4eefabcc838f16fb81f23312b04721f3a69b2d4b
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 if (locked_ref->is_data &&
2542 locked_ref->total_ref_mod < 0) {
2543 spin_lock(&delayed_refs->lock);
2544 delayed_refs->pending_csums -= ref->num_bytes;
2545 spin_unlock(&delayed_refs->lock);
2546 }
2547 btrfs_delayed_ref_unlock(locked_ref);
2548 locked_ref = NULL;
2549 }
2550 btrfs_put_delayed_ref(ref);
2551 count++;
2552 cond_resched();
2553 }
2554
2555 /*
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2559 */
2560 if (actual_count > 0) {
2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 u64 avg;
2563
2564 /*
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2567 */
2568 spin_lock(&delayed_refs->lock);
2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2571 spin_unlock(&delayed_refs->lock);
2572 }
2573 return 0;
2574 }
2575
2576 #ifdef SCRAMBLE_DELAYED_REFS
2577 /*
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2581 */
2582 static u64 find_middle(struct rb_root *root)
2583 {
2584 struct rb_node *n = root->rb_node;
2585 struct btrfs_delayed_ref_node *entry;
2586 int alt = 1;
2587 u64 middle;
2588 u64 first = 0, last = 0;
2589
2590 n = rb_first(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 first = entry->bytenr;
2594 }
2595 n = rb_last(root);
2596 if (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 last = entry->bytenr;
2599 }
2600 n = root->rb_node;
2601
2602 while (n) {
2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 WARN_ON(!entry->in_tree);
2605
2606 middle = entry->bytenr;
2607
2608 if (alt)
2609 n = n->rb_left;
2610 else
2611 n = n->rb_right;
2612
2613 alt = 1 - alt;
2614 }
2615 return middle;
2616 }
2617 #endif
2618
2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620 {
2621 u64 num_bytes;
2622
2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 sizeof(struct btrfs_extent_inline_ref));
2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627
2628 /*
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2631 */
2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2633 }
2634
2635 /*
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2638 */
2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2640 {
2641 u64 csum_size;
2642 u64 num_csums_per_leaf;
2643 u64 num_csums;
2644
2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 num_csums_per_leaf = div64_u64(csum_size,
2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 num_csums += num_csums_per_leaf - 1;
2650 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 return num_csums;
2652 }
2653
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655 struct btrfs_root *root)
2656 {
2657 struct btrfs_block_rsv *global_rsv;
2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 u64 num_bytes, num_dirty_bgs_bytes;
2662 int ret = 0;
2663
2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 num_heads = heads_to_leaves(root, num_heads);
2666 if (num_heads > 1)
2667 num_bytes += (num_heads - 1) * root->nodesize;
2668 num_bytes <<= 1;
2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 num_dirty_bgs);
2672 global_rsv = &root->fs_info->global_block_rsv;
2673
2674 /*
2675 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 * wiggle room since running delayed refs can create more delayed refs.
2677 */
2678 if (global_rsv->space_info->full) {
2679 num_dirty_bgs_bytes <<= 1;
2680 num_bytes <<= 1;
2681 }
2682
2683 spin_lock(&global_rsv->lock);
2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2685 ret = 1;
2686 spin_unlock(&global_rsv->lock);
2687 return ret;
2688 }
2689
2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root)
2692 {
2693 struct btrfs_fs_info *fs_info = root->fs_info;
2694 u64 num_entries =
2695 atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 u64 avg_runtime;
2697 u64 val;
2698
2699 smp_mb();
2700 avg_runtime = fs_info->avg_delayed_ref_runtime;
2701 val = num_entries * avg_runtime;
2702 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 return 1;
2704 if (val >= NSEC_PER_SEC / 2)
2705 return 2;
2706
2707 return btrfs_check_space_for_delayed_refs(trans, root);
2708 }
2709
2710 struct async_delayed_refs {
2711 struct btrfs_root *root;
2712 int count;
2713 int error;
2714 int sync;
2715 struct completion wait;
2716 struct btrfs_work work;
2717 };
2718
2719 static void delayed_ref_async_start(struct btrfs_work *work)
2720 {
2721 struct async_delayed_refs *async;
2722 struct btrfs_trans_handle *trans;
2723 int ret;
2724
2725 async = container_of(work, struct async_delayed_refs, work);
2726
2727 trans = btrfs_join_transaction(async->root);
2728 if (IS_ERR(trans)) {
2729 async->error = PTR_ERR(trans);
2730 goto done;
2731 }
2732
2733 /*
2734 * trans->sync means that when we call end_transaciton, we won't
2735 * wait on delayed refs
2736 */
2737 trans->sync = true;
2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 if (ret)
2740 async->error = ret;
2741
2742 ret = btrfs_end_transaction(trans, async->root);
2743 if (ret && !async->error)
2744 async->error = ret;
2745 done:
2746 if (async->sync)
2747 complete(&async->wait);
2748 else
2749 kfree(async);
2750 }
2751
2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 unsigned long count, int wait)
2754 {
2755 struct async_delayed_refs *async;
2756 int ret;
2757
2758 async = kmalloc(sizeof(*async), GFP_NOFS);
2759 if (!async)
2760 return -ENOMEM;
2761
2762 async->root = root->fs_info->tree_root;
2763 async->count = count;
2764 async->error = 0;
2765 if (wait)
2766 async->sync = 1;
2767 else
2768 async->sync = 0;
2769 init_completion(&async->wait);
2770
2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 delayed_ref_async_start, NULL, NULL);
2773
2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775
2776 if (wait) {
2777 wait_for_completion(&async->wait);
2778 ret = async->error;
2779 kfree(async);
2780 return ret;
2781 }
2782 return 0;
2783 }
2784
2785 /*
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far. count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
2791 *
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
2794 */
2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 struct btrfs_root *root, unsigned long count)
2797 {
2798 struct rb_node *node;
2799 struct btrfs_delayed_ref_root *delayed_refs;
2800 struct btrfs_delayed_ref_head *head;
2801 int ret;
2802 int run_all = count == (unsigned long)-1;
2803
2804 /* We'll clean this up in btrfs_cleanup_transaction */
2805 if (trans->aborted)
2806 return 0;
2807
2808 if (root == root->fs_info->extent_root)
2809 root = root->fs_info->tree_root;
2810
2811 delayed_refs = &trans->transaction->delayed_refs;
2812 if (count == 0)
2813 count = atomic_read(&delayed_refs->num_entries) * 2;
2814
2815 again:
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818 #endif
2819 ret = __btrfs_run_delayed_refs(trans, root, count);
2820 if (ret < 0) {
2821 btrfs_abort_transaction(trans, root, ret);
2822 return ret;
2823 }
2824
2825 if (run_all) {
2826 if (!list_empty(&trans->new_bgs))
2827 btrfs_create_pending_block_groups(trans, root);
2828
2829 spin_lock(&delayed_refs->lock);
2830 node = rb_first(&delayed_refs->href_root);
2831 if (!node) {
2832 spin_unlock(&delayed_refs->lock);
2833 goto out;
2834 }
2835 count = (unsigned long)-1;
2836
2837 while (node) {
2838 head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 href_node);
2840 if (btrfs_delayed_ref_is_head(&head->node)) {
2841 struct btrfs_delayed_ref_node *ref;
2842
2843 ref = &head->node;
2844 atomic_inc(&ref->refs);
2845
2846 spin_unlock(&delayed_refs->lock);
2847 /*
2848 * Mutex was contended, block until it's
2849 * released and try again
2850 */
2851 mutex_lock(&head->mutex);
2852 mutex_unlock(&head->mutex);
2853
2854 btrfs_put_delayed_ref(ref);
2855 cond_resched();
2856 goto again;
2857 } else {
2858 WARN_ON(1);
2859 }
2860 node = rb_next(node);
2861 }
2862 spin_unlock(&delayed_refs->lock);
2863 cond_resched();
2864 goto again;
2865 }
2866 out:
2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 if (ret)
2869 return ret;
2870 assert_qgroups_uptodate(trans);
2871 return 0;
2872 }
2873
2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 u64 bytenr, u64 num_bytes, u64 flags,
2877 int level, int is_data)
2878 {
2879 struct btrfs_delayed_extent_op *extent_op;
2880 int ret;
2881
2882 extent_op = btrfs_alloc_delayed_extent_op();
2883 if (!extent_op)
2884 return -ENOMEM;
2885
2886 extent_op->flags_to_set = flags;
2887 extent_op->update_flags = 1;
2888 extent_op->update_key = 0;
2889 extent_op->is_data = is_data ? 1 : 0;
2890 extent_op->level = level;
2891
2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 num_bytes, extent_op);
2894 if (ret)
2895 btrfs_free_delayed_extent_op(extent_op);
2896 return ret;
2897 }
2898
2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 struct btrfs_path *path,
2902 u64 objectid, u64 offset, u64 bytenr)
2903 {
2904 struct btrfs_delayed_ref_head *head;
2905 struct btrfs_delayed_ref_node *ref;
2906 struct btrfs_delayed_data_ref *data_ref;
2907 struct btrfs_delayed_ref_root *delayed_refs;
2908 struct rb_node *node;
2909 int ret = 0;
2910
2911 delayed_refs = &trans->transaction->delayed_refs;
2912 spin_lock(&delayed_refs->lock);
2913 head = btrfs_find_delayed_ref_head(trans, bytenr);
2914 if (!head) {
2915 spin_unlock(&delayed_refs->lock);
2916 return 0;
2917 }
2918
2919 if (!mutex_trylock(&head->mutex)) {
2920 atomic_inc(&head->node.refs);
2921 spin_unlock(&delayed_refs->lock);
2922
2923 btrfs_release_path(path);
2924
2925 /*
2926 * Mutex was contended, block until it's released and let
2927 * caller try again
2928 */
2929 mutex_lock(&head->mutex);
2930 mutex_unlock(&head->mutex);
2931 btrfs_put_delayed_ref(&head->node);
2932 return -EAGAIN;
2933 }
2934 spin_unlock(&delayed_refs->lock);
2935
2936 spin_lock(&head->lock);
2937 node = rb_first(&head->ref_root);
2938 while (node) {
2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 node = rb_next(node);
2941
2942 /* If it's a shared ref we know a cross reference exists */
2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 ret = 1;
2945 break;
2946 }
2947
2948 data_ref = btrfs_delayed_node_to_data_ref(ref);
2949
2950 /*
2951 * If our ref doesn't match the one we're currently looking at
2952 * then we have a cross reference.
2953 */
2954 if (data_ref->root != root->root_key.objectid ||
2955 data_ref->objectid != objectid ||
2956 data_ref->offset != offset) {
2957 ret = 1;
2958 break;
2959 }
2960 }
2961 spin_unlock(&head->lock);
2962 mutex_unlock(&head->mutex);
2963 return ret;
2964 }
2965
2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path,
2969 u64 objectid, u64 offset, u64 bytenr)
2970 {
2971 struct btrfs_root *extent_root = root->fs_info->extent_root;
2972 struct extent_buffer *leaf;
2973 struct btrfs_extent_data_ref *ref;
2974 struct btrfs_extent_inline_ref *iref;
2975 struct btrfs_extent_item *ei;
2976 struct btrfs_key key;
2977 u32 item_size;
2978 int ret;
2979
2980 key.objectid = bytenr;
2981 key.offset = (u64)-1;
2982 key.type = BTRFS_EXTENT_ITEM_KEY;
2983
2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 if (ret < 0)
2986 goto out;
2987 BUG_ON(ret == 0); /* Corruption */
2988
2989 ret = -ENOENT;
2990 if (path->slots[0] == 0)
2991 goto out;
2992
2993 path->slots[0]--;
2994 leaf = path->nodes[0];
2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2996
2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2998 goto out;
2999
3000 ret = 1;
3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 if (item_size < sizeof(*ei)) {
3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 goto out;
3006 }
3007 #endif
3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3009
3010 if (item_size != sizeof(*ei) +
3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 goto out;
3013
3014 if (btrfs_extent_generation(leaf, ei) <=
3015 btrfs_root_last_snapshot(&root->root_item))
3016 goto out;
3017
3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 BTRFS_EXTENT_DATA_REF_KEY)
3021 goto out;
3022
3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 if (btrfs_extent_refs(leaf, ei) !=
3025 btrfs_extent_data_ref_count(leaf, ref) ||
3026 btrfs_extent_data_ref_root(leaf, ref) !=
3027 root->root_key.objectid ||
3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 goto out;
3031
3032 ret = 0;
3033 out:
3034 return ret;
3035 }
3036
3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 struct btrfs_path *path;
3042 int ret;
3043 int ret2;
3044
3045 path = btrfs_alloc_path();
3046 if (!path)
3047 return -ENOENT;
3048
3049 do {
3050 ret = check_committed_ref(trans, root, path, objectid,
3051 offset, bytenr);
3052 if (ret && ret != -ENOENT)
3053 goto out;
3054
3055 ret2 = check_delayed_ref(trans, root, path, objectid,
3056 offset, bytenr);
3057 } while (ret2 == -EAGAIN);
3058
3059 if (ret2 && ret2 != -ENOENT) {
3060 ret = ret2;
3061 goto out;
3062 }
3063
3064 if (ret != -ENOENT || ret2 != -ENOENT)
3065 ret = 0;
3066 out:
3067 btrfs_free_path(path);
3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 WARN_ON(ret > 0);
3070 return ret;
3071 }
3072
3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3074 struct btrfs_root *root,
3075 struct extent_buffer *buf,
3076 int full_backref, int inc)
3077 {
3078 u64 bytenr;
3079 u64 num_bytes;
3080 u64 parent;
3081 u64 ref_root;
3082 u32 nritems;
3083 struct btrfs_key key;
3084 struct btrfs_file_extent_item *fi;
3085 int i;
3086 int level;
3087 int ret = 0;
3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3089 u64, u64, u64, u64, u64, u64, int);
3090
3091
3092 if (btrfs_test_is_dummy_root(root))
3093 return 0;
3094
3095 ref_root = btrfs_header_owner(buf);
3096 nritems = btrfs_header_nritems(buf);
3097 level = btrfs_header_level(buf);
3098
3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3100 return 0;
3101
3102 if (inc)
3103 process_func = btrfs_inc_extent_ref;
3104 else
3105 process_func = btrfs_free_extent;
3106
3107 if (full_backref)
3108 parent = buf->start;
3109 else
3110 parent = 0;
3111
3112 for (i = 0; i < nritems; i++) {
3113 if (level == 0) {
3114 btrfs_item_key_to_cpu(buf, &key, i);
3115 if (key.type != BTRFS_EXTENT_DATA_KEY)
3116 continue;
3117 fi = btrfs_item_ptr(buf, i,
3118 struct btrfs_file_extent_item);
3119 if (btrfs_file_extent_type(buf, fi) ==
3120 BTRFS_FILE_EXTENT_INLINE)
3121 continue;
3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 if (bytenr == 0)
3124 continue;
3125
3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 key.offset -= btrfs_file_extent_offset(buf, fi);
3128 ret = process_func(trans, root, bytenr, num_bytes,
3129 parent, ref_root, key.objectid,
3130 key.offset, 1);
3131 if (ret)
3132 goto fail;
3133 } else {
3134 bytenr = btrfs_node_blockptr(buf, i);
3135 num_bytes = root->nodesize;
3136 ret = process_func(trans, root, bytenr, num_bytes,
3137 parent, ref_root, level - 1, 0,
3138 1);
3139 if (ret)
3140 goto fail;
3141 }
3142 }
3143 return 0;
3144 fail:
3145 return ret;
3146 }
3147
3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3149 struct extent_buffer *buf, int full_backref)
3150 {
3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3152 }
3153
3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3155 struct extent_buffer *buf, int full_backref)
3156 {
3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3158 }
3159
3160 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 struct btrfs_path *path,
3163 struct btrfs_block_group_cache *cache)
3164 {
3165 int ret;
3166 struct btrfs_root *extent_root = root->fs_info->extent_root;
3167 unsigned long bi;
3168 struct extent_buffer *leaf;
3169
3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3171 if (ret) {
3172 if (ret > 0)
3173 ret = -ENOENT;
3174 goto fail;
3175 }
3176
3177 leaf = path->nodes[0];
3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 btrfs_mark_buffer_dirty(leaf);
3181 fail:
3182 btrfs_release_path(path);
3183 return ret;
3184
3185 }
3186
3187 static struct btrfs_block_group_cache *
3188 next_block_group(struct btrfs_root *root,
3189 struct btrfs_block_group_cache *cache)
3190 {
3191 struct rb_node *node;
3192
3193 spin_lock(&root->fs_info->block_group_cache_lock);
3194
3195 /* If our block group was removed, we need a full search. */
3196 if (RB_EMPTY_NODE(&cache->cache_node)) {
3197 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3198
3199 spin_unlock(&root->fs_info->block_group_cache_lock);
3200 btrfs_put_block_group(cache);
3201 cache = btrfs_lookup_first_block_group(root->fs_info,
3202 next_bytenr);
3203 return cache;
3204 }
3205 node = rb_next(&cache->cache_node);
3206 btrfs_put_block_group(cache);
3207 if (node) {
3208 cache = rb_entry(node, struct btrfs_block_group_cache,
3209 cache_node);
3210 btrfs_get_block_group(cache);
3211 } else
3212 cache = NULL;
3213 spin_unlock(&root->fs_info->block_group_cache_lock);
3214 return cache;
3215 }
3216
3217 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3218 struct btrfs_trans_handle *trans,
3219 struct btrfs_path *path)
3220 {
3221 struct btrfs_root *root = block_group->fs_info->tree_root;
3222 struct inode *inode = NULL;
3223 u64 alloc_hint = 0;
3224 int dcs = BTRFS_DC_ERROR;
3225 u64 num_pages = 0;
3226 int retries = 0;
3227 int ret = 0;
3228
3229 /*
3230 * If this block group is smaller than 100 megs don't bother caching the
3231 * block group.
3232 */
3233 if (block_group->key.offset < (100 * 1024 * 1024)) {
3234 spin_lock(&block_group->lock);
3235 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3236 spin_unlock(&block_group->lock);
3237 return 0;
3238 }
3239
3240 if (trans->aborted)
3241 return 0;
3242 again:
3243 inode = lookup_free_space_inode(root, block_group, path);
3244 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3245 ret = PTR_ERR(inode);
3246 btrfs_release_path(path);
3247 goto out;
3248 }
3249
3250 if (IS_ERR(inode)) {
3251 BUG_ON(retries);
3252 retries++;
3253
3254 if (block_group->ro)
3255 goto out_free;
3256
3257 ret = create_free_space_inode(root, trans, block_group, path);
3258 if (ret)
3259 goto out_free;
3260 goto again;
3261 }
3262
3263 /* We've already setup this transaction, go ahead and exit */
3264 if (block_group->cache_generation == trans->transid &&
3265 i_size_read(inode)) {
3266 dcs = BTRFS_DC_SETUP;
3267 goto out_put;
3268 }
3269
3270 /*
3271 * We want to set the generation to 0, that way if anything goes wrong
3272 * from here on out we know not to trust this cache when we load up next
3273 * time.
3274 */
3275 BTRFS_I(inode)->generation = 0;
3276 ret = btrfs_update_inode(trans, root, inode);
3277 if (ret) {
3278 /*
3279 * So theoretically we could recover from this, simply set the
3280 * super cache generation to 0 so we know to invalidate the
3281 * cache, but then we'd have to keep track of the block groups
3282 * that fail this way so we know we _have_ to reset this cache
3283 * before the next commit or risk reading stale cache. So to
3284 * limit our exposure to horrible edge cases lets just abort the
3285 * transaction, this only happens in really bad situations
3286 * anyway.
3287 */
3288 btrfs_abort_transaction(trans, root, ret);
3289 goto out_put;
3290 }
3291 WARN_ON(ret);
3292
3293 if (i_size_read(inode) > 0) {
3294 ret = btrfs_check_trunc_cache_free_space(root,
3295 &root->fs_info->global_block_rsv);
3296 if (ret)
3297 goto out_put;
3298
3299 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3300 if (ret)
3301 goto out_put;
3302 }
3303
3304 spin_lock(&block_group->lock);
3305 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3306 !btrfs_test_opt(root, SPACE_CACHE)) {
3307 /*
3308 * don't bother trying to write stuff out _if_
3309 * a) we're not cached,
3310 * b) we're with nospace_cache mount option.
3311 */
3312 dcs = BTRFS_DC_WRITTEN;
3313 spin_unlock(&block_group->lock);
3314 goto out_put;
3315 }
3316 spin_unlock(&block_group->lock);
3317
3318 /*
3319 * Try to preallocate enough space based on how big the block group is.
3320 * Keep in mind this has to include any pinned space which could end up
3321 * taking up quite a bit since it's not folded into the other space
3322 * cache.
3323 */
3324 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3325 if (!num_pages)
3326 num_pages = 1;
3327
3328 num_pages *= 16;
3329 num_pages *= PAGE_CACHE_SIZE;
3330
3331 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3332 if (ret)
3333 goto out_put;
3334
3335 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3336 num_pages, num_pages,
3337 &alloc_hint);
3338 if (!ret)
3339 dcs = BTRFS_DC_SETUP;
3340 btrfs_free_reserved_data_space(inode, num_pages);
3341
3342 out_put:
3343 iput(inode);
3344 out_free:
3345 btrfs_release_path(path);
3346 out:
3347 spin_lock(&block_group->lock);
3348 if (!ret && dcs == BTRFS_DC_SETUP)
3349 block_group->cache_generation = trans->transid;
3350 block_group->disk_cache_state = dcs;
3351 spin_unlock(&block_group->lock);
3352
3353 return ret;
3354 }
3355
3356 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3357 struct btrfs_root *root)
3358 {
3359 struct btrfs_block_group_cache *cache, *tmp;
3360 struct btrfs_transaction *cur_trans = trans->transaction;
3361 struct btrfs_path *path;
3362
3363 if (list_empty(&cur_trans->dirty_bgs) ||
3364 !btrfs_test_opt(root, SPACE_CACHE))
3365 return 0;
3366
3367 path = btrfs_alloc_path();
3368 if (!path)
3369 return -ENOMEM;
3370
3371 /* Could add new block groups, use _safe just in case */
3372 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3373 dirty_list) {
3374 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3375 cache_save_setup(cache, trans, path);
3376 }
3377
3378 btrfs_free_path(path);
3379 return 0;
3380 }
3381
3382 /*
3383 * transaction commit does final block group cache writeback during a
3384 * critical section where nothing is allowed to change the FS. This is
3385 * required in order for the cache to actually match the block group,
3386 * but can introduce a lot of latency into the commit.
3387 *
3388 * So, btrfs_start_dirty_block_groups is here to kick off block group
3389 * cache IO. There's a chance we'll have to redo some of it if the
3390 * block group changes again during the commit, but it greatly reduces
3391 * the commit latency by getting rid of the easy block groups while
3392 * we're still allowing others to join the commit.
3393 */
3394 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3395 struct btrfs_root *root)
3396 {
3397 struct btrfs_block_group_cache *cache;
3398 struct btrfs_transaction *cur_trans = trans->transaction;
3399 int ret = 0;
3400 int should_put;
3401 struct btrfs_path *path = NULL;
3402 LIST_HEAD(dirty);
3403 struct list_head *io = &cur_trans->io_bgs;
3404 int num_started = 0;
3405 int loops = 0;
3406
3407 spin_lock(&cur_trans->dirty_bgs_lock);
3408 if (list_empty(&cur_trans->dirty_bgs)) {
3409 spin_unlock(&cur_trans->dirty_bgs_lock);
3410 return 0;
3411 }
3412 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3413 spin_unlock(&cur_trans->dirty_bgs_lock);
3414
3415 again:
3416 /*
3417 * make sure all the block groups on our dirty list actually
3418 * exist
3419 */
3420 btrfs_create_pending_block_groups(trans, root);
3421
3422 if (!path) {
3423 path = btrfs_alloc_path();
3424 if (!path)
3425 return -ENOMEM;
3426 }
3427
3428 /*
3429 * cache_write_mutex is here only to save us from balance or automatic
3430 * removal of empty block groups deleting this block group while we are
3431 * writing out the cache
3432 */
3433 mutex_lock(&trans->transaction->cache_write_mutex);
3434 while (!list_empty(&dirty)) {
3435 cache = list_first_entry(&dirty,
3436 struct btrfs_block_group_cache,
3437 dirty_list);
3438 /*
3439 * this can happen if something re-dirties a block
3440 * group that is already under IO. Just wait for it to
3441 * finish and then do it all again
3442 */
3443 if (!list_empty(&cache->io_list)) {
3444 list_del_init(&cache->io_list);
3445 btrfs_wait_cache_io(root, trans, cache,
3446 &cache->io_ctl, path,
3447 cache->key.objectid);
3448 btrfs_put_block_group(cache);
3449 }
3450
3451
3452 /*
3453 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3454 * if it should update the cache_state. Don't delete
3455 * until after we wait.
3456 *
3457 * Since we're not running in the commit critical section
3458 * we need the dirty_bgs_lock to protect from update_block_group
3459 */
3460 spin_lock(&cur_trans->dirty_bgs_lock);
3461 list_del_init(&cache->dirty_list);
3462 spin_unlock(&cur_trans->dirty_bgs_lock);
3463
3464 should_put = 1;
3465
3466 cache_save_setup(cache, trans, path);
3467
3468 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3469 cache->io_ctl.inode = NULL;
3470 ret = btrfs_write_out_cache(root, trans, cache, path);
3471 if (ret == 0 && cache->io_ctl.inode) {
3472 num_started++;
3473 should_put = 0;
3474
3475 /*
3476 * the cache_write_mutex is protecting
3477 * the io_list
3478 */
3479 list_add_tail(&cache->io_list, io);
3480 } else {
3481 /*
3482 * if we failed to write the cache, the
3483 * generation will be bad and life goes on
3484 */
3485 ret = 0;
3486 }
3487 }
3488 if (!ret) {
3489 ret = write_one_cache_group(trans, root, path, cache);
3490 /*
3491 * Our block group might still be attached to the list
3492 * of new block groups in the transaction handle of some
3493 * other task (struct btrfs_trans_handle->new_bgs). This
3494 * means its block group item isn't yet in the extent
3495 * tree. If this happens ignore the error, as we will
3496 * try again later in the critical section of the
3497 * transaction commit.
3498 */
3499 if (ret == -ENOENT) {
3500 ret = 0;
3501 spin_lock(&cur_trans->dirty_bgs_lock);
3502 if (list_empty(&cache->dirty_list)) {
3503 list_add_tail(&cache->dirty_list,
3504 &cur_trans->dirty_bgs);
3505 btrfs_get_block_group(cache);
3506 }
3507 spin_unlock(&cur_trans->dirty_bgs_lock);
3508 } else if (ret) {
3509 btrfs_abort_transaction(trans, root, ret);
3510 }
3511 }
3512
3513 /* if its not on the io list, we need to put the block group */
3514 if (should_put)
3515 btrfs_put_block_group(cache);
3516
3517 if (ret)
3518 break;
3519
3520 /*
3521 * Avoid blocking other tasks for too long. It might even save
3522 * us from writing caches for block groups that are going to be
3523 * removed.
3524 */
3525 mutex_unlock(&trans->transaction->cache_write_mutex);
3526 mutex_lock(&trans->transaction->cache_write_mutex);
3527 }
3528 mutex_unlock(&trans->transaction->cache_write_mutex);
3529
3530 /*
3531 * go through delayed refs for all the stuff we've just kicked off
3532 * and then loop back (just once)
3533 */
3534 ret = btrfs_run_delayed_refs(trans, root, 0);
3535 if (!ret && loops == 0) {
3536 loops++;
3537 spin_lock(&cur_trans->dirty_bgs_lock);
3538 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3539 /*
3540 * dirty_bgs_lock protects us from concurrent block group
3541 * deletes too (not just cache_write_mutex).
3542 */
3543 if (!list_empty(&dirty)) {
3544 spin_unlock(&cur_trans->dirty_bgs_lock);
3545 goto again;
3546 }
3547 spin_unlock(&cur_trans->dirty_bgs_lock);
3548 }
3549
3550 btrfs_free_path(path);
3551 return ret;
3552 }
3553
3554 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3555 struct btrfs_root *root)
3556 {
3557 struct btrfs_block_group_cache *cache;
3558 struct btrfs_transaction *cur_trans = trans->transaction;
3559 int ret = 0;
3560 int should_put;
3561 struct btrfs_path *path;
3562 struct list_head *io = &cur_trans->io_bgs;
3563 int num_started = 0;
3564
3565 path = btrfs_alloc_path();
3566 if (!path)
3567 return -ENOMEM;
3568
3569 /*
3570 * We don't need the lock here since we are protected by the transaction
3571 * commit. We want to do the cache_save_setup first and then run the
3572 * delayed refs to make sure we have the best chance at doing this all
3573 * in one shot.
3574 */
3575 while (!list_empty(&cur_trans->dirty_bgs)) {
3576 cache = list_first_entry(&cur_trans->dirty_bgs,
3577 struct btrfs_block_group_cache,
3578 dirty_list);
3579
3580 /*
3581 * this can happen if cache_save_setup re-dirties a block
3582 * group that is already under IO. Just wait for it to
3583 * finish and then do it all again
3584 */
3585 if (!list_empty(&cache->io_list)) {
3586 list_del_init(&cache->io_list);
3587 btrfs_wait_cache_io(root, trans, cache,
3588 &cache->io_ctl, path,
3589 cache->key.objectid);
3590 btrfs_put_block_group(cache);
3591 }
3592
3593 /*
3594 * don't remove from the dirty list until after we've waited
3595 * on any pending IO
3596 */
3597 list_del_init(&cache->dirty_list);
3598 should_put = 1;
3599
3600 cache_save_setup(cache, trans, path);
3601
3602 if (!ret)
3603 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3604
3605 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3606 cache->io_ctl.inode = NULL;
3607 ret = btrfs_write_out_cache(root, trans, cache, path);
3608 if (ret == 0 && cache->io_ctl.inode) {
3609 num_started++;
3610 should_put = 0;
3611 list_add_tail(&cache->io_list, io);
3612 } else {
3613 /*
3614 * if we failed to write the cache, the
3615 * generation will be bad and life goes on
3616 */
3617 ret = 0;
3618 }
3619 }
3620 if (!ret) {
3621 ret = write_one_cache_group(trans, root, path, cache);
3622 if (ret)
3623 btrfs_abort_transaction(trans, root, ret);
3624 }
3625
3626 /* if its not on the io list, we need to put the block group */
3627 if (should_put)
3628 btrfs_put_block_group(cache);
3629 }
3630
3631 while (!list_empty(io)) {
3632 cache = list_first_entry(io, struct btrfs_block_group_cache,
3633 io_list);
3634 list_del_init(&cache->io_list);
3635 btrfs_wait_cache_io(root, trans, cache,
3636 &cache->io_ctl, path, cache->key.objectid);
3637 btrfs_put_block_group(cache);
3638 }
3639
3640 btrfs_free_path(path);
3641 return ret;
3642 }
3643
3644 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3645 {
3646 struct btrfs_block_group_cache *block_group;
3647 int readonly = 0;
3648
3649 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3650 if (!block_group || block_group->ro)
3651 readonly = 1;
3652 if (block_group)
3653 btrfs_put_block_group(block_group);
3654 return readonly;
3655 }
3656
3657 static const char *alloc_name(u64 flags)
3658 {
3659 switch (flags) {
3660 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3661 return "mixed";
3662 case BTRFS_BLOCK_GROUP_METADATA:
3663 return "metadata";
3664 case BTRFS_BLOCK_GROUP_DATA:
3665 return "data";
3666 case BTRFS_BLOCK_GROUP_SYSTEM:
3667 return "system";
3668 default:
3669 WARN_ON(1);
3670 return "invalid-combination";
3671 };
3672 }
3673
3674 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3675 u64 total_bytes, u64 bytes_used,
3676 struct btrfs_space_info **space_info)
3677 {
3678 struct btrfs_space_info *found;
3679 int i;
3680 int factor;
3681 int ret;
3682
3683 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3684 BTRFS_BLOCK_GROUP_RAID10))
3685 factor = 2;
3686 else
3687 factor = 1;
3688
3689 found = __find_space_info(info, flags);
3690 if (found) {
3691 spin_lock(&found->lock);
3692 found->total_bytes += total_bytes;
3693 found->disk_total += total_bytes * factor;
3694 found->bytes_used += bytes_used;
3695 found->disk_used += bytes_used * factor;
3696 if (total_bytes > 0)
3697 found->full = 0;
3698 spin_unlock(&found->lock);
3699 *space_info = found;
3700 return 0;
3701 }
3702 found = kzalloc(sizeof(*found), GFP_NOFS);
3703 if (!found)
3704 return -ENOMEM;
3705
3706 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3707 if (ret) {
3708 kfree(found);
3709 return ret;
3710 }
3711
3712 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3713 INIT_LIST_HEAD(&found->block_groups[i]);
3714 init_rwsem(&found->groups_sem);
3715 spin_lock_init(&found->lock);
3716 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3717 found->total_bytes = total_bytes;
3718 found->disk_total = total_bytes * factor;
3719 found->bytes_used = bytes_used;
3720 found->disk_used = bytes_used * factor;
3721 found->bytes_pinned = 0;
3722 found->bytes_reserved = 0;
3723 found->bytes_readonly = 0;
3724 found->bytes_may_use = 0;
3725 if (total_bytes > 0)
3726 found->full = 0;
3727 else
3728 found->full = 1;
3729 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3730 found->chunk_alloc = 0;
3731 found->flush = 0;
3732 init_waitqueue_head(&found->wait);
3733 INIT_LIST_HEAD(&found->ro_bgs);
3734
3735 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3736 info->space_info_kobj, "%s",
3737 alloc_name(found->flags));
3738 if (ret) {
3739 kfree(found);
3740 return ret;
3741 }
3742
3743 *space_info = found;
3744 list_add_rcu(&found->list, &info->space_info);
3745 if (flags & BTRFS_BLOCK_GROUP_DATA)
3746 info->data_sinfo = found;
3747
3748 return ret;
3749 }
3750
3751 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3752 {
3753 u64 extra_flags = chunk_to_extended(flags) &
3754 BTRFS_EXTENDED_PROFILE_MASK;
3755
3756 write_seqlock(&fs_info->profiles_lock);
3757 if (flags & BTRFS_BLOCK_GROUP_DATA)
3758 fs_info->avail_data_alloc_bits |= extra_flags;
3759 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3760 fs_info->avail_metadata_alloc_bits |= extra_flags;
3761 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3762 fs_info->avail_system_alloc_bits |= extra_flags;
3763 write_sequnlock(&fs_info->profiles_lock);
3764 }
3765
3766 /*
3767 * returns target flags in extended format or 0 if restripe for this
3768 * chunk_type is not in progress
3769 *
3770 * should be called with either volume_mutex or balance_lock held
3771 */
3772 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3773 {
3774 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3775 u64 target = 0;
3776
3777 if (!bctl)
3778 return 0;
3779
3780 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3781 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3782 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3783 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3784 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3785 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3786 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3787 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3788 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3789 }
3790
3791 return target;
3792 }
3793
3794 /*
3795 * @flags: available profiles in extended format (see ctree.h)
3796 *
3797 * Returns reduced profile in chunk format. If profile changing is in
3798 * progress (either running or paused) picks the target profile (if it's
3799 * already available), otherwise falls back to plain reducing.
3800 */
3801 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3802 {
3803 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3804 u64 target;
3805 u64 tmp;
3806
3807 /*
3808 * see if restripe for this chunk_type is in progress, if so
3809 * try to reduce to the target profile
3810 */
3811 spin_lock(&root->fs_info->balance_lock);
3812 target = get_restripe_target(root->fs_info, flags);
3813 if (target) {
3814 /* pick target profile only if it's already available */
3815 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3816 spin_unlock(&root->fs_info->balance_lock);
3817 return extended_to_chunk(target);
3818 }
3819 }
3820 spin_unlock(&root->fs_info->balance_lock);
3821
3822 /* First, mask out the RAID levels which aren't possible */
3823 if (num_devices == 1)
3824 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3825 BTRFS_BLOCK_GROUP_RAID5);
3826 if (num_devices < 3)
3827 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3828 if (num_devices < 4)
3829 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3830
3831 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3832 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3833 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3834 flags &= ~tmp;
3835
3836 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3837 tmp = BTRFS_BLOCK_GROUP_RAID6;
3838 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3839 tmp = BTRFS_BLOCK_GROUP_RAID5;
3840 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3841 tmp = BTRFS_BLOCK_GROUP_RAID10;
3842 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3843 tmp = BTRFS_BLOCK_GROUP_RAID1;
3844 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3845 tmp = BTRFS_BLOCK_GROUP_RAID0;
3846
3847 return extended_to_chunk(flags | tmp);
3848 }
3849
3850 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3851 {
3852 unsigned seq;
3853 u64 flags;
3854
3855 do {
3856 flags = orig_flags;
3857 seq = read_seqbegin(&root->fs_info->profiles_lock);
3858
3859 if (flags & BTRFS_BLOCK_GROUP_DATA)
3860 flags |= root->fs_info->avail_data_alloc_bits;
3861 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3862 flags |= root->fs_info->avail_system_alloc_bits;
3863 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3864 flags |= root->fs_info->avail_metadata_alloc_bits;
3865 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3866
3867 return btrfs_reduce_alloc_profile(root, flags);
3868 }
3869
3870 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3871 {
3872 u64 flags;
3873 u64 ret;
3874
3875 if (data)
3876 flags = BTRFS_BLOCK_GROUP_DATA;
3877 else if (root == root->fs_info->chunk_root)
3878 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3879 else
3880 flags = BTRFS_BLOCK_GROUP_METADATA;
3881
3882 ret = get_alloc_profile(root, flags);
3883 return ret;
3884 }
3885
3886 /*
3887 * This will check the space that the inode allocates from to make sure we have
3888 * enough space for bytes.
3889 */
3890 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3891 {
3892 struct btrfs_space_info *data_sinfo;
3893 struct btrfs_root *root = BTRFS_I(inode)->root;
3894 struct btrfs_fs_info *fs_info = root->fs_info;
3895 u64 used;
3896 int ret = 0;
3897 int need_commit = 2;
3898 int have_pinned_space;
3899
3900 /* make sure bytes are sectorsize aligned */
3901 bytes = ALIGN(bytes, root->sectorsize);
3902
3903 if (btrfs_is_free_space_inode(inode)) {
3904 need_commit = 0;
3905 ASSERT(current->journal_info);
3906 }
3907
3908 data_sinfo = fs_info->data_sinfo;
3909 if (!data_sinfo)
3910 goto alloc;
3911
3912 again:
3913 /* make sure we have enough space to handle the data first */
3914 spin_lock(&data_sinfo->lock);
3915 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3916 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3917 data_sinfo->bytes_may_use;
3918
3919 if (used + bytes > data_sinfo->total_bytes) {
3920 struct btrfs_trans_handle *trans;
3921
3922 /*
3923 * if we don't have enough free bytes in this space then we need
3924 * to alloc a new chunk.
3925 */
3926 if (!data_sinfo->full) {
3927 u64 alloc_target;
3928
3929 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3930 spin_unlock(&data_sinfo->lock);
3931 alloc:
3932 alloc_target = btrfs_get_alloc_profile(root, 1);
3933 /*
3934 * It is ugly that we don't call nolock join
3935 * transaction for the free space inode case here.
3936 * But it is safe because we only do the data space
3937 * reservation for the free space cache in the
3938 * transaction context, the common join transaction
3939 * just increase the counter of the current transaction
3940 * handler, doesn't try to acquire the trans_lock of
3941 * the fs.
3942 */
3943 trans = btrfs_join_transaction(root);
3944 if (IS_ERR(trans))
3945 return PTR_ERR(trans);
3946
3947 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3948 alloc_target,
3949 CHUNK_ALLOC_NO_FORCE);
3950 btrfs_end_transaction(trans, root);
3951 if (ret < 0) {
3952 if (ret != -ENOSPC)
3953 return ret;
3954 else {
3955 have_pinned_space = 1;
3956 goto commit_trans;
3957 }
3958 }
3959
3960 if (!data_sinfo)
3961 data_sinfo = fs_info->data_sinfo;
3962
3963 goto again;
3964 }
3965
3966 /*
3967 * If we don't have enough pinned space to deal with this
3968 * allocation, and no removed chunk in current transaction,
3969 * don't bother committing the transaction.
3970 */
3971 have_pinned_space = percpu_counter_compare(
3972 &data_sinfo->total_bytes_pinned,
3973 used + bytes - data_sinfo->total_bytes);
3974 spin_unlock(&data_sinfo->lock);
3975
3976 /* commit the current transaction and try again */
3977 commit_trans:
3978 if (need_commit &&
3979 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3980 need_commit--;
3981
3982 trans = btrfs_join_transaction(root);
3983 if (IS_ERR(trans))
3984 return PTR_ERR(trans);
3985 if (have_pinned_space >= 0 ||
3986 trans->transaction->have_free_bgs ||
3987 need_commit > 0) {
3988 ret = btrfs_commit_transaction(trans, root);
3989 if (ret)
3990 return ret;
3991 /*
3992 * make sure that all running delayed iput are
3993 * done
3994 */
3995 down_write(&root->fs_info->delayed_iput_sem);
3996 up_write(&root->fs_info->delayed_iput_sem);
3997 goto again;
3998 } else {
3999 btrfs_end_transaction(trans, root);
4000 }
4001 }
4002
4003 trace_btrfs_space_reservation(root->fs_info,
4004 "space_info:enospc",
4005 data_sinfo->flags, bytes, 1);
4006 return -ENOSPC;
4007 }
4008 ret = btrfs_qgroup_reserve(root, write_bytes);
4009 if (ret)
4010 goto out;
4011 data_sinfo->bytes_may_use += bytes;
4012 trace_btrfs_space_reservation(root->fs_info, "space_info",
4013 data_sinfo->flags, bytes, 1);
4014 out:
4015 spin_unlock(&data_sinfo->lock);
4016
4017 return ret;
4018 }
4019
4020 /*
4021 * Called if we need to clear a data reservation for this inode.
4022 */
4023 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4024 {
4025 struct btrfs_root *root = BTRFS_I(inode)->root;
4026 struct btrfs_space_info *data_sinfo;
4027
4028 /* make sure bytes are sectorsize aligned */
4029 bytes = ALIGN(bytes, root->sectorsize);
4030
4031 data_sinfo = root->fs_info->data_sinfo;
4032 spin_lock(&data_sinfo->lock);
4033 WARN_ON(data_sinfo->bytes_may_use < bytes);
4034 data_sinfo->bytes_may_use -= bytes;
4035 trace_btrfs_space_reservation(root->fs_info, "space_info",
4036 data_sinfo->flags, bytes, 0);
4037 spin_unlock(&data_sinfo->lock);
4038 }
4039
4040 static void force_metadata_allocation(struct btrfs_fs_info *info)
4041 {
4042 struct list_head *head = &info->space_info;
4043 struct btrfs_space_info *found;
4044
4045 rcu_read_lock();
4046 list_for_each_entry_rcu(found, head, list) {
4047 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4048 found->force_alloc = CHUNK_ALLOC_FORCE;
4049 }
4050 rcu_read_unlock();
4051 }
4052
4053 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4054 {
4055 return (global->size << 1);
4056 }
4057
4058 static int should_alloc_chunk(struct btrfs_root *root,
4059 struct btrfs_space_info *sinfo, int force)
4060 {
4061 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4062 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4063 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4064 u64 thresh;
4065
4066 if (force == CHUNK_ALLOC_FORCE)
4067 return 1;
4068
4069 /*
4070 * We need to take into account the global rsv because for all intents
4071 * and purposes it's used space. Don't worry about locking the
4072 * global_rsv, it doesn't change except when the transaction commits.
4073 */
4074 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4075 num_allocated += calc_global_rsv_need_space(global_rsv);
4076
4077 /*
4078 * in limited mode, we want to have some free space up to
4079 * about 1% of the FS size.
4080 */
4081 if (force == CHUNK_ALLOC_LIMITED) {
4082 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4083 thresh = max_t(u64, 64 * 1024 * 1024,
4084 div_factor_fine(thresh, 1));
4085
4086 if (num_bytes - num_allocated < thresh)
4087 return 1;
4088 }
4089
4090 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4091 return 0;
4092 return 1;
4093 }
4094
4095 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4096 {
4097 u64 num_dev;
4098
4099 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4100 BTRFS_BLOCK_GROUP_RAID0 |
4101 BTRFS_BLOCK_GROUP_RAID5 |
4102 BTRFS_BLOCK_GROUP_RAID6))
4103 num_dev = root->fs_info->fs_devices->rw_devices;
4104 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4105 num_dev = 2;
4106 else
4107 num_dev = 1; /* DUP or single */
4108
4109 return num_dev;
4110 }
4111
4112 /*
4113 * If @is_allocation is true, reserve space in the system space info necessary
4114 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4115 * removing a chunk.
4116 */
4117 void check_system_chunk(struct btrfs_trans_handle *trans,
4118 struct btrfs_root *root,
4119 u64 type)
4120 {
4121 struct btrfs_space_info *info;
4122 u64 left;
4123 u64 thresh;
4124 int ret = 0;
4125 u64 num_devs;
4126
4127 /*
4128 * Needed because we can end up allocating a system chunk and for an
4129 * atomic and race free space reservation in the chunk block reserve.
4130 */
4131 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4132
4133 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4134 spin_lock(&info->lock);
4135 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4136 info->bytes_reserved - info->bytes_readonly -
4137 info->bytes_may_use;
4138 spin_unlock(&info->lock);
4139
4140 num_devs = get_profile_num_devs(root, type);
4141
4142 /* num_devs device items to update and 1 chunk item to add or remove */
4143 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4144 btrfs_calc_trans_metadata_size(root, 1);
4145
4146 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4147 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4148 left, thresh, type);
4149 dump_space_info(info, 0, 0);
4150 }
4151
4152 if (left < thresh) {
4153 u64 flags;
4154
4155 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4156 /*
4157 * Ignore failure to create system chunk. We might end up not
4158 * needing it, as we might not need to COW all nodes/leafs from
4159 * the paths we visit in the chunk tree (they were already COWed
4160 * or created in the current transaction for example).
4161 */
4162 ret = btrfs_alloc_chunk(trans, root, flags);
4163 }
4164
4165 if (!ret) {
4166 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4167 &root->fs_info->chunk_block_rsv,
4168 thresh, BTRFS_RESERVE_NO_FLUSH);
4169 if (!ret)
4170 trans->chunk_bytes_reserved += thresh;
4171 }
4172 }
4173
4174 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4175 struct btrfs_root *extent_root, u64 flags, int force)
4176 {
4177 struct btrfs_space_info *space_info;
4178 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4179 int wait_for_alloc = 0;
4180 int ret = 0;
4181
4182 /* Don't re-enter if we're already allocating a chunk */
4183 if (trans->allocating_chunk)
4184 return -ENOSPC;
4185
4186 space_info = __find_space_info(extent_root->fs_info, flags);
4187 if (!space_info) {
4188 ret = update_space_info(extent_root->fs_info, flags,
4189 0, 0, &space_info);
4190 BUG_ON(ret); /* -ENOMEM */
4191 }
4192 BUG_ON(!space_info); /* Logic error */
4193
4194 again:
4195 spin_lock(&space_info->lock);
4196 if (force < space_info->force_alloc)
4197 force = space_info->force_alloc;
4198 if (space_info->full) {
4199 if (should_alloc_chunk(extent_root, space_info, force))
4200 ret = -ENOSPC;
4201 else
4202 ret = 0;
4203 spin_unlock(&space_info->lock);
4204 return ret;
4205 }
4206
4207 if (!should_alloc_chunk(extent_root, space_info, force)) {
4208 spin_unlock(&space_info->lock);
4209 return 0;
4210 } else if (space_info->chunk_alloc) {
4211 wait_for_alloc = 1;
4212 } else {
4213 space_info->chunk_alloc = 1;
4214 }
4215
4216 spin_unlock(&space_info->lock);
4217
4218 mutex_lock(&fs_info->chunk_mutex);
4219
4220 /*
4221 * The chunk_mutex is held throughout the entirety of a chunk
4222 * allocation, so once we've acquired the chunk_mutex we know that the
4223 * other guy is done and we need to recheck and see if we should
4224 * allocate.
4225 */
4226 if (wait_for_alloc) {
4227 mutex_unlock(&fs_info->chunk_mutex);
4228 wait_for_alloc = 0;
4229 goto again;
4230 }
4231
4232 trans->allocating_chunk = true;
4233
4234 /*
4235 * If we have mixed data/metadata chunks we want to make sure we keep
4236 * allocating mixed chunks instead of individual chunks.
4237 */
4238 if (btrfs_mixed_space_info(space_info))
4239 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4240
4241 /*
4242 * if we're doing a data chunk, go ahead and make sure that
4243 * we keep a reasonable number of metadata chunks allocated in the
4244 * FS as well.
4245 */
4246 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4247 fs_info->data_chunk_allocations++;
4248 if (!(fs_info->data_chunk_allocations %
4249 fs_info->metadata_ratio))
4250 force_metadata_allocation(fs_info);
4251 }
4252
4253 /*
4254 * Check if we have enough space in SYSTEM chunk because we may need
4255 * to update devices.
4256 */
4257 check_system_chunk(trans, extent_root, flags);
4258
4259 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4260 trans->allocating_chunk = false;
4261
4262 spin_lock(&space_info->lock);
4263 if (ret < 0 && ret != -ENOSPC)
4264 goto out;
4265 if (ret)
4266 space_info->full = 1;
4267 else
4268 ret = 1;
4269
4270 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4271 out:
4272 space_info->chunk_alloc = 0;
4273 spin_unlock(&space_info->lock);
4274 mutex_unlock(&fs_info->chunk_mutex);
4275 return ret;
4276 }
4277
4278 static int can_overcommit(struct btrfs_root *root,
4279 struct btrfs_space_info *space_info, u64 bytes,
4280 enum btrfs_reserve_flush_enum flush)
4281 {
4282 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4283 u64 profile = btrfs_get_alloc_profile(root, 0);
4284 u64 space_size;
4285 u64 avail;
4286 u64 used;
4287
4288 used = space_info->bytes_used + space_info->bytes_reserved +
4289 space_info->bytes_pinned + space_info->bytes_readonly;
4290
4291 /*
4292 * We only want to allow over committing if we have lots of actual space
4293 * free, but if we don't have enough space to handle the global reserve
4294 * space then we could end up having a real enospc problem when trying
4295 * to allocate a chunk or some other such important allocation.
4296 */
4297 spin_lock(&global_rsv->lock);
4298 space_size = calc_global_rsv_need_space(global_rsv);
4299 spin_unlock(&global_rsv->lock);
4300 if (used + space_size >= space_info->total_bytes)
4301 return 0;
4302
4303 used += space_info->bytes_may_use;
4304
4305 spin_lock(&root->fs_info->free_chunk_lock);
4306 avail = root->fs_info->free_chunk_space;
4307 spin_unlock(&root->fs_info->free_chunk_lock);
4308
4309 /*
4310 * If we have dup, raid1 or raid10 then only half of the free
4311 * space is actually useable. For raid56, the space info used
4312 * doesn't include the parity drive, so we don't have to
4313 * change the math
4314 */
4315 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4316 BTRFS_BLOCK_GROUP_RAID1 |
4317 BTRFS_BLOCK_GROUP_RAID10))
4318 avail >>= 1;
4319
4320 /*
4321 * If we aren't flushing all things, let us overcommit up to
4322 * 1/2th of the space. If we can flush, don't let us overcommit
4323 * too much, let it overcommit up to 1/8 of the space.
4324 */
4325 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4326 avail >>= 3;
4327 else
4328 avail >>= 1;
4329
4330 if (used + bytes < space_info->total_bytes + avail)
4331 return 1;
4332 return 0;
4333 }
4334
4335 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4336 unsigned long nr_pages, int nr_items)
4337 {
4338 struct super_block *sb = root->fs_info->sb;
4339
4340 if (down_read_trylock(&sb->s_umount)) {
4341 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4342 up_read(&sb->s_umount);
4343 } else {
4344 /*
4345 * We needn't worry the filesystem going from r/w to r/o though
4346 * we don't acquire ->s_umount mutex, because the filesystem
4347 * should guarantee the delalloc inodes list be empty after
4348 * the filesystem is readonly(all dirty pages are written to
4349 * the disk).
4350 */
4351 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4352 if (!current->journal_info)
4353 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4354 }
4355 }
4356
4357 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4358 {
4359 u64 bytes;
4360 int nr;
4361
4362 bytes = btrfs_calc_trans_metadata_size(root, 1);
4363 nr = (int)div64_u64(to_reclaim, bytes);
4364 if (!nr)
4365 nr = 1;
4366 return nr;
4367 }
4368
4369 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4370
4371 /*
4372 * shrink metadata reservation for delalloc
4373 */
4374 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4375 bool wait_ordered)
4376 {
4377 struct btrfs_block_rsv *block_rsv;
4378 struct btrfs_space_info *space_info;
4379 struct btrfs_trans_handle *trans;
4380 u64 delalloc_bytes;
4381 u64 max_reclaim;
4382 long time_left;
4383 unsigned long nr_pages;
4384 int loops;
4385 int items;
4386 enum btrfs_reserve_flush_enum flush;
4387
4388 /* Calc the number of the pages we need flush for space reservation */
4389 items = calc_reclaim_items_nr(root, to_reclaim);
4390 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4391
4392 trans = (struct btrfs_trans_handle *)current->journal_info;
4393 block_rsv = &root->fs_info->delalloc_block_rsv;
4394 space_info = block_rsv->space_info;
4395
4396 delalloc_bytes = percpu_counter_sum_positive(
4397 &root->fs_info->delalloc_bytes);
4398 if (delalloc_bytes == 0) {
4399 if (trans)
4400 return;
4401 if (wait_ordered)
4402 btrfs_wait_ordered_roots(root->fs_info, items);
4403 return;
4404 }
4405
4406 loops = 0;
4407 while (delalloc_bytes && loops < 3) {
4408 max_reclaim = min(delalloc_bytes, to_reclaim);
4409 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4410 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4411 /*
4412 * We need to wait for the async pages to actually start before
4413 * we do anything.
4414 */
4415 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4416 if (!max_reclaim)
4417 goto skip_async;
4418
4419 if (max_reclaim <= nr_pages)
4420 max_reclaim = 0;
4421 else
4422 max_reclaim -= nr_pages;
4423
4424 wait_event(root->fs_info->async_submit_wait,
4425 atomic_read(&root->fs_info->async_delalloc_pages) <=
4426 (int)max_reclaim);
4427 skip_async:
4428 if (!trans)
4429 flush = BTRFS_RESERVE_FLUSH_ALL;
4430 else
4431 flush = BTRFS_RESERVE_NO_FLUSH;
4432 spin_lock(&space_info->lock);
4433 if (can_overcommit(root, space_info, orig, flush)) {
4434 spin_unlock(&space_info->lock);
4435 break;
4436 }
4437 spin_unlock(&space_info->lock);
4438
4439 loops++;
4440 if (wait_ordered && !trans) {
4441 btrfs_wait_ordered_roots(root->fs_info, items);
4442 } else {
4443 time_left = schedule_timeout_killable(1);
4444 if (time_left)
4445 break;
4446 }
4447 delalloc_bytes = percpu_counter_sum_positive(
4448 &root->fs_info->delalloc_bytes);
4449 }
4450 }
4451
4452 /**
4453 * maybe_commit_transaction - possibly commit the transaction if its ok to
4454 * @root - the root we're allocating for
4455 * @bytes - the number of bytes we want to reserve
4456 * @force - force the commit
4457 *
4458 * This will check to make sure that committing the transaction will actually
4459 * get us somewhere and then commit the transaction if it does. Otherwise it
4460 * will return -ENOSPC.
4461 */
4462 static int may_commit_transaction(struct btrfs_root *root,
4463 struct btrfs_space_info *space_info,
4464 u64 bytes, int force)
4465 {
4466 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4467 struct btrfs_trans_handle *trans;
4468
4469 trans = (struct btrfs_trans_handle *)current->journal_info;
4470 if (trans)
4471 return -EAGAIN;
4472
4473 if (force)
4474 goto commit;
4475
4476 /* See if there is enough pinned space to make this reservation */
4477 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4478 bytes) >= 0)
4479 goto commit;
4480
4481 /*
4482 * See if there is some space in the delayed insertion reservation for
4483 * this reservation.
4484 */
4485 if (space_info != delayed_rsv->space_info)
4486 return -ENOSPC;
4487
4488 spin_lock(&delayed_rsv->lock);
4489 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4490 bytes - delayed_rsv->size) >= 0) {
4491 spin_unlock(&delayed_rsv->lock);
4492 return -ENOSPC;
4493 }
4494 spin_unlock(&delayed_rsv->lock);
4495
4496 commit:
4497 trans = btrfs_join_transaction(root);
4498 if (IS_ERR(trans))
4499 return -ENOSPC;
4500
4501 return btrfs_commit_transaction(trans, root);
4502 }
4503
4504 enum flush_state {
4505 FLUSH_DELAYED_ITEMS_NR = 1,
4506 FLUSH_DELAYED_ITEMS = 2,
4507 FLUSH_DELALLOC = 3,
4508 FLUSH_DELALLOC_WAIT = 4,
4509 ALLOC_CHUNK = 5,
4510 COMMIT_TRANS = 6,
4511 };
4512
4513 static int flush_space(struct btrfs_root *root,
4514 struct btrfs_space_info *space_info, u64 num_bytes,
4515 u64 orig_bytes, int state)
4516 {
4517 struct btrfs_trans_handle *trans;
4518 int nr;
4519 int ret = 0;
4520
4521 switch (state) {
4522 case FLUSH_DELAYED_ITEMS_NR:
4523 case FLUSH_DELAYED_ITEMS:
4524 if (state == FLUSH_DELAYED_ITEMS_NR)
4525 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4526 else
4527 nr = -1;
4528
4529 trans = btrfs_join_transaction(root);
4530 if (IS_ERR(trans)) {
4531 ret = PTR_ERR(trans);
4532 break;
4533 }
4534 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4535 btrfs_end_transaction(trans, root);
4536 break;
4537 case FLUSH_DELALLOC:
4538 case FLUSH_DELALLOC_WAIT:
4539 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4540 state == FLUSH_DELALLOC_WAIT);
4541 break;
4542 case ALLOC_CHUNK:
4543 trans = btrfs_join_transaction(root);
4544 if (IS_ERR(trans)) {
4545 ret = PTR_ERR(trans);
4546 break;
4547 }
4548 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4549 btrfs_get_alloc_profile(root, 0),
4550 CHUNK_ALLOC_NO_FORCE);
4551 btrfs_end_transaction(trans, root);
4552 if (ret == -ENOSPC)
4553 ret = 0;
4554 break;
4555 case COMMIT_TRANS:
4556 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4557 break;
4558 default:
4559 ret = -ENOSPC;
4560 break;
4561 }
4562
4563 return ret;
4564 }
4565
4566 static inline u64
4567 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4568 struct btrfs_space_info *space_info)
4569 {
4570 u64 used;
4571 u64 expected;
4572 u64 to_reclaim;
4573
4574 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4575 16 * 1024 * 1024);
4576 spin_lock(&space_info->lock);
4577 if (can_overcommit(root, space_info, to_reclaim,
4578 BTRFS_RESERVE_FLUSH_ALL)) {
4579 to_reclaim = 0;
4580 goto out;
4581 }
4582
4583 used = space_info->bytes_used + space_info->bytes_reserved +
4584 space_info->bytes_pinned + space_info->bytes_readonly +
4585 space_info->bytes_may_use;
4586 if (can_overcommit(root, space_info, 1024 * 1024,
4587 BTRFS_RESERVE_FLUSH_ALL))
4588 expected = div_factor_fine(space_info->total_bytes, 95);
4589 else
4590 expected = div_factor_fine(space_info->total_bytes, 90);
4591
4592 if (used > expected)
4593 to_reclaim = used - expected;
4594 else
4595 to_reclaim = 0;
4596 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4597 space_info->bytes_reserved);
4598 out:
4599 spin_unlock(&space_info->lock);
4600
4601 return to_reclaim;
4602 }
4603
4604 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4605 struct btrfs_fs_info *fs_info, u64 used)
4606 {
4607 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4608
4609 /* If we're just plain full then async reclaim just slows us down. */
4610 if (space_info->bytes_used >= thresh)
4611 return 0;
4612
4613 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4614 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4615 }
4616
4617 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4618 struct btrfs_fs_info *fs_info,
4619 int flush_state)
4620 {
4621 u64 used;
4622
4623 spin_lock(&space_info->lock);
4624 /*
4625 * We run out of space and have not got any free space via flush_space,
4626 * so don't bother doing async reclaim.
4627 */
4628 if (flush_state > COMMIT_TRANS && space_info->full) {
4629 spin_unlock(&space_info->lock);
4630 return 0;
4631 }
4632
4633 used = space_info->bytes_used + space_info->bytes_reserved +
4634 space_info->bytes_pinned + space_info->bytes_readonly +
4635 space_info->bytes_may_use;
4636 if (need_do_async_reclaim(space_info, fs_info, used)) {
4637 spin_unlock(&space_info->lock);
4638 return 1;
4639 }
4640 spin_unlock(&space_info->lock);
4641
4642 return 0;
4643 }
4644
4645 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4646 {
4647 struct btrfs_fs_info *fs_info;
4648 struct btrfs_space_info *space_info;
4649 u64 to_reclaim;
4650 int flush_state;
4651
4652 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4653 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4654
4655 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4656 space_info);
4657 if (!to_reclaim)
4658 return;
4659
4660 flush_state = FLUSH_DELAYED_ITEMS_NR;
4661 do {
4662 flush_space(fs_info->fs_root, space_info, to_reclaim,
4663 to_reclaim, flush_state);
4664 flush_state++;
4665 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4666 flush_state))
4667 return;
4668 } while (flush_state < COMMIT_TRANS);
4669 }
4670
4671 void btrfs_init_async_reclaim_work(struct work_struct *work)
4672 {
4673 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4674 }
4675
4676 /**
4677 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4678 * @root - the root we're allocating for
4679 * @block_rsv - the block_rsv we're allocating for
4680 * @orig_bytes - the number of bytes we want
4681 * @flush - whether or not we can flush to make our reservation
4682 *
4683 * This will reserve orgi_bytes number of bytes from the space info associated
4684 * with the block_rsv. If there is not enough space it will make an attempt to
4685 * flush out space to make room. It will do this by flushing delalloc if
4686 * possible or committing the transaction. If flush is 0 then no attempts to
4687 * regain reservations will be made and this will fail if there is not enough
4688 * space already.
4689 */
4690 static int reserve_metadata_bytes(struct btrfs_root *root,
4691 struct btrfs_block_rsv *block_rsv,
4692 u64 orig_bytes,
4693 enum btrfs_reserve_flush_enum flush)
4694 {
4695 struct btrfs_space_info *space_info = block_rsv->space_info;
4696 u64 used;
4697 u64 num_bytes = orig_bytes;
4698 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4699 int ret = 0;
4700 bool flushing = false;
4701
4702 again:
4703 ret = 0;
4704 spin_lock(&space_info->lock);
4705 /*
4706 * We only want to wait if somebody other than us is flushing and we
4707 * are actually allowed to flush all things.
4708 */
4709 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4710 space_info->flush) {
4711 spin_unlock(&space_info->lock);
4712 /*
4713 * If we have a trans handle we can't wait because the flusher
4714 * may have to commit the transaction, which would mean we would
4715 * deadlock since we are waiting for the flusher to finish, but
4716 * hold the current transaction open.
4717 */
4718 if (current->journal_info)
4719 return -EAGAIN;
4720 ret = wait_event_killable(space_info->wait, !space_info->flush);
4721 /* Must have been killed, return */
4722 if (ret)
4723 return -EINTR;
4724
4725 spin_lock(&space_info->lock);
4726 }
4727
4728 ret = -ENOSPC;
4729 used = space_info->bytes_used + space_info->bytes_reserved +
4730 space_info->bytes_pinned + space_info->bytes_readonly +
4731 space_info->bytes_may_use;
4732
4733 /*
4734 * The idea here is that we've not already over-reserved the block group
4735 * then we can go ahead and save our reservation first and then start
4736 * flushing if we need to. Otherwise if we've already overcommitted
4737 * lets start flushing stuff first and then come back and try to make
4738 * our reservation.
4739 */
4740 if (used <= space_info->total_bytes) {
4741 if (used + orig_bytes <= space_info->total_bytes) {
4742 space_info->bytes_may_use += orig_bytes;
4743 trace_btrfs_space_reservation(root->fs_info,
4744 "space_info", space_info->flags, orig_bytes, 1);
4745 ret = 0;
4746 } else {
4747 /*
4748 * Ok set num_bytes to orig_bytes since we aren't
4749 * overocmmitted, this way we only try and reclaim what
4750 * we need.
4751 */
4752 num_bytes = orig_bytes;
4753 }
4754 } else {
4755 /*
4756 * Ok we're over committed, set num_bytes to the overcommitted
4757 * amount plus the amount of bytes that we need for this
4758 * reservation.
4759 */
4760 num_bytes = used - space_info->total_bytes +
4761 (orig_bytes * 2);
4762 }
4763
4764 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4765 space_info->bytes_may_use += orig_bytes;
4766 trace_btrfs_space_reservation(root->fs_info, "space_info",
4767 space_info->flags, orig_bytes,
4768 1);
4769 ret = 0;
4770 }
4771
4772 /*
4773 * Couldn't make our reservation, save our place so while we're trying
4774 * to reclaim space we can actually use it instead of somebody else
4775 * stealing it from us.
4776 *
4777 * We make the other tasks wait for the flush only when we can flush
4778 * all things.
4779 */
4780 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4781 flushing = true;
4782 space_info->flush = 1;
4783 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4784 used += orig_bytes;
4785 /*
4786 * We will do the space reservation dance during log replay,
4787 * which means we won't have fs_info->fs_root set, so don't do
4788 * the async reclaim as we will panic.
4789 */
4790 if (!root->fs_info->log_root_recovering &&
4791 need_do_async_reclaim(space_info, root->fs_info, used) &&
4792 !work_busy(&root->fs_info->async_reclaim_work))
4793 queue_work(system_unbound_wq,
4794 &root->fs_info->async_reclaim_work);
4795 }
4796 spin_unlock(&space_info->lock);
4797
4798 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4799 goto out;
4800
4801 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4802 flush_state);
4803 flush_state++;
4804
4805 /*
4806 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4807 * would happen. So skip delalloc flush.
4808 */
4809 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4810 (flush_state == FLUSH_DELALLOC ||
4811 flush_state == FLUSH_DELALLOC_WAIT))
4812 flush_state = ALLOC_CHUNK;
4813
4814 if (!ret)
4815 goto again;
4816 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4817 flush_state < COMMIT_TRANS)
4818 goto again;
4819 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4820 flush_state <= COMMIT_TRANS)
4821 goto again;
4822
4823 out:
4824 if (ret == -ENOSPC &&
4825 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4826 struct btrfs_block_rsv *global_rsv =
4827 &root->fs_info->global_block_rsv;
4828
4829 if (block_rsv != global_rsv &&
4830 !block_rsv_use_bytes(global_rsv, orig_bytes))
4831 ret = 0;
4832 }
4833 if (ret == -ENOSPC)
4834 trace_btrfs_space_reservation(root->fs_info,
4835 "space_info:enospc",
4836 space_info->flags, orig_bytes, 1);
4837 if (flushing) {
4838 spin_lock(&space_info->lock);
4839 space_info->flush = 0;
4840 wake_up_all(&space_info->wait);
4841 spin_unlock(&space_info->lock);
4842 }
4843 return ret;
4844 }
4845
4846 static struct btrfs_block_rsv *get_block_rsv(
4847 const struct btrfs_trans_handle *trans,
4848 const struct btrfs_root *root)
4849 {
4850 struct btrfs_block_rsv *block_rsv = NULL;
4851
4852 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4853 block_rsv = trans->block_rsv;
4854
4855 if (root == root->fs_info->csum_root && trans->adding_csums)
4856 block_rsv = trans->block_rsv;
4857
4858 if (root == root->fs_info->uuid_root)
4859 block_rsv = trans->block_rsv;
4860
4861 if (!block_rsv)
4862 block_rsv = root->block_rsv;
4863
4864 if (!block_rsv)
4865 block_rsv = &root->fs_info->empty_block_rsv;
4866
4867 return block_rsv;
4868 }
4869
4870 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4871 u64 num_bytes)
4872 {
4873 int ret = -ENOSPC;
4874 spin_lock(&block_rsv->lock);
4875 if (block_rsv->reserved >= num_bytes) {
4876 block_rsv->reserved -= num_bytes;
4877 if (block_rsv->reserved < block_rsv->size)
4878 block_rsv->full = 0;
4879 ret = 0;
4880 }
4881 spin_unlock(&block_rsv->lock);
4882 return ret;
4883 }
4884
4885 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4886 u64 num_bytes, int update_size)
4887 {
4888 spin_lock(&block_rsv->lock);
4889 block_rsv->reserved += num_bytes;
4890 if (update_size)
4891 block_rsv->size += num_bytes;
4892 else if (block_rsv->reserved >= block_rsv->size)
4893 block_rsv->full = 1;
4894 spin_unlock(&block_rsv->lock);
4895 }
4896
4897 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4898 struct btrfs_block_rsv *dest, u64 num_bytes,
4899 int min_factor)
4900 {
4901 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4902 u64 min_bytes;
4903
4904 if (global_rsv->space_info != dest->space_info)
4905 return -ENOSPC;
4906
4907 spin_lock(&global_rsv->lock);
4908 min_bytes = div_factor(global_rsv->size, min_factor);
4909 if (global_rsv->reserved < min_bytes + num_bytes) {
4910 spin_unlock(&global_rsv->lock);
4911 return -ENOSPC;
4912 }
4913 global_rsv->reserved -= num_bytes;
4914 if (global_rsv->reserved < global_rsv->size)
4915 global_rsv->full = 0;
4916 spin_unlock(&global_rsv->lock);
4917
4918 block_rsv_add_bytes(dest, num_bytes, 1);
4919 return 0;
4920 }
4921
4922 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4923 struct btrfs_block_rsv *block_rsv,
4924 struct btrfs_block_rsv *dest, u64 num_bytes)
4925 {
4926 struct btrfs_space_info *space_info = block_rsv->space_info;
4927
4928 spin_lock(&block_rsv->lock);
4929 if (num_bytes == (u64)-1)
4930 num_bytes = block_rsv->size;
4931 block_rsv->size -= num_bytes;
4932 if (block_rsv->reserved >= block_rsv->size) {
4933 num_bytes = block_rsv->reserved - block_rsv->size;
4934 block_rsv->reserved = block_rsv->size;
4935 block_rsv->full = 1;
4936 } else {
4937 num_bytes = 0;
4938 }
4939 spin_unlock(&block_rsv->lock);
4940
4941 if (num_bytes > 0) {
4942 if (dest) {
4943 spin_lock(&dest->lock);
4944 if (!dest->full) {
4945 u64 bytes_to_add;
4946
4947 bytes_to_add = dest->size - dest->reserved;
4948 bytes_to_add = min(num_bytes, bytes_to_add);
4949 dest->reserved += bytes_to_add;
4950 if (dest->reserved >= dest->size)
4951 dest->full = 1;
4952 num_bytes -= bytes_to_add;
4953 }
4954 spin_unlock(&dest->lock);
4955 }
4956 if (num_bytes) {
4957 spin_lock(&space_info->lock);
4958 space_info->bytes_may_use -= num_bytes;
4959 trace_btrfs_space_reservation(fs_info, "space_info",
4960 space_info->flags, num_bytes, 0);
4961 spin_unlock(&space_info->lock);
4962 }
4963 }
4964 }
4965
4966 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4967 struct btrfs_block_rsv *dst, u64 num_bytes)
4968 {
4969 int ret;
4970
4971 ret = block_rsv_use_bytes(src, num_bytes);
4972 if (ret)
4973 return ret;
4974
4975 block_rsv_add_bytes(dst, num_bytes, 1);
4976 return 0;
4977 }
4978
4979 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4980 {
4981 memset(rsv, 0, sizeof(*rsv));
4982 spin_lock_init(&rsv->lock);
4983 rsv->type = type;
4984 }
4985
4986 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4987 unsigned short type)
4988 {
4989 struct btrfs_block_rsv *block_rsv;
4990 struct btrfs_fs_info *fs_info = root->fs_info;
4991
4992 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4993 if (!block_rsv)
4994 return NULL;
4995
4996 btrfs_init_block_rsv(block_rsv, type);
4997 block_rsv->space_info = __find_space_info(fs_info,
4998 BTRFS_BLOCK_GROUP_METADATA);
4999 return block_rsv;
5000 }
5001
5002 void btrfs_free_block_rsv(struct btrfs_root *root,
5003 struct btrfs_block_rsv *rsv)
5004 {
5005 if (!rsv)
5006 return;
5007 btrfs_block_rsv_release(root, rsv, (u64)-1);
5008 kfree(rsv);
5009 }
5010
5011 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5012 {
5013 kfree(rsv);
5014 }
5015
5016 int btrfs_block_rsv_add(struct btrfs_root *root,
5017 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5018 enum btrfs_reserve_flush_enum flush)
5019 {
5020 int ret;
5021
5022 if (num_bytes == 0)
5023 return 0;
5024
5025 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5026 if (!ret) {
5027 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5028 return 0;
5029 }
5030
5031 return ret;
5032 }
5033
5034 int btrfs_block_rsv_check(struct btrfs_root *root,
5035 struct btrfs_block_rsv *block_rsv, int min_factor)
5036 {
5037 u64 num_bytes = 0;
5038 int ret = -ENOSPC;
5039
5040 if (!block_rsv)
5041 return 0;
5042
5043 spin_lock(&block_rsv->lock);
5044 num_bytes = div_factor(block_rsv->size, min_factor);
5045 if (block_rsv->reserved >= num_bytes)
5046 ret = 0;
5047 spin_unlock(&block_rsv->lock);
5048
5049 return ret;
5050 }
5051
5052 int btrfs_block_rsv_refill(struct btrfs_root *root,
5053 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5054 enum btrfs_reserve_flush_enum flush)
5055 {
5056 u64 num_bytes = 0;
5057 int ret = -ENOSPC;
5058
5059 if (!block_rsv)
5060 return 0;
5061
5062 spin_lock(&block_rsv->lock);
5063 num_bytes = min_reserved;
5064 if (block_rsv->reserved >= num_bytes)
5065 ret = 0;
5066 else
5067 num_bytes -= block_rsv->reserved;
5068 spin_unlock(&block_rsv->lock);
5069
5070 if (!ret)
5071 return 0;
5072
5073 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5074 if (!ret) {
5075 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5076 return 0;
5077 }
5078
5079 return ret;
5080 }
5081
5082 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5083 struct btrfs_block_rsv *dst_rsv,
5084 u64 num_bytes)
5085 {
5086 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5087 }
5088
5089 void btrfs_block_rsv_release(struct btrfs_root *root,
5090 struct btrfs_block_rsv *block_rsv,
5091 u64 num_bytes)
5092 {
5093 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5094 if (global_rsv == block_rsv ||
5095 block_rsv->space_info != global_rsv->space_info)
5096 global_rsv = NULL;
5097 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5098 num_bytes);
5099 }
5100
5101 /*
5102 * helper to calculate size of global block reservation.
5103 * the desired value is sum of space used by extent tree,
5104 * checksum tree and root tree
5105 */
5106 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5107 {
5108 struct btrfs_space_info *sinfo;
5109 u64 num_bytes;
5110 u64 meta_used;
5111 u64 data_used;
5112 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5113
5114 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5115 spin_lock(&sinfo->lock);
5116 data_used = sinfo->bytes_used;
5117 spin_unlock(&sinfo->lock);
5118
5119 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5120 spin_lock(&sinfo->lock);
5121 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5122 data_used = 0;
5123 meta_used = sinfo->bytes_used;
5124 spin_unlock(&sinfo->lock);
5125
5126 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5127 csum_size * 2;
5128 num_bytes += div_u64(data_used + meta_used, 50);
5129
5130 if (num_bytes * 3 > meta_used)
5131 num_bytes = div_u64(meta_used, 3);
5132
5133 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5134 }
5135
5136 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5137 {
5138 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5139 struct btrfs_space_info *sinfo = block_rsv->space_info;
5140 u64 num_bytes;
5141
5142 num_bytes = calc_global_metadata_size(fs_info);
5143
5144 spin_lock(&sinfo->lock);
5145 spin_lock(&block_rsv->lock);
5146
5147 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5148
5149 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5150 sinfo->bytes_reserved + sinfo->bytes_readonly +
5151 sinfo->bytes_may_use;
5152
5153 if (sinfo->total_bytes > num_bytes) {
5154 num_bytes = sinfo->total_bytes - num_bytes;
5155 block_rsv->reserved += num_bytes;
5156 sinfo->bytes_may_use += num_bytes;
5157 trace_btrfs_space_reservation(fs_info, "space_info",
5158 sinfo->flags, num_bytes, 1);
5159 }
5160
5161 if (block_rsv->reserved >= block_rsv->size) {
5162 num_bytes = block_rsv->reserved - block_rsv->size;
5163 sinfo->bytes_may_use -= num_bytes;
5164 trace_btrfs_space_reservation(fs_info, "space_info",
5165 sinfo->flags, num_bytes, 0);
5166 block_rsv->reserved = block_rsv->size;
5167 block_rsv->full = 1;
5168 }
5169
5170 spin_unlock(&block_rsv->lock);
5171 spin_unlock(&sinfo->lock);
5172 }
5173
5174 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5175 {
5176 struct btrfs_space_info *space_info;
5177
5178 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5179 fs_info->chunk_block_rsv.space_info = space_info;
5180
5181 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5182 fs_info->global_block_rsv.space_info = space_info;
5183 fs_info->delalloc_block_rsv.space_info = space_info;
5184 fs_info->trans_block_rsv.space_info = space_info;
5185 fs_info->empty_block_rsv.space_info = space_info;
5186 fs_info->delayed_block_rsv.space_info = space_info;
5187
5188 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5189 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5190 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5191 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5192 if (fs_info->quota_root)
5193 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5194 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5195
5196 update_global_block_rsv(fs_info);
5197 }
5198
5199 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5200 {
5201 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5202 (u64)-1);
5203 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5204 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5205 WARN_ON(fs_info->trans_block_rsv.size > 0);
5206 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5207 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5208 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5209 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5210 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5211 }
5212
5213 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5214 struct btrfs_root *root)
5215 {
5216 if (!trans->block_rsv)
5217 return;
5218
5219 if (!trans->bytes_reserved)
5220 return;
5221
5222 trace_btrfs_space_reservation(root->fs_info, "transaction",
5223 trans->transid, trans->bytes_reserved, 0);
5224 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5225 trans->bytes_reserved = 0;
5226 }
5227
5228 /*
5229 * To be called after all the new block groups attached to the transaction
5230 * handle have been created (btrfs_create_pending_block_groups()).
5231 */
5232 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5233 {
5234 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5235
5236 if (!trans->chunk_bytes_reserved)
5237 return;
5238
5239 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5240
5241 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5242 trans->chunk_bytes_reserved);
5243 trans->chunk_bytes_reserved = 0;
5244 }
5245
5246 /* Can only return 0 or -ENOSPC */
5247 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5248 struct inode *inode)
5249 {
5250 struct btrfs_root *root = BTRFS_I(inode)->root;
5251 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5252 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5253
5254 /*
5255 * We need to hold space in order to delete our orphan item once we've
5256 * added it, so this takes the reservation so we can release it later
5257 * when we are truly done with the orphan item.
5258 */
5259 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5260 trace_btrfs_space_reservation(root->fs_info, "orphan",
5261 btrfs_ino(inode), num_bytes, 1);
5262 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5263 }
5264
5265 void btrfs_orphan_release_metadata(struct inode *inode)
5266 {
5267 struct btrfs_root *root = BTRFS_I(inode)->root;
5268 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5269 trace_btrfs_space_reservation(root->fs_info, "orphan",
5270 btrfs_ino(inode), num_bytes, 0);
5271 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5272 }
5273
5274 /*
5275 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5276 * root: the root of the parent directory
5277 * rsv: block reservation
5278 * items: the number of items that we need do reservation
5279 * qgroup_reserved: used to return the reserved size in qgroup
5280 *
5281 * This function is used to reserve the space for snapshot/subvolume
5282 * creation and deletion. Those operations are different with the
5283 * common file/directory operations, they change two fs/file trees
5284 * and root tree, the number of items that the qgroup reserves is
5285 * different with the free space reservation. So we can not use
5286 * the space reseravtion mechanism in start_transaction().
5287 */
5288 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5289 struct btrfs_block_rsv *rsv,
5290 int items,
5291 u64 *qgroup_reserved,
5292 bool use_global_rsv)
5293 {
5294 u64 num_bytes;
5295 int ret;
5296 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5297
5298 if (root->fs_info->quota_enabled) {
5299 /* One for parent inode, two for dir entries */
5300 num_bytes = 3 * root->nodesize;
5301 ret = btrfs_qgroup_reserve(root, num_bytes);
5302 if (ret)
5303 return ret;
5304 } else {
5305 num_bytes = 0;
5306 }
5307
5308 *qgroup_reserved = num_bytes;
5309
5310 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5311 rsv->space_info = __find_space_info(root->fs_info,
5312 BTRFS_BLOCK_GROUP_METADATA);
5313 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5314 BTRFS_RESERVE_FLUSH_ALL);
5315
5316 if (ret == -ENOSPC && use_global_rsv)
5317 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5318
5319 if (ret) {
5320 if (*qgroup_reserved)
5321 btrfs_qgroup_free(root, *qgroup_reserved);
5322 }
5323
5324 return ret;
5325 }
5326
5327 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5328 struct btrfs_block_rsv *rsv,
5329 u64 qgroup_reserved)
5330 {
5331 btrfs_block_rsv_release(root, rsv, (u64)-1);
5332 }
5333
5334 /**
5335 * drop_outstanding_extent - drop an outstanding extent
5336 * @inode: the inode we're dropping the extent for
5337 * @num_bytes: the number of bytes we're relaseing.
5338 *
5339 * This is called when we are freeing up an outstanding extent, either called
5340 * after an error or after an extent is written. This will return the number of
5341 * reserved extents that need to be freed. This must be called with
5342 * BTRFS_I(inode)->lock held.
5343 */
5344 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5345 {
5346 unsigned drop_inode_space = 0;
5347 unsigned dropped_extents = 0;
5348 unsigned num_extents = 0;
5349
5350 num_extents = (unsigned)div64_u64(num_bytes +
5351 BTRFS_MAX_EXTENT_SIZE - 1,
5352 BTRFS_MAX_EXTENT_SIZE);
5353 ASSERT(num_extents);
5354 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5355 BTRFS_I(inode)->outstanding_extents -= num_extents;
5356
5357 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5358 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5359 &BTRFS_I(inode)->runtime_flags))
5360 drop_inode_space = 1;
5361
5362 /*
5363 * If we have more or the same amount of outsanding extents than we have
5364 * reserved then we need to leave the reserved extents count alone.
5365 */
5366 if (BTRFS_I(inode)->outstanding_extents >=
5367 BTRFS_I(inode)->reserved_extents)
5368 return drop_inode_space;
5369
5370 dropped_extents = BTRFS_I(inode)->reserved_extents -
5371 BTRFS_I(inode)->outstanding_extents;
5372 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5373 return dropped_extents + drop_inode_space;
5374 }
5375
5376 /**
5377 * calc_csum_metadata_size - return the amount of metada space that must be
5378 * reserved/free'd for the given bytes.
5379 * @inode: the inode we're manipulating
5380 * @num_bytes: the number of bytes in question
5381 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5382 *
5383 * This adjusts the number of csum_bytes in the inode and then returns the
5384 * correct amount of metadata that must either be reserved or freed. We
5385 * calculate how many checksums we can fit into one leaf and then divide the
5386 * number of bytes that will need to be checksumed by this value to figure out
5387 * how many checksums will be required. If we are adding bytes then the number
5388 * may go up and we will return the number of additional bytes that must be
5389 * reserved. If it is going down we will return the number of bytes that must
5390 * be freed.
5391 *
5392 * This must be called with BTRFS_I(inode)->lock held.
5393 */
5394 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5395 int reserve)
5396 {
5397 struct btrfs_root *root = BTRFS_I(inode)->root;
5398 u64 old_csums, num_csums;
5399
5400 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5401 BTRFS_I(inode)->csum_bytes == 0)
5402 return 0;
5403
5404 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5405 if (reserve)
5406 BTRFS_I(inode)->csum_bytes += num_bytes;
5407 else
5408 BTRFS_I(inode)->csum_bytes -= num_bytes;
5409 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5410
5411 /* No change, no need to reserve more */
5412 if (old_csums == num_csums)
5413 return 0;
5414
5415 if (reserve)
5416 return btrfs_calc_trans_metadata_size(root,
5417 num_csums - old_csums);
5418
5419 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5420 }
5421
5422 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5423 {
5424 struct btrfs_root *root = BTRFS_I(inode)->root;
5425 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5426 u64 to_reserve = 0;
5427 u64 csum_bytes;
5428 unsigned nr_extents = 0;
5429 int extra_reserve = 0;
5430 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5431 int ret = 0;
5432 bool delalloc_lock = true;
5433 u64 to_free = 0;
5434 unsigned dropped;
5435
5436 /* If we are a free space inode we need to not flush since we will be in
5437 * the middle of a transaction commit. We also don't need the delalloc
5438 * mutex since we won't race with anybody. We need this mostly to make
5439 * lockdep shut its filthy mouth.
5440 */
5441 if (btrfs_is_free_space_inode(inode)) {
5442 flush = BTRFS_RESERVE_NO_FLUSH;
5443 delalloc_lock = false;
5444 }
5445
5446 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5447 btrfs_transaction_in_commit(root->fs_info))
5448 schedule_timeout(1);
5449
5450 if (delalloc_lock)
5451 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5452
5453 num_bytes = ALIGN(num_bytes, root->sectorsize);
5454
5455 spin_lock(&BTRFS_I(inode)->lock);
5456 nr_extents = (unsigned)div64_u64(num_bytes +
5457 BTRFS_MAX_EXTENT_SIZE - 1,
5458 BTRFS_MAX_EXTENT_SIZE);
5459 BTRFS_I(inode)->outstanding_extents += nr_extents;
5460 nr_extents = 0;
5461
5462 if (BTRFS_I(inode)->outstanding_extents >
5463 BTRFS_I(inode)->reserved_extents)
5464 nr_extents = BTRFS_I(inode)->outstanding_extents -
5465 BTRFS_I(inode)->reserved_extents;
5466
5467 /*
5468 * Add an item to reserve for updating the inode when we complete the
5469 * delalloc io.
5470 */
5471 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5472 &BTRFS_I(inode)->runtime_flags)) {
5473 nr_extents++;
5474 extra_reserve = 1;
5475 }
5476
5477 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5478 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5479 csum_bytes = BTRFS_I(inode)->csum_bytes;
5480 spin_unlock(&BTRFS_I(inode)->lock);
5481
5482 if (root->fs_info->quota_enabled) {
5483 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5484 if (ret)
5485 goto out_fail;
5486 }
5487
5488 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5489 if (unlikely(ret)) {
5490 if (root->fs_info->quota_enabled)
5491 btrfs_qgroup_free(root, nr_extents * root->nodesize);
5492 goto out_fail;
5493 }
5494
5495 spin_lock(&BTRFS_I(inode)->lock);
5496 if (extra_reserve) {
5497 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5498 &BTRFS_I(inode)->runtime_flags);
5499 nr_extents--;
5500 }
5501 BTRFS_I(inode)->reserved_extents += nr_extents;
5502 spin_unlock(&BTRFS_I(inode)->lock);
5503
5504 if (delalloc_lock)
5505 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5506
5507 if (to_reserve)
5508 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5509 btrfs_ino(inode), to_reserve, 1);
5510 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5511
5512 return 0;
5513
5514 out_fail:
5515 spin_lock(&BTRFS_I(inode)->lock);
5516 dropped = drop_outstanding_extent(inode, num_bytes);
5517 /*
5518 * If the inodes csum_bytes is the same as the original
5519 * csum_bytes then we know we haven't raced with any free()ers
5520 * so we can just reduce our inodes csum bytes and carry on.
5521 */
5522 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5523 calc_csum_metadata_size(inode, num_bytes, 0);
5524 } else {
5525 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5526 u64 bytes;
5527
5528 /*
5529 * This is tricky, but first we need to figure out how much we
5530 * free'd from any free-ers that occured during this
5531 * reservation, so we reset ->csum_bytes to the csum_bytes
5532 * before we dropped our lock, and then call the free for the
5533 * number of bytes that were freed while we were trying our
5534 * reservation.
5535 */
5536 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5537 BTRFS_I(inode)->csum_bytes = csum_bytes;
5538 to_free = calc_csum_metadata_size(inode, bytes, 0);
5539
5540
5541 /*
5542 * Now we need to see how much we would have freed had we not
5543 * been making this reservation and our ->csum_bytes were not
5544 * artificially inflated.
5545 */
5546 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5547 bytes = csum_bytes - orig_csum_bytes;
5548 bytes = calc_csum_metadata_size(inode, bytes, 0);
5549
5550 /*
5551 * Now reset ->csum_bytes to what it should be. If bytes is
5552 * more than to_free then we would have free'd more space had we
5553 * not had an artificially high ->csum_bytes, so we need to free
5554 * the remainder. If bytes is the same or less then we don't
5555 * need to do anything, the other free-ers did the correct
5556 * thing.
5557 */
5558 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5559 if (bytes > to_free)
5560 to_free = bytes - to_free;
5561 else
5562 to_free = 0;
5563 }
5564 spin_unlock(&BTRFS_I(inode)->lock);
5565 if (dropped)
5566 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5567
5568 if (to_free) {
5569 btrfs_block_rsv_release(root, block_rsv, to_free);
5570 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5571 btrfs_ino(inode), to_free, 0);
5572 }
5573 if (delalloc_lock)
5574 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5575 return ret;
5576 }
5577
5578 /**
5579 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5580 * @inode: the inode to release the reservation for
5581 * @num_bytes: the number of bytes we're releasing
5582 *
5583 * This will release the metadata reservation for an inode. This can be called
5584 * once we complete IO for a given set of bytes to release their metadata
5585 * reservations.
5586 */
5587 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5588 {
5589 struct btrfs_root *root = BTRFS_I(inode)->root;
5590 u64 to_free = 0;
5591 unsigned dropped;
5592
5593 num_bytes = ALIGN(num_bytes, root->sectorsize);
5594 spin_lock(&BTRFS_I(inode)->lock);
5595 dropped = drop_outstanding_extent(inode, num_bytes);
5596
5597 if (num_bytes)
5598 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5599 spin_unlock(&BTRFS_I(inode)->lock);
5600 if (dropped > 0)
5601 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5602
5603 if (btrfs_test_is_dummy_root(root))
5604 return;
5605
5606 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5607 btrfs_ino(inode), to_free, 0);
5608
5609 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5610 to_free);
5611 }
5612
5613 /**
5614 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5615 * @inode: inode we're writing to
5616 * @num_bytes: the number of bytes we want to allocate
5617 *
5618 * This will do the following things
5619 *
5620 * o reserve space in the data space info for num_bytes
5621 * o reserve space in the metadata space info based on number of outstanding
5622 * extents and how much csums will be needed
5623 * o add to the inodes ->delalloc_bytes
5624 * o add it to the fs_info's delalloc inodes list.
5625 *
5626 * This will return 0 for success and -ENOSPC if there is no space left.
5627 */
5628 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5629 {
5630 int ret;
5631
5632 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5633 if (ret)
5634 return ret;
5635
5636 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5637 if (ret) {
5638 btrfs_free_reserved_data_space(inode, num_bytes);
5639 return ret;
5640 }
5641
5642 return 0;
5643 }
5644
5645 /**
5646 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5647 * @inode: inode we're releasing space for
5648 * @num_bytes: the number of bytes we want to free up
5649 *
5650 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5651 * called in the case that we don't need the metadata AND data reservations
5652 * anymore. So if there is an error or we insert an inline extent.
5653 *
5654 * This function will release the metadata space that was not used and will
5655 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5656 * list if there are no delalloc bytes left.
5657 */
5658 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5659 {
5660 btrfs_delalloc_release_metadata(inode, num_bytes);
5661 btrfs_free_reserved_data_space(inode, num_bytes);
5662 }
5663
5664 static int update_block_group(struct btrfs_trans_handle *trans,
5665 struct btrfs_root *root, u64 bytenr,
5666 u64 num_bytes, int alloc)
5667 {
5668 struct btrfs_block_group_cache *cache = NULL;
5669 struct btrfs_fs_info *info = root->fs_info;
5670 u64 total = num_bytes;
5671 u64 old_val;
5672 u64 byte_in_group;
5673 int factor;
5674
5675 /* block accounting for super block */
5676 spin_lock(&info->delalloc_root_lock);
5677 old_val = btrfs_super_bytes_used(info->super_copy);
5678 if (alloc)
5679 old_val += num_bytes;
5680 else
5681 old_val -= num_bytes;
5682 btrfs_set_super_bytes_used(info->super_copy, old_val);
5683 spin_unlock(&info->delalloc_root_lock);
5684
5685 while (total) {
5686 cache = btrfs_lookup_block_group(info, bytenr);
5687 if (!cache)
5688 return -ENOENT;
5689 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5690 BTRFS_BLOCK_GROUP_RAID1 |
5691 BTRFS_BLOCK_GROUP_RAID10))
5692 factor = 2;
5693 else
5694 factor = 1;
5695 /*
5696 * If this block group has free space cache written out, we
5697 * need to make sure to load it if we are removing space. This
5698 * is because we need the unpinning stage to actually add the
5699 * space back to the block group, otherwise we will leak space.
5700 */
5701 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5702 cache_block_group(cache, 1);
5703
5704 byte_in_group = bytenr - cache->key.objectid;
5705 WARN_ON(byte_in_group > cache->key.offset);
5706
5707 spin_lock(&cache->space_info->lock);
5708 spin_lock(&cache->lock);
5709
5710 if (btrfs_test_opt(root, SPACE_CACHE) &&
5711 cache->disk_cache_state < BTRFS_DC_CLEAR)
5712 cache->disk_cache_state = BTRFS_DC_CLEAR;
5713
5714 old_val = btrfs_block_group_used(&cache->item);
5715 num_bytes = min(total, cache->key.offset - byte_in_group);
5716 if (alloc) {
5717 old_val += num_bytes;
5718 btrfs_set_block_group_used(&cache->item, old_val);
5719 cache->reserved -= num_bytes;
5720 cache->space_info->bytes_reserved -= num_bytes;
5721 cache->space_info->bytes_used += num_bytes;
5722 cache->space_info->disk_used += num_bytes * factor;
5723 spin_unlock(&cache->lock);
5724 spin_unlock(&cache->space_info->lock);
5725 } else {
5726 old_val -= num_bytes;
5727 btrfs_set_block_group_used(&cache->item, old_val);
5728 cache->pinned += num_bytes;
5729 cache->space_info->bytes_pinned += num_bytes;
5730 cache->space_info->bytes_used -= num_bytes;
5731 cache->space_info->disk_used -= num_bytes * factor;
5732 spin_unlock(&cache->lock);
5733 spin_unlock(&cache->space_info->lock);
5734
5735 set_extent_dirty(info->pinned_extents,
5736 bytenr, bytenr + num_bytes - 1,
5737 GFP_NOFS | __GFP_NOFAIL);
5738 /*
5739 * No longer have used bytes in this block group, queue
5740 * it for deletion.
5741 */
5742 if (old_val == 0) {
5743 spin_lock(&info->unused_bgs_lock);
5744 if (list_empty(&cache->bg_list)) {
5745 btrfs_get_block_group(cache);
5746 list_add_tail(&cache->bg_list,
5747 &info->unused_bgs);
5748 }
5749 spin_unlock(&info->unused_bgs_lock);
5750 }
5751 }
5752
5753 spin_lock(&trans->transaction->dirty_bgs_lock);
5754 if (list_empty(&cache->dirty_list)) {
5755 list_add_tail(&cache->dirty_list,
5756 &trans->transaction->dirty_bgs);
5757 trans->transaction->num_dirty_bgs++;
5758 btrfs_get_block_group(cache);
5759 }
5760 spin_unlock(&trans->transaction->dirty_bgs_lock);
5761
5762 btrfs_put_block_group(cache);
5763 total -= num_bytes;
5764 bytenr += num_bytes;
5765 }
5766 return 0;
5767 }
5768
5769 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5770 {
5771 struct btrfs_block_group_cache *cache;
5772 u64 bytenr;
5773
5774 spin_lock(&root->fs_info->block_group_cache_lock);
5775 bytenr = root->fs_info->first_logical_byte;
5776 spin_unlock(&root->fs_info->block_group_cache_lock);
5777
5778 if (bytenr < (u64)-1)
5779 return bytenr;
5780
5781 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5782 if (!cache)
5783 return 0;
5784
5785 bytenr = cache->key.objectid;
5786 btrfs_put_block_group(cache);
5787
5788 return bytenr;
5789 }
5790
5791 static int pin_down_extent(struct btrfs_root *root,
5792 struct btrfs_block_group_cache *cache,
5793 u64 bytenr, u64 num_bytes, int reserved)
5794 {
5795 spin_lock(&cache->space_info->lock);
5796 spin_lock(&cache->lock);
5797 cache->pinned += num_bytes;
5798 cache->space_info->bytes_pinned += num_bytes;
5799 if (reserved) {
5800 cache->reserved -= num_bytes;
5801 cache->space_info->bytes_reserved -= num_bytes;
5802 }
5803 spin_unlock(&cache->lock);
5804 spin_unlock(&cache->space_info->lock);
5805
5806 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5807 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5808 if (reserved)
5809 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5810 return 0;
5811 }
5812
5813 /*
5814 * this function must be called within transaction
5815 */
5816 int btrfs_pin_extent(struct btrfs_root *root,
5817 u64 bytenr, u64 num_bytes, int reserved)
5818 {
5819 struct btrfs_block_group_cache *cache;
5820
5821 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5822 BUG_ON(!cache); /* Logic error */
5823
5824 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5825
5826 btrfs_put_block_group(cache);
5827 return 0;
5828 }
5829
5830 /*
5831 * this function must be called within transaction
5832 */
5833 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5834 u64 bytenr, u64 num_bytes)
5835 {
5836 struct btrfs_block_group_cache *cache;
5837 int ret;
5838
5839 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5840 if (!cache)
5841 return -EINVAL;
5842
5843 /*
5844 * pull in the free space cache (if any) so that our pin
5845 * removes the free space from the cache. We have load_only set
5846 * to one because the slow code to read in the free extents does check
5847 * the pinned extents.
5848 */
5849 cache_block_group(cache, 1);
5850
5851 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5852
5853 /* remove us from the free space cache (if we're there at all) */
5854 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5855 btrfs_put_block_group(cache);
5856 return ret;
5857 }
5858
5859 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5860 {
5861 int ret;
5862 struct btrfs_block_group_cache *block_group;
5863 struct btrfs_caching_control *caching_ctl;
5864
5865 block_group = btrfs_lookup_block_group(root->fs_info, start);
5866 if (!block_group)
5867 return -EINVAL;
5868
5869 cache_block_group(block_group, 0);
5870 caching_ctl = get_caching_control(block_group);
5871
5872 if (!caching_ctl) {
5873 /* Logic error */
5874 BUG_ON(!block_group_cache_done(block_group));
5875 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5876 } else {
5877 mutex_lock(&caching_ctl->mutex);
5878
5879 if (start >= caching_ctl->progress) {
5880 ret = add_excluded_extent(root, start, num_bytes);
5881 } else if (start + num_bytes <= caching_ctl->progress) {
5882 ret = btrfs_remove_free_space(block_group,
5883 start, num_bytes);
5884 } else {
5885 num_bytes = caching_ctl->progress - start;
5886 ret = btrfs_remove_free_space(block_group,
5887 start, num_bytes);
5888 if (ret)
5889 goto out_lock;
5890
5891 num_bytes = (start + num_bytes) -
5892 caching_ctl->progress;
5893 start = caching_ctl->progress;
5894 ret = add_excluded_extent(root, start, num_bytes);
5895 }
5896 out_lock:
5897 mutex_unlock(&caching_ctl->mutex);
5898 put_caching_control(caching_ctl);
5899 }
5900 btrfs_put_block_group(block_group);
5901 return ret;
5902 }
5903
5904 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5905 struct extent_buffer *eb)
5906 {
5907 struct btrfs_file_extent_item *item;
5908 struct btrfs_key key;
5909 int found_type;
5910 int i;
5911
5912 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5913 return 0;
5914
5915 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5916 btrfs_item_key_to_cpu(eb, &key, i);
5917 if (key.type != BTRFS_EXTENT_DATA_KEY)
5918 continue;
5919 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5920 found_type = btrfs_file_extent_type(eb, item);
5921 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5922 continue;
5923 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5924 continue;
5925 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5926 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5927 __exclude_logged_extent(log, key.objectid, key.offset);
5928 }
5929
5930 return 0;
5931 }
5932
5933 /**
5934 * btrfs_update_reserved_bytes - update the block_group and space info counters
5935 * @cache: The cache we are manipulating
5936 * @num_bytes: The number of bytes in question
5937 * @reserve: One of the reservation enums
5938 * @delalloc: The blocks are allocated for the delalloc write
5939 *
5940 * This is called by the allocator when it reserves space, or by somebody who is
5941 * freeing space that was never actually used on disk. For example if you
5942 * reserve some space for a new leaf in transaction A and before transaction A
5943 * commits you free that leaf, you call this with reserve set to 0 in order to
5944 * clear the reservation.
5945 *
5946 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5947 * ENOSPC accounting. For data we handle the reservation through clearing the
5948 * delalloc bits in the io_tree. We have to do this since we could end up
5949 * allocating less disk space for the amount of data we have reserved in the
5950 * case of compression.
5951 *
5952 * If this is a reservation and the block group has become read only we cannot
5953 * make the reservation and return -EAGAIN, otherwise this function always
5954 * succeeds.
5955 */
5956 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5957 u64 num_bytes, int reserve, int delalloc)
5958 {
5959 struct btrfs_space_info *space_info = cache->space_info;
5960 int ret = 0;
5961
5962 spin_lock(&space_info->lock);
5963 spin_lock(&cache->lock);
5964 if (reserve != RESERVE_FREE) {
5965 if (cache->ro) {
5966 ret = -EAGAIN;
5967 } else {
5968 cache->reserved += num_bytes;
5969 space_info->bytes_reserved += num_bytes;
5970 if (reserve == RESERVE_ALLOC) {
5971 trace_btrfs_space_reservation(cache->fs_info,
5972 "space_info", space_info->flags,
5973 num_bytes, 0);
5974 space_info->bytes_may_use -= num_bytes;
5975 }
5976
5977 if (delalloc)
5978 cache->delalloc_bytes += num_bytes;
5979 }
5980 } else {
5981 if (cache->ro)
5982 space_info->bytes_readonly += num_bytes;
5983 cache->reserved -= num_bytes;
5984 space_info->bytes_reserved -= num_bytes;
5985
5986 if (delalloc)
5987 cache->delalloc_bytes -= num_bytes;
5988 }
5989 spin_unlock(&cache->lock);
5990 spin_unlock(&space_info->lock);
5991 return ret;
5992 }
5993
5994 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5995 struct btrfs_root *root)
5996 {
5997 struct btrfs_fs_info *fs_info = root->fs_info;
5998 struct btrfs_caching_control *next;
5999 struct btrfs_caching_control *caching_ctl;
6000 struct btrfs_block_group_cache *cache;
6001
6002 down_write(&fs_info->commit_root_sem);
6003
6004 list_for_each_entry_safe(caching_ctl, next,
6005 &fs_info->caching_block_groups, list) {
6006 cache = caching_ctl->block_group;
6007 if (block_group_cache_done(cache)) {
6008 cache->last_byte_to_unpin = (u64)-1;
6009 list_del_init(&caching_ctl->list);
6010 put_caching_control(caching_ctl);
6011 } else {
6012 cache->last_byte_to_unpin = caching_ctl->progress;
6013 }
6014 }
6015
6016 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6017 fs_info->pinned_extents = &fs_info->freed_extents[1];
6018 else
6019 fs_info->pinned_extents = &fs_info->freed_extents[0];
6020
6021 up_write(&fs_info->commit_root_sem);
6022
6023 update_global_block_rsv(fs_info);
6024 }
6025
6026 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6027 const bool return_free_space)
6028 {
6029 struct btrfs_fs_info *fs_info = root->fs_info;
6030 struct btrfs_block_group_cache *cache = NULL;
6031 struct btrfs_space_info *space_info;
6032 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6033 u64 len;
6034 bool readonly;
6035
6036 while (start <= end) {
6037 readonly = false;
6038 if (!cache ||
6039 start >= cache->key.objectid + cache->key.offset) {
6040 if (cache)
6041 btrfs_put_block_group(cache);
6042 cache = btrfs_lookup_block_group(fs_info, start);
6043 BUG_ON(!cache); /* Logic error */
6044 }
6045
6046 len = cache->key.objectid + cache->key.offset - start;
6047 len = min(len, end + 1 - start);
6048
6049 if (start < cache->last_byte_to_unpin) {
6050 len = min(len, cache->last_byte_to_unpin - start);
6051 if (return_free_space)
6052 btrfs_add_free_space(cache, start, len);
6053 }
6054
6055 start += len;
6056 space_info = cache->space_info;
6057
6058 spin_lock(&space_info->lock);
6059 spin_lock(&cache->lock);
6060 cache->pinned -= len;
6061 space_info->bytes_pinned -= len;
6062 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6063 if (cache->ro) {
6064 space_info->bytes_readonly += len;
6065 readonly = true;
6066 }
6067 spin_unlock(&cache->lock);
6068 if (!readonly && global_rsv->space_info == space_info) {
6069 spin_lock(&global_rsv->lock);
6070 if (!global_rsv->full) {
6071 len = min(len, global_rsv->size -
6072 global_rsv->reserved);
6073 global_rsv->reserved += len;
6074 space_info->bytes_may_use += len;
6075 if (global_rsv->reserved >= global_rsv->size)
6076 global_rsv->full = 1;
6077 }
6078 spin_unlock(&global_rsv->lock);
6079 }
6080 spin_unlock(&space_info->lock);
6081 }
6082
6083 if (cache)
6084 btrfs_put_block_group(cache);
6085 return 0;
6086 }
6087
6088 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6089 struct btrfs_root *root)
6090 {
6091 struct btrfs_fs_info *fs_info = root->fs_info;
6092 struct extent_io_tree *unpin;
6093 u64 start;
6094 u64 end;
6095 int ret;
6096
6097 if (trans->aborted)
6098 return 0;
6099
6100 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6101 unpin = &fs_info->freed_extents[1];
6102 else
6103 unpin = &fs_info->freed_extents[0];
6104
6105 while (1) {
6106 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6107 ret = find_first_extent_bit(unpin, 0, &start, &end,
6108 EXTENT_DIRTY, NULL);
6109 if (ret) {
6110 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6111 break;
6112 }
6113
6114 if (btrfs_test_opt(root, DISCARD))
6115 ret = btrfs_discard_extent(root, start,
6116 end + 1 - start, NULL);
6117
6118 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6119 unpin_extent_range(root, start, end, true);
6120 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6121 cond_resched();
6122 }
6123
6124 return 0;
6125 }
6126
6127 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6128 u64 owner, u64 root_objectid)
6129 {
6130 struct btrfs_space_info *space_info;
6131 u64 flags;
6132
6133 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6134 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6135 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6136 else
6137 flags = BTRFS_BLOCK_GROUP_METADATA;
6138 } else {
6139 flags = BTRFS_BLOCK_GROUP_DATA;
6140 }
6141
6142 space_info = __find_space_info(fs_info, flags);
6143 BUG_ON(!space_info); /* Logic bug */
6144 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6145 }
6146
6147
6148 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6149 struct btrfs_root *root,
6150 u64 bytenr, u64 num_bytes, u64 parent,
6151 u64 root_objectid, u64 owner_objectid,
6152 u64 owner_offset, int refs_to_drop,
6153 struct btrfs_delayed_extent_op *extent_op,
6154 int no_quota)
6155 {
6156 struct btrfs_key key;
6157 struct btrfs_path *path;
6158 struct btrfs_fs_info *info = root->fs_info;
6159 struct btrfs_root *extent_root = info->extent_root;
6160 struct extent_buffer *leaf;
6161 struct btrfs_extent_item *ei;
6162 struct btrfs_extent_inline_ref *iref;
6163 int ret;
6164 int is_data;
6165 int extent_slot = 0;
6166 int found_extent = 0;
6167 int num_to_del = 1;
6168 u32 item_size;
6169 u64 refs;
6170 int last_ref = 0;
6171 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6172 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6173 SKINNY_METADATA);
6174
6175 if (!info->quota_enabled || !is_fstree(root_objectid))
6176 no_quota = 1;
6177
6178 path = btrfs_alloc_path();
6179 if (!path)
6180 return -ENOMEM;
6181
6182 path->reada = 1;
6183 path->leave_spinning = 1;
6184
6185 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6186 BUG_ON(!is_data && refs_to_drop != 1);
6187
6188 if (is_data)
6189 skinny_metadata = 0;
6190
6191 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6192 bytenr, num_bytes, parent,
6193 root_objectid, owner_objectid,
6194 owner_offset);
6195 if (ret == 0) {
6196 extent_slot = path->slots[0];
6197 while (extent_slot >= 0) {
6198 btrfs_item_key_to_cpu(path->nodes[0], &key,
6199 extent_slot);
6200 if (key.objectid != bytenr)
6201 break;
6202 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6203 key.offset == num_bytes) {
6204 found_extent = 1;
6205 break;
6206 }
6207 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6208 key.offset == owner_objectid) {
6209 found_extent = 1;
6210 break;
6211 }
6212 if (path->slots[0] - extent_slot > 5)
6213 break;
6214 extent_slot--;
6215 }
6216 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6217 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6218 if (found_extent && item_size < sizeof(*ei))
6219 found_extent = 0;
6220 #endif
6221 if (!found_extent) {
6222 BUG_ON(iref);
6223 ret = remove_extent_backref(trans, extent_root, path,
6224 NULL, refs_to_drop,
6225 is_data, &last_ref);
6226 if (ret) {
6227 btrfs_abort_transaction(trans, extent_root, ret);
6228 goto out;
6229 }
6230 btrfs_release_path(path);
6231 path->leave_spinning = 1;
6232
6233 key.objectid = bytenr;
6234 key.type = BTRFS_EXTENT_ITEM_KEY;
6235 key.offset = num_bytes;
6236
6237 if (!is_data && skinny_metadata) {
6238 key.type = BTRFS_METADATA_ITEM_KEY;
6239 key.offset = owner_objectid;
6240 }
6241
6242 ret = btrfs_search_slot(trans, extent_root,
6243 &key, path, -1, 1);
6244 if (ret > 0 && skinny_metadata && path->slots[0]) {
6245 /*
6246 * Couldn't find our skinny metadata item,
6247 * see if we have ye olde extent item.
6248 */
6249 path->slots[0]--;
6250 btrfs_item_key_to_cpu(path->nodes[0], &key,
6251 path->slots[0]);
6252 if (key.objectid == bytenr &&
6253 key.type == BTRFS_EXTENT_ITEM_KEY &&
6254 key.offset == num_bytes)
6255 ret = 0;
6256 }
6257
6258 if (ret > 0 && skinny_metadata) {
6259 skinny_metadata = false;
6260 key.objectid = bytenr;
6261 key.type = BTRFS_EXTENT_ITEM_KEY;
6262 key.offset = num_bytes;
6263 btrfs_release_path(path);
6264 ret = btrfs_search_slot(trans, extent_root,
6265 &key, path, -1, 1);
6266 }
6267
6268 if (ret) {
6269 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6270 ret, bytenr);
6271 if (ret > 0)
6272 btrfs_print_leaf(extent_root,
6273 path->nodes[0]);
6274 }
6275 if (ret < 0) {
6276 btrfs_abort_transaction(trans, extent_root, ret);
6277 goto out;
6278 }
6279 extent_slot = path->slots[0];
6280 }
6281 } else if (WARN_ON(ret == -ENOENT)) {
6282 btrfs_print_leaf(extent_root, path->nodes[0]);
6283 btrfs_err(info,
6284 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6285 bytenr, parent, root_objectid, owner_objectid,
6286 owner_offset);
6287 btrfs_abort_transaction(trans, extent_root, ret);
6288 goto out;
6289 } else {
6290 btrfs_abort_transaction(trans, extent_root, ret);
6291 goto out;
6292 }
6293
6294 leaf = path->nodes[0];
6295 item_size = btrfs_item_size_nr(leaf, extent_slot);
6296 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6297 if (item_size < sizeof(*ei)) {
6298 BUG_ON(found_extent || extent_slot != path->slots[0]);
6299 ret = convert_extent_item_v0(trans, extent_root, path,
6300 owner_objectid, 0);
6301 if (ret < 0) {
6302 btrfs_abort_transaction(trans, extent_root, ret);
6303 goto out;
6304 }
6305
6306 btrfs_release_path(path);
6307 path->leave_spinning = 1;
6308
6309 key.objectid = bytenr;
6310 key.type = BTRFS_EXTENT_ITEM_KEY;
6311 key.offset = num_bytes;
6312
6313 ret = btrfs_search_slot(trans, extent_root, &key, path,
6314 -1, 1);
6315 if (ret) {
6316 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6317 ret, bytenr);
6318 btrfs_print_leaf(extent_root, path->nodes[0]);
6319 }
6320 if (ret < 0) {
6321 btrfs_abort_transaction(trans, extent_root, ret);
6322 goto out;
6323 }
6324
6325 extent_slot = path->slots[0];
6326 leaf = path->nodes[0];
6327 item_size = btrfs_item_size_nr(leaf, extent_slot);
6328 }
6329 #endif
6330 BUG_ON(item_size < sizeof(*ei));
6331 ei = btrfs_item_ptr(leaf, extent_slot,
6332 struct btrfs_extent_item);
6333 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6334 key.type == BTRFS_EXTENT_ITEM_KEY) {
6335 struct btrfs_tree_block_info *bi;
6336 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6337 bi = (struct btrfs_tree_block_info *)(ei + 1);
6338 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6339 }
6340
6341 refs = btrfs_extent_refs(leaf, ei);
6342 if (refs < refs_to_drop) {
6343 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6344 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6345 ret = -EINVAL;
6346 btrfs_abort_transaction(trans, extent_root, ret);
6347 goto out;
6348 }
6349 refs -= refs_to_drop;
6350
6351 if (refs > 0) {
6352 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6353 if (extent_op)
6354 __run_delayed_extent_op(extent_op, leaf, ei);
6355 /*
6356 * In the case of inline back ref, reference count will
6357 * be updated by remove_extent_backref
6358 */
6359 if (iref) {
6360 BUG_ON(!found_extent);
6361 } else {
6362 btrfs_set_extent_refs(leaf, ei, refs);
6363 btrfs_mark_buffer_dirty(leaf);
6364 }
6365 if (found_extent) {
6366 ret = remove_extent_backref(trans, extent_root, path,
6367 iref, refs_to_drop,
6368 is_data, &last_ref);
6369 if (ret) {
6370 btrfs_abort_transaction(trans, extent_root, ret);
6371 goto out;
6372 }
6373 }
6374 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6375 root_objectid);
6376 } else {
6377 if (found_extent) {
6378 BUG_ON(is_data && refs_to_drop !=
6379 extent_data_ref_count(root, path, iref));
6380 if (iref) {
6381 BUG_ON(path->slots[0] != extent_slot);
6382 } else {
6383 BUG_ON(path->slots[0] != extent_slot + 1);
6384 path->slots[0] = extent_slot;
6385 num_to_del = 2;
6386 }
6387 }
6388
6389 last_ref = 1;
6390 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6391 num_to_del);
6392 if (ret) {
6393 btrfs_abort_transaction(trans, extent_root, ret);
6394 goto out;
6395 }
6396 btrfs_release_path(path);
6397
6398 if (is_data) {
6399 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6400 if (ret) {
6401 btrfs_abort_transaction(trans, extent_root, ret);
6402 goto out;
6403 }
6404 }
6405
6406 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6407 if (ret) {
6408 btrfs_abort_transaction(trans, extent_root, ret);
6409 goto out;
6410 }
6411 }
6412 btrfs_release_path(path);
6413
6414 /* Deal with the quota accounting */
6415 if (!ret && last_ref && !no_quota) {
6416 int mod_seq = 0;
6417
6418 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6419 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6420 mod_seq = 1;
6421
6422 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6423 bytenr, num_bytes, type,
6424 mod_seq);
6425 }
6426 out:
6427 btrfs_free_path(path);
6428 return ret;
6429 }
6430
6431 /*
6432 * when we free an block, it is possible (and likely) that we free the last
6433 * delayed ref for that extent as well. This searches the delayed ref tree for
6434 * a given extent, and if there are no other delayed refs to be processed, it
6435 * removes it from the tree.
6436 */
6437 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6438 struct btrfs_root *root, u64 bytenr)
6439 {
6440 struct btrfs_delayed_ref_head *head;
6441 struct btrfs_delayed_ref_root *delayed_refs;
6442 int ret = 0;
6443
6444 delayed_refs = &trans->transaction->delayed_refs;
6445 spin_lock(&delayed_refs->lock);
6446 head = btrfs_find_delayed_ref_head(trans, bytenr);
6447 if (!head)
6448 goto out_delayed_unlock;
6449
6450 spin_lock(&head->lock);
6451 if (rb_first(&head->ref_root))
6452 goto out;
6453
6454 if (head->extent_op) {
6455 if (!head->must_insert_reserved)
6456 goto out;
6457 btrfs_free_delayed_extent_op(head->extent_op);
6458 head->extent_op = NULL;
6459 }
6460
6461 /*
6462 * waiting for the lock here would deadlock. If someone else has it
6463 * locked they are already in the process of dropping it anyway
6464 */
6465 if (!mutex_trylock(&head->mutex))
6466 goto out;
6467
6468 /*
6469 * at this point we have a head with no other entries. Go
6470 * ahead and process it.
6471 */
6472 head->node.in_tree = 0;
6473 rb_erase(&head->href_node, &delayed_refs->href_root);
6474
6475 atomic_dec(&delayed_refs->num_entries);
6476
6477 /*
6478 * we don't take a ref on the node because we're removing it from the
6479 * tree, so we just steal the ref the tree was holding.
6480 */
6481 delayed_refs->num_heads--;
6482 if (head->processing == 0)
6483 delayed_refs->num_heads_ready--;
6484 head->processing = 0;
6485 spin_unlock(&head->lock);
6486 spin_unlock(&delayed_refs->lock);
6487
6488 BUG_ON(head->extent_op);
6489 if (head->must_insert_reserved)
6490 ret = 1;
6491
6492 mutex_unlock(&head->mutex);
6493 btrfs_put_delayed_ref(&head->node);
6494 return ret;
6495 out:
6496 spin_unlock(&head->lock);
6497
6498 out_delayed_unlock:
6499 spin_unlock(&delayed_refs->lock);
6500 return 0;
6501 }
6502
6503 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6504 struct btrfs_root *root,
6505 struct extent_buffer *buf,
6506 u64 parent, int last_ref)
6507 {
6508 int pin = 1;
6509 int ret;
6510
6511 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6512 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6513 buf->start, buf->len,
6514 parent, root->root_key.objectid,
6515 btrfs_header_level(buf),
6516 BTRFS_DROP_DELAYED_REF, NULL, 0);
6517 BUG_ON(ret); /* -ENOMEM */
6518 }
6519
6520 if (!last_ref)
6521 return;
6522
6523 if (btrfs_header_generation(buf) == trans->transid) {
6524 struct btrfs_block_group_cache *cache;
6525
6526 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6527 ret = check_ref_cleanup(trans, root, buf->start);
6528 if (!ret)
6529 goto out;
6530 }
6531
6532 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6533
6534 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6535 pin_down_extent(root, cache, buf->start, buf->len, 1);
6536 btrfs_put_block_group(cache);
6537 goto out;
6538 }
6539
6540 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6541
6542 btrfs_add_free_space(cache, buf->start, buf->len);
6543 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6544 btrfs_put_block_group(cache);
6545 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6546 pin = 0;
6547 }
6548 out:
6549 if (pin)
6550 add_pinned_bytes(root->fs_info, buf->len,
6551 btrfs_header_level(buf),
6552 root->root_key.objectid);
6553
6554 /*
6555 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6556 * anymore.
6557 */
6558 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6559 }
6560
6561 /* Can return -ENOMEM */
6562 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6563 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6564 u64 owner, u64 offset, int no_quota)
6565 {
6566 int ret;
6567 struct btrfs_fs_info *fs_info = root->fs_info;
6568
6569 if (btrfs_test_is_dummy_root(root))
6570 return 0;
6571
6572 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6573
6574 /*
6575 * tree log blocks never actually go into the extent allocation
6576 * tree, just update pinning info and exit early.
6577 */
6578 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6579 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6580 /* unlocks the pinned mutex */
6581 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6582 ret = 0;
6583 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6584 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6585 num_bytes,
6586 parent, root_objectid, (int)owner,
6587 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6588 } else {
6589 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6590 num_bytes,
6591 parent, root_objectid, owner,
6592 offset, BTRFS_DROP_DELAYED_REF,
6593 NULL, no_quota);
6594 }
6595 return ret;
6596 }
6597
6598 /*
6599 * when we wait for progress in the block group caching, its because
6600 * our allocation attempt failed at least once. So, we must sleep
6601 * and let some progress happen before we try again.
6602 *
6603 * This function will sleep at least once waiting for new free space to
6604 * show up, and then it will check the block group free space numbers
6605 * for our min num_bytes. Another option is to have it go ahead
6606 * and look in the rbtree for a free extent of a given size, but this
6607 * is a good start.
6608 *
6609 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6610 * any of the information in this block group.
6611 */
6612 static noinline void
6613 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6614 u64 num_bytes)
6615 {
6616 struct btrfs_caching_control *caching_ctl;
6617
6618 caching_ctl = get_caching_control(cache);
6619 if (!caching_ctl)
6620 return;
6621
6622 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6623 (cache->free_space_ctl->free_space >= num_bytes));
6624
6625 put_caching_control(caching_ctl);
6626 }
6627
6628 static noinline int
6629 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6630 {
6631 struct btrfs_caching_control *caching_ctl;
6632 int ret = 0;
6633
6634 caching_ctl = get_caching_control(cache);
6635 if (!caching_ctl)
6636 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6637
6638 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6639 if (cache->cached == BTRFS_CACHE_ERROR)
6640 ret = -EIO;
6641 put_caching_control(caching_ctl);
6642 return ret;
6643 }
6644
6645 int __get_raid_index(u64 flags)
6646 {
6647 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6648 return BTRFS_RAID_RAID10;
6649 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6650 return BTRFS_RAID_RAID1;
6651 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6652 return BTRFS_RAID_DUP;
6653 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6654 return BTRFS_RAID_RAID0;
6655 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6656 return BTRFS_RAID_RAID5;
6657 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6658 return BTRFS_RAID_RAID6;
6659
6660 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6661 }
6662
6663 int get_block_group_index(struct btrfs_block_group_cache *cache)
6664 {
6665 return __get_raid_index(cache->flags);
6666 }
6667
6668 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6669 [BTRFS_RAID_RAID10] = "raid10",
6670 [BTRFS_RAID_RAID1] = "raid1",
6671 [BTRFS_RAID_DUP] = "dup",
6672 [BTRFS_RAID_RAID0] = "raid0",
6673 [BTRFS_RAID_SINGLE] = "single",
6674 [BTRFS_RAID_RAID5] = "raid5",
6675 [BTRFS_RAID_RAID6] = "raid6",
6676 };
6677
6678 static const char *get_raid_name(enum btrfs_raid_types type)
6679 {
6680 if (type >= BTRFS_NR_RAID_TYPES)
6681 return NULL;
6682
6683 return btrfs_raid_type_names[type];
6684 }
6685
6686 enum btrfs_loop_type {
6687 LOOP_CACHING_NOWAIT = 0,
6688 LOOP_CACHING_WAIT = 1,
6689 LOOP_ALLOC_CHUNK = 2,
6690 LOOP_NO_EMPTY_SIZE = 3,
6691 };
6692
6693 static inline void
6694 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6695 int delalloc)
6696 {
6697 if (delalloc)
6698 down_read(&cache->data_rwsem);
6699 }
6700
6701 static inline void
6702 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6703 int delalloc)
6704 {
6705 btrfs_get_block_group(cache);
6706 if (delalloc)
6707 down_read(&cache->data_rwsem);
6708 }
6709
6710 static struct btrfs_block_group_cache *
6711 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6712 struct btrfs_free_cluster *cluster,
6713 int delalloc)
6714 {
6715 struct btrfs_block_group_cache *used_bg;
6716 bool locked = false;
6717 again:
6718 spin_lock(&cluster->refill_lock);
6719 if (locked) {
6720 if (used_bg == cluster->block_group)
6721 return used_bg;
6722
6723 up_read(&used_bg->data_rwsem);
6724 btrfs_put_block_group(used_bg);
6725 }
6726
6727 used_bg = cluster->block_group;
6728 if (!used_bg)
6729 return NULL;
6730
6731 if (used_bg == block_group)
6732 return used_bg;
6733
6734 btrfs_get_block_group(used_bg);
6735
6736 if (!delalloc)
6737 return used_bg;
6738
6739 if (down_read_trylock(&used_bg->data_rwsem))
6740 return used_bg;
6741
6742 spin_unlock(&cluster->refill_lock);
6743 down_read(&used_bg->data_rwsem);
6744 locked = true;
6745 goto again;
6746 }
6747
6748 static inline void
6749 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6750 int delalloc)
6751 {
6752 if (delalloc)
6753 up_read(&cache->data_rwsem);
6754 btrfs_put_block_group(cache);
6755 }
6756
6757 /*
6758 * walks the btree of allocated extents and find a hole of a given size.
6759 * The key ins is changed to record the hole:
6760 * ins->objectid == start position
6761 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6762 * ins->offset == the size of the hole.
6763 * Any available blocks before search_start are skipped.
6764 *
6765 * If there is no suitable free space, we will record the max size of
6766 * the free space extent currently.
6767 */
6768 static noinline int find_free_extent(struct btrfs_root *orig_root,
6769 u64 num_bytes, u64 empty_size,
6770 u64 hint_byte, struct btrfs_key *ins,
6771 u64 flags, int delalloc)
6772 {
6773 int ret = 0;
6774 struct btrfs_root *root = orig_root->fs_info->extent_root;
6775 struct btrfs_free_cluster *last_ptr = NULL;
6776 struct btrfs_block_group_cache *block_group = NULL;
6777 u64 search_start = 0;
6778 u64 max_extent_size = 0;
6779 int empty_cluster = 2 * 1024 * 1024;
6780 struct btrfs_space_info *space_info;
6781 int loop = 0;
6782 int index = __get_raid_index(flags);
6783 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6784 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6785 bool failed_cluster_refill = false;
6786 bool failed_alloc = false;
6787 bool use_cluster = true;
6788 bool have_caching_bg = false;
6789
6790 WARN_ON(num_bytes < root->sectorsize);
6791 ins->type = BTRFS_EXTENT_ITEM_KEY;
6792 ins->objectid = 0;
6793 ins->offset = 0;
6794
6795 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6796
6797 space_info = __find_space_info(root->fs_info, flags);
6798 if (!space_info) {
6799 btrfs_err(root->fs_info, "No space info for %llu", flags);
6800 return -ENOSPC;
6801 }
6802
6803 /*
6804 * If the space info is for both data and metadata it means we have a
6805 * small filesystem and we can't use the clustering stuff.
6806 */
6807 if (btrfs_mixed_space_info(space_info))
6808 use_cluster = false;
6809
6810 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6811 last_ptr = &root->fs_info->meta_alloc_cluster;
6812 if (!btrfs_test_opt(root, SSD))
6813 empty_cluster = 64 * 1024;
6814 }
6815
6816 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6817 btrfs_test_opt(root, SSD)) {
6818 last_ptr = &root->fs_info->data_alloc_cluster;
6819 }
6820
6821 if (last_ptr) {
6822 spin_lock(&last_ptr->lock);
6823 if (last_ptr->block_group)
6824 hint_byte = last_ptr->window_start;
6825 spin_unlock(&last_ptr->lock);
6826 }
6827
6828 search_start = max(search_start, first_logical_byte(root, 0));
6829 search_start = max(search_start, hint_byte);
6830
6831 if (!last_ptr)
6832 empty_cluster = 0;
6833
6834 if (search_start == hint_byte) {
6835 block_group = btrfs_lookup_block_group(root->fs_info,
6836 search_start);
6837 /*
6838 * we don't want to use the block group if it doesn't match our
6839 * allocation bits, or if its not cached.
6840 *
6841 * However if we are re-searching with an ideal block group
6842 * picked out then we don't care that the block group is cached.
6843 */
6844 if (block_group && block_group_bits(block_group, flags) &&
6845 block_group->cached != BTRFS_CACHE_NO) {
6846 down_read(&space_info->groups_sem);
6847 if (list_empty(&block_group->list) ||
6848 block_group->ro) {
6849 /*
6850 * someone is removing this block group,
6851 * we can't jump into the have_block_group
6852 * target because our list pointers are not
6853 * valid
6854 */
6855 btrfs_put_block_group(block_group);
6856 up_read(&space_info->groups_sem);
6857 } else {
6858 index = get_block_group_index(block_group);
6859 btrfs_lock_block_group(block_group, delalloc);
6860 goto have_block_group;
6861 }
6862 } else if (block_group) {
6863 btrfs_put_block_group(block_group);
6864 }
6865 }
6866 search:
6867 have_caching_bg = false;
6868 down_read(&space_info->groups_sem);
6869 list_for_each_entry(block_group, &space_info->block_groups[index],
6870 list) {
6871 u64 offset;
6872 int cached;
6873
6874 btrfs_grab_block_group(block_group, delalloc);
6875 search_start = block_group->key.objectid;
6876
6877 /*
6878 * this can happen if we end up cycling through all the
6879 * raid types, but we want to make sure we only allocate
6880 * for the proper type.
6881 */
6882 if (!block_group_bits(block_group, flags)) {
6883 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6884 BTRFS_BLOCK_GROUP_RAID1 |
6885 BTRFS_BLOCK_GROUP_RAID5 |
6886 BTRFS_BLOCK_GROUP_RAID6 |
6887 BTRFS_BLOCK_GROUP_RAID10;
6888
6889 /*
6890 * if they asked for extra copies and this block group
6891 * doesn't provide them, bail. This does allow us to
6892 * fill raid0 from raid1.
6893 */
6894 if ((flags & extra) && !(block_group->flags & extra))
6895 goto loop;
6896 }
6897
6898 have_block_group:
6899 cached = block_group_cache_done(block_group);
6900 if (unlikely(!cached)) {
6901 ret = cache_block_group(block_group, 0);
6902 BUG_ON(ret < 0);
6903 ret = 0;
6904 }
6905
6906 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6907 goto loop;
6908 if (unlikely(block_group->ro))
6909 goto loop;
6910
6911 /*
6912 * Ok we want to try and use the cluster allocator, so
6913 * lets look there
6914 */
6915 if (last_ptr) {
6916 struct btrfs_block_group_cache *used_block_group;
6917 unsigned long aligned_cluster;
6918 /*
6919 * the refill lock keeps out other
6920 * people trying to start a new cluster
6921 */
6922 used_block_group = btrfs_lock_cluster(block_group,
6923 last_ptr,
6924 delalloc);
6925 if (!used_block_group)
6926 goto refill_cluster;
6927
6928 if (used_block_group != block_group &&
6929 (used_block_group->ro ||
6930 !block_group_bits(used_block_group, flags)))
6931 goto release_cluster;
6932
6933 offset = btrfs_alloc_from_cluster(used_block_group,
6934 last_ptr,
6935 num_bytes,
6936 used_block_group->key.objectid,
6937 &max_extent_size);
6938 if (offset) {
6939 /* we have a block, we're done */
6940 spin_unlock(&last_ptr->refill_lock);
6941 trace_btrfs_reserve_extent_cluster(root,
6942 used_block_group,
6943 search_start, num_bytes);
6944 if (used_block_group != block_group) {
6945 btrfs_release_block_group(block_group,
6946 delalloc);
6947 block_group = used_block_group;
6948 }
6949 goto checks;
6950 }
6951
6952 WARN_ON(last_ptr->block_group != used_block_group);
6953 release_cluster:
6954 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6955 * set up a new clusters, so lets just skip it
6956 * and let the allocator find whatever block
6957 * it can find. If we reach this point, we
6958 * will have tried the cluster allocator
6959 * plenty of times and not have found
6960 * anything, so we are likely way too
6961 * fragmented for the clustering stuff to find
6962 * anything.
6963 *
6964 * However, if the cluster is taken from the
6965 * current block group, release the cluster
6966 * first, so that we stand a better chance of
6967 * succeeding in the unclustered
6968 * allocation. */
6969 if (loop >= LOOP_NO_EMPTY_SIZE &&
6970 used_block_group != block_group) {
6971 spin_unlock(&last_ptr->refill_lock);
6972 btrfs_release_block_group(used_block_group,
6973 delalloc);
6974 goto unclustered_alloc;
6975 }
6976
6977 /*
6978 * this cluster didn't work out, free it and
6979 * start over
6980 */
6981 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6982
6983 if (used_block_group != block_group)
6984 btrfs_release_block_group(used_block_group,
6985 delalloc);
6986 refill_cluster:
6987 if (loop >= LOOP_NO_EMPTY_SIZE) {
6988 spin_unlock(&last_ptr->refill_lock);
6989 goto unclustered_alloc;
6990 }
6991
6992 aligned_cluster = max_t(unsigned long,
6993 empty_cluster + empty_size,
6994 block_group->full_stripe_len);
6995
6996 /* allocate a cluster in this block group */
6997 ret = btrfs_find_space_cluster(root, block_group,
6998 last_ptr, search_start,
6999 num_bytes,
7000 aligned_cluster);
7001 if (ret == 0) {
7002 /*
7003 * now pull our allocation out of this
7004 * cluster
7005 */
7006 offset = btrfs_alloc_from_cluster(block_group,
7007 last_ptr,
7008 num_bytes,
7009 search_start,
7010 &max_extent_size);
7011 if (offset) {
7012 /* we found one, proceed */
7013 spin_unlock(&last_ptr->refill_lock);
7014 trace_btrfs_reserve_extent_cluster(root,
7015 block_group, search_start,
7016 num_bytes);
7017 goto checks;
7018 }
7019 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7020 && !failed_cluster_refill) {
7021 spin_unlock(&last_ptr->refill_lock);
7022
7023 failed_cluster_refill = true;
7024 wait_block_group_cache_progress(block_group,
7025 num_bytes + empty_cluster + empty_size);
7026 goto have_block_group;
7027 }
7028
7029 /*
7030 * at this point we either didn't find a cluster
7031 * or we weren't able to allocate a block from our
7032 * cluster. Free the cluster we've been trying
7033 * to use, and go to the next block group
7034 */
7035 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7036 spin_unlock(&last_ptr->refill_lock);
7037 goto loop;
7038 }
7039
7040 unclustered_alloc:
7041 spin_lock(&block_group->free_space_ctl->tree_lock);
7042 if (cached &&
7043 block_group->free_space_ctl->free_space <
7044 num_bytes + empty_cluster + empty_size) {
7045 if (block_group->free_space_ctl->free_space >
7046 max_extent_size)
7047 max_extent_size =
7048 block_group->free_space_ctl->free_space;
7049 spin_unlock(&block_group->free_space_ctl->tree_lock);
7050 goto loop;
7051 }
7052 spin_unlock(&block_group->free_space_ctl->tree_lock);
7053
7054 offset = btrfs_find_space_for_alloc(block_group, search_start,
7055 num_bytes, empty_size,
7056 &max_extent_size);
7057 /*
7058 * If we didn't find a chunk, and we haven't failed on this
7059 * block group before, and this block group is in the middle of
7060 * caching and we are ok with waiting, then go ahead and wait
7061 * for progress to be made, and set failed_alloc to true.
7062 *
7063 * If failed_alloc is true then we've already waited on this
7064 * block group once and should move on to the next block group.
7065 */
7066 if (!offset && !failed_alloc && !cached &&
7067 loop > LOOP_CACHING_NOWAIT) {
7068 wait_block_group_cache_progress(block_group,
7069 num_bytes + empty_size);
7070 failed_alloc = true;
7071 goto have_block_group;
7072 } else if (!offset) {
7073 if (!cached)
7074 have_caching_bg = true;
7075 goto loop;
7076 }
7077 checks:
7078 search_start = ALIGN(offset, root->stripesize);
7079
7080 /* move on to the next group */
7081 if (search_start + num_bytes >
7082 block_group->key.objectid + block_group->key.offset) {
7083 btrfs_add_free_space(block_group, offset, num_bytes);
7084 goto loop;
7085 }
7086
7087 if (offset < search_start)
7088 btrfs_add_free_space(block_group, offset,
7089 search_start - offset);
7090 BUG_ON(offset > search_start);
7091
7092 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7093 alloc_type, delalloc);
7094 if (ret == -EAGAIN) {
7095 btrfs_add_free_space(block_group, offset, num_bytes);
7096 goto loop;
7097 }
7098
7099 /* we are all good, lets return */
7100 ins->objectid = search_start;
7101 ins->offset = num_bytes;
7102
7103 trace_btrfs_reserve_extent(orig_root, block_group,
7104 search_start, num_bytes);
7105 btrfs_release_block_group(block_group, delalloc);
7106 break;
7107 loop:
7108 failed_cluster_refill = false;
7109 failed_alloc = false;
7110 BUG_ON(index != get_block_group_index(block_group));
7111 btrfs_release_block_group(block_group, delalloc);
7112 }
7113 up_read(&space_info->groups_sem);
7114
7115 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7116 goto search;
7117
7118 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7119 goto search;
7120
7121 /*
7122 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7123 * caching kthreads as we move along
7124 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7125 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7126 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7127 * again
7128 */
7129 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7130 index = 0;
7131 loop++;
7132 if (loop == LOOP_ALLOC_CHUNK) {
7133 struct btrfs_trans_handle *trans;
7134 int exist = 0;
7135
7136 trans = current->journal_info;
7137 if (trans)
7138 exist = 1;
7139 else
7140 trans = btrfs_join_transaction(root);
7141
7142 if (IS_ERR(trans)) {
7143 ret = PTR_ERR(trans);
7144 goto out;
7145 }
7146
7147 ret = do_chunk_alloc(trans, root, flags,
7148 CHUNK_ALLOC_FORCE);
7149 /*
7150 * Do not bail out on ENOSPC since we
7151 * can do more things.
7152 */
7153 if (ret < 0 && ret != -ENOSPC)
7154 btrfs_abort_transaction(trans,
7155 root, ret);
7156 else
7157 ret = 0;
7158 if (!exist)
7159 btrfs_end_transaction(trans, root);
7160 if (ret)
7161 goto out;
7162 }
7163
7164 if (loop == LOOP_NO_EMPTY_SIZE) {
7165 empty_size = 0;
7166 empty_cluster = 0;
7167 }
7168
7169 goto search;
7170 } else if (!ins->objectid) {
7171 ret = -ENOSPC;
7172 } else if (ins->objectid) {
7173 ret = 0;
7174 }
7175 out:
7176 if (ret == -ENOSPC)
7177 ins->offset = max_extent_size;
7178 return ret;
7179 }
7180
7181 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7182 int dump_block_groups)
7183 {
7184 struct btrfs_block_group_cache *cache;
7185 int index = 0;
7186
7187 spin_lock(&info->lock);
7188 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7189 info->flags,
7190 info->total_bytes - info->bytes_used - info->bytes_pinned -
7191 info->bytes_reserved - info->bytes_readonly,
7192 (info->full) ? "" : "not ");
7193 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7194 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7195 info->total_bytes, info->bytes_used, info->bytes_pinned,
7196 info->bytes_reserved, info->bytes_may_use,
7197 info->bytes_readonly);
7198 spin_unlock(&info->lock);
7199
7200 if (!dump_block_groups)
7201 return;
7202
7203 down_read(&info->groups_sem);
7204 again:
7205 list_for_each_entry(cache, &info->block_groups[index], list) {
7206 spin_lock(&cache->lock);
7207 printk(KERN_INFO "BTRFS: "
7208 "block group %llu has %llu bytes, "
7209 "%llu used %llu pinned %llu reserved %s\n",
7210 cache->key.objectid, cache->key.offset,
7211 btrfs_block_group_used(&cache->item), cache->pinned,
7212 cache->reserved, cache->ro ? "[readonly]" : "");
7213 btrfs_dump_free_space(cache, bytes);
7214 spin_unlock(&cache->lock);
7215 }
7216 if (++index < BTRFS_NR_RAID_TYPES)
7217 goto again;
7218 up_read(&info->groups_sem);
7219 }
7220
7221 int btrfs_reserve_extent(struct btrfs_root *root,
7222 u64 num_bytes, u64 min_alloc_size,
7223 u64 empty_size, u64 hint_byte,
7224 struct btrfs_key *ins, int is_data, int delalloc)
7225 {
7226 bool final_tried = false;
7227 u64 flags;
7228 int ret;
7229
7230 flags = btrfs_get_alloc_profile(root, is_data);
7231 again:
7232 WARN_ON(num_bytes < root->sectorsize);
7233 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7234 flags, delalloc);
7235
7236 if (ret == -ENOSPC) {
7237 if (!final_tried && ins->offset) {
7238 num_bytes = min(num_bytes >> 1, ins->offset);
7239 num_bytes = round_down(num_bytes, root->sectorsize);
7240 num_bytes = max(num_bytes, min_alloc_size);
7241 if (num_bytes == min_alloc_size)
7242 final_tried = true;
7243 goto again;
7244 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7245 struct btrfs_space_info *sinfo;
7246
7247 sinfo = __find_space_info(root->fs_info, flags);
7248 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7249 flags, num_bytes);
7250 if (sinfo)
7251 dump_space_info(sinfo, num_bytes, 1);
7252 }
7253 }
7254
7255 return ret;
7256 }
7257
7258 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7259 u64 start, u64 len,
7260 int pin, int delalloc)
7261 {
7262 struct btrfs_block_group_cache *cache;
7263 int ret = 0;
7264
7265 cache = btrfs_lookup_block_group(root->fs_info, start);
7266 if (!cache) {
7267 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7268 start);
7269 return -ENOSPC;
7270 }
7271
7272 if (pin)
7273 pin_down_extent(root, cache, start, len, 1);
7274 else {
7275 if (btrfs_test_opt(root, DISCARD))
7276 ret = btrfs_discard_extent(root, start, len, NULL);
7277 btrfs_add_free_space(cache, start, len);
7278 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7279 }
7280
7281 btrfs_put_block_group(cache);
7282
7283 trace_btrfs_reserved_extent_free(root, start, len);
7284
7285 return ret;
7286 }
7287
7288 int btrfs_free_reserved_extent(struct btrfs_root *root,
7289 u64 start, u64 len, int delalloc)
7290 {
7291 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7292 }
7293
7294 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7295 u64 start, u64 len)
7296 {
7297 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7298 }
7299
7300 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7301 struct btrfs_root *root,
7302 u64 parent, u64 root_objectid,
7303 u64 flags, u64 owner, u64 offset,
7304 struct btrfs_key *ins, int ref_mod)
7305 {
7306 int ret;
7307 struct btrfs_fs_info *fs_info = root->fs_info;
7308 struct btrfs_extent_item *extent_item;
7309 struct btrfs_extent_inline_ref *iref;
7310 struct btrfs_path *path;
7311 struct extent_buffer *leaf;
7312 int type;
7313 u32 size;
7314
7315 if (parent > 0)
7316 type = BTRFS_SHARED_DATA_REF_KEY;
7317 else
7318 type = BTRFS_EXTENT_DATA_REF_KEY;
7319
7320 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7321
7322 path = btrfs_alloc_path();
7323 if (!path)
7324 return -ENOMEM;
7325
7326 path->leave_spinning = 1;
7327 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7328 ins, size);
7329 if (ret) {
7330 btrfs_free_path(path);
7331 return ret;
7332 }
7333
7334 leaf = path->nodes[0];
7335 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7336 struct btrfs_extent_item);
7337 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7338 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7339 btrfs_set_extent_flags(leaf, extent_item,
7340 flags | BTRFS_EXTENT_FLAG_DATA);
7341
7342 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7343 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7344 if (parent > 0) {
7345 struct btrfs_shared_data_ref *ref;
7346 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7347 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7348 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7349 } else {
7350 struct btrfs_extent_data_ref *ref;
7351 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7352 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7353 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7354 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7355 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7356 }
7357
7358 btrfs_mark_buffer_dirty(path->nodes[0]);
7359 btrfs_free_path(path);
7360
7361 /* Always set parent to 0 here since its exclusive anyway. */
7362 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7363 ins->objectid, ins->offset,
7364 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7365 if (ret)
7366 return ret;
7367
7368 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7369 if (ret) { /* -ENOENT, logic error */
7370 btrfs_err(fs_info, "update block group failed for %llu %llu",
7371 ins->objectid, ins->offset);
7372 BUG();
7373 }
7374 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7375 return ret;
7376 }
7377
7378 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7379 struct btrfs_root *root,
7380 u64 parent, u64 root_objectid,
7381 u64 flags, struct btrfs_disk_key *key,
7382 int level, struct btrfs_key *ins,
7383 int no_quota)
7384 {
7385 int ret;
7386 struct btrfs_fs_info *fs_info = root->fs_info;
7387 struct btrfs_extent_item *extent_item;
7388 struct btrfs_tree_block_info *block_info;
7389 struct btrfs_extent_inline_ref *iref;
7390 struct btrfs_path *path;
7391 struct extent_buffer *leaf;
7392 u32 size = sizeof(*extent_item) + sizeof(*iref);
7393 u64 num_bytes = ins->offset;
7394 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7395 SKINNY_METADATA);
7396
7397 if (!skinny_metadata)
7398 size += sizeof(*block_info);
7399
7400 path = btrfs_alloc_path();
7401 if (!path) {
7402 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7403 root->nodesize);
7404 return -ENOMEM;
7405 }
7406
7407 path->leave_spinning = 1;
7408 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7409 ins, size);
7410 if (ret) {
7411 btrfs_free_path(path);
7412 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7413 root->nodesize);
7414 return ret;
7415 }
7416
7417 leaf = path->nodes[0];
7418 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7419 struct btrfs_extent_item);
7420 btrfs_set_extent_refs(leaf, extent_item, 1);
7421 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7422 btrfs_set_extent_flags(leaf, extent_item,
7423 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7424
7425 if (skinny_metadata) {
7426 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7427 num_bytes = root->nodesize;
7428 } else {
7429 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7430 btrfs_set_tree_block_key(leaf, block_info, key);
7431 btrfs_set_tree_block_level(leaf, block_info, level);
7432 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7433 }
7434
7435 if (parent > 0) {
7436 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7437 btrfs_set_extent_inline_ref_type(leaf, iref,
7438 BTRFS_SHARED_BLOCK_REF_KEY);
7439 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7440 } else {
7441 btrfs_set_extent_inline_ref_type(leaf, iref,
7442 BTRFS_TREE_BLOCK_REF_KEY);
7443 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7444 }
7445
7446 btrfs_mark_buffer_dirty(leaf);
7447 btrfs_free_path(path);
7448
7449 if (!no_quota) {
7450 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7451 ins->objectid, num_bytes,
7452 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7453 if (ret)
7454 return ret;
7455 }
7456
7457 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7458 1);
7459 if (ret) { /* -ENOENT, logic error */
7460 btrfs_err(fs_info, "update block group failed for %llu %llu",
7461 ins->objectid, ins->offset);
7462 BUG();
7463 }
7464
7465 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7466 return ret;
7467 }
7468
7469 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7470 struct btrfs_root *root,
7471 u64 root_objectid, u64 owner,
7472 u64 offset, struct btrfs_key *ins)
7473 {
7474 int ret;
7475
7476 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7477
7478 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7479 ins->offset, 0,
7480 root_objectid, owner, offset,
7481 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7482 return ret;
7483 }
7484
7485 /*
7486 * this is used by the tree logging recovery code. It records that
7487 * an extent has been allocated and makes sure to clear the free
7488 * space cache bits as well
7489 */
7490 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7491 struct btrfs_root *root,
7492 u64 root_objectid, u64 owner, u64 offset,
7493 struct btrfs_key *ins)
7494 {
7495 int ret;
7496 struct btrfs_block_group_cache *block_group;
7497
7498 /*
7499 * Mixed block groups will exclude before processing the log so we only
7500 * need to do the exlude dance if this fs isn't mixed.
7501 */
7502 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7503 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7504 if (ret)
7505 return ret;
7506 }
7507
7508 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7509 if (!block_group)
7510 return -EINVAL;
7511
7512 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7513 RESERVE_ALLOC_NO_ACCOUNT, 0);
7514 BUG_ON(ret); /* logic error */
7515 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7516 0, owner, offset, ins, 1);
7517 btrfs_put_block_group(block_group);
7518 return ret;
7519 }
7520
7521 static struct extent_buffer *
7522 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7523 u64 bytenr, int level)
7524 {
7525 struct extent_buffer *buf;
7526
7527 buf = btrfs_find_create_tree_block(root, bytenr);
7528 if (!buf)
7529 return ERR_PTR(-ENOMEM);
7530 btrfs_set_header_generation(buf, trans->transid);
7531 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7532 btrfs_tree_lock(buf);
7533 clean_tree_block(trans, root->fs_info, buf);
7534 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7535
7536 btrfs_set_lock_blocking(buf);
7537 btrfs_set_buffer_uptodate(buf);
7538
7539 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7540 buf->log_index = root->log_transid % 2;
7541 /*
7542 * we allow two log transactions at a time, use different
7543 * EXENT bit to differentiate dirty pages.
7544 */
7545 if (buf->log_index == 0)
7546 set_extent_dirty(&root->dirty_log_pages, buf->start,
7547 buf->start + buf->len - 1, GFP_NOFS);
7548 else
7549 set_extent_new(&root->dirty_log_pages, buf->start,
7550 buf->start + buf->len - 1, GFP_NOFS);
7551 } else {
7552 buf->log_index = -1;
7553 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7554 buf->start + buf->len - 1, GFP_NOFS);
7555 }
7556 trans->blocks_used++;
7557 /* this returns a buffer locked for blocking */
7558 return buf;
7559 }
7560
7561 static struct btrfs_block_rsv *
7562 use_block_rsv(struct btrfs_trans_handle *trans,
7563 struct btrfs_root *root, u32 blocksize)
7564 {
7565 struct btrfs_block_rsv *block_rsv;
7566 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7567 int ret;
7568 bool global_updated = false;
7569
7570 block_rsv = get_block_rsv(trans, root);
7571
7572 if (unlikely(block_rsv->size == 0))
7573 goto try_reserve;
7574 again:
7575 ret = block_rsv_use_bytes(block_rsv, blocksize);
7576 if (!ret)
7577 return block_rsv;
7578
7579 if (block_rsv->failfast)
7580 return ERR_PTR(ret);
7581
7582 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7583 global_updated = true;
7584 update_global_block_rsv(root->fs_info);
7585 goto again;
7586 }
7587
7588 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7589 static DEFINE_RATELIMIT_STATE(_rs,
7590 DEFAULT_RATELIMIT_INTERVAL * 10,
7591 /*DEFAULT_RATELIMIT_BURST*/ 1);
7592 if (__ratelimit(&_rs))
7593 WARN(1, KERN_DEBUG
7594 "BTRFS: block rsv returned %d\n", ret);
7595 }
7596 try_reserve:
7597 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7598 BTRFS_RESERVE_NO_FLUSH);
7599 if (!ret)
7600 return block_rsv;
7601 /*
7602 * If we couldn't reserve metadata bytes try and use some from
7603 * the global reserve if its space type is the same as the global
7604 * reservation.
7605 */
7606 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7607 block_rsv->space_info == global_rsv->space_info) {
7608 ret = block_rsv_use_bytes(global_rsv, blocksize);
7609 if (!ret)
7610 return global_rsv;
7611 }
7612 return ERR_PTR(ret);
7613 }
7614
7615 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7616 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7617 {
7618 block_rsv_add_bytes(block_rsv, blocksize, 0);
7619 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7620 }
7621
7622 /*
7623 * finds a free extent and does all the dirty work required for allocation
7624 * returns the key for the extent through ins, and a tree buffer for
7625 * the first block of the extent through buf.
7626 *
7627 * returns the tree buffer or an ERR_PTR on error.
7628 */
7629 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7630 struct btrfs_root *root,
7631 u64 parent, u64 root_objectid,
7632 struct btrfs_disk_key *key, int level,
7633 u64 hint, u64 empty_size)
7634 {
7635 struct btrfs_key ins;
7636 struct btrfs_block_rsv *block_rsv;
7637 struct extent_buffer *buf;
7638 struct btrfs_delayed_extent_op *extent_op;
7639 u64 flags = 0;
7640 int ret;
7641 u32 blocksize = root->nodesize;
7642 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7643 SKINNY_METADATA);
7644
7645 if (btrfs_test_is_dummy_root(root)) {
7646 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7647 level);
7648 if (!IS_ERR(buf))
7649 root->alloc_bytenr += blocksize;
7650 return buf;
7651 }
7652
7653 block_rsv = use_block_rsv(trans, root, blocksize);
7654 if (IS_ERR(block_rsv))
7655 return ERR_CAST(block_rsv);
7656
7657 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7658 empty_size, hint, &ins, 0, 0);
7659 if (ret)
7660 goto out_unuse;
7661
7662 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7663 if (IS_ERR(buf)) {
7664 ret = PTR_ERR(buf);
7665 goto out_free_reserved;
7666 }
7667
7668 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7669 if (parent == 0)
7670 parent = ins.objectid;
7671 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7672 } else
7673 BUG_ON(parent > 0);
7674
7675 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7676 extent_op = btrfs_alloc_delayed_extent_op();
7677 if (!extent_op) {
7678 ret = -ENOMEM;
7679 goto out_free_buf;
7680 }
7681 if (key)
7682 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7683 else
7684 memset(&extent_op->key, 0, sizeof(extent_op->key));
7685 extent_op->flags_to_set = flags;
7686 if (skinny_metadata)
7687 extent_op->update_key = 0;
7688 else
7689 extent_op->update_key = 1;
7690 extent_op->update_flags = 1;
7691 extent_op->is_data = 0;
7692 extent_op->level = level;
7693
7694 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7695 ins.objectid, ins.offset,
7696 parent, root_objectid, level,
7697 BTRFS_ADD_DELAYED_EXTENT,
7698 extent_op, 0);
7699 if (ret)
7700 goto out_free_delayed;
7701 }
7702 return buf;
7703
7704 out_free_delayed:
7705 btrfs_free_delayed_extent_op(extent_op);
7706 out_free_buf:
7707 free_extent_buffer(buf);
7708 out_free_reserved:
7709 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7710 out_unuse:
7711 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7712 return ERR_PTR(ret);
7713 }
7714
7715 struct walk_control {
7716 u64 refs[BTRFS_MAX_LEVEL];
7717 u64 flags[BTRFS_MAX_LEVEL];
7718 struct btrfs_key update_progress;
7719 int stage;
7720 int level;
7721 int shared_level;
7722 int update_ref;
7723 int keep_locks;
7724 int reada_slot;
7725 int reada_count;
7726 int for_reloc;
7727 };
7728
7729 #define DROP_REFERENCE 1
7730 #define UPDATE_BACKREF 2
7731
7732 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7733 struct btrfs_root *root,
7734 struct walk_control *wc,
7735 struct btrfs_path *path)
7736 {
7737 u64 bytenr;
7738 u64 generation;
7739 u64 refs;
7740 u64 flags;
7741 u32 nritems;
7742 u32 blocksize;
7743 struct btrfs_key key;
7744 struct extent_buffer *eb;
7745 int ret;
7746 int slot;
7747 int nread = 0;
7748
7749 if (path->slots[wc->level] < wc->reada_slot) {
7750 wc->reada_count = wc->reada_count * 2 / 3;
7751 wc->reada_count = max(wc->reada_count, 2);
7752 } else {
7753 wc->reada_count = wc->reada_count * 3 / 2;
7754 wc->reada_count = min_t(int, wc->reada_count,
7755 BTRFS_NODEPTRS_PER_BLOCK(root));
7756 }
7757
7758 eb = path->nodes[wc->level];
7759 nritems = btrfs_header_nritems(eb);
7760 blocksize = root->nodesize;
7761
7762 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7763 if (nread >= wc->reada_count)
7764 break;
7765
7766 cond_resched();
7767 bytenr = btrfs_node_blockptr(eb, slot);
7768 generation = btrfs_node_ptr_generation(eb, slot);
7769
7770 if (slot == path->slots[wc->level])
7771 goto reada;
7772
7773 if (wc->stage == UPDATE_BACKREF &&
7774 generation <= root->root_key.offset)
7775 continue;
7776
7777 /* We don't lock the tree block, it's OK to be racy here */
7778 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7779 wc->level - 1, 1, &refs,
7780 &flags);
7781 /* We don't care about errors in readahead. */
7782 if (ret < 0)
7783 continue;
7784 BUG_ON(refs == 0);
7785
7786 if (wc->stage == DROP_REFERENCE) {
7787 if (refs == 1)
7788 goto reada;
7789
7790 if (wc->level == 1 &&
7791 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7792 continue;
7793 if (!wc->update_ref ||
7794 generation <= root->root_key.offset)
7795 continue;
7796 btrfs_node_key_to_cpu(eb, &key, slot);
7797 ret = btrfs_comp_cpu_keys(&key,
7798 &wc->update_progress);
7799 if (ret < 0)
7800 continue;
7801 } else {
7802 if (wc->level == 1 &&
7803 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7804 continue;
7805 }
7806 reada:
7807 readahead_tree_block(root, bytenr);
7808 nread++;
7809 }
7810 wc->reada_slot = slot;
7811 }
7812
7813 static int account_leaf_items(struct btrfs_trans_handle *trans,
7814 struct btrfs_root *root,
7815 struct extent_buffer *eb)
7816 {
7817 int nr = btrfs_header_nritems(eb);
7818 int i, extent_type, ret;
7819 struct btrfs_key key;
7820 struct btrfs_file_extent_item *fi;
7821 u64 bytenr, num_bytes;
7822
7823 for (i = 0; i < nr; i++) {
7824 btrfs_item_key_to_cpu(eb, &key, i);
7825
7826 if (key.type != BTRFS_EXTENT_DATA_KEY)
7827 continue;
7828
7829 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7830 /* filter out non qgroup-accountable extents */
7831 extent_type = btrfs_file_extent_type(eb, fi);
7832
7833 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7834 continue;
7835
7836 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7837 if (!bytenr)
7838 continue;
7839
7840 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7841
7842 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7843 root->objectid,
7844 bytenr, num_bytes,
7845 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7846 if (ret)
7847 return ret;
7848 }
7849 return 0;
7850 }
7851
7852 /*
7853 * Walk up the tree from the bottom, freeing leaves and any interior
7854 * nodes which have had all slots visited. If a node (leaf or
7855 * interior) is freed, the node above it will have it's slot
7856 * incremented. The root node will never be freed.
7857 *
7858 * At the end of this function, we should have a path which has all
7859 * slots incremented to the next position for a search. If we need to
7860 * read a new node it will be NULL and the node above it will have the
7861 * correct slot selected for a later read.
7862 *
7863 * If we increment the root nodes slot counter past the number of
7864 * elements, 1 is returned to signal completion of the search.
7865 */
7866 static int adjust_slots_upwards(struct btrfs_root *root,
7867 struct btrfs_path *path, int root_level)
7868 {
7869 int level = 0;
7870 int nr, slot;
7871 struct extent_buffer *eb;
7872
7873 if (root_level == 0)
7874 return 1;
7875
7876 while (level <= root_level) {
7877 eb = path->nodes[level];
7878 nr = btrfs_header_nritems(eb);
7879 path->slots[level]++;
7880 slot = path->slots[level];
7881 if (slot >= nr || level == 0) {
7882 /*
7883 * Don't free the root - we will detect this
7884 * condition after our loop and return a
7885 * positive value for caller to stop walking the tree.
7886 */
7887 if (level != root_level) {
7888 btrfs_tree_unlock_rw(eb, path->locks[level]);
7889 path->locks[level] = 0;
7890
7891 free_extent_buffer(eb);
7892 path->nodes[level] = NULL;
7893 path->slots[level] = 0;
7894 }
7895 } else {
7896 /*
7897 * We have a valid slot to walk back down
7898 * from. Stop here so caller can process these
7899 * new nodes.
7900 */
7901 break;
7902 }
7903
7904 level++;
7905 }
7906
7907 eb = path->nodes[root_level];
7908 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7909 return 1;
7910
7911 return 0;
7912 }
7913
7914 /*
7915 * root_eb is the subtree root and is locked before this function is called.
7916 */
7917 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7918 struct btrfs_root *root,
7919 struct extent_buffer *root_eb,
7920 u64 root_gen,
7921 int root_level)
7922 {
7923 int ret = 0;
7924 int level;
7925 struct extent_buffer *eb = root_eb;
7926 struct btrfs_path *path = NULL;
7927
7928 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7929 BUG_ON(root_eb == NULL);
7930
7931 if (!root->fs_info->quota_enabled)
7932 return 0;
7933
7934 if (!extent_buffer_uptodate(root_eb)) {
7935 ret = btrfs_read_buffer(root_eb, root_gen);
7936 if (ret)
7937 goto out;
7938 }
7939
7940 if (root_level == 0) {
7941 ret = account_leaf_items(trans, root, root_eb);
7942 goto out;
7943 }
7944
7945 path = btrfs_alloc_path();
7946 if (!path)
7947 return -ENOMEM;
7948
7949 /*
7950 * Walk down the tree. Missing extent blocks are filled in as
7951 * we go. Metadata is accounted every time we read a new
7952 * extent block.
7953 *
7954 * When we reach a leaf, we account for file extent items in it,
7955 * walk back up the tree (adjusting slot pointers as we go)
7956 * and restart the search process.
7957 */
7958 extent_buffer_get(root_eb); /* For path */
7959 path->nodes[root_level] = root_eb;
7960 path->slots[root_level] = 0;
7961 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7962 walk_down:
7963 level = root_level;
7964 while (level >= 0) {
7965 if (path->nodes[level] == NULL) {
7966 int parent_slot;
7967 u64 child_gen;
7968 u64 child_bytenr;
7969
7970 /* We need to get child blockptr/gen from
7971 * parent before we can read it. */
7972 eb = path->nodes[level + 1];
7973 parent_slot = path->slots[level + 1];
7974 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7975 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7976
7977 eb = read_tree_block(root, child_bytenr, child_gen);
7978 if (IS_ERR(eb)) {
7979 ret = PTR_ERR(eb);
7980 goto out;
7981 } else if (!extent_buffer_uptodate(eb)) {
7982 free_extent_buffer(eb);
7983 ret = -EIO;
7984 goto out;
7985 }
7986
7987 path->nodes[level] = eb;
7988 path->slots[level] = 0;
7989
7990 btrfs_tree_read_lock(eb);
7991 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7992 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7993
7994 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7995 root->objectid,
7996 child_bytenr,
7997 root->nodesize,
7998 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7999 0);
8000 if (ret)
8001 goto out;
8002
8003 }
8004
8005 if (level == 0) {
8006 ret = account_leaf_items(trans, root, path->nodes[level]);
8007 if (ret)
8008 goto out;
8009
8010 /* Nonzero return here means we completed our search */
8011 ret = adjust_slots_upwards(root, path, root_level);
8012 if (ret)
8013 break;
8014
8015 /* Restart search with new slots */
8016 goto walk_down;
8017 }
8018
8019 level--;
8020 }
8021
8022 ret = 0;
8023 out:
8024 btrfs_free_path(path);
8025
8026 return ret;
8027 }
8028
8029 /*
8030 * helper to process tree block while walking down the tree.
8031 *
8032 * when wc->stage == UPDATE_BACKREF, this function updates
8033 * back refs for pointers in the block.
8034 *
8035 * NOTE: return value 1 means we should stop walking down.
8036 */
8037 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8038 struct btrfs_root *root,
8039 struct btrfs_path *path,
8040 struct walk_control *wc, int lookup_info)
8041 {
8042 int level = wc->level;
8043 struct extent_buffer *eb = path->nodes[level];
8044 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8045 int ret;
8046
8047 if (wc->stage == UPDATE_BACKREF &&
8048 btrfs_header_owner(eb) != root->root_key.objectid)
8049 return 1;
8050
8051 /*
8052 * when reference count of tree block is 1, it won't increase
8053 * again. once full backref flag is set, we never clear it.
8054 */
8055 if (lookup_info &&
8056 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8057 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8058 BUG_ON(!path->locks[level]);
8059 ret = btrfs_lookup_extent_info(trans, root,
8060 eb->start, level, 1,
8061 &wc->refs[level],
8062 &wc->flags[level]);
8063 BUG_ON(ret == -ENOMEM);
8064 if (ret)
8065 return ret;
8066 BUG_ON(wc->refs[level] == 0);
8067 }
8068
8069 if (wc->stage == DROP_REFERENCE) {
8070 if (wc->refs[level] > 1)
8071 return 1;
8072
8073 if (path->locks[level] && !wc->keep_locks) {
8074 btrfs_tree_unlock_rw(eb, path->locks[level]);
8075 path->locks[level] = 0;
8076 }
8077 return 0;
8078 }
8079
8080 /* wc->stage == UPDATE_BACKREF */
8081 if (!(wc->flags[level] & flag)) {
8082 BUG_ON(!path->locks[level]);
8083 ret = btrfs_inc_ref(trans, root, eb, 1);
8084 BUG_ON(ret); /* -ENOMEM */
8085 ret = btrfs_dec_ref(trans, root, eb, 0);
8086 BUG_ON(ret); /* -ENOMEM */
8087 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8088 eb->len, flag,
8089 btrfs_header_level(eb), 0);
8090 BUG_ON(ret); /* -ENOMEM */
8091 wc->flags[level] |= flag;
8092 }
8093
8094 /*
8095 * the block is shared by multiple trees, so it's not good to
8096 * keep the tree lock
8097 */
8098 if (path->locks[level] && level > 0) {
8099 btrfs_tree_unlock_rw(eb, path->locks[level]);
8100 path->locks[level] = 0;
8101 }
8102 return 0;
8103 }
8104
8105 /*
8106 * helper to process tree block pointer.
8107 *
8108 * when wc->stage == DROP_REFERENCE, this function checks
8109 * reference count of the block pointed to. if the block
8110 * is shared and we need update back refs for the subtree
8111 * rooted at the block, this function changes wc->stage to
8112 * UPDATE_BACKREF. if the block is shared and there is no
8113 * need to update back, this function drops the reference
8114 * to the block.
8115 *
8116 * NOTE: return value 1 means we should stop walking down.
8117 */
8118 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8119 struct btrfs_root *root,
8120 struct btrfs_path *path,
8121 struct walk_control *wc, int *lookup_info)
8122 {
8123 u64 bytenr;
8124 u64 generation;
8125 u64 parent;
8126 u32 blocksize;
8127 struct btrfs_key key;
8128 struct extent_buffer *next;
8129 int level = wc->level;
8130 int reada = 0;
8131 int ret = 0;
8132 bool need_account = false;
8133
8134 generation = btrfs_node_ptr_generation(path->nodes[level],
8135 path->slots[level]);
8136 /*
8137 * if the lower level block was created before the snapshot
8138 * was created, we know there is no need to update back refs
8139 * for the subtree
8140 */
8141 if (wc->stage == UPDATE_BACKREF &&
8142 generation <= root->root_key.offset) {
8143 *lookup_info = 1;
8144 return 1;
8145 }
8146
8147 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8148 blocksize = root->nodesize;
8149
8150 next = btrfs_find_tree_block(root->fs_info, bytenr);
8151 if (!next) {
8152 next = btrfs_find_create_tree_block(root, bytenr);
8153 if (!next)
8154 return -ENOMEM;
8155 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8156 level - 1);
8157 reada = 1;
8158 }
8159 btrfs_tree_lock(next);
8160 btrfs_set_lock_blocking(next);
8161
8162 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8163 &wc->refs[level - 1],
8164 &wc->flags[level - 1]);
8165 if (ret < 0) {
8166 btrfs_tree_unlock(next);
8167 return ret;
8168 }
8169
8170 if (unlikely(wc->refs[level - 1] == 0)) {
8171 btrfs_err(root->fs_info, "Missing references.");
8172 BUG();
8173 }
8174 *lookup_info = 0;
8175
8176 if (wc->stage == DROP_REFERENCE) {
8177 if (wc->refs[level - 1] > 1) {
8178 need_account = true;
8179 if (level == 1 &&
8180 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8181 goto skip;
8182
8183 if (!wc->update_ref ||
8184 generation <= root->root_key.offset)
8185 goto skip;
8186
8187 btrfs_node_key_to_cpu(path->nodes[level], &key,
8188 path->slots[level]);
8189 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8190 if (ret < 0)
8191 goto skip;
8192
8193 wc->stage = UPDATE_BACKREF;
8194 wc->shared_level = level - 1;
8195 }
8196 } else {
8197 if (level == 1 &&
8198 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8199 goto skip;
8200 }
8201
8202 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8203 btrfs_tree_unlock(next);
8204 free_extent_buffer(next);
8205 next = NULL;
8206 *lookup_info = 1;
8207 }
8208
8209 if (!next) {
8210 if (reada && level == 1)
8211 reada_walk_down(trans, root, wc, path);
8212 next = read_tree_block(root, bytenr, generation);
8213 if (IS_ERR(next)) {
8214 return PTR_ERR(next);
8215 } else if (!extent_buffer_uptodate(next)) {
8216 free_extent_buffer(next);
8217 return -EIO;
8218 }
8219 btrfs_tree_lock(next);
8220 btrfs_set_lock_blocking(next);
8221 }
8222
8223 level--;
8224 BUG_ON(level != btrfs_header_level(next));
8225 path->nodes[level] = next;
8226 path->slots[level] = 0;
8227 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8228 wc->level = level;
8229 if (wc->level == 1)
8230 wc->reada_slot = 0;
8231 return 0;
8232 skip:
8233 wc->refs[level - 1] = 0;
8234 wc->flags[level - 1] = 0;
8235 if (wc->stage == DROP_REFERENCE) {
8236 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8237 parent = path->nodes[level]->start;
8238 } else {
8239 BUG_ON(root->root_key.objectid !=
8240 btrfs_header_owner(path->nodes[level]));
8241 parent = 0;
8242 }
8243
8244 if (need_account) {
8245 ret = account_shared_subtree(trans, root, next,
8246 generation, level - 1);
8247 if (ret) {
8248 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8249 "%d accounting shared subtree. Quota "
8250 "is out of sync, rescan required.\n",
8251 root->fs_info->sb->s_id, ret);
8252 }
8253 }
8254 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8255 root->root_key.objectid, level - 1, 0, 0);
8256 BUG_ON(ret); /* -ENOMEM */
8257 }
8258 btrfs_tree_unlock(next);
8259 free_extent_buffer(next);
8260 *lookup_info = 1;
8261 return 1;
8262 }
8263
8264 /*
8265 * helper to process tree block while walking up the tree.
8266 *
8267 * when wc->stage == DROP_REFERENCE, this function drops
8268 * reference count on the block.
8269 *
8270 * when wc->stage == UPDATE_BACKREF, this function changes
8271 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8272 * to UPDATE_BACKREF previously while processing the block.
8273 *
8274 * NOTE: return value 1 means we should stop walking up.
8275 */
8276 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8277 struct btrfs_root *root,
8278 struct btrfs_path *path,
8279 struct walk_control *wc)
8280 {
8281 int ret;
8282 int level = wc->level;
8283 struct extent_buffer *eb = path->nodes[level];
8284 u64 parent = 0;
8285
8286 if (wc->stage == UPDATE_BACKREF) {
8287 BUG_ON(wc->shared_level < level);
8288 if (level < wc->shared_level)
8289 goto out;
8290
8291 ret = find_next_key(path, level + 1, &wc->update_progress);
8292 if (ret > 0)
8293 wc->update_ref = 0;
8294
8295 wc->stage = DROP_REFERENCE;
8296 wc->shared_level = -1;
8297 path->slots[level] = 0;
8298
8299 /*
8300 * check reference count again if the block isn't locked.
8301 * we should start walking down the tree again if reference
8302 * count is one.
8303 */
8304 if (!path->locks[level]) {
8305 BUG_ON(level == 0);
8306 btrfs_tree_lock(eb);
8307 btrfs_set_lock_blocking(eb);
8308 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8309
8310 ret = btrfs_lookup_extent_info(trans, root,
8311 eb->start, level, 1,
8312 &wc->refs[level],
8313 &wc->flags[level]);
8314 if (ret < 0) {
8315 btrfs_tree_unlock_rw(eb, path->locks[level]);
8316 path->locks[level] = 0;
8317 return ret;
8318 }
8319 BUG_ON(wc->refs[level] == 0);
8320 if (wc->refs[level] == 1) {
8321 btrfs_tree_unlock_rw(eb, path->locks[level]);
8322 path->locks[level] = 0;
8323 return 1;
8324 }
8325 }
8326 }
8327
8328 /* wc->stage == DROP_REFERENCE */
8329 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8330
8331 if (wc->refs[level] == 1) {
8332 if (level == 0) {
8333 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8334 ret = btrfs_dec_ref(trans, root, eb, 1);
8335 else
8336 ret = btrfs_dec_ref(trans, root, eb, 0);
8337 BUG_ON(ret); /* -ENOMEM */
8338 ret = account_leaf_items(trans, root, eb);
8339 if (ret) {
8340 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8341 "%d accounting leaf items. Quota "
8342 "is out of sync, rescan required.\n",
8343 root->fs_info->sb->s_id, ret);
8344 }
8345 }
8346 /* make block locked assertion in clean_tree_block happy */
8347 if (!path->locks[level] &&
8348 btrfs_header_generation(eb) == trans->transid) {
8349 btrfs_tree_lock(eb);
8350 btrfs_set_lock_blocking(eb);
8351 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8352 }
8353 clean_tree_block(trans, root->fs_info, eb);
8354 }
8355
8356 if (eb == root->node) {
8357 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8358 parent = eb->start;
8359 else
8360 BUG_ON(root->root_key.objectid !=
8361 btrfs_header_owner(eb));
8362 } else {
8363 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8364 parent = path->nodes[level + 1]->start;
8365 else
8366 BUG_ON(root->root_key.objectid !=
8367 btrfs_header_owner(path->nodes[level + 1]));
8368 }
8369
8370 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8371 out:
8372 wc->refs[level] = 0;
8373 wc->flags[level] = 0;
8374 return 0;
8375 }
8376
8377 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8378 struct btrfs_root *root,
8379 struct btrfs_path *path,
8380 struct walk_control *wc)
8381 {
8382 int level = wc->level;
8383 int lookup_info = 1;
8384 int ret;
8385
8386 while (level >= 0) {
8387 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8388 if (ret > 0)
8389 break;
8390
8391 if (level == 0)
8392 break;
8393
8394 if (path->slots[level] >=
8395 btrfs_header_nritems(path->nodes[level]))
8396 break;
8397
8398 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8399 if (ret > 0) {
8400 path->slots[level]++;
8401 continue;
8402 } else if (ret < 0)
8403 return ret;
8404 level = wc->level;
8405 }
8406 return 0;
8407 }
8408
8409 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8410 struct btrfs_root *root,
8411 struct btrfs_path *path,
8412 struct walk_control *wc, int max_level)
8413 {
8414 int level = wc->level;
8415 int ret;
8416
8417 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8418 while (level < max_level && path->nodes[level]) {
8419 wc->level = level;
8420 if (path->slots[level] + 1 <
8421 btrfs_header_nritems(path->nodes[level])) {
8422 path->slots[level]++;
8423 return 0;
8424 } else {
8425 ret = walk_up_proc(trans, root, path, wc);
8426 if (ret > 0)
8427 return 0;
8428
8429 if (path->locks[level]) {
8430 btrfs_tree_unlock_rw(path->nodes[level],
8431 path->locks[level]);
8432 path->locks[level] = 0;
8433 }
8434 free_extent_buffer(path->nodes[level]);
8435 path->nodes[level] = NULL;
8436 level++;
8437 }
8438 }
8439 return 1;
8440 }
8441
8442 /*
8443 * drop a subvolume tree.
8444 *
8445 * this function traverses the tree freeing any blocks that only
8446 * referenced by the tree.
8447 *
8448 * when a shared tree block is found. this function decreases its
8449 * reference count by one. if update_ref is true, this function
8450 * also make sure backrefs for the shared block and all lower level
8451 * blocks are properly updated.
8452 *
8453 * If called with for_reloc == 0, may exit early with -EAGAIN
8454 */
8455 int btrfs_drop_snapshot(struct btrfs_root *root,
8456 struct btrfs_block_rsv *block_rsv, int update_ref,
8457 int for_reloc)
8458 {
8459 struct btrfs_path *path;
8460 struct btrfs_trans_handle *trans;
8461 struct btrfs_root *tree_root = root->fs_info->tree_root;
8462 struct btrfs_root_item *root_item = &root->root_item;
8463 struct walk_control *wc;
8464 struct btrfs_key key;
8465 int err = 0;
8466 int ret;
8467 int level;
8468 bool root_dropped = false;
8469
8470 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8471
8472 path = btrfs_alloc_path();
8473 if (!path) {
8474 err = -ENOMEM;
8475 goto out;
8476 }
8477
8478 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8479 if (!wc) {
8480 btrfs_free_path(path);
8481 err = -ENOMEM;
8482 goto out;
8483 }
8484
8485 trans = btrfs_start_transaction(tree_root, 0);
8486 if (IS_ERR(trans)) {
8487 err = PTR_ERR(trans);
8488 goto out_free;
8489 }
8490
8491 if (block_rsv)
8492 trans->block_rsv = block_rsv;
8493
8494 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8495 level = btrfs_header_level(root->node);
8496 path->nodes[level] = btrfs_lock_root_node(root);
8497 btrfs_set_lock_blocking(path->nodes[level]);
8498 path->slots[level] = 0;
8499 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8500 memset(&wc->update_progress, 0,
8501 sizeof(wc->update_progress));
8502 } else {
8503 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8504 memcpy(&wc->update_progress, &key,
8505 sizeof(wc->update_progress));
8506
8507 level = root_item->drop_level;
8508 BUG_ON(level == 0);
8509 path->lowest_level = level;
8510 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8511 path->lowest_level = 0;
8512 if (ret < 0) {
8513 err = ret;
8514 goto out_end_trans;
8515 }
8516 WARN_ON(ret > 0);
8517
8518 /*
8519 * unlock our path, this is safe because only this
8520 * function is allowed to delete this snapshot
8521 */
8522 btrfs_unlock_up_safe(path, 0);
8523
8524 level = btrfs_header_level(root->node);
8525 while (1) {
8526 btrfs_tree_lock(path->nodes[level]);
8527 btrfs_set_lock_blocking(path->nodes[level]);
8528 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8529
8530 ret = btrfs_lookup_extent_info(trans, root,
8531 path->nodes[level]->start,
8532 level, 1, &wc->refs[level],
8533 &wc->flags[level]);
8534 if (ret < 0) {
8535 err = ret;
8536 goto out_end_trans;
8537 }
8538 BUG_ON(wc->refs[level] == 0);
8539
8540 if (level == root_item->drop_level)
8541 break;
8542
8543 btrfs_tree_unlock(path->nodes[level]);
8544 path->locks[level] = 0;
8545 WARN_ON(wc->refs[level] != 1);
8546 level--;
8547 }
8548 }
8549
8550 wc->level = level;
8551 wc->shared_level = -1;
8552 wc->stage = DROP_REFERENCE;
8553 wc->update_ref = update_ref;
8554 wc->keep_locks = 0;
8555 wc->for_reloc = for_reloc;
8556 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8557
8558 while (1) {
8559
8560 ret = walk_down_tree(trans, root, path, wc);
8561 if (ret < 0) {
8562 err = ret;
8563 break;
8564 }
8565
8566 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8567 if (ret < 0) {
8568 err = ret;
8569 break;
8570 }
8571
8572 if (ret > 0) {
8573 BUG_ON(wc->stage != DROP_REFERENCE);
8574 break;
8575 }
8576
8577 if (wc->stage == DROP_REFERENCE) {
8578 level = wc->level;
8579 btrfs_node_key(path->nodes[level],
8580 &root_item->drop_progress,
8581 path->slots[level]);
8582 root_item->drop_level = level;
8583 }
8584
8585 BUG_ON(wc->level == 0);
8586 if (btrfs_should_end_transaction(trans, tree_root) ||
8587 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8588 ret = btrfs_update_root(trans, tree_root,
8589 &root->root_key,
8590 root_item);
8591 if (ret) {
8592 btrfs_abort_transaction(trans, tree_root, ret);
8593 err = ret;
8594 goto out_end_trans;
8595 }
8596
8597 /*
8598 * Qgroup update accounting is run from
8599 * delayed ref handling. This usually works
8600 * out because delayed refs are normally the
8601 * only way qgroup updates are added. However,
8602 * we may have added updates during our tree
8603 * walk so run qgroups here to make sure we
8604 * don't lose any updates.
8605 */
8606 ret = btrfs_delayed_qgroup_accounting(trans,
8607 root->fs_info);
8608 if (ret)
8609 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8610 "running qgroup updates "
8611 "during snapshot delete. "
8612 "Quota is out of sync, "
8613 "rescan required.\n", ret);
8614
8615 btrfs_end_transaction_throttle(trans, tree_root);
8616 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8617 pr_debug("BTRFS: drop snapshot early exit\n");
8618 err = -EAGAIN;
8619 goto out_free;
8620 }
8621
8622 trans = btrfs_start_transaction(tree_root, 0);
8623 if (IS_ERR(trans)) {
8624 err = PTR_ERR(trans);
8625 goto out_free;
8626 }
8627 if (block_rsv)
8628 trans->block_rsv = block_rsv;
8629 }
8630 }
8631 btrfs_release_path(path);
8632 if (err)
8633 goto out_end_trans;
8634
8635 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8636 if (ret) {
8637 btrfs_abort_transaction(trans, tree_root, ret);
8638 goto out_end_trans;
8639 }
8640
8641 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8642 ret = btrfs_find_root(tree_root, &root->root_key, path,
8643 NULL, NULL);
8644 if (ret < 0) {
8645 btrfs_abort_transaction(trans, tree_root, ret);
8646 err = ret;
8647 goto out_end_trans;
8648 } else if (ret > 0) {
8649 /* if we fail to delete the orphan item this time
8650 * around, it'll get picked up the next time.
8651 *
8652 * The most common failure here is just -ENOENT.
8653 */
8654 btrfs_del_orphan_item(trans, tree_root,
8655 root->root_key.objectid);
8656 }
8657 }
8658
8659 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8660 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8661 } else {
8662 free_extent_buffer(root->node);
8663 free_extent_buffer(root->commit_root);
8664 btrfs_put_fs_root(root);
8665 }
8666 root_dropped = true;
8667 out_end_trans:
8668 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8669 if (ret)
8670 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8671 "running qgroup updates "
8672 "during snapshot delete. "
8673 "Quota is out of sync, "
8674 "rescan required.\n", ret);
8675
8676 btrfs_end_transaction_throttle(trans, tree_root);
8677 out_free:
8678 kfree(wc);
8679 btrfs_free_path(path);
8680 out:
8681 /*
8682 * So if we need to stop dropping the snapshot for whatever reason we
8683 * need to make sure to add it back to the dead root list so that we
8684 * keep trying to do the work later. This also cleans up roots if we
8685 * don't have it in the radix (like when we recover after a power fail
8686 * or unmount) so we don't leak memory.
8687 */
8688 if (!for_reloc && root_dropped == false)
8689 btrfs_add_dead_root(root);
8690 if (err && err != -EAGAIN)
8691 btrfs_std_error(root->fs_info, err);
8692 return err;
8693 }
8694
8695 /*
8696 * drop subtree rooted at tree block 'node'.
8697 *
8698 * NOTE: this function will unlock and release tree block 'node'
8699 * only used by relocation code
8700 */
8701 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8702 struct btrfs_root *root,
8703 struct extent_buffer *node,
8704 struct extent_buffer *parent)
8705 {
8706 struct btrfs_path *path;
8707 struct walk_control *wc;
8708 int level;
8709 int parent_level;
8710 int ret = 0;
8711 int wret;
8712
8713 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8714
8715 path = btrfs_alloc_path();
8716 if (!path)
8717 return -ENOMEM;
8718
8719 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8720 if (!wc) {
8721 btrfs_free_path(path);
8722 return -ENOMEM;
8723 }
8724
8725 btrfs_assert_tree_locked(parent);
8726 parent_level = btrfs_header_level(parent);
8727 extent_buffer_get(parent);
8728 path->nodes[parent_level] = parent;
8729 path->slots[parent_level] = btrfs_header_nritems(parent);
8730
8731 btrfs_assert_tree_locked(node);
8732 level = btrfs_header_level(node);
8733 path->nodes[level] = node;
8734 path->slots[level] = 0;
8735 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8736
8737 wc->refs[parent_level] = 1;
8738 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8739 wc->level = level;
8740 wc->shared_level = -1;
8741 wc->stage = DROP_REFERENCE;
8742 wc->update_ref = 0;
8743 wc->keep_locks = 1;
8744 wc->for_reloc = 1;
8745 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8746
8747 while (1) {
8748 wret = walk_down_tree(trans, root, path, wc);
8749 if (wret < 0) {
8750 ret = wret;
8751 break;
8752 }
8753
8754 wret = walk_up_tree(trans, root, path, wc, parent_level);
8755 if (wret < 0)
8756 ret = wret;
8757 if (wret != 0)
8758 break;
8759 }
8760
8761 kfree(wc);
8762 btrfs_free_path(path);
8763 return ret;
8764 }
8765
8766 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8767 {
8768 u64 num_devices;
8769 u64 stripped;
8770
8771 /*
8772 * if restripe for this chunk_type is on pick target profile and
8773 * return, otherwise do the usual balance
8774 */
8775 stripped = get_restripe_target(root->fs_info, flags);
8776 if (stripped)
8777 return extended_to_chunk(stripped);
8778
8779 num_devices = root->fs_info->fs_devices->rw_devices;
8780
8781 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8782 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8783 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8784
8785 if (num_devices == 1) {
8786 stripped |= BTRFS_BLOCK_GROUP_DUP;
8787 stripped = flags & ~stripped;
8788
8789 /* turn raid0 into single device chunks */
8790 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8791 return stripped;
8792
8793 /* turn mirroring into duplication */
8794 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8795 BTRFS_BLOCK_GROUP_RAID10))
8796 return stripped | BTRFS_BLOCK_GROUP_DUP;
8797 } else {
8798 /* they already had raid on here, just return */
8799 if (flags & stripped)
8800 return flags;
8801
8802 stripped |= BTRFS_BLOCK_GROUP_DUP;
8803 stripped = flags & ~stripped;
8804
8805 /* switch duplicated blocks with raid1 */
8806 if (flags & BTRFS_BLOCK_GROUP_DUP)
8807 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8808
8809 /* this is drive concat, leave it alone */
8810 }
8811
8812 return flags;
8813 }
8814
8815 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8816 {
8817 struct btrfs_space_info *sinfo = cache->space_info;
8818 u64 num_bytes;
8819 u64 min_allocable_bytes;
8820 int ret = -ENOSPC;
8821
8822
8823 /*
8824 * We need some metadata space and system metadata space for
8825 * allocating chunks in some corner cases until we force to set
8826 * it to be readonly.
8827 */
8828 if ((sinfo->flags &
8829 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8830 !force)
8831 min_allocable_bytes = 1 * 1024 * 1024;
8832 else
8833 min_allocable_bytes = 0;
8834
8835 spin_lock(&sinfo->lock);
8836 spin_lock(&cache->lock);
8837
8838 if (cache->ro) {
8839 ret = 0;
8840 goto out;
8841 }
8842
8843 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8844 cache->bytes_super - btrfs_block_group_used(&cache->item);
8845
8846 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8847 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8848 min_allocable_bytes <= sinfo->total_bytes) {
8849 sinfo->bytes_readonly += num_bytes;
8850 cache->ro = 1;
8851 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8852 ret = 0;
8853 }
8854 out:
8855 spin_unlock(&cache->lock);
8856 spin_unlock(&sinfo->lock);
8857 return ret;
8858 }
8859
8860 int btrfs_set_block_group_ro(struct btrfs_root *root,
8861 struct btrfs_block_group_cache *cache)
8862
8863 {
8864 struct btrfs_trans_handle *trans;
8865 u64 alloc_flags;
8866 int ret;
8867
8868 BUG_ON(cache->ro);
8869
8870 again:
8871 trans = btrfs_join_transaction(root);
8872 if (IS_ERR(trans))
8873 return PTR_ERR(trans);
8874
8875 /*
8876 * we're not allowed to set block groups readonly after the dirty
8877 * block groups cache has started writing. If it already started,
8878 * back off and let this transaction commit
8879 */
8880 mutex_lock(&root->fs_info->ro_block_group_mutex);
8881 if (trans->transaction->dirty_bg_run) {
8882 u64 transid = trans->transid;
8883
8884 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8885 btrfs_end_transaction(trans, root);
8886
8887 ret = btrfs_wait_for_commit(root, transid);
8888 if (ret)
8889 return ret;
8890 goto again;
8891 }
8892
8893 /*
8894 * if we are changing raid levels, try to allocate a corresponding
8895 * block group with the new raid level.
8896 */
8897 alloc_flags = update_block_group_flags(root, cache->flags);
8898 if (alloc_flags != cache->flags) {
8899 ret = do_chunk_alloc(trans, root, alloc_flags,
8900 CHUNK_ALLOC_FORCE);
8901 /*
8902 * ENOSPC is allowed here, we may have enough space
8903 * already allocated at the new raid level to
8904 * carry on
8905 */
8906 if (ret == -ENOSPC)
8907 ret = 0;
8908 if (ret < 0)
8909 goto out;
8910 }
8911
8912 ret = set_block_group_ro(cache, 0);
8913 if (!ret)
8914 goto out;
8915 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8916 ret = do_chunk_alloc(trans, root, alloc_flags,
8917 CHUNK_ALLOC_FORCE);
8918 if (ret < 0)
8919 goto out;
8920 ret = set_block_group_ro(cache, 0);
8921 out:
8922 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8923 alloc_flags = update_block_group_flags(root, cache->flags);
8924 lock_chunks(root->fs_info->chunk_root);
8925 check_system_chunk(trans, root, alloc_flags);
8926 unlock_chunks(root->fs_info->chunk_root);
8927 }
8928 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8929
8930 btrfs_end_transaction(trans, root);
8931 return ret;
8932 }
8933
8934 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8935 struct btrfs_root *root, u64 type)
8936 {
8937 u64 alloc_flags = get_alloc_profile(root, type);
8938 return do_chunk_alloc(trans, root, alloc_flags,
8939 CHUNK_ALLOC_FORCE);
8940 }
8941
8942 /*
8943 * helper to account the unused space of all the readonly block group in the
8944 * space_info. takes mirrors into account.
8945 */
8946 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8947 {
8948 struct btrfs_block_group_cache *block_group;
8949 u64 free_bytes = 0;
8950 int factor;
8951
8952 /* It's df, we don't care if it's racey */
8953 if (list_empty(&sinfo->ro_bgs))
8954 return 0;
8955
8956 spin_lock(&sinfo->lock);
8957 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8958 spin_lock(&block_group->lock);
8959
8960 if (!block_group->ro) {
8961 spin_unlock(&block_group->lock);
8962 continue;
8963 }
8964
8965 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8966 BTRFS_BLOCK_GROUP_RAID10 |
8967 BTRFS_BLOCK_GROUP_DUP))
8968 factor = 2;
8969 else
8970 factor = 1;
8971
8972 free_bytes += (block_group->key.offset -
8973 btrfs_block_group_used(&block_group->item)) *
8974 factor;
8975
8976 spin_unlock(&block_group->lock);
8977 }
8978 spin_unlock(&sinfo->lock);
8979
8980 return free_bytes;
8981 }
8982
8983 void btrfs_set_block_group_rw(struct btrfs_root *root,
8984 struct btrfs_block_group_cache *cache)
8985 {
8986 struct btrfs_space_info *sinfo = cache->space_info;
8987 u64 num_bytes;
8988
8989 BUG_ON(!cache->ro);
8990
8991 spin_lock(&sinfo->lock);
8992 spin_lock(&cache->lock);
8993 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8994 cache->bytes_super - btrfs_block_group_used(&cache->item);
8995 sinfo->bytes_readonly -= num_bytes;
8996 cache->ro = 0;
8997 list_del_init(&cache->ro_list);
8998 spin_unlock(&cache->lock);
8999 spin_unlock(&sinfo->lock);
9000 }
9001
9002 /*
9003 * checks to see if its even possible to relocate this block group.
9004 *
9005 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9006 * ok to go ahead and try.
9007 */
9008 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9009 {
9010 struct btrfs_block_group_cache *block_group;
9011 struct btrfs_space_info *space_info;
9012 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9013 struct btrfs_device *device;
9014 struct btrfs_trans_handle *trans;
9015 u64 min_free;
9016 u64 dev_min = 1;
9017 u64 dev_nr = 0;
9018 u64 target;
9019 int index;
9020 int full = 0;
9021 int ret = 0;
9022
9023 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9024
9025 /* odd, couldn't find the block group, leave it alone */
9026 if (!block_group)
9027 return -1;
9028
9029 min_free = btrfs_block_group_used(&block_group->item);
9030
9031 /* no bytes used, we're good */
9032 if (!min_free)
9033 goto out;
9034
9035 space_info = block_group->space_info;
9036 spin_lock(&space_info->lock);
9037
9038 full = space_info->full;
9039
9040 /*
9041 * if this is the last block group we have in this space, we can't
9042 * relocate it unless we're able to allocate a new chunk below.
9043 *
9044 * Otherwise, we need to make sure we have room in the space to handle
9045 * all of the extents from this block group. If we can, we're good
9046 */
9047 if ((space_info->total_bytes != block_group->key.offset) &&
9048 (space_info->bytes_used + space_info->bytes_reserved +
9049 space_info->bytes_pinned + space_info->bytes_readonly +
9050 min_free < space_info->total_bytes)) {
9051 spin_unlock(&space_info->lock);
9052 goto out;
9053 }
9054 spin_unlock(&space_info->lock);
9055
9056 /*
9057 * ok we don't have enough space, but maybe we have free space on our
9058 * devices to allocate new chunks for relocation, so loop through our
9059 * alloc devices and guess if we have enough space. if this block
9060 * group is going to be restriped, run checks against the target
9061 * profile instead of the current one.
9062 */
9063 ret = -1;
9064
9065 /*
9066 * index:
9067 * 0: raid10
9068 * 1: raid1
9069 * 2: dup
9070 * 3: raid0
9071 * 4: single
9072 */
9073 target = get_restripe_target(root->fs_info, block_group->flags);
9074 if (target) {
9075 index = __get_raid_index(extended_to_chunk(target));
9076 } else {
9077 /*
9078 * this is just a balance, so if we were marked as full
9079 * we know there is no space for a new chunk
9080 */
9081 if (full)
9082 goto out;
9083
9084 index = get_block_group_index(block_group);
9085 }
9086
9087 if (index == BTRFS_RAID_RAID10) {
9088 dev_min = 4;
9089 /* Divide by 2 */
9090 min_free >>= 1;
9091 } else if (index == BTRFS_RAID_RAID1) {
9092 dev_min = 2;
9093 } else if (index == BTRFS_RAID_DUP) {
9094 /* Multiply by 2 */
9095 min_free <<= 1;
9096 } else if (index == BTRFS_RAID_RAID0) {
9097 dev_min = fs_devices->rw_devices;
9098 min_free = div64_u64(min_free, dev_min);
9099 }
9100
9101 /* We need to do this so that we can look at pending chunks */
9102 trans = btrfs_join_transaction(root);
9103 if (IS_ERR(trans)) {
9104 ret = PTR_ERR(trans);
9105 goto out;
9106 }
9107
9108 mutex_lock(&root->fs_info->chunk_mutex);
9109 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9110 u64 dev_offset;
9111
9112 /*
9113 * check to make sure we can actually find a chunk with enough
9114 * space to fit our block group in.
9115 */
9116 if (device->total_bytes > device->bytes_used + min_free &&
9117 !device->is_tgtdev_for_dev_replace) {
9118 ret = find_free_dev_extent(trans, device, min_free,
9119 &dev_offset, NULL);
9120 if (!ret)
9121 dev_nr++;
9122
9123 if (dev_nr >= dev_min)
9124 break;
9125
9126 ret = -1;
9127 }
9128 }
9129 mutex_unlock(&root->fs_info->chunk_mutex);
9130 btrfs_end_transaction(trans, root);
9131 out:
9132 btrfs_put_block_group(block_group);
9133 return ret;
9134 }
9135
9136 static int find_first_block_group(struct btrfs_root *root,
9137 struct btrfs_path *path, struct btrfs_key *key)
9138 {
9139 int ret = 0;
9140 struct btrfs_key found_key;
9141 struct extent_buffer *leaf;
9142 int slot;
9143
9144 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9145 if (ret < 0)
9146 goto out;
9147
9148 while (1) {
9149 slot = path->slots[0];
9150 leaf = path->nodes[0];
9151 if (slot >= btrfs_header_nritems(leaf)) {
9152 ret = btrfs_next_leaf(root, path);
9153 if (ret == 0)
9154 continue;
9155 if (ret < 0)
9156 goto out;
9157 break;
9158 }
9159 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9160
9161 if (found_key.objectid >= key->objectid &&
9162 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9163 ret = 0;
9164 goto out;
9165 }
9166 path->slots[0]++;
9167 }
9168 out:
9169 return ret;
9170 }
9171
9172 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9173 {
9174 struct btrfs_block_group_cache *block_group;
9175 u64 last = 0;
9176
9177 while (1) {
9178 struct inode *inode;
9179
9180 block_group = btrfs_lookup_first_block_group(info, last);
9181 while (block_group) {
9182 spin_lock(&block_group->lock);
9183 if (block_group->iref)
9184 break;
9185 spin_unlock(&block_group->lock);
9186 block_group = next_block_group(info->tree_root,
9187 block_group);
9188 }
9189 if (!block_group) {
9190 if (last == 0)
9191 break;
9192 last = 0;
9193 continue;
9194 }
9195
9196 inode = block_group->inode;
9197 block_group->iref = 0;
9198 block_group->inode = NULL;
9199 spin_unlock(&block_group->lock);
9200 iput(inode);
9201 last = block_group->key.objectid + block_group->key.offset;
9202 btrfs_put_block_group(block_group);
9203 }
9204 }
9205
9206 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9207 {
9208 struct btrfs_block_group_cache *block_group;
9209 struct btrfs_space_info *space_info;
9210 struct btrfs_caching_control *caching_ctl;
9211 struct rb_node *n;
9212
9213 down_write(&info->commit_root_sem);
9214 while (!list_empty(&info->caching_block_groups)) {
9215 caching_ctl = list_entry(info->caching_block_groups.next,
9216 struct btrfs_caching_control, list);
9217 list_del(&caching_ctl->list);
9218 put_caching_control(caching_ctl);
9219 }
9220 up_write(&info->commit_root_sem);
9221
9222 spin_lock(&info->unused_bgs_lock);
9223 while (!list_empty(&info->unused_bgs)) {
9224 block_group = list_first_entry(&info->unused_bgs,
9225 struct btrfs_block_group_cache,
9226 bg_list);
9227 list_del_init(&block_group->bg_list);
9228 btrfs_put_block_group(block_group);
9229 }
9230 spin_unlock(&info->unused_bgs_lock);
9231
9232 spin_lock(&info->block_group_cache_lock);
9233 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9234 block_group = rb_entry(n, struct btrfs_block_group_cache,
9235 cache_node);
9236 rb_erase(&block_group->cache_node,
9237 &info->block_group_cache_tree);
9238 RB_CLEAR_NODE(&block_group->cache_node);
9239 spin_unlock(&info->block_group_cache_lock);
9240
9241 down_write(&block_group->space_info->groups_sem);
9242 list_del(&block_group->list);
9243 up_write(&block_group->space_info->groups_sem);
9244
9245 if (block_group->cached == BTRFS_CACHE_STARTED)
9246 wait_block_group_cache_done(block_group);
9247
9248 /*
9249 * We haven't cached this block group, which means we could
9250 * possibly have excluded extents on this block group.
9251 */
9252 if (block_group->cached == BTRFS_CACHE_NO ||
9253 block_group->cached == BTRFS_CACHE_ERROR)
9254 free_excluded_extents(info->extent_root, block_group);
9255
9256 btrfs_remove_free_space_cache(block_group);
9257 btrfs_put_block_group(block_group);
9258
9259 spin_lock(&info->block_group_cache_lock);
9260 }
9261 spin_unlock(&info->block_group_cache_lock);
9262
9263 /* now that all the block groups are freed, go through and
9264 * free all the space_info structs. This is only called during
9265 * the final stages of unmount, and so we know nobody is
9266 * using them. We call synchronize_rcu() once before we start,
9267 * just to be on the safe side.
9268 */
9269 synchronize_rcu();
9270
9271 release_global_block_rsv(info);
9272
9273 while (!list_empty(&info->space_info)) {
9274 int i;
9275
9276 space_info = list_entry(info->space_info.next,
9277 struct btrfs_space_info,
9278 list);
9279 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9280 if (WARN_ON(space_info->bytes_pinned > 0 ||
9281 space_info->bytes_reserved > 0 ||
9282 space_info->bytes_may_use > 0)) {
9283 dump_space_info(space_info, 0, 0);
9284 }
9285 }
9286 list_del(&space_info->list);
9287 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9288 struct kobject *kobj;
9289 kobj = space_info->block_group_kobjs[i];
9290 space_info->block_group_kobjs[i] = NULL;
9291 if (kobj) {
9292 kobject_del(kobj);
9293 kobject_put(kobj);
9294 }
9295 }
9296 kobject_del(&space_info->kobj);
9297 kobject_put(&space_info->kobj);
9298 }
9299 return 0;
9300 }
9301
9302 static void __link_block_group(struct btrfs_space_info *space_info,
9303 struct btrfs_block_group_cache *cache)
9304 {
9305 int index = get_block_group_index(cache);
9306 bool first = false;
9307
9308 down_write(&space_info->groups_sem);
9309 if (list_empty(&space_info->block_groups[index]))
9310 first = true;
9311 list_add_tail(&cache->list, &space_info->block_groups[index]);
9312 up_write(&space_info->groups_sem);
9313
9314 if (first) {
9315 struct raid_kobject *rkobj;
9316 int ret;
9317
9318 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9319 if (!rkobj)
9320 goto out_err;
9321 rkobj->raid_type = index;
9322 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9323 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9324 "%s", get_raid_name(index));
9325 if (ret) {
9326 kobject_put(&rkobj->kobj);
9327 goto out_err;
9328 }
9329 space_info->block_group_kobjs[index] = &rkobj->kobj;
9330 }
9331
9332 return;
9333 out_err:
9334 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9335 }
9336
9337 static struct btrfs_block_group_cache *
9338 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9339 {
9340 struct btrfs_block_group_cache *cache;
9341
9342 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9343 if (!cache)
9344 return NULL;
9345
9346 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9347 GFP_NOFS);
9348 if (!cache->free_space_ctl) {
9349 kfree(cache);
9350 return NULL;
9351 }
9352
9353 cache->key.objectid = start;
9354 cache->key.offset = size;
9355 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9356
9357 cache->sectorsize = root->sectorsize;
9358 cache->fs_info = root->fs_info;
9359 cache->full_stripe_len = btrfs_full_stripe_len(root,
9360 &root->fs_info->mapping_tree,
9361 start);
9362 atomic_set(&cache->count, 1);
9363 spin_lock_init(&cache->lock);
9364 init_rwsem(&cache->data_rwsem);
9365 INIT_LIST_HEAD(&cache->list);
9366 INIT_LIST_HEAD(&cache->cluster_list);
9367 INIT_LIST_HEAD(&cache->bg_list);
9368 INIT_LIST_HEAD(&cache->ro_list);
9369 INIT_LIST_HEAD(&cache->dirty_list);
9370 INIT_LIST_HEAD(&cache->io_list);
9371 btrfs_init_free_space_ctl(cache);
9372 atomic_set(&cache->trimming, 0);
9373
9374 return cache;
9375 }
9376
9377 int btrfs_read_block_groups(struct btrfs_root *root)
9378 {
9379 struct btrfs_path *path;
9380 int ret;
9381 struct btrfs_block_group_cache *cache;
9382 struct btrfs_fs_info *info = root->fs_info;
9383 struct btrfs_space_info *space_info;
9384 struct btrfs_key key;
9385 struct btrfs_key found_key;
9386 struct extent_buffer *leaf;
9387 int need_clear = 0;
9388 u64 cache_gen;
9389
9390 root = info->extent_root;
9391 key.objectid = 0;
9392 key.offset = 0;
9393 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9394 path = btrfs_alloc_path();
9395 if (!path)
9396 return -ENOMEM;
9397 path->reada = 1;
9398
9399 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9400 if (btrfs_test_opt(root, SPACE_CACHE) &&
9401 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9402 need_clear = 1;
9403 if (btrfs_test_opt(root, CLEAR_CACHE))
9404 need_clear = 1;
9405
9406 while (1) {
9407 ret = find_first_block_group(root, path, &key);
9408 if (ret > 0)
9409 break;
9410 if (ret != 0)
9411 goto error;
9412
9413 leaf = path->nodes[0];
9414 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9415
9416 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9417 found_key.offset);
9418 if (!cache) {
9419 ret = -ENOMEM;
9420 goto error;
9421 }
9422
9423 if (need_clear) {
9424 /*
9425 * When we mount with old space cache, we need to
9426 * set BTRFS_DC_CLEAR and set dirty flag.
9427 *
9428 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9429 * truncate the old free space cache inode and
9430 * setup a new one.
9431 * b) Setting 'dirty flag' makes sure that we flush
9432 * the new space cache info onto disk.
9433 */
9434 if (btrfs_test_opt(root, SPACE_CACHE))
9435 cache->disk_cache_state = BTRFS_DC_CLEAR;
9436 }
9437
9438 read_extent_buffer(leaf, &cache->item,
9439 btrfs_item_ptr_offset(leaf, path->slots[0]),
9440 sizeof(cache->item));
9441 cache->flags = btrfs_block_group_flags(&cache->item);
9442
9443 key.objectid = found_key.objectid + found_key.offset;
9444 btrfs_release_path(path);
9445
9446 /*
9447 * We need to exclude the super stripes now so that the space
9448 * info has super bytes accounted for, otherwise we'll think
9449 * we have more space than we actually do.
9450 */
9451 ret = exclude_super_stripes(root, cache);
9452 if (ret) {
9453 /*
9454 * We may have excluded something, so call this just in
9455 * case.
9456 */
9457 free_excluded_extents(root, cache);
9458 btrfs_put_block_group(cache);
9459 goto error;
9460 }
9461
9462 /*
9463 * check for two cases, either we are full, and therefore
9464 * don't need to bother with the caching work since we won't
9465 * find any space, or we are empty, and we can just add all
9466 * the space in and be done with it. This saves us _alot_ of
9467 * time, particularly in the full case.
9468 */
9469 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9470 cache->last_byte_to_unpin = (u64)-1;
9471 cache->cached = BTRFS_CACHE_FINISHED;
9472 free_excluded_extents(root, cache);
9473 } else if (btrfs_block_group_used(&cache->item) == 0) {
9474 cache->last_byte_to_unpin = (u64)-1;
9475 cache->cached = BTRFS_CACHE_FINISHED;
9476 add_new_free_space(cache, root->fs_info,
9477 found_key.objectid,
9478 found_key.objectid +
9479 found_key.offset);
9480 free_excluded_extents(root, cache);
9481 }
9482
9483 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9484 if (ret) {
9485 btrfs_remove_free_space_cache(cache);
9486 btrfs_put_block_group(cache);
9487 goto error;
9488 }
9489
9490 ret = update_space_info(info, cache->flags, found_key.offset,
9491 btrfs_block_group_used(&cache->item),
9492 &space_info);
9493 if (ret) {
9494 btrfs_remove_free_space_cache(cache);
9495 spin_lock(&info->block_group_cache_lock);
9496 rb_erase(&cache->cache_node,
9497 &info->block_group_cache_tree);
9498 RB_CLEAR_NODE(&cache->cache_node);
9499 spin_unlock(&info->block_group_cache_lock);
9500 btrfs_put_block_group(cache);
9501 goto error;
9502 }
9503
9504 cache->space_info = space_info;
9505 spin_lock(&cache->space_info->lock);
9506 cache->space_info->bytes_readonly += cache->bytes_super;
9507 spin_unlock(&cache->space_info->lock);
9508
9509 __link_block_group(space_info, cache);
9510
9511 set_avail_alloc_bits(root->fs_info, cache->flags);
9512 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9513 set_block_group_ro(cache, 1);
9514 } else if (btrfs_block_group_used(&cache->item) == 0) {
9515 spin_lock(&info->unused_bgs_lock);
9516 /* Should always be true but just in case. */
9517 if (list_empty(&cache->bg_list)) {
9518 btrfs_get_block_group(cache);
9519 list_add_tail(&cache->bg_list,
9520 &info->unused_bgs);
9521 }
9522 spin_unlock(&info->unused_bgs_lock);
9523 }
9524 }
9525
9526 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9527 if (!(get_alloc_profile(root, space_info->flags) &
9528 (BTRFS_BLOCK_GROUP_RAID10 |
9529 BTRFS_BLOCK_GROUP_RAID1 |
9530 BTRFS_BLOCK_GROUP_RAID5 |
9531 BTRFS_BLOCK_GROUP_RAID6 |
9532 BTRFS_BLOCK_GROUP_DUP)))
9533 continue;
9534 /*
9535 * avoid allocating from un-mirrored block group if there are
9536 * mirrored block groups.
9537 */
9538 list_for_each_entry(cache,
9539 &space_info->block_groups[BTRFS_RAID_RAID0],
9540 list)
9541 set_block_group_ro(cache, 1);
9542 list_for_each_entry(cache,
9543 &space_info->block_groups[BTRFS_RAID_SINGLE],
9544 list)
9545 set_block_group_ro(cache, 1);
9546 }
9547
9548 init_global_block_rsv(info);
9549 ret = 0;
9550 error:
9551 btrfs_free_path(path);
9552 return ret;
9553 }
9554
9555 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9556 struct btrfs_root *root)
9557 {
9558 struct btrfs_block_group_cache *block_group, *tmp;
9559 struct btrfs_root *extent_root = root->fs_info->extent_root;
9560 struct btrfs_block_group_item item;
9561 struct btrfs_key key;
9562 int ret = 0;
9563
9564 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9565 if (ret)
9566 goto next;
9567
9568 spin_lock(&block_group->lock);
9569 memcpy(&item, &block_group->item, sizeof(item));
9570 memcpy(&key, &block_group->key, sizeof(key));
9571 spin_unlock(&block_group->lock);
9572
9573 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9574 sizeof(item));
9575 if (ret)
9576 btrfs_abort_transaction(trans, extent_root, ret);
9577 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9578 key.objectid, key.offset);
9579 if (ret)
9580 btrfs_abort_transaction(trans, extent_root, ret);
9581 next:
9582 list_del_init(&block_group->bg_list);
9583 }
9584 }
9585
9586 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9587 struct btrfs_root *root, u64 bytes_used,
9588 u64 type, u64 chunk_objectid, u64 chunk_offset,
9589 u64 size)
9590 {
9591 int ret;
9592 struct btrfs_root *extent_root;
9593 struct btrfs_block_group_cache *cache;
9594
9595 extent_root = root->fs_info->extent_root;
9596
9597 btrfs_set_log_full_commit(root->fs_info, trans);
9598
9599 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9600 if (!cache)
9601 return -ENOMEM;
9602
9603 btrfs_set_block_group_used(&cache->item, bytes_used);
9604 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9605 btrfs_set_block_group_flags(&cache->item, type);
9606
9607 cache->flags = type;
9608 cache->last_byte_to_unpin = (u64)-1;
9609 cache->cached = BTRFS_CACHE_FINISHED;
9610 ret = exclude_super_stripes(root, cache);
9611 if (ret) {
9612 /*
9613 * We may have excluded something, so call this just in
9614 * case.
9615 */
9616 free_excluded_extents(root, cache);
9617 btrfs_put_block_group(cache);
9618 return ret;
9619 }
9620
9621 add_new_free_space(cache, root->fs_info, chunk_offset,
9622 chunk_offset + size);
9623
9624 free_excluded_extents(root, cache);
9625
9626 /*
9627 * Call to ensure the corresponding space_info object is created and
9628 * assigned to our block group, but don't update its counters just yet.
9629 * We want our bg to be added to the rbtree with its ->space_info set.
9630 */
9631 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9632 &cache->space_info);
9633 if (ret) {
9634 btrfs_remove_free_space_cache(cache);
9635 btrfs_put_block_group(cache);
9636 return ret;
9637 }
9638
9639 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9640 if (ret) {
9641 btrfs_remove_free_space_cache(cache);
9642 btrfs_put_block_group(cache);
9643 return ret;
9644 }
9645
9646 /*
9647 * Now that our block group has its ->space_info set and is inserted in
9648 * the rbtree, update the space info's counters.
9649 */
9650 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9651 &cache->space_info);
9652 if (ret) {
9653 btrfs_remove_free_space_cache(cache);
9654 spin_lock(&root->fs_info->block_group_cache_lock);
9655 rb_erase(&cache->cache_node,
9656 &root->fs_info->block_group_cache_tree);
9657 RB_CLEAR_NODE(&cache->cache_node);
9658 spin_unlock(&root->fs_info->block_group_cache_lock);
9659 btrfs_put_block_group(cache);
9660 return ret;
9661 }
9662 update_global_block_rsv(root->fs_info);
9663
9664 spin_lock(&cache->space_info->lock);
9665 cache->space_info->bytes_readonly += cache->bytes_super;
9666 spin_unlock(&cache->space_info->lock);
9667
9668 __link_block_group(cache->space_info, cache);
9669
9670 list_add_tail(&cache->bg_list, &trans->new_bgs);
9671
9672 set_avail_alloc_bits(extent_root->fs_info, type);
9673
9674 return 0;
9675 }
9676
9677 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9678 {
9679 u64 extra_flags = chunk_to_extended(flags) &
9680 BTRFS_EXTENDED_PROFILE_MASK;
9681
9682 write_seqlock(&fs_info->profiles_lock);
9683 if (flags & BTRFS_BLOCK_GROUP_DATA)
9684 fs_info->avail_data_alloc_bits &= ~extra_flags;
9685 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9686 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9687 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9688 fs_info->avail_system_alloc_bits &= ~extra_flags;
9689 write_sequnlock(&fs_info->profiles_lock);
9690 }
9691
9692 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9693 struct btrfs_root *root, u64 group_start,
9694 struct extent_map *em)
9695 {
9696 struct btrfs_path *path;
9697 struct btrfs_block_group_cache *block_group;
9698 struct btrfs_free_cluster *cluster;
9699 struct btrfs_root *tree_root = root->fs_info->tree_root;
9700 struct btrfs_key key;
9701 struct inode *inode;
9702 struct kobject *kobj = NULL;
9703 int ret;
9704 int index;
9705 int factor;
9706 struct btrfs_caching_control *caching_ctl = NULL;
9707 bool remove_em;
9708
9709 root = root->fs_info->extent_root;
9710
9711 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9712 BUG_ON(!block_group);
9713 BUG_ON(!block_group->ro);
9714
9715 /*
9716 * Free the reserved super bytes from this block group before
9717 * remove it.
9718 */
9719 free_excluded_extents(root, block_group);
9720
9721 memcpy(&key, &block_group->key, sizeof(key));
9722 index = get_block_group_index(block_group);
9723 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9724 BTRFS_BLOCK_GROUP_RAID1 |
9725 BTRFS_BLOCK_GROUP_RAID10))
9726 factor = 2;
9727 else
9728 factor = 1;
9729
9730 /* make sure this block group isn't part of an allocation cluster */
9731 cluster = &root->fs_info->data_alloc_cluster;
9732 spin_lock(&cluster->refill_lock);
9733 btrfs_return_cluster_to_free_space(block_group, cluster);
9734 spin_unlock(&cluster->refill_lock);
9735
9736 /*
9737 * make sure this block group isn't part of a metadata
9738 * allocation cluster
9739 */
9740 cluster = &root->fs_info->meta_alloc_cluster;
9741 spin_lock(&cluster->refill_lock);
9742 btrfs_return_cluster_to_free_space(block_group, cluster);
9743 spin_unlock(&cluster->refill_lock);
9744
9745 path = btrfs_alloc_path();
9746 if (!path) {
9747 ret = -ENOMEM;
9748 goto out;
9749 }
9750
9751 /*
9752 * get the inode first so any iput calls done for the io_list
9753 * aren't the final iput (no unlinks allowed now)
9754 */
9755 inode = lookup_free_space_inode(tree_root, block_group, path);
9756
9757 mutex_lock(&trans->transaction->cache_write_mutex);
9758 /*
9759 * make sure our free spache cache IO is done before remove the
9760 * free space inode
9761 */
9762 spin_lock(&trans->transaction->dirty_bgs_lock);
9763 if (!list_empty(&block_group->io_list)) {
9764 list_del_init(&block_group->io_list);
9765
9766 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9767
9768 spin_unlock(&trans->transaction->dirty_bgs_lock);
9769 btrfs_wait_cache_io(root, trans, block_group,
9770 &block_group->io_ctl, path,
9771 block_group->key.objectid);
9772 btrfs_put_block_group(block_group);
9773 spin_lock(&trans->transaction->dirty_bgs_lock);
9774 }
9775
9776 if (!list_empty(&block_group->dirty_list)) {
9777 list_del_init(&block_group->dirty_list);
9778 btrfs_put_block_group(block_group);
9779 }
9780 spin_unlock(&trans->transaction->dirty_bgs_lock);
9781 mutex_unlock(&trans->transaction->cache_write_mutex);
9782
9783 if (!IS_ERR(inode)) {
9784 ret = btrfs_orphan_add(trans, inode);
9785 if (ret) {
9786 btrfs_add_delayed_iput(inode);
9787 goto out;
9788 }
9789 clear_nlink(inode);
9790 /* One for the block groups ref */
9791 spin_lock(&block_group->lock);
9792 if (block_group->iref) {
9793 block_group->iref = 0;
9794 block_group->inode = NULL;
9795 spin_unlock(&block_group->lock);
9796 iput(inode);
9797 } else {
9798 spin_unlock(&block_group->lock);
9799 }
9800 /* One for our lookup ref */
9801 btrfs_add_delayed_iput(inode);
9802 }
9803
9804 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9805 key.offset = block_group->key.objectid;
9806 key.type = 0;
9807
9808 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9809 if (ret < 0)
9810 goto out;
9811 if (ret > 0)
9812 btrfs_release_path(path);
9813 if (ret == 0) {
9814 ret = btrfs_del_item(trans, tree_root, path);
9815 if (ret)
9816 goto out;
9817 btrfs_release_path(path);
9818 }
9819
9820 spin_lock(&root->fs_info->block_group_cache_lock);
9821 rb_erase(&block_group->cache_node,
9822 &root->fs_info->block_group_cache_tree);
9823 RB_CLEAR_NODE(&block_group->cache_node);
9824
9825 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9826 root->fs_info->first_logical_byte = (u64)-1;
9827 spin_unlock(&root->fs_info->block_group_cache_lock);
9828
9829 down_write(&block_group->space_info->groups_sem);
9830 /*
9831 * we must use list_del_init so people can check to see if they
9832 * are still on the list after taking the semaphore
9833 */
9834 list_del_init(&block_group->list);
9835 if (list_empty(&block_group->space_info->block_groups[index])) {
9836 kobj = block_group->space_info->block_group_kobjs[index];
9837 block_group->space_info->block_group_kobjs[index] = NULL;
9838 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9839 }
9840 up_write(&block_group->space_info->groups_sem);
9841 if (kobj) {
9842 kobject_del(kobj);
9843 kobject_put(kobj);
9844 }
9845
9846 if (block_group->has_caching_ctl)
9847 caching_ctl = get_caching_control(block_group);
9848 if (block_group->cached == BTRFS_CACHE_STARTED)
9849 wait_block_group_cache_done(block_group);
9850 if (block_group->has_caching_ctl) {
9851 down_write(&root->fs_info->commit_root_sem);
9852 if (!caching_ctl) {
9853 struct btrfs_caching_control *ctl;
9854
9855 list_for_each_entry(ctl,
9856 &root->fs_info->caching_block_groups, list)
9857 if (ctl->block_group == block_group) {
9858 caching_ctl = ctl;
9859 atomic_inc(&caching_ctl->count);
9860 break;
9861 }
9862 }
9863 if (caching_ctl)
9864 list_del_init(&caching_ctl->list);
9865 up_write(&root->fs_info->commit_root_sem);
9866 if (caching_ctl) {
9867 /* Once for the caching bgs list and once for us. */
9868 put_caching_control(caching_ctl);
9869 put_caching_control(caching_ctl);
9870 }
9871 }
9872
9873 spin_lock(&trans->transaction->dirty_bgs_lock);
9874 if (!list_empty(&block_group->dirty_list)) {
9875 WARN_ON(1);
9876 }
9877 if (!list_empty(&block_group->io_list)) {
9878 WARN_ON(1);
9879 }
9880 spin_unlock(&trans->transaction->dirty_bgs_lock);
9881 btrfs_remove_free_space_cache(block_group);
9882
9883 spin_lock(&block_group->space_info->lock);
9884 list_del_init(&block_group->ro_list);
9885
9886 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9887 WARN_ON(block_group->space_info->total_bytes
9888 < block_group->key.offset);
9889 WARN_ON(block_group->space_info->bytes_readonly
9890 < block_group->key.offset);
9891 WARN_ON(block_group->space_info->disk_total
9892 < block_group->key.offset * factor);
9893 }
9894 block_group->space_info->total_bytes -= block_group->key.offset;
9895 block_group->space_info->bytes_readonly -= block_group->key.offset;
9896 block_group->space_info->disk_total -= block_group->key.offset * factor;
9897
9898 spin_unlock(&block_group->space_info->lock);
9899
9900 memcpy(&key, &block_group->key, sizeof(key));
9901
9902 lock_chunks(root);
9903 if (!list_empty(&em->list)) {
9904 /* We're in the transaction->pending_chunks list. */
9905 free_extent_map(em);
9906 }
9907 spin_lock(&block_group->lock);
9908 block_group->removed = 1;
9909 /*
9910 * At this point trimming can't start on this block group, because we
9911 * removed the block group from the tree fs_info->block_group_cache_tree
9912 * so no one can't find it anymore and even if someone already got this
9913 * block group before we removed it from the rbtree, they have already
9914 * incremented block_group->trimming - if they didn't, they won't find
9915 * any free space entries because we already removed them all when we
9916 * called btrfs_remove_free_space_cache().
9917 *
9918 * And we must not remove the extent map from the fs_info->mapping_tree
9919 * to prevent the same logical address range and physical device space
9920 * ranges from being reused for a new block group. This is because our
9921 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9922 * completely transactionless, so while it is trimming a range the
9923 * currently running transaction might finish and a new one start,
9924 * allowing for new block groups to be created that can reuse the same
9925 * physical device locations unless we take this special care.
9926 */
9927 remove_em = (atomic_read(&block_group->trimming) == 0);
9928 /*
9929 * Make sure a trimmer task always sees the em in the pinned_chunks list
9930 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9931 * before checking block_group->removed).
9932 */
9933 if (!remove_em) {
9934 /*
9935 * Our em might be in trans->transaction->pending_chunks which
9936 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9937 * and so is the fs_info->pinned_chunks list.
9938 *
9939 * So at this point we must be holding the chunk_mutex to avoid
9940 * any races with chunk allocation (more specifically at
9941 * volumes.c:contains_pending_extent()), to ensure it always
9942 * sees the em, either in the pending_chunks list or in the
9943 * pinned_chunks list.
9944 */
9945 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9946 }
9947 spin_unlock(&block_group->lock);
9948
9949 if (remove_em) {
9950 struct extent_map_tree *em_tree;
9951
9952 em_tree = &root->fs_info->mapping_tree.map_tree;
9953 write_lock(&em_tree->lock);
9954 /*
9955 * The em might be in the pending_chunks list, so make sure the
9956 * chunk mutex is locked, since remove_extent_mapping() will
9957 * delete us from that list.
9958 */
9959 remove_extent_mapping(em_tree, em);
9960 write_unlock(&em_tree->lock);
9961 /* once for the tree */
9962 free_extent_map(em);
9963 }
9964
9965 unlock_chunks(root);
9966
9967 btrfs_put_block_group(block_group);
9968 btrfs_put_block_group(block_group);
9969
9970 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9971 if (ret > 0)
9972 ret = -EIO;
9973 if (ret < 0)
9974 goto out;
9975
9976 ret = btrfs_del_item(trans, root, path);
9977 out:
9978 btrfs_free_path(path);
9979 return ret;
9980 }
9981
9982 /*
9983 * Process the unused_bgs list and remove any that don't have any allocated
9984 * space inside of them.
9985 */
9986 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9987 {
9988 struct btrfs_block_group_cache *block_group;
9989 struct btrfs_space_info *space_info;
9990 struct btrfs_root *root = fs_info->extent_root;
9991 struct btrfs_trans_handle *trans;
9992 int ret = 0;
9993
9994 if (!fs_info->open)
9995 return;
9996
9997 spin_lock(&fs_info->unused_bgs_lock);
9998 while (!list_empty(&fs_info->unused_bgs)) {
9999 u64 start, end;
10000
10001 block_group = list_first_entry(&fs_info->unused_bgs,
10002 struct btrfs_block_group_cache,
10003 bg_list);
10004 space_info = block_group->space_info;
10005 list_del_init(&block_group->bg_list);
10006 if (ret || btrfs_mixed_space_info(space_info)) {
10007 btrfs_put_block_group(block_group);
10008 continue;
10009 }
10010 spin_unlock(&fs_info->unused_bgs_lock);
10011
10012 /* Don't want to race with allocators so take the groups_sem */
10013 down_write(&space_info->groups_sem);
10014 spin_lock(&block_group->lock);
10015 if (block_group->reserved ||
10016 btrfs_block_group_used(&block_group->item) ||
10017 block_group->ro) {
10018 /*
10019 * We want to bail if we made new allocations or have
10020 * outstanding allocations in this block group. We do
10021 * the ro check in case balance is currently acting on
10022 * this block group.
10023 */
10024 spin_unlock(&block_group->lock);
10025 up_write(&space_info->groups_sem);
10026 goto next;
10027 }
10028 spin_unlock(&block_group->lock);
10029
10030 /* We don't want to force the issue, only flip if it's ok. */
10031 ret = set_block_group_ro(block_group, 0);
10032 up_write(&space_info->groups_sem);
10033 if (ret < 0) {
10034 ret = 0;
10035 goto next;
10036 }
10037
10038 /*
10039 * Want to do this before we do anything else so we can recover
10040 * properly if we fail to join the transaction.
10041 */
10042 /* 1 for btrfs_orphan_reserve_metadata() */
10043 trans = btrfs_start_transaction(root, 1);
10044 if (IS_ERR(trans)) {
10045 btrfs_set_block_group_rw(root, block_group);
10046 ret = PTR_ERR(trans);
10047 goto next;
10048 }
10049
10050 /*
10051 * We could have pending pinned extents for this block group,
10052 * just delete them, we don't care about them anymore.
10053 */
10054 start = block_group->key.objectid;
10055 end = start + block_group->key.offset - 1;
10056 /*
10057 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10058 * btrfs_finish_extent_commit(). If we are at transaction N,
10059 * another task might be running finish_extent_commit() for the
10060 * previous transaction N - 1, and have seen a range belonging
10061 * to the block group in freed_extents[] before we were able to
10062 * clear the whole block group range from freed_extents[]. This
10063 * means that task can lookup for the block group after we
10064 * unpinned it from freed_extents[] and removed it, leading to
10065 * a BUG_ON() at btrfs_unpin_extent_range().
10066 */
10067 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10068 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10069 EXTENT_DIRTY, GFP_NOFS);
10070 if (ret) {
10071 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10072 btrfs_set_block_group_rw(root, block_group);
10073 goto end_trans;
10074 }
10075 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10076 EXTENT_DIRTY, GFP_NOFS);
10077 if (ret) {
10078 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10079 btrfs_set_block_group_rw(root, block_group);
10080 goto end_trans;
10081 }
10082 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10083
10084 /* Reset pinned so btrfs_put_block_group doesn't complain */
10085 spin_lock(&space_info->lock);
10086 spin_lock(&block_group->lock);
10087
10088 space_info->bytes_pinned -= block_group->pinned;
10089 space_info->bytes_readonly += block_group->pinned;
10090 percpu_counter_add(&space_info->total_bytes_pinned,
10091 -block_group->pinned);
10092 block_group->pinned = 0;
10093
10094 spin_unlock(&block_group->lock);
10095 spin_unlock(&space_info->lock);
10096
10097 /*
10098 * Btrfs_remove_chunk will abort the transaction if things go
10099 * horribly wrong.
10100 */
10101 ret = btrfs_remove_chunk(trans, root,
10102 block_group->key.objectid);
10103 end_trans:
10104 btrfs_end_transaction(trans, root);
10105 next:
10106 btrfs_put_block_group(block_group);
10107 spin_lock(&fs_info->unused_bgs_lock);
10108 }
10109 spin_unlock(&fs_info->unused_bgs_lock);
10110 }
10111
10112 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10113 {
10114 struct btrfs_space_info *space_info;
10115 struct btrfs_super_block *disk_super;
10116 u64 features;
10117 u64 flags;
10118 int mixed = 0;
10119 int ret;
10120
10121 disk_super = fs_info->super_copy;
10122 if (!btrfs_super_root(disk_super))
10123 return 1;
10124
10125 features = btrfs_super_incompat_flags(disk_super);
10126 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10127 mixed = 1;
10128
10129 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10130 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10131 if (ret)
10132 goto out;
10133
10134 if (mixed) {
10135 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10136 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10137 } else {
10138 flags = BTRFS_BLOCK_GROUP_METADATA;
10139 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10140 if (ret)
10141 goto out;
10142
10143 flags = BTRFS_BLOCK_GROUP_DATA;
10144 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10145 }
10146 out:
10147 return ret;
10148 }
10149
10150 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10151 {
10152 return unpin_extent_range(root, start, end, false);
10153 }
10154
10155 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10156 {
10157 struct btrfs_fs_info *fs_info = root->fs_info;
10158 struct btrfs_block_group_cache *cache = NULL;
10159 u64 group_trimmed;
10160 u64 start;
10161 u64 end;
10162 u64 trimmed = 0;
10163 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10164 int ret = 0;
10165
10166 /*
10167 * try to trim all FS space, our block group may start from non-zero.
10168 */
10169 if (range->len == total_bytes)
10170 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10171 else
10172 cache = btrfs_lookup_block_group(fs_info, range->start);
10173
10174 while (cache) {
10175 if (cache->key.objectid >= (range->start + range->len)) {
10176 btrfs_put_block_group(cache);
10177 break;
10178 }
10179
10180 start = max(range->start, cache->key.objectid);
10181 end = min(range->start + range->len,
10182 cache->key.objectid + cache->key.offset);
10183
10184 if (end - start >= range->minlen) {
10185 if (!block_group_cache_done(cache)) {
10186 ret = cache_block_group(cache, 0);
10187 if (ret) {
10188 btrfs_put_block_group(cache);
10189 break;
10190 }
10191 ret = wait_block_group_cache_done(cache);
10192 if (ret) {
10193 btrfs_put_block_group(cache);
10194 break;
10195 }
10196 }
10197 ret = btrfs_trim_block_group(cache,
10198 &group_trimmed,
10199 start,
10200 end,
10201 range->minlen);
10202
10203 trimmed += group_trimmed;
10204 if (ret) {
10205 btrfs_put_block_group(cache);
10206 break;
10207 }
10208 }
10209
10210 cache = next_block_group(fs_info->tree_root, cache);
10211 }
10212
10213 range->len = trimmed;
10214 return ret;
10215 }
10216
10217 /*
10218 * btrfs_{start,end}_write_no_snapshoting() are similar to
10219 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10220 * data into the page cache through nocow before the subvolume is snapshoted,
10221 * but flush the data into disk after the snapshot creation, or to prevent
10222 * operations while snapshoting is ongoing and that cause the snapshot to be
10223 * inconsistent (writes followed by expanding truncates for example).
10224 */
10225 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10226 {
10227 percpu_counter_dec(&root->subv_writers->counter);
10228 /*
10229 * Make sure counter is updated before we wake up
10230 * waiters.
10231 */
10232 smp_mb();
10233 if (waitqueue_active(&root->subv_writers->wait))
10234 wake_up(&root->subv_writers->wait);
10235 }
10236
10237 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10238 {
10239 if (atomic_read(&root->will_be_snapshoted))
10240 return 0;
10241
10242 percpu_counter_inc(&root->subv_writers->counter);
10243 /*
10244 * Make sure counter is updated before we check for snapshot creation.
10245 */
10246 smp_mb();
10247 if (atomic_read(&root->will_be_snapshoted)) {
10248 btrfs_end_write_no_snapshoting(root);
10249 return 0;
10250 }
10251 return 1;
10252 }
This page took 0.321276 seconds and 4 git commands to generate.