MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 btrfs_delayed_ref_unlock(locked_ref);
2542 locked_ref = NULL;
2543 }
2544 btrfs_put_delayed_ref(ref);
2545 count++;
2546 cond_resched();
2547 }
2548
2549 /*
2550 * We don't want to include ref heads since we can have empty ref heads
2551 * and those will drastically skew our runtime down since we just do
2552 * accounting, no actual extent tree updates.
2553 */
2554 if (actual_count > 0) {
2555 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2556 u64 avg;
2557
2558 /*
2559 * We weigh the current average higher than our current runtime
2560 * to avoid large swings in the average.
2561 */
2562 spin_lock(&delayed_refs->lock);
2563 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2564 avg = div64_u64(avg, 4);
2565 fs_info->avg_delayed_ref_runtime = avg;
2566 spin_unlock(&delayed_refs->lock);
2567 }
2568 return 0;
2569 }
2570
2571 #ifdef SCRAMBLE_DELAYED_REFS
2572 /*
2573 * Normally delayed refs get processed in ascending bytenr order. This
2574 * correlates in most cases to the order added. To expose dependencies on this
2575 * order, we start to process the tree in the middle instead of the beginning
2576 */
2577 static u64 find_middle(struct rb_root *root)
2578 {
2579 struct rb_node *n = root->rb_node;
2580 struct btrfs_delayed_ref_node *entry;
2581 int alt = 1;
2582 u64 middle;
2583 u64 first = 0, last = 0;
2584
2585 n = rb_first(root);
2586 if (n) {
2587 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2588 first = entry->bytenr;
2589 }
2590 n = rb_last(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 last = entry->bytenr;
2594 }
2595 n = root->rb_node;
2596
2597 while (n) {
2598 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2599 WARN_ON(!entry->in_tree);
2600
2601 middle = entry->bytenr;
2602
2603 if (alt)
2604 n = n->rb_left;
2605 else
2606 n = n->rb_right;
2607
2608 alt = 1 - alt;
2609 }
2610 return middle;
2611 }
2612 #endif
2613
2614 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2615 {
2616 u64 num_bytes;
2617
2618 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2619 sizeof(struct btrfs_extent_inline_ref));
2620 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2621 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2622
2623 /*
2624 * We don't ever fill up leaves all the way so multiply by 2 just to be
2625 * closer to what we're really going to want to ouse.
2626 */
2627 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2628 }
2629
2630 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2631 struct btrfs_root *root)
2632 {
2633 struct btrfs_block_rsv *global_rsv;
2634 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2635 u64 num_bytes;
2636 int ret = 0;
2637
2638 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2639 num_heads = heads_to_leaves(root, num_heads);
2640 if (num_heads > 1)
2641 num_bytes += (num_heads - 1) * root->nodesize;
2642 num_bytes <<= 1;
2643 global_rsv = &root->fs_info->global_block_rsv;
2644
2645 /*
2646 * If we can't allocate any more chunks lets make sure we have _lots_ of
2647 * wiggle room since running delayed refs can create more delayed refs.
2648 */
2649 if (global_rsv->space_info->full)
2650 num_bytes <<= 1;
2651
2652 spin_lock(&global_rsv->lock);
2653 if (global_rsv->reserved <= num_bytes)
2654 ret = 1;
2655 spin_unlock(&global_rsv->lock);
2656 return ret;
2657 }
2658
2659 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2660 struct btrfs_root *root)
2661 {
2662 struct btrfs_fs_info *fs_info = root->fs_info;
2663 u64 num_entries =
2664 atomic_read(&trans->transaction->delayed_refs.num_entries);
2665 u64 avg_runtime;
2666 u64 val;
2667
2668 smp_mb();
2669 avg_runtime = fs_info->avg_delayed_ref_runtime;
2670 val = num_entries * avg_runtime;
2671 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2672 return 1;
2673 if (val >= NSEC_PER_SEC / 2)
2674 return 2;
2675
2676 return btrfs_check_space_for_delayed_refs(trans, root);
2677 }
2678
2679 struct async_delayed_refs {
2680 struct btrfs_root *root;
2681 int count;
2682 int error;
2683 int sync;
2684 struct completion wait;
2685 struct btrfs_work work;
2686 };
2687
2688 static void delayed_ref_async_start(struct btrfs_work *work)
2689 {
2690 struct async_delayed_refs *async;
2691 struct btrfs_trans_handle *trans;
2692 int ret;
2693
2694 async = container_of(work, struct async_delayed_refs, work);
2695
2696 trans = btrfs_join_transaction(async->root);
2697 if (IS_ERR(trans)) {
2698 async->error = PTR_ERR(trans);
2699 goto done;
2700 }
2701
2702 /*
2703 * trans->sync means that when we call end_transaciton, we won't
2704 * wait on delayed refs
2705 */
2706 trans->sync = true;
2707 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2708 if (ret)
2709 async->error = ret;
2710
2711 ret = btrfs_end_transaction(trans, async->root);
2712 if (ret && !async->error)
2713 async->error = ret;
2714 done:
2715 if (async->sync)
2716 complete(&async->wait);
2717 else
2718 kfree(async);
2719 }
2720
2721 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2722 unsigned long count, int wait)
2723 {
2724 struct async_delayed_refs *async;
2725 int ret;
2726
2727 async = kmalloc(sizeof(*async), GFP_NOFS);
2728 if (!async)
2729 return -ENOMEM;
2730
2731 async->root = root->fs_info->tree_root;
2732 async->count = count;
2733 async->error = 0;
2734 if (wait)
2735 async->sync = 1;
2736 else
2737 async->sync = 0;
2738 init_completion(&async->wait);
2739
2740 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2741 delayed_ref_async_start, NULL, NULL);
2742
2743 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2744
2745 if (wait) {
2746 wait_for_completion(&async->wait);
2747 ret = async->error;
2748 kfree(async);
2749 return ret;
2750 }
2751 return 0;
2752 }
2753
2754 /*
2755 * this starts processing the delayed reference count updates and
2756 * extent insertions we have queued up so far. count can be
2757 * 0, which means to process everything in the tree at the start
2758 * of the run (but not newly added entries), or it can be some target
2759 * number you'd like to process.
2760 *
2761 * Returns 0 on success or if called with an aborted transaction
2762 * Returns <0 on error and aborts the transaction
2763 */
2764 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *root, unsigned long count)
2766 {
2767 struct rb_node *node;
2768 struct btrfs_delayed_ref_root *delayed_refs;
2769 struct btrfs_delayed_ref_head *head;
2770 int ret;
2771 int run_all = count == (unsigned long)-1;
2772
2773 /* We'll clean this up in btrfs_cleanup_transaction */
2774 if (trans->aborted)
2775 return 0;
2776
2777 if (root == root->fs_info->extent_root)
2778 root = root->fs_info->tree_root;
2779
2780 delayed_refs = &trans->transaction->delayed_refs;
2781 if (count == 0)
2782 count = atomic_read(&delayed_refs->num_entries) * 2;
2783
2784 again:
2785 #ifdef SCRAMBLE_DELAYED_REFS
2786 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2787 #endif
2788 ret = __btrfs_run_delayed_refs(trans, root, count);
2789 if (ret < 0) {
2790 btrfs_abort_transaction(trans, root, ret);
2791 return ret;
2792 }
2793
2794 if (run_all) {
2795 if (!list_empty(&trans->new_bgs))
2796 btrfs_create_pending_block_groups(trans, root);
2797
2798 spin_lock(&delayed_refs->lock);
2799 node = rb_first(&delayed_refs->href_root);
2800 if (!node) {
2801 spin_unlock(&delayed_refs->lock);
2802 goto out;
2803 }
2804 count = (unsigned long)-1;
2805
2806 while (node) {
2807 head = rb_entry(node, struct btrfs_delayed_ref_head,
2808 href_node);
2809 if (btrfs_delayed_ref_is_head(&head->node)) {
2810 struct btrfs_delayed_ref_node *ref;
2811
2812 ref = &head->node;
2813 atomic_inc(&ref->refs);
2814
2815 spin_unlock(&delayed_refs->lock);
2816 /*
2817 * Mutex was contended, block until it's
2818 * released and try again
2819 */
2820 mutex_lock(&head->mutex);
2821 mutex_unlock(&head->mutex);
2822
2823 btrfs_put_delayed_ref(ref);
2824 cond_resched();
2825 goto again;
2826 } else {
2827 WARN_ON(1);
2828 }
2829 node = rb_next(node);
2830 }
2831 spin_unlock(&delayed_refs->lock);
2832 cond_resched();
2833 goto again;
2834 }
2835 out:
2836 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2837 if (ret)
2838 return ret;
2839 assert_qgroups_uptodate(trans);
2840 return 0;
2841 }
2842
2843 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *root,
2845 u64 bytenr, u64 num_bytes, u64 flags,
2846 int level, int is_data)
2847 {
2848 struct btrfs_delayed_extent_op *extent_op;
2849 int ret;
2850
2851 extent_op = btrfs_alloc_delayed_extent_op();
2852 if (!extent_op)
2853 return -ENOMEM;
2854
2855 extent_op->flags_to_set = flags;
2856 extent_op->update_flags = 1;
2857 extent_op->update_key = 0;
2858 extent_op->is_data = is_data ? 1 : 0;
2859 extent_op->level = level;
2860
2861 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2862 num_bytes, extent_op);
2863 if (ret)
2864 btrfs_free_delayed_extent_op(extent_op);
2865 return ret;
2866 }
2867
2868 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2869 struct btrfs_root *root,
2870 struct btrfs_path *path,
2871 u64 objectid, u64 offset, u64 bytenr)
2872 {
2873 struct btrfs_delayed_ref_head *head;
2874 struct btrfs_delayed_ref_node *ref;
2875 struct btrfs_delayed_data_ref *data_ref;
2876 struct btrfs_delayed_ref_root *delayed_refs;
2877 struct rb_node *node;
2878 int ret = 0;
2879
2880 delayed_refs = &trans->transaction->delayed_refs;
2881 spin_lock(&delayed_refs->lock);
2882 head = btrfs_find_delayed_ref_head(trans, bytenr);
2883 if (!head) {
2884 spin_unlock(&delayed_refs->lock);
2885 return 0;
2886 }
2887
2888 if (!mutex_trylock(&head->mutex)) {
2889 atomic_inc(&head->node.refs);
2890 spin_unlock(&delayed_refs->lock);
2891
2892 btrfs_release_path(path);
2893
2894 /*
2895 * Mutex was contended, block until it's released and let
2896 * caller try again
2897 */
2898 mutex_lock(&head->mutex);
2899 mutex_unlock(&head->mutex);
2900 btrfs_put_delayed_ref(&head->node);
2901 return -EAGAIN;
2902 }
2903 spin_unlock(&delayed_refs->lock);
2904
2905 spin_lock(&head->lock);
2906 node = rb_first(&head->ref_root);
2907 while (node) {
2908 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2909 node = rb_next(node);
2910
2911 /* If it's a shared ref we know a cross reference exists */
2912 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2913 ret = 1;
2914 break;
2915 }
2916
2917 data_ref = btrfs_delayed_node_to_data_ref(ref);
2918
2919 /*
2920 * If our ref doesn't match the one we're currently looking at
2921 * then we have a cross reference.
2922 */
2923 if (data_ref->root != root->root_key.objectid ||
2924 data_ref->objectid != objectid ||
2925 data_ref->offset != offset) {
2926 ret = 1;
2927 break;
2928 }
2929 }
2930 spin_unlock(&head->lock);
2931 mutex_unlock(&head->mutex);
2932 return ret;
2933 }
2934
2935 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2936 struct btrfs_root *root,
2937 struct btrfs_path *path,
2938 u64 objectid, u64 offset, u64 bytenr)
2939 {
2940 struct btrfs_root *extent_root = root->fs_info->extent_root;
2941 struct extent_buffer *leaf;
2942 struct btrfs_extent_data_ref *ref;
2943 struct btrfs_extent_inline_ref *iref;
2944 struct btrfs_extent_item *ei;
2945 struct btrfs_key key;
2946 u32 item_size;
2947 int ret;
2948
2949 key.objectid = bytenr;
2950 key.offset = (u64)-1;
2951 key.type = BTRFS_EXTENT_ITEM_KEY;
2952
2953 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2954 if (ret < 0)
2955 goto out;
2956 BUG_ON(ret == 0); /* Corruption */
2957
2958 ret = -ENOENT;
2959 if (path->slots[0] == 0)
2960 goto out;
2961
2962 path->slots[0]--;
2963 leaf = path->nodes[0];
2964 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2965
2966 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2967 goto out;
2968
2969 ret = 1;
2970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2971 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2972 if (item_size < sizeof(*ei)) {
2973 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2974 goto out;
2975 }
2976 #endif
2977 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2978
2979 if (item_size != sizeof(*ei) +
2980 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2981 goto out;
2982
2983 if (btrfs_extent_generation(leaf, ei) <=
2984 btrfs_root_last_snapshot(&root->root_item))
2985 goto out;
2986
2987 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2988 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2989 BTRFS_EXTENT_DATA_REF_KEY)
2990 goto out;
2991
2992 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2993 if (btrfs_extent_refs(leaf, ei) !=
2994 btrfs_extent_data_ref_count(leaf, ref) ||
2995 btrfs_extent_data_ref_root(leaf, ref) !=
2996 root->root_key.objectid ||
2997 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2998 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2999 goto out;
3000
3001 ret = 0;
3002 out:
3003 return ret;
3004 }
3005
3006 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3007 struct btrfs_root *root,
3008 u64 objectid, u64 offset, u64 bytenr)
3009 {
3010 struct btrfs_path *path;
3011 int ret;
3012 int ret2;
3013
3014 path = btrfs_alloc_path();
3015 if (!path)
3016 return -ENOENT;
3017
3018 do {
3019 ret = check_committed_ref(trans, root, path, objectid,
3020 offset, bytenr);
3021 if (ret && ret != -ENOENT)
3022 goto out;
3023
3024 ret2 = check_delayed_ref(trans, root, path, objectid,
3025 offset, bytenr);
3026 } while (ret2 == -EAGAIN);
3027
3028 if (ret2 && ret2 != -ENOENT) {
3029 ret = ret2;
3030 goto out;
3031 }
3032
3033 if (ret != -ENOENT || ret2 != -ENOENT)
3034 ret = 0;
3035 out:
3036 btrfs_free_path(path);
3037 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3038 WARN_ON(ret > 0);
3039 return ret;
3040 }
3041
3042 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3043 struct btrfs_root *root,
3044 struct extent_buffer *buf,
3045 int full_backref, int inc)
3046 {
3047 u64 bytenr;
3048 u64 num_bytes;
3049 u64 parent;
3050 u64 ref_root;
3051 u32 nritems;
3052 struct btrfs_key key;
3053 struct btrfs_file_extent_item *fi;
3054 int i;
3055 int level;
3056 int ret = 0;
3057 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3058 u64, u64, u64, u64, u64, u64, int);
3059
3060
3061 if (btrfs_test_is_dummy_root(root))
3062 return 0;
3063
3064 ref_root = btrfs_header_owner(buf);
3065 nritems = btrfs_header_nritems(buf);
3066 level = btrfs_header_level(buf);
3067
3068 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3069 return 0;
3070
3071 if (inc)
3072 process_func = btrfs_inc_extent_ref;
3073 else
3074 process_func = btrfs_free_extent;
3075
3076 if (full_backref)
3077 parent = buf->start;
3078 else
3079 parent = 0;
3080
3081 for (i = 0; i < nritems; i++) {
3082 if (level == 0) {
3083 btrfs_item_key_to_cpu(buf, &key, i);
3084 if (key.type != BTRFS_EXTENT_DATA_KEY)
3085 continue;
3086 fi = btrfs_item_ptr(buf, i,
3087 struct btrfs_file_extent_item);
3088 if (btrfs_file_extent_type(buf, fi) ==
3089 BTRFS_FILE_EXTENT_INLINE)
3090 continue;
3091 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3092 if (bytenr == 0)
3093 continue;
3094
3095 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3096 key.offset -= btrfs_file_extent_offset(buf, fi);
3097 ret = process_func(trans, root, bytenr, num_bytes,
3098 parent, ref_root, key.objectid,
3099 key.offset, 1);
3100 if (ret)
3101 goto fail;
3102 } else {
3103 bytenr = btrfs_node_blockptr(buf, i);
3104 num_bytes = root->nodesize;
3105 ret = process_func(trans, root, bytenr, num_bytes,
3106 parent, ref_root, level - 1, 0,
3107 1);
3108 if (ret)
3109 goto fail;
3110 }
3111 }
3112 return 0;
3113 fail:
3114 return ret;
3115 }
3116
3117 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3118 struct extent_buffer *buf, int full_backref)
3119 {
3120 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3121 }
3122
3123 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3124 struct extent_buffer *buf, int full_backref)
3125 {
3126 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3127 }
3128
3129 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root,
3131 struct btrfs_path *path,
3132 struct btrfs_block_group_cache *cache)
3133 {
3134 int ret;
3135 struct btrfs_root *extent_root = root->fs_info->extent_root;
3136 unsigned long bi;
3137 struct extent_buffer *leaf;
3138
3139 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3140 if (ret) {
3141 if (ret > 0)
3142 ret = -ENOENT;
3143 goto fail;
3144 }
3145
3146 leaf = path->nodes[0];
3147 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3148 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3149 btrfs_mark_buffer_dirty(leaf);
3150 btrfs_release_path(path);
3151 fail:
3152 if (ret)
3153 btrfs_abort_transaction(trans, root, ret);
3154 return ret;
3155
3156 }
3157
3158 static struct btrfs_block_group_cache *
3159 next_block_group(struct btrfs_root *root,
3160 struct btrfs_block_group_cache *cache)
3161 {
3162 struct rb_node *node;
3163
3164 spin_lock(&root->fs_info->block_group_cache_lock);
3165
3166 /* If our block group was removed, we need a full search. */
3167 if (RB_EMPTY_NODE(&cache->cache_node)) {
3168 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3169
3170 spin_unlock(&root->fs_info->block_group_cache_lock);
3171 btrfs_put_block_group(cache);
3172 cache = btrfs_lookup_first_block_group(root->fs_info,
3173 next_bytenr);
3174 return cache;
3175 }
3176 node = rb_next(&cache->cache_node);
3177 btrfs_put_block_group(cache);
3178 if (node) {
3179 cache = rb_entry(node, struct btrfs_block_group_cache,
3180 cache_node);
3181 btrfs_get_block_group(cache);
3182 } else
3183 cache = NULL;
3184 spin_unlock(&root->fs_info->block_group_cache_lock);
3185 return cache;
3186 }
3187
3188 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3189 struct btrfs_trans_handle *trans,
3190 struct btrfs_path *path)
3191 {
3192 struct btrfs_root *root = block_group->fs_info->tree_root;
3193 struct inode *inode = NULL;
3194 u64 alloc_hint = 0;
3195 int dcs = BTRFS_DC_ERROR;
3196 int num_pages = 0;
3197 int retries = 0;
3198 int ret = 0;
3199
3200 /*
3201 * If this block group is smaller than 100 megs don't bother caching the
3202 * block group.
3203 */
3204 if (block_group->key.offset < (100 * 1024 * 1024)) {
3205 spin_lock(&block_group->lock);
3206 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3207 spin_unlock(&block_group->lock);
3208 return 0;
3209 }
3210
3211 again:
3212 inode = lookup_free_space_inode(root, block_group, path);
3213 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3214 ret = PTR_ERR(inode);
3215 btrfs_release_path(path);
3216 goto out;
3217 }
3218
3219 if (IS_ERR(inode)) {
3220 BUG_ON(retries);
3221 retries++;
3222
3223 if (block_group->ro)
3224 goto out_free;
3225
3226 ret = create_free_space_inode(root, trans, block_group, path);
3227 if (ret)
3228 goto out_free;
3229 goto again;
3230 }
3231
3232 /* We've already setup this transaction, go ahead and exit */
3233 if (block_group->cache_generation == trans->transid &&
3234 i_size_read(inode)) {
3235 dcs = BTRFS_DC_SETUP;
3236 goto out_put;
3237 }
3238
3239 /*
3240 * We want to set the generation to 0, that way if anything goes wrong
3241 * from here on out we know not to trust this cache when we load up next
3242 * time.
3243 */
3244 BTRFS_I(inode)->generation = 0;
3245 ret = btrfs_update_inode(trans, root, inode);
3246 WARN_ON(ret);
3247
3248 if (i_size_read(inode) > 0) {
3249 ret = btrfs_check_trunc_cache_free_space(root,
3250 &root->fs_info->global_block_rsv);
3251 if (ret)
3252 goto out_put;
3253
3254 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3255 if (ret)
3256 goto out_put;
3257 }
3258
3259 spin_lock(&block_group->lock);
3260 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3261 !btrfs_test_opt(root, SPACE_CACHE) ||
3262 block_group->delalloc_bytes) {
3263 /*
3264 * don't bother trying to write stuff out _if_
3265 * a) we're not cached,
3266 * b) we're with nospace_cache mount option.
3267 */
3268 dcs = BTRFS_DC_WRITTEN;
3269 spin_unlock(&block_group->lock);
3270 goto out_put;
3271 }
3272 spin_unlock(&block_group->lock);
3273
3274 /*
3275 * Try to preallocate enough space based on how big the block group is.
3276 * Keep in mind this has to include any pinned space which could end up
3277 * taking up quite a bit since it's not folded into the other space
3278 * cache.
3279 */
3280 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3281 if (!num_pages)
3282 num_pages = 1;
3283
3284 num_pages *= 16;
3285 num_pages *= PAGE_CACHE_SIZE;
3286
3287 ret = btrfs_check_data_free_space(inode, num_pages);
3288 if (ret)
3289 goto out_put;
3290
3291 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3292 num_pages, num_pages,
3293 &alloc_hint);
3294 if (!ret)
3295 dcs = BTRFS_DC_SETUP;
3296 btrfs_free_reserved_data_space(inode, num_pages);
3297
3298 out_put:
3299 iput(inode);
3300 out_free:
3301 btrfs_release_path(path);
3302 out:
3303 spin_lock(&block_group->lock);
3304 if (!ret && dcs == BTRFS_DC_SETUP)
3305 block_group->cache_generation = trans->transid;
3306 block_group->disk_cache_state = dcs;
3307 spin_unlock(&block_group->lock);
3308
3309 return ret;
3310 }
3311
3312 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3313 struct btrfs_root *root)
3314 {
3315 struct btrfs_block_group_cache *cache;
3316 struct btrfs_transaction *cur_trans = trans->transaction;
3317 int ret = 0;
3318 struct btrfs_path *path;
3319
3320 if (list_empty(&cur_trans->dirty_bgs))
3321 return 0;
3322
3323 path = btrfs_alloc_path();
3324 if (!path)
3325 return -ENOMEM;
3326
3327 /*
3328 * We don't need the lock here since we are protected by the transaction
3329 * commit. We want to do the cache_save_setup first and then run the
3330 * delayed refs to make sure we have the best chance at doing this all
3331 * in one shot.
3332 */
3333 while (!list_empty(&cur_trans->dirty_bgs)) {
3334 cache = list_first_entry(&cur_trans->dirty_bgs,
3335 struct btrfs_block_group_cache,
3336 dirty_list);
3337 list_del_init(&cache->dirty_list);
3338 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3339 cache_save_setup(cache, trans, path);
3340 if (!ret)
3341 ret = btrfs_run_delayed_refs(trans, root,
3342 (unsigned long) -1);
3343 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
3344 btrfs_write_out_cache(root, trans, cache, path);
3345 if (!ret)
3346 ret = write_one_cache_group(trans, root, path, cache);
3347 btrfs_put_block_group(cache);
3348 }
3349
3350 btrfs_free_path(path);
3351 return ret;
3352 }
3353
3354 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3355 {
3356 struct btrfs_block_group_cache *block_group;
3357 int readonly = 0;
3358
3359 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3360 if (!block_group || block_group->ro)
3361 readonly = 1;
3362 if (block_group)
3363 btrfs_put_block_group(block_group);
3364 return readonly;
3365 }
3366
3367 static const char *alloc_name(u64 flags)
3368 {
3369 switch (flags) {
3370 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3371 return "mixed";
3372 case BTRFS_BLOCK_GROUP_METADATA:
3373 return "metadata";
3374 case BTRFS_BLOCK_GROUP_DATA:
3375 return "data";
3376 case BTRFS_BLOCK_GROUP_SYSTEM:
3377 return "system";
3378 default:
3379 WARN_ON(1);
3380 return "invalid-combination";
3381 };
3382 }
3383
3384 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3385 u64 total_bytes, u64 bytes_used,
3386 struct btrfs_space_info **space_info)
3387 {
3388 struct btrfs_space_info *found;
3389 int i;
3390 int factor;
3391 int ret;
3392
3393 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3394 BTRFS_BLOCK_GROUP_RAID10))
3395 factor = 2;
3396 else
3397 factor = 1;
3398
3399 found = __find_space_info(info, flags);
3400 if (found) {
3401 spin_lock(&found->lock);
3402 found->total_bytes += total_bytes;
3403 found->disk_total += total_bytes * factor;
3404 found->bytes_used += bytes_used;
3405 found->disk_used += bytes_used * factor;
3406 found->full = 0;
3407 spin_unlock(&found->lock);
3408 *space_info = found;
3409 return 0;
3410 }
3411 found = kzalloc(sizeof(*found), GFP_NOFS);
3412 if (!found)
3413 return -ENOMEM;
3414
3415 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3416 if (ret) {
3417 kfree(found);
3418 return ret;
3419 }
3420
3421 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3422 INIT_LIST_HEAD(&found->block_groups[i]);
3423 init_rwsem(&found->groups_sem);
3424 spin_lock_init(&found->lock);
3425 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3426 found->total_bytes = total_bytes;
3427 found->disk_total = total_bytes * factor;
3428 found->bytes_used = bytes_used;
3429 found->disk_used = bytes_used * factor;
3430 found->bytes_pinned = 0;
3431 found->bytes_reserved = 0;
3432 found->bytes_readonly = 0;
3433 found->bytes_may_use = 0;
3434 found->full = 0;
3435 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3436 found->chunk_alloc = 0;
3437 found->flush = 0;
3438 init_waitqueue_head(&found->wait);
3439 INIT_LIST_HEAD(&found->ro_bgs);
3440
3441 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3442 info->space_info_kobj, "%s",
3443 alloc_name(found->flags));
3444 if (ret) {
3445 kfree(found);
3446 return ret;
3447 }
3448
3449 *space_info = found;
3450 list_add_rcu(&found->list, &info->space_info);
3451 if (flags & BTRFS_BLOCK_GROUP_DATA)
3452 info->data_sinfo = found;
3453
3454 return ret;
3455 }
3456
3457 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3458 {
3459 u64 extra_flags = chunk_to_extended(flags) &
3460 BTRFS_EXTENDED_PROFILE_MASK;
3461
3462 write_seqlock(&fs_info->profiles_lock);
3463 if (flags & BTRFS_BLOCK_GROUP_DATA)
3464 fs_info->avail_data_alloc_bits |= extra_flags;
3465 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3466 fs_info->avail_metadata_alloc_bits |= extra_flags;
3467 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3468 fs_info->avail_system_alloc_bits |= extra_flags;
3469 write_sequnlock(&fs_info->profiles_lock);
3470 }
3471
3472 /*
3473 * returns target flags in extended format or 0 if restripe for this
3474 * chunk_type is not in progress
3475 *
3476 * should be called with either volume_mutex or balance_lock held
3477 */
3478 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3479 {
3480 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3481 u64 target = 0;
3482
3483 if (!bctl)
3484 return 0;
3485
3486 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3487 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3488 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3489 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3490 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3491 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3492 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3493 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3494 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3495 }
3496
3497 return target;
3498 }
3499
3500 /*
3501 * @flags: available profiles in extended format (see ctree.h)
3502 *
3503 * Returns reduced profile in chunk format. If profile changing is in
3504 * progress (either running or paused) picks the target profile (if it's
3505 * already available), otherwise falls back to plain reducing.
3506 */
3507 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3508 {
3509 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3510 u64 target;
3511 u64 tmp;
3512
3513 /*
3514 * see if restripe for this chunk_type is in progress, if so
3515 * try to reduce to the target profile
3516 */
3517 spin_lock(&root->fs_info->balance_lock);
3518 target = get_restripe_target(root->fs_info, flags);
3519 if (target) {
3520 /* pick target profile only if it's already available */
3521 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3522 spin_unlock(&root->fs_info->balance_lock);
3523 return extended_to_chunk(target);
3524 }
3525 }
3526 spin_unlock(&root->fs_info->balance_lock);
3527
3528 /* First, mask out the RAID levels which aren't possible */
3529 if (num_devices == 1)
3530 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3531 BTRFS_BLOCK_GROUP_RAID5);
3532 if (num_devices < 3)
3533 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3534 if (num_devices < 4)
3535 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3536
3537 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3538 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3539 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3540 flags &= ~tmp;
3541
3542 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3543 tmp = BTRFS_BLOCK_GROUP_RAID6;
3544 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3545 tmp = BTRFS_BLOCK_GROUP_RAID5;
3546 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3547 tmp = BTRFS_BLOCK_GROUP_RAID10;
3548 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3549 tmp = BTRFS_BLOCK_GROUP_RAID1;
3550 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3551 tmp = BTRFS_BLOCK_GROUP_RAID0;
3552
3553 return extended_to_chunk(flags | tmp);
3554 }
3555
3556 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3557 {
3558 unsigned seq;
3559 u64 flags;
3560
3561 do {
3562 flags = orig_flags;
3563 seq = read_seqbegin(&root->fs_info->profiles_lock);
3564
3565 if (flags & BTRFS_BLOCK_GROUP_DATA)
3566 flags |= root->fs_info->avail_data_alloc_bits;
3567 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3568 flags |= root->fs_info->avail_system_alloc_bits;
3569 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3570 flags |= root->fs_info->avail_metadata_alloc_bits;
3571 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3572
3573 return btrfs_reduce_alloc_profile(root, flags);
3574 }
3575
3576 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3577 {
3578 u64 flags;
3579 u64 ret;
3580
3581 if (data)
3582 flags = BTRFS_BLOCK_GROUP_DATA;
3583 else if (root == root->fs_info->chunk_root)
3584 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3585 else
3586 flags = BTRFS_BLOCK_GROUP_METADATA;
3587
3588 ret = get_alloc_profile(root, flags);
3589 return ret;
3590 }
3591
3592 /*
3593 * This will check the space that the inode allocates from to make sure we have
3594 * enough space for bytes.
3595 */
3596 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3597 {
3598 struct btrfs_space_info *data_sinfo;
3599 struct btrfs_root *root = BTRFS_I(inode)->root;
3600 struct btrfs_fs_info *fs_info = root->fs_info;
3601 u64 used;
3602 int ret = 0, committed = 0, alloc_chunk = 1;
3603
3604 /* make sure bytes are sectorsize aligned */
3605 bytes = ALIGN(bytes, root->sectorsize);
3606
3607 if (btrfs_is_free_space_inode(inode)) {
3608 committed = 1;
3609 ASSERT(current->journal_info);
3610 }
3611
3612 data_sinfo = fs_info->data_sinfo;
3613 if (!data_sinfo)
3614 goto alloc;
3615
3616 again:
3617 /* make sure we have enough space to handle the data first */
3618 spin_lock(&data_sinfo->lock);
3619 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3620 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3621 data_sinfo->bytes_may_use;
3622
3623 if (used + bytes > data_sinfo->total_bytes) {
3624 struct btrfs_trans_handle *trans;
3625
3626 /*
3627 * if we don't have enough free bytes in this space then we need
3628 * to alloc a new chunk.
3629 */
3630 if (!data_sinfo->full && alloc_chunk) {
3631 u64 alloc_target;
3632
3633 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3634 spin_unlock(&data_sinfo->lock);
3635 alloc:
3636 alloc_target = btrfs_get_alloc_profile(root, 1);
3637 /*
3638 * It is ugly that we don't call nolock join
3639 * transaction for the free space inode case here.
3640 * But it is safe because we only do the data space
3641 * reservation for the free space cache in the
3642 * transaction context, the common join transaction
3643 * just increase the counter of the current transaction
3644 * handler, doesn't try to acquire the trans_lock of
3645 * the fs.
3646 */
3647 trans = btrfs_join_transaction(root);
3648 if (IS_ERR(trans))
3649 return PTR_ERR(trans);
3650
3651 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3652 alloc_target,
3653 CHUNK_ALLOC_NO_FORCE);
3654 btrfs_end_transaction(trans, root);
3655 if (ret < 0) {
3656 if (ret != -ENOSPC)
3657 return ret;
3658 else
3659 goto commit_trans;
3660 }
3661
3662 if (!data_sinfo)
3663 data_sinfo = fs_info->data_sinfo;
3664
3665 goto again;
3666 }
3667
3668 /*
3669 * If we don't have enough pinned space to deal with this
3670 * allocation don't bother committing the transaction.
3671 */
3672 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3673 bytes) < 0)
3674 committed = 1;
3675 spin_unlock(&data_sinfo->lock);
3676
3677 /* commit the current transaction and try again */
3678 commit_trans:
3679 if (!committed &&
3680 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3681 committed = 1;
3682
3683 trans = btrfs_join_transaction(root);
3684 if (IS_ERR(trans))
3685 return PTR_ERR(trans);
3686 ret = btrfs_commit_transaction(trans, root);
3687 if (ret)
3688 return ret;
3689 goto again;
3690 }
3691
3692 trace_btrfs_space_reservation(root->fs_info,
3693 "space_info:enospc",
3694 data_sinfo->flags, bytes, 1);
3695 return -ENOSPC;
3696 }
3697 data_sinfo->bytes_may_use += bytes;
3698 trace_btrfs_space_reservation(root->fs_info, "space_info",
3699 data_sinfo->flags, bytes, 1);
3700 spin_unlock(&data_sinfo->lock);
3701
3702 return 0;
3703 }
3704
3705 /*
3706 * Called if we need to clear a data reservation for this inode.
3707 */
3708 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3709 {
3710 struct btrfs_root *root = BTRFS_I(inode)->root;
3711 struct btrfs_space_info *data_sinfo;
3712
3713 /* make sure bytes are sectorsize aligned */
3714 bytes = ALIGN(bytes, root->sectorsize);
3715
3716 data_sinfo = root->fs_info->data_sinfo;
3717 spin_lock(&data_sinfo->lock);
3718 WARN_ON(data_sinfo->bytes_may_use < bytes);
3719 data_sinfo->bytes_may_use -= bytes;
3720 trace_btrfs_space_reservation(root->fs_info, "space_info",
3721 data_sinfo->flags, bytes, 0);
3722 spin_unlock(&data_sinfo->lock);
3723 }
3724
3725 static void force_metadata_allocation(struct btrfs_fs_info *info)
3726 {
3727 struct list_head *head = &info->space_info;
3728 struct btrfs_space_info *found;
3729
3730 rcu_read_lock();
3731 list_for_each_entry_rcu(found, head, list) {
3732 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3733 found->force_alloc = CHUNK_ALLOC_FORCE;
3734 }
3735 rcu_read_unlock();
3736 }
3737
3738 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3739 {
3740 return (global->size << 1);
3741 }
3742
3743 static int should_alloc_chunk(struct btrfs_root *root,
3744 struct btrfs_space_info *sinfo, int force)
3745 {
3746 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3747 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3748 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3749 u64 thresh;
3750
3751 if (force == CHUNK_ALLOC_FORCE)
3752 return 1;
3753
3754 /*
3755 * We need to take into account the global rsv because for all intents
3756 * and purposes it's used space. Don't worry about locking the
3757 * global_rsv, it doesn't change except when the transaction commits.
3758 */
3759 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3760 num_allocated += calc_global_rsv_need_space(global_rsv);
3761
3762 /*
3763 * in limited mode, we want to have some free space up to
3764 * about 1% of the FS size.
3765 */
3766 if (force == CHUNK_ALLOC_LIMITED) {
3767 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3768 thresh = max_t(u64, 64 * 1024 * 1024,
3769 div_factor_fine(thresh, 1));
3770
3771 if (num_bytes - num_allocated < thresh)
3772 return 1;
3773 }
3774
3775 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3776 return 0;
3777 return 1;
3778 }
3779
3780 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3781 {
3782 u64 num_dev;
3783
3784 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3785 BTRFS_BLOCK_GROUP_RAID0 |
3786 BTRFS_BLOCK_GROUP_RAID5 |
3787 BTRFS_BLOCK_GROUP_RAID6))
3788 num_dev = root->fs_info->fs_devices->rw_devices;
3789 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3790 num_dev = 2;
3791 else
3792 num_dev = 1; /* DUP or single */
3793
3794 /* metadata for updaing devices and chunk tree */
3795 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3796 }
3797
3798 static void check_system_chunk(struct btrfs_trans_handle *trans,
3799 struct btrfs_root *root, u64 type)
3800 {
3801 struct btrfs_space_info *info;
3802 u64 left;
3803 u64 thresh;
3804
3805 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3806 spin_lock(&info->lock);
3807 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3808 info->bytes_reserved - info->bytes_readonly;
3809 spin_unlock(&info->lock);
3810
3811 thresh = get_system_chunk_thresh(root, type);
3812 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3813 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3814 left, thresh, type);
3815 dump_space_info(info, 0, 0);
3816 }
3817
3818 if (left < thresh) {
3819 u64 flags;
3820
3821 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3822 btrfs_alloc_chunk(trans, root, flags);
3823 }
3824 }
3825
3826 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3827 struct btrfs_root *extent_root, u64 flags, int force)
3828 {
3829 struct btrfs_space_info *space_info;
3830 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3831 int wait_for_alloc = 0;
3832 int ret = 0;
3833
3834 /* Don't re-enter if we're already allocating a chunk */
3835 if (trans->allocating_chunk)
3836 return -ENOSPC;
3837
3838 space_info = __find_space_info(extent_root->fs_info, flags);
3839 if (!space_info) {
3840 ret = update_space_info(extent_root->fs_info, flags,
3841 0, 0, &space_info);
3842 BUG_ON(ret); /* -ENOMEM */
3843 }
3844 BUG_ON(!space_info); /* Logic error */
3845
3846 again:
3847 spin_lock(&space_info->lock);
3848 if (force < space_info->force_alloc)
3849 force = space_info->force_alloc;
3850 if (space_info->full) {
3851 if (should_alloc_chunk(extent_root, space_info, force))
3852 ret = -ENOSPC;
3853 else
3854 ret = 0;
3855 spin_unlock(&space_info->lock);
3856 return ret;
3857 }
3858
3859 if (!should_alloc_chunk(extent_root, space_info, force)) {
3860 spin_unlock(&space_info->lock);
3861 return 0;
3862 } else if (space_info->chunk_alloc) {
3863 wait_for_alloc = 1;
3864 } else {
3865 space_info->chunk_alloc = 1;
3866 }
3867
3868 spin_unlock(&space_info->lock);
3869
3870 mutex_lock(&fs_info->chunk_mutex);
3871
3872 /*
3873 * The chunk_mutex is held throughout the entirety of a chunk
3874 * allocation, so once we've acquired the chunk_mutex we know that the
3875 * other guy is done and we need to recheck and see if we should
3876 * allocate.
3877 */
3878 if (wait_for_alloc) {
3879 mutex_unlock(&fs_info->chunk_mutex);
3880 wait_for_alloc = 0;
3881 goto again;
3882 }
3883
3884 trans->allocating_chunk = true;
3885
3886 /*
3887 * If we have mixed data/metadata chunks we want to make sure we keep
3888 * allocating mixed chunks instead of individual chunks.
3889 */
3890 if (btrfs_mixed_space_info(space_info))
3891 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3892
3893 /*
3894 * if we're doing a data chunk, go ahead and make sure that
3895 * we keep a reasonable number of metadata chunks allocated in the
3896 * FS as well.
3897 */
3898 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3899 fs_info->data_chunk_allocations++;
3900 if (!(fs_info->data_chunk_allocations %
3901 fs_info->metadata_ratio))
3902 force_metadata_allocation(fs_info);
3903 }
3904
3905 /*
3906 * Check if we have enough space in SYSTEM chunk because we may need
3907 * to update devices.
3908 */
3909 check_system_chunk(trans, extent_root, flags);
3910
3911 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3912 trans->allocating_chunk = false;
3913
3914 spin_lock(&space_info->lock);
3915 if (ret < 0 && ret != -ENOSPC)
3916 goto out;
3917 if (ret)
3918 space_info->full = 1;
3919 else
3920 ret = 1;
3921
3922 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3923 out:
3924 space_info->chunk_alloc = 0;
3925 spin_unlock(&space_info->lock);
3926 mutex_unlock(&fs_info->chunk_mutex);
3927 return ret;
3928 }
3929
3930 static int can_overcommit(struct btrfs_root *root,
3931 struct btrfs_space_info *space_info, u64 bytes,
3932 enum btrfs_reserve_flush_enum flush)
3933 {
3934 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3935 u64 profile = btrfs_get_alloc_profile(root, 0);
3936 u64 space_size;
3937 u64 avail;
3938 u64 used;
3939
3940 used = space_info->bytes_used + space_info->bytes_reserved +
3941 space_info->bytes_pinned + space_info->bytes_readonly;
3942
3943 /*
3944 * We only want to allow over committing if we have lots of actual space
3945 * free, but if we don't have enough space to handle the global reserve
3946 * space then we could end up having a real enospc problem when trying
3947 * to allocate a chunk or some other such important allocation.
3948 */
3949 spin_lock(&global_rsv->lock);
3950 space_size = calc_global_rsv_need_space(global_rsv);
3951 spin_unlock(&global_rsv->lock);
3952 if (used + space_size >= space_info->total_bytes)
3953 return 0;
3954
3955 used += space_info->bytes_may_use;
3956
3957 spin_lock(&root->fs_info->free_chunk_lock);
3958 avail = root->fs_info->free_chunk_space;
3959 spin_unlock(&root->fs_info->free_chunk_lock);
3960
3961 /*
3962 * If we have dup, raid1 or raid10 then only half of the free
3963 * space is actually useable. For raid56, the space info used
3964 * doesn't include the parity drive, so we don't have to
3965 * change the math
3966 */
3967 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3968 BTRFS_BLOCK_GROUP_RAID1 |
3969 BTRFS_BLOCK_GROUP_RAID10))
3970 avail >>= 1;
3971
3972 /*
3973 * If we aren't flushing all things, let us overcommit up to
3974 * 1/2th of the space. If we can flush, don't let us overcommit
3975 * too much, let it overcommit up to 1/8 of the space.
3976 */
3977 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3978 avail >>= 3;
3979 else
3980 avail >>= 1;
3981
3982 if (used + bytes < space_info->total_bytes + avail)
3983 return 1;
3984 return 0;
3985 }
3986
3987 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3988 unsigned long nr_pages, int nr_items)
3989 {
3990 struct super_block *sb = root->fs_info->sb;
3991
3992 if (down_read_trylock(&sb->s_umount)) {
3993 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3994 up_read(&sb->s_umount);
3995 } else {
3996 /*
3997 * We needn't worry the filesystem going from r/w to r/o though
3998 * we don't acquire ->s_umount mutex, because the filesystem
3999 * should guarantee the delalloc inodes list be empty after
4000 * the filesystem is readonly(all dirty pages are written to
4001 * the disk).
4002 */
4003 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4004 if (!current->journal_info)
4005 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4006 }
4007 }
4008
4009 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4010 {
4011 u64 bytes;
4012 int nr;
4013
4014 bytes = btrfs_calc_trans_metadata_size(root, 1);
4015 nr = (int)div64_u64(to_reclaim, bytes);
4016 if (!nr)
4017 nr = 1;
4018 return nr;
4019 }
4020
4021 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4022
4023 /*
4024 * shrink metadata reservation for delalloc
4025 */
4026 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4027 bool wait_ordered)
4028 {
4029 struct btrfs_block_rsv *block_rsv;
4030 struct btrfs_space_info *space_info;
4031 struct btrfs_trans_handle *trans;
4032 u64 delalloc_bytes;
4033 u64 max_reclaim;
4034 long time_left;
4035 unsigned long nr_pages;
4036 int loops;
4037 int items;
4038 enum btrfs_reserve_flush_enum flush;
4039
4040 /* Calc the number of the pages we need flush for space reservation */
4041 items = calc_reclaim_items_nr(root, to_reclaim);
4042 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4043
4044 trans = (struct btrfs_trans_handle *)current->journal_info;
4045 block_rsv = &root->fs_info->delalloc_block_rsv;
4046 space_info = block_rsv->space_info;
4047
4048 delalloc_bytes = percpu_counter_sum_positive(
4049 &root->fs_info->delalloc_bytes);
4050 if (delalloc_bytes == 0) {
4051 if (trans)
4052 return;
4053 if (wait_ordered)
4054 btrfs_wait_ordered_roots(root->fs_info, items);
4055 return;
4056 }
4057
4058 loops = 0;
4059 while (delalloc_bytes && loops < 3) {
4060 max_reclaim = min(delalloc_bytes, to_reclaim);
4061 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4062 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4063 /*
4064 * We need to wait for the async pages to actually start before
4065 * we do anything.
4066 */
4067 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4068 if (!max_reclaim)
4069 goto skip_async;
4070
4071 if (max_reclaim <= nr_pages)
4072 max_reclaim = 0;
4073 else
4074 max_reclaim -= nr_pages;
4075
4076 wait_event(root->fs_info->async_submit_wait,
4077 atomic_read(&root->fs_info->async_delalloc_pages) <=
4078 (int)max_reclaim);
4079 skip_async:
4080 if (!trans)
4081 flush = BTRFS_RESERVE_FLUSH_ALL;
4082 else
4083 flush = BTRFS_RESERVE_NO_FLUSH;
4084 spin_lock(&space_info->lock);
4085 if (can_overcommit(root, space_info, orig, flush)) {
4086 spin_unlock(&space_info->lock);
4087 break;
4088 }
4089 spin_unlock(&space_info->lock);
4090
4091 loops++;
4092 if (wait_ordered && !trans) {
4093 btrfs_wait_ordered_roots(root->fs_info, items);
4094 } else {
4095 time_left = schedule_timeout_killable(1);
4096 if (time_left)
4097 break;
4098 }
4099 delalloc_bytes = percpu_counter_sum_positive(
4100 &root->fs_info->delalloc_bytes);
4101 }
4102 }
4103
4104 /**
4105 * maybe_commit_transaction - possibly commit the transaction if its ok to
4106 * @root - the root we're allocating for
4107 * @bytes - the number of bytes we want to reserve
4108 * @force - force the commit
4109 *
4110 * This will check to make sure that committing the transaction will actually
4111 * get us somewhere and then commit the transaction if it does. Otherwise it
4112 * will return -ENOSPC.
4113 */
4114 static int may_commit_transaction(struct btrfs_root *root,
4115 struct btrfs_space_info *space_info,
4116 u64 bytes, int force)
4117 {
4118 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4119 struct btrfs_trans_handle *trans;
4120
4121 trans = (struct btrfs_trans_handle *)current->journal_info;
4122 if (trans)
4123 return -EAGAIN;
4124
4125 if (force)
4126 goto commit;
4127
4128 /* See if there is enough pinned space to make this reservation */
4129 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4130 bytes) >= 0)
4131 goto commit;
4132
4133 /*
4134 * See if there is some space in the delayed insertion reservation for
4135 * this reservation.
4136 */
4137 if (space_info != delayed_rsv->space_info)
4138 return -ENOSPC;
4139
4140 spin_lock(&delayed_rsv->lock);
4141 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4142 bytes - delayed_rsv->size) >= 0) {
4143 spin_unlock(&delayed_rsv->lock);
4144 return -ENOSPC;
4145 }
4146 spin_unlock(&delayed_rsv->lock);
4147
4148 commit:
4149 trans = btrfs_join_transaction(root);
4150 if (IS_ERR(trans))
4151 return -ENOSPC;
4152
4153 return btrfs_commit_transaction(trans, root);
4154 }
4155
4156 enum flush_state {
4157 FLUSH_DELAYED_ITEMS_NR = 1,
4158 FLUSH_DELAYED_ITEMS = 2,
4159 FLUSH_DELALLOC = 3,
4160 FLUSH_DELALLOC_WAIT = 4,
4161 ALLOC_CHUNK = 5,
4162 COMMIT_TRANS = 6,
4163 };
4164
4165 static int flush_space(struct btrfs_root *root,
4166 struct btrfs_space_info *space_info, u64 num_bytes,
4167 u64 orig_bytes, int state)
4168 {
4169 struct btrfs_trans_handle *trans;
4170 int nr;
4171 int ret = 0;
4172
4173 switch (state) {
4174 case FLUSH_DELAYED_ITEMS_NR:
4175 case FLUSH_DELAYED_ITEMS:
4176 if (state == FLUSH_DELAYED_ITEMS_NR)
4177 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4178 else
4179 nr = -1;
4180
4181 trans = btrfs_join_transaction(root);
4182 if (IS_ERR(trans)) {
4183 ret = PTR_ERR(trans);
4184 break;
4185 }
4186 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4187 btrfs_end_transaction(trans, root);
4188 break;
4189 case FLUSH_DELALLOC:
4190 case FLUSH_DELALLOC_WAIT:
4191 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4192 state == FLUSH_DELALLOC_WAIT);
4193 break;
4194 case ALLOC_CHUNK:
4195 trans = btrfs_join_transaction(root);
4196 if (IS_ERR(trans)) {
4197 ret = PTR_ERR(trans);
4198 break;
4199 }
4200 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4201 btrfs_get_alloc_profile(root, 0),
4202 CHUNK_ALLOC_NO_FORCE);
4203 btrfs_end_transaction(trans, root);
4204 if (ret == -ENOSPC)
4205 ret = 0;
4206 break;
4207 case COMMIT_TRANS:
4208 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4209 break;
4210 default:
4211 ret = -ENOSPC;
4212 break;
4213 }
4214
4215 return ret;
4216 }
4217
4218 static inline u64
4219 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4220 struct btrfs_space_info *space_info)
4221 {
4222 u64 used;
4223 u64 expected;
4224 u64 to_reclaim;
4225
4226 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4227 16 * 1024 * 1024);
4228 spin_lock(&space_info->lock);
4229 if (can_overcommit(root, space_info, to_reclaim,
4230 BTRFS_RESERVE_FLUSH_ALL)) {
4231 to_reclaim = 0;
4232 goto out;
4233 }
4234
4235 used = space_info->bytes_used + space_info->bytes_reserved +
4236 space_info->bytes_pinned + space_info->bytes_readonly +
4237 space_info->bytes_may_use;
4238 if (can_overcommit(root, space_info, 1024 * 1024,
4239 BTRFS_RESERVE_FLUSH_ALL))
4240 expected = div_factor_fine(space_info->total_bytes, 95);
4241 else
4242 expected = div_factor_fine(space_info->total_bytes, 90);
4243
4244 if (used > expected)
4245 to_reclaim = used - expected;
4246 else
4247 to_reclaim = 0;
4248 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4249 space_info->bytes_reserved);
4250 out:
4251 spin_unlock(&space_info->lock);
4252
4253 return to_reclaim;
4254 }
4255
4256 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4257 struct btrfs_fs_info *fs_info, u64 used)
4258 {
4259 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4260 !btrfs_fs_closing(fs_info) &&
4261 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4262 }
4263
4264 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4265 struct btrfs_fs_info *fs_info,
4266 int flush_state)
4267 {
4268 u64 used;
4269
4270 spin_lock(&space_info->lock);
4271 /*
4272 * We run out of space and have not got any free space via flush_space,
4273 * so don't bother doing async reclaim.
4274 */
4275 if (flush_state > COMMIT_TRANS && space_info->full) {
4276 spin_unlock(&space_info->lock);
4277 return 0;
4278 }
4279
4280 used = space_info->bytes_used + space_info->bytes_reserved +
4281 space_info->bytes_pinned + space_info->bytes_readonly +
4282 space_info->bytes_may_use;
4283 if (need_do_async_reclaim(space_info, fs_info, used)) {
4284 spin_unlock(&space_info->lock);
4285 return 1;
4286 }
4287 spin_unlock(&space_info->lock);
4288
4289 return 0;
4290 }
4291
4292 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4293 {
4294 struct btrfs_fs_info *fs_info;
4295 struct btrfs_space_info *space_info;
4296 u64 to_reclaim;
4297 int flush_state;
4298
4299 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4300 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4301
4302 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4303 space_info);
4304 if (!to_reclaim)
4305 return;
4306
4307 flush_state = FLUSH_DELAYED_ITEMS_NR;
4308 do {
4309 flush_space(fs_info->fs_root, space_info, to_reclaim,
4310 to_reclaim, flush_state);
4311 flush_state++;
4312 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4313 flush_state))
4314 return;
4315 } while (flush_state <= COMMIT_TRANS);
4316
4317 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4318 queue_work(system_unbound_wq, work);
4319 }
4320
4321 void btrfs_init_async_reclaim_work(struct work_struct *work)
4322 {
4323 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4324 }
4325
4326 /**
4327 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4328 * @root - the root we're allocating for
4329 * @block_rsv - the block_rsv we're allocating for
4330 * @orig_bytes - the number of bytes we want
4331 * @flush - whether or not we can flush to make our reservation
4332 *
4333 * This will reserve orgi_bytes number of bytes from the space info associated
4334 * with the block_rsv. If there is not enough space it will make an attempt to
4335 * flush out space to make room. It will do this by flushing delalloc if
4336 * possible or committing the transaction. If flush is 0 then no attempts to
4337 * regain reservations will be made and this will fail if there is not enough
4338 * space already.
4339 */
4340 static int reserve_metadata_bytes(struct btrfs_root *root,
4341 struct btrfs_block_rsv *block_rsv,
4342 u64 orig_bytes,
4343 enum btrfs_reserve_flush_enum flush)
4344 {
4345 struct btrfs_space_info *space_info = block_rsv->space_info;
4346 u64 used;
4347 u64 num_bytes = orig_bytes;
4348 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4349 int ret = 0;
4350 bool flushing = false;
4351
4352 again:
4353 ret = 0;
4354 spin_lock(&space_info->lock);
4355 /*
4356 * We only want to wait if somebody other than us is flushing and we
4357 * are actually allowed to flush all things.
4358 */
4359 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4360 space_info->flush) {
4361 spin_unlock(&space_info->lock);
4362 /*
4363 * If we have a trans handle we can't wait because the flusher
4364 * may have to commit the transaction, which would mean we would
4365 * deadlock since we are waiting for the flusher to finish, but
4366 * hold the current transaction open.
4367 */
4368 if (current->journal_info)
4369 return -EAGAIN;
4370 ret = wait_event_killable(space_info->wait, !space_info->flush);
4371 /* Must have been killed, return */
4372 if (ret)
4373 return -EINTR;
4374
4375 spin_lock(&space_info->lock);
4376 }
4377
4378 ret = -ENOSPC;
4379 used = space_info->bytes_used + space_info->bytes_reserved +
4380 space_info->bytes_pinned + space_info->bytes_readonly +
4381 space_info->bytes_may_use;
4382
4383 /*
4384 * The idea here is that we've not already over-reserved the block group
4385 * then we can go ahead and save our reservation first and then start
4386 * flushing if we need to. Otherwise if we've already overcommitted
4387 * lets start flushing stuff first and then come back and try to make
4388 * our reservation.
4389 */
4390 if (used <= space_info->total_bytes) {
4391 if (used + orig_bytes <= space_info->total_bytes) {
4392 space_info->bytes_may_use += orig_bytes;
4393 trace_btrfs_space_reservation(root->fs_info,
4394 "space_info", space_info->flags, orig_bytes, 1);
4395 ret = 0;
4396 } else {
4397 /*
4398 * Ok set num_bytes to orig_bytes since we aren't
4399 * overocmmitted, this way we only try and reclaim what
4400 * we need.
4401 */
4402 num_bytes = orig_bytes;
4403 }
4404 } else {
4405 /*
4406 * Ok we're over committed, set num_bytes to the overcommitted
4407 * amount plus the amount of bytes that we need for this
4408 * reservation.
4409 */
4410 num_bytes = used - space_info->total_bytes +
4411 (orig_bytes * 2);
4412 }
4413
4414 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4415 space_info->bytes_may_use += orig_bytes;
4416 trace_btrfs_space_reservation(root->fs_info, "space_info",
4417 space_info->flags, orig_bytes,
4418 1);
4419 ret = 0;
4420 }
4421
4422 /*
4423 * Couldn't make our reservation, save our place so while we're trying
4424 * to reclaim space we can actually use it instead of somebody else
4425 * stealing it from us.
4426 *
4427 * We make the other tasks wait for the flush only when we can flush
4428 * all things.
4429 */
4430 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4431 flushing = true;
4432 space_info->flush = 1;
4433 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4434 used += orig_bytes;
4435 /*
4436 * We will do the space reservation dance during log replay,
4437 * which means we won't have fs_info->fs_root set, so don't do
4438 * the async reclaim as we will panic.
4439 */
4440 if (!root->fs_info->log_root_recovering &&
4441 need_do_async_reclaim(space_info, root->fs_info, used) &&
4442 !work_busy(&root->fs_info->async_reclaim_work))
4443 queue_work(system_unbound_wq,
4444 &root->fs_info->async_reclaim_work);
4445 }
4446 spin_unlock(&space_info->lock);
4447
4448 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4449 goto out;
4450
4451 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4452 flush_state);
4453 flush_state++;
4454
4455 /*
4456 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4457 * would happen. So skip delalloc flush.
4458 */
4459 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4460 (flush_state == FLUSH_DELALLOC ||
4461 flush_state == FLUSH_DELALLOC_WAIT))
4462 flush_state = ALLOC_CHUNK;
4463
4464 if (!ret)
4465 goto again;
4466 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4467 flush_state < COMMIT_TRANS)
4468 goto again;
4469 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4470 flush_state <= COMMIT_TRANS)
4471 goto again;
4472
4473 out:
4474 if (ret == -ENOSPC &&
4475 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4476 struct btrfs_block_rsv *global_rsv =
4477 &root->fs_info->global_block_rsv;
4478
4479 if (block_rsv != global_rsv &&
4480 !block_rsv_use_bytes(global_rsv, orig_bytes))
4481 ret = 0;
4482 }
4483 if (ret == -ENOSPC)
4484 trace_btrfs_space_reservation(root->fs_info,
4485 "space_info:enospc",
4486 space_info->flags, orig_bytes, 1);
4487 if (flushing) {
4488 spin_lock(&space_info->lock);
4489 space_info->flush = 0;
4490 wake_up_all(&space_info->wait);
4491 spin_unlock(&space_info->lock);
4492 }
4493 return ret;
4494 }
4495
4496 static struct btrfs_block_rsv *get_block_rsv(
4497 const struct btrfs_trans_handle *trans,
4498 const struct btrfs_root *root)
4499 {
4500 struct btrfs_block_rsv *block_rsv = NULL;
4501
4502 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4503 block_rsv = trans->block_rsv;
4504
4505 if (root == root->fs_info->csum_root && trans->adding_csums)
4506 block_rsv = trans->block_rsv;
4507
4508 if (root == root->fs_info->uuid_root)
4509 block_rsv = trans->block_rsv;
4510
4511 if (!block_rsv)
4512 block_rsv = root->block_rsv;
4513
4514 if (!block_rsv)
4515 block_rsv = &root->fs_info->empty_block_rsv;
4516
4517 return block_rsv;
4518 }
4519
4520 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4521 u64 num_bytes)
4522 {
4523 int ret = -ENOSPC;
4524 spin_lock(&block_rsv->lock);
4525 if (block_rsv->reserved >= num_bytes) {
4526 block_rsv->reserved -= num_bytes;
4527 if (block_rsv->reserved < block_rsv->size)
4528 block_rsv->full = 0;
4529 ret = 0;
4530 }
4531 spin_unlock(&block_rsv->lock);
4532 return ret;
4533 }
4534
4535 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4536 u64 num_bytes, int update_size)
4537 {
4538 spin_lock(&block_rsv->lock);
4539 block_rsv->reserved += num_bytes;
4540 if (update_size)
4541 block_rsv->size += num_bytes;
4542 else if (block_rsv->reserved >= block_rsv->size)
4543 block_rsv->full = 1;
4544 spin_unlock(&block_rsv->lock);
4545 }
4546
4547 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4548 struct btrfs_block_rsv *dest, u64 num_bytes,
4549 int min_factor)
4550 {
4551 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4552 u64 min_bytes;
4553
4554 if (global_rsv->space_info != dest->space_info)
4555 return -ENOSPC;
4556
4557 spin_lock(&global_rsv->lock);
4558 min_bytes = div_factor(global_rsv->size, min_factor);
4559 if (global_rsv->reserved < min_bytes + num_bytes) {
4560 spin_unlock(&global_rsv->lock);
4561 return -ENOSPC;
4562 }
4563 global_rsv->reserved -= num_bytes;
4564 if (global_rsv->reserved < global_rsv->size)
4565 global_rsv->full = 0;
4566 spin_unlock(&global_rsv->lock);
4567
4568 block_rsv_add_bytes(dest, num_bytes, 1);
4569 return 0;
4570 }
4571
4572 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4573 struct btrfs_block_rsv *block_rsv,
4574 struct btrfs_block_rsv *dest, u64 num_bytes)
4575 {
4576 struct btrfs_space_info *space_info = block_rsv->space_info;
4577
4578 spin_lock(&block_rsv->lock);
4579 if (num_bytes == (u64)-1)
4580 num_bytes = block_rsv->size;
4581 block_rsv->size -= num_bytes;
4582 if (block_rsv->reserved >= block_rsv->size) {
4583 num_bytes = block_rsv->reserved - block_rsv->size;
4584 block_rsv->reserved = block_rsv->size;
4585 block_rsv->full = 1;
4586 } else {
4587 num_bytes = 0;
4588 }
4589 spin_unlock(&block_rsv->lock);
4590
4591 if (num_bytes > 0) {
4592 if (dest) {
4593 spin_lock(&dest->lock);
4594 if (!dest->full) {
4595 u64 bytes_to_add;
4596
4597 bytes_to_add = dest->size - dest->reserved;
4598 bytes_to_add = min(num_bytes, bytes_to_add);
4599 dest->reserved += bytes_to_add;
4600 if (dest->reserved >= dest->size)
4601 dest->full = 1;
4602 num_bytes -= bytes_to_add;
4603 }
4604 spin_unlock(&dest->lock);
4605 }
4606 if (num_bytes) {
4607 spin_lock(&space_info->lock);
4608 space_info->bytes_may_use -= num_bytes;
4609 trace_btrfs_space_reservation(fs_info, "space_info",
4610 space_info->flags, num_bytes, 0);
4611 spin_unlock(&space_info->lock);
4612 }
4613 }
4614 }
4615
4616 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4617 struct btrfs_block_rsv *dst, u64 num_bytes)
4618 {
4619 int ret;
4620
4621 ret = block_rsv_use_bytes(src, num_bytes);
4622 if (ret)
4623 return ret;
4624
4625 block_rsv_add_bytes(dst, num_bytes, 1);
4626 return 0;
4627 }
4628
4629 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4630 {
4631 memset(rsv, 0, sizeof(*rsv));
4632 spin_lock_init(&rsv->lock);
4633 rsv->type = type;
4634 }
4635
4636 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4637 unsigned short type)
4638 {
4639 struct btrfs_block_rsv *block_rsv;
4640 struct btrfs_fs_info *fs_info = root->fs_info;
4641
4642 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4643 if (!block_rsv)
4644 return NULL;
4645
4646 btrfs_init_block_rsv(block_rsv, type);
4647 block_rsv->space_info = __find_space_info(fs_info,
4648 BTRFS_BLOCK_GROUP_METADATA);
4649 return block_rsv;
4650 }
4651
4652 void btrfs_free_block_rsv(struct btrfs_root *root,
4653 struct btrfs_block_rsv *rsv)
4654 {
4655 if (!rsv)
4656 return;
4657 btrfs_block_rsv_release(root, rsv, (u64)-1);
4658 kfree(rsv);
4659 }
4660
4661 int btrfs_block_rsv_add(struct btrfs_root *root,
4662 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4663 enum btrfs_reserve_flush_enum flush)
4664 {
4665 int ret;
4666
4667 if (num_bytes == 0)
4668 return 0;
4669
4670 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4671 if (!ret) {
4672 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4673 return 0;
4674 }
4675
4676 return ret;
4677 }
4678
4679 int btrfs_block_rsv_check(struct btrfs_root *root,
4680 struct btrfs_block_rsv *block_rsv, int min_factor)
4681 {
4682 u64 num_bytes = 0;
4683 int ret = -ENOSPC;
4684
4685 if (!block_rsv)
4686 return 0;
4687
4688 spin_lock(&block_rsv->lock);
4689 num_bytes = div_factor(block_rsv->size, min_factor);
4690 if (block_rsv->reserved >= num_bytes)
4691 ret = 0;
4692 spin_unlock(&block_rsv->lock);
4693
4694 return ret;
4695 }
4696
4697 int btrfs_block_rsv_refill(struct btrfs_root *root,
4698 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4699 enum btrfs_reserve_flush_enum flush)
4700 {
4701 u64 num_bytes = 0;
4702 int ret = -ENOSPC;
4703
4704 if (!block_rsv)
4705 return 0;
4706
4707 spin_lock(&block_rsv->lock);
4708 num_bytes = min_reserved;
4709 if (block_rsv->reserved >= num_bytes)
4710 ret = 0;
4711 else
4712 num_bytes -= block_rsv->reserved;
4713 spin_unlock(&block_rsv->lock);
4714
4715 if (!ret)
4716 return 0;
4717
4718 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4719 if (!ret) {
4720 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4721 return 0;
4722 }
4723
4724 return ret;
4725 }
4726
4727 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4728 struct btrfs_block_rsv *dst_rsv,
4729 u64 num_bytes)
4730 {
4731 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4732 }
4733
4734 void btrfs_block_rsv_release(struct btrfs_root *root,
4735 struct btrfs_block_rsv *block_rsv,
4736 u64 num_bytes)
4737 {
4738 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4739 if (global_rsv == block_rsv ||
4740 block_rsv->space_info != global_rsv->space_info)
4741 global_rsv = NULL;
4742 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4743 num_bytes);
4744 }
4745
4746 /*
4747 * helper to calculate size of global block reservation.
4748 * the desired value is sum of space used by extent tree,
4749 * checksum tree and root tree
4750 */
4751 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4752 {
4753 struct btrfs_space_info *sinfo;
4754 u64 num_bytes;
4755 u64 meta_used;
4756 u64 data_used;
4757 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4758
4759 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4760 spin_lock(&sinfo->lock);
4761 data_used = sinfo->bytes_used;
4762 spin_unlock(&sinfo->lock);
4763
4764 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4765 spin_lock(&sinfo->lock);
4766 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4767 data_used = 0;
4768 meta_used = sinfo->bytes_used;
4769 spin_unlock(&sinfo->lock);
4770
4771 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4772 csum_size * 2;
4773 num_bytes += div64_u64(data_used + meta_used, 50);
4774
4775 if (num_bytes * 3 > meta_used)
4776 num_bytes = div64_u64(meta_used, 3);
4777
4778 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4779 }
4780
4781 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4782 {
4783 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4784 struct btrfs_space_info *sinfo = block_rsv->space_info;
4785 u64 num_bytes;
4786
4787 num_bytes = calc_global_metadata_size(fs_info);
4788
4789 spin_lock(&sinfo->lock);
4790 spin_lock(&block_rsv->lock);
4791
4792 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4793
4794 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4795 sinfo->bytes_reserved + sinfo->bytes_readonly +
4796 sinfo->bytes_may_use;
4797
4798 if (sinfo->total_bytes > num_bytes) {
4799 num_bytes = sinfo->total_bytes - num_bytes;
4800 block_rsv->reserved += num_bytes;
4801 sinfo->bytes_may_use += num_bytes;
4802 trace_btrfs_space_reservation(fs_info, "space_info",
4803 sinfo->flags, num_bytes, 1);
4804 }
4805
4806 if (block_rsv->reserved >= block_rsv->size) {
4807 num_bytes = block_rsv->reserved - block_rsv->size;
4808 sinfo->bytes_may_use -= num_bytes;
4809 trace_btrfs_space_reservation(fs_info, "space_info",
4810 sinfo->flags, num_bytes, 0);
4811 block_rsv->reserved = block_rsv->size;
4812 block_rsv->full = 1;
4813 }
4814
4815 spin_unlock(&block_rsv->lock);
4816 spin_unlock(&sinfo->lock);
4817 }
4818
4819 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4820 {
4821 struct btrfs_space_info *space_info;
4822
4823 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4824 fs_info->chunk_block_rsv.space_info = space_info;
4825
4826 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4827 fs_info->global_block_rsv.space_info = space_info;
4828 fs_info->delalloc_block_rsv.space_info = space_info;
4829 fs_info->trans_block_rsv.space_info = space_info;
4830 fs_info->empty_block_rsv.space_info = space_info;
4831 fs_info->delayed_block_rsv.space_info = space_info;
4832
4833 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4834 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4835 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4836 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4837 if (fs_info->quota_root)
4838 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4839 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4840
4841 update_global_block_rsv(fs_info);
4842 }
4843
4844 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4845 {
4846 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4847 (u64)-1);
4848 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4849 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4850 WARN_ON(fs_info->trans_block_rsv.size > 0);
4851 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4852 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4853 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4854 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4855 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4856 }
4857
4858 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4859 struct btrfs_root *root)
4860 {
4861 if (!trans->block_rsv)
4862 return;
4863
4864 if (!trans->bytes_reserved)
4865 return;
4866
4867 trace_btrfs_space_reservation(root->fs_info, "transaction",
4868 trans->transid, trans->bytes_reserved, 0);
4869 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4870 trans->bytes_reserved = 0;
4871 }
4872
4873 /* Can only return 0 or -ENOSPC */
4874 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4875 struct inode *inode)
4876 {
4877 struct btrfs_root *root = BTRFS_I(inode)->root;
4878 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4879 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4880
4881 /*
4882 * We need to hold space in order to delete our orphan item once we've
4883 * added it, so this takes the reservation so we can release it later
4884 * when we are truly done with the orphan item.
4885 */
4886 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4887 trace_btrfs_space_reservation(root->fs_info, "orphan",
4888 btrfs_ino(inode), num_bytes, 1);
4889 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4890 }
4891
4892 void btrfs_orphan_release_metadata(struct inode *inode)
4893 {
4894 struct btrfs_root *root = BTRFS_I(inode)->root;
4895 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4896 trace_btrfs_space_reservation(root->fs_info, "orphan",
4897 btrfs_ino(inode), num_bytes, 0);
4898 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4899 }
4900
4901 /*
4902 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4903 * root: the root of the parent directory
4904 * rsv: block reservation
4905 * items: the number of items that we need do reservation
4906 * qgroup_reserved: used to return the reserved size in qgroup
4907 *
4908 * This function is used to reserve the space for snapshot/subvolume
4909 * creation and deletion. Those operations are different with the
4910 * common file/directory operations, they change two fs/file trees
4911 * and root tree, the number of items that the qgroup reserves is
4912 * different with the free space reservation. So we can not use
4913 * the space reseravtion mechanism in start_transaction().
4914 */
4915 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4916 struct btrfs_block_rsv *rsv,
4917 int items,
4918 u64 *qgroup_reserved,
4919 bool use_global_rsv)
4920 {
4921 u64 num_bytes;
4922 int ret;
4923 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4924
4925 if (root->fs_info->quota_enabled) {
4926 /* One for parent inode, two for dir entries */
4927 num_bytes = 3 * root->nodesize;
4928 ret = btrfs_qgroup_reserve(root, num_bytes);
4929 if (ret)
4930 return ret;
4931 } else {
4932 num_bytes = 0;
4933 }
4934
4935 *qgroup_reserved = num_bytes;
4936
4937 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4938 rsv->space_info = __find_space_info(root->fs_info,
4939 BTRFS_BLOCK_GROUP_METADATA);
4940 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4941 BTRFS_RESERVE_FLUSH_ALL);
4942
4943 if (ret == -ENOSPC && use_global_rsv)
4944 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4945
4946 if (ret) {
4947 if (*qgroup_reserved)
4948 btrfs_qgroup_free(root, *qgroup_reserved);
4949 }
4950
4951 return ret;
4952 }
4953
4954 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4955 struct btrfs_block_rsv *rsv,
4956 u64 qgroup_reserved)
4957 {
4958 btrfs_block_rsv_release(root, rsv, (u64)-1);
4959 if (qgroup_reserved)
4960 btrfs_qgroup_free(root, qgroup_reserved);
4961 }
4962
4963 /**
4964 * drop_outstanding_extent - drop an outstanding extent
4965 * @inode: the inode we're dropping the extent for
4966 * @num_bytes: the number of bytes we're relaseing.
4967 *
4968 * This is called when we are freeing up an outstanding extent, either called
4969 * after an error or after an extent is written. This will return the number of
4970 * reserved extents that need to be freed. This must be called with
4971 * BTRFS_I(inode)->lock held.
4972 */
4973 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
4974 {
4975 unsigned drop_inode_space = 0;
4976 unsigned dropped_extents = 0;
4977 unsigned num_extents = 0;
4978
4979 num_extents = (unsigned)div64_u64(num_bytes +
4980 BTRFS_MAX_EXTENT_SIZE - 1,
4981 BTRFS_MAX_EXTENT_SIZE);
4982 ASSERT(num_extents);
4983 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
4984 BTRFS_I(inode)->outstanding_extents -= num_extents;
4985
4986 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4987 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4988 &BTRFS_I(inode)->runtime_flags))
4989 drop_inode_space = 1;
4990
4991 /*
4992 * If we have more or the same amount of outsanding extents than we have
4993 * reserved then we need to leave the reserved extents count alone.
4994 */
4995 if (BTRFS_I(inode)->outstanding_extents >=
4996 BTRFS_I(inode)->reserved_extents)
4997 return drop_inode_space;
4998
4999 dropped_extents = BTRFS_I(inode)->reserved_extents -
5000 BTRFS_I(inode)->outstanding_extents;
5001 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5002 return dropped_extents + drop_inode_space;
5003 }
5004
5005 /**
5006 * calc_csum_metadata_size - return the amount of metada space that must be
5007 * reserved/free'd for the given bytes.
5008 * @inode: the inode we're manipulating
5009 * @num_bytes: the number of bytes in question
5010 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5011 *
5012 * This adjusts the number of csum_bytes in the inode and then returns the
5013 * correct amount of metadata that must either be reserved or freed. We
5014 * calculate how many checksums we can fit into one leaf and then divide the
5015 * number of bytes that will need to be checksumed by this value to figure out
5016 * how many checksums will be required. If we are adding bytes then the number
5017 * may go up and we will return the number of additional bytes that must be
5018 * reserved. If it is going down we will return the number of bytes that must
5019 * be freed.
5020 *
5021 * This must be called with BTRFS_I(inode)->lock held.
5022 */
5023 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5024 int reserve)
5025 {
5026 struct btrfs_root *root = BTRFS_I(inode)->root;
5027 u64 csum_size;
5028 int num_csums_per_leaf;
5029 int num_csums;
5030 int old_csums;
5031
5032 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5033 BTRFS_I(inode)->csum_bytes == 0)
5034 return 0;
5035
5036 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5037 if (reserve)
5038 BTRFS_I(inode)->csum_bytes += num_bytes;
5039 else
5040 BTRFS_I(inode)->csum_bytes -= num_bytes;
5041 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5042 num_csums_per_leaf = (int)div64_u64(csum_size,
5043 sizeof(struct btrfs_csum_item) +
5044 sizeof(struct btrfs_disk_key));
5045 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5046 num_csums = num_csums + num_csums_per_leaf - 1;
5047 num_csums = num_csums / num_csums_per_leaf;
5048
5049 old_csums = old_csums + num_csums_per_leaf - 1;
5050 old_csums = old_csums / num_csums_per_leaf;
5051
5052 /* No change, no need to reserve more */
5053 if (old_csums == num_csums)
5054 return 0;
5055
5056 if (reserve)
5057 return btrfs_calc_trans_metadata_size(root,
5058 num_csums - old_csums);
5059
5060 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5061 }
5062
5063 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5064 {
5065 struct btrfs_root *root = BTRFS_I(inode)->root;
5066 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5067 u64 to_reserve = 0;
5068 u64 csum_bytes;
5069 unsigned nr_extents = 0;
5070 int extra_reserve = 0;
5071 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5072 int ret = 0;
5073 bool delalloc_lock = true;
5074 u64 to_free = 0;
5075 unsigned dropped;
5076
5077 /* If we are a free space inode we need to not flush since we will be in
5078 * the middle of a transaction commit. We also don't need the delalloc
5079 * mutex since we won't race with anybody. We need this mostly to make
5080 * lockdep shut its filthy mouth.
5081 */
5082 if (btrfs_is_free_space_inode(inode)) {
5083 flush = BTRFS_RESERVE_NO_FLUSH;
5084 delalloc_lock = false;
5085 }
5086
5087 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5088 btrfs_transaction_in_commit(root->fs_info))
5089 schedule_timeout(1);
5090
5091 if (delalloc_lock)
5092 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5093
5094 num_bytes = ALIGN(num_bytes, root->sectorsize);
5095
5096 spin_lock(&BTRFS_I(inode)->lock);
5097 BTRFS_I(inode)->outstanding_extents++;
5098
5099 if (BTRFS_I(inode)->outstanding_extents >
5100 BTRFS_I(inode)->reserved_extents)
5101 nr_extents = BTRFS_I(inode)->outstanding_extents -
5102 BTRFS_I(inode)->reserved_extents;
5103
5104 /*
5105 * Add an item to reserve for updating the inode when we complete the
5106 * delalloc io.
5107 */
5108 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5109 &BTRFS_I(inode)->runtime_flags)) {
5110 nr_extents++;
5111 extra_reserve = 1;
5112 }
5113
5114 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5115 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5116 csum_bytes = BTRFS_I(inode)->csum_bytes;
5117 spin_unlock(&BTRFS_I(inode)->lock);
5118
5119 if (root->fs_info->quota_enabled) {
5120 ret = btrfs_qgroup_reserve(root, num_bytes +
5121 nr_extents * root->nodesize);
5122 if (ret)
5123 goto out_fail;
5124 }
5125
5126 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5127 if (unlikely(ret)) {
5128 if (root->fs_info->quota_enabled)
5129 btrfs_qgroup_free(root, num_bytes +
5130 nr_extents * root->nodesize);
5131 goto out_fail;
5132 }
5133
5134 spin_lock(&BTRFS_I(inode)->lock);
5135 if (extra_reserve) {
5136 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5137 &BTRFS_I(inode)->runtime_flags);
5138 nr_extents--;
5139 }
5140 BTRFS_I(inode)->reserved_extents += nr_extents;
5141 spin_unlock(&BTRFS_I(inode)->lock);
5142
5143 if (delalloc_lock)
5144 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5145
5146 if (to_reserve)
5147 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5148 btrfs_ino(inode), to_reserve, 1);
5149 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5150
5151 return 0;
5152
5153 out_fail:
5154 spin_lock(&BTRFS_I(inode)->lock);
5155 dropped = drop_outstanding_extent(inode, num_bytes);
5156 /*
5157 * If the inodes csum_bytes is the same as the original
5158 * csum_bytes then we know we haven't raced with any free()ers
5159 * so we can just reduce our inodes csum bytes and carry on.
5160 */
5161 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5162 calc_csum_metadata_size(inode, num_bytes, 0);
5163 } else {
5164 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5165 u64 bytes;
5166
5167 /*
5168 * This is tricky, but first we need to figure out how much we
5169 * free'd from any free-ers that occured during this
5170 * reservation, so we reset ->csum_bytes to the csum_bytes
5171 * before we dropped our lock, and then call the free for the
5172 * number of bytes that were freed while we were trying our
5173 * reservation.
5174 */
5175 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5176 BTRFS_I(inode)->csum_bytes = csum_bytes;
5177 to_free = calc_csum_metadata_size(inode, bytes, 0);
5178
5179
5180 /*
5181 * Now we need to see how much we would have freed had we not
5182 * been making this reservation and our ->csum_bytes were not
5183 * artificially inflated.
5184 */
5185 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5186 bytes = csum_bytes - orig_csum_bytes;
5187 bytes = calc_csum_metadata_size(inode, bytes, 0);
5188
5189 /*
5190 * Now reset ->csum_bytes to what it should be. If bytes is
5191 * more than to_free then we would have free'd more space had we
5192 * not had an artificially high ->csum_bytes, so we need to free
5193 * the remainder. If bytes is the same or less then we don't
5194 * need to do anything, the other free-ers did the correct
5195 * thing.
5196 */
5197 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5198 if (bytes > to_free)
5199 to_free = bytes - to_free;
5200 else
5201 to_free = 0;
5202 }
5203 spin_unlock(&BTRFS_I(inode)->lock);
5204 if (dropped)
5205 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5206
5207 if (to_free) {
5208 btrfs_block_rsv_release(root, block_rsv, to_free);
5209 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5210 btrfs_ino(inode), to_free, 0);
5211 }
5212 if (delalloc_lock)
5213 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5214 return ret;
5215 }
5216
5217 /**
5218 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5219 * @inode: the inode to release the reservation for
5220 * @num_bytes: the number of bytes we're releasing
5221 *
5222 * This will release the metadata reservation for an inode. This can be called
5223 * once we complete IO for a given set of bytes to release their metadata
5224 * reservations.
5225 */
5226 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5227 {
5228 struct btrfs_root *root = BTRFS_I(inode)->root;
5229 u64 to_free = 0;
5230 unsigned dropped;
5231
5232 num_bytes = ALIGN(num_bytes, root->sectorsize);
5233 spin_lock(&BTRFS_I(inode)->lock);
5234 dropped = drop_outstanding_extent(inode, num_bytes);
5235
5236 if (num_bytes)
5237 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5238 spin_unlock(&BTRFS_I(inode)->lock);
5239 if (dropped > 0)
5240 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5241
5242 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5243 btrfs_ino(inode), to_free, 0);
5244 if (root->fs_info->quota_enabled) {
5245 btrfs_qgroup_free(root, num_bytes +
5246 dropped * root->nodesize);
5247 }
5248
5249 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5250 to_free);
5251 }
5252
5253 /**
5254 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5255 * @inode: inode we're writing to
5256 * @num_bytes: the number of bytes we want to allocate
5257 *
5258 * This will do the following things
5259 *
5260 * o reserve space in the data space info for num_bytes
5261 * o reserve space in the metadata space info based on number of outstanding
5262 * extents and how much csums will be needed
5263 * o add to the inodes ->delalloc_bytes
5264 * o add it to the fs_info's delalloc inodes list.
5265 *
5266 * This will return 0 for success and -ENOSPC if there is no space left.
5267 */
5268 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5269 {
5270 int ret;
5271
5272 ret = btrfs_check_data_free_space(inode, num_bytes);
5273 if (ret)
5274 return ret;
5275
5276 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5277 if (ret) {
5278 btrfs_free_reserved_data_space(inode, num_bytes);
5279 return ret;
5280 }
5281
5282 return 0;
5283 }
5284
5285 /**
5286 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5287 * @inode: inode we're releasing space for
5288 * @num_bytes: the number of bytes we want to free up
5289 *
5290 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5291 * called in the case that we don't need the metadata AND data reservations
5292 * anymore. So if there is an error or we insert an inline extent.
5293 *
5294 * This function will release the metadata space that was not used and will
5295 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5296 * list if there are no delalloc bytes left.
5297 */
5298 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5299 {
5300 btrfs_delalloc_release_metadata(inode, num_bytes);
5301 btrfs_free_reserved_data_space(inode, num_bytes);
5302 }
5303
5304 static int update_block_group(struct btrfs_trans_handle *trans,
5305 struct btrfs_root *root, u64 bytenr,
5306 u64 num_bytes, int alloc)
5307 {
5308 struct btrfs_block_group_cache *cache = NULL;
5309 struct btrfs_fs_info *info = root->fs_info;
5310 u64 total = num_bytes;
5311 u64 old_val;
5312 u64 byte_in_group;
5313 int factor;
5314
5315 /* block accounting for super block */
5316 spin_lock(&info->delalloc_root_lock);
5317 old_val = btrfs_super_bytes_used(info->super_copy);
5318 if (alloc)
5319 old_val += num_bytes;
5320 else
5321 old_val -= num_bytes;
5322 btrfs_set_super_bytes_used(info->super_copy, old_val);
5323 spin_unlock(&info->delalloc_root_lock);
5324
5325 while (total) {
5326 cache = btrfs_lookup_block_group(info, bytenr);
5327 if (!cache)
5328 return -ENOENT;
5329 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5330 BTRFS_BLOCK_GROUP_RAID1 |
5331 BTRFS_BLOCK_GROUP_RAID10))
5332 factor = 2;
5333 else
5334 factor = 1;
5335 /*
5336 * If this block group has free space cache written out, we
5337 * need to make sure to load it if we are removing space. This
5338 * is because we need the unpinning stage to actually add the
5339 * space back to the block group, otherwise we will leak space.
5340 */
5341 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5342 cache_block_group(cache, 1);
5343
5344 spin_lock(&trans->transaction->dirty_bgs_lock);
5345 if (list_empty(&cache->dirty_list)) {
5346 list_add_tail(&cache->dirty_list,
5347 &trans->transaction->dirty_bgs);
5348 btrfs_get_block_group(cache);
5349 }
5350 spin_unlock(&trans->transaction->dirty_bgs_lock);
5351
5352 byte_in_group = bytenr - cache->key.objectid;
5353 WARN_ON(byte_in_group > cache->key.offset);
5354
5355 spin_lock(&cache->space_info->lock);
5356 spin_lock(&cache->lock);
5357
5358 if (btrfs_test_opt(root, SPACE_CACHE) &&
5359 cache->disk_cache_state < BTRFS_DC_CLEAR)
5360 cache->disk_cache_state = BTRFS_DC_CLEAR;
5361
5362 old_val = btrfs_block_group_used(&cache->item);
5363 num_bytes = min(total, cache->key.offset - byte_in_group);
5364 if (alloc) {
5365 old_val += num_bytes;
5366 btrfs_set_block_group_used(&cache->item, old_val);
5367 cache->reserved -= num_bytes;
5368 cache->space_info->bytes_reserved -= num_bytes;
5369 cache->space_info->bytes_used += num_bytes;
5370 cache->space_info->disk_used += num_bytes * factor;
5371 spin_unlock(&cache->lock);
5372 spin_unlock(&cache->space_info->lock);
5373 } else {
5374 old_val -= num_bytes;
5375 btrfs_set_block_group_used(&cache->item, old_val);
5376 cache->pinned += num_bytes;
5377 cache->space_info->bytes_pinned += num_bytes;
5378 cache->space_info->bytes_used -= num_bytes;
5379 cache->space_info->disk_used -= num_bytes * factor;
5380 spin_unlock(&cache->lock);
5381 spin_unlock(&cache->space_info->lock);
5382
5383 set_extent_dirty(info->pinned_extents,
5384 bytenr, bytenr + num_bytes - 1,
5385 GFP_NOFS | __GFP_NOFAIL);
5386 /*
5387 * No longer have used bytes in this block group, queue
5388 * it for deletion.
5389 */
5390 if (old_val == 0) {
5391 spin_lock(&info->unused_bgs_lock);
5392 if (list_empty(&cache->bg_list)) {
5393 btrfs_get_block_group(cache);
5394 list_add_tail(&cache->bg_list,
5395 &info->unused_bgs);
5396 }
5397 spin_unlock(&info->unused_bgs_lock);
5398 }
5399 }
5400 btrfs_put_block_group(cache);
5401 total -= num_bytes;
5402 bytenr += num_bytes;
5403 }
5404 return 0;
5405 }
5406
5407 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5408 {
5409 struct btrfs_block_group_cache *cache;
5410 u64 bytenr;
5411
5412 spin_lock(&root->fs_info->block_group_cache_lock);
5413 bytenr = root->fs_info->first_logical_byte;
5414 spin_unlock(&root->fs_info->block_group_cache_lock);
5415
5416 if (bytenr < (u64)-1)
5417 return bytenr;
5418
5419 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5420 if (!cache)
5421 return 0;
5422
5423 bytenr = cache->key.objectid;
5424 btrfs_put_block_group(cache);
5425
5426 return bytenr;
5427 }
5428
5429 static int pin_down_extent(struct btrfs_root *root,
5430 struct btrfs_block_group_cache *cache,
5431 u64 bytenr, u64 num_bytes, int reserved)
5432 {
5433 spin_lock(&cache->space_info->lock);
5434 spin_lock(&cache->lock);
5435 cache->pinned += num_bytes;
5436 cache->space_info->bytes_pinned += num_bytes;
5437 if (reserved) {
5438 cache->reserved -= num_bytes;
5439 cache->space_info->bytes_reserved -= num_bytes;
5440 }
5441 spin_unlock(&cache->lock);
5442 spin_unlock(&cache->space_info->lock);
5443
5444 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5445 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5446 if (reserved)
5447 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5448 return 0;
5449 }
5450
5451 /*
5452 * this function must be called within transaction
5453 */
5454 int btrfs_pin_extent(struct btrfs_root *root,
5455 u64 bytenr, u64 num_bytes, int reserved)
5456 {
5457 struct btrfs_block_group_cache *cache;
5458
5459 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5460 BUG_ON(!cache); /* Logic error */
5461
5462 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5463
5464 btrfs_put_block_group(cache);
5465 return 0;
5466 }
5467
5468 /*
5469 * this function must be called within transaction
5470 */
5471 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5472 u64 bytenr, u64 num_bytes)
5473 {
5474 struct btrfs_block_group_cache *cache;
5475 int ret;
5476
5477 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5478 if (!cache)
5479 return -EINVAL;
5480
5481 /*
5482 * pull in the free space cache (if any) so that our pin
5483 * removes the free space from the cache. We have load_only set
5484 * to one because the slow code to read in the free extents does check
5485 * the pinned extents.
5486 */
5487 cache_block_group(cache, 1);
5488
5489 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5490
5491 /* remove us from the free space cache (if we're there at all) */
5492 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5493 btrfs_put_block_group(cache);
5494 return ret;
5495 }
5496
5497 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5498 {
5499 int ret;
5500 struct btrfs_block_group_cache *block_group;
5501 struct btrfs_caching_control *caching_ctl;
5502
5503 block_group = btrfs_lookup_block_group(root->fs_info, start);
5504 if (!block_group)
5505 return -EINVAL;
5506
5507 cache_block_group(block_group, 0);
5508 caching_ctl = get_caching_control(block_group);
5509
5510 if (!caching_ctl) {
5511 /* Logic error */
5512 BUG_ON(!block_group_cache_done(block_group));
5513 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5514 } else {
5515 mutex_lock(&caching_ctl->mutex);
5516
5517 if (start >= caching_ctl->progress) {
5518 ret = add_excluded_extent(root, start, num_bytes);
5519 } else if (start + num_bytes <= caching_ctl->progress) {
5520 ret = btrfs_remove_free_space(block_group,
5521 start, num_bytes);
5522 } else {
5523 num_bytes = caching_ctl->progress - start;
5524 ret = btrfs_remove_free_space(block_group,
5525 start, num_bytes);
5526 if (ret)
5527 goto out_lock;
5528
5529 num_bytes = (start + num_bytes) -
5530 caching_ctl->progress;
5531 start = caching_ctl->progress;
5532 ret = add_excluded_extent(root, start, num_bytes);
5533 }
5534 out_lock:
5535 mutex_unlock(&caching_ctl->mutex);
5536 put_caching_control(caching_ctl);
5537 }
5538 btrfs_put_block_group(block_group);
5539 return ret;
5540 }
5541
5542 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5543 struct extent_buffer *eb)
5544 {
5545 struct btrfs_file_extent_item *item;
5546 struct btrfs_key key;
5547 int found_type;
5548 int i;
5549
5550 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5551 return 0;
5552
5553 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5554 btrfs_item_key_to_cpu(eb, &key, i);
5555 if (key.type != BTRFS_EXTENT_DATA_KEY)
5556 continue;
5557 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5558 found_type = btrfs_file_extent_type(eb, item);
5559 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5560 continue;
5561 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5562 continue;
5563 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5564 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5565 __exclude_logged_extent(log, key.objectid, key.offset);
5566 }
5567
5568 return 0;
5569 }
5570
5571 /**
5572 * btrfs_update_reserved_bytes - update the block_group and space info counters
5573 * @cache: The cache we are manipulating
5574 * @num_bytes: The number of bytes in question
5575 * @reserve: One of the reservation enums
5576 * @delalloc: The blocks are allocated for the delalloc write
5577 *
5578 * This is called by the allocator when it reserves space, or by somebody who is
5579 * freeing space that was never actually used on disk. For example if you
5580 * reserve some space for a new leaf in transaction A and before transaction A
5581 * commits you free that leaf, you call this with reserve set to 0 in order to
5582 * clear the reservation.
5583 *
5584 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5585 * ENOSPC accounting. For data we handle the reservation through clearing the
5586 * delalloc bits in the io_tree. We have to do this since we could end up
5587 * allocating less disk space for the amount of data we have reserved in the
5588 * case of compression.
5589 *
5590 * If this is a reservation and the block group has become read only we cannot
5591 * make the reservation and return -EAGAIN, otherwise this function always
5592 * succeeds.
5593 */
5594 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5595 u64 num_bytes, int reserve, int delalloc)
5596 {
5597 struct btrfs_space_info *space_info = cache->space_info;
5598 int ret = 0;
5599
5600 spin_lock(&space_info->lock);
5601 spin_lock(&cache->lock);
5602 if (reserve != RESERVE_FREE) {
5603 if (cache->ro) {
5604 ret = -EAGAIN;
5605 } else {
5606 cache->reserved += num_bytes;
5607 space_info->bytes_reserved += num_bytes;
5608 if (reserve == RESERVE_ALLOC) {
5609 trace_btrfs_space_reservation(cache->fs_info,
5610 "space_info", space_info->flags,
5611 num_bytes, 0);
5612 space_info->bytes_may_use -= num_bytes;
5613 }
5614
5615 if (delalloc)
5616 cache->delalloc_bytes += num_bytes;
5617 }
5618 } else {
5619 if (cache->ro)
5620 space_info->bytes_readonly += num_bytes;
5621 cache->reserved -= num_bytes;
5622 space_info->bytes_reserved -= num_bytes;
5623
5624 if (delalloc)
5625 cache->delalloc_bytes -= num_bytes;
5626 }
5627 spin_unlock(&cache->lock);
5628 spin_unlock(&space_info->lock);
5629 return ret;
5630 }
5631
5632 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5633 struct btrfs_root *root)
5634 {
5635 struct btrfs_fs_info *fs_info = root->fs_info;
5636 struct btrfs_caching_control *next;
5637 struct btrfs_caching_control *caching_ctl;
5638 struct btrfs_block_group_cache *cache;
5639
5640 down_write(&fs_info->commit_root_sem);
5641
5642 list_for_each_entry_safe(caching_ctl, next,
5643 &fs_info->caching_block_groups, list) {
5644 cache = caching_ctl->block_group;
5645 if (block_group_cache_done(cache)) {
5646 cache->last_byte_to_unpin = (u64)-1;
5647 list_del_init(&caching_ctl->list);
5648 put_caching_control(caching_ctl);
5649 } else {
5650 cache->last_byte_to_unpin = caching_ctl->progress;
5651 }
5652 }
5653
5654 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5655 fs_info->pinned_extents = &fs_info->freed_extents[1];
5656 else
5657 fs_info->pinned_extents = &fs_info->freed_extents[0];
5658
5659 up_write(&fs_info->commit_root_sem);
5660
5661 update_global_block_rsv(fs_info);
5662 }
5663
5664 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5665 const bool return_free_space)
5666 {
5667 struct btrfs_fs_info *fs_info = root->fs_info;
5668 struct btrfs_block_group_cache *cache = NULL;
5669 struct btrfs_space_info *space_info;
5670 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5671 u64 len;
5672 bool readonly;
5673
5674 while (start <= end) {
5675 readonly = false;
5676 if (!cache ||
5677 start >= cache->key.objectid + cache->key.offset) {
5678 if (cache)
5679 btrfs_put_block_group(cache);
5680 cache = btrfs_lookup_block_group(fs_info, start);
5681 BUG_ON(!cache); /* Logic error */
5682 }
5683
5684 len = cache->key.objectid + cache->key.offset - start;
5685 len = min(len, end + 1 - start);
5686
5687 if (start < cache->last_byte_to_unpin) {
5688 len = min(len, cache->last_byte_to_unpin - start);
5689 if (return_free_space)
5690 btrfs_add_free_space(cache, start, len);
5691 }
5692
5693 start += len;
5694 space_info = cache->space_info;
5695
5696 spin_lock(&space_info->lock);
5697 spin_lock(&cache->lock);
5698 cache->pinned -= len;
5699 space_info->bytes_pinned -= len;
5700 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5701 if (cache->ro) {
5702 space_info->bytes_readonly += len;
5703 readonly = true;
5704 }
5705 spin_unlock(&cache->lock);
5706 if (!readonly && global_rsv->space_info == space_info) {
5707 spin_lock(&global_rsv->lock);
5708 if (!global_rsv->full) {
5709 len = min(len, global_rsv->size -
5710 global_rsv->reserved);
5711 global_rsv->reserved += len;
5712 space_info->bytes_may_use += len;
5713 if (global_rsv->reserved >= global_rsv->size)
5714 global_rsv->full = 1;
5715 }
5716 spin_unlock(&global_rsv->lock);
5717 }
5718 spin_unlock(&space_info->lock);
5719 }
5720
5721 if (cache)
5722 btrfs_put_block_group(cache);
5723 return 0;
5724 }
5725
5726 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5727 struct btrfs_root *root)
5728 {
5729 struct btrfs_fs_info *fs_info = root->fs_info;
5730 struct extent_io_tree *unpin;
5731 u64 start;
5732 u64 end;
5733 int ret;
5734
5735 if (trans->aborted)
5736 return 0;
5737
5738 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5739 unpin = &fs_info->freed_extents[1];
5740 else
5741 unpin = &fs_info->freed_extents[0];
5742
5743 while (1) {
5744 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5745 ret = find_first_extent_bit(unpin, 0, &start, &end,
5746 EXTENT_DIRTY, NULL);
5747 if (ret) {
5748 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5749 break;
5750 }
5751
5752 if (btrfs_test_opt(root, DISCARD))
5753 ret = btrfs_discard_extent(root, start,
5754 end + 1 - start, NULL);
5755
5756 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5757 unpin_extent_range(root, start, end, true);
5758 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5759 cond_resched();
5760 }
5761
5762 return 0;
5763 }
5764
5765 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5766 u64 owner, u64 root_objectid)
5767 {
5768 struct btrfs_space_info *space_info;
5769 u64 flags;
5770
5771 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5772 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5773 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5774 else
5775 flags = BTRFS_BLOCK_GROUP_METADATA;
5776 } else {
5777 flags = BTRFS_BLOCK_GROUP_DATA;
5778 }
5779
5780 space_info = __find_space_info(fs_info, flags);
5781 BUG_ON(!space_info); /* Logic bug */
5782 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5783 }
5784
5785
5786 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5787 struct btrfs_root *root,
5788 u64 bytenr, u64 num_bytes, u64 parent,
5789 u64 root_objectid, u64 owner_objectid,
5790 u64 owner_offset, int refs_to_drop,
5791 struct btrfs_delayed_extent_op *extent_op,
5792 int no_quota)
5793 {
5794 struct btrfs_key key;
5795 struct btrfs_path *path;
5796 struct btrfs_fs_info *info = root->fs_info;
5797 struct btrfs_root *extent_root = info->extent_root;
5798 struct extent_buffer *leaf;
5799 struct btrfs_extent_item *ei;
5800 struct btrfs_extent_inline_ref *iref;
5801 int ret;
5802 int is_data;
5803 int extent_slot = 0;
5804 int found_extent = 0;
5805 int num_to_del = 1;
5806 u32 item_size;
5807 u64 refs;
5808 int last_ref = 0;
5809 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5810 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5811 SKINNY_METADATA);
5812
5813 if (!info->quota_enabled || !is_fstree(root_objectid))
5814 no_quota = 1;
5815
5816 path = btrfs_alloc_path();
5817 if (!path)
5818 return -ENOMEM;
5819
5820 path->reada = 1;
5821 path->leave_spinning = 1;
5822
5823 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5824 BUG_ON(!is_data && refs_to_drop != 1);
5825
5826 if (is_data)
5827 skinny_metadata = 0;
5828
5829 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5830 bytenr, num_bytes, parent,
5831 root_objectid, owner_objectid,
5832 owner_offset);
5833 if (ret == 0) {
5834 extent_slot = path->slots[0];
5835 while (extent_slot >= 0) {
5836 btrfs_item_key_to_cpu(path->nodes[0], &key,
5837 extent_slot);
5838 if (key.objectid != bytenr)
5839 break;
5840 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5841 key.offset == num_bytes) {
5842 found_extent = 1;
5843 break;
5844 }
5845 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5846 key.offset == owner_objectid) {
5847 found_extent = 1;
5848 break;
5849 }
5850 if (path->slots[0] - extent_slot > 5)
5851 break;
5852 extent_slot--;
5853 }
5854 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5855 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5856 if (found_extent && item_size < sizeof(*ei))
5857 found_extent = 0;
5858 #endif
5859 if (!found_extent) {
5860 BUG_ON(iref);
5861 ret = remove_extent_backref(trans, extent_root, path,
5862 NULL, refs_to_drop,
5863 is_data, &last_ref);
5864 if (ret) {
5865 btrfs_abort_transaction(trans, extent_root, ret);
5866 goto out;
5867 }
5868 btrfs_release_path(path);
5869 path->leave_spinning = 1;
5870
5871 key.objectid = bytenr;
5872 key.type = BTRFS_EXTENT_ITEM_KEY;
5873 key.offset = num_bytes;
5874
5875 if (!is_data && skinny_metadata) {
5876 key.type = BTRFS_METADATA_ITEM_KEY;
5877 key.offset = owner_objectid;
5878 }
5879
5880 ret = btrfs_search_slot(trans, extent_root,
5881 &key, path, -1, 1);
5882 if (ret > 0 && skinny_metadata && path->slots[0]) {
5883 /*
5884 * Couldn't find our skinny metadata item,
5885 * see if we have ye olde extent item.
5886 */
5887 path->slots[0]--;
5888 btrfs_item_key_to_cpu(path->nodes[0], &key,
5889 path->slots[0]);
5890 if (key.objectid == bytenr &&
5891 key.type == BTRFS_EXTENT_ITEM_KEY &&
5892 key.offset == num_bytes)
5893 ret = 0;
5894 }
5895
5896 if (ret > 0 && skinny_metadata) {
5897 skinny_metadata = false;
5898 key.objectid = bytenr;
5899 key.type = BTRFS_EXTENT_ITEM_KEY;
5900 key.offset = num_bytes;
5901 btrfs_release_path(path);
5902 ret = btrfs_search_slot(trans, extent_root,
5903 &key, path, -1, 1);
5904 }
5905
5906 if (ret) {
5907 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5908 ret, bytenr);
5909 if (ret > 0)
5910 btrfs_print_leaf(extent_root,
5911 path->nodes[0]);
5912 }
5913 if (ret < 0) {
5914 btrfs_abort_transaction(trans, extent_root, ret);
5915 goto out;
5916 }
5917 extent_slot = path->slots[0];
5918 }
5919 } else if (WARN_ON(ret == -ENOENT)) {
5920 btrfs_print_leaf(extent_root, path->nodes[0]);
5921 btrfs_err(info,
5922 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5923 bytenr, parent, root_objectid, owner_objectid,
5924 owner_offset);
5925 btrfs_abort_transaction(trans, extent_root, ret);
5926 goto out;
5927 } else {
5928 btrfs_abort_transaction(trans, extent_root, ret);
5929 goto out;
5930 }
5931
5932 leaf = path->nodes[0];
5933 item_size = btrfs_item_size_nr(leaf, extent_slot);
5934 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5935 if (item_size < sizeof(*ei)) {
5936 BUG_ON(found_extent || extent_slot != path->slots[0]);
5937 ret = convert_extent_item_v0(trans, extent_root, path,
5938 owner_objectid, 0);
5939 if (ret < 0) {
5940 btrfs_abort_transaction(trans, extent_root, ret);
5941 goto out;
5942 }
5943
5944 btrfs_release_path(path);
5945 path->leave_spinning = 1;
5946
5947 key.objectid = bytenr;
5948 key.type = BTRFS_EXTENT_ITEM_KEY;
5949 key.offset = num_bytes;
5950
5951 ret = btrfs_search_slot(trans, extent_root, &key, path,
5952 -1, 1);
5953 if (ret) {
5954 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5955 ret, bytenr);
5956 btrfs_print_leaf(extent_root, path->nodes[0]);
5957 }
5958 if (ret < 0) {
5959 btrfs_abort_transaction(trans, extent_root, ret);
5960 goto out;
5961 }
5962
5963 extent_slot = path->slots[0];
5964 leaf = path->nodes[0];
5965 item_size = btrfs_item_size_nr(leaf, extent_slot);
5966 }
5967 #endif
5968 BUG_ON(item_size < sizeof(*ei));
5969 ei = btrfs_item_ptr(leaf, extent_slot,
5970 struct btrfs_extent_item);
5971 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5972 key.type == BTRFS_EXTENT_ITEM_KEY) {
5973 struct btrfs_tree_block_info *bi;
5974 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5975 bi = (struct btrfs_tree_block_info *)(ei + 1);
5976 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5977 }
5978
5979 refs = btrfs_extent_refs(leaf, ei);
5980 if (refs < refs_to_drop) {
5981 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5982 "for bytenr %Lu", refs_to_drop, refs, bytenr);
5983 ret = -EINVAL;
5984 btrfs_abort_transaction(trans, extent_root, ret);
5985 goto out;
5986 }
5987 refs -= refs_to_drop;
5988
5989 if (refs > 0) {
5990 type = BTRFS_QGROUP_OPER_SUB_SHARED;
5991 if (extent_op)
5992 __run_delayed_extent_op(extent_op, leaf, ei);
5993 /*
5994 * In the case of inline back ref, reference count will
5995 * be updated by remove_extent_backref
5996 */
5997 if (iref) {
5998 BUG_ON(!found_extent);
5999 } else {
6000 btrfs_set_extent_refs(leaf, ei, refs);
6001 btrfs_mark_buffer_dirty(leaf);
6002 }
6003 if (found_extent) {
6004 ret = remove_extent_backref(trans, extent_root, path,
6005 iref, refs_to_drop,
6006 is_data, &last_ref);
6007 if (ret) {
6008 btrfs_abort_transaction(trans, extent_root, ret);
6009 goto out;
6010 }
6011 }
6012 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6013 root_objectid);
6014 } else {
6015 if (found_extent) {
6016 BUG_ON(is_data && refs_to_drop !=
6017 extent_data_ref_count(root, path, iref));
6018 if (iref) {
6019 BUG_ON(path->slots[0] != extent_slot);
6020 } else {
6021 BUG_ON(path->slots[0] != extent_slot + 1);
6022 path->slots[0] = extent_slot;
6023 num_to_del = 2;
6024 }
6025 }
6026
6027 last_ref = 1;
6028 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6029 num_to_del);
6030 if (ret) {
6031 btrfs_abort_transaction(trans, extent_root, ret);
6032 goto out;
6033 }
6034 btrfs_release_path(path);
6035
6036 if (is_data) {
6037 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6038 if (ret) {
6039 btrfs_abort_transaction(trans, extent_root, ret);
6040 goto out;
6041 }
6042 }
6043
6044 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6045 if (ret) {
6046 btrfs_abort_transaction(trans, extent_root, ret);
6047 goto out;
6048 }
6049 }
6050 btrfs_release_path(path);
6051
6052 /* Deal with the quota accounting */
6053 if (!ret && last_ref && !no_quota) {
6054 int mod_seq = 0;
6055
6056 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6057 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6058 mod_seq = 1;
6059
6060 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6061 bytenr, num_bytes, type,
6062 mod_seq);
6063 }
6064 out:
6065 btrfs_free_path(path);
6066 return ret;
6067 }
6068
6069 /*
6070 * when we free an block, it is possible (and likely) that we free the last
6071 * delayed ref for that extent as well. This searches the delayed ref tree for
6072 * a given extent, and if there are no other delayed refs to be processed, it
6073 * removes it from the tree.
6074 */
6075 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6076 struct btrfs_root *root, u64 bytenr)
6077 {
6078 struct btrfs_delayed_ref_head *head;
6079 struct btrfs_delayed_ref_root *delayed_refs;
6080 int ret = 0;
6081
6082 delayed_refs = &trans->transaction->delayed_refs;
6083 spin_lock(&delayed_refs->lock);
6084 head = btrfs_find_delayed_ref_head(trans, bytenr);
6085 if (!head)
6086 goto out_delayed_unlock;
6087
6088 spin_lock(&head->lock);
6089 if (rb_first(&head->ref_root))
6090 goto out;
6091
6092 if (head->extent_op) {
6093 if (!head->must_insert_reserved)
6094 goto out;
6095 btrfs_free_delayed_extent_op(head->extent_op);
6096 head->extent_op = NULL;
6097 }
6098
6099 /*
6100 * waiting for the lock here would deadlock. If someone else has it
6101 * locked they are already in the process of dropping it anyway
6102 */
6103 if (!mutex_trylock(&head->mutex))
6104 goto out;
6105
6106 /*
6107 * at this point we have a head with no other entries. Go
6108 * ahead and process it.
6109 */
6110 head->node.in_tree = 0;
6111 rb_erase(&head->href_node, &delayed_refs->href_root);
6112
6113 atomic_dec(&delayed_refs->num_entries);
6114
6115 /*
6116 * we don't take a ref on the node because we're removing it from the
6117 * tree, so we just steal the ref the tree was holding.
6118 */
6119 delayed_refs->num_heads--;
6120 if (head->processing == 0)
6121 delayed_refs->num_heads_ready--;
6122 head->processing = 0;
6123 spin_unlock(&head->lock);
6124 spin_unlock(&delayed_refs->lock);
6125
6126 BUG_ON(head->extent_op);
6127 if (head->must_insert_reserved)
6128 ret = 1;
6129
6130 mutex_unlock(&head->mutex);
6131 btrfs_put_delayed_ref(&head->node);
6132 return ret;
6133 out:
6134 spin_unlock(&head->lock);
6135
6136 out_delayed_unlock:
6137 spin_unlock(&delayed_refs->lock);
6138 return 0;
6139 }
6140
6141 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6142 struct btrfs_root *root,
6143 struct extent_buffer *buf,
6144 u64 parent, int last_ref)
6145 {
6146 int pin = 1;
6147 int ret;
6148
6149 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6150 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6151 buf->start, buf->len,
6152 parent, root->root_key.objectid,
6153 btrfs_header_level(buf),
6154 BTRFS_DROP_DELAYED_REF, NULL, 0);
6155 BUG_ON(ret); /* -ENOMEM */
6156 }
6157
6158 if (!last_ref)
6159 return;
6160
6161 if (btrfs_header_generation(buf) == trans->transid) {
6162 struct btrfs_block_group_cache *cache;
6163
6164 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6165 ret = check_ref_cleanup(trans, root, buf->start);
6166 if (!ret)
6167 goto out;
6168 }
6169
6170 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6171
6172 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6173 pin_down_extent(root, cache, buf->start, buf->len, 1);
6174 btrfs_put_block_group(cache);
6175 goto out;
6176 }
6177
6178 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6179
6180 btrfs_add_free_space(cache, buf->start, buf->len);
6181 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6182 btrfs_put_block_group(cache);
6183 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6184 pin = 0;
6185 }
6186 out:
6187 if (pin)
6188 add_pinned_bytes(root->fs_info, buf->len,
6189 btrfs_header_level(buf),
6190 root->root_key.objectid);
6191
6192 /*
6193 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6194 * anymore.
6195 */
6196 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6197 }
6198
6199 /* Can return -ENOMEM */
6200 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6201 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6202 u64 owner, u64 offset, int no_quota)
6203 {
6204 int ret;
6205 struct btrfs_fs_info *fs_info = root->fs_info;
6206
6207 if (btrfs_test_is_dummy_root(root))
6208 return 0;
6209
6210 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6211
6212 /*
6213 * tree log blocks never actually go into the extent allocation
6214 * tree, just update pinning info and exit early.
6215 */
6216 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6217 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6218 /* unlocks the pinned mutex */
6219 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6220 ret = 0;
6221 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6222 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6223 num_bytes,
6224 parent, root_objectid, (int)owner,
6225 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6226 } else {
6227 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6228 num_bytes,
6229 parent, root_objectid, owner,
6230 offset, BTRFS_DROP_DELAYED_REF,
6231 NULL, no_quota);
6232 }
6233 return ret;
6234 }
6235
6236 /*
6237 * when we wait for progress in the block group caching, its because
6238 * our allocation attempt failed at least once. So, we must sleep
6239 * and let some progress happen before we try again.
6240 *
6241 * This function will sleep at least once waiting for new free space to
6242 * show up, and then it will check the block group free space numbers
6243 * for our min num_bytes. Another option is to have it go ahead
6244 * and look in the rbtree for a free extent of a given size, but this
6245 * is a good start.
6246 *
6247 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6248 * any of the information in this block group.
6249 */
6250 static noinline void
6251 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6252 u64 num_bytes)
6253 {
6254 struct btrfs_caching_control *caching_ctl;
6255
6256 caching_ctl = get_caching_control(cache);
6257 if (!caching_ctl)
6258 return;
6259
6260 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6261 (cache->free_space_ctl->free_space >= num_bytes));
6262
6263 put_caching_control(caching_ctl);
6264 }
6265
6266 static noinline int
6267 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6268 {
6269 struct btrfs_caching_control *caching_ctl;
6270 int ret = 0;
6271
6272 caching_ctl = get_caching_control(cache);
6273 if (!caching_ctl)
6274 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6275
6276 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6277 if (cache->cached == BTRFS_CACHE_ERROR)
6278 ret = -EIO;
6279 put_caching_control(caching_ctl);
6280 return ret;
6281 }
6282
6283 int __get_raid_index(u64 flags)
6284 {
6285 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6286 return BTRFS_RAID_RAID10;
6287 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6288 return BTRFS_RAID_RAID1;
6289 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6290 return BTRFS_RAID_DUP;
6291 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6292 return BTRFS_RAID_RAID0;
6293 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6294 return BTRFS_RAID_RAID5;
6295 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6296 return BTRFS_RAID_RAID6;
6297
6298 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6299 }
6300
6301 int get_block_group_index(struct btrfs_block_group_cache *cache)
6302 {
6303 return __get_raid_index(cache->flags);
6304 }
6305
6306 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6307 [BTRFS_RAID_RAID10] = "raid10",
6308 [BTRFS_RAID_RAID1] = "raid1",
6309 [BTRFS_RAID_DUP] = "dup",
6310 [BTRFS_RAID_RAID0] = "raid0",
6311 [BTRFS_RAID_SINGLE] = "single",
6312 [BTRFS_RAID_RAID5] = "raid5",
6313 [BTRFS_RAID_RAID6] = "raid6",
6314 };
6315
6316 static const char *get_raid_name(enum btrfs_raid_types type)
6317 {
6318 if (type >= BTRFS_NR_RAID_TYPES)
6319 return NULL;
6320
6321 return btrfs_raid_type_names[type];
6322 }
6323
6324 enum btrfs_loop_type {
6325 LOOP_CACHING_NOWAIT = 0,
6326 LOOP_CACHING_WAIT = 1,
6327 LOOP_ALLOC_CHUNK = 2,
6328 LOOP_NO_EMPTY_SIZE = 3,
6329 };
6330
6331 static inline void
6332 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6333 int delalloc)
6334 {
6335 if (delalloc)
6336 down_read(&cache->data_rwsem);
6337 }
6338
6339 static inline void
6340 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6341 int delalloc)
6342 {
6343 btrfs_get_block_group(cache);
6344 if (delalloc)
6345 down_read(&cache->data_rwsem);
6346 }
6347
6348 static struct btrfs_block_group_cache *
6349 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6350 struct btrfs_free_cluster *cluster,
6351 int delalloc)
6352 {
6353 struct btrfs_block_group_cache *used_bg;
6354 bool locked = false;
6355 again:
6356 spin_lock(&cluster->refill_lock);
6357 if (locked) {
6358 if (used_bg == cluster->block_group)
6359 return used_bg;
6360
6361 up_read(&used_bg->data_rwsem);
6362 btrfs_put_block_group(used_bg);
6363 }
6364
6365 used_bg = cluster->block_group;
6366 if (!used_bg)
6367 return NULL;
6368
6369 if (used_bg == block_group)
6370 return used_bg;
6371
6372 btrfs_get_block_group(used_bg);
6373
6374 if (!delalloc)
6375 return used_bg;
6376
6377 if (down_read_trylock(&used_bg->data_rwsem))
6378 return used_bg;
6379
6380 spin_unlock(&cluster->refill_lock);
6381 down_read(&used_bg->data_rwsem);
6382 locked = true;
6383 goto again;
6384 }
6385
6386 static inline void
6387 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6388 int delalloc)
6389 {
6390 if (delalloc)
6391 up_read(&cache->data_rwsem);
6392 btrfs_put_block_group(cache);
6393 }
6394
6395 /*
6396 * walks the btree of allocated extents and find a hole of a given size.
6397 * The key ins is changed to record the hole:
6398 * ins->objectid == start position
6399 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6400 * ins->offset == the size of the hole.
6401 * Any available blocks before search_start are skipped.
6402 *
6403 * If there is no suitable free space, we will record the max size of
6404 * the free space extent currently.
6405 */
6406 static noinline int find_free_extent(struct btrfs_root *orig_root,
6407 u64 num_bytes, u64 empty_size,
6408 u64 hint_byte, struct btrfs_key *ins,
6409 u64 flags, int delalloc)
6410 {
6411 int ret = 0;
6412 struct btrfs_root *root = orig_root->fs_info->extent_root;
6413 struct btrfs_free_cluster *last_ptr = NULL;
6414 struct btrfs_block_group_cache *block_group = NULL;
6415 u64 search_start = 0;
6416 u64 max_extent_size = 0;
6417 int empty_cluster = 2 * 1024 * 1024;
6418 struct btrfs_space_info *space_info;
6419 int loop = 0;
6420 int index = __get_raid_index(flags);
6421 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6422 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6423 bool failed_cluster_refill = false;
6424 bool failed_alloc = false;
6425 bool use_cluster = true;
6426 bool have_caching_bg = false;
6427
6428 WARN_ON(num_bytes < root->sectorsize);
6429 ins->type = BTRFS_EXTENT_ITEM_KEY;
6430 ins->objectid = 0;
6431 ins->offset = 0;
6432
6433 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6434
6435 space_info = __find_space_info(root->fs_info, flags);
6436 if (!space_info) {
6437 btrfs_err(root->fs_info, "No space info for %llu", flags);
6438 return -ENOSPC;
6439 }
6440
6441 /*
6442 * If the space info is for both data and metadata it means we have a
6443 * small filesystem and we can't use the clustering stuff.
6444 */
6445 if (btrfs_mixed_space_info(space_info))
6446 use_cluster = false;
6447
6448 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6449 last_ptr = &root->fs_info->meta_alloc_cluster;
6450 if (!btrfs_test_opt(root, SSD))
6451 empty_cluster = 64 * 1024;
6452 }
6453
6454 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6455 btrfs_test_opt(root, SSD)) {
6456 last_ptr = &root->fs_info->data_alloc_cluster;
6457 }
6458
6459 if (last_ptr) {
6460 spin_lock(&last_ptr->lock);
6461 if (last_ptr->block_group)
6462 hint_byte = last_ptr->window_start;
6463 spin_unlock(&last_ptr->lock);
6464 }
6465
6466 search_start = max(search_start, first_logical_byte(root, 0));
6467 search_start = max(search_start, hint_byte);
6468
6469 if (!last_ptr)
6470 empty_cluster = 0;
6471
6472 if (search_start == hint_byte) {
6473 block_group = btrfs_lookup_block_group(root->fs_info,
6474 search_start);
6475 /*
6476 * we don't want to use the block group if it doesn't match our
6477 * allocation bits, or if its not cached.
6478 *
6479 * However if we are re-searching with an ideal block group
6480 * picked out then we don't care that the block group is cached.
6481 */
6482 if (block_group && block_group_bits(block_group, flags) &&
6483 block_group->cached != BTRFS_CACHE_NO) {
6484 down_read(&space_info->groups_sem);
6485 if (list_empty(&block_group->list) ||
6486 block_group->ro) {
6487 /*
6488 * someone is removing this block group,
6489 * we can't jump into the have_block_group
6490 * target because our list pointers are not
6491 * valid
6492 */
6493 btrfs_put_block_group(block_group);
6494 up_read(&space_info->groups_sem);
6495 } else {
6496 index = get_block_group_index(block_group);
6497 btrfs_lock_block_group(block_group, delalloc);
6498 goto have_block_group;
6499 }
6500 } else if (block_group) {
6501 btrfs_put_block_group(block_group);
6502 }
6503 }
6504 search:
6505 have_caching_bg = false;
6506 down_read(&space_info->groups_sem);
6507 list_for_each_entry(block_group, &space_info->block_groups[index],
6508 list) {
6509 u64 offset;
6510 int cached;
6511
6512 btrfs_grab_block_group(block_group, delalloc);
6513 search_start = block_group->key.objectid;
6514
6515 /*
6516 * this can happen if we end up cycling through all the
6517 * raid types, but we want to make sure we only allocate
6518 * for the proper type.
6519 */
6520 if (!block_group_bits(block_group, flags)) {
6521 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6522 BTRFS_BLOCK_GROUP_RAID1 |
6523 BTRFS_BLOCK_GROUP_RAID5 |
6524 BTRFS_BLOCK_GROUP_RAID6 |
6525 BTRFS_BLOCK_GROUP_RAID10;
6526
6527 /*
6528 * if they asked for extra copies and this block group
6529 * doesn't provide them, bail. This does allow us to
6530 * fill raid0 from raid1.
6531 */
6532 if ((flags & extra) && !(block_group->flags & extra))
6533 goto loop;
6534 }
6535
6536 have_block_group:
6537 cached = block_group_cache_done(block_group);
6538 if (unlikely(!cached)) {
6539 ret = cache_block_group(block_group, 0);
6540 BUG_ON(ret < 0);
6541 ret = 0;
6542 }
6543
6544 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6545 goto loop;
6546 if (unlikely(block_group->ro))
6547 goto loop;
6548
6549 /*
6550 * Ok we want to try and use the cluster allocator, so
6551 * lets look there
6552 */
6553 if (last_ptr) {
6554 struct btrfs_block_group_cache *used_block_group;
6555 unsigned long aligned_cluster;
6556 /*
6557 * the refill lock keeps out other
6558 * people trying to start a new cluster
6559 */
6560 used_block_group = btrfs_lock_cluster(block_group,
6561 last_ptr,
6562 delalloc);
6563 if (!used_block_group)
6564 goto refill_cluster;
6565
6566 if (used_block_group != block_group &&
6567 (used_block_group->ro ||
6568 !block_group_bits(used_block_group, flags)))
6569 goto release_cluster;
6570
6571 offset = btrfs_alloc_from_cluster(used_block_group,
6572 last_ptr,
6573 num_bytes,
6574 used_block_group->key.objectid,
6575 &max_extent_size);
6576 if (offset) {
6577 /* we have a block, we're done */
6578 spin_unlock(&last_ptr->refill_lock);
6579 trace_btrfs_reserve_extent_cluster(root,
6580 used_block_group,
6581 search_start, num_bytes);
6582 if (used_block_group != block_group) {
6583 btrfs_release_block_group(block_group,
6584 delalloc);
6585 block_group = used_block_group;
6586 }
6587 goto checks;
6588 }
6589
6590 WARN_ON(last_ptr->block_group != used_block_group);
6591 release_cluster:
6592 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6593 * set up a new clusters, so lets just skip it
6594 * and let the allocator find whatever block
6595 * it can find. If we reach this point, we
6596 * will have tried the cluster allocator
6597 * plenty of times and not have found
6598 * anything, so we are likely way too
6599 * fragmented for the clustering stuff to find
6600 * anything.
6601 *
6602 * However, if the cluster is taken from the
6603 * current block group, release the cluster
6604 * first, so that we stand a better chance of
6605 * succeeding in the unclustered
6606 * allocation. */
6607 if (loop >= LOOP_NO_EMPTY_SIZE &&
6608 used_block_group != block_group) {
6609 spin_unlock(&last_ptr->refill_lock);
6610 btrfs_release_block_group(used_block_group,
6611 delalloc);
6612 goto unclustered_alloc;
6613 }
6614
6615 /*
6616 * this cluster didn't work out, free it and
6617 * start over
6618 */
6619 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6620
6621 if (used_block_group != block_group)
6622 btrfs_release_block_group(used_block_group,
6623 delalloc);
6624 refill_cluster:
6625 if (loop >= LOOP_NO_EMPTY_SIZE) {
6626 spin_unlock(&last_ptr->refill_lock);
6627 goto unclustered_alloc;
6628 }
6629
6630 aligned_cluster = max_t(unsigned long,
6631 empty_cluster + empty_size,
6632 block_group->full_stripe_len);
6633
6634 /* allocate a cluster in this block group */
6635 ret = btrfs_find_space_cluster(root, block_group,
6636 last_ptr, search_start,
6637 num_bytes,
6638 aligned_cluster);
6639 if (ret == 0) {
6640 /*
6641 * now pull our allocation out of this
6642 * cluster
6643 */
6644 offset = btrfs_alloc_from_cluster(block_group,
6645 last_ptr,
6646 num_bytes,
6647 search_start,
6648 &max_extent_size);
6649 if (offset) {
6650 /* we found one, proceed */
6651 spin_unlock(&last_ptr->refill_lock);
6652 trace_btrfs_reserve_extent_cluster(root,
6653 block_group, search_start,
6654 num_bytes);
6655 goto checks;
6656 }
6657 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6658 && !failed_cluster_refill) {
6659 spin_unlock(&last_ptr->refill_lock);
6660
6661 failed_cluster_refill = true;
6662 wait_block_group_cache_progress(block_group,
6663 num_bytes + empty_cluster + empty_size);
6664 goto have_block_group;
6665 }
6666
6667 /*
6668 * at this point we either didn't find a cluster
6669 * or we weren't able to allocate a block from our
6670 * cluster. Free the cluster we've been trying
6671 * to use, and go to the next block group
6672 */
6673 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6674 spin_unlock(&last_ptr->refill_lock);
6675 goto loop;
6676 }
6677
6678 unclustered_alloc:
6679 spin_lock(&block_group->free_space_ctl->tree_lock);
6680 if (cached &&
6681 block_group->free_space_ctl->free_space <
6682 num_bytes + empty_cluster + empty_size) {
6683 if (block_group->free_space_ctl->free_space >
6684 max_extent_size)
6685 max_extent_size =
6686 block_group->free_space_ctl->free_space;
6687 spin_unlock(&block_group->free_space_ctl->tree_lock);
6688 goto loop;
6689 }
6690 spin_unlock(&block_group->free_space_ctl->tree_lock);
6691
6692 offset = btrfs_find_space_for_alloc(block_group, search_start,
6693 num_bytes, empty_size,
6694 &max_extent_size);
6695 /*
6696 * If we didn't find a chunk, and we haven't failed on this
6697 * block group before, and this block group is in the middle of
6698 * caching and we are ok with waiting, then go ahead and wait
6699 * for progress to be made, and set failed_alloc to true.
6700 *
6701 * If failed_alloc is true then we've already waited on this
6702 * block group once and should move on to the next block group.
6703 */
6704 if (!offset && !failed_alloc && !cached &&
6705 loop > LOOP_CACHING_NOWAIT) {
6706 wait_block_group_cache_progress(block_group,
6707 num_bytes + empty_size);
6708 failed_alloc = true;
6709 goto have_block_group;
6710 } else if (!offset) {
6711 if (!cached)
6712 have_caching_bg = true;
6713 goto loop;
6714 }
6715 checks:
6716 search_start = ALIGN(offset, root->stripesize);
6717
6718 /* move on to the next group */
6719 if (search_start + num_bytes >
6720 block_group->key.objectid + block_group->key.offset) {
6721 btrfs_add_free_space(block_group, offset, num_bytes);
6722 goto loop;
6723 }
6724
6725 if (offset < search_start)
6726 btrfs_add_free_space(block_group, offset,
6727 search_start - offset);
6728 BUG_ON(offset > search_start);
6729
6730 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6731 alloc_type, delalloc);
6732 if (ret == -EAGAIN) {
6733 btrfs_add_free_space(block_group, offset, num_bytes);
6734 goto loop;
6735 }
6736
6737 /* we are all good, lets return */
6738 ins->objectid = search_start;
6739 ins->offset = num_bytes;
6740
6741 trace_btrfs_reserve_extent(orig_root, block_group,
6742 search_start, num_bytes);
6743 btrfs_release_block_group(block_group, delalloc);
6744 break;
6745 loop:
6746 failed_cluster_refill = false;
6747 failed_alloc = false;
6748 BUG_ON(index != get_block_group_index(block_group));
6749 btrfs_release_block_group(block_group, delalloc);
6750 }
6751 up_read(&space_info->groups_sem);
6752
6753 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6754 goto search;
6755
6756 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6757 goto search;
6758
6759 /*
6760 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6761 * caching kthreads as we move along
6762 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6763 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6764 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6765 * again
6766 */
6767 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6768 index = 0;
6769 loop++;
6770 if (loop == LOOP_ALLOC_CHUNK) {
6771 struct btrfs_trans_handle *trans;
6772 int exist = 0;
6773
6774 trans = current->journal_info;
6775 if (trans)
6776 exist = 1;
6777 else
6778 trans = btrfs_join_transaction(root);
6779
6780 if (IS_ERR(trans)) {
6781 ret = PTR_ERR(trans);
6782 goto out;
6783 }
6784
6785 ret = do_chunk_alloc(trans, root, flags,
6786 CHUNK_ALLOC_FORCE);
6787 /*
6788 * Do not bail out on ENOSPC since we
6789 * can do more things.
6790 */
6791 if (ret < 0 && ret != -ENOSPC)
6792 btrfs_abort_transaction(trans,
6793 root, ret);
6794 else
6795 ret = 0;
6796 if (!exist)
6797 btrfs_end_transaction(trans, root);
6798 if (ret)
6799 goto out;
6800 }
6801
6802 if (loop == LOOP_NO_EMPTY_SIZE) {
6803 empty_size = 0;
6804 empty_cluster = 0;
6805 }
6806
6807 goto search;
6808 } else if (!ins->objectid) {
6809 ret = -ENOSPC;
6810 } else if (ins->objectid) {
6811 ret = 0;
6812 }
6813 out:
6814 if (ret == -ENOSPC)
6815 ins->offset = max_extent_size;
6816 return ret;
6817 }
6818
6819 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6820 int dump_block_groups)
6821 {
6822 struct btrfs_block_group_cache *cache;
6823 int index = 0;
6824
6825 spin_lock(&info->lock);
6826 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6827 info->flags,
6828 info->total_bytes - info->bytes_used - info->bytes_pinned -
6829 info->bytes_reserved - info->bytes_readonly,
6830 (info->full) ? "" : "not ");
6831 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6832 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6833 info->total_bytes, info->bytes_used, info->bytes_pinned,
6834 info->bytes_reserved, info->bytes_may_use,
6835 info->bytes_readonly);
6836 spin_unlock(&info->lock);
6837
6838 if (!dump_block_groups)
6839 return;
6840
6841 down_read(&info->groups_sem);
6842 again:
6843 list_for_each_entry(cache, &info->block_groups[index], list) {
6844 spin_lock(&cache->lock);
6845 printk(KERN_INFO "BTRFS: "
6846 "block group %llu has %llu bytes, "
6847 "%llu used %llu pinned %llu reserved %s\n",
6848 cache->key.objectid, cache->key.offset,
6849 btrfs_block_group_used(&cache->item), cache->pinned,
6850 cache->reserved, cache->ro ? "[readonly]" : "");
6851 btrfs_dump_free_space(cache, bytes);
6852 spin_unlock(&cache->lock);
6853 }
6854 if (++index < BTRFS_NR_RAID_TYPES)
6855 goto again;
6856 up_read(&info->groups_sem);
6857 }
6858
6859 int btrfs_reserve_extent(struct btrfs_root *root,
6860 u64 num_bytes, u64 min_alloc_size,
6861 u64 empty_size, u64 hint_byte,
6862 struct btrfs_key *ins, int is_data, int delalloc)
6863 {
6864 bool final_tried = false;
6865 u64 flags;
6866 int ret;
6867
6868 flags = btrfs_get_alloc_profile(root, is_data);
6869 again:
6870 WARN_ON(num_bytes < root->sectorsize);
6871 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6872 flags, delalloc);
6873
6874 if (ret == -ENOSPC) {
6875 if (!final_tried && ins->offset) {
6876 num_bytes = min(num_bytes >> 1, ins->offset);
6877 num_bytes = round_down(num_bytes, root->sectorsize);
6878 num_bytes = max(num_bytes, min_alloc_size);
6879 if (num_bytes == min_alloc_size)
6880 final_tried = true;
6881 goto again;
6882 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6883 struct btrfs_space_info *sinfo;
6884
6885 sinfo = __find_space_info(root->fs_info, flags);
6886 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6887 flags, num_bytes);
6888 if (sinfo)
6889 dump_space_info(sinfo, num_bytes, 1);
6890 }
6891 }
6892
6893 return ret;
6894 }
6895
6896 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6897 u64 start, u64 len,
6898 int pin, int delalloc)
6899 {
6900 struct btrfs_block_group_cache *cache;
6901 int ret = 0;
6902
6903 cache = btrfs_lookup_block_group(root->fs_info, start);
6904 if (!cache) {
6905 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6906 start);
6907 return -ENOSPC;
6908 }
6909
6910 if (btrfs_test_opt(root, DISCARD))
6911 ret = btrfs_discard_extent(root, start, len, NULL);
6912
6913 if (pin)
6914 pin_down_extent(root, cache, start, len, 1);
6915 else {
6916 btrfs_add_free_space(cache, start, len);
6917 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6918 }
6919 btrfs_put_block_group(cache);
6920
6921 trace_btrfs_reserved_extent_free(root, start, len);
6922
6923 return ret;
6924 }
6925
6926 int btrfs_free_reserved_extent(struct btrfs_root *root,
6927 u64 start, u64 len, int delalloc)
6928 {
6929 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6930 }
6931
6932 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6933 u64 start, u64 len)
6934 {
6935 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6936 }
6937
6938 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6939 struct btrfs_root *root,
6940 u64 parent, u64 root_objectid,
6941 u64 flags, u64 owner, u64 offset,
6942 struct btrfs_key *ins, int ref_mod)
6943 {
6944 int ret;
6945 struct btrfs_fs_info *fs_info = root->fs_info;
6946 struct btrfs_extent_item *extent_item;
6947 struct btrfs_extent_inline_ref *iref;
6948 struct btrfs_path *path;
6949 struct extent_buffer *leaf;
6950 int type;
6951 u32 size;
6952
6953 if (parent > 0)
6954 type = BTRFS_SHARED_DATA_REF_KEY;
6955 else
6956 type = BTRFS_EXTENT_DATA_REF_KEY;
6957
6958 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6959
6960 path = btrfs_alloc_path();
6961 if (!path)
6962 return -ENOMEM;
6963
6964 path->leave_spinning = 1;
6965 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6966 ins, size);
6967 if (ret) {
6968 btrfs_free_path(path);
6969 return ret;
6970 }
6971
6972 leaf = path->nodes[0];
6973 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6974 struct btrfs_extent_item);
6975 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6976 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6977 btrfs_set_extent_flags(leaf, extent_item,
6978 flags | BTRFS_EXTENT_FLAG_DATA);
6979
6980 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6981 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6982 if (parent > 0) {
6983 struct btrfs_shared_data_ref *ref;
6984 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6985 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6986 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6987 } else {
6988 struct btrfs_extent_data_ref *ref;
6989 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6990 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6991 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6992 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6993 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6994 }
6995
6996 btrfs_mark_buffer_dirty(path->nodes[0]);
6997 btrfs_free_path(path);
6998
6999 /* Always set parent to 0 here since its exclusive anyway. */
7000 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7001 ins->objectid, ins->offset,
7002 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7003 if (ret)
7004 return ret;
7005
7006 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7007 if (ret) { /* -ENOENT, logic error */
7008 btrfs_err(fs_info, "update block group failed for %llu %llu",
7009 ins->objectid, ins->offset);
7010 BUG();
7011 }
7012 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7013 return ret;
7014 }
7015
7016 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7017 struct btrfs_root *root,
7018 u64 parent, u64 root_objectid,
7019 u64 flags, struct btrfs_disk_key *key,
7020 int level, struct btrfs_key *ins,
7021 int no_quota)
7022 {
7023 int ret;
7024 struct btrfs_fs_info *fs_info = root->fs_info;
7025 struct btrfs_extent_item *extent_item;
7026 struct btrfs_tree_block_info *block_info;
7027 struct btrfs_extent_inline_ref *iref;
7028 struct btrfs_path *path;
7029 struct extent_buffer *leaf;
7030 u32 size = sizeof(*extent_item) + sizeof(*iref);
7031 u64 num_bytes = ins->offset;
7032 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7033 SKINNY_METADATA);
7034
7035 if (!skinny_metadata)
7036 size += sizeof(*block_info);
7037
7038 path = btrfs_alloc_path();
7039 if (!path) {
7040 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7041 root->nodesize);
7042 return -ENOMEM;
7043 }
7044
7045 path->leave_spinning = 1;
7046 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7047 ins, size);
7048 if (ret) {
7049 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7050 root->nodesize);
7051 btrfs_free_path(path);
7052 return ret;
7053 }
7054
7055 leaf = path->nodes[0];
7056 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7057 struct btrfs_extent_item);
7058 btrfs_set_extent_refs(leaf, extent_item, 1);
7059 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7060 btrfs_set_extent_flags(leaf, extent_item,
7061 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7062
7063 if (skinny_metadata) {
7064 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7065 num_bytes = root->nodesize;
7066 } else {
7067 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7068 btrfs_set_tree_block_key(leaf, block_info, key);
7069 btrfs_set_tree_block_level(leaf, block_info, level);
7070 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7071 }
7072
7073 if (parent > 0) {
7074 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7075 btrfs_set_extent_inline_ref_type(leaf, iref,
7076 BTRFS_SHARED_BLOCK_REF_KEY);
7077 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7078 } else {
7079 btrfs_set_extent_inline_ref_type(leaf, iref,
7080 BTRFS_TREE_BLOCK_REF_KEY);
7081 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7082 }
7083
7084 btrfs_mark_buffer_dirty(leaf);
7085 btrfs_free_path(path);
7086
7087 if (!no_quota) {
7088 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7089 ins->objectid, num_bytes,
7090 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7091 if (ret)
7092 return ret;
7093 }
7094
7095 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7096 1);
7097 if (ret) { /* -ENOENT, logic error */
7098 btrfs_err(fs_info, "update block group failed for %llu %llu",
7099 ins->objectid, ins->offset);
7100 BUG();
7101 }
7102
7103 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7104 return ret;
7105 }
7106
7107 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7108 struct btrfs_root *root,
7109 u64 root_objectid, u64 owner,
7110 u64 offset, struct btrfs_key *ins)
7111 {
7112 int ret;
7113
7114 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7115
7116 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7117 ins->offset, 0,
7118 root_objectid, owner, offset,
7119 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7120 return ret;
7121 }
7122
7123 /*
7124 * this is used by the tree logging recovery code. It records that
7125 * an extent has been allocated and makes sure to clear the free
7126 * space cache bits as well
7127 */
7128 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7129 struct btrfs_root *root,
7130 u64 root_objectid, u64 owner, u64 offset,
7131 struct btrfs_key *ins)
7132 {
7133 int ret;
7134 struct btrfs_block_group_cache *block_group;
7135
7136 /*
7137 * Mixed block groups will exclude before processing the log so we only
7138 * need to do the exlude dance if this fs isn't mixed.
7139 */
7140 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7141 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7142 if (ret)
7143 return ret;
7144 }
7145
7146 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7147 if (!block_group)
7148 return -EINVAL;
7149
7150 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7151 RESERVE_ALLOC_NO_ACCOUNT, 0);
7152 BUG_ON(ret); /* logic error */
7153 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7154 0, owner, offset, ins, 1);
7155 btrfs_put_block_group(block_group);
7156 return ret;
7157 }
7158
7159 static struct extent_buffer *
7160 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7161 u64 bytenr, int level)
7162 {
7163 struct extent_buffer *buf;
7164
7165 buf = btrfs_find_create_tree_block(root, bytenr);
7166 if (!buf)
7167 return ERR_PTR(-ENOMEM);
7168 btrfs_set_header_generation(buf, trans->transid);
7169 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7170 btrfs_tree_lock(buf);
7171 clean_tree_block(trans, root, buf);
7172 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7173
7174 btrfs_set_lock_blocking(buf);
7175 btrfs_set_buffer_uptodate(buf);
7176
7177 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7178 buf->log_index = root->log_transid % 2;
7179 /*
7180 * we allow two log transactions at a time, use different
7181 * EXENT bit to differentiate dirty pages.
7182 */
7183 if (buf->log_index == 0)
7184 set_extent_dirty(&root->dirty_log_pages, buf->start,
7185 buf->start + buf->len - 1, GFP_NOFS);
7186 else
7187 set_extent_new(&root->dirty_log_pages, buf->start,
7188 buf->start + buf->len - 1, GFP_NOFS);
7189 } else {
7190 buf->log_index = -1;
7191 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7192 buf->start + buf->len - 1, GFP_NOFS);
7193 }
7194 trans->blocks_used++;
7195 /* this returns a buffer locked for blocking */
7196 return buf;
7197 }
7198
7199 static struct btrfs_block_rsv *
7200 use_block_rsv(struct btrfs_trans_handle *trans,
7201 struct btrfs_root *root, u32 blocksize)
7202 {
7203 struct btrfs_block_rsv *block_rsv;
7204 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7205 int ret;
7206 bool global_updated = false;
7207
7208 block_rsv = get_block_rsv(trans, root);
7209
7210 if (unlikely(block_rsv->size == 0))
7211 goto try_reserve;
7212 again:
7213 ret = block_rsv_use_bytes(block_rsv, blocksize);
7214 if (!ret)
7215 return block_rsv;
7216
7217 if (block_rsv->failfast)
7218 return ERR_PTR(ret);
7219
7220 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7221 global_updated = true;
7222 update_global_block_rsv(root->fs_info);
7223 goto again;
7224 }
7225
7226 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7227 static DEFINE_RATELIMIT_STATE(_rs,
7228 DEFAULT_RATELIMIT_INTERVAL * 10,
7229 /*DEFAULT_RATELIMIT_BURST*/ 1);
7230 if (__ratelimit(&_rs))
7231 WARN(1, KERN_DEBUG
7232 "BTRFS: block rsv returned %d\n", ret);
7233 }
7234 try_reserve:
7235 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7236 BTRFS_RESERVE_NO_FLUSH);
7237 if (!ret)
7238 return block_rsv;
7239 /*
7240 * If we couldn't reserve metadata bytes try and use some from
7241 * the global reserve if its space type is the same as the global
7242 * reservation.
7243 */
7244 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7245 block_rsv->space_info == global_rsv->space_info) {
7246 ret = block_rsv_use_bytes(global_rsv, blocksize);
7247 if (!ret)
7248 return global_rsv;
7249 }
7250 return ERR_PTR(ret);
7251 }
7252
7253 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7254 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7255 {
7256 block_rsv_add_bytes(block_rsv, blocksize, 0);
7257 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7258 }
7259
7260 /*
7261 * finds a free extent and does all the dirty work required for allocation
7262 * returns the key for the extent through ins, and a tree buffer for
7263 * the first block of the extent through buf.
7264 *
7265 * returns the tree buffer or NULL.
7266 */
7267 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7268 struct btrfs_root *root,
7269 u64 parent, u64 root_objectid,
7270 struct btrfs_disk_key *key, int level,
7271 u64 hint, u64 empty_size)
7272 {
7273 struct btrfs_key ins;
7274 struct btrfs_block_rsv *block_rsv;
7275 struct extent_buffer *buf;
7276 u64 flags = 0;
7277 int ret;
7278 u32 blocksize = root->nodesize;
7279 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7280 SKINNY_METADATA);
7281
7282 if (btrfs_test_is_dummy_root(root)) {
7283 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7284 level);
7285 if (!IS_ERR(buf))
7286 root->alloc_bytenr += blocksize;
7287 return buf;
7288 }
7289
7290 block_rsv = use_block_rsv(trans, root, blocksize);
7291 if (IS_ERR(block_rsv))
7292 return ERR_CAST(block_rsv);
7293
7294 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7295 empty_size, hint, &ins, 0, 0);
7296 if (ret) {
7297 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7298 return ERR_PTR(ret);
7299 }
7300
7301 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7302 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7303
7304 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7305 if (parent == 0)
7306 parent = ins.objectid;
7307 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7308 } else
7309 BUG_ON(parent > 0);
7310
7311 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7312 struct btrfs_delayed_extent_op *extent_op;
7313 extent_op = btrfs_alloc_delayed_extent_op();
7314 BUG_ON(!extent_op); /* -ENOMEM */
7315 if (key)
7316 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7317 else
7318 memset(&extent_op->key, 0, sizeof(extent_op->key));
7319 extent_op->flags_to_set = flags;
7320 if (skinny_metadata)
7321 extent_op->update_key = 0;
7322 else
7323 extent_op->update_key = 1;
7324 extent_op->update_flags = 1;
7325 extent_op->is_data = 0;
7326 extent_op->level = level;
7327
7328 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7329 ins.objectid,
7330 ins.offset, parent, root_objectid,
7331 level, BTRFS_ADD_DELAYED_EXTENT,
7332 extent_op, 0);
7333 BUG_ON(ret); /* -ENOMEM */
7334 }
7335 return buf;
7336 }
7337
7338 struct walk_control {
7339 u64 refs[BTRFS_MAX_LEVEL];
7340 u64 flags[BTRFS_MAX_LEVEL];
7341 struct btrfs_key update_progress;
7342 int stage;
7343 int level;
7344 int shared_level;
7345 int update_ref;
7346 int keep_locks;
7347 int reada_slot;
7348 int reada_count;
7349 int for_reloc;
7350 };
7351
7352 #define DROP_REFERENCE 1
7353 #define UPDATE_BACKREF 2
7354
7355 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7356 struct btrfs_root *root,
7357 struct walk_control *wc,
7358 struct btrfs_path *path)
7359 {
7360 u64 bytenr;
7361 u64 generation;
7362 u64 refs;
7363 u64 flags;
7364 u32 nritems;
7365 u32 blocksize;
7366 struct btrfs_key key;
7367 struct extent_buffer *eb;
7368 int ret;
7369 int slot;
7370 int nread = 0;
7371
7372 if (path->slots[wc->level] < wc->reada_slot) {
7373 wc->reada_count = wc->reada_count * 2 / 3;
7374 wc->reada_count = max(wc->reada_count, 2);
7375 } else {
7376 wc->reada_count = wc->reada_count * 3 / 2;
7377 wc->reada_count = min_t(int, wc->reada_count,
7378 BTRFS_NODEPTRS_PER_BLOCK(root));
7379 }
7380
7381 eb = path->nodes[wc->level];
7382 nritems = btrfs_header_nritems(eb);
7383 blocksize = root->nodesize;
7384
7385 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7386 if (nread >= wc->reada_count)
7387 break;
7388
7389 cond_resched();
7390 bytenr = btrfs_node_blockptr(eb, slot);
7391 generation = btrfs_node_ptr_generation(eb, slot);
7392
7393 if (slot == path->slots[wc->level])
7394 goto reada;
7395
7396 if (wc->stage == UPDATE_BACKREF &&
7397 generation <= root->root_key.offset)
7398 continue;
7399
7400 /* We don't lock the tree block, it's OK to be racy here */
7401 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7402 wc->level - 1, 1, &refs,
7403 &flags);
7404 /* We don't care about errors in readahead. */
7405 if (ret < 0)
7406 continue;
7407 BUG_ON(refs == 0);
7408
7409 if (wc->stage == DROP_REFERENCE) {
7410 if (refs == 1)
7411 goto reada;
7412
7413 if (wc->level == 1 &&
7414 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7415 continue;
7416 if (!wc->update_ref ||
7417 generation <= root->root_key.offset)
7418 continue;
7419 btrfs_node_key_to_cpu(eb, &key, slot);
7420 ret = btrfs_comp_cpu_keys(&key,
7421 &wc->update_progress);
7422 if (ret < 0)
7423 continue;
7424 } else {
7425 if (wc->level == 1 &&
7426 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7427 continue;
7428 }
7429 reada:
7430 readahead_tree_block(root, bytenr);
7431 nread++;
7432 }
7433 wc->reada_slot = slot;
7434 }
7435
7436 static int account_leaf_items(struct btrfs_trans_handle *trans,
7437 struct btrfs_root *root,
7438 struct extent_buffer *eb)
7439 {
7440 int nr = btrfs_header_nritems(eb);
7441 int i, extent_type, ret;
7442 struct btrfs_key key;
7443 struct btrfs_file_extent_item *fi;
7444 u64 bytenr, num_bytes;
7445
7446 for (i = 0; i < nr; i++) {
7447 btrfs_item_key_to_cpu(eb, &key, i);
7448
7449 if (key.type != BTRFS_EXTENT_DATA_KEY)
7450 continue;
7451
7452 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7453 /* filter out non qgroup-accountable extents */
7454 extent_type = btrfs_file_extent_type(eb, fi);
7455
7456 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7457 continue;
7458
7459 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7460 if (!bytenr)
7461 continue;
7462
7463 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7464
7465 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7466 root->objectid,
7467 bytenr, num_bytes,
7468 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7469 if (ret)
7470 return ret;
7471 }
7472 return 0;
7473 }
7474
7475 /*
7476 * Walk up the tree from the bottom, freeing leaves and any interior
7477 * nodes which have had all slots visited. If a node (leaf or
7478 * interior) is freed, the node above it will have it's slot
7479 * incremented. The root node will never be freed.
7480 *
7481 * At the end of this function, we should have a path which has all
7482 * slots incremented to the next position for a search. If we need to
7483 * read a new node it will be NULL and the node above it will have the
7484 * correct slot selected for a later read.
7485 *
7486 * If we increment the root nodes slot counter past the number of
7487 * elements, 1 is returned to signal completion of the search.
7488 */
7489 static int adjust_slots_upwards(struct btrfs_root *root,
7490 struct btrfs_path *path, int root_level)
7491 {
7492 int level = 0;
7493 int nr, slot;
7494 struct extent_buffer *eb;
7495
7496 if (root_level == 0)
7497 return 1;
7498
7499 while (level <= root_level) {
7500 eb = path->nodes[level];
7501 nr = btrfs_header_nritems(eb);
7502 path->slots[level]++;
7503 slot = path->slots[level];
7504 if (slot >= nr || level == 0) {
7505 /*
7506 * Don't free the root - we will detect this
7507 * condition after our loop and return a
7508 * positive value for caller to stop walking the tree.
7509 */
7510 if (level != root_level) {
7511 btrfs_tree_unlock_rw(eb, path->locks[level]);
7512 path->locks[level] = 0;
7513
7514 free_extent_buffer(eb);
7515 path->nodes[level] = NULL;
7516 path->slots[level] = 0;
7517 }
7518 } else {
7519 /*
7520 * We have a valid slot to walk back down
7521 * from. Stop here so caller can process these
7522 * new nodes.
7523 */
7524 break;
7525 }
7526
7527 level++;
7528 }
7529
7530 eb = path->nodes[root_level];
7531 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7532 return 1;
7533
7534 return 0;
7535 }
7536
7537 /*
7538 * root_eb is the subtree root and is locked before this function is called.
7539 */
7540 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7541 struct btrfs_root *root,
7542 struct extent_buffer *root_eb,
7543 u64 root_gen,
7544 int root_level)
7545 {
7546 int ret = 0;
7547 int level;
7548 struct extent_buffer *eb = root_eb;
7549 struct btrfs_path *path = NULL;
7550
7551 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7552 BUG_ON(root_eb == NULL);
7553
7554 if (!root->fs_info->quota_enabled)
7555 return 0;
7556
7557 if (!extent_buffer_uptodate(root_eb)) {
7558 ret = btrfs_read_buffer(root_eb, root_gen);
7559 if (ret)
7560 goto out;
7561 }
7562
7563 if (root_level == 0) {
7564 ret = account_leaf_items(trans, root, root_eb);
7565 goto out;
7566 }
7567
7568 path = btrfs_alloc_path();
7569 if (!path)
7570 return -ENOMEM;
7571
7572 /*
7573 * Walk down the tree. Missing extent blocks are filled in as
7574 * we go. Metadata is accounted every time we read a new
7575 * extent block.
7576 *
7577 * When we reach a leaf, we account for file extent items in it,
7578 * walk back up the tree (adjusting slot pointers as we go)
7579 * and restart the search process.
7580 */
7581 extent_buffer_get(root_eb); /* For path */
7582 path->nodes[root_level] = root_eb;
7583 path->slots[root_level] = 0;
7584 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7585 walk_down:
7586 level = root_level;
7587 while (level >= 0) {
7588 if (path->nodes[level] == NULL) {
7589 int parent_slot;
7590 u64 child_gen;
7591 u64 child_bytenr;
7592
7593 /* We need to get child blockptr/gen from
7594 * parent before we can read it. */
7595 eb = path->nodes[level + 1];
7596 parent_slot = path->slots[level + 1];
7597 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7598 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7599
7600 eb = read_tree_block(root, child_bytenr, child_gen);
7601 if (!eb || !extent_buffer_uptodate(eb)) {
7602 ret = -EIO;
7603 goto out;
7604 }
7605
7606 path->nodes[level] = eb;
7607 path->slots[level] = 0;
7608
7609 btrfs_tree_read_lock(eb);
7610 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7611 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7612
7613 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7614 root->objectid,
7615 child_bytenr,
7616 root->nodesize,
7617 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7618 0);
7619 if (ret)
7620 goto out;
7621
7622 }
7623
7624 if (level == 0) {
7625 ret = account_leaf_items(trans, root, path->nodes[level]);
7626 if (ret)
7627 goto out;
7628
7629 /* Nonzero return here means we completed our search */
7630 ret = adjust_slots_upwards(root, path, root_level);
7631 if (ret)
7632 break;
7633
7634 /* Restart search with new slots */
7635 goto walk_down;
7636 }
7637
7638 level--;
7639 }
7640
7641 ret = 0;
7642 out:
7643 btrfs_free_path(path);
7644
7645 return ret;
7646 }
7647
7648 /*
7649 * helper to process tree block while walking down the tree.
7650 *
7651 * when wc->stage == UPDATE_BACKREF, this function updates
7652 * back refs for pointers in the block.
7653 *
7654 * NOTE: return value 1 means we should stop walking down.
7655 */
7656 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7657 struct btrfs_root *root,
7658 struct btrfs_path *path,
7659 struct walk_control *wc, int lookup_info)
7660 {
7661 int level = wc->level;
7662 struct extent_buffer *eb = path->nodes[level];
7663 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7664 int ret;
7665
7666 if (wc->stage == UPDATE_BACKREF &&
7667 btrfs_header_owner(eb) != root->root_key.objectid)
7668 return 1;
7669
7670 /*
7671 * when reference count of tree block is 1, it won't increase
7672 * again. once full backref flag is set, we never clear it.
7673 */
7674 if (lookup_info &&
7675 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7676 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7677 BUG_ON(!path->locks[level]);
7678 ret = btrfs_lookup_extent_info(trans, root,
7679 eb->start, level, 1,
7680 &wc->refs[level],
7681 &wc->flags[level]);
7682 BUG_ON(ret == -ENOMEM);
7683 if (ret)
7684 return ret;
7685 BUG_ON(wc->refs[level] == 0);
7686 }
7687
7688 if (wc->stage == DROP_REFERENCE) {
7689 if (wc->refs[level] > 1)
7690 return 1;
7691
7692 if (path->locks[level] && !wc->keep_locks) {
7693 btrfs_tree_unlock_rw(eb, path->locks[level]);
7694 path->locks[level] = 0;
7695 }
7696 return 0;
7697 }
7698
7699 /* wc->stage == UPDATE_BACKREF */
7700 if (!(wc->flags[level] & flag)) {
7701 BUG_ON(!path->locks[level]);
7702 ret = btrfs_inc_ref(trans, root, eb, 1);
7703 BUG_ON(ret); /* -ENOMEM */
7704 ret = btrfs_dec_ref(trans, root, eb, 0);
7705 BUG_ON(ret); /* -ENOMEM */
7706 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7707 eb->len, flag,
7708 btrfs_header_level(eb), 0);
7709 BUG_ON(ret); /* -ENOMEM */
7710 wc->flags[level] |= flag;
7711 }
7712
7713 /*
7714 * the block is shared by multiple trees, so it's not good to
7715 * keep the tree lock
7716 */
7717 if (path->locks[level] && level > 0) {
7718 btrfs_tree_unlock_rw(eb, path->locks[level]);
7719 path->locks[level] = 0;
7720 }
7721 return 0;
7722 }
7723
7724 /*
7725 * helper to process tree block pointer.
7726 *
7727 * when wc->stage == DROP_REFERENCE, this function checks
7728 * reference count of the block pointed to. if the block
7729 * is shared and we need update back refs for the subtree
7730 * rooted at the block, this function changes wc->stage to
7731 * UPDATE_BACKREF. if the block is shared and there is no
7732 * need to update back, this function drops the reference
7733 * to the block.
7734 *
7735 * NOTE: return value 1 means we should stop walking down.
7736 */
7737 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7738 struct btrfs_root *root,
7739 struct btrfs_path *path,
7740 struct walk_control *wc, int *lookup_info)
7741 {
7742 u64 bytenr;
7743 u64 generation;
7744 u64 parent;
7745 u32 blocksize;
7746 struct btrfs_key key;
7747 struct extent_buffer *next;
7748 int level = wc->level;
7749 int reada = 0;
7750 int ret = 0;
7751 bool need_account = false;
7752
7753 generation = btrfs_node_ptr_generation(path->nodes[level],
7754 path->slots[level]);
7755 /*
7756 * if the lower level block was created before the snapshot
7757 * was created, we know there is no need to update back refs
7758 * for the subtree
7759 */
7760 if (wc->stage == UPDATE_BACKREF &&
7761 generation <= root->root_key.offset) {
7762 *lookup_info = 1;
7763 return 1;
7764 }
7765
7766 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7767 blocksize = root->nodesize;
7768
7769 next = btrfs_find_tree_block(root, bytenr);
7770 if (!next) {
7771 next = btrfs_find_create_tree_block(root, bytenr);
7772 if (!next)
7773 return -ENOMEM;
7774 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7775 level - 1);
7776 reada = 1;
7777 }
7778 btrfs_tree_lock(next);
7779 btrfs_set_lock_blocking(next);
7780
7781 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7782 &wc->refs[level - 1],
7783 &wc->flags[level - 1]);
7784 if (ret < 0) {
7785 btrfs_tree_unlock(next);
7786 return ret;
7787 }
7788
7789 if (unlikely(wc->refs[level - 1] == 0)) {
7790 btrfs_err(root->fs_info, "Missing references.");
7791 BUG();
7792 }
7793 *lookup_info = 0;
7794
7795 if (wc->stage == DROP_REFERENCE) {
7796 if (wc->refs[level - 1] > 1) {
7797 need_account = true;
7798 if (level == 1 &&
7799 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7800 goto skip;
7801
7802 if (!wc->update_ref ||
7803 generation <= root->root_key.offset)
7804 goto skip;
7805
7806 btrfs_node_key_to_cpu(path->nodes[level], &key,
7807 path->slots[level]);
7808 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7809 if (ret < 0)
7810 goto skip;
7811
7812 wc->stage = UPDATE_BACKREF;
7813 wc->shared_level = level - 1;
7814 }
7815 } else {
7816 if (level == 1 &&
7817 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7818 goto skip;
7819 }
7820
7821 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7822 btrfs_tree_unlock(next);
7823 free_extent_buffer(next);
7824 next = NULL;
7825 *lookup_info = 1;
7826 }
7827
7828 if (!next) {
7829 if (reada && level == 1)
7830 reada_walk_down(trans, root, wc, path);
7831 next = read_tree_block(root, bytenr, generation);
7832 if (!next || !extent_buffer_uptodate(next)) {
7833 free_extent_buffer(next);
7834 return -EIO;
7835 }
7836 btrfs_tree_lock(next);
7837 btrfs_set_lock_blocking(next);
7838 }
7839
7840 level--;
7841 BUG_ON(level != btrfs_header_level(next));
7842 path->nodes[level] = next;
7843 path->slots[level] = 0;
7844 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7845 wc->level = level;
7846 if (wc->level == 1)
7847 wc->reada_slot = 0;
7848 return 0;
7849 skip:
7850 wc->refs[level - 1] = 0;
7851 wc->flags[level - 1] = 0;
7852 if (wc->stage == DROP_REFERENCE) {
7853 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7854 parent = path->nodes[level]->start;
7855 } else {
7856 BUG_ON(root->root_key.objectid !=
7857 btrfs_header_owner(path->nodes[level]));
7858 parent = 0;
7859 }
7860
7861 if (need_account) {
7862 ret = account_shared_subtree(trans, root, next,
7863 generation, level - 1);
7864 if (ret) {
7865 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7866 "%d accounting shared subtree. Quota "
7867 "is out of sync, rescan required.\n",
7868 root->fs_info->sb->s_id, ret);
7869 }
7870 }
7871 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7872 root->root_key.objectid, level - 1, 0, 0);
7873 BUG_ON(ret); /* -ENOMEM */
7874 }
7875 btrfs_tree_unlock(next);
7876 free_extent_buffer(next);
7877 *lookup_info = 1;
7878 return 1;
7879 }
7880
7881 /*
7882 * helper to process tree block while walking up the tree.
7883 *
7884 * when wc->stage == DROP_REFERENCE, this function drops
7885 * reference count on the block.
7886 *
7887 * when wc->stage == UPDATE_BACKREF, this function changes
7888 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7889 * to UPDATE_BACKREF previously while processing the block.
7890 *
7891 * NOTE: return value 1 means we should stop walking up.
7892 */
7893 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7894 struct btrfs_root *root,
7895 struct btrfs_path *path,
7896 struct walk_control *wc)
7897 {
7898 int ret;
7899 int level = wc->level;
7900 struct extent_buffer *eb = path->nodes[level];
7901 u64 parent = 0;
7902
7903 if (wc->stage == UPDATE_BACKREF) {
7904 BUG_ON(wc->shared_level < level);
7905 if (level < wc->shared_level)
7906 goto out;
7907
7908 ret = find_next_key(path, level + 1, &wc->update_progress);
7909 if (ret > 0)
7910 wc->update_ref = 0;
7911
7912 wc->stage = DROP_REFERENCE;
7913 wc->shared_level = -1;
7914 path->slots[level] = 0;
7915
7916 /*
7917 * check reference count again if the block isn't locked.
7918 * we should start walking down the tree again if reference
7919 * count is one.
7920 */
7921 if (!path->locks[level]) {
7922 BUG_ON(level == 0);
7923 btrfs_tree_lock(eb);
7924 btrfs_set_lock_blocking(eb);
7925 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7926
7927 ret = btrfs_lookup_extent_info(trans, root,
7928 eb->start, level, 1,
7929 &wc->refs[level],
7930 &wc->flags[level]);
7931 if (ret < 0) {
7932 btrfs_tree_unlock_rw(eb, path->locks[level]);
7933 path->locks[level] = 0;
7934 return ret;
7935 }
7936 BUG_ON(wc->refs[level] == 0);
7937 if (wc->refs[level] == 1) {
7938 btrfs_tree_unlock_rw(eb, path->locks[level]);
7939 path->locks[level] = 0;
7940 return 1;
7941 }
7942 }
7943 }
7944
7945 /* wc->stage == DROP_REFERENCE */
7946 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7947
7948 if (wc->refs[level] == 1) {
7949 if (level == 0) {
7950 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7951 ret = btrfs_dec_ref(trans, root, eb, 1);
7952 else
7953 ret = btrfs_dec_ref(trans, root, eb, 0);
7954 BUG_ON(ret); /* -ENOMEM */
7955 ret = account_leaf_items(trans, root, eb);
7956 if (ret) {
7957 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7958 "%d accounting leaf items. Quota "
7959 "is out of sync, rescan required.\n",
7960 root->fs_info->sb->s_id, ret);
7961 }
7962 }
7963 /* make block locked assertion in clean_tree_block happy */
7964 if (!path->locks[level] &&
7965 btrfs_header_generation(eb) == trans->transid) {
7966 btrfs_tree_lock(eb);
7967 btrfs_set_lock_blocking(eb);
7968 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7969 }
7970 clean_tree_block(trans, root, eb);
7971 }
7972
7973 if (eb == root->node) {
7974 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7975 parent = eb->start;
7976 else
7977 BUG_ON(root->root_key.objectid !=
7978 btrfs_header_owner(eb));
7979 } else {
7980 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7981 parent = path->nodes[level + 1]->start;
7982 else
7983 BUG_ON(root->root_key.objectid !=
7984 btrfs_header_owner(path->nodes[level + 1]));
7985 }
7986
7987 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7988 out:
7989 wc->refs[level] = 0;
7990 wc->flags[level] = 0;
7991 return 0;
7992 }
7993
7994 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7995 struct btrfs_root *root,
7996 struct btrfs_path *path,
7997 struct walk_control *wc)
7998 {
7999 int level = wc->level;
8000 int lookup_info = 1;
8001 int ret;
8002
8003 while (level >= 0) {
8004 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8005 if (ret > 0)
8006 break;
8007
8008 if (level == 0)
8009 break;
8010
8011 if (path->slots[level] >=
8012 btrfs_header_nritems(path->nodes[level]))
8013 break;
8014
8015 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8016 if (ret > 0) {
8017 path->slots[level]++;
8018 continue;
8019 } else if (ret < 0)
8020 return ret;
8021 level = wc->level;
8022 }
8023 return 0;
8024 }
8025
8026 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8027 struct btrfs_root *root,
8028 struct btrfs_path *path,
8029 struct walk_control *wc, int max_level)
8030 {
8031 int level = wc->level;
8032 int ret;
8033
8034 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8035 while (level < max_level && path->nodes[level]) {
8036 wc->level = level;
8037 if (path->slots[level] + 1 <
8038 btrfs_header_nritems(path->nodes[level])) {
8039 path->slots[level]++;
8040 return 0;
8041 } else {
8042 ret = walk_up_proc(trans, root, path, wc);
8043 if (ret > 0)
8044 return 0;
8045
8046 if (path->locks[level]) {
8047 btrfs_tree_unlock_rw(path->nodes[level],
8048 path->locks[level]);
8049 path->locks[level] = 0;
8050 }
8051 free_extent_buffer(path->nodes[level]);
8052 path->nodes[level] = NULL;
8053 level++;
8054 }
8055 }
8056 return 1;
8057 }
8058
8059 /*
8060 * drop a subvolume tree.
8061 *
8062 * this function traverses the tree freeing any blocks that only
8063 * referenced by the tree.
8064 *
8065 * when a shared tree block is found. this function decreases its
8066 * reference count by one. if update_ref is true, this function
8067 * also make sure backrefs for the shared block and all lower level
8068 * blocks are properly updated.
8069 *
8070 * If called with for_reloc == 0, may exit early with -EAGAIN
8071 */
8072 int btrfs_drop_snapshot(struct btrfs_root *root,
8073 struct btrfs_block_rsv *block_rsv, int update_ref,
8074 int for_reloc)
8075 {
8076 struct btrfs_path *path;
8077 struct btrfs_trans_handle *trans;
8078 struct btrfs_root *tree_root = root->fs_info->tree_root;
8079 struct btrfs_root_item *root_item = &root->root_item;
8080 struct walk_control *wc;
8081 struct btrfs_key key;
8082 int err = 0;
8083 int ret;
8084 int level;
8085 bool root_dropped = false;
8086
8087 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8088
8089 path = btrfs_alloc_path();
8090 if (!path) {
8091 err = -ENOMEM;
8092 goto out;
8093 }
8094
8095 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8096 if (!wc) {
8097 btrfs_free_path(path);
8098 err = -ENOMEM;
8099 goto out;
8100 }
8101
8102 trans = btrfs_start_transaction(tree_root, 0);
8103 if (IS_ERR(trans)) {
8104 err = PTR_ERR(trans);
8105 goto out_free;
8106 }
8107
8108 if (block_rsv)
8109 trans->block_rsv = block_rsv;
8110
8111 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8112 level = btrfs_header_level(root->node);
8113 path->nodes[level] = btrfs_lock_root_node(root);
8114 btrfs_set_lock_blocking(path->nodes[level]);
8115 path->slots[level] = 0;
8116 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8117 memset(&wc->update_progress, 0,
8118 sizeof(wc->update_progress));
8119 } else {
8120 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8121 memcpy(&wc->update_progress, &key,
8122 sizeof(wc->update_progress));
8123
8124 level = root_item->drop_level;
8125 BUG_ON(level == 0);
8126 path->lowest_level = level;
8127 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8128 path->lowest_level = 0;
8129 if (ret < 0) {
8130 err = ret;
8131 goto out_end_trans;
8132 }
8133 WARN_ON(ret > 0);
8134
8135 /*
8136 * unlock our path, this is safe because only this
8137 * function is allowed to delete this snapshot
8138 */
8139 btrfs_unlock_up_safe(path, 0);
8140
8141 level = btrfs_header_level(root->node);
8142 while (1) {
8143 btrfs_tree_lock(path->nodes[level]);
8144 btrfs_set_lock_blocking(path->nodes[level]);
8145 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8146
8147 ret = btrfs_lookup_extent_info(trans, root,
8148 path->nodes[level]->start,
8149 level, 1, &wc->refs[level],
8150 &wc->flags[level]);
8151 if (ret < 0) {
8152 err = ret;
8153 goto out_end_trans;
8154 }
8155 BUG_ON(wc->refs[level] == 0);
8156
8157 if (level == root_item->drop_level)
8158 break;
8159
8160 btrfs_tree_unlock(path->nodes[level]);
8161 path->locks[level] = 0;
8162 WARN_ON(wc->refs[level] != 1);
8163 level--;
8164 }
8165 }
8166
8167 wc->level = level;
8168 wc->shared_level = -1;
8169 wc->stage = DROP_REFERENCE;
8170 wc->update_ref = update_ref;
8171 wc->keep_locks = 0;
8172 wc->for_reloc = for_reloc;
8173 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8174
8175 while (1) {
8176
8177 ret = walk_down_tree(trans, root, path, wc);
8178 if (ret < 0) {
8179 err = ret;
8180 break;
8181 }
8182
8183 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8184 if (ret < 0) {
8185 err = ret;
8186 break;
8187 }
8188
8189 if (ret > 0) {
8190 BUG_ON(wc->stage != DROP_REFERENCE);
8191 break;
8192 }
8193
8194 if (wc->stage == DROP_REFERENCE) {
8195 level = wc->level;
8196 btrfs_node_key(path->nodes[level],
8197 &root_item->drop_progress,
8198 path->slots[level]);
8199 root_item->drop_level = level;
8200 }
8201
8202 BUG_ON(wc->level == 0);
8203 if (btrfs_should_end_transaction(trans, tree_root) ||
8204 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8205 ret = btrfs_update_root(trans, tree_root,
8206 &root->root_key,
8207 root_item);
8208 if (ret) {
8209 btrfs_abort_transaction(trans, tree_root, ret);
8210 err = ret;
8211 goto out_end_trans;
8212 }
8213
8214 /*
8215 * Qgroup update accounting is run from
8216 * delayed ref handling. This usually works
8217 * out because delayed refs are normally the
8218 * only way qgroup updates are added. However,
8219 * we may have added updates during our tree
8220 * walk so run qgroups here to make sure we
8221 * don't lose any updates.
8222 */
8223 ret = btrfs_delayed_qgroup_accounting(trans,
8224 root->fs_info);
8225 if (ret)
8226 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8227 "running qgroup updates "
8228 "during snapshot delete. "
8229 "Quota is out of sync, "
8230 "rescan required.\n", ret);
8231
8232 btrfs_end_transaction_throttle(trans, tree_root);
8233 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8234 pr_debug("BTRFS: drop snapshot early exit\n");
8235 err = -EAGAIN;
8236 goto out_free;
8237 }
8238
8239 trans = btrfs_start_transaction(tree_root, 0);
8240 if (IS_ERR(trans)) {
8241 err = PTR_ERR(trans);
8242 goto out_free;
8243 }
8244 if (block_rsv)
8245 trans->block_rsv = block_rsv;
8246 }
8247 }
8248 btrfs_release_path(path);
8249 if (err)
8250 goto out_end_trans;
8251
8252 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8253 if (ret) {
8254 btrfs_abort_transaction(trans, tree_root, ret);
8255 goto out_end_trans;
8256 }
8257
8258 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8259 ret = btrfs_find_root(tree_root, &root->root_key, path,
8260 NULL, NULL);
8261 if (ret < 0) {
8262 btrfs_abort_transaction(trans, tree_root, ret);
8263 err = ret;
8264 goto out_end_trans;
8265 } else if (ret > 0) {
8266 /* if we fail to delete the orphan item this time
8267 * around, it'll get picked up the next time.
8268 *
8269 * The most common failure here is just -ENOENT.
8270 */
8271 btrfs_del_orphan_item(trans, tree_root,
8272 root->root_key.objectid);
8273 }
8274 }
8275
8276 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8277 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8278 } else {
8279 free_extent_buffer(root->node);
8280 free_extent_buffer(root->commit_root);
8281 btrfs_put_fs_root(root);
8282 }
8283 root_dropped = true;
8284 out_end_trans:
8285 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8286 if (ret)
8287 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8288 "running qgroup updates "
8289 "during snapshot delete. "
8290 "Quota is out of sync, "
8291 "rescan required.\n", ret);
8292
8293 btrfs_end_transaction_throttle(trans, tree_root);
8294 out_free:
8295 kfree(wc);
8296 btrfs_free_path(path);
8297 out:
8298 /*
8299 * So if we need to stop dropping the snapshot for whatever reason we
8300 * need to make sure to add it back to the dead root list so that we
8301 * keep trying to do the work later. This also cleans up roots if we
8302 * don't have it in the radix (like when we recover after a power fail
8303 * or unmount) so we don't leak memory.
8304 */
8305 if (!for_reloc && root_dropped == false)
8306 btrfs_add_dead_root(root);
8307 if (err && err != -EAGAIN)
8308 btrfs_std_error(root->fs_info, err);
8309 return err;
8310 }
8311
8312 /*
8313 * drop subtree rooted at tree block 'node'.
8314 *
8315 * NOTE: this function will unlock and release tree block 'node'
8316 * only used by relocation code
8317 */
8318 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8319 struct btrfs_root *root,
8320 struct extent_buffer *node,
8321 struct extent_buffer *parent)
8322 {
8323 struct btrfs_path *path;
8324 struct walk_control *wc;
8325 int level;
8326 int parent_level;
8327 int ret = 0;
8328 int wret;
8329
8330 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8331
8332 path = btrfs_alloc_path();
8333 if (!path)
8334 return -ENOMEM;
8335
8336 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8337 if (!wc) {
8338 btrfs_free_path(path);
8339 return -ENOMEM;
8340 }
8341
8342 btrfs_assert_tree_locked(parent);
8343 parent_level = btrfs_header_level(parent);
8344 extent_buffer_get(parent);
8345 path->nodes[parent_level] = parent;
8346 path->slots[parent_level] = btrfs_header_nritems(parent);
8347
8348 btrfs_assert_tree_locked(node);
8349 level = btrfs_header_level(node);
8350 path->nodes[level] = node;
8351 path->slots[level] = 0;
8352 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8353
8354 wc->refs[parent_level] = 1;
8355 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8356 wc->level = level;
8357 wc->shared_level = -1;
8358 wc->stage = DROP_REFERENCE;
8359 wc->update_ref = 0;
8360 wc->keep_locks = 1;
8361 wc->for_reloc = 1;
8362 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8363
8364 while (1) {
8365 wret = walk_down_tree(trans, root, path, wc);
8366 if (wret < 0) {
8367 ret = wret;
8368 break;
8369 }
8370
8371 wret = walk_up_tree(trans, root, path, wc, parent_level);
8372 if (wret < 0)
8373 ret = wret;
8374 if (wret != 0)
8375 break;
8376 }
8377
8378 kfree(wc);
8379 btrfs_free_path(path);
8380 return ret;
8381 }
8382
8383 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8384 {
8385 u64 num_devices;
8386 u64 stripped;
8387
8388 /*
8389 * if restripe for this chunk_type is on pick target profile and
8390 * return, otherwise do the usual balance
8391 */
8392 stripped = get_restripe_target(root->fs_info, flags);
8393 if (stripped)
8394 return extended_to_chunk(stripped);
8395
8396 num_devices = root->fs_info->fs_devices->rw_devices;
8397
8398 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8399 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8400 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8401
8402 if (num_devices == 1) {
8403 stripped |= BTRFS_BLOCK_GROUP_DUP;
8404 stripped = flags & ~stripped;
8405
8406 /* turn raid0 into single device chunks */
8407 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8408 return stripped;
8409
8410 /* turn mirroring into duplication */
8411 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8412 BTRFS_BLOCK_GROUP_RAID10))
8413 return stripped | BTRFS_BLOCK_GROUP_DUP;
8414 } else {
8415 /* they already had raid on here, just return */
8416 if (flags & stripped)
8417 return flags;
8418
8419 stripped |= BTRFS_BLOCK_GROUP_DUP;
8420 stripped = flags & ~stripped;
8421
8422 /* switch duplicated blocks with raid1 */
8423 if (flags & BTRFS_BLOCK_GROUP_DUP)
8424 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8425
8426 /* this is drive concat, leave it alone */
8427 }
8428
8429 return flags;
8430 }
8431
8432 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8433 {
8434 struct btrfs_space_info *sinfo = cache->space_info;
8435 u64 num_bytes;
8436 u64 min_allocable_bytes;
8437 int ret = -ENOSPC;
8438
8439
8440 /*
8441 * We need some metadata space and system metadata space for
8442 * allocating chunks in some corner cases until we force to set
8443 * it to be readonly.
8444 */
8445 if ((sinfo->flags &
8446 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8447 !force)
8448 min_allocable_bytes = 1 * 1024 * 1024;
8449 else
8450 min_allocable_bytes = 0;
8451
8452 spin_lock(&sinfo->lock);
8453 spin_lock(&cache->lock);
8454
8455 if (cache->ro) {
8456 ret = 0;
8457 goto out;
8458 }
8459
8460 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8461 cache->bytes_super - btrfs_block_group_used(&cache->item);
8462
8463 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8464 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8465 min_allocable_bytes <= sinfo->total_bytes) {
8466 sinfo->bytes_readonly += num_bytes;
8467 cache->ro = 1;
8468 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8469 ret = 0;
8470 }
8471 out:
8472 spin_unlock(&cache->lock);
8473 spin_unlock(&sinfo->lock);
8474 return ret;
8475 }
8476
8477 int btrfs_set_block_group_ro(struct btrfs_root *root,
8478 struct btrfs_block_group_cache *cache)
8479
8480 {
8481 struct btrfs_trans_handle *trans;
8482 u64 alloc_flags;
8483 int ret;
8484
8485 BUG_ON(cache->ro);
8486
8487 trans = btrfs_join_transaction(root);
8488 if (IS_ERR(trans))
8489 return PTR_ERR(trans);
8490
8491 ret = set_block_group_ro(cache, 0);
8492 if (!ret)
8493 goto out;
8494 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8495 ret = do_chunk_alloc(trans, root, alloc_flags,
8496 CHUNK_ALLOC_FORCE);
8497 if (ret < 0)
8498 goto out;
8499 ret = set_block_group_ro(cache, 0);
8500 out:
8501 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8502 alloc_flags = update_block_group_flags(root, cache->flags);
8503 check_system_chunk(trans, root, alloc_flags);
8504 }
8505
8506 btrfs_end_transaction(trans, root);
8507 return ret;
8508 }
8509
8510 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8511 struct btrfs_root *root, u64 type)
8512 {
8513 u64 alloc_flags = get_alloc_profile(root, type);
8514 return do_chunk_alloc(trans, root, alloc_flags,
8515 CHUNK_ALLOC_FORCE);
8516 }
8517
8518 /*
8519 * helper to account the unused space of all the readonly block group in the
8520 * space_info. takes mirrors into account.
8521 */
8522 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8523 {
8524 struct btrfs_block_group_cache *block_group;
8525 u64 free_bytes = 0;
8526 int factor;
8527
8528 /* It's df, we don't care if it's racey */
8529 if (list_empty(&sinfo->ro_bgs))
8530 return 0;
8531
8532 spin_lock(&sinfo->lock);
8533 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8534 spin_lock(&block_group->lock);
8535
8536 if (!block_group->ro) {
8537 spin_unlock(&block_group->lock);
8538 continue;
8539 }
8540
8541 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8542 BTRFS_BLOCK_GROUP_RAID10 |
8543 BTRFS_BLOCK_GROUP_DUP))
8544 factor = 2;
8545 else
8546 factor = 1;
8547
8548 free_bytes += (block_group->key.offset -
8549 btrfs_block_group_used(&block_group->item)) *
8550 factor;
8551
8552 spin_unlock(&block_group->lock);
8553 }
8554 spin_unlock(&sinfo->lock);
8555
8556 return free_bytes;
8557 }
8558
8559 void btrfs_set_block_group_rw(struct btrfs_root *root,
8560 struct btrfs_block_group_cache *cache)
8561 {
8562 struct btrfs_space_info *sinfo = cache->space_info;
8563 u64 num_bytes;
8564
8565 BUG_ON(!cache->ro);
8566
8567 spin_lock(&sinfo->lock);
8568 spin_lock(&cache->lock);
8569 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8570 cache->bytes_super - btrfs_block_group_used(&cache->item);
8571 sinfo->bytes_readonly -= num_bytes;
8572 cache->ro = 0;
8573 list_del_init(&cache->ro_list);
8574 spin_unlock(&cache->lock);
8575 spin_unlock(&sinfo->lock);
8576 }
8577
8578 /*
8579 * checks to see if its even possible to relocate this block group.
8580 *
8581 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8582 * ok to go ahead and try.
8583 */
8584 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8585 {
8586 struct btrfs_block_group_cache *block_group;
8587 struct btrfs_space_info *space_info;
8588 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8589 struct btrfs_device *device;
8590 struct btrfs_trans_handle *trans;
8591 u64 min_free;
8592 u64 dev_min = 1;
8593 u64 dev_nr = 0;
8594 u64 target;
8595 int index;
8596 int full = 0;
8597 int ret = 0;
8598
8599 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8600
8601 /* odd, couldn't find the block group, leave it alone */
8602 if (!block_group)
8603 return -1;
8604
8605 min_free = btrfs_block_group_used(&block_group->item);
8606
8607 /* no bytes used, we're good */
8608 if (!min_free)
8609 goto out;
8610
8611 space_info = block_group->space_info;
8612 spin_lock(&space_info->lock);
8613
8614 full = space_info->full;
8615
8616 /*
8617 * if this is the last block group we have in this space, we can't
8618 * relocate it unless we're able to allocate a new chunk below.
8619 *
8620 * Otherwise, we need to make sure we have room in the space to handle
8621 * all of the extents from this block group. If we can, we're good
8622 */
8623 if ((space_info->total_bytes != block_group->key.offset) &&
8624 (space_info->bytes_used + space_info->bytes_reserved +
8625 space_info->bytes_pinned + space_info->bytes_readonly +
8626 min_free < space_info->total_bytes)) {
8627 spin_unlock(&space_info->lock);
8628 goto out;
8629 }
8630 spin_unlock(&space_info->lock);
8631
8632 /*
8633 * ok we don't have enough space, but maybe we have free space on our
8634 * devices to allocate new chunks for relocation, so loop through our
8635 * alloc devices and guess if we have enough space. if this block
8636 * group is going to be restriped, run checks against the target
8637 * profile instead of the current one.
8638 */
8639 ret = -1;
8640
8641 /*
8642 * index:
8643 * 0: raid10
8644 * 1: raid1
8645 * 2: dup
8646 * 3: raid0
8647 * 4: single
8648 */
8649 target = get_restripe_target(root->fs_info, block_group->flags);
8650 if (target) {
8651 index = __get_raid_index(extended_to_chunk(target));
8652 } else {
8653 /*
8654 * this is just a balance, so if we were marked as full
8655 * we know there is no space for a new chunk
8656 */
8657 if (full)
8658 goto out;
8659
8660 index = get_block_group_index(block_group);
8661 }
8662
8663 if (index == BTRFS_RAID_RAID10) {
8664 dev_min = 4;
8665 /* Divide by 2 */
8666 min_free >>= 1;
8667 } else if (index == BTRFS_RAID_RAID1) {
8668 dev_min = 2;
8669 } else if (index == BTRFS_RAID_DUP) {
8670 /* Multiply by 2 */
8671 min_free <<= 1;
8672 } else if (index == BTRFS_RAID_RAID0) {
8673 dev_min = fs_devices->rw_devices;
8674 do_div(min_free, dev_min);
8675 }
8676
8677 /* We need to do this so that we can look at pending chunks */
8678 trans = btrfs_join_transaction(root);
8679 if (IS_ERR(trans)) {
8680 ret = PTR_ERR(trans);
8681 goto out;
8682 }
8683
8684 mutex_lock(&root->fs_info->chunk_mutex);
8685 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8686 u64 dev_offset;
8687
8688 /*
8689 * check to make sure we can actually find a chunk with enough
8690 * space to fit our block group in.
8691 */
8692 if (device->total_bytes > device->bytes_used + min_free &&
8693 !device->is_tgtdev_for_dev_replace) {
8694 ret = find_free_dev_extent(trans, device, min_free,
8695 &dev_offset, NULL);
8696 if (!ret)
8697 dev_nr++;
8698
8699 if (dev_nr >= dev_min)
8700 break;
8701
8702 ret = -1;
8703 }
8704 }
8705 mutex_unlock(&root->fs_info->chunk_mutex);
8706 btrfs_end_transaction(trans, root);
8707 out:
8708 btrfs_put_block_group(block_group);
8709 return ret;
8710 }
8711
8712 static int find_first_block_group(struct btrfs_root *root,
8713 struct btrfs_path *path, struct btrfs_key *key)
8714 {
8715 int ret = 0;
8716 struct btrfs_key found_key;
8717 struct extent_buffer *leaf;
8718 int slot;
8719
8720 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8721 if (ret < 0)
8722 goto out;
8723
8724 while (1) {
8725 slot = path->slots[0];
8726 leaf = path->nodes[0];
8727 if (slot >= btrfs_header_nritems(leaf)) {
8728 ret = btrfs_next_leaf(root, path);
8729 if (ret == 0)
8730 continue;
8731 if (ret < 0)
8732 goto out;
8733 break;
8734 }
8735 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8736
8737 if (found_key.objectid >= key->objectid &&
8738 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8739 ret = 0;
8740 goto out;
8741 }
8742 path->slots[0]++;
8743 }
8744 out:
8745 return ret;
8746 }
8747
8748 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8749 {
8750 struct btrfs_block_group_cache *block_group;
8751 u64 last = 0;
8752
8753 while (1) {
8754 struct inode *inode;
8755
8756 block_group = btrfs_lookup_first_block_group(info, last);
8757 while (block_group) {
8758 spin_lock(&block_group->lock);
8759 if (block_group->iref)
8760 break;
8761 spin_unlock(&block_group->lock);
8762 block_group = next_block_group(info->tree_root,
8763 block_group);
8764 }
8765 if (!block_group) {
8766 if (last == 0)
8767 break;
8768 last = 0;
8769 continue;
8770 }
8771
8772 inode = block_group->inode;
8773 block_group->iref = 0;
8774 block_group->inode = NULL;
8775 spin_unlock(&block_group->lock);
8776 iput(inode);
8777 last = block_group->key.objectid + block_group->key.offset;
8778 btrfs_put_block_group(block_group);
8779 }
8780 }
8781
8782 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8783 {
8784 struct btrfs_block_group_cache *block_group;
8785 struct btrfs_space_info *space_info;
8786 struct btrfs_caching_control *caching_ctl;
8787 struct rb_node *n;
8788
8789 down_write(&info->commit_root_sem);
8790 while (!list_empty(&info->caching_block_groups)) {
8791 caching_ctl = list_entry(info->caching_block_groups.next,
8792 struct btrfs_caching_control, list);
8793 list_del(&caching_ctl->list);
8794 put_caching_control(caching_ctl);
8795 }
8796 up_write(&info->commit_root_sem);
8797
8798 spin_lock(&info->unused_bgs_lock);
8799 while (!list_empty(&info->unused_bgs)) {
8800 block_group = list_first_entry(&info->unused_bgs,
8801 struct btrfs_block_group_cache,
8802 bg_list);
8803 list_del_init(&block_group->bg_list);
8804 btrfs_put_block_group(block_group);
8805 }
8806 spin_unlock(&info->unused_bgs_lock);
8807
8808 spin_lock(&info->block_group_cache_lock);
8809 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8810 block_group = rb_entry(n, struct btrfs_block_group_cache,
8811 cache_node);
8812 rb_erase(&block_group->cache_node,
8813 &info->block_group_cache_tree);
8814 RB_CLEAR_NODE(&block_group->cache_node);
8815 spin_unlock(&info->block_group_cache_lock);
8816
8817 down_write(&block_group->space_info->groups_sem);
8818 list_del(&block_group->list);
8819 up_write(&block_group->space_info->groups_sem);
8820
8821 if (block_group->cached == BTRFS_CACHE_STARTED)
8822 wait_block_group_cache_done(block_group);
8823
8824 /*
8825 * We haven't cached this block group, which means we could
8826 * possibly have excluded extents on this block group.
8827 */
8828 if (block_group->cached == BTRFS_CACHE_NO ||
8829 block_group->cached == BTRFS_CACHE_ERROR)
8830 free_excluded_extents(info->extent_root, block_group);
8831
8832 btrfs_remove_free_space_cache(block_group);
8833 btrfs_put_block_group(block_group);
8834
8835 spin_lock(&info->block_group_cache_lock);
8836 }
8837 spin_unlock(&info->block_group_cache_lock);
8838
8839 /* now that all the block groups are freed, go through and
8840 * free all the space_info structs. This is only called during
8841 * the final stages of unmount, and so we know nobody is
8842 * using them. We call synchronize_rcu() once before we start,
8843 * just to be on the safe side.
8844 */
8845 synchronize_rcu();
8846
8847 release_global_block_rsv(info);
8848
8849 while (!list_empty(&info->space_info)) {
8850 int i;
8851
8852 space_info = list_entry(info->space_info.next,
8853 struct btrfs_space_info,
8854 list);
8855 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8856 if (WARN_ON(space_info->bytes_pinned > 0 ||
8857 space_info->bytes_reserved > 0 ||
8858 space_info->bytes_may_use > 0)) {
8859 dump_space_info(space_info, 0, 0);
8860 }
8861 }
8862 list_del(&space_info->list);
8863 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8864 struct kobject *kobj;
8865 kobj = space_info->block_group_kobjs[i];
8866 space_info->block_group_kobjs[i] = NULL;
8867 if (kobj) {
8868 kobject_del(kobj);
8869 kobject_put(kobj);
8870 }
8871 }
8872 kobject_del(&space_info->kobj);
8873 kobject_put(&space_info->kobj);
8874 }
8875 return 0;
8876 }
8877
8878 static void __link_block_group(struct btrfs_space_info *space_info,
8879 struct btrfs_block_group_cache *cache)
8880 {
8881 int index = get_block_group_index(cache);
8882 bool first = false;
8883
8884 down_write(&space_info->groups_sem);
8885 if (list_empty(&space_info->block_groups[index]))
8886 first = true;
8887 list_add_tail(&cache->list, &space_info->block_groups[index]);
8888 up_write(&space_info->groups_sem);
8889
8890 if (first) {
8891 struct raid_kobject *rkobj;
8892 int ret;
8893
8894 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8895 if (!rkobj)
8896 goto out_err;
8897 rkobj->raid_type = index;
8898 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8899 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8900 "%s", get_raid_name(index));
8901 if (ret) {
8902 kobject_put(&rkobj->kobj);
8903 goto out_err;
8904 }
8905 space_info->block_group_kobjs[index] = &rkobj->kobj;
8906 }
8907
8908 return;
8909 out_err:
8910 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8911 }
8912
8913 static struct btrfs_block_group_cache *
8914 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8915 {
8916 struct btrfs_block_group_cache *cache;
8917
8918 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8919 if (!cache)
8920 return NULL;
8921
8922 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8923 GFP_NOFS);
8924 if (!cache->free_space_ctl) {
8925 kfree(cache);
8926 return NULL;
8927 }
8928
8929 cache->key.objectid = start;
8930 cache->key.offset = size;
8931 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8932
8933 cache->sectorsize = root->sectorsize;
8934 cache->fs_info = root->fs_info;
8935 cache->full_stripe_len = btrfs_full_stripe_len(root,
8936 &root->fs_info->mapping_tree,
8937 start);
8938 atomic_set(&cache->count, 1);
8939 spin_lock_init(&cache->lock);
8940 init_rwsem(&cache->data_rwsem);
8941 INIT_LIST_HEAD(&cache->list);
8942 INIT_LIST_HEAD(&cache->cluster_list);
8943 INIT_LIST_HEAD(&cache->bg_list);
8944 INIT_LIST_HEAD(&cache->ro_list);
8945 INIT_LIST_HEAD(&cache->dirty_list);
8946 btrfs_init_free_space_ctl(cache);
8947 atomic_set(&cache->trimming, 0);
8948
8949 return cache;
8950 }
8951
8952 int btrfs_read_block_groups(struct btrfs_root *root)
8953 {
8954 struct btrfs_path *path;
8955 int ret;
8956 struct btrfs_block_group_cache *cache;
8957 struct btrfs_fs_info *info = root->fs_info;
8958 struct btrfs_space_info *space_info;
8959 struct btrfs_key key;
8960 struct btrfs_key found_key;
8961 struct extent_buffer *leaf;
8962 int need_clear = 0;
8963 u64 cache_gen;
8964
8965 root = info->extent_root;
8966 key.objectid = 0;
8967 key.offset = 0;
8968 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8969 path = btrfs_alloc_path();
8970 if (!path)
8971 return -ENOMEM;
8972 path->reada = 1;
8973
8974 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8975 if (btrfs_test_opt(root, SPACE_CACHE) &&
8976 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8977 need_clear = 1;
8978 if (btrfs_test_opt(root, CLEAR_CACHE))
8979 need_clear = 1;
8980
8981 while (1) {
8982 ret = find_first_block_group(root, path, &key);
8983 if (ret > 0)
8984 break;
8985 if (ret != 0)
8986 goto error;
8987
8988 leaf = path->nodes[0];
8989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8990
8991 cache = btrfs_create_block_group_cache(root, found_key.objectid,
8992 found_key.offset);
8993 if (!cache) {
8994 ret = -ENOMEM;
8995 goto error;
8996 }
8997
8998 if (need_clear) {
8999 /*
9000 * When we mount with old space cache, we need to
9001 * set BTRFS_DC_CLEAR and set dirty flag.
9002 *
9003 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9004 * truncate the old free space cache inode and
9005 * setup a new one.
9006 * b) Setting 'dirty flag' makes sure that we flush
9007 * the new space cache info onto disk.
9008 */
9009 if (btrfs_test_opt(root, SPACE_CACHE))
9010 cache->disk_cache_state = BTRFS_DC_CLEAR;
9011 }
9012
9013 read_extent_buffer(leaf, &cache->item,
9014 btrfs_item_ptr_offset(leaf, path->slots[0]),
9015 sizeof(cache->item));
9016 cache->flags = btrfs_block_group_flags(&cache->item);
9017
9018 key.objectid = found_key.objectid + found_key.offset;
9019 btrfs_release_path(path);
9020
9021 /*
9022 * We need to exclude the super stripes now so that the space
9023 * info has super bytes accounted for, otherwise we'll think
9024 * we have more space than we actually do.
9025 */
9026 ret = exclude_super_stripes(root, cache);
9027 if (ret) {
9028 /*
9029 * We may have excluded something, so call this just in
9030 * case.
9031 */
9032 free_excluded_extents(root, cache);
9033 btrfs_put_block_group(cache);
9034 goto error;
9035 }
9036
9037 /*
9038 * check for two cases, either we are full, and therefore
9039 * don't need to bother with the caching work since we won't
9040 * find any space, or we are empty, and we can just add all
9041 * the space in and be done with it. This saves us _alot_ of
9042 * time, particularly in the full case.
9043 */
9044 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9045 cache->last_byte_to_unpin = (u64)-1;
9046 cache->cached = BTRFS_CACHE_FINISHED;
9047 free_excluded_extents(root, cache);
9048 } else if (btrfs_block_group_used(&cache->item) == 0) {
9049 cache->last_byte_to_unpin = (u64)-1;
9050 cache->cached = BTRFS_CACHE_FINISHED;
9051 add_new_free_space(cache, root->fs_info,
9052 found_key.objectid,
9053 found_key.objectid +
9054 found_key.offset);
9055 free_excluded_extents(root, cache);
9056 }
9057
9058 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9059 if (ret) {
9060 btrfs_remove_free_space_cache(cache);
9061 btrfs_put_block_group(cache);
9062 goto error;
9063 }
9064
9065 ret = update_space_info(info, cache->flags, found_key.offset,
9066 btrfs_block_group_used(&cache->item),
9067 &space_info);
9068 if (ret) {
9069 btrfs_remove_free_space_cache(cache);
9070 spin_lock(&info->block_group_cache_lock);
9071 rb_erase(&cache->cache_node,
9072 &info->block_group_cache_tree);
9073 RB_CLEAR_NODE(&cache->cache_node);
9074 spin_unlock(&info->block_group_cache_lock);
9075 btrfs_put_block_group(cache);
9076 goto error;
9077 }
9078
9079 cache->space_info = space_info;
9080 spin_lock(&cache->space_info->lock);
9081 cache->space_info->bytes_readonly += cache->bytes_super;
9082 spin_unlock(&cache->space_info->lock);
9083
9084 __link_block_group(space_info, cache);
9085
9086 set_avail_alloc_bits(root->fs_info, cache->flags);
9087 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9088 set_block_group_ro(cache, 1);
9089 } else if (btrfs_block_group_used(&cache->item) == 0) {
9090 spin_lock(&info->unused_bgs_lock);
9091 /* Should always be true but just in case. */
9092 if (list_empty(&cache->bg_list)) {
9093 btrfs_get_block_group(cache);
9094 list_add_tail(&cache->bg_list,
9095 &info->unused_bgs);
9096 }
9097 spin_unlock(&info->unused_bgs_lock);
9098 }
9099 }
9100
9101 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9102 if (!(get_alloc_profile(root, space_info->flags) &
9103 (BTRFS_BLOCK_GROUP_RAID10 |
9104 BTRFS_BLOCK_GROUP_RAID1 |
9105 BTRFS_BLOCK_GROUP_RAID5 |
9106 BTRFS_BLOCK_GROUP_RAID6 |
9107 BTRFS_BLOCK_GROUP_DUP)))
9108 continue;
9109 /*
9110 * avoid allocating from un-mirrored block group if there are
9111 * mirrored block groups.
9112 */
9113 list_for_each_entry(cache,
9114 &space_info->block_groups[BTRFS_RAID_RAID0],
9115 list)
9116 set_block_group_ro(cache, 1);
9117 list_for_each_entry(cache,
9118 &space_info->block_groups[BTRFS_RAID_SINGLE],
9119 list)
9120 set_block_group_ro(cache, 1);
9121 }
9122
9123 init_global_block_rsv(info);
9124 ret = 0;
9125 error:
9126 btrfs_free_path(path);
9127 return ret;
9128 }
9129
9130 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9131 struct btrfs_root *root)
9132 {
9133 struct btrfs_block_group_cache *block_group, *tmp;
9134 struct btrfs_root *extent_root = root->fs_info->extent_root;
9135 struct btrfs_block_group_item item;
9136 struct btrfs_key key;
9137 int ret = 0;
9138
9139 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9140 if (ret)
9141 goto next;
9142
9143 spin_lock(&block_group->lock);
9144 memcpy(&item, &block_group->item, sizeof(item));
9145 memcpy(&key, &block_group->key, sizeof(key));
9146 spin_unlock(&block_group->lock);
9147
9148 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9149 sizeof(item));
9150 if (ret)
9151 btrfs_abort_transaction(trans, extent_root, ret);
9152 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9153 key.objectid, key.offset);
9154 if (ret)
9155 btrfs_abort_transaction(trans, extent_root, ret);
9156 next:
9157 list_del_init(&block_group->bg_list);
9158 }
9159 }
9160
9161 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9162 struct btrfs_root *root, u64 bytes_used,
9163 u64 type, u64 chunk_objectid, u64 chunk_offset,
9164 u64 size)
9165 {
9166 int ret;
9167 struct btrfs_root *extent_root;
9168 struct btrfs_block_group_cache *cache;
9169
9170 extent_root = root->fs_info->extent_root;
9171
9172 btrfs_set_log_full_commit(root->fs_info, trans);
9173
9174 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9175 if (!cache)
9176 return -ENOMEM;
9177
9178 btrfs_set_block_group_used(&cache->item, bytes_used);
9179 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9180 btrfs_set_block_group_flags(&cache->item, type);
9181
9182 cache->flags = type;
9183 cache->last_byte_to_unpin = (u64)-1;
9184 cache->cached = BTRFS_CACHE_FINISHED;
9185 ret = exclude_super_stripes(root, cache);
9186 if (ret) {
9187 /*
9188 * We may have excluded something, so call this just in
9189 * case.
9190 */
9191 free_excluded_extents(root, cache);
9192 btrfs_put_block_group(cache);
9193 return ret;
9194 }
9195
9196 add_new_free_space(cache, root->fs_info, chunk_offset,
9197 chunk_offset + size);
9198
9199 free_excluded_extents(root, cache);
9200
9201 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9202 if (ret) {
9203 btrfs_remove_free_space_cache(cache);
9204 btrfs_put_block_group(cache);
9205 return ret;
9206 }
9207
9208 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9209 &cache->space_info);
9210 if (ret) {
9211 btrfs_remove_free_space_cache(cache);
9212 spin_lock(&root->fs_info->block_group_cache_lock);
9213 rb_erase(&cache->cache_node,
9214 &root->fs_info->block_group_cache_tree);
9215 RB_CLEAR_NODE(&cache->cache_node);
9216 spin_unlock(&root->fs_info->block_group_cache_lock);
9217 btrfs_put_block_group(cache);
9218 return ret;
9219 }
9220 update_global_block_rsv(root->fs_info);
9221
9222 spin_lock(&cache->space_info->lock);
9223 cache->space_info->bytes_readonly += cache->bytes_super;
9224 spin_unlock(&cache->space_info->lock);
9225
9226 __link_block_group(cache->space_info, cache);
9227
9228 list_add_tail(&cache->bg_list, &trans->new_bgs);
9229
9230 set_avail_alloc_bits(extent_root->fs_info, type);
9231
9232 return 0;
9233 }
9234
9235 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9236 {
9237 u64 extra_flags = chunk_to_extended(flags) &
9238 BTRFS_EXTENDED_PROFILE_MASK;
9239
9240 write_seqlock(&fs_info->profiles_lock);
9241 if (flags & BTRFS_BLOCK_GROUP_DATA)
9242 fs_info->avail_data_alloc_bits &= ~extra_flags;
9243 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9244 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9245 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9246 fs_info->avail_system_alloc_bits &= ~extra_flags;
9247 write_sequnlock(&fs_info->profiles_lock);
9248 }
9249
9250 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9251 struct btrfs_root *root, u64 group_start,
9252 struct extent_map *em)
9253 {
9254 struct btrfs_path *path;
9255 struct btrfs_block_group_cache *block_group;
9256 struct btrfs_free_cluster *cluster;
9257 struct btrfs_root *tree_root = root->fs_info->tree_root;
9258 struct btrfs_key key;
9259 struct inode *inode;
9260 struct kobject *kobj = NULL;
9261 int ret;
9262 int index;
9263 int factor;
9264 struct btrfs_caching_control *caching_ctl = NULL;
9265 bool remove_em;
9266
9267 root = root->fs_info->extent_root;
9268
9269 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9270 BUG_ON(!block_group);
9271 BUG_ON(!block_group->ro);
9272
9273 /*
9274 * Free the reserved super bytes from this block group before
9275 * remove it.
9276 */
9277 free_excluded_extents(root, block_group);
9278
9279 memcpy(&key, &block_group->key, sizeof(key));
9280 index = get_block_group_index(block_group);
9281 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9282 BTRFS_BLOCK_GROUP_RAID1 |
9283 BTRFS_BLOCK_GROUP_RAID10))
9284 factor = 2;
9285 else
9286 factor = 1;
9287
9288 /* make sure this block group isn't part of an allocation cluster */
9289 cluster = &root->fs_info->data_alloc_cluster;
9290 spin_lock(&cluster->refill_lock);
9291 btrfs_return_cluster_to_free_space(block_group, cluster);
9292 spin_unlock(&cluster->refill_lock);
9293
9294 /*
9295 * make sure this block group isn't part of a metadata
9296 * allocation cluster
9297 */
9298 cluster = &root->fs_info->meta_alloc_cluster;
9299 spin_lock(&cluster->refill_lock);
9300 btrfs_return_cluster_to_free_space(block_group, cluster);
9301 spin_unlock(&cluster->refill_lock);
9302
9303 path = btrfs_alloc_path();
9304 if (!path) {
9305 ret = -ENOMEM;
9306 goto out;
9307 }
9308
9309 inode = lookup_free_space_inode(tree_root, block_group, path);
9310 if (!IS_ERR(inode)) {
9311 ret = btrfs_orphan_add(trans, inode);
9312 if (ret) {
9313 btrfs_add_delayed_iput(inode);
9314 goto out;
9315 }
9316 clear_nlink(inode);
9317 /* One for the block groups ref */
9318 spin_lock(&block_group->lock);
9319 if (block_group->iref) {
9320 block_group->iref = 0;
9321 block_group->inode = NULL;
9322 spin_unlock(&block_group->lock);
9323 iput(inode);
9324 } else {
9325 spin_unlock(&block_group->lock);
9326 }
9327 /* One for our lookup ref */
9328 btrfs_add_delayed_iput(inode);
9329 }
9330
9331 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9332 key.offset = block_group->key.objectid;
9333 key.type = 0;
9334
9335 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9336 if (ret < 0)
9337 goto out;
9338 if (ret > 0)
9339 btrfs_release_path(path);
9340 if (ret == 0) {
9341 ret = btrfs_del_item(trans, tree_root, path);
9342 if (ret)
9343 goto out;
9344 btrfs_release_path(path);
9345 }
9346
9347 spin_lock(&root->fs_info->block_group_cache_lock);
9348 rb_erase(&block_group->cache_node,
9349 &root->fs_info->block_group_cache_tree);
9350 RB_CLEAR_NODE(&block_group->cache_node);
9351
9352 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9353 root->fs_info->first_logical_byte = (u64)-1;
9354 spin_unlock(&root->fs_info->block_group_cache_lock);
9355
9356 down_write(&block_group->space_info->groups_sem);
9357 /*
9358 * we must use list_del_init so people can check to see if they
9359 * are still on the list after taking the semaphore
9360 */
9361 list_del_init(&block_group->list);
9362 if (list_empty(&block_group->space_info->block_groups[index])) {
9363 kobj = block_group->space_info->block_group_kobjs[index];
9364 block_group->space_info->block_group_kobjs[index] = NULL;
9365 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9366 }
9367 up_write(&block_group->space_info->groups_sem);
9368 if (kobj) {
9369 kobject_del(kobj);
9370 kobject_put(kobj);
9371 }
9372
9373 if (block_group->has_caching_ctl)
9374 caching_ctl = get_caching_control(block_group);
9375 if (block_group->cached == BTRFS_CACHE_STARTED)
9376 wait_block_group_cache_done(block_group);
9377 if (block_group->has_caching_ctl) {
9378 down_write(&root->fs_info->commit_root_sem);
9379 if (!caching_ctl) {
9380 struct btrfs_caching_control *ctl;
9381
9382 list_for_each_entry(ctl,
9383 &root->fs_info->caching_block_groups, list)
9384 if (ctl->block_group == block_group) {
9385 caching_ctl = ctl;
9386 atomic_inc(&caching_ctl->count);
9387 break;
9388 }
9389 }
9390 if (caching_ctl)
9391 list_del_init(&caching_ctl->list);
9392 up_write(&root->fs_info->commit_root_sem);
9393 if (caching_ctl) {
9394 /* Once for the caching bgs list and once for us. */
9395 put_caching_control(caching_ctl);
9396 put_caching_control(caching_ctl);
9397 }
9398 }
9399
9400 spin_lock(&trans->transaction->dirty_bgs_lock);
9401 if (!list_empty(&block_group->dirty_list)) {
9402 list_del_init(&block_group->dirty_list);
9403 btrfs_put_block_group(block_group);
9404 }
9405 spin_unlock(&trans->transaction->dirty_bgs_lock);
9406
9407 btrfs_remove_free_space_cache(block_group);
9408
9409 spin_lock(&block_group->space_info->lock);
9410 list_del_init(&block_group->ro_list);
9411 block_group->space_info->total_bytes -= block_group->key.offset;
9412 block_group->space_info->bytes_readonly -= block_group->key.offset;
9413 block_group->space_info->disk_total -= block_group->key.offset * factor;
9414 spin_unlock(&block_group->space_info->lock);
9415
9416 memcpy(&key, &block_group->key, sizeof(key));
9417
9418 lock_chunks(root);
9419 if (!list_empty(&em->list)) {
9420 /* We're in the transaction->pending_chunks list. */
9421 free_extent_map(em);
9422 }
9423 spin_lock(&block_group->lock);
9424 block_group->removed = 1;
9425 /*
9426 * At this point trimming can't start on this block group, because we
9427 * removed the block group from the tree fs_info->block_group_cache_tree
9428 * so no one can't find it anymore and even if someone already got this
9429 * block group before we removed it from the rbtree, they have already
9430 * incremented block_group->trimming - if they didn't, they won't find
9431 * any free space entries because we already removed them all when we
9432 * called btrfs_remove_free_space_cache().
9433 *
9434 * And we must not remove the extent map from the fs_info->mapping_tree
9435 * to prevent the same logical address range and physical device space
9436 * ranges from being reused for a new block group. This is because our
9437 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9438 * completely transactionless, so while it is trimming a range the
9439 * currently running transaction might finish and a new one start,
9440 * allowing for new block groups to be created that can reuse the same
9441 * physical device locations unless we take this special care.
9442 */
9443 remove_em = (atomic_read(&block_group->trimming) == 0);
9444 /*
9445 * Make sure a trimmer task always sees the em in the pinned_chunks list
9446 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9447 * before checking block_group->removed).
9448 */
9449 if (!remove_em) {
9450 /*
9451 * Our em might be in trans->transaction->pending_chunks which
9452 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9453 * and so is the fs_info->pinned_chunks list.
9454 *
9455 * So at this point we must be holding the chunk_mutex to avoid
9456 * any races with chunk allocation (more specifically at
9457 * volumes.c:contains_pending_extent()), to ensure it always
9458 * sees the em, either in the pending_chunks list or in the
9459 * pinned_chunks list.
9460 */
9461 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9462 }
9463 spin_unlock(&block_group->lock);
9464
9465 if (remove_em) {
9466 struct extent_map_tree *em_tree;
9467
9468 em_tree = &root->fs_info->mapping_tree.map_tree;
9469 write_lock(&em_tree->lock);
9470 /*
9471 * The em might be in the pending_chunks list, so make sure the
9472 * chunk mutex is locked, since remove_extent_mapping() will
9473 * delete us from that list.
9474 */
9475 remove_extent_mapping(em_tree, em);
9476 write_unlock(&em_tree->lock);
9477 /* once for the tree */
9478 free_extent_map(em);
9479 }
9480
9481 unlock_chunks(root);
9482
9483 btrfs_put_block_group(block_group);
9484 btrfs_put_block_group(block_group);
9485
9486 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9487 if (ret > 0)
9488 ret = -EIO;
9489 if (ret < 0)
9490 goto out;
9491
9492 ret = btrfs_del_item(trans, root, path);
9493 out:
9494 btrfs_free_path(path);
9495 return ret;
9496 }
9497
9498 /*
9499 * Process the unused_bgs list and remove any that don't have any allocated
9500 * space inside of them.
9501 */
9502 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9503 {
9504 struct btrfs_block_group_cache *block_group;
9505 struct btrfs_space_info *space_info;
9506 struct btrfs_root *root = fs_info->extent_root;
9507 struct btrfs_trans_handle *trans;
9508 int ret = 0;
9509
9510 if (!fs_info->open)
9511 return;
9512
9513 spin_lock(&fs_info->unused_bgs_lock);
9514 while (!list_empty(&fs_info->unused_bgs)) {
9515 u64 start, end;
9516
9517 block_group = list_first_entry(&fs_info->unused_bgs,
9518 struct btrfs_block_group_cache,
9519 bg_list);
9520 space_info = block_group->space_info;
9521 list_del_init(&block_group->bg_list);
9522 if (ret || btrfs_mixed_space_info(space_info)) {
9523 btrfs_put_block_group(block_group);
9524 continue;
9525 }
9526 spin_unlock(&fs_info->unused_bgs_lock);
9527
9528 /* Don't want to race with allocators so take the groups_sem */
9529 down_write(&space_info->groups_sem);
9530 spin_lock(&block_group->lock);
9531 if (block_group->reserved ||
9532 btrfs_block_group_used(&block_group->item) ||
9533 block_group->ro) {
9534 /*
9535 * We want to bail if we made new allocations or have
9536 * outstanding allocations in this block group. We do
9537 * the ro check in case balance is currently acting on
9538 * this block group.
9539 */
9540 spin_unlock(&block_group->lock);
9541 up_write(&space_info->groups_sem);
9542 goto next;
9543 }
9544 spin_unlock(&block_group->lock);
9545
9546 /* We don't want to force the issue, only flip if it's ok. */
9547 ret = set_block_group_ro(block_group, 0);
9548 up_write(&space_info->groups_sem);
9549 if (ret < 0) {
9550 ret = 0;
9551 goto next;
9552 }
9553
9554 /*
9555 * Want to do this before we do anything else so we can recover
9556 * properly if we fail to join the transaction.
9557 */
9558 /* 1 for btrfs_orphan_reserve_metadata() */
9559 trans = btrfs_start_transaction(root, 1);
9560 if (IS_ERR(trans)) {
9561 btrfs_set_block_group_rw(root, block_group);
9562 ret = PTR_ERR(trans);
9563 goto next;
9564 }
9565
9566 /*
9567 * We could have pending pinned extents for this block group,
9568 * just delete them, we don't care about them anymore.
9569 */
9570 start = block_group->key.objectid;
9571 end = start + block_group->key.offset - 1;
9572 /*
9573 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9574 * btrfs_finish_extent_commit(). If we are at transaction N,
9575 * another task might be running finish_extent_commit() for the
9576 * previous transaction N - 1, and have seen a range belonging
9577 * to the block group in freed_extents[] before we were able to
9578 * clear the whole block group range from freed_extents[]. This
9579 * means that task can lookup for the block group after we
9580 * unpinned it from freed_extents[] and removed it, leading to
9581 * a BUG_ON() at btrfs_unpin_extent_range().
9582 */
9583 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9584 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9585 EXTENT_DIRTY, GFP_NOFS);
9586 if (ret) {
9587 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9588 btrfs_set_block_group_rw(root, block_group);
9589 goto end_trans;
9590 }
9591 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9592 EXTENT_DIRTY, GFP_NOFS);
9593 if (ret) {
9594 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9595 btrfs_set_block_group_rw(root, block_group);
9596 goto end_trans;
9597 }
9598 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9599
9600 /* Reset pinned so btrfs_put_block_group doesn't complain */
9601 block_group->pinned = 0;
9602
9603 /*
9604 * Btrfs_remove_chunk will abort the transaction if things go
9605 * horribly wrong.
9606 */
9607 ret = btrfs_remove_chunk(trans, root,
9608 block_group->key.objectid);
9609 end_trans:
9610 btrfs_end_transaction(trans, root);
9611 next:
9612 btrfs_put_block_group(block_group);
9613 spin_lock(&fs_info->unused_bgs_lock);
9614 }
9615 spin_unlock(&fs_info->unused_bgs_lock);
9616 }
9617
9618 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9619 {
9620 struct btrfs_space_info *space_info;
9621 struct btrfs_super_block *disk_super;
9622 u64 features;
9623 u64 flags;
9624 int mixed = 0;
9625 int ret;
9626
9627 disk_super = fs_info->super_copy;
9628 if (!btrfs_super_root(disk_super))
9629 return 1;
9630
9631 features = btrfs_super_incompat_flags(disk_super);
9632 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9633 mixed = 1;
9634
9635 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9636 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9637 if (ret)
9638 goto out;
9639
9640 if (mixed) {
9641 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9642 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9643 } else {
9644 flags = BTRFS_BLOCK_GROUP_METADATA;
9645 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9646 if (ret)
9647 goto out;
9648
9649 flags = BTRFS_BLOCK_GROUP_DATA;
9650 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9651 }
9652 out:
9653 return ret;
9654 }
9655
9656 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9657 {
9658 return unpin_extent_range(root, start, end, false);
9659 }
9660
9661 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9662 {
9663 struct btrfs_fs_info *fs_info = root->fs_info;
9664 struct btrfs_block_group_cache *cache = NULL;
9665 u64 group_trimmed;
9666 u64 start;
9667 u64 end;
9668 u64 trimmed = 0;
9669 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9670 int ret = 0;
9671
9672 /*
9673 * try to trim all FS space, our block group may start from non-zero.
9674 */
9675 if (range->len == total_bytes)
9676 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9677 else
9678 cache = btrfs_lookup_block_group(fs_info, range->start);
9679
9680 while (cache) {
9681 if (cache->key.objectid >= (range->start + range->len)) {
9682 btrfs_put_block_group(cache);
9683 break;
9684 }
9685
9686 start = max(range->start, cache->key.objectid);
9687 end = min(range->start + range->len,
9688 cache->key.objectid + cache->key.offset);
9689
9690 if (end - start >= range->minlen) {
9691 if (!block_group_cache_done(cache)) {
9692 ret = cache_block_group(cache, 0);
9693 if (ret) {
9694 btrfs_put_block_group(cache);
9695 break;
9696 }
9697 ret = wait_block_group_cache_done(cache);
9698 if (ret) {
9699 btrfs_put_block_group(cache);
9700 break;
9701 }
9702 }
9703 ret = btrfs_trim_block_group(cache,
9704 &group_trimmed,
9705 start,
9706 end,
9707 range->minlen);
9708
9709 trimmed += group_trimmed;
9710 if (ret) {
9711 btrfs_put_block_group(cache);
9712 break;
9713 }
9714 }
9715
9716 cache = next_block_group(fs_info->tree_root, cache);
9717 }
9718
9719 range->len = trimmed;
9720 return ret;
9721 }
9722
9723 /*
9724 * btrfs_{start,end}_write_no_snapshoting() are similar to
9725 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9726 * data into the page cache through nocow before the subvolume is snapshoted,
9727 * but flush the data into disk after the snapshot creation, or to prevent
9728 * operations while snapshoting is ongoing and that cause the snapshot to be
9729 * inconsistent (writes followed by expanding truncates for example).
9730 */
9731 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9732 {
9733 percpu_counter_dec(&root->subv_writers->counter);
9734 /*
9735 * Make sure counter is updated before we wake up
9736 * waiters.
9737 */
9738 smp_mb();
9739 if (waitqueue_active(&root->subv_writers->wait))
9740 wake_up(&root->subv_writers->wait);
9741 }
9742
9743 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9744 {
9745 if (atomic_read(&root->will_be_snapshoted))
9746 return 0;
9747
9748 percpu_counter_inc(&root->subv_writers->counter);
9749 /*
9750 * Make sure counter is updated before we check for snapshot creation.
9751 */
9752 smp_mb();
9753 if (atomic_read(&root->will_be_snapshoted)) {
9754 btrfs_end_write_no_snapshoting(root);
9755 return 0;
9756 }
9757 return 1;
9758 }
This page took 0.238006 seconds and 5 git commands to generate.