Btrfs: don't wait for unrelated IO to finish before relocation
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40
41 #undef SCRAMBLE_DELAYED_REFS
42
43 /*
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
56 */
57 enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
61 };
62
63 /*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72 enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76 };
77
78 static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
83 struct btrfs_delayed_ref_node *node, u64 parent,
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
86 struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333 }
334
335 #ifdef CONFIG_BTRFS_DEBUG
336 static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338 {
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353 }
354 #endif
355
356 /*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
363 {
364 u64 extent_start, extent_end, size, total_added = 0;
365 int ret;
366
367 while (start < end) {
368 ret = find_first_extent_bit(info->pinned_extents, start,
369 &extent_start, &extent_end,
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
372 if (ret)
373 break;
374
375 if (extent_start <= start) {
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
379 total_added += size;
380 ret = btrfs_add_free_space(block_group, start,
381 size);
382 BUG_ON(ret); /* -ENOMEM or logic error */
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
391 total_added += size;
392 ret = btrfs_add_free_space(block_group, start, size);
393 BUG_ON(ret); /* -ENOMEM or logic error */
394 }
395
396 return total_added;
397 }
398
399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
400 {
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
403 struct btrfs_root *extent_root;
404 struct btrfs_path *path;
405 struct extent_buffer *leaf;
406 struct btrfs_key key;
407 u64 total_found = 0;
408 u64 last = 0;
409 u32 nritems;
410 int ret;
411 bool wakeup = true;
412
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
416
417 path = btrfs_alloc_path();
418 if (!path)
419 return -ENOMEM;
420
421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
422
423 #ifdef CONFIG_BTRFS_DEBUG
424 /*
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
427 * the free space.
428 */
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
430 wakeup = false;
431 #endif
432 /*
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
437 */
438 path->skip_locking = 1;
439 path->search_commit_root = 1;
440 path->reada = READA_FORWARD;
441
442 key.objectid = last;
443 key.offset = 0;
444 key.type = BTRFS_EXTENT_ITEM_KEY;
445
446 next:
447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
448 if (ret < 0)
449 goto out;
450
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
453
454 while (1) {
455 if (btrfs_fs_closing(fs_info) > 1) {
456 last = (u64)-1;
457 break;
458 }
459
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 } else {
463 ret = find_next_key(path, 0, &key);
464 if (ret)
465 break;
466
467 if (need_resched() ||
468 rwsem_is_contended(&fs_info->commit_root_sem)) {
469 if (wakeup)
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 up_read(&fs_info->commit_root_sem);
473 mutex_unlock(&caching_ctl->mutex);
474 cond_resched();
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
477 goto next;
478 }
479
480 ret = btrfs_next_leaf(extent_root, path);
481 if (ret < 0)
482 goto out;
483 if (ret)
484 break;
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
487 continue;
488 }
489
490 if (key.objectid < last) {
491 key.objectid = last;
492 key.offset = 0;
493 key.type = BTRFS_EXTENT_ITEM_KEY;
494
495 if (wakeup)
496 caching_ctl->progress = last;
497 btrfs_release_path(path);
498 goto next;
499 }
500
501 if (key.objectid < block_group->key.objectid) {
502 path->slots[0]++;
503 continue;
504 }
505
506 if (key.objectid >= block_group->key.objectid +
507 block_group->key.offset)
508 break;
509
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
512 total_found += add_new_free_space(block_group,
513 fs_info, last,
514 key.objectid);
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
517 fs_info->tree_root->nodesize;
518 else
519 last = key.objectid + key.offset;
520
521 if (total_found > CACHING_CTL_WAKE_UP) {
522 total_found = 0;
523 if (wakeup)
524 wake_up(&caching_ctl->wait);
525 }
526 }
527 path->slots[0]++;
528 }
529 ret = 0;
530
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
534 caching_ctl->progress = (u64)-1;
535
536 out:
537 btrfs_free_path(path);
538 return ret;
539 }
540
541 static noinline void caching_thread(struct btrfs_work *work)
542 {
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
546 struct btrfs_root *extent_root;
547 int ret;
548
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
552 extent_root = fs_info->extent_root;
553
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
556
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
559 else
560 ret = load_extent_tree_free(caching_ctl);
561
562 spin_lock(&block_group->lock);
563 block_group->caching_ctl = NULL;
564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
565 spin_unlock(&block_group->lock);
566
567 #ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 u64 bytes_used;
570
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
579 }
580 #endif
581
582 caching_ctl->progress = (u64)-1;
583
584 up_read(&fs_info->commit_root_sem);
585 free_excluded_extents(fs_info->extent_root, block_group);
586 mutex_unlock(&caching_ctl->mutex);
587
588 wake_up(&caching_ctl->wait);
589
590 put_caching_control(caching_ctl);
591 btrfs_put_block_group(block_group);
592 }
593
594 static int cache_block_group(struct btrfs_block_group_cache *cache,
595 int load_cache_only)
596 {
597 DEFINE_WAIT(wait);
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
600 int ret = 0;
601
602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
603 if (!caching_ctl)
604 return -ENOMEM;
605
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
614
615 spin_lock(&cache->lock);
616 /*
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
626 * another.
627 */
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
630
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
635
636 schedule();
637
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
641 }
642
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
645 kfree(caching_ctl);
646 return 0;
647 }
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
652
653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
654 mutex_lock(&caching_ctl->mutex);
655 ret = load_free_space_cache(fs_info, cache);
656
657 spin_lock(&cache->lock);
658 if (ret == 1) {
659 cache->caching_ctl = NULL;
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
662 caching_ctl->progress = (u64)-1;
663 } else {
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
667 } else {
668 cache->cached = BTRFS_CACHE_STARTED;
669 cache->has_caching_ctl = 1;
670 }
671 }
672 spin_unlock(&cache->lock);
673 #ifdef CONFIG_BTRFS_DEBUG
674 if (ret == 1 &&
675 btrfs_should_fragment_free_space(fs_info->extent_root,
676 cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
687 }
688 #endif
689 mutex_unlock(&caching_ctl->mutex);
690
691 wake_up(&caching_ctl->wait);
692 if (ret == 1) {
693 put_caching_control(caching_ctl);
694 free_excluded_extents(fs_info->extent_root, cache);
695 return 0;
696 }
697 } else {
698 /*
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
708 cache->has_caching_ctl = 1;
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
712 }
713
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
716 return 0;
717 }
718
719 down_write(&fs_info->commit_root_sem);
720 atomic_inc(&caching_ctl->count);
721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 up_write(&fs_info->commit_root_sem);
723
724 btrfs_get_block_group(cache);
725
726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727
728 return ret;
729 }
730
731 /*
732 * return the block group that starts at or after bytenr
733 */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737 struct btrfs_block_group_cache *cache;
738
739 cache = block_group_cache_tree_search(info, bytenr, 0);
740
741 return cache;
742 }
743
744 /*
745 * return the block group that contains the given bytenr
746 */
747 struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
749 u64 bytenr)
750 {
751 struct btrfs_block_group_cache *cache;
752
753 cache = block_group_cache_tree_search(info, bytenr, 1);
754
755 return cache;
756 }
757
758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 u64 flags)
760 {
761 struct list_head *head = &info->space_info;
762 struct btrfs_space_info *found;
763
764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
765
766 rcu_read_lock();
767 list_for_each_entry_rcu(found, head, list) {
768 if (found->flags & flags) {
769 rcu_read_unlock();
770 return found;
771 }
772 }
773 rcu_read_unlock();
774 return NULL;
775 }
776
777 /*
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
780 */
781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782 {
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
785
786 rcu_read_lock();
787 list_for_each_entry_rcu(found, head, list)
788 found->full = 0;
789 rcu_read_unlock();
790 }
791
792 /* simple helper to search for an existing data extent at a given offset */
793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
794 {
795 int ret;
796 struct btrfs_key key;
797 struct btrfs_path *path;
798
799 path = btrfs_alloc_path();
800 if (!path)
801 return -ENOMEM;
802
803 key.objectid = start;
804 key.offset = len;
805 key.type = BTRFS_EXTENT_ITEM_KEY;
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 0, 0);
808 btrfs_free_path(path);
809 return ret;
810 }
811
812 /*
813 * helper function to lookup reference count and flags of a tree block.
814 *
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
820 */
821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
823 u64 offset, int metadata, u64 *refs, u64 *flags)
824 {
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
831 u32 item_size;
832 u64 num_refs;
833 u64 extent_flags;
834 int ret;
835
836 /*
837 * If we don't have skinny metadata, don't bother doing anything
838 * different
839 */
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
841 offset = root->nodesize;
842 metadata = 0;
843 }
844
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
849 if (!trans) {
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
852 }
853
854 search_again:
855 key.objectid = bytenr;
856 key.offset = offset;
857 if (metadata)
858 key.type = BTRFS_METADATA_ITEM_KEY;
859 else
860 key.type = BTRFS_EXTENT_ITEM_KEY;
861
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 &key, path, 0, 0);
864 if (ret < 0)
865 goto out_free;
866
867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
868 if (path->slots[0]) {
869 path->slots[0]--;
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
871 path->slots[0]);
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
874 key.offset == root->nodesize)
875 ret = 0;
876 }
877 }
878
879 if (ret == 0) {
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
887 } else {
888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896 #else
897 BUG();
898 #endif
899 }
900 BUG_ON(num_refs == 0);
901 } else {
902 num_refs = 0;
903 extent_flags = 0;
904 ret = 0;
905 }
906
907 if (!trans)
908 goto out;
909
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
913 if (head) {
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
917
918 btrfs_release_path(path);
919
920 /*
921 * Mutex was contended, block until it's released and try
922 * again
923 */
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
927 goto search_again;
928 }
929 spin_lock(&head->lock);
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
932 else
933 BUG_ON(num_refs == 0);
934
935 num_refs += head->node.ref_mod;
936 spin_unlock(&head->lock);
937 mutex_unlock(&head->mutex);
938 }
939 spin_unlock(&delayed_refs->lock);
940 out:
941 WARN_ON(num_refs == 0);
942 if (refs)
943 *refs = num_refs;
944 if (flags)
945 *flags = extent_flags;
946 out_free:
947 btrfs_free_path(path);
948 return ret;
949 }
950
951 /*
952 * Back reference rules. Back refs have three main goals:
953 *
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
957 *
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
960 *
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
964 *
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
975 *
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
982 *
983 * When a tree block is COW'd through a tree, there are four cases:
984 *
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
987 *
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
992 *
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
998 *
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
1013 * - different files inside a single subvolume
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
1016 * The extent ref structure for the implicit back refs has fields for:
1017 *
1018 * - Objectid of the subvolume root
1019 * - objectid of the file holding the reference
1020 * - original offset in the file
1021 * - how many bookend extents
1022 *
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
1025 *
1026 * The extent ref structure for the full back refs has field for:
1027 *
1028 * - number of pointers in the tree leaf
1029 *
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
1032 *
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
1035 *
1036 * (root_key.objectid, inode objectid, offset in file, 1)
1037 *
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
1040 *
1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1042 *
1043 * Btree extents can be referenced by:
1044 *
1045 * - Different subvolumes
1046 *
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
1051 *
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
1055 */
1056
1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
1062 {
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
1068 struct btrfs_key key;
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1071 u64 refs;
1072 int ret;
1073
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082 if (owner == (u64)-1) {
1083 while (1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1086 if (ret < 0)
1087 return ret;
1088 BUG_ON(ret > 0); /* Corruption */
1089 leaf = path->nodes[0];
1090 }
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0]);
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 path->slots[0]++;
1096 continue;
1097 }
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 break;
1102 }
1103 }
1104 btrfs_release_path(path);
1105
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1108
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1112 if (ret < 0)
1113 return ret;
1114 BUG_ON(ret); /* Corruption */
1115
1116 btrfs_extend_item(root, path, new_size);
1117
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 } else {
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 }
1134 btrfs_mark_buffer_dirty(leaf);
1135 return 0;
1136 }
1137 #endif
1138
1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140 {
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1143 __le64 lenum;
1144
1145 lenum = cpu_to_le64(root_objectid);
1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147 lenum = cpu_to_le64(owner);
1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149 lenum = cpu_to_le64(offset);
1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1151
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1153 }
1154
1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1157 {
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1161 }
1162
1163 static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1166 {
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 return 0;
1171 return 1;
1172 }
1173
1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1178 u64 root_objectid,
1179 u64 owner, u64 offset)
1180 {
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
1183 struct extent_buffer *leaf;
1184 u32 nritems;
1185 int ret;
1186 int recow;
1187 int err = -ENOENT;
1188
1189 key.objectid = bytenr;
1190 if (parent) {
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1193 } else {
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1196 owner, offset);
1197 }
1198 again:
1199 recow = 0;
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
1205
1206 if (parent) {
1207 if (!ret)
1208 return 0;
1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
1211 btrfs_release_path(path);
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 if (ret < 0) {
1214 err = ret;
1215 goto fail;
1216 }
1217 if (!ret)
1218 return 0;
1219 #endif
1220 goto fail;
1221 }
1222
1223 leaf = path->nodes[0];
1224 nritems = btrfs_header_nritems(leaf);
1225 while (1) {
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1228 if (ret < 0)
1229 err = ret;
1230 if (ret)
1231 goto fail;
1232
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1235 recow = 1;
1236 }
1237
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 goto fail;
1242
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1245
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1247 owner, offset)) {
1248 if (recow) {
1249 btrfs_release_path(path);
1250 goto again;
1251 }
1252 err = 0;
1253 break;
1254 }
1255 path->slots[0]++;
1256 }
1257 fail:
1258 return err;
1259 }
1260
1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
1267 {
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
1270 u32 size;
1271 u32 num_refs;
1272 int ret;
1273
1274 key.objectid = bytenr;
1275 if (parent) {
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1279 } else {
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1282 owner, offset);
1283 size = sizeof(struct btrfs_extent_data_ref);
1284 }
1285
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1288 goto fail;
1289
1290 leaf = path->nodes[0];
1291 if (parent) {
1292 struct btrfs_shared_data_ref *ref;
1293 ref = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_shared_data_ref);
1295 if (ret == 0) {
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 } else {
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1301 }
1302 } else {
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset))
1309 break;
1310 btrfs_release_path(path);
1311 key.offset++;
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 size);
1314 if (ret && ret != -EEXIST)
1315 goto fail;
1316
1317 leaf = path->nodes[0];
1318 }
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (ret == 0) {
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1323 root_objectid);
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 } else {
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1331 }
1332 }
1333 btrfs_mark_buffer_dirty(leaf);
1334 ret = 0;
1335 fail:
1336 btrfs_release_path(path);
1337 return ret;
1338 }
1339
1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
1343 int refs_to_drop, int *last_ref)
1344 {
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
1348 struct extent_buffer *leaf;
1349 u32 num_refs = 0;
1350 int ret = 0;
1351
1352 leaf = path->nodes[0];
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1369 #endif
1370 } else {
1371 BUG();
1372 }
1373
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
1376
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
1379 *last_ref = 1;
1380 } else {
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 else {
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 }
1392 #endif
1393 btrfs_mark_buffer_dirty(leaf);
1394 }
1395 return ret;
1396 }
1397
1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399 struct btrfs_extent_inline_ref *iref)
1400 {
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1405 u32 num_refs = 0;
1406
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 if (iref) {
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 } else {
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 }
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
1432 #endif
1433 } else {
1434 WARN_ON(1);
1435 }
1436 return num_refs;
1437 }
1438
1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1443 u64 root_objectid)
1444 {
1445 struct btrfs_key key;
1446 int ret;
1447
1448 key.objectid = bytenr;
1449 if (parent) {
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1452 } else {
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1455 }
1456
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 if (ret > 0)
1459 ret = -ENOENT;
1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
1462 btrfs_release_path(path);
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret > 0)
1466 ret = -ENOENT;
1467 }
1468 #endif
1469 return ret;
1470 }
1471
1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1476 u64 root_objectid)
1477 {
1478 struct btrfs_key key;
1479 int ret;
1480
1481 key.objectid = bytenr;
1482 if (parent) {
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1485 } else {
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1488 }
1489
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491 btrfs_release_path(path);
1492 return ret;
1493 }
1494
1495 static inline int extent_ref_type(u64 parent, u64 owner)
1496 {
1497 int type;
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 else
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1503 } else {
1504 if (parent > 0)
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1506 else
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1508 }
1509 return type;
1510 }
1511
1512 static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
1514
1515 {
1516 for (; level < BTRFS_MAX_LEVEL; level++) {
1517 if (!path->nodes[level])
1518 break;
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1521 continue;
1522 if (level == 0)
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1525 else
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1528 return 0;
1529 }
1530 return 1;
1531 }
1532
1533 /*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1545 */
1546 static noinline_for_stack
1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1554 {
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1559 u64 flags;
1560 u64 item_size;
1561 unsigned long ptr;
1562 unsigned long end;
1563 int extra_size;
1564 int type;
1565 int want;
1566 int ret;
1567 int err = 0;
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 SKINNY_METADATA);
1570
1571 key.objectid = bytenr;
1572 key.type = BTRFS_EXTENT_ITEM_KEY;
1573 key.offset = num_bytes;
1574
1575 want = extent_ref_type(parent, owner);
1576 if (insert) {
1577 extra_size = btrfs_extent_inline_ref_size(want);
1578 path->keep_locks = 1;
1579 } else
1580 extra_size = -1;
1581
1582 /*
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1585 */
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1588 key.offset = owner;
1589 }
1590
1591 again:
1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1593 if (ret < 0) {
1594 err = ret;
1595 goto out;
1596 }
1597
1598 /*
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1601 */
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1605 path->slots[0]--;
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 path->slots[0]);
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1611 ret = 0;
1612 }
1613 if (ret) {
1614 key.objectid = bytenr;
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1618 goto again;
1619 }
1620 }
1621
1622 if (ret && !insert) {
1623 err = -ENOENT;
1624 goto out;
1625 } else if (WARN_ON(ret)) {
1626 err = -EIO;
1627 goto out;
1628 }
1629
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1634 if (!insert) {
1635 err = -ENOENT;
1636 goto out;
1637 }
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1639 extra_size);
1640 if (ret < 0) {
1641 err = ret;
1642 goto out;
1643 }
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 }
1647 #endif
1648 BUG_ON(item_size < sizeof(*ei));
1649
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1652
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1655
1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657 ptr += sizeof(struct btrfs_tree_block_info);
1658 BUG_ON(ptr > end);
1659 }
1660
1661 err = -ENOENT;
1662 while (1) {
1663 if (ptr >= end) {
1664 WARN_ON(ptr > end);
1665 break;
1666 }
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1669 if (want < type)
1670 break;
1671 if (want > type) {
1672 ptr += btrfs_extent_inline_ref_size(type);
1673 continue;
1674 }
1675
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1680 owner, offset)) {
1681 err = 0;
1682 break;
1683 }
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1686 break;
1687 } else {
1688 u64 ref_offset;
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 if (parent > 0) {
1691 if (parent == ref_offset) {
1692 err = 0;
1693 break;
1694 }
1695 if (ref_offset < parent)
1696 break;
1697 } else {
1698 if (root_objectid == ref_offset) {
1699 err = 0;
1700 break;
1701 }
1702 if (ref_offset < root_objectid)
1703 break;
1704 }
1705 }
1706 ptr += btrfs_extent_inline_ref_size(type);
1707 }
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 /*
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1719 */
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1723 err = -EAGAIN;
1724 goto out;
1725 }
1726 }
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728 out:
1729 if (insert) {
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1732 }
1733 return err;
1734 }
1735
1736 /*
1737 * helper to add new inline back ref
1738 */
1739 static noinline_for_stack
1740 void setup_inline_extent_backref(struct btrfs_root *root,
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
1746 {
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1749 unsigned long ptr;
1750 unsigned long end;
1751 unsigned long item_offset;
1752 u64 refs;
1753 int size;
1754 int type;
1755
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1762
1763 btrfs_extend_item(root, path, size);
1764
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1769 if (extent_op)
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1776 end - size - ptr);
1777
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 } else {
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 }
1797 btrfs_mark_buffer_dirty(leaf);
1798 }
1799
1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1806 {
1807 int ret;
1808
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1812 if (ret != -ENOENT)
1813 return ret;
1814
1815 btrfs_release_path(path);
1816 *ref_ret = NULL;
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 root_objectid);
1821 } else {
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
1824 }
1825 return ret;
1826 }
1827
1828 /*
1829 * helper to update/remove inline back ref
1830 */
1831 static noinline_for_stack
1832 void update_inline_extent_backref(struct btrfs_root *root,
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1835 int refs_to_mod,
1836 struct btrfs_delayed_extent_op *extent_op,
1837 int *last_ref)
1838 {
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1843 unsigned long ptr;
1844 unsigned long end;
1845 u32 item_size;
1846 int size;
1847 int type;
1848 u64 refs;
1849
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1856 if (extent_op)
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1867 } else {
1868 refs = 1;
1869 BUG_ON(refs_to_mod != -1);
1870 }
1871
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1874
1875 if (refs > 0) {
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 else
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 } else {
1881 *last_ref = 1;
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1888 end - ptr - size);
1889 item_size -= size;
1890 btrfs_truncate_item(root, path, item_size, 1);
1891 }
1892 btrfs_mark_buffer_dirty(leaf);
1893 }
1894
1895 static noinline_for_stack
1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903 {
1904 struct btrfs_extent_inline_ref *iref;
1905 int ret;
1906
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1910 if (ret == 0) {
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912 update_inline_extent_backref(root, path, iref,
1913 refs_to_add, extent_op, NULL);
1914 } else if (ret == -ENOENT) {
1915 setup_inline_extent_backref(root, path, iref, parent,
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 ret = 0;
1919 }
1920 return ret;
1921 }
1922
1923 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1928 {
1929 int ret;
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1934 } else {
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1938 }
1939 return ret;
1940 }
1941
1942 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
1946 int refs_to_drop, int is_data, int *last_ref)
1947 {
1948 int ret = 0;
1949
1950 BUG_ON(!is_data && refs_to_drop != 1);
1951 if (iref) {
1952 update_inline_extent_backref(root, path, iref,
1953 -refs_to_drop, NULL, last_ref);
1954 } else if (is_data) {
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 last_ref);
1957 } else {
1958 *last_ref = 1;
1959 ret = btrfs_del_item(trans, root, path);
1960 }
1961 return ret;
1962 }
1963
1964 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
1967 {
1968 int j, ret = 0;
1969 u64 bytes_left, end;
1970 u64 aligned_start = ALIGN(start, 1 << 9);
1971
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1976 }
1977
1978 *discarded_bytes = 0;
1979
1980 if (!len)
1981 return 0;
1982
1983 end = start + len;
1984 bytes_left = len;
1985
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1991
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 continue;
1996
1997 /*
1998 * Superblock spans beginning of range. Adjust start and
1999 * try again.
2000 */
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2003 if (start > end) {
2004 bytes_left = 0;
2005 break;
2006 }
2007 bytes_left = end - start;
2008 continue;
2009 }
2010
2011 if (size) {
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 GFP_NOFS, 0);
2014 if (!ret)
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2017 return ret;
2018 }
2019
2020 start = sb_end;
2021 if (start > end) {
2022 bytes_left = 0;
2023 break;
2024 }
2025 bytes_left = end - start;
2026 }
2027
2028 if (bytes_left) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2030 GFP_NOFS, 0);
2031 if (!ret)
2032 *discarded_bytes += bytes_left;
2033 }
2034 return ret;
2035 }
2036
2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
2039 {
2040 int ret;
2041 u64 discarded_bytes = 0;
2042 struct btrfs_bio *bbio = NULL;
2043
2044
2045 /* Tell the block device(s) that the sectors can be discarded */
2046 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2047 bytenr, &num_bytes, &bbio, 0);
2048 /* Error condition is -ENOMEM */
2049 if (!ret) {
2050 struct btrfs_bio_stripe *stripe = bbio->stripes;
2051 int i;
2052
2053
2054 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2055 u64 bytes;
2056 if (!stripe->dev->can_discard)
2057 continue;
2058
2059 ret = btrfs_issue_discard(stripe->dev->bdev,
2060 stripe->physical,
2061 stripe->length,
2062 &bytes);
2063 if (!ret)
2064 discarded_bytes += bytes;
2065 else if (ret != -EOPNOTSUPP)
2066 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2067
2068 /*
2069 * Just in case we get back EOPNOTSUPP for some reason,
2070 * just ignore the return value so we don't screw up
2071 * people calling discard_extent.
2072 */
2073 ret = 0;
2074 }
2075 btrfs_put_bbio(bbio);
2076 }
2077
2078 if (actual_bytes)
2079 *actual_bytes = discarded_bytes;
2080
2081
2082 if (ret == -EOPNOTSUPP)
2083 ret = 0;
2084 return ret;
2085 }
2086
2087 /* Can return -ENOMEM */
2088 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2089 struct btrfs_root *root,
2090 u64 bytenr, u64 num_bytes, u64 parent,
2091 u64 root_objectid, u64 owner, u64 offset)
2092 {
2093 int ret;
2094 struct btrfs_fs_info *fs_info = root->fs_info;
2095
2096 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2097 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2098
2099 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2100 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2101 num_bytes,
2102 parent, root_objectid, (int)owner,
2103 BTRFS_ADD_DELAYED_REF, NULL);
2104 } else {
2105 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2106 num_bytes, parent, root_objectid,
2107 owner, offset, 0,
2108 BTRFS_ADD_DELAYED_REF, NULL);
2109 }
2110 return ret;
2111 }
2112
2113 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2114 struct btrfs_root *root,
2115 struct btrfs_delayed_ref_node *node,
2116 u64 parent, u64 root_objectid,
2117 u64 owner, u64 offset, int refs_to_add,
2118 struct btrfs_delayed_extent_op *extent_op)
2119 {
2120 struct btrfs_fs_info *fs_info = root->fs_info;
2121 struct btrfs_path *path;
2122 struct extent_buffer *leaf;
2123 struct btrfs_extent_item *item;
2124 struct btrfs_key key;
2125 u64 bytenr = node->bytenr;
2126 u64 num_bytes = node->num_bytes;
2127 u64 refs;
2128 int ret;
2129
2130 path = btrfs_alloc_path();
2131 if (!path)
2132 return -ENOMEM;
2133
2134 path->reada = READA_FORWARD;
2135 path->leave_spinning = 1;
2136 /* this will setup the path even if it fails to insert the back ref */
2137 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2138 bytenr, num_bytes, parent,
2139 root_objectid, owner, offset,
2140 refs_to_add, extent_op);
2141 if ((ret < 0 && ret != -EAGAIN) || !ret)
2142 goto out;
2143
2144 /*
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2147 * normal backref.
2148 */
2149 leaf = path->nodes[0];
2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 refs = btrfs_extent_refs(leaf, item);
2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154 if (extent_op)
2155 __run_delayed_extent_op(extent_op, leaf, item);
2156
2157 btrfs_mark_buffer_dirty(leaf);
2158 btrfs_release_path(path);
2159
2160 path->reada = READA_FORWARD;
2161 path->leave_spinning = 1;
2162 /* now insert the actual backref */
2163 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2164 path, bytenr, parent, root_objectid,
2165 owner, offset, refs_to_add);
2166 if (ret)
2167 btrfs_abort_transaction(trans, root, ret);
2168 out:
2169 btrfs_free_path(path);
2170 return ret;
2171 }
2172
2173 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2174 struct btrfs_root *root,
2175 struct btrfs_delayed_ref_node *node,
2176 struct btrfs_delayed_extent_op *extent_op,
2177 int insert_reserved)
2178 {
2179 int ret = 0;
2180 struct btrfs_delayed_data_ref *ref;
2181 struct btrfs_key ins;
2182 u64 parent = 0;
2183 u64 ref_root = 0;
2184 u64 flags = 0;
2185
2186 ins.objectid = node->bytenr;
2187 ins.offset = node->num_bytes;
2188 ins.type = BTRFS_EXTENT_ITEM_KEY;
2189
2190 ref = btrfs_delayed_node_to_data_ref(node);
2191 trace_run_delayed_data_ref(node, ref, node->action);
2192
2193 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2194 parent = ref->parent;
2195 ref_root = ref->root;
2196
2197 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2198 if (extent_op)
2199 flags |= extent_op->flags_to_set;
2200 ret = alloc_reserved_file_extent(trans, root,
2201 parent, ref_root, flags,
2202 ref->objectid, ref->offset,
2203 &ins, node->ref_mod);
2204 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2205 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2206 ref_root, ref->objectid,
2207 ref->offset, node->ref_mod,
2208 extent_op);
2209 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2210 ret = __btrfs_free_extent(trans, root, node, parent,
2211 ref_root, ref->objectid,
2212 ref->offset, node->ref_mod,
2213 extent_op);
2214 } else {
2215 BUG();
2216 }
2217 return ret;
2218 }
2219
2220 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2221 struct extent_buffer *leaf,
2222 struct btrfs_extent_item *ei)
2223 {
2224 u64 flags = btrfs_extent_flags(leaf, ei);
2225 if (extent_op->update_flags) {
2226 flags |= extent_op->flags_to_set;
2227 btrfs_set_extent_flags(leaf, ei, flags);
2228 }
2229
2230 if (extent_op->update_key) {
2231 struct btrfs_tree_block_info *bi;
2232 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2233 bi = (struct btrfs_tree_block_info *)(ei + 1);
2234 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2235 }
2236 }
2237
2238 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2239 struct btrfs_root *root,
2240 struct btrfs_delayed_ref_node *node,
2241 struct btrfs_delayed_extent_op *extent_op)
2242 {
2243 struct btrfs_key key;
2244 struct btrfs_path *path;
2245 struct btrfs_extent_item *ei;
2246 struct extent_buffer *leaf;
2247 u32 item_size;
2248 int ret;
2249 int err = 0;
2250 int metadata = !extent_op->is_data;
2251
2252 if (trans->aborted)
2253 return 0;
2254
2255 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2256 metadata = 0;
2257
2258 path = btrfs_alloc_path();
2259 if (!path)
2260 return -ENOMEM;
2261
2262 key.objectid = node->bytenr;
2263
2264 if (metadata) {
2265 key.type = BTRFS_METADATA_ITEM_KEY;
2266 key.offset = extent_op->level;
2267 } else {
2268 key.type = BTRFS_EXTENT_ITEM_KEY;
2269 key.offset = node->num_bytes;
2270 }
2271
2272 again:
2273 path->reada = READA_FORWARD;
2274 path->leave_spinning = 1;
2275 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2276 path, 0, 1);
2277 if (ret < 0) {
2278 err = ret;
2279 goto out;
2280 }
2281 if (ret > 0) {
2282 if (metadata) {
2283 if (path->slots[0] > 0) {
2284 path->slots[0]--;
2285 btrfs_item_key_to_cpu(path->nodes[0], &key,
2286 path->slots[0]);
2287 if (key.objectid == node->bytenr &&
2288 key.type == BTRFS_EXTENT_ITEM_KEY &&
2289 key.offset == node->num_bytes)
2290 ret = 0;
2291 }
2292 if (ret > 0) {
2293 btrfs_release_path(path);
2294 metadata = 0;
2295
2296 key.objectid = node->bytenr;
2297 key.offset = node->num_bytes;
2298 key.type = BTRFS_EXTENT_ITEM_KEY;
2299 goto again;
2300 }
2301 } else {
2302 err = -EIO;
2303 goto out;
2304 }
2305 }
2306
2307 leaf = path->nodes[0];
2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2310 if (item_size < sizeof(*ei)) {
2311 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2312 path, (u64)-1, 0);
2313 if (ret < 0) {
2314 err = ret;
2315 goto out;
2316 }
2317 leaf = path->nodes[0];
2318 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2319 }
2320 #endif
2321 BUG_ON(item_size < sizeof(*ei));
2322 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2323 __run_delayed_extent_op(extent_op, leaf, ei);
2324
2325 btrfs_mark_buffer_dirty(leaf);
2326 out:
2327 btrfs_free_path(path);
2328 return err;
2329 }
2330
2331 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2332 struct btrfs_root *root,
2333 struct btrfs_delayed_ref_node *node,
2334 struct btrfs_delayed_extent_op *extent_op,
2335 int insert_reserved)
2336 {
2337 int ret = 0;
2338 struct btrfs_delayed_tree_ref *ref;
2339 struct btrfs_key ins;
2340 u64 parent = 0;
2341 u64 ref_root = 0;
2342 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2343 SKINNY_METADATA);
2344
2345 ref = btrfs_delayed_node_to_tree_ref(node);
2346 trace_run_delayed_tree_ref(node, ref, node->action);
2347
2348 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2349 parent = ref->parent;
2350 ref_root = ref->root;
2351
2352 ins.objectid = node->bytenr;
2353 if (skinny_metadata) {
2354 ins.offset = ref->level;
2355 ins.type = BTRFS_METADATA_ITEM_KEY;
2356 } else {
2357 ins.offset = node->num_bytes;
2358 ins.type = BTRFS_EXTENT_ITEM_KEY;
2359 }
2360
2361 BUG_ON(node->ref_mod != 1);
2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2363 BUG_ON(!extent_op || !extent_op->update_flags);
2364 ret = alloc_reserved_tree_block(trans, root,
2365 parent, ref_root,
2366 extent_op->flags_to_set,
2367 &extent_op->key,
2368 ref->level, &ins);
2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2370 ret = __btrfs_inc_extent_ref(trans, root, node,
2371 parent, ref_root,
2372 ref->level, 0, 1,
2373 extent_op);
2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2375 ret = __btrfs_free_extent(trans, root, node,
2376 parent, ref_root,
2377 ref->level, 0, 1, extent_op);
2378 } else {
2379 BUG();
2380 }
2381 return ret;
2382 }
2383
2384 /* helper function to actually process a single delayed ref entry */
2385 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root,
2387 struct btrfs_delayed_ref_node *node,
2388 struct btrfs_delayed_extent_op *extent_op,
2389 int insert_reserved)
2390 {
2391 int ret = 0;
2392
2393 if (trans->aborted) {
2394 if (insert_reserved)
2395 btrfs_pin_extent(root, node->bytenr,
2396 node->num_bytes, 1);
2397 return 0;
2398 }
2399
2400 if (btrfs_delayed_ref_is_head(node)) {
2401 struct btrfs_delayed_ref_head *head;
2402 /*
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2407 */
2408 BUG_ON(extent_op);
2409 head = btrfs_delayed_node_to_head(node);
2410 trace_run_delayed_ref_head(node, head, node->action);
2411
2412 if (insert_reserved) {
2413 btrfs_pin_extent(root, node->bytenr,
2414 node->num_bytes, 1);
2415 if (head->is_data) {
2416 ret = btrfs_del_csums(trans, root,
2417 node->bytenr,
2418 node->num_bytes);
2419 }
2420 }
2421
2422 /* Also free its reserved qgroup space */
2423 btrfs_qgroup_free_delayed_ref(root->fs_info,
2424 head->qgroup_ref_root,
2425 head->qgroup_reserved);
2426 return ret;
2427 }
2428
2429 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2430 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2431 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2432 insert_reserved);
2433 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2434 node->type == BTRFS_SHARED_DATA_REF_KEY)
2435 ret = run_delayed_data_ref(trans, root, node, extent_op,
2436 insert_reserved);
2437 else
2438 BUG();
2439 return ret;
2440 }
2441
2442 static inline struct btrfs_delayed_ref_node *
2443 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2444 {
2445 struct btrfs_delayed_ref_node *ref;
2446
2447 if (list_empty(&head->ref_list))
2448 return NULL;
2449
2450 /*
2451 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2452 * This is to prevent a ref count from going down to zero, which deletes
2453 * the extent item from the extent tree, when there still are references
2454 * to add, which would fail because they would not find the extent item.
2455 */
2456 list_for_each_entry(ref, &head->ref_list, list) {
2457 if (ref->action == BTRFS_ADD_DELAYED_REF)
2458 return ref;
2459 }
2460
2461 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2462 list);
2463 }
2464
2465 /*
2466 * Returns 0 on success or if called with an already aborted transaction.
2467 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2468 */
2469 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root,
2471 unsigned long nr)
2472 {
2473 struct btrfs_delayed_ref_root *delayed_refs;
2474 struct btrfs_delayed_ref_node *ref;
2475 struct btrfs_delayed_ref_head *locked_ref = NULL;
2476 struct btrfs_delayed_extent_op *extent_op;
2477 struct btrfs_fs_info *fs_info = root->fs_info;
2478 ktime_t start = ktime_get();
2479 int ret;
2480 unsigned long count = 0;
2481 unsigned long actual_count = 0;
2482 int must_insert_reserved = 0;
2483
2484 delayed_refs = &trans->transaction->delayed_refs;
2485 while (1) {
2486 if (!locked_ref) {
2487 if (count >= nr)
2488 break;
2489
2490 spin_lock(&delayed_refs->lock);
2491 locked_ref = btrfs_select_ref_head(trans);
2492 if (!locked_ref) {
2493 spin_unlock(&delayed_refs->lock);
2494 break;
2495 }
2496
2497 /* grab the lock that says we are going to process
2498 * all the refs for this head */
2499 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2500 spin_unlock(&delayed_refs->lock);
2501 /*
2502 * we may have dropped the spin lock to get the head
2503 * mutex lock, and that might have given someone else
2504 * time to free the head. If that's true, it has been
2505 * removed from our list and we can move on.
2506 */
2507 if (ret == -EAGAIN) {
2508 locked_ref = NULL;
2509 count++;
2510 continue;
2511 }
2512 }
2513
2514 /*
2515 * We need to try and merge add/drops of the same ref since we
2516 * can run into issues with relocate dropping the implicit ref
2517 * and then it being added back again before the drop can
2518 * finish. If we merged anything we need to re-loop so we can
2519 * get a good ref.
2520 * Or we can get node references of the same type that weren't
2521 * merged when created due to bumps in the tree mod seq, and
2522 * we need to merge them to prevent adding an inline extent
2523 * backref before dropping it (triggering a BUG_ON at
2524 * insert_inline_extent_backref()).
2525 */
2526 spin_lock(&locked_ref->lock);
2527 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2528 locked_ref);
2529
2530 /*
2531 * locked_ref is the head node, so we have to go one
2532 * node back for any delayed ref updates
2533 */
2534 ref = select_delayed_ref(locked_ref);
2535
2536 if (ref && ref->seq &&
2537 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2538 spin_unlock(&locked_ref->lock);
2539 btrfs_delayed_ref_unlock(locked_ref);
2540 spin_lock(&delayed_refs->lock);
2541 locked_ref->processing = 0;
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
2544 locked_ref = NULL;
2545 cond_resched();
2546 count++;
2547 continue;
2548 }
2549
2550 /*
2551 * record the must insert reserved flag before we
2552 * drop the spin lock.
2553 */
2554 must_insert_reserved = locked_ref->must_insert_reserved;
2555 locked_ref->must_insert_reserved = 0;
2556
2557 extent_op = locked_ref->extent_op;
2558 locked_ref->extent_op = NULL;
2559
2560 if (!ref) {
2561
2562
2563 /* All delayed refs have been processed, Go ahead
2564 * and send the head node to run_one_delayed_ref,
2565 * so that any accounting fixes can happen
2566 */
2567 ref = &locked_ref->node;
2568
2569 if (extent_op && must_insert_reserved) {
2570 btrfs_free_delayed_extent_op(extent_op);
2571 extent_op = NULL;
2572 }
2573
2574 if (extent_op) {
2575 spin_unlock(&locked_ref->lock);
2576 ret = run_delayed_extent_op(trans, root,
2577 ref, extent_op);
2578 btrfs_free_delayed_extent_op(extent_op);
2579
2580 if (ret) {
2581 /*
2582 * Need to reset must_insert_reserved if
2583 * there was an error so the abort stuff
2584 * can cleanup the reserved space
2585 * properly.
2586 */
2587 if (must_insert_reserved)
2588 locked_ref->must_insert_reserved = 1;
2589 locked_ref->processing = 0;
2590 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591 btrfs_delayed_ref_unlock(locked_ref);
2592 return ret;
2593 }
2594 continue;
2595 }
2596
2597 /*
2598 * Need to drop our head ref lock and re-aqcuire the
2599 * delayed ref lock and then re-check to make sure
2600 * nobody got added.
2601 */
2602 spin_unlock(&locked_ref->lock);
2603 spin_lock(&delayed_refs->lock);
2604 spin_lock(&locked_ref->lock);
2605 if (!list_empty(&locked_ref->ref_list) ||
2606 locked_ref->extent_op) {
2607 spin_unlock(&locked_ref->lock);
2608 spin_unlock(&delayed_refs->lock);
2609 continue;
2610 }
2611 ref->in_tree = 0;
2612 delayed_refs->num_heads--;
2613 rb_erase(&locked_ref->href_node,
2614 &delayed_refs->href_root);
2615 spin_unlock(&delayed_refs->lock);
2616 } else {
2617 actual_count++;
2618 ref->in_tree = 0;
2619 list_del(&ref->list);
2620 }
2621 atomic_dec(&delayed_refs->num_entries);
2622
2623 if (!btrfs_delayed_ref_is_head(ref)) {
2624 /*
2625 * when we play the delayed ref, also correct the
2626 * ref_mod on head
2627 */
2628 switch (ref->action) {
2629 case BTRFS_ADD_DELAYED_REF:
2630 case BTRFS_ADD_DELAYED_EXTENT:
2631 locked_ref->node.ref_mod -= ref->ref_mod;
2632 break;
2633 case BTRFS_DROP_DELAYED_REF:
2634 locked_ref->node.ref_mod += ref->ref_mod;
2635 break;
2636 default:
2637 WARN_ON(1);
2638 }
2639 }
2640 spin_unlock(&locked_ref->lock);
2641
2642 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2643 must_insert_reserved);
2644
2645 btrfs_free_delayed_extent_op(extent_op);
2646 if (ret) {
2647 locked_ref->processing = 0;
2648 btrfs_delayed_ref_unlock(locked_ref);
2649 btrfs_put_delayed_ref(ref);
2650 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2651 return ret;
2652 }
2653
2654 /*
2655 * If this node is a head, that means all the refs in this head
2656 * have been dealt with, and we will pick the next head to deal
2657 * with, so we must unlock the head and drop it from the cluster
2658 * list before we release it.
2659 */
2660 if (btrfs_delayed_ref_is_head(ref)) {
2661 if (locked_ref->is_data &&
2662 locked_ref->total_ref_mod < 0) {
2663 spin_lock(&delayed_refs->lock);
2664 delayed_refs->pending_csums -= ref->num_bytes;
2665 spin_unlock(&delayed_refs->lock);
2666 }
2667 btrfs_delayed_ref_unlock(locked_ref);
2668 locked_ref = NULL;
2669 }
2670 btrfs_put_delayed_ref(ref);
2671 count++;
2672 cond_resched();
2673 }
2674
2675 /*
2676 * We don't want to include ref heads since we can have empty ref heads
2677 * and those will drastically skew our runtime down since we just do
2678 * accounting, no actual extent tree updates.
2679 */
2680 if (actual_count > 0) {
2681 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2682 u64 avg;
2683
2684 /*
2685 * We weigh the current average higher than our current runtime
2686 * to avoid large swings in the average.
2687 */
2688 spin_lock(&delayed_refs->lock);
2689 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2690 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2691 spin_unlock(&delayed_refs->lock);
2692 }
2693 return 0;
2694 }
2695
2696 #ifdef SCRAMBLE_DELAYED_REFS
2697 /*
2698 * Normally delayed refs get processed in ascending bytenr order. This
2699 * correlates in most cases to the order added. To expose dependencies on this
2700 * order, we start to process the tree in the middle instead of the beginning
2701 */
2702 static u64 find_middle(struct rb_root *root)
2703 {
2704 struct rb_node *n = root->rb_node;
2705 struct btrfs_delayed_ref_node *entry;
2706 int alt = 1;
2707 u64 middle;
2708 u64 first = 0, last = 0;
2709
2710 n = rb_first(root);
2711 if (n) {
2712 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2713 first = entry->bytenr;
2714 }
2715 n = rb_last(root);
2716 if (n) {
2717 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2718 last = entry->bytenr;
2719 }
2720 n = root->rb_node;
2721
2722 while (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 WARN_ON(!entry->in_tree);
2725
2726 middle = entry->bytenr;
2727
2728 if (alt)
2729 n = n->rb_left;
2730 else
2731 n = n->rb_right;
2732
2733 alt = 1 - alt;
2734 }
2735 return middle;
2736 }
2737 #endif
2738
2739 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2740 {
2741 u64 num_bytes;
2742
2743 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2744 sizeof(struct btrfs_extent_inline_ref));
2745 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2746 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2747
2748 /*
2749 * We don't ever fill up leaves all the way so multiply by 2 just to be
2750 * closer to what we're really going to want to ouse.
2751 */
2752 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2753 }
2754
2755 /*
2756 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2757 * would require to store the csums for that many bytes.
2758 */
2759 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2760 {
2761 u64 csum_size;
2762 u64 num_csums_per_leaf;
2763 u64 num_csums;
2764
2765 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2766 num_csums_per_leaf = div64_u64(csum_size,
2767 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2768 num_csums = div64_u64(csum_bytes, root->sectorsize);
2769 num_csums += num_csums_per_leaf - 1;
2770 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2771 return num_csums;
2772 }
2773
2774 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2775 struct btrfs_root *root)
2776 {
2777 struct btrfs_block_rsv *global_rsv;
2778 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2779 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2780 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2781 u64 num_bytes, num_dirty_bgs_bytes;
2782 int ret = 0;
2783
2784 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2785 num_heads = heads_to_leaves(root, num_heads);
2786 if (num_heads > 1)
2787 num_bytes += (num_heads - 1) * root->nodesize;
2788 num_bytes <<= 1;
2789 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2790 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2791 num_dirty_bgs);
2792 global_rsv = &root->fs_info->global_block_rsv;
2793
2794 /*
2795 * If we can't allocate any more chunks lets make sure we have _lots_ of
2796 * wiggle room since running delayed refs can create more delayed refs.
2797 */
2798 if (global_rsv->space_info->full) {
2799 num_dirty_bgs_bytes <<= 1;
2800 num_bytes <<= 1;
2801 }
2802
2803 spin_lock(&global_rsv->lock);
2804 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2805 ret = 1;
2806 spin_unlock(&global_rsv->lock);
2807 return ret;
2808 }
2809
2810 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2811 struct btrfs_root *root)
2812 {
2813 struct btrfs_fs_info *fs_info = root->fs_info;
2814 u64 num_entries =
2815 atomic_read(&trans->transaction->delayed_refs.num_entries);
2816 u64 avg_runtime;
2817 u64 val;
2818
2819 smp_mb();
2820 avg_runtime = fs_info->avg_delayed_ref_runtime;
2821 val = num_entries * avg_runtime;
2822 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2823 return 1;
2824 if (val >= NSEC_PER_SEC / 2)
2825 return 2;
2826
2827 return btrfs_check_space_for_delayed_refs(trans, root);
2828 }
2829
2830 struct async_delayed_refs {
2831 struct btrfs_root *root;
2832 int count;
2833 int error;
2834 int sync;
2835 struct completion wait;
2836 struct btrfs_work work;
2837 };
2838
2839 static void delayed_ref_async_start(struct btrfs_work *work)
2840 {
2841 struct async_delayed_refs *async;
2842 struct btrfs_trans_handle *trans;
2843 int ret;
2844
2845 async = container_of(work, struct async_delayed_refs, work);
2846
2847 trans = btrfs_join_transaction(async->root);
2848 if (IS_ERR(trans)) {
2849 async->error = PTR_ERR(trans);
2850 goto done;
2851 }
2852
2853 /*
2854 * trans->sync means that when we call end_transaciton, we won't
2855 * wait on delayed refs
2856 */
2857 trans->sync = true;
2858 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2859 if (ret)
2860 async->error = ret;
2861
2862 ret = btrfs_end_transaction(trans, async->root);
2863 if (ret && !async->error)
2864 async->error = ret;
2865 done:
2866 if (async->sync)
2867 complete(&async->wait);
2868 else
2869 kfree(async);
2870 }
2871
2872 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2873 unsigned long count, int wait)
2874 {
2875 struct async_delayed_refs *async;
2876 int ret;
2877
2878 async = kmalloc(sizeof(*async), GFP_NOFS);
2879 if (!async)
2880 return -ENOMEM;
2881
2882 async->root = root->fs_info->tree_root;
2883 async->count = count;
2884 async->error = 0;
2885 if (wait)
2886 async->sync = 1;
2887 else
2888 async->sync = 0;
2889 init_completion(&async->wait);
2890
2891 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2892 delayed_ref_async_start, NULL, NULL);
2893
2894 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2895
2896 if (wait) {
2897 wait_for_completion(&async->wait);
2898 ret = async->error;
2899 kfree(async);
2900 return ret;
2901 }
2902 return 0;
2903 }
2904
2905 /*
2906 * this starts processing the delayed reference count updates and
2907 * extent insertions we have queued up so far. count can be
2908 * 0, which means to process everything in the tree at the start
2909 * of the run (but not newly added entries), or it can be some target
2910 * number you'd like to process.
2911 *
2912 * Returns 0 on success or if called with an aborted transaction
2913 * Returns <0 on error and aborts the transaction
2914 */
2915 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2916 struct btrfs_root *root, unsigned long count)
2917 {
2918 struct rb_node *node;
2919 struct btrfs_delayed_ref_root *delayed_refs;
2920 struct btrfs_delayed_ref_head *head;
2921 int ret;
2922 int run_all = count == (unsigned long)-1;
2923 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2924
2925 /* We'll clean this up in btrfs_cleanup_transaction */
2926 if (trans->aborted)
2927 return 0;
2928
2929 if (root->fs_info->creating_free_space_tree)
2930 return 0;
2931
2932 if (root == root->fs_info->extent_root)
2933 root = root->fs_info->tree_root;
2934
2935 delayed_refs = &trans->transaction->delayed_refs;
2936 if (count == 0)
2937 count = atomic_read(&delayed_refs->num_entries) * 2;
2938
2939 again:
2940 #ifdef SCRAMBLE_DELAYED_REFS
2941 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2942 #endif
2943 trans->can_flush_pending_bgs = false;
2944 ret = __btrfs_run_delayed_refs(trans, root, count);
2945 if (ret < 0) {
2946 btrfs_abort_transaction(trans, root, ret);
2947 return ret;
2948 }
2949
2950 if (run_all) {
2951 if (!list_empty(&trans->new_bgs))
2952 btrfs_create_pending_block_groups(trans, root);
2953
2954 spin_lock(&delayed_refs->lock);
2955 node = rb_first(&delayed_refs->href_root);
2956 if (!node) {
2957 spin_unlock(&delayed_refs->lock);
2958 goto out;
2959 }
2960 count = (unsigned long)-1;
2961
2962 while (node) {
2963 head = rb_entry(node, struct btrfs_delayed_ref_head,
2964 href_node);
2965 if (btrfs_delayed_ref_is_head(&head->node)) {
2966 struct btrfs_delayed_ref_node *ref;
2967
2968 ref = &head->node;
2969 atomic_inc(&ref->refs);
2970
2971 spin_unlock(&delayed_refs->lock);
2972 /*
2973 * Mutex was contended, block until it's
2974 * released and try again
2975 */
2976 mutex_lock(&head->mutex);
2977 mutex_unlock(&head->mutex);
2978
2979 btrfs_put_delayed_ref(ref);
2980 cond_resched();
2981 goto again;
2982 } else {
2983 WARN_ON(1);
2984 }
2985 node = rb_next(node);
2986 }
2987 spin_unlock(&delayed_refs->lock);
2988 cond_resched();
2989 goto again;
2990 }
2991 out:
2992 assert_qgroups_uptodate(trans);
2993 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2994 return 0;
2995 }
2996
2997 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2998 struct btrfs_root *root,
2999 u64 bytenr, u64 num_bytes, u64 flags,
3000 int level, int is_data)
3001 {
3002 struct btrfs_delayed_extent_op *extent_op;
3003 int ret;
3004
3005 extent_op = btrfs_alloc_delayed_extent_op();
3006 if (!extent_op)
3007 return -ENOMEM;
3008
3009 extent_op->flags_to_set = flags;
3010 extent_op->update_flags = true;
3011 extent_op->update_key = false;
3012 extent_op->is_data = is_data ? true : false;
3013 extent_op->level = level;
3014
3015 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3016 num_bytes, extent_op);
3017 if (ret)
3018 btrfs_free_delayed_extent_op(extent_op);
3019 return ret;
3020 }
3021
3022 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 struct btrfs_path *path,
3025 u64 objectid, u64 offset, u64 bytenr)
3026 {
3027 struct btrfs_delayed_ref_head *head;
3028 struct btrfs_delayed_ref_node *ref;
3029 struct btrfs_delayed_data_ref *data_ref;
3030 struct btrfs_delayed_ref_root *delayed_refs;
3031 int ret = 0;
3032
3033 delayed_refs = &trans->transaction->delayed_refs;
3034 spin_lock(&delayed_refs->lock);
3035 head = btrfs_find_delayed_ref_head(trans, bytenr);
3036 if (!head) {
3037 spin_unlock(&delayed_refs->lock);
3038 return 0;
3039 }
3040
3041 if (!mutex_trylock(&head->mutex)) {
3042 atomic_inc(&head->node.refs);
3043 spin_unlock(&delayed_refs->lock);
3044
3045 btrfs_release_path(path);
3046
3047 /*
3048 * Mutex was contended, block until it's released and let
3049 * caller try again
3050 */
3051 mutex_lock(&head->mutex);
3052 mutex_unlock(&head->mutex);
3053 btrfs_put_delayed_ref(&head->node);
3054 return -EAGAIN;
3055 }
3056 spin_unlock(&delayed_refs->lock);
3057
3058 spin_lock(&head->lock);
3059 list_for_each_entry(ref, &head->ref_list, list) {
3060 /* If it's a shared ref we know a cross reference exists */
3061 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3062 ret = 1;
3063 break;
3064 }
3065
3066 data_ref = btrfs_delayed_node_to_data_ref(ref);
3067
3068 /*
3069 * If our ref doesn't match the one we're currently looking at
3070 * then we have a cross reference.
3071 */
3072 if (data_ref->root != root->root_key.objectid ||
3073 data_ref->objectid != objectid ||
3074 data_ref->offset != offset) {
3075 ret = 1;
3076 break;
3077 }
3078 }
3079 spin_unlock(&head->lock);
3080 mutex_unlock(&head->mutex);
3081 return ret;
3082 }
3083
3084 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3085 struct btrfs_root *root,
3086 struct btrfs_path *path,
3087 u64 objectid, u64 offset, u64 bytenr)
3088 {
3089 struct btrfs_root *extent_root = root->fs_info->extent_root;
3090 struct extent_buffer *leaf;
3091 struct btrfs_extent_data_ref *ref;
3092 struct btrfs_extent_inline_ref *iref;
3093 struct btrfs_extent_item *ei;
3094 struct btrfs_key key;
3095 u32 item_size;
3096 int ret;
3097
3098 key.objectid = bytenr;
3099 key.offset = (u64)-1;
3100 key.type = BTRFS_EXTENT_ITEM_KEY;
3101
3102 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3103 if (ret < 0)
3104 goto out;
3105 BUG_ON(ret == 0); /* Corruption */
3106
3107 ret = -ENOENT;
3108 if (path->slots[0] == 0)
3109 goto out;
3110
3111 path->slots[0]--;
3112 leaf = path->nodes[0];
3113 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3114
3115 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3116 goto out;
3117
3118 ret = 1;
3119 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3120 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3121 if (item_size < sizeof(*ei)) {
3122 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3123 goto out;
3124 }
3125 #endif
3126 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3127
3128 if (item_size != sizeof(*ei) +
3129 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3130 goto out;
3131
3132 if (btrfs_extent_generation(leaf, ei) <=
3133 btrfs_root_last_snapshot(&root->root_item))
3134 goto out;
3135
3136 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3137 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3138 BTRFS_EXTENT_DATA_REF_KEY)
3139 goto out;
3140
3141 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3142 if (btrfs_extent_refs(leaf, ei) !=
3143 btrfs_extent_data_ref_count(leaf, ref) ||
3144 btrfs_extent_data_ref_root(leaf, ref) !=
3145 root->root_key.objectid ||
3146 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3147 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3148 goto out;
3149
3150 ret = 0;
3151 out:
3152 return ret;
3153 }
3154
3155 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3156 struct btrfs_root *root,
3157 u64 objectid, u64 offset, u64 bytenr)
3158 {
3159 struct btrfs_path *path;
3160 int ret;
3161 int ret2;
3162
3163 path = btrfs_alloc_path();
3164 if (!path)
3165 return -ENOENT;
3166
3167 do {
3168 ret = check_committed_ref(trans, root, path, objectid,
3169 offset, bytenr);
3170 if (ret && ret != -ENOENT)
3171 goto out;
3172
3173 ret2 = check_delayed_ref(trans, root, path, objectid,
3174 offset, bytenr);
3175 } while (ret2 == -EAGAIN);
3176
3177 if (ret2 && ret2 != -ENOENT) {
3178 ret = ret2;
3179 goto out;
3180 }
3181
3182 if (ret != -ENOENT || ret2 != -ENOENT)
3183 ret = 0;
3184 out:
3185 btrfs_free_path(path);
3186 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3187 WARN_ON(ret > 0);
3188 return ret;
3189 }
3190
3191 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3192 struct btrfs_root *root,
3193 struct extent_buffer *buf,
3194 int full_backref, int inc)
3195 {
3196 u64 bytenr;
3197 u64 num_bytes;
3198 u64 parent;
3199 u64 ref_root;
3200 u32 nritems;
3201 struct btrfs_key key;
3202 struct btrfs_file_extent_item *fi;
3203 int i;
3204 int level;
3205 int ret = 0;
3206 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3207 u64, u64, u64, u64, u64, u64);
3208
3209
3210 if (btrfs_test_is_dummy_root(root))
3211 return 0;
3212
3213 ref_root = btrfs_header_owner(buf);
3214 nritems = btrfs_header_nritems(buf);
3215 level = btrfs_header_level(buf);
3216
3217 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3218 return 0;
3219
3220 if (inc)
3221 process_func = btrfs_inc_extent_ref;
3222 else
3223 process_func = btrfs_free_extent;
3224
3225 if (full_backref)
3226 parent = buf->start;
3227 else
3228 parent = 0;
3229
3230 for (i = 0; i < nritems; i++) {
3231 if (level == 0) {
3232 btrfs_item_key_to_cpu(buf, &key, i);
3233 if (key.type != BTRFS_EXTENT_DATA_KEY)
3234 continue;
3235 fi = btrfs_item_ptr(buf, i,
3236 struct btrfs_file_extent_item);
3237 if (btrfs_file_extent_type(buf, fi) ==
3238 BTRFS_FILE_EXTENT_INLINE)
3239 continue;
3240 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3241 if (bytenr == 0)
3242 continue;
3243
3244 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3245 key.offset -= btrfs_file_extent_offset(buf, fi);
3246 ret = process_func(trans, root, bytenr, num_bytes,
3247 parent, ref_root, key.objectid,
3248 key.offset);
3249 if (ret)
3250 goto fail;
3251 } else {
3252 bytenr = btrfs_node_blockptr(buf, i);
3253 num_bytes = root->nodesize;
3254 ret = process_func(trans, root, bytenr, num_bytes,
3255 parent, ref_root, level - 1, 0);
3256 if (ret)
3257 goto fail;
3258 }
3259 }
3260 return 0;
3261 fail:
3262 return ret;
3263 }
3264
3265 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3266 struct extent_buffer *buf, int full_backref)
3267 {
3268 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3269 }
3270
3271 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3272 struct extent_buffer *buf, int full_backref)
3273 {
3274 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3275 }
3276
3277 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3278 struct btrfs_root *root,
3279 struct btrfs_path *path,
3280 struct btrfs_block_group_cache *cache)
3281 {
3282 int ret;
3283 struct btrfs_root *extent_root = root->fs_info->extent_root;
3284 unsigned long bi;
3285 struct extent_buffer *leaf;
3286
3287 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3288 if (ret) {
3289 if (ret > 0)
3290 ret = -ENOENT;
3291 goto fail;
3292 }
3293
3294 leaf = path->nodes[0];
3295 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3296 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3297 btrfs_mark_buffer_dirty(leaf);
3298 fail:
3299 btrfs_release_path(path);
3300 return ret;
3301
3302 }
3303
3304 static struct btrfs_block_group_cache *
3305 next_block_group(struct btrfs_root *root,
3306 struct btrfs_block_group_cache *cache)
3307 {
3308 struct rb_node *node;
3309
3310 spin_lock(&root->fs_info->block_group_cache_lock);
3311
3312 /* If our block group was removed, we need a full search. */
3313 if (RB_EMPTY_NODE(&cache->cache_node)) {
3314 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3315
3316 spin_unlock(&root->fs_info->block_group_cache_lock);
3317 btrfs_put_block_group(cache);
3318 cache = btrfs_lookup_first_block_group(root->fs_info,
3319 next_bytenr);
3320 return cache;
3321 }
3322 node = rb_next(&cache->cache_node);
3323 btrfs_put_block_group(cache);
3324 if (node) {
3325 cache = rb_entry(node, struct btrfs_block_group_cache,
3326 cache_node);
3327 btrfs_get_block_group(cache);
3328 } else
3329 cache = NULL;
3330 spin_unlock(&root->fs_info->block_group_cache_lock);
3331 return cache;
3332 }
3333
3334 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3335 struct btrfs_trans_handle *trans,
3336 struct btrfs_path *path)
3337 {
3338 struct btrfs_root *root = block_group->fs_info->tree_root;
3339 struct inode *inode = NULL;
3340 u64 alloc_hint = 0;
3341 int dcs = BTRFS_DC_ERROR;
3342 u64 num_pages = 0;
3343 int retries = 0;
3344 int ret = 0;
3345
3346 /*
3347 * If this block group is smaller than 100 megs don't bother caching the
3348 * block group.
3349 */
3350 if (block_group->key.offset < (100 * SZ_1M)) {
3351 spin_lock(&block_group->lock);
3352 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3353 spin_unlock(&block_group->lock);
3354 return 0;
3355 }
3356
3357 if (trans->aborted)
3358 return 0;
3359 again:
3360 inode = lookup_free_space_inode(root, block_group, path);
3361 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3362 ret = PTR_ERR(inode);
3363 btrfs_release_path(path);
3364 goto out;
3365 }
3366
3367 if (IS_ERR(inode)) {
3368 BUG_ON(retries);
3369 retries++;
3370
3371 if (block_group->ro)
3372 goto out_free;
3373
3374 ret = create_free_space_inode(root, trans, block_group, path);
3375 if (ret)
3376 goto out_free;
3377 goto again;
3378 }
3379
3380 /* We've already setup this transaction, go ahead and exit */
3381 if (block_group->cache_generation == trans->transid &&
3382 i_size_read(inode)) {
3383 dcs = BTRFS_DC_SETUP;
3384 goto out_put;
3385 }
3386
3387 /*
3388 * We want to set the generation to 0, that way if anything goes wrong
3389 * from here on out we know not to trust this cache when we load up next
3390 * time.
3391 */
3392 BTRFS_I(inode)->generation = 0;
3393 ret = btrfs_update_inode(trans, root, inode);
3394 if (ret) {
3395 /*
3396 * So theoretically we could recover from this, simply set the
3397 * super cache generation to 0 so we know to invalidate the
3398 * cache, but then we'd have to keep track of the block groups
3399 * that fail this way so we know we _have_ to reset this cache
3400 * before the next commit or risk reading stale cache. So to
3401 * limit our exposure to horrible edge cases lets just abort the
3402 * transaction, this only happens in really bad situations
3403 * anyway.
3404 */
3405 btrfs_abort_transaction(trans, root, ret);
3406 goto out_put;
3407 }
3408 WARN_ON(ret);
3409
3410 if (i_size_read(inode) > 0) {
3411 ret = btrfs_check_trunc_cache_free_space(root,
3412 &root->fs_info->global_block_rsv);
3413 if (ret)
3414 goto out_put;
3415
3416 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3417 if (ret)
3418 goto out_put;
3419 }
3420
3421 spin_lock(&block_group->lock);
3422 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3423 !btrfs_test_opt(root, SPACE_CACHE)) {
3424 /*
3425 * don't bother trying to write stuff out _if_
3426 * a) we're not cached,
3427 * b) we're with nospace_cache mount option.
3428 */
3429 dcs = BTRFS_DC_WRITTEN;
3430 spin_unlock(&block_group->lock);
3431 goto out_put;
3432 }
3433 spin_unlock(&block_group->lock);
3434
3435 /*
3436 * We hit an ENOSPC when setting up the cache in this transaction, just
3437 * skip doing the setup, we've already cleared the cache so we're safe.
3438 */
3439 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3440 ret = -ENOSPC;
3441 goto out_put;
3442 }
3443
3444 /*
3445 * Try to preallocate enough space based on how big the block group is.
3446 * Keep in mind this has to include any pinned space which could end up
3447 * taking up quite a bit since it's not folded into the other space
3448 * cache.
3449 */
3450 num_pages = div_u64(block_group->key.offset, SZ_256M);
3451 if (!num_pages)
3452 num_pages = 1;
3453
3454 num_pages *= 16;
3455 num_pages *= PAGE_SIZE;
3456
3457 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3458 if (ret)
3459 goto out_put;
3460
3461 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3462 num_pages, num_pages,
3463 &alloc_hint);
3464 /*
3465 * Our cache requires contiguous chunks so that we don't modify a bunch
3466 * of metadata or split extents when writing the cache out, which means
3467 * we can enospc if we are heavily fragmented in addition to just normal
3468 * out of space conditions. So if we hit this just skip setting up any
3469 * other block groups for this transaction, maybe we'll unpin enough
3470 * space the next time around.
3471 */
3472 if (!ret)
3473 dcs = BTRFS_DC_SETUP;
3474 else if (ret == -ENOSPC)
3475 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3476 btrfs_free_reserved_data_space(inode, 0, num_pages);
3477
3478 out_put:
3479 iput(inode);
3480 out_free:
3481 btrfs_release_path(path);
3482 out:
3483 spin_lock(&block_group->lock);
3484 if (!ret && dcs == BTRFS_DC_SETUP)
3485 block_group->cache_generation = trans->transid;
3486 block_group->disk_cache_state = dcs;
3487 spin_unlock(&block_group->lock);
3488
3489 return ret;
3490 }
3491
3492 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3493 struct btrfs_root *root)
3494 {
3495 struct btrfs_block_group_cache *cache, *tmp;
3496 struct btrfs_transaction *cur_trans = trans->transaction;
3497 struct btrfs_path *path;
3498
3499 if (list_empty(&cur_trans->dirty_bgs) ||
3500 !btrfs_test_opt(root, SPACE_CACHE))
3501 return 0;
3502
3503 path = btrfs_alloc_path();
3504 if (!path)
3505 return -ENOMEM;
3506
3507 /* Could add new block groups, use _safe just in case */
3508 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3509 dirty_list) {
3510 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3511 cache_save_setup(cache, trans, path);
3512 }
3513
3514 btrfs_free_path(path);
3515 return 0;
3516 }
3517
3518 /*
3519 * transaction commit does final block group cache writeback during a
3520 * critical section where nothing is allowed to change the FS. This is
3521 * required in order for the cache to actually match the block group,
3522 * but can introduce a lot of latency into the commit.
3523 *
3524 * So, btrfs_start_dirty_block_groups is here to kick off block group
3525 * cache IO. There's a chance we'll have to redo some of it if the
3526 * block group changes again during the commit, but it greatly reduces
3527 * the commit latency by getting rid of the easy block groups while
3528 * we're still allowing others to join the commit.
3529 */
3530 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3531 struct btrfs_root *root)
3532 {
3533 struct btrfs_block_group_cache *cache;
3534 struct btrfs_transaction *cur_trans = trans->transaction;
3535 int ret = 0;
3536 int should_put;
3537 struct btrfs_path *path = NULL;
3538 LIST_HEAD(dirty);
3539 struct list_head *io = &cur_trans->io_bgs;
3540 int num_started = 0;
3541 int loops = 0;
3542
3543 spin_lock(&cur_trans->dirty_bgs_lock);
3544 if (list_empty(&cur_trans->dirty_bgs)) {
3545 spin_unlock(&cur_trans->dirty_bgs_lock);
3546 return 0;
3547 }
3548 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3549 spin_unlock(&cur_trans->dirty_bgs_lock);
3550
3551 again:
3552 /*
3553 * make sure all the block groups on our dirty list actually
3554 * exist
3555 */
3556 btrfs_create_pending_block_groups(trans, root);
3557
3558 if (!path) {
3559 path = btrfs_alloc_path();
3560 if (!path)
3561 return -ENOMEM;
3562 }
3563
3564 /*
3565 * cache_write_mutex is here only to save us from balance or automatic
3566 * removal of empty block groups deleting this block group while we are
3567 * writing out the cache
3568 */
3569 mutex_lock(&trans->transaction->cache_write_mutex);
3570 while (!list_empty(&dirty)) {
3571 cache = list_first_entry(&dirty,
3572 struct btrfs_block_group_cache,
3573 dirty_list);
3574 /*
3575 * this can happen if something re-dirties a block
3576 * group that is already under IO. Just wait for it to
3577 * finish and then do it all again
3578 */
3579 if (!list_empty(&cache->io_list)) {
3580 list_del_init(&cache->io_list);
3581 btrfs_wait_cache_io(root, trans, cache,
3582 &cache->io_ctl, path,
3583 cache->key.objectid);
3584 btrfs_put_block_group(cache);
3585 }
3586
3587
3588 /*
3589 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3590 * if it should update the cache_state. Don't delete
3591 * until after we wait.
3592 *
3593 * Since we're not running in the commit critical section
3594 * we need the dirty_bgs_lock to protect from update_block_group
3595 */
3596 spin_lock(&cur_trans->dirty_bgs_lock);
3597 list_del_init(&cache->dirty_list);
3598 spin_unlock(&cur_trans->dirty_bgs_lock);
3599
3600 should_put = 1;
3601
3602 cache_save_setup(cache, trans, path);
3603
3604 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3605 cache->io_ctl.inode = NULL;
3606 ret = btrfs_write_out_cache(root, trans, cache, path);
3607 if (ret == 0 && cache->io_ctl.inode) {
3608 num_started++;
3609 should_put = 0;
3610
3611 /*
3612 * the cache_write_mutex is protecting
3613 * the io_list
3614 */
3615 list_add_tail(&cache->io_list, io);
3616 } else {
3617 /*
3618 * if we failed to write the cache, the
3619 * generation will be bad and life goes on
3620 */
3621 ret = 0;
3622 }
3623 }
3624 if (!ret) {
3625 ret = write_one_cache_group(trans, root, path, cache);
3626 /*
3627 * Our block group might still be attached to the list
3628 * of new block groups in the transaction handle of some
3629 * other task (struct btrfs_trans_handle->new_bgs). This
3630 * means its block group item isn't yet in the extent
3631 * tree. If this happens ignore the error, as we will
3632 * try again later in the critical section of the
3633 * transaction commit.
3634 */
3635 if (ret == -ENOENT) {
3636 ret = 0;
3637 spin_lock(&cur_trans->dirty_bgs_lock);
3638 if (list_empty(&cache->dirty_list)) {
3639 list_add_tail(&cache->dirty_list,
3640 &cur_trans->dirty_bgs);
3641 btrfs_get_block_group(cache);
3642 }
3643 spin_unlock(&cur_trans->dirty_bgs_lock);
3644 } else if (ret) {
3645 btrfs_abort_transaction(trans, root, ret);
3646 }
3647 }
3648
3649 /* if its not on the io list, we need to put the block group */
3650 if (should_put)
3651 btrfs_put_block_group(cache);
3652
3653 if (ret)
3654 break;
3655
3656 /*
3657 * Avoid blocking other tasks for too long. It might even save
3658 * us from writing caches for block groups that are going to be
3659 * removed.
3660 */
3661 mutex_unlock(&trans->transaction->cache_write_mutex);
3662 mutex_lock(&trans->transaction->cache_write_mutex);
3663 }
3664 mutex_unlock(&trans->transaction->cache_write_mutex);
3665
3666 /*
3667 * go through delayed refs for all the stuff we've just kicked off
3668 * and then loop back (just once)
3669 */
3670 ret = btrfs_run_delayed_refs(trans, root, 0);
3671 if (!ret && loops == 0) {
3672 loops++;
3673 spin_lock(&cur_trans->dirty_bgs_lock);
3674 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3675 /*
3676 * dirty_bgs_lock protects us from concurrent block group
3677 * deletes too (not just cache_write_mutex).
3678 */
3679 if (!list_empty(&dirty)) {
3680 spin_unlock(&cur_trans->dirty_bgs_lock);
3681 goto again;
3682 }
3683 spin_unlock(&cur_trans->dirty_bgs_lock);
3684 }
3685
3686 btrfs_free_path(path);
3687 return ret;
3688 }
3689
3690 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3691 struct btrfs_root *root)
3692 {
3693 struct btrfs_block_group_cache *cache;
3694 struct btrfs_transaction *cur_trans = trans->transaction;
3695 int ret = 0;
3696 int should_put;
3697 struct btrfs_path *path;
3698 struct list_head *io = &cur_trans->io_bgs;
3699 int num_started = 0;
3700
3701 path = btrfs_alloc_path();
3702 if (!path)
3703 return -ENOMEM;
3704
3705 /*
3706 * Even though we are in the critical section of the transaction commit,
3707 * we can still have concurrent tasks adding elements to this
3708 * transaction's list of dirty block groups. These tasks correspond to
3709 * endio free space workers started when writeback finishes for a
3710 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3711 * allocate new block groups as a result of COWing nodes of the root
3712 * tree when updating the free space inode. The writeback for the space
3713 * caches is triggered by an earlier call to
3714 * btrfs_start_dirty_block_groups() and iterations of the following
3715 * loop.
3716 * Also we want to do the cache_save_setup first and then run the
3717 * delayed refs to make sure we have the best chance at doing this all
3718 * in one shot.
3719 */
3720 spin_lock(&cur_trans->dirty_bgs_lock);
3721 while (!list_empty(&cur_trans->dirty_bgs)) {
3722 cache = list_first_entry(&cur_trans->dirty_bgs,
3723 struct btrfs_block_group_cache,
3724 dirty_list);
3725
3726 /*
3727 * this can happen if cache_save_setup re-dirties a block
3728 * group that is already under IO. Just wait for it to
3729 * finish and then do it all again
3730 */
3731 if (!list_empty(&cache->io_list)) {
3732 spin_unlock(&cur_trans->dirty_bgs_lock);
3733 list_del_init(&cache->io_list);
3734 btrfs_wait_cache_io(root, trans, cache,
3735 &cache->io_ctl, path,
3736 cache->key.objectid);
3737 btrfs_put_block_group(cache);
3738 spin_lock(&cur_trans->dirty_bgs_lock);
3739 }
3740
3741 /*
3742 * don't remove from the dirty list until after we've waited
3743 * on any pending IO
3744 */
3745 list_del_init(&cache->dirty_list);
3746 spin_unlock(&cur_trans->dirty_bgs_lock);
3747 should_put = 1;
3748
3749 cache_save_setup(cache, trans, path);
3750
3751 if (!ret)
3752 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3753
3754 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3755 cache->io_ctl.inode = NULL;
3756 ret = btrfs_write_out_cache(root, trans, cache, path);
3757 if (ret == 0 && cache->io_ctl.inode) {
3758 num_started++;
3759 should_put = 0;
3760 list_add_tail(&cache->io_list, io);
3761 } else {
3762 /*
3763 * if we failed to write the cache, the
3764 * generation will be bad and life goes on
3765 */
3766 ret = 0;
3767 }
3768 }
3769 if (!ret) {
3770 ret = write_one_cache_group(trans, root, path, cache);
3771 /*
3772 * One of the free space endio workers might have
3773 * created a new block group while updating a free space
3774 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3775 * and hasn't released its transaction handle yet, in
3776 * which case the new block group is still attached to
3777 * its transaction handle and its creation has not
3778 * finished yet (no block group item in the extent tree
3779 * yet, etc). If this is the case, wait for all free
3780 * space endio workers to finish and retry. This is a
3781 * a very rare case so no need for a more efficient and
3782 * complex approach.
3783 */
3784 if (ret == -ENOENT) {
3785 wait_event(cur_trans->writer_wait,
3786 atomic_read(&cur_trans->num_writers) == 1);
3787 ret = write_one_cache_group(trans, root, path,
3788 cache);
3789 }
3790 if (ret)
3791 btrfs_abort_transaction(trans, root, ret);
3792 }
3793
3794 /* if its not on the io list, we need to put the block group */
3795 if (should_put)
3796 btrfs_put_block_group(cache);
3797 spin_lock(&cur_trans->dirty_bgs_lock);
3798 }
3799 spin_unlock(&cur_trans->dirty_bgs_lock);
3800
3801 while (!list_empty(io)) {
3802 cache = list_first_entry(io, struct btrfs_block_group_cache,
3803 io_list);
3804 list_del_init(&cache->io_list);
3805 btrfs_wait_cache_io(root, trans, cache,
3806 &cache->io_ctl, path, cache->key.objectid);
3807 btrfs_put_block_group(cache);
3808 }
3809
3810 btrfs_free_path(path);
3811 return ret;
3812 }
3813
3814 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3815 {
3816 struct btrfs_block_group_cache *block_group;
3817 int readonly = 0;
3818
3819 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3820 if (!block_group || block_group->ro)
3821 readonly = 1;
3822 if (block_group)
3823 btrfs_put_block_group(block_group);
3824 return readonly;
3825 }
3826
3827 static const char *alloc_name(u64 flags)
3828 {
3829 switch (flags) {
3830 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3831 return "mixed";
3832 case BTRFS_BLOCK_GROUP_METADATA:
3833 return "metadata";
3834 case BTRFS_BLOCK_GROUP_DATA:
3835 return "data";
3836 case BTRFS_BLOCK_GROUP_SYSTEM:
3837 return "system";
3838 default:
3839 WARN_ON(1);
3840 return "invalid-combination";
3841 };
3842 }
3843
3844 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3845 u64 total_bytes, u64 bytes_used,
3846 struct btrfs_space_info **space_info)
3847 {
3848 struct btrfs_space_info *found;
3849 int i;
3850 int factor;
3851 int ret;
3852
3853 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3854 BTRFS_BLOCK_GROUP_RAID10))
3855 factor = 2;
3856 else
3857 factor = 1;
3858
3859 found = __find_space_info(info, flags);
3860 if (found) {
3861 spin_lock(&found->lock);
3862 found->total_bytes += total_bytes;
3863 found->disk_total += total_bytes * factor;
3864 found->bytes_used += bytes_used;
3865 found->disk_used += bytes_used * factor;
3866 if (total_bytes > 0)
3867 found->full = 0;
3868 spin_unlock(&found->lock);
3869 *space_info = found;
3870 return 0;
3871 }
3872 found = kzalloc(sizeof(*found), GFP_NOFS);
3873 if (!found)
3874 return -ENOMEM;
3875
3876 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3877 if (ret) {
3878 kfree(found);
3879 return ret;
3880 }
3881
3882 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3883 INIT_LIST_HEAD(&found->block_groups[i]);
3884 init_rwsem(&found->groups_sem);
3885 spin_lock_init(&found->lock);
3886 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3887 found->total_bytes = total_bytes;
3888 found->disk_total = total_bytes * factor;
3889 found->bytes_used = bytes_used;
3890 found->disk_used = bytes_used * factor;
3891 found->bytes_pinned = 0;
3892 found->bytes_reserved = 0;
3893 found->bytes_readonly = 0;
3894 found->bytes_may_use = 0;
3895 found->full = 0;
3896 found->max_extent_size = 0;
3897 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3898 found->chunk_alloc = 0;
3899 found->flush = 0;
3900 init_waitqueue_head(&found->wait);
3901 INIT_LIST_HEAD(&found->ro_bgs);
3902
3903 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3904 info->space_info_kobj, "%s",
3905 alloc_name(found->flags));
3906 if (ret) {
3907 kfree(found);
3908 return ret;
3909 }
3910
3911 *space_info = found;
3912 list_add_rcu(&found->list, &info->space_info);
3913 if (flags & BTRFS_BLOCK_GROUP_DATA)
3914 info->data_sinfo = found;
3915
3916 return ret;
3917 }
3918
3919 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3920 {
3921 u64 extra_flags = chunk_to_extended(flags) &
3922 BTRFS_EXTENDED_PROFILE_MASK;
3923
3924 write_seqlock(&fs_info->profiles_lock);
3925 if (flags & BTRFS_BLOCK_GROUP_DATA)
3926 fs_info->avail_data_alloc_bits |= extra_flags;
3927 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3928 fs_info->avail_metadata_alloc_bits |= extra_flags;
3929 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3930 fs_info->avail_system_alloc_bits |= extra_flags;
3931 write_sequnlock(&fs_info->profiles_lock);
3932 }
3933
3934 /*
3935 * returns target flags in extended format or 0 if restripe for this
3936 * chunk_type is not in progress
3937 *
3938 * should be called with either volume_mutex or balance_lock held
3939 */
3940 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3941 {
3942 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3943 u64 target = 0;
3944
3945 if (!bctl)
3946 return 0;
3947
3948 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3949 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3950 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3951 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3952 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3953 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3954 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3955 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3956 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3957 }
3958
3959 return target;
3960 }
3961
3962 /*
3963 * @flags: available profiles in extended format (see ctree.h)
3964 *
3965 * Returns reduced profile in chunk format. If profile changing is in
3966 * progress (either running or paused) picks the target profile (if it's
3967 * already available), otherwise falls back to plain reducing.
3968 */
3969 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3970 {
3971 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3972 u64 target;
3973 u64 raid_type;
3974 u64 allowed = 0;
3975
3976 /*
3977 * see if restripe for this chunk_type is in progress, if so
3978 * try to reduce to the target profile
3979 */
3980 spin_lock(&root->fs_info->balance_lock);
3981 target = get_restripe_target(root->fs_info, flags);
3982 if (target) {
3983 /* pick target profile only if it's already available */
3984 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3985 spin_unlock(&root->fs_info->balance_lock);
3986 return extended_to_chunk(target);
3987 }
3988 }
3989 spin_unlock(&root->fs_info->balance_lock);
3990
3991 /* First, mask out the RAID levels which aren't possible */
3992 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3993 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3994 allowed |= btrfs_raid_group[raid_type];
3995 }
3996 allowed &= flags;
3997
3998 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3999 allowed = BTRFS_BLOCK_GROUP_RAID6;
4000 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4001 allowed = BTRFS_BLOCK_GROUP_RAID5;
4002 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4003 allowed = BTRFS_BLOCK_GROUP_RAID10;
4004 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4005 allowed = BTRFS_BLOCK_GROUP_RAID1;
4006 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4007 allowed = BTRFS_BLOCK_GROUP_RAID0;
4008
4009 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4010
4011 return extended_to_chunk(flags | allowed);
4012 }
4013
4014 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4015 {
4016 unsigned seq;
4017 u64 flags;
4018
4019 do {
4020 flags = orig_flags;
4021 seq = read_seqbegin(&root->fs_info->profiles_lock);
4022
4023 if (flags & BTRFS_BLOCK_GROUP_DATA)
4024 flags |= root->fs_info->avail_data_alloc_bits;
4025 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4026 flags |= root->fs_info->avail_system_alloc_bits;
4027 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4028 flags |= root->fs_info->avail_metadata_alloc_bits;
4029 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4030
4031 return btrfs_reduce_alloc_profile(root, flags);
4032 }
4033
4034 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4035 {
4036 u64 flags;
4037 u64 ret;
4038
4039 if (data)
4040 flags = BTRFS_BLOCK_GROUP_DATA;
4041 else if (root == root->fs_info->chunk_root)
4042 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4043 else
4044 flags = BTRFS_BLOCK_GROUP_METADATA;
4045
4046 ret = get_alloc_profile(root, flags);
4047 return ret;
4048 }
4049
4050 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4051 {
4052 struct btrfs_space_info *data_sinfo;
4053 struct btrfs_root *root = BTRFS_I(inode)->root;
4054 struct btrfs_fs_info *fs_info = root->fs_info;
4055 u64 used;
4056 int ret = 0;
4057 int need_commit = 2;
4058 int have_pinned_space;
4059
4060 /* make sure bytes are sectorsize aligned */
4061 bytes = ALIGN(bytes, root->sectorsize);
4062
4063 if (btrfs_is_free_space_inode(inode)) {
4064 need_commit = 0;
4065 ASSERT(current->journal_info);
4066 }
4067
4068 data_sinfo = fs_info->data_sinfo;
4069 if (!data_sinfo)
4070 goto alloc;
4071
4072 again:
4073 /* make sure we have enough space to handle the data first */
4074 spin_lock(&data_sinfo->lock);
4075 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4076 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4077 data_sinfo->bytes_may_use;
4078
4079 if (used + bytes > data_sinfo->total_bytes) {
4080 struct btrfs_trans_handle *trans;
4081
4082 /*
4083 * if we don't have enough free bytes in this space then we need
4084 * to alloc a new chunk.
4085 */
4086 if (!data_sinfo->full) {
4087 u64 alloc_target;
4088
4089 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4090 spin_unlock(&data_sinfo->lock);
4091 alloc:
4092 alloc_target = btrfs_get_alloc_profile(root, 1);
4093 /*
4094 * It is ugly that we don't call nolock join
4095 * transaction for the free space inode case here.
4096 * But it is safe because we only do the data space
4097 * reservation for the free space cache in the
4098 * transaction context, the common join transaction
4099 * just increase the counter of the current transaction
4100 * handler, doesn't try to acquire the trans_lock of
4101 * the fs.
4102 */
4103 trans = btrfs_join_transaction(root);
4104 if (IS_ERR(trans))
4105 return PTR_ERR(trans);
4106
4107 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4108 alloc_target,
4109 CHUNK_ALLOC_NO_FORCE);
4110 btrfs_end_transaction(trans, root);
4111 if (ret < 0) {
4112 if (ret != -ENOSPC)
4113 return ret;
4114 else {
4115 have_pinned_space = 1;
4116 goto commit_trans;
4117 }
4118 }
4119
4120 if (!data_sinfo)
4121 data_sinfo = fs_info->data_sinfo;
4122
4123 goto again;
4124 }
4125
4126 /*
4127 * If we don't have enough pinned space to deal with this
4128 * allocation, and no removed chunk in current transaction,
4129 * don't bother committing the transaction.
4130 */
4131 have_pinned_space = percpu_counter_compare(
4132 &data_sinfo->total_bytes_pinned,
4133 used + bytes - data_sinfo->total_bytes);
4134 spin_unlock(&data_sinfo->lock);
4135
4136 /* commit the current transaction and try again */
4137 commit_trans:
4138 if (need_commit &&
4139 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4140 need_commit--;
4141
4142 if (need_commit > 0) {
4143 btrfs_start_delalloc_roots(fs_info, 0, -1);
4144 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4145 }
4146
4147 trans = btrfs_join_transaction(root);
4148 if (IS_ERR(trans))
4149 return PTR_ERR(trans);
4150 if (have_pinned_space >= 0 ||
4151 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4152 &trans->transaction->flags) ||
4153 need_commit > 0) {
4154 ret = btrfs_commit_transaction(trans, root);
4155 if (ret)
4156 return ret;
4157 /*
4158 * The cleaner kthread might still be doing iput
4159 * operations. Wait for it to finish so that
4160 * more space is released.
4161 */
4162 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4163 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4164 goto again;
4165 } else {
4166 btrfs_end_transaction(trans, root);
4167 }
4168 }
4169
4170 trace_btrfs_space_reservation(root->fs_info,
4171 "space_info:enospc",
4172 data_sinfo->flags, bytes, 1);
4173 return -ENOSPC;
4174 }
4175 data_sinfo->bytes_may_use += bytes;
4176 trace_btrfs_space_reservation(root->fs_info, "space_info",
4177 data_sinfo->flags, bytes, 1);
4178 spin_unlock(&data_sinfo->lock);
4179
4180 return ret;
4181 }
4182
4183 /*
4184 * New check_data_free_space() with ability for precious data reservation
4185 * Will replace old btrfs_check_data_free_space(), but for patch split,
4186 * add a new function first and then replace it.
4187 */
4188 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4189 {
4190 struct btrfs_root *root = BTRFS_I(inode)->root;
4191 int ret;
4192
4193 /* align the range */
4194 len = round_up(start + len, root->sectorsize) -
4195 round_down(start, root->sectorsize);
4196 start = round_down(start, root->sectorsize);
4197
4198 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4199 if (ret < 0)
4200 return ret;
4201
4202 /*
4203 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4204 *
4205 * TODO: Find a good method to avoid reserve data space for NOCOW
4206 * range, but don't impact performance on quota disable case.
4207 */
4208 ret = btrfs_qgroup_reserve_data(inode, start, len);
4209 return ret;
4210 }
4211
4212 /*
4213 * Called if we need to clear a data reservation for this inode
4214 * Normally in a error case.
4215 *
4216 * This one will *NOT* use accurate qgroup reserved space API, just for case
4217 * which we can't sleep and is sure it won't affect qgroup reserved space.
4218 * Like clear_bit_hook().
4219 */
4220 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4221 u64 len)
4222 {
4223 struct btrfs_root *root = BTRFS_I(inode)->root;
4224 struct btrfs_space_info *data_sinfo;
4225
4226 /* Make sure the range is aligned to sectorsize */
4227 len = round_up(start + len, root->sectorsize) -
4228 round_down(start, root->sectorsize);
4229 start = round_down(start, root->sectorsize);
4230
4231 data_sinfo = root->fs_info->data_sinfo;
4232 spin_lock(&data_sinfo->lock);
4233 if (WARN_ON(data_sinfo->bytes_may_use < len))
4234 data_sinfo->bytes_may_use = 0;
4235 else
4236 data_sinfo->bytes_may_use -= len;
4237 trace_btrfs_space_reservation(root->fs_info, "space_info",
4238 data_sinfo->flags, len, 0);
4239 spin_unlock(&data_sinfo->lock);
4240 }
4241
4242 /*
4243 * Called if we need to clear a data reservation for this inode
4244 * Normally in a error case.
4245 *
4246 * This one will handle the per-indoe data rsv map for accurate reserved
4247 * space framework.
4248 */
4249 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4250 {
4251 btrfs_free_reserved_data_space_noquota(inode, start, len);
4252 btrfs_qgroup_free_data(inode, start, len);
4253 }
4254
4255 static void force_metadata_allocation(struct btrfs_fs_info *info)
4256 {
4257 struct list_head *head = &info->space_info;
4258 struct btrfs_space_info *found;
4259
4260 rcu_read_lock();
4261 list_for_each_entry_rcu(found, head, list) {
4262 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4263 found->force_alloc = CHUNK_ALLOC_FORCE;
4264 }
4265 rcu_read_unlock();
4266 }
4267
4268 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4269 {
4270 return (global->size << 1);
4271 }
4272
4273 static int should_alloc_chunk(struct btrfs_root *root,
4274 struct btrfs_space_info *sinfo, int force)
4275 {
4276 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4277 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4278 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4279 u64 thresh;
4280
4281 if (force == CHUNK_ALLOC_FORCE)
4282 return 1;
4283
4284 /*
4285 * We need to take into account the global rsv because for all intents
4286 * and purposes it's used space. Don't worry about locking the
4287 * global_rsv, it doesn't change except when the transaction commits.
4288 */
4289 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4290 num_allocated += calc_global_rsv_need_space(global_rsv);
4291
4292 /*
4293 * in limited mode, we want to have some free space up to
4294 * about 1% of the FS size.
4295 */
4296 if (force == CHUNK_ALLOC_LIMITED) {
4297 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4298 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4299
4300 if (num_bytes - num_allocated < thresh)
4301 return 1;
4302 }
4303
4304 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4305 return 0;
4306 return 1;
4307 }
4308
4309 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4310 {
4311 u64 num_dev;
4312
4313 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4314 BTRFS_BLOCK_GROUP_RAID0 |
4315 BTRFS_BLOCK_GROUP_RAID5 |
4316 BTRFS_BLOCK_GROUP_RAID6))
4317 num_dev = root->fs_info->fs_devices->rw_devices;
4318 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4319 num_dev = 2;
4320 else
4321 num_dev = 1; /* DUP or single */
4322
4323 return num_dev;
4324 }
4325
4326 /*
4327 * If @is_allocation is true, reserve space in the system space info necessary
4328 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4329 * removing a chunk.
4330 */
4331 void check_system_chunk(struct btrfs_trans_handle *trans,
4332 struct btrfs_root *root,
4333 u64 type)
4334 {
4335 struct btrfs_space_info *info;
4336 u64 left;
4337 u64 thresh;
4338 int ret = 0;
4339 u64 num_devs;
4340
4341 /*
4342 * Needed because we can end up allocating a system chunk and for an
4343 * atomic and race free space reservation in the chunk block reserve.
4344 */
4345 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4346
4347 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4348 spin_lock(&info->lock);
4349 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4350 info->bytes_reserved - info->bytes_readonly -
4351 info->bytes_may_use;
4352 spin_unlock(&info->lock);
4353
4354 num_devs = get_profile_num_devs(root, type);
4355
4356 /* num_devs device items to update and 1 chunk item to add or remove */
4357 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4358 btrfs_calc_trans_metadata_size(root, 1);
4359
4360 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4361 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4362 left, thresh, type);
4363 dump_space_info(info, 0, 0);
4364 }
4365
4366 if (left < thresh) {
4367 u64 flags;
4368
4369 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4370 /*
4371 * Ignore failure to create system chunk. We might end up not
4372 * needing it, as we might not need to COW all nodes/leafs from
4373 * the paths we visit in the chunk tree (they were already COWed
4374 * or created in the current transaction for example).
4375 */
4376 ret = btrfs_alloc_chunk(trans, root, flags);
4377 }
4378
4379 if (!ret) {
4380 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4381 &root->fs_info->chunk_block_rsv,
4382 thresh, BTRFS_RESERVE_NO_FLUSH);
4383 if (!ret)
4384 trans->chunk_bytes_reserved += thresh;
4385 }
4386 }
4387
4388 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4389 struct btrfs_root *extent_root, u64 flags, int force)
4390 {
4391 struct btrfs_space_info *space_info;
4392 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4393 int wait_for_alloc = 0;
4394 int ret = 0;
4395
4396 /* Don't re-enter if we're already allocating a chunk */
4397 if (trans->allocating_chunk)
4398 return -ENOSPC;
4399
4400 space_info = __find_space_info(extent_root->fs_info, flags);
4401 if (!space_info) {
4402 ret = update_space_info(extent_root->fs_info, flags,
4403 0, 0, &space_info);
4404 BUG_ON(ret); /* -ENOMEM */
4405 }
4406 BUG_ON(!space_info); /* Logic error */
4407
4408 again:
4409 spin_lock(&space_info->lock);
4410 if (force < space_info->force_alloc)
4411 force = space_info->force_alloc;
4412 if (space_info->full) {
4413 if (should_alloc_chunk(extent_root, space_info, force))
4414 ret = -ENOSPC;
4415 else
4416 ret = 0;
4417 spin_unlock(&space_info->lock);
4418 return ret;
4419 }
4420
4421 if (!should_alloc_chunk(extent_root, space_info, force)) {
4422 spin_unlock(&space_info->lock);
4423 return 0;
4424 } else if (space_info->chunk_alloc) {
4425 wait_for_alloc = 1;
4426 } else {
4427 space_info->chunk_alloc = 1;
4428 }
4429
4430 spin_unlock(&space_info->lock);
4431
4432 mutex_lock(&fs_info->chunk_mutex);
4433
4434 /*
4435 * The chunk_mutex is held throughout the entirety of a chunk
4436 * allocation, so once we've acquired the chunk_mutex we know that the
4437 * other guy is done and we need to recheck and see if we should
4438 * allocate.
4439 */
4440 if (wait_for_alloc) {
4441 mutex_unlock(&fs_info->chunk_mutex);
4442 wait_for_alloc = 0;
4443 goto again;
4444 }
4445
4446 trans->allocating_chunk = true;
4447
4448 /*
4449 * If we have mixed data/metadata chunks we want to make sure we keep
4450 * allocating mixed chunks instead of individual chunks.
4451 */
4452 if (btrfs_mixed_space_info(space_info))
4453 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4454
4455 /*
4456 * if we're doing a data chunk, go ahead and make sure that
4457 * we keep a reasonable number of metadata chunks allocated in the
4458 * FS as well.
4459 */
4460 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4461 fs_info->data_chunk_allocations++;
4462 if (!(fs_info->data_chunk_allocations %
4463 fs_info->metadata_ratio))
4464 force_metadata_allocation(fs_info);
4465 }
4466
4467 /*
4468 * Check if we have enough space in SYSTEM chunk because we may need
4469 * to update devices.
4470 */
4471 check_system_chunk(trans, extent_root, flags);
4472
4473 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4474 trans->allocating_chunk = false;
4475
4476 spin_lock(&space_info->lock);
4477 if (ret < 0 && ret != -ENOSPC)
4478 goto out;
4479 if (ret)
4480 space_info->full = 1;
4481 else
4482 ret = 1;
4483
4484 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4485 out:
4486 space_info->chunk_alloc = 0;
4487 spin_unlock(&space_info->lock);
4488 mutex_unlock(&fs_info->chunk_mutex);
4489 /*
4490 * When we allocate a new chunk we reserve space in the chunk block
4491 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4492 * add new nodes/leafs to it if we end up needing to do it when
4493 * inserting the chunk item and updating device items as part of the
4494 * second phase of chunk allocation, performed by
4495 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4496 * large number of new block groups to create in our transaction
4497 * handle's new_bgs list to avoid exhausting the chunk block reserve
4498 * in extreme cases - like having a single transaction create many new
4499 * block groups when starting to write out the free space caches of all
4500 * the block groups that were made dirty during the lifetime of the
4501 * transaction.
4502 */
4503 if (trans->can_flush_pending_bgs &&
4504 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4505 btrfs_create_pending_block_groups(trans, trans->root);
4506 btrfs_trans_release_chunk_metadata(trans);
4507 }
4508 return ret;
4509 }
4510
4511 static int can_overcommit(struct btrfs_root *root,
4512 struct btrfs_space_info *space_info, u64 bytes,
4513 enum btrfs_reserve_flush_enum flush)
4514 {
4515 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4516 u64 profile = btrfs_get_alloc_profile(root, 0);
4517 u64 space_size;
4518 u64 avail;
4519 u64 used;
4520
4521 used = space_info->bytes_used + space_info->bytes_reserved +
4522 space_info->bytes_pinned + space_info->bytes_readonly;
4523
4524 /*
4525 * We only want to allow over committing if we have lots of actual space
4526 * free, but if we don't have enough space to handle the global reserve
4527 * space then we could end up having a real enospc problem when trying
4528 * to allocate a chunk or some other such important allocation.
4529 */
4530 spin_lock(&global_rsv->lock);
4531 space_size = calc_global_rsv_need_space(global_rsv);
4532 spin_unlock(&global_rsv->lock);
4533 if (used + space_size >= space_info->total_bytes)
4534 return 0;
4535
4536 used += space_info->bytes_may_use;
4537
4538 spin_lock(&root->fs_info->free_chunk_lock);
4539 avail = root->fs_info->free_chunk_space;
4540 spin_unlock(&root->fs_info->free_chunk_lock);
4541
4542 /*
4543 * If we have dup, raid1 or raid10 then only half of the free
4544 * space is actually useable. For raid56, the space info used
4545 * doesn't include the parity drive, so we don't have to
4546 * change the math
4547 */
4548 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4549 BTRFS_BLOCK_GROUP_RAID1 |
4550 BTRFS_BLOCK_GROUP_RAID10))
4551 avail >>= 1;
4552
4553 /*
4554 * If we aren't flushing all things, let us overcommit up to
4555 * 1/2th of the space. If we can flush, don't let us overcommit
4556 * too much, let it overcommit up to 1/8 of the space.
4557 */
4558 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4559 avail >>= 3;
4560 else
4561 avail >>= 1;
4562
4563 if (used + bytes < space_info->total_bytes + avail)
4564 return 1;
4565 return 0;
4566 }
4567
4568 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4569 unsigned long nr_pages, int nr_items)
4570 {
4571 struct super_block *sb = root->fs_info->sb;
4572
4573 if (down_read_trylock(&sb->s_umount)) {
4574 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4575 up_read(&sb->s_umount);
4576 } else {
4577 /*
4578 * We needn't worry the filesystem going from r/w to r/o though
4579 * we don't acquire ->s_umount mutex, because the filesystem
4580 * should guarantee the delalloc inodes list be empty after
4581 * the filesystem is readonly(all dirty pages are written to
4582 * the disk).
4583 */
4584 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4585 if (!current->journal_info)
4586 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4587 0, (u64)-1);
4588 }
4589 }
4590
4591 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4592 {
4593 u64 bytes;
4594 int nr;
4595
4596 bytes = btrfs_calc_trans_metadata_size(root, 1);
4597 nr = (int)div64_u64(to_reclaim, bytes);
4598 if (!nr)
4599 nr = 1;
4600 return nr;
4601 }
4602
4603 #define EXTENT_SIZE_PER_ITEM SZ_256K
4604
4605 /*
4606 * shrink metadata reservation for delalloc
4607 */
4608 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4609 bool wait_ordered)
4610 {
4611 struct btrfs_block_rsv *block_rsv;
4612 struct btrfs_space_info *space_info;
4613 struct btrfs_trans_handle *trans;
4614 u64 delalloc_bytes;
4615 u64 max_reclaim;
4616 long time_left;
4617 unsigned long nr_pages;
4618 int loops;
4619 int items;
4620 enum btrfs_reserve_flush_enum flush;
4621
4622 /* Calc the number of the pages we need flush for space reservation */
4623 items = calc_reclaim_items_nr(root, to_reclaim);
4624 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4625
4626 trans = (struct btrfs_trans_handle *)current->journal_info;
4627 block_rsv = &root->fs_info->delalloc_block_rsv;
4628 space_info = block_rsv->space_info;
4629
4630 delalloc_bytes = percpu_counter_sum_positive(
4631 &root->fs_info->delalloc_bytes);
4632 if (delalloc_bytes == 0) {
4633 if (trans)
4634 return;
4635 if (wait_ordered)
4636 btrfs_wait_ordered_roots(root->fs_info, items,
4637 0, (u64)-1);
4638 return;
4639 }
4640
4641 loops = 0;
4642 while (delalloc_bytes && loops < 3) {
4643 max_reclaim = min(delalloc_bytes, to_reclaim);
4644 nr_pages = max_reclaim >> PAGE_SHIFT;
4645 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4646 /*
4647 * We need to wait for the async pages to actually start before
4648 * we do anything.
4649 */
4650 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4651 if (!max_reclaim)
4652 goto skip_async;
4653
4654 if (max_reclaim <= nr_pages)
4655 max_reclaim = 0;
4656 else
4657 max_reclaim -= nr_pages;
4658
4659 wait_event(root->fs_info->async_submit_wait,
4660 atomic_read(&root->fs_info->async_delalloc_pages) <=
4661 (int)max_reclaim);
4662 skip_async:
4663 if (!trans)
4664 flush = BTRFS_RESERVE_FLUSH_ALL;
4665 else
4666 flush = BTRFS_RESERVE_NO_FLUSH;
4667 spin_lock(&space_info->lock);
4668 if (can_overcommit(root, space_info, orig, flush)) {
4669 spin_unlock(&space_info->lock);
4670 break;
4671 }
4672 spin_unlock(&space_info->lock);
4673
4674 loops++;
4675 if (wait_ordered && !trans) {
4676 btrfs_wait_ordered_roots(root->fs_info, items,
4677 0, (u64)-1);
4678 } else {
4679 time_left = schedule_timeout_killable(1);
4680 if (time_left)
4681 break;
4682 }
4683 delalloc_bytes = percpu_counter_sum_positive(
4684 &root->fs_info->delalloc_bytes);
4685 }
4686 }
4687
4688 /**
4689 * maybe_commit_transaction - possibly commit the transaction if its ok to
4690 * @root - the root we're allocating for
4691 * @bytes - the number of bytes we want to reserve
4692 * @force - force the commit
4693 *
4694 * This will check to make sure that committing the transaction will actually
4695 * get us somewhere and then commit the transaction if it does. Otherwise it
4696 * will return -ENOSPC.
4697 */
4698 static int may_commit_transaction(struct btrfs_root *root,
4699 struct btrfs_space_info *space_info,
4700 u64 bytes, int force)
4701 {
4702 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4703 struct btrfs_trans_handle *trans;
4704
4705 trans = (struct btrfs_trans_handle *)current->journal_info;
4706 if (trans)
4707 return -EAGAIN;
4708
4709 if (force)
4710 goto commit;
4711
4712 /* See if there is enough pinned space to make this reservation */
4713 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4714 bytes) >= 0)
4715 goto commit;
4716
4717 /*
4718 * See if there is some space in the delayed insertion reservation for
4719 * this reservation.
4720 */
4721 if (space_info != delayed_rsv->space_info)
4722 return -ENOSPC;
4723
4724 spin_lock(&delayed_rsv->lock);
4725 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4726 bytes - delayed_rsv->size) >= 0) {
4727 spin_unlock(&delayed_rsv->lock);
4728 return -ENOSPC;
4729 }
4730 spin_unlock(&delayed_rsv->lock);
4731
4732 commit:
4733 trans = btrfs_join_transaction(root);
4734 if (IS_ERR(trans))
4735 return -ENOSPC;
4736
4737 return btrfs_commit_transaction(trans, root);
4738 }
4739
4740 enum flush_state {
4741 FLUSH_DELAYED_ITEMS_NR = 1,
4742 FLUSH_DELAYED_ITEMS = 2,
4743 FLUSH_DELALLOC = 3,
4744 FLUSH_DELALLOC_WAIT = 4,
4745 ALLOC_CHUNK = 5,
4746 COMMIT_TRANS = 6,
4747 };
4748
4749 static int flush_space(struct btrfs_root *root,
4750 struct btrfs_space_info *space_info, u64 num_bytes,
4751 u64 orig_bytes, int state)
4752 {
4753 struct btrfs_trans_handle *trans;
4754 int nr;
4755 int ret = 0;
4756
4757 switch (state) {
4758 case FLUSH_DELAYED_ITEMS_NR:
4759 case FLUSH_DELAYED_ITEMS:
4760 if (state == FLUSH_DELAYED_ITEMS_NR)
4761 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4762 else
4763 nr = -1;
4764
4765 trans = btrfs_join_transaction(root);
4766 if (IS_ERR(trans)) {
4767 ret = PTR_ERR(trans);
4768 break;
4769 }
4770 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4771 btrfs_end_transaction(trans, root);
4772 break;
4773 case FLUSH_DELALLOC:
4774 case FLUSH_DELALLOC_WAIT:
4775 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4776 state == FLUSH_DELALLOC_WAIT);
4777 break;
4778 case ALLOC_CHUNK:
4779 trans = btrfs_join_transaction(root);
4780 if (IS_ERR(trans)) {
4781 ret = PTR_ERR(trans);
4782 break;
4783 }
4784 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4785 btrfs_get_alloc_profile(root, 0),
4786 CHUNK_ALLOC_NO_FORCE);
4787 btrfs_end_transaction(trans, root);
4788 if (ret == -ENOSPC)
4789 ret = 0;
4790 break;
4791 case COMMIT_TRANS:
4792 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4793 break;
4794 default:
4795 ret = -ENOSPC;
4796 break;
4797 }
4798
4799 return ret;
4800 }
4801
4802 static inline u64
4803 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4804 struct btrfs_space_info *space_info)
4805 {
4806 u64 used;
4807 u64 expected;
4808 u64 to_reclaim;
4809
4810 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4811 spin_lock(&space_info->lock);
4812 if (can_overcommit(root, space_info, to_reclaim,
4813 BTRFS_RESERVE_FLUSH_ALL)) {
4814 to_reclaim = 0;
4815 goto out;
4816 }
4817
4818 used = space_info->bytes_used + space_info->bytes_reserved +
4819 space_info->bytes_pinned + space_info->bytes_readonly +
4820 space_info->bytes_may_use;
4821 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4822 expected = div_factor_fine(space_info->total_bytes, 95);
4823 else
4824 expected = div_factor_fine(space_info->total_bytes, 90);
4825
4826 if (used > expected)
4827 to_reclaim = used - expected;
4828 else
4829 to_reclaim = 0;
4830 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4831 space_info->bytes_reserved);
4832 out:
4833 spin_unlock(&space_info->lock);
4834
4835 return to_reclaim;
4836 }
4837
4838 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4839 struct btrfs_fs_info *fs_info, u64 used)
4840 {
4841 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4842
4843 /* If we're just plain full then async reclaim just slows us down. */
4844 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4845 return 0;
4846
4847 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4848 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4849 }
4850
4851 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4852 struct btrfs_fs_info *fs_info,
4853 int flush_state)
4854 {
4855 u64 used;
4856
4857 spin_lock(&space_info->lock);
4858 /*
4859 * We run out of space and have not got any free space via flush_space,
4860 * so don't bother doing async reclaim.
4861 */
4862 if (flush_state > COMMIT_TRANS && space_info->full) {
4863 spin_unlock(&space_info->lock);
4864 return 0;
4865 }
4866
4867 used = space_info->bytes_used + space_info->bytes_reserved +
4868 space_info->bytes_pinned + space_info->bytes_readonly +
4869 space_info->bytes_may_use;
4870 if (need_do_async_reclaim(space_info, fs_info, used)) {
4871 spin_unlock(&space_info->lock);
4872 return 1;
4873 }
4874 spin_unlock(&space_info->lock);
4875
4876 return 0;
4877 }
4878
4879 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4880 {
4881 struct btrfs_fs_info *fs_info;
4882 struct btrfs_space_info *space_info;
4883 u64 to_reclaim;
4884 int flush_state;
4885
4886 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4887 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4888
4889 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4890 space_info);
4891 if (!to_reclaim)
4892 return;
4893
4894 flush_state = FLUSH_DELAYED_ITEMS_NR;
4895 do {
4896 flush_space(fs_info->fs_root, space_info, to_reclaim,
4897 to_reclaim, flush_state);
4898 flush_state++;
4899 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4900 flush_state))
4901 return;
4902 } while (flush_state < COMMIT_TRANS);
4903 }
4904
4905 void btrfs_init_async_reclaim_work(struct work_struct *work)
4906 {
4907 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4908 }
4909
4910 /**
4911 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4912 * @root - the root we're allocating for
4913 * @block_rsv - the block_rsv we're allocating for
4914 * @orig_bytes - the number of bytes we want
4915 * @flush - whether or not we can flush to make our reservation
4916 *
4917 * This will reserve orgi_bytes number of bytes from the space info associated
4918 * with the block_rsv. If there is not enough space it will make an attempt to
4919 * flush out space to make room. It will do this by flushing delalloc if
4920 * possible or committing the transaction. If flush is 0 then no attempts to
4921 * regain reservations will be made and this will fail if there is not enough
4922 * space already.
4923 */
4924 static int reserve_metadata_bytes(struct btrfs_root *root,
4925 struct btrfs_block_rsv *block_rsv,
4926 u64 orig_bytes,
4927 enum btrfs_reserve_flush_enum flush)
4928 {
4929 struct btrfs_space_info *space_info = block_rsv->space_info;
4930 u64 used;
4931 u64 num_bytes = orig_bytes;
4932 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4933 int ret = 0;
4934 bool flushing = false;
4935
4936 again:
4937 ret = 0;
4938 spin_lock(&space_info->lock);
4939 /*
4940 * We only want to wait if somebody other than us is flushing and we
4941 * are actually allowed to flush all things.
4942 */
4943 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4944 space_info->flush) {
4945 spin_unlock(&space_info->lock);
4946 /*
4947 * If we have a trans handle we can't wait because the flusher
4948 * may have to commit the transaction, which would mean we would
4949 * deadlock since we are waiting for the flusher to finish, but
4950 * hold the current transaction open.
4951 */
4952 if (current->journal_info)
4953 return -EAGAIN;
4954 ret = wait_event_killable(space_info->wait, !space_info->flush);
4955 /* Must have been killed, return */
4956 if (ret)
4957 return -EINTR;
4958
4959 spin_lock(&space_info->lock);
4960 }
4961
4962 ret = -ENOSPC;
4963 used = space_info->bytes_used + space_info->bytes_reserved +
4964 space_info->bytes_pinned + space_info->bytes_readonly +
4965 space_info->bytes_may_use;
4966
4967 /*
4968 * The idea here is that we've not already over-reserved the block group
4969 * then we can go ahead and save our reservation first and then start
4970 * flushing if we need to. Otherwise if we've already overcommitted
4971 * lets start flushing stuff first and then come back and try to make
4972 * our reservation.
4973 */
4974 if (used <= space_info->total_bytes) {
4975 if (used + orig_bytes <= space_info->total_bytes) {
4976 space_info->bytes_may_use += orig_bytes;
4977 trace_btrfs_space_reservation(root->fs_info,
4978 "space_info", space_info->flags, orig_bytes, 1);
4979 ret = 0;
4980 } else {
4981 /*
4982 * Ok set num_bytes to orig_bytes since we aren't
4983 * overocmmitted, this way we only try and reclaim what
4984 * we need.
4985 */
4986 num_bytes = orig_bytes;
4987 }
4988 } else {
4989 /*
4990 * Ok we're over committed, set num_bytes to the overcommitted
4991 * amount plus the amount of bytes that we need for this
4992 * reservation.
4993 */
4994 num_bytes = used - space_info->total_bytes +
4995 (orig_bytes * 2);
4996 }
4997
4998 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4999 space_info->bytes_may_use += orig_bytes;
5000 trace_btrfs_space_reservation(root->fs_info, "space_info",
5001 space_info->flags, orig_bytes,
5002 1);
5003 ret = 0;
5004 }
5005
5006 /*
5007 * Couldn't make our reservation, save our place so while we're trying
5008 * to reclaim space we can actually use it instead of somebody else
5009 * stealing it from us.
5010 *
5011 * We make the other tasks wait for the flush only when we can flush
5012 * all things.
5013 */
5014 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5015 flushing = true;
5016 space_info->flush = 1;
5017 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5018 used += orig_bytes;
5019 /*
5020 * We will do the space reservation dance during log replay,
5021 * which means we won't have fs_info->fs_root set, so don't do
5022 * the async reclaim as we will panic.
5023 */
5024 if (!root->fs_info->log_root_recovering &&
5025 need_do_async_reclaim(space_info, root->fs_info, used) &&
5026 !work_busy(&root->fs_info->async_reclaim_work))
5027 queue_work(system_unbound_wq,
5028 &root->fs_info->async_reclaim_work);
5029 }
5030 spin_unlock(&space_info->lock);
5031
5032 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5033 goto out;
5034
5035 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5036 flush_state);
5037 flush_state++;
5038
5039 /*
5040 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5041 * would happen. So skip delalloc flush.
5042 */
5043 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5044 (flush_state == FLUSH_DELALLOC ||
5045 flush_state == FLUSH_DELALLOC_WAIT))
5046 flush_state = ALLOC_CHUNK;
5047
5048 if (!ret)
5049 goto again;
5050 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5051 flush_state < COMMIT_TRANS)
5052 goto again;
5053 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5054 flush_state <= COMMIT_TRANS)
5055 goto again;
5056
5057 out:
5058 if (ret == -ENOSPC &&
5059 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5060 struct btrfs_block_rsv *global_rsv =
5061 &root->fs_info->global_block_rsv;
5062
5063 if (block_rsv != global_rsv &&
5064 !block_rsv_use_bytes(global_rsv, orig_bytes))
5065 ret = 0;
5066 }
5067 if (ret == -ENOSPC)
5068 trace_btrfs_space_reservation(root->fs_info,
5069 "space_info:enospc",
5070 space_info->flags, orig_bytes, 1);
5071 if (flushing) {
5072 spin_lock(&space_info->lock);
5073 space_info->flush = 0;
5074 wake_up_all(&space_info->wait);
5075 spin_unlock(&space_info->lock);
5076 }
5077 return ret;
5078 }
5079
5080 static struct btrfs_block_rsv *get_block_rsv(
5081 const struct btrfs_trans_handle *trans,
5082 const struct btrfs_root *root)
5083 {
5084 struct btrfs_block_rsv *block_rsv = NULL;
5085
5086 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5087 (root == root->fs_info->csum_root && trans->adding_csums) ||
5088 (root == root->fs_info->uuid_root))
5089 block_rsv = trans->block_rsv;
5090
5091 if (!block_rsv)
5092 block_rsv = root->block_rsv;
5093
5094 if (!block_rsv)
5095 block_rsv = &root->fs_info->empty_block_rsv;
5096
5097 return block_rsv;
5098 }
5099
5100 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5101 u64 num_bytes)
5102 {
5103 int ret = -ENOSPC;
5104 spin_lock(&block_rsv->lock);
5105 if (block_rsv->reserved >= num_bytes) {
5106 block_rsv->reserved -= num_bytes;
5107 if (block_rsv->reserved < block_rsv->size)
5108 block_rsv->full = 0;
5109 ret = 0;
5110 }
5111 spin_unlock(&block_rsv->lock);
5112 return ret;
5113 }
5114
5115 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5116 u64 num_bytes, int update_size)
5117 {
5118 spin_lock(&block_rsv->lock);
5119 block_rsv->reserved += num_bytes;
5120 if (update_size)
5121 block_rsv->size += num_bytes;
5122 else if (block_rsv->reserved >= block_rsv->size)
5123 block_rsv->full = 1;
5124 spin_unlock(&block_rsv->lock);
5125 }
5126
5127 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5128 struct btrfs_block_rsv *dest, u64 num_bytes,
5129 int min_factor)
5130 {
5131 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5132 u64 min_bytes;
5133
5134 if (global_rsv->space_info != dest->space_info)
5135 return -ENOSPC;
5136
5137 spin_lock(&global_rsv->lock);
5138 min_bytes = div_factor(global_rsv->size, min_factor);
5139 if (global_rsv->reserved < min_bytes + num_bytes) {
5140 spin_unlock(&global_rsv->lock);
5141 return -ENOSPC;
5142 }
5143 global_rsv->reserved -= num_bytes;
5144 if (global_rsv->reserved < global_rsv->size)
5145 global_rsv->full = 0;
5146 spin_unlock(&global_rsv->lock);
5147
5148 block_rsv_add_bytes(dest, num_bytes, 1);
5149 return 0;
5150 }
5151
5152 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5153 struct btrfs_block_rsv *block_rsv,
5154 struct btrfs_block_rsv *dest, u64 num_bytes)
5155 {
5156 struct btrfs_space_info *space_info = block_rsv->space_info;
5157
5158 spin_lock(&block_rsv->lock);
5159 if (num_bytes == (u64)-1)
5160 num_bytes = block_rsv->size;
5161 block_rsv->size -= num_bytes;
5162 if (block_rsv->reserved >= block_rsv->size) {
5163 num_bytes = block_rsv->reserved - block_rsv->size;
5164 block_rsv->reserved = block_rsv->size;
5165 block_rsv->full = 1;
5166 } else {
5167 num_bytes = 0;
5168 }
5169 spin_unlock(&block_rsv->lock);
5170
5171 if (num_bytes > 0) {
5172 if (dest) {
5173 spin_lock(&dest->lock);
5174 if (!dest->full) {
5175 u64 bytes_to_add;
5176
5177 bytes_to_add = dest->size - dest->reserved;
5178 bytes_to_add = min(num_bytes, bytes_to_add);
5179 dest->reserved += bytes_to_add;
5180 if (dest->reserved >= dest->size)
5181 dest->full = 1;
5182 num_bytes -= bytes_to_add;
5183 }
5184 spin_unlock(&dest->lock);
5185 }
5186 if (num_bytes) {
5187 spin_lock(&space_info->lock);
5188 space_info->bytes_may_use -= num_bytes;
5189 trace_btrfs_space_reservation(fs_info, "space_info",
5190 space_info->flags, num_bytes, 0);
5191 spin_unlock(&space_info->lock);
5192 }
5193 }
5194 }
5195
5196 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5197 struct btrfs_block_rsv *dst, u64 num_bytes)
5198 {
5199 int ret;
5200
5201 ret = block_rsv_use_bytes(src, num_bytes);
5202 if (ret)
5203 return ret;
5204
5205 block_rsv_add_bytes(dst, num_bytes, 1);
5206 return 0;
5207 }
5208
5209 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5210 {
5211 memset(rsv, 0, sizeof(*rsv));
5212 spin_lock_init(&rsv->lock);
5213 rsv->type = type;
5214 }
5215
5216 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5217 unsigned short type)
5218 {
5219 struct btrfs_block_rsv *block_rsv;
5220 struct btrfs_fs_info *fs_info = root->fs_info;
5221
5222 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5223 if (!block_rsv)
5224 return NULL;
5225
5226 btrfs_init_block_rsv(block_rsv, type);
5227 block_rsv->space_info = __find_space_info(fs_info,
5228 BTRFS_BLOCK_GROUP_METADATA);
5229 return block_rsv;
5230 }
5231
5232 void btrfs_free_block_rsv(struct btrfs_root *root,
5233 struct btrfs_block_rsv *rsv)
5234 {
5235 if (!rsv)
5236 return;
5237 btrfs_block_rsv_release(root, rsv, (u64)-1);
5238 kfree(rsv);
5239 }
5240
5241 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5242 {
5243 kfree(rsv);
5244 }
5245
5246 int btrfs_block_rsv_add(struct btrfs_root *root,
5247 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5248 enum btrfs_reserve_flush_enum flush)
5249 {
5250 int ret;
5251
5252 if (num_bytes == 0)
5253 return 0;
5254
5255 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5256 if (!ret) {
5257 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5258 return 0;
5259 }
5260
5261 return ret;
5262 }
5263
5264 int btrfs_block_rsv_check(struct btrfs_root *root,
5265 struct btrfs_block_rsv *block_rsv, int min_factor)
5266 {
5267 u64 num_bytes = 0;
5268 int ret = -ENOSPC;
5269
5270 if (!block_rsv)
5271 return 0;
5272
5273 spin_lock(&block_rsv->lock);
5274 num_bytes = div_factor(block_rsv->size, min_factor);
5275 if (block_rsv->reserved >= num_bytes)
5276 ret = 0;
5277 spin_unlock(&block_rsv->lock);
5278
5279 return ret;
5280 }
5281
5282 int btrfs_block_rsv_refill(struct btrfs_root *root,
5283 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5284 enum btrfs_reserve_flush_enum flush)
5285 {
5286 u64 num_bytes = 0;
5287 int ret = -ENOSPC;
5288
5289 if (!block_rsv)
5290 return 0;
5291
5292 spin_lock(&block_rsv->lock);
5293 num_bytes = min_reserved;
5294 if (block_rsv->reserved >= num_bytes)
5295 ret = 0;
5296 else
5297 num_bytes -= block_rsv->reserved;
5298 spin_unlock(&block_rsv->lock);
5299
5300 if (!ret)
5301 return 0;
5302
5303 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5304 if (!ret) {
5305 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5306 return 0;
5307 }
5308
5309 return ret;
5310 }
5311
5312 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5313 struct btrfs_block_rsv *dst_rsv,
5314 u64 num_bytes)
5315 {
5316 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5317 }
5318
5319 void btrfs_block_rsv_release(struct btrfs_root *root,
5320 struct btrfs_block_rsv *block_rsv,
5321 u64 num_bytes)
5322 {
5323 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5324 if (global_rsv == block_rsv ||
5325 block_rsv->space_info != global_rsv->space_info)
5326 global_rsv = NULL;
5327 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5328 num_bytes);
5329 }
5330
5331 /*
5332 * helper to calculate size of global block reservation.
5333 * the desired value is sum of space used by extent tree,
5334 * checksum tree and root tree
5335 */
5336 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5337 {
5338 struct btrfs_space_info *sinfo;
5339 u64 num_bytes;
5340 u64 meta_used;
5341 u64 data_used;
5342 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5343
5344 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5345 spin_lock(&sinfo->lock);
5346 data_used = sinfo->bytes_used;
5347 spin_unlock(&sinfo->lock);
5348
5349 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5350 spin_lock(&sinfo->lock);
5351 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5352 data_used = 0;
5353 meta_used = sinfo->bytes_used;
5354 spin_unlock(&sinfo->lock);
5355
5356 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5357 csum_size * 2;
5358 num_bytes += div_u64(data_used + meta_used, 50);
5359
5360 if (num_bytes * 3 > meta_used)
5361 num_bytes = div_u64(meta_used, 3);
5362
5363 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5364 }
5365
5366 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5367 {
5368 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5369 struct btrfs_space_info *sinfo = block_rsv->space_info;
5370 u64 num_bytes;
5371
5372 num_bytes = calc_global_metadata_size(fs_info);
5373
5374 spin_lock(&sinfo->lock);
5375 spin_lock(&block_rsv->lock);
5376
5377 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5378
5379 if (block_rsv->reserved < block_rsv->size) {
5380 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5381 sinfo->bytes_reserved + sinfo->bytes_readonly +
5382 sinfo->bytes_may_use;
5383 if (sinfo->total_bytes > num_bytes) {
5384 num_bytes = sinfo->total_bytes - num_bytes;
5385 num_bytes = min(num_bytes,
5386 block_rsv->size - block_rsv->reserved);
5387 block_rsv->reserved += num_bytes;
5388 sinfo->bytes_may_use += num_bytes;
5389 trace_btrfs_space_reservation(fs_info, "space_info",
5390 sinfo->flags, num_bytes,
5391 1);
5392 }
5393 } else if (block_rsv->reserved > block_rsv->size) {
5394 num_bytes = block_rsv->reserved - block_rsv->size;
5395 sinfo->bytes_may_use -= num_bytes;
5396 trace_btrfs_space_reservation(fs_info, "space_info",
5397 sinfo->flags, num_bytes, 0);
5398 block_rsv->reserved = block_rsv->size;
5399 }
5400
5401 if (block_rsv->reserved == block_rsv->size)
5402 block_rsv->full = 1;
5403 else
5404 block_rsv->full = 0;
5405
5406 spin_unlock(&block_rsv->lock);
5407 spin_unlock(&sinfo->lock);
5408 }
5409
5410 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5411 {
5412 struct btrfs_space_info *space_info;
5413
5414 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5415 fs_info->chunk_block_rsv.space_info = space_info;
5416
5417 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5418 fs_info->global_block_rsv.space_info = space_info;
5419 fs_info->delalloc_block_rsv.space_info = space_info;
5420 fs_info->trans_block_rsv.space_info = space_info;
5421 fs_info->empty_block_rsv.space_info = space_info;
5422 fs_info->delayed_block_rsv.space_info = space_info;
5423
5424 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5425 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5426 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5427 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5428 if (fs_info->quota_root)
5429 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5430 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5431
5432 update_global_block_rsv(fs_info);
5433 }
5434
5435 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5436 {
5437 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5438 (u64)-1);
5439 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5440 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5441 WARN_ON(fs_info->trans_block_rsv.size > 0);
5442 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5443 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5444 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5445 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5446 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5447 }
5448
5449 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5450 struct btrfs_root *root)
5451 {
5452 if (!trans->block_rsv)
5453 return;
5454
5455 if (!trans->bytes_reserved)
5456 return;
5457
5458 trace_btrfs_space_reservation(root->fs_info, "transaction",
5459 trans->transid, trans->bytes_reserved, 0);
5460 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5461 trans->bytes_reserved = 0;
5462 }
5463
5464 /*
5465 * To be called after all the new block groups attached to the transaction
5466 * handle have been created (btrfs_create_pending_block_groups()).
5467 */
5468 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5469 {
5470 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5471
5472 if (!trans->chunk_bytes_reserved)
5473 return;
5474
5475 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5476
5477 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5478 trans->chunk_bytes_reserved);
5479 trans->chunk_bytes_reserved = 0;
5480 }
5481
5482 /* Can only return 0 or -ENOSPC */
5483 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5484 struct inode *inode)
5485 {
5486 struct btrfs_root *root = BTRFS_I(inode)->root;
5487 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5488 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5489
5490 /*
5491 * We need to hold space in order to delete our orphan item once we've
5492 * added it, so this takes the reservation so we can release it later
5493 * when we are truly done with the orphan item.
5494 */
5495 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5496 trace_btrfs_space_reservation(root->fs_info, "orphan",
5497 btrfs_ino(inode), num_bytes, 1);
5498 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5499 }
5500
5501 void btrfs_orphan_release_metadata(struct inode *inode)
5502 {
5503 struct btrfs_root *root = BTRFS_I(inode)->root;
5504 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5505 trace_btrfs_space_reservation(root->fs_info, "orphan",
5506 btrfs_ino(inode), num_bytes, 0);
5507 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5508 }
5509
5510 /*
5511 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5512 * root: the root of the parent directory
5513 * rsv: block reservation
5514 * items: the number of items that we need do reservation
5515 * qgroup_reserved: used to return the reserved size in qgroup
5516 *
5517 * This function is used to reserve the space for snapshot/subvolume
5518 * creation and deletion. Those operations are different with the
5519 * common file/directory operations, they change two fs/file trees
5520 * and root tree, the number of items that the qgroup reserves is
5521 * different with the free space reservation. So we can not use
5522 * the space reseravtion mechanism in start_transaction().
5523 */
5524 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5525 struct btrfs_block_rsv *rsv,
5526 int items,
5527 u64 *qgroup_reserved,
5528 bool use_global_rsv)
5529 {
5530 u64 num_bytes;
5531 int ret;
5532 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5533
5534 if (root->fs_info->quota_enabled) {
5535 /* One for parent inode, two for dir entries */
5536 num_bytes = 3 * root->nodesize;
5537 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5538 if (ret)
5539 return ret;
5540 } else {
5541 num_bytes = 0;
5542 }
5543
5544 *qgroup_reserved = num_bytes;
5545
5546 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5547 rsv->space_info = __find_space_info(root->fs_info,
5548 BTRFS_BLOCK_GROUP_METADATA);
5549 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5550 BTRFS_RESERVE_FLUSH_ALL);
5551
5552 if (ret == -ENOSPC && use_global_rsv)
5553 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5554
5555 if (ret && *qgroup_reserved)
5556 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5557
5558 return ret;
5559 }
5560
5561 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5562 struct btrfs_block_rsv *rsv,
5563 u64 qgroup_reserved)
5564 {
5565 btrfs_block_rsv_release(root, rsv, (u64)-1);
5566 }
5567
5568 /**
5569 * drop_outstanding_extent - drop an outstanding extent
5570 * @inode: the inode we're dropping the extent for
5571 * @num_bytes: the number of bytes we're relaseing.
5572 *
5573 * This is called when we are freeing up an outstanding extent, either called
5574 * after an error or after an extent is written. This will return the number of
5575 * reserved extents that need to be freed. This must be called with
5576 * BTRFS_I(inode)->lock held.
5577 */
5578 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5579 {
5580 unsigned drop_inode_space = 0;
5581 unsigned dropped_extents = 0;
5582 unsigned num_extents = 0;
5583
5584 num_extents = (unsigned)div64_u64(num_bytes +
5585 BTRFS_MAX_EXTENT_SIZE - 1,
5586 BTRFS_MAX_EXTENT_SIZE);
5587 ASSERT(num_extents);
5588 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5589 BTRFS_I(inode)->outstanding_extents -= num_extents;
5590
5591 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5592 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5593 &BTRFS_I(inode)->runtime_flags))
5594 drop_inode_space = 1;
5595
5596 /*
5597 * If we have more or the same amount of outsanding extents than we have
5598 * reserved then we need to leave the reserved extents count alone.
5599 */
5600 if (BTRFS_I(inode)->outstanding_extents >=
5601 BTRFS_I(inode)->reserved_extents)
5602 return drop_inode_space;
5603
5604 dropped_extents = BTRFS_I(inode)->reserved_extents -
5605 BTRFS_I(inode)->outstanding_extents;
5606 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5607 return dropped_extents + drop_inode_space;
5608 }
5609
5610 /**
5611 * calc_csum_metadata_size - return the amount of metada space that must be
5612 * reserved/free'd for the given bytes.
5613 * @inode: the inode we're manipulating
5614 * @num_bytes: the number of bytes in question
5615 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5616 *
5617 * This adjusts the number of csum_bytes in the inode and then returns the
5618 * correct amount of metadata that must either be reserved or freed. We
5619 * calculate how many checksums we can fit into one leaf and then divide the
5620 * number of bytes that will need to be checksumed by this value to figure out
5621 * how many checksums will be required. If we are adding bytes then the number
5622 * may go up and we will return the number of additional bytes that must be
5623 * reserved. If it is going down we will return the number of bytes that must
5624 * be freed.
5625 *
5626 * This must be called with BTRFS_I(inode)->lock held.
5627 */
5628 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5629 int reserve)
5630 {
5631 struct btrfs_root *root = BTRFS_I(inode)->root;
5632 u64 old_csums, num_csums;
5633
5634 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5635 BTRFS_I(inode)->csum_bytes == 0)
5636 return 0;
5637
5638 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5639 if (reserve)
5640 BTRFS_I(inode)->csum_bytes += num_bytes;
5641 else
5642 BTRFS_I(inode)->csum_bytes -= num_bytes;
5643 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5644
5645 /* No change, no need to reserve more */
5646 if (old_csums == num_csums)
5647 return 0;
5648
5649 if (reserve)
5650 return btrfs_calc_trans_metadata_size(root,
5651 num_csums - old_csums);
5652
5653 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5654 }
5655
5656 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5657 {
5658 struct btrfs_root *root = BTRFS_I(inode)->root;
5659 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5660 u64 to_reserve = 0;
5661 u64 csum_bytes;
5662 unsigned nr_extents = 0;
5663 int extra_reserve = 0;
5664 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5665 int ret = 0;
5666 bool delalloc_lock = true;
5667 u64 to_free = 0;
5668 unsigned dropped;
5669
5670 /* If we are a free space inode we need to not flush since we will be in
5671 * the middle of a transaction commit. We also don't need the delalloc
5672 * mutex since we won't race with anybody. We need this mostly to make
5673 * lockdep shut its filthy mouth.
5674 */
5675 if (btrfs_is_free_space_inode(inode)) {
5676 flush = BTRFS_RESERVE_NO_FLUSH;
5677 delalloc_lock = false;
5678 }
5679
5680 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5681 btrfs_transaction_in_commit(root->fs_info))
5682 schedule_timeout(1);
5683
5684 if (delalloc_lock)
5685 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5686
5687 num_bytes = ALIGN(num_bytes, root->sectorsize);
5688
5689 spin_lock(&BTRFS_I(inode)->lock);
5690 nr_extents = (unsigned)div64_u64(num_bytes +
5691 BTRFS_MAX_EXTENT_SIZE - 1,
5692 BTRFS_MAX_EXTENT_SIZE);
5693 BTRFS_I(inode)->outstanding_extents += nr_extents;
5694 nr_extents = 0;
5695
5696 if (BTRFS_I(inode)->outstanding_extents >
5697 BTRFS_I(inode)->reserved_extents)
5698 nr_extents = BTRFS_I(inode)->outstanding_extents -
5699 BTRFS_I(inode)->reserved_extents;
5700
5701 /*
5702 * Add an item to reserve for updating the inode when we complete the
5703 * delalloc io.
5704 */
5705 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5706 &BTRFS_I(inode)->runtime_flags)) {
5707 nr_extents++;
5708 extra_reserve = 1;
5709 }
5710
5711 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5712 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5713 csum_bytes = BTRFS_I(inode)->csum_bytes;
5714 spin_unlock(&BTRFS_I(inode)->lock);
5715
5716 if (root->fs_info->quota_enabled) {
5717 ret = btrfs_qgroup_reserve_meta(root,
5718 nr_extents * root->nodesize);
5719 if (ret)
5720 goto out_fail;
5721 }
5722
5723 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5724 if (unlikely(ret)) {
5725 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5726 goto out_fail;
5727 }
5728
5729 spin_lock(&BTRFS_I(inode)->lock);
5730 if (extra_reserve) {
5731 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5732 &BTRFS_I(inode)->runtime_flags);
5733 nr_extents--;
5734 }
5735 BTRFS_I(inode)->reserved_extents += nr_extents;
5736 spin_unlock(&BTRFS_I(inode)->lock);
5737
5738 if (delalloc_lock)
5739 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5740
5741 if (to_reserve)
5742 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5743 btrfs_ino(inode), to_reserve, 1);
5744 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5745
5746 return 0;
5747
5748 out_fail:
5749 spin_lock(&BTRFS_I(inode)->lock);
5750 dropped = drop_outstanding_extent(inode, num_bytes);
5751 /*
5752 * If the inodes csum_bytes is the same as the original
5753 * csum_bytes then we know we haven't raced with any free()ers
5754 * so we can just reduce our inodes csum bytes and carry on.
5755 */
5756 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5757 calc_csum_metadata_size(inode, num_bytes, 0);
5758 } else {
5759 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5760 u64 bytes;
5761
5762 /*
5763 * This is tricky, but first we need to figure out how much we
5764 * free'd from any free-ers that occurred during this
5765 * reservation, so we reset ->csum_bytes to the csum_bytes
5766 * before we dropped our lock, and then call the free for the
5767 * number of bytes that were freed while we were trying our
5768 * reservation.
5769 */
5770 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5771 BTRFS_I(inode)->csum_bytes = csum_bytes;
5772 to_free = calc_csum_metadata_size(inode, bytes, 0);
5773
5774
5775 /*
5776 * Now we need to see how much we would have freed had we not
5777 * been making this reservation and our ->csum_bytes were not
5778 * artificially inflated.
5779 */
5780 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5781 bytes = csum_bytes - orig_csum_bytes;
5782 bytes = calc_csum_metadata_size(inode, bytes, 0);
5783
5784 /*
5785 * Now reset ->csum_bytes to what it should be. If bytes is
5786 * more than to_free then we would have free'd more space had we
5787 * not had an artificially high ->csum_bytes, so we need to free
5788 * the remainder. If bytes is the same or less then we don't
5789 * need to do anything, the other free-ers did the correct
5790 * thing.
5791 */
5792 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5793 if (bytes > to_free)
5794 to_free = bytes - to_free;
5795 else
5796 to_free = 0;
5797 }
5798 spin_unlock(&BTRFS_I(inode)->lock);
5799 if (dropped)
5800 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5801
5802 if (to_free) {
5803 btrfs_block_rsv_release(root, block_rsv, to_free);
5804 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5805 btrfs_ino(inode), to_free, 0);
5806 }
5807 if (delalloc_lock)
5808 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5809 return ret;
5810 }
5811
5812 /**
5813 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5814 * @inode: the inode to release the reservation for
5815 * @num_bytes: the number of bytes we're releasing
5816 *
5817 * This will release the metadata reservation for an inode. This can be called
5818 * once we complete IO for a given set of bytes to release their metadata
5819 * reservations.
5820 */
5821 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5822 {
5823 struct btrfs_root *root = BTRFS_I(inode)->root;
5824 u64 to_free = 0;
5825 unsigned dropped;
5826
5827 num_bytes = ALIGN(num_bytes, root->sectorsize);
5828 spin_lock(&BTRFS_I(inode)->lock);
5829 dropped = drop_outstanding_extent(inode, num_bytes);
5830
5831 if (num_bytes)
5832 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5833 spin_unlock(&BTRFS_I(inode)->lock);
5834 if (dropped > 0)
5835 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5836
5837 if (btrfs_test_is_dummy_root(root))
5838 return;
5839
5840 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5841 btrfs_ino(inode), to_free, 0);
5842
5843 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5844 to_free);
5845 }
5846
5847 /**
5848 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5849 * delalloc
5850 * @inode: inode we're writing to
5851 * @start: start range we are writing to
5852 * @len: how long the range we are writing to
5853 *
5854 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5855 *
5856 * This will do the following things
5857 *
5858 * o reserve space in data space info for num bytes
5859 * and reserve precious corresponding qgroup space
5860 * (Done in check_data_free_space)
5861 *
5862 * o reserve space for metadata space, based on the number of outstanding
5863 * extents and how much csums will be needed
5864 * also reserve metadata space in a per root over-reserve method.
5865 * o add to the inodes->delalloc_bytes
5866 * o add it to the fs_info's delalloc inodes list.
5867 * (Above 3 all done in delalloc_reserve_metadata)
5868 *
5869 * Return 0 for success
5870 * Return <0 for error(-ENOSPC or -EQUOT)
5871 */
5872 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5873 {
5874 int ret;
5875
5876 ret = btrfs_check_data_free_space(inode, start, len);
5877 if (ret < 0)
5878 return ret;
5879 ret = btrfs_delalloc_reserve_metadata(inode, len);
5880 if (ret < 0)
5881 btrfs_free_reserved_data_space(inode, start, len);
5882 return ret;
5883 }
5884
5885 /**
5886 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5887 * @inode: inode we're releasing space for
5888 * @start: start position of the space already reserved
5889 * @len: the len of the space already reserved
5890 *
5891 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5892 * called in the case that we don't need the metadata AND data reservations
5893 * anymore. So if there is an error or we insert an inline extent.
5894 *
5895 * This function will release the metadata space that was not used and will
5896 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5897 * list if there are no delalloc bytes left.
5898 * Also it will handle the qgroup reserved space.
5899 */
5900 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5901 {
5902 btrfs_delalloc_release_metadata(inode, len);
5903 btrfs_free_reserved_data_space(inode, start, len);
5904 }
5905
5906 static int update_block_group(struct btrfs_trans_handle *trans,
5907 struct btrfs_root *root, u64 bytenr,
5908 u64 num_bytes, int alloc)
5909 {
5910 struct btrfs_block_group_cache *cache = NULL;
5911 struct btrfs_fs_info *info = root->fs_info;
5912 u64 total = num_bytes;
5913 u64 old_val;
5914 u64 byte_in_group;
5915 int factor;
5916
5917 /* block accounting for super block */
5918 spin_lock(&info->delalloc_root_lock);
5919 old_val = btrfs_super_bytes_used(info->super_copy);
5920 if (alloc)
5921 old_val += num_bytes;
5922 else
5923 old_val -= num_bytes;
5924 btrfs_set_super_bytes_used(info->super_copy, old_val);
5925 spin_unlock(&info->delalloc_root_lock);
5926
5927 while (total) {
5928 cache = btrfs_lookup_block_group(info, bytenr);
5929 if (!cache)
5930 return -ENOENT;
5931 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5932 BTRFS_BLOCK_GROUP_RAID1 |
5933 BTRFS_BLOCK_GROUP_RAID10))
5934 factor = 2;
5935 else
5936 factor = 1;
5937 /*
5938 * If this block group has free space cache written out, we
5939 * need to make sure to load it if we are removing space. This
5940 * is because we need the unpinning stage to actually add the
5941 * space back to the block group, otherwise we will leak space.
5942 */
5943 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5944 cache_block_group(cache, 1);
5945
5946 byte_in_group = bytenr - cache->key.objectid;
5947 WARN_ON(byte_in_group > cache->key.offset);
5948
5949 spin_lock(&cache->space_info->lock);
5950 spin_lock(&cache->lock);
5951
5952 if (btrfs_test_opt(root, SPACE_CACHE) &&
5953 cache->disk_cache_state < BTRFS_DC_CLEAR)
5954 cache->disk_cache_state = BTRFS_DC_CLEAR;
5955
5956 old_val = btrfs_block_group_used(&cache->item);
5957 num_bytes = min(total, cache->key.offset - byte_in_group);
5958 if (alloc) {
5959 old_val += num_bytes;
5960 btrfs_set_block_group_used(&cache->item, old_val);
5961 cache->reserved -= num_bytes;
5962 cache->space_info->bytes_reserved -= num_bytes;
5963 cache->space_info->bytes_used += num_bytes;
5964 cache->space_info->disk_used += num_bytes * factor;
5965 spin_unlock(&cache->lock);
5966 spin_unlock(&cache->space_info->lock);
5967 } else {
5968 old_val -= num_bytes;
5969 btrfs_set_block_group_used(&cache->item, old_val);
5970 cache->pinned += num_bytes;
5971 cache->space_info->bytes_pinned += num_bytes;
5972 cache->space_info->bytes_used -= num_bytes;
5973 cache->space_info->disk_used -= num_bytes * factor;
5974 spin_unlock(&cache->lock);
5975 spin_unlock(&cache->space_info->lock);
5976
5977 set_extent_dirty(info->pinned_extents,
5978 bytenr, bytenr + num_bytes - 1,
5979 GFP_NOFS | __GFP_NOFAIL);
5980 }
5981
5982 spin_lock(&trans->transaction->dirty_bgs_lock);
5983 if (list_empty(&cache->dirty_list)) {
5984 list_add_tail(&cache->dirty_list,
5985 &trans->transaction->dirty_bgs);
5986 trans->transaction->num_dirty_bgs++;
5987 btrfs_get_block_group(cache);
5988 }
5989 spin_unlock(&trans->transaction->dirty_bgs_lock);
5990
5991 /*
5992 * No longer have used bytes in this block group, queue it for
5993 * deletion. We do this after adding the block group to the
5994 * dirty list to avoid races between cleaner kthread and space
5995 * cache writeout.
5996 */
5997 if (!alloc && old_val == 0) {
5998 spin_lock(&info->unused_bgs_lock);
5999 if (list_empty(&cache->bg_list)) {
6000 btrfs_get_block_group(cache);
6001 list_add_tail(&cache->bg_list,
6002 &info->unused_bgs);
6003 }
6004 spin_unlock(&info->unused_bgs_lock);
6005 }
6006
6007 btrfs_put_block_group(cache);
6008 total -= num_bytes;
6009 bytenr += num_bytes;
6010 }
6011 return 0;
6012 }
6013
6014 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6015 {
6016 struct btrfs_block_group_cache *cache;
6017 u64 bytenr;
6018
6019 spin_lock(&root->fs_info->block_group_cache_lock);
6020 bytenr = root->fs_info->first_logical_byte;
6021 spin_unlock(&root->fs_info->block_group_cache_lock);
6022
6023 if (bytenr < (u64)-1)
6024 return bytenr;
6025
6026 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6027 if (!cache)
6028 return 0;
6029
6030 bytenr = cache->key.objectid;
6031 btrfs_put_block_group(cache);
6032
6033 return bytenr;
6034 }
6035
6036 static int pin_down_extent(struct btrfs_root *root,
6037 struct btrfs_block_group_cache *cache,
6038 u64 bytenr, u64 num_bytes, int reserved)
6039 {
6040 spin_lock(&cache->space_info->lock);
6041 spin_lock(&cache->lock);
6042 cache->pinned += num_bytes;
6043 cache->space_info->bytes_pinned += num_bytes;
6044 if (reserved) {
6045 cache->reserved -= num_bytes;
6046 cache->space_info->bytes_reserved -= num_bytes;
6047 }
6048 spin_unlock(&cache->lock);
6049 spin_unlock(&cache->space_info->lock);
6050
6051 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6052 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6053 if (reserved)
6054 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6055 return 0;
6056 }
6057
6058 /*
6059 * this function must be called within transaction
6060 */
6061 int btrfs_pin_extent(struct btrfs_root *root,
6062 u64 bytenr, u64 num_bytes, int reserved)
6063 {
6064 struct btrfs_block_group_cache *cache;
6065
6066 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6067 BUG_ON(!cache); /* Logic error */
6068
6069 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6070
6071 btrfs_put_block_group(cache);
6072 return 0;
6073 }
6074
6075 /*
6076 * this function must be called within transaction
6077 */
6078 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6079 u64 bytenr, u64 num_bytes)
6080 {
6081 struct btrfs_block_group_cache *cache;
6082 int ret;
6083
6084 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6085 if (!cache)
6086 return -EINVAL;
6087
6088 /*
6089 * pull in the free space cache (if any) so that our pin
6090 * removes the free space from the cache. We have load_only set
6091 * to one because the slow code to read in the free extents does check
6092 * the pinned extents.
6093 */
6094 cache_block_group(cache, 1);
6095
6096 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6097
6098 /* remove us from the free space cache (if we're there at all) */
6099 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6100 btrfs_put_block_group(cache);
6101 return ret;
6102 }
6103
6104 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6105 {
6106 int ret;
6107 struct btrfs_block_group_cache *block_group;
6108 struct btrfs_caching_control *caching_ctl;
6109
6110 block_group = btrfs_lookup_block_group(root->fs_info, start);
6111 if (!block_group)
6112 return -EINVAL;
6113
6114 cache_block_group(block_group, 0);
6115 caching_ctl = get_caching_control(block_group);
6116
6117 if (!caching_ctl) {
6118 /* Logic error */
6119 BUG_ON(!block_group_cache_done(block_group));
6120 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6121 } else {
6122 mutex_lock(&caching_ctl->mutex);
6123
6124 if (start >= caching_ctl->progress) {
6125 ret = add_excluded_extent(root, start, num_bytes);
6126 } else if (start + num_bytes <= caching_ctl->progress) {
6127 ret = btrfs_remove_free_space(block_group,
6128 start, num_bytes);
6129 } else {
6130 num_bytes = caching_ctl->progress - start;
6131 ret = btrfs_remove_free_space(block_group,
6132 start, num_bytes);
6133 if (ret)
6134 goto out_lock;
6135
6136 num_bytes = (start + num_bytes) -
6137 caching_ctl->progress;
6138 start = caching_ctl->progress;
6139 ret = add_excluded_extent(root, start, num_bytes);
6140 }
6141 out_lock:
6142 mutex_unlock(&caching_ctl->mutex);
6143 put_caching_control(caching_ctl);
6144 }
6145 btrfs_put_block_group(block_group);
6146 return ret;
6147 }
6148
6149 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6150 struct extent_buffer *eb)
6151 {
6152 struct btrfs_file_extent_item *item;
6153 struct btrfs_key key;
6154 int found_type;
6155 int i;
6156
6157 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6158 return 0;
6159
6160 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6161 btrfs_item_key_to_cpu(eb, &key, i);
6162 if (key.type != BTRFS_EXTENT_DATA_KEY)
6163 continue;
6164 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6165 found_type = btrfs_file_extent_type(eb, item);
6166 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6167 continue;
6168 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6169 continue;
6170 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6171 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6172 __exclude_logged_extent(log, key.objectid, key.offset);
6173 }
6174
6175 return 0;
6176 }
6177
6178 /**
6179 * btrfs_update_reserved_bytes - update the block_group and space info counters
6180 * @cache: The cache we are manipulating
6181 * @num_bytes: The number of bytes in question
6182 * @reserve: One of the reservation enums
6183 * @delalloc: The blocks are allocated for the delalloc write
6184 *
6185 * This is called by the allocator when it reserves space, or by somebody who is
6186 * freeing space that was never actually used on disk. For example if you
6187 * reserve some space for a new leaf in transaction A and before transaction A
6188 * commits you free that leaf, you call this with reserve set to 0 in order to
6189 * clear the reservation.
6190 *
6191 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6192 * ENOSPC accounting. For data we handle the reservation through clearing the
6193 * delalloc bits in the io_tree. We have to do this since we could end up
6194 * allocating less disk space for the amount of data we have reserved in the
6195 * case of compression.
6196 *
6197 * If this is a reservation and the block group has become read only we cannot
6198 * make the reservation and return -EAGAIN, otherwise this function always
6199 * succeeds.
6200 */
6201 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6202 u64 num_bytes, int reserve, int delalloc)
6203 {
6204 struct btrfs_space_info *space_info = cache->space_info;
6205 int ret = 0;
6206
6207 spin_lock(&space_info->lock);
6208 spin_lock(&cache->lock);
6209 if (reserve != RESERVE_FREE) {
6210 if (cache->ro) {
6211 ret = -EAGAIN;
6212 } else {
6213 cache->reserved += num_bytes;
6214 space_info->bytes_reserved += num_bytes;
6215 if (reserve == RESERVE_ALLOC) {
6216 trace_btrfs_space_reservation(cache->fs_info,
6217 "space_info", space_info->flags,
6218 num_bytes, 0);
6219 space_info->bytes_may_use -= num_bytes;
6220 }
6221
6222 if (delalloc)
6223 cache->delalloc_bytes += num_bytes;
6224 }
6225 } else {
6226 if (cache->ro)
6227 space_info->bytes_readonly += num_bytes;
6228 cache->reserved -= num_bytes;
6229 space_info->bytes_reserved -= num_bytes;
6230
6231 if (delalloc)
6232 cache->delalloc_bytes -= num_bytes;
6233 }
6234 spin_unlock(&cache->lock);
6235 spin_unlock(&space_info->lock);
6236 return ret;
6237 }
6238
6239 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6240 struct btrfs_root *root)
6241 {
6242 struct btrfs_fs_info *fs_info = root->fs_info;
6243 struct btrfs_caching_control *next;
6244 struct btrfs_caching_control *caching_ctl;
6245 struct btrfs_block_group_cache *cache;
6246
6247 down_write(&fs_info->commit_root_sem);
6248
6249 list_for_each_entry_safe(caching_ctl, next,
6250 &fs_info->caching_block_groups, list) {
6251 cache = caching_ctl->block_group;
6252 if (block_group_cache_done(cache)) {
6253 cache->last_byte_to_unpin = (u64)-1;
6254 list_del_init(&caching_ctl->list);
6255 put_caching_control(caching_ctl);
6256 } else {
6257 cache->last_byte_to_unpin = caching_ctl->progress;
6258 }
6259 }
6260
6261 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6262 fs_info->pinned_extents = &fs_info->freed_extents[1];
6263 else
6264 fs_info->pinned_extents = &fs_info->freed_extents[0];
6265
6266 up_write(&fs_info->commit_root_sem);
6267
6268 update_global_block_rsv(fs_info);
6269 }
6270
6271 /*
6272 * Returns the free cluster for the given space info and sets empty_cluster to
6273 * what it should be based on the mount options.
6274 */
6275 static struct btrfs_free_cluster *
6276 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6277 u64 *empty_cluster)
6278 {
6279 struct btrfs_free_cluster *ret = NULL;
6280 bool ssd = btrfs_test_opt(root, SSD);
6281
6282 *empty_cluster = 0;
6283 if (btrfs_mixed_space_info(space_info))
6284 return ret;
6285
6286 if (ssd)
6287 *empty_cluster = SZ_2M;
6288 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6289 ret = &root->fs_info->meta_alloc_cluster;
6290 if (!ssd)
6291 *empty_cluster = SZ_64K;
6292 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6293 ret = &root->fs_info->data_alloc_cluster;
6294 }
6295
6296 return ret;
6297 }
6298
6299 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6300 const bool return_free_space)
6301 {
6302 struct btrfs_fs_info *fs_info = root->fs_info;
6303 struct btrfs_block_group_cache *cache = NULL;
6304 struct btrfs_space_info *space_info;
6305 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6306 struct btrfs_free_cluster *cluster = NULL;
6307 u64 len;
6308 u64 total_unpinned = 0;
6309 u64 empty_cluster = 0;
6310 bool readonly;
6311
6312 while (start <= end) {
6313 readonly = false;
6314 if (!cache ||
6315 start >= cache->key.objectid + cache->key.offset) {
6316 if (cache)
6317 btrfs_put_block_group(cache);
6318 total_unpinned = 0;
6319 cache = btrfs_lookup_block_group(fs_info, start);
6320 BUG_ON(!cache); /* Logic error */
6321
6322 cluster = fetch_cluster_info(root,
6323 cache->space_info,
6324 &empty_cluster);
6325 empty_cluster <<= 1;
6326 }
6327
6328 len = cache->key.objectid + cache->key.offset - start;
6329 len = min(len, end + 1 - start);
6330
6331 if (start < cache->last_byte_to_unpin) {
6332 len = min(len, cache->last_byte_to_unpin - start);
6333 if (return_free_space)
6334 btrfs_add_free_space(cache, start, len);
6335 }
6336
6337 start += len;
6338 total_unpinned += len;
6339 space_info = cache->space_info;
6340
6341 /*
6342 * If this space cluster has been marked as fragmented and we've
6343 * unpinned enough in this block group to potentially allow a
6344 * cluster to be created inside of it go ahead and clear the
6345 * fragmented check.
6346 */
6347 if (cluster && cluster->fragmented &&
6348 total_unpinned > empty_cluster) {
6349 spin_lock(&cluster->lock);
6350 cluster->fragmented = 0;
6351 spin_unlock(&cluster->lock);
6352 }
6353
6354 spin_lock(&space_info->lock);
6355 spin_lock(&cache->lock);
6356 cache->pinned -= len;
6357 space_info->bytes_pinned -= len;
6358 space_info->max_extent_size = 0;
6359 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6360 if (cache->ro) {
6361 space_info->bytes_readonly += len;
6362 readonly = true;
6363 }
6364 spin_unlock(&cache->lock);
6365 if (!readonly && global_rsv->space_info == space_info) {
6366 spin_lock(&global_rsv->lock);
6367 if (!global_rsv->full) {
6368 len = min(len, global_rsv->size -
6369 global_rsv->reserved);
6370 global_rsv->reserved += len;
6371 space_info->bytes_may_use += len;
6372 if (global_rsv->reserved >= global_rsv->size)
6373 global_rsv->full = 1;
6374 }
6375 spin_unlock(&global_rsv->lock);
6376 }
6377 spin_unlock(&space_info->lock);
6378 }
6379
6380 if (cache)
6381 btrfs_put_block_group(cache);
6382 return 0;
6383 }
6384
6385 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6386 struct btrfs_root *root)
6387 {
6388 struct btrfs_fs_info *fs_info = root->fs_info;
6389 struct btrfs_block_group_cache *block_group, *tmp;
6390 struct list_head *deleted_bgs;
6391 struct extent_io_tree *unpin;
6392 u64 start;
6393 u64 end;
6394 int ret;
6395
6396 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6397 unpin = &fs_info->freed_extents[1];
6398 else
6399 unpin = &fs_info->freed_extents[0];
6400
6401 while (!trans->aborted) {
6402 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6403 ret = find_first_extent_bit(unpin, 0, &start, &end,
6404 EXTENT_DIRTY, NULL);
6405 if (ret) {
6406 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6407 break;
6408 }
6409
6410 if (btrfs_test_opt(root, DISCARD))
6411 ret = btrfs_discard_extent(root, start,
6412 end + 1 - start, NULL);
6413
6414 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6415 unpin_extent_range(root, start, end, true);
6416 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6417 cond_resched();
6418 }
6419
6420 /*
6421 * Transaction is finished. We don't need the lock anymore. We
6422 * do need to clean up the block groups in case of a transaction
6423 * abort.
6424 */
6425 deleted_bgs = &trans->transaction->deleted_bgs;
6426 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6427 u64 trimmed = 0;
6428
6429 ret = -EROFS;
6430 if (!trans->aborted)
6431 ret = btrfs_discard_extent(root,
6432 block_group->key.objectid,
6433 block_group->key.offset,
6434 &trimmed);
6435
6436 list_del_init(&block_group->bg_list);
6437 btrfs_put_block_group_trimming(block_group);
6438 btrfs_put_block_group(block_group);
6439
6440 if (ret) {
6441 const char *errstr = btrfs_decode_error(ret);
6442 btrfs_warn(fs_info,
6443 "Discard failed while removing blockgroup: errno=%d %s\n",
6444 ret, errstr);
6445 }
6446 }
6447
6448 return 0;
6449 }
6450
6451 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6452 u64 owner, u64 root_objectid)
6453 {
6454 struct btrfs_space_info *space_info;
6455 u64 flags;
6456
6457 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6458 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6459 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6460 else
6461 flags = BTRFS_BLOCK_GROUP_METADATA;
6462 } else {
6463 flags = BTRFS_BLOCK_GROUP_DATA;
6464 }
6465
6466 space_info = __find_space_info(fs_info, flags);
6467 BUG_ON(!space_info); /* Logic bug */
6468 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6469 }
6470
6471
6472 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6473 struct btrfs_root *root,
6474 struct btrfs_delayed_ref_node *node, u64 parent,
6475 u64 root_objectid, u64 owner_objectid,
6476 u64 owner_offset, int refs_to_drop,
6477 struct btrfs_delayed_extent_op *extent_op)
6478 {
6479 struct btrfs_key key;
6480 struct btrfs_path *path;
6481 struct btrfs_fs_info *info = root->fs_info;
6482 struct btrfs_root *extent_root = info->extent_root;
6483 struct extent_buffer *leaf;
6484 struct btrfs_extent_item *ei;
6485 struct btrfs_extent_inline_ref *iref;
6486 int ret;
6487 int is_data;
6488 int extent_slot = 0;
6489 int found_extent = 0;
6490 int num_to_del = 1;
6491 u32 item_size;
6492 u64 refs;
6493 u64 bytenr = node->bytenr;
6494 u64 num_bytes = node->num_bytes;
6495 int last_ref = 0;
6496 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6497 SKINNY_METADATA);
6498
6499 path = btrfs_alloc_path();
6500 if (!path)
6501 return -ENOMEM;
6502
6503 path->reada = READA_FORWARD;
6504 path->leave_spinning = 1;
6505
6506 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6507 BUG_ON(!is_data && refs_to_drop != 1);
6508
6509 if (is_data)
6510 skinny_metadata = 0;
6511
6512 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6513 bytenr, num_bytes, parent,
6514 root_objectid, owner_objectid,
6515 owner_offset);
6516 if (ret == 0) {
6517 extent_slot = path->slots[0];
6518 while (extent_slot >= 0) {
6519 btrfs_item_key_to_cpu(path->nodes[0], &key,
6520 extent_slot);
6521 if (key.objectid != bytenr)
6522 break;
6523 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6524 key.offset == num_bytes) {
6525 found_extent = 1;
6526 break;
6527 }
6528 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6529 key.offset == owner_objectid) {
6530 found_extent = 1;
6531 break;
6532 }
6533 if (path->slots[0] - extent_slot > 5)
6534 break;
6535 extent_slot--;
6536 }
6537 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6538 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6539 if (found_extent && item_size < sizeof(*ei))
6540 found_extent = 0;
6541 #endif
6542 if (!found_extent) {
6543 BUG_ON(iref);
6544 ret = remove_extent_backref(trans, extent_root, path,
6545 NULL, refs_to_drop,
6546 is_data, &last_ref);
6547 if (ret) {
6548 btrfs_abort_transaction(trans, extent_root, ret);
6549 goto out;
6550 }
6551 btrfs_release_path(path);
6552 path->leave_spinning = 1;
6553
6554 key.objectid = bytenr;
6555 key.type = BTRFS_EXTENT_ITEM_KEY;
6556 key.offset = num_bytes;
6557
6558 if (!is_data && skinny_metadata) {
6559 key.type = BTRFS_METADATA_ITEM_KEY;
6560 key.offset = owner_objectid;
6561 }
6562
6563 ret = btrfs_search_slot(trans, extent_root,
6564 &key, path, -1, 1);
6565 if (ret > 0 && skinny_metadata && path->slots[0]) {
6566 /*
6567 * Couldn't find our skinny metadata item,
6568 * see if we have ye olde extent item.
6569 */
6570 path->slots[0]--;
6571 btrfs_item_key_to_cpu(path->nodes[0], &key,
6572 path->slots[0]);
6573 if (key.objectid == bytenr &&
6574 key.type == BTRFS_EXTENT_ITEM_KEY &&
6575 key.offset == num_bytes)
6576 ret = 0;
6577 }
6578
6579 if (ret > 0 && skinny_metadata) {
6580 skinny_metadata = false;
6581 key.objectid = bytenr;
6582 key.type = BTRFS_EXTENT_ITEM_KEY;
6583 key.offset = num_bytes;
6584 btrfs_release_path(path);
6585 ret = btrfs_search_slot(trans, extent_root,
6586 &key, path, -1, 1);
6587 }
6588
6589 if (ret) {
6590 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6591 ret, bytenr);
6592 if (ret > 0)
6593 btrfs_print_leaf(extent_root,
6594 path->nodes[0]);
6595 }
6596 if (ret < 0) {
6597 btrfs_abort_transaction(trans, extent_root, ret);
6598 goto out;
6599 }
6600 extent_slot = path->slots[0];
6601 }
6602 } else if (WARN_ON(ret == -ENOENT)) {
6603 btrfs_print_leaf(extent_root, path->nodes[0]);
6604 btrfs_err(info,
6605 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6606 bytenr, parent, root_objectid, owner_objectid,
6607 owner_offset);
6608 btrfs_abort_transaction(trans, extent_root, ret);
6609 goto out;
6610 } else {
6611 btrfs_abort_transaction(trans, extent_root, ret);
6612 goto out;
6613 }
6614
6615 leaf = path->nodes[0];
6616 item_size = btrfs_item_size_nr(leaf, extent_slot);
6617 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6618 if (item_size < sizeof(*ei)) {
6619 BUG_ON(found_extent || extent_slot != path->slots[0]);
6620 ret = convert_extent_item_v0(trans, extent_root, path,
6621 owner_objectid, 0);
6622 if (ret < 0) {
6623 btrfs_abort_transaction(trans, extent_root, ret);
6624 goto out;
6625 }
6626
6627 btrfs_release_path(path);
6628 path->leave_spinning = 1;
6629
6630 key.objectid = bytenr;
6631 key.type = BTRFS_EXTENT_ITEM_KEY;
6632 key.offset = num_bytes;
6633
6634 ret = btrfs_search_slot(trans, extent_root, &key, path,
6635 -1, 1);
6636 if (ret) {
6637 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6638 ret, bytenr);
6639 btrfs_print_leaf(extent_root, path->nodes[0]);
6640 }
6641 if (ret < 0) {
6642 btrfs_abort_transaction(trans, extent_root, ret);
6643 goto out;
6644 }
6645
6646 extent_slot = path->slots[0];
6647 leaf = path->nodes[0];
6648 item_size = btrfs_item_size_nr(leaf, extent_slot);
6649 }
6650 #endif
6651 BUG_ON(item_size < sizeof(*ei));
6652 ei = btrfs_item_ptr(leaf, extent_slot,
6653 struct btrfs_extent_item);
6654 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6655 key.type == BTRFS_EXTENT_ITEM_KEY) {
6656 struct btrfs_tree_block_info *bi;
6657 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6658 bi = (struct btrfs_tree_block_info *)(ei + 1);
6659 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6660 }
6661
6662 refs = btrfs_extent_refs(leaf, ei);
6663 if (refs < refs_to_drop) {
6664 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6665 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6666 ret = -EINVAL;
6667 btrfs_abort_transaction(trans, extent_root, ret);
6668 goto out;
6669 }
6670 refs -= refs_to_drop;
6671
6672 if (refs > 0) {
6673 if (extent_op)
6674 __run_delayed_extent_op(extent_op, leaf, ei);
6675 /*
6676 * In the case of inline back ref, reference count will
6677 * be updated by remove_extent_backref
6678 */
6679 if (iref) {
6680 BUG_ON(!found_extent);
6681 } else {
6682 btrfs_set_extent_refs(leaf, ei, refs);
6683 btrfs_mark_buffer_dirty(leaf);
6684 }
6685 if (found_extent) {
6686 ret = remove_extent_backref(trans, extent_root, path,
6687 iref, refs_to_drop,
6688 is_data, &last_ref);
6689 if (ret) {
6690 btrfs_abort_transaction(trans, extent_root, ret);
6691 goto out;
6692 }
6693 }
6694 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6695 root_objectid);
6696 } else {
6697 if (found_extent) {
6698 BUG_ON(is_data && refs_to_drop !=
6699 extent_data_ref_count(path, iref));
6700 if (iref) {
6701 BUG_ON(path->slots[0] != extent_slot);
6702 } else {
6703 BUG_ON(path->slots[0] != extent_slot + 1);
6704 path->slots[0] = extent_slot;
6705 num_to_del = 2;
6706 }
6707 }
6708
6709 last_ref = 1;
6710 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6711 num_to_del);
6712 if (ret) {
6713 btrfs_abort_transaction(trans, extent_root, ret);
6714 goto out;
6715 }
6716 btrfs_release_path(path);
6717
6718 if (is_data) {
6719 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6720 if (ret) {
6721 btrfs_abort_transaction(trans, extent_root, ret);
6722 goto out;
6723 }
6724 }
6725
6726 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6727 num_bytes);
6728 if (ret) {
6729 btrfs_abort_transaction(trans, extent_root, ret);
6730 goto out;
6731 }
6732
6733 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6734 if (ret) {
6735 btrfs_abort_transaction(trans, extent_root, ret);
6736 goto out;
6737 }
6738 }
6739 btrfs_release_path(path);
6740
6741 out:
6742 btrfs_free_path(path);
6743 return ret;
6744 }
6745
6746 /*
6747 * when we free an block, it is possible (and likely) that we free the last
6748 * delayed ref for that extent as well. This searches the delayed ref tree for
6749 * a given extent, and if there are no other delayed refs to be processed, it
6750 * removes it from the tree.
6751 */
6752 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6753 struct btrfs_root *root, u64 bytenr)
6754 {
6755 struct btrfs_delayed_ref_head *head;
6756 struct btrfs_delayed_ref_root *delayed_refs;
6757 int ret = 0;
6758
6759 delayed_refs = &trans->transaction->delayed_refs;
6760 spin_lock(&delayed_refs->lock);
6761 head = btrfs_find_delayed_ref_head(trans, bytenr);
6762 if (!head)
6763 goto out_delayed_unlock;
6764
6765 spin_lock(&head->lock);
6766 if (!list_empty(&head->ref_list))
6767 goto out;
6768
6769 if (head->extent_op) {
6770 if (!head->must_insert_reserved)
6771 goto out;
6772 btrfs_free_delayed_extent_op(head->extent_op);
6773 head->extent_op = NULL;
6774 }
6775
6776 /*
6777 * waiting for the lock here would deadlock. If someone else has it
6778 * locked they are already in the process of dropping it anyway
6779 */
6780 if (!mutex_trylock(&head->mutex))
6781 goto out;
6782
6783 /*
6784 * at this point we have a head with no other entries. Go
6785 * ahead and process it.
6786 */
6787 head->node.in_tree = 0;
6788 rb_erase(&head->href_node, &delayed_refs->href_root);
6789
6790 atomic_dec(&delayed_refs->num_entries);
6791
6792 /*
6793 * we don't take a ref on the node because we're removing it from the
6794 * tree, so we just steal the ref the tree was holding.
6795 */
6796 delayed_refs->num_heads--;
6797 if (head->processing == 0)
6798 delayed_refs->num_heads_ready--;
6799 head->processing = 0;
6800 spin_unlock(&head->lock);
6801 spin_unlock(&delayed_refs->lock);
6802
6803 BUG_ON(head->extent_op);
6804 if (head->must_insert_reserved)
6805 ret = 1;
6806
6807 mutex_unlock(&head->mutex);
6808 btrfs_put_delayed_ref(&head->node);
6809 return ret;
6810 out:
6811 spin_unlock(&head->lock);
6812
6813 out_delayed_unlock:
6814 spin_unlock(&delayed_refs->lock);
6815 return 0;
6816 }
6817
6818 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6819 struct btrfs_root *root,
6820 struct extent_buffer *buf,
6821 u64 parent, int last_ref)
6822 {
6823 int pin = 1;
6824 int ret;
6825
6826 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6827 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6828 buf->start, buf->len,
6829 parent, root->root_key.objectid,
6830 btrfs_header_level(buf),
6831 BTRFS_DROP_DELAYED_REF, NULL);
6832 BUG_ON(ret); /* -ENOMEM */
6833 }
6834
6835 if (!last_ref)
6836 return;
6837
6838 if (btrfs_header_generation(buf) == trans->transid) {
6839 struct btrfs_block_group_cache *cache;
6840
6841 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6842 ret = check_ref_cleanup(trans, root, buf->start);
6843 if (!ret)
6844 goto out;
6845 }
6846
6847 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6848
6849 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6850 pin_down_extent(root, cache, buf->start, buf->len, 1);
6851 btrfs_put_block_group(cache);
6852 goto out;
6853 }
6854
6855 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6856
6857 btrfs_add_free_space(cache, buf->start, buf->len);
6858 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6859 btrfs_put_block_group(cache);
6860 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6861 pin = 0;
6862 }
6863 out:
6864 if (pin)
6865 add_pinned_bytes(root->fs_info, buf->len,
6866 btrfs_header_level(buf),
6867 root->root_key.objectid);
6868
6869 /*
6870 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6871 * anymore.
6872 */
6873 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6874 }
6875
6876 /* Can return -ENOMEM */
6877 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6878 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6879 u64 owner, u64 offset)
6880 {
6881 int ret;
6882 struct btrfs_fs_info *fs_info = root->fs_info;
6883
6884 if (btrfs_test_is_dummy_root(root))
6885 return 0;
6886
6887 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6888
6889 /*
6890 * tree log blocks never actually go into the extent allocation
6891 * tree, just update pinning info and exit early.
6892 */
6893 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6894 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6895 /* unlocks the pinned mutex */
6896 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6897 ret = 0;
6898 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6899 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6900 num_bytes,
6901 parent, root_objectid, (int)owner,
6902 BTRFS_DROP_DELAYED_REF, NULL);
6903 } else {
6904 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6905 num_bytes,
6906 parent, root_objectid, owner,
6907 offset, 0,
6908 BTRFS_DROP_DELAYED_REF, NULL);
6909 }
6910 return ret;
6911 }
6912
6913 /*
6914 * when we wait for progress in the block group caching, its because
6915 * our allocation attempt failed at least once. So, we must sleep
6916 * and let some progress happen before we try again.
6917 *
6918 * This function will sleep at least once waiting for new free space to
6919 * show up, and then it will check the block group free space numbers
6920 * for our min num_bytes. Another option is to have it go ahead
6921 * and look in the rbtree for a free extent of a given size, but this
6922 * is a good start.
6923 *
6924 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6925 * any of the information in this block group.
6926 */
6927 static noinline void
6928 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6929 u64 num_bytes)
6930 {
6931 struct btrfs_caching_control *caching_ctl;
6932
6933 caching_ctl = get_caching_control(cache);
6934 if (!caching_ctl)
6935 return;
6936
6937 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6938 (cache->free_space_ctl->free_space >= num_bytes));
6939
6940 put_caching_control(caching_ctl);
6941 }
6942
6943 static noinline int
6944 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6945 {
6946 struct btrfs_caching_control *caching_ctl;
6947 int ret = 0;
6948
6949 caching_ctl = get_caching_control(cache);
6950 if (!caching_ctl)
6951 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6952
6953 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6954 if (cache->cached == BTRFS_CACHE_ERROR)
6955 ret = -EIO;
6956 put_caching_control(caching_ctl);
6957 return ret;
6958 }
6959
6960 int __get_raid_index(u64 flags)
6961 {
6962 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6963 return BTRFS_RAID_RAID10;
6964 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6965 return BTRFS_RAID_RAID1;
6966 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6967 return BTRFS_RAID_DUP;
6968 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6969 return BTRFS_RAID_RAID0;
6970 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6971 return BTRFS_RAID_RAID5;
6972 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6973 return BTRFS_RAID_RAID6;
6974
6975 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6976 }
6977
6978 int get_block_group_index(struct btrfs_block_group_cache *cache)
6979 {
6980 return __get_raid_index(cache->flags);
6981 }
6982
6983 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6984 [BTRFS_RAID_RAID10] = "raid10",
6985 [BTRFS_RAID_RAID1] = "raid1",
6986 [BTRFS_RAID_DUP] = "dup",
6987 [BTRFS_RAID_RAID0] = "raid0",
6988 [BTRFS_RAID_SINGLE] = "single",
6989 [BTRFS_RAID_RAID5] = "raid5",
6990 [BTRFS_RAID_RAID6] = "raid6",
6991 };
6992
6993 static const char *get_raid_name(enum btrfs_raid_types type)
6994 {
6995 if (type >= BTRFS_NR_RAID_TYPES)
6996 return NULL;
6997
6998 return btrfs_raid_type_names[type];
6999 }
7000
7001 enum btrfs_loop_type {
7002 LOOP_CACHING_NOWAIT = 0,
7003 LOOP_CACHING_WAIT = 1,
7004 LOOP_ALLOC_CHUNK = 2,
7005 LOOP_NO_EMPTY_SIZE = 3,
7006 };
7007
7008 static inline void
7009 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7010 int delalloc)
7011 {
7012 if (delalloc)
7013 down_read(&cache->data_rwsem);
7014 }
7015
7016 static inline void
7017 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7018 int delalloc)
7019 {
7020 btrfs_get_block_group(cache);
7021 if (delalloc)
7022 down_read(&cache->data_rwsem);
7023 }
7024
7025 static struct btrfs_block_group_cache *
7026 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7027 struct btrfs_free_cluster *cluster,
7028 int delalloc)
7029 {
7030 struct btrfs_block_group_cache *used_bg = NULL;
7031 bool locked = false;
7032 again:
7033 spin_lock(&cluster->refill_lock);
7034 if (locked) {
7035 if (used_bg == cluster->block_group)
7036 return used_bg;
7037
7038 up_read(&used_bg->data_rwsem);
7039 btrfs_put_block_group(used_bg);
7040 }
7041
7042 used_bg = cluster->block_group;
7043 if (!used_bg)
7044 return NULL;
7045
7046 if (used_bg == block_group)
7047 return used_bg;
7048
7049 btrfs_get_block_group(used_bg);
7050
7051 if (!delalloc)
7052 return used_bg;
7053
7054 if (down_read_trylock(&used_bg->data_rwsem))
7055 return used_bg;
7056
7057 spin_unlock(&cluster->refill_lock);
7058 down_read(&used_bg->data_rwsem);
7059 locked = true;
7060 goto again;
7061 }
7062
7063 static inline void
7064 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7065 int delalloc)
7066 {
7067 if (delalloc)
7068 up_read(&cache->data_rwsem);
7069 btrfs_put_block_group(cache);
7070 }
7071
7072 /*
7073 * walks the btree of allocated extents and find a hole of a given size.
7074 * The key ins is changed to record the hole:
7075 * ins->objectid == start position
7076 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7077 * ins->offset == the size of the hole.
7078 * Any available blocks before search_start are skipped.
7079 *
7080 * If there is no suitable free space, we will record the max size of
7081 * the free space extent currently.
7082 */
7083 static noinline int find_free_extent(struct btrfs_root *orig_root,
7084 u64 num_bytes, u64 empty_size,
7085 u64 hint_byte, struct btrfs_key *ins,
7086 u64 flags, int delalloc)
7087 {
7088 int ret = 0;
7089 struct btrfs_root *root = orig_root->fs_info->extent_root;
7090 struct btrfs_free_cluster *last_ptr = NULL;
7091 struct btrfs_block_group_cache *block_group = NULL;
7092 u64 search_start = 0;
7093 u64 max_extent_size = 0;
7094 u64 empty_cluster = 0;
7095 struct btrfs_space_info *space_info;
7096 int loop = 0;
7097 int index = __get_raid_index(flags);
7098 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7099 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7100 bool failed_cluster_refill = false;
7101 bool failed_alloc = false;
7102 bool use_cluster = true;
7103 bool have_caching_bg = false;
7104 bool orig_have_caching_bg = false;
7105 bool full_search = false;
7106
7107 WARN_ON(num_bytes < root->sectorsize);
7108 ins->type = BTRFS_EXTENT_ITEM_KEY;
7109 ins->objectid = 0;
7110 ins->offset = 0;
7111
7112 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7113
7114 space_info = __find_space_info(root->fs_info, flags);
7115 if (!space_info) {
7116 btrfs_err(root->fs_info, "No space info for %llu", flags);
7117 return -ENOSPC;
7118 }
7119
7120 /*
7121 * If our free space is heavily fragmented we may not be able to make
7122 * big contiguous allocations, so instead of doing the expensive search
7123 * for free space, simply return ENOSPC with our max_extent_size so we
7124 * can go ahead and search for a more manageable chunk.
7125 *
7126 * If our max_extent_size is large enough for our allocation simply
7127 * disable clustering since we will likely not be able to find enough
7128 * space to create a cluster and induce latency trying.
7129 */
7130 if (unlikely(space_info->max_extent_size)) {
7131 spin_lock(&space_info->lock);
7132 if (space_info->max_extent_size &&
7133 num_bytes > space_info->max_extent_size) {
7134 ins->offset = space_info->max_extent_size;
7135 spin_unlock(&space_info->lock);
7136 return -ENOSPC;
7137 } else if (space_info->max_extent_size) {
7138 use_cluster = false;
7139 }
7140 spin_unlock(&space_info->lock);
7141 }
7142
7143 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7144 if (last_ptr) {
7145 spin_lock(&last_ptr->lock);
7146 if (last_ptr->block_group)
7147 hint_byte = last_ptr->window_start;
7148 if (last_ptr->fragmented) {
7149 /*
7150 * We still set window_start so we can keep track of the
7151 * last place we found an allocation to try and save
7152 * some time.
7153 */
7154 hint_byte = last_ptr->window_start;
7155 use_cluster = false;
7156 }
7157 spin_unlock(&last_ptr->lock);
7158 }
7159
7160 search_start = max(search_start, first_logical_byte(root, 0));
7161 search_start = max(search_start, hint_byte);
7162 if (search_start == hint_byte) {
7163 block_group = btrfs_lookup_block_group(root->fs_info,
7164 search_start);
7165 /*
7166 * we don't want to use the block group if it doesn't match our
7167 * allocation bits, or if its not cached.
7168 *
7169 * However if we are re-searching with an ideal block group
7170 * picked out then we don't care that the block group is cached.
7171 */
7172 if (block_group && block_group_bits(block_group, flags) &&
7173 block_group->cached != BTRFS_CACHE_NO) {
7174 down_read(&space_info->groups_sem);
7175 if (list_empty(&block_group->list) ||
7176 block_group->ro) {
7177 /*
7178 * someone is removing this block group,
7179 * we can't jump into the have_block_group
7180 * target because our list pointers are not
7181 * valid
7182 */
7183 btrfs_put_block_group(block_group);
7184 up_read(&space_info->groups_sem);
7185 } else {
7186 index = get_block_group_index(block_group);
7187 btrfs_lock_block_group(block_group, delalloc);
7188 goto have_block_group;
7189 }
7190 } else if (block_group) {
7191 btrfs_put_block_group(block_group);
7192 }
7193 }
7194 search:
7195 have_caching_bg = false;
7196 if (index == 0 || index == __get_raid_index(flags))
7197 full_search = true;
7198 down_read(&space_info->groups_sem);
7199 list_for_each_entry(block_group, &space_info->block_groups[index],
7200 list) {
7201 u64 offset;
7202 int cached;
7203
7204 btrfs_grab_block_group(block_group, delalloc);
7205 search_start = block_group->key.objectid;
7206
7207 /*
7208 * this can happen if we end up cycling through all the
7209 * raid types, but we want to make sure we only allocate
7210 * for the proper type.
7211 */
7212 if (!block_group_bits(block_group, flags)) {
7213 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7214 BTRFS_BLOCK_GROUP_RAID1 |
7215 BTRFS_BLOCK_GROUP_RAID5 |
7216 BTRFS_BLOCK_GROUP_RAID6 |
7217 BTRFS_BLOCK_GROUP_RAID10;
7218
7219 /*
7220 * if they asked for extra copies and this block group
7221 * doesn't provide them, bail. This does allow us to
7222 * fill raid0 from raid1.
7223 */
7224 if ((flags & extra) && !(block_group->flags & extra))
7225 goto loop;
7226 }
7227
7228 have_block_group:
7229 cached = block_group_cache_done(block_group);
7230 if (unlikely(!cached)) {
7231 have_caching_bg = true;
7232 ret = cache_block_group(block_group, 0);
7233 BUG_ON(ret < 0);
7234 ret = 0;
7235 }
7236
7237 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7238 goto loop;
7239 if (unlikely(block_group->ro))
7240 goto loop;
7241
7242 /*
7243 * Ok we want to try and use the cluster allocator, so
7244 * lets look there
7245 */
7246 if (last_ptr && use_cluster) {
7247 struct btrfs_block_group_cache *used_block_group;
7248 unsigned long aligned_cluster;
7249 /*
7250 * the refill lock keeps out other
7251 * people trying to start a new cluster
7252 */
7253 used_block_group = btrfs_lock_cluster(block_group,
7254 last_ptr,
7255 delalloc);
7256 if (!used_block_group)
7257 goto refill_cluster;
7258
7259 if (used_block_group != block_group &&
7260 (used_block_group->ro ||
7261 !block_group_bits(used_block_group, flags)))
7262 goto release_cluster;
7263
7264 offset = btrfs_alloc_from_cluster(used_block_group,
7265 last_ptr,
7266 num_bytes,
7267 used_block_group->key.objectid,
7268 &max_extent_size);
7269 if (offset) {
7270 /* we have a block, we're done */
7271 spin_unlock(&last_ptr->refill_lock);
7272 trace_btrfs_reserve_extent_cluster(root,
7273 used_block_group,
7274 search_start, num_bytes);
7275 if (used_block_group != block_group) {
7276 btrfs_release_block_group(block_group,
7277 delalloc);
7278 block_group = used_block_group;
7279 }
7280 goto checks;
7281 }
7282
7283 WARN_ON(last_ptr->block_group != used_block_group);
7284 release_cluster:
7285 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7286 * set up a new clusters, so lets just skip it
7287 * and let the allocator find whatever block
7288 * it can find. If we reach this point, we
7289 * will have tried the cluster allocator
7290 * plenty of times and not have found
7291 * anything, so we are likely way too
7292 * fragmented for the clustering stuff to find
7293 * anything.
7294 *
7295 * However, if the cluster is taken from the
7296 * current block group, release the cluster
7297 * first, so that we stand a better chance of
7298 * succeeding in the unclustered
7299 * allocation. */
7300 if (loop >= LOOP_NO_EMPTY_SIZE &&
7301 used_block_group != block_group) {
7302 spin_unlock(&last_ptr->refill_lock);
7303 btrfs_release_block_group(used_block_group,
7304 delalloc);
7305 goto unclustered_alloc;
7306 }
7307
7308 /*
7309 * this cluster didn't work out, free it and
7310 * start over
7311 */
7312 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7313
7314 if (used_block_group != block_group)
7315 btrfs_release_block_group(used_block_group,
7316 delalloc);
7317 refill_cluster:
7318 if (loop >= LOOP_NO_EMPTY_SIZE) {
7319 spin_unlock(&last_ptr->refill_lock);
7320 goto unclustered_alloc;
7321 }
7322
7323 aligned_cluster = max_t(unsigned long,
7324 empty_cluster + empty_size,
7325 block_group->full_stripe_len);
7326
7327 /* allocate a cluster in this block group */
7328 ret = btrfs_find_space_cluster(root, block_group,
7329 last_ptr, search_start,
7330 num_bytes,
7331 aligned_cluster);
7332 if (ret == 0) {
7333 /*
7334 * now pull our allocation out of this
7335 * cluster
7336 */
7337 offset = btrfs_alloc_from_cluster(block_group,
7338 last_ptr,
7339 num_bytes,
7340 search_start,
7341 &max_extent_size);
7342 if (offset) {
7343 /* we found one, proceed */
7344 spin_unlock(&last_ptr->refill_lock);
7345 trace_btrfs_reserve_extent_cluster(root,
7346 block_group, search_start,
7347 num_bytes);
7348 goto checks;
7349 }
7350 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7351 && !failed_cluster_refill) {
7352 spin_unlock(&last_ptr->refill_lock);
7353
7354 failed_cluster_refill = true;
7355 wait_block_group_cache_progress(block_group,
7356 num_bytes + empty_cluster + empty_size);
7357 goto have_block_group;
7358 }
7359
7360 /*
7361 * at this point we either didn't find a cluster
7362 * or we weren't able to allocate a block from our
7363 * cluster. Free the cluster we've been trying
7364 * to use, and go to the next block group
7365 */
7366 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7367 spin_unlock(&last_ptr->refill_lock);
7368 goto loop;
7369 }
7370
7371 unclustered_alloc:
7372 /*
7373 * We are doing an unclustered alloc, set the fragmented flag so
7374 * we don't bother trying to setup a cluster again until we get
7375 * more space.
7376 */
7377 if (unlikely(last_ptr)) {
7378 spin_lock(&last_ptr->lock);
7379 last_ptr->fragmented = 1;
7380 spin_unlock(&last_ptr->lock);
7381 }
7382 spin_lock(&block_group->free_space_ctl->tree_lock);
7383 if (cached &&
7384 block_group->free_space_ctl->free_space <
7385 num_bytes + empty_cluster + empty_size) {
7386 if (block_group->free_space_ctl->free_space >
7387 max_extent_size)
7388 max_extent_size =
7389 block_group->free_space_ctl->free_space;
7390 spin_unlock(&block_group->free_space_ctl->tree_lock);
7391 goto loop;
7392 }
7393 spin_unlock(&block_group->free_space_ctl->tree_lock);
7394
7395 offset = btrfs_find_space_for_alloc(block_group, search_start,
7396 num_bytes, empty_size,
7397 &max_extent_size);
7398 /*
7399 * If we didn't find a chunk, and we haven't failed on this
7400 * block group before, and this block group is in the middle of
7401 * caching and we are ok with waiting, then go ahead and wait
7402 * for progress to be made, and set failed_alloc to true.
7403 *
7404 * If failed_alloc is true then we've already waited on this
7405 * block group once and should move on to the next block group.
7406 */
7407 if (!offset && !failed_alloc && !cached &&
7408 loop > LOOP_CACHING_NOWAIT) {
7409 wait_block_group_cache_progress(block_group,
7410 num_bytes + empty_size);
7411 failed_alloc = true;
7412 goto have_block_group;
7413 } else if (!offset) {
7414 goto loop;
7415 }
7416 checks:
7417 search_start = ALIGN(offset, root->stripesize);
7418
7419 /* move on to the next group */
7420 if (search_start + num_bytes >
7421 block_group->key.objectid + block_group->key.offset) {
7422 btrfs_add_free_space(block_group, offset, num_bytes);
7423 goto loop;
7424 }
7425
7426 if (offset < search_start)
7427 btrfs_add_free_space(block_group, offset,
7428 search_start - offset);
7429 BUG_ON(offset > search_start);
7430
7431 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7432 alloc_type, delalloc);
7433 if (ret == -EAGAIN) {
7434 btrfs_add_free_space(block_group, offset, num_bytes);
7435 goto loop;
7436 }
7437
7438 /* we are all good, lets return */
7439 ins->objectid = search_start;
7440 ins->offset = num_bytes;
7441
7442 trace_btrfs_reserve_extent(orig_root, block_group,
7443 search_start, num_bytes);
7444 btrfs_release_block_group(block_group, delalloc);
7445 break;
7446 loop:
7447 failed_cluster_refill = false;
7448 failed_alloc = false;
7449 BUG_ON(index != get_block_group_index(block_group));
7450 btrfs_release_block_group(block_group, delalloc);
7451 }
7452 up_read(&space_info->groups_sem);
7453
7454 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7455 && !orig_have_caching_bg)
7456 orig_have_caching_bg = true;
7457
7458 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7459 goto search;
7460
7461 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7462 goto search;
7463
7464 /*
7465 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7466 * caching kthreads as we move along
7467 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7468 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7469 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7470 * again
7471 */
7472 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7473 index = 0;
7474 if (loop == LOOP_CACHING_NOWAIT) {
7475 /*
7476 * We want to skip the LOOP_CACHING_WAIT step if we
7477 * don't have any unached bgs and we've alrelady done a
7478 * full search through.
7479 */
7480 if (orig_have_caching_bg || !full_search)
7481 loop = LOOP_CACHING_WAIT;
7482 else
7483 loop = LOOP_ALLOC_CHUNK;
7484 } else {
7485 loop++;
7486 }
7487
7488 if (loop == LOOP_ALLOC_CHUNK) {
7489 struct btrfs_trans_handle *trans;
7490 int exist = 0;
7491
7492 trans = current->journal_info;
7493 if (trans)
7494 exist = 1;
7495 else
7496 trans = btrfs_join_transaction(root);
7497
7498 if (IS_ERR(trans)) {
7499 ret = PTR_ERR(trans);
7500 goto out;
7501 }
7502
7503 ret = do_chunk_alloc(trans, root, flags,
7504 CHUNK_ALLOC_FORCE);
7505
7506 /*
7507 * If we can't allocate a new chunk we've already looped
7508 * through at least once, move on to the NO_EMPTY_SIZE
7509 * case.
7510 */
7511 if (ret == -ENOSPC)
7512 loop = LOOP_NO_EMPTY_SIZE;
7513
7514 /*
7515 * Do not bail out on ENOSPC since we
7516 * can do more things.
7517 */
7518 if (ret < 0 && ret != -ENOSPC)
7519 btrfs_abort_transaction(trans,
7520 root, ret);
7521 else
7522 ret = 0;
7523 if (!exist)
7524 btrfs_end_transaction(trans, root);
7525 if (ret)
7526 goto out;
7527 }
7528
7529 if (loop == LOOP_NO_EMPTY_SIZE) {
7530 /*
7531 * Don't loop again if we already have no empty_size and
7532 * no empty_cluster.
7533 */
7534 if (empty_size == 0 &&
7535 empty_cluster == 0) {
7536 ret = -ENOSPC;
7537 goto out;
7538 }
7539 empty_size = 0;
7540 empty_cluster = 0;
7541 }
7542
7543 goto search;
7544 } else if (!ins->objectid) {
7545 ret = -ENOSPC;
7546 } else if (ins->objectid) {
7547 if (!use_cluster && last_ptr) {
7548 spin_lock(&last_ptr->lock);
7549 last_ptr->window_start = ins->objectid;
7550 spin_unlock(&last_ptr->lock);
7551 }
7552 ret = 0;
7553 }
7554 out:
7555 if (ret == -ENOSPC) {
7556 spin_lock(&space_info->lock);
7557 space_info->max_extent_size = max_extent_size;
7558 spin_unlock(&space_info->lock);
7559 ins->offset = max_extent_size;
7560 }
7561 return ret;
7562 }
7563
7564 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7565 int dump_block_groups)
7566 {
7567 struct btrfs_block_group_cache *cache;
7568 int index = 0;
7569
7570 spin_lock(&info->lock);
7571 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7572 info->flags,
7573 info->total_bytes - info->bytes_used - info->bytes_pinned -
7574 info->bytes_reserved - info->bytes_readonly,
7575 (info->full) ? "" : "not ");
7576 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7577 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7578 info->total_bytes, info->bytes_used, info->bytes_pinned,
7579 info->bytes_reserved, info->bytes_may_use,
7580 info->bytes_readonly);
7581 spin_unlock(&info->lock);
7582
7583 if (!dump_block_groups)
7584 return;
7585
7586 down_read(&info->groups_sem);
7587 again:
7588 list_for_each_entry(cache, &info->block_groups[index], list) {
7589 spin_lock(&cache->lock);
7590 printk(KERN_INFO "BTRFS: "
7591 "block group %llu has %llu bytes, "
7592 "%llu used %llu pinned %llu reserved %s\n",
7593 cache->key.objectid, cache->key.offset,
7594 btrfs_block_group_used(&cache->item), cache->pinned,
7595 cache->reserved, cache->ro ? "[readonly]" : "");
7596 btrfs_dump_free_space(cache, bytes);
7597 spin_unlock(&cache->lock);
7598 }
7599 if (++index < BTRFS_NR_RAID_TYPES)
7600 goto again;
7601 up_read(&info->groups_sem);
7602 }
7603
7604 int btrfs_reserve_extent(struct btrfs_root *root,
7605 u64 num_bytes, u64 min_alloc_size,
7606 u64 empty_size, u64 hint_byte,
7607 struct btrfs_key *ins, int is_data, int delalloc)
7608 {
7609 bool final_tried = num_bytes == min_alloc_size;
7610 u64 flags;
7611 int ret;
7612
7613 flags = btrfs_get_alloc_profile(root, is_data);
7614 again:
7615 WARN_ON(num_bytes < root->sectorsize);
7616 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7617 flags, delalloc);
7618
7619 if (ret == -ENOSPC) {
7620 if (!final_tried && ins->offset) {
7621 num_bytes = min(num_bytes >> 1, ins->offset);
7622 num_bytes = round_down(num_bytes, root->sectorsize);
7623 num_bytes = max(num_bytes, min_alloc_size);
7624 if (num_bytes == min_alloc_size)
7625 final_tried = true;
7626 goto again;
7627 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7628 struct btrfs_space_info *sinfo;
7629
7630 sinfo = __find_space_info(root->fs_info, flags);
7631 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7632 flags, num_bytes);
7633 if (sinfo)
7634 dump_space_info(sinfo, num_bytes, 1);
7635 }
7636 }
7637
7638 return ret;
7639 }
7640
7641 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7642 u64 start, u64 len,
7643 int pin, int delalloc)
7644 {
7645 struct btrfs_block_group_cache *cache;
7646 int ret = 0;
7647
7648 cache = btrfs_lookup_block_group(root->fs_info, start);
7649 if (!cache) {
7650 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7651 start);
7652 return -ENOSPC;
7653 }
7654
7655 if (pin)
7656 pin_down_extent(root, cache, start, len, 1);
7657 else {
7658 if (btrfs_test_opt(root, DISCARD))
7659 ret = btrfs_discard_extent(root, start, len, NULL);
7660 btrfs_add_free_space(cache, start, len);
7661 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7662 }
7663
7664 btrfs_put_block_group(cache);
7665
7666 trace_btrfs_reserved_extent_free(root, start, len);
7667
7668 return ret;
7669 }
7670
7671 int btrfs_free_reserved_extent(struct btrfs_root *root,
7672 u64 start, u64 len, int delalloc)
7673 {
7674 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7675 }
7676
7677 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7678 u64 start, u64 len)
7679 {
7680 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7681 }
7682
7683 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7684 struct btrfs_root *root,
7685 u64 parent, u64 root_objectid,
7686 u64 flags, u64 owner, u64 offset,
7687 struct btrfs_key *ins, int ref_mod)
7688 {
7689 int ret;
7690 struct btrfs_fs_info *fs_info = root->fs_info;
7691 struct btrfs_extent_item *extent_item;
7692 struct btrfs_extent_inline_ref *iref;
7693 struct btrfs_path *path;
7694 struct extent_buffer *leaf;
7695 int type;
7696 u32 size;
7697
7698 if (parent > 0)
7699 type = BTRFS_SHARED_DATA_REF_KEY;
7700 else
7701 type = BTRFS_EXTENT_DATA_REF_KEY;
7702
7703 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7704
7705 path = btrfs_alloc_path();
7706 if (!path)
7707 return -ENOMEM;
7708
7709 path->leave_spinning = 1;
7710 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7711 ins, size);
7712 if (ret) {
7713 btrfs_free_path(path);
7714 return ret;
7715 }
7716
7717 leaf = path->nodes[0];
7718 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7719 struct btrfs_extent_item);
7720 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7721 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7722 btrfs_set_extent_flags(leaf, extent_item,
7723 flags | BTRFS_EXTENT_FLAG_DATA);
7724
7725 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7726 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7727 if (parent > 0) {
7728 struct btrfs_shared_data_ref *ref;
7729 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7730 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7731 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7732 } else {
7733 struct btrfs_extent_data_ref *ref;
7734 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7735 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7736 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7737 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7738 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7739 }
7740
7741 btrfs_mark_buffer_dirty(path->nodes[0]);
7742 btrfs_free_path(path);
7743
7744 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7745 ins->offset);
7746 if (ret)
7747 return ret;
7748
7749 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7750 if (ret) { /* -ENOENT, logic error */
7751 btrfs_err(fs_info, "update block group failed for %llu %llu",
7752 ins->objectid, ins->offset);
7753 BUG();
7754 }
7755 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7756 return ret;
7757 }
7758
7759 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7760 struct btrfs_root *root,
7761 u64 parent, u64 root_objectid,
7762 u64 flags, struct btrfs_disk_key *key,
7763 int level, struct btrfs_key *ins)
7764 {
7765 int ret;
7766 struct btrfs_fs_info *fs_info = root->fs_info;
7767 struct btrfs_extent_item *extent_item;
7768 struct btrfs_tree_block_info *block_info;
7769 struct btrfs_extent_inline_ref *iref;
7770 struct btrfs_path *path;
7771 struct extent_buffer *leaf;
7772 u32 size = sizeof(*extent_item) + sizeof(*iref);
7773 u64 num_bytes = ins->offset;
7774 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7775 SKINNY_METADATA);
7776
7777 if (!skinny_metadata)
7778 size += sizeof(*block_info);
7779
7780 path = btrfs_alloc_path();
7781 if (!path) {
7782 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7783 root->nodesize);
7784 return -ENOMEM;
7785 }
7786
7787 path->leave_spinning = 1;
7788 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7789 ins, size);
7790 if (ret) {
7791 btrfs_free_path(path);
7792 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7793 root->nodesize);
7794 return ret;
7795 }
7796
7797 leaf = path->nodes[0];
7798 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7799 struct btrfs_extent_item);
7800 btrfs_set_extent_refs(leaf, extent_item, 1);
7801 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7802 btrfs_set_extent_flags(leaf, extent_item,
7803 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7804
7805 if (skinny_metadata) {
7806 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7807 num_bytes = root->nodesize;
7808 } else {
7809 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7810 btrfs_set_tree_block_key(leaf, block_info, key);
7811 btrfs_set_tree_block_level(leaf, block_info, level);
7812 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7813 }
7814
7815 if (parent > 0) {
7816 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7817 btrfs_set_extent_inline_ref_type(leaf, iref,
7818 BTRFS_SHARED_BLOCK_REF_KEY);
7819 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7820 } else {
7821 btrfs_set_extent_inline_ref_type(leaf, iref,
7822 BTRFS_TREE_BLOCK_REF_KEY);
7823 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7824 }
7825
7826 btrfs_mark_buffer_dirty(leaf);
7827 btrfs_free_path(path);
7828
7829 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7830 num_bytes);
7831 if (ret)
7832 return ret;
7833
7834 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7835 1);
7836 if (ret) { /* -ENOENT, logic error */
7837 btrfs_err(fs_info, "update block group failed for %llu %llu",
7838 ins->objectid, ins->offset);
7839 BUG();
7840 }
7841
7842 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7843 return ret;
7844 }
7845
7846 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7847 struct btrfs_root *root,
7848 u64 root_objectid, u64 owner,
7849 u64 offset, u64 ram_bytes,
7850 struct btrfs_key *ins)
7851 {
7852 int ret;
7853
7854 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7855
7856 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7857 ins->offset, 0,
7858 root_objectid, owner, offset,
7859 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7860 NULL);
7861 return ret;
7862 }
7863
7864 /*
7865 * this is used by the tree logging recovery code. It records that
7866 * an extent has been allocated and makes sure to clear the free
7867 * space cache bits as well
7868 */
7869 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7870 struct btrfs_root *root,
7871 u64 root_objectid, u64 owner, u64 offset,
7872 struct btrfs_key *ins)
7873 {
7874 int ret;
7875 struct btrfs_block_group_cache *block_group;
7876
7877 /*
7878 * Mixed block groups will exclude before processing the log so we only
7879 * need to do the exlude dance if this fs isn't mixed.
7880 */
7881 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7882 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7883 if (ret)
7884 return ret;
7885 }
7886
7887 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7888 if (!block_group)
7889 return -EINVAL;
7890
7891 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7892 RESERVE_ALLOC_NO_ACCOUNT, 0);
7893 BUG_ON(ret); /* logic error */
7894 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7895 0, owner, offset, ins, 1);
7896 btrfs_put_block_group(block_group);
7897 return ret;
7898 }
7899
7900 static struct extent_buffer *
7901 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7902 u64 bytenr, int level)
7903 {
7904 struct extent_buffer *buf;
7905
7906 buf = btrfs_find_create_tree_block(root, bytenr);
7907 if (!buf)
7908 return ERR_PTR(-ENOMEM);
7909 btrfs_set_header_generation(buf, trans->transid);
7910 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7911 btrfs_tree_lock(buf);
7912 clean_tree_block(trans, root->fs_info, buf);
7913 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7914
7915 btrfs_set_lock_blocking(buf);
7916 set_extent_buffer_uptodate(buf);
7917
7918 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7919 buf->log_index = root->log_transid % 2;
7920 /*
7921 * we allow two log transactions at a time, use different
7922 * EXENT bit to differentiate dirty pages.
7923 */
7924 if (buf->log_index == 0)
7925 set_extent_dirty(&root->dirty_log_pages, buf->start,
7926 buf->start + buf->len - 1, GFP_NOFS);
7927 else
7928 set_extent_new(&root->dirty_log_pages, buf->start,
7929 buf->start + buf->len - 1, GFP_NOFS);
7930 } else {
7931 buf->log_index = -1;
7932 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7933 buf->start + buf->len - 1, GFP_NOFS);
7934 }
7935 trans->blocks_used++;
7936 /* this returns a buffer locked for blocking */
7937 return buf;
7938 }
7939
7940 static struct btrfs_block_rsv *
7941 use_block_rsv(struct btrfs_trans_handle *trans,
7942 struct btrfs_root *root, u32 blocksize)
7943 {
7944 struct btrfs_block_rsv *block_rsv;
7945 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7946 int ret;
7947 bool global_updated = false;
7948
7949 block_rsv = get_block_rsv(trans, root);
7950
7951 if (unlikely(block_rsv->size == 0))
7952 goto try_reserve;
7953 again:
7954 ret = block_rsv_use_bytes(block_rsv, blocksize);
7955 if (!ret)
7956 return block_rsv;
7957
7958 if (block_rsv->failfast)
7959 return ERR_PTR(ret);
7960
7961 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7962 global_updated = true;
7963 update_global_block_rsv(root->fs_info);
7964 goto again;
7965 }
7966
7967 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7968 static DEFINE_RATELIMIT_STATE(_rs,
7969 DEFAULT_RATELIMIT_INTERVAL * 10,
7970 /*DEFAULT_RATELIMIT_BURST*/ 1);
7971 if (__ratelimit(&_rs))
7972 WARN(1, KERN_DEBUG
7973 "BTRFS: block rsv returned %d\n", ret);
7974 }
7975 try_reserve:
7976 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7977 BTRFS_RESERVE_NO_FLUSH);
7978 if (!ret)
7979 return block_rsv;
7980 /*
7981 * If we couldn't reserve metadata bytes try and use some from
7982 * the global reserve if its space type is the same as the global
7983 * reservation.
7984 */
7985 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7986 block_rsv->space_info == global_rsv->space_info) {
7987 ret = block_rsv_use_bytes(global_rsv, blocksize);
7988 if (!ret)
7989 return global_rsv;
7990 }
7991 return ERR_PTR(ret);
7992 }
7993
7994 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7995 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7996 {
7997 block_rsv_add_bytes(block_rsv, blocksize, 0);
7998 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7999 }
8000
8001 /*
8002 * finds a free extent and does all the dirty work required for allocation
8003 * returns the tree buffer or an ERR_PTR on error.
8004 */
8005 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8006 struct btrfs_root *root,
8007 u64 parent, u64 root_objectid,
8008 struct btrfs_disk_key *key, int level,
8009 u64 hint, u64 empty_size)
8010 {
8011 struct btrfs_key ins;
8012 struct btrfs_block_rsv *block_rsv;
8013 struct extent_buffer *buf;
8014 struct btrfs_delayed_extent_op *extent_op;
8015 u64 flags = 0;
8016 int ret;
8017 u32 blocksize = root->nodesize;
8018 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8019 SKINNY_METADATA);
8020
8021 if (btrfs_test_is_dummy_root(root)) {
8022 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8023 level);
8024 if (!IS_ERR(buf))
8025 root->alloc_bytenr += blocksize;
8026 return buf;
8027 }
8028
8029 block_rsv = use_block_rsv(trans, root, blocksize);
8030 if (IS_ERR(block_rsv))
8031 return ERR_CAST(block_rsv);
8032
8033 ret = btrfs_reserve_extent(root, blocksize, blocksize,
8034 empty_size, hint, &ins, 0, 0);
8035 if (ret)
8036 goto out_unuse;
8037
8038 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8039 if (IS_ERR(buf)) {
8040 ret = PTR_ERR(buf);
8041 goto out_free_reserved;
8042 }
8043
8044 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8045 if (parent == 0)
8046 parent = ins.objectid;
8047 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8048 } else
8049 BUG_ON(parent > 0);
8050
8051 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8052 extent_op = btrfs_alloc_delayed_extent_op();
8053 if (!extent_op) {
8054 ret = -ENOMEM;
8055 goto out_free_buf;
8056 }
8057 if (key)
8058 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8059 else
8060 memset(&extent_op->key, 0, sizeof(extent_op->key));
8061 extent_op->flags_to_set = flags;
8062 extent_op->update_key = skinny_metadata ? false : true;
8063 extent_op->update_flags = true;
8064 extent_op->is_data = false;
8065 extent_op->level = level;
8066
8067 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8068 ins.objectid, ins.offset,
8069 parent, root_objectid, level,
8070 BTRFS_ADD_DELAYED_EXTENT,
8071 extent_op);
8072 if (ret)
8073 goto out_free_delayed;
8074 }
8075 return buf;
8076
8077 out_free_delayed:
8078 btrfs_free_delayed_extent_op(extent_op);
8079 out_free_buf:
8080 free_extent_buffer(buf);
8081 out_free_reserved:
8082 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8083 out_unuse:
8084 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8085 return ERR_PTR(ret);
8086 }
8087
8088 struct walk_control {
8089 u64 refs[BTRFS_MAX_LEVEL];
8090 u64 flags[BTRFS_MAX_LEVEL];
8091 struct btrfs_key update_progress;
8092 int stage;
8093 int level;
8094 int shared_level;
8095 int update_ref;
8096 int keep_locks;
8097 int reada_slot;
8098 int reada_count;
8099 int for_reloc;
8100 };
8101
8102 #define DROP_REFERENCE 1
8103 #define UPDATE_BACKREF 2
8104
8105 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8106 struct btrfs_root *root,
8107 struct walk_control *wc,
8108 struct btrfs_path *path)
8109 {
8110 u64 bytenr;
8111 u64 generation;
8112 u64 refs;
8113 u64 flags;
8114 u32 nritems;
8115 u32 blocksize;
8116 struct btrfs_key key;
8117 struct extent_buffer *eb;
8118 int ret;
8119 int slot;
8120 int nread = 0;
8121
8122 if (path->slots[wc->level] < wc->reada_slot) {
8123 wc->reada_count = wc->reada_count * 2 / 3;
8124 wc->reada_count = max(wc->reada_count, 2);
8125 } else {
8126 wc->reada_count = wc->reada_count * 3 / 2;
8127 wc->reada_count = min_t(int, wc->reada_count,
8128 BTRFS_NODEPTRS_PER_BLOCK(root));
8129 }
8130
8131 eb = path->nodes[wc->level];
8132 nritems = btrfs_header_nritems(eb);
8133 blocksize = root->nodesize;
8134
8135 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8136 if (nread >= wc->reada_count)
8137 break;
8138
8139 cond_resched();
8140 bytenr = btrfs_node_blockptr(eb, slot);
8141 generation = btrfs_node_ptr_generation(eb, slot);
8142
8143 if (slot == path->slots[wc->level])
8144 goto reada;
8145
8146 if (wc->stage == UPDATE_BACKREF &&
8147 generation <= root->root_key.offset)
8148 continue;
8149
8150 /* We don't lock the tree block, it's OK to be racy here */
8151 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8152 wc->level - 1, 1, &refs,
8153 &flags);
8154 /* We don't care about errors in readahead. */
8155 if (ret < 0)
8156 continue;
8157 BUG_ON(refs == 0);
8158
8159 if (wc->stage == DROP_REFERENCE) {
8160 if (refs == 1)
8161 goto reada;
8162
8163 if (wc->level == 1 &&
8164 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8165 continue;
8166 if (!wc->update_ref ||
8167 generation <= root->root_key.offset)
8168 continue;
8169 btrfs_node_key_to_cpu(eb, &key, slot);
8170 ret = btrfs_comp_cpu_keys(&key,
8171 &wc->update_progress);
8172 if (ret < 0)
8173 continue;
8174 } else {
8175 if (wc->level == 1 &&
8176 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8177 continue;
8178 }
8179 reada:
8180 readahead_tree_block(root, bytenr);
8181 nread++;
8182 }
8183 wc->reada_slot = slot;
8184 }
8185
8186 /*
8187 * These may not be seen by the usual inc/dec ref code so we have to
8188 * add them here.
8189 */
8190 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8191 struct btrfs_root *root, u64 bytenr,
8192 u64 num_bytes)
8193 {
8194 struct btrfs_qgroup_extent_record *qrecord;
8195 struct btrfs_delayed_ref_root *delayed_refs;
8196
8197 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8198 if (!qrecord)
8199 return -ENOMEM;
8200
8201 qrecord->bytenr = bytenr;
8202 qrecord->num_bytes = num_bytes;
8203 qrecord->old_roots = NULL;
8204
8205 delayed_refs = &trans->transaction->delayed_refs;
8206 spin_lock(&delayed_refs->lock);
8207 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8208 kfree(qrecord);
8209 spin_unlock(&delayed_refs->lock);
8210
8211 return 0;
8212 }
8213
8214 static int account_leaf_items(struct btrfs_trans_handle *trans,
8215 struct btrfs_root *root,
8216 struct extent_buffer *eb)
8217 {
8218 int nr = btrfs_header_nritems(eb);
8219 int i, extent_type, ret;
8220 struct btrfs_key key;
8221 struct btrfs_file_extent_item *fi;
8222 u64 bytenr, num_bytes;
8223
8224 /* We can be called directly from walk_up_proc() */
8225 if (!root->fs_info->quota_enabled)
8226 return 0;
8227
8228 for (i = 0; i < nr; i++) {
8229 btrfs_item_key_to_cpu(eb, &key, i);
8230
8231 if (key.type != BTRFS_EXTENT_DATA_KEY)
8232 continue;
8233
8234 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8235 /* filter out non qgroup-accountable extents */
8236 extent_type = btrfs_file_extent_type(eb, fi);
8237
8238 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8239 continue;
8240
8241 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8242 if (!bytenr)
8243 continue;
8244
8245 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8246
8247 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8248 if (ret)
8249 return ret;
8250 }
8251 return 0;
8252 }
8253
8254 /*
8255 * Walk up the tree from the bottom, freeing leaves and any interior
8256 * nodes which have had all slots visited. If a node (leaf or
8257 * interior) is freed, the node above it will have it's slot
8258 * incremented. The root node will never be freed.
8259 *
8260 * At the end of this function, we should have a path which has all
8261 * slots incremented to the next position for a search. If we need to
8262 * read a new node it will be NULL and the node above it will have the
8263 * correct slot selected for a later read.
8264 *
8265 * If we increment the root nodes slot counter past the number of
8266 * elements, 1 is returned to signal completion of the search.
8267 */
8268 static int adjust_slots_upwards(struct btrfs_root *root,
8269 struct btrfs_path *path, int root_level)
8270 {
8271 int level = 0;
8272 int nr, slot;
8273 struct extent_buffer *eb;
8274
8275 if (root_level == 0)
8276 return 1;
8277
8278 while (level <= root_level) {
8279 eb = path->nodes[level];
8280 nr = btrfs_header_nritems(eb);
8281 path->slots[level]++;
8282 slot = path->slots[level];
8283 if (slot >= nr || level == 0) {
8284 /*
8285 * Don't free the root - we will detect this
8286 * condition after our loop and return a
8287 * positive value for caller to stop walking the tree.
8288 */
8289 if (level != root_level) {
8290 btrfs_tree_unlock_rw(eb, path->locks[level]);
8291 path->locks[level] = 0;
8292
8293 free_extent_buffer(eb);
8294 path->nodes[level] = NULL;
8295 path->slots[level] = 0;
8296 }
8297 } else {
8298 /*
8299 * We have a valid slot to walk back down
8300 * from. Stop here so caller can process these
8301 * new nodes.
8302 */
8303 break;
8304 }
8305
8306 level++;
8307 }
8308
8309 eb = path->nodes[root_level];
8310 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8311 return 1;
8312
8313 return 0;
8314 }
8315
8316 /*
8317 * root_eb is the subtree root and is locked before this function is called.
8318 */
8319 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8320 struct btrfs_root *root,
8321 struct extent_buffer *root_eb,
8322 u64 root_gen,
8323 int root_level)
8324 {
8325 int ret = 0;
8326 int level;
8327 struct extent_buffer *eb = root_eb;
8328 struct btrfs_path *path = NULL;
8329
8330 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8331 BUG_ON(root_eb == NULL);
8332
8333 if (!root->fs_info->quota_enabled)
8334 return 0;
8335
8336 if (!extent_buffer_uptodate(root_eb)) {
8337 ret = btrfs_read_buffer(root_eb, root_gen);
8338 if (ret)
8339 goto out;
8340 }
8341
8342 if (root_level == 0) {
8343 ret = account_leaf_items(trans, root, root_eb);
8344 goto out;
8345 }
8346
8347 path = btrfs_alloc_path();
8348 if (!path)
8349 return -ENOMEM;
8350
8351 /*
8352 * Walk down the tree. Missing extent blocks are filled in as
8353 * we go. Metadata is accounted every time we read a new
8354 * extent block.
8355 *
8356 * When we reach a leaf, we account for file extent items in it,
8357 * walk back up the tree (adjusting slot pointers as we go)
8358 * and restart the search process.
8359 */
8360 extent_buffer_get(root_eb); /* For path */
8361 path->nodes[root_level] = root_eb;
8362 path->slots[root_level] = 0;
8363 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8364 walk_down:
8365 level = root_level;
8366 while (level >= 0) {
8367 if (path->nodes[level] == NULL) {
8368 int parent_slot;
8369 u64 child_gen;
8370 u64 child_bytenr;
8371
8372 /* We need to get child blockptr/gen from
8373 * parent before we can read it. */
8374 eb = path->nodes[level + 1];
8375 parent_slot = path->slots[level + 1];
8376 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8377 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8378
8379 eb = read_tree_block(root, child_bytenr, child_gen);
8380 if (IS_ERR(eb)) {
8381 ret = PTR_ERR(eb);
8382 goto out;
8383 } else if (!extent_buffer_uptodate(eb)) {
8384 free_extent_buffer(eb);
8385 ret = -EIO;
8386 goto out;
8387 }
8388
8389 path->nodes[level] = eb;
8390 path->slots[level] = 0;
8391
8392 btrfs_tree_read_lock(eb);
8393 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8394 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8395
8396 ret = record_one_subtree_extent(trans, root, child_bytenr,
8397 root->nodesize);
8398 if (ret)
8399 goto out;
8400 }
8401
8402 if (level == 0) {
8403 ret = account_leaf_items(trans, root, path->nodes[level]);
8404 if (ret)
8405 goto out;
8406
8407 /* Nonzero return here means we completed our search */
8408 ret = adjust_slots_upwards(root, path, root_level);
8409 if (ret)
8410 break;
8411
8412 /* Restart search with new slots */
8413 goto walk_down;
8414 }
8415
8416 level--;
8417 }
8418
8419 ret = 0;
8420 out:
8421 btrfs_free_path(path);
8422
8423 return ret;
8424 }
8425
8426 /*
8427 * helper to process tree block while walking down the tree.
8428 *
8429 * when wc->stage == UPDATE_BACKREF, this function updates
8430 * back refs for pointers in the block.
8431 *
8432 * NOTE: return value 1 means we should stop walking down.
8433 */
8434 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8435 struct btrfs_root *root,
8436 struct btrfs_path *path,
8437 struct walk_control *wc, int lookup_info)
8438 {
8439 int level = wc->level;
8440 struct extent_buffer *eb = path->nodes[level];
8441 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8442 int ret;
8443
8444 if (wc->stage == UPDATE_BACKREF &&
8445 btrfs_header_owner(eb) != root->root_key.objectid)
8446 return 1;
8447
8448 /*
8449 * when reference count of tree block is 1, it won't increase
8450 * again. once full backref flag is set, we never clear it.
8451 */
8452 if (lookup_info &&
8453 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8454 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8455 BUG_ON(!path->locks[level]);
8456 ret = btrfs_lookup_extent_info(trans, root,
8457 eb->start, level, 1,
8458 &wc->refs[level],
8459 &wc->flags[level]);
8460 BUG_ON(ret == -ENOMEM);
8461 if (ret)
8462 return ret;
8463 BUG_ON(wc->refs[level] == 0);
8464 }
8465
8466 if (wc->stage == DROP_REFERENCE) {
8467 if (wc->refs[level] > 1)
8468 return 1;
8469
8470 if (path->locks[level] && !wc->keep_locks) {
8471 btrfs_tree_unlock_rw(eb, path->locks[level]);
8472 path->locks[level] = 0;
8473 }
8474 return 0;
8475 }
8476
8477 /* wc->stage == UPDATE_BACKREF */
8478 if (!(wc->flags[level] & flag)) {
8479 BUG_ON(!path->locks[level]);
8480 ret = btrfs_inc_ref(trans, root, eb, 1);
8481 BUG_ON(ret); /* -ENOMEM */
8482 ret = btrfs_dec_ref(trans, root, eb, 0);
8483 BUG_ON(ret); /* -ENOMEM */
8484 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8485 eb->len, flag,
8486 btrfs_header_level(eb), 0);
8487 BUG_ON(ret); /* -ENOMEM */
8488 wc->flags[level] |= flag;
8489 }
8490
8491 /*
8492 * the block is shared by multiple trees, so it's not good to
8493 * keep the tree lock
8494 */
8495 if (path->locks[level] && level > 0) {
8496 btrfs_tree_unlock_rw(eb, path->locks[level]);
8497 path->locks[level] = 0;
8498 }
8499 return 0;
8500 }
8501
8502 /*
8503 * helper to process tree block pointer.
8504 *
8505 * when wc->stage == DROP_REFERENCE, this function checks
8506 * reference count of the block pointed to. if the block
8507 * is shared and we need update back refs for the subtree
8508 * rooted at the block, this function changes wc->stage to
8509 * UPDATE_BACKREF. if the block is shared and there is no
8510 * need to update back, this function drops the reference
8511 * to the block.
8512 *
8513 * NOTE: return value 1 means we should stop walking down.
8514 */
8515 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8516 struct btrfs_root *root,
8517 struct btrfs_path *path,
8518 struct walk_control *wc, int *lookup_info)
8519 {
8520 u64 bytenr;
8521 u64 generation;
8522 u64 parent;
8523 u32 blocksize;
8524 struct btrfs_key key;
8525 struct extent_buffer *next;
8526 int level = wc->level;
8527 int reada = 0;
8528 int ret = 0;
8529 bool need_account = false;
8530
8531 generation = btrfs_node_ptr_generation(path->nodes[level],
8532 path->slots[level]);
8533 /*
8534 * if the lower level block was created before the snapshot
8535 * was created, we know there is no need to update back refs
8536 * for the subtree
8537 */
8538 if (wc->stage == UPDATE_BACKREF &&
8539 generation <= root->root_key.offset) {
8540 *lookup_info = 1;
8541 return 1;
8542 }
8543
8544 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8545 blocksize = root->nodesize;
8546
8547 next = btrfs_find_tree_block(root->fs_info, bytenr);
8548 if (!next) {
8549 next = btrfs_find_create_tree_block(root, bytenr);
8550 if (!next)
8551 return -ENOMEM;
8552 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8553 level - 1);
8554 reada = 1;
8555 }
8556 btrfs_tree_lock(next);
8557 btrfs_set_lock_blocking(next);
8558
8559 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8560 &wc->refs[level - 1],
8561 &wc->flags[level - 1]);
8562 if (ret < 0) {
8563 btrfs_tree_unlock(next);
8564 return ret;
8565 }
8566
8567 if (unlikely(wc->refs[level - 1] == 0)) {
8568 btrfs_err(root->fs_info, "Missing references.");
8569 BUG();
8570 }
8571 *lookup_info = 0;
8572
8573 if (wc->stage == DROP_REFERENCE) {
8574 if (wc->refs[level - 1] > 1) {
8575 need_account = true;
8576 if (level == 1 &&
8577 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8578 goto skip;
8579
8580 if (!wc->update_ref ||
8581 generation <= root->root_key.offset)
8582 goto skip;
8583
8584 btrfs_node_key_to_cpu(path->nodes[level], &key,
8585 path->slots[level]);
8586 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8587 if (ret < 0)
8588 goto skip;
8589
8590 wc->stage = UPDATE_BACKREF;
8591 wc->shared_level = level - 1;
8592 }
8593 } else {
8594 if (level == 1 &&
8595 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8596 goto skip;
8597 }
8598
8599 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8600 btrfs_tree_unlock(next);
8601 free_extent_buffer(next);
8602 next = NULL;
8603 *lookup_info = 1;
8604 }
8605
8606 if (!next) {
8607 if (reada && level == 1)
8608 reada_walk_down(trans, root, wc, path);
8609 next = read_tree_block(root, bytenr, generation);
8610 if (IS_ERR(next)) {
8611 return PTR_ERR(next);
8612 } else if (!extent_buffer_uptodate(next)) {
8613 free_extent_buffer(next);
8614 return -EIO;
8615 }
8616 btrfs_tree_lock(next);
8617 btrfs_set_lock_blocking(next);
8618 }
8619
8620 level--;
8621 BUG_ON(level != btrfs_header_level(next));
8622 path->nodes[level] = next;
8623 path->slots[level] = 0;
8624 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8625 wc->level = level;
8626 if (wc->level == 1)
8627 wc->reada_slot = 0;
8628 return 0;
8629 skip:
8630 wc->refs[level - 1] = 0;
8631 wc->flags[level - 1] = 0;
8632 if (wc->stage == DROP_REFERENCE) {
8633 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8634 parent = path->nodes[level]->start;
8635 } else {
8636 BUG_ON(root->root_key.objectid !=
8637 btrfs_header_owner(path->nodes[level]));
8638 parent = 0;
8639 }
8640
8641 if (need_account) {
8642 ret = account_shared_subtree(trans, root, next,
8643 generation, level - 1);
8644 if (ret) {
8645 btrfs_err_rl(root->fs_info,
8646 "Error "
8647 "%d accounting shared subtree. Quota "
8648 "is out of sync, rescan required.",
8649 ret);
8650 }
8651 }
8652 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8653 root->root_key.objectid, level - 1, 0);
8654 BUG_ON(ret); /* -ENOMEM */
8655 }
8656 btrfs_tree_unlock(next);
8657 free_extent_buffer(next);
8658 *lookup_info = 1;
8659 return 1;
8660 }
8661
8662 /*
8663 * helper to process tree block while walking up the tree.
8664 *
8665 * when wc->stage == DROP_REFERENCE, this function drops
8666 * reference count on the block.
8667 *
8668 * when wc->stage == UPDATE_BACKREF, this function changes
8669 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8670 * to UPDATE_BACKREF previously while processing the block.
8671 *
8672 * NOTE: return value 1 means we should stop walking up.
8673 */
8674 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8675 struct btrfs_root *root,
8676 struct btrfs_path *path,
8677 struct walk_control *wc)
8678 {
8679 int ret;
8680 int level = wc->level;
8681 struct extent_buffer *eb = path->nodes[level];
8682 u64 parent = 0;
8683
8684 if (wc->stage == UPDATE_BACKREF) {
8685 BUG_ON(wc->shared_level < level);
8686 if (level < wc->shared_level)
8687 goto out;
8688
8689 ret = find_next_key(path, level + 1, &wc->update_progress);
8690 if (ret > 0)
8691 wc->update_ref = 0;
8692
8693 wc->stage = DROP_REFERENCE;
8694 wc->shared_level = -1;
8695 path->slots[level] = 0;
8696
8697 /*
8698 * check reference count again if the block isn't locked.
8699 * we should start walking down the tree again if reference
8700 * count is one.
8701 */
8702 if (!path->locks[level]) {
8703 BUG_ON(level == 0);
8704 btrfs_tree_lock(eb);
8705 btrfs_set_lock_blocking(eb);
8706 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8707
8708 ret = btrfs_lookup_extent_info(trans, root,
8709 eb->start, level, 1,
8710 &wc->refs[level],
8711 &wc->flags[level]);
8712 if (ret < 0) {
8713 btrfs_tree_unlock_rw(eb, path->locks[level]);
8714 path->locks[level] = 0;
8715 return ret;
8716 }
8717 BUG_ON(wc->refs[level] == 0);
8718 if (wc->refs[level] == 1) {
8719 btrfs_tree_unlock_rw(eb, path->locks[level]);
8720 path->locks[level] = 0;
8721 return 1;
8722 }
8723 }
8724 }
8725
8726 /* wc->stage == DROP_REFERENCE */
8727 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8728
8729 if (wc->refs[level] == 1) {
8730 if (level == 0) {
8731 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8732 ret = btrfs_dec_ref(trans, root, eb, 1);
8733 else
8734 ret = btrfs_dec_ref(trans, root, eb, 0);
8735 BUG_ON(ret); /* -ENOMEM */
8736 ret = account_leaf_items(trans, root, eb);
8737 if (ret) {
8738 btrfs_err_rl(root->fs_info,
8739 "error "
8740 "%d accounting leaf items. Quota "
8741 "is out of sync, rescan required.",
8742 ret);
8743 }
8744 }
8745 /* make block locked assertion in clean_tree_block happy */
8746 if (!path->locks[level] &&
8747 btrfs_header_generation(eb) == trans->transid) {
8748 btrfs_tree_lock(eb);
8749 btrfs_set_lock_blocking(eb);
8750 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8751 }
8752 clean_tree_block(trans, root->fs_info, eb);
8753 }
8754
8755 if (eb == root->node) {
8756 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8757 parent = eb->start;
8758 else
8759 BUG_ON(root->root_key.objectid !=
8760 btrfs_header_owner(eb));
8761 } else {
8762 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8763 parent = path->nodes[level + 1]->start;
8764 else
8765 BUG_ON(root->root_key.objectid !=
8766 btrfs_header_owner(path->nodes[level + 1]));
8767 }
8768
8769 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8770 out:
8771 wc->refs[level] = 0;
8772 wc->flags[level] = 0;
8773 return 0;
8774 }
8775
8776 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8777 struct btrfs_root *root,
8778 struct btrfs_path *path,
8779 struct walk_control *wc)
8780 {
8781 int level = wc->level;
8782 int lookup_info = 1;
8783 int ret;
8784
8785 while (level >= 0) {
8786 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8787 if (ret > 0)
8788 break;
8789
8790 if (level == 0)
8791 break;
8792
8793 if (path->slots[level] >=
8794 btrfs_header_nritems(path->nodes[level]))
8795 break;
8796
8797 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8798 if (ret > 0) {
8799 path->slots[level]++;
8800 continue;
8801 } else if (ret < 0)
8802 return ret;
8803 level = wc->level;
8804 }
8805 return 0;
8806 }
8807
8808 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8809 struct btrfs_root *root,
8810 struct btrfs_path *path,
8811 struct walk_control *wc, int max_level)
8812 {
8813 int level = wc->level;
8814 int ret;
8815
8816 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8817 while (level < max_level && path->nodes[level]) {
8818 wc->level = level;
8819 if (path->slots[level] + 1 <
8820 btrfs_header_nritems(path->nodes[level])) {
8821 path->slots[level]++;
8822 return 0;
8823 } else {
8824 ret = walk_up_proc(trans, root, path, wc);
8825 if (ret > 0)
8826 return 0;
8827
8828 if (path->locks[level]) {
8829 btrfs_tree_unlock_rw(path->nodes[level],
8830 path->locks[level]);
8831 path->locks[level] = 0;
8832 }
8833 free_extent_buffer(path->nodes[level]);
8834 path->nodes[level] = NULL;
8835 level++;
8836 }
8837 }
8838 return 1;
8839 }
8840
8841 /*
8842 * drop a subvolume tree.
8843 *
8844 * this function traverses the tree freeing any blocks that only
8845 * referenced by the tree.
8846 *
8847 * when a shared tree block is found. this function decreases its
8848 * reference count by one. if update_ref is true, this function
8849 * also make sure backrefs for the shared block and all lower level
8850 * blocks are properly updated.
8851 *
8852 * If called with for_reloc == 0, may exit early with -EAGAIN
8853 */
8854 int btrfs_drop_snapshot(struct btrfs_root *root,
8855 struct btrfs_block_rsv *block_rsv, int update_ref,
8856 int for_reloc)
8857 {
8858 struct btrfs_path *path;
8859 struct btrfs_trans_handle *trans;
8860 struct btrfs_root *tree_root = root->fs_info->tree_root;
8861 struct btrfs_root_item *root_item = &root->root_item;
8862 struct walk_control *wc;
8863 struct btrfs_key key;
8864 int err = 0;
8865 int ret;
8866 int level;
8867 bool root_dropped = false;
8868
8869 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8870
8871 path = btrfs_alloc_path();
8872 if (!path) {
8873 err = -ENOMEM;
8874 goto out;
8875 }
8876
8877 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8878 if (!wc) {
8879 btrfs_free_path(path);
8880 err = -ENOMEM;
8881 goto out;
8882 }
8883
8884 trans = btrfs_start_transaction(tree_root, 0);
8885 if (IS_ERR(trans)) {
8886 err = PTR_ERR(trans);
8887 goto out_free;
8888 }
8889
8890 if (block_rsv)
8891 trans->block_rsv = block_rsv;
8892
8893 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8894 level = btrfs_header_level(root->node);
8895 path->nodes[level] = btrfs_lock_root_node(root);
8896 btrfs_set_lock_blocking(path->nodes[level]);
8897 path->slots[level] = 0;
8898 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8899 memset(&wc->update_progress, 0,
8900 sizeof(wc->update_progress));
8901 } else {
8902 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8903 memcpy(&wc->update_progress, &key,
8904 sizeof(wc->update_progress));
8905
8906 level = root_item->drop_level;
8907 BUG_ON(level == 0);
8908 path->lowest_level = level;
8909 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8910 path->lowest_level = 0;
8911 if (ret < 0) {
8912 err = ret;
8913 goto out_end_trans;
8914 }
8915 WARN_ON(ret > 0);
8916
8917 /*
8918 * unlock our path, this is safe because only this
8919 * function is allowed to delete this snapshot
8920 */
8921 btrfs_unlock_up_safe(path, 0);
8922
8923 level = btrfs_header_level(root->node);
8924 while (1) {
8925 btrfs_tree_lock(path->nodes[level]);
8926 btrfs_set_lock_blocking(path->nodes[level]);
8927 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8928
8929 ret = btrfs_lookup_extent_info(trans, root,
8930 path->nodes[level]->start,
8931 level, 1, &wc->refs[level],
8932 &wc->flags[level]);
8933 if (ret < 0) {
8934 err = ret;
8935 goto out_end_trans;
8936 }
8937 BUG_ON(wc->refs[level] == 0);
8938
8939 if (level == root_item->drop_level)
8940 break;
8941
8942 btrfs_tree_unlock(path->nodes[level]);
8943 path->locks[level] = 0;
8944 WARN_ON(wc->refs[level] != 1);
8945 level--;
8946 }
8947 }
8948
8949 wc->level = level;
8950 wc->shared_level = -1;
8951 wc->stage = DROP_REFERENCE;
8952 wc->update_ref = update_ref;
8953 wc->keep_locks = 0;
8954 wc->for_reloc = for_reloc;
8955 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8956
8957 while (1) {
8958
8959 ret = walk_down_tree(trans, root, path, wc);
8960 if (ret < 0) {
8961 err = ret;
8962 break;
8963 }
8964
8965 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8966 if (ret < 0) {
8967 err = ret;
8968 break;
8969 }
8970
8971 if (ret > 0) {
8972 BUG_ON(wc->stage != DROP_REFERENCE);
8973 break;
8974 }
8975
8976 if (wc->stage == DROP_REFERENCE) {
8977 level = wc->level;
8978 btrfs_node_key(path->nodes[level],
8979 &root_item->drop_progress,
8980 path->slots[level]);
8981 root_item->drop_level = level;
8982 }
8983
8984 BUG_ON(wc->level == 0);
8985 if (btrfs_should_end_transaction(trans, tree_root) ||
8986 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8987 ret = btrfs_update_root(trans, tree_root,
8988 &root->root_key,
8989 root_item);
8990 if (ret) {
8991 btrfs_abort_transaction(trans, tree_root, ret);
8992 err = ret;
8993 goto out_end_trans;
8994 }
8995
8996 btrfs_end_transaction_throttle(trans, tree_root);
8997 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8998 pr_debug("BTRFS: drop snapshot early exit\n");
8999 err = -EAGAIN;
9000 goto out_free;
9001 }
9002
9003 trans = btrfs_start_transaction(tree_root, 0);
9004 if (IS_ERR(trans)) {
9005 err = PTR_ERR(trans);
9006 goto out_free;
9007 }
9008 if (block_rsv)
9009 trans->block_rsv = block_rsv;
9010 }
9011 }
9012 btrfs_release_path(path);
9013 if (err)
9014 goto out_end_trans;
9015
9016 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9017 if (ret) {
9018 btrfs_abort_transaction(trans, tree_root, ret);
9019 goto out_end_trans;
9020 }
9021
9022 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9023 ret = btrfs_find_root(tree_root, &root->root_key, path,
9024 NULL, NULL);
9025 if (ret < 0) {
9026 btrfs_abort_transaction(trans, tree_root, ret);
9027 err = ret;
9028 goto out_end_trans;
9029 } else if (ret > 0) {
9030 /* if we fail to delete the orphan item this time
9031 * around, it'll get picked up the next time.
9032 *
9033 * The most common failure here is just -ENOENT.
9034 */
9035 btrfs_del_orphan_item(trans, tree_root,
9036 root->root_key.objectid);
9037 }
9038 }
9039
9040 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9041 btrfs_add_dropped_root(trans, root);
9042 } else {
9043 free_extent_buffer(root->node);
9044 free_extent_buffer(root->commit_root);
9045 btrfs_put_fs_root(root);
9046 }
9047 root_dropped = true;
9048 out_end_trans:
9049 btrfs_end_transaction_throttle(trans, tree_root);
9050 out_free:
9051 kfree(wc);
9052 btrfs_free_path(path);
9053 out:
9054 /*
9055 * So if we need to stop dropping the snapshot for whatever reason we
9056 * need to make sure to add it back to the dead root list so that we
9057 * keep trying to do the work later. This also cleans up roots if we
9058 * don't have it in the radix (like when we recover after a power fail
9059 * or unmount) so we don't leak memory.
9060 */
9061 if (!for_reloc && root_dropped == false)
9062 btrfs_add_dead_root(root);
9063 if (err && err != -EAGAIN)
9064 btrfs_std_error(root->fs_info, err, NULL);
9065 return err;
9066 }
9067
9068 /*
9069 * drop subtree rooted at tree block 'node'.
9070 *
9071 * NOTE: this function will unlock and release tree block 'node'
9072 * only used by relocation code
9073 */
9074 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9075 struct btrfs_root *root,
9076 struct extent_buffer *node,
9077 struct extent_buffer *parent)
9078 {
9079 struct btrfs_path *path;
9080 struct walk_control *wc;
9081 int level;
9082 int parent_level;
9083 int ret = 0;
9084 int wret;
9085
9086 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9087
9088 path = btrfs_alloc_path();
9089 if (!path)
9090 return -ENOMEM;
9091
9092 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9093 if (!wc) {
9094 btrfs_free_path(path);
9095 return -ENOMEM;
9096 }
9097
9098 btrfs_assert_tree_locked(parent);
9099 parent_level = btrfs_header_level(parent);
9100 extent_buffer_get(parent);
9101 path->nodes[parent_level] = parent;
9102 path->slots[parent_level] = btrfs_header_nritems(parent);
9103
9104 btrfs_assert_tree_locked(node);
9105 level = btrfs_header_level(node);
9106 path->nodes[level] = node;
9107 path->slots[level] = 0;
9108 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9109
9110 wc->refs[parent_level] = 1;
9111 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9112 wc->level = level;
9113 wc->shared_level = -1;
9114 wc->stage = DROP_REFERENCE;
9115 wc->update_ref = 0;
9116 wc->keep_locks = 1;
9117 wc->for_reloc = 1;
9118 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9119
9120 while (1) {
9121 wret = walk_down_tree(trans, root, path, wc);
9122 if (wret < 0) {
9123 ret = wret;
9124 break;
9125 }
9126
9127 wret = walk_up_tree(trans, root, path, wc, parent_level);
9128 if (wret < 0)
9129 ret = wret;
9130 if (wret != 0)
9131 break;
9132 }
9133
9134 kfree(wc);
9135 btrfs_free_path(path);
9136 return ret;
9137 }
9138
9139 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9140 {
9141 u64 num_devices;
9142 u64 stripped;
9143
9144 /*
9145 * if restripe for this chunk_type is on pick target profile and
9146 * return, otherwise do the usual balance
9147 */
9148 stripped = get_restripe_target(root->fs_info, flags);
9149 if (stripped)
9150 return extended_to_chunk(stripped);
9151
9152 num_devices = root->fs_info->fs_devices->rw_devices;
9153
9154 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9155 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9156 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9157
9158 if (num_devices == 1) {
9159 stripped |= BTRFS_BLOCK_GROUP_DUP;
9160 stripped = flags & ~stripped;
9161
9162 /* turn raid0 into single device chunks */
9163 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9164 return stripped;
9165
9166 /* turn mirroring into duplication */
9167 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9168 BTRFS_BLOCK_GROUP_RAID10))
9169 return stripped | BTRFS_BLOCK_GROUP_DUP;
9170 } else {
9171 /* they already had raid on here, just return */
9172 if (flags & stripped)
9173 return flags;
9174
9175 stripped |= BTRFS_BLOCK_GROUP_DUP;
9176 stripped = flags & ~stripped;
9177
9178 /* switch duplicated blocks with raid1 */
9179 if (flags & BTRFS_BLOCK_GROUP_DUP)
9180 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9181
9182 /* this is drive concat, leave it alone */
9183 }
9184
9185 return flags;
9186 }
9187
9188 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9189 {
9190 struct btrfs_space_info *sinfo = cache->space_info;
9191 u64 num_bytes;
9192 u64 min_allocable_bytes;
9193 int ret = -ENOSPC;
9194
9195 /*
9196 * We need some metadata space and system metadata space for
9197 * allocating chunks in some corner cases until we force to set
9198 * it to be readonly.
9199 */
9200 if ((sinfo->flags &
9201 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9202 !force)
9203 min_allocable_bytes = SZ_1M;
9204 else
9205 min_allocable_bytes = 0;
9206
9207 spin_lock(&sinfo->lock);
9208 spin_lock(&cache->lock);
9209
9210 if (cache->ro) {
9211 cache->ro++;
9212 ret = 0;
9213 goto out;
9214 }
9215
9216 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9217 cache->bytes_super - btrfs_block_group_used(&cache->item);
9218
9219 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9220 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9221 min_allocable_bytes <= sinfo->total_bytes) {
9222 sinfo->bytes_readonly += num_bytes;
9223 cache->ro++;
9224 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9225 ret = 0;
9226 }
9227 out:
9228 spin_unlock(&cache->lock);
9229 spin_unlock(&sinfo->lock);
9230 return ret;
9231 }
9232
9233 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9234 struct btrfs_block_group_cache *cache)
9235
9236 {
9237 struct btrfs_trans_handle *trans;
9238 u64 alloc_flags;
9239 int ret;
9240
9241 again:
9242 trans = btrfs_join_transaction(root);
9243 if (IS_ERR(trans))
9244 return PTR_ERR(trans);
9245
9246 /*
9247 * we're not allowed to set block groups readonly after the dirty
9248 * block groups cache has started writing. If it already started,
9249 * back off and let this transaction commit
9250 */
9251 mutex_lock(&root->fs_info->ro_block_group_mutex);
9252 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9253 u64 transid = trans->transid;
9254
9255 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9256 btrfs_end_transaction(trans, root);
9257
9258 ret = btrfs_wait_for_commit(root, transid);
9259 if (ret)
9260 return ret;
9261 goto again;
9262 }
9263
9264 /*
9265 * if we are changing raid levels, try to allocate a corresponding
9266 * block group with the new raid level.
9267 */
9268 alloc_flags = update_block_group_flags(root, cache->flags);
9269 if (alloc_flags != cache->flags) {
9270 ret = do_chunk_alloc(trans, root, alloc_flags,
9271 CHUNK_ALLOC_FORCE);
9272 /*
9273 * ENOSPC is allowed here, we may have enough space
9274 * already allocated at the new raid level to
9275 * carry on
9276 */
9277 if (ret == -ENOSPC)
9278 ret = 0;
9279 if (ret < 0)
9280 goto out;
9281 }
9282
9283 ret = inc_block_group_ro(cache, 0);
9284 if (!ret)
9285 goto out;
9286 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9287 ret = do_chunk_alloc(trans, root, alloc_flags,
9288 CHUNK_ALLOC_FORCE);
9289 if (ret < 0)
9290 goto out;
9291 ret = inc_block_group_ro(cache, 0);
9292 out:
9293 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9294 alloc_flags = update_block_group_flags(root, cache->flags);
9295 lock_chunks(root->fs_info->chunk_root);
9296 check_system_chunk(trans, root, alloc_flags);
9297 unlock_chunks(root->fs_info->chunk_root);
9298 }
9299 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9300
9301 btrfs_end_transaction(trans, root);
9302 return ret;
9303 }
9304
9305 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9306 struct btrfs_root *root, u64 type)
9307 {
9308 u64 alloc_flags = get_alloc_profile(root, type);
9309 return do_chunk_alloc(trans, root, alloc_flags,
9310 CHUNK_ALLOC_FORCE);
9311 }
9312
9313 /*
9314 * helper to account the unused space of all the readonly block group in the
9315 * space_info. takes mirrors into account.
9316 */
9317 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9318 {
9319 struct btrfs_block_group_cache *block_group;
9320 u64 free_bytes = 0;
9321 int factor;
9322
9323 /* It's df, we don't care if it's racey */
9324 if (list_empty(&sinfo->ro_bgs))
9325 return 0;
9326
9327 spin_lock(&sinfo->lock);
9328 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9329 spin_lock(&block_group->lock);
9330
9331 if (!block_group->ro) {
9332 spin_unlock(&block_group->lock);
9333 continue;
9334 }
9335
9336 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9337 BTRFS_BLOCK_GROUP_RAID10 |
9338 BTRFS_BLOCK_GROUP_DUP))
9339 factor = 2;
9340 else
9341 factor = 1;
9342
9343 free_bytes += (block_group->key.offset -
9344 btrfs_block_group_used(&block_group->item)) *
9345 factor;
9346
9347 spin_unlock(&block_group->lock);
9348 }
9349 spin_unlock(&sinfo->lock);
9350
9351 return free_bytes;
9352 }
9353
9354 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9355 struct btrfs_block_group_cache *cache)
9356 {
9357 struct btrfs_space_info *sinfo = cache->space_info;
9358 u64 num_bytes;
9359
9360 BUG_ON(!cache->ro);
9361
9362 spin_lock(&sinfo->lock);
9363 spin_lock(&cache->lock);
9364 if (!--cache->ro) {
9365 num_bytes = cache->key.offset - cache->reserved -
9366 cache->pinned - cache->bytes_super -
9367 btrfs_block_group_used(&cache->item);
9368 sinfo->bytes_readonly -= num_bytes;
9369 list_del_init(&cache->ro_list);
9370 }
9371 spin_unlock(&cache->lock);
9372 spin_unlock(&sinfo->lock);
9373 }
9374
9375 /*
9376 * checks to see if its even possible to relocate this block group.
9377 *
9378 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9379 * ok to go ahead and try.
9380 */
9381 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9382 {
9383 struct btrfs_block_group_cache *block_group;
9384 struct btrfs_space_info *space_info;
9385 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9386 struct btrfs_device *device;
9387 struct btrfs_trans_handle *trans;
9388 u64 min_free;
9389 u64 dev_min = 1;
9390 u64 dev_nr = 0;
9391 u64 target;
9392 int debug;
9393 int index;
9394 int full = 0;
9395 int ret = 0;
9396
9397 debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9398
9399 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9400
9401 /* odd, couldn't find the block group, leave it alone */
9402 if (!block_group) {
9403 if (debug)
9404 btrfs_warn(root->fs_info,
9405 "can't find block group for bytenr %llu",
9406 bytenr);
9407 return -1;
9408 }
9409
9410 min_free = btrfs_block_group_used(&block_group->item);
9411
9412 /* no bytes used, we're good */
9413 if (!min_free)
9414 goto out;
9415
9416 space_info = block_group->space_info;
9417 spin_lock(&space_info->lock);
9418
9419 full = space_info->full;
9420
9421 /*
9422 * if this is the last block group we have in this space, we can't
9423 * relocate it unless we're able to allocate a new chunk below.
9424 *
9425 * Otherwise, we need to make sure we have room in the space to handle
9426 * all of the extents from this block group. If we can, we're good
9427 */
9428 if ((space_info->total_bytes != block_group->key.offset) &&
9429 (space_info->bytes_used + space_info->bytes_reserved +
9430 space_info->bytes_pinned + space_info->bytes_readonly +
9431 min_free < space_info->total_bytes)) {
9432 spin_unlock(&space_info->lock);
9433 goto out;
9434 }
9435 spin_unlock(&space_info->lock);
9436
9437 /*
9438 * ok we don't have enough space, but maybe we have free space on our
9439 * devices to allocate new chunks for relocation, so loop through our
9440 * alloc devices and guess if we have enough space. if this block
9441 * group is going to be restriped, run checks against the target
9442 * profile instead of the current one.
9443 */
9444 ret = -1;
9445
9446 /*
9447 * index:
9448 * 0: raid10
9449 * 1: raid1
9450 * 2: dup
9451 * 3: raid0
9452 * 4: single
9453 */
9454 target = get_restripe_target(root->fs_info, block_group->flags);
9455 if (target) {
9456 index = __get_raid_index(extended_to_chunk(target));
9457 } else {
9458 /*
9459 * this is just a balance, so if we were marked as full
9460 * we know there is no space for a new chunk
9461 */
9462 if (full) {
9463 if (debug)
9464 btrfs_warn(root->fs_info,
9465 "no space to alloc new chunk for block group %llu",
9466 block_group->key.objectid);
9467 goto out;
9468 }
9469
9470 index = get_block_group_index(block_group);
9471 }
9472
9473 if (index == BTRFS_RAID_RAID10) {
9474 dev_min = 4;
9475 /* Divide by 2 */
9476 min_free >>= 1;
9477 } else if (index == BTRFS_RAID_RAID1) {
9478 dev_min = 2;
9479 } else if (index == BTRFS_RAID_DUP) {
9480 /* Multiply by 2 */
9481 min_free <<= 1;
9482 } else if (index == BTRFS_RAID_RAID0) {
9483 dev_min = fs_devices->rw_devices;
9484 min_free = div64_u64(min_free, dev_min);
9485 }
9486
9487 /* We need to do this so that we can look at pending chunks */
9488 trans = btrfs_join_transaction(root);
9489 if (IS_ERR(trans)) {
9490 ret = PTR_ERR(trans);
9491 goto out;
9492 }
9493
9494 mutex_lock(&root->fs_info->chunk_mutex);
9495 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9496 u64 dev_offset;
9497
9498 /*
9499 * check to make sure we can actually find a chunk with enough
9500 * space to fit our block group in.
9501 */
9502 if (device->total_bytes > device->bytes_used + min_free &&
9503 !device->is_tgtdev_for_dev_replace) {
9504 ret = find_free_dev_extent(trans, device, min_free,
9505 &dev_offset, NULL);
9506 if (!ret)
9507 dev_nr++;
9508
9509 if (dev_nr >= dev_min)
9510 break;
9511
9512 ret = -1;
9513 }
9514 }
9515 if (debug && ret == -1)
9516 btrfs_warn(root->fs_info,
9517 "no space to allocate a new chunk for block group %llu",
9518 block_group->key.objectid);
9519 mutex_unlock(&root->fs_info->chunk_mutex);
9520 btrfs_end_transaction(trans, root);
9521 out:
9522 btrfs_put_block_group(block_group);
9523 return ret;
9524 }
9525
9526 static int find_first_block_group(struct btrfs_root *root,
9527 struct btrfs_path *path, struct btrfs_key *key)
9528 {
9529 int ret = 0;
9530 struct btrfs_key found_key;
9531 struct extent_buffer *leaf;
9532 int slot;
9533
9534 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9535 if (ret < 0)
9536 goto out;
9537
9538 while (1) {
9539 slot = path->slots[0];
9540 leaf = path->nodes[0];
9541 if (slot >= btrfs_header_nritems(leaf)) {
9542 ret = btrfs_next_leaf(root, path);
9543 if (ret == 0)
9544 continue;
9545 if (ret < 0)
9546 goto out;
9547 break;
9548 }
9549 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9550
9551 if (found_key.objectid >= key->objectid &&
9552 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9553 ret = 0;
9554 goto out;
9555 }
9556 path->slots[0]++;
9557 }
9558 out:
9559 return ret;
9560 }
9561
9562 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9563 {
9564 struct btrfs_block_group_cache *block_group;
9565 u64 last = 0;
9566
9567 while (1) {
9568 struct inode *inode;
9569
9570 block_group = btrfs_lookup_first_block_group(info, last);
9571 while (block_group) {
9572 spin_lock(&block_group->lock);
9573 if (block_group->iref)
9574 break;
9575 spin_unlock(&block_group->lock);
9576 block_group = next_block_group(info->tree_root,
9577 block_group);
9578 }
9579 if (!block_group) {
9580 if (last == 0)
9581 break;
9582 last = 0;
9583 continue;
9584 }
9585
9586 inode = block_group->inode;
9587 block_group->iref = 0;
9588 block_group->inode = NULL;
9589 spin_unlock(&block_group->lock);
9590 iput(inode);
9591 last = block_group->key.objectid + block_group->key.offset;
9592 btrfs_put_block_group(block_group);
9593 }
9594 }
9595
9596 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9597 {
9598 struct btrfs_block_group_cache *block_group;
9599 struct btrfs_space_info *space_info;
9600 struct btrfs_caching_control *caching_ctl;
9601 struct rb_node *n;
9602
9603 down_write(&info->commit_root_sem);
9604 while (!list_empty(&info->caching_block_groups)) {
9605 caching_ctl = list_entry(info->caching_block_groups.next,
9606 struct btrfs_caching_control, list);
9607 list_del(&caching_ctl->list);
9608 put_caching_control(caching_ctl);
9609 }
9610 up_write(&info->commit_root_sem);
9611
9612 spin_lock(&info->unused_bgs_lock);
9613 while (!list_empty(&info->unused_bgs)) {
9614 block_group = list_first_entry(&info->unused_bgs,
9615 struct btrfs_block_group_cache,
9616 bg_list);
9617 list_del_init(&block_group->bg_list);
9618 btrfs_put_block_group(block_group);
9619 }
9620 spin_unlock(&info->unused_bgs_lock);
9621
9622 spin_lock(&info->block_group_cache_lock);
9623 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9624 block_group = rb_entry(n, struct btrfs_block_group_cache,
9625 cache_node);
9626 rb_erase(&block_group->cache_node,
9627 &info->block_group_cache_tree);
9628 RB_CLEAR_NODE(&block_group->cache_node);
9629 spin_unlock(&info->block_group_cache_lock);
9630
9631 down_write(&block_group->space_info->groups_sem);
9632 list_del(&block_group->list);
9633 up_write(&block_group->space_info->groups_sem);
9634
9635 if (block_group->cached == BTRFS_CACHE_STARTED)
9636 wait_block_group_cache_done(block_group);
9637
9638 /*
9639 * We haven't cached this block group, which means we could
9640 * possibly have excluded extents on this block group.
9641 */
9642 if (block_group->cached == BTRFS_CACHE_NO ||
9643 block_group->cached == BTRFS_CACHE_ERROR)
9644 free_excluded_extents(info->extent_root, block_group);
9645
9646 btrfs_remove_free_space_cache(block_group);
9647 btrfs_put_block_group(block_group);
9648
9649 spin_lock(&info->block_group_cache_lock);
9650 }
9651 spin_unlock(&info->block_group_cache_lock);
9652
9653 /* now that all the block groups are freed, go through and
9654 * free all the space_info structs. This is only called during
9655 * the final stages of unmount, and so we know nobody is
9656 * using them. We call synchronize_rcu() once before we start,
9657 * just to be on the safe side.
9658 */
9659 synchronize_rcu();
9660
9661 release_global_block_rsv(info);
9662
9663 while (!list_empty(&info->space_info)) {
9664 int i;
9665
9666 space_info = list_entry(info->space_info.next,
9667 struct btrfs_space_info,
9668 list);
9669 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9670 if (WARN_ON(space_info->bytes_pinned > 0 ||
9671 space_info->bytes_reserved > 0 ||
9672 space_info->bytes_may_use > 0)) {
9673 dump_space_info(space_info, 0, 0);
9674 }
9675 }
9676 list_del(&space_info->list);
9677 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9678 struct kobject *kobj;
9679 kobj = space_info->block_group_kobjs[i];
9680 space_info->block_group_kobjs[i] = NULL;
9681 if (kobj) {
9682 kobject_del(kobj);
9683 kobject_put(kobj);
9684 }
9685 }
9686 kobject_del(&space_info->kobj);
9687 kobject_put(&space_info->kobj);
9688 }
9689 return 0;
9690 }
9691
9692 static void __link_block_group(struct btrfs_space_info *space_info,
9693 struct btrfs_block_group_cache *cache)
9694 {
9695 int index = get_block_group_index(cache);
9696 bool first = false;
9697
9698 down_write(&space_info->groups_sem);
9699 if (list_empty(&space_info->block_groups[index]))
9700 first = true;
9701 list_add_tail(&cache->list, &space_info->block_groups[index]);
9702 up_write(&space_info->groups_sem);
9703
9704 if (first) {
9705 struct raid_kobject *rkobj;
9706 int ret;
9707
9708 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9709 if (!rkobj)
9710 goto out_err;
9711 rkobj->raid_type = index;
9712 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9713 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9714 "%s", get_raid_name(index));
9715 if (ret) {
9716 kobject_put(&rkobj->kobj);
9717 goto out_err;
9718 }
9719 space_info->block_group_kobjs[index] = &rkobj->kobj;
9720 }
9721
9722 return;
9723 out_err:
9724 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9725 }
9726
9727 static struct btrfs_block_group_cache *
9728 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9729 {
9730 struct btrfs_block_group_cache *cache;
9731
9732 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9733 if (!cache)
9734 return NULL;
9735
9736 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9737 GFP_NOFS);
9738 if (!cache->free_space_ctl) {
9739 kfree(cache);
9740 return NULL;
9741 }
9742
9743 cache->key.objectid = start;
9744 cache->key.offset = size;
9745 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9746
9747 cache->sectorsize = root->sectorsize;
9748 cache->fs_info = root->fs_info;
9749 cache->full_stripe_len = btrfs_full_stripe_len(root,
9750 &root->fs_info->mapping_tree,
9751 start);
9752 set_free_space_tree_thresholds(cache);
9753
9754 atomic_set(&cache->count, 1);
9755 spin_lock_init(&cache->lock);
9756 init_rwsem(&cache->data_rwsem);
9757 INIT_LIST_HEAD(&cache->list);
9758 INIT_LIST_HEAD(&cache->cluster_list);
9759 INIT_LIST_HEAD(&cache->bg_list);
9760 INIT_LIST_HEAD(&cache->ro_list);
9761 INIT_LIST_HEAD(&cache->dirty_list);
9762 INIT_LIST_HEAD(&cache->io_list);
9763 btrfs_init_free_space_ctl(cache);
9764 atomic_set(&cache->trimming, 0);
9765 mutex_init(&cache->free_space_lock);
9766
9767 return cache;
9768 }
9769
9770 int btrfs_read_block_groups(struct btrfs_root *root)
9771 {
9772 struct btrfs_path *path;
9773 int ret;
9774 struct btrfs_block_group_cache *cache;
9775 struct btrfs_fs_info *info = root->fs_info;
9776 struct btrfs_space_info *space_info;
9777 struct btrfs_key key;
9778 struct btrfs_key found_key;
9779 struct extent_buffer *leaf;
9780 int need_clear = 0;
9781 u64 cache_gen;
9782
9783 root = info->extent_root;
9784 key.objectid = 0;
9785 key.offset = 0;
9786 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9787 path = btrfs_alloc_path();
9788 if (!path)
9789 return -ENOMEM;
9790 path->reada = READA_FORWARD;
9791
9792 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9793 if (btrfs_test_opt(root, SPACE_CACHE) &&
9794 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9795 need_clear = 1;
9796 if (btrfs_test_opt(root, CLEAR_CACHE))
9797 need_clear = 1;
9798
9799 while (1) {
9800 ret = find_first_block_group(root, path, &key);
9801 if (ret > 0)
9802 break;
9803 if (ret != 0)
9804 goto error;
9805
9806 leaf = path->nodes[0];
9807 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9808
9809 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9810 found_key.offset);
9811 if (!cache) {
9812 ret = -ENOMEM;
9813 goto error;
9814 }
9815
9816 if (need_clear) {
9817 /*
9818 * When we mount with old space cache, we need to
9819 * set BTRFS_DC_CLEAR and set dirty flag.
9820 *
9821 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9822 * truncate the old free space cache inode and
9823 * setup a new one.
9824 * b) Setting 'dirty flag' makes sure that we flush
9825 * the new space cache info onto disk.
9826 */
9827 if (btrfs_test_opt(root, SPACE_CACHE))
9828 cache->disk_cache_state = BTRFS_DC_CLEAR;
9829 }
9830
9831 read_extent_buffer(leaf, &cache->item,
9832 btrfs_item_ptr_offset(leaf, path->slots[0]),
9833 sizeof(cache->item));
9834 cache->flags = btrfs_block_group_flags(&cache->item);
9835
9836 key.objectid = found_key.objectid + found_key.offset;
9837 btrfs_release_path(path);
9838
9839 /*
9840 * We need to exclude the super stripes now so that the space
9841 * info has super bytes accounted for, otherwise we'll think
9842 * we have more space than we actually do.
9843 */
9844 ret = exclude_super_stripes(root, cache);
9845 if (ret) {
9846 /*
9847 * We may have excluded something, so call this just in
9848 * case.
9849 */
9850 free_excluded_extents(root, cache);
9851 btrfs_put_block_group(cache);
9852 goto error;
9853 }
9854
9855 /*
9856 * check for two cases, either we are full, and therefore
9857 * don't need to bother with the caching work since we won't
9858 * find any space, or we are empty, and we can just add all
9859 * the space in and be done with it. This saves us _alot_ of
9860 * time, particularly in the full case.
9861 */
9862 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9863 cache->last_byte_to_unpin = (u64)-1;
9864 cache->cached = BTRFS_CACHE_FINISHED;
9865 free_excluded_extents(root, cache);
9866 } else if (btrfs_block_group_used(&cache->item) == 0) {
9867 cache->last_byte_to_unpin = (u64)-1;
9868 cache->cached = BTRFS_CACHE_FINISHED;
9869 add_new_free_space(cache, root->fs_info,
9870 found_key.objectid,
9871 found_key.objectid +
9872 found_key.offset);
9873 free_excluded_extents(root, cache);
9874 }
9875
9876 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9877 if (ret) {
9878 btrfs_remove_free_space_cache(cache);
9879 btrfs_put_block_group(cache);
9880 goto error;
9881 }
9882
9883 ret = update_space_info(info, cache->flags, found_key.offset,
9884 btrfs_block_group_used(&cache->item),
9885 &space_info);
9886 if (ret) {
9887 btrfs_remove_free_space_cache(cache);
9888 spin_lock(&info->block_group_cache_lock);
9889 rb_erase(&cache->cache_node,
9890 &info->block_group_cache_tree);
9891 RB_CLEAR_NODE(&cache->cache_node);
9892 spin_unlock(&info->block_group_cache_lock);
9893 btrfs_put_block_group(cache);
9894 goto error;
9895 }
9896
9897 cache->space_info = space_info;
9898 spin_lock(&cache->space_info->lock);
9899 cache->space_info->bytes_readonly += cache->bytes_super;
9900 spin_unlock(&cache->space_info->lock);
9901
9902 __link_block_group(space_info, cache);
9903
9904 set_avail_alloc_bits(root->fs_info, cache->flags);
9905 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9906 inc_block_group_ro(cache, 1);
9907 } else if (btrfs_block_group_used(&cache->item) == 0) {
9908 spin_lock(&info->unused_bgs_lock);
9909 /* Should always be true but just in case. */
9910 if (list_empty(&cache->bg_list)) {
9911 btrfs_get_block_group(cache);
9912 list_add_tail(&cache->bg_list,
9913 &info->unused_bgs);
9914 }
9915 spin_unlock(&info->unused_bgs_lock);
9916 }
9917 }
9918
9919 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9920 if (!(get_alloc_profile(root, space_info->flags) &
9921 (BTRFS_BLOCK_GROUP_RAID10 |
9922 BTRFS_BLOCK_GROUP_RAID1 |
9923 BTRFS_BLOCK_GROUP_RAID5 |
9924 BTRFS_BLOCK_GROUP_RAID6 |
9925 BTRFS_BLOCK_GROUP_DUP)))
9926 continue;
9927 /*
9928 * avoid allocating from un-mirrored block group if there are
9929 * mirrored block groups.
9930 */
9931 list_for_each_entry(cache,
9932 &space_info->block_groups[BTRFS_RAID_RAID0],
9933 list)
9934 inc_block_group_ro(cache, 1);
9935 list_for_each_entry(cache,
9936 &space_info->block_groups[BTRFS_RAID_SINGLE],
9937 list)
9938 inc_block_group_ro(cache, 1);
9939 }
9940
9941 init_global_block_rsv(info);
9942 ret = 0;
9943 error:
9944 btrfs_free_path(path);
9945 return ret;
9946 }
9947
9948 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9949 struct btrfs_root *root)
9950 {
9951 struct btrfs_block_group_cache *block_group, *tmp;
9952 struct btrfs_root *extent_root = root->fs_info->extent_root;
9953 struct btrfs_block_group_item item;
9954 struct btrfs_key key;
9955 int ret = 0;
9956 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9957
9958 trans->can_flush_pending_bgs = false;
9959 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9960 if (ret)
9961 goto next;
9962
9963 spin_lock(&block_group->lock);
9964 memcpy(&item, &block_group->item, sizeof(item));
9965 memcpy(&key, &block_group->key, sizeof(key));
9966 spin_unlock(&block_group->lock);
9967
9968 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9969 sizeof(item));
9970 if (ret)
9971 btrfs_abort_transaction(trans, extent_root, ret);
9972 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9973 key.objectid, key.offset);
9974 if (ret)
9975 btrfs_abort_transaction(trans, extent_root, ret);
9976 add_block_group_free_space(trans, root->fs_info, block_group);
9977 /* already aborted the transaction if it failed. */
9978 next:
9979 list_del_init(&block_group->bg_list);
9980 }
9981 trans->can_flush_pending_bgs = can_flush_pending_bgs;
9982 }
9983
9984 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9985 struct btrfs_root *root, u64 bytes_used,
9986 u64 type, u64 chunk_objectid, u64 chunk_offset,
9987 u64 size)
9988 {
9989 int ret;
9990 struct btrfs_root *extent_root;
9991 struct btrfs_block_group_cache *cache;
9992
9993 extent_root = root->fs_info->extent_root;
9994
9995 btrfs_set_log_full_commit(root->fs_info, trans);
9996
9997 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9998 if (!cache)
9999 return -ENOMEM;
10000
10001 btrfs_set_block_group_used(&cache->item, bytes_used);
10002 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10003 btrfs_set_block_group_flags(&cache->item, type);
10004
10005 cache->flags = type;
10006 cache->last_byte_to_unpin = (u64)-1;
10007 cache->cached = BTRFS_CACHE_FINISHED;
10008 cache->needs_free_space = 1;
10009 ret = exclude_super_stripes(root, cache);
10010 if (ret) {
10011 /*
10012 * We may have excluded something, so call this just in
10013 * case.
10014 */
10015 free_excluded_extents(root, cache);
10016 btrfs_put_block_group(cache);
10017 return ret;
10018 }
10019
10020 add_new_free_space(cache, root->fs_info, chunk_offset,
10021 chunk_offset + size);
10022
10023 free_excluded_extents(root, cache);
10024
10025 #ifdef CONFIG_BTRFS_DEBUG
10026 if (btrfs_should_fragment_free_space(root, cache)) {
10027 u64 new_bytes_used = size - bytes_used;
10028
10029 bytes_used += new_bytes_used >> 1;
10030 fragment_free_space(root, cache);
10031 }
10032 #endif
10033 /*
10034 * Call to ensure the corresponding space_info object is created and
10035 * assigned to our block group, but don't update its counters just yet.
10036 * We want our bg to be added to the rbtree with its ->space_info set.
10037 */
10038 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10039 &cache->space_info);
10040 if (ret) {
10041 btrfs_remove_free_space_cache(cache);
10042 btrfs_put_block_group(cache);
10043 return ret;
10044 }
10045
10046 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10047 if (ret) {
10048 btrfs_remove_free_space_cache(cache);
10049 btrfs_put_block_group(cache);
10050 return ret;
10051 }
10052
10053 /*
10054 * Now that our block group has its ->space_info set and is inserted in
10055 * the rbtree, update the space info's counters.
10056 */
10057 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10058 &cache->space_info);
10059 if (ret) {
10060 btrfs_remove_free_space_cache(cache);
10061 spin_lock(&root->fs_info->block_group_cache_lock);
10062 rb_erase(&cache->cache_node,
10063 &root->fs_info->block_group_cache_tree);
10064 RB_CLEAR_NODE(&cache->cache_node);
10065 spin_unlock(&root->fs_info->block_group_cache_lock);
10066 btrfs_put_block_group(cache);
10067 return ret;
10068 }
10069 update_global_block_rsv(root->fs_info);
10070
10071 spin_lock(&cache->space_info->lock);
10072 cache->space_info->bytes_readonly += cache->bytes_super;
10073 spin_unlock(&cache->space_info->lock);
10074
10075 __link_block_group(cache->space_info, cache);
10076
10077 list_add_tail(&cache->bg_list, &trans->new_bgs);
10078
10079 set_avail_alloc_bits(extent_root->fs_info, type);
10080
10081 return 0;
10082 }
10083
10084 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10085 {
10086 u64 extra_flags = chunk_to_extended(flags) &
10087 BTRFS_EXTENDED_PROFILE_MASK;
10088
10089 write_seqlock(&fs_info->profiles_lock);
10090 if (flags & BTRFS_BLOCK_GROUP_DATA)
10091 fs_info->avail_data_alloc_bits &= ~extra_flags;
10092 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10093 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10094 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10095 fs_info->avail_system_alloc_bits &= ~extra_flags;
10096 write_sequnlock(&fs_info->profiles_lock);
10097 }
10098
10099 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10100 struct btrfs_root *root, u64 group_start,
10101 struct extent_map *em)
10102 {
10103 struct btrfs_path *path;
10104 struct btrfs_block_group_cache *block_group;
10105 struct btrfs_free_cluster *cluster;
10106 struct btrfs_root *tree_root = root->fs_info->tree_root;
10107 struct btrfs_key key;
10108 struct inode *inode;
10109 struct kobject *kobj = NULL;
10110 int ret;
10111 int index;
10112 int factor;
10113 struct btrfs_caching_control *caching_ctl = NULL;
10114 bool remove_em;
10115
10116 root = root->fs_info->extent_root;
10117
10118 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10119 BUG_ON(!block_group);
10120 BUG_ON(!block_group->ro);
10121
10122 /*
10123 * Free the reserved super bytes from this block group before
10124 * remove it.
10125 */
10126 free_excluded_extents(root, block_group);
10127
10128 memcpy(&key, &block_group->key, sizeof(key));
10129 index = get_block_group_index(block_group);
10130 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10131 BTRFS_BLOCK_GROUP_RAID1 |
10132 BTRFS_BLOCK_GROUP_RAID10))
10133 factor = 2;
10134 else
10135 factor = 1;
10136
10137 /* make sure this block group isn't part of an allocation cluster */
10138 cluster = &root->fs_info->data_alloc_cluster;
10139 spin_lock(&cluster->refill_lock);
10140 btrfs_return_cluster_to_free_space(block_group, cluster);
10141 spin_unlock(&cluster->refill_lock);
10142
10143 /*
10144 * make sure this block group isn't part of a metadata
10145 * allocation cluster
10146 */
10147 cluster = &root->fs_info->meta_alloc_cluster;
10148 spin_lock(&cluster->refill_lock);
10149 btrfs_return_cluster_to_free_space(block_group, cluster);
10150 spin_unlock(&cluster->refill_lock);
10151
10152 path = btrfs_alloc_path();
10153 if (!path) {
10154 ret = -ENOMEM;
10155 goto out;
10156 }
10157
10158 /*
10159 * get the inode first so any iput calls done for the io_list
10160 * aren't the final iput (no unlinks allowed now)
10161 */
10162 inode = lookup_free_space_inode(tree_root, block_group, path);
10163
10164 mutex_lock(&trans->transaction->cache_write_mutex);
10165 /*
10166 * make sure our free spache cache IO is done before remove the
10167 * free space inode
10168 */
10169 spin_lock(&trans->transaction->dirty_bgs_lock);
10170 if (!list_empty(&block_group->io_list)) {
10171 list_del_init(&block_group->io_list);
10172
10173 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10174
10175 spin_unlock(&trans->transaction->dirty_bgs_lock);
10176 btrfs_wait_cache_io(root, trans, block_group,
10177 &block_group->io_ctl, path,
10178 block_group->key.objectid);
10179 btrfs_put_block_group(block_group);
10180 spin_lock(&trans->transaction->dirty_bgs_lock);
10181 }
10182
10183 if (!list_empty(&block_group->dirty_list)) {
10184 list_del_init(&block_group->dirty_list);
10185 btrfs_put_block_group(block_group);
10186 }
10187 spin_unlock(&trans->transaction->dirty_bgs_lock);
10188 mutex_unlock(&trans->transaction->cache_write_mutex);
10189
10190 if (!IS_ERR(inode)) {
10191 ret = btrfs_orphan_add(trans, inode);
10192 if (ret) {
10193 btrfs_add_delayed_iput(inode);
10194 goto out;
10195 }
10196 clear_nlink(inode);
10197 /* One for the block groups ref */
10198 spin_lock(&block_group->lock);
10199 if (block_group->iref) {
10200 block_group->iref = 0;
10201 block_group->inode = NULL;
10202 spin_unlock(&block_group->lock);
10203 iput(inode);
10204 } else {
10205 spin_unlock(&block_group->lock);
10206 }
10207 /* One for our lookup ref */
10208 btrfs_add_delayed_iput(inode);
10209 }
10210
10211 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10212 key.offset = block_group->key.objectid;
10213 key.type = 0;
10214
10215 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10216 if (ret < 0)
10217 goto out;
10218 if (ret > 0)
10219 btrfs_release_path(path);
10220 if (ret == 0) {
10221 ret = btrfs_del_item(trans, tree_root, path);
10222 if (ret)
10223 goto out;
10224 btrfs_release_path(path);
10225 }
10226
10227 spin_lock(&root->fs_info->block_group_cache_lock);
10228 rb_erase(&block_group->cache_node,
10229 &root->fs_info->block_group_cache_tree);
10230 RB_CLEAR_NODE(&block_group->cache_node);
10231
10232 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10233 root->fs_info->first_logical_byte = (u64)-1;
10234 spin_unlock(&root->fs_info->block_group_cache_lock);
10235
10236 down_write(&block_group->space_info->groups_sem);
10237 /*
10238 * we must use list_del_init so people can check to see if they
10239 * are still on the list after taking the semaphore
10240 */
10241 list_del_init(&block_group->list);
10242 if (list_empty(&block_group->space_info->block_groups[index])) {
10243 kobj = block_group->space_info->block_group_kobjs[index];
10244 block_group->space_info->block_group_kobjs[index] = NULL;
10245 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10246 }
10247 up_write(&block_group->space_info->groups_sem);
10248 if (kobj) {
10249 kobject_del(kobj);
10250 kobject_put(kobj);
10251 }
10252
10253 if (block_group->has_caching_ctl)
10254 caching_ctl = get_caching_control(block_group);
10255 if (block_group->cached == BTRFS_CACHE_STARTED)
10256 wait_block_group_cache_done(block_group);
10257 if (block_group->has_caching_ctl) {
10258 down_write(&root->fs_info->commit_root_sem);
10259 if (!caching_ctl) {
10260 struct btrfs_caching_control *ctl;
10261
10262 list_for_each_entry(ctl,
10263 &root->fs_info->caching_block_groups, list)
10264 if (ctl->block_group == block_group) {
10265 caching_ctl = ctl;
10266 atomic_inc(&caching_ctl->count);
10267 break;
10268 }
10269 }
10270 if (caching_ctl)
10271 list_del_init(&caching_ctl->list);
10272 up_write(&root->fs_info->commit_root_sem);
10273 if (caching_ctl) {
10274 /* Once for the caching bgs list and once for us. */
10275 put_caching_control(caching_ctl);
10276 put_caching_control(caching_ctl);
10277 }
10278 }
10279
10280 spin_lock(&trans->transaction->dirty_bgs_lock);
10281 if (!list_empty(&block_group->dirty_list)) {
10282 WARN_ON(1);
10283 }
10284 if (!list_empty(&block_group->io_list)) {
10285 WARN_ON(1);
10286 }
10287 spin_unlock(&trans->transaction->dirty_bgs_lock);
10288 btrfs_remove_free_space_cache(block_group);
10289
10290 spin_lock(&block_group->space_info->lock);
10291 list_del_init(&block_group->ro_list);
10292
10293 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10294 WARN_ON(block_group->space_info->total_bytes
10295 < block_group->key.offset);
10296 WARN_ON(block_group->space_info->bytes_readonly
10297 < block_group->key.offset);
10298 WARN_ON(block_group->space_info->disk_total
10299 < block_group->key.offset * factor);
10300 }
10301 block_group->space_info->total_bytes -= block_group->key.offset;
10302 block_group->space_info->bytes_readonly -= block_group->key.offset;
10303 block_group->space_info->disk_total -= block_group->key.offset * factor;
10304
10305 spin_unlock(&block_group->space_info->lock);
10306
10307 memcpy(&key, &block_group->key, sizeof(key));
10308
10309 lock_chunks(root);
10310 if (!list_empty(&em->list)) {
10311 /* We're in the transaction->pending_chunks list. */
10312 free_extent_map(em);
10313 }
10314 spin_lock(&block_group->lock);
10315 block_group->removed = 1;
10316 /*
10317 * At this point trimming can't start on this block group, because we
10318 * removed the block group from the tree fs_info->block_group_cache_tree
10319 * so no one can't find it anymore and even if someone already got this
10320 * block group before we removed it from the rbtree, they have already
10321 * incremented block_group->trimming - if they didn't, they won't find
10322 * any free space entries because we already removed them all when we
10323 * called btrfs_remove_free_space_cache().
10324 *
10325 * And we must not remove the extent map from the fs_info->mapping_tree
10326 * to prevent the same logical address range and physical device space
10327 * ranges from being reused for a new block group. This is because our
10328 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10329 * completely transactionless, so while it is trimming a range the
10330 * currently running transaction might finish and a new one start,
10331 * allowing for new block groups to be created that can reuse the same
10332 * physical device locations unless we take this special care.
10333 *
10334 * There may also be an implicit trim operation if the file system
10335 * is mounted with -odiscard. The same protections must remain
10336 * in place until the extents have been discarded completely when
10337 * the transaction commit has completed.
10338 */
10339 remove_em = (atomic_read(&block_group->trimming) == 0);
10340 /*
10341 * Make sure a trimmer task always sees the em in the pinned_chunks list
10342 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10343 * before checking block_group->removed).
10344 */
10345 if (!remove_em) {
10346 /*
10347 * Our em might be in trans->transaction->pending_chunks which
10348 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10349 * and so is the fs_info->pinned_chunks list.
10350 *
10351 * So at this point we must be holding the chunk_mutex to avoid
10352 * any races with chunk allocation (more specifically at
10353 * volumes.c:contains_pending_extent()), to ensure it always
10354 * sees the em, either in the pending_chunks list or in the
10355 * pinned_chunks list.
10356 */
10357 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10358 }
10359 spin_unlock(&block_group->lock);
10360
10361 if (remove_em) {
10362 struct extent_map_tree *em_tree;
10363
10364 em_tree = &root->fs_info->mapping_tree.map_tree;
10365 write_lock(&em_tree->lock);
10366 /*
10367 * The em might be in the pending_chunks list, so make sure the
10368 * chunk mutex is locked, since remove_extent_mapping() will
10369 * delete us from that list.
10370 */
10371 remove_extent_mapping(em_tree, em);
10372 write_unlock(&em_tree->lock);
10373 /* once for the tree */
10374 free_extent_map(em);
10375 }
10376
10377 unlock_chunks(root);
10378
10379 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10380 if (ret)
10381 goto out;
10382
10383 btrfs_put_block_group(block_group);
10384 btrfs_put_block_group(block_group);
10385
10386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10387 if (ret > 0)
10388 ret = -EIO;
10389 if (ret < 0)
10390 goto out;
10391
10392 ret = btrfs_del_item(trans, root, path);
10393 out:
10394 btrfs_free_path(path);
10395 return ret;
10396 }
10397
10398 struct btrfs_trans_handle *
10399 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10400 const u64 chunk_offset)
10401 {
10402 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10403 struct extent_map *em;
10404 struct map_lookup *map;
10405 unsigned int num_items;
10406
10407 read_lock(&em_tree->lock);
10408 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10409 read_unlock(&em_tree->lock);
10410 ASSERT(em && em->start == chunk_offset);
10411
10412 /*
10413 * We need to reserve 3 + N units from the metadata space info in order
10414 * to remove a block group (done at btrfs_remove_chunk() and at
10415 * btrfs_remove_block_group()), which are used for:
10416 *
10417 * 1 unit for adding the free space inode's orphan (located in the tree
10418 * of tree roots).
10419 * 1 unit for deleting the block group item (located in the extent
10420 * tree).
10421 * 1 unit for deleting the free space item (located in tree of tree
10422 * roots).
10423 * N units for deleting N device extent items corresponding to each
10424 * stripe (located in the device tree).
10425 *
10426 * In order to remove a block group we also need to reserve units in the
10427 * system space info in order to update the chunk tree (update one or
10428 * more device items and remove one chunk item), but this is done at
10429 * btrfs_remove_chunk() through a call to check_system_chunk().
10430 */
10431 map = em->map_lookup;
10432 num_items = 3 + map->num_stripes;
10433 free_extent_map(em);
10434
10435 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10436 num_items, 1);
10437 }
10438
10439 /*
10440 * Process the unused_bgs list and remove any that don't have any allocated
10441 * space inside of them.
10442 */
10443 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10444 {
10445 struct btrfs_block_group_cache *block_group;
10446 struct btrfs_space_info *space_info;
10447 struct btrfs_root *root = fs_info->extent_root;
10448 struct btrfs_trans_handle *trans;
10449 int ret = 0;
10450
10451 if (!fs_info->open)
10452 return;
10453
10454 spin_lock(&fs_info->unused_bgs_lock);
10455 while (!list_empty(&fs_info->unused_bgs)) {
10456 u64 start, end;
10457 int trimming;
10458
10459 block_group = list_first_entry(&fs_info->unused_bgs,
10460 struct btrfs_block_group_cache,
10461 bg_list);
10462 list_del_init(&block_group->bg_list);
10463
10464 space_info = block_group->space_info;
10465
10466 if (ret || btrfs_mixed_space_info(space_info)) {
10467 btrfs_put_block_group(block_group);
10468 continue;
10469 }
10470 spin_unlock(&fs_info->unused_bgs_lock);
10471
10472 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10473
10474 /* Don't want to race with allocators so take the groups_sem */
10475 down_write(&space_info->groups_sem);
10476 spin_lock(&block_group->lock);
10477 if (block_group->reserved ||
10478 btrfs_block_group_used(&block_group->item) ||
10479 block_group->ro ||
10480 list_is_singular(&block_group->list)) {
10481 /*
10482 * We want to bail if we made new allocations or have
10483 * outstanding allocations in this block group. We do
10484 * the ro check in case balance is currently acting on
10485 * this block group.
10486 */
10487 spin_unlock(&block_group->lock);
10488 up_write(&space_info->groups_sem);
10489 goto next;
10490 }
10491 spin_unlock(&block_group->lock);
10492
10493 /* We don't want to force the issue, only flip if it's ok. */
10494 ret = inc_block_group_ro(block_group, 0);
10495 up_write(&space_info->groups_sem);
10496 if (ret < 0) {
10497 ret = 0;
10498 goto next;
10499 }
10500
10501 /*
10502 * Want to do this before we do anything else so we can recover
10503 * properly if we fail to join the transaction.
10504 */
10505 trans = btrfs_start_trans_remove_block_group(fs_info,
10506 block_group->key.objectid);
10507 if (IS_ERR(trans)) {
10508 btrfs_dec_block_group_ro(root, block_group);
10509 ret = PTR_ERR(trans);
10510 goto next;
10511 }
10512
10513 /*
10514 * We could have pending pinned extents for this block group,
10515 * just delete them, we don't care about them anymore.
10516 */
10517 start = block_group->key.objectid;
10518 end = start + block_group->key.offset - 1;
10519 /*
10520 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10521 * btrfs_finish_extent_commit(). If we are at transaction N,
10522 * another task might be running finish_extent_commit() for the
10523 * previous transaction N - 1, and have seen a range belonging
10524 * to the block group in freed_extents[] before we were able to
10525 * clear the whole block group range from freed_extents[]. This
10526 * means that task can lookup for the block group after we
10527 * unpinned it from freed_extents[] and removed it, leading to
10528 * a BUG_ON() at btrfs_unpin_extent_range().
10529 */
10530 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10531 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10532 EXTENT_DIRTY, GFP_NOFS);
10533 if (ret) {
10534 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10535 btrfs_dec_block_group_ro(root, block_group);
10536 goto end_trans;
10537 }
10538 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10539 EXTENT_DIRTY, GFP_NOFS);
10540 if (ret) {
10541 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10542 btrfs_dec_block_group_ro(root, block_group);
10543 goto end_trans;
10544 }
10545 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10546
10547 /* Reset pinned so btrfs_put_block_group doesn't complain */
10548 spin_lock(&space_info->lock);
10549 spin_lock(&block_group->lock);
10550
10551 space_info->bytes_pinned -= block_group->pinned;
10552 space_info->bytes_readonly += block_group->pinned;
10553 percpu_counter_add(&space_info->total_bytes_pinned,
10554 -block_group->pinned);
10555 block_group->pinned = 0;
10556
10557 spin_unlock(&block_group->lock);
10558 spin_unlock(&space_info->lock);
10559
10560 /* DISCARD can flip during remount */
10561 trimming = btrfs_test_opt(root, DISCARD);
10562
10563 /* Implicit trim during transaction commit. */
10564 if (trimming)
10565 btrfs_get_block_group_trimming(block_group);
10566
10567 /*
10568 * Btrfs_remove_chunk will abort the transaction if things go
10569 * horribly wrong.
10570 */
10571 ret = btrfs_remove_chunk(trans, root,
10572 block_group->key.objectid);
10573
10574 if (ret) {
10575 if (trimming)
10576 btrfs_put_block_group_trimming(block_group);
10577 goto end_trans;
10578 }
10579
10580 /*
10581 * If we're not mounted with -odiscard, we can just forget
10582 * about this block group. Otherwise we'll need to wait
10583 * until transaction commit to do the actual discard.
10584 */
10585 if (trimming) {
10586 spin_lock(&fs_info->unused_bgs_lock);
10587 /*
10588 * A concurrent scrub might have added us to the list
10589 * fs_info->unused_bgs, so use a list_move operation
10590 * to add the block group to the deleted_bgs list.
10591 */
10592 list_move(&block_group->bg_list,
10593 &trans->transaction->deleted_bgs);
10594 spin_unlock(&fs_info->unused_bgs_lock);
10595 btrfs_get_block_group(block_group);
10596 }
10597 end_trans:
10598 btrfs_end_transaction(trans, root);
10599 next:
10600 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10601 btrfs_put_block_group(block_group);
10602 spin_lock(&fs_info->unused_bgs_lock);
10603 }
10604 spin_unlock(&fs_info->unused_bgs_lock);
10605 }
10606
10607 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10608 {
10609 struct btrfs_space_info *space_info;
10610 struct btrfs_super_block *disk_super;
10611 u64 features;
10612 u64 flags;
10613 int mixed = 0;
10614 int ret;
10615
10616 disk_super = fs_info->super_copy;
10617 if (!btrfs_super_root(disk_super))
10618 return -EINVAL;
10619
10620 features = btrfs_super_incompat_flags(disk_super);
10621 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10622 mixed = 1;
10623
10624 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10625 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10626 if (ret)
10627 goto out;
10628
10629 if (mixed) {
10630 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10631 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10632 } else {
10633 flags = BTRFS_BLOCK_GROUP_METADATA;
10634 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10635 if (ret)
10636 goto out;
10637
10638 flags = BTRFS_BLOCK_GROUP_DATA;
10639 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10640 }
10641 out:
10642 return ret;
10643 }
10644
10645 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10646 {
10647 return unpin_extent_range(root, start, end, false);
10648 }
10649
10650 /*
10651 * It used to be that old block groups would be left around forever.
10652 * Iterating over them would be enough to trim unused space. Since we
10653 * now automatically remove them, we also need to iterate over unallocated
10654 * space.
10655 *
10656 * We don't want a transaction for this since the discard may take a
10657 * substantial amount of time. We don't require that a transaction be
10658 * running, but we do need to take a running transaction into account
10659 * to ensure that we're not discarding chunks that were released in
10660 * the current transaction.
10661 *
10662 * Holding the chunks lock will prevent other threads from allocating
10663 * or releasing chunks, but it won't prevent a running transaction
10664 * from committing and releasing the memory that the pending chunks
10665 * list head uses. For that, we need to take a reference to the
10666 * transaction.
10667 */
10668 static int btrfs_trim_free_extents(struct btrfs_device *device,
10669 u64 minlen, u64 *trimmed)
10670 {
10671 u64 start = 0, len = 0;
10672 int ret;
10673
10674 *trimmed = 0;
10675
10676 /* Not writeable = nothing to do. */
10677 if (!device->writeable)
10678 return 0;
10679
10680 /* No free space = nothing to do. */
10681 if (device->total_bytes <= device->bytes_used)
10682 return 0;
10683
10684 ret = 0;
10685
10686 while (1) {
10687 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10688 struct btrfs_transaction *trans;
10689 u64 bytes;
10690
10691 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10692 if (ret)
10693 return ret;
10694
10695 down_read(&fs_info->commit_root_sem);
10696
10697 spin_lock(&fs_info->trans_lock);
10698 trans = fs_info->running_transaction;
10699 if (trans)
10700 atomic_inc(&trans->use_count);
10701 spin_unlock(&fs_info->trans_lock);
10702
10703 ret = find_free_dev_extent_start(trans, device, minlen, start,
10704 &start, &len);
10705 if (trans)
10706 btrfs_put_transaction(trans);
10707
10708 if (ret) {
10709 up_read(&fs_info->commit_root_sem);
10710 mutex_unlock(&fs_info->chunk_mutex);
10711 if (ret == -ENOSPC)
10712 ret = 0;
10713 break;
10714 }
10715
10716 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10717 up_read(&fs_info->commit_root_sem);
10718 mutex_unlock(&fs_info->chunk_mutex);
10719
10720 if (ret)
10721 break;
10722
10723 start += len;
10724 *trimmed += bytes;
10725
10726 if (fatal_signal_pending(current)) {
10727 ret = -ERESTARTSYS;
10728 break;
10729 }
10730
10731 cond_resched();
10732 }
10733
10734 return ret;
10735 }
10736
10737 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10738 {
10739 struct btrfs_fs_info *fs_info = root->fs_info;
10740 struct btrfs_block_group_cache *cache = NULL;
10741 struct btrfs_device *device;
10742 struct list_head *devices;
10743 u64 group_trimmed;
10744 u64 start;
10745 u64 end;
10746 u64 trimmed = 0;
10747 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10748 int ret = 0;
10749
10750 /*
10751 * try to trim all FS space, our block group may start from non-zero.
10752 */
10753 if (range->len == total_bytes)
10754 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10755 else
10756 cache = btrfs_lookup_block_group(fs_info, range->start);
10757
10758 while (cache) {
10759 if (cache->key.objectid >= (range->start + range->len)) {
10760 btrfs_put_block_group(cache);
10761 break;
10762 }
10763
10764 start = max(range->start, cache->key.objectid);
10765 end = min(range->start + range->len,
10766 cache->key.objectid + cache->key.offset);
10767
10768 if (end - start >= range->minlen) {
10769 if (!block_group_cache_done(cache)) {
10770 ret = cache_block_group(cache, 0);
10771 if (ret) {
10772 btrfs_put_block_group(cache);
10773 break;
10774 }
10775 ret = wait_block_group_cache_done(cache);
10776 if (ret) {
10777 btrfs_put_block_group(cache);
10778 break;
10779 }
10780 }
10781 ret = btrfs_trim_block_group(cache,
10782 &group_trimmed,
10783 start,
10784 end,
10785 range->minlen);
10786
10787 trimmed += group_trimmed;
10788 if (ret) {
10789 btrfs_put_block_group(cache);
10790 break;
10791 }
10792 }
10793
10794 cache = next_block_group(fs_info->tree_root, cache);
10795 }
10796
10797 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10798 devices = &root->fs_info->fs_devices->alloc_list;
10799 list_for_each_entry(device, devices, dev_alloc_list) {
10800 ret = btrfs_trim_free_extents(device, range->minlen,
10801 &group_trimmed);
10802 if (ret)
10803 break;
10804
10805 trimmed += group_trimmed;
10806 }
10807 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10808
10809 range->len = trimmed;
10810 return ret;
10811 }
10812
10813 /*
10814 * btrfs_{start,end}_write_no_snapshoting() are similar to
10815 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10816 * data into the page cache through nocow before the subvolume is snapshoted,
10817 * but flush the data into disk after the snapshot creation, or to prevent
10818 * operations while snapshoting is ongoing and that cause the snapshot to be
10819 * inconsistent (writes followed by expanding truncates for example).
10820 */
10821 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10822 {
10823 percpu_counter_dec(&root->subv_writers->counter);
10824 /*
10825 * Make sure counter is updated before we wake up waiters.
10826 */
10827 smp_mb();
10828 if (waitqueue_active(&root->subv_writers->wait))
10829 wake_up(&root->subv_writers->wait);
10830 }
10831
10832 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10833 {
10834 if (atomic_read(&root->will_be_snapshoted))
10835 return 0;
10836
10837 percpu_counter_inc(&root->subv_writers->counter);
10838 /*
10839 * Make sure counter is updated before we check for snapshot creation.
10840 */
10841 smp_mb();
10842 if (atomic_read(&root->will_be_snapshoted)) {
10843 btrfs_end_write_no_snapshoting(root);
10844 return 0;
10845 }
10846 return 1;
10847 }
10848
10849 static int wait_snapshoting_atomic_t(atomic_t *a)
10850 {
10851 schedule();
10852 return 0;
10853 }
10854
10855 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10856 {
10857 while (true) {
10858 int ret;
10859
10860 ret = btrfs_start_write_no_snapshoting(root);
10861 if (ret)
10862 break;
10863 wait_on_atomic_t(&root->will_be_snapshoted,
10864 wait_snapshoting_atomic_t,
10865 TASK_UNINTERRUPTIBLE);
10866 }
10867 }
This page took 0.407775 seconds and 5 git commands to generate.