btrfs: account for non-CoW'd blocks in btrfs_abort_transaction
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40
41 #undef SCRAMBLE_DELAYED_REFS
42
43 /*
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
56 */
57 enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
61 };
62
63 /*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72 enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76 };
77
78 static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
83 struct btrfs_delayed_ref_node *node, u64 parent,
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
86 struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333 }
334
335 #ifdef CONFIG_BTRFS_DEBUG
336 static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338 {
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353 }
354 #endif
355
356 /*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
363 {
364 u64 extent_start, extent_end, size, total_added = 0;
365 int ret;
366
367 while (start < end) {
368 ret = find_first_extent_bit(info->pinned_extents, start,
369 &extent_start, &extent_end,
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
372 if (ret)
373 break;
374
375 if (extent_start <= start) {
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
379 total_added += size;
380 ret = btrfs_add_free_space(block_group, start,
381 size);
382 BUG_ON(ret); /* -ENOMEM or logic error */
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
391 total_added += size;
392 ret = btrfs_add_free_space(block_group, start, size);
393 BUG_ON(ret); /* -ENOMEM or logic error */
394 }
395
396 return total_added;
397 }
398
399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
400 {
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
403 struct btrfs_root *extent_root;
404 struct btrfs_path *path;
405 struct extent_buffer *leaf;
406 struct btrfs_key key;
407 u64 total_found = 0;
408 u64 last = 0;
409 u32 nritems;
410 int ret;
411 bool wakeup = true;
412
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
416
417 path = btrfs_alloc_path();
418 if (!path)
419 return -ENOMEM;
420
421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
422
423 #ifdef CONFIG_BTRFS_DEBUG
424 /*
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
427 * the free space.
428 */
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
430 wakeup = false;
431 #endif
432 /*
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
437 */
438 path->skip_locking = 1;
439 path->search_commit_root = 1;
440 path->reada = READA_FORWARD;
441
442 key.objectid = last;
443 key.offset = 0;
444 key.type = BTRFS_EXTENT_ITEM_KEY;
445
446 next:
447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
448 if (ret < 0)
449 goto out;
450
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
453
454 while (1) {
455 if (btrfs_fs_closing(fs_info) > 1) {
456 last = (u64)-1;
457 break;
458 }
459
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 } else {
463 ret = find_next_key(path, 0, &key);
464 if (ret)
465 break;
466
467 if (need_resched() ||
468 rwsem_is_contended(&fs_info->commit_root_sem)) {
469 if (wakeup)
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 up_read(&fs_info->commit_root_sem);
473 mutex_unlock(&caching_ctl->mutex);
474 cond_resched();
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
477 goto next;
478 }
479
480 ret = btrfs_next_leaf(extent_root, path);
481 if (ret < 0)
482 goto out;
483 if (ret)
484 break;
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
487 continue;
488 }
489
490 if (key.objectid < last) {
491 key.objectid = last;
492 key.offset = 0;
493 key.type = BTRFS_EXTENT_ITEM_KEY;
494
495 if (wakeup)
496 caching_ctl->progress = last;
497 btrfs_release_path(path);
498 goto next;
499 }
500
501 if (key.objectid < block_group->key.objectid) {
502 path->slots[0]++;
503 continue;
504 }
505
506 if (key.objectid >= block_group->key.objectid +
507 block_group->key.offset)
508 break;
509
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
512 total_found += add_new_free_space(block_group,
513 fs_info, last,
514 key.objectid);
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
517 fs_info->tree_root->nodesize;
518 else
519 last = key.objectid + key.offset;
520
521 if (total_found > CACHING_CTL_WAKE_UP) {
522 total_found = 0;
523 if (wakeup)
524 wake_up(&caching_ctl->wait);
525 }
526 }
527 path->slots[0]++;
528 }
529 ret = 0;
530
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
534 caching_ctl->progress = (u64)-1;
535
536 out:
537 btrfs_free_path(path);
538 return ret;
539 }
540
541 static noinline void caching_thread(struct btrfs_work *work)
542 {
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
546 struct btrfs_root *extent_root;
547 int ret;
548
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
552 extent_root = fs_info->extent_root;
553
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
556
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
559 else
560 ret = load_extent_tree_free(caching_ctl);
561
562 spin_lock(&block_group->lock);
563 block_group->caching_ctl = NULL;
564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
565 spin_unlock(&block_group->lock);
566
567 #ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 u64 bytes_used;
570
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
579 }
580 #endif
581
582 caching_ctl->progress = (u64)-1;
583
584 up_read(&fs_info->commit_root_sem);
585 free_excluded_extents(fs_info->extent_root, block_group);
586 mutex_unlock(&caching_ctl->mutex);
587
588 wake_up(&caching_ctl->wait);
589
590 put_caching_control(caching_ctl);
591 btrfs_put_block_group(block_group);
592 }
593
594 static int cache_block_group(struct btrfs_block_group_cache *cache,
595 int load_cache_only)
596 {
597 DEFINE_WAIT(wait);
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
600 int ret = 0;
601
602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
603 if (!caching_ctl)
604 return -ENOMEM;
605
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
614
615 spin_lock(&cache->lock);
616 /*
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
626 * another.
627 */
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
630
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
635
636 schedule();
637
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
641 }
642
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
645 kfree(caching_ctl);
646 return 0;
647 }
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
652
653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
654 mutex_lock(&caching_ctl->mutex);
655 ret = load_free_space_cache(fs_info, cache);
656
657 spin_lock(&cache->lock);
658 if (ret == 1) {
659 cache->caching_ctl = NULL;
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
662 caching_ctl->progress = (u64)-1;
663 } else {
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
667 } else {
668 cache->cached = BTRFS_CACHE_STARTED;
669 cache->has_caching_ctl = 1;
670 }
671 }
672 spin_unlock(&cache->lock);
673 #ifdef CONFIG_BTRFS_DEBUG
674 if (ret == 1 &&
675 btrfs_should_fragment_free_space(fs_info->extent_root,
676 cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
687 }
688 #endif
689 mutex_unlock(&caching_ctl->mutex);
690
691 wake_up(&caching_ctl->wait);
692 if (ret == 1) {
693 put_caching_control(caching_ctl);
694 free_excluded_extents(fs_info->extent_root, cache);
695 return 0;
696 }
697 } else {
698 /*
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
708 cache->has_caching_ctl = 1;
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
712 }
713
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
716 return 0;
717 }
718
719 down_write(&fs_info->commit_root_sem);
720 atomic_inc(&caching_ctl->count);
721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 up_write(&fs_info->commit_root_sem);
723
724 btrfs_get_block_group(cache);
725
726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727
728 return ret;
729 }
730
731 /*
732 * return the block group that starts at or after bytenr
733 */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737 struct btrfs_block_group_cache *cache;
738
739 cache = block_group_cache_tree_search(info, bytenr, 0);
740
741 return cache;
742 }
743
744 /*
745 * return the block group that contains the given bytenr
746 */
747 struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
749 u64 bytenr)
750 {
751 struct btrfs_block_group_cache *cache;
752
753 cache = block_group_cache_tree_search(info, bytenr, 1);
754
755 return cache;
756 }
757
758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 u64 flags)
760 {
761 struct list_head *head = &info->space_info;
762 struct btrfs_space_info *found;
763
764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
765
766 rcu_read_lock();
767 list_for_each_entry_rcu(found, head, list) {
768 if (found->flags & flags) {
769 rcu_read_unlock();
770 return found;
771 }
772 }
773 rcu_read_unlock();
774 return NULL;
775 }
776
777 /*
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
780 */
781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782 {
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
785
786 rcu_read_lock();
787 list_for_each_entry_rcu(found, head, list)
788 found->full = 0;
789 rcu_read_unlock();
790 }
791
792 /* simple helper to search for an existing data extent at a given offset */
793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
794 {
795 int ret;
796 struct btrfs_key key;
797 struct btrfs_path *path;
798
799 path = btrfs_alloc_path();
800 if (!path)
801 return -ENOMEM;
802
803 key.objectid = start;
804 key.offset = len;
805 key.type = BTRFS_EXTENT_ITEM_KEY;
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 0, 0);
808 btrfs_free_path(path);
809 return ret;
810 }
811
812 /*
813 * helper function to lookup reference count and flags of a tree block.
814 *
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
820 */
821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
823 u64 offset, int metadata, u64 *refs, u64 *flags)
824 {
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
831 u32 item_size;
832 u64 num_refs;
833 u64 extent_flags;
834 int ret;
835
836 /*
837 * If we don't have skinny metadata, don't bother doing anything
838 * different
839 */
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
841 offset = root->nodesize;
842 metadata = 0;
843 }
844
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
849 if (!trans) {
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
852 }
853
854 search_again:
855 key.objectid = bytenr;
856 key.offset = offset;
857 if (metadata)
858 key.type = BTRFS_METADATA_ITEM_KEY;
859 else
860 key.type = BTRFS_EXTENT_ITEM_KEY;
861
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 &key, path, 0, 0);
864 if (ret < 0)
865 goto out_free;
866
867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
868 if (path->slots[0]) {
869 path->slots[0]--;
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
871 path->slots[0]);
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
874 key.offset == root->nodesize)
875 ret = 0;
876 }
877 }
878
879 if (ret == 0) {
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
887 } else {
888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896 #else
897 BUG();
898 #endif
899 }
900 BUG_ON(num_refs == 0);
901 } else {
902 num_refs = 0;
903 extent_flags = 0;
904 ret = 0;
905 }
906
907 if (!trans)
908 goto out;
909
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
913 if (head) {
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
917
918 btrfs_release_path(path);
919
920 /*
921 * Mutex was contended, block until it's released and try
922 * again
923 */
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
927 goto search_again;
928 }
929 spin_lock(&head->lock);
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
932 else
933 BUG_ON(num_refs == 0);
934
935 num_refs += head->node.ref_mod;
936 spin_unlock(&head->lock);
937 mutex_unlock(&head->mutex);
938 }
939 spin_unlock(&delayed_refs->lock);
940 out:
941 WARN_ON(num_refs == 0);
942 if (refs)
943 *refs = num_refs;
944 if (flags)
945 *flags = extent_flags;
946 out_free:
947 btrfs_free_path(path);
948 return ret;
949 }
950
951 /*
952 * Back reference rules. Back refs have three main goals:
953 *
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
957 *
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
960 *
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
964 *
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
975 *
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
982 *
983 * When a tree block is COWed through a tree, there are four cases:
984 *
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
987 *
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
992 *
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
998 *
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
1013 * - different files inside a single subvolume
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
1016 * The extent ref structure for the implicit back refs has fields for:
1017 *
1018 * - Objectid of the subvolume root
1019 * - objectid of the file holding the reference
1020 * - original offset in the file
1021 * - how many bookend extents
1022 *
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
1025 *
1026 * The extent ref structure for the full back refs has field for:
1027 *
1028 * - number of pointers in the tree leaf
1029 *
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
1032 *
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
1035 *
1036 * (root_key.objectid, inode objectid, offset in file, 1)
1037 *
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
1040 *
1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1042 *
1043 * Btree extents can be referenced by:
1044 *
1045 * - Different subvolumes
1046 *
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
1051 *
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
1055 */
1056
1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
1062 {
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
1068 struct btrfs_key key;
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1071 u64 refs;
1072 int ret;
1073
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082 if (owner == (u64)-1) {
1083 while (1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1086 if (ret < 0)
1087 return ret;
1088 BUG_ON(ret > 0); /* Corruption */
1089 leaf = path->nodes[0];
1090 }
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0]);
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 path->slots[0]++;
1096 continue;
1097 }
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 break;
1102 }
1103 }
1104 btrfs_release_path(path);
1105
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1108
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1112 if (ret < 0)
1113 return ret;
1114 BUG_ON(ret); /* Corruption */
1115
1116 btrfs_extend_item(root, path, new_size);
1117
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 } else {
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 }
1134 btrfs_mark_buffer_dirty(leaf);
1135 return 0;
1136 }
1137 #endif
1138
1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140 {
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1143 __le64 lenum;
1144
1145 lenum = cpu_to_le64(root_objectid);
1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147 lenum = cpu_to_le64(owner);
1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149 lenum = cpu_to_le64(offset);
1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1151
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1153 }
1154
1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1157 {
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1161 }
1162
1163 static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1166 {
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 return 0;
1171 return 1;
1172 }
1173
1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1178 u64 root_objectid,
1179 u64 owner, u64 offset)
1180 {
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
1183 struct extent_buffer *leaf;
1184 u32 nritems;
1185 int ret;
1186 int recow;
1187 int err = -ENOENT;
1188
1189 key.objectid = bytenr;
1190 if (parent) {
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1193 } else {
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1196 owner, offset);
1197 }
1198 again:
1199 recow = 0;
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
1205
1206 if (parent) {
1207 if (!ret)
1208 return 0;
1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
1211 btrfs_release_path(path);
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 if (ret < 0) {
1214 err = ret;
1215 goto fail;
1216 }
1217 if (!ret)
1218 return 0;
1219 #endif
1220 goto fail;
1221 }
1222
1223 leaf = path->nodes[0];
1224 nritems = btrfs_header_nritems(leaf);
1225 while (1) {
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1228 if (ret < 0)
1229 err = ret;
1230 if (ret)
1231 goto fail;
1232
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1235 recow = 1;
1236 }
1237
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 goto fail;
1242
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1245
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1247 owner, offset)) {
1248 if (recow) {
1249 btrfs_release_path(path);
1250 goto again;
1251 }
1252 err = 0;
1253 break;
1254 }
1255 path->slots[0]++;
1256 }
1257 fail:
1258 return err;
1259 }
1260
1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
1267 {
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
1270 u32 size;
1271 u32 num_refs;
1272 int ret;
1273
1274 key.objectid = bytenr;
1275 if (parent) {
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1279 } else {
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1282 owner, offset);
1283 size = sizeof(struct btrfs_extent_data_ref);
1284 }
1285
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1288 goto fail;
1289
1290 leaf = path->nodes[0];
1291 if (parent) {
1292 struct btrfs_shared_data_ref *ref;
1293 ref = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_shared_data_ref);
1295 if (ret == 0) {
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 } else {
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1301 }
1302 } else {
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset))
1309 break;
1310 btrfs_release_path(path);
1311 key.offset++;
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 size);
1314 if (ret && ret != -EEXIST)
1315 goto fail;
1316
1317 leaf = path->nodes[0];
1318 }
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (ret == 0) {
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1323 root_objectid);
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 } else {
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1331 }
1332 }
1333 btrfs_mark_buffer_dirty(leaf);
1334 ret = 0;
1335 fail:
1336 btrfs_release_path(path);
1337 return ret;
1338 }
1339
1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
1343 int refs_to_drop, int *last_ref)
1344 {
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
1348 struct extent_buffer *leaf;
1349 u32 num_refs = 0;
1350 int ret = 0;
1351
1352 leaf = path->nodes[0];
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1369 #endif
1370 } else {
1371 BUG();
1372 }
1373
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
1376
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
1379 *last_ref = 1;
1380 } else {
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 else {
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 }
1392 #endif
1393 btrfs_mark_buffer_dirty(leaf);
1394 }
1395 return ret;
1396 }
1397
1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399 struct btrfs_extent_inline_ref *iref)
1400 {
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1405 u32 num_refs = 0;
1406
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 if (iref) {
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 } else {
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 }
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
1432 #endif
1433 } else {
1434 WARN_ON(1);
1435 }
1436 return num_refs;
1437 }
1438
1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1443 u64 root_objectid)
1444 {
1445 struct btrfs_key key;
1446 int ret;
1447
1448 key.objectid = bytenr;
1449 if (parent) {
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1452 } else {
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1455 }
1456
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 if (ret > 0)
1459 ret = -ENOENT;
1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
1462 btrfs_release_path(path);
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret > 0)
1466 ret = -ENOENT;
1467 }
1468 #endif
1469 return ret;
1470 }
1471
1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1476 u64 root_objectid)
1477 {
1478 struct btrfs_key key;
1479 int ret;
1480
1481 key.objectid = bytenr;
1482 if (parent) {
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1485 } else {
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1488 }
1489
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491 btrfs_release_path(path);
1492 return ret;
1493 }
1494
1495 static inline int extent_ref_type(u64 parent, u64 owner)
1496 {
1497 int type;
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 else
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1503 } else {
1504 if (parent > 0)
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1506 else
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1508 }
1509 return type;
1510 }
1511
1512 static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
1514
1515 {
1516 for (; level < BTRFS_MAX_LEVEL; level++) {
1517 if (!path->nodes[level])
1518 break;
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1521 continue;
1522 if (level == 0)
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1525 else
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1528 return 0;
1529 }
1530 return 1;
1531 }
1532
1533 /*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1545 */
1546 static noinline_for_stack
1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1554 {
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1559 u64 flags;
1560 u64 item_size;
1561 unsigned long ptr;
1562 unsigned long end;
1563 int extra_size;
1564 int type;
1565 int want;
1566 int ret;
1567 int err = 0;
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 SKINNY_METADATA);
1570
1571 key.objectid = bytenr;
1572 key.type = BTRFS_EXTENT_ITEM_KEY;
1573 key.offset = num_bytes;
1574
1575 want = extent_ref_type(parent, owner);
1576 if (insert) {
1577 extra_size = btrfs_extent_inline_ref_size(want);
1578 path->keep_locks = 1;
1579 } else
1580 extra_size = -1;
1581
1582 /*
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1585 */
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1588 key.offset = owner;
1589 }
1590
1591 again:
1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1593 if (ret < 0) {
1594 err = ret;
1595 goto out;
1596 }
1597
1598 /*
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1601 */
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1605 path->slots[0]--;
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 path->slots[0]);
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1611 ret = 0;
1612 }
1613 if (ret) {
1614 key.objectid = bytenr;
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1618 goto again;
1619 }
1620 }
1621
1622 if (ret && !insert) {
1623 err = -ENOENT;
1624 goto out;
1625 } else if (WARN_ON(ret)) {
1626 err = -EIO;
1627 goto out;
1628 }
1629
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1634 if (!insert) {
1635 err = -ENOENT;
1636 goto out;
1637 }
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1639 extra_size);
1640 if (ret < 0) {
1641 err = ret;
1642 goto out;
1643 }
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 }
1647 #endif
1648 BUG_ON(item_size < sizeof(*ei));
1649
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1652
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1655
1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657 ptr += sizeof(struct btrfs_tree_block_info);
1658 BUG_ON(ptr > end);
1659 }
1660
1661 err = -ENOENT;
1662 while (1) {
1663 if (ptr >= end) {
1664 WARN_ON(ptr > end);
1665 break;
1666 }
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1669 if (want < type)
1670 break;
1671 if (want > type) {
1672 ptr += btrfs_extent_inline_ref_size(type);
1673 continue;
1674 }
1675
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1680 owner, offset)) {
1681 err = 0;
1682 break;
1683 }
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1686 break;
1687 } else {
1688 u64 ref_offset;
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 if (parent > 0) {
1691 if (parent == ref_offset) {
1692 err = 0;
1693 break;
1694 }
1695 if (ref_offset < parent)
1696 break;
1697 } else {
1698 if (root_objectid == ref_offset) {
1699 err = 0;
1700 break;
1701 }
1702 if (ref_offset < root_objectid)
1703 break;
1704 }
1705 }
1706 ptr += btrfs_extent_inline_ref_size(type);
1707 }
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 /*
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1719 */
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1723 err = -EAGAIN;
1724 goto out;
1725 }
1726 }
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728 out:
1729 if (insert) {
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1732 }
1733 return err;
1734 }
1735
1736 /*
1737 * helper to add new inline back ref
1738 */
1739 static noinline_for_stack
1740 void setup_inline_extent_backref(struct btrfs_root *root,
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
1746 {
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1749 unsigned long ptr;
1750 unsigned long end;
1751 unsigned long item_offset;
1752 u64 refs;
1753 int size;
1754 int type;
1755
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1762
1763 btrfs_extend_item(root, path, size);
1764
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1769 if (extent_op)
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1776 end - size - ptr);
1777
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 } else {
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 }
1797 btrfs_mark_buffer_dirty(leaf);
1798 }
1799
1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1806 {
1807 int ret;
1808
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1812 if (ret != -ENOENT)
1813 return ret;
1814
1815 btrfs_release_path(path);
1816 *ref_ret = NULL;
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 root_objectid);
1821 } else {
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
1824 }
1825 return ret;
1826 }
1827
1828 /*
1829 * helper to update/remove inline back ref
1830 */
1831 static noinline_for_stack
1832 void update_inline_extent_backref(struct btrfs_root *root,
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1835 int refs_to_mod,
1836 struct btrfs_delayed_extent_op *extent_op,
1837 int *last_ref)
1838 {
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1843 unsigned long ptr;
1844 unsigned long end;
1845 u32 item_size;
1846 int size;
1847 int type;
1848 u64 refs;
1849
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1856 if (extent_op)
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1867 } else {
1868 refs = 1;
1869 BUG_ON(refs_to_mod != -1);
1870 }
1871
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1874
1875 if (refs > 0) {
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 else
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 } else {
1881 *last_ref = 1;
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1888 end - ptr - size);
1889 item_size -= size;
1890 btrfs_truncate_item(root, path, item_size, 1);
1891 }
1892 btrfs_mark_buffer_dirty(leaf);
1893 }
1894
1895 static noinline_for_stack
1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903 {
1904 struct btrfs_extent_inline_ref *iref;
1905 int ret;
1906
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1910 if (ret == 0) {
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912 update_inline_extent_backref(root, path, iref,
1913 refs_to_add, extent_op, NULL);
1914 } else if (ret == -ENOENT) {
1915 setup_inline_extent_backref(root, path, iref, parent,
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 ret = 0;
1919 }
1920 return ret;
1921 }
1922
1923 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1928 {
1929 int ret;
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1934 } else {
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1938 }
1939 return ret;
1940 }
1941
1942 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
1946 int refs_to_drop, int is_data, int *last_ref)
1947 {
1948 int ret = 0;
1949
1950 BUG_ON(!is_data && refs_to_drop != 1);
1951 if (iref) {
1952 update_inline_extent_backref(root, path, iref,
1953 -refs_to_drop, NULL, last_ref);
1954 } else if (is_data) {
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 last_ref);
1957 } else {
1958 *last_ref = 1;
1959 ret = btrfs_del_item(trans, root, path);
1960 }
1961 return ret;
1962 }
1963
1964 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
1967 {
1968 int j, ret = 0;
1969 u64 bytes_left, end;
1970 u64 aligned_start = ALIGN(start, 1 << 9);
1971
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1976 }
1977
1978 *discarded_bytes = 0;
1979
1980 if (!len)
1981 return 0;
1982
1983 end = start + len;
1984 bytes_left = len;
1985
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1991
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 continue;
1996
1997 /*
1998 * Superblock spans beginning of range. Adjust start and
1999 * try again.
2000 */
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2003 if (start > end) {
2004 bytes_left = 0;
2005 break;
2006 }
2007 bytes_left = end - start;
2008 continue;
2009 }
2010
2011 if (size) {
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 GFP_NOFS, 0);
2014 if (!ret)
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2017 return ret;
2018 }
2019
2020 start = sb_end;
2021 if (start > end) {
2022 bytes_left = 0;
2023 break;
2024 }
2025 bytes_left = end - start;
2026 }
2027
2028 if (bytes_left) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2030 GFP_NOFS, 0);
2031 if (!ret)
2032 *discarded_bytes += bytes_left;
2033 }
2034 return ret;
2035 }
2036
2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
2039 {
2040 int ret;
2041 u64 discarded_bytes = 0;
2042 struct btrfs_bio *bbio = NULL;
2043
2044
2045 /*
2046 * Avoid races with device replace and make sure our bbio has devices
2047 * associated to its stripes that don't go away while we are discarding.
2048 */
2049 btrfs_bio_counter_inc_blocked(root->fs_info);
2050 /* Tell the block device(s) that the sectors can be discarded */
2051 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2052 bytenr, &num_bytes, &bbio, 0);
2053 /* Error condition is -ENOMEM */
2054 if (!ret) {
2055 struct btrfs_bio_stripe *stripe = bbio->stripes;
2056 int i;
2057
2058
2059 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2060 u64 bytes;
2061 if (!stripe->dev->can_discard)
2062 continue;
2063
2064 ret = btrfs_issue_discard(stripe->dev->bdev,
2065 stripe->physical,
2066 stripe->length,
2067 &bytes);
2068 if (!ret)
2069 discarded_bytes += bytes;
2070 else if (ret != -EOPNOTSUPP)
2071 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2072
2073 /*
2074 * Just in case we get back EOPNOTSUPP for some reason,
2075 * just ignore the return value so we don't screw up
2076 * people calling discard_extent.
2077 */
2078 ret = 0;
2079 }
2080 btrfs_put_bbio(bbio);
2081 }
2082 btrfs_bio_counter_dec(root->fs_info);
2083
2084 if (actual_bytes)
2085 *actual_bytes = discarded_bytes;
2086
2087
2088 if (ret == -EOPNOTSUPP)
2089 ret = 0;
2090 return ret;
2091 }
2092
2093 /* Can return -ENOMEM */
2094 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *root,
2096 u64 bytenr, u64 num_bytes, u64 parent,
2097 u64 root_objectid, u64 owner, u64 offset)
2098 {
2099 int ret;
2100 struct btrfs_fs_info *fs_info = root->fs_info;
2101
2102 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2103 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2104
2105 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2106 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2107 num_bytes,
2108 parent, root_objectid, (int)owner,
2109 BTRFS_ADD_DELAYED_REF, NULL);
2110 } else {
2111 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2112 num_bytes, parent, root_objectid,
2113 owner, offset, 0,
2114 BTRFS_ADD_DELAYED_REF, NULL);
2115 }
2116 return ret;
2117 }
2118
2119 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *root,
2121 struct btrfs_delayed_ref_node *node,
2122 u64 parent, u64 root_objectid,
2123 u64 owner, u64 offset, int refs_to_add,
2124 struct btrfs_delayed_extent_op *extent_op)
2125 {
2126 struct btrfs_fs_info *fs_info = root->fs_info;
2127 struct btrfs_path *path;
2128 struct extent_buffer *leaf;
2129 struct btrfs_extent_item *item;
2130 struct btrfs_key key;
2131 u64 bytenr = node->bytenr;
2132 u64 num_bytes = node->num_bytes;
2133 u64 refs;
2134 int ret;
2135
2136 path = btrfs_alloc_path();
2137 if (!path)
2138 return -ENOMEM;
2139
2140 path->reada = READA_FORWARD;
2141 path->leave_spinning = 1;
2142 /* this will setup the path even if it fails to insert the back ref */
2143 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2144 bytenr, num_bytes, parent,
2145 root_objectid, owner, offset,
2146 refs_to_add, extent_op);
2147 if ((ret < 0 && ret != -EAGAIN) || !ret)
2148 goto out;
2149
2150 /*
2151 * Ok we had -EAGAIN which means we didn't have space to insert and
2152 * inline extent ref, so just update the reference count and add a
2153 * normal backref.
2154 */
2155 leaf = path->nodes[0];
2156 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2157 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2158 refs = btrfs_extent_refs(leaf, item);
2159 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2160 if (extent_op)
2161 __run_delayed_extent_op(extent_op, leaf, item);
2162
2163 btrfs_mark_buffer_dirty(leaf);
2164 btrfs_release_path(path);
2165
2166 path->reada = READA_FORWARD;
2167 path->leave_spinning = 1;
2168 /* now insert the actual backref */
2169 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2170 path, bytenr, parent, root_objectid,
2171 owner, offset, refs_to_add);
2172 if (ret)
2173 btrfs_abort_transaction(trans, root, ret);
2174 out:
2175 btrfs_free_path(path);
2176 return ret;
2177 }
2178
2179 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2180 struct btrfs_root *root,
2181 struct btrfs_delayed_ref_node *node,
2182 struct btrfs_delayed_extent_op *extent_op,
2183 int insert_reserved)
2184 {
2185 int ret = 0;
2186 struct btrfs_delayed_data_ref *ref;
2187 struct btrfs_key ins;
2188 u64 parent = 0;
2189 u64 ref_root = 0;
2190 u64 flags = 0;
2191
2192 ins.objectid = node->bytenr;
2193 ins.offset = node->num_bytes;
2194 ins.type = BTRFS_EXTENT_ITEM_KEY;
2195
2196 ref = btrfs_delayed_node_to_data_ref(node);
2197 trace_run_delayed_data_ref(node, ref, node->action);
2198
2199 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2200 parent = ref->parent;
2201 ref_root = ref->root;
2202
2203 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2204 if (extent_op)
2205 flags |= extent_op->flags_to_set;
2206 ret = alloc_reserved_file_extent(trans, root,
2207 parent, ref_root, flags,
2208 ref->objectid, ref->offset,
2209 &ins, node->ref_mod);
2210 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2211 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2212 ref_root, ref->objectid,
2213 ref->offset, node->ref_mod,
2214 extent_op);
2215 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2216 ret = __btrfs_free_extent(trans, root, node, parent,
2217 ref_root, ref->objectid,
2218 ref->offset, node->ref_mod,
2219 extent_op);
2220 } else {
2221 BUG();
2222 }
2223 return ret;
2224 }
2225
2226 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2227 struct extent_buffer *leaf,
2228 struct btrfs_extent_item *ei)
2229 {
2230 u64 flags = btrfs_extent_flags(leaf, ei);
2231 if (extent_op->update_flags) {
2232 flags |= extent_op->flags_to_set;
2233 btrfs_set_extent_flags(leaf, ei, flags);
2234 }
2235
2236 if (extent_op->update_key) {
2237 struct btrfs_tree_block_info *bi;
2238 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2239 bi = (struct btrfs_tree_block_info *)(ei + 1);
2240 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2241 }
2242 }
2243
2244 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root,
2246 struct btrfs_delayed_ref_node *node,
2247 struct btrfs_delayed_extent_op *extent_op)
2248 {
2249 struct btrfs_key key;
2250 struct btrfs_path *path;
2251 struct btrfs_extent_item *ei;
2252 struct extent_buffer *leaf;
2253 u32 item_size;
2254 int ret;
2255 int err = 0;
2256 int metadata = !extent_op->is_data;
2257
2258 if (trans->aborted)
2259 return 0;
2260
2261 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2262 metadata = 0;
2263
2264 path = btrfs_alloc_path();
2265 if (!path)
2266 return -ENOMEM;
2267
2268 key.objectid = node->bytenr;
2269
2270 if (metadata) {
2271 key.type = BTRFS_METADATA_ITEM_KEY;
2272 key.offset = extent_op->level;
2273 } else {
2274 key.type = BTRFS_EXTENT_ITEM_KEY;
2275 key.offset = node->num_bytes;
2276 }
2277
2278 again:
2279 path->reada = READA_FORWARD;
2280 path->leave_spinning = 1;
2281 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2282 path, 0, 1);
2283 if (ret < 0) {
2284 err = ret;
2285 goto out;
2286 }
2287 if (ret > 0) {
2288 if (metadata) {
2289 if (path->slots[0] > 0) {
2290 path->slots[0]--;
2291 btrfs_item_key_to_cpu(path->nodes[0], &key,
2292 path->slots[0]);
2293 if (key.objectid == node->bytenr &&
2294 key.type == BTRFS_EXTENT_ITEM_KEY &&
2295 key.offset == node->num_bytes)
2296 ret = 0;
2297 }
2298 if (ret > 0) {
2299 btrfs_release_path(path);
2300 metadata = 0;
2301
2302 key.objectid = node->bytenr;
2303 key.offset = node->num_bytes;
2304 key.type = BTRFS_EXTENT_ITEM_KEY;
2305 goto again;
2306 }
2307 } else {
2308 err = -EIO;
2309 goto out;
2310 }
2311 }
2312
2313 leaf = path->nodes[0];
2314 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2316 if (item_size < sizeof(*ei)) {
2317 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2318 path, (u64)-1, 0);
2319 if (ret < 0) {
2320 err = ret;
2321 goto out;
2322 }
2323 leaf = path->nodes[0];
2324 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325 }
2326 #endif
2327 BUG_ON(item_size < sizeof(*ei));
2328 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329 __run_delayed_extent_op(extent_op, leaf, ei);
2330
2331 btrfs_mark_buffer_dirty(leaf);
2332 out:
2333 btrfs_free_path(path);
2334 return err;
2335 }
2336
2337 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2338 struct btrfs_root *root,
2339 struct btrfs_delayed_ref_node *node,
2340 struct btrfs_delayed_extent_op *extent_op,
2341 int insert_reserved)
2342 {
2343 int ret = 0;
2344 struct btrfs_delayed_tree_ref *ref;
2345 struct btrfs_key ins;
2346 u64 parent = 0;
2347 u64 ref_root = 0;
2348 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2349 SKINNY_METADATA);
2350
2351 ref = btrfs_delayed_node_to_tree_ref(node);
2352 trace_run_delayed_tree_ref(node, ref, node->action);
2353
2354 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2355 parent = ref->parent;
2356 ref_root = ref->root;
2357
2358 ins.objectid = node->bytenr;
2359 if (skinny_metadata) {
2360 ins.offset = ref->level;
2361 ins.type = BTRFS_METADATA_ITEM_KEY;
2362 } else {
2363 ins.offset = node->num_bytes;
2364 ins.type = BTRFS_EXTENT_ITEM_KEY;
2365 }
2366
2367 BUG_ON(node->ref_mod != 1);
2368 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2369 BUG_ON(!extent_op || !extent_op->update_flags);
2370 ret = alloc_reserved_tree_block(trans, root,
2371 parent, ref_root,
2372 extent_op->flags_to_set,
2373 &extent_op->key,
2374 ref->level, &ins);
2375 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2376 ret = __btrfs_inc_extent_ref(trans, root, node,
2377 parent, ref_root,
2378 ref->level, 0, 1,
2379 extent_op);
2380 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2381 ret = __btrfs_free_extent(trans, root, node,
2382 parent, ref_root,
2383 ref->level, 0, 1, extent_op);
2384 } else {
2385 BUG();
2386 }
2387 return ret;
2388 }
2389
2390 /* helper function to actually process a single delayed ref entry */
2391 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 struct btrfs_delayed_ref_node *node,
2394 struct btrfs_delayed_extent_op *extent_op,
2395 int insert_reserved)
2396 {
2397 int ret = 0;
2398
2399 if (trans->aborted) {
2400 if (insert_reserved)
2401 btrfs_pin_extent(root, node->bytenr,
2402 node->num_bytes, 1);
2403 return 0;
2404 }
2405
2406 if (btrfs_delayed_ref_is_head(node)) {
2407 struct btrfs_delayed_ref_head *head;
2408 /*
2409 * we've hit the end of the chain and we were supposed
2410 * to insert this extent into the tree. But, it got
2411 * deleted before we ever needed to insert it, so all
2412 * we have to do is clean up the accounting
2413 */
2414 BUG_ON(extent_op);
2415 head = btrfs_delayed_node_to_head(node);
2416 trace_run_delayed_ref_head(node, head, node->action);
2417
2418 if (insert_reserved) {
2419 btrfs_pin_extent(root, node->bytenr,
2420 node->num_bytes, 1);
2421 if (head->is_data) {
2422 ret = btrfs_del_csums(trans, root,
2423 node->bytenr,
2424 node->num_bytes);
2425 }
2426 }
2427
2428 /* Also free its reserved qgroup space */
2429 btrfs_qgroup_free_delayed_ref(root->fs_info,
2430 head->qgroup_ref_root,
2431 head->qgroup_reserved);
2432 return ret;
2433 }
2434
2435 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2436 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2437 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2438 insert_reserved);
2439 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2440 node->type == BTRFS_SHARED_DATA_REF_KEY)
2441 ret = run_delayed_data_ref(trans, root, node, extent_op,
2442 insert_reserved);
2443 else
2444 BUG();
2445 return ret;
2446 }
2447
2448 static inline struct btrfs_delayed_ref_node *
2449 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2450 {
2451 struct btrfs_delayed_ref_node *ref;
2452
2453 if (list_empty(&head->ref_list))
2454 return NULL;
2455
2456 /*
2457 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2458 * This is to prevent a ref count from going down to zero, which deletes
2459 * the extent item from the extent tree, when there still are references
2460 * to add, which would fail because they would not find the extent item.
2461 */
2462 list_for_each_entry(ref, &head->ref_list, list) {
2463 if (ref->action == BTRFS_ADD_DELAYED_REF)
2464 return ref;
2465 }
2466
2467 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2468 list);
2469 }
2470
2471 /*
2472 * Returns 0 on success or if called with an already aborted transaction.
2473 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2474 */
2475 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2476 struct btrfs_root *root,
2477 unsigned long nr)
2478 {
2479 struct btrfs_delayed_ref_root *delayed_refs;
2480 struct btrfs_delayed_ref_node *ref;
2481 struct btrfs_delayed_ref_head *locked_ref = NULL;
2482 struct btrfs_delayed_extent_op *extent_op;
2483 struct btrfs_fs_info *fs_info = root->fs_info;
2484 ktime_t start = ktime_get();
2485 int ret;
2486 unsigned long count = 0;
2487 unsigned long actual_count = 0;
2488 int must_insert_reserved = 0;
2489
2490 delayed_refs = &trans->transaction->delayed_refs;
2491 while (1) {
2492 if (!locked_ref) {
2493 if (count >= nr)
2494 break;
2495
2496 spin_lock(&delayed_refs->lock);
2497 locked_ref = btrfs_select_ref_head(trans);
2498 if (!locked_ref) {
2499 spin_unlock(&delayed_refs->lock);
2500 break;
2501 }
2502
2503 /* grab the lock that says we are going to process
2504 * all the refs for this head */
2505 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2506 spin_unlock(&delayed_refs->lock);
2507 /*
2508 * we may have dropped the spin lock to get the head
2509 * mutex lock, and that might have given someone else
2510 * time to free the head. If that's true, it has been
2511 * removed from our list and we can move on.
2512 */
2513 if (ret == -EAGAIN) {
2514 locked_ref = NULL;
2515 count++;
2516 continue;
2517 }
2518 }
2519
2520 /*
2521 * We need to try and merge add/drops of the same ref since we
2522 * can run into issues with relocate dropping the implicit ref
2523 * and then it being added back again before the drop can
2524 * finish. If we merged anything we need to re-loop so we can
2525 * get a good ref.
2526 * Or we can get node references of the same type that weren't
2527 * merged when created due to bumps in the tree mod seq, and
2528 * we need to merge them to prevent adding an inline extent
2529 * backref before dropping it (triggering a BUG_ON at
2530 * insert_inline_extent_backref()).
2531 */
2532 spin_lock(&locked_ref->lock);
2533 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2534 locked_ref);
2535
2536 /*
2537 * locked_ref is the head node, so we have to go one
2538 * node back for any delayed ref updates
2539 */
2540 ref = select_delayed_ref(locked_ref);
2541
2542 if (ref && ref->seq &&
2543 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2544 spin_unlock(&locked_ref->lock);
2545 btrfs_delayed_ref_unlock(locked_ref);
2546 spin_lock(&delayed_refs->lock);
2547 locked_ref->processing = 0;
2548 delayed_refs->num_heads_ready++;
2549 spin_unlock(&delayed_refs->lock);
2550 locked_ref = NULL;
2551 cond_resched();
2552 count++;
2553 continue;
2554 }
2555
2556 /*
2557 * record the must insert reserved flag before we
2558 * drop the spin lock.
2559 */
2560 must_insert_reserved = locked_ref->must_insert_reserved;
2561 locked_ref->must_insert_reserved = 0;
2562
2563 extent_op = locked_ref->extent_op;
2564 locked_ref->extent_op = NULL;
2565
2566 if (!ref) {
2567
2568
2569 /* All delayed refs have been processed, Go ahead
2570 * and send the head node to run_one_delayed_ref,
2571 * so that any accounting fixes can happen
2572 */
2573 ref = &locked_ref->node;
2574
2575 if (extent_op && must_insert_reserved) {
2576 btrfs_free_delayed_extent_op(extent_op);
2577 extent_op = NULL;
2578 }
2579
2580 if (extent_op) {
2581 spin_unlock(&locked_ref->lock);
2582 ret = run_delayed_extent_op(trans, root,
2583 ref, extent_op);
2584 btrfs_free_delayed_extent_op(extent_op);
2585
2586 if (ret) {
2587 /*
2588 * Need to reset must_insert_reserved if
2589 * there was an error so the abort stuff
2590 * can cleanup the reserved space
2591 * properly.
2592 */
2593 if (must_insert_reserved)
2594 locked_ref->must_insert_reserved = 1;
2595 locked_ref->processing = 0;
2596 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2597 btrfs_delayed_ref_unlock(locked_ref);
2598 return ret;
2599 }
2600 continue;
2601 }
2602
2603 /*
2604 * Need to drop our head ref lock and re-acquire the
2605 * delayed ref lock and then re-check to make sure
2606 * nobody got added.
2607 */
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
2611 if (!list_empty(&locked_ref->ref_list) ||
2612 locked_ref->extent_op) {
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2615 continue;
2616 }
2617 ref->in_tree = 0;
2618 delayed_refs->num_heads--;
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
2621 spin_unlock(&delayed_refs->lock);
2622 } else {
2623 actual_count++;
2624 ref->in_tree = 0;
2625 list_del(&ref->list);
2626 }
2627 atomic_dec(&delayed_refs->num_entries);
2628
2629 if (!btrfs_delayed_ref_is_head(ref)) {
2630 /*
2631 * when we play the delayed ref, also correct the
2632 * ref_mod on head
2633 */
2634 switch (ref->action) {
2635 case BTRFS_ADD_DELAYED_REF:
2636 case BTRFS_ADD_DELAYED_EXTENT:
2637 locked_ref->node.ref_mod -= ref->ref_mod;
2638 break;
2639 case BTRFS_DROP_DELAYED_REF:
2640 locked_ref->node.ref_mod += ref->ref_mod;
2641 break;
2642 default:
2643 WARN_ON(1);
2644 }
2645 }
2646 spin_unlock(&locked_ref->lock);
2647
2648 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2649 must_insert_reserved);
2650
2651 btrfs_free_delayed_extent_op(extent_op);
2652 if (ret) {
2653 locked_ref->processing = 0;
2654 btrfs_delayed_ref_unlock(locked_ref);
2655 btrfs_put_delayed_ref(ref);
2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2657 return ret;
2658 }
2659
2660 /*
2661 * If this node is a head, that means all the refs in this head
2662 * have been dealt with, and we will pick the next head to deal
2663 * with, so we must unlock the head and drop it from the cluster
2664 * list before we release it.
2665 */
2666 if (btrfs_delayed_ref_is_head(ref)) {
2667 if (locked_ref->is_data &&
2668 locked_ref->total_ref_mod < 0) {
2669 spin_lock(&delayed_refs->lock);
2670 delayed_refs->pending_csums -= ref->num_bytes;
2671 spin_unlock(&delayed_refs->lock);
2672 }
2673 btrfs_delayed_ref_unlock(locked_ref);
2674 locked_ref = NULL;
2675 }
2676 btrfs_put_delayed_ref(ref);
2677 count++;
2678 cond_resched();
2679 }
2680
2681 /*
2682 * We don't want to include ref heads since we can have empty ref heads
2683 * and those will drastically skew our runtime down since we just do
2684 * accounting, no actual extent tree updates.
2685 */
2686 if (actual_count > 0) {
2687 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688 u64 avg;
2689
2690 /*
2691 * We weigh the current average higher than our current runtime
2692 * to avoid large swings in the average.
2693 */
2694 spin_lock(&delayed_refs->lock);
2695 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2696 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2697 spin_unlock(&delayed_refs->lock);
2698 }
2699 return 0;
2700 }
2701
2702 #ifdef SCRAMBLE_DELAYED_REFS
2703 /*
2704 * Normally delayed refs get processed in ascending bytenr order. This
2705 * correlates in most cases to the order added. To expose dependencies on this
2706 * order, we start to process the tree in the middle instead of the beginning
2707 */
2708 static u64 find_middle(struct rb_root *root)
2709 {
2710 struct rb_node *n = root->rb_node;
2711 struct btrfs_delayed_ref_node *entry;
2712 int alt = 1;
2713 u64 middle;
2714 u64 first = 0, last = 0;
2715
2716 n = rb_first(root);
2717 if (n) {
2718 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 first = entry->bytenr;
2720 }
2721 n = rb_last(root);
2722 if (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 last = entry->bytenr;
2725 }
2726 n = root->rb_node;
2727
2728 while (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 WARN_ON(!entry->in_tree);
2731
2732 middle = entry->bytenr;
2733
2734 if (alt)
2735 n = n->rb_left;
2736 else
2737 n = n->rb_right;
2738
2739 alt = 1 - alt;
2740 }
2741 return middle;
2742 }
2743 #endif
2744
2745 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746 {
2747 u64 num_bytes;
2748
2749 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750 sizeof(struct btrfs_extent_inline_ref));
2751 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753
2754 /*
2755 * We don't ever fill up leaves all the way so multiply by 2 just to be
2756 * closer to what we're really going to want to use.
2757 */
2758 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2759 }
2760
2761 /*
2762 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763 * would require to store the csums for that many bytes.
2764 */
2765 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2766 {
2767 u64 csum_size;
2768 u64 num_csums_per_leaf;
2769 u64 num_csums;
2770
2771 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2772 num_csums_per_leaf = div64_u64(csum_size,
2773 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774 num_csums = div64_u64(csum_bytes, root->sectorsize);
2775 num_csums += num_csums_per_leaf - 1;
2776 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777 return num_csums;
2778 }
2779
2780 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2781 struct btrfs_root *root)
2782 {
2783 struct btrfs_block_rsv *global_rsv;
2784 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2785 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2786 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787 u64 num_bytes, num_dirty_bgs_bytes;
2788 int ret = 0;
2789
2790 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791 num_heads = heads_to_leaves(root, num_heads);
2792 if (num_heads > 1)
2793 num_bytes += (num_heads - 1) * root->nodesize;
2794 num_bytes <<= 1;
2795 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2796 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797 num_dirty_bgs);
2798 global_rsv = &root->fs_info->global_block_rsv;
2799
2800 /*
2801 * If we can't allocate any more chunks lets make sure we have _lots_ of
2802 * wiggle room since running delayed refs can create more delayed refs.
2803 */
2804 if (global_rsv->space_info->full) {
2805 num_dirty_bgs_bytes <<= 1;
2806 num_bytes <<= 1;
2807 }
2808
2809 spin_lock(&global_rsv->lock);
2810 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2811 ret = 1;
2812 spin_unlock(&global_rsv->lock);
2813 return ret;
2814 }
2815
2816 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817 struct btrfs_root *root)
2818 {
2819 struct btrfs_fs_info *fs_info = root->fs_info;
2820 u64 num_entries =
2821 atomic_read(&trans->transaction->delayed_refs.num_entries);
2822 u64 avg_runtime;
2823 u64 val;
2824
2825 smp_mb();
2826 avg_runtime = fs_info->avg_delayed_ref_runtime;
2827 val = num_entries * avg_runtime;
2828 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829 return 1;
2830 if (val >= NSEC_PER_SEC / 2)
2831 return 2;
2832
2833 return btrfs_check_space_for_delayed_refs(trans, root);
2834 }
2835
2836 struct async_delayed_refs {
2837 struct btrfs_root *root;
2838 int count;
2839 int error;
2840 int sync;
2841 struct completion wait;
2842 struct btrfs_work work;
2843 };
2844
2845 static void delayed_ref_async_start(struct btrfs_work *work)
2846 {
2847 struct async_delayed_refs *async;
2848 struct btrfs_trans_handle *trans;
2849 int ret;
2850
2851 async = container_of(work, struct async_delayed_refs, work);
2852
2853 trans = btrfs_join_transaction(async->root);
2854 if (IS_ERR(trans)) {
2855 async->error = PTR_ERR(trans);
2856 goto done;
2857 }
2858
2859 /*
2860 * trans->sync means that when we call end_transaction, we won't
2861 * wait on delayed refs
2862 */
2863 trans->sync = true;
2864 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2865 if (ret)
2866 async->error = ret;
2867
2868 ret = btrfs_end_transaction(trans, async->root);
2869 if (ret && !async->error)
2870 async->error = ret;
2871 done:
2872 if (async->sync)
2873 complete(&async->wait);
2874 else
2875 kfree(async);
2876 }
2877
2878 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2879 unsigned long count, int wait)
2880 {
2881 struct async_delayed_refs *async;
2882 int ret;
2883
2884 async = kmalloc(sizeof(*async), GFP_NOFS);
2885 if (!async)
2886 return -ENOMEM;
2887
2888 async->root = root->fs_info->tree_root;
2889 async->count = count;
2890 async->error = 0;
2891 if (wait)
2892 async->sync = 1;
2893 else
2894 async->sync = 0;
2895 init_completion(&async->wait);
2896
2897 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2898 delayed_ref_async_start, NULL, NULL);
2899
2900 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2901
2902 if (wait) {
2903 wait_for_completion(&async->wait);
2904 ret = async->error;
2905 kfree(async);
2906 return ret;
2907 }
2908 return 0;
2909 }
2910
2911 /*
2912 * this starts processing the delayed reference count updates and
2913 * extent insertions we have queued up so far. count can be
2914 * 0, which means to process everything in the tree at the start
2915 * of the run (but not newly added entries), or it can be some target
2916 * number you'd like to process.
2917 *
2918 * Returns 0 on success or if called with an aborted transaction
2919 * Returns <0 on error and aborts the transaction
2920 */
2921 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2922 struct btrfs_root *root, unsigned long count)
2923 {
2924 struct rb_node *node;
2925 struct btrfs_delayed_ref_root *delayed_refs;
2926 struct btrfs_delayed_ref_head *head;
2927 int ret;
2928 int run_all = count == (unsigned long)-1;
2929 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2930
2931 /* We'll clean this up in btrfs_cleanup_transaction */
2932 if (trans->aborted)
2933 return 0;
2934
2935 if (root->fs_info->creating_free_space_tree)
2936 return 0;
2937
2938 if (root == root->fs_info->extent_root)
2939 root = root->fs_info->tree_root;
2940
2941 delayed_refs = &trans->transaction->delayed_refs;
2942 if (count == 0)
2943 count = atomic_read(&delayed_refs->num_entries) * 2;
2944
2945 again:
2946 #ifdef SCRAMBLE_DELAYED_REFS
2947 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2948 #endif
2949 trans->can_flush_pending_bgs = false;
2950 ret = __btrfs_run_delayed_refs(trans, root, count);
2951 if (ret < 0) {
2952 btrfs_abort_transaction(trans, root, ret);
2953 return ret;
2954 }
2955
2956 if (run_all) {
2957 if (!list_empty(&trans->new_bgs))
2958 btrfs_create_pending_block_groups(trans, root);
2959
2960 spin_lock(&delayed_refs->lock);
2961 node = rb_first(&delayed_refs->href_root);
2962 if (!node) {
2963 spin_unlock(&delayed_refs->lock);
2964 goto out;
2965 }
2966 count = (unsigned long)-1;
2967
2968 while (node) {
2969 head = rb_entry(node, struct btrfs_delayed_ref_head,
2970 href_node);
2971 if (btrfs_delayed_ref_is_head(&head->node)) {
2972 struct btrfs_delayed_ref_node *ref;
2973
2974 ref = &head->node;
2975 atomic_inc(&ref->refs);
2976
2977 spin_unlock(&delayed_refs->lock);
2978 /*
2979 * Mutex was contended, block until it's
2980 * released and try again
2981 */
2982 mutex_lock(&head->mutex);
2983 mutex_unlock(&head->mutex);
2984
2985 btrfs_put_delayed_ref(ref);
2986 cond_resched();
2987 goto again;
2988 } else {
2989 WARN_ON(1);
2990 }
2991 node = rb_next(node);
2992 }
2993 spin_unlock(&delayed_refs->lock);
2994 cond_resched();
2995 goto again;
2996 }
2997 out:
2998 assert_qgroups_uptodate(trans);
2999 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3000 return 0;
3001 }
3002
3003 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *root,
3005 u64 bytenr, u64 num_bytes, u64 flags,
3006 int level, int is_data)
3007 {
3008 struct btrfs_delayed_extent_op *extent_op;
3009 int ret;
3010
3011 extent_op = btrfs_alloc_delayed_extent_op();
3012 if (!extent_op)
3013 return -ENOMEM;
3014
3015 extent_op->flags_to_set = flags;
3016 extent_op->update_flags = true;
3017 extent_op->update_key = false;
3018 extent_op->is_data = is_data ? true : false;
3019 extent_op->level = level;
3020
3021 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3022 num_bytes, extent_op);
3023 if (ret)
3024 btrfs_free_delayed_extent_op(extent_op);
3025 return ret;
3026 }
3027
3028 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3029 struct btrfs_root *root,
3030 struct btrfs_path *path,
3031 u64 objectid, u64 offset, u64 bytenr)
3032 {
3033 struct btrfs_delayed_ref_head *head;
3034 struct btrfs_delayed_ref_node *ref;
3035 struct btrfs_delayed_data_ref *data_ref;
3036 struct btrfs_delayed_ref_root *delayed_refs;
3037 int ret = 0;
3038
3039 delayed_refs = &trans->transaction->delayed_refs;
3040 spin_lock(&delayed_refs->lock);
3041 head = btrfs_find_delayed_ref_head(trans, bytenr);
3042 if (!head) {
3043 spin_unlock(&delayed_refs->lock);
3044 return 0;
3045 }
3046
3047 if (!mutex_trylock(&head->mutex)) {
3048 atomic_inc(&head->node.refs);
3049 spin_unlock(&delayed_refs->lock);
3050
3051 btrfs_release_path(path);
3052
3053 /*
3054 * Mutex was contended, block until it's released and let
3055 * caller try again
3056 */
3057 mutex_lock(&head->mutex);
3058 mutex_unlock(&head->mutex);
3059 btrfs_put_delayed_ref(&head->node);
3060 return -EAGAIN;
3061 }
3062 spin_unlock(&delayed_refs->lock);
3063
3064 spin_lock(&head->lock);
3065 list_for_each_entry(ref, &head->ref_list, list) {
3066 /* If it's a shared ref we know a cross reference exists */
3067 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3068 ret = 1;
3069 break;
3070 }
3071
3072 data_ref = btrfs_delayed_node_to_data_ref(ref);
3073
3074 /*
3075 * If our ref doesn't match the one we're currently looking at
3076 * then we have a cross reference.
3077 */
3078 if (data_ref->root != root->root_key.objectid ||
3079 data_ref->objectid != objectid ||
3080 data_ref->offset != offset) {
3081 ret = 1;
3082 break;
3083 }
3084 }
3085 spin_unlock(&head->lock);
3086 mutex_unlock(&head->mutex);
3087 return ret;
3088 }
3089
3090 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3091 struct btrfs_root *root,
3092 struct btrfs_path *path,
3093 u64 objectid, u64 offset, u64 bytenr)
3094 {
3095 struct btrfs_root *extent_root = root->fs_info->extent_root;
3096 struct extent_buffer *leaf;
3097 struct btrfs_extent_data_ref *ref;
3098 struct btrfs_extent_inline_ref *iref;
3099 struct btrfs_extent_item *ei;
3100 struct btrfs_key key;
3101 u32 item_size;
3102 int ret;
3103
3104 key.objectid = bytenr;
3105 key.offset = (u64)-1;
3106 key.type = BTRFS_EXTENT_ITEM_KEY;
3107
3108 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3109 if (ret < 0)
3110 goto out;
3111 BUG_ON(ret == 0); /* Corruption */
3112
3113 ret = -ENOENT;
3114 if (path->slots[0] == 0)
3115 goto out;
3116
3117 path->slots[0]--;
3118 leaf = path->nodes[0];
3119 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3120
3121 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3122 goto out;
3123
3124 ret = 1;
3125 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3126 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3127 if (item_size < sizeof(*ei)) {
3128 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3129 goto out;
3130 }
3131 #endif
3132 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3133
3134 if (item_size != sizeof(*ei) +
3135 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3136 goto out;
3137
3138 if (btrfs_extent_generation(leaf, ei) <=
3139 btrfs_root_last_snapshot(&root->root_item))
3140 goto out;
3141
3142 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3143 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3144 BTRFS_EXTENT_DATA_REF_KEY)
3145 goto out;
3146
3147 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3148 if (btrfs_extent_refs(leaf, ei) !=
3149 btrfs_extent_data_ref_count(leaf, ref) ||
3150 btrfs_extent_data_ref_root(leaf, ref) !=
3151 root->root_key.objectid ||
3152 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3153 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3154 goto out;
3155
3156 ret = 0;
3157 out:
3158 return ret;
3159 }
3160
3161 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3162 struct btrfs_root *root,
3163 u64 objectid, u64 offset, u64 bytenr)
3164 {
3165 struct btrfs_path *path;
3166 int ret;
3167 int ret2;
3168
3169 path = btrfs_alloc_path();
3170 if (!path)
3171 return -ENOENT;
3172
3173 do {
3174 ret = check_committed_ref(trans, root, path, objectid,
3175 offset, bytenr);
3176 if (ret && ret != -ENOENT)
3177 goto out;
3178
3179 ret2 = check_delayed_ref(trans, root, path, objectid,
3180 offset, bytenr);
3181 } while (ret2 == -EAGAIN);
3182
3183 if (ret2 && ret2 != -ENOENT) {
3184 ret = ret2;
3185 goto out;
3186 }
3187
3188 if (ret != -ENOENT || ret2 != -ENOENT)
3189 ret = 0;
3190 out:
3191 btrfs_free_path(path);
3192 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3193 WARN_ON(ret > 0);
3194 return ret;
3195 }
3196
3197 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3198 struct btrfs_root *root,
3199 struct extent_buffer *buf,
3200 int full_backref, int inc)
3201 {
3202 u64 bytenr;
3203 u64 num_bytes;
3204 u64 parent;
3205 u64 ref_root;
3206 u32 nritems;
3207 struct btrfs_key key;
3208 struct btrfs_file_extent_item *fi;
3209 int i;
3210 int level;
3211 int ret = 0;
3212 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3213 u64, u64, u64, u64, u64, u64);
3214
3215
3216 if (btrfs_test_is_dummy_root(root))
3217 return 0;
3218
3219 ref_root = btrfs_header_owner(buf);
3220 nritems = btrfs_header_nritems(buf);
3221 level = btrfs_header_level(buf);
3222
3223 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3224 return 0;
3225
3226 if (inc)
3227 process_func = btrfs_inc_extent_ref;
3228 else
3229 process_func = btrfs_free_extent;
3230
3231 if (full_backref)
3232 parent = buf->start;
3233 else
3234 parent = 0;
3235
3236 for (i = 0; i < nritems; i++) {
3237 if (level == 0) {
3238 btrfs_item_key_to_cpu(buf, &key, i);
3239 if (key.type != BTRFS_EXTENT_DATA_KEY)
3240 continue;
3241 fi = btrfs_item_ptr(buf, i,
3242 struct btrfs_file_extent_item);
3243 if (btrfs_file_extent_type(buf, fi) ==
3244 BTRFS_FILE_EXTENT_INLINE)
3245 continue;
3246 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3247 if (bytenr == 0)
3248 continue;
3249
3250 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3251 key.offset -= btrfs_file_extent_offset(buf, fi);
3252 ret = process_func(trans, root, bytenr, num_bytes,
3253 parent, ref_root, key.objectid,
3254 key.offset);
3255 if (ret)
3256 goto fail;
3257 } else {
3258 bytenr = btrfs_node_blockptr(buf, i);
3259 num_bytes = root->nodesize;
3260 ret = process_func(trans, root, bytenr, num_bytes,
3261 parent, ref_root, level - 1, 0);
3262 if (ret)
3263 goto fail;
3264 }
3265 }
3266 return 0;
3267 fail:
3268 return ret;
3269 }
3270
3271 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3272 struct extent_buffer *buf, int full_backref)
3273 {
3274 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3275 }
3276
3277 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3278 struct extent_buffer *buf, int full_backref)
3279 {
3280 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3281 }
3282
3283 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3284 struct btrfs_root *root,
3285 struct btrfs_path *path,
3286 struct btrfs_block_group_cache *cache)
3287 {
3288 int ret;
3289 struct btrfs_root *extent_root = root->fs_info->extent_root;
3290 unsigned long bi;
3291 struct extent_buffer *leaf;
3292
3293 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3294 if (ret) {
3295 if (ret > 0)
3296 ret = -ENOENT;
3297 goto fail;
3298 }
3299
3300 leaf = path->nodes[0];
3301 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3302 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3303 btrfs_mark_buffer_dirty(leaf);
3304 fail:
3305 btrfs_release_path(path);
3306 return ret;
3307
3308 }
3309
3310 static struct btrfs_block_group_cache *
3311 next_block_group(struct btrfs_root *root,
3312 struct btrfs_block_group_cache *cache)
3313 {
3314 struct rb_node *node;
3315
3316 spin_lock(&root->fs_info->block_group_cache_lock);
3317
3318 /* If our block group was removed, we need a full search. */
3319 if (RB_EMPTY_NODE(&cache->cache_node)) {
3320 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3321
3322 spin_unlock(&root->fs_info->block_group_cache_lock);
3323 btrfs_put_block_group(cache);
3324 cache = btrfs_lookup_first_block_group(root->fs_info,
3325 next_bytenr);
3326 return cache;
3327 }
3328 node = rb_next(&cache->cache_node);
3329 btrfs_put_block_group(cache);
3330 if (node) {
3331 cache = rb_entry(node, struct btrfs_block_group_cache,
3332 cache_node);
3333 btrfs_get_block_group(cache);
3334 } else
3335 cache = NULL;
3336 spin_unlock(&root->fs_info->block_group_cache_lock);
3337 return cache;
3338 }
3339
3340 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3341 struct btrfs_trans_handle *trans,
3342 struct btrfs_path *path)
3343 {
3344 struct btrfs_root *root = block_group->fs_info->tree_root;
3345 struct inode *inode = NULL;
3346 u64 alloc_hint = 0;
3347 int dcs = BTRFS_DC_ERROR;
3348 u64 num_pages = 0;
3349 int retries = 0;
3350 int ret = 0;
3351
3352 /*
3353 * If this block group is smaller than 100 megs don't bother caching the
3354 * block group.
3355 */
3356 if (block_group->key.offset < (100 * SZ_1M)) {
3357 spin_lock(&block_group->lock);
3358 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3359 spin_unlock(&block_group->lock);
3360 return 0;
3361 }
3362
3363 if (trans->aborted)
3364 return 0;
3365 again:
3366 inode = lookup_free_space_inode(root, block_group, path);
3367 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3368 ret = PTR_ERR(inode);
3369 btrfs_release_path(path);
3370 goto out;
3371 }
3372
3373 if (IS_ERR(inode)) {
3374 BUG_ON(retries);
3375 retries++;
3376
3377 if (block_group->ro)
3378 goto out_free;
3379
3380 ret = create_free_space_inode(root, trans, block_group, path);
3381 if (ret)
3382 goto out_free;
3383 goto again;
3384 }
3385
3386 /* We've already setup this transaction, go ahead and exit */
3387 if (block_group->cache_generation == trans->transid &&
3388 i_size_read(inode)) {
3389 dcs = BTRFS_DC_SETUP;
3390 goto out_put;
3391 }
3392
3393 /*
3394 * We want to set the generation to 0, that way if anything goes wrong
3395 * from here on out we know not to trust this cache when we load up next
3396 * time.
3397 */
3398 BTRFS_I(inode)->generation = 0;
3399 ret = btrfs_update_inode(trans, root, inode);
3400 if (ret) {
3401 /*
3402 * So theoretically we could recover from this, simply set the
3403 * super cache generation to 0 so we know to invalidate the
3404 * cache, but then we'd have to keep track of the block groups
3405 * that fail this way so we know we _have_ to reset this cache
3406 * before the next commit or risk reading stale cache. So to
3407 * limit our exposure to horrible edge cases lets just abort the
3408 * transaction, this only happens in really bad situations
3409 * anyway.
3410 */
3411 btrfs_abort_transaction(trans, root, ret);
3412 goto out_put;
3413 }
3414 WARN_ON(ret);
3415
3416 if (i_size_read(inode) > 0) {
3417 ret = btrfs_check_trunc_cache_free_space(root,
3418 &root->fs_info->global_block_rsv);
3419 if (ret)
3420 goto out_put;
3421
3422 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3423 if (ret)
3424 goto out_put;
3425 }
3426
3427 spin_lock(&block_group->lock);
3428 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3429 !btrfs_test_opt(root, SPACE_CACHE)) {
3430 /*
3431 * don't bother trying to write stuff out _if_
3432 * a) we're not cached,
3433 * b) we're with nospace_cache mount option.
3434 */
3435 dcs = BTRFS_DC_WRITTEN;
3436 spin_unlock(&block_group->lock);
3437 goto out_put;
3438 }
3439 spin_unlock(&block_group->lock);
3440
3441 /*
3442 * We hit an ENOSPC when setting up the cache in this transaction, just
3443 * skip doing the setup, we've already cleared the cache so we're safe.
3444 */
3445 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3446 ret = -ENOSPC;
3447 goto out_put;
3448 }
3449
3450 /*
3451 * Try to preallocate enough space based on how big the block group is.
3452 * Keep in mind this has to include any pinned space which could end up
3453 * taking up quite a bit since it's not folded into the other space
3454 * cache.
3455 */
3456 num_pages = div_u64(block_group->key.offset, SZ_256M);
3457 if (!num_pages)
3458 num_pages = 1;
3459
3460 num_pages *= 16;
3461 num_pages *= PAGE_SIZE;
3462
3463 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3464 if (ret)
3465 goto out_put;
3466
3467 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3468 num_pages, num_pages,
3469 &alloc_hint);
3470 /*
3471 * Our cache requires contiguous chunks so that we don't modify a bunch
3472 * of metadata or split extents when writing the cache out, which means
3473 * we can enospc if we are heavily fragmented in addition to just normal
3474 * out of space conditions. So if we hit this just skip setting up any
3475 * other block groups for this transaction, maybe we'll unpin enough
3476 * space the next time around.
3477 */
3478 if (!ret)
3479 dcs = BTRFS_DC_SETUP;
3480 else if (ret == -ENOSPC)
3481 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3482 btrfs_free_reserved_data_space(inode, 0, num_pages);
3483
3484 out_put:
3485 iput(inode);
3486 out_free:
3487 btrfs_release_path(path);
3488 out:
3489 spin_lock(&block_group->lock);
3490 if (!ret && dcs == BTRFS_DC_SETUP)
3491 block_group->cache_generation = trans->transid;
3492 block_group->disk_cache_state = dcs;
3493 spin_unlock(&block_group->lock);
3494
3495 return ret;
3496 }
3497
3498 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3499 struct btrfs_root *root)
3500 {
3501 struct btrfs_block_group_cache *cache, *tmp;
3502 struct btrfs_transaction *cur_trans = trans->transaction;
3503 struct btrfs_path *path;
3504
3505 if (list_empty(&cur_trans->dirty_bgs) ||
3506 !btrfs_test_opt(root, SPACE_CACHE))
3507 return 0;
3508
3509 path = btrfs_alloc_path();
3510 if (!path)
3511 return -ENOMEM;
3512
3513 /* Could add new block groups, use _safe just in case */
3514 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3515 dirty_list) {
3516 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3517 cache_save_setup(cache, trans, path);
3518 }
3519
3520 btrfs_free_path(path);
3521 return 0;
3522 }
3523
3524 /*
3525 * transaction commit does final block group cache writeback during a
3526 * critical section where nothing is allowed to change the FS. This is
3527 * required in order for the cache to actually match the block group,
3528 * but can introduce a lot of latency into the commit.
3529 *
3530 * So, btrfs_start_dirty_block_groups is here to kick off block group
3531 * cache IO. There's a chance we'll have to redo some of it if the
3532 * block group changes again during the commit, but it greatly reduces
3533 * the commit latency by getting rid of the easy block groups while
3534 * we're still allowing others to join the commit.
3535 */
3536 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3537 struct btrfs_root *root)
3538 {
3539 struct btrfs_block_group_cache *cache;
3540 struct btrfs_transaction *cur_trans = trans->transaction;
3541 int ret = 0;
3542 int should_put;
3543 struct btrfs_path *path = NULL;
3544 LIST_HEAD(dirty);
3545 struct list_head *io = &cur_trans->io_bgs;
3546 int num_started = 0;
3547 int loops = 0;
3548
3549 spin_lock(&cur_trans->dirty_bgs_lock);
3550 if (list_empty(&cur_trans->dirty_bgs)) {
3551 spin_unlock(&cur_trans->dirty_bgs_lock);
3552 return 0;
3553 }
3554 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3555 spin_unlock(&cur_trans->dirty_bgs_lock);
3556
3557 again:
3558 /*
3559 * make sure all the block groups on our dirty list actually
3560 * exist
3561 */
3562 btrfs_create_pending_block_groups(trans, root);
3563
3564 if (!path) {
3565 path = btrfs_alloc_path();
3566 if (!path)
3567 return -ENOMEM;
3568 }
3569
3570 /*
3571 * cache_write_mutex is here only to save us from balance or automatic
3572 * removal of empty block groups deleting this block group while we are
3573 * writing out the cache
3574 */
3575 mutex_lock(&trans->transaction->cache_write_mutex);
3576 while (!list_empty(&dirty)) {
3577 cache = list_first_entry(&dirty,
3578 struct btrfs_block_group_cache,
3579 dirty_list);
3580 /*
3581 * this can happen if something re-dirties a block
3582 * group that is already under IO. Just wait for it to
3583 * finish and then do it all again
3584 */
3585 if (!list_empty(&cache->io_list)) {
3586 list_del_init(&cache->io_list);
3587 btrfs_wait_cache_io(root, trans, cache,
3588 &cache->io_ctl, path,
3589 cache->key.objectid);
3590 btrfs_put_block_group(cache);
3591 }
3592
3593
3594 /*
3595 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3596 * if it should update the cache_state. Don't delete
3597 * until after we wait.
3598 *
3599 * Since we're not running in the commit critical section
3600 * we need the dirty_bgs_lock to protect from update_block_group
3601 */
3602 spin_lock(&cur_trans->dirty_bgs_lock);
3603 list_del_init(&cache->dirty_list);
3604 spin_unlock(&cur_trans->dirty_bgs_lock);
3605
3606 should_put = 1;
3607
3608 cache_save_setup(cache, trans, path);
3609
3610 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3611 cache->io_ctl.inode = NULL;
3612 ret = btrfs_write_out_cache(root, trans, cache, path);
3613 if (ret == 0 && cache->io_ctl.inode) {
3614 num_started++;
3615 should_put = 0;
3616
3617 /*
3618 * the cache_write_mutex is protecting
3619 * the io_list
3620 */
3621 list_add_tail(&cache->io_list, io);
3622 } else {
3623 /*
3624 * if we failed to write the cache, the
3625 * generation will be bad and life goes on
3626 */
3627 ret = 0;
3628 }
3629 }
3630 if (!ret) {
3631 ret = write_one_cache_group(trans, root, path, cache);
3632 /*
3633 * Our block group might still be attached to the list
3634 * of new block groups in the transaction handle of some
3635 * other task (struct btrfs_trans_handle->new_bgs). This
3636 * means its block group item isn't yet in the extent
3637 * tree. If this happens ignore the error, as we will
3638 * try again later in the critical section of the
3639 * transaction commit.
3640 */
3641 if (ret == -ENOENT) {
3642 ret = 0;
3643 spin_lock(&cur_trans->dirty_bgs_lock);
3644 if (list_empty(&cache->dirty_list)) {
3645 list_add_tail(&cache->dirty_list,
3646 &cur_trans->dirty_bgs);
3647 btrfs_get_block_group(cache);
3648 }
3649 spin_unlock(&cur_trans->dirty_bgs_lock);
3650 } else if (ret) {
3651 btrfs_abort_transaction(trans, root, ret);
3652 }
3653 }
3654
3655 /* if its not on the io list, we need to put the block group */
3656 if (should_put)
3657 btrfs_put_block_group(cache);
3658
3659 if (ret)
3660 break;
3661
3662 /*
3663 * Avoid blocking other tasks for too long. It might even save
3664 * us from writing caches for block groups that are going to be
3665 * removed.
3666 */
3667 mutex_unlock(&trans->transaction->cache_write_mutex);
3668 mutex_lock(&trans->transaction->cache_write_mutex);
3669 }
3670 mutex_unlock(&trans->transaction->cache_write_mutex);
3671
3672 /*
3673 * go through delayed refs for all the stuff we've just kicked off
3674 * and then loop back (just once)
3675 */
3676 ret = btrfs_run_delayed_refs(trans, root, 0);
3677 if (!ret && loops == 0) {
3678 loops++;
3679 spin_lock(&cur_trans->dirty_bgs_lock);
3680 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3681 /*
3682 * dirty_bgs_lock protects us from concurrent block group
3683 * deletes too (not just cache_write_mutex).
3684 */
3685 if (!list_empty(&dirty)) {
3686 spin_unlock(&cur_trans->dirty_bgs_lock);
3687 goto again;
3688 }
3689 spin_unlock(&cur_trans->dirty_bgs_lock);
3690 }
3691
3692 btrfs_free_path(path);
3693 return ret;
3694 }
3695
3696 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3697 struct btrfs_root *root)
3698 {
3699 struct btrfs_block_group_cache *cache;
3700 struct btrfs_transaction *cur_trans = trans->transaction;
3701 int ret = 0;
3702 int should_put;
3703 struct btrfs_path *path;
3704 struct list_head *io = &cur_trans->io_bgs;
3705 int num_started = 0;
3706
3707 path = btrfs_alloc_path();
3708 if (!path)
3709 return -ENOMEM;
3710
3711 /*
3712 * Even though we are in the critical section of the transaction commit,
3713 * we can still have concurrent tasks adding elements to this
3714 * transaction's list of dirty block groups. These tasks correspond to
3715 * endio free space workers started when writeback finishes for a
3716 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3717 * allocate new block groups as a result of COWing nodes of the root
3718 * tree when updating the free space inode. The writeback for the space
3719 * caches is triggered by an earlier call to
3720 * btrfs_start_dirty_block_groups() and iterations of the following
3721 * loop.
3722 * Also we want to do the cache_save_setup first and then run the
3723 * delayed refs to make sure we have the best chance at doing this all
3724 * in one shot.
3725 */
3726 spin_lock(&cur_trans->dirty_bgs_lock);
3727 while (!list_empty(&cur_trans->dirty_bgs)) {
3728 cache = list_first_entry(&cur_trans->dirty_bgs,
3729 struct btrfs_block_group_cache,
3730 dirty_list);
3731
3732 /*
3733 * this can happen if cache_save_setup re-dirties a block
3734 * group that is already under IO. Just wait for it to
3735 * finish and then do it all again
3736 */
3737 if (!list_empty(&cache->io_list)) {
3738 spin_unlock(&cur_trans->dirty_bgs_lock);
3739 list_del_init(&cache->io_list);
3740 btrfs_wait_cache_io(root, trans, cache,
3741 &cache->io_ctl, path,
3742 cache->key.objectid);
3743 btrfs_put_block_group(cache);
3744 spin_lock(&cur_trans->dirty_bgs_lock);
3745 }
3746
3747 /*
3748 * don't remove from the dirty list until after we've waited
3749 * on any pending IO
3750 */
3751 list_del_init(&cache->dirty_list);
3752 spin_unlock(&cur_trans->dirty_bgs_lock);
3753 should_put = 1;
3754
3755 cache_save_setup(cache, trans, path);
3756
3757 if (!ret)
3758 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3759
3760 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3761 cache->io_ctl.inode = NULL;
3762 ret = btrfs_write_out_cache(root, trans, cache, path);
3763 if (ret == 0 && cache->io_ctl.inode) {
3764 num_started++;
3765 should_put = 0;
3766 list_add_tail(&cache->io_list, io);
3767 } else {
3768 /*
3769 * if we failed to write the cache, the
3770 * generation will be bad and life goes on
3771 */
3772 ret = 0;
3773 }
3774 }
3775 if (!ret) {
3776 ret = write_one_cache_group(trans, root, path, cache);
3777 /*
3778 * One of the free space endio workers might have
3779 * created a new block group while updating a free space
3780 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3781 * and hasn't released its transaction handle yet, in
3782 * which case the new block group is still attached to
3783 * its transaction handle and its creation has not
3784 * finished yet (no block group item in the extent tree
3785 * yet, etc). If this is the case, wait for all free
3786 * space endio workers to finish and retry. This is a
3787 * a very rare case so no need for a more efficient and
3788 * complex approach.
3789 */
3790 if (ret == -ENOENT) {
3791 wait_event(cur_trans->writer_wait,
3792 atomic_read(&cur_trans->num_writers) == 1);
3793 ret = write_one_cache_group(trans, root, path,
3794 cache);
3795 }
3796 if (ret)
3797 btrfs_abort_transaction(trans, root, ret);
3798 }
3799
3800 /* if its not on the io list, we need to put the block group */
3801 if (should_put)
3802 btrfs_put_block_group(cache);
3803 spin_lock(&cur_trans->dirty_bgs_lock);
3804 }
3805 spin_unlock(&cur_trans->dirty_bgs_lock);
3806
3807 while (!list_empty(io)) {
3808 cache = list_first_entry(io, struct btrfs_block_group_cache,
3809 io_list);
3810 list_del_init(&cache->io_list);
3811 btrfs_wait_cache_io(root, trans, cache,
3812 &cache->io_ctl, path, cache->key.objectid);
3813 btrfs_put_block_group(cache);
3814 }
3815
3816 btrfs_free_path(path);
3817 return ret;
3818 }
3819
3820 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3821 {
3822 struct btrfs_block_group_cache *block_group;
3823 int readonly = 0;
3824
3825 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3826 if (!block_group || block_group->ro)
3827 readonly = 1;
3828 if (block_group)
3829 btrfs_put_block_group(block_group);
3830 return readonly;
3831 }
3832
3833 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3834 {
3835 struct btrfs_block_group_cache *bg;
3836 bool ret = true;
3837
3838 bg = btrfs_lookup_block_group(fs_info, bytenr);
3839 if (!bg)
3840 return false;
3841
3842 spin_lock(&bg->lock);
3843 if (bg->ro)
3844 ret = false;
3845 else
3846 atomic_inc(&bg->nocow_writers);
3847 spin_unlock(&bg->lock);
3848
3849 /* no put on block group, done by btrfs_dec_nocow_writers */
3850 if (!ret)
3851 btrfs_put_block_group(bg);
3852
3853 return ret;
3854
3855 }
3856
3857 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3858 {
3859 struct btrfs_block_group_cache *bg;
3860
3861 bg = btrfs_lookup_block_group(fs_info, bytenr);
3862 ASSERT(bg);
3863 if (atomic_dec_and_test(&bg->nocow_writers))
3864 wake_up_atomic_t(&bg->nocow_writers);
3865 /*
3866 * Once for our lookup and once for the lookup done by a previous call
3867 * to btrfs_inc_nocow_writers()
3868 */
3869 btrfs_put_block_group(bg);
3870 btrfs_put_block_group(bg);
3871 }
3872
3873 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3874 {
3875 schedule();
3876 return 0;
3877 }
3878
3879 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3880 {
3881 wait_on_atomic_t(&bg->nocow_writers,
3882 btrfs_wait_nocow_writers_atomic_t,
3883 TASK_UNINTERRUPTIBLE);
3884 }
3885
3886 static const char *alloc_name(u64 flags)
3887 {
3888 switch (flags) {
3889 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3890 return "mixed";
3891 case BTRFS_BLOCK_GROUP_METADATA:
3892 return "metadata";
3893 case BTRFS_BLOCK_GROUP_DATA:
3894 return "data";
3895 case BTRFS_BLOCK_GROUP_SYSTEM:
3896 return "system";
3897 default:
3898 WARN_ON(1);
3899 return "invalid-combination";
3900 };
3901 }
3902
3903 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3904 u64 total_bytes, u64 bytes_used,
3905 struct btrfs_space_info **space_info)
3906 {
3907 struct btrfs_space_info *found;
3908 int i;
3909 int factor;
3910 int ret;
3911
3912 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3913 BTRFS_BLOCK_GROUP_RAID10))
3914 factor = 2;
3915 else
3916 factor = 1;
3917
3918 found = __find_space_info(info, flags);
3919 if (found) {
3920 spin_lock(&found->lock);
3921 found->total_bytes += total_bytes;
3922 found->disk_total += total_bytes * factor;
3923 found->bytes_used += bytes_used;
3924 found->disk_used += bytes_used * factor;
3925 if (total_bytes > 0)
3926 found->full = 0;
3927 spin_unlock(&found->lock);
3928 *space_info = found;
3929 return 0;
3930 }
3931 found = kzalloc(sizeof(*found), GFP_NOFS);
3932 if (!found)
3933 return -ENOMEM;
3934
3935 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3936 if (ret) {
3937 kfree(found);
3938 return ret;
3939 }
3940
3941 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3942 INIT_LIST_HEAD(&found->block_groups[i]);
3943 init_rwsem(&found->groups_sem);
3944 spin_lock_init(&found->lock);
3945 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3946 found->total_bytes = total_bytes;
3947 found->disk_total = total_bytes * factor;
3948 found->bytes_used = bytes_used;
3949 found->disk_used = bytes_used * factor;
3950 found->bytes_pinned = 0;
3951 found->bytes_reserved = 0;
3952 found->bytes_readonly = 0;
3953 found->bytes_may_use = 0;
3954 found->full = 0;
3955 found->max_extent_size = 0;
3956 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3957 found->chunk_alloc = 0;
3958 found->flush = 0;
3959 init_waitqueue_head(&found->wait);
3960 INIT_LIST_HEAD(&found->ro_bgs);
3961
3962 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3963 info->space_info_kobj, "%s",
3964 alloc_name(found->flags));
3965 if (ret) {
3966 kfree(found);
3967 return ret;
3968 }
3969
3970 *space_info = found;
3971 list_add_rcu(&found->list, &info->space_info);
3972 if (flags & BTRFS_BLOCK_GROUP_DATA)
3973 info->data_sinfo = found;
3974
3975 return ret;
3976 }
3977
3978 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3979 {
3980 u64 extra_flags = chunk_to_extended(flags) &
3981 BTRFS_EXTENDED_PROFILE_MASK;
3982
3983 write_seqlock(&fs_info->profiles_lock);
3984 if (flags & BTRFS_BLOCK_GROUP_DATA)
3985 fs_info->avail_data_alloc_bits |= extra_flags;
3986 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3987 fs_info->avail_metadata_alloc_bits |= extra_flags;
3988 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3989 fs_info->avail_system_alloc_bits |= extra_flags;
3990 write_sequnlock(&fs_info->profiles_lock);
3991 }
3992
3993 /*
3994 * returns target flags in extended format or 0 if restripe for this
3995 * chunk_type is not in progress
3996 *
3997 * should be called with either volume_mutex or balance_lock held
3998 */
3999 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4000 {
4001 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4002 u64 target = 0;
4003
4004 if (!bctl)
4005 return 0;
4006
4007 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4008 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4009 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4010 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4011 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4012 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4013 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4014 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4015 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4016 }
4017
4018 return target;
4019 }
4020
4021 /*
4022 * @flags: available profiles in extended format (see ctree.h)
4023 *
4024 * Returns reduced profile in chunk format. If profile changing is in
4025 * progress (either running or paused) picks the target profile (if it's
4026 * already available), otherwise falls back to plain reducing.
4027 */
4028 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4029 {
4030 u64 num_devices = root->fs_info->fs_devices->rw_devices;
4031 u64 target;
4032 u64 raid_type;
4033 u64 allowed = 0;
4034
4035 /*
4036 * see if restripe for this chunk_type is in progress, if so
4037 * try to reduce to the target profile
4038 */
4039 spin_lock(&root->fs_info->balance_lock);
4040 target = get_restripe_target(root->fs_info, flags);
4041 if (target) {
4042 /* pick target profile only if it's already available */
4043 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4044 spin_unlock(&root->fs_info->balance_lock);
4045 return extended_to_chunk(target);
4046 }
4047 }
4048 spin_unlock(&root->fs_info->balance_lock);
4049
4050 /* First, mask out the RAID levels which aren't possible */
4051 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4052 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4053 allowed |= btrfs_raid_group[raid_type];
4054 }
4055 allowed &= flags;
4056
4057 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4058 allowed = BTRFS_BLOCK_GROUP_RAID6;
4059 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4060 allowed = BTRFS_BLOCK_GROUP_RAID5;
4061 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4062 allowed = BTRFS_BLOCK_GROUP_RAID10;
4063 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4064 allowed = BTRFS_BLOCK_GROUP_RAID1;
4065 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4066 allowed = BTRFS_BLOCK_GROUP_RAID0;
4067
4068 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4069
4070 return extended_to_chunk(flags | allowed);
4071 }
4072
4073 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4074 {
4075 unsigned seq;
4076 u64 flags;
4077
4078 do {
4079 flags = orig_flags;
4080 seq = read_seqbegin(&root->fs_info->profiles_lock);
4081
4082 if (flags & BTRFS_BLOCK_GROUP_DATA)
4083 flags |= root->fs_info->avail_data_alloc_bits;
4084 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4085 flags |= root->fs_info->avail_system_alloc_bits;
4086 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4087 flags |= root->fs_info->avail_metadata_alloc_bits;
4088 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4089
4090 return btrfs_reduce_alloc_profile(root, flags);
4091 }
4092
4093 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4094 {
4095 u64 flags;
4096 u64 ret;
4097
4098 if (data)
4099 flags = BTRFS_BLOCK_GROUP_DATA;
4100 else if (root == root->fs_info->chunk_root)
4101 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4102 else
4103 flags = BTRFS_BLOCK_GROUP_METADATA;
4104
4105 ret = get_alloc_profile(root, flags);
4106 return ret;
4107 }
4108
4109 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4110 {
4111 struct btrfs_space_info *data_sinfo;
4112 struct btrfs_root *root = BTRFS_I(inode)->root;
4113 struct btrfs_fs_info *fs_info = root->fs_info;
4114 u64 used;
4115 int ret = 0;
4116 int need_commit = 2;
4117 int have_pinned_space;
4118
4119 /* make sure bytes are sectorsize aligned */
4120 bytes = ALIGN(bytes, root->sectorsize);
4121
4122 if (btrfs_is_free_space_inode(inode)) {
4123 need_commit = 0;
4124 ASSERT(current->journal_info);
4125 }
4126
4127 data_sinfo = fs_info->data_sinfo;
4128 if (!data_sinfo)
4129 goto alloc;
4130
4131 again:
4132 /* make sure we have enough space to handle the data first */
4133 spin_lock(&data_sinfo->lock);
4134 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4135 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4136 data_sinfo->bytes_may_use;
4137
4138 if (used + bytes > data_sinfo->total_bytes) {
4139 struct btrfs_trans_handle *trans;
4140
4141 /*
4142 * if we don't have enough free bytes in this space then we need
4143 * to alloc a new chunk.
4144 */
4145 if (!data_sinfo->full) {
4146 u64 alloc_target;
4147
4148 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4149 spin_unlock(&data_sinfo->lock);
4150 alloc:
4151 alloc_target = btrfs_get_alloc_profile(root, 1);
4152 /*
4153 * It is ugly that we don't call nolock join
4154 * transaction for the free space inode case here.
4155 * But it is safe because we only do the data space
4156 * reservation for the free space cache in the
4157 * transaction context, the common join transaction
4158 * just increase the counter of the current transaction
4159 * handler, doesn't try to acquire the trans_lock of
4160 * the fs.
4161 */
4162 trans = btrfs_join_transaction(root);
4163 if (IS_ERR(trans))
4164 return PTR_ERR(trans);
4165
4166 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4167 alloc_target,
4168 CHUNK_ALLOC_NO_FORCE);
4169 btrfs_end_transaction(trans, root);
4170 if (ret < 0) {
4171 if (ret != -ENOSPC)
4172 return ret;
4173 else {
4174 have_pinned_space = 1;
4175 goto commit_trans;
4176 }
4177 }
4178
4179 if (!data_sinfo)
4180 data_sinfo = fs_info->data_sinfo;
4181
4182 goto again;
4183 }
4184
4185 /*
4186 * If we don't have enough pinned space to deal with this
4187 * allocation, and no removed chunk in current transaction,
4188 * don't bother committing the transaction.
4189 */
4190 have_pinned_space = percpu_counter_compare(
4191 &data_sinfo->total_bytes_pinned,
4192 used + bytes - data_sinfo->total_bytes);
4193 spin_unlock(&data_sinfo->lock);
4194
4195 /* commit the current transaction and try again */
4196 commit_trans:
4197 if (need_commit &&
4198 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4199 need_commit--;
4200
4201 if (need_commit > 0) {
4202 btrfs_start_delalloc_roots(fs_info, 0, -1);
4203 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4204 }
4205
4206 trans = btrfs_join_transaction(root);
4207 if (IS_ERR(trans))
4208 return PTR_ERR(trans);
4209 if (have_pinned_space >= 0 ||
4210 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4211 &trans->transaction->flags) ||
4212 need_commit > 0) {
4213 ret = btrfs_commit_transaction(trans, root);
4214 if (ret)
4215 return ret;
4216 /*
4217 * The cleaner kthread might still be doing iput
4218 * operations. Wait for it to finish so that
4219 * more space is released.
4220 */
4221 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4222 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4223 goto again;
4224 } else {
4225 btrfs_end_transaction(trans, root);
4226 }
4227 }
4228
4229 trace_btrfs_space_reservation(root->fs_info,
4230 "space_info:enospc",
4231 data_sinfo->flags, bytes, 1);
4232 return -ENOSPC;
4233 }
4234 data_sinfo->bytes_may_use += bytes;
4235 trace_btrfs_space_reservation(root->fs_info, "space_info",
4236 data_sinfo->flags, bytes, 1);
4237 spin_unlock(&data_sinfo->lock);
4238
4239 return ret;
4240 }
4241
4242 /*
4243 * New check_data_free_space() with ability for precious data reservation
4244 * Will replace old btrfs_check_data_free_space(), but for patch split,
4245 * add a new function first and then replace it.
4246 */
4247 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4248 {
4249 struct btrfs_root *root = BTRFS_I(inode)->root;
4250 int ret;
4251
4252 /* align the range */
4253 len = round_up(start + len, root->sectorsize) -
4254 round_down(start, root->sectorsize);
4255 start = round_down(start, root->sectorsize);
4256
4257 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4258 if (ret < 0)
4259 return ret;
4260
4261 /*
4262 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4263 *
4264 * TODO: Find a good method to avoid reserve data space for NOCOW
4265 * range, but don't impact performance on quota disable case.
4266 */
4267 ret = btrfs_qgroup_reserve_data(inode, start, len);
4268 return ret;
4269 }
4270
4271 /*
4272 * Called if we need to clear a data reservation for this inode
4273 * Normally in a error case.
4274 *
4275 * This one will *NOT* use accurate qgroup reserved space API, just for case
4276 * which we can't sleep and is sure it won't affect qgroup reserved space.
4277 * Like clear_bit_hook().
4278 */
4279 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4280 u64 len)
4281 {
4282 struct btrfs_root *root = BTRFS_I(inode)->root;
4283 struct btrfs_space_info *data_sinfo;
4284
4285 /* Make sure the range is aligned to sectorsize */
4286 len = round_up(start + len, root->sectorsize) -
4287 round_down(start, root->sectorsize);
4288 start = round_down(start, root->sectorsize);
4289
4290 data_sinfo = root->fs_info->data_sinfo;
4291 spin_lock(&data_sinfo->lock);
4292 if (WARN_ON(data_sinfo->bytes_may_use < len))
4293 data_sinfo->bytes_may_use = 0;
4294 else
4295 data_sinfo->bytes_may_use -= len;
4296 trace_btrfs_space_reservation(root->fs_info, "space_info",
4297 data_sinfo->flags, len, 0);
4298 spin_unlock(&data_sinfo->lock);
4299 }
4300
4301 /*
4302 * Called if we need to clear a data reservation for this inode
4303 * Normally in a error case.
4304 *
4305 * This one will handle the per-inode data rsv map for accurate reserved
4306 * space framework.
4307 */
4308 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4309 {
4310 btrfs_free_reserved_data_space_noquota(inode, start, len);
4311 btrfs_qgroup_free_data(inode, start, len);
4312 }
4313
4314 static void force_metadata_allocation(struct btrfs_fs_info *info)
4315 {
4316 struct list_head *head = &info->space_info;
4317 struct btrfs_space_info *found;
4318
4319 rcu_read_lock();
4320 list_for_each_entry_rcu(found, head, list) {
4321 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4322 found->force_alloc = CHUNK_ALLOC_FORCE;
4323 }
4324 rcu_read_unlock();
4325 }
4326
4327 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4328 {
4329 return (global->size << 1);
4330 }
4331
4332 static int should_alloc_chunk(struct btrfs_root *root,
4333 struct btrfs_space_info *sinfo, int force)
4334 {
4335 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4336 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4337 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4338 u64 thresh;
4339
4340 if (force == CHUNK_ALLOC_FORCE)
4341 return 1;
4342
4343 /*
4344 * We need to take into account the global rsv because for all intents
4345 * and purposes it's used space. Don't worry about locking the
4346 * global_rsv, it doesn't change except when the transaction commits.
4347 */
4348 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4349 num_allocated += calc_global_rsv_need_space(global_rsv);
4350
4351 /*
4352 * in limited mode, we want to have some free space up to
4353 * about 1% of the FS size.
4354 */
4355 if (force == CHUNK_ALLOC_LIMITED) {
4356 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4357 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4358
4359 if (num_bytes - num_allocated < thresh)
4360 return 1;
4361 }
4362
4363 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4364 return 0;
4365 return 1;
4366 }
4367
4368 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4369 {
4370 u64 num_dev;
4371
4372 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4373 BTRFS_BLOCK_GROUP_RAID0 |
4374 BTRFS_BLOCK_GROUP_RAID5 |
4375 BTRFS_BLOCK_GROUP_RAID6))
4376 num_dev = root->fs_info->fs_devices->rw_devices;
4377 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4378 num_dev = 2;
4379 else
4380 num_dev = 1; /* DUP or single */
4381
4382 return num_dev;
4383 }
4384
4385 /*
4386 * If @is_allocation is true, reserve space in the system space info necessary
4387 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4388 * removing a chunk.
4389 */
4390 void check_system_chunk(struct btrfs_trans_handle *trans,
4391 struct btrfs_root *root,
4392 u64 type)
4393 {
4394 struct btrfs_space_info *info;
4395 u64 left;
4396 u64 thresh;
4397 int ret = 0;
4398 u64 num_devs;
4399
4400 /*
4401 * Needed because we can end up allocating a system chunk and for an
4402 * atomic and race free space reservation in the chunk block reserve.
4403 */
4404 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4405
4406 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4407 spin_lock(&info->lock);
4408 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4409 info->bytes_reserved - info->bytes_readonly -
4410 info->bytes_may_use;
4411 spin_unlock(&info->lock);
4412
4413 num_devs = get_profile_num_devs(root, type);
4414
4415 /* num_devs device items to update and 1 chunk item to add or remove */
4416 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4417 btrfs_calc_trans_metadata_size(root, 1);
4418
4419 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4420 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4421 left, thresh, type);
4422 dump_space_info(info, 0, 0);
4423 }
4424
4425 if (left < thresh) {
4426 u64 flags;
4427
4428 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4429 /*
4430 * Ignore failure to create system chunk. We might end up not
4431 * needing it, as we might not need to COW all nodes/leafs from
4432 * the paths we visit in the chunk tree (they were already COWed
4433 * or created in the current transaction for example).
4434 */
4435 ret = btrfs_alloc_chunk(trans, root, flags);
4436 }
4437
4438 if (!ret) {
4439 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4440 &root->fs_info->chunk_block_rsv,
4441 thresh, BTRFS_RESERVE_NO_FLUSH);
4442 if (!ret)
4443 trans->chunk_bytes_reserved += thresh;
4444 }
4445 }
4446
4447 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4448 struct btrfs_root *extent_root, u64 flags, int force)
4449 {
4450 struct btrfs_space_info *space_info;
4451 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4452 int wait_for_alloc = 0;
4453 int ret = 0;
4454
4455 /* Don't re-enter if we're already allocating a chunk */
4456 if (trans->allocating_chunk)
4457 return -ENOSPC;
4458
4459 space_info = __find_space_info(extent_root->fs_info, flags);
4460 if (!space_info) {
4461 ret = update_space_info(extent_root->fs_info, flags,
4462 0, 0, &space_info);
4463 BUG_ON(ret); /* -ENOMEM */
4464 }
4465 BUG_ON(!space_info); /* Logic error */
4466
4467 again:
4468 spin_lock(&space_info->lock);
4469 if (force < space_info->force_alloc)
4470 force = space_info->force_alloc;
4471 if (space_info->full) {
4472 if (should_alloc_chunk(extent_root, space_info, force))
4473 ret = -ENOSPC;
4474 else
4475 ret = 0;
4476 spin_unlock(&space_info->lock);
4477 return ret;
4478 }
4479
4480 if (!should_alloc_chunk(extent_root, space_info, force)) {
4481 spin_unlock(&space_info->lock);
4482 return 0;
4483 } else if (space_info->chunk_alloc) {
4484 wait_for_alloc = 1;
4485 } else {
4486 space_info->chunk_alloc = 1;
4487 }
4488
4489 spin_unlock(&space_info->lock);
4490
4491 mutex_lock(&fs_info->chunk_mutex);
4492
4493 /*
4494 * The chunk_mutex is held throughout the entirety of a chunk
4495 * allocation, so once we've acquired the chunk_mutex we know that the
4496 * other guy is done and we need to recheck and see if we should
4497 * allocate.
4498 */
4499 if (wait_for_alloc) {
4500 mutex_unlock(&fs_info->chunk_mutex);
4501 wait_for_alloc = 0;
4502 goto again;
4503 }
4504
4505 trans->allocating_chunk = true;
4506
4507 /*
4508 * If we have mixed data/metadata chunks we want to make sure we keep
4509 * allocating mixed chunks instead of individual chunks.
4510 */
4511 if (btrfs_mixed_space_info(space_info))
4512 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4513
4514 /*
4515 * if we're doing a data chunk, go ahead and make sure that
4516 * we keep a reasonable number of metadata chunks allocated in the
4517 * FS as well.
4518 */
4519 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4520 fs_info->data_chunk_allocations++;
4521 if (!(fs_info->data_chunk_allocations %
4522 fs_info->metadata_ratio))
4523 force_metadata_allocation(fs_info);
4524 }
4525
4526 /*
4527 * Check if we have enough space in SYSTEM chunk because we may need
4528 * to update devices.
4529 */
4530 check_system_chunk(trans, extent_root, flags);
4531
4532 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4533 trans->allocating_chunk = false;
4534
4535 spin_lock(&space_info->lock);
4536 if (ret < 0 && ret != -ENOSPC)
4537 goto out;
4538 if (ret)
4539 space_info->full = 1;
4540 else
4541 ret = 1;
4542
4543 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4544 out:
4545 space_info->chunk_alloc = 0;
4546 spin_unlock(&space_info->lock);
4547 mutex_unlock(&fs_info->chunk_mutex);
4548 /*
4549 * When we allocate a new chunk we reserve space in the chunk block
4550 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4551 * add new nodes/leafs to it if we end up needing to do it when
4552 * inserting the chunk item and updating device items as part of the
4553 * second phase of chunk allocation, performed by
4554 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4555 * large number of new block groups to create in our transaction
4556 * handle's new_bgs list to avoid exhausting the chunk block reserve
4557 * in extreme cases - like having a single transaction create many new
4558 * block groups when starting to write out the free space caches of all
4559 * the block groups that were made dirty during the lifetime of the
4560 * transaction.
4561 */
4562 if (trans->can_flush_pending_bgs &&
4563 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4564 btrfs_create_pending_block_groups(trans, trans->root);
4565 btrfs_trans_release_chunk_metadata(trans);
4566 }
4567 return ret;
4568 }
4569
4570 static int can_overcommit(struct btrfs_root *root,
4571 struct btrfs_space_info *space_info, u64 bytes,
4572 enum btrfs_reserve_flush_enum flush)
4573 {
4574 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4575 u64 profile = btrfs_get_alloc_profile(root, 0);
4576 u64 space_size;
4577 u64 avail;
4578 u64 used;
4579
4580 used = space_info->bytes_used + space_info->bytes_reserved +
4581 space_info->bytes_pinned + space_info->bytes_readonly;
4582
4583 /*
4584 * We only want to allow over committing if we have lots of actual space
4585 * free, but if we don't have enough space to handle the global reserve
4586 * space then we could end up having a real enospc problem when trying
4587 * to allocate a chunk or some other such important allocation.
4588 */
4589 spin_lock(&global_rsv->lock);
4590 space_size = calc_global_rsv_need_space(global_rsv);
4591 spin_unlock(&global_rsv->lock);
4592 if (used + space_size >= space_info->total_bytes)
4593 return 0;
4594
4595 used += space_info->bytes_may_use;
4596
4597 spin_lock(&root->fs_info->free_chunk_lock);
4598 avail = root->fs_info->free_chunk_space;
4599 spin_unlock(&root->fs_info->free_chunk_lock);
4600
4601 /*
4602 * If we have dup, raid1 or raid10 then only half of the free
4603 * space is actually useable. For raid56, the space info used
4604 * doesn't include the parity drive, so we don't have to
4605 * change the math
4606 */
4607 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4608 BTRFS_BLOCK_GROUP_RAID1 |
4609 BTRFS_BLOCK_GROUP_RAID10))
4610 avail >>= 1;
4611
4612 /*
4613 * If we aren't flushing all things, let us overcommit up to
4614 * 1/2th of the space. If we can flush, don't let us overcommit
4615 * too much, let it overcommit up to 1/8 of the space.
4616 */
4617 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4618 avail >>= 3;
4619 else
4620 avail >>= 1;
4621
4622 if (used + bytes < space_info->total_bytes + avail)
4623 return 1;
4624 return 0;
4625 }
4626
4627 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4628 unsigned long nr_pages, int nr_items)
4629 {
4630 struct super_block *sb = root->fs_info->sb;
4631
4632 if (down_read_trylock(&sb->s_umount)) {
4633 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4634 up_read(&sb->s_umount);
4635 } else {
4636 /*
4637 * We needn't worry the filesystem going from r/w to r/o though
4638 * we don't acquire ->s_umount mutex, because the filesystem
4639 * should guarantee the delalloc inodes list be empty after
4640 * the filesystem is readonly(all dirty pages are written to
4641 * the disk).
4642 */
4643 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4644 if (!current->journal_info)
4645 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4646 0, (u64)-1);
4647 }
4648 }
4649
4650 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4651 {
4652 u64 bytes;
4653 int nr;
4654
4655 bytes = btrfs_calc_trans_metadata_size(root, 1);
4656 nr = (int)div64_u64(to_reclaim, bytes);
4657 if (!nr)
4658 nr = 1;
4659 return nr;
4660 }
4661
4662 #define EXTENT_SIZE_PER_ITEM SZ_256K
4663
4664 /*
4665 * shrink metadata reservation for delalloc
4666 */
4667 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4668 bool wait_ordered)
4669 {
4670 struct btrfs_block_rsv *block_rsv;
4671 struct btrfs_space_info *space_info;
4672 struct btrfs_trans_handle *trans;
4673 u64 delalloc_bytes;
4674 u64 max_reclaim;
4675 long time_left;
4676 unsigned long nr_pages;
4677 int loops;
4678 int items;
4679 enum btrfs_reserve_flush_enum flush;
4680
4681 /* Calc the number of the pages we need flush for space reservation */
4682 items = calc_reclaim_items_nr(root, to_reclaim);
4683 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4684
4685 trans = (struct btrfs_trans_handle *)current->journal_info;
4686 block_rsv = &root->fs_info->delalloc_block_rsv;
4687 space_info = block_rsv->space_info;
4688
4689 delalloc_bytes = percpu_counter_sum_positive(
4690 &root->fs_info->delalloc_bytes);
4691 if (delalloc_bytes == 0) {
4692 if (trans)
4693 return;
4694 if (wait_ordered)
4695 btrfs_wait_ordered_roots(root->fs_info, items,
4696 0, (u64)-1);
4697 return;
4698 }
4699
4700 loops = 0;
4701 while (delalloc_bytes && loops < 3) {
4702 max_reclaim = min(delalloc_bytes, to_reclaim);
4703 nr_pages = max_reclaim >> PAGE_SHIFT;
4704 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4705 /*
4706 * We need to wait for the async pages to actually start before
4707 * we do anything.
4708 */
4709 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4710 if (!max_reclaim)
4711 goto skip_async;
4712
4713 if (max_reclaim <= nr_pages)
4714 max_reclaim = 0;
4715 else
4716 max_reclaim -= nr_pages;
4717
4718 wait_event(root->fs_info->async_submit_wait,
4719 atomic_read(&root->fs_info->async_delalloc_pages) <=
4720 (int)max_reclaim);
4721 skip_async:
4722 if (!trans)
4723 flush = BTRFS_RESERVE_FLUSH_ALL;
4724 else
4725 flush = BTRFS_RESERVE_NO_FLUSH;
4726 spin_lock(&space_info->lock);
4727 if (can_overcommit(root, space_info, orig, flush)) {
4728 spin_unlock(&space_info->lock);
4729 break;
4730 }
4731 spin_unlock(&space_info->lock);
4732
4733 loops++;
4734 if (wait_ordered && !trans) {
4735 btrfs_wait_ordered_roots(root->fs_info, items,
4736 0, (u64)-1);
4737 } else {
4738 time_left = schedule_timeout_killable(1);
4739 if (time_left)
4740 break;
4741 }
4742 delalloc_bytes = percpu_counter_sum_positive(
4743 &root->fs_info->delalloc_bytes);
4744 }
4745 }
4746
4747 /**
4748 * maybe_commit_transaction - possibly commit the transaction if its ok to
4749 * @root - the root we're allocating for
4750 * @bytes - the number of bytes we want to reserve
4751 * @force - force the commit
4752 *
4753 * This will check to make sure that committing the transaction will actually
4754 * get us somewhere and then commit the transaction if it does. Otherwise it
4755 * will return -ENOSPC.
4756 */
4757 static int may_commit_transaction(struct btrfs_root *root,
4758 struct btrfs_space_info *space_info,
4759 u64 bytes, int force)
4760 {
4761 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4762 struct btrfs_trans_handle *trans;
4763
4764 trans = (struct btrfs_trans_handle *)current->journal_info;
4765 if (trans)
4766 return -EAGAIN;
4767
4768 if (force)
4769 goto commit;
4770
4771 /* See if there is enough pinned space to make this reservation */
4772 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4773 bytes) >= 0)
4774 goto commit;
4775
4776 /*
4777 * See if there is some space in the delayed insertion reservation for
4778 * this reservation.
4779 */
4780 if (space_info != delayed_rsv->space_info)
4781 return -ENOSPC;
4782
4783 spin_lock(&delayed_rsv->lock);
4784 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4785 bytes - delayed_rsv->size) >= 0) {
4786 spin_unlock(&delayed_rsv->lock);
4787 return -ENOSPC;
4788 }
4789 spin_unlock(&delayed_rsv->lock);
4790
4791 commit:
4792 trans = btrfs_join_transaction(root);
4793 if (IS_ERR(trans))
4794 return -ENOSPC;
4795
4796 return btrfs_commit_transaction(trans, root);
4797 }
4798
4799 enum flush_state {
4800 FLUSH_DELAYED_ITEMS_NR = 1,
4801 FLUSH_DELAYED_ITEMS = 2,
4802 FLUSH_DELALLOC = 3,
4803 FLUSH_DELALLOC_WAIT = 4,
4804 ALLOC_CHUNK = 5,
4805 COMMIT_TRANS = 6,
4806 };
4807
4808 static int flush_space(struct btrfs_root *root,
4809 struct btrfs_space_info *space_info, u64 num_bytes,
4810 u64 orig_bytes, int state)
4811 {
4812 struct btrfs_trans_handle *trans;
4813 int nr;
4814 int ret = 0;
4815
4816 switch (state) {
4817 case FLUSH_DELAYED_ITEMS_NR:
4818 case FLUSH_DELAYED_ITEMS:
4819 if (state == FLUSH_DELAYED_ITEMS_NR)
4820 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4821 else
4822 nr = -1;
4823
4824 trans = btrfs_join_transaction(root);
4825 if (IS_ERR(trans)) {
4826 ret = PTR_ERR(trans);
4827 break;
4828 }
4829 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4830 btrfs_end_transaction(trans, root);
4831 break;
4832 case FLUSH_DELALLOC:
4833 case FLUSH_DELALLOC_WAIT:
4834 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4835 state == FLUSH_DELALLOC_WAIT);
4836 break;
4837 case ALLOC_CHUNK:
4838 trans = btrfs_join_transaction(root);
4839 if (IS_ERR(trans)) {
4840 ret = PTR_ERR(trans);
4841 break;
4842 }
4843 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4844 btrfs_get_alloc_profile(root, 0),
4845 CHUNK_ALLOC_NO_FORCE);
4846 btrfs_end_transaction(trans, root);
4847 if (ret == -ENOSPC)
4848 ret = 0;
4849 break;
4850 case COMMIT_TRANS:
4851 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4852 break;
4853 default:
4854 ret = -ENOSPC;
4855 break;
4856 }
4857
4858 return ret;
4859 }
4860
4861 static inline u64
4862 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4863 struct btrfs_space_info *space_info)
4864 {
4865 u64 used;
4866 u64 expected;
4867 u64 to_reclaim;
4868
4869 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4870 spin_lock(&space_info->lock);
4871 if (can_overcommit(root, space_info, to_reclaim,
4872 BTRFS_RESERVE_FLUSH_ALL)) {
4873 to_reclaim = 0;
4874 goto out;
4875 }
4876
4877 used = space_info->bytes_used + space_info->bytes_reserved +
4878 space_info->bytes_pinned + space_info->bytes_readonly +
4879 space_info->bytes_may_use;
4880 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4881 expected = div_factor_fine(space_info->total_bytes, 95);
4882 else
4883 expected = div_factor_fine(space_info->total_bytes, 90);
4884
4885 if (used > expected)
4886 to_reclaim = used - expected;
4887 else
4888 to_reclaim = 0;
4889 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4890 space_info->bytes_reserved);
4891 out:
4892 spin_unlock(&space_info->lock);
4893
4894 return to_reclaim;
4895 }
4896
4897 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4898 struct btrfs_fs_info *fs_info, u64 used)
4899 {
4900 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4901
4902 /* If we're just plain full then async reclaim just slows us down. */
4903 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4904 return 0;
4905
4906 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4907 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4908 }
4909
4910 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4911 struct btrfs_fs_info *fs_info,
4912 int flush_state)
4913 {
4914 u64 used;
4915
4916 spin_lock(&space_info->lock);
4917 /*
4918 * We run out of space and have not got any free space via flush_space,
4919 * so don't bother doing async reclaim.
4920 */
4921 if (flush_state > COMMIT_TRANS && space_info->full) {
4922 spin_unlock(&space_info->lock);
4923 return 0;
4924 }
4925
4926 used = space_info->bytes_used + space_info->bytes_reserved +
4927 space_info->bytes_pinned + space_info->bytes_readonly +
4928 space_info->bytes_may_use;
4929 if (need_do_async_reclaim(space_info, fs_info, used)) {
4930 spin_unlock(&space_info->lock);
4931 return 1;
4932 }
4933 spin_unlock(&space_info->lock);
4934
4935 return 0;
4936 }
4937
4938 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4939 {
4940 struct btrfs_fs_info *fs_info;
4941 struct btrfs_space_info *space_info;
4942 u64 to_reclaim;
4943 int flush_state;
4944
4945 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4946 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4947
4948 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4949 space_info);
4950 if (!to_reclaim)
4951 return;
4952
4953 flush_state = FLUSH_DELAYED_ITEMS_NR;
4954 do {
4955 flush_space(fs_info->fs_root, space_info, to_reclaim,
4956 to_reclaim, flush_state);
4957 flush_state++;
4958 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4959 flush_state))
4960 return;
4961 } while (flush_state < COMMIT_TRANS);
4962 }
4963
4964 void btrfs_init_async_reclaim_work(struct work_struct *work)
4965 {
4966 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4967 }
4968
4969 /**
4970 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4971 * @root - the root we're allocating for
4972 * @block_rsv - the block_rsv we're allocating for
4973 * @orig_bytes - the number of bytes we want
4974 * @flush - whether or not we can flush to make our reservation
4975 *
4976 * This will reserve orig_bytes number of bytes from the space info associated
4977 * with the block_rsv. If there is not enough space it will make an attempt to
4978 * flush out space to make room. It will do this by flushing delalloc if
4979 * possible or committing the transaction. If flush is 0 then no attempts to
4980 * regain reservations will be made and this will fail if there is not enough
4981 * space already.
4982 */
4983 static int reserve_metadata_bytes(struct btrfs_root *root,
4984 struct btrfs_block_rsv *block_rsv,
4985 u64 orig_bytes,
4986 enum btrfs_reserve_flush_enum flush)
4987 {
4988 struct btrfs_space_info *space_info = block_rsv->space_info;
4989 u64 used;
4990 u64 num_bytes = orig_bytes;
4991 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4992 int ret = 0;
4993 bool flushing = false;
4994
4995 again:
4996 ret = 0;
4997 spin_lock(&space_info->lock);
4998 /*
4999 * We only want to wait if somebody other than us is flushing and we
5000 * are actually allowed to flush all things.
5001 */
5002 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
5003 space_info->flush) {
5004 spin_unlock(&space_info->lock);
5005 /*
5006 * If we have a trans handle we can't wait because the flusher
5007 * may have to commit the transaction, which would mean we would
5008 * deadlock since we are waiting for the flusher to finish, but
5009 * hold the current transaction open.
5010 */
5011 if (current->journal_info)
5012 return -EAGAIN;
5013 ret = wait_event_killable(space_info->wait, !space_info->flush);
5014 /* Must have been killed, return */
5015 if (ret)
5016 return -EINTR;
5017
5018 spin_lock(&space_info->lock);
5019 }
5020
5021 ret = -ENOSPC;
5022 used = space_info->bytes_used + space_info->bytes_reserved +
5023 space_info->bytes_pinned + space_info->bytes_readonly +
5024 space_info->bytes_may_use;
5025
5026 /*
5027 * The idea here is that we've not already over-reserved the block group
5028 * then we can go ahead and save our reservation first and then start
5029 * flushing if we need to. Otherwise if we've already overcommitted
5030 * lets start flushing stuff first and then come back and try to make
5031 * our reservation.
5032 */
5033 if (used <= space_info->total_bytes) {
5034 if (used + orig_bytes <= space_info->total_bytes) {
5035 space_info->bytes_may_use += orig_bytes;
5036 trace_btrfs_space_reservation(root->fs_info,
5037 "space_info", space_info->flags, orig_bytes, 1);
5038 ret = 0;
5039 } else {
5040 /*
5041 * Ok set num_bytes to orig_bytes since we aren't
5042 * overocmmitted, this way we only try and reclaim what
5043 * we need.
5044 */
5045 num_bytes = orig_bytes;
5046 }
5047 } else {
5048 /*
5049 * Ok we're over committed, set num_bytes to the overcommitted
5050 * amount plus the amount of bytes that we need for this
5051 * reservation.
5052 */
5053 num_bytes = used - space_info->total_bytes +
5054 (orig_bytes * 2);
5055 }
5056
5057 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5058 space_info->bytes_may_use += orig_bytes;
5059 trace_btrfs_space_reservation(root->fs_info, "space_info",
5060 space_info->flags, orig_bytes,
5061 1);
5062 ret = 0;
5063 }
5064
5065 /*
5066 * Couldn't make our reservation, save our place so while we're trying
5067 * to reclaim space we can actually use it instead of somebody else
5068 * stealing it from us.
5069 *
5070 * We make the other tasks wait for the flush only when we can flush
5071 * all things.
5072 */
5073 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5074 flushing = true;
5075 space_info->flush = 1;
5076 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5077 used += orig_bytes;
5078 /*
5079 * We will do the space reservation dance during log replay,
5080 * which means we won't have fs_info->fs_root set, so don't do
5081 * the async reclaim as we will panic.
5082 */
5083 if (!root->fs_info->log_root_recovering &&
5084 need_do_async_reclaim(space_info, root->fs_info, used) &&
5085 !work_busy(&root->fs_info->async_reclaim_work))
5086 queue_work(system_unbound_wq,
5087 &root->fs_info->async_reclaim_work);
5088 }
5089 spin_unlock(&space_info->lock);
5090
5091 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5092 goto out;
5093
5094 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5095 flush_state);
5096 flush_state++;
5097
5098 /*
5099 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5100 * would happen. So skip delalloc flush.
5101 */
5102 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5103 (flush_state == FLUSH_DELALLOC ||
5104 flush_state == FLUSH_DELALLOC_WAIT))
5105 flush_state = ALLOC_CHUNK;
5106
5107 if (!ret)
5108 goto again;
5109 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5110 flush_state < COMMIT_TRANS)
5111 goto again;
5112 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5113 flush_state <= COMMIT_TRANS)
5114 goto again;
5115
5116 out:
5117 if (ret == -ENOSPC &&
5118 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5119 struct btrfs_block_rsv *global_rsv =
5120 &root->fs_info->global_block_rsv;
5121
5122 if (block_rsv != global_rsv &&
5123 !block_rsv_use_bytes(global_rsv, orig_bytes))
5124 ret = 0;
5125 }
5126 if (ret == -ENOSPC)
5127 trace_btrfs_space_reservation(root->fs_info,
5128 "space_info:enospc",
5129 space_info->flags, orig_bytes, 1);
5130 if (flushing) {
5131 spin_lock(&space_info->lock);
5132 space_info->flush = 0;
5133 wake_up_all(&space_info->wait);
5134 spin_unlock(&space_info->lock);
5135 }
5136 return ret;
5137 }
5138
5139 static struct btrfs_block_rsv *get_block_rsv(
5140 const struct btrfs_trans_handle *trans,
5141 const struct btrfs_root *root)
5142 {
5143 struct btrfs_block_rsv *block_rsv = NULL;
5144
5145 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5146 (root == root->fs_info->csum_root && trans->adding_csums) ||
5147 (root == root->fs_info->uuid_root))
5148 block_rsv = trans->block_rsv;
5149
5150 if (!block_rsv)
5151 block_rsv = root->block_rsv;
5152
5153 if (!block_rsv)
5154 block_rsv = &root->fs_info->empty_block_rsv;
5155
5156 return block_rsv;
5157 }
5158
5159 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5160 u64 num_bytes)
5161 {
5162 int ret = -ENOSPC;
5163 spin_lock(&block_rsv->lock);
5164 if (block_rsv->reserved >= num_bytes) {
5165 block_rsv->reserved -= num_bytes;
5166 if (block_rsv->reserved < block_rsv->size)
5167 block_rsv->full = 0;
5168 ret = 0;
5169 }
5170 spin_unlock(&block_rsv->lock);
5171 return ret;
5172 }
5173
5174 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5175 u64 num_bytes, int update_size)
5176 {
5177 spin_lock(&block_rsv->lock);
5178 block_rsv->reserved += num_bytes;
5179 if (update_size)
5180 block_rsv->size += num_bytes;
5181 else if (block_rsv->reserved >= block_rsv->size)
5182 block_rsv->full = 1;
5183 spin_unlock(&block_rsv->lock);
5184 }
5185
5186 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5187 struct btrfs_block_rsv *dest, u64 num_bytes,
5188 int min_factor)
5189 {
5190 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5191 u64 min_bytes;
5192
5193 if (global_rsv->space_info != dest->space_info)
5194 return -ENOSPC;
5195
5196 spin_lock(&global_rsv->lock);
5197 min_bytes = div_factor(global_rsv->size, min_factor);
5198 if (global_rsv->reserved < min_bytes + num_bytes) {
5199 spin_unlock(&global_rsv->lock);
5200 return -ENOSPC;
5201 }
5202 global_rsv->reserved -= num_bytes;
5203 if (global_rsv->reserved < global_rsv->size)
5204 global_rsv->full = 0;
5205 spin_unlock(&global_rsv->lock);
5206
5207 block_rsv_add_bytes(dest, num_bytes, 1);
5208 return 0;
5209 }
5210
5211 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5212 struct btrfs_block_rsv *block_rsv,
5213 struct btrfs_block_rsv *dest, u64 num_bytes)
5214 {
5215 struct btrfs_space_info *space_info = block_rsv->space_info;
5216
5217 spin_lock(&block_rsv->lock);
5218 if (num_bytes == (u64)-1)
5219 num_bytes = block_rsv->size;
5220 block_rsv->size -= num_bytes;
5221 if (block_rsv->reserved >= block_rsv->size) {
5222 num_bytes = block_rsv->reserved - block_rsv->size;
5223 block_rsv->reserved = block_rsv->size;
5224 block_rsv->full = 1;
5225 } else {
5226 num_bytes = 0;
5227 }
5228 spin_unlock(&block_rsv->lock);
5229
5230 if (num_bytes > 0) {
5231 if (dest) {
5232 spin_lock(&dest->lock);
5233 if (!dest->full) {
5234 u64 bytes_to_add;
5235
5236 bytes_to_add = dest->size - dest->reserved;
5237 bytes_to_add = min(num_bytes, bytes_to_add);
5238 dest->reserved += bytes_to_add;
5239 if (dest->reserved >= dest->size)
5240 dest->full = 1;
5241 num_bytes -= bytes_to_add;
5242 }
5243 spin_unlock(&dest->lock);
5244 }
5245 if (num_bytes) {
5246 spin_lock(&space_info->lock);
5247 space_info->bytes_may_use -= num_bytes;
5248 trace_btrfs_space_reservation(fs_info, "space_info",
5249 space_info->flags, num_bytes, 0);
5250 spin_unlock(&space_info->lock);
5251 }
5252 }
5253 }
5254
5255 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5256 struct btrfs_block_rsv *dst, u64 num_bytes)
5257 {
5258 int ret;
5259
5260 ret = block_rsv_use_bytes(src, num_bytes);
5261 if (ret)
5262 return ret;
5263
5264 block_rsv_add_bytes(dst, num_bytes, 1);
5265 return 0;
5266 }
5267
5268 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5269 {
5270 memset(rsv, 0, sizeof(*rsv));
5271 spin_lock_init(&rsv->lock);
5272 rsv->type = type;
5273 }
5274
5275 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5276 unsigned short type)
5277 {
5278 struct btrfs_block_rsv *block_rsv;
5279 struct btrfs_fs_info *fs_info = root->fs_info;
5280
5281 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5282 if (!block_rsv)
5283 return NULL;
5284
5285 btrfs_init_block_rsv(block_rsv, type);
5286 block_rsv->space_info = __find_space_info(fs_info,
5287 BTRFS_BLOCK_GROUP_METADATA);
5288 return block_rsv;
5289 }
5290
5291 void btrfs_free_block_rsv(struct btrfs_root *root,
5292 struct btrfs_block_rsv *rsv)
5293 {
5294 if (!rsv)
5295 return;
5296 btrfs_block_rsv_release(root, rsv, (u64)-1);
5297 kfree(rsv);
5298 }
5299
5300 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5301 {
5302 kfree(rsv);
5303 }
5304
5305 int btrfs_block_rsv_add(struct btrfs_root *root,
5306 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5307 enum btrfs_reserve_flush_enum flush)
5308 {
5309 int ret;
5310
5311 if (num_bytes == 0)
5312 return 0;
5313
5314 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5315 if (!ret) {
5316 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5317 return 0;
5318 }
5319
5320 return ret;
5321 }
5322
5323 int btrfs_block_rsv_check(struct btrfs_root *root,
5324 struct btrfs_block_rsv *block_rsv, int min_factor)
5325 {
5326 u64 num_bytes = 0;
5327 int ret = -ENOSPC;
5328
5329 if (!block_rsv)
5330 return 0;
5331
5332 spin_lock(&block_rsv->lock);
5333 num_bytes = div_factor(block_rsv->size, min_factor);
5334 if (block_rsv->reserved >= num_bytes)
5335 ret = 0;
5336 spin_unlock(&block_rsv->lock);
5337
5338 return ret;
5339 }
5340
5341 int btrfs_block_rsv_refill(struct btrfs_root *root,
5342 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5343 enum btrfs_reserve_flush_enum flush)
5344 {
5345 u64 num_bytes = 0;
5346 int ret = -ENOSPC;
5347
5348 if (!block_rsv)
5349 return 0;
5350
5351 spin_lock(&block_rsv->lock);
5352 num_bytes = min_reserved;
5353 if (block_rsv->reserved >= num_bytes)
5354 ret = 0;
5355 else
5356 num_bytes -= block_rsv->reserved;
5357 spin_unlock(&block_rsv->lock);
5358
5359 if (!ret)
5360 return 0;
5361
5362 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5363 if (!ret) {
5364 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5365 return 0;
5366 }
5367
5368 return ret;
5369 }
5370
5371 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5372 struct btrfs_block_rsv *dst_rsv,
5373 u64 num_bytes)
5374 {
5375 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5376 }
5377
5378 void btrfs_block_rsv_release(struct btrfs_root *root,
5379 struct btrfs_block_rsv *block_rsv,
5380 u64 num_bytes)
5381 {
5382 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5383 if (global_rsv == block_rsv ||
5384 block_rsv->space_info != global_rsv->space_info)
5385 global_rsv = NULL;
5386 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5387 num_bytes);
5388 }
5389
5390 /*
5391 * helper to calculate size of global block reservation.
5392 * the desired value is sum of space used by extent tree,
5393 * checksum tree and root tree
5394 */
5395 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5396 {
5397 struct btrfs_space_info *sinfo;
5398 u64 num_bytes;
5399 u64 meta_used;
5400 u64 data_used;
5401 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5402
5403 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5404 spin_lock(&sinfo->lock);
5405 data_used = sinfo->bytes_used;
5406 spin_unlock(&sinfo->lock);
5407
5408 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5409 spin_lock(&sinfo->lock);
5410 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5411 data_used = 0;
5412 meta_used = sinfo->bytes_used;
5413 spin_unlock(&sinfo->lock);
5414
5415 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5416 csum_size * 2;
5417 num_bytes += div_u64(data_used + meta_used, 50);
5418
5419 if (num_bytes * 3 > meta_used)
5420 num_bytes = div_u64(meta_used, 3);
5421
5422 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5423 }
5424
5425 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5426 {
5427 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5428 struct btrfs_space_info *sinfo = block_rsv->space_info;
5429 u64 num_bytes;
5430
5431 num_bytes = calc_global_metadata_size(fs_info);
5432
5433 spin_lock(&sinfo->lock);
5434 spin_lock(&block_rsv->lock);
5435
5436 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5437
5438 if (block_rsv->reserved < block_rsv->size) {
5439 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5440 sinfo->bytes_reserved + sinfo->bytes_readonly +
5441 sinfo->bytes_may_use;
5442 if (sinfo->total_bytes > num_bytes) {
5443 num_bytes = sinfo->total_bytes - num_bytes;
5444 num_bytes = min(num_bytes,
5445 block_rsv->size - block_rsv->reserved);
5446 block_rsv->reserved += num_bytes;
5447 sinfo->bytes_may_use += num_bytes;
5448 trace_btrfs_space_reservation(fs_info, "space_info",
5449 sinfo->flags, num_bytes,
5450 1);
5451 }
5452 } else if (block_rsv->reserved > block_rsv->size) {
5453 num_bytes = block_rsv->reserved - block_rsv->size;
5454 sinfo->bytes_may_use -= num_bytes;
5455 trace_btrfs_space_reservation(fs_info, "space_info",
5456 sinfo->flags, num_bytes, 0);
5457 block_rsv->reserved = block_rsv->size;
5458 }
5459
5460 if (block_rsv->reserved == block_rsv->size)
5461 block_rsv->full = 1;
5462 else
5463 block_rsv->full = 0;
5464
5465 spin_unlock(&block_rsv->lock);
5466 spin_unlock(&sinfo->lock);
5467 }
5468
5469 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5470 {
5471 struct btrfs_space_info *space_info;
5472
5473 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5474 fs_info->chunk_block_rsv.space_info = space_info;
5475
5476 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5477 fs_info->global_block_rsv.space_info = space_info;
5478 fs_info->delalloc_block_rsv.space_info = space_info;
5479 fs_info->trans_block_rsv.space_info = space_info;
5480 fs_info->empty_block_rsv.space_info = space_info;
5481 fs_info->delayed_block_rsv.space_info = space_info;
5482
5483 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5484 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5485 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5486 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5487 if (fs_info->quota_root)
5488 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5489 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5490
5491 update_global_block_rsv(fs_info);
5492 }
5493
5494 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5495 {
5496 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5497 (u64)-1);
5498 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5499 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5500 WARN_ON(fs_info->trans_block_rsv.size > 0);
5501 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5502 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5503 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5504 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5505 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5506 }
5507
5508 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5509 struct btrfs_root *root)
5510 {
5511 if (!trans->block_rsv)
5512 return;
5513
5514 if (!trans->bytes_reserved)
5515 return;
5516
5517 trace_btrfs_space_reservation(root->fs_info, "transaction",
5518 trans->transid, trans->bytes_reserved, 0);
5519 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5520 trans->bytes_reserved = 0;
5521 }
5522
5523 /*
5524 * To be called after all the new block groups attached to the transaction
5525 * handle have been created (btrfs_create_pending_block_groups()).
5526 */
5527 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5528 {
5529 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5530
5531 if (!trans->chunk_bytes_reserved)
5532 return;
5533
5534 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5535
5536 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5537 trans->chunk_bytes_reserved);
5538 trans->chunk_bytes_reserved = 0;
5539 }
5540
5541 /* Can only return 0 or -ENOSPC */
5542 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5543 struct inode *inode)
5544 {
5545 struct btrfs_root *root = BTRFS_I(inode)->root;
5546 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5547 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5548
5549 /*
5550 * We need to hold space in order to delete our orphan item once we've
5551 * added it, so this takes the reservation so we can release it later
5552 * when we are truly done with the orphan item.
5553 */
5554 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5555 trace_btrfs_space_reservation(root->fs_info, "orphan",
5556 btrfs_ino(inode), num_bytes, 1);
5557 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5558 }
5559
5560 void btrfs_orphan_release_metadata(struct inode *inode)
5561 {
5562 struct btrfs_root *root = BTRFS_I(inode)->root;
5563 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5564 trace_btrfs_space_reservation(root->fs_info, "orphan",
5565 btrfs_ino(inode), num_bytes, 0);
5566 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5567 }
5568
5569 /*
5570 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5571 * root: the root of the parent directory
5572 * rsv: block reservation
5573 * items: the number of items that we need do reservation
5574 * qgroup_reserved: used to return the reserved size in qgroup
5575 *
5576 * This function is used to reserve the space for snapshot/subvolume
5577 * creation and deletion. Those operations are different with the
5578 * common file/directory operations, they change two fs/file trees
5579 * and root tree, the number of items that the qgroup reserves is
5580 * different with the free space reservation. So we can not use
5581 * the space reservation mechanism in start_transaction().
5582 */
5583 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5584 struct btrfs_block_rsv *rsv,
5585 int items,
5586 u64 *qgroup_reserved,
5587 bool use_global_rsv)
5588 {
5589 u64 num_bytes;
5590 int ret;
5591 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5592
5593 if (root->fs_info->quota_enabled) {
5594 /* One for parent inode, two for dir entries */
5595 num_bytes = 3 * root->nodesize;
5596 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5597 if (ret)
5598 return ret;
5599 } else {
5600 num_bytes = 0;
5601 }
5602
5603 *qgroup_reserved = num_bytes;
5604
5605 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5606 rsv->space_info = __find_space_info(root->fs_info,
5607 BTRFS_BLOCK_GROUP_METADATA);
5608 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5609 BTRFS_RESERVE_FLUSH_ALL);
5610
5611 if (ret == -ENOSPC && use_global_rsv)
5612 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5613
5614 if (ret && *qgroup_reserved)
5615 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5616
5617 return ret;
5618 }
5619
5620 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5621 struct btrfs_block_rsv *rsv,
5622 u64 qgroup_reserved)
5623 {
5624 btrfs_block_rsv_release(root, rsv, (u64)-1);
5625 }
5626
5627 /**
5628 * drop_outstanding_extent - drop an outstanding extent
5629 * @inode: the inode we're dropping the extent for
5630 * @num_bytes: the number of bytes we're releasing.
5631 *
5632 * This is called when we are freeing up an outstanding extent, either called
5633 * after an error or after an extent is written. This will return the number of
5634 * reserved extents that need to be freed. This must be called with
5635 * BTRFS_I(inode)->lock held.
5636 */
5637 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5638 {
5639 unsigned drop_inode_space = 0;
5640 unsigned dropped_extents = 0;
5641 unsigned num_extents = 0;
5642
5643 num_extents = (unsigned)div64_u64(num_bytes +
5644 BTRFS_MAX_EXTENT_SIZE - 1,
5645 BTRFS_MAX_EXTENT_SIZE);
5646 ASSERT(num_extents);
5647 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5648 BTRFS_I(inode)->outstanding_extents -= num_extents;
5649
5650 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5651 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5652 &BTRFS_I(inode)->runtime_flags))
5653 drop_inode_space = 1;
5654
5655 /*
5656 * If we have more or the same amount of outstanding extents than we have
5657 * reserved then we need to leave the reserved extents count alone.
5658 */
5659 if (BTRFS_I(inode)->outstanding_extents >=
5660 BTRFS_I(inode)->reserved_extents)
5661 return drop_inode_space;
5662
5663 dropped_extents = BTRFS_I(inode)->reserved_extents -
5664 BTRFS_I(inode)->outstanding_extents;
5665 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5666 return dropped_extents + drop_inode_space;
5667 }
5668
5669 /**
5670 * calc_csum_metadata_size - return the amount of metadata space that must be
5671 * reserved/freed for the given bytes.
5672 * @inode: the inode we're manipulating
5673 * @num_bytes: the number of bytes in question
5674 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5675 *
5676 * This adjusts the number of csum_bytes in the inode and then returns the
5677 * correct amount of metadata that must either be reserved or freed. We
5678 * calculate how many checksums we can fit into one leaf and then divide the
5679 * number of bytes that will need to be checksumed by this value to figure out
5680 * how many checksums will be required. If we are adding bytes then the number
5681 * may go up and we will return the number of additional bytes that must be
5682 * reserved. If it is going down we will return the number of bytes that must
5683 * be freed.
5684 *
5685 * This must be called with BTRFS_I(inode)->lock held.
5686 */
5687 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5688 int reserve)
5689 {
5690 struct btrfs_root *root = BTRFS_I(inode)->root;
5691 u64 old_csums, num_csums;
5692
5693 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5694 BTRFS_I(inode)->csum_bytes == 0)
5695 return 0;
5696
5697 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5698 if (reserve)
5699 BTRFS_I(inode)->csum_bytes += num_bytes;
5700 else
5701 BTRFS_I(inode)->csum_bytes -= num_bytes;
5702 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5703
5704 /* No change, no need to reserve more */
5705 if (old_csums == num_csums)
5706 return 0;
5707
5708 if (reserve)
5709 return btrfs_calc_trans_metadata_size(root,
5710 num_csums - old_csums);
5711
5712 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5713 }
5714
5715 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5716 {
5717 struct btrfs_root *root = BTRFS_I(inode)->root;
5718 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5719 u64 to_reserve = 0;
5720 u64 csum_bytes;
5721 unsigned nr_extents = 0;
5722 int extra_reserve = 0;
5723 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5724 int ret = 0;
5725 bool delalloc_lock = true;
5726 u64 to_free = 0;
5727 unsigned dropped;
5728
5729 /* If we are a free space inode we need to not flush since we will be in
5730 * the middle of a transaction commit. We also don't need the delalloc
5731 * mutex since we won't race with anybody. We need this mostly to make
5732 * lockdep shut its filthy mouth.
5733 */
5734 if (btrfs_is_free_space_inode(inode)) {
5735 flush = BTRFS_RESERVE_NO_FLUSH;
5736 delalloc_lock = false;
5737 }
5738
5739 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5740 btrfs_transaction_in_commit(root->fs_info))
5741 schedule_timeout(1);
5742
5743 if (delalloc_lock)
5744 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5745
5746 num_bytes = ALIGN(num_bytes, root->sectorsize);
5747
5748 spin_lock(&BTRFS_I(inode)->lock);
5749 nr_extents = (unsigned)div64_u64(num_bytes +
5750 BTRFS_MAX_EXTENT_SIZE - 1,
5751 BTRFS_MAX_EXTENT_SIZE);
5752 BTRFS_I(inode)->outstanding_extents += nr_extents;
5753 nr_extents = 0;
5754
5755 if (BTRFS_I(inode)->outstanding_extents >
5756 BTRFS_I(inode)->reserved_extents)
5757 nr_extents = BTRFS_I(inode)->outstanding_extents -
5758 BTRFS_I(inode)->reserved_extents;
5759
5760 /*
5761 * Add an item to reserve for updating the inode when we complete the
5762 * delalloc io.
5763 */
5764 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5765 &BTRFS_I(inode)->runtime_flags)) {
5766 nr_extents++;
5767 extra_reserve = 1;
5768 }
5769
5770 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5771 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5772 csum_bytes = BTRFS_I(inode)->csum_bytes;
5773 spin_unlock(&BTRFS_I(inode)->lock);
5774
5775 if (root->fs_info->quota_enabled) {
5776 ret = btrfs_qgroup_reserve_meta(root,
5777 nr_extents * root->nodesize);
5778 if (ret)
5779 goto out_fail;
5780 }
5781
5782 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5783 if (unlikely(ret)) {
5784 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5785 goto out_fail;
5786 }
5787
5788 spin_lock(&BTRFS_I(inode)->lock);
5789 if (extra_reserve) {
5790 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5791 &BTRFS_I(inode)->runtime_flags);
5792 nr_extents--;
5793 }
5794 BTRFS_I(inode)->reserved_extents += nr_extents;
5795 spin_unlock(&BTRFS_I(inode)->lock);
5796
5797 if (delalloc_lock)
5798 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5799
5800 if (to_reserve)
5801 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5802 btrfs_ino(inode), to_reserve, 1);
5803 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5804
5805 return 0;
5806
5807 out_fail:
5808 spin_lock(&BTRFS_I(inode)->lock);
5809 dropped = drop_outstanding_extent(inode, num_bytes);
5810 /*
5811 * If the inodes csum_bytes is the same as the original
5812 * csum_bytes then we know we haven't raced with any free()ers
5813 * so we can just reduce our inodes csum bytes and carry on.
5814 */
5815 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5816 calc_csum_metadata_size(inode, num_bytes, 0);
5817 } else {
5818 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5819 u64 bytes;
5820
5821 /*
5822 * This is tricky, but first we need to figure out how much we
5823 * freed from any free-ers that occurred during this
5824 * reservation, so we reset ->csum_bytes to the csum_bytes
5825 * before we dropped our lock, and then call the free for the
5826 * number of bytes that were freed while we were trying our
5827 * reservation.
5828 */
5829 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5830 BTRFS_I(inode)->csum_bytes = csum_bytes;
5831 to_free = calc_csum_metadata_size(inode, bytes, 0);
5832
5833
5834 /*
5835 * Now we need to see how much we would have freed had we not
5836 * been making this reservation and our ->csum_bytes were not
5837 * artificially inflated.
5838 */
5839 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5840 bytes = csum_bytes - orig_csum_bytes;
5841 bytes = calc_csum_metadata_size(inode, bytes, 0);
5842
5843 /*
5844 * Now reset ->csum_bytes to what it should be. If bytes is
5845 * more than to_free then we would have freed more space had we
5846 * not had an artificially high ->csum_bytes, so we need to free
5847 * the remainder. If bytes is the same or less then we don't
5848 * need to do anything, the other free-ers did the correct
5849 * thing.
5850 */
5851 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5852 if (bytes > to_free)
5853 to_free = bytes - to_free;
5854 else
5855 to_free = 0;
5856 }
5857 spin_unlock(&BTRFS_I(inode)->lock);
5858 if (dropped)
5859 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5860
5861 if (to_free) {
5862 btrfs_block_rsv_release(root, block_rsv, to_free);
5863 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5864 btrfs_ino(inode), to_free, 0);
5865 }
5866 if (delalloc_lock)
5867 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5868 return ret;
5869 }
5870
5871 /**
5872 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5873 * @inode: the inode to release the reservation for
5874 * @num_bytes: the number of bytes we're releasing
5875 *
5876 * This will release the metadata reservation for an inode. This can be called
5877 * once we complete IO for a given set of bytes to release their metadata
5878 * reservations.
5879 */
5880 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5881 {
5882 struct btrfs_root *root = BTRFS_I(inode)->root;
5883 u64 to_free = 0;
5884 unsigned dropped;
5885
5886 num_bytes = ALIGN(num_bytes, root->sectorsize);
5887 spin_lock(&BTRFS_I(inode)->lock);
5888 dropped = drop_outstanding_extent(inode, num_bytes);
5889
5890 if (num_bytes)
5891 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5892 spin_unlock(&BTRFS_I(inode)->lock);
5893 if (dropped > 0)
5894 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5895
5896 if (btrfs_test_is_dummy_root(root))
5897 return;
5898
5899 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5900 btrfs_ino(inode), to_free, 0);
5901
5902 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5903 to_free);
5904 }
5905
5906 /**
5907 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5908 * delalloc
5909 * @inode: inode we're writing to
5910 * @start: start range we are writing to
5911 * @len: how long the range we are writing to
5912 *
5913 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5914 *
5915 * This will do the following things
5916 *
5917 * o reserve space in data space info for num bytes
5918 * and reserve precious corresponding qgroup space
5919 * (Done in check_data_free_space)
5920 *
5921 * o reserve space for metadata space, based on the number of outstanding
5922 * extents and how much csums will be needed
5923 * also reserve metadata space in a per root over-reserve method.
5924 * o add to the inodes->delalloc_bytes
5925 * o add it to the fs_info's delalloc inodes list.
5926 * (Above 3 all done in delalloc_reserve_metadata)
5927 *
5928 * Return 0 for success
5929 * Return <0 for error(-ENOSPC or -EQUOT)
5930 */
5931 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5932 {
5933 int ret;
5934
5935 ret = btrfs_check_data_free_space(inode, start, len);
5936 if (ret < 0)
5937 return ret;
5938 ret = btrfs_delalloc_reserve_metadata(inode, len);
5939 if (ret < 0)
5940 btrfs_free_reserved_data_space(inode, start, len);
5941 return ret;
5942 }
5943
5944 /**
5945 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5946 * @inode: inode we're releasing space for
5947 * @start: start position of the space already reserved
5948 * @len: the len of the space already reserved
5949 *
5950 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5951 * called in the case that we don't need the metadata AND data reservations
5952 * anymore. So if there is an error or we insert an inline extent.
5953 *
5954 * This function will release the metadata space that was not used and will
5955 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5956 * list if there are no delalloc bytes left.
5957 * Also it will handle the qgroup reserved space.
5958 */
5959 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5960 {
5961 btrfs_delalloc_release_metadata(inode, len);
5962 btrfs_free_reserved_data_space(inode, start, len);
5963 }
5964
5965 static int update_block_group(struct btrfs_trans_handle *trans,
5966 struct btrfs_root *root, u64 bytenr,
5967 u64 num_bytes, int alloc)
5968 {
5969 struct btrfs_block_group_cache *cache = NULL;
5970 struct btrfs_fs_info *info = root->fs_info;
5971 u64 total = num_bytes;
5972 u64 old_val;
5973 u64 byte_in_group;
5974 int factor;
5975
5976 /* block accounting for super block */
5977 spin_lock(&info->delalloc_root_lock);
5978 old_val = btrfs_super_bytes_used(info->super_copy);
5979 if (alloc)
5980 old_val += num_bytes;
5981 else
5982 old_val -= num_bytes;
5983 btrfs_set_super_bytes_used(info->super_copy, old_val);
5984 spin_unlock(&info->delalloc_root_lock);
5985
5986 while (total) {
5987 cache = btrfs_lookup_block_group(info, bytenr);
5988 if (!cache)
5989 return -ENOENT;
5990 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5991 BTRFS_BLOCK_GROUP_RAID1 |
5992 BTRFS_BLOCK_GROUP_RAID10))
5993 factor = 2;
5994 else
5995 factor = 1;
5996 /*
5997 * If this block group has free space cache written out, we
5998 * need to make sure to load it if we are removing space. This
5999 * is because we need the unpinning stage to actually add the
6000 * space back to the block group, otherwise we will leak space.
6001 */
6002 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6003 cache_block_group(cache, 1);
6004
6005 byte_in_group = bytenr - cache->key.objectid;
6006 WARN_ON(byte_in_group > cache->key.offset);
6007
6008 spin_lock(&cache->space_info->lock);
6009 spin_lock(&cache->lock);
6010
6011 if (btrfs_test_opt(root, SPACE_CACHE) &&
6012 cache->disk_cache_state < BTRFS_DC_CLEAR)
6013 cache->disk_cache_state = BTRFS_DC_CLEAR;
6014
6015 old_val = btrfs_block_group_used(&cache->item);
6016 num_bytes = min(total, cache->key.offset - byte_in_group);
6017 if (alloc) {
6018 old_val += num_bytes;
6019 btrfs_set_block_group_used(&cache->item, old_val);
6020 cache->reserved -= num_bytes;
6021 cache->space_info->bytes_reserved -= num_bytes;
6022 cache->space_info->bytes_used += num_bytes;
6023 cache->space_info->disk_used += num_bytes * factor;
6024 spin_unlock(&cache->lock);
6025 spin_unlock(&cache->space_info->lock);
6026 } else {
6027 old_val -= num_bytes;
6028 btrfs_set_block_group_used(&cache->item, old_val);
6029 cache->pinned += num_bytes;
6030 cache->space_info->bytes_pinned += num_bytes;
6031 cache->space_info->bytes_used -= num_bytes;
6032 cache->space_info->disk_used -= num_bytes * factor;
6033 spin_unlock(&cache->lock);
6034 spin_unlock(&cache->space_info->lock);
6035
6036 set_extent_dirty(info->pinned_extents,
6037 bytenr, bytenr + num_bytes - 1,
6038 GFP_NOFS | __GFP_NOFAIL);
6039 }
6040
6041 spin_lock(&trans->transaction->dirty_bgs_lock);
6042 if (list_empty(&cache->dirty_list)) {
6043 list_add_tail(&cache->dirty_list,
6044 &trans->transaction->dirty_bgs);
6045 trans->transaction->num_dirty_bgs++;
6046 btrfs_get_block_group(cache);
6047 }
6048 spin_unlock(&trans->transaction->dirty_bgs_lock);
6049
6050 /*
6051 * No longer have used bytes in this block group, queue it for
6052 * deletion. We do this after adding the block group to the
6053 * dirty list to avoid races between cleaner kthread and space
6054 * cache writeout.
6055 */
6056 if (!alloc && old_val == 0) {
6057 spin_lock(&info->unused_bgs_lock);
6058 if (list_empty(&cache->bg_list)) {
6059 btrfs_get_block_group(cache);
6060 list_add_tail(&cache->bg_list,
6061 &info->unused_bgs);
6062 }
6063 spin_unlock(&info->unused_bgs_lock);
6064 }
6065
6066 btrfs_put_block_group(cache);
6067 total -= num_bytes;
6068 bytenr += num_bytes;
6069 }
6070 return 0;
6071 }
6072
6073 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6074 {
6075 struct btrfs_block_group_cache *cache;
6076 u64 bytenr;
6077
6078 spin_lock(&root->fs_info->block_group_cache_lock);
6079 bytenr = root->fs_info->first_logical_byte;
6080 spin_unlock(&root->fs_info->block_group_cache_lock);
6081
6082 if (bytenr < (u64)-1)
6083 return bytenr;
6084
6085 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6086 if (!cache)
6087 return 0;
6088
6089 bytenr = cache->key.objectid;
6090 btrfs_put_block_group(cache);
6091
6092 return bytenr;
6093 }
6094
6095 static int pin_down_extent(struct btrfs_root *root,
6096 struct btrfs_block_group_cache *cache,
6097 u64 bytenr, u64 num_bytes, int reserved)
6098 {
6099 spin_lock(&cache->space_info->lock);
6100 spin_lock(&cache->lock);
6101 cache->pinned += num_bytes;
6102 cache->space_info->bytes_pinned += num_bytes;
6103 if (reserved) {
6104 cache->reserved -= num_bytes;
6105 cache->space_info->bytes_reserved -= num_bytes;
6106 }
6107 spin_unlock(&cache->lock);
6108 spin_unlock(&cache->space_info->lock);
6109
6110 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6111 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6112 if (reserved)
6113 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6114 return 0;
6115 }
6116
6117 /*
6118 * this function must be called within transaction
6119 */
6120 int btrfs_pin_extent(struct btrfs_root *root,
6121 u64 bytenr, u64 num_bytes, int reserved)
6122 {
6123 struct btrfs_block_group_cache *cache;
6124
6125 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6126 BUG_ON(!cache); /* Logic error */
6127
6128 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6129
6130 btrfs_put_block_group(cache);
6131 return 0;
6132 }
6133
6134 /*
6135 * this function must be called within transaction
6136 */
6137 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6138 u64 bytenr, u64 num_bytes)
6139 {
6140 struct btrfs_block_group_cache *cache;
6141 int ret;
6142
6143 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6144 if (!cache)
6145 return -EINVAL;
6146
6147 /*
6148 * pull in the free space cache (if any) so that our pin
6149 * removes the free space from the cache. We have load_only set
6150 * to one because the slow code to read in the free extents does check
6151 * the pinned extents.
6152 */
6153 cache_block_group(cache, 1);
6154
6155 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6156
6157 /* remove us from the free space cache (if we're there at all) */
6158 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6159 btrfs_put_block_group(cache);
6160 return ret;
6161 }
6162
6163 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6164 {
6165 int ret;
6166 struct btrfs_block_group_cache *block_group;
6167 struct btrfs_caching_control *caching_ctl;
6168
6169 block_group = btrfs_lookup_block_group(root->fs_info, start);
6170 if (!block_group)
6171 return -EINVAL;
6172
6173 cache_block_group(block_group, 0);
6174 caching_ctl = get_caching_control(block_group);
6175
6176 if (!caching_ctl) {
6177 /* Logic error */
6178 BUG_ON(!block_group_cache_done(block_group));
6179 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6180 } else {
6181 mutex_lock(&caching_ctl->mutex);
6182
6183 if (start >= caching_ctl->progress) {
6184 ret = add_excluded_extent(root, start, num_bytes);
6185 } else if (start + num_bytes <= caching_ctl->progress) {
6186 ret = btrfs_remove_free_space(block_group,
6187 start, num_bytes);
6188 } else {
6189 num_bytes = caching_ctl->progress - start;
6190 ret = btrfs_remove_free_space(block_group,
6191 start, num_bytes);
6192 if (ret)
6193 goto out_lock;
6194
6195 num_bytes = (start + num_bytes) -
6196 caching_ctl->progress;
6197 start = caching_ctl->progress;
6198 ret = add_excluded_extent(root, start, num_bytes);
6199 }
6200 out_lock:
6201 mutex_unlock(&caching_ctl->mutex);
6202 put_caching_control(caching_ctl);
6203 }
6204 btrfs_put_block_group(block_group);
6205 return ret;
6206 }
6207
6208 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6209 struct extent_buffer *eb)
6210 {
6211 struct btrfs_file_extent_item *item;
6212 struct btrfs_key key;
6213 int found_type;
6214 int i;
6215
6216 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6217 return 0;
6218
6219 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6220 btrfs_item_key_to_cpu(eb, &key, i);
6221 if (key.type != BTRFS_EXTENT_DATA_KEY)
6222 continue;
6223 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6224 found_type = btrfs_file_extent_type(eb, item);
6225 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6226 continue;
6227 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6228 continue;
6229 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6230 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6231 __exclude_logged_extent(log, key.objectid, key.offset);
6232 }
6233
6234 return 0;
6235 }
6236
6237 static void
6238 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6239 {
6240 atomic_inc(&bg->reservations);
6241 }
6242
6243 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6244 const u64 start)
6245 {
6246 struct btrfs_block_group_cache *bg;
6247
6248 bg = btrfs_lookup_block_group(fs_info, start);
6249 ASSERT(bg);
6250 if (atomic_dec_and_test(&bg->reservations))
6251 wake_up_atomic_t(&bg->reservations);
6252 btrfs_put_block_group(bg);
6253 }
6254
6255 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6256 {
6257 schedule();
6258 return 0;
6259 }
6260
6261 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6262 {
6263 struct btrfs_space_info *space_info = bg->space_info;
6264
6265 ASSERT(bg->ro);
6266
6267 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6268 return;
6269
6270 /*
6271 * Our block group is read only but before we set it to read only,
6272 * some task might have had allocated an extent from it already, but it
6273 * has not yet created a respective ordered extent (and added it to a
6274 * root's list of ordered extents).
6275 * Therefore wait for any task currently allocating extents, since the
6276 * block group's reservations counter is incremented while a read lock
6277 * on the groups' semaphore is held and decremented after releasing
6278 * the read access on that semaphore and creating the ordered extent.
6279 */
6280 down_write(&space_info->groups_sem);
6281 up_write(&space_info->groups_sem);
6282
6283 wait_on_atomic_t(&bg->reservations,
6284 btrfs_wait_bg_reservations_atomic_t,
6285 TASK_UNINTERRUPTIBLE);
6286 }
6287
6288 /**
6289 * btrfs_update_reserved_bytes - update the block_group and space info counters
6290 * @cache: The cache we are manipulating
6291 * @num_bytes: The number of bytes in question
6292 * @reserve: One of the reservation enums
6293 * @delalloc: The blocks are allocated for the delalloc write
6294 *
6295 * This is called by the allocator when it reserves space, or by somebody who is
6296 * freeing space that was never actually used on disk. For example if you
6297 * reserve some space for a new leaf in transaction A and before transaction A
6298 * commits you free that leaf, you call this with reserve set to 0 in order to
6299 * clear the reservation.
6300 *
6301 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6302 * ENOSPC accounting. For data we handle the reservation through clearing the
6303 * delalloc bits in the io_tree. We have to do this since we could end up
6304 * allocating less disk space for the amount of data we have reserved in the
6305 * case of compression.
6306 *
6307 * If this is a reservation and the block group has become read only we cannot
6308 * make the reservation and return -EAGAIN, otherwise this function always
6309 * succeeds.
6310 */
6311 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6312 u64 num_bytes, int reserve, int delalloc)
6313 {
6314 struct btrfs_space_info *space_info = cache->space_info;
6315 int ret = 0;
6316
6317 spin_lock(&space_info->lock);
6318 spin_lock(&cache->lock);
6319 if (reserve != RESERVE_FREE) {
6320 if (cache->ro) {
6321 ret = -EAGAIN;
6322 } else {
6323 cache->reserved += num_bytes;
6324 space_info->bytes_reserved += num_bytes;
6325 if (reserve == RESERVE_ALLOC) {
6326 trace_btrfs_space_reservation(cache->fs_info,
6327 "space_info", space_info->flags,
6328 num_bytes, 0);
6329 space_info->bytes_may_use -= num_bytes;
6330 }
6331
6332 if (delalloc)
6333 cache->delalloc_bytes += num_bytes;
6334 }
6335 } else {
6336 if (cache->ro)
6337 space_info->bytes_readonly += num_bytes;
6338 cache->reserved -= num_bytes;
6339 space_info->bytes_reserved -= num_bytes;
6340
6341 if (delalloc)
6342 cache->delalloc_bytes -= num_bytes;
6343 }
6344 spin_unlock(&cache->lock);
6345 spin_unlock(&space_info->lock);
6346 return ret;
6347 }
6348
6349 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6350 struct btrfs_root *root)
6351 {
6352 struct btrfs_fs_info *fs_info = root->fs_info;
6353 struct btrfs_caching_control *next;
6354 struct btrfs_caching_control *caching_ctl;
6355 struct btrfs_block_group_cache *cache;
6356
6357 down_write(&fs_info->commit_root_sem);
6358
6359 list_for_each_entry_safe(caching_ctl, next,
6360 &fs_info->caching_block_groups, list) {
6361 cache = caching_ctl->block_group;
6362 if (block_group_cache_done(cache)) {
6363 cache->last_byte_to_unpin = (u64)-1;
6364 list_del_init(&caching_ctl->list);
6365 put_caching_control(caching_ctl);
6366 } else {
6367 cache->last_byte_to_unpin = caching_ctl->progress;
6368 }
6369 }
6370
6371 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6372 fs_info->pinned_extents = &fs_info->freed_extents[1];
6373 else
6374 fs_info->pinned_extents = &fs_info->freed_extents[0];
6375
6376 up_write(&fs_info->commit_root_sem);
6377
6378 update_global_block_rsv(fs_info);
6379 }
6380
6381 /*
6382 * Returns the free cluster for the given space info and sets empty_cluster to
6383 * what it should be based on the mount options.
6384 */
6385 static struct btrfs_free_cluster *
6386 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6387 u64 *empty_cluster)
6388 {
6389 struct btrfs_free_cluster *ret = NULL;
6390 bool ssd = btrfs_test_opt(root, SSD);
6391
6392 *empty_cluster = 0;
6393 if (btrfs_mixed_space_info(space_info))
6394 return ret;
6395
6396 if (ssd)
6397 *empty_cluster = SZ_2M;
6398 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6399 ret = &root->fs_info->meta_alloc_cluster;
6400 if (!ssd)
6401 *empty_cluster = SZ_64K;
6402 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6403 ret = &root->fs_info->data_alloc_cluster;
6404 }
6405
6406 return ret;
6407 }
6408
6409 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6410 const bool return_free_space)
6411 {
6412 struct btrfs_fs_info *fs_info = root->fs_info;
6413 struct btrfs_block_group_cache *cache = NULL;
6414 struct btrfs_space_info *space_info;
6415 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6416 struct btrfs_free_cluster *cluster = NULL;
6417 u64 len;
6418 u64 total_unpinned = 0;
6419 u64 empty_cluster = 0;
6420 bool readonly;
6421
6422 while (start <= end) {
6423 readonly = false;
6424 if (!cache ||
6425 start >= cache->key.objectid + cache->key.offset) {
6426 if (cache)
6427 btrfs_put_block_group(cache);
6428 total_unpinned = 0;
6429 cache = btrfs_lookup_block_group(fs_info, start);
6430 BUG_ON(!cache); /* Logic error */
6431
6432 cluster = fetch_cluster_info(root,
6433 cache->space_info,
6434 &empty_cluster);
6435 empty_cluster <<= 1;
6436 }
6437
6438 len = cache->key.objectid + cache->key.offset - start;
6439 len = min(len, end + 1 - start);
6440
6441 if (start < cache->last_byte_to_unpin) {
6442 len = min(len, cache->last_byte_to_unpin - start);
6443 if (return_free_space)
6444 btrfs_add_free_space(cache, start, len);
6445 }
6446
6447 start += len;
6448 total_unpinned += len;
6449 space_info = cache->space_info;
6450
6451 /*
6452 * If this space cluster has been marked as fragmented and we've
6453 * unpinned enough in this block group to potentially allow a
6454 * cluster to be created inside of it go ahead and clear the
6455 * fragmented check.
6456 */
6457 if (cluster && cluster->fragmented &&
6458 total_unpinned > empty_cluster) {
6459 spin_lock(&cluster->lock);
6460 cluster->fragmented = 0;
6461 spin_unlock(&cluster->lock);
6462 }
6463
6464 spin_lock(&space_info->lock);
6465 spin_lock(&cache->lock);
6466 cache->pinned -= len;
6467 space_info->bytes_pinned -= len;
6468 space_info->max_extent_size = 0;
6469 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6470 if (cache->ro) {
6471 space_info->bytes_readonly += len;
6472 readonly = true;
6473 }
6474 spin_unlock(&cache->lock);
6475 if (!readonly && global_rsv->space_info == space_info) {
6476 spin_lock(&global_rsv->lock);
6477 if (!global_rsv->full) {
6478 len = min(len, global_rsv->size -
6479 global_rsv->reserved);
6480 global_rsv->reserved += len;
6481 space_info->bytes_may_use += len;
6482 if (global_rsv->reserved >= global_rsv->size)
6483 global_rsv->full = 1;
6484 }
6485 spin_unlock(&global_rsv->lock);
6486 }
6487 spin_unlock(&space_info->lock);
6488 }
6489
6490 if (cache)
6491 btrfs_put_block_group(cache);
6492 return 0;
6493 }
6494
6495 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6496 struct btrfs_root *root)
6497 {
6498 struct btrfs_fs_info *fs_info = root->fs_info;
6499 struct btrfs_block_group_cache *block_group, *tmp;
6500 struct list_head *deleted_bgs;
6501 struct extent_io_tree *unpin;
6502 u64 start;
6503 u64 end;
6504 int ret;
6505
6506 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6507 unpin = &fs_info->freed_extents[1];
6508 else
6509 unpin = &fs_info->freed_extents[0];
6510
6511 while (!trans->aborted) {
6512 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6513 ret = find_first_extent_bit(unpin, 0, &start, &end,
6514 EXTENT_DIRTY, NULL);
6515 if (ret) {
6516 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6517 break;
6518 }
6519
6520 if (btrfs_test_opt(root, DISCARD))
6521 ret = btrfs_discard_extent(root, start,
6522 end + 1 - start, NULL);
6523
6524 clear_extent_dirty(unpin, start, end);
6525 unpin_extent_range(root, start, end, true);
6526 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6527 cond_resched();
6528 }
6529
6530 /*
6531 * Transaction is finished. We don't need the lock anymore. We
6532 * do need to clean up the block groups in case of a transaction
6533 * abort.
6534 */
6535 deleted_bgs = &trans->transaction->deleted_bgs;
6536 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6537 u64 trimmed = 0;
6538
6539 ret = -EROFS;
6540 if (!trans->aborted)
6541 ret = btrfs_discard_extent(root,
6542 block_group->key.objectid,
6543 block_group->key.offset,
6544 &trimmed);
6545
6546 list_del_init(&block_group->bg_list);
6547 btrfs_put_block_group_trimming(block_group);
6548 btrfs_put_block_group(block_group);
6549
6550 if (ret) {
6551 const char *errstr = btrfs_decode_error(ret);
6552 btrfs_warn(fs_info,
6553 "Discard failed while removing blockgroup: errno=%d %s\n",
6554 ret, errstr);
6555 }
6556 }
6557
6558 return 0;
6559 }
6560
6561 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6562 u64 owner, u64 root_objectid)
6563 {
6564 struct btrfs_space_info *space_info;
6565 u64 flags;
6566
6567 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6568 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6569 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6570 else
6571 flags = BTRFS_BLOCK_GROUP_METADATA;
6572 } else {
6573 flags = BTRFS_BLOCK_GROUP_DATA;
6574 }
6575
6576 space_info = __find_space_info(fs_info, flags);
6577 BUG_ON(!space_info); /* Logic bug */
6578 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6579 }
6580
6581
6582 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6583 struct btrfs_root *root,
6584 struct btrfs_delayed_ref_node *node, u64 parent,
6585 u64 root_objectid, u64 owner_objectid,
6586 u64 owner_offset, int refs_to_drop,
6587 struct btrfs_delayed_extent_op *extent_op)
6588 {
6589 struct btrfs_key key;
6590 struct btrfs_path *path;
6591 struct btrfs_fs_info *info = root->fs_info;
6592 struct btrfs_root *extent_root = info->extent_root;
6593 struct extent_buffer *leaf;
6594 struct btrfs_extent_item *ei;
6595 struct btrfs_extent_inline_ref *iref;
6596 int ret;
6597 int is_data;
6598 int extent_slot = 0;
6599 int found_extent = 0;
6600 int num_to_del = 1;
6601 u32 item_size;
6602 u64 refs;
6603 u64 bytenr = node->bytenr;
6604 u64 num_bytes = node->num_bytes;
6605 int last_ref = 0;
6606 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6607 SKINNY_METADATA);
6608
6609 path = btrfs_alloc_path();
6610 if (!path)
6611 return -ENOMEM;
6612
6613 path->reada = READA_FORWARD;
6614 path->leave_spinning = 1;
6615
6616 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6617 BUG_ON(!is_data && refs_to_drop != 1);
6618
6619 if (is_data)
6620 skinny_metadata = 0;
6621
6622 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6623 bytenr, num_bytes, parent,
6624 root_objectid, owner_objectid,
6625 owner_offset);
6626 if (ret == 0) {
6627 extent_slot = path->slots[0];
6628 while (extent_slot >= 0) {
6629 btrfs_item_key_to_cpu(path->nodes[0], &key,
6630 extent_slot);
6631 if (key.objectid != bytenr)
6632 break;
6633 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6634 key.offset == num_bytes) {
6635 found_extent = 1;
6636 break;
6637 }
6638 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6639 key.offset == owner_objectid) {
6640 found_extent = 1;
6641 break;
6642 }
6643 if (path->slots[0] - extent_slot > 5)
6644 break;
6645 extent_slot--;
6646 }
6647 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6648 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6649 if (found_extent && item_size < sizeof(*ei))
6650 found_extent = 0;
6651 #endif
6652 if (!found_extent) {
6653 BUG_ON(iref);
6654 ret = remove_extent_backref(trans, extent_root, path,
6655 NULL, refs_to_drop,
6656 is_data, &last_ref);
6657 if (ret) {
6658 btrfs_abort_transaction(trans, extent_root, ret);
6659 goto out;
6660 }
6661 btrfs_release_path(path);
6662 path->leave_spinning = 1;
6663
6664 key.objectid = bytenr;
6665 key.type = BTRFS_EXTENT_ITEM_KEY;
6666 key.offset = num_bytes;
6667
6668 if (!is_data && skinny_metadata) {
6669 key.type = BTRFS_METADATA_ITEM_KEY;
6670 key.offset = owner_objectid;
6671 }
6672
6673 ret = btrfs_search_slot(trans, extent_root,
6674 &key, path, -1, 1);
6675 if (ret > 0 && skinny_metadata && path->slots[0]) {
6676 /*
6677 * Couldn't find our skinny metadata item,
6678 * see if we have ye olde extent item.
6679 */
6680 path->slots[0]--;
6681 btrfs_item_key_to_cpu(path->nodes[0], &key,
6682 path->slots[0]);
6683 if (key.objectid == bytenr &&
6684 key.type == BTRFS_EXTENT_ITEM_KEY &&
6685 key.offset == num_bytes)
6686 ret = 0;
6687 }
6688
6689 if (ret > 0 && skinny_metadata) {
6690 skinny_metadata = false;
6691 key.objectid = bytenr;
6692 key.type = BTRFS_EXTENT_ITEM_KEY;
6693 key.offset = num_bytes;
6694 btrfs_release_path(path);
6695 ret = btrfs_search_slot(trans, extent_root,
6696 &key, path, -1, 1);
6697 }
6698
6699 if (ret) {
6700 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6701 ret, bytenr);
6702 if (ret > 0)
6703 btrfs_print_leaf(extent_root,
6704 path->nodes[0]);
6705 }
6706 if (ret < 0) {
6707 btrfs_abort_transaction(trans, extent_root, ret);
6708 goto out;
6709 }
6710 extent_slot = path->slots[0];
6711 }
6712 } else if (WARN_ON(ret == -ENOENT)) {
6713 btrfs_print_leaf(extent_root, path->nodes[0]);
6714 btrfs_err(info,
6715 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6716 bytenr, parent, root_objectid, owner_objectid,
6717 owner_offset);
6718 btrfs_abort_transaction(trans, extent_root, ret);
6719 goto out;
6720 } else {
6721 btrfs_abort_transaction(trans, extent_root, ret);
6722 goto out;
6723 }
6724
6725 leaf = path->nodes[0];
6726 item_size = btrfs_item_size_nr(leaf, extent_slot);
6727 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6728 if (item_size < sizeof(*ei)) {
6729 BUG_ON(found_extent || extent_slot != path->slots[0]);
6730 ret = convert_extent_item_v0(trans, extent_root, path,
6731 owner_objectid, 0);
6732 if (ret < 0) {
6733 btrfs_abort_transaction(trans, extent_root, ret);
6734 goto out;
6735 }
6736
6737 btrfs_release_path(path);
6738 path->leave_spinning = 1;
6739
6740 key.objectid = bytenr;
6741 key.type = BTRFS_EXTENT_ITEM_KEY;
6742 key.offset = num_bytes;
6743
6744 ret = btrfs_search_slot(trans, extent_root, &key, path,
6745 -1, 1);
6746 if (ret) {
6747 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6748 ret, bytenr);
6749 btrfs_print_leaf(extent_root, path->nodes[0]);
6750 }
6751 if (ret < 0) {
6752 btrfs_abort_transaction(trans, extent_root, ret);
6753 goto out;
6754 }
6755
6756 extent_slot = path->slots[0];
6757 leaf = path->nodes[0];
6758 item_size = btrfs_item_size_nr(leaf, extent_slot);
6759 }
6760 #endif
6761 BUG_ON(item_size < sizeof(*ei));
6762 ei = btrfs_item_ptr(leaf, extent_slot,
6763 struct btrfs_extent_item);
6764 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6765 key.type == BTRFS_EXTENT_ITEM_KEY) {
6766 struct btrfs_tree_block_info *bi;
6767 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6768 bi = (struct btrfs_tree_block_info *)(ei + 1);
6769 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6770 }
6771
6772 refs = btrfs_extent_refs(leaf, ei);
6773 if (refs < refs_to_drop) {
6774 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6775 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6776 ret = -EINVAL;
6777 btrfs_abort_transaction(trans, extent_root, ret);
6778 goto out;
6779 }
6780 refs -= refs_to_drop;
6781
6782 if (refs > 0) {
6783 if (extent_op)
6784 __run_delayed_extent_op(extent_op, leaf, ei);
6785 /*
6786 * In the case of inline back ref, reference count will
6787 * be updated by remove_extent_backref
6788 */
6789 if (iref) {
6790 BUG_ON(!found_extent);
6791 } else {
6792 btrfs_set_extent_refs(leaf, ei, refs);
6793 btrfs_mark_buffer_dirty(leaf);
6794 }
6795 if (found_extent) {
6796 ret = remove_extent_backref(trans, extent_root, path,
6797 iref, refs_to_drop,
6798 is_data, &last_ref);
6799 if (ret) {
6800 btrfs_abort_transaction(trans, extent_root, ret);
6801 goto out;
6802 }
6803 }
6804 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6805 root_objectid);
6806 } else {
6807 if (found_extent) {
6808 BUG_ON(is_data && refs_to_drop !=
6809 extent_data_ref_count(path, iref));
6810 if (iref) {
6811 BUG_ON(path->slots[0] != extent_slot);
6812 } else {
6813 BUG_ON(path->slots[0] != extent_slot + 1);
6814 path->slots[0] = extent_slot;
6815 num_to_del = 2;
6816 }
6817 }
6818
6819 last_ref = 1;
6820 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6821 num_to_del);
6822 if (ret) {
6823 btrfs_abort_transaction(trans, extent_root, ret);
6824 goto out;
6825 }
6826 btrfs_release_path(path);
6827
6828 if (is_data) {
6829 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6830 if (ret) {
6831 btrfs_abort_transaction(trans, extent_root, ret);
6832 goto out;
6833 }
6834 }
6835
6836 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6837 num_bytes);
6838 if (ret) {
6839 btrfs_abort_transaction(trans, extent_root, ret);
6840 goto out;
6841 }
6842
6843 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6844 if (ret) {
6845 btrfs_abort_transaction(trans, extent_root, ret);
6846 goto out;
6847 }
6848 }
6849 btrfs_release_path(path);
6850
6851 out:
6852 btrfs_free_path(path);
6853 return ret;
6854 }
6855
6856 /*
6857 * when we free an block, it is possible (and likely) that we free the last
6858 * delayed ref for that extent as well. This searches the delayed ref tree for
6859 * a given extent, and if there are no other delayed refs to be processed, it
6860 * removes it from the tree.
6861 */
6862 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6863 struct btrfs_root *root, u64 bytenr)
6864 {
6865 struct btrfs_delayed_ref_head *head;
6866 struct btrfs_delayed_ref_root *delayed_refs;
6867 int ret = 0;
6868
6869 delayed_refs = &trans->transaction->delayed_refs;
6870 spin_lock(&delayed_refs->lock);
6871 head = btrfs_find_delayed_ref_head(trans, bytenr);
6872 if (!head)
6873 goto out_delayed_unlock;
6874
6875 spin_lock(&head->lock);
6876 if (!list_empty(&head->ref_list))
6877 goto out;
6878
6879 if (head->extent_op) {
6880 if (!head->must_insert_reserved)
6881 goto out;
6882 btrfs_free_delayed_extent_op(head->extent_op);
6883 head->extent_op = NULL;
6884 }
6885
6886 /*
6887 * waiting for the lock here would deadlock. If someone else has it
6888 * locked they are already in the process of dropping it anyway
6889 */
6890 if (!mutex_trylock(&head->mutex))
6891 goto out;
6892
6893 /*
6894 * at this point we have a head with no other entries. Go
6895 * ahead and process it.
6896 */
6897 head->node.in_tree = 0;
6898 rb_erase(&head->href_node, &delayed_refs->href_root);
6899
6900 atomic_dec(&delayed_refs->num_entries);
6901
6902 /*
6903 * we don't take a ref on the node because we're removing it from the
6904 * tree, so we just steal the ref the tree was holding.
6905 */
6906 delayed_refs->num_heads--;
6907 if (head->processing == 0)
6908 delayed_refs->num_heads_ready--;
6909 head->processing = 0;
6910 spin_unlock(&head->lock);
6911 spin_unlock(&delayed_refs->lock);
6912
6913 BUG_ON(head->extent_op);
6914 if (head->must_insert_reserved)
6915 ret = 1;
6916
6917 mutex_unlock(&head->mutex);
6918 btrfs_put_delayed_ref(&head->node);
6919 return ret;
6920 out:
6921 spin_unlock(&head->lock);
6922
6923 out_delayed_unlock:
6924 spin_unlock(&delayed_refs->lock);
6925 return 0;
6926 }
6927
6928 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6929 struct btrfs_root *root,
6930 struct extent_buffer *buf,
6931 u64 parent, int last_ref)
6932 {
6933 int pin = 1;
6934 int ret;
6935
6936 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6937 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6938 buf->start, buf->len,
6939 parent, root->root_key.objectid,
6940 btrfs_header_level(buf),
6941 BTRFS_DROP_DELAYED_REF, NULL);
6942 BUG_ON(ret); /* -ENOMEM */
6943 }
6944
6945 if (!last_ref)
6946 return;
6947
6948 if (btrfs_header_generation(buf) == trans->transid) {
6949 struct btrfs_block_group_cache *cache;
6950
6951 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6952 ret = check_ref_cleanup(trans, root, buf->start);
6953 if (!ret)
6954 goto out;
6955 }
6956
6957 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6958
6959 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6960 pin_down_extent(root, cache, buf->start, buf->len, 1);
6961 btrfs_put_block_group(cache);
6962 goto out;
6963 }
6964
6965 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6966
6967 btrfs_add_free_space(cache, buf->start, buf->len);
6968 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6969 btrfs_put_block_group(cache);
6970 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6971 pin = 0;
6972 }
6973 out:
6974 if (pin)
6975 add_pinned_bytes(root->fs_info, buf->len,
6976 btrfs_header_level(buf),
6977 root->root_key.objectid);
6978
6979 /*
6980 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6981 * anymore.
6982 */
6983 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6984 }
6985
6986 /* Can return -ENOMEM */
6987 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6988 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6989 u64 owner, u64 offset)
6990 {
6991 int ret;
6992 struct btrfs_fs_info *fs_info = root->fs_info;
6993
6994 if (btrfs_test_is_dummy_root(root))
6995 return 0;
6996
6997 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6998
6999 /*
7000 * tree log blocks never actually go into the extent allocation
7001 * tree, just update pinning info and exit early.
7002 */
7003 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7004 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7005 /* unlocks the pinned mutex */
7006 btrfs_pin_extent(root, bytenr, num_bytes, 1);
7007 ret = 0;
7008 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7009 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7010 num_bytes,
7011 parent, root_objectid, (int)owner,
7012 BTRFS_DROP_DELAYED_REF, NULL);
7013 } else {
7014 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7015 num_bytes,
7016 parent, root_objectid, owner,
7017 offset, 0,
7018 BTRFS_DROP_DELAYED_REF, NULL);
7019 }
7020 return ret;
7021 }
7022
7023 /*
7024 * when we wait for progress in the block group caching, its because
7025 * our allocation attempt failed at least once. So, we must sleep
7026 * and let some progress happen before we try again.
7027 *
7028 * This function will sleep at least once waiting for new free space to
7029 * show up, and then it will check the block group free space numbers
7030 * for our min num_bytes. Another option is to have it go ahead
7031 * and look in the rbtree for a free extent of a given size, but this
7032 * is a good start.
7033 *
7034 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7035 * any of the information in this block group.
7036 */
7037 static noinline void
7038 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7039 u64 num_bytes)
7040 {
7041 struct btrfs_caching_control *caching_ctl;
7042
7043 caching_ctl = get_caching_control(cache);
7044 if (!caching_ctl)
7045 return;
7046
7047 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7048 (cache->free_space_ctl->free_space >= num_bytes));
7049
7050 put_caching_control(caching_ctl);
7051 }
7052
7053 static noinline int
7054 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7055 {
7056 struct btrfs_caching_control *caching_ctl;
7057 int ret = 0;
7058
7059 caching_ctl = get_caching_control(cache);
7060 if (!caching_ctl)
7061 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7062
7063 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7064 if (cache->cached == BTRFS_CACHE_ERROR)
7065 ret = -EIO;
7066 put_caching_control(caching_ctl);
7067 return ret;
7068 }
7069
7070 int __get_raid_index(u64 flags)
7071 {
7072 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7073 return BTRFS_RAID_RAID10;
7074 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7075 return BTRFS_RAID_RAID1;
7076 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7077 return BTRFS_RAID_DUP;
7078 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7079 return BTRFS_RAID_RAID0;
7080 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7081 return BTRFS_RAID_RAID5;
7082 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7083 return BTRFS_RAID_RAID6;
7084
7085 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7086 }
7087
7088 int get_block_group_index(struct btrfs_block_group_cache *cache)
7089 {
7090 return __get_raid_index(cache->flags);
7091 }
7092
7093 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7094 [BTRFS_RAID_RAID10] = "raid10",
7095 [BTRFS_RAID_RAID1] = "raid1",
7096 [BTRFS_RAID_DUP] = "dup",
7097 [BTRFS_RAID_RAID0] = "raid0",
7098 [BTRFS_RAID_SINGLE] = "single",
7099 [BTRFS_RAID_RAID5] = "raid5",
7100 [BTRFS_RAID_RAID6] = "raid6",
7101 };
7102
7103 static const char *get_raid_name(enum btrfs_raid_types type)
7104 {
7105 if (type >= BTRFS_NR_RAID_TYPES)
7106 return NULL;
7107
7108 return btrfs_raid_type_names[type];
7109 }
7110
7111 enum btrfs_loop_type {
7112 LOOP_CACHING_NOWAIT = 0,
7113 LOOP_CACHING_WAIT = 1,
7114 LOOP_ALLOC_CHUNK = 2,
7115 LOOP_NO_EMPTY_SIZE = 3,
7116 };
7117
7118 static inline void
7119 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7120 int delalloc)
7121 {
7122 if (delalloc)
7123 down_read(&cache->data_rwsem);
7124 }
7125
7126 static inline void
7127 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7128 int delalloc)
7129 {
7130 btrfs_get_block_group(cache);
7131 if (delalloc)
7132 down_read(&cache->data_rwsem);
7133 }
7134
7135 static struct btrfs_block_group_cache *
7136 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7137 struct btrfs_free_cluster *cluster,
7138 int delalloc)
7139 {
7140 struct btrfs_block_group_cache *used_bg = NULL;
7141
7142 spin_lock(&cluster->refill_lock);
7143 while (1) {
7144 used_bg = cluster->block_group;
7145 if (!used_bg)
7146 return NULL;
7147
7148 if (used_bg == block_group)
7149 return used_bg;
7150
7151 btrfs_get_block_group(used_bg);
7152
7153 if (!delalloc)
7154 return used_bg;
7155
7156 if (down_read_trylock(&used_bg->data_rwsem))
7157 return used_bg;
7158
7159 spin_unlock(&cluster->refill_lock);
7160
7161 down_read(&used_bg->data_rwsem);
7162
7163 spin_lock(&cluster->refill_lock);
7164 if (used_bg == cluster->block_group)
7165 return used_bg;
7166
7167 up_read(&used_bg->data_rwsem);
7168 btrfs_put_block_group(used_bg);
7169 }
7170 }
7171
7172 static inline void
7173 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7174 int delalloc)
7175 {
7176 if (delalloc)
7177 up_read(&cache->data_rwsem);
7178 btrfs_put_block_group(cache);
7179 }
7180
7181 /*
7182 * walks the btree of allocated extents and find a hole of a given size.
7183 * The key ins is changed to record the hole:
7184 * ins->objectid == start position
7185 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7186 * ins->offset == the size of the hole.
7187 * Any available blocks before search_start are skipped.
7188 *
7189 * If there is no suitable free space, we will record the max size of
7190 * the free space extent currently.
7191 */
7192 static noinline int find_free_extent(struct btrfs_root *orig_root,
7193 u64 num_bytes, u64 empty_size,
7194 u64 hint_byte, struct btrfs_key *ins,
7195 u64 flags, int delalloc)
7196 {
7197 int ret = 0;
7198 struct btrfs_root *root = orig_root->fs_info->extent_root;
7199 struct btrfs_free_cluster *last_ptr = NULL;
7200 struct btrfs_block_group_cache *block_group = NULL;
7201 u64 search_start = 0;
7202 u64 max_extent_size = 0;
7203 u64 empty_cluster = 0;
7204 struct btrfs_space_info *space_info;
7205 int loop = 0;
7206 int index = __get_raid_index(flags);
7207 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7208 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7209 bool failed_cluster_refill = false;
7210 bool failed_alloc = false;
7211 bool use_cluster = true;
7212 bool have_caching_bg = false;
7213 bool orig_have_caching_bg = false;
7214 bool full_search = false;
7215
7216 WARN_ON(num_bytes < root->sectorsize);
7217 ins->type = BTRFS_EXTENT_ITEM_KEY;
7218 ins->objectid = 0;
7219 ins->offset = 0;
7220
7221 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7222
7223 space_info = __find_space_info(root->fs_info, flags);
7224 if (!space_info) {
7225 btrfs_err(root->fs_info, "No space info for %llu", flags);
7226 return -ENOSPC;
7227 }
7228
7229 /*
7230 * If our free space is heavily fragmented we may not be able to make
7231 * big contiguous allocations, so instead of doing the expensive search
7232 * for free space, simply return ENOSPC with our max_extent_size so we
7233 * can go ahead and search for a more manageable chunk.
7234 *
7235 * If our max_extent_size is large enough for our allocation simply
7236 * disable clustering since we will likely not be able to find enough
7237 * space to create a cluster and induce latency trying.
7238 */
7239 if (unlikely(space_info->max_extent_size)) {
7240 spin_lock(&space_info->lock);
7241 if (space_info->max_extent_size &&
7242 num_bytes > space_info->max_extent_size) {
7243 ins->offset = space_info->max_extent_size;
7244 spin_unlock(&space_info->lock);
7245 return -ENOSPC;
7246 } else if (space_info->max_extent_size) {
7247 use_cluster = false;
7248 }
7249 spin_unlock(&space_info->lock);
7250 }
7251
7252 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7253 if (last_ptr) {
7254 spin_lock(&last_ptr->lock);
7255 if (last_ptr->block_group)
7256 hint_byte = last_ptr->window_start;
7257 if (last_ptr->fragmented) {
7258 /*
7259 * We still set window_start so we can keep track of the
7260 * last place we found an allocation to try and save
7261 * some time.
7262 */
7263 hint_byte = last_ptr->window_start;
7264 use_cluster = false;
7265 }
7266 spin_unlock(&last_ptr->lock);
7267 }
7268
7269 search_start = max(search_start, first_logical_byte(root, 0));
7270 search_start = max(search_start, hint_byte);
7271 if (search_start == hint_byte) {
7272 block_group = btrfs_lookup_block_group(root->fs_info,
7273 search_start);
7274 /*
7275 * we don't want to use the block group if it doesn't match our
7276 * allocation bits, or if its not cached.
7277 *
7278 * However if we are re-searching with an ideal block group
7279 * picked out then we don't care that the block group is cached.
7280 */
7281 if (block_group && block_group_bits(block_group, flags) &&
7282 block_group->cached != BTRFS_CACHE_NO) {
7283 down_read(&space_info->groups_sem);
7284 if (list_empty(&block_group->list) ||
7285 block_group->ro) {
7286 /*
7287 * someone is removing this block group,
7288 * we can't jump into the have_block_group
7289 * target because our list pointers are not
7290 * valid
7291 */
7292 btrfs_put_block_group(block_group);
7293 up_read(&space_info->groups_sem);
7294 } else {
7295 index = get_block_group_index(block_group);
7296 btrfs_lock_block_group(block_group, delalloc);
7297 goto have_block_group;
7298 }
7299 } else if (block_group) {
7300 btrfs_put_block_group(block_group);
7301 }
7302 }
7303 search:
7304 have_caching_bg = false;
7305 if (index == 0 || index == __get_raid_index(flags))
7306 full_search = true;
7307 down_read(&space_info->groups_sem);
7308 list_for_each_entry(block_group, &space_info->block_groups[index],
7309 list) {
7310 u64 offset;
7311 int cached;
7312
7313 btrfs_grab_block_group(block_group, delalloc);
7314 search_start = block_group->key.objectid;
7315
7316 /*
7317 * this can happen if we end up cycling through all the
7318 * raid types, but we want to make sure we only allocate
7319 * for the proper type.
7320 */
7321 if (!block_group_bits(block_group, flags)) {
7322 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7323 BTRFS_BLOCK_GROUP_RAID1 |
7324 BTRFS_BLOCK_GROUP_RAID5 |
7325 BTRFS_BLOCK_GROUP_RAID6 |
7326 BTRFS_BLOCK_GROUP_RAID10;
7327
7328 /*
7329 * if they asked for extra copies and this block group
7330 * doesn't provide them, bail. This does allow us to
7331 * fill raid0 from raid1.
7332 */
7333 if ((flags & extra) && !(block_group->flags & extra))
7334 goto loop;
7335 }
7336
7337 have_block_group:
7338 cached = block_group_cache_done(block_group);
7339 if (unlikely(!cached)) {
7340 have_caching_bg = true;
7341 ret = cache_block_group(block_group, 0);
7342 BUG_ON(ret < 0);
7343 ret = 0;
7344 }
7345
7346 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7347 goto loop;
7348 if (unlikely(block_group->ro))
7349 goto loop;
7350
7351 /*
7352 * Ok we want to try and use the cluster allocator, so
7353 * lets look there
7354 */
7355 if (last_ptr && use_cluster) {
7356 struct btrfs_block_group_cache *used_block_group;
7357 unsigned long aligned_cluster;
7358 /*
7359 * the refill lock keeps out other
7360 * people trying to start a new cluster
7361 */
7362 used_block_group = btrfs_lock_cluster(block_group,
7363 last_ptr,
7364 delalloc);
7365 if (!used_block_group)
7366 goto refill_cluster;
7367
7368 if (used_block_group != block_group &&
7369 (used_block_group->ro ||
7370 !block_group_bits(used_block_group, flags)))
7371 goto release_cluster;
7372
7373 offset = btrfs_alloc_from_cluster(used_block_group,
7374 last_ptr,
7375 num_bytes,
7376 used_block_group->key.objectid,
7377 &max_extent_size);
7378 if (offset) {
7379 /* we have a block, we're done */
7380 spin_unlock(&last_ptr->refill_lock);
7381 trace_btrfs_reserve_extent_cluster(root,
7382 used_block_group,
7383 search_start, num_bytes);
7384 if (used_block_group != block_group) {
7385 btrfs_release_block_group(block_group,
7386 delalloc);
7387 block_group = used_block_group;
7388 }
7389 goto checks;
7390 }
7391
7392 WARN_ON(last_ptr->block_group != used_block_group);
7393 release_cluster:
7394 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7395 * set up a new clusters, so lets just skip it
7396 * and let the allocator find whatever block
7397 * it can find. If we reach this point, we
7398 * will have tried the cluster allocator
7399 * plenty of times and not have found
7400 * anything, so we are likely way too
7401 * fragmented for the clustering stuff to find
7402 * anything.
7403 *
7404 * However, if the cluster is taken from the
7405 * current block group, release the cluster
7406 * first, so that we stand a better chance of
7407 * succeeding in the unclustered
7408 * allocation. */
7409 if (loop >= LOOP_NO_EMPTY_SIZE &&
7410 used_block_group != block_group) {
7411 spin_unlock(&last_ptr->refill_lock);
7412 btrfs_release_block_group(used_block_group,
7413 delalloc);
7414 goto unclustered_alloc;
7415 }
7416
7417 /*
7418 * this cluster didn't work out, free it and
7419 * start over
7420 */
7421 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7422
7423 if (used_block_group != block_group)
7424 btrfs_release_block_group(used_block_group,
7425 delalloc);
7426 refill_cluster:
7427 if (loop >= LOOP_NO_EMPTY_SIZE) {
7428 spin_unlock(&last_ptr->refill_lock);
7429 goto unclustered_alloc;
7430 }
7431
7432 aligned_cluster = max_t(unsigned long,
7433 empty_cluster + empty_size,
7434 block_group->full_stripe_len);
7435
7436 /* allocate a cluster in this block group */
7437 ret = btrfs_find_space_cluster(root, block_group,
7438 last_ptr, search_start,
7439 num_bytes,
7440 aligned_cluster);
7441 if (ret == 0) {
7442 /*
7443 * now pull our allocation out of this
7444 * cluster
7445 */
7446 offset = btrfs_alloc_from_cluster(block_group,
7447 last_ptr,
7448 num_bytes,
7449 search_start,
7450 &max_extent_size);
7451 if (offset) {
7452 /* we found one, proceed */
7453 spin_unlock(&last_ptr->refill_lock);
7454 trace_btrfs_reserve_extent_cluster(root,
7455 block_group, search_start,
7456 num_bytes);
7457 goto checks;
7458 }
7459 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7460 && !failed_cluster_refill) {
7461 spin_unlock(&last_ptr->refill_lock);
7462
7463 failed_cluster_refill = true;
7464 wait_block_group_cache_progress(block_group,
7465 num_bytes + empty_cluster + empty_size);
7466 goto have_block_group;
7467 }
7468
7469 /*
7470 * at this point we either didn't find a cluster
7471 * or we weren't able to allocate a block from our
7472 * cluster. Free the cluster we've been trying
7473 * to use, and go to the next block group
7474 */
7475 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7476 spin_unlock(&last_ptr->refill_lock);
7477 goto loop;
7478 }
7479
7480 unclustered_alloc:
7481 /*
7482 * We are doing an unclustered alloc, set the fragmented flag so
7483 * we don't bother trying to setup a cluster again until we get
7484 * more space.
7485 */
7486 if (unlikely(last_ptr)) {
7487 spin_lock(&last_ptr->lock);
7488 last_ptr->fragmented = 1;
7489 spin_unlock(&last_ptr->lock);
7490 }
7491 spin_lock(&block_group->free_space_ctl->tree_lock);
7492 if (cached &&
7493 block_group->free_space_ctl->free_space <
7494 num_bytes + empty_cluster + empty_size) {
7495 if (block_group->free_space_ctl->free_space >
7496 max_extent_size)
7497 max_extent_size =
7498 block_group->free_space_ctl->free_space;
7499 spin_unlock(&block_group->free_space_ctl->tree_lock);
7500 goto loop;
7501 }
7502 spin_unlock(&block_group->free_space_ctl->tree_lock);
7503
7504 offset = btrfs_find_space_for_alloc(block_group, search_start,
7505 num_bytes, empty_size,
7506 &max_extent_size);
7507 /*
7508 * If we didn't find a chunk, and we haven't failed on this
7509 * block group before, and this block group is in the middle of
7510 * caching and we are ok with waiting, then go ahead and wait
7511 * for progress to be made, and set failed_alloc to true.
7512 *
7513 * If failed_alloc is true then we've already waited on this
7514 * block group once and should move on to the next block group.
7515 */
7516 if (!offset && !failed_alloc && !cached &&
7517 loop > LOOP_CACHING_NOWAIT) {
7518 wait_block_group_cache_progress(block_group,
7519 num_bytes + empty_size);
7520 failed_alloc = true;
7521 goto have_block_group;
7522 } else if (!offset) {
7523 goto loop;
7524 }
7525 checks:
7526 search_start = ALIGN(offset, root->stripesize);
7527
7528 /* move on to the next group */
7529 if (search_start + num_bytes >
7530 block_group->key.objectid + block_group->key.offset) {
7531 btrfs_add_free_space(block_group, offset, num_bytes);
7532 goto loop;
7533 }
7534
7535 if (offset < search_start)
7536 btrfs_add_free_space(block_group, offset,
7537 search_start - offset);
7538 BUG_ON(offset > search_start);
7539
7540 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7541 alloc_type, delalloc);
7542 if (ret == -EAGAIN) {
7543 btrfs_add_free_space(block_group, offset, num_bytes);
7544 goto loop;
7545 }
7546 btrfs_inc_block_group_reservations(block_group);
7547
7548 /* we are all good, lets return */
7549 ins->objectid = search_start;
7550 ins->offset = num_bytes;
7551
7552 trace_btrfs_reserve_extent(orig_root, block_group,
7553 search_start, num_bytes);
7554 btrfs_release_block_group(block_group, delalloc);
7555 break;
7556 loop:
7557 failed_cluster_refill = false;
7558 failed_alloc = false;
7559 BUG_ON(index != get_block_group_index(block_group));
7560 btrfs_release_block_group(block_group, delalloc);
7561 }
7562 up_read(&space_info->groups_sem);
7563
7564 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7565 && !orig_have_caching_bg)
7566 orig_have_caching_bg = true;
7567
7568 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7569 goto search;
7570
7571 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7572 goto search;
7573
7574 /*
7575 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7576 * caching kthreads as we move along
7577 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7578 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7579 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7580 * again
7581 */
7582 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7583 index = 0;
7584 if (loop == LOOP_CACHING_NOWAIT) {
7585 /*
7586 * We want to skip the LOOP_CACHING_WAIT step if we
7587 * don't have any uncached bgs and we've already done a
7588 * full search through.
7589 */
7590 if (orig_have_caching_bg || !full_search)
7591 loop = LOOP_CACHING_WAIT;
7592 else
7593 loop = LOOP_ALLOC_CHUNK;
7594 } else {
7595 loop++;
7596 }
7597
7598 if (loop == LOOP_ALLOC_CHUNK) {
7599 struct btrfs_trans_handle *trans;
7600 int exist = 0;
7601
7602 trans = current->journal_info;
7603 if (trans)
7604 exist = 1;
7605 else
7606 trans = btrfs_join_transaction(root);
7607
7608 if (IS_ERR(trans)) {
7609 ret = PTR_ERR(trans);
7610 goto out;
7611 }
7612
7613 ret = do_chunk_alloc(trans, root, flags,
7614 CHUNK_ALLOC_FORCE);
7615
7616 /*
7617 * If we can't allocate a new chunk we've already looped
7618 * through at least once, move on to the NO_EMPTY_SIZE
7619 * case.
7620 */
7621 if (ret == -ENOSPC)
7622 loop = LOOP_NO_EMPTY_SIZE;
7623
7624 /*
7625 * Do not bail out on ENOSPC since we
7626 * can do more things.
7627 */
7628 if (ret < 0 && ret != -ENOSPC)
7629 btrfs_abort_transaction(trans,
7630 root, ret);
7631 else
7632 ret = 0;
7633 if (!exist)
7634 btrfs_end_transaction(trans, root);
7635 if (ret)
7636 goto out;
7637 }
7638
7639 if (loop == LOOP_NO_EMPTY_SIZE) {
7640 /*
7641 * Don't loop again if we already have no empty_size and
7642 * no empty_cluster.
7643 */
7644 if (empty_size == 0 &&
7645 empty_cluster == 0) {
7646 ret = -ENOSPC;
7647 goto out;
7648 }
7649 empty_size = 0;
7650 empty_cluster = 0;
7651 }
7652
7653 goto search;
7654 } else if (!ins->objectid) {
7655 ret = -ENOSPC;
7656 } else if (ins->objectid) {
7657 if (!use_cluster && last_ptr) {
7658 spin_lock(&last_ptr->lock);
7659 last_ptr->window_start = ins->objectid;
7660 spin_unlock(&last_ptr->lock);
7661 }
7662 ret = 0;
7663 }
7664 out:
7665 if (ret == -ENOSPC) {
7666 spin_lock(&space_info->lock);
7667 space_info->max_extent_size = max_extent_size;
7668 spin_unlock(&space_info->lock);
7669 ins->offset = max_extent_size;
7670 }
7671 return ret;
7672 }
7673
7674 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7675 int dump_block_groups)
7676 {
7677 struct btrfs_block_group_cache *cache;
7678 int index = 0;
7679
7680 spin_lock(&info->lock);
7681 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7682 info->flags,
7683 info->total_bytes - info->bytes_used - info->bytes_pinned -
7684 info->bytes_reserved - info->bytes_readonly,
7685 (info->full) ? "" : "not ");
7686 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7687 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7688 info->total_bytes, info->bytes_used, info->bytes_pinned,
7689 info->bytes_reserved, info->bytes_may_use,
7690 info->bytes_readonly);
7691 spin_unlock(&info->lock);
7692
7693 if (!dump_block_groups)
7694 return;
7695
7696 down_read(&info->groups_sem);
7697 again:
7698 list_for_each_entry(cache, &info->block_groups[index], list) {
7699 spin_lock(&cache->lock);
7700 printk(KERN_INFO "BTRFS: "
7701 "block group %llu has %llu bytes, "
7702 "%llu used %llu pinned %llu reserved %s\n",
7703 cache->key.objectid, cache->key.offset,
7704 btrfs_block_group_used(&cache->item), cache->pinned,
7705 cache->reserved, cache->ro ? "[readonly]" : "");
7706 btrfs_dump_free_space(cache, bytes);
7707 spin_unlock(&cache->lock);
7708 }
7709 if (++index < BTRFS_NR_RAID_TYPES)
7710 goto again;
7711 up_read(&info->groups_sem);
7712 }
7713
7714 int btrfs_reserve_extent(struct btrfs_root *root,
7715 u64 num_bytes, u64 min_alloc_size,
7716 u64 empty_size, u64 hint_byte,
7717 struct btrfs_key *ins, int is_data, int delalloc)
7718 {
7719 bool final_tried = num_bytes == min_alloc_size;
7720 u64 flags;
7721 int ret;
7722
7723 flags = btrfs_get_alloc_profile(root, is_data);
7724 again:
7725 WARN_ON(num_bytes < root->sectorsize);
7726 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7727 flags, delalloc);
7728 if (!ret && !is_data) {
7729 btrfs_dec_block_group_reservations(root->fs_info,
7730 ins->objectid);
7731 } else if (ret == -ENOSPC) {
7732 if (!final_tried && ins->offset) {
7733 num_bytes = min(num_bytes >> 1, ins->offset);
7734 num_bytes = round_down(num_bytes, root->sectorsize);
7735 num_bytes = max(num_bytes, min_alloc_size);
7736 if (num_bytes == min_alloc_size)
7737 final_tried = true;
7738 goto again;
7739 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7740 struct btrfs_space_info *sinfo;
7741
7742 sinfo = __find_space_info(root->fs_info, flags);
7743 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7744 flags, num_bytes);
7745 if (sinfo)
7746 dump_space_info(sinfo, num_bytes, 1);
7747 }
7748 }
7749
7750 return ret;
7751 }
7752
7753 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7754 u64 start, u64 len,
7755 int pin, int delalloc)
7756 {
7757 struct btrfs_block_group_cache *cache;
7758 int ret = 0;
7759
7760 cache = btrfs_lookup_block_group(root->fs_info, start);
7761 if (!cache) {
7762 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7763 start);
7764 return -ENOSPC;
7765 }
7766
7767 if (pin)
7768 pin_down_extent(root, cache, start, len, 1);
7769 else {
7770 if (btrfs_test_opt(root, DISCARD))
7771 ret = btrfs_discard_extent(root, start, len, NULL);
7772 btrfs_add_free_space(cache, start, len);
7773 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7774 }
7775
7776 btrfs_put_block_group(cache);
7777
7778 trace_btrfs_reserved_extent_free(root, start, len);
7779
7780 return ret;
7781 }
7782
7783 int btrfs_free_reserved_extent(struct btrfs_root *root,
7784 u64 start, u64 len, int delalloc)
7785 {
7786 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7787 }
7788
7789 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7790 u64 start, u64 len)
7791 {
7792 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7793 }
7794
7795 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7796 struct btrfs_root *root,
7797 u64 parent, u64 root_objectid,
7798 u64 flags, u64 owner, u64 offset,
7799 struct btrfs_key *ins, int ref_mod)
7800 {
7801 int ret;
7802 struct btrfs_fs_info *fs_info = root->fs_info;
7803 struct btrfs_extent_item *extent_item;
7804 struct btrfs_extent_inline_ref *iref;
7805 struct btrfs_path *path;
7806 struct extent_buffer *leaf;
7807 int type;
7808 u32 size;
7809
7810 if (parent > 0)
7811 type = BTRFS_SHARED_DATA_REF_KEY;
7812 else
7813 type = BTRFS_EXTENT_DATA_REF_KEY;
7814
7815 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7816
7817 path = btrfs_alloc_path();
7818 if (!path)
7819 return -ENOMEM;
7820
7821 path->leave_spinning = 1;
7822 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7823 ins, size);
7824 if (ret) {
7825 btrfs_free_path(path);
7826 return ret;
7827 }
7828
7829 leaf = path->nodes[0];
7830 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7831 struct btrfs_extent_item);
7832 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7833 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7834 btrfs_set_extent_flags(leaf, extent_item,
7835 flags | BTRFS_EXTENT_FLAG_DATA);
7836
7837 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7838 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7839 if (parent > 0) {
7840 struct btrfs_shared_data_ref *ref;
7841 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7842 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7843 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7844 } else {
7845 struct btrfs_extent_data_ref *ref;
7846 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7847 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7848 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7849 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7850 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7851 }
7852
7853 btrfs_mark_buffer_dirty(path->nodes[0]);
7854 btrfs_free_path(path);
7855
7856 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7857 ins->offset);
7858 if (ret)
7859 return ret;
7860
7861 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7862 if (ret) { /* -ENOENT, logic error */
7863 btrfs_err(fs_info, "update block group failed for %llu %llu",
7864 ins->objectid, ins->offset);
7865 BUG();
7866 }
7867 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7868 return ret;
7869 }
7870
7871 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7872 struct btrfs_root *root,
7873 u64 parent, u64 root_objectid,
7874 u64 flags, struct btrfs_disk_key *key,
7875 int level, struct btrfs_key *ins)
7876 {
7877 int ret;
7878 struct btrfs_fs_info *fs_info = root->fs_info;
7879 struct btrfs_extent_item *extent_item;
7880 struct btrfs_tree_block_info *block_info;
7881 struct btrfs_extent_inline_ref *iref;
7882 struct btrfs_path *path;
7883 struct extent_buffer *leaf;
7884 u32 size = sizeof(*extent_item) + sizeof(*iref);
7885 u64 num_bytes = ins->offset;
7886 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7887 SKINNY_METADATA);
7888
7889 if (!skinny_metadata)
7890 size += sizeof(*block_info);
7891
7892 path = btrfs_alloc_path();
7893 if (!path) {
7894 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7895 root->nodesize);
7896 return -ENOMEM;
7897 }
7898
7899 path->leave_spinning = 1;
7900 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7901 ins, size);
7902 if (ret) {
7903 btrfs_free_path(path);
7904 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7905 root->nodesize);
7906 return ret;
7907 }
7908
7909 leaf = path->nodes[0];
7910 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7911 struct btrfs_extent_item);
7912 btrfs_set_extent_refs(leaf, extent_item, 1);
7913 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7914 btrfs_set_extent_flags(leaf, extent_item,
7915 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7916
7917 if (skinny_metadata) {
7918 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7919 num_bytes = root->nodesize;
7920 } else {
7921 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7922 btrfs_set_tree_block_key(leaf, block_info, key);
7923 btrfs_set_tree_block_level(leaf, block_info, level);
7924 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7925 }
7926
7927 if (parent > 0) {
7928 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7929 btrfs_set_extent_inline_ref_type(leaf, iref,
7930 BTRFS_SHARED_BLOCK_REF_KEY);
7931 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7932 } else {
7933 btrfs_set_extent_inline_ref_type(leaf, iref,
7934 BTRFS_TREE_BLOCK_REF_KEY);
7935 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7936 }
7937
7938 btrfs_mark_buffer_dirty(leaf);
7939 btrfs_free_path(path);
7940
7941 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7942 num_bytes);
7943 if (ret)
7944 return ret;
7945
7946 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7947 1);
7948 if (ret) { /* -ENOENT, logic error */
7949 btrfs_err(fs_info, "update block group failed for %llu %llu",
7950 ins->objectid, ins->offset);
7951 BUG();
7952 }
7953
7954 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7955 return ret;
7956 }
7957
7958 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7959 struct btrfs_root *root,
7960 u64 root_objectid, u64 owner,
7961 u64 offset, u64 ram_bytes,
7962 struct btrfs_key *ins)
7963 {
7964 int ret;
7965
7966 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7967
7968 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7969 ins->offset, 0,
7970 root_objectid, owner, offset,
7971 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7972 NULL);
7973 return ret;
7974 }
7975
7976 /*
7977 * this is used by the tree logging recovery code. It records that
7978 * an extent has been allocated and makes sure to clear the free
7979 * space cache bits as well
7980 */
7981 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7982 struct btrfs_root *root,
7983 u64 root_objectid, u64 owner, u64 offset,
7984 struct btrfs_key *ins)
7985 {
7986 int ret;
7987 struct btrfs_block_group_cache *block_group;
7988
7989 /*
7990 * Mixed block groups will exclude before processing the log so we only
7991 * need to do the exclude dance if this fs isn't mixed.
7992 */
7993 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7994 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7995 if (ret)
7996 return ret;
7997 }
7998
7999 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8000 if (!block_group)
8001 return -EINVAL;
8002
8003 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
8004 RESERVE_ALLOC_NO_ACCOUNT, 0);
8005 BUG_ON(ret); /* logic error */
8006 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8007 0, owner, offset, ins, 1);
8008 btrfs_put_block_group(block_group);
8009 return ret;
8010 }
8011
8012 static struct extent_buffer *
8013 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8014 u64 bytenr, int level)
8015 {
8016 struct extent_buffer *buf;
8017
8018 buf = btrfs_find_create_tree_block(root, bytenr);
8019 if (IS_ERR(buf))
8020 return buf;
8021
8022 btrfs_set_header_generation(buf, trans->transid);
8023 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8024 btrfs_tree_lock(buf);
8025 clean_tree_block(trans, root->fs_info, buf);
8026 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8027
8028 btrfs_set_lock_blocking(buf);
8029 set_extent_buffer_uptodate(buf);
8030
8031 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8032 buf->log_index = root->log_transid % 2;
8033 /*
8034 * we allow two log transactions at a time, use different
8035 * EXENT bit to differentiate dirty pages.
8036 */
8037 if (buf->log_index == 0)
8038 set_extent_dirty(&root->dirty_log_pages, buf->start,
8039 buf->start + buf->len - 1, GFP_NOFS);
8040 else
8041 set_extent_new(&root->dirty_log_pages, buf->start,
8042 buf->start + buf->len - 1);
8043 } else {
8044 buf->log_index = -1;
8045 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8046 buf->start + buf->len - 1, GFP_NOFS);
8047 }
8048 trans->dirty = true;
8049 /* this returns a buffer locked for blocking */
8050 return buf;
8051 }
8052
8053 static struct btrfs_block_rsv *
8054 use_block_rsv(struct btrfs_trans_handle *trans,
8055 struct btrfs_root *root, u32 blocksize)
8056 {
8057 struct btrfs_block_rsv *block_rsv;
8058 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8059 int ret;
8060 bool global_updated = false;
8061
8062 block_rsv = get_block_rsv(trans, root);
8063
8064 if (unlikely(block_rsv->size == 0))
8065 goto try_reserve;
8066 again:
8067 ret = block_rsv_use_bytes(block_rsv, blocksize);
8068 if (!ret)
8069 return block_rsv;
8070
8071 if (block_rsv->failfast)
8072 return ERR_PTR(ret);
8073
8074 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8075 global_updated = true;
8076 update_global_block_rsv(root->fs_info);
8077 goto again;
8078 }
8079
8080 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8081 static DEFINE_RATELIMIT_STATE(_rs,
8082 DEFAULT_RATELIMIT_INTERVAL * 10,
8083 /*DEFAULT_RATELIMIT_BURST*/ 1);
8084 if (__ratelimit(&_rs))
8085 WARN(1, KERN_DEBUG
8086 "BTRFS: block rsv returned %d\n", ret);
8087 }
8088 try_reserve:
8089 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8090 BTRFS_RESERVE_NO_FLUSH);
8091 if (!ret)
8092 return block_rsv;
8093 /*
8094 * If we couldn't reserve metadata bytes try and use some from
8095 * the global reserve if its space type is the same as the global
8096 * reservation.
8097 */
8098 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8099 block_rsv->space_info == global_rsv->space_info) {
8100 ret = block_rsv_use_bytes(global_rsv, blocksize);
8101 if (!ret)
8102 return global_rsv;
8103 }
8104 return ERR_PTR(ret);
8105 }
8106
8107 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8108 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8109 {
8110 block_rsv_add_bytes(block_rsv, blocksize, 0);
8111 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8112 }
8113
8114 /*
8115 * finds a free extent and does all the dirty work required for allocation
8116 * returns the tree buffer or an ERR_PTR on error.
8117 */
8118 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8119 struct btrfs_root *root,
8120 u64 parent, u64 root_objectid,
8121 struct btrfs_disk_key *key, int level,
8122 u64 hint, u64 empty_size)
8123 {
8124 struct btrfs_key ins;
8125 struct btrfs_block_rsv *block_rsv;
8126 struct extent_buffer *buf;
8127 struct btrfs_delayed_extent_op *extent_op;
8128 u64 flags = 0;
8129 int ret;
8130 u32 blocksize = root->nodesize;
8131 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8132 SKINNY_METADATA);
8133
8134 if (btrfs_test_is_dummy_root(root)) {
8135 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8136 level);
8137 if (!IS_ERR(buf))
8138 root->alloc_bytenr += blocksize;
8139 return buf;
8140 }
8141
8142 block_rsv = use_block_rsv(trans, root, blocksize);
8143 if (IS_ERR(block_rsv))
8144 return ERR_CAST(block_rsv);
8145
8146 ret = btrfs_reserve_extent(root, blocksize, blocksize,
8147 empty_size, hint, &ins, 0, 0);
8148 if (ret)
8149 goto out_unuse;
8150
8151 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8152 if (IS_ERR(buf)) {
8153 ret = PTR_ERR(buf);
8154 goto out_free_reserved;
8155 }
8156
8157 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8158 if (parent == 0)
8159 parent = ins.objectid;
8160 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8161 } else
8162 BUG_ON(parent > 0);
8163
8164 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8165 extent_op = btrfs_alloc_delayed_extent_op();
8166 if (!extent_op) {
8167 ret = -ENOMEM;
8168 goto out_free_buf;
8169 }
8170 if (key)
8171 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8172 else
8173 memset(&extent_op->key, 0, sizeof(extent_op->key));
8174 extent_op->flags_to_set = flags;
8175 extent_op->update_key = skinny_metadata ? false : true;
8176 extent_op->update_flags = true;
8177 extent_op->is_data = false;
8178 extent_op->level = level;
8179
8180 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8181 ins.objectid, ins.offset,
8182 parent, root_objectid, level,
8183 BTRFS_ADD_DELAYED_EXTENT,
8184 extent_op);
8185 if (ret)
8186 goto out_free_delayed;
8187 }
8188 return buf;
8189
8190 out_free_delayed:
8191 btrfs_free_delayed_extent_op(extent_op);
8192 out_free_buf:
8193 free_extent_buffer(buf);
8194 out_free_reserved:
8195 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8196 out_unuse:
8197 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8198 return ERR_PTR(ret);
8199 }
8200
8201 struct walk_control {
8202 u64 refs[BTRFS_MAX_LEVEL];
8203 u64 flags[BTRFS_MAX_LEVEL];
8204 struct btrfs_key update_progress;
8205 int stage;
8206 int level;
8207 int shared_level;
8208 int update_ref;
8209 int keep_locks;
8210 int reada_slot;
8211 int reada_count;
8212 int for_reloc;
8213 };
8214
8215 #define DROP_REFERENCE 1
8216 #define UPDATE_BACKREF 2
8217
8218 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8219 struct btrfs_root *root,
8220 struct walk_control *wc,
8221 struct btrfs_path *path)
8222 {
8223 u64 bytenr;
8224 u64 generation;
8225 u64 refs;
8226 u64 flags;
8227 u32 nritems;
8228 u32 blocksize;
8229 struct btrfs_key key;
8230 struct extent_buffer *eb;
8231 int ret;
8232 int slot;
8233 int nread = 0;
8234
8235 if (path->slots[wc->level] < wc->reada_slot) {
8236 wc->reada_count = wc->reada_count * 2 / 3;
8237 wc->reada_count = max(wc->reada_count, 2);
8238 } else {
8239 wc->reada_count = wc->reada_count * 3 / 2;
8240 wc->reada_count = min_t(int, wc->reada_count,
8241 BTRFS_NODEPTRS_PER_BLOCK(root));
8242 }
8243
8244 eb = path->nodes[wc->level];
8245 nritems = btrfs_header_nritems(eb);
8246 blocksize = root->nodesize;
8247
8248 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8249 if (nread >= wc->reada_count)
8250 break;
8251
8252 cond_resched();
8253 bytenr = btrfs_node_blockptr(eb, slot);
8254 generation = btrfs_node_ptr_generation(eb, slot);
8255
8256 if (slot == path->slots[wc->level])
8257 goto reada;
8258
8259 if (wc->stage == UPDATE_BACKREF &&
8260 generation <= root->root_key.offset)
8261 continue;
8262
8263 /* We don't lock the tree block, it's OK to be racy here */
8264 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8265 wc->level - 1, 1, &refs,
8266 &flags);
8267 /* We don't care about errors in readahead. */
8268 if (ret < 0)
8269 continue;
8270 BUG_ON(refs == 0);
8271
8272 if (wc->stage == DROP_REFERENCE) {
8273 if (refs == 1)
8274 goto reada;
8275
8276 if (wc->level == 1 &&
8277 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8278 continue;
8279 if (!wc->update_ref ||
8280 generation <= root->root_key.offset)
8281 continue;
8282 btrfs_node_key_to_cpu(eb, &key, slot);
8283 ret = btrfs_comp_cpu_keys(&key,
8284 &wc->update_progress);
8285 if (ret < 0)
8286 continue;
8287 } else {
8288 if (wc->level == 1 &&
8289 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8290 continue;
8291 }
8292 reada:
8293 readahead_tree_block(root, bytenr);
8294 nread++;
8295 }
8296 wc->reada_slot = slot;
8297 }
8298
8299 /*
8300 * These may not be seen by the usual inc/dec ref code so we have to
8301 * add them here.
8302 */
8303 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8304 struct btrfs_root *root, u64 bytenr,
8305 u64 num_bytes)
8306 {
8307 struct btrfs_qgroup_extent_record *qrecord;
8308 struct btrfs_delayed_ref_root *delayed_refs;
8309
8310 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8311 if (!qrecord)
8312 return -ENOMEM;
8313
8314 qrecord->bytenr = bytenr;
8315 qrecord->num_bytes = num_bytes;
8316 qrecord->old_roots = NULL;
8317
8318 delayed_refs = &trans->transaction->delayed_refs;
8319 spin_lock(&delayed_refs->lock);
8320 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8321 kfree(qrecord);
8322 spin_unlock(&delayed_refs->lock);
8323
8324 return 0;
8325 }
8326
8327 static int account_leaf_items(struct btrfs_trans_handle *trans,
8328 struct btrfs_root *root,
8329 struct extent_buffer *eb)
8330 {
8331 int nr = btrfs_header_nritems(eb);
8332 int i, extent_type, ret;
8333 struct btrfs_key key;
8334 struct btrfs_file_extent_item *fi;
8335 u64 bytenr, num_bytes;
8336
8337 /* We can be called directly from walk_up_proc() */
8338 if (!root->fs_info->quota_enabled)
8339 return 0;
8340
8341 for (i = 0; i < nr; i++) {
8342 btrfs_item_key_to_cpu(eb, &key, i);
8343
8344 if (key.type != BTRFS_EXTENT_DATA_KEY)
8345 continue;
8346
8347 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8348 /* filter out non qgroup-accountable extents */
8349 extent_type = btrfs_file_extent_type(eb, fi);
8350
8351 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8352 continue;
8353
8354 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8355 if (!bytenr)
8356 continue;
8357
8358 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8359
8360 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8361 if (ret)
8362 return ret;
8363 }
8364 return 0;
8365 }
8366
8367 /*
8368 * Walk up the tree from the bottom, freeing leaves and any interior
8369 * nodes which have had all slots visited. If a node (leaf or
8370 * interior) is freed, the node above it will have it's slot
8371 * incremented. The root node will never be freed.
8372 *
8373 * At the end of this function, we should have a path which has all
8374 * slots incremented to the next position for a search. If we need to
8375 * read a new node it will be NULL and the node above it will have the
8376 * correct slot selected for a later read.
8377 *
8378 * If we increment the root nodes slot counter past the number of
8379 * elements, 1 is returned to signal completion of the search.
8380 */
8381 static int adjust_slots_upwards(struct btrfs_root *root,
8382 struct btrfs_path *path, int root_level)
8383 {
8384 int level = 0;
8385 int nr, slot;
8386 struct extent_buffer *eb;
8387
8388 if (root_level == 0)
8389 return 1;
8390
8391 while (level <= root_level) {
8392 eb = path->nodes[level];
8393 nr = btrfs_header_nritems(eb);
8394 path->slots[level]++;
8395 slot = path->slots[level];
8396 if (slot >= nr || level == 0) {
8397 /*
8398 * Don't free the root - we will detect this
8399 * condition after our loop and return a
8400 * positive value for caller to stop walking the tree.
8401 */
8402 if (level != root_level) {
8403 btrfs_tree_unlock_rw(eb, path->locks[level]);
8404 path->locks[level] = 0;
8405
8406 free_extent_buffer(eb);
8407 path->nodes[level] = NULL;
8408 path->slots[level] = 0;
8409 }
8410 } else {
8411 /*
8412 * We have a valid slot to walk back down
8413 * from. Stop here so caller can process these
8414 * new nodes.
8415 */
8416 break;
8417 }
8418
8419 level++;
8420 }
8421
8422 eb = path->nodes[root_level];
8423 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8424 return 1;
8425
8426 return 0;
8427 }
8428
8429 /*
8430 * root_eb is the subtree root and is locked before this function is called.
8431 */
8432 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8433 struct btrfs_root *root,
8434 struct extent_buffer *root_eb,
8435 u64 root_gen,
8436 int root_level)
8437 {
8438 int ret = 0;
8439 int level;
8440 struct extent_buffer *eb = root_eb;
8441 struct btrfs_path *path = NULL;
8442
8443 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8444 BUG_ON(root_eb == NULL);
8445
8446 if (!root->fs_info->quota_enabled)
8447 return 0;
8448
8449 if (!extent_buffer_uptodate(root_eb)) {
8450 ret = btrfs_read_buffer(root_eb, root_gen);
8451 if (ret)
8452 goto out;
8453 }
8454
8455 if (root_level == 0) {
8456 ret = account_leaf_items(trans, root, root_eb);
8457 goto out;
8458 }
8459
8460 path = btrfs_alloc_path();
8461 if (!path)
8462 return -ENOMEM;
8463
8464 /*
8465 * Walk down the tree. Missing extent blocks are filled in as
8466 * we go. Metadata is accounted every time we read a new
8467 * extent block.
8468 *
8469 * When we reach a leaf, we account for file extent items in it,
8470 * walk back up the tree (adjusting slot pointers as we go)
8471 * and restart the search process.
8472 */
8473 extent_buffer_get(root_eb); /* For path */
8474 path->nodes[root_level] = root_eb;
8475 path->slots[root_level] = 0;
8476 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8477 walk_down:
8478 level = root_level;
8479 while (level >= 0) {
8480 if (path->nodes[level] == NULL) {
8481 int parent_slot;
8482 u64 child_gen;
8483 u64 child_bytenr;
8484
8485 /* We need to get child blockptr/gen from
8486 * parent before we can read it. */
8487 eb = path->nodes[level + 1];
8488 parent_slot = path->slots[level + 1];
8489 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8490 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8491
8492 eb = read_tree_block(root, child_bytenr, child_gen);
8493 if (IS_ERR(eb)) {
8494 ret = PTR_ERR(eb);
8495 goto out;
8496 } else if (!extent_buffer_uptodate(eb)) {
8497 free_extent_buffer(eb);
8498 ret = -EIO;
8499 goto out;
8500 }
8501
8502 path->nodes[level] = eb;
8503 path->slots[level] = 0;
8504
8505 btrfs_tree_read_lock(eb);
8506 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8507 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8508
8509 ret = record_one_subtree_extent(trans, root, child_bytenr,
8510 root->nodesize);
8511 if (ret)
8512 goto out;
8513 }
8514
8515 if (level == 0) {
8516 ret = account_leaf_items(trans, root, path->nodes[level]);
8517 if (ret)
8518 goto out;
8519
8520 /* Nonzero return here means we completed our search */
8521 ret = adjust_slots_upwards(root, path, root_level);
8522 if (ret)
8523 break;
8524
8525 /* Restart search with new slots */
8526 goto walk_down;
8527 }
8528
8529 level--;
8530 }
8531
8532 ret = 0;
8533 out:
8534 btrfs_free_path(path);
8535
8536 return ret;
8537 }
8538
8539 /*
8540 * helper to process tree block while walking down the tree.
8541 *
8542 * when wc->stage == UPDATE_BACKREF, this function updates
8543 * back refs for pointers in the block.
8544 *
8545 * NOTE: return value 1 means we should stop walking down.
8546 */
8547 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8548 struct btrfs_root *root,
8549 struct btrfs_path *path,
8550 struct walk_control *wc, int lookup_info)
8551 {
8552 int level = wc->level;
8553 struct extent_buffer *eb = path->nodes[level];
8554 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8555 int ret;
8556
8557 if (wc->stage == UPDATE_BACKREF &&
8558 btrfs_header_owner(eb) != root->root_key.objectid)
8559 return 1;
8560
8561 /*
8562 * when reference count of tree block is 1, it won't increase
8563 * again. once full backref flag is set, we never clear it.
8564 */
8565 if (lookup_info &&
8566 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8567 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8568 BUG_ON(!path->locks[level]);
8569 ret = btrfs_lookup_extent_info(trans, root,
8570 eb->start, level, 1,
8571 &wc->refs[level],
8572 &wc->flags[level]);
8573 BUG_ON(ret == -ENOMEM);
8574 if (ret)
8575 return ret;
8576 BUG_ON(wc->refs[level] == 0);
8577 }
8578
8579 if (wc->stage == DROP_REFERENCE) {
8580 if (wc->refs[level] > 1)
8581 return 1;
8582
8583 if (path->locks[level] && !wc->keep_locks) {
8584 btrfs_tree_unlock_rw(eb, path->locks[level]);
8585 path->locks[level] = 0;
8586 }
8587 return 0;
8588 }
8589
8590 /* wc->stage == UPDATE_BACKREF */
8591 if (!(wc->flags[level] & flag)) {
8592 BUG_ON(!path->locks[level]);
8593 ret = btrfs_inc_ref(trans, root, eb, 1);
8594 BUG_ON(ret); /* -ENOMEM */
8595 ret = btrfs_dec_ref(trans, root, eb, 0);
8596 BUG_ON(ret); /* -ENOMEM */
8597 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8598 eb->len, flag,
8599 btrfs_header_level(eb), 0);
8600 BUG_ON(ret); /* -ENOMEM */
8601 wc->flags[level] |= flag;
8602 }
8603
8604 /*
8605 * the block is shared by multiple trees, so it's not good to
8606 * keep the tree lock
8607 */
8608 if (path->locks[level] && level > 0) {
8609 btrfs_tree_unlock_rw(eb, path->locks[level]);
8610 path->locks[level] = 0;
8611 }
8612 return 0;
8613 }
8614
8615 /*
8616 * helper to process tree block pointer.
8617 *
8618 * when wc->stage == DROP_REFERENCE, this function checks
8619 * reference count of the block pointed to. if the block
8620 * is shared and we need update back refs for the subtree
8621 * rooted at the block, this function changes wc->stage to
8622 * UPDATE_BACKREF. if the block is shared and there is no
8623 * need to update back, this function drops the reference
8624 * to the block.
8625 *
8626 * NOTE: return value 1 means we should stop walking down.
8627 */
8628 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8629 struct btrfs_root *root,
8630 struct btrfs_path *path,
8631 struct walk_control *wc, int *lookup_info)
8632 {
8633 u64 bytenr;
8634 u64 generation;
8635 u64 parent;
8636 u32 blocksize;
8637 struct btrfs_key key;
8638 struct extent_buffer *next;
8639 int level = wc->level;
8640 int reada = 0;
8641 int ret = 0;
8642 bool need_account = false;
8643
8644 generation = btrfs_node_ptr_generation(path->nodes[level],
8645 path->slots[level]);
8646 /*
8647 * if the lower level block was created before the snapshot
8648 * was created, we know there is no need to update back refs
8649 * for the subtree
8650 */
8651 if (wc->stage == UPDATE_BACKREF &&
8652 generation <= root->root_key.offset) {
8653 *lookup_info = 1;
8654 return 1;
8655 }
8656
8657 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8658 blocksize = root->nodesize;
8659
8660 next = btrfs_find_tree_block(root->fs_info, bytenr);
8661 if (!next) {
8662 next = btrfs_find_create_tree_block(root, bytenr);
8663 if (IS_ERR(next))
8664 return PTR_ERR(next);
8665
8666 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8667 level - 1);
8668 reada = 1;
8669 }
8670 btrfs_tree_lock(next);
8671 btrfs_set_lock_blocking(next);
8672
8673 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8674 &wc->refs[level - 1],
8675 &wc->flags[level - 1]);
8676 if (ret < 0) {
8677 btrfs_tree_unlock(next);
8678 return ret;
8679 }
8680
8681 if (unlikely(wc->refs[level - 1] == 0)) {
8682 btrfs_err(root->fs_info, "Missing references.");
8683 BUG();
8684 }
8685 *lookup_info = 0;
8686
8687 if (wc->stage == DROP_REFERENCE) {
8688 if (wc->refs[level - 1] > 1) {
8689 need_account = true;
8690 if (level == 1 &&
8691 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8692 goto skip;
8693
8694 if (!wc->update_ref ||
8695 generation <= root->root_key.offset)
8696 goto skip;
8697
8698 btrfs_node_key_to_cpu(path->nodes[level], &key,
8699 path->slots[level]);
8700 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8701 if (ret < 0)
8702 goto skip;
8703
8704 wc->stage = UPDATE_BACKREF;
8705 wc->shared_level = level - 1;
8706 }
8707 } else {
8708 if (level == 1 &&
8709 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8710 goto skip;
8711 }
8712
8713 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8714 btrfs_tree_unlock(next);
8715 free_extent_buffer(next);
8716 next = NULL;
8717 *lookup_info = 1;
8718 }
8719
8720 if (!next) {
8721 if (reada && level == 1)
8722 reada_walk_down(trans, root, wc, path);
8723 next = read_tree_block(root, bytenr, generation);
8724 if (IS_ERR(next)) {
8725 return PTR_ERR(next);
8726 } else if (!extent_buffer_uptodate(next)) {
8727 free_extent_buffer(next);
8728 return -EIO;
8729 }
8730 btrfs_tree_lock(next);
8731 btrfs_set_lock_blocking(next);
8732 }
8733
8734 level--;
8735 BUG_ON(level != btrfs_header_level(next));
8736 path->nodes[level] = next;
8737 path->slots[level] = 0;
8738 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8739 wc->level = level;
8740 if (wc->level == 1)
8741 wc->reada_slot = 0;
8742 return 0;
8743 skip:
8744 wc->refs[level - 1] = 0;
8745 wc->flags[level - 1] = 0;
8746 if (wc->stage == DROP_REFERENCE) {
8747 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8748 parent = path->nodes[level]->start;
8749 } else {
8750 BUG_ON(root->root_key.objectid !=
8751 btrfs_header_owner(path->nodes[level]));
8752 parent = 0;
8753 }
8754
8755 if (need_account) {
8756 ret = account_shared_subtree(trans, root, next,
8757 generation, level - 1);
8758 if (ret) {
8759 btrfs_err_rl(root->fs_info,
8760 "Error "
8761 "%d accounting shared subtree. Quota "
8762 "is out of sync, rescan required.",
8763 ret);
8764 }
8765 }
8766 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8767 root->root_key.objectid, level - 1, 0);
8768 BUG_ON(ret); /* -ENOMEM */
8769 }
8770 btrfs_tree_unlock(next);
8771 free_extent_buffer(next);
8772 *lookup_info = 1;
8773 return 1;
8774 }
8775
8776 /*
8777 * helper to process tree block while walking up the tree.
8778 *
8779 * when wc->stage == DROP_REFERENCE, this function drops
8780 * reference count on the block.
8781 *
8782 * when wc->stage == UPDATE_BACKREF, this function changes
8783 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8784 * to UPDATE_BACKREF previously while processing the block.
8785 *
8786 * NOTE: return value 1 means we should stop walking up.
8787 */
8788 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8789 struct btrfs_root *root,
8790 struct btrfs_path *path,
8791 struct walk_control *wc)
8792 {
8793 int ret;
8794 int level = wc->level;
8795 struct extent_buffer *eb = path->nodes[level];
8796 u64 parent = 0;
8797
8798 if (wc->stage == UPDATE_BACKREF) {
8799 BUG_ON(wc->shared_level < level);
8800 if (level < wc->shared_level)
8801 goto out;
8802
8803 ret = find_next_key(path, level + 1, &wc->update_progress);
8804 if (ret > 0)
8805 wc->update_ref = 0;
8806
8807 wc->stage = DROP_REFERENCE;
8808 wc->shared_level = -1;
8809 path->slots[level] = 0;
8810
8811 /*
8812 * check reference count again if the block isn't locked.
8813 * we should start walking down the tree again if reference
8814 * count is one.
8815 */
8816 if (!path->locks[level]) {
8817 BUG_ON(level == 0);
8818 btrfs_tree_lock(eb);
8819 btrfs_set_lock_blocking(eb);
8820 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8821
8822 ret = btrfs_lookup_extent_info(trans, root,
8823 eb->start, level, 1,
8824 &wc->refs[level],
8825 &wc->flags[level]);
8826 if (ret < 0) {
8827 btrfs_tree_unlock_rw(eb, path->locks[level]);
8828 path->locks[level] = 0;
8829 return ret;
8830 }
8831 BUG_ON(wc->refs[level] == 0);
8832 if (wc->refs[level] == 1) {
8833 btrfs_tree_unlock_rw(eb, path->locks[level]);
8834 path->locks[level] = 0;
8835 return 1;
8836 }
8837 }
8838 }
8839
8840 /* wc->stage == DROP_REFERENCE */
8841 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8842
8843 if (wc->refs[level] == 1) {
8844 if (level == 0) {
8845 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8846 ret = btrfs_dec_ref(trans, root, eb, 1);
8847 else
8848 ret = btrfs_dec_ref(trans, root, eb, 0);
8849 BUG_ON(ret); /* -ENOMEM */
8850 ret = account_leaf_items(trans, root, eb);
8851 if (ret) {
8852 btrfs_err_rl(root->fs_info,
8853 "error "
8854 "%d accounting leaf items. Quota "
8855 "is out of sync, rescan required.",
8856 ret);
8857 }
8858 }
8859 /* make block locked assertion in clean_tree_block happy */
8860 if (!path->locks[level] &&
8861 btrfs_header_generation(eb) == trans->transid) {
8862 btrfs_tree_lock(eb);
8863 btrfs_set_lock_blocking(eb);
8864 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8865 }
8866 clean_tree_block(trans, root->fs_info, eb);
8867 }
8868
8869 if (eb == root->node) {
8870 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8871 parent = eb->start;
8872 else
8873 BUG_ON(root->root_key.objectid !=
8874 btrfs_header_owner(eb));
8875 } else {
8876 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8877 parent = path->nodes[level + 1]->start;
8878 else
8879 BUG_ON(root->root_key.objectid !=
8880 btrfs_header_owner(path->nodes[level + 1]));
8881 }
8882
8883 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8884 out:
8885 wc->refs[level] = 0;
8886 wc->flags[level] = 0;
8887 return 0;
8888 }
8889
8890 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8891 struct btrfs_root *root,
8892 struct btrfs_path *path,
8893 struct walk_control *wc)
8894 {
8895 int level = wc->level;
8896 int lookup_info = 1;
8897 int ret;
8898
8899 while (level >= 0) {
8900 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8901 if (ret > 0)
8902 break;
8903
8904 if (level == 0)
8905 break;
8906
8907 if (path->slots[level] >=
8908 btrfs_header_nritems(path->nodes[level]))
8909 break;
8910
8911 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8912 if (ret > 0) {
8913 path->slots[level]++;
8914 continue;
8915 } else if (ret < 0)
8916 return ret;
8917 level = wc->level;
8918 }
8919 return 0;
8920 }
8921
8922 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8923 struct btrfs_root *root,
8924 struct btrfs_path *path,
8925 struct walk_control *wc, int max_level)
8926 {
8927 int level = wc->level;
8928 int ret;
8929
8930 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8931 while (level < max_level && path->nodes[level]) {
8932 wc->level = level;
8933 if (path->slots[level] + 1 <
8934 btrfs_header_nritems(path->nodes[level])) {
8935 path->slots[level]++;
8936 return 0;
8937 } else {
8938 ret = walk_up_proc(trans, root, path, wc);
8939 if (ret > 0)
8940 return 0;
8941
8942 if (path->locks[level]) {
8943 btrfs_tree_unlock_rw(path->nodes[level],
8944 path->locks[level]);
8945 path->locks[level] = 0;
8946 }
8947 free_extent_buffer(path->nodes[level]);
8948 path->nodes[level] = NULL;
8949 level++;
8950 }
8951 }
8952 return 1;
8953 }
8954
8955 /*
8956 * drop a subvolume tree.
8957 *
8958 * this function traverses the tree freeing any blocks that only
8959 * referenced by the tree.
8960 *
8961 * when a shared tree block is found. this function decreases its
8962 * reference count by one. if update_ref is true, this function
8963 * also make sure backrefs for the shared block and all lower level
8964 * blocks are properly updated.
8965 *
8966 * If called with for_reloc == 0, may exit early with -EAGAIN
8967 */
8968 int btrfs_drop_snapshot(struct btrfs_root *root,
8969 struct btrfs_block_rsv *block_rsv, int update_ref,
8970 int for_reloc)
8971 {
8972 struct btrfs_path *path;
8973 struct btrfs_trans_handle *trans;
8974 struct btrfs_root *tree_root = root->fs_info->tree_root;
8975 struct btrfs_root_item *root_item = &root->root_item;
8976 struct walk_control *wc;
8977 struct btrfs_key key;
8978 int err = 0;
8979 int ret;
8980 int level;
8981 bool root_dropped = false;
8982
8983 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8984
8985 path = btrfs_alloc_path();
8986 if (!path) {
8987 err = -ENOMEM;
8988 goto out;
8989 }
8990
8991 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8992 if (!wc) {
8993 btrfs_free_path(path);
8994 err = -ENOMEM;
8995 goto out;
8996 }
8997
8998 trans = btrfs_start_transaction(tree_root, 0);
8999 if (IS_ERR(trans)) {
9000 err = PTR_ERR(trans);
9001 goto out_free;
9002 }
9003
9004 if (block_rsv)
9005 trans->block_rsv = block_rsv;
9006
9007 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9008 level = btrfs_header_level(root->node);
9009 path->nodes[level] = btrfs_lock_root_node(root);
9010 btrfs_set_lock_blocking(path->nodes[level]);
9011 path->slots[level] = 0;
9012 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9013 memset(&wc->update_progress, 0,
9014 sizeof(wc->update_progress));
9015 } else {
9016 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9017 memcpy(&wc->update_progress, &key,
9018 sizeof(wc->update_progress));
9019
9020 level = root_item->drop_level;
9021 BUG_ON(level == 0);
9022 path->lowest_level = level;
9023 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9024 path->lowest_level = 0;
9025 if (ret < 0) {
9026 err = ret;
9027 goto out_end_trans;
9028 }
9029 WARN_ON(ret > 0);
9030
9031 /*
9032 * unlock our path, this is safe because only this
9033 * function is allowed to delete this snapshot
9034 */
9035 btrfs_unlock_up_safe(path, 0);
9036
9037 level = btrfs_header_level(root->node);
9038 while (1) {
9039 btrfs_tree_lock(path->nodes[level]);
9040 btrfs_set_lock_blocking(path->nodes[level]);
9041 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9042
9043 ret = btrfs_lookup_extent_info(trans, root,
9044 path->nodes[level]->start,
9045 level, 1, &wc->refs[level],
9046 &wc->flags[level]);
9047 if (ret < 0) {
9048 err = ret;
9049 goto out_end_trans;
9050 }
9051 BUG_ON(wc->refs[level] == 0);
9052
9053 if (level == root_item->drop_level)
9054 break;
9055
9056 btrfs_tree_unlock(path->nodes[level]);
9057 path->locks[level] = 0;
9058 WARN_ON(wc->refs[level] != 1);
9059 level--;
9060 }
9061 }
9062
9063 wc->level = level;
9064 wc->shared_level = -1;
9065 wc->stage = DROP_REFERENCE;
9066 wc->update_ref = update_ref;
9067 wc->keep_locks = 0;
9068 wc->for_reloc = for_reloc;
9069 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9070
9071 while (1) {
9072
9073 ret = walk_down_tree(trans, root, path, wc);
9074 if (ret < 0) {
9075 err = ret;
9076 break;
9077 }
9078
9079 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9080 if (ret < 0) {
9081 err = ret;
9082 break;
9083 }
9084
9085 if (ret > 0) {
9086 BUG_ON(wc->stage != DROP_REFERENCE);
9087 break;
9088 }
9089
9090 if (wc->stage == DROP_REFERENCE) {
9091 level = wc->level;
9092 btrfs_node_key(path->nodes[level],
9093 &root_item->drop_progress,
9094 path->slots[level]);
9095 root_item->drop_level = level;
9096 }
9097
9098 BUG_ON(wc->level == 0);
9099 if (btrfs_should_end_transaction(trans, tree_root) ||
9100 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9101 ret = btrfs_update_root(trans, tree_root,
9102 &root->root_key,
9103 root_item);
9104 if (ret) {
9105 btrfs_abort_transaction(trans, tree_root, ret);
9106 err = ret;
9107 goto out_end_trans;
9108 }
9109
9110 btrfs_end_transaction_throttle(trans, tree_root);
9111 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9112 pr_debug("BTRFS: drop snapshot early exit\n");
9113 err = -EAGAIN;
9114 goto out_free;
9115 }
9116
9117 trans = btrfs_start_transaction(tree_root, 0);
9118 if (IS_ERR(trans)) {
9119 err = PTR_ERR(trans);
9120 goto out_free;
9121 }
9122 if (block_rsv)
9123 trans->block_rsv = block_rsv;
9124 }
9125 }
9126 btrfs_release_path(path);
9127 if (err)
9128 goto out_end_trans;
9129
9130 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9131 if (ret) {
9132 btrfs_abort_transaction(trans, tree_root, ret);
9133 goto out_end_trans;
9134 }
9135
9136 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9137 ret = btrfs_find_root(tree_root, &root->root_key, path,
9138 NULL, NULL);
9139 if (ret < 0) {
9140 btrfs_abort_transaction(trans, tree_root, ret);
9141 err = ret;
9142 goto out_end_trans;
9143 } else if (ret > 0) {
9144 /* if we fail to delete the orphan item this time
9145 * around, it'll get picked up the next time.
9146 *
9147 * The most common failure here is just -ENOENT.
9148 */
9149 btrfs_del_orphan_item(trans, tree_root,
9150 root->root_key.objectid);
9151 }
9152 }
9153
9154 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9155 btrfs_add_dropped_root(trans, root);
9156 } else {
9157 free_extent_buffer(root->node);
9158 free_extent_buffer(root->commit_root);
9159 btrfs_put_fs_root(root);
9160 }
9161 root_dropped = true;
9162 out_end_trans:
9163 btrfs_end_transaction_throttle(trans, tree_root);
9164 out_free:
9165 kfree(wc);
9166 btrfs_free_path(path);
9167 out:
9168 /*
9169 * So if we need to stop dropping the snapshot for whatever reason we
9170 * need to make sure to add it back to the dead root list so that we
9171 * keep trying to do the work later. This also cleans up roots if we
9172 * don't have it in the radix (like when we recover after a power fail
9173 * or unmount) so we don't leak memory.
9174 */
9175 if (!for_reloc && root_dropped == false)
9176 btrfs_add_dead_root(root);
9177 if (err && err != -EAGAIN)
9178 btrfs_handle_fs_error(root->fs_info, err, NULL);
9179 return err;
9180 }
9181
9182 /*
9183 * drop subtree rooted at tree block 'node'.
9184 *
9185 * NOTE: this function will unlock and release tree block 'node'
9186 * only used by relocation code
9187 */
9188 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9189 struct btrfs_root *root,
9190 struct extent_buffer *node,
9191 struct extent_buffer *parent)
9192 {
9193 struct btrfs_path *path;
9194 struct walk_control *wc;
9195 int level;
9196 int parent_level;
9197 int ret = 0;
9198 int wret;
9199
9200 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9201
9202 path = btrfs_alloc_path();
9203 if (!path)
9204 return -ENOMEM;
9205
9206 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9207 if (!wc) {
9208 btrfs_free_path(path);
9209 return -ENOMEM;
9210 }
9211
9212 btrfs_assert_tree_locked(parent);
9213 parent_level = btrfs_header_level(parent);
9214 extent_buffer_get(parent);
9215 path->nodes[parent_level] = parent;
9216 path->slots[parent_level] = btrfs_header_nritems(parent);
9217
9218 btrfs_assert_tree_locked(node);
9219 level = btrfs_header_level(node);
9220 path->nodes[level] = node;
9221 path->slots[level] = 0;
9222 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9223
9224 wc->refs[parent_level] = 1;
9225 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9226 wc->level = level;
9227 wc->shared_level = -1;
9228 wc->stage = DROP_REFERENCE;
9229 wc->update_ref = 0;
9230 wc->keep_locks = 1;
9231 wc->for_reloc = 1;
9232 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9233
9234 while (1) {
9235 wret = walk_down_tree(trans, root, path, wc);
9236 if (wret < 0) {
9237 ret = wret;
9238 break;
9239 }
9240
9241 wret = walk_up_tree(trans, root, path, wc, parent_level);
9242 if (wret < 0)
9243 ret = wret;
9244 if (wret != 0)
9245 break;
9246 }
9247
9248 kfree(wc);
9249 btrfs_free_path(path);
9250 return ret;
9251 }
9252
9253 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9254 {
9255 u64 num_devices;
9256 u64 stripped;
9257
9258 /*
9259 * if restripe for this chunk_type is on pick target profile and
9260 * return, otherwise do the usual balance
9261 */
9262 stripped = get_restripe_target(root->fs_info, flags);
9263 if (stripped)
9264 return extended_to_chunk(stripped);
9265
9266 num_devices = root->fs_info->fs_devices->rw_devices;
9267
9268 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9269 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9270 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9271
9272 if (num_devices == 1) {
9273 stripped |= BTRFS_BLOCK_GROUP_DUP;
9274 stripped = flags & ~stripped;
9275
9276 /* turn raid0 into single device chunks */
9277 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9278 return stripped;
9279
9280 /* turn mirroring into duplication */
9281 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9282 BTRFS_BLOCK_GROUP_RAID10))
9283 return stripped | BTRFS_BLOCK_GROUP_DUP;
9284 } else {
9285 /* they already had raid on here, just return */
9286 if (flags & stripped)
9287 return flags;
9288
9289 stripped |= BTRFS_BLOCK_GROUP_DUP;
9290 stripped = flags & ~stripped;
9291
9292 /* switch duplicated blocks with raid1 */
9293 if (flags & BTRFS_BLOCK_GROUP_DUP)
9294 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9295
9296 /* this is drive concat, leave it alone */
9297 }
9298
9299 return flags;
9300 }
9301
9302 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9303 {
9304 struct btrfs_space_info *sinfo = cache->space_info;
9305 u64 num_bytes;
9306 u64 min_allocable_bytes;
9307 int ret = -ENOSPC;
9308
9309 /*
9310 * We need some metadata space and system metadata space for
9311 * allocating chunks in some corner cases until we force to set
9312 * it to be readonly.
9313 */
9314 if ((sinfo->flags &
9315 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9316 !force)
9317 min_allocable_bytes = SZ_1M;
9318 else
9319 min_allocable_bytes = 0;
9320
9321 spin_lock(&sinfo->lock);
9322 spin_lock(&cache->lock);
9323
9324 if (cache->ro) {
9325 cache->ro++;
9326 ret = 0;
9327 goto out;
9328 }
9329
9330 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9331 cache->bytes_super - btrfs_block_group_used(&cache->item);
9332
9333 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9334 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9335 min_allocable_bytes <= sinfo->total_bytes) {
9336 sinfo->bytes_readonly += num_bytes;
9337 cache->ro++;
9338 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9339 ret = 0;
9340 }
9341 out:
9342 spin_unlock(&cache->lock);
9343 spin_unlock(&sinfo->lock);
9344 return ret;
9345 }
9346
9347 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9348 struct btrfs_block_group_cache *cache)
9349
9350 {
9351 struct btrfs_trans_handle *trans;
9352 u64 alloc_flags;
9353 int ret;
9354
9355 again:
9356 trans = btrfs_join_transaction(root);
9357 if (IS_ERR(trans))
9358 return PTR_ERR(trans);
9359
9360 /*
9361 * we're not allowed to set block groups readonly after the dirty
9362 * block groups cache has started writing. If it already started,
9363 * back off and let this transaction commit
9364 */
9365 mutex_lock(&root->fs_info->ro_block_group_mutex);
9366 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9367 u64 transid = trans->transid;
9368
9369 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9370 btrfs_end_transaction(trans, root);
9371
9372 ret = btrfs_wait_for_commit(root, transid);
9373 if (ret)
9374 return ret;
9375 goto again;
9376 }
9377
9378 /*
9379 * if we are changing raid levels, try to allocate a corresponding
9380 * block group with the new raid level.
9381 */
9382 alloc_flags = update_block_group_flags(root, cache->flags);
9383 if (alloc_flags != cache->flags) {
9384 ret = do_chunk_alloc(trans, root, alloc_flags,
9385 CHUNK_ALLOC_FORCE);
9386 /*
9387 * ENOSPC is allowed here, we may have enough space
9388 * already allocated at the new raid level to
9389 * carry on
9390 */
9391 if (ret == -ENOSPC)
9392 ret = 0;
9393 if (ret < 0)
9394 goto out;
9395 }
9396
9397 ret = inc_block_group_ro(cache, 0);
9398 if (!ret)
9399 goto out;
9400 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9401 ret = do_chunk_alloc(trans, root, alloc_flags,
9402 CHUNK_ALLOC_FORCE);
9403 if (ret < 0)
9404 goto out;
9405 ret = inc_block_group_ro(cache, 0);
9406 out:
9407 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9408 alloc_flags = update_block_group_flags(root, cache->flags);
9409 lock_chunks(root->fs_info->chunk_root);
9410 check_system_chunk(trans, root, alloc_flags);
9411 unlock_chunks(root->fs_info->chunk_root);
9412 }
9413 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9414
9415 btrfs_end_transaction(trans, root);
9416 return ret;
9417 }
9418
9419 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9420 struct btrfs_root *root, u64 type)
9421 {
9422 u64 alloc_flags = get_alloc_profile(root, type);
9423 return do_chunk_alloc(trans, root, alloc_flags,
9424 CHUNK_ALLOC_FORCE);
9425 }
9426
9427 /*
9428 * helper to account the unused space of all the readonly block group in the
9429 * space_info. takes mirrors into account.
9430 */
9431 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9432 {
9433 struct btrfs_block_group_cache *block_group;
9434 u64 free_bytes = 0;
9435 int factor;
9436
9437 /* It's df, we don't care if it's racy */
9438 if (list_empty(&sinfo->ro_bgs))
9439 return 0;
9440
9441 spin_lock(&sinfo->lock);
9442 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9443 spin_lock(&block_group->lock);
9444
9445 if (!block_group->ro) {
9446 spin_unlock(&block_group->lock);
9447 continue;
9448 }
9449
9450 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9451 BTRFS_BLOCK_GROUP_RAID10 |
9452 BTRFS_BLOCK_GROUP_DUP))
9453 factor = 2;
9454 else
9455 factor = 1;
9456
9457 free_bytes += (block_group->key.offset -
9458 btrfs_block_group_used(&block_group->item)) *
9459 factor;
9460
9461 spin_unlock(&block_group->lock);
9462 }
9463 spin_unlock(&sinfo->lock);
9464
9465 return free_bytes;
9466 }
9467
9468 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9469 struct btrfs_block_group_cache *cache)
9470 {
9471 struct btrfs_space_info *sinfo = cache->space_info;
9472 u64 num_bytes;
9473
9474 BUG_ON(!cache->ro);
9475
9476 spin_lock(&sinfo->lock);
9477 spin_lock(&cache->lock);
9478 if (!--cache->ro) {
9479 num_bytes = cache->key.offset - cache->reserved -
9480 cache->pinned - cache->bytes_super -
9481 btrfs_block_group_used(&cache->item);
9482 sinfo->bytes_readonly -= num_bytes;
9483 list_del_init(&cache->ro_list);
9484 }
9485 spin_unlock(&cache->lock);
9486 spin_unlock(&sinfo->lock);
9487 }
9488
9489 /*
9490 * checks to see if its even possible to relocate this block group.
9491 *
9492 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9493 * ok to go ahead and try.
9494 */
9495 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9496 {
9497 struct btrfs_block_group_cache *block_group;
9498 struct btrfs_space_info *space_info;
9499 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9500 struct btrfs_device *device;
9501 struct btrfs_trans_handle *trans;
9502 u64 min_free;
9503 u64 dev_min = 1;
9504 u64 dev_nr = 0;
9505 u64 target;
9506 int debug;
9507 int index;
9508 int full = 0;
9509 int ret = 0;
9510
9511 debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9512
9513 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9514
9515 /* odd, couldn't find the block group, leave it alone */
9516 if (!block_group) {
9517 if (debug)
9518 btrfs_warn(root->fs_info,
9519 "can't find block group for bytenr %llu",
9520 bytenr);
9521 return -1;
9522 }
9523
9524 min_free = btrfs_block_group_used(&block_group->item);
9525
9526 /* no bytes used, we're good */
9527 if (!min_free)
9528 goto out;
9529
9530 space_info = block_group->space_info;
9531 spin_lock(&space_info->lock);
9532
9533 full = space_info->full;
9534
9535 /*
9536 * if this is the last block group we have in this space, we can't
9537 * relocate it unless we're able to allocate a new chunk below.
9538 *
9539 * Otherwise, we need to make sure we have room in the space to handle
9540 * all of the extents from this block group. If we can, we're good
9541 */
9542 if ((space_info->total_bytes != block_group->key.offset) &&
9543 (space_info->bytes_used + space_info->bytes_reserved +
9544 space_info->bytes_pinned + space_info->bytes_readonly +
9545 min_free < space_info->total_bytes)) {
9546 spin_unlock(&space_info->lock);
9547 goto out;
9548 }
9549 spin_unlock(&space_info->lock);
9550
9551 /*
9552 * ok we don't have enough space, but maybe we have free space on our
9553 * devices to allocate new chunks for relocation, so loop through our
9554 * alloc devices and guess if we have enough space. if this block
9555 * group is going to be restriped, run checks against the target
9556 * profile instead of the current one.
9557 */
9558 ret = -1;
9559
9560 /*
9561 * index:
9562 * 0: raid10
9563 * 1: raid1
9564 * 2: dup
9565 * 3: raid0
9566 * 4: single
9567 */
9568 target = get_restripe_target(root->fs_info, block_group->flags);
9569 if (target) {
9570 index = __get_raid_index(extended_to_chunk(target));
9571 } else {
9572 /*
9573 * this is just a balance, so if we were marked as full
9574 * we know there is no space for a new chunk
9575 */
9576 if (full) {
9577 if (debug)
9578 btrfs_warn(root->fs_info,
9579 "no space to alloc new chunk for block group %llu",
9580 block_group->key.objectid);
9581 goto out;
9582 }
9583
9584 index = get_block_group_index(block_group);
9585 }
9586
9587 if (index == BTRFS_RAID_RAID10) {
9588 dev_min = 4;
9589 /* Divide by 2 */
9590 min_free >>= 1;
9591 } else if (index == BTRFS_RAID_RAID1) {
9592 dev_min = 2;
9593 } else if (index == BTRFS_RAID_DUP) {
9594 /* Multiply by 2 */
9595 min_free <<= 1;
9596 } else if (index == BTRFS_RAID_RAID0) {
9597 dev_min = fs_devices->rw_devices;
9598 min_free = div64_u64(min_free, dev_min);
9599 }
9600
9601 /* We need to do this so that we can look at pending chunks */
9602 trans = btrfs_join_transaction(root);
9603 if (IS_ERR(trans)) {
9604 ret = PTR_ERR(trans);
9605 goto out;
9606 }
9607
9608 mutex_lock(&root->fs_info->chunk_mutex);
9609 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9610 u64 dev_offset;
9611
9612 /*
9613 * check to make sure we can actually find a chunk with enough
9614 * space to fit our block group in.
9615 */
9616 if (device->total_bytes > device->bytes_used + min_free &&
9617 !device->is_tgtdev_for_dev_replace) {
9618 ret = find_free_dev_extent(trans, device, min_free,
9619 &dev_offset, NULL);
9620 if (!ret)
9621 dev_nr++;
9622
9623 if (dev_nr >= dev_min)
9624 break;
9625
9626 ret = -1;
9627 }
9628 }
9629 if (debug && ret == -1)
9630 btrfs_warn(root->fs_info,
9631 "no space to allocate a new chunk for block group %llu",
9632 block_group->key.objectid);
9633 mutex_unlock(&root->fs_info->chunk_mutex);
9634 btrfs_end_transaction(trans, root);
9635 out:
9636 btrfs_put_block_group(block_group);
9637 return ret;
9638 }
9639
9640 static int find_first_block_group(struct btrfs_root *root,
9641 struct btrfs_path *path, struct btrfs_key *key)
9642 {
9643 int ret = 0;
9644 struct btrfs_key found_key;
9645 struct extent_buffer *leaf;
9646 int slot;
9647
9648 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9649 if (ret < 0)
9650 goto out;
9651
9652 while (1) {
9653 slot = path->slots[0];
9654 leaf = path->nodes[0];
9655 if (slot >= btrfs_header_nritems(leaf)) {
9656 ret = btrfs_next_leaf(root, path);
9657 if (ret == 0)
9658 continue;
9659 if (ret < 0)
9660 goto out;
9661 break;
9662 }
9663 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9664
9665 if (found_key.objectid >= key->objectid &&
9666 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9667 ret = 0;
9668 goto out;
9669 }
9670 path->slots[0]++;
9671 }
9672 out:
9673 return ret;
9674 }
9675
9676 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9677 {
9678 struct btrfs_block_group_cache *block_group;
9679 u64 last = 0;
9680
9681 while (1) {
9682 struct inode *inode;
9683
9684 block_group = btrfs_lookup_first_block_group(info, last);
9685 while (block_group) {
9686 spin_lock(&block_group->lock);
9687 if (block_group->iref)
9688 break;
9689 spin_unlock(&block_group->lock);
9690 block_group = next_block_group(info->tree_root,
9691 block_group);
9692 }
9693 if (!block_group) {
9694 if (last == 0)
9695 break;
9696 last = 0;
9697 continue;
9698 }
9699
9700 inode = block_group->inode;
9701 block_group->iref = 0;
9702 block_group->inode = NULL;
9703 spin_unlock(&block_group->lock);
9704 iput(inode);
9705 last = block_group->key.objectid + block_group->key.offset;
9706 btrfs_put_block_group(block_group);
9707 }
9708 }
9709
9710 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9711 {
9712 struct btrfs_block_group_cache *block_group;
9713 struct btrfs_space_info *space_info;
9714 struct btrfs_caching_control *caching_ctl;
9715 struct rb_node *n;
9716
9717 down_write(&info->commit_root_sem);
9718 while (!list_empty(&info->caching_block_groups)) {
9719 caching_ctl = list_entry(info->caching_block_groups.next,
9720 struct btrfs_caching_control, list);
9721 list_del(&caching_ctl->list);
9722 put_caching_control(caching_ctl);
9723 }
9724 up_write(&info->commit_root_sem);
9725
9726 spin_lock(&info->unused_bgs_lock);
9727 while (!list_empty(&info->unused_bgs)) {
9728 block_group = list_first_entry(&info->unused_bgs,
9729 struct btrfs_block_group_cache,
9730 bg_list);
9731 list_del_init(&block_group->bg_list);
9732 btrfs_put_block_group(block_group);
9733 }
9734 spin_unlock(&info->unused_bgs_lock);
9735
9736 spin_lock(&info->block_group_cache_lock);
9737 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9738 block_group = rb_entry(n, struct btrfs_block_group_cache,
9739 cache_node);
9740 rb_erase(&block_group->cache_node,
9741 &info->block_group_cache_tree);
9742 RB_CLEAR_NODE(&block_group->cache_node);
9743 spin_unlock(&info->block_group_cache_lock);
9744
9745 down_write(&block_group->space_info->groups_sem);
9746 list_del(&block_group->list);
9747 up_write(&block_group->space_info->groups_sem);
9748
9749 if (block_group->cached == BTRFS_CACHE_STARTED)
9750 wait_block_group_cache_done(block_group);
9751
9752 /*
9753 * We haven't cached this block group, which means we could
9754 * possibly have excluded extents on this block group.
9755 */
9756 if (block_group->cached == BTRFS_CACHE_NO ||
9757 block_group->cached == BTRFS_CACHE_ERROR)
9758 free_excluded_extents(info->extent_root, block_group);
9759
9760 btrfs_remove_free_space_cache(block_group);
9761 btrfs_put_block_group(block_group);
9762
9763 spin_lock(&info->block_group_cache_lock);
9764 }
9765 spin_unlock(&info->block_group_cache_lock);
9766
9767 /* now that all the block groups are freed, go through and
9768 * free all the space_info structs. This is only called during
9769 * the final stages of unmount, and so we know nobody is
9770 * using them. We call synchronize_rcu() once before we start,
9771 * just to be on the safe side.
9772 */
9773 synchronize_rcu();
9774
9775 release_global_block_rsv(info);
9776
9777 while (!list_empty(&info->space_info)) {
9778 int i;
9779
9780 space_info = list_entry(info->space_info.next,
9781 struct btrfs_space_info,
9782 list);
9783 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9784 if (WARN_ON(space_info->bytes_pinned > 0 ||
9785 space_info->bytes_reserved > 0 ||
9786 space_info->bytes_may_use > 0)) {
9787 dump_space_info(space_info, 0, 0);
9788 }
9789 }
9790 list_del(&space_info->list);
9791 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9792 struct kobject *kobj;
9793 kobj = space_info->block_group_kobjs[i];
9794 space_info->block_group_kobjs[i] = NULL;
9795 if (kobj) {
9796 kobject_del(kobj);
9797 kobject_put(kobj);
9798 }
9799 }
9800 kobject_del(&space_info->kobj);
9801 kobject_put(&space_info->kobj);
9802 }
9803 return 0;
9804 }
9805
9806 static void __link_block_group(struct btrfs_space_info *space_info,
9807 struct btrfs_block_group_cache *cache)
9808 {
9809 int index = get_block_group_index(cache);
9810 bool first = false;
9811
9812 down_write(&space_info->groups_sem);
9813 if (list_empty(&space_info->block_groups[index]))
9814 first = true;
9815 list_add_tail(&cache->list, &space_info->block_groups[index]);
9816 up_write(&space_info->groups_sem);
9817
9818 if (first) {
9819 struct raid_kobject *rkobj;
9820 int ret;
9821
9822 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9823 if (!rkobj)
9824 goto out_err;
9825 rkobj->raid_type = index;
9826 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9827 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9828 "%s", get_raid_name(index));
9829 if (ret) {
9830 kobject_put(&rkobj->kobj);
9831 goto out_err;
9832 }
9833 space_info->block_group_kobjs[index] = &rkobj->kobj;
9834 }
9835
9836 return;
9837 out_err:
9838 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9839 }
9840
9841 static struct btrfs_block_group_cache *
9842 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9843 {
9844 struct btrfs_block_group_cache *cache;
9845
9846 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9847 if (!cache)
9848 return NULL;
9849
9850 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9851 GFP_NOFS);
9852 if (!cache->free_space_ctl) {
9853 kfree(cache);
9854 return NULL;
9855 }
9856
9857 cache->key.objectid = start;
9858 cache->key.offset = size;
9859 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9860
9861 cache->sectorsize = root->sectorsize;
9862 cache->fs_info = root->fs_info;
9863 cache->full_stripe_len = btrfs_full_stripe_len(root,
9864 &root->fs_info->mapping_tree,
9865 start);
9866 set_free_space_tree_thresholds(cache);
9867
9868 atomic_set(&cache->count, 1);
9869 spin_lock_init(&cache->lock);
9870 init_rwsem(&cache->data_rwsem);
9871 INIT_LIST_HEAD(&cache->list);
9872 INIT_LIST_HEAD(&cache->cluster_list);
9873 INIT_LIST_HEAD(&cache->bg_list);
9874 INIT_LIST_HEAD(&cache->ro_list);
9875 INIT_LIST_HEAD(&cache->dirty_list);
9876 INIT_LIST_HEAD(&cache->io_list);
9877 btrfs_init_free_space_ctl(cache);
9878 atomic_set(&cache->trimming, 0);
9879 mutex_init(&cache->free_space_lock);
9880
9881 return cache;
9882 }
9883
9884 int btrfs_read_block_groups(struct btrfs_root *root)
9885 {
9886 struct btrfs_path *path;
9887 int ret;
9888 struct btrfs_block_group_cache *cache;
9889 struct btrfs_fs_info *info = root->fs_info;
9890 struct btrfs_space_info *space_info;
9891 struct btrfs_key key;
9892 struct btrfs_key found_key;
9893 struct extent_buffer *leaf;
9894 int need_clear = 0;
9895 u64 cache_gen;
9896
9897 root = info->extent_root;
9898 key.objectid = 0;
9899 key.offset = 0;
9900 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9901 path = btrfs_alloc_path();
9902 if (!path)
9903 return -ENOMEM;
9904 path->reada = READA_FORWARD;
9905
9906 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9907 if (btrfs_test_opt(root, SPACE_CACHE) &&
9908 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9909 need_clear = 1;
9910 if (btrfs_test_opt(root, CLEAR_CACHE))
9911 need_clear = 1;
9912
9913 while (1) {
9914 ret = find_first_block_group(root, path, &key);
9915 if (ret > 0)
9916 break;
9917 if (ret != 0)
9918 goto error;
9919
9920 leaf = path->nodes[0];
9921 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9922
9923 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9924 found_key.offset);
9925 if (!cache) {
9926 ret = -ENOMEM;
9927 goto error;
9928 }
9929
9930 if (need_clear) {
9931 /*
9932 * When we mount with old space cache, we need to
9933 * set BTRFS_DC_CLEAR and set dirty flag.
9934 *
9935 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9936 * truncate the old free space cache inode and
9937 * setup a new one.
9938 * b) Setting 'dirty flag' makes sure that we flush
9939 * the new space cache info onto disk.
9940 */
9941 if (btrfs_test_opt(root, SPACE_CACHE))
9942 cache->disk_cache_state = BTRFS_DC_CLEAR;
9943 }
9944
9945 read_extent_buffer(leaf, &cache->item,
9946 btrfs_item_ptr_offset(leaf, path->slots[0]),
9947 sizeof(cache->item));
9948 cache->flags = btrfs_block_group_flags(&cache->item);
9949
9950 key.objectid = found_key.objectid + found_key.offset;
9951 btrfs_release_path(path);
9952
9953 /*
9954 * We need to exclude the super stripes now so that the space
9955 * info has super bytes accounted for, otherwise we'll think
9956 * we have more space than we actually do.
9957 */
9958 ret = exclude_super_stripes(root, cache);
9959 if (ret) {
9960 /*
9961 * We may have excluded something, so call this just in
9962 * case.
9963 */
9964 free_excluded_extents(root, cache);
9965 btrfs_put_block_group(cache);
9966 goto error;
9967 }
9968
9969 /*
9970 * check for two cases, either we are full, and therefore
9971 * don't need to bother with the caching work since we won't
9972 * find any space, or we are empty, and we can just add all
9973 * the space in and be done with it. This saves us _alot_ of
9974 * time, particularly in the full case.
9975 */
9976 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9977 cache->last_byte_to_unpin = (u64)-1;
9978 cache->cached = BTRFS_CACHE_FINISHED;
9979 free_excluded_extents(root, cache);
9980 } else if (btrfs_block_group_used(&cache->item) == 0) {
9981 cache->last_byte_to_unpin = (u64)-1;
9982 cache->cached = BTRFS_CACHE_FINISHED;
9983 add_new_free_space(cache, root->fs_info,
9984 found_key.objectid,
9985 found_key.objectid +
9986 found_key.offset);
9987 free_excluded_extents(root, cache);
9988 }
9989
9990 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9991 if (ret) {
9992 btrfs_remove_free_space_cache(cache);
9993 btrfs_put_block_group(cache);
9994 goto error;
9995 }
9996
9997 ret = update_space_info(info, cache->flags, found_key.offset,
9998 btrfs_block_group_used(&cache->item),
9999 &space_info);
10000 if (ret) {
10001 btrfs_remove_free_space_cache(cache);
10002 spin_lock(&info->block_group_cache_lock);
10003 rb_erase(&cache->cache_node,
10004 &info->block_group_cache_tree);
10005 RB_CLEAR_NODE(&cache->cache_node);
10006 spin_unlock(&info->block_group_cache_lock);
10007 btrfs_put_block_group(cache);
10008 goto error;
10009 }
10010
10011 cache->space_info = space_info;
10012 spin_lock(&cache->space_info->lock);
10013 cache->space_info->bytes_readonly += cache->bytes_super;
10014 spin_unlock(&cache->space_info->lock);
10015
10016 __link_block_group(space_info, cache);
10017
10018 set_avail_alloc_bits(root->fs_info, cache->flags);
10019 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10020 inc_block_group_ro(cache, 1);
10021 } else if (btrfs_block_group_used(&cache->item) == 0) {
10022 spin_lock(&info->unused_bgs_lock);
10023 /* Should always be true but just in case. */
10024 if (list_empty(&cache->bg_list)) {
10025 btrfs_get_block_group(cache);
10026 list_add_tail(&cache->bg_list,
10027 &info->unused_bgs);
10028 }
10029 spin_unlock(&info->unused_bgs_lock);
10030 }
10031 }
10032
10033 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10034 if (!(get_alloc_profile(root, space_info->flags) &
10035 (BTRFS_BLOCK_GROUP_RAID10 |
10036 BTRFS_BLOCK_GROUP_RAID1 |
10037 BTRFS_BLOCK_GROUP_RAID5 |
10038 BTRFS_BLOCK_GROUP_RAID6 |
10039 BTRFS_BLOCK_GROUP_DUP)))
10040 continue;
10041 /*
10042 * avoid allocating from un-mirrored block group if there are
10043 * mirrored block groups.
10044 */
10045 list_for_each_entry(cache,
10046 &space_info->block_groups[BTRFS_RAID_RAID0],
10047 list)
10048 inc_block_group_ro(cache, 1);
10049 list_for_each_entry(cache,
10050 &space_info->block_groups[BTRFS_RAID_SINGLE],
10051 list)
10052 inc_block_group_ro(cache, 1);
10053 }
10054
10055 init_global_block_rsv(info);
10056 ret = 0;
10057 error:
10058 btrfs_free_path(path);
10059 return ret;
10060 }
10061
10062 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10063 struct btrfs_root *root)
10064 {
10065 struct btrfs_block_group_cache *block_group, *tmp;
10066 struct btrfs_root *extent_root = root->fs_info->extent_root;
10067 struct btrfs_block_group_item item;
10068 struct btrfs_key key;
10069 int ret = 0;
10070 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10071
10072 trans->can_flush_pending_bgs = false;
10073 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10074 if (ret)
10075 goto next;
10076
10077 spin_lock(&block_group->lock);
10078 memcpy(&item, &block_group->item, sizeof(item));
10079 memcpy(&key, &block_group->key, sizeof(key));
10080 spin_unlock(&block_group->lock);
10081
10082 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10083 sizeof(item));
10084 if (ret)
10085 btrfs_abort_transaction(trans, extent_root, ret);
10086 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10087 key.objectid, key.offset);
10088 if (ret)
10089 btrfs_abort_transaction(trans, extent_root, ret);
10090 add_block_group_free_space(trans, root->fs_info, block_group);
10091 /* already aborted the transaction if it failed. */
10092 next:
10093 list_del_init(&block_group->bg_list);
10094 }
10095 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10096 }
10097
10098 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10099 struct btrfs_root *root, u64 bytes_used,
10100 u64 type, u64 chunk_objectid, u64 chunk_offset,
10101 u64 size)
10102 {
10103 int ret;
10104 struct btrfs_root *extent_root;
10105 struct btrfs_block_group_cache *cache;
10106
10107 extent_root = root->fs_info->extent_root;
10108
10109 btrfs_set_log_full_commit(root->fs_info, trans);
10110
10111 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10112 if (!cache)
10113 return -ENOMEM;
10114
10115 btrfs_set_block_group_used(&cache->item, bytes_used);
10116 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10117 btrfs_set_block_group_flags(&cache->item, type);
10118
10119 cache->flags = type;
10120 cache->last_byte_to_unpin = (u64)-1;
10121 cache->cached = BTRFS_CACHE_FINISHED;
10122 cache->needs_free_space = 1;
10123 ret = exclude_super_stripes(root, cache);
10124 if (ret) {
10125 /*
10126 * We may have excluded something, so call this just in
10127 * case.
10128 */
10129 free_excluded_extents(root, cache);
10130 btrfs_put_block_group(cache);
10131 return ret;
10132 }
10133
10134 add_new_free_space(cache, root->fs_info, chunk_offset,
10135 chunk_offset + size);
10136
10137 free_excluded_extents(root, cache);
10138
10139 #ifdef CONFIG_BTRFS_DEBUG
10140 if (btrfs_should_fragment_free_space(root, cache)) {
10141 u64 new_bytes_used = size - bytes_used;
10142
10143 bytes_used += new_bytes_used >> 1;
10144 fragment_free_space(root, cache);
10145 }
10146 #endif
10147 /*
10148 * Call to ensure the corresponding space_info object is created and
10149 * assigned to our block group, but don't update its counters just yet.
10150 * We want our bg to be added to the rbtree with its ->space_info set.
10151 */
10152 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10153 &cache->space_info);
10154 if (ret) {
10155 btrfs_remove_free_space_cache(cache);
10156 btrfs_put_block_group(cache);
10157 return ret;
10158 }
10159
10160 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10161 if (ret) {
10162 btrfs_remove_free_space_cache(cache);
10163 btrfs_put_block_group(cache);
10164 return ret;
10165 }
10166
10167 /*
10168 * Now that our block group has its ->space_info set and is inserted in
10169 * the rbtree, update the space info's counters.
10170 */
10171 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10172 &cache->space_info);
10173 if (ret) {
10174 btrfs_remove_free_space_cache(cache);
10175 spin_lock(&root->fs_info->block_group_cache_lock);
10176 rb_erase(&cache->cache_node,
10177 &root->fs_info->block_group_cache_tree);
10178 RB_CLEAR_NODE(&cache->cache_node);
10179 spin_unlock(&root->fs_info->block_group_cache_lock);
10180 btrfs_put_block_group(cache);
10181 return ret;
10182 }
10183 update_global_block_rsv(root->fs_info);
10184
10185 spin_lock(&cache->space_info->lock);
10186 cache->space_info->bytes_readonly += cache->bytes_super;
10187 spin_unlock(&cache->space_info->lock);
10188
10189 __link_block_group(cache->space_info, cache);
10190
10191 list_add_tail(&cache->bg_list, &trans->new_bgs);
10192
10193 set_avail_alloc_bits(extent_root->fs_info, type);
10194
10195 return 0;
10196 }
10197
10198 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10199 {
10200 u64 extra_flags = chunk_to_extended(flags) &
10201 BTRFS_EXTENDED_PROFILE_MASK;
10202
10203 write_seqlock(&fs_info->profiles_lock);
10204 if (flags & BTRFS_BLOCK_GROUP_DATA)
10205 fs_info->avail_data_alloc_bits &= ~extra_flags;
10206 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10207 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10208 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10209 fs_info->avail_system_alloc_bits &= ~extra_flags;
10210 write_sequnlock(&fs_info->profiles_lock);
10211 }
10212
10213 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10214 struct btrfs_root *root, u64 group_start,
10215 struct extent_map *em)
10216 {
10217 struct btrfs_path *path;
10218 struct btrfs_block_group_cache *block_group;
10219 struct btrfs_free_cluster *cluster;
10220 struct btrfs_root *tree_root = root->fs_info->tree_root;
10221 struct btrfs_key key;
10222 struct inode *inode;
10223 struct kobject *kobj = NULL;
10224 int ret;
10225 int index;
10226 int factor;
10227 struct btrfs_caching_control *caching_ctl = NULL;
10228 bool remove_em;
10229
10230 root = root->fs_info->extent_root;
10231
10232 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10233 BUG_ON(!block_group);
10234 BUG_ON(!block_group->ro);
10235
10236 /*
10237 * Free the reserved super bytes from this block group before
10238 * remove it.
10239 */
10240 free_excluded_extents(root, block_group);
10241
10242 memcpy(&key, &block_group->key, sizeof(key));
10243 index = get_block_group_index(block_group);
10244 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10245 BTRFS_BLOCK_GROUP_RAID1 |
10246 BTRFS_BLOCK_GROUP_RAID10))
10247 factor = 2;
10248 else
10249 factor = 1;
10250
10251 /* make sure this block group isn't part of an allocation cluster */
10252 cluster = &root->fs_info->data_alloc_cluster;
10253 spin_lock(&cluster->refill_lock);
10254 btrfs_return_cluster_to_free_space(block_group, cluster);
10255 spin_unlock(&cluster->refill_lock);
10256
10257 /*
10258 * make sure this block group isn't part of a metadata
10259 * allocation cluster
10260 */
10261 cluster = &root->fs_info->meta_alloc_cluster;
10262 spin_lock(&cluster->refill_lock);
10263 btrfs_return_cluster_to_free_space(block_group, cluster);
10264 spin_unlock(&cluster->refill_lock);
10265
10266 path = btrfs_alloc_path();
10267 if (!path) {
10268 ret = -ENOMEM;
10269 goto out;
10270 }
10271
10272 /*
10273 * get the inode first so any iput calls done for the io_list
10274 * aren't the final iput (no unlinks allowed now)
10275 */
10276 inode = lookup_free_space_inode(tree_root, block_group, path);
10277
10278 mutex_lock(&trans->transaction->cache_write_mutex);
10279 /*
10280 * make sure our free spache cache IO is done before remove the
10281 * free space inode
10282 */
10283 spin_lock(&trans->transaction->dirty_bgs_lock);
10284 if (!list_empty(&block_group->io_list)) {
10285 list_del_init(&block_group->io_list);
10286
10287 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10288
10289 spin_unlock(&trans->transaction->dirty_bgs_lock);
10290 btrfs_wait_cache_io(root, trans, block_group,
10291 &block_group->io_ctl, path,
10292 block_group->key.objectid);
10293 btrfs_put_block_group(block_group);
10294 spin_lock(&trans->transaction->dirty_bgs_lock);
10295 }
10296
10297 if (!list_empty(&block_group->dirty_list)) {
10298 list_del_init(&block_group->dirty_list);
10299 btrfs_put_block_group(block_group);
10300 }
10301 spin_unlock(&trans->transaction->dirty_bgs_lock);
10302 mutex_unlock(&trans->transaction->cache_write_mutex);
10303
10304 if (!IS_ERR(inode)) {
10305 ret = btrfs_orphan_add(trans, inode);
10306 if (ret) {
10307 btrfs_add_delayed_iput(inode);
10308 goto out;
10309 }
10310 clear_nlink(inode);
10311 /* One for the block groups ref */
10312 spin_lock(&block_group->lock);
10313 if (block_group->iref) {
10314 block_group->iref = 0;
10315 block_group->inode = NULL;
10316 spin_unlock(&block_group->lock);
10317 iput(inode);
10318 } else {
10319 spin_unlock(&block_group->lock);
10320 }
10321 /* One for our lookup ref */
10322 btrfs_add_delayed_iput(inode);
10323 }
10324
10325 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10326 key.offset = block_group->key.objectid;
10327 key.type = 0;
10328
10329 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10330 if (ret < 0)
10331 goto out;
10332 if (ret > 0)
10333 btrfs_release_path(path);
10334 if (ret == 0) {
10335 ret = btrfs_del_item(trans, tree_root, path);
10336 if (ret)
10337 goto out;
10338 btrfs_release_path(path);
10339 }
10340
10341 spin_lock(&root->fs_info->block_group_cache_lock);
10342 rb_erase(&block_group->cache_node,
10343 &root->fs_info->block_group_cache_tree);
10344 RB_CLEAR_NODE(&block_group->cache_node);
10345
10346 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10347 root->fs_info->first_logical_byte = (u64)-1;
10348 spin_unlock(&root->fs_info->block_group_cache_lock);
10349
10350 down_write(&block_group->space_info->groups_sem);
10351 /*
10352 * we must use list_del_init so people can check to see if they
10353 * are still on the list after taking the semaphore
10354 */
10355 list_del_init(&block_group->list);
10356 if (list_empty(&block_group->space_info->block_groups[index])) {
10357 kobj = block_group->space_info->block_group_kobjs[index];
10358 block_group->space_info->block_group_kobjs[index] = NULL;
10359 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10360 }
10361 up_write(&block_group->space_info->groups_sem);
10362 if (kobj) {
10363 kobject_del(kobj);
10364 kobject_put(kobj);
10365 }
10366
10367 if (block_group->has_caching_ctl)
10368 caching_ctl = get_caching_control(block_group);
10369 if (block_group->cached == BTRFS_CACHE_STARTED)
10370 wait_block_group_cache_done(block_group);
10371 if (block_group->has_caching_ctl) {
10372 down_write(&root->fs_info->commit_root_sem);
10373 if (!caching_ctl) {
10374 struct btrfs_caching_control *ctl;
10375
10376 list_for_each_entry(ctl,
10377 &root->fs_info->caching_block_groups, list)
10378 if (ctl->block_group == block_group) {
10379 caching_ctl = ctl;
10380 atomic_inc(&caching_ctl->count);
10381 break;
10382 }
10383 }
10384 if (caching_ctl)
10385 list_del_init(&caching_ctl->list);
10386 up_write(&root->fs_info->commit_root_sem);
10387 if (caching_ctl) {
10388 /* Once for the caching bgs list and once for us. */
10389 put_caching_control(caching_ctl);
10390 put_caching_control(caching_ctl);
10391 }
10392 }
10393
10394 spin_lock(&trans->transaction->dirty_bgs_lock);
10395 if (!list_empty(&block_group->dirty_list)) {
10396 WARN_ON(1);
10397 }
10398 if (!list_empty(&block_group->io_list)) {
10399 WARN_ON(1);
10400 }
10401 spin_unlock(&trans->transaction->dirty_bgs_lock);
10402 btrfs_remove_free_space_cache(block_group);
10403
10404 spin_lock(&block_group->space_info->lock);
10405 list_del_init(&block_group->ro_list);
10406
10407 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10408 WARN_ON(block_group->space_info->total_bytes
10409 < block_group->key.offset);
10410 WARN_ON(block_group->space_info->bytes_readonly
10411 < block_group->key.offset);
10412 WARN_ON(block_group->space_info->disk_total
10413 < block_group->key.offset * factor);
10414 }
10415 block_group->space_info->total_bytes -= block_group->key.offset;
10416 block_group->space_info->bytes_readonly -= block_group->key.offset;
10417 block_group->space_info->disk_total -= block_group->key.offset * factor;
10418
10419 spin_unlock(&block_group->space_info->lock);
10420
10421 memcpy(&key, &block_group->key, sizeof(key));
10422
10423 lock_chunks(root);
10424 if (!list_empty(&em->list)) {
10425 /* We're in the transaction->pending_chunks list. */
10426 free_extent_map(em);
10427 }
10428 spin_lock(&block_group->lock);
10429 block_group->removed = 1;
10430 /*
10431 * At this point trimming can't start on this block group, because we
10432 * removed the block group from the tree fs_info->block_group_cache_tree
10433 * so no one can't find it anymore and even if someone already got this
10434 * block group before we removed it from the rbtree, they have already
10435 * incremented block_group->trimming - if they didn't, they won't find
10436 * any free space entries because we already removed them all when we
10437 * called btrfs_remove_free_space_cache().
10438 *
10439 * And we must not remove the extent map from the fs_info->mapping_tree
10440 * to prevent the same logical address range and physical device space
10441 * ranges from being reused for a new block group. This is because our
10442 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10443 * completely transactionless, so while it is trimming a range the
10444 * currently running transaction might finish and a new one start,
10445 * allowing for new block groups to be created that can reuse the same
10446 * physical device locations unless we take this special care.
10447 *
10448 * There may also be an implicit trim operation if the file system
10449 * is mounted with -odiscard. The same protections must remain
10450 * in place until the extents have been discarded completely when
10451 * the transaction commit has completed.
10452 */
10453 remove_em = (atomic_read(&block_group->trimming) == 0);
10454 /*
10455 * Make sure a trimmer task always sees the em in the pinned_chunks list
10456 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10457 * before checking block_group->removed).
10458 */
10459 if (!remove_em) {
10460 /*
10461 * Our em might be in trans->transaction->pending_chunks which
10462 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10463 * and so is the fs_info->pinned_chunks list.
10464 *
10465 * So at this point we must be holding the chunk_mutex to avoid
10466 * any races with chunk allocation (more specifically at
10467 * volumes.c:contains_pending_extent()), to ensure it always
10468 * sees the em, either in the pending_chunks list or in the
10469 * pinned_chunks list.
10470 */
10471 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10472 }
10473 spin_unlock(&block_group->lock);
10474
10475 if (remove_em) {
10476 struct extent_map_tree *em_tree;
10477
10478 em_tree = &root->fs_info->mapping_tree.map_tree;
10479 write_lock(&em_tree->lock);
10480 /*
10481 * The em might be in the pending_chunks list, so make sure the
10482 * chunk mutex is locked, since remove_extent_mapping() will
10483 * delete us from that list.
10484 */
10485 remove_extent_mapping(em_tree, em);
10486 write_unlock(&em_tree->lock);
10487 /* once for the tree */
10488 free_extent_map(em);
10489 }
10490
10491 unlock_chunks(root);
10492
10493 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10494 if (ret)
10495 goto out;
10496
10497 btrfs_put_block_group(block_group);
10498 btrfs_put_block_group(block_group);
10499
10500 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10501 if (ret > 0)
10502 ret = -EIO;
10503 if (ret < 0)
10504 goto out;
10505
10506 ret = btrfs_del_item(trans, root, path);
10507 out:
10508 btrfs_free_path(path);
10509 return ret;
10510 }
10511
10512 struct btrfs_trans_handle *
10513 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10514 const u64 chunk_offset)
10515 {
10516 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10517 struct extent_map *em;
10518 struct map_lookup *map;
10519 unsigned int num_items;
10520
10521 read_lock(&em_tree->lock);
10522 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10523 read_unlock(&em_tree->lock);
10524 ASSERT(em && em->start == chunk_offset);
10525
10526 /*
10527 * We need to reserve 3 + N units from the metadata space info in order
10528 * to remove a block group (done at btrfs_remove_chunk() and at
10529 * btrfs_remove_block_group()), which are used for:
10530 *
10531 * 1 unit for adding the free space inode's orphan (located in the tree
10532 * of tree roots).
10533 * 1 unit for deleting the block group item (located in the extent
10534 * tree).
10535 * 1 unit for deleting the free space item (located in tree of tree
10536 * roots).
10537 * N units for deleting N device extent items corresponding to each
10538 * stripe (located in the device tree).
10539 *
10540 * In order to remove a block group we also need to reserve units in the
10541 * system space info in order to update the chunk tree (update one or
10542 * more device items and remove one chunk item), but this is done at
10543 * btrfs_remove_chunk() through a call to check_system_chunk().
10544 */
10545 map = em->map_lookup;
10546 num_items = 3 + map->num_stripes;
10547 free_extent_map(em);
10548
10549 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10550 num_items, 1);
10551 }
10552
10553 /*
10554 * Process the unused_bgs list and remove any that don't have any allocated
10555 * space inside of them.
10556 */
10557 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10558 {
10559 struct btrfs_block_group_cache *block_group;
10560 struct btrfs_space_info *space_info;
10561 struct btrfs_root *root = fs_info->extent_root;
10562 struct btrfs_trans_handle *trans;
10563 int ret = 0;
10564
10565 if (!fs_info->open)
10566 return;
10567
10568 spin_lock(&fs_info->unused_bgs_lock);
10569 while (!list_empty(&fs_info->unused_bgs)) {
10570 u64 start, end;
10571 int trimming;
10572
10573 block_group = list_first_entry(&fs_info->unused_bgs,
10574 struct btrfs_block_group_cache,
10575 bg_list);
10576 list_del_init(&block_group->bg_list);
10577
10578 space_info = block_group->space_info;
10579
10580 if (ret || btrfs_mixed_space_info(space_info)) {
10581 btrfs_put_block_group(block_group);
10582 continue;
10583 }
10584 spin_unlock(&fs_info->unused_bgs_lock);
10585
10586 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10587
10588 /* Don't want to race with allocators so take the groups_sem */
10589 down_write(&space_info->groups_sem);
10590 spin_lock(&block_group->lock);
10591 if (block_group->reserved ||
10592 btrfs_block_group_used(&block_group->item) ||
10593 block_group->ro ||
10594 list_is_singular(&block_group->list)) {
10595 /*
10596 * We want to bail if we made new allocations or have
10597 * outstanding allocations in this block group. We do
10598 * the ro check in case balance is currently acting on
10599 * this block group.
10600 */
10601 spin_unlock(&block_group->lock);
10602 up_write(&space_info->groups_sem);
10603 goto next;
10604 }
10605 spin_unlock(&block_group->lock);
10606
10607 /* We don't want to force the issue, only flip if it's ok. */
10608 ret = inc_block_group_ro(block_group, 0);
10609 up_write(&space_info->groups_sem);
10610 if (ret < 0) {
10611 ret = 0;
10612 goto next;
10613 }
10614
10615 /*
10616 * Want to do this before we do anything else so we can recover
10617 * properly if we fail to join the transaction.
10618 */
10619 trans = btrfs_start_trans_remove_block_group(fs_info,
10620 block_group->key.objectid);
10621 if (IS_ERR(trans)) {
10622 btrfs_dec_block_group_ro(root, block_group);
10623 ret = PTR_ERR(trans);
10624 goto next;
10625 }
10626
10627 /*
10628 * We could have pending pinned extents for this block group,
10629 * just delete them, we don't care about them anymore.
10630 */
10631 start = block_group->key.objectid;
10632 end = start + block_group->key.offset - 1;
10633 /*
10634 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10635 * btrfs_finish_extent_commit(). If we are at transaction N,
10636 * another task might be running finish_extent_commit() for the
10637 * previous transaction N - 1, and have seen a range belonging
10638 * to the block group in freed_extents[] before we were able to
10639 * clear the whole block group range from freed_extents[]. This
10640 * means that task can lookup for the block group after we
10641 * unpinned it from freed_extents[] and removed it, leading to
10642 * a BUG_ON() at btrfs_unpin_extent_range().
10643 */
10644 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10645 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10646 EXTENT_DIRTY);
10647 if (ret) {
10648 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10649 btrfs_dec_block_group_ro(root, block_group);
10650 goto end_trans;
10651 }
10652 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10653 EXTENT_DIRTY);
10654 if (ret) {
10655 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10656 btrfs_dec_block_group_ro(root, block_group);
10657 goto end_trans;
10658 }
10659 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10660
10661 /* Reset pinned so btrfs_put_block_group doesn't complain */
10662 spin_lock(&space_info->lock);
10663 spin_lock(&block_group->lock);
10664
10665 space_info->bytes_pinned -= block_group->pinned;
10666 space_info->bytes_readonly += block_group->pinned;
10667 percpu_counter_add(&space_info->total_bytes_pinned,
10668 -block_group->pinned);
10669 block_group->pinned = 0;
10670
10671 spin_unlock(&block_group->lock);
10672 spin_unlock(&space_info->lock);
10673
10674 /* DISCARD can flip during remount */
10675 trimming = btrfs_test_opt(root, DISCARD);
10676
10677 /* Implicit trim during transaction commit. */
10678 if (trimming)
10679 btrfs_get_block_group_trimming(block_group);
10680
10681 /*
10682 * Btrfs_remove_chunk will abort the transaction if things go
10683 * horribly wrong.
10684 */
10685 ret = btrfs_remove_chunk(trans, root,
10686 block_group->key.objectid);
10687
10688 if (ret) {
10689 if (trimming)
10690 btrfs_put_block_group_trimming(block_group);
10691 goto end_trans;
10692 }
10693
10694 /*
10695 * If we're not mounted with -odiscard, we can just forget
10696 * about this block group. Otherwise we'll need to wait
10697 * until transaction commit to do the actual discard.
10698 */
10699 if (trimming) {
10700 spin_lock(&fs_info->unused_bgs_lock);
10701 /*
10702 * A concurrent scrub might have added us to the list
10703 * fs_info->unused_bgs, so use a list_move operation
10704 * to add the block group to the deleted_bgs list.
10705 */
10706 list_move(&block_group->bg_list,
10707 &trans->transaction->deleted_bgs);
10708 spin_unlock(&fs_info->unused_bgs_lock);
10709 btrfs_get_block_group(block_group);
10710 }
10711 end_trans:
10712 btrfs_end_transaction(trans, root);
10713 next:
10714 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10715 btrfs_put_block_group(block_group);
10716 spin_lock(&fs_info->unused_bgs_lock);
10717 }
10718 spin_unlock(&fs_info->unused_bgs_lock);
10719 }
10720
10721 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10722 {
10723 struct btrfs_space_info *space_info;
10724 struct btrfs_super_block *disk_super;
10725 u64 features;
10726 u64 flags;
10727 int mixed = 0;
10728 int ret;
10729
10730 disk_super = fs_info->super_copy;
10731 if (!btrfs_super_root(disk_super))
10732 return -EINVAL;
10733
10734 features = btrfs_super_incompat_flags(disk_super);
10735 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10736 mixed = 1;
10737
10738 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10739 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10740 if (ret)
10741 goto out;
10742
10743 if (mixed) {
10744 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10745 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10746 } else {
10747 flags = BTRFS_BLOCK_GROUP_METADATA;
10748 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10749 if (ret)
10750 goto out;
10751
10752 flags = BTRFS_BLOCK_GROUP_DATA;
10753 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10754 }
10755 out:
10756 return ret;
10757 }
10758
10759 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10760 {
10761 return unpin_extent_range(root, start, end, false);
10762 }
10763
10764 /*
10765 * It used to be that old block groups would be left around forever.
10766 * Iterating over them would be enough to trim unused space. Since we
10767 * now automatically remove them, we also need to iterate over unallocated
10768 * space.
10769 *
10770 * We don't want a transaction for this since the discard may take a
10771 * substantial amount of time. We don't require that a transaction be
10772 * running, but we do need to take a running transaction into account
10773 * to ensure that we're not discarding chunks that were released in
10774 * the current transaction.
10775 *
10776 * Holding the chunks lock will prevent other threads from allocating
10777 * or releasing chunks, but it won't prevent a running transaction
10778 * from committing and releasing the memory that the pending chunks
10779 * list head uses. For that, we need to take a reference to the
10780 * transaction.
10781 */
10782 static int btrfs_trim_free_extents(struct btrfs_device *device,
10783 u64 minlen, u64 *trimmed)
10784 {
10785 u64 start = 0, len = 0;
10786 int ret;
10787
10788 *trimmed = 0;
10789
10790 /* Not writeable = nothing to do. */
10791 if (!device->writeable)
10792 return 0;
10793
10794 /* No free space = nothing to do. */
10795 if (device->total_bytes <= device->bytes_used)
10796 return 0;
10797
10798 ret = 0;
10799
10800 while (1) {
10801 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10802 struct btrfs_transaction *trans;
10803 u64 bytes;
10804
10805 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10806 if (ret)
10807 return ret;
10808
10809 down_read(&fs_info->commit_root_sem);
10810
10811 spin_lock(&fs_info->trans_lock);
10812 trans = fs_info->running_transaction;
10813 if (trans)
10814 atomic_inc(&trans->use_count);
10815 spin_unlock(&fs_info->trans_lock);
10816
10817 ret = find_free_dev_extent_start(trans, device, minlen, start,
10818 &start, &len);
10819 if (trans)
10820 btrfs_put_transaction(trans);
10821
10822 if (ret) {
10823 up_read(&fs_info->commit_root_sem);
10824 mutex_unlock(&fs_info->chunk_mutex);
10825 if (ret == -ENOSPC)
10826 ret = 0;
10827 break;
10828 }
10829
10830 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10831 up_read(&fs_info->commit_root_sem);
10832 mutex_unlock(&fs_info->chunk_mutex);
10833
10834 if (ret)
10835 break;
10836
10837 start += len;
10838 *trimmed += bytes;
10839
10840 if (fatal_signal_pending(current)) {
10841 ret = -ERESTARTSYS;
10842 break;
10843 }
10844
10845 cond_resched();
10846 }
10847
10848 return ret;
10849 }
10850
10851 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10852 {
10853 struct btrfs_fs_info *fs_info = root->fs_info;
10854 struct btrfs_block_group_cache *cache = NULL;
10855 struct btrfs_device *device;
10856 struct list_head *devices;
10857 u64 group_trimmed;
10858 u64 start;
10859 u64 end;
10860 u64 trimmed = 0;
10861 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10862 int ret = 0;
10863
10864 /*
10865 * try to trim all FS space, our block group may start from non-zero.
10866 */
10867 if (range->len == total_bytes)
10868 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10869 else
10870 cache = btrfs_lookup_block_group(fs_info, range->start);
10871
10872 while (cache) {
10873 if (cache->key.objectid >= (range->start + range->len)) {
10874 btrfs_put_block_group(cache);
10875 break;
10876 }
10877
10878 start = max(range->start, cache->key.objectid);
10879 end = min(range->start + range->len,
10880 cache->key.objectid + cache->key.offset);
10881
10882 if (end - start >= range->minlen) {
10883 if (!block_group_cache_done(cache)) {
10884 ret = cache_block_group(cache, 0);
10885 if (ret) {
10886 btrfs_put_block_group(cache);
10887 break;
10888 }
10889 ret = wait_block_group_cache_done(cache);
10890 if (ret) {
10891 btrfs_put_block_group(cache);
10892 break;
10893 }
10894 }
10895 ret = btrfs_trim_block_group(cache,
10896 &group_trimmed,
10897 start,
10898 end,
10899 range->minlen);
10900
10901 trimmed += group_trimmed;
10902 if (ret) {
10903 btrfs_put_block_group(cache);
10904 break;
10905 }
10906 }
10907
10908 cache = next_block_group(fs_info->tree_root, cache);
10909 }
10910
10911 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10912 devices = &root->fs_info->fs_devices->alloc_list;
10913 list_for_each_entry(device, devices, dev_alloc_list) {
10914 ret = btrfs_trim_free_extents(device, range->minlen,
10915 &group_trimmed);
10916 if (ret)
10917 break;
10918
10919 trimmed += group_trimmed;
10920 }
10921 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10922
10923 range->len = trimmed;
10924 return ret;
10925 }
10926
10927 /*
10928 * btrfs_{start,end}_write_no_snapshoting() are similar to
10929 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10930 * data into the page cache through nocow before the subvolume is snapshoted,
10931 * but flush the data into disk after the snapshot creation, or to prevent
10932 * operations while snapshoting is ongoing and that cause the snapshot to be
10933 * inconsistent (writes followed by expanding truncates for example).
10934 */
10935 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10936 {
10937 percpu_counter_dec(&root->subv_writers->counter);
10938 /*
10939 * Make sure counter is updated before we wake up waiters.
10940 */
10941 smp_mb();
10942 if (waitqueue_active(&root->subv_writers->wait))
10943 wake_up(&root->subv_writers->wait);
10944 }
10945
10946 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10947 {
10948 if (atomic_read(&root->will_be_snapshoted))
10949 return 0;
10950
10951 percpu_counter_inc(&root->subv_writers->counter);
10952 /*
10953 * Make sure counter is updated before we check for snapshot creation.
10954 */
10955 smp_mb();
10956 if (atomic_read(&root->will_be_snapshoted)) {
10957 btrfs_end_write_no_snapshoting(root);
10958 return 0;
10959 }
10960 return 1;
10961 }
10962
10963 static int wait_snapshoting_atomic_t(atomic_t *a)
10964 {
10965 schedule();
10966 return 0;
10967 }
10968
10969 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10970 {
10971 while (true) {
10972 int ret;
10973
10974 ret = btrfs_start_write_no_snapshoting(root);
10975 if (ret)
10976 break;
10977 wait_on_atomic_t(&root->will_be_snapshoted,
10978 wait_snapshoting_atomic_t,
10979 TASK_UNINTERRUPTIBLE);
10980 }
10981 }
This page took 0.258674 seconds and 5 git commands to generate.