head, list) {
3812 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3813 found->force_alloc = CHUNK_ALLOC_FORCE;
3814 }
3815 rcu_read_unlock();
3816 }
3817
3818 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3819 {
3820 return (global->size << 1);
3821 }
3822
3823 static int should_alloc_chunk(struct btrfs_root *root,
3824 struct btrfs_space_info *sinfo, int force)
3825 {
3826 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3827 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3828 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3829 u64 thresh;
3830
3831 if (force == CHUNK_ALLOC_FORCE)
3832 return 1;
3833
3834 /*
3835 * We need to take into account the global rsv because for all intents
3836 * and purposes it's used space. Don't worry about locking the
3837 * global_rsv, it doesn't change except when the transaction commits.
3838 */
3839 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3840 num_allocated += calc_global_rsv_need_space(global_rsv);
3841
3842 /*
3843 * in limited mode, we want to have some free space up to
3844 * about 1% of the FS size.
3845 */
3846 if (force == CHUNK_ALLOC_LIMITED) {
3847 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3848 thresh = max_t(u64, 64 * 1024 * 1024,
3849 div_factor_fine(thresh, 1));
3850
3851 if (num_bytes - num_allocated < thresh)
3852 return 1;
3853 }
3854
3855 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3856 return 0;
3857 return 1;
3858 }
3859
3860 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3861 {
3862 u64 num_dev;
3863
3864 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3865 BTRFS_BLOCK_GROUP_RAID0 |
3866 BTRFS_BLOCK_GROUP_RAID5 |
3867 BTRFS_BLOCK_GROUP_RAID6))
3868 num_dev = root->fs_info->fs_devices->rw_devices;
3869 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3870 num_dev = 2;
3871 else
3872 num_dev = 1; /* DUP or single */
3873
3874 /* metadata for updaing devices and chunk tree */
3875 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3876 }
3877
3878 static void check_system_chunk(struct btrfs_trans_handle *trans,
3879 struct btrfs_root *root, u64 type)
3880 {
3881 struct btrfs_space_info *info;
3882 u64 left;
3883 u64 thresh;
3884
3885 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3886 spin_lock(&info->lock);
3887 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3888 info->bytes_reserved - info->bytes_readonly;
3889 spin_unlock(&info->lock);
3890
3891 thresh = get_system_chunk_thresh(root, type);
3892 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3893 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3894 left, thresh, type);
3895 dump_space_info(info, 0, 0);
3896 }
3897
3898 if (left < thresh) {
3899 u64 flags;
3900
3901 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3902 btrfs_alloc_chunk(trans, root, flags);
3903 }
3904 }
3905
3906 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3907 struct btrfs_root *extent_root, u64 flags, int force)
3908 {
3909 struct btrfs_space_info *space_info;
3910 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3911 int wait_for_alloc = 0;
3912 int ret = 0;
3913
3914 /* Don't re-enter if we're already allocating a chunk */
3915 if (trans->allocating_chunk)
3916 return -ENOSPC;
3917
3918 space_info = __find_space_info(extent_root->fs_info, flags);
3919 if (!space_info) {
3920 ret = update_space_info(extent_root->fs_info, flags,
3921 0, 0, &space_info);
3922 BUG_ON(ret); /* -ENOMEM */
3923 }
3924 BUG_ON(!space_info); /* Logic error */
3925
3926 again:
3927 spin_lock(&space_info->lock);
3928 if (force < space_info->force_alloc)
3929 force = space_info->force_alloc;
3930 if (space_info->full) {
3931 if (should_alloc_chunk(extent_root, space_info, force))
3932 ret = -ENOSPC;
3933 else
3934 ret = 0;
3935 spin_unlock(&space_info->lock);
3936 return ret;
3937 }
3938
3939 if (!should_alloc_chunk(extent_root, space_info, force)) {
3940 spin_unlock(&space_info->lock);
3941 return 0;
3942 } else if (space_info->chunk_alloc) {
3943 wait_for_alloc = 1;
3944 } else {
3945 space_info->chunk_alloc = 1;
3946 }
3947
3948 spin_unlock(&space_info->lock);
3949
3950 mutex_lock(&fs_info->chunk_mutex);
3951
3952 /*
3953 * The chunk_mutex is held throughout the entirety of a chunk
3954 * allocation, so once we've acquired the chunk_mutex we know that the
3955 * other guy is done and we need to recheck and see if we should
3956 * allocate.
3957 */
3958 if (wait_for_alloc) {
3959 mutex_unlock(&fs_info->chunk_mutex);
3960 wait_for_alloc = 0;
3961 goto again;
3962 }
3963
3964 trans->allocating_chunk = true;
3965
3966 /*
3967 * If we have mixed data/metadata chunks we want to make sure we keep
3968 * allocating mixed chunks instead of individual chunks.
3969 */
3970 if (btrfs_mixed_space_info(space_info))
3971 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3972
3973 /*
3974 * if we're doing a data chunk, go ahead and make sure that
3975 * we keep a reasonable number of metadata chunks allocated in the
3976 * FS as well.
3977 */
3978 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3979 fs_info->data_chunk_allocations++;
3980 if (!(fs_info->data_chunk_allocations %
3981 fs_info->metadata_ratio))
3982 force_metadata_allocation(fs_info);
3983 }
3984
3985 /*
3986 * Check if we have enough space in SYSTEM chunk because we may need
3987 * to update devices.
3988 */
3989 check_system_chunk(trans, extent_root, flags);
3990
3991 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3992 trans->allocating_chunk = false;
3993
3994 spin_lock(&space_info->lock);
3995 if (ret < 0 && ret != -ENOSPC)
3996 goto out;
3997 if (ret)
3998 space_info->full = 1;
3999 else
4000 ret = 1;
4001
4002 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4003 out:
4004 space_info->chunk_alloc = 0;
4005 spin_unlock(&space_info->lock);
4006 mutex_unlock(&fs_info->chunk_mutex);
4007 return ret;
4008 }
4009
4010 static int can_overcommit(struct btrfs_root *root,
4011 struct btrfs_space_info *space_info, u64 bytes,
4012 enum btrfs_reserve_flush_enum flush)
4013 {
4014 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4015 u64 profile = btrfs_get_alloc_profile(root, 0);
4016 u64 space_size;
4017 u64 avail;
4018 u64 used;
4019
4020 used = space_info->bytes_used + space_info->bytes_reserved +
4021 space_info->bytes_pinned + space_info->bytes_readonly;
4022
4023 /*
4024 * We only want to allow over committing if we have lots of actual space
4025 * free, but if we don't have enough space to handle the global reserve
4026 * space then we could end up having a real enospc problem when trying
4027 * to allocate a chunk or some other such important allocation.
4028 */
4029 spin_lock(&global_rsv->lock);
4030 space_size = calc_global_rsv_need_space(global_rsv);
4031 spin_unlock(&global_rsv->lock);
4032 if (used + space_size >= space_info->total_bytes)
4033 return 0;
4034
4035 used += space_info->bytes_may_use;
4036
4037 spin_lock(&root->fs_info->free_chunk_lock);
4038 avail = root->fs_info->free_chunk_space;
4039 spin_unlock(&root->fs_info->free_chunk_lock);
4040
4041 /*
4042 * If we have dup, raid1 or raid10 then only half of the free
4043 * space is actually useable. For raid56, the space info used
4044 * doesn't include the parity drive, so we don't have to
4045 * change the math
4046 */
4047 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4048 BTRFS_BLOCK_GROUP_RAID1 |
4049 BTRFS_BLOCK_GROUP_RAID10))
4050 avail >>= 1;
4051
4052 /*
4053 * If we aren't flushing all things, let us overcommit up to
4054 * 1/2th of the space. If we can flush, don't let us overcommit
4055 * too much, let it overcommit up to 1/8 of the space.
4056 */
4057 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4058 avail >>= 3;
4059 else
4060 avail >>= 1;
4061
4062 if (used + bytes < space_info->total_bytes + avail)
4063 return 1;
4064 return 0;
4065 }
4066
4067 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4068 unsigned long nr_pages, int nr_items)
4069 {
4070 struct super_block *sb = root->fs_info->sb;
4071
4072 if (down_read_trylock(&sb->s_umount)) {
4073 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4074 up_read(&sb->s_umount);
4075 } else {
4076 /*
4077 * We needn't worry the filesystem going from r/w to r/o though
4078 * we don't acquire ->s_umount mutex, because the filesystem
4079 * should guarantee the delalloc inodes list be empty after
4080 * the filesystem is readonly(all dirty pages are written to
4081 * the disk).
4082 */
4083 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4084 if (!current->journal_info)
4085 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4086 }
4087 }
4088
4089 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4090 {
4091 u64 bytes;
4092 int nr;
4093
4094 bytes = btrfs_calc_trans_metadata_size(root, 1);
4095 nr = (int)div64_u64(to_reclaim, bytes);
4096 if (!nr)
4097 nr = 1;
4098 return nr;
4099 }
4100
4101 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4102
4103 /*
4104 * shrink metadata reservation for delalloc
4105 */
4106 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4107 bool wait_ordered)
4108 {
4109 struct btrfs_block_rsv *block_rsv;
4110 struct btrfs_space_info *space_info;
4111 struct btrfs_trans_handle *trans;
4112 u64 delalloc_bytes;
4113 u64 max_reclaim;
4114 long time_left;
4115 unsigned long nr_pages;
4116 int loops;
4117 int items;
4118 enum btrfs_reserve_flush_enum flush;
4119
4120 /* Calc the number of the pages we need flush for space reservation */
4121 items = calc_reclaim_items_nr(root, to_reclaim);
4122 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4123
4124 trans = (struct btrfs_trans_handle *)current->journal_info;
4125 block_rsv = &root->fs_info->delalloc_block_rsv;
4126 space_info = block_rsv->space_info;
4127
4128 delalloc_bytes = percpu_counter_sum_positive(
4129 &root->fs_info->delalloc_bytes);
4130 if (delalloc_bytes == 0) {
4131 if (trans)
4132 return;
4133 if (wait_ordered)
4134 btrfs_wait_ordered_roots(root->fs_info, items);
4135 return;
4136 }
4137
4138 loops = 0;
4139 while (delalloc_bytes && loops < 3) {
4140 max_reclaim = min(delalloc_bytes, to_reclaim);
4141 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4142 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4143 /*
4144 * We need to wait for the async pages to actually start before
4145 * we do anything.
4146 */
4147 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4148 if (!max_reclaim)
4149 goto skip_async;
4150
4151 if (max_reclaim <= nr_pages)
4152 max_reclaim = 0;
4153 else
4154 max_reclaim -= nr_pages;
4155
4156 wait_event(root->fs_info->async_submit_wait,
4157 atomic_read(&root->fs_info->async_delalloc_pages) <=
4158 (int)max_reclaim);
4159 skip_async:
4160 if (!trans)
4161 flush = BTRFS_RESERVE_FLUSH_ALL;
4162 else
4163 flush = BTRFS_RESERVE_NO_FLUSH;
4164 spin_lock(&space_info->lock);
4165 if (can_overcommit(root, space_info, orig, flush)) {
4166 spin_unlock(&space_info->lock);
4167 break;
4168 }
4169 spin_unlock(&space_info->lock);
4170
4171 loops++;
4172 if (wait_ordered && !trans) {
4173 btrfs_wait_ordered_roots(root->fs_info, items);
4174 } else {
4175 time_left = schedule_timeout_killable(1);
4176 if (time_left)
4177 break;
4178 }
4179 delalloc_bytes = percpu_counter_sum_positive(
4180 &root->fs_info->delalloc_bytes);
4181 }
4182 }
4183
4184 /**
4185 * maybe_commit_transaction - possibly commit the transaction if its ok to
4186 * @root - the root we're allocating for
4187 * @bytes - the number of bytes we want to reserve
4188 * @force - force the commit
4189 *
4190 * This will check to make sure that committing the transaction will actually
4191 * get us somewhere and then commit the transaction if it does. Otherwise it
4192 * will return -ENOSPC.
4193 */
4194 static int may_commit_transaction(struct btrfs_root *root,
4195 struct btrfs_space_info *space_info,
4196 u64 bytes, int force)
4197 {
4198 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4199 struct btrfs_trans_handle *trans;
4200
4201 trans = (struct btrfs_trans_handle *)current->journal_info;
4202 if (trans)
4203 return -EAGAIN;
4204
4205 if (force)
4206 goto commit;
4207
4208 /* See if there is enough pinned space to make this reservation */
4209 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4210 bytes) >= 0)
4211 goto commit;
4212
4213 /*
4214 * See if there is some space in the delayed insertion reservation for
4215 * this reservation.
4216 */
4217 if (space_info != delayed_rsv->space_info)
4218 return -ENOSPC;
4219
4220 spin_lock(&delayed_rsv->lock);
4221 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4222 bytes - delayed_rsv->size) >= 0) {
4223 spin_unlock(&delayed_rsv->lock);
4224 return -ENOSPC;
4225 }
4226 spin_unlock(&delayed_rsv->lock);
4227
4228 commit:
4229 trans = btrfs_join_transaction(root);
4230 if (IS_ERR(trans))
4231 return -ENOSPC;
4232
4233 return btrfs_commit_transaction(trans, root);
4234 }
4235
4236 enum flush_state {
4237 FLUSH_DELAYED_ITEMS_NR = 1,
4238 FLUSH_DELAYED_ITEMS = 2,
4239 FLUSH_DELALLOC = 3,
4240 FLUSH_DELALLOC_WAIT = 4,
4241 ALLOC_CHUNK = 5,
4242 COMMIT_TRANS = 6,
4243 };
4244
4245 static int flush_space(struct btrfs_root *root,
4246 struct btrfs_space_info *space_info, u64 num_bytes,
4247 u64 orig_bytes, int state)
4248 {
4249 struct btrfs_trans_handle *trans;
4250 int nr;
4251 int ret = 0;
4252
4253 switch (state) {
4254 case FLUSH_DELAYED_ITEMS_NR:
4255 case FLUSH_DELAYED_ITEMS:
4256 if (state == FLUSH_DELAYED_ITEMS_NR)
4257 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4258 else
4259 nr = -1;
4260
4261 trans = btrfs_join_transaction(root);
4262 if (IS_ERR(trans)) {
4263 ret = PTR_ERR(trans);
4264 break;
4265 }
4266 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4267 btrfs_end_transaction(trans, root);
4268 break;
4269 case FLUSH_DELALLOC:
4270 case FLUSH_DELALLOC_WAIT:
4271 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4272 state == FLUSH_DELALLOC_WAIT);
4273 break;
4274 case ALLOC_CHUNK:
4275 trans = btrfs_join_transaction(root);
4276 if (IS_ERR(trans)) {
4277 ret = PTR_ERR(trans);
4278 break;
4279 }
4280 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4281 btrfs_get_alloc_profile(root, 0),
4282 CHUNK_ALLOC_NO_FORCE);
4283 btrfs_end_transaction(trans, root);
4284 if (ret == -ENOSPC)
4285 ret = 0;
4286 break;
4287 case COMMIT_TRANS:
4288 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4289 break;
4290 default:
4291 ret = -ENOSPC;
4292 break;
4293 }
4294
4295 return ret;
4296 }
4297
4298 static inline u64
4299 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4300 struct btrfs_space_info *space_info)
4301 {
4302 u64 used;
4303 u64 expected;
4304 u64 to_reclaim;
4305
4306 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4307 16 * 1024 * 1024);
4308 spin_lock(&space_info->lock);
4309 if (can_overcommit(root, space_info, to_reclaim,
4310 BTRFS_RESERVE_FLUSH_ALL)) {
4311 to_reclaim = 0;
4312 goto out;
4313 }
4314
4315 used = space_info->bytes_used + space_info->bytes_reserved +
4316 space_info->bytes_pinned + space_info->bytes_readonly +
4317 space_info->bytes_may_use;
4318 if (can_overcommit(root, space_info, 1024 * 1024,
4319 BTRFS_RESERVE_FLUSH_ALL))
4320 expected = div_factor_fine(space_info->total_bytes, 95);
4321 else
4322 expected = div_factor_fine(space_info->total_bytes, 90);
4323
4324 if (used > expected)
4325 to_reclaim = used - expected;
4326 else
4327 to_reclaim = 0;
4328 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4329 space_info->bytes_reserved);
4330 out:
4331 spin_unlock(&space_info->lock);
4332
4333 return to_reclaim;
4334 }
4335
4336 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4337 struct btrfs_fs_info *fs_info, u64 used)
4338 {
4339 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4340 !btrfs_fs_closing(fs_info) &&
4341 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4342 }
4343
4344 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4345 struct btrfs_fs_info *fs_info,
4346 int flush_state)
4347 {
4348 u64 used;
4349
4350 spin_lock(&space_info->lock);
4351 /*
4352 * We run out of space and have not got any free space via flush_space,
4353 * so don't bother doing async reclaim.
4354 */
4355 if (flush_state > COMMIT_TRANS && space_info->full) {
4356 spin_unlock(&space_info->lock);
4357 return 0;
4358 }
4359
4360 used = space_info->bytes_used + space_info->bytes_reserved +
4361 space_info->bytes_pinned + space_info->bytes_readonly +
4362 space_info->bytes_may_use;
4363 if (need_do_async_reclaim(space_info, fs_info, used)) {
4364 spin_unlock(&space_info->lock);
4365 return 1;
4366 }
4367 spin_unlock(&space_info->lock);
4368
4369 return 0;
4370 }
4371
4372 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4373 {
4374 struct btrfs_fs_info *fs_info;
4375 struct btrfs_space_info *space_info;
4376 u64 to_reclaim;
4377 int flush_state;
4378
4379 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4380 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4381
4382 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4383 space_info);
4384 if (!to_reclaim)
4385 return;
4386
4387 flush_state = FLUSH_DELAYED_ITEMS_NR;
4388 do {
4389 flush_space(fs_info->fs_root, space_info, to_reclaim,
4390 to_reclaim, flush_state);
4391 flush_state++;
4392 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4393 flush_state))
4394 return;
4395 } while (flush_state <= COMMIT_TRANS);
4396
4397 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4398 queue_work(system_unbound_wq, work);
4399 }
4400
4401 void btrfs_init_async_reclaim_work(struct work_struct *work)
4402 {
4403 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4404 }
4405
4406 /**
4407 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4408 * @root - the root we're allocating for
4409 * @block_rsv - the block_rsv we're allocating for
4410 * @orig_bytes - the number of bytes we want
4411 * @flush - whether or not we can flush to make our reservation
4412 *
4413 * This will reserve orgi_bytes number of bytes from the space info associated
4414 * with the block_rsv. If there is not enough space it will make an attempt to
4415 * flush out space to make room. It will do this by flushing delalloc if
4416 * possible or committing the transaction. If flush is 0 then no attempts to
4417 * regain reservations will be made and this will fail if there is not enough
4418 * space already.
4419 */
4420 static int reserve_metadata_bytes(struct btrfs_root *root,
4421 struct btrfs_block_rsv *block_rsv,
4422 u64 orig_bytes,
4423 enum btrfs_reserve_flush_enum flush)
4424 {
4425 struct btrfs_space_info *space_info = block_rsv->space_info;
4426 u64 used;
4427 u64 num_bytes = orig_bytes;
4428 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4429 int ret = 0;
4430 bool flushing = false;
4431
4432 again:
4433 ret = 0;
4434 spin_lock(&space_info->lock);
4435 /*
4436 * We only want to wait if somebody other than us is flushing and we
4437 * are actually allowed to flush all things.
4438 */
4439 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4440 space_info->flush) {
4441 spin_unlock(&space_info->lock);
4442 /*
4443 * If we have a trans handle we can't wait because the flusher
4444 * may have to commit the transaction, which would mean we would
4445 * deadlock since we are waiting for the flusher to finish, but
4446 * hold the current transaction open.
4447 */
4448 if (current->journal_info)
4449 return -EAGAIN;
4450 ret = wait_event_killable(space_info->wait, !space_info->flush);
4451 /* Must have been killed, return */
4452 if (ret)
4453 return -EINTR;
4454
4455 spin_lock(&space_info->lock);
4456 }
4457
4458 ret = -ENOSPC;
4459 used = space_info->bytes_used + space_info->bytes_reserved +
4460 space_info->bytes_pinned + space_info->bytes_readonly +
4461 space_info->bytes_may_use;
4462
4463 /*
4464 * The idea here is that we've not already over-reserved the block group
4465 * then we can go ahead and save our reservation first and then start
4466 * flushing if we need to. Otherwise if we've already overcommitted
4467 * lets start flushing stuff first and then come back and try to make
4468 * our reservation.
4469 */
4470 if (used <= space_info->total_bytes) {
4471 if (used + orig_bytes <= space_info->total_bytes) {
4472 space_info->bytes_may_use += orig_bytes;
4473 trace_btrfs_space_reservation(root->fs_info,
4474 "space_info", space_info->flags, orig_bytes, 1);
4475 ret = 0;
4476 } else {
4477 /*
4478 * Ok set num_bytes to orig_bytes since we aren't
4479 * overocmmitted, this way we only try and reclaim what
4480 * we need.
4481 */
4482 num_bytes = orig_bytes;
4483 }
4484 } else {
4485 /*
4486 * Ok we're over committed, set num_bytes to the overcommitted
4487 * amount plus the amount of bytes that we need for this
4488 * reservation.
4489 */
4490 num_bytes = used - space_info->total_bytes +
4491 (orig_bytes * 2);
4492 }
4493
4494 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4495 space_info->bytes_may_use += orig_bytes;
4496 trace_btrfs_space_reservation(root->fs_info, "space_info",
4497 space_info->flags, orig_bytes,
4498 1);
4499 ret = 0;
4500 }
4501
4502 /*
4503 * Couldn't make our reservation, save our place so while we're trying
4504 * to reclaim space we can actually use it instead of somebody else
4505 * stealing it from us.
4506 *
4507 * We make the other tasks wait for the flush only when we can flush
4508 * all things.
4509 */
4510 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4511 flushing = true;
4512 space_info->flush = 1;
4513 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4514 used += orig_bytes;
4515 /*
4516 * We will do the space reservation dance during log replay,
4517 * which means we won't have fs_info->fs_root set, so don't do
4518 * the async reclaim as we will panic.
4519 */
4520 if (!root->fs_info->log_root_recovering &&
4521 need_do_async_reclaim(space_info, root->fs_info, used) &&
4522 !work_busy(&root->fs_info->async_reclaim_work))
4523 queue_work(system_unbound_wq,
4524 &root->fs_info->async_reclaim_work);
4525 }
4526 spin_unlock(&space_info->lock);
4527
4528 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4529 goto out;
4530
4531 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4532 flush_state);
4533 flush_state++;
4534
4535 /*
4536 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4537 * would happen. So skip delalloc flush.
4538 */
4539 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4540 (flush_state == FLUSH_DELALLOC ||
4541 flush_state == FLUSH_DELALLOC_WAIT))
4542 flush_state = ALLOC_CHUNK;
4543
4544 if (!ret)
4545 goto again;
4546 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4547 flush_state < COMMIT_TRANS)
4548 goto again;
4549 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4550 flush_state <= COMMIT_TRANS)
4551 goto again;
4552
4553 out:
4554 if (ret == -ENOSPC &&
4555 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4556 struct btrfs_block_rsv *global_rsv =
4557 &root->fs_info->global_block_rsv;
4558
4559 if (block_rsv != global_rsv &&
4560 !block_rsv_use_bytes(global_rsv, orig_bytes))
4561 ret = 0;
4562 }
4563 if (ret == -ENOSPC)
4564 trace_btrfs_space_reservation(root->fs_info,
4565 "space_info:enospc",
4566 space_info->flags, orig_bytes, 1);
4567 if (flushing) {
4568 spin_lock(&space_info->lock);
4569 space_info->flush = 0;
4570 wake_up_all(&space_info->wait);
4571 spin_unlock(&space_info->lock);
4572 }
4573 return ret;
4574 }
4575
4576 static struct btrfs_block_rsv *get_block_rsv(
4577 const struct btrfs_trans_handle *trans,
4578 const struct btrfs_root *root)
4579 {
4580 struct btrfs_block_rsv *block_rsv = NULL;
4581
4582 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4583 block_rsv = trans->block_rsv;
4584
4585 if (root == root->fs_info->csum_root && trans->adding_csums)
4586 block_rsv = trans->block_rsv;
4587
4588 if (root == root->fs_info->uuid_root)
4589 block_rsv = trans->block_rsv;
4590
4591 if (!block_rsv)
4592 block_rsv = root->block_rsv;
4593
4594 if (!block_rsv)
4595 block_rsv = &root->fs_info->empty_block_rsv;
4596
4597 return block_rsv;
4598 }
4599
4600 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4601 u64 num_bytes)
4602 {
4603 int ret = -ENOSPC;
4604 spin_lock(&block_rsv->lock);
4605 if (block_rsv->reserved >= num_bytes) {
4606 block_rsv->reserved -= num_bytes;
4607 if (block_rsv->reserved < block_rsv->size)
4608 block_rsv->full = 0;
4609 ret = 0;
4610 }
4611 spin_unlock(&block_rsv->lock);
4612 return ret;
4613 }
4614
4615 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4616 u64 num_bytes, int update_size)
4617 {
4618 spin_lock(&block_rsv->lock);
4619 block_rsv->reserved += num_bytes;
4620 if (update_size)
4621 block_rsv->size += num_bytes;
4622 else if (block_rsv->reserved >= block_rsv->size)
4623 block_rsv->full = 1;
4624 spin_unlock(&block_rsv->lock);
4625 }
4626
4627 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4628 struct btrfs_block_rsv *dest, u64 num_bytes,
4629 int min_factor)
4630 {
4631 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4632 u64 min_bytes;
4633
4634 if (global_rsv->space_info != dest->space_info)
4635 return -ENOSPC;
4636
4637 spin_lock(&global_rsv->lock);
4638 min_bytes = div_factor(global_rsv->size, min_factor);
4639 if (global_rsv->reserved < min_bytes + num_bytes) {
4640 spin_unlock(&global_rsv->lock);
4641 return -ENOSPC;
4642 }
4643 global_rsv->reserved -= num_bytes;
4644 if (global_rsv->reserved < global_rsv->size)
4645 global_rsv->full = 0;
4646 spin_unlock(&global_rsv->lock);
4647
4648 block_rsv_add_bytes(dest, num_bytes, 1);
4649 return 0;
4650 }
4651
4652 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4653 struct btrfs_block_rsv *block_rsv,
4654 struct btrfs_block_rsv *dest, u64 num_bytes)
4655 {
4656 struct btrfs_space_info *space_info = block_rsv->space_info;
4657
4658 spin_lock(&block_rsv->lock);
4659 if (num_bytes == (u64)-1)
4660 num_bytes = block_rsv->size;
4661 block_rsv->size -= num_bytes;
4662 if (block_rsv->reserved >= block_rsv->size) {
4663 num_bytes = block_rsv->reserved - block_rsv->size;
4664 block_rsv->reserved = block_rsv->size;
4665 block_rsv->full = 1;
4666 } else {
4667 num_bytes = 0;
4668 }
4669 spin_unlock(&block_rsv->lock);
4670
4671 if (num_bytes > 0) {
4672 if (dest) {
4673 spin_lock(&dest->lock);
4674 if (!dest->full) {
4675 u64 bytes_to_add;
4676
4677 bytes_to_add = dest->size - dest->reserved;
4678 bytes_to_add = min(num_bytes, bytes_to_add);
4679 dest->reserved += bytes_to_add;
4680 if (dest->reserved >= dest->size)
4681 dest->full = 1;
4682 num_bytes -= bytes_to_add;
4683 }
4684 spin_unlock(&dest->lock);
4685 }
4686 if (num_bytes) {
4687 spin_lock(&space_info->lock);
4688 space_info->bytes_may_use -= num_bytes;
4689 trace_btrfs_space_reservation(fs_info, "space_info",
4690 space_info->flags, num_bytes, 0);
4691 spin_unlock(&space_info->lock);
4692 }
4693 }
4694 }
4695
4696 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4697 struct btrfs_block_rsv *dst, u64 num_bytes)
4698 {
4699 int ret;
4700
4701 ret = block_rsv_use_bytes(src, num_bytes);
4702 if (ret)
4703 return ret;
4704
4705 block_rsv_add_bytes(dst, num_bytes, 1);
4706 return 0;
4707 }
4708
4709 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4710 {
4711 memset(rsv, 0, sizeof(*rsv));
4712 spin_lock_init(&rsv->lock);
4713 rsv->type = type;
4714 }
4715
4716 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4717 unsigned short type)
4718 {
4719 struct btrfs_block_rsv *block_rsv;
4720 struct btrfs_fs_info *fs_info = root->fs_info;
4721
4722 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4723 if (!block_rsv)
4724 return NULL;
4725
4726 btrfs_init_block_rsv(block_rsv, type);
4727 block_rsv->space_info = __find_space_info(fs_info,
4728 BTRFS_BLOCK_GROUP_METADATA);
4729 return block_rsv;
4730 }
4731
4732 void btrfs_free_block_rsv(struct btrfs_root *root,
4733 struct btrfs_block_rsv *rsv)
4734 {
4735 if (!rsv)
4736 return;
4737 btrfs_block_rsv_release(root, rsv, (u64)-1);
4738 kfree(rsv);
4739 }
4740
4741 int btrfs_block_rsv_add(struct btrfs_root *root,
4742 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4743 enum btrfs_reserve_flush_enum flush)
4744 {
4745 int ret;
4746
4747 if (num_bytes == 0)
4748 return 0;
4749
4750 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4751 if (!ret) {
4752 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4753 return 0;
4754 }
4755
4756 return ret;
4757 }
4758
4759 int btrfs_block_rsv_check(struct btrfs_root *root,
4760 struct btrfs_block_rsv *block_rsv, int min_factor)
4761 {
4762 u64 num_bytes = 0;
4763 int ret = -ENOSPC;
4764
4765 if (!block_rsv)
4766 return 0;
4767
4768 spin_lock(&block_rsv->lock);
4769 num_bytes = div_factor(block_rsv->size, min_factor);
4770 if (block_rsv->reserved >= num_bytes)
4771 ret = 0;
4772 spin_unlock(&block_rsv->lock);
4773
4774 return ret;
4775 }
4776
4777 int btrfs_block_rsv_refill(struct btrfs_root *root,
4778 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4779 enum btrfs_reserve_flush_enum flush)
4780 {
4781 u64 num_bytes = 0;
4782 int ret = -ENOSPC;
4783
4784 if (!block_rsv)
4785 return 0;
4786
4787 spin_lock(&block_rsv->lock);
4788 num_bytes = min_reserved;
4789 if (block_rsv->reserved >= num_bytes)
4790 ret = 0;
4791 else
4792 num_bytes -= block_rsv->reserved;
4793 spin_unlock(&block_rsv->lock);
4794
4795 if (!ret)
4796 return 0;
4797
4798 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4799 if (!ret) {
4800 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4801 return 0;
4802 }
4803
4804 return ret;
4805 }
4806
4807 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4808 struct btrfs_block_rsv *dst_rsv,
4809 u64 num_bytes)
4810 {
4811 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4812 }
4813
4814 void btrfs_block_rsv_release(struct btrfs_root *root,
4815 struct btrfs_block_rsv *block_rsv,
4816 u64 num_bytes)
4817 {
4818 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4819 if (global_rsv == block_rsv ||
4820 block_rsv->space_info != global_rsv->space_info)
4821 global_rsv = NULL;
4822 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4823 num_bytes);
4824 }
4825
4826 /*
4827 * helper to calculate size of global block reservation.
4828 * the desired value is sum of space used by extent tree,
4829 * checksum tree and root tree
4830 */
4831 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4832 {
4833 struct btrfs_space_info *sinfo;
4834 u64 num_bytes;
4835 u64 meta_used;
4836 u64 data_used;
4837 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4838
4839 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4840 spin_lock(&sinfo->lock);
4841 data_used = sinfo->bytes_used;
4842 spin_unlock(&sinfo->lock);
4843
4844 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4845 spin_lock(&sinfo->lock);
4846 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4847 data_used = 0;
4848 meta_used = sinfo->bytes_used;
4849 spin_unlock(&sinfo->lock);
4850
4851 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4852 csum_size * 2;
4853 num_bytes += div64_u64(data_used + meta_used, 50);
4854
4855 if (num_bytes * 3 > meta_used)
4856 num_bytes = div64_u64(meta_used, 3);
4857
4858 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4859 }
4860
4861 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4862 {
4863 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4864 struct btrfs_space_info *sinfo = block_rsv->space_info;
4865 u64 num_bytes;
4866
4867 num_bytes = calc_global_metadata_size(fs_info);
4868
4869 spin_lock(&sinfo->lock);
4870 spin_lock(&block_rsv->lock);
4871
4872 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4873
4874 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4875 sinfo->bytes_reserved + sinfo->bytes_readonly +
4876 sinfo->bytes_may_use;
4877
4878 if (sinfo->total_bytes > num_bytes) {
4879 num_bytes = sinfo->total_bytes - num_bytes;
4880 block_rsv->reserved += num_bytes;
4881 sinfo->bytes_may_use += num_bytes;
4882 trace_btrfs_space_reservation(fs_info, "space_info",
4883 sinfo->flags, num_bytes, 1);
4884 }
4885
4886 if (block_rsv->reserved >= block_rsv->size) {
4887 num_bytes = block_rsv->reserved - block_rsv->size;
4888 sinfo->bytes_may_use -= num_bytes;
4889 trace_btrfs_space_reservation(fs_info, "space_info",
4890 sinfo->flags, num_bytes, 0);
4891 block_rsv->reserved = block_rsv->size;
4892 block_rsv->full = 1;
4893 }
4894
4895 spin_unlock(&block_rsv->lock);
4896 spin_unlock(&sinfo->lock);
4897 }
4898
4899 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4900 {
4901 struct btrfs_space_info *space_info;
4902
4903 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4904 fs_info->chunk_block_rsv.space_info = space_info;
4905
4906 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4907 fs_info->global_block_rsv.space_info = space_info;
4908 fs_info->delalloc_block_rsv.space_info = space_info;
4909 fs_info->trans_block_rsv.space_info = space_info;
4910 fs_info->empty_block_rsv.space_info = space_info;
4911 fs_info->delayed_block_rsv.space_info = space_info;
4912
4913 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4914 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4915 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4916 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4917 if (fs_info->quota_root)
4918 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4919 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4920
4921 update_global_block_rsv(fs_info);
4922 }
4923
4924 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4925 {
4926 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4927 (u64)-1);
4928 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4929 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4930 WARN_ON(fs_info->trans_block_rsv.size > 0);
4931 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4932 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4933 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4934 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4935 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4936 }
4937
4938 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4939 struct btrfs_root *root)
4940 {
4941 if (!trans->block_rsv)
4942 return;
4943
4944 if (!trans->bytes_reserved)
4945 return;
4946
4947 trace_btrfs_space_reservation(root->fs_info, "transaction",
4948 trans->transid, trans->bytes_reserved, 0);
4949 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4950 trans->bytes_reserved = 0;
4951 }
4952
4953 /* Can only return 0 or -ENOSPC */
4954 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4955 struct inode *inode)
4956 {
4957 struct btrfs_root *root = BTRFS_I(inode)->root;
4958 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4959 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4960
4961 /*
4962 * We need to hold space in order to delete our orphan item once we've
4963 * added it, so this takes the reservation so we can release it later
4964 * when we are truly done with the orphan item.
4965 */
4966 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4967 trace_btrfs_space_reservation(root->fs_info, "orphan",
4968 btrfs_ino(inode), num_bytes, 1);
4969 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4970 }
4971
4972 void btrfs_orphan_release_metadata(struct inode *inode)
4973 {
4974 struct btrfs_root *root = BTRFS_I(inode)->root;
4975 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4976 trace_btrfs_space_reservation(root->fs_info, "orphan",
4977 btrfs_ino(inode), num_bytes, 0);
4978 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4979 }
4980
4981 /*
4982 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4983 * root: the root of the parent directory
4984 * rsv: block reservation
4985 * items: the number of items that we need do reservation
4986 * qgroup_reserved: used to return the reserved size in qgroup
4987 *
4988 * This function is used to reserve the space for snapshot/subvolume
4989 * creation and deletion. Those operations are different with the
4990 * common file/directory operations, they change two fs/file trees
4991 * and root tree, the number of items that the qgroup reserves is
4992 * different with the free space reservation. So we can not use
4993 * the space reseravtion mechanism in start_transaction().
4994 */
4995 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4996 struct btrfs_block_rsv *rsv,
4997 int items,
4998 u64 *qgroup_reserved,
4999 bool use_global_rsv)
5000 {
5001 u64 num_bytes;
5002 int ret;
5003 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5004
5005 if (root->fs_info->quota_enabled) {
5006 /* One for parent inode, two for dir entries */
5007 num_bytes = 3 * root->nodesize;
5008 ret = btrfs_qgroup_reserve(root, num_bytes);
5009 if (ret)
5010 return ret;
5011 } else {
5012 num_bytes = 0;
5013 }
5014
5015 *qgroup_reserved = num_bytes;
5016
5017 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5018 rsv->space_info = __find_space_info(root->fs_info,
5019 BTRFS_BLOCK_GROUP_METADATA);
5020 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5021 BTRFS_RESERVE_FLUSH_ALL);
5022
5023 if (ret == -ENOSPC && use_global_rsv)
5024 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5025
5026 if (ret) {
5027 if (*qgroup_reserved)
5028 btrfs_qgroup_free(root, *qgroup_reserved);
5029 }
5030
5031 return ret;
5032 }
5033
5034 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5035 struct btrfs_block_rsv *rsv,
5036 u64 qgroup_reserved)
5037 {
5038 btrfs_block_rsv_release(root, rsv, (u64)-1);
5039 if (qgroup_reserved)
5040 btrfs_qgroup_free(root, qgroup_reserved);
5041 }
5042
5043 /**
5044 * drop_outstanding_extent - drop an outstanding extent
5045 * @inode: the inode we're dropping the extent for
5046 *
5047 * This is called when we are freeing up an outstanding extent, either called
5048 * after an error or after an extent is written. This will return the number of
5049 * reserved extents that need to be freed. This must be called with
5050 * BTRFS_I(inode)->lock held.
5051 */
5052 static unsigned drop_outstanding_extent(struct inode *inode)
5053 {
5054 unsigned drop_inode_space = 0;
5055 unsigned dropped_extents = 0;
5056
5057 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
5058 BTRFS_I(inode)->outstanding_extents--;
5059
5060 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5061 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5062 &BTRFS_I(inode)->runtime_flags))
5063 drop_inode_space = 1;
5064
5065 /*
5066 * If we have more or the same amount of outsanding extents than we have
5067 * reserved then we need to leave the reserved extents count alone.
5068 */
5069 if (BTRFS_I(inode)->outstanding_extents >=
5070 BTRFS_I(inode)->reserved_extents)
5071 return drop_inode_space;
5072
5073 dropped_extents = BTRFS_I(inode)->reserved_extents -
5074 BTRFS_I(inode)->outstanding_extents;
5075 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5076 return dropped_extents + drop_inode_space;
5077 }
5078
5079 /**
5080 * calc_csum_metadata_size - return the amount of metada space that must be
5081 * reserved/free'd for the given bytes.
5082 * @inode: the inode we're manipulating
5083 * @num_bytes: the number of bytes in question
5084 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5085 *
5086 * This adjusts the number of csum_bytes in the inode and then returns the
5087 * correct amount of metadata that must either be reserved or freed. We
5088 * calculate how many checksums we can fit into one leaf and then divide the
5089 * number of bytes that will need to be checksumed by this value to figure out
5090 * how many checksums will be required. If we are adding bytes then the number
5091 * may go up and we will return the number of additional bytes that must be
5092 * reserved. If it is going down we will return the number of bytes that must
5093 * be freed.
5094 *
5095 * This must be called with BTRFS_I(inode)->lock held.
5096 */
5097 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5098 int reserve)
5099 {
5100 struct btrfs_root *root = BTRFS_I(inode)->root;
5101 u64 csum_size;
5102 int num_csums_per_leaf;
5103 int num_csums;
5104 int old_csums;
5105
5106 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5107 BTRFS_I(inode)->csum_bytes == 0)
5108 return 0;
5109
5110 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5111 if (reserve)
5112 BTRFS_I(inode)->csum_bytes += num_bytes;
5113 else
5114 BTRFS_I(inode)->csum_bytes -= num_bytes;
5115 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5116 num_csums_per_leaf = (int)div64_u64(csum_size,
5117 sizeof(struct btrfs_csum_item) +
5118 sizeof(struct btrfs_disk_key));
5119 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5120 num_csums = num_csums + num_csums_per_leaf - 1;
5121 num_csums = num_csums / num_csums_per_leaf;
5122
5123 old_csums = old_csums + num_csums_per_leaf - 1;
5124 old_csums = old_csums / num_csums_per_leaf;
5125
5126 /* No change, no need to reserve more */
5127 if (old_csums == num_csums)
5128 return 0;
5129
5130 if (reserve)
5131 return btrfs_calc_trans_metadata_size(root,
5132 num_csums - old_csums);
5133
5134 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5135 }
5136
5137 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5138 {
5139 struct btrfs_root *root = BTRFS_I(inode)->root;
5140 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5141 u64 to_reserve = 0;
5142 u64 csum_bytes;
5143 unsigned nr_extents = 0;
5144 int extra_reserve = 0;
5145 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5146 int ret = 0;
5147 bool delalloc_lock = true;
5148 u64 to_free = 0;
5149 unsigned dropped;
5150
5151 /* If we are a free space inode we need to not flush since we will be in
5152 * the middle of a transaction commit. We also don't need the delalloc
5153 * mutex since we won't race with anybody. We need this mostly to make
5154 * lockdep shut its filthy mouth.
5155 */
5156 if (btrfs_is_free_space_inode(inode)) {
5157 flush = BTRFS_RESERVE_NO_FLUSH;
5158 delalloc_lock = false;
5159 }
5160
5161 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5162 btrfs_transaction_in_commit(root->fs_info))
5163 schedule_timeout(1);
5164
5165 if (delalloc_lock)
5166 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5167
5168 num_bytes = ALIGN(num_bytes, root->sectorsize);
5169
5170 spin_lock(&BTRFS_I(inode)->lock);
5171 BTRFS_I(inode)->outstanding_extents++;
5172
5173 if (BTRFS_I(inode)->outstanding_extents >
5174 BTRFS_I(inode)->reserved_extents)
5175 nr_extents = BTRFS_I(inode)->outstanding_extents -
5176 BTRFS_I(inode)->reserved_extents;
5177
5178 /*
5179 * Add an item to reserve for updating the inode when we complete the
5180 * delalloc io.
5181 */
5182 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5183 &BTRFS_I(inode)->runtime_flags)) {
5184 nr_extents++;
5185 extra_reserve = 1;
5186 }
5187
5188 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5189 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5190 csum_bytes = BTRFS_I(inode)->csum_bytes;
5191 spin_unlock(&BTRFS_I(inode)->lock);
5192
5193 if (root->fs_info->quota_enabled) {
5194 ret = btrfs_qgroup_reserve(root, num_bytes +
5195 nr_extents * root->nodesize);
5196 if (ret)
5197 goto out_fail;
5198 }
5199
5200 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5201 if (unlikely(ret)) {
5202 if (root->fs_info->quota_enabled)
5203 btrfs_qgroup_free(root, num_bytes +
5204 nr_extents * root->nodesize);
5205 goto out_fail;
5206 }
5207
5208 spin_lock(&BTRFS_I(inode)->lock);
5209 if (extra_reserve) {
5210 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5211 &BTRFS_I(inode)->runtime_flags);
5212 nr_extents--;
5213 }
5214 BTRFS_I(inode)->reserved_extents += nr_extents;
5215 spin_unlock(&BTRFS_I(inode)->lock);
5216
5217 if (delalloc_lock)
5218 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5219
5220 if (to_reserve)
5221 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5222 btrfs_ino(inode), to_reserve, 1);
5223 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5224
5225 return 0;
5226
5227 out_fail:
5228 spin_lock(&BTRFS_I(inode)->lock);
5229 dropped = drop_outstanding_extent(inode);
5230 /*
5231 * If the inodes csum_bytes is the same as the original
5232 * csum_bytes then we know we haven't raced with any free()ers
5233 * so we can just reduce our inodes csum bytes and carry on.
5234 */
5235 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5236 calc_csum_metadata_size(inode, num_bytes, 0);
5237 } else {
5238 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5239 u64 bytes;
5240
5241 /*
5242 * This is tricky, but first we need to figure out how much we
5243 * free'd from any free-ers that occured during this
5244 * reservation, so we reset ->csum_bytes to the csum_bytes
5245 * before we dropped our lock, and then call the free for the
5246 * number of bytes that were freed while we were trying our
5247 * reservation.
5248 */
5249 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5250 BTRFS_I(inode)->csum_bytes = csum_bytes;
5251 to_free = calc_csum_metadata_size(inode, bytes, 0);
5252
5253
5254 /*
5255 * Now we need to see how much we would have freed had we not
5256 * been making this reservation and our ->csum_bytes were not
5257 * artificially inflated.
5258 */
5259 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5260 bytes = csum_bytes - orig_csum_bytes;
5261 bytes = calc_csum_metadata_size(inode, bytes, 0);
5262
5263 /*
5264 * Now reset ->csum_bytes to what it should be. If bytes is
5265 * more than to_free then we would have free'd more space had we
5266 * not had an artificially high ->csum_bytes, so we need to free
5267 * the remainder. If bytes is the same or less then we don't
5268 * need to do anything, the other free-ers did the correct
5269 * thing.
5270 */
5271 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5272 if (bytes > to_free)
5273 to_free = bytes - to_free;
5274 else
5275 to_free = 0;
5276 }
5277 spin_unlock(&BTRFS_I(inode)->lock);
5278 if (dropped)
5279 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5280
5281 if (to_free) {
5282 btrfs_block_rsv_release(root, block_rsv, to_free);
5283 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5284 btrfs_ino(inode), to_free, 0);
5285 }
5286 if (delalloc_lock)
5287 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5288 return ret;
5289 }
5290
5291 /**
5292 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5293 * @inode: the inode to release the reservation for
5294 * @num_bytes: the number of bytes we're releasing
5295 *
5296 * This will release the metadata reservation for an inode. This can be called
5297 * once we complete IO for a given set of bytes to release their metadata
5298 * reservations.
5299 */
5300 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5301 {
5302 struct btrfs_root *root = BTRFS_I(inode)->root;
5303 u64 to_free = 0;
5304 unsigned dropped;
5305
5306 num_bytes = ALIGN(num_bytes, root->sectorsize);
5307 spin_lock(&BTRFS_I(inode)->lock);
5308 dropped = drop_outstanding_extent(inode);
5309
5310 if (num_bytes)
5311 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5312 spin_unlock(&BTRFS_I(inode)->lock);
5313 if (dropped > 0)
5314 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5315
5316 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5317 btrfs_ino(inode), to_free, 0);
5318 if (root->fs_info->quota_enabled) {
5319 btrfs_qgroup_free(root, num_bytes +
5320 dropped * root->nodesize);
5321 }
5322
5323 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5324 to_free);
5325 }
5326
5327 /**
5328 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5329 * @inode: inode we're writing to
5330 * @num_bytes: the number of bytes we want to allocate
5331 *
5332 * This will do the following things
5333 *
5334 * o reserve space in the data space info for num_bytes
5335 * o reserve space in the metadata space info based on number of outstanding
5336 * extents and how much csums will be needed
5337 * o add to the inodes ->delalloc_bytes
5338 * o add it to the fs_info's delalloc inodes list.
5339 *
5340 * This will return 0 for success and -ENOSPC if there is no space left.
5341 */
5342 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5343 {
5344 int ret;
5345
5346 ret = btrfs_check_data_free_space(inode, num_bytes);
5347 if (ret)
5348 return ret;
5349
5350 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5351 if (ret) {
5352 btrfs_free_reserved_data_space(inode, num_bytes);
5353 return ret;
5354 }
5355
5356 return 0;
5357 }
5358
5359 /**
5360 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5361 * @inode: inode we're releasing space for
5362 * @num_bytes: the number of bytes we want to free up
5363 *
5364 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5365 * called in the case that we don't need the metadata AND data reservations
5366 * anymore. So if there is an error or we insert an inline extent.
5367 *
5368 * This function will release the metadata space that was not used and will
5369 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5370 * list if there are no delalloc bytes left.
5371 */
5372 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5373 {
5374 btrfs_delalloc_release_metadata(inode, num_bytes);
5375 btrfs_free_reserved_data_space(inode, num_bytes);
5376 }
5377
5378 static int update_block_group(struct btrfs_root *root,
5379 u64 bytenr, u64 num_bytes, int alloc)
5380 {
5381 struct btrfs_block_group_cache *cache = NULL;
5382 struct btrfs_fs_info *info = root->fs_info;
5383 u64 total = num_bytes;
5384 u64 old_val;
5385 u64 byte_in_group;
5386 int factor;
5387
5388 /* block accounting for super block */
5389 spin_lock(&info->delalloc_root_lock);
5390 old_val = btrfs_super_bytes_used(info->super_copy);
5391 if (alloc)
5392 old_val += num_bytes;
5393 else
5394 old_val -= num_bytes;
5395 btrfs_set_super_bytes_used(info->super_copy, old_val);
5396 spin_unlock(&info->delalloc_root_lock);
5397
5398 while (total) {
5399 cache = btrfs_lookup_block_group(info, bytenr);
5400 if (!cache)
5401 return -ENOENT;
5402 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5403 BTRFS_BLOCK_GROUP_RAID1 |
5404 BTRFS_BLOCK_GROUP_RAID10))
5405 factor = 2;
5406 else
5407 factor = 1;
5408 /*
5409 * If this block group has free space cache written out, we
5410 * need to make sure to load it if we are removing space. This
5411 * is because we need the unpinning stage to actually add the
5412 * space back to the block group, otherwise we will leak space.
5413 */
5414 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5415 cache_block_group(cache, 1);
5416
5417 byte_in_group = bytenr - cache->key.objectid;
5418 WARN_ON(byte_in_group > cache->key.offset);
5419
5420 spin_lock(&cache->space_info->lock);
5421 spin_lock(&cache->lock);
5422
5423 if (btrfs_test_opt(root, SPACE_CACHE) &&
5424 cache->disk_cache_state < BTRFS_DC_CLEAR)
5425 cache->disk_cache_state = BTRFS_DC_CLEAR;
5426
5427 cache->dirty = 1;
5428 old_val = btrfs_block_group_used(&cache->item);
5429 num_bytes = min(total, cache->key.offset - byte_in_group);
5430 if (alloc) {
5431 old_val += num_bytes;
5432 btrfs_set_block_group_used(&cache->item, old_val);
5433 cache->reserved -= num_bytes;
5434 cache->space_info->bytes_reserved -= num_bytes;
5435 cache->space_info->bytes_used += num_bytes;
5436 cache->space_info->disk_used += num_bytes * factor;
5437 spin_unlock(&cache->lock);
5438 spin_unlock(&cache->space_info->lock);
5439 } else {
5440 old_val -= num_bytes;
5441 btrfs_set_block_group_used(&cache->item, old_val);
5442 cache->pinned += num_bytes;
5443 cache->space_info->bytes_pinned += num_bytes;
5444 cache->space_info->bytes_used -= num_bytes;
5445 cache->space_info->disk_used -= num_bytes * factor;
5446 spin_unlock(&cache->lock);
5447 spin_unlock(&cache->space_info->lock);
5448
5449 set_extent_dirty(info->pinned_extents,
5450 bytenr, bytenr + num_bytes - 1,
5451 GFP_NOFS | __GFP_NOFAIL);
5452 /*
5453 * No longer have used bytes in this block group, queue
5454 * it for deletion.
5455 */
5456 if (old_val == 0) {
5457 spin_lock(&info->unused_bgs_lock);
5458 if (list_empty(&cache->bg_list)) {
5459 btrfs_get_block_group(cache);
5460 list_add_tail(&cache->bg_list,
5461 &info->unused_bgs);
5462 }
5463 spin_unlock(&info->unused_bgs_lock);
5464 }
5465 }
5466 btrfs_put_block_group(cache);
5467 total -= num_bytes;
5468 bytenr += num_bytes;
5469 }
5470 return 0;
5471 }
5472
5473 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5474 {
5475 struct btrfs_block_group_cache *cache;
5476 u64 bytenr;
5477
5478 spin_lock(&root->fs_info->block_group_cache_lock);
5479 bytenr = root->fs_info->first_logical_byte;
5480 spin_unlock(&root->fs_info->block_group_cache_lock);
5481
5482 if (bytenr < (u64)-1)
5483 return bytenr;
5484
5485 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5486 if (!cache)
5487 return 0;
5488
5489 bytenr = cache->key.objectid;
5490 btrfs_put_block_group(cache);
5491
5492 return bytenr;
5493 }
5494
5495 static int pin_down_extent(struct btrfs_root *root,
5496 struct btrfs_block_group_cache *cache,
5497 u64 bytenr, u64 num_bytes, int reserved)
5498 {
5499 spin_lock(&cache->space_info->lock);
5500 spin_lock(&cache->lock);
5501 cache->pinned += num_bytes;
5502 cache->space_info->bytes_pinned += num_bytes;
5503 if (reserved) {
5504 cache->reserved -= num_bytes;
5505 cache->space_info->bytes_reserved -= num_bytes;
5506 }
5507 spin_unlock(&cache->lock);
5508 spin_unlock(&cache->space_info->lock);
5509
5510 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5511 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5512 if (reserved)
5513 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5514 return 0;
5515 }
5516
5517 /*
5518 * this function must be called within transaction
5519 */
5520 int btrfs_pin_extent(struct btrfs_root *root,
5521 u64 bytenr, u64 num_bytes, int reserved)
5522 {
5523 struct btrfs_block_group_cache *cache;
5524
5525 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5526 BUG_ON(!cache); /* Logic error */
5527
5528 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5529
5530 btrfs_put_block_group(cache);
5531 return 0;
5532 }
5533
5534 /*
5535 * this function must be called within transaction
5536 */
5537 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5538 u64 bytenr, u64 num_bytes)
5539 {
5540 struct btrfs_block_group_cache *cache;
5541 int ret;
5542
5543 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5544 if (!cache)
5545 return -EINVAL;
5546
5547 /*
5548 * pull in the free space cache (if any) so that our pin
5549 * removes the free space from the cache. We have load_only set
5550 * to one because the slow code to read in the free extents does check
5551 * the pinned extents.
5552 */
5553 cache_block_group(cache, 1);
5554
5555 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5556
5557 /* remove us from the free space cache (if we're there at all) */
5558 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5559 btrfs_put_block_group(cache);
5560 return ret;
5561 }
5562
5563 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5564 {
5565 int ret;
5566 struct btrfs_block_group_cache *block_group;
5567 struct btrfs_caching_control *caching_ctl;
5568
5569 block_group = btrfs_lookup_block_group(root->fs_info, start);
5570 if (!block_group)
5571 return -EINVAL;
5572
5573 cache_block_group(block_group, 0);
5574 caching_ctl = get_caching_control(block_group);
5575
5576 if (!caching_ctl) {
5577 /* Logic error */
5578 BUG_ON(!block_group_cache_done(block_group));
5579 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5580 } else {
5581 mutex_lock(&caching_ctl->mutex);
5582
5583 if (start >= caching_ctl->progress) {
5584 ret = add_excluded_extent(root, start, num_bytes);
5585 } else if (start + num_bytes <= caching_ctl->progress) {
5586 ret = btrfs_remove_free_space(block_group,
5587 start, num_bytes);
5588 } else {
5589 num_bytes = caching_ctl->progress - start;
5590 ret = btrfs_remove_free_space(block_group,
5591 start, num_bytes);
5592 if (ret)
5593 goto out_lock;
5594
5595 num_bytes = (start + num_bytes) -
5596 caching_ctl->progress;
5597 start = caching_ctl->progress;
5598 ret = add_excluded_extent(root, start, num_bytes);
5599 }
5600 out_lock:
5601 mutex_unlock(&caching_ctl->mutex);
5602 put_caching_control(caching_ctl);
5603 }
5604 btrfs_put_block_group(block_group);
5605 return ret;
5606 }
5607
5608 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5609 struct extent_buffer *eb)
5610 {
5611 struct btrfs_file_extent_item *item;
5612 struct btrfs_key key;
5613 int found_type;
5614 int i;
5615
5616 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5617 return 0;
5618
5619 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5620 btrfs_item_key_to_cpu(eb, &key, i);
5621 if (key.type != BTRFS_EXTENT_DATA_KEY)
5622 continue;
5623 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5624 found_type = btrfs_file_extent_type(eb, item);
5625 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5626 continue;
5627 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5628 continue;
5629 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5630 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5631 __exclude_logged_extent(log, key.objectid, key.offset);
5632 }
5633
5634 return 0;
5635 }
5636
5637 /**
5638 * btrfs_update_reserved_bytes - update the block_group and space info counters
5639 * @cache: The cache we are manipulating
5640 * @num_bytes: The number of bytes in question
5641 * @reserve: One of the reservation enums
5642 * @delalloc: The blocks are allocated for the delalloc write
5643 *
5644 * This is called by the allocator when it reserves space, or by somebody who is
5645 * freeing space that was never actually used on disk. For example if you
5646 * reserve some space for a new leaf in transaction A and before transaction A
5647 * commits you free that leaf, you call this with reserve set to 0 in order to
5648 * clear the reservation.
5649 *
5650 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5651 * ENOSPC accounting. For data we handle the reservation through clearing the
5652 * delalloc bits in the io_tree. We have to do this since we could end up
5653 * allocating less disk space for the amount of data we have reserved in the
5654 * case of compression.
5655 *
5656 * If this is a reservation and the block group has become read only we cannot
5657 * make the reservation and return -EAGAIN, otherwise this function always
5658 * succeeds.
5659 */
5660 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5661 u64 num_bytes, int reserve, int delalloc)
5662 {
5663 struct btrfs_space_info *space_info = cache->space_info;
5664 int ret = 0;
5665
5666 spin_lock(&space_info->lock);
5667 spin_lock(&cache->lock);
5668 if (reserve != RESERVE_FREE) {
5669 if (cache->ro) {
5670 ret = -EAGAIN;
5671 } else {
5672 cache->reserved += num_bytes;
5673 space_info->bytes_reserved += num_bytes;
5674 if (reserve == RESERVE_ALLOC) {
5675 trace_btrfs_space_reservation(cache->fs_info,
5676 "space_info", space_info->flags,
5677 num_bytes, 0);
5678 space_info->bytes_may_use -= num_bytes;
5679 }
5680
5681 if (delalloc)
5682 cache->delalloc_bytes += num_bytes;
5683 }
5684 } else {
5685 if (cache->ro)
5686 space_info->bytes_readonly += num_bytes;
5687 cache->reserved -= num_bytes;
5688 space_info->bytes_reserved -= num_bytes;
5689
5690 if (delalloc)
5691 cache->delalloc_bytes -= num_bytes;
5692 }
5693 spin_unlock(&cache->lock);
5694 spin_unlock(&space_info->lock);
5695 return ret;
5696 }
5697
5698 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5699 struct btrfs_root *root)
5700 {
5701 struct btrfs_fs_info *fs_info = root->fs_info;
5702 struct btrfs_caching_control *next;
5703 struct btrfs_caching_control *caching_ctl;
5704 struct btrfs_block_group_cache *cache;
5705
5706 down_write(&fs_info->commit_root_sem);
5707
5708 list_for_each_entry_safe(caching_ctl, next,
5709 &fs_info->caching_block_groups, list) {
5710 cache = caching_ctl->block_group;
5711 if (block_group_cache_done(cache)) {
5712 cache->last_byte_to_unpin = (u64)-1;
5713 list_del_init(&caching_ctl->list);
5714 put_caching_control(caching_ctl);
5715 } else {
5716 cache->last_byte_to_unpin = caching_ctl->progress;
5717 }
5718 }
5719
5720 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5721 fs_info->pinned_extents = &fs_info->freed_extents[1];
5722 else
5723 fs_info->pinned_extents = &fs_info->freed_extents[0];
5724
5725 up_write(&fs_info->commit_root_sem);
5726
5727 update_global_block_rsv(fs_info);
5728 }
5729
5730 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5731 {
5732 struct btrfs_fs_info *fs_info = root->fs_info;
5733 struct btrfs_block_group_cache *cache = NULL;
5734 struct btrfs_space_info *space_info;
5735 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5736 u64 len;
5737 bool readonly;
5738
5739 while (start <= end) {
5740 readonly = false;
5741 if (!cache ||
5742 start >= cache->key.objectid + cache->key.offset) {
5743 if (cache)
5744 btrfs_put_block_group(cache);
5745 cache = btrfs_lookup_block_group(fs_info, start);
5746 BUG_ON(!cache); /* Logic error */
5747 }
5748
5749 len = cache->key.objectid + cache->key.offset - start;
5750 len = min(len, end + 1 - start);
5751
5752 if (start < cache->last_byte_to_unpin) {
5753 len = min(len, cache->last_byte_to_unpin - start);
5754 btrfs_add_free_space(cache, start, len);
5755 }
5756
5757 start += len;
5758 space_info = cache->space_info;
5759
5760 spin_lock(&space_info->lock);
5761 spin_lock(&cache->lock);
5762 cache->pinned -= len;
5763 space_info->bytes_pinned -= len;
5764 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5765 if (cache->ro) {
5766 space_info->bytes_readonly += len;
5767 readonly = true;
5768 }
5769 spin_unlock(&cache->lock);
5770 if (!readonly && global_rsv->space_info == space_info) {
5771 spin_lock(&global_rsv->lock);
5772 if (!global_rsv->full) {
5773 len = min(len, global_rsv->size -
5774 global_rsv->reserved);
5775 global_rsv->reserved += len;
5776 space_info->bytes_may_use += len;
5777 if (global_rsv->reserved >= global_rsv->size)
5778 global_rsv->full = 1;
5779 }
5780 spin_unlock(&global_rsv->lock);
5781 }
5782 spin_unlock(&space_info->lock);
5783 }
5784
5785 if (cache)
5786 btrfs_put_block_group(cache);
5787 return 0;
5788 }
5789
5790 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5791 struct btrfs_root *root)
5792 {
5793 struct btrfs_fs_info *fs_info = root->fs_info;
5794 struct extent_io_tree *unpin;
5795 u64 start;
5796 u64 end;
5797 int ret;
5798
5799 if (trans->aborted)
5800 return 0;
5801
5802 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5803 unpin = &fs_info->freed_extents[1];
5804 else
5805 unpin = &fs_info->freed_extents[0];
5806
5807 while (1) {
5808 ret = find_first_extent_bit(unpin, 0, &start, &end,
5809 EXTENT_DIRTY, NULL);
5810 if (ret)
5811 break;
5812
5813 if (btrfs_test_opt(root, DISCARD))
5814 ret = btrfs_discard_extent(root, start,
5815 end + 1 - start, NULL);
5816
5817 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5818 unpin_extent_range(root, start, end);
5819 cond_resched();
5820 }
5821
5822 return 0;
5823 }
5824
5825 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5826 u64 owner, u64 root_objectid)
5827 {
5828 struct btrfs_space_info *space_info;
5829 u64 flags;
5830
5831 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5832 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5833 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5834 else
5835 flags = BTRFS_BLOCK_GROUP_METADATA;
5836 } else {
5837 flags = BTRFS_BLOCK_GROUP_DATA;
5838 }
5839
5840 space_info = __find_space_info(fs_info, flags);
5841 BUG_ON(!space_info); /* Logic bug */
5842 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5843 }
5844
5845
5846 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5847 struct btrfs_root *root,
5848 u64 bytenr, u64 num_bytes, u64 parent,
5849 u64 root_objectid, u64 owner_objectid,
5850 u64 owner_offset, int refs_to_drop,
5851 struct btrfs_delayed_extent_op *extent_op,
5852 int no_quota)
5853 {
5854 struct btrfs_key key;
5855 struct btrfs_path *path;
5856 struct btrfs_fs_info *info = root->fs_info;
5857 struct btrfs_root *extent_root = info->extent_root;
5858 struct extent_buffer *leaf;
5859 struct btrfs_extent_item *ei;
5860 struct btrfs_extent_inline_ref *iref;
5861 int ret;
5862 int is_data;
5863 int extent_slot = 0;
5864 int found_extent = 0;
5865 int num_to_del = 1;
5866 u32 item_size;
5867 u64 refs;
5868 int last_ref = 0;
5869 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5870 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5871 SKINNY_METADATA);
5872
5873 if (!info->quota_enabled || !is_fstree(root_objectid))
5874 no_quota = 1;
5875
5876 path = btrfs_alloc_path();
5877 if (!path)
5878 return -ENOMEM;
5879
5880 path->reada = 1;
5881 path->leave_spinning = 1;
5882
5883 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5884 BUG_ON(!is_data && refs_to_drop != 1);
5885
5886 if (is_data)
5887 skinny_metadata = 0;
5888
5889 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5890 bytenr, num_bytes, parent,
5891 root_objectid, owner_objectid,
5892 owner_offset);
5893 if (ret == 0) {
5894 extent_slot = path->slots[0];
5895 while (extent_slot >= 0) {
5896 btrfs_item_key_to_cpu(path->nodes[0], &key,
5897 extent_slot);
5898 if (key.objectid != bytenr)
5899 break;
5900 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5901 key.offset == num_bytes) {
5902 found_extent = 1;
5903 break;
5904 }
5905 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5906 key.offset == owner_objectid) {
5907 found_extent = 1;
5908 break;
5909 }
5910 if (path->slots[0] - extent_slot > 5)
5911 break;
5912 extent_slot--;
5913 }
5914 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5915 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5916 if (found_extent && item_size < sizeof(*ei))
5917 found_extent = 0;
5918 #endif
5919 if (!found_extent) {
5920 BUG_ON(iref);
5921 ret = remove_extent_backref(trans, extent_root, path,
5922 NULL, refs_to_drop,
5923 is_data, &last_ref);
5924 if (ret) {
5925 btrfs_abort_transaction(trans, extent_root, ret);
5926 goto out;
5927 }
5928 btrfs_release_path(path);
5929 path->leave_spinning = 1;
5930
5931 key.objectid = bytenr;
5932 key.type = BTRFS_EXTENT_ITEM_KEY;
5933 key.offset = num_bytes;
5934
5935 if (!is_data && skinny_metadata) {
5936 key.type = BTRFS_METADATA_ITEM_KEY;
5937 key.offset = owner_objectid;
5938 }
5939
5940 ret = btrfs_search_slot(trans, extent_root,
5941 &key, path, -1, 1);
5942 if (ret > 0 && skinny_metadata && path->slots[0]) {
5943 /*
5944 * Couldn't find our skinny metadata item,
5945 * see if we have ye olde extent item.
5946 */
5947 path->slots[0]--;
5948 btrfs_item_key_to_cpu(path->nodes[0], &key,
5949 path->slots[0]);
5950 if (key.objectid == bytenr &&
5951 key.type == BTRFS_EXTENT_ITEM_KEY &&
5952 key.offset == num_bytes)
5953 ret = 0;
5954 }
5955
5956 if (ret > 0 && skinny_metadata) {
5957 skinny_metadata = false;
5958 key.objectid = bytenr;
5959 key.type = BTRFS_EXTENT_ITEM_KEY;
5960 key.offset = num_bytes;
5961 btrfs_release_path(path);
5962 ret = btrfs_search_slot(trans, extent_root,
5963 &key, path, -1, 1);
5964 }
5965
5966 if (ret) {
5967 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5968 ret, bytenr);
5969 if (ret > 0)
5970 btrfs_print_leaf(extent_root,
5971 path->nodes[0]);
5972 }
5973 if (ret < 0) {
5974 btrfs_abort_transaction(trans, extent_root, ret);
5975 goto out;
5976 }
5977 extent_slot = path->slots[0];
5978 }
5979 } else if (WARN_ON(ret == -ENOENT)) {
5980 btrfs_print_leaf(extent_root, path->nodes[0]);
5981 btrfs_err(info,
5982 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5983 bytenr, parent, root_objectid, owner_objectid,
5984 owner_offset);
5985 btrfs_abort_transaction(trans, extent_root, ret);
5986 goto out;
5987 } else {
5988 btrfs_abort_transaction(trans, extent_root, ret);
5989 goto out;
5990 }
5991
5992 leaf = path->nodes[0];
5993 item_size = btrfs_item_size_nr(leaf, extent_slot);
5994 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5995 if (item_size < sizeof(*ei)) {
5996 BUG_ON(found_extent || extent_slot != path->slots[0]);
5997 ret = convert_extent_item_v0(trans, extent_root, path,
5998 owner_objectid, 0);
5999 if (ret < 0) {
6000 btrfs_abort_transaction(trans, extent_root, ret);
6001 goto out;
6002 }
6003
6004 btrfs_release_path(path);
6005 path->leave_spinning = 1;
6006
6007 key.objectid = bytenr;
6008 key.type = BTRFS_EXTENT_ITEM_KEY;
6009 key.offset = num_bytes;
6010
6011 ret = btrfs_search_slot(trans, extent_root, &key, path,
6012 -1, 1);
6013 if (ret) {
6014 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6015 ret, bytenr);
6016 btrfs_print_leaf(extent_root, path->nodes[0]);
6017 }
6018 if (ret < 0) {
6019 btrfs_abort_transaction(trans, extent_root, ret);
6020 goto out;
6021 }
6022
6023 extent_slot = path->slots[0];
6024 leaf = path->nodes[0];
6025 item_size = btrfs_item_size_nr(leaf, extent_slot);
6026 }
6027 #endif
6028 BUG_ON(item_size < sizeof(*ei));
6029 ei = btrfs_item_ptr(leaf, extent_slot,
6030 struct btrfs_extent_item);
6031 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6032 key.type == BTRFS_EXTENT_ITEM_KEY) {
6033 struct btrfs_tree_block_info *bi;
6034 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6035 bi = (struct btrfs_tree_block_info *)(ei + 1);
6036 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6037 }
6038
6039 refs = btrfs_extent_refs(leaf, ei);
6040 if (refs < refs_to_drop) {
6041 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6042 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6043 ret = -EINVAL;
6044 btrfs_abort_transaction(trans, extent_root, ret);
6045 goto out;
6046 }
6047 refs -= refs_to_drop;
6048
6049 if (refs > 0) {
6050 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6051 if (extent_op)
6052 __run_delayed_extent_op(extent_op, leaf, ei);
6053 /*
6054 * In the case of inline back ref, reference count will
6055 * be updated by remove_extent_backref
6056 */
6057 if (iref) {
6058 BUG_ON(!found_extent);
6059 } else {
6060 btrfs_set_extent_refs(leaf, ei, refs);
6061 btrfs_mark_buffer_dirty(leaf);
6062 }
6063 if (found_extent) {
6064 ret = remove_extent_backref(trans, extent_root, path,
6065 iref, refs_to_drop,
6066 is_data, &last_ref);
6067 if (ret) {
6068 btrfs_abort_transaction(trans, extent_root, ret);
6069 goto out;
6070 }
6071 }
6072 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6073 root_objectid);
6074 } else {
6075 if (found_extent) {
6076 BUG_ON(is_data && refs_to_drop !=
6077 extent_data_ref_count(root, path, iref));
6078 if (iref) {
6079 BUG_ON(path->slots[0] != extent_slot);
6080 } else {
6081 BUG_ON(path->slots[0] != extent_slot + 1);
6082 path->slots[0] = extent_slot;
6083 num_to_del = 2;
6084 }
6085 }
6086
6087 last_ref = 1;
6088 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6089 num_to_del);
6090 if (ret) {
6091 btrfs_abort_transaction(trans, extent_root, ret);
6092 goto out;
6093 }
6094 btrfs_release_path(path);
6095
6096 if (is_data) {
6097 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6098 if (ret) {
6099 btrfs_abort_transaction(trans, extent_root, ret);
6100 goto out;
6101 }
6102 }
6103
6104 ret = update_block_group(root, bytenr, num_bytes, 0);
6105 if (ret) {
6106 btrfs_abort_transaction(trans, extent_root, ret);
6107 goto out;
6108 }
6109 }
6110 btrfs_release_path(path);
6111
6112 /* Deal with the quota accounting */
6113 if (!ret && last_ref && !no_quota) {
6114 int mod_seq = 0;
6115
6116 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6117 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6118 mod_seq = 1;
6119
6120 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6121 bytenr, num_bytes, type,
6122 mod_seq);
6123 }
6124 out:
6125 btrfs_free_path(path);
6126 return ret;
6127 }
6128
6129 /*
6130 * when we free an block, it is possible (and likely) that we free the last
6131 * delayed ref for that extent as well. This searches the delayed ref tree for
6132 * a given extent, and if there are no other delayed refs to be processed, it
6133 * removes it from the tree.
6134 */
6135 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6136 struct btrfs_root *root, u64 bytenr)
6137 {
6138 struct btrfs_delayed_ref_head *head;
6139 struct btrfs_delayed_ref_root *delayed_refs;
6140 int ret = 0;
6141
6142 delayed_refs = &trans->transaction->delayed_refs;
6143 spin_lock(&delayed_refs->lock);
6144 head = btrfs_find_delayed_ref_head(trans, bytenr);
6145 if (!head)
6146 goto out_delayed_unlock;
6147
6148 spin_lock(&head->lock);
6149 if (rb_first(&head->ref_root))
6150 goto out;
6151
6152 if (head->extent_op) {
6153 if (!head->must_insert_reserved)
6154 goto out;
6155 btrfs_free_delayed_extent_op(head->extent_op);
6156 head->extent_op = NULL;
6157 }
6158
6159 /*
6160 * waiting for the lock here would deadlock. If someone else has it
6161 * locked they are already in the process of dropping it anyway
6162 */
6163 if (!mutex_trylock(&head->mutex))
6164 goto out;
6165
6166 /*
6167 * at this point we have a head with no other entries. Go
6168 * ahead and process it.
6169 */
6170 head->node.in_tree = 0;
6171 rb_erase(&head->href_node, &delayed_refs->href_root);
6172
6173 atomic_dec(&delayed_refs->num_entries);
6174
6175 /*
6176 * we don't take a ref on the node because we're removing it from the
6177 * tree, so we just steal the ref the tree was holding.
6178 */
6179 delayed_refs->num_heads--;
6180 if (head->processing == 0)
6181 delayed_refs->num_heads_ready--;
6182 head->processing = 0;
6183 spin_unlock(&head->lock);
6184 spin_unlock(&delayed_refs->lock);
6185
6186 BUG_ON(head->extent_op);
6187 if (head->must_insert_reserved)
6188 ret = 1;
6189
6190 mutex_unlock(&head->mutex);
6191 btrfs_put_delayed_ref(&head->node);
6192 return ret;
6193 out:
6194 spin_unlock(&head->lock);
6195
6196 out_delayed_unlock:
6197 spin_unlock(&delayed_refs->lock);
6198 return 0;
6199 }
6200
6201 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6202 struct btrfs_root *root,
6203 struct extent_buffer *buf,
6204 u64 parent, int last_ref)
6205 {
6206 struct btrfs_block_group_cache *cache = NULL;
6207 int pin = 1;
6208 int ret;
6209
6210 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6211 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6212 buf->start, buf->len,
6213 parent, root->root_key.objectid,
6214 btrfs_header_level(buf),
6215 BTRFS_DROP_DELAYED_REF, NULL, 0);
6216 BUG_ON(ret); /* -ENOMEM */
6217 }
6218
6219 if (!last_ref)
6220 return;
6221
6222 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6223
6224 if (btrfs_header_generation(buf) == trans->transid) {
6225 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6226 ret = check_ref_cleanup(trans, root, buf->start);
6227 if (!ret)
6228 goto out;
6229 }
6230
6231 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6232 pin_down_extent(root, cache, buf->start, buf->len, 1);
6233 goto out;
6234 }
6235
6236 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6237
6238 btrfs_add_free_space(cache, buf->start, buf->len);
6239 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6240 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6241 pin = 0;
6242 }
6243 out:
6244 if (pin)
6245 add_pinned_bytes(root->fs_info, buf->len,
6246 btrfs_header_level(buf),
6247 root->root_key.objectid);
6248
6249 /*
6250 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6251 * anymore.
6252 */
6253 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6254 btrfs_put_block_group(cache);
6255 }
6256
6257 /* Can return -ENOMEM */
6258 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6259 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6260 u64 owner, u64 offset, int no_quota)
6261 {
6262 int ret;
6263 struct btrfs_fs_info *fs_info = root->fs_info;
6264
6265 if (btrfs_test_is_dummy_root(root))
6266 return 0;
6267
6268 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6269
6270 /*
6271 * tree log blocks never actually go into the extent allocation
6272 * tree, just update pinning info and exit early.
6273 */
6274 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6275 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6276 /* unlocks the pinned mutex */
6277 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6278 ret = 0;
6279 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6280 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6281 num_bytes,
6282 parent, root_objectid, (int)owner,
6283 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6284 } else {
6285 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6286 num_bytes,
6287 parent, root_objectid, owner,
6288 offset, BTRFS_DROP_DELAYED_REF,
6289 NULL, no_quota);
6290 }
6291 return ret;
6292 }
6293
6294 /*
6295 * when we wait for progress in the block group caching, its because
6296 * our allocation attempt failed at least once. So, we must sleep
6297 * and let some progress happen before we try again.
6298 *
6299 * This function will sleep at least once waiting for new free space to
6300 * show up, and then it will check the block group free space numbers
6301 * for our min num_bytes. Another option is to have it go ahead
6302 * and look in the rbtree for a free extent of a given size, but this
6303 * is a good start.
6304 *
6305 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6306 * any of the information in this block group.
6307 */
6308 static noinline void
6309 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6310 u64 num_bytes)
6311 {
6312 struct btrfs_caching_control *caching_ctl;
6313
6314 caching_ctl = get_caching_control(cache);
6315 if (!caching_ctl)
6316 return;
6317
6318 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6319 (cache->free_space_ctl->free_space >= num_bytes));
6320
6321 put_caching_control(caching_ctl);
6322 }
6323
6324 static noinline int
6325 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6326 {
6327 struct btrfs_caching_control *caching_ctl;
6328 int ret = 0;
6329
6330 caching_ctl = get_caching_control(cache);
6331 if (!caching_ctl)
6332 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6333
6334 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6335 if (cache->cached == BTRFS_CACHE_ERROR)
6336 ret = -EIO;
6337 put_caching_control(caching_ctl);
6338 return ret;
6339 }
6340
6341 int __get_raid_index(u64 flags)
6342 {
6343 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6344 return BTRFS_RAID_RAID10;
6345 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6346 return BTRFS_RAID_RAID1;
6347 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6348 return BTRFS_RAID_DUP;
6349 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6350 return BTRFS_RAID_RAID0;
6351 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6352 return BTRFS_RAID_RAID5;
6353 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6354 return BTRFS_RAID_RAID6;
6355
6356 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6357 }
6358
6359 int get_block_group_index(struct btrfs_block_group_cache *cache)
6360 {
6361 return __get_raid_index(cache->flags);
6362 }
6363
6364 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6365 [BTRFS_RAID_RAID10] = "raid10",
6366 [BTRFS_RAID_RAID1] = "raid1",
6367 [BTRFS_RAID_DUP] = "dup",
6368 [BTRFS_RAID_RAID0] = "raid0",
6369 [BTRFS_RAID_SINGLE] = "single",
6370 [BTRFS_RAID_RAID5] = "raid5",
6371 [BTRFS_RAID_RAID6] = "raid6",
6372 };
6373
6374 static const char *get_raid_name(enum btrfs_raid_types type)
6375 {
6376 if (type >= BTRFS_NR_RAID_TYPES)
6377 return NULL;
6378
6379 return btrfs_raid_type_names[type];
6380 }
6381
6382 enum btrfs_loop_type {
6383 LOOP_CACHING_NOWAIT = 0,
6384 LOOP_CACHING_WAIT = 1,
6385 LOOP_ALLOC_CHUNK = 2,
6386 LOOP_NO_EMPTY_SIZE = 3,
6387 };
6388
6389 static inline void
6390 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6391 int delalloc)
6392 {
6393 if (delalloc)
6394 down_read(&cache->data_rwsem);
6395 }
6396
6397 static inline void
6398 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6399 int delalloc)
6400 {
6401 btrfs_get_block_group(cache);
6402 if (delalloc)
6403 down_read(&cache->data_rwsem);
6404 }
6405
6406 static struct btrfs_block_group_cache *
6407 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6408 struct btrfs_free_cluster *cluster,
6409 int delalloc)
6410 {
6411 struct btrfs_block_group_cache *used_bg;
6412 bool locked = false;
6413 again:
6414 spin_lock(&cluster->refill_lock);
6415 if (locked) {
6416 if (used_bg == cluster->block_group)
6417 return used_bg;
6418
6419 up_read(&used_bg->data_rwsem);
6420 btrfs_put_block_group(used_bg);
6421 }
6422
6423 used_bg = cluster->block_group;
6424 if (!used_bg)
6425 return NULL;
6426
6427 if (used_bg == block_group)
6428 return used_bg;
6429
6430 btrfs_get_block_group(used_bg);
6431
6432 if (!delalloc)
6433 return used_bg;
6434
6435 if (down_read_trylock(&used_bg->data_rwsem))
6436 return used_bg;
6437
6438 spin_unlock(&cluster->refill_lock);
6439 down_read(&used_bg->data_rwsem);
6440 locked = true;
6441 goto again;
6442 }
6443
6444 static inline void
6445 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6446 int delalloc)
6447 {
6448 if (delalloc)
6449 up_read(&cache->data_rwsem);
6450 btrfs_put_block_group(cache);
6451 }
6452
6453 /*
6454 * walks the btree of allocated extents and find a hole of a given size.
6455 * The key ins is changed to record the hole:
6456 * ins->objectid == start position
6457 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6458 * ins->offset == the size of the hole.
6459 * Any available blocks before search_start are skipped.
6460 *
6461 * If there is no suitable free space, we will record the max size of
6462 * the free space extent currently.
6463 */
6464 static noinline int find_free_extent(struct btrfs_root *orig_root,
6465 u64 num_bytes, u64 empty_size,
6466 u64 hint_byte, struct btrfs_key *ins,
6467 u64 flags, int delalloc)
6468 {
6469 int ret = 0;
6470 struct btrfs_root *root = orig_root->fs_info->extent_root;
6471 struct btrfs_free_cluster *last_ptr = NULL;
6472 struct btrfs_block_group_cache *block_group = NULL;
6473 u64 search_start = 0;
6474 u64 max_extent_size = 0;
6475 int empty_cluster = 2 * 1024 * 1024;
6476 struct btrfs_space_info *space_info;
6477 int loop = 0;
6478 int index = __get_raid_index(flags);
6479 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6480 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6481 bool failed_cluster_refill = false;
6482 bool failed_alloc = false;
6483 bool use_cluster = true;
6484 bool have_caching_bg = false;
6485
6486 WARN_ON(num_bytes < root->sectorsize);
6487 ins->type = BTRFS_EXTENT_ITEM_KEY;
6488 ins->objectid = 0;
6489 ins->offset = 0;
6490
6491 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6492
6493 space_info = __find_space_info(root->fs_info, flags);
6494 if (!space_info) {
6495 btrfs_err(root->fs_info, "No space info for %llu", flags);
6496 return -ENOSPC;
6497 }
6498
6499 /*
6500 * If the space info is for both data and metadata it means we have a
6501 * small filesystem and we can't use the clustering stuff.
6502 */
6503 if (btrfs_mixed_space_info(space_info))
6504 use_cluster = false;
6505
6506 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6507 last_ptr = &root->fs_info->meta_alloc_cluster;
6508 if (!btrfs_test_opt(root, SSD))
6509 empty_cluster = 64 * 1024;
6510 }
6511
6512 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6513 btrfs_test_opt(root, SSD)) {
6514 last_ptr = &root->fs_info->data_alloc_cluster;
6515 }
6516
6517 if (last_ptr) {
6518 spin_lock(&last_ptr->lock);
6519 if (last_ptr->block_group)
6520 hint_byte = last_ptr->window_start;
6521 spin_unlock(&last_ptr->lock);
6522 }
6523
6524 search_start = max(search_start, first_logical_byte(root, 0));
6525 search_start = max(search_start, hint_byte);
6526
6527 if (!last_ptr)
6528 empty_cluster = 0;
6529
6530 if (search_start == hint_byte) {
6531 block_group = btrfs_lookup_block_group(root->fs_info,
6532 search_start);
6533 /*
6534 * we don't want to use the block group if it doesn't match our
6535 * allocation bits, or if its not cached.
6536 *
6537 * However if we are re-searching with an ideal block group
6538 * picked out then we don't care that the block group is cached.
6539 */
6540 if (block_group && block_group_bits(block_group, flags) &&
6541 block_group->cached != BTRFS_CACHE_NO) {
6542 down_read(&space_info->groups_sem);
6543 if (list_empty(&block_group->list) ||
6544 block_group->ro) {
6545 /*
6546 * someone is removing this block group,
6547 * we can't jump into the have_block_group
6548 * target because our list pointers are not
6549 * valid
6550 */
6551 btrfs_put_block_group(block_group);
6552 up_read(&space_info->groups_sem);
6553 } else {
6554 index = get_block_group_index(block_group);
6555 btrfs_lock_block_group(block_group, delalloc);
6556 goto have_block_group;
6557 }
6558 } else if (block_group) {
6559 btrfs_put_block_group(block_group);
6560 }
6561 }
6562 search:
6563 have_caching_bg = false;
6564 down_read(&space_info->groups_sem);
6565 list_for_each_entry(block_group, &space_info->block_groups[index],
6566 list) {
6567 u64 offset;
6568 int cached;
6569
6570 btrfs_grab_block_group(block_group, delalloc);
6571 search_start = block_group->key.objectid;
6572
6573 /*
6574 * this can happen if we end up cycling through all the
6575 * raid types, but we want to make sure we only allocate
6576 * for the proper type.
6577 */
6578 if (!block_group_bits(block_group, flags)) {
6579 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6580 BTRFS_BLOCK_GROUP_RAID1 |
6581 BTRFS_BLOCK_GROUP_RAID5 |
6582 BTRFS_BLOCK_GROUP_RAID6 |
6583 BTRFS_BLOCK_GROUP_RAID10;
6584
6585 /*
6586 * if they asked for extra copies and this block group
6587 * doesn't provide them, bail. This does allow us to
6588 * fill raid0 from raid1.
6589 */
6590 if ((flags & extra) && !(block_group->flags & extra))
6591 goto loop;
6592 }
6593
6594 have_block_group:
6595 cached = block_group_cache_done(block_group);
6596 if (unlikely(!cached)) {
6597 ret = cache_block_group(block_group, 0);
6598 BUG_ON(ret < 0);
6599 ret = 0;
6600 }
6601
6602 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6603 goto loop;
6604 if (unlikely(block_group->ro))
6605 goto loop;
6606
6607 /*
6608 * Ok we want to try and use the cluster allocator, so
6609 * lets look there
6610 */
6611 if (last_ptr) {
6612 struct btrfs_block_group_cache *used_block_group;
6613 unsigned long aligned_cluster;
6614 /*
6615 * the refill lock keeps out other
6616 * people trying to start a new cluster
6617 */
6618 used_block_group = btrfs_lock_cluster(block_group,
6619 last_ptr,
6620 delalloc);
6621 if (!used_block_group)
6622 goto refill_cluster;
6623
6624 if (used_block_group != block_group &&
6625 (used_block_group->ro ||
6626 !block_group_bits(used_block_group, flags)))
6627 goto release_cluster;
6628
6629 offset = btrfs_alloc_from_cluster(used_block_group,
6630 last_ptr,
6631 num_bytes,
6632 used_block_group->key.objectid,
6633 &max_extent_size);
6634 if (offset) {
6635 /* we have a block, we're done */
6636 spin_unlock(&last_ptr->refill_lock);
6637 trace_btrfs_reserve_extent_cluster(root,
6638 used_block_group,
6639 search_start, num_bytes);
6640 if (used_block_group != block_group) {
6641 btrfs_release_block_group(block_group,
6642 delalloc);
6643 block_group = used_block_group;
6644 }
6645 goto checks;
6646 }
6647
6648 WARN_ON(last_ptr->block_group != used_block_group);
6649 release_cluster:
6650 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6651 * set up a new clusters, so lets just skip it
6652 * and let the allocator find whatever block
6653 * it can find. If we reach this point, we
6654 * will have tried the cluster allocator
6655 * plenty of times and not have found
6656 * anything, so we are likely way too
6657 * fragmented for the clustering stuff to find
6658 * anything.
6659 *
6660 * However, if the cluster is taken from the
6661 * current block group, release the cluster
6662 * first, so that we stand a better chance of
6663 * succeeding in the unclustered
6664 * allocation. */
6665 if (loop >= LOOP_NO_EMPTY_SIZE &&
6666 used_block_group != block_group) {
6667 spin_unlock(&last_ptr->refill_lock);
6668 btrfs_release_block_group(used_block_group,
6669 delalloc);
6670 goto unclustered_alloc;
6671 }
6672
6673 /*
6674 * this cluster didn't work out, free it and
6675 * start over
6676 */
6677 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6678
6679 if (used_block_group != block_group)
6680 btrfs_release_block_group(used_block_group,
6681 delalloc);
6682 refill_cluster:
6683 if (loop >= LOOP_NO_EMPTY_SIZE) {
6684 spin_unlock(&last_ptr->refill_lock);
6685 goto unclustered_alloc;
6686 }
6687
6688 aligned_cluster = max_t(unsigned long,
6689 empty_cluster + empty_size,
6690 block_group->full_stripe_len);
6691
6692 /* allocate a cluster in this block group */
6693 ret = btrfs_find_space_cluster(root, block_group,
6694 last_ptr, search_start,
6695 num_bytes,
6696 aligned_cluster);
6697 if (ret == 0) {
6698 /*
6699 * now pull our allocation out of this
6700 * cluster
6701 */
6702 offset = btrfs_alloc_from_cluster(block_group,
6703 last_ptr,
6704 num_bytes,
6705 search_start,
6706 &max_extent_size);
6707 if (offset) {
6708 /* we found one, proceed */
6709 spin_unlock(&last_ptr->refill_lock);
6710 trace_btrfs_reserve_extent_cluster(root,
6711 block_group, search_start,
6712 num_bytes);
6713 goto checks;
6714 }
6715 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6716 && !failed_cluster_refill) {
6717 spin_unlock(&last_ptr->refill_lock);
6718
6719 failed_cluster_refill = true;
6720 wait_block_group_cache_progress(block_group,
6721 num_bytes + empty_cluster + empty_size);
6722 goto have_block_group;
6723 }
6724
6725 /*
6726 * at this point we either didn't find a cluster
6727 * or we weren't able to allocate a block from our
6728 * cluster. Free the cluster we've been trying
6729 * to use, and go to the next block group
6730 */
6731 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6732 spin_unlock(&last_ptr->refill_lock);
6733 goto loop;
6734 }
6735
6736 unclustered_alloc:
6737 spin_lock(&block_group->free_space_ctl->tree_lock);
6738 if (cached &&
6739 block_group->free_space_ctl->free_space <
6740 num_bytes + empty_cluster + empty_size) {
6741 if (block_group->free_space_ctl->free_space >
6742 max_extent_size)
6743 max_extent_size =
6744 block_group->free_space_ctl->free_space;
6745 spin_unlock(&block_group->free_space_ctl->tree_lock);
6746 goto loop;
6747 }
6748 spin_unlock(&block_group->free_space_ctl->tree_lock);
6749
6750 offset = btrfs_find_space_for_alloc(block_group, search_start,
6751 num_bytes, empty_size,
6752 &max_extent_size);
6753 /*
6754 * If we didn't find a chunk, and we haven't failed on this
6755 * block group before, and this block group is in the middle of
6756 * caching and we are ok with waiting, then go ahead and wait
6757 * for progress to be made, and set failed_alloc to true.
6758 *
6759 * If failed_alloc is true then we've already waited on this
6760 * block group once and should move on to the next block group.
6761 */
6762 if (!offset && !failed_alloc && !cached &&
6763 loop > LOOP_CACHING_NOWAIT) {
6764 wait_block_group_cache_progress(block_group,
6765 num_bytes + empty_size);
6766 failed_alloc = true;
6767 goto have_block_group;
6768 } else if (!offset) {
6769 if (!cached)
6770 have_caching_bg = true;
6771 goto loop;
6772 }
6773 checks:
6774 search_start = ALIGN(offset, root->stripesize);
6775
6776 /* move on to the next group */
6777 if (search_start + num_bytes >
6778 block_group->key.objectid + block_group->key.offset) {
6779 btrfs_add_free_space(block_group, offset, num_bytes);
6780 goto loop;
6781 }
6782
6783 if (offset < search_start)
6784 btrfs_add_free_space(block_group, offset,
6785 search_start - offset);
6786 BUG_ON(offset > search_start);
6787
6788 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6789 alloc_type, delalloc);
6790 if (ret == -EAGAIN) {
6791 btrfs_add_free_space(block_group, offset, num_bytes);
6792 goto loop;
6793 }
6794
6795 /* we are all good, lets return */
6796 ins->objectid = search_start;
6797 ins->offset = num_bytes;
6798
6799 trace_btrfs_reserve_extent(orig_root, block_group,
6800 search_start, num_bytes);
6801 btrfs_release_block_group(block_group, delalloc);
6802 break;
6803 loop:
6804 failed_cluster_refill = false;
6805 failed_alloc = false;
6806 BUG_ON(index != get_block_group_index(block_group));
6807 btrfs_release_block_group(block_group, delalloc);
6808 }
6809 up_read(&space_info->groups_sem);
6810
6811 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6812 goto search;
6813
6814 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6815 goto search;
6816
6817 /*
6818 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6819 * caching kthreads as we move along
6820 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6821 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6822 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6823 * again
6824 */
6825 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6826 index = 0;
6827 loop++;
6828 if (loop == LOOP_ALLOC_CHUNK) {
6829 struct btrfs_trans_handle *trans;
6830 int exist = 0;
6831
6832 trans = current->journal_info;
6833 if (trans)
6834 exist = 1;
6835 else
6836 trans = btrfs_join_transaction(root);
6837
6838 if (IS_ERR(trans)) {
6839 ret = PTR_ERR(trans);
6840 goto out;
6841 }
6842
6843 ret = do_chunk_alloc(trans, root, flags,
6844 CHUNK_ALLOC_FORCE);
6845 /*
6846 * Do not bail out on ENOSPC since we
6847 * can do more things.
6848 */
6849 if (ret < 0 && ret != -ENOSPC)
6850 btrfs_abort_transaction(trans,
6851 root, ret);
6852 else
6853 ret = 0;
6854 if (!exist)
6855 btrfs_end_transaction(trans, root);
6856 if (ret)
6857 goto out;
6858 }
6859
6860 if (loop == LOOP_NO_EMPTY_SIZE) {
6861 empty_size = 0;
6862 empty_cluster = 0;
6863 }
6864
6865 goto search;
6866 } else if (!ins->objectid) {
6867 ret = -ENOSPC;
6868 } else if (ins->objectid) {
6869 ret = 0;
6870 }
6871 out:
6872 if (ret == -ENOSPC)
6873 ins->offset = max_extent_size;
6874 return ret;
6875 }
6876
6877 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6878 int dump_block_groups)
6879 {
6880 struct btrfs_block_group_cache *cache;
6881 int index = 0;
6882
6883 spin_lock(&info->lock);
6884 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6885 info->flags,
6886 info->total_bytes - info->bytes_used - info->bytes_pinned -
6887 info->bytes_reserved - info->bytes_readonly,
6888 (info->full) ? "" : "not ");
6889 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6890 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6891 info->total_bytes, info->bytes_used, info->bytes_pinned,
6892 info->bytes_reserved, info->bytes_may_use,
6893 info->bytes_readonly);
6894 spin_unlock(&info->lock);
6895
6896 if (!dump_block_groups)
6897 return;
6898
6899 down_read(&info->groups_sem);
6900 again:
6901 list_for_each_entry(cache, &info->block_groups[index], list) {
6902 spin_lock(&cache->lock);
6903 printk(KERN_INFO "BTRFS: "
6904 "block group %llu has %llu bytes, "
6905 "%llu used %llu pinned %llu reserved %s\n",
6906 cache->key.objectid, cache->key.offset,
6907 btrfs_block_group_used(&cache->item), cache->pinned,
6908 cache->reserved, cache->ro ? "[readonly]" : "");
6909 btrfs_dump_free_space(cache, bytes);
6910 spin_unlock(&cache->lock);
6911 }
6912 if (++index < BTRFS_NR_RAID_TYPES)
6913 goto again;
6914 up_read(&info->groups_sem);
6915 }
6916
6917 int btrfs_reserve_extent(struct btrfs_root *root,
6918 u64 num_bytes, u64 min_alloc_size,
6919 u64 empty_size, u64 hint_byte,
6920 struct btrfs_key *ins, int is_data, int delalloc)
6921 {
6922 bool final_tried = false;
6923 u64 flags;
6924 int ret;
6925
6926 flags = btrfs_get_alloc_profile(root, is_data);
6927 again:
6928 WARN_ON(num_bytes < root->sectorsize);
6929 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6930 flags, delalloc);
6931
6932 if (ret == -ENOSPC) {
6933 if (!final_tried && ins->offset) {
6934 num_bytes = min(num_bytes >> 1, ins->offset);
6935 num_bytes = round_down(num_bytes, root->sectorsize);
6936 num_bytes = max(num_bytes, min_alloc_size);
6937 if (num_bytes == min_alloc_size)
6938 final_tried = true;
6939 goto again;
6940 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6941 struct btrfs_space_info *sinfo;
6942
6943 sinfo = __find_space_info(root->fs_info, flags);
6944 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6945 flags, num_bytes);
6946 if (sinfo)
6947 dump_space_info(sinfo, num_bytes, 1);
6948 }
6949 }
6950
6951 return ret;
6952 }
6953
6954 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6955 u64 start, u64 len,
6956 int pin, int delalloc)
6957 {
6958 struct btrfs_block_group_cache *cache;
6959 int ret = 0;
6960
6961 cache = btrfs_lookup_block_group(root->fs_info, start);
6962 if (!cache) {
6963 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6964 start);
6965 return -ENOSPC;
6966 }
6967
6968 if (btrfs_test_opt(root, DISCARD))
6969 ret = btrfs_discard_extent(root, start, len, NULL);
6970
6971 if (pin)
6972 pin_down_extent(root, cache, start, len, 1);
6973 else {
6974 btrfs_add_free_space(cache, start, len);
6975 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6976 }
6977 btrfs_put_block_group(cache);
6978
6979 trace_btrfs_reserved_extent_free(root, start, len);
6980
6981 return ret;
6982 }
6983
6984 int btrfs_free_reserved_extent(struct btrfs_root *root,
6985 u64 start, u64 len, int delalloc)
6986 {
6987 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6988 }
6989
6990 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6991 u64 start, u64 len)
6992 {
6993 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6994 }
6995
6996 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6997 struct btrfs_root *root,
6998 u64 parent, u64 root_objectid,
6999 u64 flags, u64 owner, u64 offset,
7000 struct btrfs_key *ins, int ref_mod)
7001 {
7002 int ret;
7003 struct btrfs_fs_info *fs_info = root->fs_info;
7004 struct btrfs_extent_item *extent_item;
7005 struct btrfs_extent_inline_ref *iref;
7006 struct btrfs_path *path;
7007 struct extent_buffer *leaf;
7008 int type;
7009 u32 size;
7010
7011 if (parent > 0)
7012 type = BTRFS_SHARED_DATA_REF_KEY;
7013 else
7014 type = BTRFS_EXTENT_DATA_REF_KEY;
7015
7016 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7017
7018 path = btrfs_alloc_path();
7019 if (!path)
7020 return -ENOMEM;
7021
7022 path->leave_spinning = 1;
7023 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7024 ins, size);
7025 if (ret) {
7026 btrfs_free_path(path);
7027 return ret;
7028 }
7029
7030 leaf = path->nodes[0];
7031 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7032 struct btrfs_extent_item);
7033 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7034 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7035 btrfs_set_extent_flags(leaf, extent_item,
7036 flags | BTRFS_EXTENT_FLAG_DATA);
7037
7038 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7039 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7040 if (parent > 0) {
7041 struct btrfs_shared_data_ref *ref;
7042 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7043 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7044 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7045 } else {
7046 struct btrfs_extent_data_ref *ref;
7047 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7048 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7049 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7050 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7051 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7052 }
7053
7054 btrfs_mark_buffer_dirty(path->nodes[0]);
7055 btrfs_free_path(path);
7056
7057 /* Always set parent to 0 here since its exclusive anyway. */
7058 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7059 ins->objectid, ins->offset,
7060 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7061 if (ret)
7062 return ret;
7063
7064 ret = update_block_group(root, ins->objectid, ins->offset, 1);
7065 if (ret) { /* -ENOENT, logic error */
7066 btrfs_err(fs_info, "update block group failed for %llu %llu",
7067 ins->objectid, ins->offset);
7068 BUG();
7069 }
7070 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7071 return ret;
7072 }
7073
7074 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7075 struct btrfs_root *root,
7076 u64 parent, u64 root_objectid,
7077 u64 flags, struct btrfs_disk_key *key,
7078 int level, struct btrfs_key *ins,
7079 int no_quota)
7080 {
7081 int ret;
7082 struct btrfs_fs_info *fs_info = root->fs_info;
7083 struct btrfs_extent_item *extent_item;
7084 struct btrfs_tree_block_info *block_info;
7085 struct btrfs_extent_inline_ref *iref;
7086 struct btrfs_path *path;
7087 struct extent_buffer *leaf;
7088 u32 size = sizeof(*extent_item) + sizeof(*iref);
7089 u64 num_bytes = ins->offset;
7090 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7091 SKINNY_METADATA);
7092
7093 if (!skinny_metadata)
7094 size += sizeof(*block_info);
7095
7096 path = btrfs_alloc_path();
7097 if (!path) {
7098 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7099 root->nodesize);
7100 return -ENOMEM;
7101 }
7102
7103 path->leave_spinning = 1;
7104 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7105 ins, size);
7106 if (ret) {
7107 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7108 root->nodesize);
7109 btrfs_free_path(path);
7110 return ret;
7111 }
7112
7113 leaf = path->nodes[0];
7114 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7115 struct btrfs_extent_item);
7116 btrfs_set_extent_refs(leaf, extent_item, 1);
7117 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7118 btrfs_set_extent_flags(leaf, extent_item,
7119 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7120
7121 if (skinny_metadata) {
7122 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7123 num_bytes = root->nodesize;
7124 } else {
7125 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7126 btrfs_set_tree_block_key(leaf, block_info, key);
7127 btrfs_set_tree_block_level(leaf, block_info, level);
7128 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7129 }
7130
7131 if (parent > 0) {
7132 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7133 btrfs_set_extent_inline_ref_type(leaf, iref,
7134 BTRFS_SHARED_BLOCK_REF_KEY);
7135 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7136 } else {
7137 btrfs_set_extent_inline_ref_type(leaf, iref,
7138 BTRFS_TREE_BLOCK_REF_KEY);
7139 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7140 }
7141
7142 btrfs_mark_buffer_dirty(leaf);
7143 btrfs_free_path(path);
7144
7145 if (!no_quota) {
7146 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7147 ins->objectid, num_bytes,
7148 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7149 if (ret)
7150 return ret;
7151 }
7152
7153 ret = update_block_group(root, ins->objectid, root->nodesize, 1);
7154 if (ret) { /* -ENOENT, logic error */
7155 btrfs_err(fs_info, "update block group failed for %llu %llu",
7156 ins->objectid, ins->offset);
7157 BUG();
7158 }
7159
7160 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7161 return ret;
7162 }
7163
7164 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7165 struct btrfs_root *root,
7166 u64 root_objectid, u64 owner,
7167 u64 offset, struct btrfs_key *ins)
7168 {
7169 int ret;
7170
7171 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7172
7173 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7174 ins->offset, 0,
7175 root_objectid, owner, offset,
7176 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7177 return ret;
7178 }
7179
7180 /*
7181 * this is used by the tree logging recovery code. It records that
7182 * an extent has been allocated and makes sure to clear the free
7183 * space cache bits as well
7184 */
7185 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7186 struct btrfs_root *root,
7187 u64 root_objectid, u64 owner, u64 offset,
7188 struct btrfs_key *ins)
7189 {
7190 int ret;
7191 struct btrfs_block_group_cache *block_group;
7192
7193 /*
7194 * Mixed block groups will exclude before processing the log so we only
7195 * need to do the exlude dance if this fs isn't mixed.
7196 */
7197 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7198 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7199 if (ret)
7200 return ret;
7201 }
7202
7203 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7204 if (!block_group)
7205 return -EINVAL;
7206
7207 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7208 RESERVE_ALLOC_NO_ACCOUNT, 0);
7209 BUG_ON(ret); /* logic error */
7210 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7211 0, owner, offset, ins, 1);
7212 btrfs_put_block_group(block_group);
7213 return ret;
7214 }
7215
7216 static struct extent_buffer *
7217 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7218 u64 bytenr, u32 blocksize, int level)
7219 {
7220 struct extent_buffer *buf;
7221
7222 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
7223 if (!buf)
7224 return ERR_PTR(-ENOMEM);
7225 btrfs_set_header_generation(buf, trans->transid);
7226 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7227 btrfs_tree_lock(buf);
7228 clean_tree_block(trans, root, buf);
7229 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7230
7231 btrfs_set_lock_blocking(buf);
7232 btrfs_set_buffer_uptodate(buf);
7233
7234 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7235 buf->log_index = root->log_transid % 2;
7236 /*
7237 * we allow two log transactions at a time, use different
7238 * EXENT bit to differentiate dirty pages.
7239 */
7240 if (buf->log_index == 0)
7241 set_extent_dirty(&root->dirty_log_pages, buf->start,
7242 buf->start + buf->len - 1, GFP_NOFS);
7243 else
7244 set_extent_new(&root->dirty_log_pages, buf->start,
7245 buf->start + buf->len - 1, GFP_NOFS);
7246 } else {
7247 buf->log_index = -1;
7248 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7249 buf->start + buf->len - 1, GFP_NOFS);
7250 }
7251 trans->blocks_used++;
7252 /* this returns a buffer locked for blocking */
7253 return buf;
7254 }
7255
7256 static struct btrfs_block_rsv *
7257 use_block_rsv(struct btrfs_trans_handle *trans,
7258 struct btrfs_root *root, u32 blocksize)
7259 {
7260 struct btrfs_block_rsv *block_rsv;
7261 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7262 int ret;
7263 bool global_updated = false;
7264
7265 block_rsv = get_block_rsv(trans, root);
7266
7267 if (unlikely(block_rsv->size == 0))
7268 goto try_reserve;
7269 again:
7270 ret = block_rsv_use_bytes(block_rsv, blocksize);
7271 if (!ret)
7272 return block_rsv;
7273
7274 if (block_rsv->failfast)
7275 return ERR_PTR(ret);
7276
7277 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7278 global_updated = true;
7279 update_global_block_rsv(root->fs_info);
7280 goto again;
7281 }
7282
7283 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7284 static DEFINE_RATELIMIT_STATE(_rs,
7285 DEFAULT_RATELIMIT_INTERVAL * 10,
7286 /*DEFAULT_RATELIMIT_BURST*/ 1);
7287 if (__ratelimit(&_rs))
7288 WARN(1, KERN_DEBUG
7289 "BTRFS: block rsv returned %d\n", ret);
7290 }
7291 try_reserve:
7292 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7293 BTRFS_RESERVE_NO_FLUSH);
7294 if (!ret)
7295 return block_rsv;
7296 /*
7297 * If we couldn't reserve metadata bytes try and use some from
7298 * the global reserve if its space type is the same as the global
7299 * reservation.
7300 */
7301 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7302 block_rsv->space_info == global_rsv->space_info) {
7303 ret = block_rsv_use_bytes(global_rsv, blocksize);
7304 if (!ret)
7305 return global_rsv;
7306 }
7307 return ERR_PTR(ret);
7308 }
7309
7310 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7311 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7312 {
7313 block_rsv_add_bytes(block_rsv, blocksize, 0);
7314 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7315 }
7316
7317 /*
7318 * finds a free extent and does all the dirty work required for allocation
7319 * returns the key for the extent through ins, and a tree buffer for
7320 * the first block of the extent through buf.
7321 *
7322 * returns the tree buffer or NULL.
7323 */
7324 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7325 struct btrfs_root *root,
7326 u64 parent, u64 root_objectid,
7327 struct btrfs_disk_key *key, int level,
7328 u64 hint, u64 empty_size)
7329 {
7330 struct btrfs_key ins;
7331 struct btrfs_block_rsv *block_rsv;
7332 struct extent_buffer *buf;
7333 u64 flags = 0;
7334 int ret;
7335 u32 blocksize = root->nodesize;
7336 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7337 SKINNY_METADATA);
7338
7339 if (btrfs_test_is_dummy_root(root)) {
7340 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7341 blocksize, level);
7342 if (!IS_ERR(buf))
7343 root->alloc_bytenr += blocksize;
7344 return buf;
7345 }
7346
7347 block_rsv = use_block_rsv(trans, root, blocksize);
7348 if (IS_ERR(block_rsv))
7349 return ERR_CAST(block_rsv);
7350
7351 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7352 empty_size, hint, &ins, 0, 0);
7353 if (ret) {
7354 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7355 return ERR_PTR(ret);
7356 }
7357
7358 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7359 blocksize, level);
7360 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7361
7362 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7363 if (parent == 0)
7364 parent = ins.objectid;
7365 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7366 } else
7367 BUG_ON(parent > 0);
7368
7369 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7370 struct btrfs_delayed_extent_op *extent_op;
7371 extent_op = btrfs_alloc_delayed_extent_op();
7372 BUG_ON(!extent_op); /* -ENOMEM */
7373 if (key)
7374 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7375 else
7376 memset(&extent_op->key, 0, sizeof(extent_op->key));
7377 extent_op->flags_to_set = flags;
7378 if (skinny_metadata)
7379 extent_op->update_key = 0;
7380 else
7381 extent_op->update_key = 1;
7382 extent_op->update_flags = 1;
7383 extent_op->is_data = 0;
7384 extent_op->level = level;
7385
7386 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7387 ins.objectid,
7388 ins.offset, parent, root_objectid,
7389 level, BTRFS_ADD_DELAYED_EXTENT,
7390 extent_op, 0);
7391 BUG_ON(ret); /* -ENOMEM */
7392 }
7393 return buf;
7394 }
7395
7396 struct walk_control {
7397 u64 refs[BTRFS_MAX_LEVEL];
7398 u64 flags[BTRFS_MAX_LEVEL];
7399 struct btrfs_key update_progress;
7400 int stage;
7401 int level;
7402 int shared_level;
7403 int update_ref;
7404 int keep_locks;
7405 int reada_slot;
7406 int reada_count;
7407 int for_reloc;
7408 };
7409
7410 #define DROP_REFERENCE 1
7411 #define UPDATE_BACKREF 2
7412
7413 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7414 struct btrfs_root *root,
7415 struct walk_control *wc,
7416 struct btrfs_path *path)
7417 {
7418 u64 bytenr;
7419 u64 generation;
7420 u64 refs;
7421 u64 flags;
7422 u32 nritems;
7423 u32 blocksize;
7424 struct btrfs_key key;
7425 struct extent_buffer *eb;
7426 int ret;
7427 int slot;
7428 int nread = 0;
7429
7430 if (path->slots[wc->level] < wc->reada_slot) {
7431 wc->reada_count = wc->reada_count * 2 / 3;
7432 wc->reada_count = max(wc->reada_count, 2);
7433 } else {
7434 wc->reada_count = wc->reada_count * 3 / 2;
7435 wc->reada_count = min_t(int, wc->reada_count,
7436 BTRFS_NODEPTRS_PER_BLOCK(root));
7437 }
7438
7439 eb = path->nodes[wc->level];
7440 nritems = btrfs_header_nritems(eb);
7441 blocksize = root->nodesize;
7442
7443 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7444 if (nread >= wc->reada_count)
7445 break;
7446
7447 cond_resched();
7448 bytenr = btrfs_node_blockptr(eb, slot);
7449 generation = btrfs_node_ptr_generation(eb, slot);
7450
7451 if (slot == path->slots[wc->level])
7452 goto reada;
7453
7454 if (wc->stage == UPDATE_BACKREF &&
7455 generation <= root->root_key.offset)
7456 continue;
7457
7458 /* We don't lock the tree block, it's OK to be racy here */
7459 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7460 wc->level - 1, 1, &refs,
7461 &flags);
7462 /* We don't care about errors in readahead. */
7463 if (ret < 0)
7464 continue;
7465 BUG_ON(refs == 0);
7466
7467 if (wc->stage == DROP_REFERENCE) {
7468 if (refs == 1)
7469 goto reada;
7470
7471 if (wc->level == 1 &&
7472 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7473 continue;
7474 if (!wc->update_ref ||
7475 generation <= root->root_key.offset)
7476 continue;
7477 btrfs_node_key_to_cpu(eb, &key, slot);
7478 ret = btrfs_comp_cpu_keys(&key,
7479 &wc->update_progress);
7480 if (ret < 0)
7481 continue;
7482 } else {
7483 if (wc->level == 1 &&
7484 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7485 continue;
7486 }
7487 reada:
7488 readahead_tree_block(root, bytenr, blocksize);
7489 nread++;
7490 }
7491 wc->reada_slot = slot;
7492 }
7493
7494 static int account_leaf_items(struct btrfs_trans_handle *trans,
7495 struct btrfs_root *root,
7496 struct extent_buffer *eb)
7497 {
7498 int nr = btrfs_header_nritems(eb);
7499 int i, extent_type, ret;
7500 struct btrfs_key key;
7501 struct btrfs_file_extent_item *fi;
7502 u64 bytenr, num_bytes;
7503
7504 for (i = 0; i < nr; i++) {
7505 btrfs_item_key_to_cpu(eb, &key, i);
7506
7507 if (key.type != BTRFS_EXTENT_DATA_KEY)
7508 continue;
7509
7510 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7511 /* filter out non qgroup-accountable extents */
7512 extent_type = btrfs_file_extent_type(eb, fi);
7513
7514 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7515 continue;
7516
7517 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7518 if (!bytenr)
7519 continue;
7520
7521 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7522
7523 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7524 root->objectid,
7525 bytenr, num_bytes,
7526 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7527 if (ret)
7528 return ret;
7529 }
7530 return 0;
7531 }
7532
7533 /*
7534 * Walk up the tree from the bottom, freeing leaves and any interior
7535 * nodes which have had all slots visited. If a node (leaf or
7536 * interior) is freed, the node above it will have it's slot
7537 * incremented. The root node will never be freed.
7538 *
7539 * At the end of this function, we should have a path which has all
7540 * slots incremented to the next position for a search. If we need to
7541 * read a new node it will be NULL and the node above it will have the
7542 * correct slot selected for a later read.
7543 *
7544 * If we increment the root nodes slot counter past the number of
7545 * elements, 1 is returned to signal completion of the search.
7546 */
7547 static int adjust_slots_upwards(struct btrfs_root *root,
7548 struct btrfs_path *path, int root_level)
7549 {
7550 int level = 0;
7551 int nr, slot;
7552 struct extent_buffer *eb;
7553
7554 if (root_level == 0)
7555 return 1;
7556
7557 while (level <= root_level) {
7558 eb = path->nodes[level];
7559 nr = btrfs_header_nritems(eb);
7560 path->slots[level]++;
7561 slot = path->slots[level];
7562 if (slot >= nr || level == 0) {
7563 /*
7564 * Don't free the root - we will detect this
7565 * condition after our loop and return a
7566 * positive value for caller to stop walking the tree.
7567 */
7568 if (level != root_level) {
7569 btrfs_tree_unlock_rw(eb, path->locks[level]);
7570 path->locks[level] = 0;
7571
7572 free_extent_buffer(eb);
7573 path->nodes[level] = NULL;
7574 path->slots[level] = 0;
7575 }
7576 } else {
7577 /*
7578 * We have a valid slot to walk back down
7579 * from. Stop here so caller can process these
7580 * new nodes.
7581 */
7582 break;
7583 }
7584
7585 level++;
7586 }
7587
7588 eb = path->nodes[root_level];
7589 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7590 return 1;
7591
7592 return 0;
7593 }
7594
7595 /*
7596 * root_eb is the subtree root and is locked before this function is called.
7597 */
7598 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7599 struct btrfs_root *root,
7600 struct extent_buffer *root_eb,
7601 u64 root_gen,
7602 int root_level)
7603 {
7604 int ret = 0;
7605 int level;
7606 struct extent_buffer *eb = root_eb;
7607 struct btrfs_path *path = NULL;
7608
7609 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7610 BUG_ON(root_eb == NULL);
7611
7612 if (!root->fs_info->quota_enabled)
7613 return 0;
7614
7615 if (!extent_buffer_uptodate(root_eb)) {
7616 ret = btrfs_read_buffer(root_eb, root_gen);
7617 if (ret)
7618 goto out;
7619 }
7620
7621 if (root_level == 0) {
7622 ret = account_leaf_items(trans, root, root_eb);
7623 goto out;
7624 }
7625
7626 path = btrfs_alloc_path();
7627 if (!path)
7628 return -ENOMEM;
7629
7630 /*
7631 * Walk down the tree. Missing extent blocks are filled in as
7632 * we go. Metadata is accounted every time we read a new
7633 * extent block.
7634 *
7635 * When we reach a leaf, we account for file extent items in it,
7636 * walk back up the tree (adjusting slot pointers as we go)
7637 * and restart the search process.
7638 */
7639 extent_buffer_get(root_eb); /* For path */
7640 path->nodes[root_level] = root_eb;
7641 path->slots[root_level] = 0;
7642 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7643 walk_down:
7644 level = root_level;
7645 while (level >= 0) {
7646 if (path->nodes[level] == NULL) {
7647 int parent_slot;
7648 u64 child_gen;
7649 u64 child_bytenr;
7650
7651 /* We need to get child blockptr/gen from
7652 * parent before we can read it. */
7653 eb = path->nodes[level + 1];
7654 parent_slot = path->slots[level + 1];
7655 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7656 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7657
7658 eb = read_tree_block(root, child_bytenr, child_gen);
7659 if (!eb || !extent_buffer_uptodate(eb)) {
7660 ret = -EIO;
7661 goto out;
7662 }
7663
7664 path->nodes[level] = eb;
7665 path->slots[level] = 0;
7666
7667 btrfs_tree_read_lock(eb);
7668 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7669 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7670
7671 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7672 root->objectid,
7673 child_bytenr,
7674 root->nodesize,
7675 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7676 0);
7677 if (ret)
7678 goto out;
7679
7680 }
7681
7682 if (level == 0) {
7683 ret = account_leaf_items(trans, root, path->nodes[level]);
7684 if (ret)
7685 goto out;
7686
7687 /* Nonzero return here means we completed our search */
7688 ret = adjust_slots_upwards(root, path, root_level);
7689 if (ret)
7690 break;
7691
7692 /* Restart search with new slots */
7693 goto walk_down;
7694 }
7695
7696 level--;
7697 }
7698
7699 ret = 0;
7700 out:
7701 btrfs_free_path(path);
7702
7703 return ret;
7704 }
7705
7706 /*
7707 * helper to process tree block while walking down the tree.
7708 *
7709 * when wc->stage == UPDATE_BACKREF, this function updates
7710 * back refs for pointers in the block.
7711 *
7712 * NOTE: return value 1 means we should stop walking down.
7713 */
7714 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7715 struct btrfs_root *root,
7716 struct btrfs_path *path,
7717 struct walk_control *wc, int lookup_info)
7718 {
7719 int level = wc->level;
7720 struct extent_buffer *eb = path->nodes[level];
7721 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7722 int ret;
7723
7724 if (wc->stage == UPDATE_BACKREF &&
7725 btrfs_header_owner(eb) != root->root_key.objectid)
7726 return 1;
7727
7728 /*
7729 * when reference count of tree block is 1, it won't increase
7730 * again. once full backref flag is set, we never clear it.
7731 */
7732 if (lookup_info &&
7733 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7734 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7735 BUG_ON(!path->locks[level]);
7736 ret = btrfs_lookup_extent_info(trans, root,
7737 eb->start, level, 1,
7738 &wc->refs[level],
7739 &wc->flags[level]);
7740 BUG_ON(ret == -ENOMEM);
7741 if (ret)
7742 return ret;
7743 BUG_ON(wc->refs[level] == 0);
7744 }
7745
7746 if (wc->stage == DROP_REFERENCE) {
7747 if (wc->refs[level] > 1)
7748 return 1;
7749
7750 if (path->locks[level] && !wc->keep_locks) {
7751 btrfs_tree_unlock_rw(eb, path->locks[level]);
7752 path->locks[level] = 0;
7753 }
7754 return 0;
7755 }
7756
7757 /* wc->stage == UPDATE_BACKREF */
7758 if (!(wc->flags[level] & flag)) {
7759 BUG_ON(!path->locks[level]);
7760 ret = btrfs_inc_ref(trans, root, eb, 1);
7761 BUG_ON(ret); /* -ENOMEM */
7762 ret = btrfs_dec_ref(trans, root, eb, 0);
7763 BUG_ON(ret); /* -ENOMEM */
7764 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7765 eb->len, flag,
7766 btrfs_header_level(eb), 0);
7767 BUG_ON(ret); /* -ENOMEM */
7768 wc->flags[level] |= flag;
7769 }
7770
7771 /*
7772 * the block is shared by multiple trees, so it's not good to
7773 * keep the tree lock
7774 */
7775 if (path->locks[level] && level > 0) {
7776 btrfs_tree_unlock_rw(eb, path->locks[level]);
7777 path->locks[level] = 0;
7778 }
7779 return 0;
7780 }
7781
7782 /*
7783 * helper to process tree block pointer.
7784 *
7785 * when wc->stage == DROP_REFERENCE, this function checks
7786 * reference count of the block pointed to. if the block
7787 * is shared and we need update back refs for the subtree
7788 * rooted at the block, this function changes wc->stage to
7789 * UPDATE_BACKREF. if the block is shared and there is no
7790 * need to update back, this function drops the reference
7791 * to the block.
7792 *
7793 * NOTE: return value 1 means we should stop walking down.
7794 */
7795 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7796 struct btrfs_root *root,
7797 struct btrfs_path *path,
7798 struct walk_control *wc, int *lookup_info)
7799 {
7800 u64 bytenr;
7801 u64 generation;
7802 u64 parent;
7803 u32 blocksize;
7804 struct btrfs_key key;
7805 struct extent_buffer *next;
7806 int level = wc->level;
7807 int reada = 0;
7808 int ret = 0;
7809 bool need_account = false;
7810
7811 generation = btrfs_node_ptr_generation(path->nodes[level],
7812 path->slots[level]);
7813 /*
7814 * if the lower level block was created before the snapshot
7815 * was created, we know there is no need to update back refs
7816 * for the subtree
7817 */
7818 if (wc->stage == UPDATE_BACKREF &&
7819 generation <= root->root_key.offset) {
7820 *lookup_info = 1;
7821 return 1;
7822 }
7823
7824 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7825 blocksize = root->nodesize;
7826
7827 next = btrfs_find_tree_block(root, bytenr);
7828 if (!next) {
7829 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7830 if (!next)
7831 return -ENOMEM;
7832 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7833 level - 1);
7834 reada = 1;
7835 }
7836 btrfs_tree_lock(next);
7837 btrfs_set_lock_blocking(next);
7838
7839 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7840 &wc->refs[level - 1],
7841 &wc->flags[level - 1]);
7842 if (ret < 0) {
7843 btrfs_tree_unlock(next);
7844 return ret;
7845 }
7846
7847 if (unlikely(wc->refs[level - 1] == 0)) {
7848 btrfs_err(root->fs_info, "Missing references.");
7849 BUG();
7850 }
7851 *lookup_info = 0;
7852
7853 if (wc->stage == DROP_REFERENCE) {
7854 if (wc->refs[level - 1] > 1) {
7855 need_account = true;
7856 if (level == 1 &&
7857 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7858 goto skip;
7859
7860 if (!wc->update_ref ||
7861 generation <= root->root_key.offset)
7862 goto skip;
7863
7864 btrfs_node_key_to_cpu(path->nodes[level], &key,
7865 path->slots[level]);
7866 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7867 if (ret < 0)
7868 goto skip;
7869
7870 wc->stage = UPDATE_BACKREF;
7871 wc->shared_level = level - 1;
7872 }
7873 } else {
7874 if (level == 1 &&
7875 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7876 goto skip;
7877 }
7878
7879 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7880 btrfs_tree_unlock(next);
7881 free_extent_buffer(next);
7882 next = NULL;
7883 *lookup_info = 1;
7884 }
7885
7886 if (!next) {
7887 if (reada && level == 1)
7888 reada_walk_down(trans, root, wc, path);
7889 next = read_tree_block(root, bytenr, generation);
7890 if (!next || !extent_buffer_uptodate(next)) {
7891 free_extent_buffer(next);
7892 return -EIO;
7893 }
7894 btrfs_tree_lock(next);
7895 btrfs_set_lock_blocking(next);
7896 }
7897
7898 level--;
7899 BUG_ON(level != btrfs_header_level(next));
7900 path->nodes[level] = next;
7901 path->slots[level] = 0;
7902 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7903 wc->level = level;
7904 if (wc->level == 1)
7905 wc->reada_slot = 0;
7906 return 0;
7907 skip:
7908 wc->refs[level - 1] = 0;
7909 wc->flags[level - 1] = 0;
7910 if (wc->stage == DROP_REFERENCE) {
7911 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7912 parent = path->nodes[level]->start;
7913 } else {
7914 BUG_ON(root->root_key.objectid !=
7915 btrfs_header_owner(path->nodes[level]));
7916 parent = 0;
7917 }
7918
7919 if (need_account) {
7920 ret = account_shared_subtree(trans, root, next,
7921 generation, level - 1);
7922 if (ret) {
7923 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7924 "%d accounting shared subtree. Quota "
7925 "is out of sync, rescan required.\n",
7926 root->fs_info->sb->s_id, ret);
7927 }
7928 }
7929 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7930 root->root_key.objectid, level - 1, 0, 0);
7931 BUG_ON(ret); /* -ENOMEM */
7932 }
7933 btrfs_tree_unlock(next);
7934 free_extent_buffer(next);
7935 *lookup_info = 1;
7936 return 1;
7937 }
7938
7939 /*
7940 * helper to process tree block while walking up the tree.
7941 *
7942 * when wc->stage == DROP_REFERENCE, this function drops
7943 * reference count on the block.
7944 *
7945 * when wc->stage == UPDATE_BACKREF, this function changes
7946 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7947 * to UPDATE_BACKREF previously while processing the block.
7948 *
7949 * NOTE: return value 1 means we should stop walking up.
7950 */
7951 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7952 struct btrfs_root *root,
7953 struct btrfs_path *path,
7954 struct walk_control *wc)
7955 {
7956 int ret;
7957 int level = wc->level;
7958 struct extent_buffer *eb = path->nodes[level];
7959 u64 parent = 0;
7960
7961 if (wc->stage == UPDATE_BACKREF) {
7962 BUG_ON(wc->shared_level < level);
7963 if (level < wc->shared_level)
7964 goto out;
7965
7966 ret = find_next_key(path, level + 1, &wc->update_progress);
7967 if (ret > 0)
7968 wc->update_ref = 0;
7969
7970 wc->stage = DROP_REFERENCE;
7971 wc->shared_level = -1;
7972 path->slots[level] = 0;
7973
7974 /*
7975 * check reference count again if the block isn't locked.
7976 * we should start walking down the tree again if reference
7977 * count is one.
7978 */
7979 if (!path->locks[level]) {
7980 BUG_ON(level == 0);
7981 btrfs_tree_lock(eb);
7982 btrfs_set_lock_blocking(eb);
7983 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7984
7985 ret = btrfs_lookup_extent_info(trans, root,
7986 eb->start, level, 1,
7987 &wc->refs[level],
7988 &wc->flags[level]);
7989 if (ret < 0) {
7990 btrfs_tree_unlock_rw(eb, path->locks[level]);
7991 path->locks[level] = 0;
7992 return ret;
7993 }
7994 BUG_ON(wc->refs[level] == 0);
7995 if (wc->refs[level] == 1) {
7996 btrfs_tree_unlock_rw(eb, path->locks[level]);
7997 path->locks[level] = 0;
7998 return 1;
7999 }
8000 }
8001 }
8002
8003 /* wc->stage == DROP_REFERENCE */
8004 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8005
8006 if (wc->refs[level] == 1) {
8007 if (level == 0) {
8008 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8009 ret = btrfs_dec_ref(trans, root, eb, 1);
8010 else
8011 ret = btrfs_dec_ref(trans, root, eb, 0);
8012 BUG_ON(ret); /* -ENOMEM */
8013 ret = account_leaf_items(trans, root, eb);
8014 if (ret) {
8015 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8016 "%d accounting leaf items. Quota "
8017 "is out of sync, rescan required.\n",
8018 root->fs_info->sb->s_id, ret);
8019 }
8020 }
8021 /* make block locked assertion in clean_tree_block happy */
8022 if (!path->locks[level] &&
8023 btrfs_header_generation(eb) == trans->transid) {
8024 btrfs_tree_lock(eb);
8025 btrfs_set_lock_blocking(eb);
8026 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8027 }
8028 clean_tree_block(trans, root, eb);
8029 }
8030
8031 if (eb == root->node) {
8032 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8033 parent = eb->start;
8034 else
8035 BUG_ON(root->root_key.objectid !=
8036 btrfs_header_owner(eb));
8037 } else {
8038 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8039 parent = path->nodes[level + 1]->start;
8040 else
8041 BUG_ON(root->root_key.objectid !=
8042 btrfs_header_owner(path->nodes[level + 1]));
8043 }
8044
8045 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8046 out:
8047 wc->refs[level] = 0;
8048 wc->flags[level] = 0;
8049 return 0;
8050 }
8051
8052 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8053 struct btrfs_root *root,
8054 struct btrfs_path *path,
8055 struct walk_control *wc)
8056 {
8057 int level = wc->level;
8058 int lookup_info = 1;
8059 int ret;
8060
8061 while (level >= 0) {
8062 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8063 if (ret > 0)
8064 break;
8065
8066 if (level == 0)
8067 break;
8068
8069 if (path->slots[level] >=
8070 btrfs_header_nritems(path->nodes[level]))
8071 break;
8072
8073 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8074 if (ret > 0) {
8075 path->slots[level]++;
8076 continue;
8077 } else if (ret < 0)
8078 return ret;
8079 level = wc->level;
8080 }
8081 return 0;
8082 }
8083
8084 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8085 struct btrfs_root *root,
8086 struct btrfs_path *path,
8087 struct walk_control *wc, int max_level)
8088 {
8089 int level = wc->level;
8090 int ret;
8091
8092 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8093 while (level < max_level && path->nodes[level]) {
8094 wc->level = level;
8095 if (path->slots[level] + 1 <
8096 btrfs_header_nritems(path->nodes[level])) {
8097 path->slots[level]++;
8098 return 0;
8099 } else {
8100 ret = walk_up_proc(trans, root, path, wc);
8101 if (ret > 0)
8102 return 0;
8103
8104 if (path->locks[level]) {
8105 btrfs_tree_unlock_rw(path->nodes[level],
8106 path->locks[level]);
8107 path->locks[level] = 0;
8108 }
8109 free_extent_buffer(path->nodes[level]);
8110 path->nodes[level] = NULL;
8111 level++;
8112 }
8113 }
8114 return 1;
8115 }
8116
8117 /*
8118 * drop a subvolume tree.
8119 *
8120 * this function traverses the tree freeing any blocks that only
8121 * referenced by the tree.
8122 *
8123 * when a shared tree block is found. this function decreases its
8124 * reference count by one. if update_ref is true, this function
8125 * also make sure backrefs for the shared block and all lower level
8126 * blocks are properly updated.
8127 *
8128 * If called with for_reloc == 0, may exit early with -EAGAIN
8129 */
8130 int btrfs_drop_snapshot(struct btrfs_root *root,
8131 struct btrfs_block_rsv *block_rsv, int update_ref,
8132 int for_reloc)
8133 {
8134 struct btrfs_path *path;
8135 struct btrfs_trans_handle *trans;
8136 struct btrfs_root *tree_root = root->fs_info->tree_root;
8137 struct btrfs_root_item *root_item = &root->root_item;
8138 struct walk_control *wc;
8139 struct btrfs_key key;
8140 int err = 0;
8141 int ret;
8142 int level;
8143 bool root_dropped = false;
8144
8145 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8146
8147 path = btrfs_alloc_path();
8148 if (!path) {
8149 err = -ENOMEM;
8150 goto out;
8151 }
8152
8153 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8154 if (!wc) {
8155 btrfs_free_path(path);
8156 err = -ENOMEM;
8157 goto out;
8158 }
8159
8160 trans = btrfs_start_transaction(tree_root, 0);
8161 if (IS_ERR(trans)) {
8162 err = PTR_ERR(trans);
8163 goto out_free;
8164 }
8165
8166 if (block_rsv)
8167 trans->block_rsv = block_rsv;
8168
8169 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8170 level = btrfs_header_level(root->node);
8171 path->nodes[level] = btrfs_lock_root_node(root);
8172 btrfs_set_lock_blocking(path->nodes[level]);
8173 path->slots[level] = 0;
8174 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8175 memset(&wc->update_progress, 0,
8176 sizeof(wc->update_progress));
8177 } else {
8178 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8179 memcpy(&wc->update_progress, &key,
8180 sizeof(wc->update_progress));
8181
8182 level = root_item->drop_level;
8183 BUG_ON(level == 0);
8184 path->lowest_level = level;
8185 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8186 path->lowest_level = 0;
8187 if (ret < 0) {
8188 err = ret;
8189 goto out_end_trans;
8190 }
8191 WARN_ON(ret > 0);
8192
8193 /*
8194 * unlock our path, this is safe because only this
8195 * function is allowed to delete this snapshot
8196 */
8197 btrfs_unlock_up_safe(path, 0);
8198
8199 level = btrfs_header_level(root->node);
8200 while (1) {
8201 btrfs_tree_lock(path->nodes[level]);
8202 btrfs_set_lock_blocking(path->nodes[level]);
8203 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8204
8205 ret = btrfs_lookup_extent_info(trans, root,
8206 path->nodes[level]->start,
8207 level, 1, &wc->refs[level],
8208 &wc->flags[level]);
8209 if (ret < 0) {
8210 err = ret;
8211 goto out_end_trans;
8212 }
8213 BUG_ON(wc->refs[level] == 0);
8214
8215 if (level == root_item->drop_level)
8216 break;
8217
8218 btrfs_tree_unlock(path->nodes[level]);
8219 path->locks[level] = 0;
8220 WARN_ON(wc->refs[level] != 1);
8221 level--;
8222 }
8223 }
8224
8225 wc->level = level;
8226 wc->shared_level = -1;
8227 wc->stage = DROP_REFERENCE;
8228 wc->update_ref = update_ref;
8229 wc->keep_locks = 0;
8230 wc->for_reloc = for_reloc;
8231 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8232
8233 while (1) {
8234
8235 ret = walk_down_tree(trans, root, path, wc);
8236 if (ret < 0) {
8237 err = ret;
8238 break;
8239 }
8240
8241 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8242 if (ret < 0) {
8243 err = ret;
8244 break;
8245 }
8246
8247 if (ret > 0) {
8248 BUG_ON(wc->stage != DROP_REFERENCE);
8249 break;
8250 }
8251
8252 if (wc->stage == DROP_REFERENCE) {
8253 level = wc->level;
8254 btrfs_node_key(path->nodes[level],
8255 &root_item->drop_progress,
8256 path->slots[level]);
8257 root_item->drop_level = level;
8258 }
8259
8260 BUG_ON(wc->level == 0);
8261 if (btrfs_should_end_transaction(trans, tree_root) ||
8262 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8263 ret = btrfs_update_root(trans, tree_root,
8264 &root->root_key,
8265 root_item);
8266 if (ret) {
8267 btrfs_abort_transaction(trans, tree_root, ret);
8268 err = ret;
8269 goto out_end_trans;
8270 }
8271
8272 /*
8273 * Qgroup update accounting is run from
8274 * delayed ref handling. This usually works
8275 * out because delayed refs are normally the
8276 * only way qgroup updates are added. However,
8277 * we may have added updates during our tree
8278 * walk so run qgroups here to make sure we
8279 * don't lose any updates.
8280 */
8281 ret = btrfs_delayed_qgroup_accounting(trans,
8282 root->fs_info);
8283 if (ret)
8284 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8285 "running qgroup updates "
8286 "during snapshot delete. "
8287 "Quota is out of sync, "
8288 "rescan required.\n", ret);
8289
8290 btrfs_end_transaction_throttle(trans, tree_root);
8291 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8292 pr_debug("BTRFS: drop snapshot early exit\n");
8293 err = -EAGAIN;
8294 goto out_free;
8295 }
8296
8297 trans = btrfs_start_transaction(tree_root, 0);
8298 if (IS_ERR(trans)) {
8299 err = PTR_ERR(trans);
8300 goto out_free;
8301 }
8302 if (block_rsv)
8303 trans->block_rsv = block_rsv;
8304 }
8305 }
8306 btrfs_release_path(path);
8307 if (err)
8308 goto out_end_trans;
8309
8310 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8311 if (ret) {
8312 btrfs_abort_transaction(trans, tree_root, ret);
8313 goto out_end_trans;
8314 }
8315
8316 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8317 ret = btrfs_find_root(tree_root, &root->root_key, path,
8318 NULL, NULL);
8319 if (ret < 0) {
8320 btrfs_abort_transaction(trans, tree_root, ret);
8321 err = ret;
8322 goto out_end_trans;
8323 } else if (ret > 0) {
8324 /* if we fail to delete the orphan item this time
8325 * around, it'll get picked up the next time.
8326 *
8327 * The most common failure here is just -ENOENT.
8328 */
8329 btrfs_del_orphan_item(trans, tree_root,
8330 root->root_key.objectid);
8331 }
8332 }
8333
8334 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8335 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8336 } else {
8337 free_extent_buffer(root->node);
8338 free_extent_buffer(root->commit_root);
8339 btrfs_put_fs_root(root);
8340 }
8341 root_dropped = true;
8342 out_end_trans:
8343 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8344 if (ret)
8345 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8346 "running qgroup updates "
8347 "during snapshot delete. "
8348 "Quota is out of sync, "
8349 "rescan required.\n", ret);
8350
8351 btrfs_end_transaction_throttle(trans, tree_root);
8352 out_free:
8353 kfree(wc);
8354 btrfs_free_path(path);
8355 out:
8356 /*
8357 * So if we need to stop dropping the snapshot for whatever reason we
8358 * need to make sure to add it back to the dead root list so that we
8359 * keep trying to do the work later. This also cleans up roots if we
8360 * don't have it in the radix (like when we recover after a power fail
8361 * or unmount) so we don't leak memory.
8362 */
8363 if (!for_reloc && root_dropped == false)
8364 btrfs_add_dead_root(root);
8365 if (err && err != -EAGAIN)
8366 btrfs_std_error(root->fs_info, err);
8367 return err;
8368 }
8369
8370 /*
8371 * drop subtree rooted at tree block 'node'.
8372 *
8373 * NOTE: this function will unlock and release tree block 'node'
8374 * only used by relocation code
8375 */
8376 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8377 struct btrfs_root *root,
8378 struct extent_buffer *node,
8379 struct extent_buffer *parent)
8380 {
8381 struct btrfs_path *path;
8382 struct walk_control *wc;
8383 int level;
8384 int parent_level;
8385 int ret = 0;
8386 int wret;
8387
8388 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8389
8390 path = btrfs_alloc_path();
8391 if (!path)
8392 return -ENOMEM;
8393
8394 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8395 if (!wc) {
8396 btrfs_free_path(path);
8397 return -ENOMEM;
8398 }
8399
8400 btrfs_assert_tree_locked(parent);
8401 parent_level = btrfs_header_level(parent);
8402 extent_buffer_get(parent);
8403 path->nodes[parent_level] = parent;
8404 path->slots[parent_level] = btrfs_header_nritems(parent);
8405
8406 btrfs_assert_tree_locked(node);
8407 level = btrfs_header_level(node);
8408 path->nodes[level] = node;
8409 path->slots[level] = 0;
8410 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8411
8412 wc->refs[parent_level] = 1;
8413 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8414 wc->level = level;
8415 wc->shared_level = -1;
8416 wc->stage = DROP_REFERENCE;
8417 wc->update_ref = 0;
8418 wc->keep_locks = 1;
8419 wc->for_reloc = 1;
8420 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8421
8422 while (1) {
8423 wret = walk_down_tree(trans, root, path, wc);
8424 if (wret < 0) {
8425 ret = wret;
8426 break;
8427 }
8428
8429 wret = walk_up_tree(trans, root, path, wc, parent_level);
8430 if (wret < 0)
8431 ret = wret;
8432 if (wret != 0)
8433 break;
8434 }
8435
8436 kfree(wc);
8437 btrfs_free_path(path);
8438 return ret;
8439 }
8440
8441 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8442 {
8443 u64 num_devices;
8444 u64 stripped;
8445
8446 /*
8447 * if restripe for this chunk_type is on pick target profile and
8448 * return, otherwise do the usual balance
8449 */
8450 stripped = get_restripe_target(root->fs_info, flags);
8451 if (stripped)
8452 return extended_to_chunk(stripped);
8453
8454 num_devices = root->fs_info->fs_devices->rw_devices;
8455
8456 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8457 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8458 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8459
8460 if (num_devices == 1) {
8461 stripped |= BTRFS_BLOCK_GROUP_DUP;
8462 stripped = flags & ~stripped;
8463
8464 /* turn raid0 into single device chunks */
8465 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8466 return stripped;
8467
8468 /* turn mirroring into duplication */
8469 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8470 BTRFS_BLOCK_GROUP_RAID10))
8471 return stripped | BTRFS_BLOCK_GROUP_DUP;
8472 } else {
8473 /* they already had raid on here, just return */
8474 if (flags & stripped)
8475 return flags;
8476
8477 stripped |= BTRFS_BLOCK_GROUP_DUP;
8478 stripped = flags & ~stripped;
8479
8480 /* switch duplicated blocks with raid1 */
8481 if (flags & BTRFS_BLOCK_GROUP_DUP)
8482 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8483
8484 /* this is drive concat, leave it alone */
8485 }
8486
8487 return flags;
8488 }
8489
8490 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8491 {
8492 struct btrfs_space_info *sinfo = cache->space_info;
8493 u64 num_bytes;
8494 u64 min_allocable_bytes;
8495 int ret = -ENOSPC;
8496
8497
8498 /*
8499 * We need some metadata space and system metadata space for
8500 * allocating chunks in some corner cases until we force to set
8501 * it to be readonly.
8502 */
8503 if ((sinfo->flags &
8504 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8505 !force)
8506 min_allocable_bytes = 1 * 1024 * 1024;
8507 else
8508 min_allocable_bytes = 0;
8509
8510 spin_lock(&sinfo->lock);
8511 spin_lock(&cache->lock);
8512
8513 if (cache->ro) {
8514 ret = 0;
8515 goto out;
8516 }
8517
8518 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8519 cache->bytes_super - btrfs_block_group_used(&cache->item);
8520
8521 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8522 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8523 min_allocable_bytes <= sinfo->total_bytes) {
8524 sinfo->bytes_readonly += num_bytes;
8525 cache->ro = 1;
8526 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8527 ret = 0;
8528 }
8529 out:
8530 spin_unlock(&cache->lock);
8531 spin_unlock(&sinfo->lock);
8532 return ret;
8533 }
8534
8535 int btrfs_set_block_group_ro(struct btrfs_root *root,
8536 struct btrfs_block_group_cache *cache)
8537
8538 {
8539 struct btrfs_trans_handle *trans;
8540 u64 alloc_flags;
8541 int ret;
8542
8543 BUG_ON(cache->ro);
8544
8545 trans = btrfs_join_transaction(root);
8546 if (IS_ERR(trans))
8547 return PTR_ERR(trans);
8548
8549 alloc_flags = update_block_group_flags(root, cache->flags);
8550 if (alloc_flags != cache->flags) {
8551 ret = do_chunk_alloc(trans, root, alloc_flags,
8552 CHUNK_ALLOC_FORCE);
8553 if (ret < 0)
8554 goto out;
8555 }
8556
8557 ret = set_block_group_ro(cache, 0);
8558 if (!ret)
8559 goto out;
8560 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8561 ret = do_chunk_alloc(trans, root, alloc_flags,
8562 CHUNK_ALLOC_FORCE);
8563 if (ret < 0)
8564 goto out;
8565 ret = set_block_group_ro(cache, 0);
8566 out:
8567 btrfs_end_transaction(trans, root);
8568 return ret;
8569 }
8570
8571 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8572 struct btrfs_root *root, u64 type)
8573 {
8574 u64 alloc_flags = get_alloc_profile(root, type);
8575 return do_chunk_alloc(trans, root, alloc_flags,
8576 CHUNK_ALLOC_FORCE);
8577 }
8578
8579 /*
8580 * helper to account the unused space of all the readonly block group in the
8581 * space_info. takes mirrors into account.
8582 */
8583 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8584 {
8585 struct btrfs_block_group_cache *block_group;
8586 u64 free_bytes = 0;
8587 int factor;
8588
8589 /* It's df, we don't care if it's racey */
8590 if (list_empty(&sinfo->ro_bgs))
8591 return 0;
8592
8593 spin_lock(&sinfo->lock);
8594 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8595 spin_lock(&block_group->lock);
8596
8597 if (!block_group->ro) {
8598 spin_unlock(&block_group->lock);
8599 continue;
8600 }
8601
8602 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8603 BTRFS_BLOCK_GROUP_RAID10 |
8604 BTRFS_BLOCK_GROUP_DUP))
8605 factor = 2;
8606 else
8607 factor = 1;
8608
8609 free_bytes += (block_group->key.offset -
8610 btrfs_block_group_used(&block_group->item)) *
8611 factor;
8612
8613 spin_unlock(&block_group->lock);
8614 }
8615 spin_unlock(&sinfo->lock);
8616
8617 return free_bytes;
8618 }
8619
8620 void btrfs_set_block_group_rw(struct btrfs_root *root,
8621 struct btrfs_block_group_cache *cache)
8622 {
8623 struct btrfs_space_info *sinfo = cache->space_info;
8624 u64 num_bytes;
8625
8626 BUG_ON(!cache->ro);
8627
8628 spin_lock(&sinfo->lock);
8629 spin_lock(&cache->lock);
8630 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8631 cache->bytes_super - btrfs_block_group_used(&cache->item);
8632 sinfo->bytes_readonly -= num_bytes;
8633 cache->ro = 0;
8634 list_del_init(&cache->ro_list);
8635 spin_unlock(&cache->lock);
8636 spin_unlock(&sinfo->lock);
8637 }
8638
8639 /*
8640 * checks to see if its even possible to relocate this block group.
8641 *
8642 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8643 * ok to go ahead and try.
8644 */
8645 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8646 {
8647 struct btrfs_block_group_cache *block_group;
8648 struct btrfs_space_info *space_info;
8649 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8650 struct btrfs_device *device;
8651 struct btrfs_trans_handle *trans;
8652 u64 min_free;
8653 u64 dev_min = 1;
8654 u64 dev_nr = 0;
8655 u64 target;
8656 int index;
8657 int full = 0;
8658 int ret = 0;
8659
8660 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8661
8662 /* odd, couldn't find the block group, leave it alone */
8663 if (!block_group)
8664 return -1;
8665
8666 min_free = btrfs_block_group_used(&block_group->item);
8667
8668 /* no bytes used, we're good */
8669 if (!min_free)
8670 goto out;
8671
8672 space_info = block_group->space_info;
8673 spin_lock(&space_info->lock);
8674
8675 full = space_info->full;
8676
8677 /*
8678 * if this is the last block group we have in this space, we can't
8679 * relocate it unless we're able to allocate a new chunk below.
8680 *
8681 * Otherwise, we need to make sure we have room in the space to handle
8682 * all of the extents from this block group. If we can, we're good
8683 */
8684 if ((space_info->total_bytes != block_group->key.offset) &&
8685 (space_info->bytes_used + space_info->bytes_reserved +
8686 space_info->bytes_pinned + space_info->bytes_readonly +
8687 min_free < space_info->total_bytes)) {
8688 spin_unlock(&space_info->lock);
8689 goto out;
8690 }
8691 spin_unlock(&space_info->lock);
8692
8693 /*
8694 * ok we don't have enough space, but maybe we have free space on our
8695 * devices to allocate new chunks for relocation, so loop through our
8696 * alloc devices and guess if we have enough space. if this block
8697 * group is going to be restriped, run checks against the target
8698 * profile instead of the current one.
8699 */
8700 ret = -1;
8701
8702 /*
8703 * index:
8704 * 0: raid10
8705 * 1: raid1
8706 * 2: dup
8707 * 3: raid0
8708 * 4: single
8709 */
8710 target = get_restripe_target(root->fs_info, block_group->flags);
8711 if (target) {
8712 index = __get_raid_index(extended_to_chunk(target));
8713 } else {
8714 /*
8715 * this is just a balance, so if we were marked as full
8716 * we know there is no space for a new chunk
8717 */
8718 if (full)
8719 goto out;
8720
8721 index = get_block_group_index(block_group);
8722 }
8723
8724 if (index == BTRFS_RAID_RAID10) {
8725 dev_min = 4;
8726 /* Divide by 2 */
8727 min_free >>= 1;
8728 } else if (index == BTRFS_RAID_RAID1) {
8729 dev_min = 2;
8730 } else if (index == BTRFS_RAID_DUP) {
8731 /* Multiply by 2 */
8732 min_free <<= 1;
8733 } else if (index == BTRFS_RAID_RAID0) {
8734 dev_min = fs_devices->rw_devices;
8735 do_div(min_free, dev_min);
8736 }
8737
8738 /* We need to do this so that we can look at pending chunks */
8739 trans = btrfs_join_transaction(root);
8740 if (IS_ERR(trans)) {
8741 ret = PTR_ERR(trans);
8742 goto out;
8743 }
8744
8745 mutex_lock(&root->fs_info->chunk_mutex);
8746 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8747 u64 dev_offset;
8748
8749 /*
8750 * check to make sure we can actually find a chunk with enough
8751 * space to fit our block group in.
8752 */
8753 if (device->total_bytes > device->bytes_used + min_free &&
8754 !device->is_tgtdev_for_dev_replace) {
8755 ret = find_free_dev_extent(trans, device, min_free,
8756 &dev_offset, NULL);
8757 if (!ret)
8758 dev_nr++;
8759
8760 if (dev_nr >= dev_min)
8761 break;
8762
8763 ret = -1;
8764 }
8765 }
8766 mutex_unlock(&root->fs_info->chunk_mutex);
8767 btrfs_end_transaction(trans, root);
8768 out:
8769 btrfs_put_block_group(block_group);
8770 return ret;
8771 }
8772
8773 static int find_first_block_group(struct btrfs_root *root,
8774 struct btrfs_path *path, struct btrfs_key *key)
8775 {
8776 int ret = 0;
8777 struct btrfs_key found_key;
8778 struct extent_buffer *leaf;
8779 int slot;
8780
8781 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8782 if (ret < 0)
8783 goto out;
8784
8785 while (1) {
8786 slot = path->slots[0];
8787 leaf = path->nodes[0];
8788 if (slot >= btrfs_header_nritems(leaf)) {
8789 ret = btrfs_next_leaf(root, path);
8790 if (ret == 0)
8791 continue;
8792 if (ret < 0)
8793 goto out;
8794 break;
8795 }
8796 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8797
8798 if (found_key.objectid >= key->objectid &&
8799 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8800 ret = 0;
8801 goto out;
8802 }
8803 path->slots[0]++;
8804 }
8805 out:
8806 return ret;
8807 }
8808
8809 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8810 {
8811 struct btrfs_block_group_cache *block_group;
8812 u64 last = 0;
8813
8814 while (1) {
8815 struct inode *inode;
8816
8817 block_group = btrfs_lookup_first_block_group(info, last);
8818 while (block_group) {
8819 spin_lock(&block_group->lock);
8820 if (block_group->iref)
8821 break;
8822 spin_unlock(&block_group->lock);
8823 block_group = next_block_group(info->tree_root,
8824 block_group);
8825 }
8826 if (!block_group) {
8827 if (last == 0)
8828 break;
8829 last = 0;
8830 continue;
8831 }
8832
8833 inode = block_group->inode;
8834 block_group->iref = 0;
8835 block_group->inode = NULL;
8836 spin_unlock(&block_group->lock);
8837 iput(inode);
8838 last = block_group->key.objectid + block_group->key.offset;
8839 btrfs_put_block_group(block_group);
8840 }
8841 }
8842
8843 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8844 {
8845 struct btrfs_block_group_cache *block_group;
8846 struct btrfs_space_info *space_info;
8847 struct btrfs_caching_control *caching_ctl;
8848 struct rb_node *n;
8849
8850 down_write(&info->commit_root_sem);
8851 while (!list_empty(&info->caching_block_groups)) {
8852 caching_ctl = list_entry(info->caching_block_groups.next,
8853 struct btrfs_caching_control, list);
8854 list_del(&caching_ctl->list);
8855 put_caching_control(caching_ctl);
8856 }
8857 up_write(&info->commit_root_sem);
8858
8859 spin_lock(&info->unused_bgs_lock);
8860 while (!list_empty(&info->unused_bgs)) {
8861 block_group = list_first_entry(&info->unused_bgs,
8862 struct btrfs_block_group_cache,
8863 bg_list);
8864 list_del_init(&block_group->bg_list);
8865 btrfs_put_block_group(block_group);
8866 }
8867 spin_unlock(&info->unused_bgs_lock);
8868
8869 spin_lock(&info->block_group_cache_lock);
8870 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8871 block_group = rb_entry(n, struct btrfs_block_group_cache,
8872 cache_node);
8873 rb_erase(&block_group->cache_node,
8874 &info->block_group_cache_tree);
8875 spin_unlock(&info->block_group_cache_lock);
8876
8877 down_write(&block_group->space_info->groups_sem);
8878 list_del(&block_group->list);
8879 up_write(&block_group->space_info->groups_sem);
8880
8881 if (block_group->cached == BTRFS_CACHE_STARTED)
8882 wait_block_group_cache_done(block_group);
8883
8884 /*
8885 * We haven't cached this block group, which means we could
8886 * possibly have excluded extents on this block group.
8887 */
8888 if (block_group->cached == BTRFS_CACHE_NO ||
8889 block_group->cached == BTRFS_CACHE_ERROR)
8890 free_excluded_extents(info->extent_root, block_group);
8891
8892 btrfs_remove_free_space_cache(block_group);
8893 btrfs_put_block_group(block_group);
8894
8895 spin_lock(&info->block_group_cache_lock);
8896 }
8897 spin_unlock(&info->block_group_cache_lock);
8898
8899 /* now that all the block groups are freed, go through and
8900 * free all the space_info structs. This is only called during
8901 * the final stages of unmount, and so we know nobody is
8902 * using them. We call synchronize_rcu() once before we start,
8903 * just to be on the safe side.
8904 */
8905 synchronize_rcu();
8906
8907 release_global_block_rsv(info);
8908
8909 while (!list_empty(&info->space_info)) {
8910 int i;
8911
8912 space_info = list_entry(info->space_info.next,
8913 struct btrfs_space_info,
8914 list);
8915 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8916 if (WARN_ON(space_info->bytes_pinned > 0 ||
8917 space_info->bytes_reserved > 0 ||
8918 space_info->bytes_may_use > 0)) {
8919 dump_space_info(space_info, 0, 0);
8920 }
8921 }
8922 list_del(&space_info->list);
8923 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8924 struct kobject *kobj;
8925 kobj = space_info->block_group_kobjs[i];
8926 space_info->block_group_kobjs[i] = NULL;
8927 if (kobj) {
8928 kobject_del(kobj);
8929 kobject_put(kobj);
8930 }
8931 }
8932 kobject_del(&space_info->kobj);
8933 kobject_put(&space_info->kobj);
8934 }
8935 return 0;
8936 }
8937
8938 static void __link_block_group(struct btrfs_space_info *space_info,
8939 struct btrfs_block_group_cache *cache)
8940 {
8941 int index = get_block_group_index(cache);
8942 bool first = false;
8943
8944 down_write(&space_info->groups_sem);
8945 if (list_empty(&space_info->block_groups[index]))
8946 first = true;
8947 list_add_tail(&cache->list, &space_info->block_groups[index]);
8948 up_write(&space_info->groups_sem);
8949
8950 if (first) {
8951 struct raid_kobject *rkobj;
8952 int ret;
8953
8954 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8955 if (!rkobj)
8956 goto out_err;
8957 rkobj->raid_type = index;
8958 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8959 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8960 "%s", get_raid_name(index));
8961 if (ret) {
8962 kobject_put(&rkobj->kobj);
8963 goto out_err;
8964 }
8965 space_info->block_group_kobjs[index] = &rkobj->kobj;
8966 }
8967
8968 return;
8969 out_err:
8970 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8971 }
8972
8973 static struct btrfs_block_group_cache *
8974 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8975 {
8976 struct btrfs_block_group_cache *cache;
8977
8978 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8979 if (!cache)
8980 return NULL;
8981
8982 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8983 GFP_NOFS);
8984 if (!cache->free_space_ctl) {
8985 kfree(cache);
8986 return NULL;
8987 }
8988
8989 cache->key.objectid = start;
8990 cache->key.offset = size;
8991 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8992
8993 cache->sectorsize = root->sectorsize;
8994 cache->fs_info = root->fs_info;
8995 cache->full_stripe_len = btrfs_full_stripe_len(root,
8996 &root->fs_info->mapping_tree,
8997 start);
8998 atomic_set(&cache->count, 1);
8999 spin_lock_init(&cache->lock);
9000 init_rwsem(&cache->data_rwsem);
9001 INIT_LIST_HEAD(&cache->list);
9002 INIT_LIST_HEAD(&cache->cluster_list);
9003 INIT_LIST_HEAD(&cache->bg_list);
9004 INIT_LIST_HEAD(&cache->ro_list);
9005 btrfs_init_free_space_ctl(cache);
9006 atomic_set(&cache->trimming, 0);
9007
9008 return cache;
9009 }
9010
9011 int btrfs_read_block_groups(struct btrfs_root *root)
9012 {
9013 struct btrfs_path *path;
9014 int ret;
9015 struct btrfs_block_group_cache *cache;
9016 struct btrfs_fs_info *info = root->fs_info;
9017 struct btrfs_space_info *space_info;
9018 struct btrfs_key key;
9019 struct btrfs_key found_key;
9020 struct extent_buffer *leaf;
9021 int need_clear = 0;
9022 u64 cache_gen;
9023
9024 root = info->extent_root;
9025 key.objectid = 0;
9026 key.offset = 0;
9027 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9028 path = btrfs_alloc_path();
9029 if (!path)
9030 return -ENOMEM;
9031 path->reada = 1;
9032
9033 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9034 if (btrfs_test_opt(root, SPACE_CACHE) &&
9035 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9036 need_clear = 1;
9037 if (btrfs_test_opt(root, CLEAR_CACHE))
9038 need_clear = 1;
9039
9040 while (1) {
9041 ret = find_first_block_group(root, path, &key);
9042 if (ret > 0)
9043 break;
9044 if (ret != 0)
9045 goto error;
9046
9047 leaf = path->nodes[0];
9048 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9049
9050 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9051 found_key.offset);
9052 if (!cache) {
9053 ret = -ENOMEM;
9054 goto error;
9055 }
9056
9057 if (need_clear) {
9058 /*
9059 * When we mount with old space cache, we need to
9060 * set BTRFS_DC_CLEAR and set dirty flag.
9061 *
9062 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9063 * truncate the old free space cache inode and
9064 * setup a new one.
9065 * b) Setting 'dirty flag' makes sure that we flush
9066 * the new space cache info onto disk.
9067 */
9068 cache->disk_cache_state = BTRFS_DC_CLEAR;
9069 if (btrfs_test_opt(root, SPACE_CACHE))
9070 cache->dirty = 1;
9071 }
9072
9073 read_extent_buffer(leaf, &cache->item,
9074 btrfs_item_ptr_offset(leaf, path->slots[0]),
9075 sizeof(cache->item));
9076 cache->flags = btrfs_block_group_flags(&cache->item);
9077
9078 key.objectid = found_key.objectid + found_key.offset;
9079 btrfs_release_path(path);
9080
9081 /*
9082 * We need to exclude the super stripes now so that the space
9083 * info has super bytes accounted for, otherwise we'll think
9084 * we have more space than we actually do.
9085 */
9086 ret = exclude_super_stripes(root, cache);
9087 if (ret) {
9088 /*
9089 * We may have excluded something, so call this just in
9090 * case.
9091 */
9092 free_excluded_extents(root, cache);
9093 btrfs_put_block_group(cache);
9094 goto error;
9095 }
9096
9097 /*
9098 * check for two cases, either we are full, and therefore
9099 * don't need to bother with the caching work since we won't
9100 * find any space, or we are empty, and we can just add all
9101 * the space in and be done with it. This saves us _alot_ of
9102 * time, particularly in the full case.
9103 */
9104 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9105 cache->last_byte_to_unpin = (u64)-1;
9106 cache->cached = BTRFS_CACHE_FINISHED;
9107 free_excluded_extents(root, cache);
9108 } else if (btrfs_block_group_used(&cache->item) == 0) {
9109 cache->last_byte_to_unpin = (u64)-1;
9110 cache->cached = BTRFS_CACHE_FINISHED;
9111 add_new_free_space(cache, root->fs_info,
9112 found_key.objectid,
9113 found_key.objectid +
9114 found_key.offset);
9115 free_excluded_extents(root, cache);
9116 }
9117
9118 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9119 if (ret) {
9120 btrfs_remove_free_space_cache(cache);
9121 btrfs_put_block_group(cache);
9122 goto error;
9123 }
9124
9125 ret = update_space_info(info, cache->flags, found_key.offset,
9126 btrfs_block_group_used(&cache->item),
9127 &space_info);
9128 if (ret) {
9129 btrfs_remove_free_space_cache(cache);
9130 spin_lock(&info->block_group_cache_lock);
9131 rb_erase(&cache->cache_node,
9132 &info->block_group_cache_tree);
9133 spin_unlock(&info->block_group_cache_lock);
9134 btrfs_put_block_group(cache);
9135 goto error;
9136 }
9137
9138 cache->space_info = space_info;
9139 spin_lock(&cache->space_info->lock);
9140 cache->space_info->bytes_readonly += cache->bytes_super;
9141 spin_unlock(&cache->space_info->lock);
9142
9143 __link_block_group(space_info, cache);
9144
9145 set_avail_alloc_bits(root->fs_info, cache->flags);
9146 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9147 set_block_group_ro(cache, 1);
9148 } else if (btrfs_block_group_used(&cache->item) == 0) {
9149 spin_lock(&info->unused_bgs_lock);
9150 /* Should always be true but just in case. */
9151 if (list_empty(&cache->bg_list)) {
9152 btrfs_get_block_group(cache);
9153 list_add_tail(&cache->bg_list,
9154 &info->unused_bgs);
9155 }
9156 spin_unlock(&info->unused_bgs_lock);
9157 }
9158 }
9159
9160 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9161 if (!(get_alloc_profile(root, space_info->flags) &
9162 (BTRFS_BLOCK_GROUP_RAID10 |
9163 BTRFS_BLOCK_GROUP_RAID1 |
9164 BTRFS_BLOCK_GROUP_RAID5 |
9165 BTRFS_BLOCK_GROUP_RAID6 |
9166 BTRFS_BLOCK_GROUP_DUP)))
9167 continue;
9168 /*
9169 * avoid allocating from un-mirrored block group if there are
9170 * mirrored block groups.
9171 */
9172 list_for_each_entry(cache,
9173 &space_info->block_groups[BTRFS_RAID_RAID0],
9174 list)
9175 set_block_group_ro(cache, 1);
9176 list_for_each_entry(cache,
9177 &space_info->block_groups[BTRFS_RAID_SINGLE],
9178 list)
9179 set_block_group_ro(cache, 1);
9180 }
9181
9182 init_global_block_rsv(info);
9183 ret = 0;
9184 error:
9185 btrfs_free_path(path);
9186 return ret;
9187 }
9188
9189 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9190 struct btrfs_root *root)
9191 {
9192 struct btrfs_block_group_cache *block_group, *tmp;
9193 struct btrfs_root *extent_root = root->fs_info->extent_root;
9194 struct btrfs_block_group_item item;
9195 struct btrfs_key key;
9196 int ret = 0;
9197
9198 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9199 if (ret)
9200 goto next;
9201
9202 spin_lock(&block_group->lock);
9203 memcpy(&item, &block_group->item, sizeof(item));
9204 memcpy(&key, &block_group->key, sizeof(key));
9205 spin_unlock(&block_group->lock);
9206
9207 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9208 sizeof(item));
9209 if (ret)
9210 btrfs_abort_transaction(trans, extent_root, ret);
9211 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9212 key.objectid, key.offset);
9213 if (ret)
9214 btrfs_abort_transaction(trans, extent_root, ret);
9215 next:
9216 list_del_init(&block_group->bg_list);
9217 }
9218 }
9219
9220 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9221 struct btrfs_root *root, u64 bytes_used,
9222 u64 type, u64 chunk_objectid, u64 chunk_offset,
9223 u64 size)
9224 {
9225 int ret;
9226 struct btrfs_root *extent_root;
9227 struct btrfs_block_group_cache *cache;
9228
9229 extent_root = root->fs_info->extent_root;
9230
9231 btrfs_set_log_full_commit(root->fs_info, trans);
9232
9233 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9234 if (!cache)
9235 return -ENOMEM;
9236
9237 btrfs_set_block_group_used(&cache->item, bytes_used);
9238 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9239 btrfs_set_block_group_flags(&cache->item, type);
9240
9241 cache->flags = type;
9242 cache->last_byte_to_unpin = (u64)-1;
9243 cache->cached = BTRFS_CACHE_FINISHED;
9244 ret = exclude_super_stripes(root, cache);
9245 if (ret) {
9246 /*
9247 * We may have excluded something, so call this just in
9248 * case.
9249 */
9250 free_excluded_extents(root, cache);
9251 btrfs_put_block_group(cache);
9252 return ret;
9253 }
9254
9255 add_new_free_space(cache, root->fs_info, chunk_offset,
9256 chunk_offset + size);
9257
9258 free_excluded_extents(root, cache);
9259
9260 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9261 if (ret) {
9262 btrfs_remove_free_space_cache(cache);
9263 btrfs_put_block_group(cache);
9264 return ret;
9265 }
9266
9267 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9268 &cache->space_info);
9269 if (ret) {
9270 btrfs_remove_free_space_cache(cache);
9271 spin_lock(&root->fs_info->block_group_cache_lock);
9272 rb_erase(&cache->cache_node,
9273 &root->fs_info->block_group_cache_tree);
9274 spin_unlock(&root->fs_info->block_group_cache_lock);
9275 btrfs_put_block_group(cache);
9276 return ret;
9277 }
9278 update_global_block_rsv(root->fs_info);
9279
9280 spin_lock(&cache->space_info->lock);
9281 cache->space_info->bytes_readonly += cache->bytes_super;
9282 spin_unlock(&cache->space_info->lock);
9283
9284 __link_block_group(cache->space_info, cache);
9285
9286 list_add_tail(&cache->bg_list, &trans->new_bgs);
9287
9288 set_avail_alloc_bits(extent_root->fs_info, type);
9289
9290 return 0;
9291 }
9292
9293 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9294 {
9295 u64 extra_flags = chunk_to_extended(flags) &
9296 BTRFS_EXTENDED_PROFILE_MASK;
9297
9298 write_seqlock(&fs_info->profiles_lock);
9299 if (flags & BTRFS_BLOCK_GROUP_DATA)
9300 fs_info->avail_data_alloc_bits &= ~extra_flags;
9301 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9302 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9303 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9304 fs_info->avail_system_alloc_bits &= ~extra_flags;
9305 write_sequnlock(&fs_info->profiles_lock);
9306 }
9307
9308 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9309 struct btrfs_root *root, u64 group_start,
9310 struct extent_map *em)
9311 {
9312 struct btrfs_path *path;
9313 struct btrfs_block_group_cache *block_group;
9314 struct btrfs_free_cluster *cluster;
9315 struct btrfs_root *tree_root = root->fs_info->tree_root;
9316 struct btrfs_key key;
9317 struct inode *inode;
9318 struct kobject *kobj = NULL;
9319 int ret;
9320 int index;
9321 int factor;
9322 struct btrfs_caching_control *caching_ctl = NULL;
9323 bool remove_em;
9324
9325 root = root->fs_info->extent_root;
9326
9327 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9328 BUG_ON(!block_group);
9329 BUG_ON(!block_group->ro);
9330
9331 /*
9332 * Free the reserved super bytes from this block group before
9333 * remove it.
9334 */
9335 free_excluded_extents(root, block_group);
9336
9337 memcpy(&key, &block_group->key, sizeof(key));
9338 index = get_block_group_index(block_group);
9339 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9340 BTRFS_BLOCK_GROUP_RAID1 |
9341 BTRFS_BLOCK_GROUP_RAID10))
9342 factor = 2;
9343 else
9344 factor = 1;
9345
9346 /* make sure this block group isn't part of an allocation cluster */
9347 cluster = &root->fs_info->data_alloc_cluster;
9348 spin_lock(&cluster->refill_lock);
9349 btrfs_return_cluster_to_free_space(block_group, cluster);
9350 spin_unlock(&cluster->refill_lock);
9351
9352 /*
9353 * make sure this block group isn't part of a metadata
9354 * allocation cluster
9355 */
9356 cluster = &root->fs_info->meta_alloc_cluster;
9357 spin_lock(&cluster->refill_lock);
9358 btrfs_return_cluster_to_free_space(block_group, cluster);
9359 spin_unlock(&cluster->refill_lock);
9360
9361 path = btrfs_alloc_path();
9362 if (!path) {
9363 ret = -ENOMEM;
9364 goto out;
9365 }
9366
9367 inode = lookup_free_space_inode(tree_root, block_group, path);
9368 if (!IS_ERR(inode)) {
9369 ret = btrfs_orphan_add(trans, inode);
9370 if (ret) {
9371 btrfs_add_delayed_iput(inode);
9372 goto out;
9373 }
9374 clear_nlink(inode);
9375 /* One for the block groups ref */
9376 spin_lock(&block_group->lock);
9377 if (block_group->iref) {
9378 block_group->iref = 0;
9379 block_group->inode = NULL;
9380 spin_unlock(&block_group->lock);
9381 iput(inode);
9382 } else {
9383 spin_unlock(&block_group->lock);
9384 }
9385 /* One for our lookup ref */
9386 btrfs_add_delayed_iput(inode);
9387 }
9388
9389 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9390 key.offset = block_group->key.objectid;
9391 key.type = 0;
9392
9393 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9394 if (ret < 0)
9395 goto out;
9396 if (ret > 0)
9397 btrfs_release_path(path);
9398 if (ret == 0) {
9399 ret = btrfs_del_item(trans, tree_root, path);
9400 if (ret)
9401 goto out;
9402 btrfs_release_path(path);
9403 }
9404
9405 spin_lock(&root->fs_info->block_group_cache_lock);
9406 rb_erase(&block_group->cache_node,
9407 &root->fs_info->block_group_cache_tree);
9408 RB_CLEAR_NODE(&block_group->cache_node);
9409
9410 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9411 root->fs_info->first_logical_byte = (u64)-1;
9412 spin_unlock(&root->fs_info->block_group_cache_lock);
9413
9414 down_write(&block_group->space_info->groups_sem);
9415 /*
9416 * we must use list_del_init so people can check to see if they
9417 * are still on the list after taking the semaphore
9418 */
9419 list_del_init(&block_group->list);
9420 list_del_init(&block_group->ro_list);
9421 if (list_empty(&block_group->space_info->block_groups[index])) {
9422 kobj = block_group->space_info->block_group_kobjs[index];
9423 block_group->space_info->block_group_kobjs[index] = NULL;
9424 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9425 }
9426 up_write(&block_group->space_info->groups_sem);
9427 if (kobj) {
9428 kobject_del(kobj);
9429 kobject_put(kobj);
9430 }
9431
9432 if (block_group->has_caching_ctl)
9433 caching_ctl = get_caching_control(block_group);
9434 if (block_group->cached == BTRFS_CACHE_STARTED)
9435 wait_block_group_cache_done(block_group);
9436 if (block_group->has_caching_ctl) {
9437 down_write(&root->fs_info->commit_root_sem);
9438 if (!caching_ctl) {
9439 struct btrfs_caching_control *ctl;
9440
9441 list_for_each_entry(ctl,
9442 &root->fs_info->caching_block_groups, list)
9443 if (ctl->block_group == block_group) {
9444 caching_ctl = ctl;
9445 atomic_inc(&caching_ctl->count);
9446 break;
9447 }
9448 }
9449 if (caching_ctl)
9450 list_del_init(&caching_ctl->list);
9451 up_write(&root->fs_info->commit_root_sem);
9452 if (caching_ctl) {
9453 /* Once for the caching bgs list and once for us. */
9454 put_caching_control(caching_ctl);
9455 put_caching_control(caching_ctl);
9456 }
9457 }
9458
9459 btrfs_remove_free_space_cache(block_group);
9460
9461 spin_lock(&block_group->space_info->lock);
9462 block_group->space_info->total_bytes -= block_group->key.offset;
9463 block_group->space_info->bytes_readonly -= block_group->key.offset;
9464 block_group->space_info->disk_total -= block_group->key.offset * factor;
9465 spin_unlock(&block_group->space_info->lock);
9466
9467 memcpy(&key, &block_group->key, sizeof(key));
9468
9469 lock_chunks(root);
9470 if (!list_empty(&em->list)) {
9471 /* We're in the transaction->pending_chunks list. */
9472 free_extent_map(em);
9473 }
9474 spin_lock(&block_group->lock);
9475 block_group->removed = 1;
9476 /*
9477 * At this point trimming can't start on this block group, because we
9478 * removed the block group from the tree fs_info->block_group_cache_tree
9479 * so no one can't find it anymore and even if someone already got this
9480 * block group before we removed it from the rbtree, they have already
9481 * incremented block_group->trimming - if they didn't, they won't find
9482 * any free space entries because we already removed them all when we
9483 * called btrfs_remove_free_space_cache().
9484 *
9485 * And we must not remove the extent map from the fs_info->mapping_tree
9486 * to prevent the same logical address range and physical device space
9487 * ranges from being reused for a new block group. This is because our
9488 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9489 * completely transactionless, so while it is trimming a range the
9490 * currently running transaction might finish and a new one start,
9491 * allowing for new block groups to be created that can reuse the same
9492 * physical device locations unless we take this special care.
9493 */
9494 remove_em = (atomic_read(&block_group->trimming) == 0);
9495 /*
9496 * Make sure a trimmer task always sees the em in the pinned_chunks list
9497 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9498 * before checking block_group->removed).
9499 */
9500 if (!remove_em) {
9501 /*
9502 * Our em might be in trans->transaction->pending_chunks which
9503 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9504 * and so is the fs_info->pinned_chunks list.
9505 *
9506 * So at this point we must be holding the chunk_mutex to avoid
9507 * any races with chunk allocation (more specifically at
9508 * volumes.c:contains_pending_extent()), to ensure it always
9509 * sees the em, either in the pending_chunks list or in the
9510 * pinned_chunks list.
9511 */
9512 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9513 }
9514 spin_unlock(&block_group->lock);
9515
9516 if (remove_em) {
9517 struct extent_map_tree *em_tree;
9518
9519 em_tree = &root->fs_info->mapping_tree.map_tree;
9520 write_lock(&em_tree->lock);
9521 /*
9522 * The em might be in the pending_chunks list, so make sure the
9523 * chunk mutex is locked, since remove_extent_mapping() will
9524 * delete us from that list.
9525 */
9526 remove_extent_mapping(em_tree, em);
9527 write_unlock(&em_tree->lock);
9528 /* once for the tree */
9529 free_extent_map(em);
9530 }
9531
9532 unlock_chunks(root);
9533
9534 btrfs_put_block_group(block_group);
9535 btrfs_put_block_group(block_group);
9536
9537 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9538 if (ret > 0)
9539 ret = -EIO;
9540 if (ret < 0)
9541 goto out;
9542
9543 ret = btrfs_del_item(trans, root, path);
9544 out:
9545 btrfs_free_path(path);
9546 return ret;
9547 }
9548
9549 /*
9550 * Process the unused_bgs list and remove any that don't have any allocated
9551 * space inside of them.
9552 */
9553 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9554 {
9555 struct btrfs_block_group_cache *block_group;
9556 struct btrfs_space_info *space_info;
9557 struct btrfs_root *root = fs_info->extent_root;
9558 struct btrfs_trans_handle *trans;
9559 int ret = 0;
9560
9561 if (!fs_info->open)
9562 return;
9563
9564 spin_lock(&fs_info->unused_bgs_lock);
9565 while (!list_empty(&fs_info->unused_bgs)) {
9566 u64 start, end;
9567
9568 block_group = list_first_entry(&fs_info->unused_bgs,
9569 struct btrfs_block_group_cache,
9570 bg_list);
9571 space_info = block_group->space_info;
9572 list_del_init(&block_group->bg_list);
9573 if (ret || btrfs_mixed_space_info(space_info)) {
9574 btrfs_put_block_group(block_group);
9575 continue;
9576 }
9577 spin_unlock(&fs_info->unused_bgs_lock);
9578
9579 /* Don't want to race with allocators so take the groups_sem */
9580 down_write(&space_info->groups_sem);
9581 spin_lock(&block_group->lock);
9582 if (block_group->reserved ||
9583 btrfs_block_group_used(&block_group->item) ||
9584 block_group->ro) {
9585 /*
9586 * We want to bail if we made new allocations or have
9587 * outstanding allocations in this block group. We do
9588 * the ro check in case balance is currently acting on
9589 * this block group.
9590 */
9591 spin_unlock(&block_group->lock);
9592 up_write(&space_info->groups_sem);
9593 goto next;
9594 }
9595 spin_unlock(&block_group->lock);
9596
9597 /* We don't want to force the issue, only flip if it's ok. */
9598 ret = set_block_group_ro(block_group, 0);
9599 up_write(&space_info->groups_sem);
9600 if (ret < 0) {
9601 ret = 0;
9602 goto next;
9603 }
9604
9605 /*
9606 * Want to do this before we do anything else so we can recover
9607 * properly if we fail to join the transaction.
9608 */
9609 trans = btrfs_join_transaction(root);
9610 if (IS_ERR(trans)) {
9611 btrfs_set_block_group_rw(root, block_group);
9612 ret = PTR_ERR(trans);
9613 goto next;
9614 }
9615
9616 /*
9617 * We could have pending pinned extents for this block group,
9618 * just delete them, we don't care about them anymore.
9619 */
9620 start = block_group->key.objectid;
9621 end = start + block_group->key.offset - 1;
9622 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9623 EXTENT_DIRTY, GFP_NOFS);
9624 if (ret) {
9625 btrfs_set_block_group_rw(root, block_group);
9626 goto end_trans;
9627 }
9628 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9629 EXTENT_DIRTY, GFP_NOFS);
9630 if (ret) {
9631 btrfs_set_block_group_rw(root, block_group);
9632 goto end_trans;
9633 }
9634
9635 /* Reset pinned so btrfs_put_block_group doesn't complain */
9636 block_group->pinned = 0;
9637
9638 /*
9639 * Btrfs_remove_chunk will abort the transaction if things go
9640 * horribly wrong.
9641 */
9642 ret = btrfs_remove_chunk(trans, root,
9643 block_group->key.objectid);
9644 end_trans:
9645 btrfs_end_transaction(trans, root);
9646 next:
9647 btrfs_put_block_group(block_group);
9648 spin_lock(&fs_info->unused_bgs_lock);
9649 }
9650 spin_unlock(&fs_info->unused_bgs_lock);
9651 }
9652
9653 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9654 {
9655 struct btrfs_space_info *space_info;
9656 struct btrfs_super_block *disk_super;
9657 u64 features;
9658 u64 flags;
9659 int mixed = 0;
9660 int ret;
9661
9662 disk_super = fs_info->super_copy;
9663 if (!btrfs_super_root(disk_super))
9664 return 1;
9665
9666 features = btrfs_super_incompat_flags(disk_super);
9667 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9668 mixed = 1;
9669
9670 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9671 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9672 if (ret)
9673 goto out;
9674
9675 if (mixed) {
9676 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9677 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9678 } else {
9679 flags = BTRFS_BLOCK_GROUP_METADATA;
9680 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9681 if (ret)
9682 goto out;
9683
9684 flags = BTRFS_BLOCK_GROUP_DATA;
9685 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9686 }
9687 out:
9688 return ret;
9689 }
9690
9691 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9692 {
9693 return unpin_extent_range(root, start, end);
9694 }
9695
9696 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
9697 u64 num_bytes, u64 *actual_bytes)
9698 {
9699 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
9700 }
9701
9702 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9703 {
9704 struct btrfs_fs_info *fs_info = root->fs_info;
9705 struct btrfs_block_group_cache *cache = NULL;
9706 u64 group_trimmed;
9707 u64 start;
9708 u64 end;
9709 u64 trimmed = 0;
9710 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9711 int ret = 0;
9712
9713 /*
9714 * try to trim all FS space, our block group may start from non-zero.
9715 */
9716 if (range->len == total_bytes)
9717 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9718 else
9719 cache = btrfs_lookup_block_group(fs_info, range->start);
9720
9721 while (cache) {
9722 if (cache->key.objectid >= (range->start + range->len)) {
9723 btrfs_put_block_group(cache);
9724 break;
9725 }
9726
9727 start = max(range->start, cache->key.objectid);
9728 end = min(range->start + range->len,
9729 cache->key.objectid + cache->key.offset);
9730
9731 if (end - start >= range->minlen) {
9732 if (!block_group_cache_done(cache)) {
9733 ret = cache_block_group(cache, 0);
9734 if (ret) {
9735 btrfs_put_block_group(cache);
9736 break;
9737 }
9738 ret = wait_block_group_cache_done(cache);
9739 if (ret) {
9740 btrfs_put_block_group(cache);
9741 break;
9742 }
9743 }
9744 ret = btrfs_trim_block_group(cache,
9745 &group_trimmed,
9746 start,
9747 end,
9748 range->minlen);
9749
9750 trimmed += group_trimmed;
9751 if (ret) {
9752 btrfs_put_block_group(cache);
9753 break;
9754 }
9755 }
9756
9757 cache = next_block_group(fs_info->tree_root, cache);
9758 }
9759
9760 range->len = trimmed;
9761 return ret;
9762 }
9763
9764 /*
9765 * btrfs_{start,end}_write_no_snapshoting() are similar to
9766 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9767 * data into the page cache through nocow before the subvolume is snapshoted,
9768 * but flush the data into disk after the snapshot creation, or to prevent
9769 * operations while snapshoting is ongoing and that cause the snapshot to be
9770 * inconsistent (writes followed by expanding truncates for example).
9771 */
9772 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9773 {
9774 percpu_counter_dec(&root->subv_writers->counter);
9775 /*
9776 * Make sure counter is updated before we wake up
9777 * waiters.
9778 */
9779 smp_mb();
9780 if (waitqueue_active(&root->subv_writers->wait))
9781 wake_up(&root->subv_writers->wait);
9782 }
9783
9784 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9785 {
9786 if (atomic_read(&root->will_be_snapshoted))
9787 return 0;
9788
9789 percpu_counter_inc(&root->subv_writers->counter);
9790 /*
9791 * Make sure counter is updated before we check for snapshot creation.
9792 */
9793 smp_mb();
9794 if (atomic_read(&root->will_be_snapshoted)) {
9795 btrfs_end_write_no_snapshoting(root);
9796 return 0;
9797 }
9798 return 1;
9799 }
This page took 0.286363 seconds and 5 git commands to generate.