btrfs: Fix NO_SPACE bug caused by delayed-iput
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 if (locked_ref->is_data &&
2542 locked_ref->total_ref_mod < 0) {
2543 spin_lock(&delayed_refs->lock);
2544 delayed_refs->pending_csums -= ref->num_bytes;
2545 spin_unlock(&delayed_refs->lock);
2546 }
2547 btrfs_delayed_ref_unlock(locked_ref);
2548 locked_ref = NULL;
2549 }
2550 btrfs_put_delayed_ref(ref);
2551 count++;
2552 cond_resched();
2553 }
2554
2555 /*
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2559 */
2560 if (actual_count > 0) {
2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 u64 avg;
2563
2564 /*
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2567 */
2568 spin_lock(&delayed_refs->lock);
2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2571 spin_unlock(&delayed_refs->lock);
2572 }
2573 return 0;
2574 }
2575
2576 #ifdef SCRAMBLE_DELAYED_REFS
2577 /*
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2581 */
2582 static u64 find_middle(struct rb_root *root)
2583 {
2584 struct rb_node *n = root->rb_node;
2585 struct btrfs_delayed_ref_node *entry;
2586 int alt = 1;
2587 u64 middle;
2588 u64 first = 0, last = 0;
2589
2590 n = rb_first(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 first = entry->bytenr;
2594 }
2595 n = rb_last(root);
2596 if (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 last = entry->bytenr;
2599 }
2600 n = root->rb_node;
2601
2602 while (n) {
2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 WARN_ON(!entry->in_tree);
2605
2606 middle = entry->bytenr;
2607
2608 if (alt)
2609 n = n->rb_left;
2610 else
2611 n = n->rb_right;
2612
2613 alt = 1 - alt;
2614 }
2615 return middle;
2616 }
2617 #endif
2618
2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620 {
2621 u64 num_bytes;
2622
2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 sizeof(struct btrfs_extent_inline_ref));
2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627
2628 /*
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2631 */
2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2633 }
2634
2635 /*
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2638 */
2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2640 {
2641 u64 csum_size;
2642 u64 num_csums_per_leaf;
2643 u64 num_csums;
2644
2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 num_csums_per_leaf = div64_u64(csum_size,
2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 num_csums += num_csums_per_leaf - 1;
2650 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 return num_csums;
2652 }
2653
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655 struct btrfs_root *root)
2656 {
2657 struct btrfs_block_rsv *global_rsv;
2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 u64 num_bytes, num_dirty_bgs_bytes;
2662 int ret = 0;
2663
2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 num_heads = heads_to_leaves(root, num_heads);
2666 if (num_heads > 1)
2667 num_bytes += (num_heads - 1) * root->nodesize;
2668 num_bytes <<= 1;
2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 num_dirty_bgs);
2672 global_rsv = &root->fs_info->global_block_rsv;
2673
2674 /*
2675 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 * wiggle room since running delayed refs can create more delayed refs.
2677 */
2678 if (global_rsv->space_info->full) {
2679 num_dirty_bgs_bytes <<= 1;
2680 num_bytes <<= 1;
2681 }
2682
2683 spin_lock(&global_rsv->lock);
2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2685 ret = 1;
2686 spin_unlock(&global_rsv->lock);
2687 return ret;
2688 }
2689
2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root)
2692 {
2693 struct btrfs_fs_info *fs_info = root->fs_info;
2694 u64 num_entries =
2695 atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 u64 avg_runtime;
2697 u64 val;
2698
2699 smp_mb();
2700 avg_runtime = fs_info->avg_delayed_ref_runtime;
2701 val = num_entries * avg_runtime;
2702 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 return 1;
2704 if (val >= NSEC_PER_SEC / 2)
2705 return 2;
2706
2707 return btrfs_check_space_for_delayed_refs(trans, root);
2708 }
2709
2710 struct async_delayed_refs {
2711 struct btrfs_root *root;
2712 int count;
2713 int error;
2714 int sync;
2715 struct completion wait;
2716 struct btrfs_work work;
2717 };
2718
2719 static void delayed_ref_async_start(struct btrfs_work *work)
2720 {
2721 struct async_delayed_refs *async;
2722 struct btrfs_trans_handle *trans;
2723 int ret;
2724
2725 async = container_of(work, struct async_delayed_refs, work);
2726
2727 trans = btrfs_join_transaction(async->root);
2728 if (IS_ERR(trans)) {
2729 async->error = PTR_ERR(trans);
2730 goto done;
2731 }
2732
2733 /*
2734 * trans->sync means that when we call end_transaciton, we won't
2735 * wait on delayed refs
2736 */
2737 trans->sync = true;
2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 if (ret)
2740 async->error = ret;
2741
2742 ret = btrfs_end_transaction(trans, async->root);
2743 if (ret && !async->error)
2744 async->error = ret;
2745 done:
2746 if (async->sync)
2747 complete(&async->wait);
2748 else
2749 kfree(async);
2750 }
2751
2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 unsigned long count, int wait)
2754 {
2755 struct async_delayed_refs *async;
2756 int ret;
2757
2758 async = kmalloc(sizeof(*async), GFP_NOFS);
2759 if (!async)
2760 return -ENOMEM;
2761
2762 async->root = root->fs_info->tree_root;
2763 async->count = count;
2764 async->error = 0;
2765 if (wait)
2766 async->sync = 1;
2767 else
2768 async->sync = 0;
2769 init_completion(&async->wait);
2770
2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 delayed_ref_async_start, NULL, NULL);
2773
2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775
2776 if (wait) {
2777 wait_for_completion(&async->wait);
2778 ret = async->error;
2779 kfree(async);
2780 return ret;
2781 }
2782 return 0;
2783 }
2784
2785 /*
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far. count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
2791 *
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
2794 */
2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 struct btrfs_root *root, unsigned long count)
2797 {
2798 struct rb_node *node;
2799 struct btrfs_delayed_ref_root *delayed_refs;
2800 struct btrfs_delayed_ref_head *head;
2801 int ret;
2802 int run_all = count == (unsigned long)-1;
2803
2804 /* We'll clean this up in btrfs_cleanup_transaction */
2805 if (trans->aborted)
2806 return 0;
2807
2808 if (root == root->fs_info->extent_root)
2809 root = root->fs_info->tree_root;
2810
2811 delayed_refs = &trans->transaction->delayed_refs;
2812 if (count == 0)
2813 count = atomic_read(&delayed_refs->num_entries) * 2;
2814
2815 again:
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818 #endif
2819 ret = __btrfs_run_delayed_refs(trans, root, count);
2820 if (ret < 0) {
2821 btrfs_abort_transaction(trans, root, ret);
2822 return ret;
2823 }
2824
2825 if (run_all) {
2826 if (!list_empty(&trans->new_bgs))
2827 btrfs_create_pending_block_groups(trans, root);
2828
2829 spin_lock(&delayed_refs->lock);
2830 node = rb_first(&delayed_refs->href_root);
2831 if (!node) {
2832 spin_unlock(&delayed_refs->lock);
2833 goto out;
2834 }
2835 count = (unsigned long)-1;
2836
2837 while (node) {
2838 head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 href_node);
2840 if (btrfs_delayed_ref_is_head(&head->node)) {
2841 struct btrfs_delayed_ref_node *ref;
2842
2843 ref = &head->node;
2844 atomic_inc(&ref->refs);
2845
2846 spin_unlock(&delayed_refs->lock);
2847 /*
2848 * Mutex was contended, block until it's
2849 * released and try again
2850 */
2851 mutex_lock(&head->mutex);
2852 mutex_unlock(&head->mutex);
2853
2854 btrfs_put_delayed_ref(ref);
2855 cond_resched();
2856 goto again;
2857 } else {
2858 WARN_ON(1);
2859 }
2860 node = rb_next(node);
2861 }
2862 spin_unlock(&delayed_refs->lock);
2863 cond_resched();
2864 goto again;
2865 }
2866 out:
2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 if (ret)
2869 return ret;
2870 assert_qgroups_uptodate(trans);
2871 return 0;
2872 }
2873
2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 u64 bytenr, u64 num_bytes, u64 flags,
2877 int level, int is_data)
2878 {
2879 struct btrfs_delayed_extent_op *extent_op;
2880 int ret;
2881
2882 extent_op = btrfs_alloc_delayed_extent_op();
2883 if (!extent_op)
2884 return -ENOMEM;
2885
2886 extent_op->flags_to_set = flags;
2887 extent_op->update_flags = 1;
2888 extent_op->update_key = 0;
2889 extent_op->is_data = is_data ? 1 : 0;
2890 extent_op->level = level;
2891
2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 num_bytes, extent_op);
2894 if (ret)
2895 btrfs_free_delayed_extent_op(extent_op);
2896 return ret;
2897 }
2898
2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 struct btrfs_path *path,
2902 u64 objectid, u64 offset, u64 bytenr)
2903 {
2904 struct btrfs_delayed_ref_head *head;
2905 struct btrfs_delayed_ref_node *ref;
2906 struct btrfs_delayed_data_ref *data_ref;
2907 struct btrfs_delayed_ref_root *delayed_refs;
2908 struct rb_node *node;
2909 int ret = 0;
2910
2911 delayed_refs = &trans->transaction->delayed_refs;
2912 spin_lock(&delayed_refs->lock);
2913 head = btrfs_find_delayed_ref_head(trans, bytenr);
2914 if (!head) {
2915 spin_unlock(&delayed_refs->lock);
2916 return 0;
2917 }
2918
2919 if (!mutex_trylock(&head->mutex)) {
2920 atomic_inc(&head->node.refs);
2921 spin_unlock(&delayed_refs->lock);
2922
2923 btrfs_release_path(path);
2924
2925 /*
2926 * Mutex was contended, block until it's released and let
2927 * caller try again
2928 */
2929 mutex_lock(&head->mutex);
2930 mutex_unlock(&head->mutex);
2931 btrfs_put_delayed_ref(&head->node);
2932 return -EAGAIN;
2933 }
2934 spin_unlock(&delayed_refs->lock);
2935
2936 spin_lock(&head->lock);
2937 node = rb_first(&head->ref_root);
2938 while (node) {
2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 node = rb_next(node);
2941
2942 /* If it's a shared ref we know a cross reference exists */
2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 ret = 1;
2945 break;
2946 }
2947
2948 data_ref = btrfs_delayed_node_to_data_ref(ref);
2949
2950 /*
2951 * If our ref doesn't match the one we're currently looking at
2952 * then we have a cross reference.
2953 */
2954 if (data_ref->root != root->root_key.objectid ||
2955 data_ref->objectid != objectid ||
2956 data_ref->offset != offset) {
2957 ret = 1;
2958 break;
2959 }
2960 }
2961 spin_unlock(&head->lock);
2962 mutex_unlock(&head->mutex);
2963 return ret;
2964 }
2965
2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path,
2969 u64 objectid, u64 offset, u64 bytenr)
2970 {
2971 struct btrfs_root *extent_root = root->fs_info->extent_root;
2972 struct extent_buffer *leaf;
2973 struct btrfs_extent_data_ref *ref;
2974 struct btrfs_extent_inline_ref *iref;
2975 struct btrfs_extent_item *ei;
2976 struct btrfs_key key;
2977 u32 item_size;
2978 int ret;
2979
2980 key.objectid = bytenr;
2981 key.offset = (u64)-1;
2982 key.type = BTRFS_EXTENT_ITEM_KEY;
2983
2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 if (ret < 0)
2986 goto out;
2987 BUG_ON(ret == 0); /* Corruption */
2988
2989 ret = -ENOENT;
2990 if (path->slots[0] == 0)
2991 goto out;
2992
2993 path->slots[0]--;
2994 leaf = path->nodes[0];
2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2996
2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2998 goto out;
2999
3000 ret = 1;
3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 if (item_size < sizeof(*ei)) {
3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 goto out;
3006 }
3007 #endif
3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3009
3010 if (item_size != sizeof(*ei) +
3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 goto out;
3013
3014 if (btrfs_extent_generation(leaf, ei) <=
3015 btrfs_root_last_snapshot(&root->root_item))
3016 goto out;
3017
3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 BTRFS_EXTENT_DATA_REF_KEY)
3021 goto out;
3022
3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 if (btrfs_extent_refs(leaf, ei) !=
3025 btrfs_extent_data_ref_count(leaf, ref) ||
3026 btrfs_extent_data_ref_root(leaf, ref) !=
3027 root->root_key.objectid ||
3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 goto out;
3031
3032 ret = 0;
3033 out:
3034 return ret;
3035 }
3036
3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 struct btrfs_path *path;
3042 int ret;
3043 int ret2;
3044
3045 path = btrfs_alloc_path();
3046 if (!path)
3047 return -ENOENT;
3048
3049 do {
3050 ret = check_committed_ref(trans, root, path, objectid,
3051 offset, bytenr);
3052 if (ret && ret != -ENOENT)
3053 goto out;
3054
3055 ret2 = check_delayed_ref(trans, root, path, objectid,
3056 offset, bytenr);
3057 } while (ret2 == -EAGAIN);
3058
3059 if (ret2 && ret2 != -ENOENT) {
3060 ret = ret2;
3061 goto out;
3062 }
3063
3064 if (ret != -ENOENT || ret2 != -ENOENT)
3065 ret = 0;
3066 out:
3067 btrfs_free_path(path);
3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 WARN_ON(ret > 0);
3070 return ret;
3071 }
3072
3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3074 struct btrfs_root *root,
3075 struct extent_buffer *buf,
3076 int full_backref, int inc)
3077 {
3078 u64 bytenr;
3079 u64 num_bytes;
3080 u64 parent;
3081 u64 ref_root;
3082 u32 nritems;
3083 struct btrfs_key key;
3084 struct btrfs_file_extent_item *fi;
3085 int i;
3086 int level;
3087 int ret = 0;
3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3089 u64, u64, u64, u64, u64, u64, int);
3090
3091
3092 if (btrfs_test_is_dummy_root(root))
3093 return 0;
3094
3095 ref_root = btrfs_header_owner(buf);
3096 nritems = btrfs_header_nritems(buf);
3097 level = btrfs_header_level(buf);
3098
3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3100 return 0;
3101
3102 if (inc)
3103 process_func = btrfs_inc_extent_ref;
3104 else
3105 process_func = btrfs_free_extent;
3106
3107 if (full_backref)
3108 parent = buf->start;
3109 else
3110 parent = 0;
3111
3112 for (i = 0; i < nritems; i++) {
3113 if (level == 0) {
3114 btrfs_item_key_to_cpu(buf, &key, i);
3115 if (key.type != BTRFS_EXTENT_DATA_KEY)
3116 continue;
3117 fi = btrfs_item_ptr(buf, i,
3118 struct btrfs_file_extent_item);
3119 if (btrfs_file_extent_type(buf, fi) ==
3120 BTRFS_FILE_EXTENT_INLINE)
3121 continue;
3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 if (bytenr == 0)
3124 continue;
3125
3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 key.offset -= btrfs_file_extent_offset(buf, fi);
3128 ret = process_func(trans, root, bytenr, num_bytes,
3129 parent, ref_root, key.objectid,
3130 key.offset, 1);
3131 if (ret)
3132 goto fail;
3133 } else {
3134 bytenr = btrfs_node_blockptr(buf, i);
3135 num_bytes = root->nodesize;
3136 ret = process_func(trans, root, bytenr, num_bytes,
3137 parent, ref_root, level - 1, 0,
3138 1);
3139 if (ret)
3140 goto fail;
3141 }
3142 }
3143 return 0;
3144 fail:
3145 return ret;
3146 }
3147
3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3149 struct extent_buffer *buf, int full_backref)
3150 {
3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3152 }
3153
3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3155 struct extent_buffer *buf, int full_backref)
3156 {
3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3158 }
3159
3160 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 struct btrfs_path *path,
3163 struct btrfs_block_group_cache *cache)
3164 {
3165 int ret;
3166 struct btrfs_root *extent_root = root->fs_info->extent_root;
3167 unsigned long bi;
3168 struct extent_buffer *leaf;
3169
3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3171 if (ret) {
3172 if (ret > 0)
3173 ret = -ENOENT;
3174 goto fail;
3175 }
3176
3177 leaf = path->nodes[0];
3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 btrfs_mark_buffer_dirty(leaf);
3181 btrfs_release_path(path);
3182 fail:
3183 if (ret)
3184 btrfs_abort_transaction(trans, root, ret);
3185 return ret;
3186
3187 }
3188
3189 static struct btrfs_block_group_cache *
3190 next_block_group(struct btrfs_root *root,
3191 struct btrfs_block_group_cache *cache)
3192 {
3193 struct rb_node *node;
3194
3195 spin_lock(&root->fs_info->block_group_cache_lock);
3196
3197 /* If our block group was removed, we need a full search. */
3198 if (RB_EMPTY_NODE(&cache->cache_node)) {
3199 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3200
3201 spin_unlock(&root->fs_info->block_group_cache_lock);
3202 btrfs_put_block_group(cache);
3203 cache = btrfs_lookup_first_block_group(root->fs_info,
3204 next_bytenr);
3205 return cache;
3206 }
3207 node = rb_next(&cache->cache_node);
3208 btrfs_put_block_group(cache);
3209 if (node) {
3210 cache = rb_entry(node, struct btrfs_block_group_cache,
3211 cache_node);
3212 btrfs_get_block_group(cache);
3213 } else
3214 cache = NULL;
3215 spin_unlock(&root->fs_info->block_group_cache_lock);
3216 return cache;
3217 }
3218
3219 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3220 struct btrfs_trans_handle *trans,
3221 struct btrfs_path *path)
3222 {
3223 struct btrfs_root *root = block_group->fs_info->tree_root;
3224 struct inode *inode = NULL;
3225 u64 alloc_hint = 0;
3226 int dcs = BTRFS_DC_ERROR;
3227 u64 num_pages = 0;
3228 int retries = 0;
3229 int ret = 0;
3230
3231 /*
3232 * If this block group is smaller than 100 megs don't bother caching the
3233 * block group.
3234 */
3235 if (block_group->key.offset < (100 * 1024 * 1024)) {
3236 spin_lock(&block_group->lock);
3237 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3238 spin_unlock(&block_group->lock);
3239 return 0;
3240 }
3241
3242 if (trans->aborted)
3243 return 0;
3244 again:
3245 inode = lookup_free_space_inode(root, block_group, path);
3246 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3247 ret = PTR_ERR(inode);
3248 btrfs_release_path(path);
3249 goto out;
3250 }
3251
3252 if (IS_ERR(inode)) {
3253 BUG_ON(retries);
3254 retries++;
3255
3256 if (block_group->ro)
3257 goto out_free;
3258
3259 ret = create_free_space_inode(root, trans, block_group, path);
3260 if (ret)
3261 goto out_free;
3262 goto again;
3263 }
3264
3265 /* We've already setup this transaction, go ahead and exit */
3266 if (block_group->cache_generation == trans->transid &&
3267 i_size_read(inode)) {
3268 dcs = BTRFS_DC_SETUP;
3269 goto out_put;
3270 }
3271
3272 /*
3273 * We want to set the generation to 0, that way if anything goes wrong
3274 * from here on out we know not to trust this cache when we load up next
3275 * time.
3276 */
3277 BTRFS_I(inode)->generation = 0;
3278 ret = btrfs_update_inode(trans, root, inode);
3279 if (ret) {
3280 /*
3281 * So theoretically we could recover from this, simply set the
3282 * super cache generation to 0 so we know to invalidate the
3283 * cache, but then we'd have to keep track of the block groups
3284 * that fail this way so we know we _have_ to reset this cache
3285 * before the next commit or risk reading stale cache. So to
3286 * limit our exposure to horrible edge cases lets just abort the
3287 * transaction, this only happens in really bad situations
3288 * anyway.
3289 */
3290 btrfs_abort_transaction(trans, root, ret);
3291 goto out_put;
3292 }
3293 WARN_ON(ret);
3294
3295 if (i_size_read(inode) > 0) {
3296 ret = btrfs_check_trunc_cache_free_space(root,
3297 &root->fs_info->global_block_rsv);
3298 if (ret)
3299 goto out_put;
3300
3301 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3302 if (ret)
3303 goto out_put;
3304 }
3305
3306 spin_lock(&block_group->lock);
3307 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3308 !btrfs_test_opt(root, SPACE_CACHE) ||
3309 block_group->delalloc_bytes) {
3310 /*
3311 * don't bother trying to write stuff out _if_
3312 * a) we're not cached,
3313 * b) we're with nospace_cache mount option.
3314 */
3315 dcs = BTRFS_DC_WRITTEN;
3316 spin_unlock(&block_group->lock);
3317 goto out_put;
3318 }
3319 spin_unlock(&block_group->lock);
3320
3321 /*
3322 * Try to preallocate enough space based on how big the block group is.
3323 * Keep in mind this has to include any pinned space which could end up
3324 * taking up quite a bit since it's not folded into the other space
3325 * cache.
3326 */
3327 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3328 if (!num_pages)
3329 num_pages = 1;
3330
3331 num_pages *= 16;
3332 num_pages *= PAGE_CACHE_SIZE;
3333
3334 ret = btrfs_check_data_free_space(inode, num_pages);
3335 if (ret)
3336 goto out_put;
3337
3338 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3339 num_pages, num_pages,
3340 &alloc_hint);
3341 if (!ret)
3342 dcs = BTRFS_DC_SETUP;
3343 btrfs_free_reserved_data_space(inode, num_pages);
3344
3345 out_put:
3346 iput(inode);
3347 out_free:
3348 btrfs_release_path(path);
3349 out:
3350 spin_lock(&block_group->lock);
3351 if (!ret && dcs == BTRFS_DC_SETUP)
3352 block_group->cache_generation = trans->transid;
3353 block_group->disk_cache_state = dcs;
3354 spin_unlock(&block_group->lock);
3355
3356 return ret;
3357 }
3358
3359 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3360 struct btrfs_root *root)
3361 {
3362 struct btrfs_block_group_cache *cache, *tmp;
3363 struct btrfs_transaction *cur_trans = trans->transaction;
3364 struct btrfs_path *path;
3365
3366 if (list_empty(&cur_trans->dirty_bgs) ||
3367 !btrfs_test_opt(root, SPACE_CACHE))
3368 return 0;
3369
3370 path = btrfs_alloc_path();
3371 if (!path)
3372 return -ENOMEM;
3373
3374 /* Could add new block groups, use _safe just in case */
3375 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3376 dirty_list) {
3377 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3378 cache_save_setup(cache, trans, path);
3379 }
3380
3381 btrfs_free_path(path);
3382 return 0;
3383 }
3384
3385 /*
3386 * transaction commit does final block group cache writeback during a
3387 * critical section where nothing is allowed to change the FS. This is
3388 * required in order for the cache to actually match the block group,
3389 * but can introduce a lot of latency into the commit.
3390 *
3391 * So, btrfs_start_dirty_block_groups is here to kick off block group
3392 * cache IO. There's a chance we'll have to redo some of it if the
3393 * block group changes again during the commit, but it greatly reduces
3394 * the commit latency by getting rid of the easy block groups while
3395 * we're still allowing others to join the commit.
3396 */
3397 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3398 struct btrfs_root *root)
3399 {
3400 struct btrfs_block_group_cache *cache;
3401 struct btrfs_transaction *cur_trans = trans->transaction;
3402 int ret = 0;
3403 int should_put;
3404 struct btrfs_path *path = NULL;
3405 LIST_HEAD(dirty);
3406 struct list_head *io = &cur_trans->io_bgs;
3407 int num_started = 0;
3408 int loops = 0;
3409
3410 spin_lock(&cur_trans->dirty_bgs_lock);
3411 if (!list_empty(&cur_trans->dirty_bgs)) {
3412 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3413 }
3414 spin_unlock(&cur_trans->dirty_bgs_lock);
3415
3416 again:
3417 if (list_empty(&dirty)) {
3418 btrfs_free_path(path);
3419 return 0;
3420 }
3421
3422 /*
3423 * make sure all the block groups on our dirty list actually
3424 * exist
3425 */
3426 btrfs_create_pending_block_groups(trans, root);
3427
3428 if (!path) {
3429 path = btrfs_alloc_path();
3430 if (!path)
3431 return -ENOMEM;
3432 }
3433
3434 while (!list_empty(&dirty)) {
3435 cache = list_first_entry(&dirty,
3436 struct btrfs_block_group_cache,
3437 dirty_list);
3438
3439 /*
3440 * cache_write_mutex is here only to save us from balance
3441 * deleting this block group while we are writing out the
3442 * cache
3443 */
3444 mutex_lock(&trans->transaction->cache_write_mutex);
3445
3446 /*
3447 * this can happen if something re-dirties a block
3448 * group that is already under IO. Just wait for it to
3449 * finish and then do it all again
3450 */
3451 if (!list_empty(&cache->io_list)) {
3452 list_del_init(&cache->io_list);
3453 btrfs_wait_cache_io(root, trans, cache,
3454 &cache->io_ctl, path,
3455 cache->key.objectid);
3456 btrfs_put_block_group(cache);
3457 }
3458
3459
3460 /*
3461 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3462 * if it should update the cache_state. Don't delete
3463 * until after we wait.
3464 *
3465 * Since we're not running in the commit critical section
3466 * we need the dirty_bgs_lock to protect from update_block_group
3467 */
3468 spin_lock(&cur_trans->dirty_bgs_lock);
3469 list_del_init(&cache->dirty_list);
3470 spin_unlock(&cur_trans->dirty_bgs_lock);
3471
3472 should_put = 1;
3473
3474 cache_save_setup(cache, trans, path);
3475
3476 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3477 cache->io_ctl.inode = NULL;
3478 ret = btrfs_write_out_cache(root, trans, cache, path);
3479 if (ret == 0 && cache->io_ctl.inode) {
3480 num_started++;
3481 should_put = 0;
3482
3483 /*
3484 * the cache_write_mutex is protecting
3485 * the io_list
3486 */
3487 list_add_tail(&cache->io_list, io);
3488 } else {
3489 /*
3490 * if we failed to write the cache, the
3491 * generation will be bad and life goes on
3492 */
3493 ret = 0;
3494 }
3495 }
3496 if (!ret)
3497 ret = write_one_cache_group(trans, root, path, cache);
3498 mutex_unlock(&trans->transaction->cache_write_mutex);
3499
3500 /* if its not on the io list, we need to put the block group */
3501 if (should_put)
3502 btrfs_put_block_group(cache);
3503
3504 if (ret)
3505 break;
3506 }
3507
3508 /*
3509 * go through delayed refs for all the stuff we've just kicked off
3510 * and then loop back (just once)
3511 */
3512 ret = btrfs_run_delayed_refs(trans, root, 0);
3513 if (!ret && loops == 0) {
3514 loops++;
3515 spin_lock(&cur_trans->dirty_bgs_lock);
3516 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3517 spin_unlock(&cur_trans->dirty_bgs_lock);
3518 goto again;
3519 }
3520
3521 btrfs_free_path(path);
3522 return ret;
3523 }
3524
3525 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3526 struct btrfs_root *root)
3527 {
3528 struct btrfs_block_group_cache *cache;
3529 struct btrfs_transaction *cur_trans = trans->transaction;
3530 int ret = 0;
3531 int should_put;
3532 struct btrfs_path *path;
3533 struct list_head *io = &cur_trans->io_bgs;
3534 int num_started = 0;
3535
3536 path = btrfs_alloc_path();
3537 if (!path)
3538 return -ENOMEM;
3539
3540 /*
3541 * We don't need the lock here since we are protected by the transaction
3542 * commit. We want to do the cache_save_setup first and then run the
3543 * delayed refs to make sure we have the best chance at doing this all
3544 * in one shot.
3545 */
3546 while (!list_empty(&cur_trans->dirty_bgs)) {
3547 cache = list_first_entry(&cur_trans->dirty_bgs,
3548 struct btrfs_block_group_cache,
3549 dirty_list);
3550
3551 /*
3552 * this can happen if cache_save_setup re-dirties a block
3553 * group that is already under IO. Just wait for it to
3554 * finish and then do it all again
3555 */
3556 if (!list_empty(&cache->io_list)) {
3557 list_del_init(&cache->io_list);
3558 btrfs_wait_cache_io(root, trans, cache,
3559 &cache->io_ctl, path,
3560 cache->key.objectid);
3561 btrfs_put_block_group(cache);
3562 }
3563
3564 /*
3565 * don't remove from the dirty list until after we've waited
3566 * on any pending IO
3567 */
3568 list_del_init(&cache->dirty_list);
3569 should_put = 1;
3570
3571 cache_save_setup(cache, trans, path);
3572
3573 if (!ret)
3574 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3575
3576 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3577 cache->io_ctl.inode = NULL;
3578 ret = btrfs_write_out_cache(root, trans, cache, path);
3579 if (ret == 0 && cache->io_ctl.inode) {
3580 num_started++;
3581 should_put = 0;
3582 list_add_tail(&cache->io_list, io);
3583 } else {
3584 /*
3585 * if we failed to write the cache, the
3586 * generation will be bad and life goes on
3587 */
3588 ret = 0;
3589 }
3590 }
3591 if (!ret)
3592 ret = write_one_cache_group(trans, root, path, cache);
3593
3594 /* if its not on the io list, we need to put the block group */
3595 if (should_put)
3596 btrfs_put_block_group(cache);
3597 }
3598
3599 while (!list_empty(io)) {
3600 cache = list_first_entry(io, struct btrfs_block_group_cache,
3601 io_list);
3602 list_del_init(&cache->io_list);
3603 btrfs_wait_cache_io(root, trans, cache,
3604 &cache->io_ctl, path, cache->key.objectid);
3605 btrfs_put_block_group(cache);
3606 }
3607
3608 btrfs_free_path(path);
3609 return ret;
3610 }
3611
3612 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3613 {
3614 struct btrfs_block_group_cache *block_group;
3615 int readonly = 0;
3616
3617 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3618 if (!block_group || block_group->ro)
3619 readonly = 1;
3620 if (block_group)
3621 btrfs_put_block_group(block_group);
3622 return readonly;
3623 }
3624
3625 static const char *alloc_name(u64 flags)
3626 {
3627 switch (flags) {
3628 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3629 return "mixed";
3630 case BTRFS_BLOCK_GROUP_METADATA:
3631 return "metadata";
3632 case BTRFS_BLOCK_GROUP_DATA:
3633 return "data";
3634 case BTRFS_BLOCK_GROUP_SYSTEM:
3635 return "system";
3636 default:
3637 WARN_ON(1);
3638 return "invalid-combination";
3639 };
3640 }
3641
3642 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3643 u64 total_bytes, u64 bytes_used,
3644 struct btrfs_space_info **space_info)
3645 {
3646 struct btrfs_space_info *found;
3647 int i;
3648 int factor;
3649 int ret;
3650
3651 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3652 BTRFS_BLOCK_GROUP_RAID10))
3653 factor = 2;
3654 else
3655 factor = 1;
3656
3657 found = __find_space_info(info, flags);
3658 if (found) {
3659 spin_lock(&found->lock);
3660 found->total_bytes += total_bytes;
3661 found->disk_total += total_bytes * factor;
3662 found->bytes_used += bytes_used;
3663 found->disk_used += bytes_used * factor;
3664 found->full = 0;
3665 spin_unlock(&found->lock);
3666 *space_info = found;
3667 return 0;
3668 }
3669 found = kzalloc(sizeof(*found), GFP_NOFS);
3670 if (!found)
3671 return -ENOMEM;
3672
3673 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3674 if (ret) {
3675 kfree(found);
3676 return ret;
3677 }
3678
3679 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3680 INIT_LIST_HEAD(&found->block_groups[i]);
3681 init_rwsem(&found->groups_sem);
3682 spin_lock_init(&found->lock);
3683 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3684 found->total_bytes = total_bytes;
3685 found->disk_total = total_bytes * factor;
3686 found->bytes_used = bytes_used;
3687 found->disk_used = bytes_used * factor;
3688 found->bytes_pinned = 0;
3689 found->bytes_reserved = 0;
3690 found->bytes_readonly = 0;
3691 found->bytes_may_use = 0;
3692 found->full = 0;
3693 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3694 found->chunk_alloc = 0;
3695 found->flush = 0;
3696 init_waitqueue_head(&found->wait);
3697 INIT_LIST_HEAD(&found->ro_bgs);
3698
3699 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3700 info->space_info_kobj, "%s",
3701 alloc_name(found->flags));
3702 if (ret) {
3703 kfree(found);
3704 return ret;
3705 }
3706
3707 *space_info = found;
3708 list_add_rcu(&found->list, &info->space_info);
3709 if (flags & BTRFS_BLOCK_GROUP_DATA)
3710 info->data_sinfo = found;
3711
3712 return ret;
3713 }
3714
3715 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3716 {
3717 u64 extra_flags = chunk_to_extended(flags) &
3718 BTRFS_EXTENDED_PROFILE_MASK;
3719
3720 write_seqlock(&fs_info->profiles_lock);
3721 if (flags & BTRFS_BLOCK_GROUP_DATA)
3722 fs_info->avail_data_alloc_bits |= extra_flags;
3723 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3724 fs_info->avail_metadata_alloc_bits |= extra_flags;
3725 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3726 fs_info->avail_system_alloc_bits |= extra_flags;
3727 write_sequnlock(&fs_info->profiles_lock);
3728 }
3729
3730 /*
3731 * returns target flags in extended format or 0 if restripe for this
3732 * chunk_type is not in progress
3733 *
3734 * should be called with either volume_mutex or balance_lock held
3735 */
3736 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3737 {
3738 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3739 u64 target = 0;
3740
3741 if (!bctl)
3742 return 0;
3743
3744 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3745 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3746 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3747 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3748 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3749 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3750 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3751 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3752 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3753 }
3754
3755 return target;
3756 }
3757
3758 /*
3759 * @flags: available profiles in extended format (see ctree.h)
3760 *
3761 * Returns reduced profile in chunk format. If profile changing is in
3762 * progress (either running or paused) picks the target profile (if it's
3763 * already available), otherwise falls back to plain reducing.
3764 */
3765 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3766 {
3767 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3768 u64 target;
3769 u64 tmp;
3770
3771 /*
3772 * see if restripe for this chunk_type is in progress, if so
3773 * try to reduce to the target profile
3774 */
3775 spin_lock(&root->fs_info->balance_lock);
3776 target = get_restripe_target(root->fs_info, flags);
3777 if (target) {
3778 /* pick target profile only if it's already available */
3779 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3780 spin_unlock(&root->fs_info->balance_lock);
3781 return extended_to_chunk(target);
3782 }
3783 }
3784 spin_unlock(&root->fs_info->balance_lock);
3785
3786 /* First, mask out the RAID levels which aren't possible */
3787 if (num_devices == 1)
3788 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3789 BTRFS_BLOCK_GROUP_RAID5);
3790 if (num_devices < 3)
3791 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3792 if (num_devices < 4)
3793 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3794
3795 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3796 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3797 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3798 flags &= ~tmp;
3799
3800 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3801 tmp = BTRFS_BLOCK_GROUP_RAID6;
3802 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3803 tmp = BTRFS_BLOCK_GROUP_RAID5;
3804 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3805 tmp = BTRFS_BLOCK_GROUP_RAID10;
3806 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3807 tmp = BTRFS_BLOCK_GROUP_RAID1;
3808 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3809 tmp = BTRFS_BLOCK_GROUP_RAID0;
3810
3811 return extended_to_chunk(flags | tmp);
3812 }
3813
3814 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3815 {
3816 unsigned seq;
3817 u64 flags;
3818
3819 do {
3820 flags = orig_flags;
3821 seq = read_seqbegin(&root->fs_info->profiles_lock);
3822
3823 if (flags & BTRFS_BLOCK_GROUP_DATA)
3824 flags |= root->fs_info->avail_data_alloc_bits;
3825 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3826 flags |= root->fs_info->avail_system_alloc_bits;
3827 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3828 flags |= root->fs_info->avail_metadata_alloc_bits;
3829 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3830
3831 return btrfs_reduce_alloc_profile(root, flags);
3832 }
3833
3834 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3835 {
3836 u64 flags;
3837 u64 ret;
3838
3839 if (data)
3840 flags = BTRFS_BLOCK_GROUP_DATA;
3841 else if (root == root->fs_info->chunk_root)
3842 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3843 else
3844 flags = BTRFS_BLOCK_GROUP_METADATA;
3845
3846 ret = get_alloc_profile(root, flags);
3847 return ret;
3848 }
3849
3850 /*
3851 * This will check the space that the inode allocates from to make sure we have
3852 * enough space for bytes.
3853 */
3854 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3855 {
3856 struct btrfs_space_info *data_sinfo;
3857 struct btrfs_root *root = BTRFS_I(inode)->root;
3858 struct btrfs_fs_info *fs_info = root->fs_info;
3859 u64 used;
3860 int ret = 0;
3861 int committed = 0;
3862 int have_pinned_space = 1;
3863
3864 /* make sure bytes are sectorsize aligned */
3865 bytes = ALIGN(bytes, root->sectorsize);
3866
3867 if (btrfs_is_free_space_inode(inode)) {
3868 committed = 1;
3869 ASSERT(current->journal_info);
3870 }
3871
3872 data_sinfo = fs_info->data_sinfo;
3873 if (!data_sinfo)
3874 goto alloc;
3875
3876 again:
3877 /* make sure we have enough space to handle the data first */
3878 spin_lock(&data_sinfo->lock);
3879 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3880 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3881 data_sinfo->bytes_may_use;
3882
3883 if (used + bytes > data_sinfo->total_bytes) {
3884 struct btrfs_trans_handle *trans;
3885
3886 /*
3887 * if we don't have enough free bytes in this space then we need
3888 * to alloc a new chunk.
3889 */
3890 if (!data_sinfo->full) {
3891 u64 alloc_target;
3892
3893 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3894 spin_unlock(&data_sinfo->lock);
3895 alloc:
3896 alloc_target = btrfs_get_alloc_profile(root, 1);
3897 /*
3898 * It is ugly that we don't call nolock join
3899 * transaction for the free space inode case here.
3900 * But it is safe because we only do the data space
3901 * reservation for the free space cache in the
3902 * transaction context, the common join transaction
3903 * just increase the counter of the current transaction
3904 * handler, doesn't try to acquire the trans_lock of
3905 * the fs.
3906 */
3907 trans = btrfs_join_transaction(root);
3908 if (IS_ERR(trans))
3909 return PTR_ERR(trans);
3910
3911 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3912 alloc_target,
3913 CHUNK_ALLOC_NO_FORCE);
3914 btrfs_end_transaction(trans, root);
3915 if (ret < 0) {
3916 if (ret != -ENOSPC)
3917 return ret;
3918 else
3919 goto commit_trans;
3920 }
3921
3922 if (!data_sinfo)
3923 data_sinfo = fs_info->data_sinfo;
3924
3925 goto again;
3926 }
3927
3928 /*
3929 * If we don't have enough pinned space to deal with this
3930 * allocation, and no removed chunk in current transaction,
3931 * don't bother committing the transaction.
3932 */
3933 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3934 used + bytes -
3935 data_sinfo->total_bytes) < 0)
3936 have_pinned_space = 0;
3937 spin_unlock(&data_sinfo->lock);
3938
3939 /* commit the current transaction and try again */
3940 commit_trans:
3941 if (!committed &&
3942 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3943 committed = 1;
3944
3945 trans = btrfs_join_transaction(root);
3946 if (IS_ERR(trans))
3947 return PTR_ERR(trans);
3948 if (have_pinned_space ||
3949 trans->transaction->have_free_bgs) {
3950 ret = btrfs_commit_transaction(trans, root);
3951 if (ret)
3952 return ret;
3953 /*
3954 * make sure that all running delayed iput are
3955 * done
3956 */
3957 down_write(&root->fs_info->delayed_iput_sem);
3958 up_write(&root->fs_info->delayed_iput_sem);
3959 goto again;
3960 } else {
3961 btrfs_end_transaction(trans, root);
3962 }
3963 }
3964
3965 trace_btrfs_space_reservation(root->fs_info,
3966 "space_info:enospc",
3967 data_sinfo->flags, bytes, 1);
3968 return -ENOSPC;
3969 }
3970 data_sinfo->bytes_may_use += bytes;
3971 trace_btrfs_space_reservation(root->fs_info, "space_info",
3972 data_sinfo->flags, bytes, 1);
3973 spin_unlock(&data_sinfo->lock);
3974
3975 return 0;
3976 }
3977
3978 /*
3979 * Called if we need to clear a data reservation for this inode.
3980 */
3981 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3982 {
3983 struct btrfs_root *root = BTRFS_I(inode)->root;
3984 struct btrfs_space_info *data_sinfo;
3985
3986 /* make sure bytes are sectorsize aligned */
3987 bytes = ALIGN(bytes, root->sectorsize);
3988
3989 data_sinfo = root->fs_info->data_sinfo;
3990 spin_lock(&data_sinfo->lock);
3991 WARN_ON(data_sinfo->bytes_may_use < bytes);
3992 data_sinfo->bytes_may_use -= bytes;
3993 trace_btrfs_space_reservation(root->fs_info, "space_info",
3994 data_sinfo->flags, bytes, 0);
3995 spin_unlock(&data_sinfo->lock);
3996 }
3997
3998 static void force_metadata_allocation(struct btrfs_fs_info *info)
3999 {
4000 struct list_head *head = &info->space_info;
4001 struct btrfs_space_info *found;
4002
4003 rcu_read_lock();
4004 list_for_each_entry_rcu(found, head, list) {
4005 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4006 found->force_alloc = CHUNK_ALLOC_FORCE;
4007 }
4008 rcu_read_unlock();
4009 }
4010
4011 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4012 {
4013 return (global->size << 1);
4014 }
4015
4016 static int should_alloc_chunk(struct btrfs_root *root,
4017 struct btrfs_space_info *sinfo, int force)
4018 {
4019 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4020 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4021 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4022 u64 thresh;
4023
4024 if (force == CHUNK_ALLOC_FORCE)
4025 return 1;
4026
4027 /*
4028 * We need to take into account the global rsv because for all intents
4029 * and purposes it's used space. Don't worry about locking the
4030 * global_rsv, it doesn't change except when the transaction commits.
4031 */
4032 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4033 num_allocated += calc_global_rsv_need_space(global_rsv);
4034
4035 /*
4036 * in limited mode, we want to have some free space up to
4037 * about 1% of the FS size.
4038 */
4039 if (force == CHUNK_ALLOC_LIMITED) {
4040 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4041 thresh = max_t(u64, 64 * 1024 * 1024,
4042 div_factor_fine(thresh, 1));
4043
4044 if (num_bytes - num_allocated < thresh)
4045 return 1;
4046 }
4047
4048 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4049 return 0;
4050 return 1;
4051 }
4052
4053 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4054 {
4055 u64 num_dev;
4056
4057 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4058 BTRFS_BLOCK_GROUP_RAID0 |
4059 BTRFS_BLOCK_GROUP_RAID5 |
4060 BTRFS_BLOCK_GROUP_RAID6))
4061 num_dev = root->fs_info->fs_devices->rw_devices;
4062 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4063 num_dev = 2;
4064 else
4065 num_dev = 1; /* DUP or single */
4066
4067 /* metadata for updaing devices and chunk tree */
4068 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4069 }
4070
4071 static void check_system_chunk(struct btrfs_trans_handle *trans,
4072 struct btrfs_root *root, u64 type)
4073 {
4074 struct btrfs_space_info *info;
4075 u64 left;
4076 u64 thresh;
4077
4078 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4079 spin_lock(&info->lock);
4080 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4081 info->bytes_reserved - info->bytes_readonly;
4082 spin_unlock(&info->lock);
4083
4084 thresh = get_system_chunk_thresh(root, type);
4085 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4086 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4087 left, thresh, type);
4088 dump_space_info(info, 0, 0);
4089 }
4090
4091 if (left < thresh) {
4092 u64 flags;
4093
4094 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4095 btrfs_alloc_chunk(trans, root, flags);
4096 }
4097 }
4098
4099 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4100 struct btrfs_root *extent_root, u64 flags, int force)
4101 {
4102 struct btrfs_space_info *space_info;
4103 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4104 int wait_for_alloc = 0;
4105 int ret = 0;
4106
4107 /* Don't re-enter if we're already allocating a chunk */
4108 if (trans->allocating_chunk)
4109 return -ENOSPC;
4110
4111 space_info = __find_space_info(extent_root->fs_info, flags);
4112 if (!space_info) {
4113 ret = update_space_info(extent_root->fs_info, flags,
4114 0, 0, &space_info);
4115 BUG_ON(ret); /* -ENOMEM */
4116 }
4117 BUG_ON(!space_info); /* Logic error */
4118
4119 again:
4120 spin_lock(&space_info->lock);
4121 if (force < space_info->force_alloc)
4122 force = space_info->force_alloc;
4123 if (space_info->full) {
4124 if (should_alloc_chunk(extent_root, space_info, force))
4125 ret = -ENOSPC;
4126 else
4127 ret = 0;
4128 spin_unlock(&space_info->lock);
4129 return ret;
4130 }
4131
4132 if (!should_alloc_chunk(extent_root, space_info, force)) {
4133 spin_unlock(&space_info->lock);
4134 return 0;
4135 } else if (space_info->chunk_alloc) {
4136 wait_for_alloc = 1;
4137 } else {
4138 space_info->chunk_alloc = 1;
4139 }
4140
4141 spin_unlock(&space_info->lock);
4142
4143 mutex_lock(&fs_info->chunk_mutex);
4144
4145 /*
4146 * The chunk_mutex is held throughout the entirety of a chunk
4147 * allocation, so once we've acquired the chunk_mutex we know that the
4148 * other guy is done and we need to recheck and see if we should
4149 * allocate.
4150 */
4151 if (wait_for_alloc) {
4152 mutex_unlock(&fs_info->chunk_mutex);
4153 wait_for_alloc = 0;
4154 goto again;
4155 }
4156
4157 trans->allocating_chunk = true;
4158
4159 /*
4160 * If we have mixed data/metadata chunks we want to make sure we keep
4161 * allocating mixed chunks instead of individual chunks.
4162 */
4163 if (btrfs_mixed_space_info(space_info))
4164 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4165
4166 /*
4167 * if we're doing a data chunk, go ahead and make sure that
4168 * we keep a reasonable number of metadata chunks allocated in the
4169 * FS as well.
4170 */
4171 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4172 fs_info->data_chunk_allocations++;
4173 if (!(fs_info->data_chunk_allocations %
4174 fs_info->metadata_ratio))
4175 force_metadata_allocation(fs_info);
4176 }
4177
4178 /*
4179 * Check if we have enough space in SYSTEM chunk because we may need
4180 * to update devices.
4181 */
4182 check_system_chunk(trans, extent_root, flags);
4183
4184 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4185 trans->allocating_chunk = false;
4186
4187 spin_lock(&space_info->lock);
4188 if (ret < 0 && ret != -ENOSPC)
4189 goto out;
4190 if (ret)
4191 space_info->full = 1;
4192 else
4193 ret = 1;
4194
4195 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4196 out:
4197 space_info->chunk_alloc = 0;
4198 spin_unlock(&space_info->lock);
4199 mutex_unlock(&fs_info->chunk_mutex);
4200 return ret;
4201 }
4202
4203 static int can_overcommit(struct btrfs_root *root,
4204 struct btrfs_space_info *space_info, u64 bytes,
4205 enum btrfs_reserve_flush_enum flush)
4206 {
4207 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4208 u64 profile = btrfs_get_alloc_profile(root, 0);
4209 u64 space_size;
4210 u64 avail;
4211 u64 used;
4212
4213 used = space_info->bytes_used + space_info->bytes_reserved +
4214 space_info->bytes_pinned + space_info->bytes_readonly;
4215
4216 /*
4217 * We only want to allow over committing if we have lots of actual space
4218 * free, but if we don't have enough space to handle the global reserve
4219 * space then we could end up having a real enospc problem when trying
4220 * to allocate a chunk or some other such important allocation.
4221 */
4222 spin_lock(&global_rsv->lock);
4223 space_size = calc_global_rsv_need_space(global_rsv);
4224 spin_unlock(&global_rsv->lock);
4225 if (used + space_size >= space_info->total_bytes)
4226 return 0;
4227
4228 used += space_info->bytes_may_use;
4229
4230 spin_lock(&root->fs_info->free_chunk_lock);
4231 avail = root->fs_info->free_chunk_space;
4232 spin_unlock(&root->fs_info->free_chunk_lock);
4233
4234 /*
4235 * If we have dup, raid1 or raid10 then only half of the free
4236 * space is actually useable. For raid56, the space info used
4237 * doesn't include the parity drive, so we don't have to
4238 * change the math
4239 */
4240 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4241 BTRFS_BLOCK_GROUP_RAID1 |
4242 BTRFS_BLOCK_GROUP_RAID10))
4243 avail >>= 1;
4244
4245 /*
4246 * If we aren't flushing all things, let us overcommit up to
4247 * 1/2th of the space. If we can flush, don't let us overcommit
4248 * too much, let it overcommit up to 1/8 of the space.
4249 */
4250 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4251 avail >>= 3;
4252 else
4253 avail >>= 1;
4254
4255 if (used + bytes < space_info->total_bytes + avail)
4256 return 1;
4257 return 0;
4258 }
4259
4260 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4261 unsigned long nr_pages, int nr_items)
4262 {
4263 struct super_block *sb = root->fs_info->sb;
4264
4265 if (down_read_trylock(&sb->s_umount)) {
4266 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4267 up_read(&sb->s_umount);
4268 } else {
4269 /*
4270 * We needn't worry the filesystem going from r/w to r/o though
4271 * we don't acquire ->s_umount mutex, because the filesystem
4272 * should guarantee the delalloc inodes list be empty after
4273 * the filesystem is readonly(all dirty pages are written to
4274 * the disk).
4275 */
4276 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4277 if (!current->journal_info)
4278 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4279 }
4280 }
4281
4282 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4283 {
4284 u64 bytes;
4285 int nr;
4286
4287 bytes = btrfs_calc_trans_metadata_size(root, 1);
4288 nr = (int)div64_u64(to_reclaim, bytes);
4289 if (!nr)
4290 nr = 1;
4291 return nr;
4292 }
4293
4294 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4295
4296 /*
4297 * shrink metadata reservation for delalloc
4298 */
4299 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4300 bool wait_ordered)
4301 {
4302 struct btrfs_block_rsv *block_rsv;
4303 struct btrfs_space_info *space_info;
4304 struct btrfs_trans_handle *trans;
4305 u64 delalloc_bytes;
4306 u64 max_reclaim;
4307 long time_left;
4308 unsigned long nr_pages;
4309 int loops;
4310 int items;
4311 enum btrfs_reserve_flush_enum flush;
4312
4313 /* Calc the number of the pages we need flush for space reservation */
4314 items = calc_reclaim_items_nr(root, to_reclaim);
4315 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4316
4317 trans = (struct btrfs_trans_handle *)current->journal_info;
4318 block_rsv = &root->fs_info->delalloc_block_rsv;
4319 space_info = block_rsv->space_info;
4320
4321 delalloc_bytes = percpu_counter_sum_positive(
4322 &root->fs_info->delalloc_bytes);
4323 if (delalloc_bytes == 0) {
4324 if (trans)
4325 return;
4326 if (wait_ordered)
4327 btrfs_wait_ordered_roots(root->fs_info, items);
4328 return;
4329 }
4330
4331 loops = 0;
4332 while (delalloc_bytes && loops < 3) {
4333 max_reclaim = min(delalloc_bytes, to_reclaim);
4334 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4335 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4336 /*
4337 * We need to wait for the async pages to actually start before
4338 * we do anything.
4339 */
4340 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4341 if (!max_reclaim)
4342 goto skip_async;
4343
4344 if (max_reclaim <= nr_pages)
4345 max_reclaim = 0;
4346 else
4347 max_reclaim -= nr_pages;
4348
4349 wait_event(root->fs_info->async_submit_wait,
4350 atomic_read(&root->fs_info->async_delalloc_pages) <=
4351 (int)max_reclaim);
4352 skip_async:
4353 if (!trans)
4354 flush = BTRFS_RESERVE_FLUSH_ALL;
4355 else
4356 flush = BTRFS_RESERVE_NO_FLUSH;
4357 spin_lock(&space_info->lock);
4358 if (can_overcommit(root, space_info, orig, flush)) {
4359 spin_unlock(&space_info->lock);
4360 break;
4361 }
4362 spin_unlock(&space_info->lock);
4363
4364 loops++;
4365 if (wait_ordered && !trans) {
4366 btrfs_wait_ordered_roots(root->fs_info, items);
4367 } else {
4368 time_left = schedule_timeout_killable(1);
4369 if (time_left)
4370 break;
4371 }
4372 delalloc_bytes = percpu_counter_sum_positive(
4373 &root->fs_info->delalloc_bytes);
4374 }
4375 }
4376
4377 /**
4378 * maybe_commit_transaction - possibly commit the transaction if its ok to
4379 * @root - the root we're allocating for
4380 * @bytes - the number of bytes we want to reserve
4381 * @force - force the commit
4382 *
4383 * This will check to make sure that committing the transaction will actually
4384 * get us somewhere and then commit the transaction if it does. Otherwise it
4385 * will return -ENOSPC.
4386 */
4387 static int may_commit_transaction(struct btrfs_root *root,
4388 struct btrfs_space_info *space_info,
4389 u64 bytes, int force)
4390 {
4391 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4392 struct btrfs_trans_handle *trans;
4393
4394 trans = (struct btrfs_trans_handle *)current->journal_info;
4395 if (trans)
4396 return -EAGAIN;
4397
4398 if (force)
4399 goto commit;
4400
4401 /* See if there is enough pinned space to make this reservation */
4402 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4403 bytes) >= 0)
4404 goto commit;
4405
4406 /*
4407 * See if there is some space in the delayed insertion reservation for
4408 * this reservation.
4409 */
4410 if (space_info != delayed_rsv->space_info)
4411 return -ENOSPC;
4412
4413 spin_lock(&delayed_rsv->lock);
4414 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4415 bytes - delayed_rsv->size) >= 0) {
4416 spin_unlock(&delayed_rsv->lock);
4417 return -ENOSPC;
4418 }
4419 spin_unlock(&delayed_rsv->lock);
4420
4421 commit:
4422 trans = btrfs_join_transaction(root);
4423 if (IS_ERR(trans))
4424 return -ENOSPC;
4425
4426 return btrfs_commit_transaction(trans, root);
4427 }
4428
4429 enum flush_state {
4430 FLUSH_DELAYED_ITEMS_NR = 1,
4431 FLUSH_DELAYED_ITEMS = 2,
4432 FLUSH_DELALLOC = 3,
4433 FLUSH_DELALLOC_WAIT = 4,
4434 ALLOC_CHUNK = 5,
4435 COMMIT_TRANS = 6,
4436 };
4437
4438 static int flush_space(struct btrfs_root *root,
4439 struct btrfs_space_info *space_info, u64 num_bytes,
4440 u64 orig_bytes, int state)
4441 {
4442 struct btrfs_trans_handle *trans;
4443 int nr;
4444 int ret = 0;
4445
4446 switch (state) {
4447 case FLUSH_DELAYED_ITEMS_NR:
4448 case FLUSH_DELAYED_ITEMS:
4449 if (state == FLUSH_DELAYED_ITEMS_NR)
4450 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4451 else
4452 nr = -1;
4453
4454 trans = btrfs_join_transaction(root);
4455 if (IS_ERR(trans)) {
4456 ret = PTR_ERR(trans);
4457 break;
4458 }
4459 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4460 btrfs_end_transaction(trans, root);
4461 break;
4462 case FLUSH_DELALLOC:
4463 case FLUSH_DELALLOC_WAIT:
4464 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4465 state == FLUSH_DELALLOC_WAIT);
4466 break;
4467 case ALLOC_CHUNK:
4468 trans = btrfs_join_transaction(root);
4469 if (IS_ERR(trans)) {
4470 ret = PTR_ERR(trans);
4471 break;
4472 }
4473 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4474 btrfs_get_alloc_profile(root, 0),
4475 CHUNK_ALLOC_NO_FORCE);
4476 btrfs_end_transaction(trans, root);
4477 if (ret == -ENOSPC)
4478 ret = 0;
4479 break;
4480 case COMMIT_TRANS:
4481 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4482 break;
4483 default:
4484 ret = -ENOSPC;
4485 break;
4486 }
4487
4488 return ret;
4489 }
4490
4491 static inline u64
4492 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4493 struct btrfs_space_info *space_info)
4494 {
4495 u64 used;
4496 u64 expected;
4497 u64 to_reclaim;
4498
4499 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4500 16 * 1024 * 1024);
4501 spin_lock(&space_info->lock);
4502 if (can_overcommit(root, space_info, to_reclaim,
4503 BTRFS_RESERVE_FLUSH_ALL)) {
4504 to_reclaim = 0;
4505 goto out;
4506 }
4507
4508 used = space_info->bytes_used + space_info->bytes_reserved +
4509 space_info->bytes_pinned + space_info->bytes_readonly +
4510 space_info->bytes_may_use;
4511 if (can_overcommit(root, space_info, 1024 * 1024,
4512 BTRFS_RESERVE_FLUSH_ALL))
4513 expected = div_factor_fine(space_info->total_bytes, 95);
4514 else
4515 expected = div_factor_fine(space_info->total_bytes, 90);
4516
4517 if (used > expected)
4518 to_reclaim = used - expected;
4519 else
4520 to_reclaim = 0;
4521 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4522 space_info->bytes_reserved);
4523 out:
4524 spin_unlock(&space_info->lock);
4525
4526 return to_reclaim;
4527 }
4528
4529 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4530 struct btrfs_fs_info *fs_info, u64 used)
4531 {
4532 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4533
4534 /* If we're just plain full then async reclaim just slows us down. */
4535 if (space_info->bytes_used >= thresh)
4536 return 0;
4537
4538 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4539 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4540 }
4541
4542 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4543 struct btrfs_fs_info *fs_info,
4544 int flush_state)
4545 {
4546 u64 used;
4547
4548 spin_lock(&space_info->lock);
4549 /*
4550 * We run out of space and have not got any free space via flush_space,
4551 * so don't bother doing async reclaim.
4552 */
4553 if (flush_state > COMMIT_TRANS && space_info->full) {
4554 spin_unlock(&space_info->lock);
4555 return 0;
4556 }
4557
4558 used = space_info->bytes_used + space_info->bytes_reserved +
4559 space_info->bytes_pinned + space_info->bytes_readonly +
4560 space_info->bytes_may_use;
4561 if (need_do_async_reclaim(space_info, fs_info, used)) {
4562 spin_unlock(&space_info->lock);
4563 return 1;
4564 }
4565 spin_unlock(&space_info->lock);
4566
4567 return 0;
4568 }
4569
4570 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4571 {
4572 struct btrfs_fs_info *fs_info;
4573 struct btrfs_space_info *space_info;
4574 u64 to_reclaim;
4575 int flush_state;
4576
4577 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4578 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4579
4580 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4581 space_info);
4582 if (!to_reclaim)
4583 return;
4584
4585 flush_state = FLUSH_DELAYED_ITEMS_NR;
4586 do {
4587 flush_space(fs_info->fs_root, space_info, to_reclaim,
4588 to_reclaim, flush_state);
4589 flush_state++;
4590 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4591 flush_state))
4592 return;
4593 } while (flush_state < COMMIT_TRANS);
4594 }
4595
4596 void btrfs_init_async_reclaim_work(struct work_struct *work)
4597 {
4598 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4599 }
4600
4601 /**
4602 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4603 * @root - the root we're allocating for
4604 * @block_rsv - the block_rsv we're allocating for
4605 * @orig_bytes - the number of bytes we want
4606 * @flush - whether or not we can flush to make our reservation
4607 *
4608 * This will reserve orgi_bytes number of bytes from the space info associated
4609 * with the block_rsv. If there is not enough space it will make an attempt to
4610 * flush out space to make room. It will do this by flushing delalloc if
4611 * possible or committing the transaction. If flush is 0 then no attempts to
4612 * regain reservations will be made and this will fail if there is not enough
4613 * space already.
4614 */
4615 static int reserve_metadata_bytes(struct btrfs_root *root,
4616 struct btrfs_block_rsv *block_rsv,
4617 u64 orig_bytes,
4618 enum btrfs_reserve_flush_enum flush)
4619 {
4620 struct btrfs_space_info *space_info = block_rsv->space_info;
4621 u64 used;
4622 u64 num_bytes = orig_bytes;
4623 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4624 int ret = 0;
4625 bool flushing = false;
4626
4627 again:
4628 ret = 0;
4629 spin_lock(&space_info->lock);
4630 /*
4631 * We only want to wait if somebody other than us is flushing and we
4632 * are actually allowed to flush all things.
4633 */
4634 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4635 space_info->flush) {
4636 spin_unlock(&space_info->lock);
4637 /*
4638 * If we have a trans handle we can't wait because the flusher
4639 * may have to commit the transaction, which would mean we would
4640 * deadlock since we are waiting for the flusher to finish, but
4641 * hold the current transaction open.
4642 */
4643 if (current->journal_info)
4644 return -EAGAIN;
4645 ret = wait_event_killable(space_info->wait, !space_info->flush);
4646 /* Must have been killed, return */
4647 if (ret)
4648 return -EINTR;
4649
4650 spin_lock(&space_info->lock);
4651 }
4652
4653 ret = -ENOSPC;
4654 used = space_info->bytes_used + space_info->bytes_reserved +
4655 space_info->bytes_pinned + space_info->bytes_readonly +
4656 space_info->bytes_may_use;
4657
4658 /*
4659 * The idea here is that we've not already over-reserved the block group
4660 * then we can go ahead and save our reservation first and then start
4661 * flushing if we need to. Otherwise if we've already overcommitted
4662 * lets start flushing stuff first and then come back and try to make
4663 * our reservation.
4664 */
4665 if (used <= space_info->total_bytes) {
4666 if (used + orig_bytes <= space_info->total_bytes) {
4667 space_info->bytes_may_use += orig_bytes;
4668 trace_btrfs_space_reservation(root->fs_info,
4669 "space_info", space_info->flags, orig_bytes, 1);
4670 ret = 0;
4671 } else {
4672 /*
4673 * Ok set num_bytes to orig_bytes since we aren't
4674 * overocmmitted, this way we only try and reclaim what
4675 * we need.
4676 */
4677 num_bytes = orig_bytes;
4678 }
4679 } else {
4680 /*
4681 * Ok we're over committed, set num_bytes to the overcommitted
4682 * amount plus the amount of bytes that we need for this
4683 * reservation.
4684 */
4685 num_bytes = used - space_info->total_bytes +
4686 (orig_bytes * 2);
4687 }
4688
4689 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4690 space_info->bytes_may_use += orig_bytes;
4691 trace_btrfs_space_reservation(root->fs_info, "space_info",
4692 space_info->flags, orig_bytes,
4693 1);
4694 ret = 0;
4695 }
4696
4697 /*
4698 * Couldn't make our reservation, save our place so while we're trying
4699 * to reclaim space we can actually use it instead of somebody else
4700 * stealing it from us.
4701 *
4702 * We make the other tasks wait for the flush only when we can flush
4703 * all things.
4704 */
4705 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4706 flushing = true;
4707 space_info->flush = 1;
4708 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4709 used += orig_bytes;
4710 /*
4711 * We will do the space reservation dance during log replay,
4712 * which means we won't have fs_info->fs_root set, so don't do
4713 * the async reclaim as we will panic.
4714 */
4715 if (!root->fs_info->log_root_recovering &&
4716 need_do_async_reclaim(space_info, root->fs_info, used) &&
4717 !work_busy(&root->fs_info->async_reclaim_work))
4718 queue_work(system_unbound_wq,
4719 &root->fs_info->async_reclaim_work);
4720 }
4721 spin_unlock(&space_info->lock);
4722
4723 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4724 goto out;
4725
4726 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4727 flush_state);
4728 flush_state++;
4729
4730 /*
4731 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4732 * would happen. So skip delalloc flush.
4733 */
4734 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4735 (flush_state == FLUSH_DELALLOC ||
4736 flush_state == FLUSH_DELALLOC_WAIT))
4737 flush_state = ALLOC_CHUNK;
4738
4739 if (!ret)
4740 goto again;
4741 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4742 flush_state < COMMIT_TRANS)
4743 goto again;
4744 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4745 flush_state <= COMMIT_TRANS)
4746 goto again;
4747
4748 out:
4749 if (ret == -ENOSPC &&
4750 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4751 struct btrfs_block_rsv *global_rsv =
4752 &root->fs_info->global_block_rsv;
4753
4754 if (block_rsv != global_rsv &&
4755 !block_rsv_use_bytes(global_rsv, orig_bytes))
4756 ret = 0;
4757 }
4758 if (ret == -ENOSPC)
4759 trace_btrfs_space_reservation(root->fs_info,
4760 "space_info:enospc",
4761 space_info->flags, orig_bytes, 1);
4762 if (flushing) {
4763 spin_lock(&space_info->lock);
4764 space_info->flush = 0;
4765 wake_up_all(&space_info->wait);
4766 spin_unlock(&space_info->lock);
4767 }
4768 return ret;
4769 }
4770
4771 static struct btrfs_block_rsv *get_block_rsv(
4772 const struct btrfs_trans_handle *trans,
4773 const struct btrfs_root *root)
4774 {
4775 struct btrfs_block_rsv *block_rsv = NULL;
4776
4777 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4778 block_rsv = trans->block_rsv;
4779
4780 if (root == root->fs_info->csum_root && trans->adding_csums)
4781 block_rsv = trans->block_rsv;
4782
4783 if (root == root->fs_info->uuid_root)
4784 block_rsv = trans->block_rsv;
4785
4786 if (!block_rsv)
4787 block_rsv = root->block_rsv;
4788
4789 if (!block_rsv)
4790 block_rsv = &root->fs_info->empty_block_rsv;
4791
4792 return block_rsv;
4793 }
4794
4795 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4796 u64 num_bytes)
4797 {
4798 int ret = -ENOSPC;
4799 spin_lock(&block_rsv->lock);
4800 if (block_rsv->reserved >= num_bytes) {
4801 block_rsv->reserved -= num_bytes;
4802 if (block_rsv->reserved < block_rsv->size)
4803 block_rsv->full = 0;
4804 ret = 0;
4805 }
4806 spin_unlock(&block_rsv->lock);
4807 return ret;
4808 }
4809
4810 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4811 u64 num_bytes, int update_size)
4812 {
4813 spin_lock(&block_rsv->lock);
4814 block_rsv->reserved += num_bytes;
4815 if (update_size)
4816 block_rsv->size += num_bytes;
4817 else if (block_rsv->reserved >= block_rsv->size)
4818 block_rsv->full = 1;
4819 spin_unlock(&block_rsv->lock);
4820 }
4821
4822 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4823 struct btrfs_block_rsv *dest, u64 num_bytes,
4824 int min_factor)
4825 {
4826 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4827 u64 min_bytes;
4828
4829 if (global_rsv->space_info != dest->space_info)
4830 return -ENOSPC;
4831
4832 spin_lock(&global_rsv->lock);
4833 min_bytes = div_factor(global_rsv->size, min_factor);
4834 if (global_rsv->reserved < min_bytes + num_bytes) {
4835 spin_unlock(&global_rsv->lock);
4836 return -ENOSPC;
4837 }
4838 global_rsv->reserved -= num_bytes;
4839 if (global_rsv->reserved < global_rsv->size)
4840 global_rsv->full = 0;
4841 spin_unlock(&global_rsv->lock);
4842
4843 block_rsv_add_bytes(dest, num_bytes, 1);
4844 return 0;
4845 }
4846
4847 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4848 struct btrfs_block_rsv *block_rsv,
4849 struct btrfs_block_rsv *dest, u64 num_bytes)
4850 {
4851 struct btrfs_space_info *space_info = block_rsv->space_info;
4852
4853 spin_lock(&block_rsv->lock);
4854 if (num_bytes == (u64)-1)
4855 num_bytes = block_rsv->size;
4856 block_rsv->size -= num_bytes;
4857 if (block_rsv->reserved >= block_rsv->size) {
4858 num_bytes = block_rsv->reserved - block_rsv->size;
4859 block_rsv->reserved = block_rsv->size;
4860 block_rsv->full = 1;
4861 } else {
4862 num_bytes = 0;
4863 }
4864 spin_unlock(&block_rsv->lock);
4865
4866 if (num_bytes > 0) {
4867 if (dest) {
4868 spin_lock(&dest->lock);
4869 if (!dest->full) {
4870 u64 bytes_to_add;
4871
4872 bytes_to_add = dest->size - dest->reserved;
4873 bytes_to_add = min(num_bytes, bytes_to_add);
4874 dest->reserved += bytes_to_add;
4875 if (dest->reserved >= dest->size)
4876 dest->full = 1;
4877 num_bytes -= bytes_to_add;
4878 }
4879 spin_unlock(&dest->lock);
4880 }
4881 if (num_bytes) {
4882 spin_lock(&space_info->lock);
4883 space_info->bytes_may_use -= num_bytes;
4884 trace_btrfs_space_reservation(fs_info, "space_info",
4885 space_info->flags, num_bytes, 0);
4886 spin_unlock(&space_info->lock);
4887 }
4888 }
4889 }
4890
4891 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4892 struct btrfs_block_rsv *dst, u64 num_bytes)
4893 {
4894 int ret;
4895
4896 ret = block_rsv_use_bytes(src, num_bytes);
4897 if (ret)
4898 return ret;
4899
4900 block_rsv_add_bytes(dst, num_bytes, 1);
4901 return 0;
4902 }
4903
4904 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4905 {
4906 memset(rsv, 0, sizeof(*rsv));
4907 spin_lock_init(&rsv->lock);
4908 rsv->type = type;
4909 }
4910
4911 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4912 unsigned short type)
4913 {
4914 struct btrfs_block_rsv *block_rsv;
4915 struct btrfs_fs_info *fs_info = root->fs_info;
4916
4917 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4918 if (!block_rsv)
4919 return NULL;
4920
4921 btrfs_init_block_rsv(block_rsv, type);
4922 block_rsv->space_info = __find_space_info(fs_info,
4923 BTRFS_BLOCK_GROUP_METADATA);
4924 return block_rsv;
4925 }
4926
4927 void btrfs_free_block_rsv(struct btrfs_root *root,
4928 struct btrfs_block_rsv *rsv)
4929 {
4930 if (!rsv)
4931 return;
4932 btrfs_block_rsv_release(root, rsv, (u64)-1);
4933 kfree(rsv);
4934 }
4935
4936 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4937 {
4938 kfree(rsv);
4939 }
4940
4941 int btrfs_block_rsv_add(struct btrfs_root *root,
4942 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4943 enum btrfs_reserve_flush_enum flush)
4944 {
4945 int ret;
4946
4947 if (num_bytes == 0)
4948 return 0;
4949
4950 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4951 if (!ret) {
4952 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4953 return 0;
4954 }
4955
4956 return ret;
4957 }
4958
4959 int btrfs_block_rsv_check(struct btrfs_root *root,
4960 struct btrfs_block_rsv *block_rsv, int min_factor)
4961 {
4962 u64 num_bytes = 0;
4963 int ret = -ENOSPC;
4964
4965 if (!block_rsv)
4966 return 0;
4967
4968 spin_lock(&block_rsv->lock);
4969 num_bytes = div_factor(block_rsv->size, min_factor);
4970 if (block_rsv->reserved >= num_bytes)
4971 ret = 0;
4972 spin_unlock(&block_rsv->lock);
4973
4974 return ret;
4975 }
4976
4977 int btrfs_block_rsv_refill(struct btrfs_root *root,
4978 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4979 enum btrfs_reserve_flush_enum flush)
4980 {
4981 u64 num_bytes = 0;
4982 int ret = -ENOSPC;
4983
4984 if (!block_rsv)
4985 return 0;
4986
4987 spin_lock(&block_rsv->lock);
4988 num_bytes = min_reserved;
4989 if (block_rsv->reserved >= num_bytes)
4990 ret = 0;
4991 else
4992 num_bytes -= block_rsv->reserved;
4993 spin_unlock(&block_rsv->lock);
4994
4995 if (!ret)
4996 return 0;
4997
4998 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4999 if (!ret) {
5000 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5001 return 0;
5002 }
5003
5004 return ret;
5005 }
5006
5007 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5008 struct btrfs_block_rsv *dst_rsv,
5009 u64 num_bytes)
5010 {
5011 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5012 }
5013
5014 void btrfs_block_rsv_release(struct btrfs_root *root,
5015 struct btrfs_block_rsv *block_rsv,
5016 u64 num_bytes)
5017 {
5018 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5019 if (global_rsv == block_rsv ||
5020 block_rsv->space_info != global_rsv->space_info)
5021 global_rsv = NULL;
5022 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5023 num_bytes);
5024 }
5025
5026 /*
5027 * helper to calculate size of global block reservation.
5028 * the desired value is sum of space used by extent tree,
5029 * checksum tree and root tree
5030 */
5031 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5032 {
5033 struct btrfs_space_info *sinfo;
5034 u64 num_bytes;
5035 u64 meta_used;
5036 u64 data_used;
5037 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5038
5039 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5040 spin_lock(&sinfo->lock);
5041 data_used = sinfo->bytes_used;
5042 spin_unlock(&sinfo->lock);
5043
5044 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5045 spin_lock(&sinfo->lock);
5046 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5047 data_used = 0;
5048 meta_used = sinfo->bytes_used;
5049 spin_unlock(&sinfo->lock);
5050
5051 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5052 csum_size * 2;
5053 num_bytes += div_u64(data_used + meta_used, 50);
5054
5055 if (num_bytes * 3 > meta_used)
5056 num_bytes = div_u64(meta_used, 3);
5057
5058 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5059 }
5060
5061 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5062 {
5063 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5064 struct btrfs_space_info *sinfo = block_rsv->space_info;
5065 u64 num_bytes;
5066
5067 num_bytes = calc_global_metadata_size(fs_info);
5068
5069 spin_lock(&sinfo->lock);
5070 spin_lock(&block_rsv->lock);
5071
5072 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5073
5074 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5075 sinfo->bytes_reserved + sinfo->bytes_readonly +
5076 sinfo->bytes_may_use;
5077
5078 if (sinfo->total_bytes > num_bytes) {
5079 num_bytes = sinfo->total_bytes - num_bytes;
5080 block_rsv->reserved += num_bytes;
5081 sinfo->bytes_may_use += num_bytes;
5082 trace_btrfs_space_reservation(fs_info, "space_info",
5083 sinfo->flags, num_bytes, 1);
5084 }
5085
5086 if (block_rsv->reserved >= block_rsv->size) {
5087 num_bytes = block_rsv->reserved - block_rsv->size;
5088 sinfo->bytes_may_use -= num_bytes;
5089 trace_btrfs_space_reservation(fs_info, "space_info",
5090 sinfo->flags, num_bytes, 0);
5091 block_rsv->reserved = block_rsv->size;
5092 block_rsv->full = 1;
5093 }
5094
5095 spin_unlock(&block_rsv->lock);
5096 spin_unlock(&sinfo->lock);
5097 }
5098
5099 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5100 {
5101 struct btrfs_space_info *space_info;
5102
5103 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5104 fs_info->chunk_block_rsv.space_info = space_info;
5105
5106 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5107 fs_info->global_block_rsv.space_info = space_info;
5108 fs_info->delalloc_block_rsv.space_info = space_info;
5109 fs_info->trans_block_rsv.space_info = space_info;
5110 fs_info->empty_block_rsv.space_info = space_info;
5111 fs_info->delayed_block_rsv.space_info = space_info;
5112
5113 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5114 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5115 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5116 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5117 if (fs_info->quota_root)
5118 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5119 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5120
5121 update_global_block_rsv(fs_info);
5122 }
5123
5124 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5125 {
5126 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5127 (u64)-1);
5128 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5129 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5130 WARN_ON(fs_info->trans_block_rsv.size > 0);
5131 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5132 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5133 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5134 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5135 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5136 }
5137
5138 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5139 struct btrfs_root *root)
5140 {
5141 if (!trans->block_rsv)
5142 return;
5143
5144 if (!trans->bytes_reserved)
5145 return;
5146
5147 trace_btrfs_space_reservation(root->fs_info, "transaction",
5148 trans->transid, trans->bytes_reserved, 0);
5149 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5150 trans->bytes_reserved = 0;
5151 }
5152
5153 /* Can only return 0 or -ENOSPC */
5154 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5155 struct inode *inode)
5156 {
5157 struct btrfs_root *root = BTRFS_I(inode)->root;
5158 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5159 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5160
5161 /*
5162 * We need to hold space in order to delete our orphan item once we've
5163 * added it, so this takes the reservation so we can release it later
5164 * when we are truly done with the orphan item.
5165 */
5166 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5167 trace_btrfs_space_reservation(root->fs_info, "orphan",
5168 btrfs_ino(inode), num_bytes, 1);
5169 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5170 }
5171
5172 void btrfs_orphan_release_metadata(struct inode *inode)
5173 {
5174 struct btrfs_root *root = BTRFS_I(inode)->root;
5175 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5176 trace_btrfs_space_reservation(root->fs_info, "orphan",
5177 btrfs_ino(inode), num_bytes, 0);
5178 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5179 }
5180
5181 /*
5182 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5183 * root: the root of the parent directory
5184 * rsv: block reservation
5185 * items: the number of items that we need do reservation
5186 * qgroup_reserved: used to return the reserved size in qgroup
5187 *
5188 * This function is used to reserve the space for snapshot/subvolume
5189 * creation and deletion. Those operations are different with the
5190 * common file/directory operations, they change two fs/file trees
5191 * and root tree, the number of items that the qgroup reserves is
5192 * different with the free space reservation. So we can not use
5193 * the space reseravtion mechanism in start_transaction().
5194 */
5195 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5196 struct btrfs_block_rsv *rsv,
5197 int items,
5198 u64 *qgroup_reserved,
5199 bool use_global_rsv)
5200 {
5201 u64 num_bytes;
5202 int ret;
5203 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5204
5205 if (root->fs_info->quota_enabled) {
5206 /* One for parent inode, two for dir entries */
5207 num_bytes = 3 * root->nodesize;
5208 ret = btrfs_qgroup_reserve(root, num_bytes);
5209 if (ret)
5210 return ret;
5211 } else {
5212 num_bytes = 0;
5213 }
5214
5215 *qgroup_reserved = num_bytes;
5216
5217 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5218 rsv->space_info = __find_space_info(root->fs_info,
5219 BTRFS_BLOCK_GROUP_METADATA);
5220 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5221 BTRFS_RESERVE_FLUSH_ALL);
5222
5223 if (ret == -ENOSPC && use_global_rsv)
5224 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5225
5226 if (ret) {
5227 if (*qgroup_reserved)
5228 btrfs_qgroup_free(root, *qgroup_reserved);
5229 }
5230
5231 return ret;
5232 }
5233
5234 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5235 struct btrfs_block_rsv *rsv,
5236 u64 qgroup_reserved)
5237 {
5238 btrfs_block_rsv_release(root, rsv, (u64)-1);
5239 if (qgroup_reserved)
5240 btrfs_qgroup_free(root, qgroup_reserved);
5241 }
5242
5243 /**
5244 * drop_outstanding_extent - drop an outstanding extent
5245 * @inode: the inode we're dropping the extent for
5246 * @num_bytes: the number of bytes we're relaseing.
5247 *
5248 * This is called when we are freeing up an outstanding extent, either called
5249 * after an error or after an extent is written. This will return the number of
5250 * reserved extents that need to be freed. This must be called with
5251 * BTRFS_I(inode)->lock held.
5252 */
5253 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5254 {
5255 unsigned drop_inode_space = 0;
5256 unsigned dropped_extents = 0;
5257 unsigned num_extents = 0;
5258
5259 num_extents = (unsigned)div64_u64(num_bytes +
5260 BTRFS_MAX_EXTENT_SIZE - 1,
5261 BTRFS_MAX_EXTENT_SIZE);
5262 ASSERT(num_extents);
5263 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5264 BTRFS_I(inode)->outstanding_extents -= num_extents;
5265
5266 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5267 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5268 &BTRFS_I(inode)->runtime_flags))
5269 drop_inode_space = 1;
5270
5271 /*
5272 * If we have more or the same amount of outsanding extents than we have
5273 * reserved then we need to leave the reserved extents count alone.
5274 */
5275 if (BTRFS_I(inode)->outstanding_extents >=
5276 BTRFS_I(inode)->reserved_extents)
5277 return drop_inode_space;
5278
5279 dropped_extents = BTRFS_I(inode)->reserved_extents -
5280 BTRFS_I(inode)->outstanding_extents;
5281 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5282 return dropped_extents + drop_inode_space;
5283 }
5284
5285 /**
5286 * calc_csum_metadata_size - return the amount of metada space that must be
5287 * reserved/free'd for the given bytes.
5288 * @inode: the inode we're manipulating
5289 * @num_bytes: the number of bytes in question
5290 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5291 *
5292 * This adjusts the number of csum_bytes in the inode and then returns the
5293 * correct amount of metadata that must either be reserved or freed. We
5294 * calculate how many checksums we can fit into one leaf and then divide the
5295 * number of bytes that will need to be checksumed by this value to figure out
5296 * how many checksums will be required. If we are adding bytes then the number
5297 * may go up and we will return the number of additional bytes that must be
5298 * reserved. If it is going down we will return the number of bytes that must
5299 * be freed.
5300 *
5301 * This must be called with BTRFS_I(inode)->lock held.
5302 */
5303 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5304 int reserve)
5305 {
5306 struct btrfs_root *root = BTRFS_I(inode)->root;
5307 u64 old_csums, num_csums;
5308
5309 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5310 BTRFS_I(inode)->csum_bytes == 0)
5311 return 0;
5312
5313 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5314 if (reserve)
5315 BTRFS_I(inode)->csum_bytes += num_bytes;
5316 else
5317 BTRFS_I(inode)->csum_bytes -= num_bytes;
5318 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5319
5320 /* No change, no need to reserve more */
5321 if (old_csums == num_csums)
5322 return 0;
5323
5324 if (reserve)
5325 return btrfs_calc_trans_metadata_size(root,
5326 num_csums - old_csums);
5327
5328 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5329 }
5330
5331 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5332 {
5333 struct btrfs_root *root = BTRFS_I(inode)->root;
5334 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5335 u64 to_reserve = 0;
5336 u64 csum_bytes;
5337 unsigned nr_extents = 0;
5338 int extra_reserve = 0;
5339 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5340 int ret = 0;
5341 bool delalloc_lock = true;
5342 u64 to_free = 0;
5343 unsigned dropped;
5344
5345 /* If we are a free space inode we need to not flush since we will be in
5346 * the middle of a transaction commit. We also don't need the delalloc
5347 * mutex since we won't race with anybody. We need this mostly to make
5348 * lockdep shut its filthy mouth.
5349 */
5350 if (btrfs_is_free_space_inode(inode)) {
5351 flush = BTRFS_RESERVE_NO_FLUSH;
5352 delalloc_lock = false;
5353 }
5354
5355 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5356 btrfs_transaction_in_commit(root->fs_info))
5357 schedule_timeout(1);
5358
5359 if (delalloc_lock)
5360 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5361
5362 num_bytes = ALIGN(num_bytes, root->sectorsize);
5363
5364 spin_lock(&BTRFS_I(inode)->lock);
5365 nr_extents = (unsigned)div64_u64(num_bytes +
5366 BTRFS_MAX_EXTENT_SIZE - 1,
5367 BTRFS_MAX_EXTENT_SIZE);
5368 BTRFS_I(inode)->outstanding_extents += nr_extents;
5369 nr_extents = 0;
5370
5371 if (BTRFS_I(inode)->outstanding_extents >
5372 BTRFS_I(inode)->reserved_extents)
5373 nr_extents = BTRFS_I(inode)->outstanding_extents -
5374 BTRFS_I(inode)->reserved_extents;
5375
5376 /*
5377 * Add an item to reserve for updating the inode when we complete the
5378 * delalloc io.
5379 */
5380 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5381 &BTRFS_I(inode)->runtime_flags)) {
5382 nr_extents++;
5383 extra_reserve = 1;
5384 }
5385
5386 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5387 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5388 csum_bytes = BTRFS_I(inode)->csum_bytes;
5389 spin_unlock(&BTRFS_I(inode)->lock);
5390
5391 if (root->fs_info->quota_enabled) {
5392 ret = btrfs_qgroup_reserve(root, num_bytes +
5393 nr_extents * root->nodesize);
5394 if (ret)
5395 goto out_fail;
5396 }
5397
5398 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5399 if (unlikely(ret)) {
5400 if (root->fs_info->quota_enabled)
5401 btrfs_qgroup_free(root, num_bytes +
5402 nr_extents * root->nodesize);
5403 goto out_fail;
5404 }
5405
5406 spin_lock(&BTRFS_I(inode)->lock);
5407 if (extra_reserve) {
5408 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5409 &BTRFS_I(inode)->runtime_flags);
5410 nr_extents--;
5411 }
5412 BTRFS_I(inode)->reserved_extents += nr_extents;
5413 spin_unlock(&BTRFS_I(inode)->lock);
5414
5415 if (delalloc_lock)
5416 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5417
5418 if (to_reserve)
5419 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5420 btrfs_ino(inode), to_reserve, 1);
5421 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5422
5423 return 0;
5424
5425 out_fail:
5426 spin_lock(&BTRFS_I(inode)->lock);
5427 dropped = drop_outstanding_extent(inode, num_bytes);
5428 /*
5429 * If the inodes csum_bytes is the same as the original
5430 * csum_bytes then we know we haven't raced with any free()ers
5431 * so we can just reduce our inodes csum bytes and carry on.
5432 */
5433 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5434 calc_csum_metadata_size(inode, num_bytes, 0);
5435 } else {
5436 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5437 u64 bytes;
5438
5439 /*
5440 * This is tricky, but first we need to figure out how much we
5441 * free'd from any free-ers that occured during this
5442 * reservation, so we reset ->csum_bytes to the csum_bytes
5443 * before we dropped our lock, and then call the free for the
5444 * number of bytes that were freed while we were trying our
5445 * reservation.
5446 */
5447 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5448 BTRFS_I(inode)->csum_bytes = csum_bytes;
5449 to_free = calc_csum_metadata_size(inode, bytes, 0);
5450
5451
5452 /*
5453 * Now we need to see how much we would have freed had we not
5454 * been making this reservation and our ->csum_bytes were not
5455 * artificially inflated.
5456 */
5457 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5458 bytes = csum_bytes - orig_csum_bytes;
5459 bytes = calc_csum_metadata_size(inode, bytes, 0);
5460
5461 /*
5462 * Now reset ->csum_bytes to what it should be. If bytes is
5463 * more than to_free then we would have free'd more space had we
5464 * not had an artificially high ->csum_bytes, so we need to free
5465 * the remainder. If bytes is the same or less then we don't
5466 * need to do anything, the other free-ers did the correct
5467 * thing.
5468 */
5469 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5470 if (bytes > to_free)
5471 to_free = bytes - to_free;
5472 else
5473 to_free = 0;
5474 }
5475 spin_unlock(&BTRFS_I(inode)->lock);
5476 if (dropped)
5477 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5478
5479 if (to_free) {
5480 btrfs_block_rsv_release(root, block_rsv, to_free);
5481 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5482 btrfs_ino(inode), to_free, 0);
5483 }
5484 if (delalloc_lock)
5485 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5486 return ret;
5487 }
5488
5489 /**
5490 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5491 * @inode: the inode to release the reservation for
5492 * @num_bytes: the number of bytes we're releasing
5493 *
5494 * This will release the metadata reservation for an inode. This can be called
5495 * once we complete IO for a given set of bytes to release their metadata
5496 * reservations.
5497 */
5498 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5499 {
5500 struct btrfs_root *root = BTRFS_I(inode)->root;
5501 u64 to_free = 0;
5502 unsigned dropped;
5503
5504 num_bytes = ALIGN(num_bytes, root->sectorsize);
5505 spin_lock(&BTRFS_I(inode)->lock);
5506 dropped = drop_outstanding_extent(inode, num_bytes);
5507
5508 if (num_bytes)
5509 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5510 spin_unlock(&BTRFS_I(inode)->lock);
5511 if (dropped > 0)
5512 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5513
5514 if (btrfs_test_is_dummy_root(root))
5515 return;
5516
5517 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5518 btrfs_ino(inode), to_free, 0);
5519 if (root->fs_info->quota_enabled) {
5520 btrfs_qgroup_free(root, num_bytes +
5521 dropped * root->nodesize);
5522 }
5523
5524 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5525 to_free);
5526 }
5527
5528 /**
5529 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5530 * @inode: inode we're writing to
5531 * @num_bytes: the number of bytes we want to allocate
5532 *
5533 * This will do the following things
5534 *
5535 * o reserve space in the data space info for num_bytes
5536 * o reserve space in the metadata space info based on number of outstanding
5537 * extents and how much csums will be needed
5538 * o add to the inodes ->delalloc_bytes
5539 * o add it to the fs_info's delalloc inodes list.
5540 *
5541 * This will return 0 for success and -ENOSPC if there is no space left.
5542 */
5543 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5544 {
5545 int ret;
5546
5547 ret = btrfs_check_data_free_space(inode, num_bytes);
5548 if (ret)
5549 return ret;
5550
5551 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5552 if (ret) {
5553 btrfs_free_reserved_data_space(inode, num_bytes);
5554 return ret;
5555 }
5556
5557 return 0;
5558 }
5559
5560 /**
5561 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5562 * @inode: inode we're releasing space for
5563 * @num_bytes: the number of bytes we want to free up
5564 *
5565 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5566 * called in the case that we don't need the metadata AND data reservations
5567 * anymore. So if there is an error or we insert an inline extent.
5568 *
5569 * This function will release the metadata space that was not used and will
5570 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5571 * list if there are no delalloc bytes left.
5572 */
5573 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5574 {
5575 btrfs_delalloc_release_metadata(inode, num_bytes);
5576 btrfs_free_reserved_data_space(inode, num_bytes);
5577 }
5578
5579 static int update_block_group(struct btrfs_trans_handle *trans,
5580 struct btrfs_root *root, u64 bytenr,
5581 u64 num_bytes, int alloc)
5582 {
5583 struct btrfs_block_group_cache *cache = NULL;
5584 struct btrfs_fs_info *info = root->fs_info;
5585 u64 total = num_bytes;
5586 u64 old_val;
5587 u64 byte_in_group;
5588 int factor;
5589
5590 /* block accounting for super block */
5591 spin_lock(&info->delalloc_root_lock);
5592 old_val = btrfs_super_bytes_used(info->super_copy);
5593 if (alloc)
5594 old_val += num_bytes;
5595 else
5596 old_val -= num_bytes;
5597 btrfs_set_super_bytes_used(info->super_copy, old_val);
5598 spin_unlock(&info->delalloc_root_lock);
5599
5600 while (total) {
5601 cache = btrfs_lookup_block_group(info, bytenr);
5602 if (!cache)
5603 return -ENOENT;
5604 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5605 BTRFS_BLOCK_GROUP_RAID1 |
5606 BTRFS_BLOCK_GROUP_RAID10))
5607 factor = 2;
5608 else
5609 factor = 1;
5610 /*
5611 * If this block group has free space cache written out, we
5612 * need to make sure to load it if we are removing space. This
5613 * is because we need the unpinning stage to actually add the
5614 * space back to the block group, otherwise we will leak space.
5615 */
5616 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5617 cache_block_group(cache, 1);
5618
5619 byte_in_group = bytenr - cache->key.objectid;
5620 WARN_ON(byte_in_group > cache->key.offset);
5621
5622 spin_lock(&cache->space_info->lock);
5623 spin_lock(&cache->lock);
5624
5625 if (btrfs_test_opt(root, SPACE_CACHE) &&
5626 cache->disk_cache_state < BTRFS_DC_CLEAR)
5627 cache->disk_cache_state = BTRFS_DC_CLEAR;
5628
5629 old_val = btrfs_block_group_used(&cache->item);
5630 num_bytes = min(total, cache->key.offset - byte_in_group);
5631 if (alloc) {
5632 old_val += num_bytes;
5633 btrfs_set_block_group_used(&cache->item, old_val);
5634 cache->reserved -= num_bytes;
5635 cache->space_info->bytes_reserved -= num_bytes;
5636 cache->space_info->bytes_used += num_bytes;
5637 cache->space_info->disk_used += num_bytes * factor;
5638 spin_unlock(&cache->lock);
5639 spin_unlock(&cache->space_info->lock);
5640 } else {
5641 old_val -= num_bytes;
5642 btrfs_set_block_group_used(&cache->item, old_val);
5643 cache->pinned += num_bytes;
5644 cache->space_info->bytes_pinned += num_bytes;
5645 cache->space_info->bytes_used -= num_bytes;
5646 cache->space_info->disk_used -= num_bytes * factor;
5647 spin_unlock(&cache->lock);
5648 spin_unlock(&cache->space_info->lock);
5649
5650 set_extent_dirty(info->pinned_extents,
5651 bytenr, bytenr + num_bytes - 1,
5652 GFP_NOFS | __GFP_NOFAIL);
5653 /*
5654 * No longer have used bytes in this block group, queue
5655 * it for deletion.
5656 */
5657 if (old_val == 0) {
5658 spin_lock(&info->unused_bgs_lock);
5659 if (list_empty(&cache->bg_list)) {
5660 btrfs_get_block_group(cache);
5661 list_add_tail(&cache->bg_list,
5662 &info->unused_bgs);
5663 }
5664 spin_unlock(&info->unused_bgs_lock);
5665 }
5666 }
5667
5668 spin_lock(&trans->transaction->dirty_bgs_lock);
5669 if (list_empty(&cache->dirty_list)) {
5670 list_add_tail(&cache->dirty_list,
5671 &trans->transaction->dirty_bgs);
5672 trans->transaction->num_dirty_bgs++;
5673 btrfs_get_block_group(cache);
5674 }
5675 spin_unlock(&trans->transaction->dirty_bgs_lock);
5676
5677 btrfs_put_block_group(cache);
5678 total -= num_bytes;
5679 bytenr += num_bytes;
5680 }
5681 return 0;
5682 }
5683
5684 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5685 {
5686 struct btrfs_block_group_cache *cache;
5687 u64 bytenr;
5688
5689 spin_lock(&root->fs_info->block_group_cache_lock);
5690 bytenr = root->fs_info->first_logical_byte;
5691 spin_unlock(&root->fs_info->block_group_cache_lock);
5692
5693 if (bytenr < (u64)-1)
5694 return bytenr;
5695
5696 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5697 if (!cache)
5698 return 0;
5699
5700 bytenr = cache->key.objectid;
5701 btrfs_put_block_group(cache);
5702
5703 return bytenr;
5704 }
5705
5706 static int pin_down_extent(struct btrfs_root *root,
5707 struct btrfs_block_group_cache *cache,
5708 u64 bytenr, u64 num_bytes, int reserved)
5709 {
5710 spin_lock(&cache->space_info->lock);
5711 spin_lock(&cache->lock);
5712 cache->pinned += num_bytes;
5713 cache->space_info->bytes_pinned += num_bytes;
5714 if (reserved) {
5715 cache->reserved -= num_bytes;
5716 cache->space_info->bytes_reserved -= num_bytes;
5717 }
5718 spin_unlock(&cache->lock);
5719 spin_unlock(&cache->space_info->lock);
5720
5721 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5722 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5723 if (reserved)
5724 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5725 return 0;
5726 }
5727
5728 /*
5729 * this function must be called within transaction
5730 */
5731 int btrfs_pin_extent(struct btrfs_root *root,
5732 u64 bytenr, u64 num_bytes, int reserved)
5733 {
5734 struct btrfs_block_group_cache *cache;
5735
5736 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5737 BUG_ON(!cache); /* Logic error */
5738
5739 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5740
5741 btrfs_put_block_group(cache);
5742 return 0;
5743 }
5744
5745 /*
5746 * this function must be called within transaction
5747 */
5748 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5749 u64 bytenr, u64 num_bytes)
5750 {
5751 struct btrfs_block_group_cache *cache;
5752 int ret;
5753
5754 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5755 if (!cache)
5756 return -EINVAL;
5757
5758 /*
5759 * pull in the free space cache (if any) so that our pin
5760 * removes the free space from the cache. We have load_only set
5761 * to one because the slow code to read in the free extents does check
5762 * the pinned extents.
5763 */
5764 cache_block_group(cache, 1);
5765
5766 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5767
5768 /* remove us from the free space cache (if we're there at all) */
5769 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5770 btrfs_put_block_group(cache);
5771 return ret;
5772 }
5773
5774 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5775 {
5776 int ret;
5777 struct btrfs_block_group_cache *block_group;
5778 struct btrfs_caching_control *caching_ctl;
5779
5780 block_group = btrfs_lookup_block_group(root->fs_info, start);
5781 if (!block_group)
5782 return -EINVAL;
5783
5784 cache_block_group(block_group, 0);
5785 caching_ctl = get_caching_control(block_group);
5786
5787 if (!caching_ctl) {
5788 /* Logic error */
5789 BUG_ON(!block_group_cache_done(block_group));
5790 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5791 } else {
5792 mutex_lock(&caching_ctl->mutex);
5793
5794 if (start >= caching_ctl->progress) {
5795 ret = add_excluded_extent(root, start, num_bytes);
5796 } else if (start + num_bytes <= caching_ctl->progress) {
5797 ret = btrfs_remove_free_space(block_group,
5798 start, num_bytes);
5799 } else {
5800 num_bytes = caching_ctl->progress - start;
5801 ret = btrfs_remove_free_space(block_group,
5802 start, num_bytes);
5803 if (ret)
5804 goto out_lock;
5805
5806 num_bytes = (start + num_bytes) -
5807 caching_ctl->progress;
5808 start = caching_ctl->progress;
5809 ret = add_excluded_extent(root, start, num_bytes);
5810 }
5811 out_lock:
5812 mutex_unlock(&caching_ctl->mutex);
5813 put_caching_control(caching_ctl);
5814 }
5815 btrfs_put_block_group(block_group);
5816 return ret;
5817 }
5818
5819 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5820 struct extent_buffer *eb)
5821 {
5822 struct btrfs_file_extent_item *item;
5823 struct btrfs_key key;
5824 int found_type;
5825 int i;
5826
5827 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5828 return 0;
5829
5830 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5831 btrfs_item_key_to_cpu(eb, &key, i);
5832 if (key.type != BTRFS_EXTENT_DATA_KEY)
5833 continue;
5834 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5835 found_type = btrfs_file_extent_type(eb, item);
5836 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5837 continue;
5838 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5839 continue;
5840 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5841 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5842 __exclude_logged_extent(log, key.objectid, key.offset);
5843 }
5844
5845 return 0;
5846 }
5847
5848 /**
5849 * btrfs_update_reserved_bytes - update the block_group and space info counters
5850 * @cache: The cache we are manipulating
5851 * @num_bytes: The number of bytes in question
5852 * @reserve: One of the reservation enums
5853 * @delalloc: The blocks are allocated for the delalloc write
5854 *
5855 * This is called by the allocator when it reserves space, or by somebody who is
5856 * freeing space that was never actually used on disk. For example if you
5857 * reserve some space for a new leaf in transaction A and before transaction A
5858 * commits you free that leaf, you call this with reserve set to 0 in order to
5859 * clear the reservation.
5860 *
5861 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5862 * ENOSPC accounting. For data we handle the reservation through clearing the
5863 * delalloc bits in the io_tree. We have to do this since we could end up
5864 * allocating less disk space for the amount of data we have reserved in the
5865 * case of compression.
5866 *
5867 * If this is a reservation and the block group has become read only we cannot
5868 * make the reservation and return -EAGAIN, otherwise this function always
5869 * succeeds.
5870 */
5871 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5872 u64 num_bytes, int reserve, int delalloc)
5873 {
5874 struct btrfs_space_info *space_info = cache->space_info;
5875 int ret = 0;
5876
5877 spin_lock(&space_info->lock);
5878 spin_lock(&cache->lock);
5879 if (reserve != RESERVE_FREE) {
5880 if (cache->ro) {
5881 ret = -EAGAIN;
5882 } else {
5883 cache->reserved += num_bytes;
5884 space_info->bytes_reserved += num_bytes;
5885 if (reserve == RESERVE_ALLOC) {
5886 trace_btrfs_space_reservation(cache->fs_info,
5887 "space_info", space_info->flags,
5888 num_bytes, 0);
5889 space_info->bytes_may_use -= num_bytes;
5890 }
5891
5892 if (delalloc)
5893 cache->delalloc_bytes += num_bytes;
5894 }
5895 } else {
5896 if (cache->ro)
5897 space_info->bytes_readonly += num_bytes;
5898 cache->reserved -= num_bytes;
5899 space_info->bytes_reserved -= num_bytes;
5900
5901 if (delalloc)
5902 cache->delalloc_bytes -= num_bytes;
5903 }
5904 spin_unlock(&cache->lock);
5905 spin_unlock(&space_info->lock);
5906 return ret;
5907 }
5908
5909 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5910 struct btrfs_root *root)
5911 {
5912 struct btrfs_fs_info *fs_info = root->fs_info;
5913 struct btrfs_caching_control *next;
5914 struct btrfs_caching_control *caching_ctl;
5915 struct btrfs_block_group_cache *cache;
5916
5917 down_write(&fs_info->commit_root_sem);
5918
5919 list_for_each_entry_safe(caching_ctl, next,
5920 &fs_info->caching_block_groups, list) {
5921 cache = caching_ctl->block_group;
5922 if (block_group_cache_done(cache)) {
5923 cache->last_byte_to_unpin = (u64)-1;
5924 list_del_init(&caching_ctl->list);
5925 put_caching_control(caching_ctl);
5926 } else {
5927 cache->last_byte_to_unpin = caching_ctl->progress;
5928 }
5929 }
5930
5931 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5932 fs_info->pinned_extents = &fs_info->freed_extents[1];
5933 else
5934 fs_info->pinned_extents = &fs_info->freed_extents[0];
5935
5936 up_write(&fs_info->commit_root_sem);
5937
5938 update_global_block_rsv(fs_info);
5939 }
5940
5941 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5942 const bool return_free_space)
5943 {
5944 struct btrfs_fs_info *fs_info = root->fs_info;
5945 struct btrfs_block_group_cache *cache = NULL;
5946 struct btrfs_space_info *space_info;
5947 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5948 u64 len;
5949 bool readonly;
5950
5951 while (start <= end) {
5952 readonly = false;
5953 if (!cache ||
5954 start >= cache->key.objectid + cache->key.offset) {
5955 if (cache)
5956 btrfs_put_block_group(cache);
5957 cache = btrfs_lookup_block_group(fs_info, start);
5958 BUG_ON(!cache); /* Logic error */
5959 }
5960
5961 len = cache->key.objectid + cache->key.offset - start;
5962 len = min(len, end + 1 - start);
5963
5964 if (start < cache->last_byte_to_unpin) {
5965 len = min(len, cache->last_byte_to_unpin - start);
5966 if (return_free_space)
5967 btrfs_add_free_space(cache, start, len);
5968 }
5969
5970 start += len;
5971 space_info = cache->space_info;
5972
5973 spin_lock(&space_info->lock);
5974 spin_lock(&cache->lock);
5975 cache->pinned -= len;
5976 space_info->bytes_pinned -= len;
5977 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5978 if (cache->ro) {
5979 space_info->bytes_readonly += len;
5980 readonly = true;
5981 }
5982 spin_unlock(&cache->lock);
5983 if (!readonly && global_rsv->space_info == space_info) {
5984 spin_lock(&global_rsv->lock);
5985 if (!global_rsv->full) {
5986 len = min(len, global_rsv->size -
5987 global_rsv->reserved);
5988 global_rsv->reserved += len;
5989 space_info->bytes_may_use += len;
5990 if (global_rsv->reserved >= global_rsv->size)
5991 global_rsv->full = 1;
5992 }
5993 spin_unlock(&global_rsv->lock);
5994 }
5995 spin_unlock(&space_info->lock);
5996 }
5997
5998 if (cache)
5999 btrfs_put_block_group(cache);
6000 return 0;
6001 }
6002
6003 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6004 struct btrfs_root *root)
6005 {
6006 struct btrfs_fs_info *fs_info = root->fs_info;
6007 struct extent_io_tree *unpin;
6008 u64 start;
6009 u64 end;
6010 int ret;
6011
6012 if (trans->aborted)
6013 return 0;
6014
6015 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6016 unpin = &fs_info->freed_extents[1];
6017 else
6018 unpin = &fs_info->freed_extents[0];
6019
6020 while (1) {
6021 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6022 ret = find_first_extent_bit(unpin, 0, &start, &end,
6023 EXTENT_DIRTY, NULL);
6024 if (ret) {
6025 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6026 break;
6027 }
6028
6029 if (btrfs_test_opt(root, DISCARD))
6030 ret = btrfs_discard_extent(root, start,
6031 end + 1 - start, NULL);
6032
6033 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6034 unpin_extent_range(root, start, end, true);
6035 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6036 cond_resched();
6037 }
6038
6039 return 0;
6040 }
6041
6042 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6043 u64 owner, u64 root_objectid)
6044 {
6045 struct btrfs_space_info *space_info;
6046 u64 flags;
6047
6048 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6049 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6050 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6051 else
6052 flags = BTRFS_BLOCK_GROUP_METADATA;
6053 } else {
6054 flags = BTRFS_BLOCK_GROUP_DATA;
6055 }
6056
6057 space_info = __find_space_info(fs_info, flags);
6058 BUG_ON(!space_info); /* Logic bug */
6059 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6060 }
6061
6062
6063 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6064 struct btrfs_root *root,
6065 u64 bytenr, u64 num_bytes, u64 parent,
6066 u64 root_objectid, u64 owner_objectid,
6067 u64 owner_offset, int refs_to_drop,
6068 struct btrfs_delayed_extent_op *extent_op,
6069 int no_quota)
6070 {
6071 struct btrfs_key key;
6072 struct btrfs_path *path;
6073 struct btrfs_fs_info *info = root->fs_info;
6074 struct btrfs_root *extent_root = info->extent_root;
6075 struct extent_buffer *leaf;
6076 struct btrfs_extent_item *ei;
6077 struct btrfs_extent_inline_ref *iref;
6078 int ret;
6079 int is_data;
6080 int extent_slot = 0;
6081 int found_extent = 0;
6082 int num_to_del = 1;
6083 u32 item_size;
6084 u64 refs;
6085 int last_ref = 0;
6086 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6087 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6088 SKINNY_METADATA);
6089
6090 if (!info->quota_enabled || !is_fstree(root_objectid))
6091 no_quota = 1;
6092
6093 path = btrfs_alloc_path();
6094 if (!path)
6095 return -ENOMEM;
6096
6097 path->reada = 1;
6098 path->leave_spinning = 1;
6099
6100 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6101 BUG_ON(!is_data && refs_to_drop != 1);
6102
6103 if (is_data)
6104 skinny_metadata = 0;
6105
6106 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6107 bytenr, num_bytes, parent,
6108 root_objectid, owner_objectid,
6109 owner_offset);
6110 if (ret == 0) {
6111 extent_slot = path->slots[0];
6112 while (extent_slot >= 0) {
6113 btrfs_item_key_to_cpu(path->nodes[0], &key,
6114 extent_slot);
6115 if (key.objectid != bytenr)
6116 break;
6117 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6118 key.offset == num_bytes) {
6119 found_extent = 1;
6120 break;
6121 }
6122 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6123 key.offset == owner_objectid) {
6124 found_extent = 1;
6125 break;
6126 }
6127 if (path->slots[0] - extent_slot > 5)
6128 break;
6129 extent_slot--;
6130 }
6131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6132 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6133 if (found_extent && item_size < sizeof(*ei))
6134 found_extent = 0;
6135 #endif
6136 if (!found_extent) {
6137 BUG_ON(iref);
6138 ret = remove_extent_backref(trans, extent_root, path,
6139 NULL, refs_to_drop,
6140 is_data, &last_ref);
6141 if (ret) {
6142 btrfs_abort_transaction(trans, extent_root, ret);
6143 goto out;
6144 }
6145 btrfs_release_path(path);
6146 path->leave_spinning = 1;
6147
6148 key.objectid = bytenr;
6149 key.type = BTRFS_EXTENT_ITEM_KEY;
6150 key.offset = num_bytes;
6151
6152 if (!is_data && skinny_metadata) {
6153 key.type = BTRFS_METADATA_ITEM_KEY;
6154 key.offset = owner_objectid;
6155 }
6156
6157 ret = btrfs_search_slot(trans, extent_root,
6158 &key, path, -1, 1);
6159 if (ret > 0 && skinny_metadata && path->slots[0]) {
6160 /*
6161 * Couldn't find our skinny metadata item,
6162 * see if we have ye olde extent item.
6163 */
6164 path->slots[0]--;
6165 btrfs_item_key_to_cpu(path->nodes[0], &key,
6166 path->slots[0]);
6167 if (key.objectid == bytenr &&
6168 key.type == BTRFS_EXTENT_ITEM_KEY &&
6169 key.offset == num_bytes)
6170 ret = 0;
6171 }
6172
6173 if (ret > 0 && skinny_metadata) {
6174 skinny_metadata = false;
6175 key.objectid = bytenr;
6176 key.type = BTRFS_EXTENT_ITEM_KEY;
6177 key.offset = num_bytes;
6178 btrfs_release_path(path);
6179 ret = btrfs_search_slot(trans, extent_root,
6180 &key, path, -1, 1);
6181 }
6182
6183 if (ret) {
6184 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6185 ret, bytenr);
6186 if (ret > 0)
6187 btrfs_print_leaf(extent_root,
6188 path->nodes[0]);
6189 }
6190 if (ret < 0) {
6191 btrfs_abort_transaction(trans, extent_root, ret);
6192 goto out;
6193 }
6194 extent_slot = path->slots[0];
6195 }
6196 } else if (WARN_ON(ret == -ENOENT)) {
6197 btrfs_print_leaf(extent_root, path->nodes[0]);
6198 btrfs_err(info,
6199 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6200 bytenr, parent, root_objectid, owner_objectid,
6201 owner_offset);
6202 btrfs_abort_transaction(trans, extent_root, ret);
6203 goto out;
6204 } else {
6205 btrfs_abort_transaction(trans, extent_root, ret);
6206 goto out;
6207 }
6208
6209 leaf = path->nodes[0];
6210 item_size = btrfs_item_size_nr(leaf, extent_slot);
6211 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6212 if (item_size < sizeof(*ei)) {
6213 BUG_ON(found_extent || extent_slot != path->slots[0]);
6214 ret = convert_extent_item_v0(trans, extent_root, path,
6215 owner_objectid, 0);
6216 if (ret < 0) {
6217 btrfs_abort_transaction(trans, extent_root, ret);
6218 goto out;
6219 }
6220
6221 btrfs_release_path(path);
6222 path->leave_spinning = 1;
6223
6224 key.objectid = bytenr;
6225 key.type = BTRFS_EXTENT_ITEM_KEY;
6226 key.offset = num_bytes;
6227
6228 ret = btrfs_search_slot(trans, extent_root, &key, path,
6229 -1, 1);
6230 if (ret) {
6231 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6232 ret, bytenr);
6233 btrfs_print_leaf(extent_root, path->nodes[0]);
6234 }
6235 if (ret < 0) {
6236 btrfs_abort_transaction(trans, extent_root, ret);
6237 goto out;
6238 }
6239
6240 extent_slot = path->slots[0];
6241 leaf = path->nodes[0];
6242 item_size = btrfs_item_size_nr(leaf, extent_slot);
6243 }
6244 #endif
6245 BUG_ON(item_size < sizeof(*ei));
6246 ei = btrfs_item_ptr(leaf, extent_slot,
6247 struct btrfs_extent_item);
6248 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6249 key.type == BTRFS_EXTENT_ITEM_KEY) {
6250 struct btrfs_tree_block_info *bi;
6251 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6252 bi = (struct btrfs_tree_block_info *)(ei + 1);
6253 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6254 }
6255
6256 refs = btrfs_extent_refs(leaf, ei);
6257 if (refs < refs_to_drop) {
6258 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6259 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6260 ret = -EINVAL;
6261 btrfs_abort_transaction(trans, extent_root, ret);
6262 goto out;
6263 }
6264 refs -= refs_to_drop;
6265
6266 if (refs > 0) {
6267 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6268 if (extent_op)
6269 __run_delayed_extent_op(extent_op, leaf, ei);
6270 /*
6271 * In the case of inline back ref, reference count will
6272 * be updated by remove_extent_backref
6273 */
6274 if (iref) {
6275 BUG_ON(!found_extent);
6276 } else {
6277 btrfs_set_extent_refs(leaf, ei, refs);
6278 btrfs_mark_buffer_dirty(leaf);
6279 }
6280 if (found_extent) {
6281 ret = remove_extent_backref(trans, extent_root, path,
6282 iref, refs_to_drop,
6283 is_data, &last_ref);
6284 if (ret) {
6285 btrfs_abort_transaction(trans, extent_root, ret);
6286 goto out;
6287 }
6288 }
6289 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6290 root_objectid);
6291 } else {
6292 if (found_extent) {
6293 BUG_ON(is_data && refs_to_drop !=
6294 extent_data_ref_count(root, path, iref));
6295 if (iref) {
6296 BUG_ON(path->slots[0] != extent_slot);
6297 } else {
6298 BUG_ON(path->slots[0] != extent_slot + 1);
6299 path->slots[0] = extent_slot;
6300 num_to_del = 2;
6301 }
6302 }
6303
6304 last_ref = 1;
6305 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6306 num_to_del);
6307 if (ret) {
6308 btrfs_abort_transaction(trans, extent_root, ret);
6309 goto out;
6310 }
6311 btrfs_release_path(path);
6312
6313 if (is_data) {
6314 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6315 if (ret) {
6316 btrfs_abort_transaction(trans, extent_root, ret);
6317 goto out;
6318 }
6319 }
6320
6321 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6322 if (ret) {
6323 btrfs_abort_transaction(trans, extent_root, ret);
6324 goto out;
6325 }
6326 }
6327 btrfs_release_path(path);
6328
6329 /* Deal with the quota accounting */
6330 if (!ret && last_ref && !no_quota) {
6331 int mod_seq = 0;
6332
6333 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6334 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6335 mod_seq = 1;
6336
6337 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6338 bytenr, num_bytes, type,
6339 mod_seq);
6340 }
6341 out:
6342 btrfs_free_path(path);
6343 return ret;
6344 }
6345
6346 /*
6347 * when we free an block, it is possible (and likely) that we free the last
6348 * delayed ref for that extent as well. This searches the delayed ref tree for
6349 * a given extent, and if there are no other delayed refs to be processed, it
6350 * removes it from the tree.
6351 */
6352 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6353 struct btrfs_root *root, u64 bytenr)
6354 {
6355 struct btrfs_delayed_ref_head *head;
6356 struct btrfs_delayed_ref_root *delayed_refs;
6357 int ret = 0;
6358
6359 delayed_refs = &trans->transaction->delayed_refs;
6360 spin_lock(&delayed_refs->lock);
6361 head = btrfs_find_delayed_ref_head(trans, bytenr);
6362 if (!head)
6363 goto out_delayed_unlock;
6364
6365 spin_lock(&head->lock);
6366 if (rb_first(&head->ref_root))
6367 goto out;
6368
6369 if (head->extent_op) {
6370 if (!head->must_insert_reserved)
6371 goto out;
6372 btrfs_free_delayed_extent_op(head->extent_op);
6373 head->extent_op = NULL;
6374 }
6375
6376 /*
6377 * waiting for the lock here would deadlock. If someone else has it
6378 * locked they are already in the process of dropping it anyway
6379 */
6380 if (!mutex_trylock(&head->mutex))
6381 goto out;
6382
6383 /*
6384 * at this point we have a head with no other entries. Go
6385 * ahead and process it.
6386 */
6387 head->node.in_tree = 0;
6388 rb_erase(&head->href_node, &delayed_refs->href_root);
6389
6390 atomic_dec(&delayed_refs->num_entries);
6391
6392 /*
6393 * we don't take a ref on the node because we're removing it from the
6394 * tree, so we just steal the ref the tree was holding.
6395 */
6396 delayed_refs->num_heads--;
6397 if (head->processing == 0)
6398 delayed_refs->num_heads_ready--;
6399 head->processing = 0;
6400 spin_unlock(&head->lock);
6401 spin_unlock(&delayed_refs->lock);
6402
6403 BUG_ON(head->extent_op);
6404 if (head->must_insert_reserved)
6405 ret = 1;
6406
6407 mutex_unlock(&head->mutex);
6408 btrfs_put_delayed_ref(&head->node);
6409 return ret;
6410 out:
6411 spin_unlock(&head->lock);
6412
6413 out_delayed_unlock:
6414 spin_unlock(&delayed_refs->lock);
6415 return 0;
6416 }
6417
6418 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6419 struct btrfs_root *root,
6420 struct extent_buffer *buf,
6421 u64 parent, int last_ref)
6422 {
6423 int pin = 1;
6424 int ret;
6425
6426 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6427 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6428 buf->start, buf->len,
6429 parent, root->root_key.objectid,
6430 btrfs_header_level(buf),
6431 BTRFS_DROP_DELAYED_REF, NULL, 0);
6432 BUG_ON(ret); /* -ENOMEM */
6433 }
6434
6435 if (!last_ref)
6436 return;
6437
6438 if (btrfs_header_generation(buf) == trans->transid) {
6439 struct btrfs_block_group_cache *cache;
6440
6441 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6442 ret = check_ref_cleanup(trans, root, buf->start);
6443 if (!ret)
6444 goto out;
6445 }
6446
6447 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6448
6449 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6450 pin_down_extent(root, cache, buf->start, buf->len, 1);
6451 btrfs_put_block_group(cache);
6452 goto out;
6453 }
6454
6455 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6456
6457 btrfs_add_free_space(cache, buf->start, buf->len);
6458 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6459 btrfs_put_block_group(cache);
6460 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6461 pin = 0;
6462 }
6463 out:
6464 if (pin)
6465 add_pinned_bytes(root->fs_info, buf->len,
6466 btrfs_header_level(buf),
6467 root->root_key.objectid);
6468
6469 /*
6470 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6471 * anymore.
6472 */
6473 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6474 }
6475
6476 /* Can return -ENOMEM */
6477 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6478 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6479 u64 owner, u64 offset, int no_quota)
6480 {
6481 int ret;
6482 struct btrfs_fs_info *fs_info = root->fs_info;
6483
6484 if (btrfs_test_is_dummy_root(root))
6485 return 0;
6486
6487 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6488
6489 /*
6490 * tree log blocks never actually go into the extent allocation
6491 * tree, just update pinning info and exit early.
6492 */
6493 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6494 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6495 /* unlocks the pinned mutex */
6496 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6497 ret = 0;
6498 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6499 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6500 num_bytes,
6501 parent, root_objectid, (int)owner,
6502 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6503 } else {
6504 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6505 num_bytes,
6506 parent, root_objectid, owner,
6507 offset, BTRFS_DROP_DELAYED_REF,
6508 NULL, no_quota);
6509 }
6510 return ret;
6511 }
6512
6513 /*
6514 * when we wait for progress in the block group caching, its because
6515 * our allocation attempt failed at least once. So, we must sleep
6516 * and let some progress happen before we try again.
6517 *
6518 * This function will sleep at least once waiting for new free space to
6519 * show up, and then it will check the block group free space numbers
6520 * for our min num_bytes. Another option is to have it go ahead
6521 * and look in the rbtree for a free extent of a given size, but this
6522 * is a good start.
6523 *
6524 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6525 * any of the information in this block group.
6526 */
6527 static noinline void
6528 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6529 u64 num_bytes)
6530 {
6531 struct btrfs_caching_control *caching_ctl;
6532
6533 caching_ctl = get_caching_control(cache);
6534 if (!caching_ctl)
6535 return;
6536
6537 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6538 (cache->free_space_ctl->free_space >= num_bytes));
6539
6540 put_caching_control(caching_ctl);
6541 }
6542
6543 static noinline int
6544 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6545 {
6546 struct btrfs_caching_control *caching_ctl;
6547 int ret = 0;
6548
6549 caching_ctl = get_caching_control(cache);
6550 if (!caching_ctl)
6551 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6552
6553 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6554 if (cache->cached == BTRFS_CACHE_ERROR)
6555 ret = -EIO;
6556 put_caching_control(caching_ctl);
6557 return ret;
6558 }
6559
6560 int __get_raid_index(u64 flags)
6561 {
6562 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6563 return BTRFS_RAID_RAID10;
6564 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6565 return BTRFS_RAID_RAID1;
6566 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6567 return BTRFS_RAID_DUP;
6568 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6569 return BTRFS_RAID_RAID0;
6570 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6571 return BTRFS_RAID_RAID5;
6572 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6573 return BTRFS_RAID_RAID6;
6574
6575 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6576 }
6577
6578 int get_block_group_index(struct btrfs_block_group_cache *cache)
6579 {
6580 return __get_raid_index(cache->flags);
6581 }
6582
6583 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6584 [BTRFS_RAID_RAID10] = "raid10",
6585 [BTRFS_RAID_RAID1] = "raid1",
6586 [BTRFS_RAID_DUP] = "dup",
6587 [BTRFS_RAID_RAID0] = "raid0",
6588 [BTRFS_RAID_SINGLE] = "single",
6589 [BTRFS_RAID_RAID5] = "raid5",
6590 [BTRFS_RAID_RAID6] = "raid6",
6591 };
6592
6593 static const char *get_raid_name(enum btrfs_raid_types type)
6594 {
6595 if (type >= BTRFS_NR_RAID_TYPES)
6596 return NULL;
6597
6598 return btrfs_raid_type_names[type];
6599 }
6600
6601 enum btrfs_loop_type {
6602 LOOP_CACHING_NOWAIT = 0,
6603 LOOP_CACHING_WAIT = 1,
6604 LOOP_ALLOC_CHUNK = 2,
6605 LOOP_NO_EMPTY_SIZE = 3,
6606 };
6607
6608 static inline void
6609 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6610 int delalloc)
6611 {
6612 if (delalloc)
6613 down_read(&cache->data_rwsem);
6614 }
6615
6616 static inline void
6617 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6618 int delalloc)
6619 {
6620 btrfs_get_block_group(cache);
6621 if (delalloc)
6622 down_read(&cache->data_rwsem);
6623 }
6624
6625 static struct btrfs_block_group_cache *
6626 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6627 struct btrfs_free_cluster *cluster,
6628 int delalloc)
6629 {
6630 struct btrfs_block_group_cache *used_bg;
6631 bool locked = false;
6632 again:
6633 spin_lock(&cluster->refill_lock);
6634 if (locked) {
6635 if (used_bg == cluster->block_group)
6636 return used_bg;
6637
6638 up_read(&used_bg->data_rwsem);
6639 btrfs_put_block_group(used_bg);
6640 }
6641
6642 used_bg = cluster->block_group;
6643 if (!used_bg)
6644 return NULL;
6645
6646 if (used_bg == block_group)
6647 return used_bg;
6648
6649 btrfs_get_block_group(used_bg);
6650
6651 if (!delalloc)
6652 return used_bg;
6653
6654 if (down_read_trylock(&used_bg->data_rwsem))
6655 return used_bg;
6656
6657 spin_unlock(&cluster->refill_lock);
6658 down_read(&used_bg->data_rwsem);
6659 locked = true;
6660 goto again;
6661 }
6662
6663 static inline void
6664 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6665 int delalloc)
6666 {
6667 if (delalloc)
6668 up_read(&cache->data_rwsem);
6669 btrfs_put_block_group(cache);
6670 }
6671
6672 /*
6673 * walks the btree of allocated extents and find a hole of a given size.
6674 * The key ins is changed to record the hole:
6675 * ins->objectid == start position
6676 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6677 * ins->offset == the size of the hole.
6678 * Any available blocks before search_start are skipped.
6679 *
6680 * If there is no suitable free space, we will record the max size of
6681 * the free space extent currently.
6682 */
6683 static noinline int find_free_extent(struct btrfs_root *orig_root,
6684 u64 num_bytes, u64 empty_size,
6685 u64 hint_byte, struct btrfs_key *ins,
6686 u64 flags, int delalloc)
6687 {
6688 int ret = 0;
6689 struct btrfs_root *root = orig_root->fs_info->extent_root;
6690 struct btrfs_free_cluster *last_ptr = NULL;
6691 struct btrfs_block_group_cache *block_group = NULL;
6692 u64 search_start = 0;
6693 u64 max_extent_size = 0;
6694 int empty_cluster = 2 * 1024 * 1024;
6695 struct btrfs_space_info *space_info;
6696 int loop = 0;
6697 int index = __get_raid_index(flags);
6698 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6699 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6700 bool failed_cluster_refill = false;
6701 bool failed_alloc = false;
6702 bool use_cluster = true;
6703 bool have_caching_bg = false;
6704
6705 WARN_ON(num_bytes < root->sectorsize);
6706 ins->type = BTRFS_EXTENT_ITEM_KEY;
6707 ins->objectid = 0;
6708 ins->offset = 0;
6709
6710 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6711
6712 space_info = __find_space_info(root->fs_info, flags);
6713 if (!space_info) {
6714 btrfs_err(root->fs_info, "No space info for %llu", flags);
6715 return -ENOSPC;
6716 }
6717
6718 /*
6719 * If the space info is for both data and metadata it means we have a
6720 * small filesystem and we can't use the clustering stuff.
6721 */
6722 if (btrfs_mixed_space_info(space_info))
6723 use_cluster = false;
6724
6725 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6726 last_ptr = &root->fs_info->meta_alloc_cluster;
6727 if (!btrfs_test_opt(root, SSD))
6728 empty_cluster = 64 * 1024;
6729 }
6730
6731 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6732 btrfs_test_opt(root, SSD)) {
6733 last_ptr = &root->fs_info->data_alloc_cluster;
6734 }
6735
6736 if (last_ptr) {
6737 spin_lock(&last_ptr->lock);
6738 if (last_ptr->block_group)
6739 hint_byte = last_ptr->window_start;
6740 spin_unlock(&last_ptr->lock);
6741 }
6742
6743 search_start = max(search_start, first_logical_byte(root, 0));
6744 search_start = max(search_start, hint_byte);
6745
6746 if (!last_ptr)
6747 empty_cluster = 0;
6748
6749 if (search_start == hint_byte) {
6750 block_group = btrfs_lookup_block_group(root->fs_info,
6751 search_start);
6752 /*
6753 * we don't want to use the block group if it doesn't match our
6754 * allocation bits, or if its not cached.
6755 *
6756 * However if we are re-searching with an ideal block group
6757 * picked out then we don't care that the block group is cached.
6758 */
6759 if (block_group && block_group_bits(block_group, flags) &&
6760 block_group->cached != BTRFS_CACHE_NO) {
6761 down_read(&space_info->groups_sem);
6762 if (list_empty(&block_group->list) ||
6763 block_group->ro) {
6764 /*
6765 * someone is removing this block group,
6766 * we can't jump into the have_block_group
6767 * target because our list pointers are not
6768 * valid
6769 */
6770 btrfs_put_block_group(block_group);
6771 up_read(&space_info->groups_sem);
6772 } else {
6773 index = get_block_group_index(block_group);
6774 btrfs_lock_block_group(block_group, delalloc);
6775 goto have_block_group;
6776 }
6777 } else if (block_group) {
6778 btrfs_put_block_group(block_group);
6779 }
6780 }
6781 search:
6782 have_caching_bg = false;
6783 down_read(&space_info->groups_sem);
6784 list_for_each_entry(block_group, &space_info->block_groups[index],
6785 list) {
6786 u64 offset;
6787 int cached;
6788
6789 btrfs_grab_block_group(block_group, delalloc);
6790 search_start = block_group->key.objectid;
6791
6792 /*
6793 * this can happen if we end up cycling through all the
6794 * raid types, but we want to make sure we only allocate
6795 * for the proper type.
6796 */
6797 if (!block_group_bits(block_group, flags)) {
6798 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6799 BTRFS_BLOCK_GROUP_RAID1 |
6800 BTRFS_BLOCK_GROUP_RAID5 |
6801 BTRFS_BLOCK_GROUP_RAID6 |
6802 BTRFS_BLOCK_GROUP_RAID10;
6803
6804 /*
6805 * if they asked for extra copies and this block group
6806 * doesn't provide them, bail. This does allow us to
6807 * fill raid0 from raid1.
6808 */
6809 if ((flags & extra) && !(block_group->flags & extra))
6810 goto loop;
6811 }
6812
6813 have_block_group:
6814 cached = block_group_cache_done(block_group);
6815 if (unlikely(!cached)) {
6816 ret = cache_block_group(block_group, 0);
6817 BUG_ON(ret < 0);
6818 ret = 0;
6819 }
6820
6821 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6822 goto loop;
6823 if (unlikely(block_group->ro))
6824 goto loop;
6825
6826 /*
6827 * Ok we want to try and use the cluster allocator, so
6828 * lets look there
6829 */
6830 if (last_ptr) {
6831 struct btrfs_block_group_cache *used_block_group;
6832 unsigned long aligned_cluster;
6833 /*
6834 * the refill lock keeps out other
6835 * people trying to start a new cluster
6836 */
6837 used_block_group = btrfs_lock_cluster(block_group,
6838 last_ptr,
6839 delalloc);
6840 if (!used_block_group)
6841 goto refill_cluster;
6842
6843 if (used_block_group != block_group &&
6844 (used_block_group->ro ||
6845 !block_group_bits(used_block_group, flags)))
6846 goto release_cluster;
6847
6848 offset = btrfs_alloc_from_cluster(used_block_group,
6849 last_ptr,
6850 num_bytes,
6851 used_block_group->key.objectid,
6852 &max_extent_size);
6853 if (offset) {
6854 /* we have a block, we're done */
6855 spin_unlock(&last_ptr->refill_lock);
6856 trace_btrfs_reserve_extent_cluster(root,
6857 used_block_group,
6858 search_start, num_bytes);
6859 if (used_block_group != block_group) {
6860 btrfs_release_block_group(block_group,
6861 delalloc);
6862 block_group = used_block_group;
6863 }
6864 goto checks;
6865 }
6866
6867 WARN_ON(last_ptr->block_group != used_block_group);
6868 release_cluster:
6869 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6870 * set up a new clusters, so lets just skip it
6871 * and let the allocator find whatever block
6872 * it can find. If we reach this point, we
6873 * will have tried the cluster allocator
6874 * plenty of times and not have found
6875 * anything, so we are likely way too
6876 * fragmented for the clustering stuff to find
6877 * anything.
6878 *
6879 * However, if the cluster is taken from the
6880 * current block group, release the cluster
6881 * first, so that we stand a better chance of
6882 * succeeding in the unclustered
6883 * allocation. */
6884 if (loop >= LOOP_NO_EMPTY_SIZE &&
6885 used_block_group != block_group) {
6886 spin_unlock(&last_ptr->refill_lock);
6887 btrfs_release_block_group(used_block_group,
6888 delalloc);
6889 goto unclustered_alloc;
6890 }
6891
6892 /*
6893 * this cluster didn't work out, free it and
6894 * start over
6895 */
6896 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6897
6898 if (used_block_group != block_group)
6899 btrfs_release_block_group(used_block_group,
6900 delalloc);
6901 refill_cluster:
6902 if (loop >= LOOP_NO_EMPTY_SIZE) {
6903 spin_unlock(&last_ptr->refill_lock);
6904 goto unclustered_alloc;
6905 }
6906
6907 aligned_cluster = max_t(unsigned long,
6908 empty_cluster + empty_size,
6909 block_group->full_stripe_len);
6910
6911 /* allocate a cluster in this block group */
6912 ret = btrfs_find_space_cluster(root, block_group,
6913 last_ptr, search_start,
6914 num_bytes,
6915 aligned_cluster);
6916 if (ret == 0) {
6917 /*
6918 * now pull our allocation out of this
6919 * cluster
6920 */
6921 offset = btrfs_alloc_from_cluster(block_group,
6922 last_ptr,
6923 num_bytes,
6924 search_start,
6925 &max_extent_size);
6926 if (offset) {
6927 /* we found one, proceed */
6928 spin_unlock(&last_ptr->refill_lock);
6929 trace_btrfs_reserve_extent_cluster(root,
6930 block_group, search_start,
6931 num_bytes);
6932 goto checks;
6933 }
6934 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6935 && !failed_cluster_refill) {
6936 spin_unlock(&last_ptr->refill_lock);
6937
6938 failed_cluster_refill = true;
6939 wait_block_group_cache_progress(block_group,
6940 num_bytes + empty_cluster + empty_size);
6941 goto have_block_group;
6942 }
6943
6944 /*
6945 * at this point we either didn't find a cluster
6946 * or we weren't able to allocate a block from our
6947 * cluster. Free the cluster we've been trying
6948 * to use, and go to the next block group
6949 */
6950 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6951 spin_unlock(&last_ptr->refill_lock);
6952 goto loop;
6953 }
6954
6955 unclustered_alloc:
6956 spin_lock(&block_group->free_space_ctl->tree_lock);
6957 if (cached &&
6958 block_group->free_space_ctl->free_space <
6959 num_bytes + empty_cluster + empty_size) {
6960 if (block_group->free_space_ctl->free_space >
6961 max_extent_size)
6962 max_extent_size =
6963 block_group->free_space_ctl->free_space;
6964 spin_unlock(&block_group->free_space_ctl->tree_lock);
6965 goto loop;
6966 }
6967 spin_unlock(&block_group->free_space_ctl->tree_lock);
6968
6969 offset = btrfs_find_space_for_alloc(block_group, search_start,
6970 num_bytes, empty_size,
6971 &max_extent_size);
6972 /*
6973 * If we didn't find a chunk, and we haven't failed on this
6974 * block group before, and this block group is in the middle of
6975 * caching and we are ok with waiting, then go ahead and wait
6976 * for progress to be made, and set failed_alloc to true.
6977 *
6978 * If failed_alloc is true then we've already waited on this
6979 * block group once and should move on to the next block group.
6980 */
6981 if (!offset && !failed_alloc && !cached &&
6982 loop > LOOP_CACHING_NOWAIT) {
6983 wait_block_group_cache_progress(block_group,
6984 num_bytes + empty_size);
6985 failed_alloc = true;
6986 goto have_block_group;
6987 } else if (!offset) {
6988 if (!cached)
6989 have_caching_bg = true;
6990 goto loop;
6991 }
6992 checks:
6993 search_start = ALIGN(offset, root->stripesize);
6994
6995 /* move on to the next group */
6996 if (search_start + num_bytes >
6997 block_group->key.objectid + block_group->key.offset) {
6998 btrfs_add_free_space(block_group, offset, num_bytes);
6999 goto loop;
7000 }
7001
7002 if (offset < search_start)
7003 btrfs_add_free_space(block_group, offset,
7004 search_start - offset);
7005 BUG_ON(offset > search_start);
7006
7007 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7008 alloc_type, delalloc);
7009 if (ret == -EAGAIN) {
7010 btrfs_add_free_space(block_group, offset, num_bytes);
7011 goto loop;
7012 }
7013
7014 /* we are all good, lets return */
7015 ins->objectid = search_start;
7016 ins->offset = num_bytes;
7017
7018 trace_btrfs_reserve_extent(orig_root, block_group,
7019 search_start, num_bytes);
7020 btrfs_release_block_group(block_group, delalloc);
7021 break;
7022 loop:
7023 failed_cluster_refill = false;
7024 failed_alloc = false;
7025 BUG_ON(index != get_block_group_index(block_group));
7026 btrfs_release_block_group(block_group, delalloc);
7027 }
7028 up_read(&space_info->groups_sem);
7029
7030 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7031 goto search;
7032
7033 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7034 goto search;
7035
7036 /*
7037 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7038 * caching kthreads as we move along
7039 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7040 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7041 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7042 * again
7043 */
7044 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7045 index = 0;
7046 loop++;
7047 if (loop == LOOP_ALLOC_CHUNK) {
7048 struct btrfs_trans_handle *trans;
7049 int exist = 0;
7050
7051 trans = current->journal_info;
7052 if (trans)
7053 exist = 1;
7054 else
7055 trans = btrfs_join_transaction(root);
7056
7057 if (IS_ERR(trans)) {
7058 ret = PTR_ERR(trans);
7059 goto out;
7060 }
7061
7062 ret = do_chunk_alloc(trans, root, flags,
7063 CHUNK_ALLOC_FORCE);
7064 /*
7065 * Do not bail out on ENOSPC since we
7066 * can do more things.
7067 */
7068 if (ret < 0 && ret != -ENOSPC)
7069 btrfs_abort_transaction(trans,
7070 root, ret);
7071 else
7072 ret = 0;
7073 if (!exist)
7074 btrfs_end_transaction(trans, root);
7075 if (ret)
7076 goto out;
7077 }
7078
7079 if (loop == LOOP_NO_EMPTY_SIZE) {
7080 empty_size = 0;
7081 empty_cluster = 0;
7082 }
7083
7084 goto search;
7085 } else if (!ins->objectid) {
7086 ret = -ENOSPC;
7087 } else if (ins->objectid) {
7088 ret = 0;
7089 }
7090 out:
7091 if (ret == -ENOSPC)
7092 ins->offset = max_extent_size;
7093 return ret;
7094 }
7095
7096 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7097 int dump_block_groups)
7098 {
7099 struct btrfs_block_group_cache *cache;
7100 int index = 0;
7101
7102 spin_lock(&info->lock);
7103 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7104 info->flags,
7105 info->total_bytes - info->bytes_used - info->bytes_pinned -
7106 info->bytes_reserved - info->bytes_readonly,
7107 (info->full) ? "" : "not ");
7108 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7109 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7110 info->total_bytes, info->bytes_used, info->bytes_pinned,
7111 info->bytes_reserved, info->bytes_may_use,
7112 info->bytes_readonly);
7113 spin_unlock(&info->lock);
7114
7115 if (!dump_block_groups)
7116 return;
7117
7118 down_read(&info->groups_sem);
7119 again:
7120 list_for_each_entry(cache, &info->block_groups[index], list) {
7121 spin_lock(&cache->lock);
7122 printk(KERN_INFO "BTRFS: "
7123 "block group %llu has %llu bytes, "
7124 "%llu used %llu pinned %llu reserved %s\n",
7125 cache->key.objectid, cache->key.offset,
7126 btrfs_block_group_used(&cache->item), cache->pinned,
7127 cache->reserved, cache->ro ? "[readonly]" : "");
7128 btrfs_dump_free_space(cache, bytes);
7129 spin_unlock(&cache->lock);
7130 }
7131 if (++index < BTRFS_NR_RAID_TYPES)
7132 goto again;
7133 up_read(&info->groups_sem);
7134 }
7135
7136 int btrfs_reserve_extent(struct btrfs_root *root,
7137 u64 num_bytes, u64 min_alloc_size,
7138 u64 empty_size, u64 hint_byte,
7139 struct btrfs_key *ins, int is_data, int delalloc)
7140 {
7141 bool final_tried = false;
7142 u64 flags;
7143 int ret;
7144
7145 flags = btrfs_get_alloc_profile(root, is_data);
7146 again:
7147 WARN_ON(num_bytes < root->sectorsize);
7148 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7149 flags, delalloc);
7150
7151 if (ret == -ENOSPC) {
7152 if (!final_tried && ins->offset) {
7153 num_bytes = min(num_bytes >> 1, ins->offset);
7154 num_bytes = round_down(num_bytes, root->sectorsize);
7155 num_bytes = max(num_bytes, min_alloc_size);
7156 if (num_bytes == min_alloc_size)
7157 final_tried = true;
7158 goto again;
7159 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7160 struct btrfs_space_info *sinfo;
7161
7162 sinfo = __find_space_info(root->fs_info, flags);
7163 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7164 flags, num_bytes);
7165 if (sinfo)
7166 dump_space_info(sinfo, num_bytes, 1);
7167 }
7168 }
7169
7170 return ret;
7171 }
7172
7173 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7174 u64 start, u64 len,
7175 int pin, int delalloc)
7176 {
7177 struct btrfs_block_group_cache *cache;
7178 int ret = 0;
7179
7180 cache = btrfs_lookup_block_group(root->fs_info, start);
7181 if (!cache) {
7182 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7183 start);
7184 return -ENOSPC;
7185 }
7186
7187 if (pin)
7188 pin_down_extent(root, cache, start, len, 1);
7189 else {
7190 if (btrfs_test_opt(root, DISCARD))
7191 ret = btrfs_discard_extent(root, start, len, NULL);
7192 btrfs_add_free_space(cache, start, len);
7193 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7194 }
7195 btrfs_put_block_group(cache);
7196
7197 trace_btrfs_reserved_extent_free(root, start, len);
7198
7199 return ret;
7200 }
7201
7202 int btrfs_free_reserved_extent(struct btrfs_root *root,
7203 u64 start, u64 len, int delalloc)
7204 {
7205 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7206 }
7207
7208 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7209 u64 start, u64 len)
7210 {
7211 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7212 }
7213
7214 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7215 struct btrfs_root *root,
7216 u64 parent, u64 root_objectid,
7217 u64 flags, u64 owner, u64 offset,
7218 struct btrfs_key *ins, int ref_mod)
7219 {
7220 int ret;
7221 struct btrfs_fs_info *fs_info = root->fs_info;
7222 struct btrfs_extent_item *extent_item;
7223 struct btrfs_extent_inline_ref *iref;
7224 struct btrfs_path *path;
7225 struct extent_buffer *leaf;
7226 int type;
7227 u32 size;
7228
7229 if (parent > 0)
7230 type = BTRFS_SHARED_DATA_REF_KEY;
7231 else
7232 type = BTRFS_EXTENT_DATA_REF_KEY;
7233
7234 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7235
7236 path = btrfs_alloc_path();
7237 if (!path)
7238 return -ENOMEM;
7239
7240 path->leave_spinning = 1;
7241 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7242 ins, size);
7243 if (ret) {
7244 btrfs_free_path(path);
7245 return ret;
7246 }
7247
7248 leaf = path->nodes[0];
7249 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7250 struct btrfs_extent_item);
7251 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7252 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7253 btrfs_set_extent_flags(leaf, extent_item,
7254 flags | BTRFS_EXTENT_FLAG_DATA);
7255
7256 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7257 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7258 if (parent > 0) {
7259 struct btrfs_shared_data_ref *ref;
7260 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7261 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7262 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7263 } else {
7264 struct btrfs_extent_data_ref *ref;
7265 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7266 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7267 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7268 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7269 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7270 }
7271
7272 btrfs_mark_buffer_dirty(path->nodes[0]);
7273 btrfs_free_path(path);
7274
7275 /* Always set parent to 0 here since its exclusive anyway. */
7276 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7277 ins->objectid, ins->offset,
7278 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7279 if (ret)
7280 return ret;
7281
7282 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7283 if (ret) { /* -ENOENT, logic error */
7284 btrfs_err(fs_info, "update block group failed for %llu %llu",
7285 ins->objectid, ins->offset);
7286 BUG();
7287 }
7288 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7289 return ret;
7290 }
7291
7292 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7293 struct btrfs_root *root,
7294 u64 parent, u64 root_objectid,
7295 u64 flags, struct btrfs_disk_key *key,
7296 int level, struct btrfs_key *ins,
7297 int no_quota)
7298 {
7299 int ret;
7300 struct btrfs_fs_info *fs_info = root->fs_info;
7301 struct btrfs_extent_item *extent_item;
7302 struct btrfs_tree_block_info *block_info;
7303 struct btrfs_extent_inline_ref *iref;
7304 struct btrfs_path *path;
7305 struct extent_buffer *leaf;
7306 u32 size = sizeof(*extent_item) + sizeof(*iref);
7307 u64 num_bytes = ins->offset;
7308 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7309 SKINNY_METADATA);
7310
7311 if (!skinny_metadata)
7312 size += sizeof(*block_info);
7313
7314 path = btrfs_alloc_path();
7315 if (!path) {
7316 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7317 root->nodesize);
7318 return -ENOMEM;
7319 }
7320
7321 path->leave_spinning = 1;
7322 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7323 ins, size);
7324 if (ret) {
7325 btrfs_free_path(path);
7326 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7327 root->nodesize);
7328 return ret;
7329 }
7330
7331 leaf = path->nodes[0];
7332 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7333 struct btrfs_extent_item);
7334 btrfs_set_extent_refs(leaf, extent_item, 1);
7335 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7336 btrfs_set_extent_flags(leaf, extent_item,
7337 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7338
7339 if (skinny_metadata) {
7340 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7341 num_bytes = root->nodesize;
7342 } else {
7343 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7344 btrfs_set_tree_block_key(leaf, block_info, key);
7345 btrfs_set_tree_block_level(leaf, block_info, level);
7346 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7347 }
7348
7349 if (parent > 0) {
7350 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7351 btrfs_set_extent_inline_ref_type(leaf, iref,
7352 BTRFS_SHARED_BLOCK_REF_KEY);
7353 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7354 } else {
7355 btrfs_set_extent_inline_ref_type(leaf, iref,
7356 BTRFS_TREE_BLOCK_REF_KEY);
7357 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7358 }
7359
7360 btrfs_mark_buffer_dirty(leaf);
7361 btrfs_free_path(path);
7362
7363 if (!no_quota) {
7364 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7365 ins->objectid, num_bytes,
7366 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7367 if (ret)
7368 return ret;
7369 }
7370
7371 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7372 1);
7373 if (ret) { /* -ENOENT, logic error */
7374 btrfs_err(fs_info, "update block group failed for %llu %llu",
7375 ins->objectid, ins->offset);
7376 BUG();
7377 }
7378
7379 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7380 return ret;
7381 }
7382
7383 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7384 struct btrfs_root *root,
7385 u64 root_objectid, u64 owner,
7386 u64 offset, struct btrfs_key *ins)
7387 {
7388 int ret;
7389
7390 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7391
7392 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7393 ins->offset, 0,
7394 root_objectid, owner, offset,
7395 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7396 return ret;
7397 }
7398
7399 /*
7400 * this is used by the tree logging recovery code. It records that
7401 * an extent has been allocated and makes sure to clear the free
7402 * space cache bits as well
7403 */
7404 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7405 struct btrfs_root *root,
7406 u64 root_objectid, u64 owner, u64 offset,
7407 struct btrfs_key *ins)
7408 {
7409 int ret;
7410 struct btrfs_block_group_cache *block_group;
7411
7412 /*
7413 * Mixed block groups will exclude before processing the log so we only
7414 * need to do the exlude dance if this fs isn't mixed.
7415 */
7416 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7417 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7418 if (ret)
7419 return ret;
7420 }
7421
7422 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7423 if (!block_group)
7424 return -EINVAL;
7425
7426 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7427 RESERVE_ALLOC_NO_ACCOUNT, 0);
7428 BUG_ON(ret); /* logic error */
7429 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7430 0, owner, offset, ins, 1);
7431 btrfs_put_block_group(block_group);
7432 return ret;
7433 }
7434
7435 static struct extent_buffer *
7436 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7437 u64 bytenr, int level)
7438 {
7439 struct extent_buffer *buf;
7440
7441 buf = btrfs_find_create_tree_block(root, bytenr);
7442 if (!buf)
7443 return ERR_PTR(-ENOMEM);
7444 btrfs_set_header_generation(buf, trans->transid);
7445 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7446 btrfs_tree_lock(buf);
7447 clean_tree_block(trans, root->fs_info, buf);
7448 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7449
7450 btrfs_set_lock_blocking(buf);
7451 btrfs_set_buffer_uptodate(buf);
7452
7453 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7454 buf->log_index = root->log_transid % 2;
7455 /*
7456 * we allow two log transactions at a time, use different
7457 * EXENT bit to differentiate dirty pages.
7458 */
7459 if (buf->log_index == 0)
7460 set_extent_dirty(&root->dirty_log_pages, buf->start,
7461 buf->start + buf->len - 1, GFP_NOFS);
7462 else
7463 set_extent_new(&root->dirty_log_pages, buf->start,
7464 buf->start + buf->len - 1, GFP_NOFS);
7465 } else {
7466 buf->log_index = -1;
7467 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7468 buf->start + buf->len - 1, GFP_NOFS);
7469 }
7470 trans->blocks_used++;
7471 /* this returns a buffer locked for blocking */
7472 return buf;
7473 }
7474
7475 static struct btrfs_block_rsv *
7476 use_block_rsv(struct btrfs_trans_handle *trans,
7477 struct btrfs_root *root, u32 blocksize)
7478 {
7479 struct btrfs_block_rsv *block_rsv;
7480 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7481 int ret;
7482 bool global_updated = false;
7483
7484 block_rsv = get_block_rsv(trans, root);
7485
7486 if (unlikely(block_rsv->size == 0))
7487 goto try_reserve;
7488 again:
7489 ret = block_rsv_use_bytes(block_rsv, blocksize);
7490 if (!ret)
7491 return block_rsv;
7492
7493 if (block_rsv->failfast)
7494 return ERR_PTR(ret);
7495
7496 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7497 global_updated = true;
7498 update_global_block_rsv(root->fs_info);
7499 goto again;
7500 }
7501
7502 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7503 static DEFINE_RATELIMIT_STATE(_rs,
7504 DEFAULT_RATELIMIT_INTERVAL * 10,
7505 /*DEFAULT_RATELIMIT_BURST*/ 1);
7506 if (__ratelimit(&_rs))
7507 WARN(1, KERN_DEBUG
7508 "BTRFS: block rsv returned %d\n", ret);
7509 }
7510 try_reserve:
7511 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7512 BTRFS_RESERVE_NO_FLUSH);
7513 if (!ret)
7514 return block_rsv;
7515 /*
7516 * If we couldn't reserve metadata bytes try and use some from
7517 * the global reserve if its space type is the same as the global
7518 * reservation.
7519 */
7520 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7521 block_rsv->space_info == global_rsv->space_info) {
7522 ret = block_rsv_use_bytes(global_rsv, blocksize);
7523 if (!ret)
7524 return global_rsv;
7525 }
7526 return ERR_PTR(ret);
7527 }
7528
7529 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7530 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7531 {
7532 block_rsv_add_bytes(block_rsv, blocksize, 0);
7533 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7534 }
7535
7536 /*
7537 * finds a free extent and does all the dirty work required for allocation
7538 * returns the key for the extent through ins, and a tree buffer for
7539 * the first block of the extent through buf.
7540 *
7541 * returns the tree buffer or NULL.
7542 */
7543 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7544 struct btrfs_root *root,
7545 u64 parent, u64 root_objectid,
7546 struct btrfs_disk_key *key, int level,
7547 u64 hint, u64 empty_size)
7548 {
7549 struct btrfs_key ins;
7550 struct btrfs_block_rsv *block_rsv;
7551 struct extent_buffer *buf;
7552 u64 flags = 0;
7553 int ret;
7554 u32 blocksize = root->nodesize;
7555 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7556 SKINNY_METADATA);
7557
7558 if (btrfs_test_is_dummy_root(root)) {
7559 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7560 level);
7561 if (!IS_ERR(buf))
7562 root->alloc_bytenr += blocksize;
7563 return buf;
7564 }
7565
7566 block_rsv = use_block_rsv(trans, root, blocksize);
7567 if (IS_ERR(block_rsv))
7568 return ERR_CAST(block_rsv);
7569
7570 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7571 empty_size, hint, &ins, 0, 0);
7572 if (ret) {
7573 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7574 return ERR_PTR(ret);
7575 }
7576
7577 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7578 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7579
7580 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7581 if (parent == 0)
7582 parent = ins.objectid;
7583 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7584 } else
7585 BUG_ON(parent > 0);
7586
7587 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7588 struct btrfs_delayed_extent_op *extent_op;
7589 extent_op = btrfs_alloc_delayed_extent_op();
7590 BUG_ON(!extent_op); /* -ENOMEM */
7591 if (key)
7592 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7593 else
7594 memset(&extent_op->key, 0, sizeof(extent_op->key));
7595 extent_op->flags_to_set = flags;
7596 if (skinny_metadata)
7597 extent_op->update_key = 0;
7598 else
7599 extent_op->update_key = 1;
7600 extent_op->update_flags = 1;
7601 extent_op->is_data = 0;
7602 extent_op->level = level;
7603
7604 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7605 ins.objectid,
7606 ins.offset, parent, root_objectid,
7607 level, BTRFS_ADD_DELAYED_EXTENT,
7608 extent_op, 0);
7609 BUG_ON(ret); /* -ENOMEM */
7610 }
7611 return buf;
7612 }
7613
7614 struct walk_control {
7615 u64 refs[BTRFS_MAX_LEVEL];
7616 u64 flags[BTRFS_MAX_LEVEL];
7617 struct btrfs_key update_progress;
7618 int stage;
7619 int level;
7620 int shared_level;
7621 int update_ref;
7622 int keep_locks;
7623 int reada_slot;
7624 int reada_count;
7625 int for_reloc;
7626 };
7627
7628 #define DROP_REFERENCE 1
7629 #define UPDATE_BACKREF 2
7630
7631 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7632 struct btrfs_root *root,
7633 struct walk_control *wc,
7634 struct btrfs_path *path)
7635 {
7636 u64 bytenr;
7637 u64 generation;
7638 u64 refs;
7639 u64 flags;
7640 u32 nritems;
7641 u32 blocksize;
7642 struct btrfs_key key;
7643 struct extent_buffer *eb;
7644 int ret;
7645 int slot;
7646 int nread = 0;
7647
7648 if (path->slots[wc->level] < wc->reada_slot) {
7649 wc->reada_count = wc->reada_count * 2 / 3;
7650 wc->reada_count = max(wc->reada_count, 2);
7651 } else {
7652 wc->reada_count = wc->reada_count * 3 / 2;
7653 wc->reada_count = min_t(int, wc->reada_count,
7654 BTRFS_NODEPTRS_PER_BLOCK(root));
7655 }
7656
7657 eb = path->nodes[wc->level];
7658 nritems = btrfs_header_nritems(eb);
7659 blocksize = root->nodesize;
7660
7661 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7662 if (nread >= wc->reada_count)
7663 break;
7664
7665 cond_resched();
7666 bytenr = btrfs_node_blockptr(eb, slot);
7667 generation = btrfs_node_ptr_generation(eb, slot);
7668
7669 if (slot == path->slots[wc->level])
7670 goto reada;
7671
7672 if (wc->stage == UPDATE_BACKREF &&
7673 generation <= root->root_key.offset)
7674 continue;
7675
7676 /* We don't lock the tree block, it's OK to be racy here */
7677 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7678 wc->level - 1, 1, &refs,
7679 &flags);
7680 /* We don't care about errors in readahead. */
7681 if (ret < 0)
7682 continue;
7683 BUG_ON(refs == 0);
7684
7685 if (wc->stage == DROP_REFERENCE) {
7686 if (refs == 1)
7687 goto reada;
7688
7689 if (wc->level == 1 &&
7690 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7691 continue;
7692 if (!wc->update_ref ||
7693 generation <= root->root_key.offset)
7694 continue;
7695 btrfs_node_key_to_cpu(eb, &key, slot);
7696 ret = btrfs_comp_cpu_keys(&key,
7697 &wc->update_progress);
7698 if (ret < 0)
7699 continue;
7700 } else {
7701 if (wc->level == 1 &&
7702 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7703 continue;
7704 }
7705 reada:
7706 readahead_tree_block(root, bytenr);
7707 nread++;
7708 }
7709 wc->reada_slot = slot;
7710 }
7711
7712 static int account_leaf_items(struct btrfs_trans_handle *trans,
7713 struct btrfs_root *root,
7714 struct extent_buffer *eb)
7715 {
7716 int nr = btrfs_header_nritems(eb);
7717 int i, extent_type, ret;
7718 struct btrfs_key key;
7719 struct btrfs_file_extent_item *fi;
7720 u64 bytenr, num_bytes;
7721
7722 for (i = 0; i < nr; i++) {
7723 btrfs_item_key_to_cpu(eb, &key, i);
7724
7725 if (key.type != BTRFS_EXTENT_DATA_KEY)
7726 continue;
7727
7728 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7729 /* filter out non qgroup-accountable extents */
7730 extent_type = btrfs_file_extent_type(eb, fi);
7731
7732 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7733 continue;
7734
7735 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7736 if (!bytenr)
7737 continue;
7738
7739 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7740
7741 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7742 root->objectid,
7743 bytenr, num_bytes,
7744 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7745 if (ret)
7746 return ret;
7747 }
7748 return 0;
7749 }
7750
7751 /*
7752 * Walk up the tree from the bottom, freeing leaves and any interior
7753 * nodes which have had all slots visited. If a node (leaf or
7754 * interior) is freed, the node above it will have it's slot
7755 * incremented. The root node will never be freed.
7756 *
7757 * At the end of this function, we should have a path which has all
7758 * slots incremented to the next position for a search. If we need to
7759 * read a new node it will be NULL and the node above it will have the
7760 * correct slot selected for a later read.
7761 *
7762 * If we increment the root nodes slot counter past the number of
7763 * elements, 1 is returned to signal completion of the search.
7764 */
7765 static int adjust_slots_upwards(struct btrfs_root *root,
7766 struct btrfs_path *path, int root_level)
7767 {
7768 int level = 0;
7769 int nr, slot;
7770 struct extent_buffer *eb;
7771
7772 if (root_level == 0)
7773 return 1;
7774
7775 while (level <= root_level) {
7776 eb = path->nodes[level];
7777 nr = btrfs_header_nritems(eb);
7778 path->slots[level]++;
7779 slot = path->slots[level];
7780 if (slot >= nr || level == 0) {
7781 /*
7782 * Don't free the root - we will detect this
7783 * condition after our loop and return a
7784 * positive value for caller to stop walking the tree.
7785 */
7786 if (level != root_level) {
7787 btrfs_tree_unlock_rw(eb, path->locks[level]);
7788 path->locks[level] = 0;
7789
7790 free_extent_buffer(eb);
7791 path->nodes[level] = NULL;
7792 path->slots[level] = 0;
7793 }
7794 } else {
7795 /*
7796 * We have a valid slot to walk back down
7797 * from. Stop here so caller can process these
7798 * new nodes.
7799 */
7800 break;
7801 }
7802
7803 level++;
7804 }
7805
7806 eb = path->nodes[root_level];
7807 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7808 return 1;
7809
7810 return 0;
7811 }
7812
7813 /*
7814 * root_eb is the subtree root and is locked before this function is called.
7815 */
7816 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7817 struct btrfs_root *root,
7818 struct extent_buffer *root_eb,
7819 u64 root_gen,
7820 int root_level)
7821 {
7822 int ret = 0;
7823 int level;
7824 struct extent_buffer *eb = root_eb;
7825 struct btrfs_path *path = NULL;
7826
7827 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7828 BUG_ON(root_eb == NULL);
7829
7830 if (!root->fs_info->quota_enabled)
7831 return 0;
7832
7833 if (!extent_buffer_uptodate(root_eb)) {
7834 ret = btrfs_read_buffer(root_eb, root_gen);
7835 if (ret)
7836 goto out;
7837 }
7838
7839 if (root_level == 0) {
7840 ret = account_leaf_items(trans, root, root_eb);
7841 goto out;
7842 }
7843
7844 path = btrfs_alloc_path();
7845 if (!path)
7846 return -ENOMEM;
7847
7848 /*
7849 * Walk down the tree. Missing extent blocks are filled in as
7850 * we go. Metadata is accounted every time we read a new
7851 * extent block.
7852 *
7853 * When we reach a leaf, we account for file extent items in it,
7854 * walk back up the tree (adjusting slot pointers as we go)
7855 * and restart the search process.
7856 */
7857 extent_buffer_get(root_eb); /* For path */
7858 path->nodes[root_level] = root_eb;
7859 path->slots[root_level] = 0;
7860 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7861 walk_down:
7862 level = root_level;
7863 while (level >= 0) {
7864 if (path->nodes[level] == NULL) {
7865 int parent_slot;
7866 u64 child_gen;
7867 u64 child_bytenr;
7868
7869 /* We need to get child blockptr/gen from
7870 * parent before we can read it. */
7871 eb = path->nodes[level + 1];
7872 parent_slot = path->slots[level + 1];
7873 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7874 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7875
7876 eb = read_tree_block(root, child_bytenr, child_gen);
7877 if (!eb || !extent_buffer_uptodate(eb)) {
7878 ret = -EIO;
7879 goto out;
7880 }
7881
7882 path->nodes[level] = eb;
7883 path->slots[level] = 0;
7884
7885 btrfs_tree_read_lock(eb);
7886 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7887 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7888
7889 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7890 root->objectid,
7891 child_bytenr,
7892 root->nodesize,
7893 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7894 0);
7895 if (ret)
7896 goto out;
7897
7898 }
7899
7900 if (level == 0) {
7901 ret = account_leaf_items(trans, root, path->nodes[level]);
7902 if (ret)
7903 goto out;
7904
7905 /* Nonzero return here means we completed our search */
7906 ret = adjust_slots_upwards(root, path, root_level);
7907 if (ret)
7908 break;
7909
7910 /* Restart search with new slots */
7911 goto walk_down;
7912 }
7913
7914 level--;
7915 }
7916
7917 ret = 0;
7918 out:
7919 btrfs_free_path(path);
7920
7921 return ret;
7922 }
7923
7924 /*
7925 * helper to process tree block while walking down the tree.
7926 *
7927 * when wc->stage == UPDATE_BACKREF, this function updates
7928 * back refs for pointers in the block.
7929 *
7930 * NOTE: return value 1 means we should stop walking down.
7931 */
7932 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7933 struct btrfs_root *root,
7934 struct btrfs_path *path,
7935 struct walk_control *wc, int lookup_info)
7936 {
7937 int level = wc->level;
7938 struct extent_buffer *eb = path->nodes[level];
7939 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7940 int ret;
7941
7942 if (wc->stage == UPDATE_BACKREF &&
7943 btrfs_header_owner(eb) != root->root_key.objectid)
7944 return 1;
7945
7946 /*
7947 * when reference count of tree block is 1, it won't increase
7948 * again. once full backref flag is set, we never clear it.
7949 */
7950 if (lookup_info &&
7951 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7952 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7953 BUG_ON(!path->locks[level]);
7954 ret = btrfs_lookup_extent_info(trans, root,
7955 eb->start, level, 1,
7956 &wc->refs[level],
7957 &wc->flags[level]);
7958 BUG_ON(ret == -ENOMEM);
7959 if (ret)
7960 return ret;
7961 BUG_ON(wc->refs[level] == 0);
7962 }
7963
7964 if (wc->stage == DROP_REFERENCE) {
7965 if (wc->refs[level] > 1)
7966 return 1;
7967
7968 if (path->locks[level] && !wc->keep_locks) {
7969 btrfs_tree_unlock_rw(eb, path->locks[level]);
7970 path->locks[level] = 0;
7971 }
7972 return 0;
7973 }
7974
7975 /* wc->stage == UPDATE_BACKREF */
7976 if (!(wc->flags[level] & flag)) {
7977 BUG_ON(!path->locks[level]);
7978 ret = btrfs_inc_ref(trans, root, eb, 1);
7979 BUG_ON(ret); /* -ENOMEM */
7980 ret = btrfs_dec_ref(trans, root, eb, 0);
7981 BUG_ON(ret); /* -ENOMEM */
7982 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7983 eb->len, flag,
7984 btrfs_header_level(eb), 0);
7985 BUG_ON(ret); /* -ENOMEM */
7986 wc->flags[level] |= flag;
7987 }
7988
7989 /*
7990 * the block is shared by multiple trees, so it's not good to
7991 * keep the tree lock
7992 */
7993 if (path->locks[level] && level > 0) {
7994 btrfs_tree_unlock_rw(eb, path->locks[level]);
7995 path->locks[level] = 0;
7996 }
7997 return 0;
7998 }
7999
8000 /*
8001 * helper to process tree block pointer.
8002 *
8003 * when wc->stage == DROP_REFERENCE, this function checks
8004 * reference count of the block pointed to. if the block
8005 * is shared and we need update back refs for the subtree
8006 * rooted at the block, this function changes wc->stage to
8007 * UPDATE_BACKREF. if the block is shared and there is no
8008 * need to update back, this function drops the reference
8009 * to the block.
8010 *
8011 * NOTE: return value 1 means we should stop walking down.
8012 */
8013 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8014 struct btrfs_root *root,
8015 struct btrfs_path *path,
8016 struct walk_control *wc, int *lookup_info)
8017 {
8018 u64 bytenr;
8019 u64 generation;
8020 u64 parent;
8021 u32 blocksize;
8022 struct btrfs_key key;
8023 struct extent_buffer *next;
8024 int level = wc->level;
8025 int reada = 0;
8026 int ret = 0;
8027 bool need_account = false;
8028
8029 generation = btrfs_node_ptr_generation(path->nodes[level],
8030 path->slots[level]);
8031 /*
8032 * if the lower level block was created before the snapshot
8033 * was created, we know there is no need to update back refs
8034 * for the subtree
8035 */
8036 if (wc->stage == UPDATE_BACKREF &&
8037 generation <= root->root_key.offset) {
8038 *lookup_info = 1;
8039 return 1;
8040 }
8041
8042 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8043 blocksize = root->nodesize;
8044
8045 next = btrfs_find_tree_block(root->fs_info, bytenr);
8046 if (!next) {
8047 next = btrfs_find_create_tree_block(root, bytenr);
8048 if (!next)
8049 return -ENOMEM;
8050 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8051 level - 1);
8052 reada = 1;
8053 }
8054 btrfs_tree_lock(next);
8055 btrfs_set_lock_blocking(next);
8056
8057 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8058 &wc->refs[level - 1],
8059 &wc->flags[level - 1]);
8060 if (ret < 0) {
8061 btrfs_tree_unlock(next);
8062 return ret;
8063 }
8064
8065 if (unlikely(wc->refs[level - 1] == 0)) {
8066 btrfs_err(root->fs_info, "Missing references.");
8067 BUG();
8068 }
8069 *lookup_info = 0;
8070
8071 if (wc->stage == DROP_REFERENCE) {
8072 if (wc->refs[level - 1] > 1) {
8073 need_account = true;
8074 if (level == 1 &&
8075 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8076 goto skip;
8077
8078 if (!wc->update_ref ||
8079 generation <= root->root_key.offset)
8080 goto skip;
8081
8082 btrfs_node_key_to_cpu(path->nodes[level], &key,
8083 path->slots[level]);
8084 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8085 if (ret < 0)
8086 goto skip;
8087
8088 wc->stage = UPDATE_BACKREF;
8089 wc->shared_level = level - 1;
8090 }
8091 } else {
8092 if (level == 1 &&
8093 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8094 goto skip;
8095 }
8096
8097 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8098 btrfs_tree_unlock(next);
8099 free_extent_buffer(next);
8100 next = NULL;
8101 *lookup_info = 1;
8102 }
8103
8104 if (!next) {
8105 if (reada && level == 1)
8106 reada_walk_down(trans, root, wc, path);
8107 next = read_tree_block(root, bytenr, generation);
8108 if (!next || !extent_buffer_uptodate(next)) {
8109 free_extent_buffer(next);
8110 return -EIO;
8111 }
8112 btrfs_tree_lock(next);
8113 btrfs_set_lock_blocking(next);
8114 }
8115
8116 level--;
8117 BUG_ON(level != btrfs_header_level(next));
8118 path->nodes[level] = next;
8119 path->slots[level] = 0;
8120 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8121 wc->level = level;
8122 if (wc->level == 1)
8123 wc->reada_slot = 0;
8124 return 0;
8125 skip:
8126 wc->refs[level - 1] = 0;
8127 wc->flags[level - 1] = 0;
8128 if (wc->stage == DROP_REFERENCE) {
8129 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8130 parent = path->nodes[level]->start;
8131 } else {
8132 BUG_ON(root->root_key.objectid !=
8133 btrfs_header_owner(path->nodes[level]));
8134 parent = 0;
8135 }
8136
8137 if (need_account) {
8138 ret = account_shared_subtree(trans, root, next,
8139 generation, level - 1);
8140 if (ret) {
8141 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8142 "%d accounting shared subtree. Quota "
8143 "is out of sync, rescan required.\n",
8144 root->fs_info->sb->s_id, ret);
8145 }
8146 }
8147 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8148 root->root_key.objectid, level - 1, 0, 0);
8149 BUG_ON(ret); /* -ENOMEM */
8150 }
8151 btrfs_tree_unlock(next);
8152 free_extent_buffer(next);
8153 *lookup_info = 1;
8154 return 1;
8155 }
8156
8157 /*
8158 * helper to process tree block while walking up the tree.
8159 *
8160 * when wc->stage == DROP_REFERENCE, this function drops
8161 * reference count on the block.
8162 *
8163 * when wc->stage == UPDATE_BACKREF, this function changes
8164 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8165 * to UPDATE_BACKREF previously while processing the block.
8166 *
8167 * NOTE: return value 1 means we should stop walking up.
8168 */
8169 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8170 struct btrfs_root *root,
8171 struct btrfs_path *path,
8172 struct walk_control *wc)
8173 {
8174 int ret;
8175 int level = wc->level;
8176 struct extent_buffer *eb = path->nodes[level];
8177 u64 parent = 0;
8178
8179 if (wc->stage == UPDATE_BACKREF) {
8180 BUG_ON(wc->shared_level < level);
8181 if (level < wc->shared_level)
8182 goto out;
8183
8184 ret = find_next_key(path, level + 1, &wc->update_progress);
8185 if (ret > 0)
8186 wc->update_ref = 0;
8187
8188 wc->stage = DROP_REFERENCE;
8189 wc->shared_level = -1;
8190 path->slots[level] = 0;
8191
8192 /*
8193 * check reference count again if the block isn't locked.
8194 * we should start walking down the tree again if reference
8195 * count is one.
8196 */
8197 if (!path->locks[level]) {
8198 BUG_ON(level == 0);
8199 btrfs_tree_lock(eb);
8200 btrfs_set_lock_blocking(eb);
8201 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8202
8203 ret = btrfs_lookup_extent_info(trans, root,
8204 eb->start, level, 1,
8205 &wc->refs[level],
8206 &wc->flags[level]);
8207 if (ret < 0) {
8208 btrfs_tree_unlock_rw(eb, path->locks[level]);
8209 path->locks[level] = 0;
8210 return ret;
8211 }
8212 BUG_ON(wc->refs[level] == 0);
8213 if (wc->refs[level] == 1) {
8214 btrfs_tree_unlock_rw(eb, path->locks[level]);
8215 path->locks[level] = 0;
8216 return 1;
8217 }
8218 }
8219 }
8220
8221 /* wc->stage == DROP_REFERENCE */
8222 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8223
8224 if (wc->refs[level] == 1) {
8225 if (level == 0) {
8226 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8227 ret = btrfs_dec_ref(trans, root, eb, 1);
8228 else
8229 ret = btrfs_dec_ref(trans, root, eb, 0);
8230 BUG_ON(ret); /* -ENOMEM */
8231 ret = account_leaf_items(trans, root, eb);
8232 if (ret) {
8233 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8234 "%d accounting leaf items. Quota "
8235 "is out of sync, rescan required.\n",
8236 root->fs_info->sb->s_id, ret);
8237 }
8238 }
8239 /* make block locked assertion in clean_tree_block happy */
8240 if (!path->locks[level] &&
8241 btrfs_header_generation(eb) == trans->transid) {
8242 btrfs_tree_lock(eb);
8243 btrfs_set_lock_blocking(eb);
8244 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8245 }
8246 clean_tree_block(trans, root->fs_info, eb);
8247 }
8248
8249 if (eb == root->node) {
8250 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8251 parent = eb->start;
8252 else
8253 BUG_ON(root->root_key.objectid !=
8254 btrfs_header_owner(eb));
8255 } else {
8256 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8257 parent = path->nodes[level + 1]->start;
8258 else
8259 BUG_ON(root->root_key.objectid !=
8260 btrfs_header_owner(path->nodes[level + 1]));
8261 }
8262
8263 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8264 out:
8265 wc->refs[level] = 0;
8266 wc->flags[level] = 0;
8267 return 0;
8268 }
8269
8270 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8271 struct btrfs_root *root,
8272 struct btrfs_path *path,
8273 struct walk_control *wc)
8274 {
8275 int level = wc->level;
8276 int lookup_info = 1;
8277 int ret;
8278
8279 while (level >= 0) {
8280 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8281 if (ret > 0)
8282 break;
8283
8284 if (level == 0)
8285 break;
8286
8287 if (path->slots[level] >=
8288 btrfs_header_nritems(path->nodes[level]))
8289 break;
8290
8291 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8292 if (ret > 0) {
8293 path->slots[level]++;
8294 continue;
8295 } else if (ret < 0)
8296 return ret;
8297 level = wc->level;
8298 }
8299 return 0;
8300 }
8301
8302 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8303 struct btrfs_root *root,
8304 struct btrfs_path *path,
8305 struct walk_control *wc, int max_level)
8306 {
8307 int level = wc->level;
8308 int ret;
8309
8310 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8311 while (level < max_level && path->nodes[level]) {
8312 wc->level = level;
8313 if (path->slots[level] + 1 <
8314 btrfs_header_nritems(path->nodes[level])) {
8315 path->slots[level]++;
8316 return 0;
8317 } else {
8318 ret = walk_up_proc(trans, root, path, wc);
8319 if (ret > 0)
8320 return 0;
8321
8322 if (path->locks[level]) {
8323 btrfs_tree_unlock_rw(path->nodes[level],
8324 path->locks[level]);
8325 path->locks[level] = 0;
8326 }
8327 free_extent_buffer(path->nodes[level]);
8328 path->nodes[level] = NULL;
8329 level++;
8330 }
8331 }
8332 return 1;
8333 }
8334
8335 /*
8336 * drop a subvolume tree.
8337 *
8338 * this function traverses the tree freeing any blocks that only
8339 * referenced by the tree.
8340 *
8341 * when a shared tree block is found. this function decreases its
8342 * reference count by one. if update_ref is true, this function
8343 * also make sure backrefs for the shared block and all lower level
8344 * blocks are properly updated.
8345 *
8346 * If called with for_reloc == 0, may exit early with -EAGAIN
8347 */
8348 int btrfs_drop_snapshot(struct btrfs_root *root,
8349 struct btrfs_block_rsv *block_rsv, int update_ref,
8350 int for_reloc)
8351 {
8352 struct btrfs_path *path;
8353 struct btrfs_trans_handle *trans;
8354 struct btrfs_root *tree_root = root->fs_info->tree_root;
8355 struct btrfs_root_item *root_item = &root->root_item;
8356 struct walk_control *wc;
8357 struct btrfs_key key;
8358 int err = 0;
8359 int ret;
8360 int level;
8361 bool root_dropped = false;
8362
8363 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8364
8365 path = btrfs_alloc_path();
8366 if (!path) {
8367 err = -ENOMEM;
8368 goto out;
8369 }
8370
8371 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8372 if (!wc) {
8373 btrfs_free_path(path);
8374 err = -ENOMEM;
8375 goto out;
8376 }
8377
8378 trans = btrfs_start_transaction(tree_root, 0);
8379 if (IS_ERR(trans)) {
8380 err = PTR_ERR(trans);
8381 goto out_free;
8382 }
8383
8384 if (block_rsv)
8385 trans->block_rsv = block_rsv;
8386
8387 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8388 level = btrfs_header_level(root->node);
8389 path->nodes[level] = btrfs_lock_root_node(root);
8390 btrfs_set_lock_blocking(path->nodes[level]);
8391 path->slots[level] = 0;
8392 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8393 memset(&wc->update_progress, 0,
8394 sizeof(wc->update_progress));
8395 } else {
8396 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8397 memcpy(&wc->update_progress, &key,
8398 sizeof(wc->update_progress));
8399
8400 level = root_item->drop_level;
8401 BUG_ON(level == 0);
8402 path->lowest_level = level;
8403 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8404 path->lowest_level = 0;
8405 if (ret < 0) {
8406 err = ret;
8407 goto out_end_trans;
8408 }
8409 WARN_ON(ret > 0);
8410
8411 /*
8412 * unlock our path, this is safe because only this
8413 * function is allowed to delete this snapshot
8414 */
8415 btrfs_unlock_up_safe(path, 0);
8416
8417 level = btrfs_header_level(root->node);
8418 while (1) {
8419 btrfs_tree_lock(path->nodes[level]);
8420 btrfs_set_lock_blocking(path->nodes[level]);
8421 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8422
8423 ret = btrfs_lookup_extent_info(trans, root,
8424 path->nodes[level]->start,
8425 level, 1, &wc->refs[level],
8426 &wc->flags[level]);
8427 if (ret < 0) {
8428 err = ret;
8429 goto out_end_trans;
8430 }
8431 BUG_ON(wc->refs[level] == 0);
8432
8433 if (level == root_item->drop_level)
8434 break;
8435
8436 btrfs_tree_unlock(path->nodes[level]);
8437 path->locks[level] = 0;
8438 WARN_ON(wc->refs[level] != 1);
8439 level--;
8440 }
8441 }
8442
8443 wc->level = level;
8444 wc->shared_level = -1;
8445 wc->stage = DROP_REFERENCE;
8446 wc->update_ref = update_ref;
8447 wc->keep_locks = 0;
8448 wc->for_reloc = for_reloc;
8449 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8450
8451 while (1) {
8452
8453 ret = walk_down_tree(trans, root, path, wc);
8454 if (ret < 0) {
8455 err = ret;
8456 break;
8457 }
8458
8459 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8460 if (ret < 0) {
8461 err = ret;
8462 break;
8463 }
8464
8465 if (ret > 0) {
8466 BUG_ON(wc->stage != DROP_REFERENCE);
8467 break;
8468 }
8469
8470 if (wc->stage == DROP_REFERENCE) {
8471 level = wc->level;
8472 btrfs_node_key(path->nodes[level],
8473 &root_item->drop_progress,
8474 path->slots[level]);
8475 root_item->drop_level = level;
8476 }
8477
8478 BUG_ON(wc->level == 0);
8479 if (btrfs_should_end_transaction(trans, tree_root) ||
8480 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8481 ret = btrfs_update_root(trans, tree_root,
8482 &root->root_key,
8483 root_item);
8484 if (ret) {
8485 btrfs_abort_transaction(trans, tree_root, ret);
8486 err = ret;
8487 goto out_end_trans;
8488 }
8489
8490 /*
8491 * Qgroup update accounting is run from
8492 * delayed ref handling. This usually works
8493 * out because delayed refs are normally the
8494 * only way qgroup updates are added. However,
8495 * we may have added updates during our tree
8496 * walk so run qgroups here to make sure we
8497 * don't lose any updates.
8498 */
8499 ret = btrfs_delayed_qgroup_accounting(trans,
8500 root->fs_info);
8501 if (ret)
8502 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8503 "running qgroup updates "
8504 "during snapshot delete. "
8505 "Quota is out of sync, "
8506 "rescan required.\n", ret);
8507
8508 btrfs_end_transaction_throttle(trans, tree_root);
8509 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8510 pr_debug("BTRFS: drop snapshot early exit\n");
8511 err = -EAGAIN;
8512 goto out_free;
8513 }
8514
8515 trans = btrfs_start_transaction(tree_root, 0);
8516 if (IS_ERR(trans)) {
8517 err = PTR_ERR(trans);
8518 goto out_free;
8519 }
8520 if (block_rsv)
8521 trans->block_rsv = block_rsv;
8522 }
8523 }
8524 btrfs_release_path(path);
8525 if (err)
8526 goto out_end_trans;
8527
8528 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8529 if (ret) {
8530 btrfs_abort_transaction(trans, tree_root, ret);
8531 goto out_end_trans;
8532 }
8533
8534 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8535 ret = btrfs_find_root(tree_root, &root->root_key, path,
8536 NULL, NULL);
8537 if (ret < 0) {
8538 btrfs_abort_transaction(trans, tree_root, ret);
8539 err = ret;
8540 goto out_end_trans;
8541 } else if (ret > 0) {
8542 /* if we fail to delete the orphan item this time
8543 * around, it'll get picked up the next time.
8544 *
8545 * The most common failure here is just -ENOENT.
8546 */
8547 btrfs_del_orphan_item(trans, tree_root,
8548 root->root_key.objectid);
8549 }
8550 }
8551
8552 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8553 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8554 } else {
8555 free_extent_buffer(root->node);
8556 free_extent_buffer(root->commit_root);
8557 btrfs_put_fs_root(root);
8558 }
8559 root_dropped = true;
8560 out_end_trans:
8561 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8562 if (ret)
8563 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8564 "running qgroup updates "
8565 "during snapshot delete. "
8566 "Quota is out of sync, "
8567 "rescan required.\n", ret);
8568
8569 btrfs_end_transaction_throttle(trans, tree_root);
8570 out_free:
8571 kfree(wc);
8572 btrfs_free_path(path);
8573 out:
8574 /*
8575 * So if we need to stop dropping the snapshot for whatever reason we
8576 * need to make sure to add it back to the dead root list so that we
8577 * keep trying to do the work later. This also cleans up roots if we
8578 * don't have it in the radix (like when we recover after a power fail
8579 * or unmount) so we don't leak memory.
8580 */
8581 if (!for_reloc && root_dropped == false)
8582 btrfs_add_dead_root(root);
8583 if (err && err != -EAGAIN)
8584 btrfs_std_error(root->fs_info, err);
8585 return err;
8586 }
8587
8588 /*
8589 * drop subtree rooted at tree block 'node'.
8590 *
8591 * NOTE: this function will unlock and release tree block 'node'
8592 * only used by relocation code
8593 */
8594 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8595 struct btrfs_root *root,
8596 struct extent_buffer *node,
8597 struct extent_buffer *parent)
8598 {
8599 struct btrfs_path *path;
8600 struct walk_control *wc;
8601 int level;
8602 int parent_level;
8603 int ret = 0;
8604 int wret;
8605
8606 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8607
8608 path = btrfs_alloc_path();
8609 if (!path)
8610 return -ENOMEM;
8611
8612 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8613 if (!wc) {
8614 btrfs_free_path(path);
8615 return -ENOMEM;
8616 }
8617
8618 btrfs_assert_tree_locked(parent);
8619 parent_level = btrfs_header_level(parent);
8620 extent_buffer_get(parent);
8621 path->nodes[parent_level] = parent;
8622 path->slots[parent_level] = btrfs_header_nritems(parent);
8623
8624 btrfs_assert_tree_locked(node);
8625 level = btrfs_header_level(node);
8626 path->nodes[level] = node;
8627 path->slots[level] = 0;
8628 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8629
8630 wc->refs[parent_level] = 1;
8631 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8632 wc->level = level;
8633 wc->shared_level = -1;
8634 wc->stage = DROP_REFERENCE;
8635 wc->update_ref = 0;
8636 wc->keep_locks = 1;
8637 wc->for_reloc = 1;
8638 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8639
8640 while (1) {
8641 wret = walk_down_tree(trans, root, path, wc);
8642 if (wret < 0) {
8643 ret = wret;
8644 break;
8645 }
8646
8647 wret = walk_up_tree(trans, root, path, wc, parent_level);
8648 if (wret < 0)
8649 ret = wret;
8650 if (wret != 0)
8651 break;
8652 }
8653
8654 kfree(wc);
8655 btrfs_free_path(path);
8656 return ret;
8657 }
8658
8659 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8660 {
8661 u64 num_devices;
8662 u64 stripped;
8663
8664 /*
8665 * if restripe for this chunk_type is on pick target profile and
8666 * return, otherwise do the usual balance
8667 */
8668 stripped = get_restripe_target(root->fs_info, flags);
8669 if (stripped)
8670 return extended_to_chunk(stripped);
8671
8672 num_devices = root->fs_info->fs_devices->rw_devices;
8673
8674 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8675 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8676 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8677
8678 if (num_devices == 1) {
8679 stripped |= BTRFS_BLOCK_GROUP_DUP;
8680 stripped = flags & ~stripped;
8681
8682 /* turn raid0 into single device chunks */
8683 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8684 return stripped;
8685
8686 /* turn mirroring into duplication */
8687 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8688 BTRFS_BLOCK_GROUP_RAID10))
8689 return stripped | BTRFS_BLOCK_GROUP_DUP;
8690 } else {
8691 /* they already had raid on here, just return */
8692 if (flags & stripped)
8693 return flags;
8694
8695 stripped |= BTRFS_BLOCK_GROUP_DUP;
8696 stripped = flags & ~stripped;
8697
8698 /* switch duplicated blocks with raid1 */
8699 if (flags & BTRFS_BLOCK_GROUP_DUP)
8700 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8701
8702 /* this is drive concat, leave it alone */
8703 }
8704
8705 return flags;
8706 }
8707
8708 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8709 {
8710 struct btrfs_space_info *sinfo = cache->space_info;
8711 u64 num_bytes;
8712 u64 min_allocable_bytes;
8713 int ret = -ENOSPC;
8714
8715
8716 /*
8717 * We need some metadata space and system metadata space for
8718 * allocating chunks in some corner cases until we force to set
8719 * it to be readonly.
8720 */
8721 if ((sinfo->flags &
8722 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8723 !force)
8724 min_allocable_bytes = 1 * 1024 * 1024;
8725 else
8726 min_allocable_bytes = 0;
8727
8728 spin_lock(&sinfo->lock);
8729 spin_lock(&cache->lock);
8730
8731 if (cache->ro) {
8732 ret = 0;
8733 goto out;
8734 }
8735
8736 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8737 cache->bytes_super - btrfs_block_group_used(&cache->item);
8738
8739 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8740 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8741 min_allocable_bytes <= sinfo->total_bytes) {
8742 sinfo->bytes_readonly += num_bytes;
8743 cache->ro = 1;
8744 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8745 ret = 0;
8746 }
8747 out:
8748 spin_unlock(&cache->lock);
8749 spin_unlock(&sinfo->lock);
8750 return ret;
8751 }
8752
8753 int btrfs_set_block_group_ro(struct btrfs_root *root,
8754 struct btrfs_block_group_cache *cache)
8755
8756 {
8757 struct btrfs_trans_handle *trans;
8758 u64 alloc_flags;
8759 int ret;
8760
8761 BUG_ON(cache->ro);
8762
8763 again:
8764 trans = btrfs_join_transaction(root);
8765 if (IS_ERR(trans))
8766 return PTR_ERR(trans);
8767
8768 /*
8769 * we're not allowed to set block groups readonly after the dirty
8770 * block groups cache has started writing. If it already started,
8771 * back off and let this transaction commit
8772 */
8773 mutex_lock(&root->fs_info->ro_block_group_mutex);
8774 if (trans->transaction->dirty_bg_run) {
8775 u64 transid = trans->transid;
8776
8777 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8778 btrfs_end_transaction(trans, root);
8779
8780 ret = btrfs_wait_for_commit(root, transid);
8781 if (ret)
8782 return ret;
8783 goto again;
8784 }
8785
8786
8787 ret = set_block_group_ro(cache, 0);
8788 if (!ret)
8789 goto out;
8790 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8791 ret = do_chunk_alloc(trans, root, alloc_flags,
8792 CHUNK_ALLOC_FORCE);
8793 if (ret < 0)
8794 goto out;
8795 ret = set_block_group_ro(cache, 0);
8796 out:
8797 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8798 alloc_flags = update_block_group_flags(root, cache->flags);
8799 check_system_chunk(trans, root, alloc_flags);
8800 }
8801 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8802
8803 btrfs_end_transaction(trans, root);
8804 return ret;
8805 }
8806
8807 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8808 struct btrfs_root *root, u64 type)
8809 {
8810 u64 alloc_flags = get_alloc_profile(root, type);
8811 return do_chunk_alloc(trans, root, alloc_flags,
8812 CHUNK_ALLOC_FORCE);
8813 }
8814
8815 /*
8816 * helper to account the unused space of all the readonly block group in the
8817 * space_info. takes mirrors into account.
8818 */
8819 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8820 {
8821 struct btrfs_block_group_cache *block_group;
8822 u64 free_bytes = 0;
8823 int factor;
8824
8825 /* It's df, we don't care if it's racey */
8826 if (list_empty(&sinfo->ro_bgs))
8827 return 0;
8828
8829 spin_lock(&sinfo->lock);
8830 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8831 spin_lock(&block_group->lock);
8832
8833 if (!block_group->ro) {
8834 spin_unlock(&block_group->lock);
8835 continue;
8836 }
8837
8838 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8839 BTRFS_BLOCK_GROUP_RAID10 |
8840 BTRFS_BLOCK_GROUP_DUP))
8841 factor = 2;
8842 else
8843 factor = 1;
8844
8845 free_bytes += (block_group->key.offset -
8846 btrfs_block_group_used(&block_group->item)) *
8847 factor;
8848
8849 spin_unlock(&block_group->lock);
8850 }
8851 spin_unlock(&sinfo->lock);
8852
8853 return free_bytes;
8854 }
8855
8856 void btrfs_set_block_group_rw(struct btrfs_root *root,
8857 struct btrfs_block_group_cache *cache)
8858 {
8859 struct btrfs_space_info *sinfo = cache->space_info;
8860 u64 num_bytes;
8861
8862 BUG_ON(!cache->ro);
8863
8864 spin_lock(&sinfo->lock);
8865 spin_lock(&cache->lock);
8866 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8867 cache->bytes_super - btrfs_block_group_used(&cache->item);
8868 sinfo->bytes_readonly -= num_bytes;
8869 cache->ro = 0;
8870 list_del_init(&cache->ro_list);
8871 spin_unlock(&cache->lock);
8872 spin_unlock(&sinfo->lock);
8873 }
8874
8875 /*
8876 * checks to see if its even possible to relocate this block group.
8877 *
8878 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8879 * ok to go ahead and try.
8880 */
8881 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8882 {
8883 struct btrfs_block_group_cache *block_group;
8884 struct btrfs_space_info *space_info;
8885 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8886 struct btrfs_device *device;
8887 struct btrfs_trans_handle *trans;
8888 u64 min_free;
8889 u64 dev_min = 1;
8890 u64 dev_nr = 0;
8891 u64 target;
8892 int index;
8893 int full = 0;
8894 int ret = 0;
8895
8896 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8897
8898 /* odd, couldn't find the block group, leave it alone */
8899 if (!block_group)
8900 return -1;
8901
8902 min_free = btrfs_block_group_used(&block_group->item);
8903
8904 /* no bytes used, we're good */
8905 if (!min_free)
8906 goto out;
8907
8908 space_info = block_group->space_info;
8909 spin_lock(&space_info->lock);
8910
8911 full = space_info->full;
8912
8913 /*
8914 * if this is the last block group we have in this space, we can't
8915 * relocate it unless we're able to allocate a new chunk below.
8916 *
8917 * Otherwise, we need to make sure we have room in the space to handle
8918 * all of the extents from this block group. If we can, we're good
8919 */
8920 if ((space_info->total_bytes != block_group->key.offset) &&
8921 (space_info->bytes_used + space_info->bytes_reserved +
8922 space_info->bytes_pinned + space_info->bytes_readonly +
8923 min_free < space_info->total_bytes)) {
8924 spin_unlock(&space_info->lock);
8925 goto out;
8926 }
8927 spin_unlock(&space_info->lock);
8928
8929 /*
8930 * ok we don't have enough space, but maybe we have free space on our
8931 * devices to allocate new chunks for relocation, so loop through our
8932 * alloc devices and guess if we have enough space. if this block
8933 * group is going to be restriped, run checks against the target
8934 * profile instead of the current one.
8935 */
8936 ret = -1;
8937
8938 /*
8939 * index:
8940 * 0: raid10
8941 * 1: raid1
8942 * 2: dup
8943 * 3: raid0
8944 * 4: single
8945 */
8946 target = get_restripe_target(root->fs_info, block_group->flags);
8947 if (target) {
8948 index = __get_raid_index(extended_to_chunk(target));
8949 } else {
8950 /*
8951 * this is just a balance, so if we were marked as full
8952 * we know there is no space for a new chunk
8953 */
8954 if (full)
8955 goto out;
8956
8957 index = get_block_group_index(block_group);
8958 }
8959
8960 if (index == BTRFS_RAID_RAID10) {
8961 dev_min = 4;
8962 /* Divide by 2 */
8963 min_free >>= 1;
8964 } else if (index == BTRFS_RAID_RAID1) {
8965 dev_min = 2;
8966 } else if (index == BTRFS_RAID_DUP) {
8967 /* Multiply by 2 */
8968 min_free <<= 1;
8969 } else if (index == BTRFS_RAID_RAID0) {
8970 dev_min = fs_devices->rw_devices;
8971 min_free = div64_u64(min_free, dev_min);
8972 }
8973
8974 /* We need to do this so that we can look at pending chunks */
8975 trans = btrfs_join_transaction(root);
8976 if (IS_ERR(trans)) {
8977 ret = PTR_ERR(trans);
8978 goto out;
8979 }
8980
8981 mutex_lock(&root->fs_info->chunk_mutex);
8982 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8983 u64 dev_offset;
8984
8985 /*
8986 * check to make sure we can actually find a chunk with enough
8987 * space to fit our block group in.
8988 */
8989 if (device->total_bytes > device->bytes_used + min_free &&
8990 !device->is_tgtdev_for_dev_replace) {
8991 ret = find_free_dev_extent(trans, device, min_free,
8992 &dev_offset, NULL);
8993 if (!ret)
8994 dev_nr++;
8995
8996 if (dev_nr >= dev_min)
8997 break;
8998
8999 ret = -1;
9000 }
9001 }
9002 mutex_unlock(&root->fs_info->chunk_mutex);
9003 btrfs_end_transaction(trans, root);
9004 out:
9005 btrfs_put_block_group(block_group);
9006 return ret;
9007 }
9008
9009 static int find_first_block_group(struct btrfs_root *root,
9010 struct btrfs_path *path, struct btrfs_key *key)
9011 {
9012 int ret = 0;
9013 struct btrfs_key found_key;
9014 struct extent_buffer *leaf;
9015 int slot;
9016
9017 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9018 if (ret < 0)
9019 goto out;
9020
9021 while (1) {
9022 slot = path->slots[0];
9023 leaf = path->nodes[0];
9024 if (slot >= btrfs_header_nritems(leaf)) {
9025 ret = btrfs_next_leaf(root, path);
9026 if (ret == 0)
9027 continue;
9028 if (ret < 0)
9029 goto out;
9030 break;
9031 }
9032 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9033
9034 if (found_key.objectid >= key->objectid &&
9035 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9036 ret = 0;
9037 goto out;
9038 }
9039 path->slots[0]++;
9040 }
9041 out:
9042 return ret;
9043 }
9044
9045 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9046 {
9047 struct btrfs_block_group_cache *block_group;
9048 u64 last = 0;
9049
9050 while (1) {
9051 struct inode *inode;
9052
9053 block_group = btrfs_lookup_first_block_group(info, last);
9054 while (block_group) {
9055 spin_lock(&block_group->lock);
9056 if (block_group->iref)
9057 break;
9058 spin_unlock(&block_group->lock);
9059 block_group = next_block_group(info->tree_root,
9060 block_group);
9061 }
9062 if (!block_group) {
9063 if (last == 0)
9064 break;
9065 last = 0;
9066 continue;
9067 }
9068
9069 inode = block_group->inode;
9070 block_group->iref = 0;
9071 block_group->inode = NULL;
9072 spin_unlock(&block_group->lock);
9073 iput(inode);
9074 last = block_group->key.objectid + block_group->key.offset;
9075 btrfs_put_block_group(block_group);
9076 }
9077 }
9078
9079 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9080 {
9081 struct btrfs_block_group_cache *block_group;
9082 struct btrfs_space_info *space_info;
9083 struct btrfs_caching_control *caching_ctl;
9084 struct rb_node *n;
9085
9086 down_write(&info->commit_root_sem);
9087 while (!list_empty(&info->caching_block_groups)) {
9088 caching_ctl = list_entry(info->caching_block_groups.next,
9089 struct btrfs_caching_control, list);
9090 list_del(&caching_ctl->list);
9091 put_caching_control(caching_ctl);
9092 }
9093 up_write(&info->commit_root_sem);
9094
9095 spin_lock(&info->unused_bgs_lock);
9096 while (!list_empty(&info->unused_bgs)) {
9097 block_group = list_first_entry(&info->unused_bgs,
9098 struct btrfs_block_group_cache,
9099 bg_list);
9100 list_del_init(&block_group->bg_list);
9101 btrfs_put_block_group(block_group);
9102 }
9103 spin_unlock(&info->unused_bgs_lock);
9104
9105 spin_lock(&info->block_group_cache_lock);
9106 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9107 block_group = rb_entry(n, struct btrfs_block_group_cache,
9108 cache_node);
9109 rb_erase(&block_group->cache_node,
9110 &info->block_group_cache_tree);
9111 RB_CLEAR_NODE(&block_group->cache_node);
9112 spin_unlock(&info->block_group_cache_lock);
9113
9114 down_write(&block_group->space_info->groups_sem);
9115 list_del(&block_group->list);
9116 up_write(&block_group->space_info->groups_sem);
9117
9118 if (block_group->cached == BTRFS_CACHE_STARTED)
9119 wait_block_group_cache_done(block_group);
9120
9121 /*
9122 * We haven't cached this block group, which means we could
9123 * possibly have excluded extents on this block group.
9124 */
9125 if (block_group->cached == BTRFS_CACHE_NO ||
9126 block_group->cached == BTRFS_CACHE_ERROR)
9127 free_excluded_extents(info->extent_root, block_group);
9128
9129 btrfs_remove_free_space_cache(block_group);
9130 btrfs_put_block_group(block_group);
9131
9132 spin_lock(&info->block_group_cache_lock);
9133 }
9134 spin_unlock(&info->block_group_cache_lock);
9135
9136 /* now that all the block groups are freed, go through and
9137 * free all the space_info structs. This is only called during
9138 * the final stages of unmount, and so we know nobody is
9139 * using them. We call synchronize_rcu() once before we start,
9140 * just to be on the safe side.
9141 */
9142 synchronize_rcu();
9143
9144 release_global_block_rsv(info);
9145
9146 while (!list_empty(&info->space_info)) {
9147 int i;
9148
9149 space_info = list_entry(info->space_info.next,
9150 struct btrfs_space_info,
9151 list);
9152 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9153 if (WARN_ON(space_info->bytes_pinned > 0 ||
9154 space_info->bytes_reserved > 0 ||
9155 space_info->bytes_may_use > 0)) {
9156 dump_space_info(space_info, 0, 0);
9157 }
9158 }
9159 list_del(&space_info->list);
9160 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9161 struct kobject *kobj;
9162 kobj = space_info->block_group_kobjs[i];
9163 space_info->block_group_kobjs[i] = NULL;
9164 if (kobj) {
9165 kobject_del(kobj);
9166 kobject_put(kobj);
9167 }
9168 }
9169 kobject_del(&space_info->kobj);
9170 kobject_put(&space_info->kobj);
9171 }
9172 return 0;
9173 }
9174
9175 static void __link_block_group(struct btrfs_space_info *space_info,
9176 struct btrfs_block_group_cache *cache)
9177 {
9178 int index = get_block_group_index(cache);
9179 bool first = false;
9180
9181 down_write(&space_info->groups_sem);
9182 if (list_empty(&space_info->block_groups[index]))
9183 first = true;
9184 list_add_tail(&cache->list, &space_info->block_groups[index]);
9185 up_write(&space_info->groups_sem);
9186
9187 if (first) {
9188 struct raid_kobject *rkobj;
9189 int ret;
9190
9191 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9192 if (!rkobj)
9193 goto out_err;
9194 rkobj->raid_type = index;
9195 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9196 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9197 "%s", get_raid_name(index));
9198 if (ret) {
9199 kobject_put(&rkobj->kobj);
9200 goto out_err;
9201 }
9202 space_info->block_group_kobjs[index] = &rkobj->kobj;
9203 }
9204
9205 return;
9206 out_err:
9207 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9208 }
9209
9210 static struct btrfs_block_group_cache *
9211 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9212 {
9213 struct btrfs_block_group_cache *cache;
9214
9215 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9216 if (!cache)
9217 return NULL;
9218
9219 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9220 GFP_NOFS);
9221 if (!cache->free_space_ctl) {
9222 kfree(cache);
9223 return NULL;
9224 }
9225
9226 cache->key.objectid = start;
9227 cache->key.offset = size;
9228 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9229
9230 cache->sectorsize = root->sectorsize;
9231 cache->fs_info = root->fs_info;
9232 cache->full_stripe_len = btrfs_full_stripe_len(root,
9233 &root->fs_info->mapping_tree,
9234 start);
9235 atomic_set(&cache->count, 1);
9236 spin_lock_init(&cache->lock);
9237 init_rwsem(&cache->data_rwsem);
9238 INIT_LIST_HEAD(&cache->list);
9239 INIT_LIST_HEAD(&cache->cluster_list);
9240 INIT_LIST_HEAD(&cache->bg_list);
9241 INIT_LIST_HEAD(&cache->ro_list);
9242 INIT_LIST_HEAD(&cache->dirty_list);
9243 INIT_LIST_HEAD(&cache->io_list);
9244 btrfs_init_free_space_ctl(cache);
9245 atomic_set(&cache->trimming, 0);
9246
9247 return cache;
9248 }
9249
9250 int btrfs_read_block_groups(struct btrfs_root *root)
9251 {
9252 struct btrfs_path *path;
9253 int ret;
9254 struct btrfs_block_group_cache *cache;
9255 struct btrfs_fs_info *info = root->fs_info;
9256 struct btrfs_space_info *space_info;
9257 struct btrfs_key key;
9258 struct btrfs_key found_key;
9259 struct extent_buffer *leaf;
9260 int need_clear = 0;
9261 u64 cache_gen;
9262
9263 root = info->extent_root;
9264 key.objectid = 0;
9265 key.offset = 0;
9266 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9267 path = btrfs_alloc_path();
9268 if (!path)
9269 return -ENOMEM;
9270 path->reada = 1;
9271
9272 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9273 if (btrfs_test_opt(root, SPACE_CACHE) &&
9274 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9275 need_clear = 1;
9276 if (btrfs_test_opt(root, CLEAR_CACHE))
9277 need_clear = 1;
9278
9279 while (1) {
9280 ret = find_first_block_group(root, path, &key);
9281 if (ret > 0)
9282 break;
9283 if (ret != 0)
9284 goto error;
9285
9286 leaf = path->nodes[0];
9287 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9288
9289 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9290 found_key.offset);
9291 if (!cache) {
9292 ret = -ENOMEM;
9293 goto error;
9294 }
9295
9296 if (need_clear) {
9297 /*
9298 * When we mount with old space cache, we need to
9299 * set BTRFS_DC_CLEAR and set dirty flag.
9300 *
9301 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9302 * truncate the old free space cache inode and
9303 * setup a new one.
9304 * b) Setting 'dirty flag' makes sure that we flush
9305 * the new space cache info onto disk.
9306 */
9307 if (btrfs_test_opt(root, SPACE_CACHE))
9308 cache->disk_cache_state = BTRFS_DC_CLEAR;
9309 }
9310
9311 read_extent_buffer(leaf, &cache->item,
9312 btrfs_item_ptr_offset(leaf, path->slots[0]),
9313 sizeof(cache->item));
9314 cache->flags = btrfs_block_group_flags(&cache->item);
9315
9316 key.objectid = found_key.objectid + found_key.offset;
9317 btrfs_release_path(path);
9318
9319 /*
9320 * We need to exclude the super stripes now so that the space
9321 * info has super bytes accounted for, otherwise we'll think
9322 * we have more space than we actually do.
9323 */
9324 ret = exclude_super_stripes(root, cache);
9325 if (ret) {
9326 /*
9327 * We may have excluded something, so call this just in
9328 * case.
9329 */
9330 free_excluded_extents(root, cache);
9331 btrfs_put_block_group(cache);
9332 goto error;
9333 }
9334
9335 /*
9336 * check for two cases, either we are full, and therefore
9337 * don't need to bother with the caching work since we won't
9338 * find any space, or we are empty, and we can just add all
9339 * the space in and be done with it. This saves us _alot_ of
9340 * time, particularly in the full case.
9341 */
9342 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9343 cache->last_byte_to_unpin = (u64)-1;
9344 cache->cached = BTRFS_CACHE_FINISHED;
9345 free_excluded_extents(root, cache);
9346 } else if (btrfs_block_group_used(&cache->item) == 0) {
9347 cache->last_byte_to_unpin = (u64)-1;
9348 cache->cached = BTRFS_CACHE_FINISHED;
9349 add_new_free_space(cache, root->fs_info,
9350 found_key.objectid,
9351 found_key.objectid +
9352 found_key.offset);
9353 free_excluded_extents(root, cache);
9354 }
9355
9356 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9357 if (ret) {
9358 btrfs_remove_free_space_cache(cache);
9359 btrfs_put_block_group(cache);
9360 goto error;
9361 }
9362
9363 ret = update_space_info(info, cache->flags, found_key.offset,
9364 btrfs_block_group_used(&cache->item),
9365 &space_info);
9366 if (ret) {
9367 btrfs_remove_free_space_cache(cache);
9368 spin_lock(&info->block_group_cache_lock);
9369 rb_erase(&cache->cache_node,
9370 &info->block_group_cache_tree);
9371 RB_CLEAR_NODE(&cache->cache_node);
9372 spin_unlock(&info->block_group_cache_lock);
9373 btrfs_put_block_group(cache);
9374 goto error;
9375 }
9376
9377 cache->space_info = space_info;
9378 spin_lock(&cache->space_info->lock);
9379 cache->space_info->bytes_readonly += cache->bytes_super;
9380 spin_unlock(&cache->space_info->lock);
9381
9382 __link_block_group(space_info, cache);
9383
9384 set_avail_alloc_bits(root->fs_info, cache->flags);
9385 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9386 set_block_group_ro(cache, 1);
9387 } else if (btrfs_block_group_used(&cache->item) == 0) {
9388 spin_lock(&info->unused_bgs_lock);
9389 /* Should always be true but just in case. */
9390 if (list_empty(&cache->bg_list)) {
9391 btrfs_get_block_group(cache);
9392 list_add_tail(&cache->bg_list,
9393 &info->unused_bgs);
9394 }
9395 spin_unlock(&info->unused_bgs_lock);
9396 }
9397 }
9398
9399 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9400 if (!(get_alloc_profile(root, space_info->flags) &
9401 (BTRFS_BLOCK_GROUP_RAID10 |
9402 BTRFS_BLOCK_GROUP_RAID1 |
9403 BTRFS_BLOCK_GROUP_RAID5 |
9404 BTRFS_BLOCK_GROUP_RAID6 |
9405 BTRFS_BLOCK_GROUP_DUP)))
9406 continue;
9407 /*
9408 * avoid allocating from un-mirrored block group if there are
9409 * mirrored block groups.
9410 */
9411 list_for_each_entry(cache,
9412 &space_info->block_groups[BTRFS_RAID_RAID0],
9413 list)
9414 set_block_group_ro(cache, 1);
9415 list_for_each_entry(cache,
9416 &space_info->block_groups[BTRFS_RAID_SINGLE],
9417 list)
9418 set_block_group_ro(cache, 1);
9419 }
9420
9421 init_global_block_rsv(info);
9422 ret = 0;
9423 error:
9424 btrfs_free_path(path);
9425 return ret;
9426 }
9427
9428 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9429 struct btrfs_root *root)
9430 {
9431 struct btrfs_block_group_cache *block_group, *tmp;
9432 struct btrfs_root *extent_root = root->fs_info->extent_root;
9433 struct btrfs_block_group_item item;
9434 struct btrfs_key key;
9435 int ret = 0;
9436
9437 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9438 if (ret)
9439 goto next;
9440
9441 spin_lock(&block_group->lock);
9442 memcpy(&item, &block_group->item, sizeof(item));
9443 memcpy(&key, &block_group->key, sizeof(key));
9444 spin_unlock(&block_group->lock);
9445
9446 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9447 sizeof(item));
9448 if (ret)
9449 btrfs_abort_transaction(trans, extent_root, ret);
9450 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9451 key.objectid, key.offset);
9452 if (ret)
9453 btrfs_abort_transaction(trans, extent_root, ret);
9454 next:
9455 list_del_init(&block_group->bg_list);
9456 }
9457 }
9458
9459 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9460 struct btrfs_root *root, u64 bytes_used,
9461 u64 type, u64 chunk_objectid, u64 chunk_offset,
9462 u64 size)
9463 {
9464 int ret;
9465 struct btrfs_root *extent_root;
9466 struct btrfs_block_group_cache *cache;
9467
9468 extent_root = root->fs_info->extent_root;
9469
9470 btrfs_set_log_full_commit(root->fs_info, trans);
9471
9472 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9473 if (!cache)
9474 return -ENOMEM;
9475
9476 btrfs_set_block_group_used(&cache->item, bytes_used);
9477 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9478 btrfs_set_block_group_flags(&cache->item, type);
9479
9480 cache->flags = type;
9481 cache->last_byte_to_unpin = (u64)-1;
9482 cache->cached = BTRFS_CACHE_FINISHED;
9483 ret = exclude_super_stripes(root, cache);
9484 if (ret) {
9485 /*
9486 * We may have excluded something, so call this just in
9487 * case.
9488 */
9489 free_excluded_extents(root, cache);
9490 btrfs_put_block_group(cache);
9491 return ret;
9492 }
9493
9494 add_new_free_space(cache, root->fs_info, chunk_offset,
9495 chunk_offset + size);
9496
9497 free_excluded_extents(root, cache);
9498
9499 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9500 if (ret) {
9501 btrfs_remove_free_space_cache(cache);
9502 btrfs_put_block_group(cache);
9503 return ret;
9504 }
9505
9506 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9507 &cache->space_info);
9508 if (ret) {
9509 btrfs_remove_free_space_cache(cache);
9510 spin_lock(&root->fs_info->block_group_cache_lock);
9511 rb_erase(&cache->cache_node,
9512 &root->fs_info->block_group_cache_tree);
9513 RB_CLEAR_NODE(&cache->cache_node);
9514 spin_unlock(&root->fs_info->block_group_cache_lock);
9515 btrfs_put_block_group(cache);
9516 return ret;
9517 }
9518 update_global_block_rsv(root->fs_info);
9519
9520 spin_lock(&cache->space_info->lock);
9521 cache->space_info->bytes_readonly += cache->bytes_super;
9522 spin_unlock(&cache->space_info->lock);
9523
9524 __link_block_group(cache->space_info, cache);
9525
9526 list_add_tail(&cache->bg_list, &trans->new_bgs);
9527
9528 set_avail_alloc_bits(extent_root->fs_info, type);
9529
9530 return 0;
9531 }
9532
9533 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9534 {
9535 u64 extra_flags = chunk_to_extended(flags) &
9536 BTRFS_EXTENDED_PROFILE_MASK;
9537
9538 write_seqlock(&fs_info->profiles_lock);
9539 if (flags & BTRFS_BLOCK_GROUP_DATA)
9540 fs_info->avail_data_alloc_bits &= ~extra_flags;
9541 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9542 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9543 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9544 fs_info->avail_system_alloc_bits &= ~extra_flags;
9545 write_sequnlock(&fs_info->profiles_lock);
9546 }
9547
9548 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9549 struct btrfs_root *root, u64 group_start,
9550 struct extent_map *em)
9551 {
9552 struct btrfs_path *path;
9553 struct btrfs_block_group_cache *block_group;
9554 struct btrfs_free_cluster *cluster;
9555 struct btrfs_root *tree_root = root->fs_info->tree_root;
9556 struct btrfs_key key;
9557 struct inode *inode;
9558 struct kobject *kobj = NULL;
9559 int ret;
9560 int index;
9561 int factor;
9562 struct btrfs_caching_control *caching_ctl = NULL;
9563 bool remove_em;
9564
9565 root = root->fs_info->extent_root;
9566
9567 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9568 BUG_ON(!block_group);
9569 BUG_ON(!block_group->ro);
9570
9571 /*
9572 * Free the reserved super bytes from this block group before
9573 * remove it.
9574 */
9575 free_excluded_extents(root, block_group);
9576
9577 memcpy(&key, &block_group->key, sizeof(key));
9578 index = get_block_group_index(block_group);
9579 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9580 BTRFS_BLOCK_GROUP_RAID1 |
9581 BTRFS_BLOCK_GROUP_RAID10))
9582 factor = 2;
9583 else
9584 factor = 1;
9585
9586 /* make sure this block group isn't part of an allocation cluster */
9587 cluster = &root->fs_info->data_alloc_cluster;
9588 spin_lock(&cluster->refill_lock);
9589 btrfs_return_cluster_to_free_space(block_group, cluster);
9590 spin_unlock(&cluster->refill_lock);
9591
9592 /*
9593 * make sure this block group isn't part of a metadata
9594 * allocation cluster
9595 */
9596 cluster = &root->fs_info->meta_alloc_cluster;
9597 spin_lock(&cluster->refill_lock);
9598 btrfs_return_cluster_to_free_space(block_group, cluster);
9599 spin_unlock(&cluster->refill_lock);
9600
9601 path = btrfs_alloc_path();
9602 if (!path) {
9603 ret = -ENOMEM;
9604 goto out;
9605 }
9606
9607 /*
9608 * get the inode first so any iput calls done for the io_list
9609 * aren't the final iput (no unlinks allowed now)
9610 */
9611 inode = lookup_free_space_inode(tree_root, block_group, path);
9612
9613 mutex_lock(&trans->transaction->cache_write_mutex);
9614 /*
9615 * make sure our free spache cache IO is done before remove the
9616 * free space inode
9617 */
9618 spin_lock(&trans->transaction->dirty_bgs_lock);
9619 if (!list_empty(&block_group->io_list)) {
9620 list_del_init(&block_group->io_list);
9621
9622 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9623
9624 spin_unlock(&trans->transaction->dirty_bgs_lock);
9625 btrfs_wait_cache_io(root, trans, block_group,
9626 &block_group->io_ctl, path,
9627 block_group->key.objectid);
9628 btrfs_put_block_group(block_group);
9629 spin_lock(&trans->transaction->dirty_bgs_lock);
9630 }
9631
9632 if (!list_empty(&block_group->dirty_list)) {
9633 list_del_init(&block_group->dirty_list);
9634 btrfs_put_block_group(block_group);
9635 }
9636 spin_unlock(&trans->transaction->dirty_bgs_lock);
9637 mutex_unlock(&trans->transaction->cache_write_mutex);
9638
9639 if (!IS_ERR(inode)) {
9640 ret = btrfs_orphan_add(trans, inode);
9641 if (ret) {
9642 btrfs_add_delayed_iput(inode);
9643 goto out;
9644 }
9645 clear_nlink(inode);
9646 /* One for the block groups ref */
9647 spin_lock(&block_group->lock);
9648 if (block_group->iref) {
9649 block_group->iref = 0;
9650 block_group->inode = NULL;
9651 spin_unlock(&block_group->lock);
9652 iput(inode);
9653 } else {
9654 spin_unlock(&block_group->lock);
9655 }
9656 /* One for our lookup ref */
9657 btrfs_add_delayed_iput(inode);
9658 }
9659
9660 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9661 key.offset = block_group->key.objectid;
9662 key.type = 0;
9663
9664 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9665 if (ret < 0)
9666 goto out;
9667 if (ret > 0)
9668 btrfs_release_path(path);
9669 if (ret == 0) {
9670 ret = btrfs_del_item(trans, tree_root, path);
9671 if (ret)
9672 goto out;
9673 btrfs_release_path(path);
9674 }
9675
9676 spin_lock(&root->fs_info->block_group_cache_lock);
9677 rb_erase(&block_group->cache_node,
9678 &root->fs_info->block_group_cache_tree);
9679 RB_CLEAR_NODE(&block_group->cache_node);
9680
9681 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9682 root->fs_info->first_logical_byte = (u64)-1;
9683 spin_unlock(&root->fs_info->block_group_cache_lock);
9684
9685 down_write(&block_group->space_info->groups_sem);
9686 /*
9687 * we must use list_del_init so people can check to see if they
9688 * are still on the list after taking the semaphore
9689 */
9690 list_del_init(&block_group->list);
9691 if (list_empty(&block_group->space_info->block_groups[index])) {
9692 kobj = block_group->space_info->block_group_kobjs[index];
9693 block_group->space_info->block_group_kobjs[index] = NULL;
9694 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9695 }
9696 up_write(&block_group->space_info->groups_sem);
9697 if (kobj) {
9698 kobject_del(kobj);
9699 kobject_put(kobj);
9700 }
9701
9702 if (block_group->has_caching_ctl)
9703 caching_ctl = get_caching_control(block_group);
9704 if (block_group->cached == BTRFS_CACHE_STARTED)
9705 wait_block_group_cache_done(block_group);
9706 if (block_group->has_caching_ctl) {
9707 down_write(&root->fs_info->commit_root_sem);
9708 if (!caching_ctl) {
9709 struct btrfs_caching_control *ctl;
9710
9711 list_for_each_entry(ctl,
9712 &root->fs_info->caching_block_groups, list)
9713 if (ctl->block_group == block_group) {
9714 caching_ctl = ctl;
9715 atomic_inc(&caching_ctl->count);
9716 break;
9717 }
9718 }
9719 if (caching_ctl)
9720 list_del_init(&caching_ctl->list);
9721 up_write(&root->fs_info->commit_root_sem);
9722 if (caching_ctl) {
9723 /* Once for the caching bgs list and once for us. */
9724 put_caching_control(caching_ctl);
9725 put_caching_control(caching_ctl);
9726 }
9727 }
9728
9729 spin_lock(&trans->transaction->dirty_bgs_lock);
9730 if (!list_empty(&block_group->dirty_list)) {
9731 WARN_ON(1);
9732 }
9733 if (!list_empty(&block_group->io_list)) {
9734 WARN_ON(1);
9735 }
9736 spin_unlock(&trans->transaction->dirty_bgs_lock);
9737 btrfs_remove_free_space_cache(block_group);
9738
9739 spin_lock(&block_group->space_info->lock);
9740 list_del_init(&block_group->ro_list);
9741
9742 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9743 WARN_ON(block_group->space_info->total_bytes
9744 < block_group->key.offset);
9745 WARN_ON(block_group->space_info->bytes_readonly
9746 < block_group->key.offset);
9747 WARN_ON(block_group->space_info->disk_total
9748 < block_group->key.offset * factor);
9749 }
9750 block_group->space_info->total_bytes -= block_group->key.offset;
9751 block_group->space_info->bytes_readonly -= block_group->key.offset;
9752 block_group->space_info->disk_total -= block_group->key.offset * factor;
9753
9754 spin_unlock(&block_group->space_info->lock);
9755
9756 memcpy(&key, &block_group->key, sizeof(key));
9757
9758 lock_chunks(root);
9759 if (!list_empty(&em->list)) {
9760 /* We're in the transaction->pending_chunks list. */
9761 free_extent_map(em);
9762 }
9763 spin_lock(&block_group->lock);
9764 block_group->removed = 1;
9765 /*
9766 * At this point trimming can't start on this block group, because we
9767 * removed the block group from the tree fs_info->block_group_cache_tree
9768 * so no one can't find it anymore and even if someone already got this
9769 * block group before we removed it from the rbtree, they have already
9770 * incremented block_group->trimming - if they didn't, they won't find
9771 * any free space entries because we already removed them all when we
9772 * called btrfs_remove_free_space_cache().
9773 *
9774 * And we must not remove the extent map from the fs_info->mapping_tree
9775 * to prevent the same logical address range and physical device space
9776 * ranges from being reused for a new block group. This is because our
9777 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9778 * completely transactionless, so while it is trimming a range the
9779 * currently running transaction might finish and a new one start,
9780 * allowing for new block groups to be created that can reuse the same
9781 * physical device locations unless we take this special care.
9782 */
9783 remove_em = (atomic_read(&block_group->trimming) == 0);
9784 /*
9785 * Make sure a trimmer task always sees the em in the pinned_chunks list
9786 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9787 * before checking block_group->removed).
9788 */
9789 if (!remove_em) {
9790 /*
9791 * Our em might be in trans->transaction->pending_chunks which
9792 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9793 * and so is the fs_info->pinned_chunks list.
9794 *
9795 * So at this point we must be holding the chunk_mutex to avoid
9796 * any races with chunk allocation (more specifically at
9797 * volumes.c:contains_pending_extent()), to ensure it always
9798 * sees the em, either in the pending_chunks list or in the
9799 * pinned_chunks list.
9800 */
9801 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9802 }
9803 spin_unlock(&block_group->lock);
9804
9805 if (remove_em) {
9806 struct extent_map_tree *em_tree;
9807
9808 em_tree = &root->fs_info->mapping_tree.map_tree;
9809 write_lock(&em_tree->lock);
9810 /*
9811 * The em might be in the pending_chunks list, so make sure the
9812 * chunk mutex is locked, since remove_extent_mapping() will
9813 * delete us from that list.
9814 */
9815 remove_extent_mapping(em_tree, em);
9816 write_unlock(&em_tree->lock);
9817 /* once for the tree */
9818 free_extent_map(em);
9819 }
9820
9821 unlock_chunks(root);
9822
9823 btrfs_put_block_group(block_group);
9824 btrfs_put_block_group(block_group);
9825
9826 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9827 if (ret > 0)
9828 ret = -EIO;
9829 if (ret < 0)
9830 goto out;
9831
9832 ret = btrfs_del_item(trans, root, path);
9833 out:
9834 btrfs_free_path(path);
9835 return ret;
9836 }
9837
9838 /*
9839 * Process the unused_bgs list and remove any that don't have any allocated
9840 * space inside of them.
9841 */
9842 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9843 {
9844 struct btrfs_block_group_cache *block_group;
9845 struct btrfs_space_info *space_info;
9846 struct btrfs_root *root = fs_info->extent_root;
9847 struct btrfs_trans_handle *trans;
9848 int ret = 0;
9849
9850 if (!fs_info->open)
9851 return;
9852
9853 spin_lock(&fs_info->unused_bgs_lock);
9854 while (!list_empty(&fs_info->unused_bgs)) {
9855 u64 start, end;
9856
9857 block_group = list_first_entry(&fs_info->unused_bgs,
9858 struct btrfs_block_group_cache,
9859 bg_list);
9860 space_info = block_group->space_info;
9861 list_del_init(&block_group->bg_list);
9862 if (ret || btrfs_mixed_space_info(space_info)) {
9863 btrfs_put_block_group(block_group);
9864 continue;
9865 }
9866 spin_unlock(&fs_info->unused_bgs_lock);
9867
9868 /* Don't want to race with allocators so take the groups_sem */
9869 down_write(&space_info->groups_sem);
9870 spin_lock(&block_group->lock);
9871 if (block_group->reserved ||
9872 btrfs_block_group_used(&block_group->item) ||
9873 block_group->ro) {
9874 /*
9875 * We want to bail if we made new allocations or have
9876 * outstanding allocations in this block group. We do
9877 * the ro check in case balance is currently acting on
9878 * this block group.
9879 */
9880 spin_unlock(&block_group->lock);
9881 up_write(&space_info->groups_sem);
9882 goto next;
9883 }
9884 spin_unlock(&block_group->lock);
9885
9886 /* We don't want to force the issue, only flip if it's ok. */
9887 ret = set_block_group_ro(block_group, 0);
9888 up_write(&space_info->groups_sem);
9889 if (ret < 0) {
9890 ret = 0;
9891 goto next;
9892 }
9893
9894 /*
9895 * Want to do this before we do anything else so we can recover
9896 * properly if we fail to join the transaction.
9897 */
9898 /* 1 for btrfs_orphan_reserve_metadata() */
9899 trans = btrfs_start_transaction(root, 1);
9900 if (IS_ERR(trans)) {
9901 btrfs_set_block_group_rw(root, block_group);
9902 ret = PTR_ERR(trans);
9903 goto next;
9904 }
9905
9906 /*
9907 * We could have pending pinned extents for this block group,
9908 * just delete them, we don't care about them anymore.
9909 */
9910 start = block_group->key.objectid;
9911 end = start + block_group->key.offset - 1;
9912 /*
9913 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9914 * btrfs_finish_extent_commit(). If we are at transaction N,
9915 * another task might be running finish_extent_commit() for the
9916 * previous transaction N - 1, and have seen a range belonging
9917 * to the block group in freed_extents[] before we were able to
9918 * clear the whole block group range from freed_extents[]. This
9919 * means that task can lookup for the block group after we
9920 * unpinned it from freed_extents[] and removed it, leading to
9921 * a BUG_ON() at btrfs_unpin_extent_range().
9922 */
9923 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9924 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9925 EXTENT_DIRTY, GFP_NOFS);
9926 if (ret) {
9927 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9928 btrfs_set_block_group_rw(root, block_group);
9929 goto end_trans;
9930 }
9931 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9932 EXTENT_DIRTY, GFP_NOFS);
9933 if (ret) {
9934 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9935 btrfs_set_block_group_rw(root, block_group);
9936 goto end_trans;
9937 }
9938 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9939
9940 /* Reset pinned so btrfs_put_block_group doesn't complain */
9941 spin_lock(&space_info->lock);
9942 spin_lock(&block_group->lock);
9943
9944 space_info->bytes_pinned -= block_group->pinned;
9945 space_info->bytes_readonly += block_group->pinned;
9946 percpu_counter_add(&space_info->total_bytes_pinned,
9947 -block_group->pinned);
9948 block_group->pinned = 0;
9949
9950 spin_unlock(&block_group->lock);
9951 spin_unlock(&space_info->lock);
9952
9953 /*
9954 * Btrfs_remove_chunk will abort the transaction if things go
9955 * horribly wrong.
9956 */
9957 ret = btrfs_remove_chunk(trans, root,
9958 block_group->key.objectid);
9959 end_trans:
9960 btrfs_end_transaction(trans, root);
9961 next:
9962 btrfs_put_block_group(block_group);
9963 spin_lock(&fs_info->unused_bgs_lock);
9964 }
9965 spin_unlock(&fs_info->unused_bgs_lock);
9966 }
9967
9968 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9969 {
9970 struct btrfs_space_info *space_info;
9971 struct btrfs_super_block *disk_super;
9972 u64 features;
9973 u64 flags;
9974 int mixed = 0;
9975 int ret;
9976
9977 disk_super = fs_info->super_copy;
9978 if (!btrfs_super_root(disk_super))
9979 return 1;
9980
9981 features = btrfs_super_incompat_flags(disk_super);
9982 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9983 mixed = 1;
9984
9985 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9986 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9987 if (ret)
9988 goto out;
9989
9990 if (mixed) {
9991 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9992 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9993 } else {
9994 flags = BTRFS_BLOCK_GROUP_METADATA;
9995 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9996 if (ret)
9997 goto out;
9998
9999 flags = BTRFS_BLOCK_GROUP_DATA;
10000 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10001 }
10002 out:
10003 return ret;
10004 }
10005
10006 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10007 {
10008 return unpin_extent_range(root, start, end, false);
10009 }
10010
10011 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10012 {
10013 struct btrfs_fs_info *fs_info = root->fs_info;
10014 struct btrfs_block_group_cache *cache = NULL;
10015 u64 group_trimmed;
10016 u64 start;
10017 u64 end;
10018 u64 trimmed = 0;
10019 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10020 int ret = 0;
10021
10022 /*
10023 * try to trim all FS space, our block group may start from non-zero.
10024 */
10025 if (range->len == total_bytes)
10026 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10027 else
10028 cache = btrfs_lookup_block_group(fs_info, range->start);
10029
10030 while (cache) {
10031 if (cache->key.objectid >= (range->start + range->len)) {
10032 btrfs_put_block_group(cache);
10033 break;
10034 }
10035
10036 start = max(range->start, cache->key.objectid);
10037 end = min(range->start + range->len,
10038 cache->key.objectid + cache->key.offset);
10039
10040 if (end - start >= range->minlen) {
10041 if (!block_group_cache_done(cache)) {
10042 ret = cache_block_group(cache, 0);
10043 if (ret) {
10044 btrfs_put_block_group(cache);
10045 break;
10046 }
10047 ret = wait_block_group_cache_done(cache);
10048 if (ret) {
10049 btrfs_put_block_group(cache);
10050 break;
10051 }
10052 }
10053 ret = btrfs_trim_block_group(cache,
10054 &group_trimmed,
10055 start,
10056 end,
10057 range->minlen);
10058
10059 trimmed += group_trimmed;
10060 if (ret) {
10061 btrfs_put_block_group(cache);
10062 break;
10063 }
10064 }
10065
10066 cache = next_block_group(fs_info->tree_root, cache);
10067 }
10068
10069 range->len = trimmed;
10070 return ret;
10071 }
10072
10073 /*
10074 * btrfs_{start,end}_write_no_snapshoting() are similar to
10075 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10076 * data into the page cache through nocow before the subvolume is snapshoted,
10077 * but flush the data into disk after the snapshot creation, or to prevent
10078 * operations while snapshoting is ongoing and that cause the snapshot to be
10079 * inconsistent (writes followed by expanding truncates for example).
10080 */
10081 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10082 {
10083 percpu_counter_dec(&root->subv_writers->counter);
10084 /*
10085 * Make sure counter is updated before we wake up
10086 * waiters.
10087 */
10088 smp_mb();
10089 if (waitqueue_active(&root->subv_writers->wait))
10090 wake_up(&root->subv_writers->wait);
10091 }
10092
10093 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10094 {
10095 if (atomic_read(&root->will_be_snapshoted))
10096 return 0;
10097
10098 percpu_counter_inc(&root->subv_writers->counter);
10099 /*
10100 * Make sure counter is updated before we check for snapshot creation.
10101 */
10102 smp_mb();
10103 if (atomic_read(&root->will_be_snapshoted)) {
10104 btrfs_end_write_no_snapshoting(root);
10105 return 0;
10106 }
10107 return 1;
10108 }
This page took 0.306841 seconds and 5 git commands to generate.