Btrfs: reclaim delalloc metadata more aggressively
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 #include "sysfs.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 struct extent_buffer *leaf,
87 struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, u64 owner, u64 offset,
92 struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root,
95 u64 parent, u64 root_objectid,
96 u64 flags, struct btrfs_disk_key *key,
97 int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 struct btrfs_root *extent_root, u64 flags,
100 int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 u64 bytenr, u64 num_bytes, int reserved);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138 }
139
140 /*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146 {
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178 }
179
180 /*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187 {
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
228 {
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE, GFP_NOFS);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250
251 static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
253 {
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 cache->key.objectid, bytenr,
272 0, &logical, &nr, &stripe_len);
273 if (ret)
274 return ret;
275
276 while (nr--) {
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
297 ret = add_excluded_extent(root, start, len);
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
302 }
303
304 kfree(logical);
305 }
306 return 0;
307 }
308
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
315 if (cache->cached != BTRFS_CACHE_STARTED) {
316 spin_unlock(&cache->lock);
317 return NULL;
318 }
319
320 /* We're loading it the fast way, so we don't have a caching_ctl. */
321 if (!cache->caching_ctl) {
322 spin_unlock(&cache->lock);
323 return NULL;
324 }
325
326 ctl = cache->caching_ctl;
327 atomic_inc(&ctl->count);
328 spin_unlock(&cache->lock);
329 return ctl;
330 }
331
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 if (atomic_dec_and_test(&ctl->count))
335 kfree(ctl);
336 }
337
338 /*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 u64 extent_start, extent_end, size, total_added = 0;
347 int ret;
348
349 while (start < end) {
350 ret = find_first_extent_bit(info->pinned_extents, start,
351 &extent_start, &extent_end,
352 EXTENT_DIRTY | EXTENT_UPTODATE,
353 NULL);
354 if (ret)
355 break;
356
357 if (extent_start <= start) {
358 start = extent_end + 1;
359 } else if (extent_start > start && extent_start < end) {
360 size = extent_start - start;
361 total_added += size;
362 ret = btrfs_add_free_space(block_group, start,
363 size);
364 BUG_ON(ret); /* -ENOMEM or logic error */
365 start = extent_end + 1;
366 } else {
367 break;
368 }
369 }
370
371 if (start < end) {
372 size = end - start;
373 total_added += size;
374 ret = btrfs_add_free_space(block_group, start, size);
375 BUG_ON(ret); /* -ENOMEM or logic error */
376 }
377
378 return total_added;
379 }
380
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 struct btrfs_block_group_cache *block_group;
384 struct btrfs_fs_info *fs_info;
385 struct btrfs_caching_control *caching_ctl;
386 struct btrfs_root *extent_root;
387 struct btrfs_path *path;
388 struct extent_buffer *leaf;
389 struct btrfs_key key;
390 u64 total_found = 0;
391 u64 last = 0;
392 u32 nritems;
393 int ret = -ENOMEM;
394
395 caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 block_group = caching_ctl->block_group;
397 fs_info = block_group->fs_info;
398 extent_root = fs_info->extent_root;
399
400 path = btrfs_alloc_path();
401 if (!path)
402 goto out;
403
404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405
406 /*
407 * We don't want to deadlock with somebody trying to allocate a new
408 * extent for the extent root while also trying to search the extent
409 * root to add free space. So we skip locking and search the commit
410 * root, since its read-only
411 */
412 path->skip_locking = 1;
413 path->search_commit_root = 1;
414 path->reada = 1;
415
416 key.objectid = last;
417 key.offset = 0;
418 key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 mutex_lock(&caching_ctl->mutex);
421 /* need to make sure the commit_root doesn't disappear */
422 down_read(&fs_info->extent_commit_sem);
423
424 next:
425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 if (ret < 0)
427 goto err;
428
429 leaf = path->nodes[0];
430 nritems = btrfs_header_nritems(leaf);
431
432 while (1) {
433 if (btrfs_fs_closing(fs_info) > 1) {
434 last = (u64)-1;
435 break;
436 }
437
438 if (path->slots[0] < nritems) {
439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 } else {
441 ret = find_next_key(path, 0, &key);
442 if (ret)
443 break;
444
445 if (need_resched() ||
446 rwsem_is_contended(&fs_info->extent_commit_sem)) {
447 caching_ctl->progress = last;
448 btrfs_release_path(path);
449 up_read(&fs_info->extent_commit_sem);
450 mutex_unlock(&caching_ctl->mutex);
451 cond_resched();
452 goto again;
453 }
454
455 ret = btrfs_next_leaf(extent_root, path);
456 if (ret < 0)
457 goto err;
458 if (ret)
459 break;
460 leaf = path->nodes[0];
461 nritems = btrfs_header_nritems(leaf);
462 continue;
463 }
464
465 if (key.objectid < last) {
466 key.objectid = last;
467 key.offset = 0;
468 key.type = BTRFS_EXTENT_ITEM_KEY;
469
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 goto next;
473 }
474
475 if (key.objectid < block_group->key.objectid) {
476 path->slots[0]++;
477 continue;
478 }
479
480 if (key.objectid >= block_group->key.objectid +
481 block_group->key.offset)
482 break;
483
484 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
485 key.type == BTRFS_METADATA_ITEM_KEY) {
486 total_found += add_new_free_space(block_group,
487 fs_info, last,
488 key.objectid);
489 if (key.type == BTRFS_METADATA_ITEM_KEY)
490 last = key.objectid +
491 fs_info->tree_root->leafsize;
492 else
493 last = key.objectid + key.offset;
494
495 if (total_found > (1024 * 1024 * 2)) {
496 total_found = 0;
497 wake_up(&caching_ctl->wait);
498 }
499 }
500 path->slots[0]++;
501 }
502 ret = 0;
503
504 total_found += add_new_free_space(block_group, fs_info, last,
505 block_group->key.objectid +
506 block_group->key.offset);
507 caching_ctl->progress = (u64)-1;
508
509 spin_lock(&block_group->lock);
510 block_group->caching_ctl = NULL;
511 block_group->cached = BTRFS_CACHE_FINISHED;
512 spin_unlock(&block_group->lock);
513
514 err:
515 btrfs_free_path(path);
516 up_read(&fs_info->extent_commit_sem);
517
518 free_excluded_extents(extent_root, block_group);
519
520 mutex_unlock(&caching_ctl->mutex);
521 out:
522 if (ret) {
523 spin_lock(&block_group->lock);
524 block_group->caching_ctl = NULL;
525 block_group->cached = BTRFS_CACHE_ERROR;
526 spin_unlock(&block_group->lock);
527 }
528 wake_up(&caching_ctl->wait);
529
530 put_caching_control(caching_ctl);
531 btrfs_put_block_group(block_group);
532 }
533
534 static int cache_block_group(struct btrfs_block_group_cache *cache,
535 int load_cache_only)
536 {
537 DEFINE_WAIT(wait);
538 struct btrfs_fs_info *fs_info = cache->fs_info;
539 struct btrfs_caching_control *caching_ctl;
540 int ret = 0;
541
542 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
543 if (!caching_ctl)
544 return -ENOMEM;
545
546 INIT_LIST_HEAD(&caching_ctl->list);
547 mutex_init(&caching_ctl->mutex);
548 init_waitqueue_head(&caching_ctl->wait);
549 caching_ctl->block_group = cache;
550 caching_ctl->progress = cache->key.objectid;
551 atomic_set(&caching_ctl->count, 1);
552 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
553
554 spin_lock(&cache->lock);
555 /*
556 * This should be a rare occasion, but this could happen I think in the
557 * case where one thread starts to load the space cache info, and then
558 * some other thread starts a transaction commit which tries to do an
559 * allocation while the other thread is still loading the space cache
560 * info. The previous loop should have kept us from choosing this block
561 * group, but if we've moved to the state where we will wait on caching
562 * block groups we need to first check if we're doing a fast load here,
563 * so we can wait for it to finish, otherwise we could end up allocating
564 * from a block group who's cache gets evicted for one reason or
565 * another.
566 */
567 while (cache->cached == BTRFS_CACHE_FAST) {
568 struct btrfs_caching_control *ctl;
569
570 ctl = cache->caching_ctl;
571 atomic_inc(&ctl->count);
572 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
573 spin_unlock(&cache->lock);
574
575 schedule();
576
577 finish_wait(&ctl->wait, &wait);
578 put_caching_control(ctl);
579 spin_lock(&cache->lock);
580 }
581
582 if (cache->cached != BTRFS_CACHE_NO) {
583 spin_unlock(&cache->lock);
584 kfree(caching_ctl);
585 return 0;
586 }
587 WARN_ON(cache->caching_ctl);
588 cache->caching_ctl = caching_ctl;
589 cache->cached = BTRFS_CACHE_FAST;
590 spin_unlock(&cache->lock);
591
592 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 }
607 }
608 spin_unlock(&cache->lock);
609 wake_up(&caching_ctl->wait);
610 if (ret == 1) {
611 put_caching_control(caching_ctl);
612 free_excluded_extents(fs_info->extent_root, cache);
613 return 0;
614 }
615 } else {
616 /*
617 * We are not going to do the fast caching, set cached to the
618 * appropriate value and wakeup any waiters.
619 */
620 spin_lock(&cache->lock);
621 if (load_cache_only) {
622 cache->caching_ctl = NULL;
623 cache->cached = BTRFS_CACHE_NO;
624 } else {
625 cache->cached = BTRFS_CACHE_STARTED;
626 }
627 spin_unlock(&cache->lock);
628 wake_up(&caching_ctl->wait);
629 }
630
631 if (load_cache_only) {
632 put_caching_control(caching_ctl);
633 return 0;
634 }
635
636 down_write(&fs_info->extent_commit_sem);
637 atomic_inc(&caching_ctl->count);
638 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
639 up_write(&fs_info->extent_commit_sem);
640
641 btrfs_get_block_group(cache);
642
643 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
644
645 return ret;
646 }
647
648 /*
649 * return the block group that starts at or after bytenr
650 */
651 static struct btrfs_block_group_cache *
652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
653 {
654 struct btrfs_block_group_cache *cache;
655
656 cache = block_group_cache_tree_search(info, bytenr, 0);
657
658 return cache;
659 }
660
661 /*
662 * return the block group that contains the given bytenr
663 */
664 struct btrfs_block_group_cache *btrfs_lookup_block_group(
665 struct btrfs_fs_info *info,
666 u64 bytenr)
667 {
668 struct btrfs_block_group_cache *cache;
669
670 cache = block_group_cache_tree_search(info, bytenr, 1);
671
672 return cache;
673 }
674
675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
676 u64 flags)
677 {
678 struct list_head *head = &info->space_info;
679 struct btrfs_space_info *found;
680
681 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
682
683 rcu_read_lock();
684 list_for_each_entry_rcu(found, head, list) {
685 if (found->flags & flags) {
686 rcu_read_unlock();
687 return found;
688 }
689 }
690 rcu_read_unlock();
691 return NULL;
692 }
693
694 /*
695 * after adding space to the filesystem, we need to clear the full flags
696 * on all the space infos.
697 */
698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
699 {
700 struct list_head *head = &info->space_info;
701 struct btrfs_space_info *found;
702
703 rcu_read_lock();
704 list_for_each_entry_rcu(found, head, list)
705 found->full = 0;
706 rcu_read_unlock();
707 }
708
709 /* simple helper to search for an existing extent at a given offset */
710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
711 {
712 int ret;
713 struct btrfs_key key;
714 struct btrfs_path *path;
715
716 path = btrfs_alloc_path();
717 if (!path)
718 return -ENOMEM;
719
720 key.objectid = start;
721 key.offset = len;
722 key.type = BTRFS_EXTENT_ITEM_KEY;
723 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
724 0, 0);
725 if (ret > 0) {
726 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
727 if (key.objectid == start &&
728 key.type == BTRFS_METADATA_ITEM_KEY)
729 ret = 0;
730 }
731 btrfs_free_path(path);
732 return ret;
733 }
734
735 /*
736 * helper function to lookup reference count and flags of a tree block.
737 *
738 * the head node for delayed ref is used to store the sum of all the
739 * reference count modifications queued up in the rbtree. the head
740 * node may also store the extent flags to set. This way you can check
741 * to see what the reference count and extent flags would be if all of
742 * the delayed refs are not processed.
743 */
744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
745 struct btrfs_root *root, u64 bytenr,
746 u64 offset, int metadata, u64 *refs, u64 *flags)
747 {
748 struct btrfs_delayed_ref_head *head;
749 struct btrfs_delayed_ref_root *delayed_refs;
750 struct btrfs_path *path;
751 struct btrfs_extent_item *ei;
752 struct extent_buffer *leaf;
753 struct btrfs_key key;
754 u32 item_size;
755 u64 num_refs;
756 u64 extent_flags;
757 int ret;
758
759 /*
760 * If we don't have skinny metadata, don't bother doing anything
761 * different
762 */
763 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
764 offset = root->leafsize;
765 metadata = 0;
766 }
767
768 path = btrfs_alloc_path();
769 if (!path)
770 return -ENOMEM;
771
772 if (!trans) {
773 path->skip_locking = 1;
774 path->search_commit_root = 1;
775 }
776
777 search_again:
778 key.objectid = bytenr;
779 key.offset = offset;
780 if (metadata)
781 key.type = BTRFS_METADATA_ITEM_KEY;
782 else
783 key.type = BTRFS_EXTENT_ITEM_KEY;
784
785 again:
786 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 &key, path, 0, 0);
788 if (ret < 0)
789 goto out_free;
790
791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 if (path->slots[0]) {
793 path->slots[0]--;
794 btrfs_item_key_to_cpu(path->nodes[0], &key,
795 path->slots[0]);
796 if (key.objectid == bytenr &&
797 key.type == BTRFS_EXTENT_ITEM_KEY &&
798 key.offset == root->leafsize)
799 ret = 0;
800 }
801 if (ret) {
802 key.objectid = bytenr;
803 key.type = BTRFS_EXTENT_ITEM_KEY;
804 key.offset = root->leafsize;
805 btrfs_release_path(path);
806 goto again;
807 }
808 }
809
810 if (ret == 0) {
811 leaf = path->nodes[0];
812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 if (item_size >= sizeof(*ei)) {
814 ei = btrfs_item_ptr(leaf, path->slots[0],
815 struct btrfs_extent_item);
816 num_refs = btrfs_extent_refs(leaf, ei);
817 extent_flags = btrfs_extent_flags(leaf, ei);
818 } else {
819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 struct btrfs_extent_item_v0 *ei0;
821 BUG_ON(item_size != sizeof(*ei0));
822 ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 struct btrfs_extent_item_v0);
824 num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 /* FIXME: this isn't correct for data */
826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827 #else
828 BUG();
829 #endif
830 }
831 BUG_ON(num_refs == 0);
832 } else {
833 num_refs = 0;
834 extent_flags = 0;
835 ret = 0;
836 }
837
838 if (!trans)
839 goto out;
840
841 delayed_refs = &trans->transaction->delayed_refs;
842 spin_lock(&delayed_refs->lock);
843 head = btrfs_find_delayed_ref_head(trans, bytenr);
844 if (head) {
845 if (!mutex_trylock(&head->mutex)) {
846 atomic_inc(&head->node.refs);
847 spin_unlock(&delayed_refs->lock);
848
849 btrfs_release_path(path);
850
851 /*
852 * Mutex was contended, block until it's released and try
853 * again
854 */
855 mutex_lock(&head->mutex);
856 mutex_unlock(&head->mutex);
857 btrfs_put_delayed_ref(&head->node);
858 goto search_again;
859 }
860 spin_lock(&head->lock);
861 if (head->extent_op && head->extent_op->update_flags)
862 extent_flags |= head->extent_op->flags_to_set;
863 else
864 BUG_ON(num_refs == 0);
865
866 num_refs += head->node.ref_mod;
867 spin_unlock(&head->lock);
868 mutex_unlock(&head->mutex);
869 }
870 spin_unlock(&delayed_refs->lock);
871 out:
872 WARN_ON(num_refs == 0);
873 if (refs)
874 *refs = num_refs;
875 if (flags)
876 *flags = extent_flags;
877 out_free:
878 btrfs_free_path(path);
879 return ret;
880 }
881
882 /*
883 * Back reference rules. Back refs have three main goals:
884 *
885 * 1) differentiate between all holders of references to an extent so that
886 * when a reference is dropped we can make sure it was a valid reference
887 * before freeing the extent.
888 *
889 * 2) Provide enough information to quickly find the holders of an extent
890 * if we notice a given block is corrupted or bad.
891 *
892 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
893 * maintenance. This is actually the same as #2, but with a slightly
894 * different use case.
895 *
896 * There are two kinds of back refs. The implicit back refs is optimized
897 * for pointers in non-shared tree blocks. For a given pointer in a block,
898 * back refs of this kind provide information about the block's owner tree
899 * and the pointer's key. These information allow us to find the block by
900 * b-tree searching. The full back refs is for pointers in tree blocks not
901 * referenced by their owner trees. The location of tree block is recorded
902 * in the back refs. Actually the full back refs is generic, and can be
903 * used in all cases the implicit back refs is used. The major shortcoming
904 * of the full back refs is its overhead. Every time a tree block gets
905 * COWed, we have to update back refs entry for all pointers in it.
906 *
907 * For a newly allocated tree block, we use implicit back refs for
908 * pointers in it. This means most tree related operations only involve
909 * implicit back refs. For a tree block created in old transaction, the
910 * only way to drop a reference to it is COW it. So we can detect the
911 * event that tree block loses its owner tree's reference and do the
912 * back refs conversion.
913 *
914 * When a tree block is COW'd through a tree, there are four cases:
915 *
916 * The reference count of the block is one and the tree is the block's
917 * owner tree. Nothing to do in this case.
918 *
919 * The reference count of the block is one and the tree is not the
920 * block's owner tree. In this case, full back refs is used for pointers
921 * in the block. Remove these full back refs, add implicit back refs for
922 * every pointers in the new block.
923 *
924 * The reference count of the block is greater than one and the tree is
925 * the block's owner tree. In this case, implicit back refs is used for
926 * pointers in the block. Add full back refs for every pointers in the
927 * block, increase lower level extents' reference counts. The original
928 * implicit back refs are entailed to the new block.
929 *
930 * The reference count of the block is greater than one and the tree is
931 * not the block's owner tree. Add implicit back refs for every pointer in
932 * the new block, increase lower level extents' reference count.
933 *
934 * Back Reference Key composing:
935 *
936 * The key objectid corresponds to the first byte in the extent,
937 * The key type is used to differentiate between types of back refs.
938 * There are different meanings of the key offset for different types
939 * of back refs.
940 *
941 * File extents can be referenced by:
942 *
943 * - multiple snapshots, subvolumes, or different generations in one subvol
944 * - different files inside a single subvolume
945 * - different offsets inside a file (bookend extents in file.c)
946 *
947 * The extent ref structure for the implicit back refs has fields for:
948 *
949 * - Objectid of the subvolume root
950 * - objectid of the file holding the reference
951 * - original offset in the file
952 * - how many bookend extents
953 *
954 * The key offset for the implicit back refs is hash of the first
955 * three fields.
956 *
957 * The extent ref structure for the full back refs has field for:
958 *
959 * - number of pointers in the tree leaf
960 *
961 * The key offset for the implicit back refs is the first byte of
962 * the tree leaf
963 *
964 * When a file extent is allocated, The implicit back refs is used.
965 * the fields are filled in:
966 *
967 * (root_key.objectid, inode objectid, offset in file, 1)
968 *
969 * When a file extent is removed file truncation, we find the
970 * corresponding implicit back refs and check the following fields:
971 *
972 * (btrfs_header_owner(leaf), inode objectid, offset in file)
973 *
974 * Btree extents can be referenced by:
975 *
976 * - Different subvolumes
977 *
978 * Both the implicit back refs and the full back refs for tree blocks
979 * only consist of key. The key offset for the implicit back refs is
980 * objectid of block's owner tree. The key offset for the full back refs
981 * is the first byte of parent block.
982 *
983 * When implicit back refs is used, information about the lowest key and
984 * level of the tree block are required. These information are stored in
985 * tree block info structure.
986 */
987
988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
989 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
990 struct btrfs_root *root,
991 struct btrfs_path *path,
992 u64 owner, u32 extra_size)
993 {
994 struct btrfs_extent_item *item;
995 struct btrfs_extent_item_v0 *ei0;
996 struct btrfs_extent_ref_v0 *ref0;
997 struct btrfs_tree_block_info *bi;
998 struct extent_buffer *leaf;
999 struct btrfs_key key;
1000 struct btrfs_key found_key;
1001 u32 new_size = sizeof(*item);
1002 u64 refs;
1003 int ret;
1004
1005 leaf = path->nodes[0];
1006 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1007
1008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1009 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1010 struct btrfs_extent_item_v0);
1011 refs = btrfs_extent_refs_v0(leaf, ei0);
1012
1013 if (owner == (u64)-1) {
1014 while (1) {
1015 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1016 ret = btrfs_next_leaf(root, path);
1017 if (ret < 0)
1018 return ret;
1019 BUG_ON(ret > 0); /* Corruption */
1020 leaf = path->nodes[0];
1021 }
1022 btrfs_item_key_to_cpu(leaf, &found_key,
1023 path->slots[0]);
1024 BUG_ON(key.objectid != found_key.objectid);
1025 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1026 path->slots[0]++;
1027 continue;
1028 }
1029 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1030 struct btrfs_extent_ref_v0);
1031 owner = btrfs_ref_objectid_v0(leaf, ref0);
1032 break;
1033 }
1034 }
1035 btrfs_release_path(path);
1036
1037 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1038 new_size += sizeof(*bi);
1039
1040 new_size -= sizeof(*ei0);
1041 ret = btrfs_search_slot(trans, root, &key, path,
1042 new_size + extra_size, 1);
1043 if (ret < 0)
1044 return ret;
1045 BUG_ON(ret); /* Corruption */
1046
1047 btrfs_extend_item(root, path, new_size);
1048
1049 leaf = path->nodes[0];
1050 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1051 btrfs_set_extent_refs(leaf, item, refs);
1052 /* FIXME: get real generation */
1053 btrfs_set_extent_generation(leaf, item, 0);
1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 btrfs_set_extent_flags(leaf, item,
1056 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1057 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1058 bi = (struct btrfs_tree_block_info *)(item + 1);
1059 /* FIXME: get first key of the block */
1060 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1061 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1062 } else {
1063 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1064 }
1065 btrfs_mark_buffer_dirty(leaf);
1066 return 0;
1067 }
1068 #endif
1069
1070 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1071 {
1072 u32 high_crc = ~(u32)0;
1073 u32 low_crc = ~(u32)0;
1074 __le64 lenum;
1075
1076 lenum = cpu_to_le64(root_objectid);
1077 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1078 lenum = cpu_to_le64(owner);
1079 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1080 lenum = cpu_to_le64(offset);
1081 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1082
1083 return ((u64)high_crc << 31) ^ (u64)low_crc;
1084 }
1085
1086 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1087 struct btrfs_extent_data_ref *ref)
1088 {
1089 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1090 btrfs_extent_data_ref_objectid(leaf, ref),
1091 btrfs_extent_data_ref_offset(leaf, ref));
1092 }
1093
1094 static int match_extent_data_ref(struct extent_buffer *leaf,
1095 struct btrfs_extent_data_ref *ref,
1096 u64 root_objectid, u64 owner, u64 offset)
1097 {
1098 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1099 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1100 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1101 return 0;
1102 return 1;
1103 }
1104
1105 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root,
1107 struct btrfs_path *path,
1108 u64 bytenr, u64 parent,
1109 u64 root_objectid,
1110 u64 owner, u64 offset)
1111 {
1112 struct btrfs_key key;
1113 struct btrfs_extent_data_ref *ref;
1114 struct extent_buffer *leaf;
1115 u32 nritems;
1116 int ret;
1117 int recow;
1118 int err = -ENOENT;
1119
1120 key.objectid = bytenr;
1121 if (parent) {
1122 key.type = BTRFS_SHARED_DATA_REF_KEY;
1123 key.offset = parent;
1124 } else {
1125 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1126 key.offset = hash_extent_data_ref(root_objectid,
1127 owner, offset);
1128 }
1129 again:
1130 recow = 0;
1131 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1132 if (ret < 0) {
1133 err = ret;
1134 goto fail;
1135 }
1136
1137 if (parent) {
1138 if (!ret)
1139 return 0;
1140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1141 key.type = BTRFS_EXTENT_REF_V0_KEY;
1142 btrfs_release_path(path);
1143 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1144 if (ret < 0) {
1145 err = ret;
1146 goto fail;
1147 }
1148 if (!ret)
1149 return 0;
1150 #endif
1151 goto fail;
1152 }
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 while (1) {
1157 if (path->slots[0] >= nritems) {
1158 ret = btrfs_next_leaf(root, path);
1159 if (ret < 0)
1160 err = ret;
1161 if (ret)
1162 goto fail;
1163
1164 leaf = path->nodes[0];
1165 nritems = btrfs_header_nritems(leaf);
1166 recow = 1;
1167 }
1168
1169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1170 if (key.objectid != bytenr ||
1171 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1172 goto fail;
1173
1174 ref = btrfs_item_ptr(leaf, path->slots[0],
1175 struct btrfs_extent_data_ref);
1176
1177 if (match_extent_data_ref(leaf, ref, root_objectid,
1178 owner, offset)) {
1179 if (recow) {
1180 btrfs_release_path(path);
1181 goto again;
1182 }
1183 err = 0;
1184 break;
1185 }
1186 path->slots[0]++;
1187 }
1188 fail:
1189 return err;
1190 }
1191
1192 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1193 struct btrfs_root *root,
1194 struct btrfs_path *path,
1195 u64 bytenr, u64 parent,
1196 u64 root_objectid, u64 owner,
1197 u64 offset, int refs_to_add)
1198 {
1199 struct btrfs_key key;
1200 struct extent_buffer *leaf;
1201 u32 size;
1202 u32 num_refs;
1203 int ret;
1204
1205 key.objectid = bytenr;
1206 if (parent) {
1207 key.type = BTRFS_SHARED_DATA_REF_KEY;
1208 key.offset = parent;
1209 size = sizeof(struct btrfs_shared_data_ref);
1210 } else {
1211 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1212 key.offset = hash_extent_data_ref(root_objectid,
1213 owner, offset);
1214 size = sizeof(struct btrfs_extent_data_ref);
1215 }
1216
1217 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1218 if (ret && ret != -EEXIST)
1219 goto fail;
1220
1221 leaf = path->nodes[0];
1222 if (parent) {
1223 struct btrfs_shared_data_ref *ref;
1224 ref = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_shared_data_ref);
1226 if (ret == 0) {
1227 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1228 } else {
1229 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1230 num_refs += refs_to_add;
1231 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1232 }
1233 } else {
1234 struct btrfs_extent_data_ref *ref;
1235 while (ret == -EEXIST) {
1236 ref = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_extent_data_ref);
1238 if (match_extent_data_ref(leaf, ref, root_objectid,
1239 owner, offset))
1240 break;
1241 btrfs_release_path(path);
1242 key.offset++;
1243 ret = btrfs_insert_empty_item(trans, root, path, &key,
1244 size);
1245 if (ret && ret != -EEXIST)
1246 goto fail;
1247
1248 leaf = path->nodes[0];
1249 }
1250 ref = btrfs_item_ptr(leaf, path->slots[0],
1251 struct btrfs_extent_data_ref);
1252 if (ret == 0) {
1253 btrfs_set_extent_data_ref_root(leaf, ref,
1254 root_objectid);
1255 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1256 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1257 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1258 } else {
1259 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1260 num_refs += refs_to_add;
1261 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1262 }
1263 }
1264 btrfs_mark_buffer_dirty(leaf);
1265 ret = 0;
1266 fail:
1267 btrfs_release_path(path);
1268 return ret;
1269 }
1270
1271 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1272 struct btrfs_root *root,
1273 struct btrfs_path *path,
1274 int refs_to_drop)
1275 {
1276 struct btrfs_key key;
1277 struct btrfs_extent_data_ref *ref1 = NULL;
1278 struct btrfs_shared_data_ref *ref2 = NULL;
1279 struct extent_buffer *leaf;
1280 u32 num_refs = 0;
1281 int ret = 0;
1282
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1285
1286 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1287 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_data_ref);
1289 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1290 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1291 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1292 struct btrfs_shared_data_ref);
1293 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1295 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1296 struct btrfs_extent_ref_v0 *ref0;
1297 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1298 struct btrfs_extent_ref_v0);
1299 num_refs = btrfs_ref_count_v0(leaf, ref0);
1300 #endif
1301 } else {
1302 BUG();
1303 }
1304
1305 BUG_ON(num_refs < refs_to_drop);
1306 num_refs -= refs_to_drop;
1307
1308 if (num_refs == 0) {
1309 ret = btrfs_del_item(trans, root, path);
1310 } else {
1311 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1312 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1313 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1314 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1316 else {
1317 struct btrfs_extent_ref_v0 *ref0;
1318 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1319 struct btrfs_extent_ref_v0);
1320 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1321 }
1322 #endif
1323 btrfs_mark_buffer_dirty(leaf);
1324 }
1325 return ret;
1326 }
1327
1328 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1329 struct btrfs_path *path,
1330 struct btrfs_extent_inline_ref *iref)
1331 {
1332 struct btrfs_key key;
1333 struct extent_buffer *leaf;
1334 struct btrfs_extent_data_ref *ref1;
1335 struct btrfs_shared_data_ref *ref2;
1336 u32 num_refs = 0;
1337
1338 leaf = path->nodes[0];
1339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1340 if (iref) {
1341 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1342 BTRFS_EXTENT_DATA_REF_KEY) {
1343 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else {
1346 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 }
1349 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1350 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_data_ref);
1352 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1353 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1354 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_shared_data_ref);
1356 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1359 struct btrfs_extent_ref_v0 *ref0;
1360 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_extent_ref_v0);
1362 num_refs = btrfs_ref_count_v0(leaf, ref0);
1363 #endif
1364 } else {
1365 WARN_ON(1);
1366 }
1367 return num_refs;
1368 }
1369
1370 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1375 {
1376 struct btrfs_key key;
1377 int ret;
1378
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1386 }
1387
1388 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1389 if (ret > 0)
1390 ret = -ENOENT;
1391 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1392 if (ret == -ENOENT && parent) {
1393 btrfs_release_path(path);
1394 key.type = BTRFS_EXTENT_REF_V0_KEY;
1395 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1396 if (ret > 0)
1397 ret = -ENOENT;
1398 }
1399 #endif
1400 return ret;
1401 }
1402
1403 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1404 struct btrfs_root *root,
1405 struct btrfs_path *path,
1406 u64 bytenr, u64 parent,
1407 u64 root_objectid)
1408 {
1409 struct btrfs_key key;
1410 int ret;
1411
1412 key.objectid = bytenr;
1413 if (parent) {
1414 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1415 key.offset = parent;
1416 } else {
1417 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1418 key.offset = root_objectid;
1419 }
1420
1421 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1422 btrfs_release_path(path);
1423 return ret;
1424 }
1425
1426 static inline int extent_ref_type(u64 parent, u64 owner)
1427 {
1428 int type;
1429 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_BLOCK_REF_KEY;
1432 else
1433 type = BTRFS_TREE_BLOCK_REF_KEY;
1434 } else {
1435 if (parent > 0)
1436 type = BTRFS_SHARED_DATA_REF_KEY;
1437 else
1438 type = BTRFS_EXTENT_DATA_REF_KEY;
1439 }
1440 return type;
1441 }
1442
1443 static int find_next_key(struct btrfs_path *path, int level,
1444 struct btrfs_key *key)
1445
1446 {
1447 for (; level < BTRFS_MAX_LEVEL; level++) {
1448 if (!path->nodes[level])
1449 break;
1450 if (path->slots[level] + 1 >=
1451 btrfs_header_nritems(path->nodes[level]))
1452 continue;
1453 if (level == 0)
1454 btrfs_item_key_to_cpu(path->nodes[level], key,
1455 path->slots[level] + 1);
1456 else
1457 btrfs_node_key_to_cpu(path->nodes[level], key,
1458 path->slots[level] + 1);
1459 return 0;
1460 }
1461 return 1;
1462 }
1463
1464 /*
1465 * look for inline back ref. if back ref is found, *ref_ret is set
1466 * to the address of inline back ref, and 0 is returned.
1467 *
1468 * if back ref isn't found, *ref_ret is set to the address where it
1469 * should be inserted, and -ENOENT is returned.
1470 *
1471 * if insert is true and there are too many inline back refs, the path
1472 * points to the extent item, and -EAGAIN is returned.
1473 *
1474 * NOTE: inline back refs are ordered in the same way that back ref
1475 * items in the tree are ordered.
1476 */
1477 static noinline_for_stack
1478 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1479 struct btrfs_root *root,
1480 struct btrfs_path *path,
1481 struct btrfs_extent_inline_ref **ref_ret,
1482 u64 bytenr, u64 num_bytes,
1483 u64 parent, u64 root_objectid,
1484 u64 owner, u64 offset, int insert)
1485 {
1486 struct btrfs_key key;
1487 struct extent_buffer *leaf;
1488 struct btrfs_extent_item *ei;
1489 struct btrfs_extent_inline_ref *iref;
1490 u64 flags;
1491 u64 item_size;
1492 unsigned long ptr;
1493 unsigned long end;
1494 int extra_size;
1495 int type;
1496 int want;
1497 int ret;
1498 int err = 0;
1499 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1500 SKINNY_METADATA);
1501
1502 key.objectid = bytenr;
1503 key.type = BTRFS_EXTENT_ITEM_KEY;
1504 key.offset = num_bytes;
1505
1506 want = extent_ref_type(parent, owner);
1507 if (insert) {
1508 extra_size = btrfs_extent_inline_ref_size(want);
1509 path->keep_locks = 1;
1510 } else
1511 extra_size = -1;
1512
1513 /*
1514 * Owner is our parent level, so we can just add one to get the level
1515 * for the block we are interested in.
1516 */
1517 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1518 key.type = BTRFS_METADATA_ITEM_KEY;
1519 key.offset = owner;
1520 }
1521
1522 again:
1523 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1524 if (ret < 0) {
1525 err = ret;
1526 goto out;
1527 }
1528
1529 /*
1530 * We may be a newly converted file system which still has the old fat
1531 * extent entries for metadata, so try and see if we have one of those.
1532 */
1533 if (ret > 0 && skinny_metadata) {
1534 skinny_metadata = false;
1535 if (path->slots[0]) {
1536 path->slots[0]--;
1537 btrfs_item_key_to_cpu(path->nodes[0], &key,
1538 path->slots[0]);
1539 if (key.objectid == bytenr &&
1540 key.type == BTRFS_EXTENT_ITEM_KEY &&
1541 key.offset == num_bytes)
1542 ret = 0;
1543 }
1544 if (ret) {
1545 key.type = BTRFS_EXTENT_ITEM_KEY;
1546 key.offset = num_bytes;
1547 btrfs_release_path(path);
1548 goto again;
1549 }
1550 }
1551
1552 if (ret && !insert) {
1553 err = -ENOENT;
1554 goto out;
1555 } else if (WARN_ON(ret)) {
1556 err = -EIO;
1557 goto out;
1558 }
1559
1560 leaf = path->nodes[0];
1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 if (item_size < sizeof(*ei)) {
1564 if (!insert) {
1565 err = -ENOENT;
1566 goto out;
1567 }
1568 ret = convert_extent_item_v0(trans, root, path, owner,
1569 extra_size);
1570 if (ret < 0) {
1571 err = ret;
1572 goto out;
1573 }
1574 leaf = path->nodes[0];
1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 }
1577 #endif
1578 BUG_ON(item_size < sizeof(*ei));
1579
1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 flags = btrfs_extent_flags(leaf, ei);
1582
1583 ptr = (unsigned long)(ei + 1);
1584 end = (unsigned long)ei + item_size;
1585
1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 ptr += sizeof(struct btrfs_tree_block_info);
1588 BUG_ON(ptr > end);
1589 }
1590
1591 err = -ENOENT;
1592 while (1) {
1593 if (ptr >= end) {
1594 WARN_ON(ptr > end);
1595 break;
1596 }
1597 iref = (struct btrfs_extent_inline_ref *)ptr;
1598 type = btrfs_extent_inline_ref_type(leaf, iref);
1599 if (want < type)
1600 break;
1601 if (want > type) {
1602 ptr += btrfs_extent_inline_ref_size(type);
1603 continue;
1604 }
1605
1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 struct btrfs_extent_data_ref *dref;
1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 if (match_extent_data_ref(leaf, dref, root_objectid,
1610 owner, offset)) {
1611 err = 0;
1612 break;
1613 }
1614 if (hash_extent_data_ref_item(leaf, dref) <
1615 hash_extent_data_ref(root_objectid, owner, offset))
1616 break;
1617 } else {
1618 u64 ref_offset;
1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 if (parent > 0) {
1621 if (parent == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < parent)
1626 break;
1627 } else {
1628 if (root_objectid == ref_offset) {
1629 err = 0;
1630 break;
1631 }
1632 if (ref_offset < root_objectid)
1633 break;
1634 }
1635 }
1636 ptr += btrfs_extent_inline_ref_size(type);
1637 }
1638 if (err == -ENOENT && insert) {
1639 if (item_size + extra_size >=
1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 err = -EAGAIN;
1642 goto out;
1643 }
1644 /*
1645 * To add new inline back ref, we have to make sure
1646 * there is no corresponding back ref item.
1647 * For simplicity, we just do not add new inline back
1648 * ref if there is any kind of item for this block
1649 */
1650 if (find_next_key(path, 0, &key) == 0 &&
1651 key.objectid == bytenr &&
1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 err = -EAGAIN;
1654 goto out;
1655 }
1656 }
1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 if (insert) {
1660 path->keep_locks = 0;
1661 btrfs_unlock_up_safe(path, 1);
1662 }
1663 return err;
1664 }
1665
1666 /*
1667 * helper to add new inline back ref
1668 */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 struct btrfs_path *path,
1672 struct btrfs_extent_inline_ref *iref,
1673 u64 parent, u64 root_objectid,
1674 u64 owner, u64 offset, int refs_to_add,
1675 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 struct extent_buffer *leaf;
1678 struct btrfs_extent_item *ei;
1679 unsigned long ptr;
1680 unsigned long end;
1681 unsigned long item_offset;
1682 u64 refs;
1683 int size;
1684 int type;
1685
1686 leaf = path->nodes[0];
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 item_offset = (unsigned long)iref - (unsigned long)ei;
1689
1690 type = extent_ref_type(parent, owner);
1691 size = btrfs_extent_inline_ref_size(type);
1692
1693 btrfs_extend_item(root, path, size);
1694
1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 refs = btrfs_extent_refs(leaf, ei);
1697 refs += refs_to_add;
1698 btrfs_set_extent_refs(leaf, ei, refs);
1699 if (extent_op)
1700 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702 ptr = (unsigned long)ei + item_offset;
1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 if (ptr < end - size)
1705 memmove_extent_buffer(leaf, ptr + size, ptr,
1706 end - size - ptr);
1707
1708 iref = (struct btrfs_extent_inline_ref *)ptr;
1709 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 struct btrfs_extent_data_ref *dref;
1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 struct btrfs_shared_data_ref *sref;
1719 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 } else {
1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 }
1727 btrfs_mark_buffer_dirty(leaf);
1728 }
1729
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 struct btrfs_root *root,
1732 struct btrfs_path *path,
1733 struct btrfs_extent_inline_ref **ref_ret,
1734 u64 bytenr, u64 num_bytes, u64 parent,
1735 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 int ret;
1738
1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 bytenr, num_bytes, parent,
1741 root_objectid, owner, offset, 0);
1742 if (ret != -ENOENT)
1743 return ret;
1744
1745 btrfs_release_path(path);
1746 *ref_ret = NULL;
1747
1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 root_objectid);
1751 } else {
1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 root_objectid, owner, offset);
1754 }
1755 return ret;
1756 }
1757
1758 /*
1759 * helper to update/remove inline back ref
1760 */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 struct btrfs_path *path,
1764 struct btrfs_extent_inline_ref *iref,
1765 int refs_to_mod,
1766 struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 struct extent_buffer *leaf;
1769 struct btrfs_extent_item *ei;
1770 struct btrfs_extent_data_ref *dref = NULL;
1771 struct btrfs_shared_data_ref *sref = NULL;
1772 unsigned long ptr;
1773 unsigned long end;
1774 u32 item_size;
1775 int size;
1776 int type;
1777 u64 refs;
1778
1779 leaf = path->nodes[0];
1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 refs = btrfs_extent_refs(leaf, ei);
1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 refs += refs_to_mod;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 type = btrfs_extent_inline_ref_type(leaf, iref);
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
1799 }
1800
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
1810 size = btrfs_extent_inline_ref_size(type);
1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 ptr = (unsigned long)iref;
1813 end = (unsigned long)ei + item_size;
1814 if (ptr + size < end)
1815 memmove_extent_buffer(leaf, ptr, ptr + size,
1816 end - ptr - size);
1817 item_size -= size;
1818 btrfs_truncate_item(root, path, item_size, 1);
1819 }
1820 btrfs_mark_buffer_dirty(leaf);
1821 }
1822
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 bytenr, num_bytes, parent,
1837 root_objectid, owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(root, path, iref,
1841 refs_to_add, extent_op);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(root, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849 }
1850
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 struct btrfs_path *path,
1854 u64 bytenr, u64 parent, u64 root_objectid,
1855 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 int ret;
1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 BUG_ON(refs_to_add != 1);
1860 ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 parent, root_objectid);
1862 } else {
1863 ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 parent, root_objectid,
1865 owner, offset, refs_to_add);
1866 }
1867 return ret;
1868 }
1869
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root,
1872 struct btrfs_path *path,
1873 struct btrfs_extent_inline_ref *iref,
1874 int refs_to_drop, int is_data)
1875 {
1876 int ret = 0;
1877
1878 BUG_ON(!is_data && refs_to_drop != 1);
1879 if (iref) {
1880 update_inline_extent_backref(root, path, iref,
1881 -refs_to_drop, NULL);
1882 } else if (is_data) {
1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 } else {
1885 ret = btrfs_del_item(trans, root, path);
1886 }
1887 return ret;
1888 }
1889
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 u64 start, u64 len)
1892 {
1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 u64 num_bytes, u64 *actual_bytes)
1898 {
1899 int ret;
1900 u64 discarded_bytes = 0;
1901 struct btrfs_bio *bbio = NULL;
1902
1903
1904 /* Tell the block device(s) that the sectors can be discarded */
1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 bytenr, &num_bytes, &bbio, 0);
1907 /* Error condition is -ENOMEM */
1908 if (!ret) {
1909 struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 int i;
1911
1912
1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 if (!stripe->dev->can_discard)
1915 continue;
1916
1917 ret = btrfs_issue_discard(stripe->dev->bdev,
1918 stripe->physical,
1919 stripe->length);
1920 if (!ret)
1921 discarded_bytes += stripe->length;
1922 else if (ret != -EOPNOTSUPP)
1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924
1925 /*
1926 * Just in case we get back EOPNOTSUPP for some reason,
1927 * just ignore the return value so we don't screw up
1928 * people calling discard_extent.
1929 */
1930 ret = 0;
1931 }
1932 kfree(bbio);
1933 }
1934
1935 if (actual_bytes)
1936 *actual_bytes = discarded_bytes;
1937
1938
1939 if (ret == -EOPNOTSUPP)
1940 ret = 0;
1941 return ret;
1942 }
1943
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 struct btrfs_root *root,
1947 u64 bytenr, u64 num_bytes, u64 parent,
1948 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 int ret;
1951 struct btrfs_fs_info *fs_info = root->fs_info;
1952
1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955
1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 num_bytes,
1959 parent, root_objectid, (int)owner,
1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 } else {
1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 num_bytes,
1964 parent, root_objectid, owner, offset,
1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 }
1967 return ret;
1968 }
1969
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 struct btrfs_root *root,
1972 u64 bytenr, u64 num_bytes,
1973 u64 parent, u64 root_objectid,
1974 u64 owner, u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 u64 refs;
1981 int ret;
1982
1983 path = btrfs_alloc_path();
1984 if (!path)
1985 return -ENOMEM;
1986
1987 path->reada = 1;
1988 path->leave_spinning = 1;
1989 /* this will setup the path even if it fails to insert the back ref */
1990 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1991 path, bytenr, num_bytes, parent,
1992 root_objectid, owner, offset,
1993 refs_to_add, extent_op);
1994 if (ret != -EAGAIN)
1995 goto out;
1996
1997 leaf = path->nodes[0];
1998 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1999 refs = btrfs_extent_refs(leaf, item);
2000 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2001 if (extent_op)
2002 __run_delayed_extent_op(extent_op, leaf, item);
2003
2004 btrfs_mark_buffer_dirty(leaf);
2005 btrfs_release_path(path);
2006
2007 path->reada = 1;
2008 path->leave_spinning = 1;
2009
2010 /* now insert the actual backref */
2011 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2012 path, bytenr, parent, root_objectid,
2013 owner, offset, refs_to_add);
2014 if (ret)
2015 btrfs_abort_transaction(trans, root, ret);
2016 out:
2017 btrfs_free_path(path);
2018 return ret;
2019 }
2020
2021 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2022 struct btrfs_root *root,
2023 struct btrfs_delayed_ref_node *node,
2024 struct btrfs_delayed_extent_op *extent_op,
2025 int insert_reserved)
2026 {
2027 int ret = 0;
2028 struct btrfs_delayed_data_ref *ref;
2029 struct btrfs_key ins;
2030 u64 parent = 0;
2031 u64 ref_root = 0;
2032 u64 flags = 0;
2033
2034 ins.objectid = node->bytenr;
2035 ins.offset = node->num_bytes;
2036 ins.type = BTRFS_EXTENT_ITEM_KEY;
2037
2038 ref = btrfs_delayed_node_to_data_ref(node);
2039 trace_run_delayed_data_ref(node, ref, node->action);
2040
2041 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2042 parent = ref->parent;
2043 else
2044 ref_root = ref->root;
2045
2046 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2047 if (extent_op)
2048 flags |= extent_op->flags_to_set;
2049 ret = alloc_reserved_file_extent(trans, root,
2050 parent, ref_root, flags,
2051 ref->objectid, ref->offset,
2052 &ins, node->ref_mod);
2053 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2054 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2055 node->num_bytes, parent,
2056 ref_root, ref->objectid,
2057 ref->offset, node->ref_mod,
2058 extent_op);
2059 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2060 ret = __btrfs_free_extent(trans, root, node->bytenr,
2061 node->num_bytes, parent,
2062 ref_root, ref->objectid,
2063 ref->offset, node->ref_mod,
2064 extent_op);
2065 } else {
2066 BUG();
2067 }
2068 return ret;
2069 }
2070
2071 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2072 struct extent_buffer *leaf,
2073 struct btrfs_extent_item *ei)
2074 {
2075 u64 flags = btrfs_extent_flags(leaf, ei);
2076 if (extent_op->update_flags) {
2077 flags |= extent_op->flags_to_set;
2078 btrfs_set_extent_flags(leaf, ei, flags);
2079 }
2080
2081 if (extent_op->update_key) {
2082 struct btrfs_tree_block_info *bi;
2083 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2084 bi = (struct btrfs_tree_block_info *)(ei + 1);
2085 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2086 }
2087 }
2088
2089 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2090 struct btrfs_root *root,
2091 struct btrfs_delayed_ref_node *node,
2092 struct btrfs_delayed_extent_op *extent_op)
2093 {
2094 struct btrfs_key key;
2095 struct btrfs_path *path;
2096 struct btrfs_extent_item *ei;
2097 struct extent_buffer *leaf;
2098 u32 item_size;
2099 int ret;
2100 int err = 0;
2101 int metadata = !extent_op->is_data;
2102
2103 if (trans->aborted)
2104 return 0;
2105
2106 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2107 metadata = 0;
2108
2109 path = btrfs_alloc_path();
2110 if (!path)
2111 return -ENOMEM;
2112
2113 key.objectid = node->bytenr;
2114
2115 if (metadata) {
2116 key.type = BTRFS_METADATA_ITEM_KEY;
2117 key.offset = extent_op->level;
2118 } else {
2119 key.type = BTRFS_EXTENT_ITEM_KEY;
2120 key.offset = node->num_bytes;
2121 }
2122
2123 again:
2124 path->reada = 1;
2125 path->leave_spinning = 1;
2126 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2127 path, 0, 1);
2128 if (ret < 0) {
2129 err = ret;
2130 goto out;
2131 }
2132 if (ret > 0) {
2133 if (metadata) {
2134 if (path->slots[0] > 0) {
2135 path->slots[0]--;
2136 btrfs_item_key_to_cpu(path->nodes[0], &key,
2137 path->slots[0]);
2138 if (key.objectid == node->bytenr &&
2139 key.type == BTRFS_EXTENT_ITEM_KEY &&
2140 key.offset == node->num_bytes)
2141 ret = 0;
2142 }
2143 if (ret > 0) {
2144 btrfs_release_path(path);
2145 metadata = 0;
2146
2147 key.objectid = node->bytenr;
2148 key.offset = node->num_bytes;
2149 key.type = BTRFS_EXTENT_ITEM_KEY;
2150 goto again;
2151 }
2152 } else {
2153 err = -EIO;
2154 goto out;
2155 }
2156 }
2157
2158 leaf = path->nodes[0];
2159 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2160 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2161 if (item_size < sizeof(*ei)) {
2162 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2163 path, (u64)-1, 0);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 leaf = path->nodes[0];
2169 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2170 }
2171 #endif
2172 BUG_ON(item_size < sizeof(*ei));
2173 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2174 __run_delayed_extent_op(extent_op, leaf, ei);
2175
2176 btrfs_mark_buffer_dirty(leaf);
2177 out:
2178 btrfs_free_path(path);
2179 return err;
2180 }
2181
2182 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2183 struct btrfs_root *root,
2184 struct btrfs_delayed_ref_node *node,
2185 struct btrfs_delayed_extent_op *extent_op,
2186 int insert_reserved)
2187 {
2188 int ret = 0;
2189 struct btrfs_delayed_tree_ref *ref;
2190 struct btrfs_key ins;
2191 u64 parent = 0;
2192 u64 ref_root = 0;
2193 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2194 SKINNY_METADATA);
2195
2196 ref = btrfs_delayed_node_to_tree_ref(node);
2197 trace_run_delayed_tree_ref(node, ref, node->action);
2198
2199 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2200 parent = ref->parent;
2201 else
2202 ref_root = ref->root;
2203
2204 ins.objectid = node->bytenr;
2205 if (skinny_metadata) {
2206 ins.offset = ref->level;
2207 ins.type = BTRFS_METADATA_ITEM_KEY;
2208 } else {
2209 ins.offset = node->num_bytes;
2210 ins.type = BTRFS_EXTENT_ITEM_KEY;
2211 }
2212
2213 BUG_ON(node->ref_mod != 1);
2214 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2215 BUG_ON(!extent_op || !extent_op->update_flags);
2216 ret = alloc_reserved_tree_block(trans, root,
2217 parent, ref_root,
2218 extent_op->flags_to_set,
2219 &extent_op->key,
2220 ref->level, &ins);
2221 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2222 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2223 node->num_bytes, parent, ref_root,
2224 ref->level, 0, 1, extent_op);
2225 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2226 ret = __btrfs_free_extent(trans, root, node->bytenr,
2227 node->num_bytes, parent, ref_root,
2228 ref->level, 0, 1, extent_op);
2229 } else {
2230 BUG();
2231 }
2232 return ret;
2233 }
2234
2235 /* helper function to actually process a single delayed ref entry */
2236 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2237 struct btrfs_root *root,
2238 struct btrfs_delayed_ref_node *node,
2239 struct btrfs_delayed_extent_op *extent_op,
2240 int insert_reserved)
2241 {
2242 int ret = 0;
2243
2244 if (trans->aborted) {
2245 if (insert_reserved)
2246 btrfs_pin_extent(root, node->bytenr,
2247 node->num_bytes, 1);
2248 return 0;
2249 }
2250
2251 if (btrfs_delayed_ref_is_head(node)) {
2252 struct btrfs_delayed_ref_head *head;
2253 /*
2254 * we've hit the end of the chain and we were supposed
2255 * to insert this extent into the tree. But, it got
2256 * deleted before we ever needed to insert it, so all
2257 * we have to do is clean up the accounting
2258 */
2259 BUG_ON(extent_op);
2260 head = btrfs_delayed_node_to_head(node);
2261 trace_run_delayed_ref_head(node, head, node->action);
2262
2263 if (insert_reserved) {
2264 btrfs_pin_extent(root, node->bytenr,
2265 node->num_bytes, 1);
2266 if (head->is_data) {
2267 ret = btrfs_del_csums(trans, root,
2268 node->bytenr,
2269 node->num_bytes);
2270 }
2271 }
2272 return ret;
2273 }
2274
2275 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2276 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2277 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2278 insert_reserved);
2279 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2280 node->type == BTRFS_SHARED_DATA_REF_KEY)
2281 ret = run_delayed_data_ref(trans, root, node, extent_op,
2282 insert_reserved);
2283 else
2284 BUG();
2285 return ret;
2286 }
2287
2288 static noinline struct btrfs_delayed_ref_node *
2289 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2290 {
2291 struct rb_node *node;
2292 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2293
2294 /*
2295 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2296 * this prevents ref count from going down to zero when
2297 * there still are pending delayed ref.
2298 */
2299 node = rb_first(&head->ref_root);
2300 while (node) {
2301 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2302 rb_node);
2303 if (ref->action == BTRFS_ADD_DELAYED_REF)
2304 return ref;
2305 else if (last == NULL)
2306 last = ref;
2307 node = rb_next(node);
2308 }
2309 return last;
2310 }
2311
2312 /*
2313 * Returns 0 on success or if called with an already aborted transaction.
2314 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2315 */
2316 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2317 struct btrfs_root *root,
2318 unsigned long nr)
2319 {
2320 struct btrfs_delayed_ref_root *delayed_refs;
2321 struct btrfs_delayed_ref_node *ref;
2322 struct btrfs_delayed_ref_head *locked_ref = NULL;
2323 struct btrfs_delayed_extent_op *extent_op;
2324 struct btrfs_fs_info *fs_info = root->fs_info;
2325 ktime_t start = ktime_get();
2326 int ret;
2327 unsigned long count = 0;
2328 unsigned long actual_count = 0;
2329 int must_insert_reserved = 0;
2330
2331 delayed_refs = &trans->transaction->delayed_refs;
2332 while (1) {
2333 if (!locked_ref) {
2334 if (count >= nr)
2335 break;
2336
2337 spin_lock(&delayed_refs->lock);
2338 locked_ref = btrfs_select_ref_head(trans);
2339 if (!locked_ref) {
2340 spin_unlock(&delayed_refs->lock);
2341 break;
2342 }
2343
2344 /* grab the lock that says we are going to process
2345 * all the refs for this head */
2346 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2347 spin_unlock(&delayed_refs->lock);
2348 /*
2349 * we may have dropped the spin lock to get the head
2350 * mutex lock, and that might have given someone else
2351 * time to free the head. If that's true, it has been
2352 * removed from our list and we can move on.
2353 */
2354 if (ret == -EAGAIN) {
2355 locked_ref = NULL;
2356 count++;
2357 continue;
2358 }
2359 }
2360
2361 /*
2362 * We need to try and merge add/drops of the same ref since we
2363 * can run into issues with relocate dropping the implicit ref
2364 * and then it being added back again before the drop can
2365 * finish. If we merged anything we need to re-loop so we can
2366 * get a good ref.
2367 */
2368 spin_lock(&locked_ref->lock);
2369 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2370 locked_ref);
2371
2372 /*
2373 * locked_ref is the head node, so we have to go one
2374 * node back for any delayed ref updates
2375 */
2376 ref = select_delayed_ref(locked_ref);
2377
2378 if (ref && ref->seq &&
2379 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2380 spin_unlock(&locked_ref->lock);
2381 btrfs_delayed_ref_unlock(locked_ref);
2382 spin_lock(&delayed_refs->lock);
2383 locked_ref->processing = 0;
2384 delayed_refs->num_heads_ready++;
2385 spin_unlock(&delayed_refs->lock);
2386 locked_ref = NULL;
2387 cond_resched();
2388 count++;
2389 continue;
2390 }
2391
2392 /*
2393 * record the must insert reserved flag before we
2394 * drop the spin lock.
2395 */
2396 must_insert_reserved = locked_ref->must_insert_reserved;
2397 locked_ref->must_insert_reserved = 0;
2398
2399 extent_op = locked_ref->extent_op;
2400 locked_ref->extent_op = NULL;
2401
2402 if (!ref) {
2403
2404
2405 /* All delayed refs have been processed, Go ahead
2406 * and send the head node to run_one_delayed_ref,
2407 * so that any accounting fixes can happen
2408 */
2409 ref = &locked_ref->node;
2410
2411 if (extent_op && must_insert_reserved) {
2412 btrfs_free_delayed_extent_op(extent_op);
2413 extent_op = NULL;
2414 }
2415
2416 if (extent_op) {
2417 spin_unlock(&locked_ref->lock);
2418 ret = run_delayed_extent_op(trans, root,
2419 ref, extent_op);
2420 btrfs_free_delayed_extent_op(extent_op);
2421
2422 if (ret) {
2423 /*
2424 * Need to reset must_insert_reserved if
2425 * there was an error so the abort stuff
2426 * can cleanup the reserved space
2427 * properly.
2428 */
2429 if (must_insert_reserved)
2430 locked_ref->must_insert_reserved = 1;
2431 locked_ref->processing = 0;
2432 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2433 btrfs_delayed_ref_unlock(locked_ref);
2434 return ret;
2435 }
2436 continue;
2437 }
2438
2439 /*
2440 * Need to drop our head ref lock and re-aqcuire the
2441 * delayed ref lock and then re-check to make sure
2442 * nobody got added.
2443 */
2444 spin_unlock(&locked_ref->lock);
2445 spin_lock(&delayed_refs->lock);
2446 spin_lock(&locked_ref->lock);
2447 if (rb_first(&locked_ref->ref_root)) {
2448 spin_unlock(&locked_ref->lock);
2449 spin_unlock(&delayed_refs->lock);
2450 continue;
2451 }
2452 ref->in_tree = 0;
2453 delayed_refs->num_heads--;
2454 rb_erase(&locked_ref->href_node,
2455 &delayed_refs->href_root);
2456 spin_unlock(&delayed_refs->lock);
2457 } else {
2458 actual_count++;
2459 ref->in_tree = 0;
2460 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2461 }
2462 atomic_dec(&delayed_refs->num_entries);
2463
2464 if (!btrfs_delayed_ref_is_head(ref)) {
2465 /*
2466 * when we play the delayed ref, also correct the
2467 * ref_mod on head
2468 */
2469 switch (ref->action) {
2470 case BTRFS_ADD_DELAYED_REF:
2471 case BTRFS_ADD_DELAYED_EXTENT:
2472 locked_ref->node.ref_mod -= ref->ref_mod;
2473 break;
2474 case BTRFS_DROP_DELAYED_REF:
2475 locked_ref->node.ref_mod += ref->ref_mod;
2476 break;
2477 default:
2478 WARN_ON(1);
2479 }
2480 }
2481 spin_unlock(&locked_ref->lock);
2482
2483 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2484 must_insert_reserved);
2485
2486 btrfs_free_delayed_extent_op(extent_op);
2487 if (ret) {
2488 locked_ref->processing = 0;
2489 btrfs_delayed_ref_unlock(locked_ref);
2490 btrfs_put_delayed_ref(ref);
2491 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2492 return ret;
2493 }
2494
2495 /*
2496 * If this node is a head, that means all the refs in this head
2497 * have been dealt with, and we will pick the next head to deal
2498 * with, so we must unlock the head and drop it from the cluster
2499 * list before we release it.
2500 */
2501 if (btrfs_delayed_ref_is_head(ref)) {
2502 btrfs_delayed_ref_unlock(locked_ref);
2503 locked_ref = NULL;
2504 }
2505 btrfs_put_delayed_ref(ref);
2506 count++;
2507 cond_resched();
2508 }
2509
2510 /*
2511 * We don't want to include ref heads since we can have empty ref heads
2512 * and those will drastically skew our runtime down since we just do
2513 * accounting, no actual extent tree updates.
2514 */
2515 if (actual_count > 0) {
2516 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2517 u64 avg;
2518
2519 /*
2520 * We weigh the current average higher than our current runtime
2521 * to avoid large swings in the average.
2522 */
2523 spin_lock(&delayed_refs->lock);
2524 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2525 avg = div64_u64(avg, 4);
2526 fs_info->avg_delayed_ref_runtime = avg;
2527 spin_unlock(&delayed_refs->lock);
2528 }
2529 return 0;
2530 }
2531
2532 #ifdef SCRAMBLE_DELAYED_REFS
2533 /*
2534 * Normally delayed refs get processed in ascending bytenr order. This
2535 * correlates in most cases to the order added. To expose dependencies on this
2536 * order, we start to process the tree in the middle instead of the beginning
2537 */
2538 static u64 find_middle(struct rb_root *root)
2539 {
2540 struct rb_node *n = root->rb_node;
2541 struct btrfs_delayed_ref_node *entry;
2542 int alt = 1;
2543 u64 middle;
2544 u64 first = 0, last = 0;
2545
2546 n = rb_first(root);
2547 if (n) {
2548 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2549 first = entry->bytenr;
2550 }
2551 n = rb_last(root);
2552 if (n) {
2553 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2554 last = entry->bytenr;
2555 }
2556 n = root->rb_node;
2557
2558 while (n) {
2559 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2560 WARN_ON(!entry->in_tree);
2561
2562 middle = entry->bytenr;
2563
2564 if (alt)
2565 n = n->rb_left;
2566 else
2567 n = n->rb_right;
2568
2569 alt = 1 - alt;
2570 }
2571 return middle;
2572 }
2573 #endif
2574
2575 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2576 struct btrfs_fs_info *fs_info)
2577 {
2578 struct qgroup_update *qgroup_update;
2579 int ret = 0;
2580
2581 if (list_empty(&trans->qgroup_ref_list) !=
2582 !trans->delayed_ref_elem.seq) {
2583 /* list without seq or seq without list */
2584 btrfs_err(fs_info,
2585 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2586 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2587 (u32)(trans->delayed_ref_elem.seq >> 32),
2588 (u32)trans->delayed_ref_elem.seq);
2589 BUG();
2590 }
2591
2592 if (!trans->delayed_ref_elem.seq)
2593 return 0;
2594
2595 while (!list_empty(&trans->qgroup_ref_list)) {
2596 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2597 struct qgroup_update, list);
2598 list_del(&qgroup_update->list);
2599 if (!ret)
2600 ret = btrfs_qgroup_account_ref(
2601 trans, fs_info, qgroup_update->node,
2602 qgroup_update->extent_op);
2603 kfree(qgroup_update);
2604 }
2605
2606 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2607
2608 return ret;
2609 }
2610
2611 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2612 {
2613 u64 num_bytes;
2614
2615 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2616 sizeof(struct btrfs_extent_inline_ref));
2617 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2618 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2619
2620 /*
2621 * We don't ever fill up leaves all the way so multiply by 2 just to be
2622 * closer to what we're really going to want to ouse.
2623 */
2624 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2625 }
2626
2627 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2628 struct btrfs_root *root)
2629 {
2630 struct btrfs_block_rsv *global_rsv;
2631 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2632 u64 num_bytes;
2633 int ret = 0;
2634
2635 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2636 num_heads = heads_to_leaves(root, num_heads);
2637 if (num_heads > 1)
2638 num_bytes += (num_heads - 1) * root->leafsize;
2639 num_bytes <<= 1;
2640 global_rsv = &root->fs_info->global_block_rsv;
2641
2642 /*
2643 * If we can't allocate any more chunks lets make sure we have _lots_ of
2644 * wiggle room since running delayed refs can create more delayed refs.
2645 */
2646 if (global_rsv->space_info->full)
2647 num_bytes <<= 1;
2648
2649 spin_lock(&global_rsv->lock);
2650 if (global_rsv->reserved <= num_bytes)
2651 ret = 1;
2652 spin_unlock(&global_rsv->lock);
2653 return ret;
2654 }
2655
2656 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2657 struct btrfs_root *root)
2658 {
2659 struct btrfs_fs_info *fs_info = root->fs_info;
2660 u64 num_entries =
2661 atomic_read(&trans->transaction->delayed_refs.num_entries);
2662 u64 avg_runtime;
2663
2664 smp_mb();
2665 avg_runtime = fs_info->avg_delayed_ref_runtime;
2666 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2667 return 1;
2668
2669 return btrfs_check_space_for_delayed_refs(trans, root);
2670 }
2671
2672 /*
2673 * this starts processing the delayed reference count updates and
2674 * extent insertions we have queued up so far. count can be
2675 * 0, which means to process everything in the tree at the start
2676 * of the run (but not newly added entries), or it can be some target
2677 * number you'd like to process.
2678 *
2679 * Returns 0 on success or if called with an aborted transaction
2680 * Returns <0 on error and aborts the transaction
2681 */
2682 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2683 struct btrfs_root *root, unsigned long count)
2684 {
2685 struct rb_node *node;
2686 struct btrfs_delayed_ref_root *delayed_refs;
2687 struct btrfs_delayed_ref_head *head;
2688 int ret;
2689 int run_all = count == (unsigned long)-1;
2690 int run_most = 0;
2691
2692 /* We'll clean this up in btrfs_cleanup_transaction */
2693 if (trans->aborted)
2694 return 0;
2695
2696 if (root == root->fs_info->extent_root)
2697 root = root->fs_info->tree_root;
2698
2699 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2700
2701 delayed_refs = &trans->transaction->delayed_refs;
2702 if (count == 0) {
2703 count = atomic_read(&delayed_refs->num_entries) * 2;
2704 run_most = 1;
2705 }
2706
2707 again:
2708 #ifdef SCRAMBLE_DELAYED_REFS
2709 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2710 #endif
2711 ret = __btrfs_run_delayed_refs(trans, root, count);
2712 if (ret < 0) {
2713 btrfs_abort_transaction(trans, root, ret);
2714 return ret;
2715 }
2716
2717 if (run_all) {
2718 if (!list_empty(&trans->new_bgs))
2719 btrfs_create_pending_block_groups(trans, root);
2720
2721 spin_lock(&delayed_refs->lock);
2722 node = rb_first(&delayed_refs->href_root);
2723 if (!node) {
2724 spin_unlock(&delayed_refs->lock);
2725 goto out;
2726 }
2727 count = (unsigned long)-1;
2728
2729 while (node) {
2730 head = rb_entry(node, struct btrfs_delayed_ref_head,
2731 href_node);
2732 if (btrfs_delayed_ref_is_head(&head->node)) {
2733 struct btrfs_delayed_ref_node *ref;
2734
2735 ref = &head->node;
2736 atomic_inc(&ref->refs);
2737
2738 spin_unlock(&delayed_refs->lock);
2739 /*
2740 * Mutex was contended, block until it's
2741 * released and try again
2742 */
2743 mutex_lock(&head->mutex);
2744 mutex_unlock(&head->mutex);
2745
2746 btrfs_put_delayed_ref(ref);
2747 cond_resched();
2748 goto again;
2749 } else {
2750 WARN_ON(1);
2751 }
2752 node = rb_next(node);
2753 }
2754 spin_unlock(&delayed_refs->lock);
2755 cond_resched();
2756 goto again;
2757 }
2758 out:
2759 assert_qgroups_uptodate(trans);
2760 return 0;
2761 }
2762
2763 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2764 struct btrfs_root *root,
2765 u64 bytenr, u64 num_bytes, u64 flags,
2766 int level, int is_data)
2767 {
2768 struct btrfs_delayed_extent_op *extent_op;
2769 int ret;
2770
2771 extent_op = btrfs_alloc_delayed_extent_op();
2772 if (!extent_op)
2773 return -ENOMEM;
2774
2775 extent_op->flags_to_set = flags;
2776 extent_op->update_flags = 1;
2777 extent_op->update_key = 0;
2778 extent_op->is_data = is_data ? 1 : 0;
2779 extent_op->level = level;
2780
2781 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2782 num_bytes, extent_op);
2783 if (ret)
2784 btrfs_free_delayed_extent_op(extent_op);
2785 return ret;
2786 }
2787
2788 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2789 struct btrfs_root *root,
2790 struct btrfs_path *path,
2791 u64 objectid, u64 offset, u64 bytenr)
2792 {
2793 struct btrfs_delayed_ref_head *head;
2794 struct btrfs_delayed_ref_node *ref;
2795 struct btrfs_delayed_data_ref *data_ref;
2796 struct btrfs_delayed_ref_root *delayed_refs;
2797 struct rb_node *node;
2798 int ret = 0;
2799
2800 delayed_refs = &trans->transaction->delayed_refs;
2801 spin_lock(&delayed_refs->lock);
2802 head = btrfs_find_delayed_ref_head(trans, bytenr);
2803 if (!head) {
2804 spin_unlock(&delayed_refs->lock);
2805 return 0;
2806 }
2807
2808 if (!mutex_trylock(&head->mutex)) {
2809 atomic_inc(&head->node.refs);
2810 spin_unlock(&delayed_refs->lock);
2811
2812 btrfs_release_path(path);
2813
2814 /*
2815 * Mutex was contended, block until it's released and let
2816 * caller try again
2817 */
2818 mutex_lock(&head->mutex);
2819 mutex_unlock(&head->mutex);
2820 btrfs_put_delayed_ref(&head->node);
2821 return -EAGAIN;
2822 }
2823 spin_unlock(&delayed_refs->lock);
2824
2825 spin_lock(&head->lock);
2826 node = rb_first(&head->ref_root);
2827 while (node) {
2828 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2829 node = rb_next(node);
2830
2831 /* If it's a shared ref we know a cross reference exists */
2832 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2833 ret = 1;
2834 break;
2835 }
2836
2837 data_ref = btrfs_delayed_node_to_data_ref(ref);
2838
2839 /*
2840 * If our ref doesn't match the one we're currently looking at
2841 * then we have a cross reference.
2842 */
2843 if (data_ref->root != root->root_key.objectid ||
2844 data_ref->objectid != objectid ||
2845 data_ref->offset != offset) {
2846 ret = 1;
2847 break;
2848 }
2849 }
2850 spin_unlock(&head->lock);
2851 mutex_unlock(&head->mutex);
2852 return ret;
2853 }
2854
2855 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2856 struct btrfs_root *root,
2857 struct btrfs_path *path,
2858 u64 objectid, u64 offset, u64 bytenr)
2859 {
2860 struct btrfs_root *extent_root = root->fs_info->extent_root;
2861 struct extent_buffer *leaf;
2862 struct btrfs_extent_data_ref *ref;
2863 struct btrfs_extent_inline_ref *iref;
2864 struct btrfs_extent_item *ei;
2865 struct btrfs_key key;
2866 u32 item_size;
2867 int ret;
2868
2869 key.objectid = bytenr;
2870 key.offset = (u64)-1;
2871 key.type = BTRFS_EXTENT_ITEM_KEY;
2872
2873 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2874 if (ret < 0)
2875 goto out;
2876 BUG_ON(ret == 0); /* Corruption */
2877
2878 ret = -ENOENT;
2879 if (path->slots[0] == 0)
2880 goto out;
2881
2882 path->slots[0]--;
2883 leaf = path->nodes[0];
2884 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2885
2886 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2887 goto out;
2888
2889 ret = 1;
2890 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2891 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2892 if (item_size < sizeof(*ei)) {
2893 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2894 goto out;
2895 }
2896 #endif
2897 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2898
2899 if (item_size != sizeof(*ei) +
2900 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2901 goto out;
2902
2903 if (btrfs_extent_generation(leaf, ei) <=
2904 btrfs_root_last_snapshot(&root->root_item))
2905 goto out;
2906
2907 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2908 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2909 BTRFS_EXTENT_DATA_REF_KEY)
2910 goto out;
2911
2912 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2913 if (btrfs_extent_refs(leaf, ei) !=
2914 btrfs_extent_data_ref_count(leaf, ref) ||
2915 btrfs_extent_data_ref_root(leaf, ref) !=
2916 root->root_key.objectid ||
2917 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2918 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2919 goto out;
2920
2921 ret = 0;
2922 out:
2923 return ret;
2924 }
2925
2926 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2927 struct btrfs_root *root,
2928 u64 objectid, u64 offset, u64 bytenr)
2929 {
2930 struct btrfs_path *path;
2931 int ret;
2932 int ret2;
2933
2934 path = btrfs_alloc_path();
2935 if (!path)
2936 return -ENOENT;
2937
2938 do {
2939 ret = check_committed_ref(trans, root, path, objectid,
2940 offset, bytenr);
2941 if (ret && ret != -ENOENT)
2942 goto out;
2943
2944 ret2 = check_delayed_ref(trans, root, path, objectid,
2945 offset, bytenr);
2946 } while (ret2 == -EAGAIN);
2947
2948 if (ret2 && ret2 != -ENOENT) {
2949 ret = ret2;
2950 goto out;
2951 }
2952
2953 if (ret != -ENOENT || ret2 != -ENOENT)
2954 ret = 0;
2955 out:
2956 btrfs_free_path(path);
2957 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2958 WARN_ON(ret > 0);
2959 return ret;
2960 }
2961
2962 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2963 struct btrfs_root *root,
2964 struct extent_buffer *buf,
2965 int full_backref, int inc, int for_cow)
2966 {
2967 u64 bytenr;
2968 u64 num_bytes;
2969 u64 parent;
2970 u64 ref_root;
2971 u32 nritems;
2972 struct btrfs_key key;
2973 struct btrfs_file_extent_item *fi;
2974 int i;
2975 int level;
2976 int ret = 0;
2977 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2978 u64, u64, u64, u64, u64, u64, int);
2979
2980 ref_root = btrfs_header_owner(buf);
2981 nritems = btrfs_header_nritems(buf);
2982 level = btrfs_header_level(buf);
2983
2984 if (!root->ref_cows && level == 0)
2985 return 0;
2986
2987 if (inc)
2988 process_func = btrfs_inc_extent_ref;
2989 else
2990 process_func = btrfs_free_extent;
2991
2992 if (full_backref)
2993 parent = buf->start;
2994 else
2995 parent = 0;
2996
2997 for (i = 0; i < nritems; i++) {
2998 if (level == 0) {
2999 btrfs_item_key_to_cpu(buf, &key, i);
3000 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3001 continue;
3002 fi = btrfs_item_ptr(buf, i,
3003 struct btrfs_file_extent_item);
3004 if (btrfs_file_extent_type(buf, fi) ==
3005 BTRFS_FILE_EXTENT_INLINE)
3006 continue;
3007 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3008 if (bytenr == 0)
3009 continue;
3010
3011 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3012 key.offset -= btrfs_file_extent_offset(buf, fi);
3013 ret = process_func(trans, root, bytenr, num_bytes,
3014 parent, ref_root, key.objectid,
3015 key.offset, for_cow);
3016 if (ret)
3017 goto fail;
3018 } else {
3019 bytenr = btrfs_node_blockptr(buf, i);
3020 num_bytes = btrfs_level_size(root, level - 1);
3021 ret = process_func(trans, root, bytenr, num_bytes,
3022 parent, ref_root, level - 1, 0,
3023 for_cow);
3024 if (ret)
3025 goto fail;
3026 }
3027 }
3028 return 0;
3029 fail:
3030 return ret;
3031 }
3032
3033 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3034 struct extent_buffer *buf, int full_backref, int for_cow)
3035 {
3036 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3037 }
3038
3039 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3040 struct extent_buffer *buf, int full_backref, int for_cow)
3041 {
3042 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3043 }
3044
3045 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3046 struct btrfs_root *root,
3047 struct btrfs_path *path,
3048 struct btrfs_block_group_cache *cache)
3049 {
3050 int ret;
3051 struct btrfs_root *extent_root = root->fs_info->extent_root;
3052 unsigned long bi;
3053 struct extent_buffer *leaf;
3054
3055 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3056 if (ret < 0)
3057 goto fail;
3058 BUG_ON(ret); /* Corruption */
3059
3060 leaf = path->nodes[0];
3061 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3062 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3063 btrfs_mark_buffer_dirty(leaf);
3064 btrfs_release_path(path);
3065 fail:
3066 if (ret) {
3067 btrfs_abort_transaction(trans, root, ret);
3068 return ret;
3069 }
3070 return 0;
3071
3072 }
3073
3074 static struct btrfs_block_group_cache *
3075 next_block_group(struct btrfs_root *root,
3076 struct btrfs_block_group_cache *cache)
3077 {
3078 struct rb_node *node;
3079 spin_lock(&root->fs_info->block_group_cache_lock);
3080 node = rb_next(&cache->cache_node);
3081 btrfs_put_block_group(cache);
3082 if (node) {
3083 cache = rb_entry(node, struct btrfs_block_group_cache,
3084 cache_node);
3085 btrfs_get_block_group(cache);
3086 } else
3087 cache = NULL;
3088 spin_unlock(&root->fs_info->block_group_cache_lock);
3089 return cache;
3090 }
3091
3092 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3093 struct btrfs_trans_handle *trans,
3094 struct btrfs_path *path)
3095 {
3096 struct btrfs_root *root = block_group->fs_info->tree_root;
3097 struct inode *inode = NULL;
3098 u64 alloc_hint = 0;
3099 int dcs = BTRFS_DC_ERROR;
3100 int num_pages = 0;
3101 int retries = 0;
3102 int ret = 0;
3103
3104 /*
3105 * If this block group is smaller than 100 megs don't bother caching the
3106 * block group.
3107 */
3108 if (block_group->key.offset < (100 * 1024 * 1024)) {
3109 spin_lock(&block_group->lock);
3110 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3111 spin_unlock(&block_group->lock);
3112 return 0;
3113 }
3114
3115 again:
3116 inode = lookup_free_space_inode(root, block_group, path);
3117 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3118 ret = PTR_ERR(inode);
3119 btrfs_release_path(path);
3120 goto out;
3121 }
3122
3123 if (IS_ERR(inode)) {
3124 BUG_ON(retries);
3125 retries++;
3126
3127 if (block_group->ro)
3128 goto out_free;
3129
3130 ret = create_free_space_inode(root, trans, block_group, path);
3131 if (ret)
3132 goto out_free;
3133 goto again;
3134 }
3135
3136 /* We've already setup this transaction, go ahead and exit */
3137 if (block_group->cache_generation == trans->transid &&
3138 i_size_read(inode)) {
3139 dcs = BTRFS_DC_SETUP;
3140 goto out_put;
3141 }
3142
3143 /*
3144 * We want to set the generation to 0, that way if anything goes wrong
3145 * from here on out we know not to trust this cache when we load up next
3146 * time.
3147 */
3148 BTRFS_I(inode)->generation = 0;
3149 ret = btrfs_update_inode(trans, root, inode);
3150 WARN_ON(ret);
3151
3152 if (i_size_read(inode) > 0) {
3153 ret = btrfs_check_trunc_cache_free_space(root,
3154 &root->fs_info->global_block_rsv);
3155 if (ret)
3156 goto out_put;
3157
3158 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3159 if (ret)
3160 goto out_put;
3161 }
3162
3163 spin_lock(&block_group->lock);
3164 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3165 !btrfs_test_opt(root, SPACE_CACHE)) {
3166 /*
3167 * don't bother trying to write stuff out _if_
3168 * a) we're not cached,
3169 * b) we're with nospace_cache mount option.
3170 */
3171 dcs = BTRFS_DC_WRITTEN;
3172 spin_unlock(&block_group->lock);
3173 goto out_put;
3174 }
3175 spin_unlock(&block_group->lock);
3176
3177 /*
3178 * Try to preallocate enough space based on how big the block group is.
3179 * Keep in mind this has to include any pinned space which could end up
3180 * taking up quite a bit since it's not folded into the other space
3181 * cache.
3182 */
3183 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3184 if (!num_pages)
3185 num_pages = 1;
3186
3187 num_pages *= 16;
3188 num_pages *= PAGE_CACHE_SIZE;
3189
3190 ret = btrfs_check_data_free_space(inode, num_pages);
3191 if (ret)
3192 goto out_put;
3193
3194 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3195 num_pages, num_pages,
3196 &alloc_hint);
3197 if (!ret)
3198 dcs = BTRFS_DC_SETUP;
3199 btrfs_free_reserved_data_space(inode, num_pages);
3200
3201 out_put:
3202 iput(inode);
3203 out_free:
3204 btrfs_release_path(path);
3205 out:
3206 spin_lock(&block_group->lock);
3207 if (!ret && dcs == BTRFS_DC_SETUP)
3208 block_group->cache_generation = trans->transid;
3209 block_group->disk_cache_state = dcs;
3210 spin_unlock(&block_group->lock);
3211
3212 return ret;
3213 }
3214
3215 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3216 struct btrfs_root *root)
3217 {
3218 struct btrfs_block_group_cache *cache;
3219 int err = 0;
3220 struct btrfs_path *path;
3221 u64 last = 0;
3222
3223 path = btrfs_alloc_path();
3224 if (!path)
3225 return -ENOMEM;
3226
3227 again:
3228 while (1) {
3229 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3230 while (cache) {
3231 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3232 break;
3233 cache = next_block_group(root, cache);
3234 }
3235 if (!cache) {
3236 if (last == 0)
3237 break;
3238 last = 0;
3239 continue;
3240 }
3241 err = cache_save_setup(cache, trans, path);
3242 last = cache->key.objectid + cache->key.offset;
3243 btrfs_put_block_group(cache);
3244 }
3245
3246 while (1) {
3247 if (last == 0) {
3248 err = btrfs_run_delayed_refs(trans, root,
3249 (unsigned long)-1);
3250 if (err) /* File system offline */
3251 goto out;
3252 }
3253
3254 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3255 while (cache) {
3256 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3257 btrfs_put_block_group(cache);
3258 goto again;
3259 }
3260
3261 if (cache->dirty)
3262 break;
3263 cache = next_block_group(root, cache);
3264 }
3265 if (!cache) {
3266 if (last == 0)
3267 break;
3268 last = 0;
3269 continue;
3270 }
3271
3272 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3273 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3274 cache->dirty = 0;
3275 last = cache->key.objectid + cache->key.offset;
3276
3277 err = write_one_cache_group(trans, root, path, cache);
3278 btrfs_put_block_group(cache);
3279 if (err) /* File system offline */
3280 goto out;
3281 }
3282
3283 while (1) {
3284 /*
3285 * I don't think this is needed since we're just marking our
3286 * preallocated extent as written, but just in case it can't
3287 * hurt.
3288 */
3289 if (last == 0) {
3290 err = btrfs_run_delayed_refs(trans, root,
3291 (unsigned long)-1);
3292 if (err) /* File system offline */
3293 goto out;
3294 }
3295
3296 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3297 while (cache) {
3298 /*
3299 * Really this shouldn't happen, but it could if we
3300 * couldn't write the entire preallocated extent and
3301 * splitting the extent resulted in a new block.
3302 */
3303 if (cache->dirty) {
3304 btrfs_put_block_group(cache);
3305 goto again;
3306 }
3307 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3308 break;
3309 cache = next_block_group(root, cache);
3310 }
3311 if (!cache) {
3312 if (last == 0)
3313 break;
3314 last = 0;
3315 continue;
3316 }
3317
3318 err = btrfs_write_out_cache(root, trans, cache, path);
3319
3320 /*
3321 * If we didn't have an error then the cache state is still
3322 * NEED_WRITE, so we can set it to WRITTEN.
3323 */
3324 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3325 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3326 last = cache->key.objectid + cache->key.offset;
3327 btrfs_put_block_group(cache);
3328 }
3329 out:
3330
3331 btrfs_free_path(path);
3332 return err;
3333 }
3334
3335 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3336 {
3337 struct btrfs_block_group_cache *block_group;
3338 int readonly = 0;
3339
3340 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3341 if (!block_group || block_group->ro)
3342 readonly = 1;
3343 if (block_group)
3344 btrfs_put_block_group(block_group);
3345 return readonly;
3346 }
3347
3348 static const char *alloc_name(u64 flags)
3349 {
3350 switch (flags) {
3351 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3352 return "mixed";
3353 case BTRFS_BLOCK_GROUP_METADATA:
3354 return "metadata";
3355 case BTRFS_BLOCK_GROUP_DATA:
3356 return "data";
3357 case BTRFS_BLOCK_GROUP_SYSTEM:
3358 return "system";
3359 default:
3360 WARN_ON(1);
3361 return "invalid-combination";
3362 };
3363 }
3364
3365 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3366 u64 total_bytes, u64 bytes_used,
3367 struct btrfs_space_info **space_info)
3368 {
3369 struct btrfs_space_info *found;
3370 int i;
3371 int factor;
3372 int ret;
3373
3374 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3375 BTRFS_BLOCK_GROUP_RAID10))
3376 factor = 2;
3377 else
3378 factor = 1;
3379
3380 found = __find_space_info(info, flags);
3381 if (found) {
3382 spin_lock(&found->lock);
3383 found->total_bytes += total_bytes;
3384 found->disk_total += total_bytes * factor;
3385 found->bytes_used += bytes_used;
3386 found->disk_used += bytes_used * factor;
3387 found->full = 0;
3388 spin_unlock(&found->lock);
3389 *space_info = found;
3390 return 0;
3391 }
3392 found = kzalloc(sizeof(*found), GFP_NOFS);
3393 if (!found)
3394 return -ENOMEM;
3395
3396 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3397 if (ret) {
3398 kfree(found);
3399 return ret;
3400 }
3401
3402 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
3403 INIT_LIST_HEAD(&found->block_groups[i]);
3404 kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
3405 }
3406 init_rwsem(&found->groups_sem);
3407 spin_lock_init(&found->lock);
3408 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3409 found->total_bytes = total_bytes;
3410 found->disk_total = total_bytes * factor;
3411 found->bytes_used = bytes_used;
3412 found->disk_used = bytes_used * factor;
3413 found->bytes_pinned = 0;
3414 found->bytes_reserved = 0;
3415 found->bytes_readonly = 0;
3416 found->bytes_may_use = 0;
3417 found->full = 0;
3418 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3419 found->chunk_alloc = 0;
3420 found->flush = 0;
3421 init_waitqueue_head(&found->wait);
3422
3423 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3424 info->space_info_kobj, "%s",
3425 alloc_name(found->flags));
3426 if (ret) {
3427 kfree(found);
3428 return ret;
3429 }
3430
3431 *space_info = found;
3432 list_add_rcu(&found->list, &info->space_info);
3433 if (flags & BTRFS_BLOCK_GROUP_DATA)
3434 info->data_sinfo = found;
3435
3436 return ret;
3437 }
3438
3439 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3440 {
3441 u64 extra_flags = chunk_to_extended(flags) &
3442 BTRFS_EXTENDED_PROFILE_MASK;
3443
3444 write_seqlock(&fs_info->profiles_lock);
3445 if (flags & BTRFS_BLOCK_GROUP_DATA)
3446 fs_info->avail_data_alloc_bits |= extra_flags;
3447 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3448 fs_info->avail_metadata_alloc_bits |= extra_flags;
3449 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3450 fs_info->avail_system_alloc_bits |= extra_flags;
3451 write_sequnlock(&fs_info->profiles_lock);
3452 }
3453
3454 /*
3455 * returns target flags in extended format or 0 if restripe for this
3456 * chunk_type is not in progress
3457 *
3458 * should be called with either volume_mutex or balance_lock held
3459 */
3460 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3461 {
3462 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3463 u64 target = 0;
3464
3465 if (!bctl)
3466 return 0;
3467
3468 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3469 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3470 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3471 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3472 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3473 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3474 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3475 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3476 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3477 }
3478
3479 return target;
3480 }
3481
3482 /*
3483 * @flags: available profiles in extended format (see ctree.h)
3484 *
3485 * Returns reduced profile in chunk format. If profile changing is in
3486 * progress (either running or paused) picks the target profile (if it's
3487 * already available), otherwise falls back to plain reducing.
3488 */
3489 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3490 {
3491 /*
3492 * we add in the count of missing devices because we want
3493 * to make sure that any RAID levels on a degraded FS
3494 * continue to be honored.
3495 */
3496 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3497 root->fs_info->fs_devices->missing_devices;
3498 u64 target;
3499 u64 tmp;
3500
3501 /*
3502 * see if restripe for this chunk_type is in progress, if so
3503 * try to reduce to the target profile
3504 */
3505 spin_lock(&root->fs_info->balance_lock);
3506 target = get_restripe_target(root->fs_info, flags);
3507 if (target) {
3508 /* pick target profile only if it's already available */
3509 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3510 spin_unlock(&root->fs_info->balance_lock);
3511 return extended_to_chunk(target);
3512 }
3513 }
3514 spin_unlock(&root->fs_info->balance_lock);
3515
3516 /* First, mask out the RAID levels which aren't possible */
3517 if (num_devices == 1)
3518 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3519 BTRFS_BLOCK_GROUP_RAID5);
3520 if (num_devices < 3)
3521 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3522 if (num_devices < 4)
3523 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3524
3525 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3526 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3527 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3528 flags &= ~tmp;
3529
3530 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3531 tmp = BTRFS_BLOCK_GROUP_RAID6;
3532 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3533 tmp = BTRFS_BLOCK_GROUP_RAID5;
3534 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3535 tmp = BTRFS_BLOCK_GROUP_RAID10;
3536 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3537 tmp = BTRFS_BLOCK_GROUP_RAID1;
3538 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3539 tmp = BTRFS_BLOCK_GROUP_RAID0;
3540
3541 return extended_to_chunk(flags | tmp);
3542 }
3543
3544 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3545 {
3546 unsigned seq;
3547
3548 do {
3549 seq = read_seqbegin(&root->fs_info->profiles_lock);
3550
3551 if (flags & BTRFS_BLOCK_GROUP_DATA)
3552 flags |= root->fs_info->avail_data_alloc_bits;
3553 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3554 flags |= root->fs_info->avail_system_alloc_bits;
3555 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3556 flags |= root->fs_info->avail_metadata_alloc_bits;
3557 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3558
3559 return btrfs_reduce_alloc_profile(root, flags);
3560 }
3561
3562 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3563 {
3564 u64 flags;
3565 u64 ret;
3566
3567 if (data)
3568 flags = BTRFS_BLOCK_GROUP_DATA;
3569 else if (root == root->fs_info->chunk_root)
3570 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3571 else
3572 flags = BTRFS_BLOCK_GROUP_METADATA;
3573
3574 ret = get_alloc_profile(root, flags);
3575 return ret;
3576 }
3577
3578 /*
3579 * This will check the space that the inode allocates from to make sure we have
3580 * enough space for bytes.
3581 */
3582 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3583 {
3584 struct btrfs_space_info *data_sinfo;
3585 struct btrfs_root *root = BTRFS_I(inode)->root;
3586 struct btrfs_fs_info *fs_info = root->fs_info;
3587 u64 used;
3588 int ret = 0, committed = 0, alloc_chunk = 1;
3589
3590 /* make sure bytes are sectorsize aligned */
3591 bytes = ALIGN(bytes, root->sectorsize);
3592
3593 if (btrfs_is_free_space_inode(inode)) {
3594 committed = 1;
3595 ASSERT(current->journal_info);
3596 }
3597
3598 data_sinfo = fs_info->data_sinfo;
3599 if (!data_sinfo)
3600 goto alloc;
3601
3602 again:
3603 /* make sure we have enough space to handle the data first */
3604 spin_lock(&data_sinfo->lock);
3605 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3606 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3607 data_sinfo->bytes_may_use;
3608
3609 if (used + bytes > data_sinfo->total_bytes) {
3610 struct btrfs_trans_handle *trans;
3611
3612 /*
3613 * if we don't have enough free bytes in this space then we need
3614 * to alloc a new chunk.
3615 */
3616 if (!data_sinfo->full && alloc_chunk) {
3617 u64 alloc_target;
3618
3619 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3620 spin_unlock(&data_sinfo->lock);
3621 alloc:
3622 alloc_target = btrfs_get_alloc_profile(root, 1);
3623 /*
3624 * It is ugly that we don't call nolock join
3625 * transaction for the free space inode case here.
3626 * But it is safe because we only do the data space
3627 * reservation for the free space cache in the
3628 * transaction context, the common join transaction
3629 * just increase the counter of the current transaction
3630 * handler, doesn't try to acquire the trans_lock of
3631 * the fs.
3632 */
3633 trans = btrfs_join_transaction(root);
3634 if (IS_ERR(trans))
3635 return PTR_ERR(trans);
3636
3637 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3638 alloc_target,
3639 CHUNK_ALLOC_NO_FORCE);
3640 btrfs_end_transaction(trans, root);
3641 if (ret < 0) {
3642 if (ret != -ENOSPC)
3643 return ret;
3644 else
3645 goto commit_trans;
3646 }
3647
3648 if (!data_sinfo)
3649 data_sinfo = fs_info->data_sinfo;
3650
3651 goto again;
3652 }
3653
3654 /*
3655 * If we don't have enough pinned space to deal with this
3656 * allocation don't bother committing the transaction.
3657 */
3658 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3659 bytes) < 0)
3660 committed = 1;
3661 spin_unlock(&data_sinfo->lock);
3662
3663 /* commit the current transaction and try again */
3664 commit_trans:
3665 if (!committed &&
3666 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3667 committed = 1;
3668
3669 trans = btrfs_join_transaction(root);
3670 if (IS_ERR(trans))
3671 return PTR_ERR(trans);
3672 ret = btrfs_commit_transaction(trans, root);
3673 if (ret)
3674 return ret;
3675 goto again;
3676 }
3677
3678 trace_btrfs_space_reservation(root->fs_info,
3679 "space_info:enospc",
3680 data_sinfo->flags, bytes, 1);
3681 return -ENOSPC;
3682 }
3683 data_sinfo->bytes_may_use += bytes;
3684 trace_btrfs_space_reservation(root->fs_info, "space_info",
3685 data_sinfo->flags, bytes, 1);
3686 spin_unlock(&data_sinfo->lock);
3687
3688 return 0;
3689 }
3690
3691 /*
3692 * Called if we need to clear a data reservation for this inode.
3693 */
3694 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3695 {
3696 struct btrfs_root *root = BTRFS_I(inode)->root;
3697 struct btrfs_space_info *data_sinfo;
3698
3699 /* make sure bytes are sectorsize aligned */
3700 bytes = ALIGN(bytes, root->sectorsize);
3701
3702 data_sinfo = root->fs_info->data_sinfo;
3703 spin_lock(&data_sinfo->lock);
3704 WARN_ON(data_sinfo->bytes_may_use < bytes);
3705 data_sinfo->bytes_may_use -= bytes;
3706 trace_btrfs_space_reservation(root->fs_info, "space_info",
3707 data_sinfo->flags, bytes, 0);
3708 spin_unlock(&data_sinfo->lock);
3709 }
3710
3711 static void force_metadata_allocation(struct btrfs_fs_info *info)
3712 {
3713 struct list_head *head = &info->space_info;
3714 struct btrfs_space_info *found;
3715
3716 rcu_read_lock();
3717 list_for_each_entry_rcu(found, head, list) {
3718 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3719 found->force_alloc = CHUNK_ALLOC_FORCE;
3720 }
3721 rcu_read_unlock();
3722 }
3723
3724 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3725 {
3726 return (global->size << 1);
3727 }
3728
3729 static int should_alloc_chunk(struct btrfs_root *root,
3730 struct btrfs_space_info *sinfo, int force)
3731 {
3732 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3733 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3734 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3735 u64 thresh;
3736
3737 if (force == CHUNK_ALLOC_FORCE)
3738 return 1;
3739
3740 /*
3741 * We need to take into account the global rsv because for all intents
3742 * and purposes it's used space. Don't worry about locking the
3743 * global_rsv, it doesn't change except when the transaction commits.
3744 */
3745 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3746 num_allocated += calc_global_rsv_need_space(global_rsv);
3747
3748 /*
3749 * in limited mode, we want to have some free space up to
3750 * about 1% of the FS size.
3751 */
3752 if (force == CHUNK_ALLOC_LIMITED) {
3753 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3754 thresh = max_t(u64, 64 * 1024 * 1024,
3755 div_factor_fine(thresh, 1));
3756
3757 if (num_bytes - num_allocated < thresh)
3758 return 1;
3759 }
3760
3761 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3762 return 0;
3763 return 1;
3764 }
3765
3766 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3767 {
3768 u64 num_dev;
3769
3770 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3771 BTRFS_BLOCK_GROUP_RAID0 |
3772 BTRFS_BLOCK_GROUP_RAID5 |
3773 BTRFS_BLOCK_GROUP_RAID6))
3774 num_dev = root->fs_info->fs_devices->rw_devices;
3775 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3776 num_dev = 2;
3777 else
3778 num_dev = 1; /* DUP or single */
3779
3780 /* metadata for updaing devices and chunk tree */
3781 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3782 }
3783
3784 static void check_system_chunk(struct btrfs_trans_handle *trans,
3785 struct btrfs_root *root, u64 type)
3786 {
3787 struct btrfs_space_info *info;
3788 u64 left;
3789 u64 thresh;
3790
3791 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3792 spin_lock(&info->lock);
3793 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3794 info->bytes_reserved - info->bytes_readonly;
3795 spin_unlock(&info->lock);
3796
3797 thresh = get_system_chunk_thresh(root, type);
3798 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3799 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3800 left, thresh, type);
3801 dump_space_info(info, 0, 0);
3802 }
3803
3804 if (left < thresh) {
3805 u64 flags;
3806
3807 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3808 btrfs_alloc_chunk(trans, root, flags);
3809 }
3810 }
3811
3812 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3813 struct btrfs_root *extent_root, u64 flags, int force)
3814 {
3815 struct btrfs_space_info *space_info;
3816 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3817 int wait_for_alloc = 0;
3818 int ret = 0;
3819
3820 /* Don't re-enter if we're already allocating a chunk */
3821 if (trans->allocating_chunk)
3822 return -ENOSPC;
3823
3824 space_info = __find_space_info(extent_root->fs_info, flags);
3825 if (!space_info) {
3826 ret = update_space_info(extent_root->fs_info, flags,
3827 0, 0, &space_info);
3828 BUG_ON(ret); /* -ENOMEM */
3829 }
3830 BUG_ON(!space_info); /* Logic error */
3831
3832 again:
3833 spin_lock(&space_info->lock);
3834 if (force < space_info->force_alloc)
3835 force = space_info->force_alloc;
3836 if (space_info->full) {
3837 if (should_alloc_chunk(extent_root, space_info, force))
3838 ret = -ENOSPC;
3839 else
3840 ret = 0;
3841 spin_unlock(&space_info->lock);
3842 return ret;
3843 }
3844
3845 if (!should_alloc_chunk(extent_root, space_info, force)) {
3846 spin_unlock(&space_info->lock);
3847 return 0;
3848 } else if (space_info->chunk_alloc) {
3849 wait_for_alloc = 1;
3850 } else {
3851 space_info->chunk_alloc = 1;
3852 }
3853
3854 spin_unlock(&space_info->lock);
3855
3856 mutex_lock(&fs_info->chunk_mutex);
3857
3858 /*
3859 * The chunk_mutex is held throughout the entirety of a chunk
3860 * allocation, so once we've acquired the chunk_mutex we know that the
3861 * other guy is done and we need to recheck and see if we should
3862 * allocate.
3863 */
3864 if (wait_for_alloc) {
3865 mutex_unlock(&fs_info->chunk_mutex);
3866 wait_for_alloc = 0;
3867 goto again;
3868 }
3869
3870 trans->allocating_chunk = true;
3871
3872 /*
3873 * If we have mixed data/metadata chunks we want to make sure we keep
3874 * allocating mixed chunks instead of individual chunks.
3875 */
3876 if (btrfs_mixed_space_info(space_info))
3877 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3878
3879 /*
3880 * if we're doing a data chunk, go ahead and make sure that
3881 * we keep a reasonable number of metadata chunks allocated in the
3882 * FS as well.
3883 */
3884 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3885 fs_info->data_chunk_allocations++;
3886 if (!(fs_info->data_chunk_allocations %
3887 fs_info->metadata_ratio))
3888 force_metadata_allocation(fs_info);
3889 }
3890
3891 /*
3892 * Check if we have enough space in SYSTEM chunk because we may need
3893 * to update devices.
3894 */
3895 check_system_chunk(trans, extent_root, flags);
3896
3897 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3898 trans->allocating_chunk = false;
3899
3900 spin_lock(&space_info->lock);
3901 if (ret < 0 && ret != -ENOSPC)
3902 goto out;
3903 if (ret)
3904 space_info->full = 1;
3905 else
3906 ret = 1;
3907
3908 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3909 out:
3910 space_info->chunk_alloc = 0;
3911 spin_unlock(&space_info->lock);
3912 mutex_unlock(&fs_info->chunk_mutex);
3913 return ret;
3914 }
3915
3916 static int can_overcommit(struct btrfs_root *root,
3917 struct btrfs_space_info *space_info, u64 bytes,
3918 enum btrfs_reserve_flush_enum flush)
3919 {
3920 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3921 u64 profile = btrfs_get_alloc_profile(root, 0);
3922 u64 space_size;
3923 u64 avail;
3924 u64 used;
3925
3926 used = space_info->bytes_used + space_info->bytes_reserved +
3927 space_info->bytes_pinned + space_info->bytes_readonly;
3928
3929 /*
3930 * We only want to allow over committing if we have lots of actual space
3931 * free, but if we don't have enough space to handle the global reserve
3932 * space then we could end up having a real enospc problem when trying
3933 * to allocate a chunk or some other such important allocation.
3934 */
3935 spin_lock(&global_rsv->lock);
3936 space_size = calc_global_rsv_need_space(global_rsv);
3937 spin_unlock(&global_rsv->lock);
3938 if (used + space_size >= space_info->total_bytes)
3939 return 0;
3940
3941 used += space_info->bytes_may_use;
3942
3943 spin_lock(&root->fs_info->free_chunk_lock);
3944 avail = root->fs_info->free_chunk_space;
3945 spin_unlock(&root->fs_info->free_chunk_lock);
3946
3947 /*
3948 * If we have dup, raid1 or raid10 then only half of the free
3949 * space is actually useable. For raid56, the space info used
3950 * doesn't include the parity drive, so we don't have to
3951 * change the math
3952 */
3953 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3954 BTRFS_BLOCK_GROUP_RAID1 |
3955 BTRFS_BLOCK_GROUP_RAID10))
3956 avail >>= 1;
3957
3958 /*
3959 * If we aren't flushing all things, let us overcommit up to
3960 * 1/2th of the space. If we can flush, don't let us overcommit
3961 * too much, let it overcommit up to 1/8 of the space.
3962 */
3963 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3964 avail >>= 3;
3965 else
3966 avail >>= 1;
3967
3968 if (used + bytes < space_info->total_bytes + avail)
3969 return 1;
3970 return 0;
3971 }
3972
3973 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3974 unsigned long nr_pages)
3975 {
3976 struct super_block *sb = root->fs_info->sb;
3977
3978 if (down_read_trylock(&sb->s_umount)) {
3979 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3980 up_read(&sb->s_umount);
3981 } else {
3982 /*
3983 * We needn't worry the filesystem going from r/w to r/o though
3984 * we don't acquire ->s_umount mutex, because the filesystem
3985 * should guarantee the delalloc inodes list be empty after
3986 * the filesystem is readonly(all dirty pages are written to
3987 * the disk).
3988 */
3989 btrfs_start_delalloc_roots(root->fs_info, 0);
3990 if (!current->journal_info)
3991 btrfs_wait_ordered_roots(root->fs_info, -1);
3992 }
3993 }
3994
3995 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
3996 {
3997 u64 bytes;
3998 int nr;
3999
4000 bytes = btrfs_calc_trans_metadata_size(root, 1);
4001 nr = (int)div64_u64(to_reclaim, bytes);
4002 if (!nr)
4003 nr = 1;
4004 return nr;
4005 }
4006
4007 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4008
4009 /*
4010 * shrink metadata reservation for delalloc
4011 */
4012 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4013 bool wait_ordered)
4014 {
4015 struct btrfs_block_rsv *block_rsv;
4016 struct btrfs_space_info *space_info;
4017 struct btrfs_trans_handle *trans;
4018 u64 delalloc_bytes;
4019 u64 max_reclaim;
4020 long time_left;
4021 unsigned long nr_pages;
4022 int loops;
4023 int items;
4024 enum btrfs_reserve_flush_enum flush;
4025
4026 /* Calc the number of the pages we need flush for space reservation */
4027 items = calc_reclaim_items_nr(root, to_reclaim);
4028 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4029
4030 trans = (struct btrfs_trans_handle *)current->journal_info;
4031 block_rsv = &root->fs_info->delalloc_block_rsv;
4032 space_info = block_rsv->space_info;
4033
4034 delalloc_bytes = percpu_counter_sum_positive(
4035 &root->fs_info->delalloc_bytes);
4036 if (delalloc_bytes == 0) {
4037 if (trans)
4038 return;
4039 if (wait_ordered)
4040 btrfs_wait_ordered_roots(root->fs_info, items);
4041 return;
4042 }
4043
4044 loops = 0;
4045 while (delalloc_bytes && loops < 3) {
4046 max_reclaim = min(delalloc_bytes, to_reclaim);
4047 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4048 btrfs_writeback_inodes_sb_nr(root, nr_pages);
4049 /*
4050 * We need to wait for the async pages to actually start before
4051 * we do anything.
4052 */
4053 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4054 if (!max_reclaim)
4055 goto skip_async;
4056
4057 if (max_reclaim <= nr_pages)
4058 max_reclaim = 0;
4059 else
4060 max_reclaim -= nr_pages;
4061
4062 wait_event(root->fs_info->async_submit_wait,
4063 atomic_read(&root->fs_info->async_delalloc_pages) <=
4064 (int)max_reclaim);
4065 skip_async:
4066 if (!trans)
4067 flush = BTRFS_RESERVE_FLUSH_ALL;
4068 else
4069 flush = BTRFS_RESERVE_NO_FLUSH;
4070 spin_lock(&space_info->lock);
4071 if (can_overcommit(root, space_info, orig, flush)) {
4072 spin_unlock(&space_info->lock);
4073 break;
4074 }
4075 spin_unlock(&space_info->lock);
4076
4077 loops++;
4078 if (wait_ordered && !trans) {
4079 btrfs_wait_ordered_roots(root->fs_info, items);
4080 } else {
4081 time_left = schedule_timeout_killable(1);
4082 if (time_left)
4083 break;
4084 }
4085 delalloc_bytes = percpu_counter_sum_positive(
4086 &root->fs_info->delalloc_bytes);
4087 }
4088 }
4089
4090 /**
4091 * maybe_commit_transaction - possibly commit the transaction if its ok to
4092 * @root - the root we're allocating for
4093 * @bytes - the number of bytes we want to reserve
4094 * @force - force the commit
4095 *
4096 * This will check to make sure that committing the transaction will actually
4097 * get us somewhere and then commit the transaction if it does. Otherwise it
4098 * will return -ENOSPC.
4099 */
4100 static int may_commit_transaction(struct btrfs_root *root,
4101 struct btrfs_space_info *space_info,
4102 u64 bytes, int force)
4103 {
4104 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4105 struct btrfs_trans_handle *trans;
4106
4107 trans = (struct btrfs_trans_handle *)current->journal_info;
4108 if (trans)
4109 return -EAGAIN;
4110
4111 if (force)
4112 goto commit;
4113
4114 /* See if there is enough pinned space to make this reservation */
4115 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4116 bytes) >= 0)
4117 goto commit;
4118
4119 /*
4120 * See if there is some space in the delayed insertion reservation for
4121 * this reservation.
4122 */
4123 if (space_info != delayed_rsv->space_info)
4124 return -ENOSPC;
4125
4126 spin_lock(&delayed_rsv->lock);
4127 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4128 bytes - delayed_rsv->size) >= 0) {
4129 spin_unlock(&delayed_rsv->lock);
4130 return -ENOSPC;
4131 }
4132 spin_unlock(&delayed_rsv->lock);
4133
4134 commit:
4135 trans = btrfs_join_transaction(root);
4136 if (IS_ERR(trans))
4137 return -ENOSPC;
4138
4139 return btrfs_commit_transaction(trans, root);
4140 }
4141
4142 enum flush_state {
4143 FLUSH_DELAYED_ITEMS_NR = 1,
4144 FLUSH_DELAYED_ITEMS = 2,
4145 FLUSH_DELALLOC = 3,
4146 FLUSH_DELALLOC_WAIT = 4,
4147 ALLOC_CHUNK = 5,
4148 COMMIT_TRANS = 6,
4149 };
4150
4151 static int flush_space(struct btrfs_root *root,
4152 struct btrfs_space_info *space_info, u64 num_bytes,
4153 u64 orig_bytes, int state)
4154 {
4155 struct btrfs_trans_handle *trans;
4156 int nr;
4157 int ret = 0;
4158
4159 switch (state) {
4160 case FLUSH_DELAYED_ITEMS_NR:
4161 case FLUSH_DELAYED_ITEMS:
4162 if (state == FLUSH_DELAYED_ITEMS_NR)
4163 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4164 else
4165 nr = -1;
4166
4167 trans = btrfs_join_transaction(root);
4168 if (IS_ERR(trans)) {
4169 ret = PTR_ERR(trans);
4170 break;
4171 }
4172 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4173 btrfs_end_transaction(trans, root);
4174 break;
4175 case FLUSH_DELALLOC:
4176 case FLUSH_DELALLOC_WAIT:
4177 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4178 state == FLUSH_DELALLOC_WAIT);
4179 break;
4180 case ALLOC_CHUNK:
4181 trans = btrfs_join_transaction(root);
4182 if (IS_ERR(trans)) {
4183 ret = PTR_ERR(trans);
4184 break;
4185 }
4186 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4187 btrfs_get_alloc_profile(root, 0),
4188 CHUNK_ALLOC_NO_FORCE);
4189 btrfs_end_transaction(trans, root);
4190 if (ret == -ENOSPC)
4191 ret = 0;
4192 break;
4193 case COMMIT_TRANS:
4194 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4195 break;
4196 default:
4197 ret = -ENOSPC;
4198 break;
4199 }
4200
4201 return ret;
4202 }
4203 /**
4204 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4205 * @root - the root we're allocating for
4206 * @block_rsv - the block_rsv we're allocating for
4207 * @orig_bytes - the number of bytes we want
4208 * @flush - whether or not we can flush to make our reservation
4209 *
4210 * This will reserve orgi_bytes number of bytes from the space info associated
4211 * with the block_rsv. If there is not enough space it will make an attempt to
4212 * flush out space to make room. It will do this by flushing delalloc if
4213 * possible or committing the transaction. If flush is 0 then no attempts to
4214 * regain reservations will be made and this will fail if there is not enough
4215 * space already.
4216 */
4217 static int reserve_metadata_bytes(struct btrfs_root *root,
4218 struct btrfs_block_rsv *block_rsv,
4219 u64 orig_bytes,
4220 enum btrfs_reserve_flush_enum flush)
4221 {
4222 struct btrfs_space_info *space_info = block_rsv->space_info;
4223 u64 used;
4224 u64 num_bytes = orig_bytes;
4225 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4226 int ret = 0;
4227 bool flushing = false;
4228
4229 again:
4230 ret = 0;
4231 spin_lock(&space_info->lock);
4232 /*
4233 * We only want to wait if somebody other than us is flushing and we
4234 * are actually allowed to flush all things.
4235 */
4236 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4237 space_info->flush) {
4238 spin_unlock(&space_info->lock);
4239 /*
4240 * If we have a trans handle we can't wait because the flusher
4241 * may have to commit the transaction, which would mean we would
4242 * deadlock since we are waiting for the flusher to finish, but
4243 * hold the current transaction open.
4244 */
4245 if (current->journal_info)
4246 return -EAGAIN;
4247 ret = wait_event_killable(space_info->wait, !space_info->flush);
4248 /* Must have been killed, return */
4249 if (ret)
4250 return -EINTR;
4251
4252 spin_lock(&space_info->lock);
4253 }
4254
4255 ret = -ENOSPC;
4256 used = space_info->bytes_used + space_info->bytes_reserved +
4257 space_info->bytes_pinned + space_info->bytes_readonly +
4258 space_info->bytes_may_use;
4259
4260 /*
4261 * The idea here is that we've not already over-reserved the block group
4262 * then we can go ahead and save our reservation first and then start
4263 * flushing if we need to. Otherwise if we've already overcommitted
4264 * lets start flushing stuff first and then come back and try to make
4265 * our reservation.
4266 */
4267 if (used <= space_info->total_bytes) {
4268 if (used + orig_bytes <= space_info->total_bytes) {
4269 space_info->bytes_may_use += orig_bytes;
4270 trace_btrfs_space_reservation(root->fs_info,
4271 "space_info", space_info->flags, orig_bytes, 1);
4272 ret = 0;
4273 } else {
4274 /*
4275 * Ok set num_bytes to orig_bytes since we aren't
4276 * overocmmitted, this way we only try and reclaim what
4277 * we need.
4278 */
4279 num_bytes = orig_bytes;
4280 }
4281 } else {
4282 /*
4283 * Ok we're over committed, set num_bytes to the overcommitted
4284 * amount plus the amount of bytes that we need for this
4285 * reservation.
4286 */
4287 num_bytes = used - space_info->total_bytes +
4288 (orig_bytes * 2);
4289 }
4290
4291 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4292 space_info->bytes_may_use += orig_bytes;
4293 trace_btrfs_space_reservation(root->fs_info, "space_info",
4294 space_info->flags, orig_bytes,
4295 1);
4296 ret = 0;
4297 }
4298
4299 /*
4300 * Couldn't make our reservation, save our place so while we're trying
4301 * to reclaim space we can actually use it instead of somebody else
4302 * stealing it from us.
4303 *
4304 * We make the other tasks wait for the flush only when we can flush
4305 * all things.
4306 */
4307 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4308 flushing = true;
4309 space_info->flush = 1;
4310 }
4311
4312 spin_unlock(&space_info->lock);
4313
4314 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4315 goto out;
4316
4317 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4318 flush_state);
4319 flush_state++;
4320
4321 /*
4322 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4323 * would happen. So skip delalloc flush.
4324 */
4325 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4326 (flush_state == FLUSH_DELALLOC ||
4327 flush_state == FLUSH_DELALLOC_WAIT))
4328 flush_state = ALLOC_CHUNK;
4329
4330 if (!ret)
4331 goto again;
4332 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4333 flush_state < COMMIT_TRANS)
4334 goto again;
4335 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4336 flush_state <= COMMIT_TRANS)
4337 goto again;
4338
4339 out:
4340 if (ret == -ENOSPC &&
4341 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4342 struct btrfs_block_rsv *global_rsv =
4343 &root->fs_info->global_block_rsv;
4344
4345 if (block_rsv != global_rsv &&
4346 !block_rsv_use_bytes(global_rsv, orig_bytes))
4347 ret = 0;
4348 }
4349 if (ret == -ENOSPC)
4350 trace_btrfs_space_reservation(root->fs_info,
4351 "space_info:enospc",
4352 space_info->flags, orig_bytes, 1);
4353 if (flushing) {
4354 spin_lock(&space_info->lock);
4355 space_info->flush = 0;
4356 wake_up_all(&space_info->wait);
4357 spin_unlock(&space_info->lock);
4358 }
4359 return ret;
4360 }
4361
4362 static struct btrfs_block_rsv *get_block_rsv(
4363 const struct btrfs_trans_handle *trans,
4364 const struct btrfs_root *root)
4365 {
4366 struct btrfs_block_rsv *block_rsv = NULL;
4367
4368 if (root->ref_cows)
4369 block_rsv = trans->block_rsv;
4370
4371 if (root == root->fs_info->csum_root && trans->adding_csums)
4372 block_rsv = trans->block_rsv;
4373
4374 if (root == root->fs_info->uuid_root)
4375 block_rsv = trans->block_rsv;
4376
4377 if (!block_rsv)
4378 block_rsv = root->block_rsv;
4379
4380 if (!block_rsv)
4381 block_rsv = &root->fs_info->empty_block_rsv;
4382
4383 return block_rsv;
4384 }
4385
4386 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4387 u64 num_bytes)
4388 {
4389 int ret = -ENOSPC;
4390 spin_lock(&block_rsv->lock);
4391 if (block_rsv->reserved >= num_bytes) {
4392 block_rsv->reserved -= num_bytes;
4393 if (block_rsv->reserved < block_rsv->size)
4394 block_rsv->full = 0;
4395 ret = 0;
4396 }
4397 spin_unlock(&block_rsv->lock);
4398 return ret;
4399 }
4400
4401 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4402 u64 num_bytes, int update_size)
4403 {
4404 spin_lock(&block_rsv->lock);
4405 block_rsv->reserved += num_bytes;
4406 if (update_size)
4407 block_rsv->size += num_bytes;
4408 else if (block_rsv->reserved >= block_rsv->size)
4409 block_rsv->full = 1;
4410 spin_unlock(&block_rsv->lock);
4411 }
4412
4413 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4414 struct btrfs_block_rsv *dest, u64 num_bytes,
4415 int min_factor)
4416 {
4417 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4418 u64 min_bytes;
4419
4420 if (global_rsv->space_info != dest->space_info)
4421 return -ENOSPC;
4422
4423 spin_lock(&global_rsv->lock);
4424 min_bytes = div_factor(global_rsv->size, min_factor);
4425 if (global_rsv->reserved < min_bytes + num_bytes) {
4426 spin_unlock(&global_rsv->lock);
4427 return -ENOSPC;
4428 }
4429 global_rsv->reserved -= num_bytes;
4430 if (global_rsv->reserved < global_rsv->size)
4431 global_rsv->full = 0;
4432 spin_unlock(&global_rsv->lock);
4433
4434 block_rsv_add_bytes(dest, num_bytes, 1);
4435 return 0;
4436 }
4437
4438 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4439 struct btrfs_block_rsv *block_rsv,
4440 struct btrfs_block_rsv *dest, u64 num_bytes)
4441 {
4442 struct btrfs_space_info *space_info = block_rsv->space_info;
4443
4444 spin_lock(&block_rsv->lock);
4445 if (num_bytes == (u64)-1)
4446 num_bytes = block_rsv->size;
4447 block_rsv->size -= num_bytes;
4448 if (block_rsv->reserved >= block_rsv->size) {
4449 num_bytes = block_rsv->reserved - block_rsv->size;
4450 block_rsv->reserved = block_rsv->size;
4451 block_rsv->full = 1;
4452 } else {
4453 num_bytes = 0;
4454 }
4455 spin_unlock(&block_rsv->lock);
4456
4457 if (num_bytes > 0) {
4458 if (dest) {
4459 spin_lock(&dest->lock);
4460 if (!dest->full) {
4461 u64 bytes_to_add;
4462
4463 bytes_to_add = dest->size - dest->reserved;
4464 bytes_to_add = min(num_bytes, bytes_to_add);
4465 dest->reserved += bytes_to_add;
4466 if (dest->reserved >= dest->size)
4467 dest->full = 1;
4468 num_bytes -= bytes_to_add;
4469 }
4470 spin_unlock(&dest->lock);
4471 }
4472 if (num_bytes) {
4473 spin_lock(&space_info->lock);
4474 space_info->bytes_may_use -= num_bytes;
4475 trace_btrfs_space_reservation(fs_info, "space_info",
4476 space_info->flags, num_bytes, 0);
4477 spin_unlock(&space_info->lock);
4478 }
4479 }
4480 }
4481
4482 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4483 struct btrfs_block_rsv *dst, u64 num_bytes)
4484 {
4485 int ret;
4486
4487 ret = block_rsv_use_bytes(src, num_bytes);
4488 if (ret)
4489 return ret;
4490
4491 block_rsv_add_bytes(dst, num_bytes, 1);
4492 return 0;
4493 }
4494
4495 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4496 {
4497 memset(rsv, 0, sizeof(*rsv));
4498 spin_lock_init(&rsv->lock);
4499 rsv->type = type;
4500 }
4501
4502 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4503 unsigned short type)
4504 {
4505 struct btrfs_block_rsv *block_rsv;
4506 struct btrfs_fs_info *fs_info = root->fs_info;
4507
4508 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4509 if (!block_rsv)
4510 return NULL;
4511
4512 btrfs_init_block_rsv(block_rsv, type);
4513 block_rsv->space_info = __find_space_info(fs_info,
4514 BTRFS_BLOCK_GROUP_METADATA);
4515 return block_rsv;
4516 }
4517
4518 void btrfs_free_block_rsv(struct btrfs_root *root,
4519 struct btrfs_block_rsv *rsv)
4520 {
4521 if (!rsv)
4522 return;
4523 btrfs_block_rsv_release(root, rsv, (u64)-1);
4524 kfree(rsv);
4525 }
4526
4527 int btrfs_block_rsv_add(struct btrfs_root *root,
4528 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4529 enum btrfs_reserve_flush_enum flush)
4530 {
4531 int ret;
4532
4533 if (num_bytes == 0)
4534 return 0;
4535
4536 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4537 if (!ret) {
4538 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4539 return 0;
4540 }
4541
4542 return ret;
4543 }
4544
4545 int btrfs_block_rsv_check(struct btrfs_root *root,
4546 struct btrfs_block_rsv *block_rsv, int min_factor)
4547 {
4548 u64 num_bytes = 0;
4549 int ret = -ENOSPC;
4550
4551 if (!block_rsv)
4552 return 0;
4553
4554 spin_lock(&block_rsv->lock);
4555 num_bytes = div_factor(block_rsv->size, min_factor);
4556 if (block_rsv->reserved >= num_bytes)
4557 ret = 0;
4558 spin_unlock(&block_rsv->lock);
4559
4560 return ret;
4561 }
4562
4563 int btrfs_block_rsv_refill(struct btrfs_root *root,
4564 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4565 enum btrfs_reserve_flush_enum flush)
4566 {
4567 u64 num_bytes = 0;
4568 int ret = -ENOSPC;
4569
4570 if (!block_rsv)
4571 return 0;
4572
4573 spin_lock(&block_rsv->lock);
4574 num_bytes = min_reserved;
4575 if (block_rsv->reserved >= num_bytes)
4576 ret = 0;
4577 else
4578 num_bytes -= block_rsv->reserved;
4579 spin_unlock(&block_rsv->lock);
4580
4581 if (!ret)
4582 return 0;
4583
4584 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4585 if (!ret) {
4586 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4587 return 0;
4588 }
4589
4590 return ret;
4591 }
4592
4593 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4594 struct btrfs_block_rsv *dst_rsv,
4595 u64 num_bytes)
4596 {
4597 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4598 }
4599
4600 void btrfs_block_rsv_release(struct btrfs_root *root,
4601 struct btrfs_block_rsv *block_rsv,
4602 u64 num_bytes)
4603 {
4604 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4605 if (global_rsv == block_rsv ||
4606 block_rsv->space_info != global_rsv->space_info)
4607 global_rsv = NULL;
4608 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4609 num_bytes);
4610 }
4611
4612 /*
4613 * helper to calculate size of global block reservation.
4614 * the desired value is sum of space used by extent tree,
4615 * checksum tree and root tree
4616 */
4617 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4618 {
4619 struct btrfs_space_info *sinfo;
4620 u64 num_bytes;
4621 u64 meta_used;
4622 u64 data_used;
4623 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4624
4625 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4626 spin_lock(&sinfo->lock);
4627 data_used = sinfo->bytes_used;
4628 spin_unlock(&sinfo->lock);
4629
4630 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4631 spin_lock(&sinfo->lock);
4632 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4633 data_used = 0;
4634 meta_used = sinfo->bytes_used;
4635 spin_unlock(&sinfo->lock);
4636
4637 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4638 csum_size * 2;
4639 num_bytes += div64_u64(data_used + meta_used, 50);
4640
4641 if (num_bytes * 3 > meta_used)
4642 num_bytes = div64_u64(meta_used, 3);
4643
4644 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4645 }
4646
4647 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4648 {
4649 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4650 struct btrfs_space_info *sinfo = block_rsv->space_info;
4651 u64 num_bytes;
4652
4653 num_bytes = calc_global_metadata_size(fs_info);
4654
4655 spin_lock(&sinfo->lock);
4656 spin_lock(&block_rsv->lock);
4657
4658 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4659
4660 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4661 sinfo->bytes_reserved + sinfo->bytes_readonly +
4662 sinfo->bytes_may_use;
4663
4664 if (sinfo->total_bytes > num_bytes) {
4665 num_bytes = sinfo->total_bytes - num_bytes;
4666 block_rsv->reserved += num_bytes;
4667 sinfo->bytes_may_use += num_bytes;
4668 trace_btrfs_space_reservation(fs_info, "space_info",
4669 sinfo->flags, num_bytes, 1);
4670 }
4671
4672 if (block_rsv->reserved >= block_rsv->size) {
4673 num_bytes = block_rsv->reserved - block_rsv->size;
4674 sinfo->bytes_may_use -= num_bytes;
4675 trace_btrfs_space_reservation(fs_info, "space_info",
4676 sinfo->flags, num_bytes, 0);
4677 block_rsv->reserved = block_rsv->size;
4678 block_rsv->full = 1;
4679 }
4680
4681 spin_unlock(&block_rsv->lock);
4682 spin_unlock(&sinfo->lock);
4683 }
4684
4685 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4686 {
4687 struct btrfs_space_info *space_info;
4688
4689 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4690 fs_info->chunk_block_rsv.space_info = space_info;
4691
4692 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4693 fs_info->global_block_rsv.space_info = space_info;
4694 fs_info->delalloc_block_rsv.space_info = space_info;
4695 fs_info->trans_block_rsv.space_info = space_info;
4696 fs_info->empty_block_rsv.space_info = space_info;
4697 fs_info->delayed_block_rsv.space_info = space_info;
4698
4699 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4700 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4701 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4702 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4703 if (fs_info->quota_root)
4704 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4705 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4706
4707 update_global_block_rsv(fs_info);
4708 }
4709
4710 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4711 {
4712 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4713 (u64)-1);
4714 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4715 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4716 WARN_ON(fs_info->trans_block_rsv.size > 0);
4717 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4718 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4719 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4720 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4721 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4722 }
4723
4724 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4725 struct btrfs_root *root)
4726 {
4727 if (!trans->block_rsv)
4728 return;
4729
4730 if (!trans->bytes_reserved)
4731 return;
4732
4733 trace_btrfs_space_reservation(root->fs_info, "transaction",
4734 trans->transid, trans->bytes_reserved, 0);
4735 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4736 trans->bytes_reserved = 0;
4737 }
4738
4739 /* Can only return 0 or -ENOSPC */
4740 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4741 struct inode *inode)
4742 {
4743 struct btrfs_root *root = BTRFS_I(inode)->root;
4744 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4745 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4746
4747 /*
4748 * We need to hold space in order to delete our orphan item once we've
4749 * added it, so this takes the reservation so we can release it later
4750 * when we are truly done with the orphan item.
4751 */
4752 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4753 trace_btrfs_space_reservation(root->fs_info, "orphan",
4754 btrfs_ino(inode), num_bytes, 1);
4755 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4756 }
4757
4758 void btrfs_orphan_release_metadata(struct inode *inode)
4759 {
4760 struct btrfs_root *root = BTRFS_I(inode)->root;
4761 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4762 trace_btrfs_space_reservation(root->fs_info, "orphan",
4763 btrfs_ino(inode), num_bytes, 0);
4764 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4765 }
4766
4767 /*
4768 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4769 * root: the root of the parent directory
4770 * rsv: block reservation
4771 * items: the number of items that we need do reservation
4772 * qgroup_reserved: used to return the reserved size in qgroup
4773 *
4774 * This function is used to reserve the space for snapshot/subvolume
4775 * creation and deletion. Those operations are different with the
4776 * common file/directory operations, they change two fs/file trees
4777 * and root tree, the number of items that the qgroup reserves is
4778 * different with the free space reservation. So we can not use
4779 * the space reseravtion mechanism in start_transaction().
4780 */
4781 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4782 struct btrfs_block_rsv *rsv,
4783 int items,
4784 u64 *qgroup_reserved,
4785 bool use_global_rsv)
4786 {
4787 u64 num_bytes;
4788 int ret;
4789 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4790
4791 if (root->fs_info->quota_enabled) {
4792 /* One for parent inode, two for dir entries */
4793 num_bytes = 3 * root->leafsize;
4794 ret = btrfs_qgroup_reserve(root, num_bytes);
4795 if (ret)
4796 return ret;
4797 } else {
4798 num_bytes = 0;
4799 }
4800
4801 *qgroup_reserved = num_bytes;
4802
4803 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4804 rsv->space_info = __find_space_info(root->fs_info,
4805 BTRFS_BLOCK_GROUP_METADATA);
4806 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4807 BTRFS_RESERVE_FLUSH_ALL);
4808
4809 if (ret == -ENOSPC && use_global_rsv)
4810 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4811
4812 if (ret) {
4813 if (*qgroup_reserved)
4814 btrfs_qgroup_free(root, *qgroup_reserved);
4815 }
4816
4817 return ret;
4818 }
4819
4820 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4821 struct btrfs_block_rsv *rsv,
4822 u64 qgroup_reserved)
4823 {
4824 btrfs_block_rsv_release(root, rsv, (u64)-1);
4825 if (qgroup_reserved)
4826 btrfs_qgroup_free(root, qgroup_reserved);
4827 }
4828
4829 /**
4830 * drop_outstanding_extent - drop an outstanding extent
4831 * @inode: the inode we're dropping the extent for
4832 *
4833 * This is called when we are freeing up an outstanding extent, either called
4834 * after an error or after an extent is written. This will return the number of
4835 * reserved extents that need to be freed. This must be called with
4836 * BTRFS_I(inode)->lock held.
4837 */
4838 static unsigned drop_outstanding_extent(struct inode *inode)
4839 {
4840 unsigned drop_inode_space = 0;
4841 unsigned dropped_extents = 0;
4842
4843 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4844 BTRFS_I(inode)->outstanding_extents--;
4845
4846 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4847 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4848 &BTRFS_I(inode)->runtime_flags))
4849 drop_inode_space = 1;
4850
4851 /*
4852 * If we have more or the same amount of outsanding extents than we have
4853 * reserved then we need to leave the reserved extents count alone.
4854 */
4855 if (BTRFS_I(inode)->outstanding_extents >=
4856 BTRFS_I(inode)->reserved_extents)
4857 return drop_inode_space;
4858
4859 dropped_extents = BTRFS_I(inode)->reserved_extents -
4860 BTRFS_I(inode)->outstanding_extents;
4861 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4862 return dropped_extents + drop_inode_space;
4863 }
4864
4865 /**
4866 * calc_csum_metadata_size - return the amount of metada space that must be
4867 * reserved/free'd for the given bytes.
4868 * @inode: the inode we're manipulating
4869 * @num_bytes: the number of bytes in question
4870 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4871 *
4872 * This adjusts the number of csum_bytes in the inode and then returns the
4873 * correct amount of metadata that must either be reserved or freed. We
4874 * calculate how many checksums we can fit into one leaf and then divide the
4875 * number of bytes that will need to be checksumed by this value to figure out
4876 * how many checksums will be required. If we are adding bytes then the number
4877 * may go up and we will return the number of additional bytes that must be
4878 * reserved. If it is going down we will return the number of bytes that must
4879 * be freed.
4880 *
4881 * This must be called with BTRFS_I(inode)->lock held.
4882 */
4883 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4884 int reserve)
4885 {
4886 struct btrfs_root *root = BTRFS_I(inode)->root;
4887 u64 csum_size;
4888 int num_csums_per_leaf;
4889 int num_csums;
4890 int old_csums;
4891
4892 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4893 BTRFS_I(inode)->csum_bytes == 0)
4894 return 0;
4895
4896 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4897 if (reserve)
4898 BTRFS_I(inode)->csum_bytes += num_bytes;
4899 else
4900 BTRFS_I(inode)->csum_bytes -= num_bytes;
4901 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4902 num_csums_per_leaf = (int)div64_u64(csum_size,
4903 sizeof(struct btrfs_csum_item) +
4904 sizeof(struct btrfs_disk_key));
4905 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4906 num_csums = num_csums + num_csums_per_leaf - 1;
4907 num_csums = num_csums / num_csums_per_leaf;
4908
4909 old_csums = old_csums + num_csums_per_leaf - 1;
4910 old_csums = old_csums / num_csums_per_leaf;
4911
4912 /* No change, no need to reserve more */
4913 if (old_csums == num_csums)
4914 return 0;
4915
4916 if (reserve)
4917 return btrfs_calc_trans_metadata_size(root,
4918 num_csums - old_csums);
4919
4920 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4921 }
4922
4923 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4924 {
4925 struct btrfs_root *root = BTRFS_I(inode)->root;
4926 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4927 u64 to_reserve = 0;
4928 u64 csum_bytes;
4929 unsigned nr_extents = 0;
4930 int extra_reserve = 0;
4931 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4932 int ret = 0;
4933 bool delalloc_lock = true;
4934 u64 to_free = 0;
4935 unsigned dropped;
4936
4937 /* If we are a free space inode we need to not flush since we will be in
4938 * the middle of a transaction commit. We also don't need the delalloc
4939 * mutex since we won't race with anybody. We need this mostly to make
4940 * lockdep shut its filthy mouth.
4941 */
4942 if (btrfs_is_free_space_inode(inode)) {
4943 flush = BTRFS_RESERVE_NO_FLUSH;
4944 delalloc_lock = false;
4945 }
4946
4947 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4948 btrfs_transaction_in_commit(root->fs_info))
4949 schedule_timeout(1);
4950
4951 if (delalloc_lock)
4952 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4953
4954 num_bytes = ALIGN(num_bytes, root->sectorsize);
4955
4956 spin_lock(&BTRFS_I(inode)->lock);
4957 BTRFS_I(inode)->outstanding_extents++;
4958
4959 if (BTRFS_I(inode)->outstanding_extents >
4960 BTRFS_I(inode)->reserved_extents)
4961 nr_extents = BTRFS_I(inode)->outstanding_extents -
4962 BTRFS_I(inode)->reserved_extents;
4963
4964 /*
4965 * Add an item to reserve for updating the inode when we complete the
4966 * delalloc io.
4967 */
4968 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4969 &BTRFS_I(inode)->runtime_flags)) {
4970 nr_extents++;
4971 extra_reserve = 1;
4972 }
4973
4974 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4975 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4976 csum_bytes = BTRFS_I(inode)->csum_bytes;
4977 spin_unlock(&BTRFS_I(inode)->lock);
4978
4979 if (root->fs_info->quota_enabled) {
4980 ret = btrfs_qgroup_reserve(root, num_bytes +
4981 nr_extents * root->leafsize);
4982 if (ret)
4983 goto out_fail;
4984 }
4985
4986 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4987 if (unlikely(ret)) {
4988 if (root->fs_info->quota_enabled)
4989 btrfs_qgroup_free(root, num_bytes +
4990 nr_extents * root->leafsize);
4991 goto out_fail;
4992 }
4993
4994 spin_lock(&BTRFS_I(inode)->lock);
4995 if (extra_reserve) {
4996 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4997 &BTRFS_I(inode)->runtime_flags);
4998 nr_extents--;
4999 }
5000 BTRFS_I(inode)->reserved_extents += nr_extents;
5001 spin_unlock(&BTRFS_I(inode)->lock);
5002
5003 if (delalloc_lock)
5004 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5005
5006 if (to_reserve)
5007 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5008 btrfs_ino(inode), to_reserve, 1);
5009 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5010
5011 return 0;
5012
5013 out_fail:
5014 spin_lock(&BTRFS_I(inode)->lock);
5015 dropped = drop_outstanding_extent(inode);
5016 /*
5017 * If the inodes csum_bytes is the same as the original
5018 * csum_bytes then we know we haven't raced with any free()ers
5019 * so we can just reduce our inodes csum bytes and carry on.
5020 */
5021 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5022 calc_csum_metadata_size(inode, num_bytes, 0);
5023 } else {
5024 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5025 u64 bytes;
5026
5027 /*
5028 * This is tricky, but first we need to figure out how much we
5029 * free'd from any free-ers that occured during this
5030 * reservation, so we reset ->csum_bytes to the csum_bytes
5031 * before we dropped our lock, and then call the free for the
5032 * number of bytes that were freed while we were trying our
5033 * reservation.
5034 */
5035 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5036 BTRFS_I(inode)->csum_bytes = csum_bytes;
5037 to_free = calc_csum_metadata_size(inode, bytes, 0);
5038
5039
5040 /*
5041 * Now we need to see how much we would have freed had we not
5042 * been making this reservation and our ->csum_bytes were not
5043 * artificially inflated.
5044 */
5045 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5046 bytes = csum_bytes - orig_csum_bytes;
5047 bytes = calc_csum_metadata_size(inode, bytes, 0);
5048
5049 /*
5050 * Now reset ->csum_bytes to what it should be. If bytes is
5051 * more than to_free then we would have free'd more space had we
5052 * not had an artificially high ->csum_bytes, so we need to free
5053 * the remainder. If bytes is the same or less then we don't
5054 * need to do anything, the other free-ers did the correct
5055 * thing.
5056 */
5057 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5058 if (bytes > to_free)
5059 to_free = bytes - to_free;
5060 else
5061 to_free = 0;
5062 }
5063 spin_unlock(&BTRFS_I(inode)->lock);
5064 if (dropped)
5065 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5066
5067 if (to_free) {
5068 btrfs_block_rsv_release(root, block_rsv, to_free);
5069 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5070 btrfs_ino(inode), to_free, 0);
5071 }
5072 if (delalloc_lock)
5073 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5074 return ret;
5075 }
5076
5077 /**
5078 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5079 * @inode: the inode to release the reservation for
5080 * @num_bytes: the number of bytes we're releasing
5081 *
5082 * This will release the metadata reservation for an inode. This can be called
5083 * once we complete IO for a given set of bytes to release their metadata
5084 * reservations.
5085 */
5086 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5087 {
5088 struct btrfs_root *root = BTRFS_I(inode)->root;
5089 u64 to_free = 0;
5090 unsigned dropped;
5091
5092 num_bytes = ALIGN(num_bytes, root->sectorsize);
5093 spin_lock(&BTRFS_I(inode)->lock);
5094 dropped = drop_outstanding_extent(inode);
5095
5096 if (num_bytes)
5097 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5098 spin_unlock(&BTRFS_I(inode)->lock);
5099 if (dropped > 0)
5100 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5101
5102 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5103 btrfs_ino(inode), to_free, 0);
5104 if (root->fs_info->quota_enabled) {
5105 btrfs_qgroup_free(root, num_bytes +
5106 dropped * root->leafsize);
5107 }
5108
5109 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5110 to_free);
5111 }
5112
5113 /**
5114 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5115 * @inode: inode we're writing to
5116 * @num_bytes: the number of bytes we want to allocate
5117 *
5118 * This will do the following things
5119 *
5120 * o reserve space in the data space info for num_bytes
5121 * o reserve space in the metadata space info based on number of outstanding
5122 * extents and how much csums will be needed
5123 * o add to the inodes ->delalloc_bytes
5124 * o add it to the fs_info's delalloc inodes list.
5125 *
5126 * This will return 0 for success and -ENOSPC if there is no space left.
5127 */
5128 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5129 {
5130 int ret;
5131
5132 ret = btrfs_check_data_free_space(inode, num_bytes);
5133 if (ret)
5134 return ret;
5135
5136 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5137 if (ret) {
5138 btrfs_free_reserved_data_space(inode, num_bytes);
5139 return ret;
5140 }
5141
5142 return 0;
5143 }
5144
5145 /**
5146 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5147 * @inode: inode we're releasing space for
5148 * @num_bytes: the number of bytes we want to free up
5149 *
5150 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5151 * called in the case that we don't need the metadata AND data reservations
5152 * anymore. So if there is an error or we insert an inline extent.
5153 *
5154 * This function will release the metadata space that was not used and will
5155 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5156 * list if there are no delalloc bytes left.
5157 */
5158 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5159 {
5160 btrfs_delalloc_release_metadata(inode, num_bytes);
5161 btrfs_free_reserved_data_space(inode, num_bytes);
5162 }
5163
5164 static int update_block_group(struct btrfs_root *root,
5165 u64 bytenr, u64 num_bytes, int alloc)
5166 {
5167 struct btrfs_block_group_cache *cache = NULL;
5168 struct btrfs_fs_info *info = root->fs_info;
5169 u64 total = num_bytes;
5170 u64 old_val;
5171 u64 byte_in_group;
5172 int factor;
5173
5174 /* block accounting for super block */
5175 spin_lock(&info->delalloc_root_lock);
5176 old_val = btrfs_super_bytes_used(info->super_copy);
5177 if (alloc)
5178 old_val += num_bytes;
5179 else
5180 old_val -= num_bytes;
5181 btrfs_set_super_bytes_used(info->super_copy, old_val);
5182 spin_unlock(&info->delalloc_root_lock);
5183
5184 while (total) {
5185 cache = btrfs_lookup_block_group(info, bytenr);
5186 if (!cache)
5187 return -ENOENT;
5188 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5189 BTRFS_BLOCK_GROUP_RAID1 |
5190 BTRFS_BLOCK_GROUP_RAID10))
5191 factor = 2;
5192 else
5193 factor = 1;
5194 /*
5195 * If this block group has free space cache written out, we
5196 * need to make sure to load it if we are removing space. This
5197 * is because we need the unpinning stage to actually add the
5198 * space back to the block group, otherwise we will leak space.
5199 */
5200 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5201 cache_block_group(cache, 1);
5202
5203 byte_in_group = bytenr - cache->key.objectid;
5204 WARN_ON(byte_in_group > cache->key.offset);
5205
5206 spin_lock(&cache->space_info->lock);
5207 spin_lock(&cache->lock);
5208
5209 if (btrfs_test_opt(root, SPACE_CACHE) &&
5210 cache->disk_cache_state < BTRFS_DC_CLEAR)
5211 cache->disk_cache_state = BTRFS_DC_CLEAR;
5212
5213 cache->dirty = 1;
5214 old_val = btrfs_block_group_used(&cache->item);
5215 num_bytes = min(total, cache->key.offset - byte_in_group);
5216 if (alloc) {
5217 old_val += num_bytes;
5218 btrfs_set_block_group_used(&cache->item, old_val);
5219 cache->reserved -= num_bytes;
5220 cache->space_info->bytes_reserved -= num_bytes;
5221 cache->space_info->bytes_used += num_bytes;
5222 cache->space_info->disk_used += num_bytes * factor;
5223 spin_unlock(&cache->lock);
5224 spin_unlock(&cache->space_info->lock);
5225 } else {
5226 old_val -= num_bytes;
5227 btrfs_set_block_group_used(&cache->item, old_val);
5228 cache->pinned += num_bytes;
5229 cache->space_info->bytes_pinned += num_bytes;
5230 cache->space_info->bytes_used -= num_bytes;
5231 cache->space_info->disk_used -= num_bytes * factor;
5232 spin_unlock(&cache->lock);
5233 spin_unlock(&cache->space_info->lock);
5234
5235 set_extent_dirty(info->pinned_extents,
5236 bytenr, bytenr + num_bytes - 1,
5237 GFP_NOFS | __GFP_NOFAIL);
5238 }
5239 btrfs_put_block_group(cache);
5240 total -= num_bytes;
5241 bytenr += num_bytes;
5242 }
5243 return 0;
5244 }
5245
5246 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5247 {
5248 struct btrfs_block_group_cache *cache;
5249 u64 bytenr;
5250
5251 spin_lock(&root->fs_info->block_group_cache_lock);
5252 bytenr = root->fs_info->first_logical_byte;
5253 spin_unlock(&root->fs_info->block_group_cache_lock);
5254
5255 if (bytenr < (u64)-1)
5256 return bytenr;
5257
5258 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5259 if (!cache)
5260 return 0;
5261
5262 bytenr = cache->key.objectid;
5263 btrfs_put_block_group(cache);
5264
5265 return bytenr;
5266 }
5267
5268 static int pin_down_extent(struct btrfs_root *root,
5269 struct btrfs_block_group_cache *cache,
5270 u64 bytenr, u64 num_bytes, int reserved)
5271 {
5272 spin_lock(&cache->space_info->lock);
5273 spin_lock(&cache->lock);
5274 cache->pinned += num_bytes;
5275 cache->space_info->bytes_pinned += num_bytes;
5276 if (reserved) {
5277 cache->reserved -= num_bytes;
5278 cache->space_info->bytes_reserved -= num_bytes;
5279 }
5280 spin_unlock(&cache->lock);
5281 spin_unlock(&cache->space_info->lock);
5282
5283 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5284 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5285 if (reserved)
5286 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5287 return 0;
5288 }
5289
5290 /*
5291 * this function must be called within transaction
5292 */
5293 int btrfs_pin_extent(struct btrfs_root *root,
5294 u64 bytenr, u64 num_bytes, int reserved)
5295 {
5296 struct btrfs_block_group_cache *cache;
5297
5298 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5299 BUG_ON(!cache); /* Logic error */
5300
5301 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5302
5303 btrfs_put_block_group(cache);
5304 return 0;
5305 }
5306
5307 /*
5308 * this function must be called within transaction
5309 */
5310 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5311 u64 bytenr, u64 num_bytes)
5312 {
5313 struct btrfs_block_group_cache *cache;
5314 int ret;
5315
5316 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5317 if (!cache)
5318 return -EINVAL;
5319
5320 /*
5321 * pull in the free space cache (if any) so that our pin
5322 * removes the free space from the cache. We have load_only set
5323 * to one because the slow code to read in the free extents does check
5324 * the pinned extents.
5325 */
5326 cache_block_group(cache, 1);
5327
5328 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5329
5330 /* remove us from the free space cache (if we're there at all) */
5331 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5332 btrfs_put_block_group(cache);
5333 return ret;
5334 }
5335
5336 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5337 {
5338 int ret;
5339 struct btrfs_block_group_cache *block_group;
5340 struct btrfs_caching_control *caching_ctl;
5341
5342 block_group = btrfs_lookup_block_group(root->fs_info, start);
5343 if (!block_group)
5344 return -EINVAL;
5345
5346 cache_block_group(block_group, 0);
5347 caching_ctl = get_caching_control(block_group);
5348
5349 if (!caching_ctl) {
5350 /* Logic error */
5351 BUG_ON(!block_group_cache_done(block_group));
5352 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5353 } else {
5354 mutex_lock(&caching_ctl->mutex);
5355
5356 if (start >= caching_ctl->progress) {
5357 ret = add_excluded_extent(root, start, num_bytes);
5358 } else if (start + num_bytes <= caching_ctl->progress) {
5359 ret = btrfs_remove_free_space(block_group,
5360 start, num_bytes);
5361 } else {
5362 num_bytes = caching_ctl->progress - start;
5363 ret = btrfs_remove_free_space(block_group,
5364 start, num_bytes);
5365 if (ret)
5366 goto out_lock;
5367
5368 num_bytes = (start + num_bytes) -
5369 caching_ctl->progress;
5370 start = caching_ctl->progress;
5371 ret = add_excluded_extent(root, start, num_bytes);
5372 }
5373 out_lock:
5374 mutex_unlock(&caching_ctl->mutex);
5375 put_caching_control(caching_ctl);
5376 }
5377 btrfs_put_block_group(block_group);
5378 return ret;
5379 }
5380
5381 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5382 struct extent_buffer *eb)
5383 {
5384 struct btrfs_file_extent_item *item;
5385 struct btrfs_key key;
5386 int found_type;
5387 int i;
5388
5389 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5390 return 0;
5391
5392 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5393 btrfs_item_key_to_cpu(eb, &key, i);
5394 if (key.type != BTRFS_EXTENT_DATA_KEY)
5395 continue;
5396 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5397 found_type = btrfs_file_extent_type(eb, item);
5398 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5399 continue;
5400 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5401 continue;
5402 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5403 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5404 __exclude_logged_extent(log, key.objectid, key.offset);
5405 }
5406
5407 return 0;
5408 }
5409
5410 /**
5411 * btrfs_update_reserved_bytes - update the block_group and space info counters
5412 * @cache: The cache we are manipulating
5413 * @num_bytes: The number of bytes in question
5414 * @reserve: One of the reservation enums
5415 *
5416 * This is called by the allocator when it reserves space, or by somebody who is
5417 * freeing space that was never actually used on disk. For example if you
5418 * reserve some space for a new leaf in transaction A and before transaction A
5419 * commits you free that leaf, you call this with reserve set to 0 in order to
5420 * clear the reservation.
5421 *
5422 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5423 * ENOSPC accounting. For data we handle the reservation through clearing the
5424 * delalloc bits in the io_tree. We have to do this since we could end up
5425 * allocating less disk space for the amount of data we have reserved in the
5426 * case of compression.
5427 *
5428 * If this is a reservation and the block group has become read only we cannot
5429 * make the reservation and return -EAGAIN, otherwise this function always
5430 * succeeds.
5431 */
5432 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5433 u64 num_bytes, int reserve)
5434 {
5435 struct btrfs_space_info *space_info = cache->space_info;
5436 int ret = 0;
5437
5438 spin_lock(&space_info->lock);
5439 spin_lock(&cache->lock);
5440 if (reserve != RESERVE_FREE) {
5441 if (cache->ro) {
5442 ret = -EAGAIN;
5443 } else {
5444 cache->reserved += num_bytes;
5445 space_info->bytes_reserved += num_bytes;
5446 if (reserve == RESERVE_ALLOC) {
5447 trace_btrfs_space_reservation(cache->fs_info,
5448 "space_info", space_info->flags,
5449 num_bytes, 0);
5450 space_info->bytes_may_use -= num_bytes;
5451 }
5452 }
5453 } else {
5454 if (cache->ro)
5455 space_info->bytes_readonly += num_bytes;
5456 cache->reserved -= num_bytes;
5457 space_info->bytes_reserved -= num_bytes;
5458 }
5459 spin_unlock(&cache->lock);
5460 spin_unlock(&space_info->lock);
5461 return ret;
5462 }
5463
5464 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5465 struct btrfs_root *root)
5466 {
5467 struct btrfs_fs_info *fs_info = root->fs_info;
5468 struct btrfs_caching_control *next;
5469 struct btrfs_caching_control *caching_ctl;
5470 struct btrfs_block_group_cache *cache;
5471 struct btrfs_space_info *space_info;
5472
5473 down_write(&fs_info->extent_commit_sem);
5474
5475 list_for_each_entry_safe(caching_ctl, next,
5476 &fs_info->caching_block_groups, list) {
5477 cache = caching_ctl->block_group;
5478 if (block_group_cache_done(cache)) {
5479 cache->last_byte_to_unpin = (u64)-1;
5480 list_del_init(&caching_ctl->list);
5481 put_caching_control(caching_ctl);
5482 } else {
5483 cache->last_byte_to_unpin = caching_ctl->progress;
5484 }
5485 }
5486
5487 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5488 fs_info->pinned_extents = &fs_info->freed_extents[1];
5489 else
5490 fs_info->pinned_extents = &fs_info->freed_extents[0];
5491
5492 up_write(&fs_info->extent_commit_sem);
5493
5494 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5495 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5496
5497 update_global_block_rsv(fs_info);
5498 }
5499
5500 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5501 {
5502 struct btrfs_fs_info *fs_info = root->fs_info;
5503 struct btrfs_block_group_cache *cache = NULL;
5504 struct btrfs_space_info *space_info;
5505 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5506 u64 len;
5507 bool readonly;
5508
5509 while (start <= end) {
5510 readonly = false;
5511 if (!cache ||
5512 start >= cache->key.objectid + cache->key.offset) {
5513 if (cache)
5514 btrfs_put_block_group(cache);
5515 cache = btrfs_lookup_block_group(fs_info, start);
5516 BUG_ON(!cache); /* Logic error */
5517 }
5518
5519 len = cache->key.objectid + cache->key.offset - start;
5520 len = min(len, end + 1 - start);
5521
5522 if (start < cache->last_byte_to_unpin) {
5523 len = min(len, cache->last_byte_to_unpin - start);
5524 btrfs_add_free_space(cache, start, len);
5525 }
5526
5527 start += len;
5528 space_info = cache->space_info;
5529
5530 spin_lock(&space_info->lock);
5531 spin_lock(&cache->lock);
5532 cache->pinned -= len;
5533 space_info->bytes_pinned -= len;
5534 if (cache->ro) {
5535 space_info->bytes_readonly += len;
5536 readonly = true;
5537 }
5538 spin_unlock(&cache->lock);
5539 if (!readonly && global_rsv->space_info == space_info) {
5540 spin_lock(&global_rsv->lock);
5541 if (!global_rsv->full) {
5542 len = min(len, global_rsv->size -
5543 global_rsv->reserved);
5544 global_rsv->reserved += len;
5545 space_info->bytes_may_use += len;
5546 if (global_rsv->reserved >= global_rsv->size)
5547 global_rsv->full = 1;
5548 }
5549 spin_unlock(&global_rsv->lock);
5550 }
5551 spin_unlock(&space_info->lock);
5552 }
5553
5554 if (cache)
5555 btrfs_put_block_group(cache);
5556 return 0;
5557 }
5558
5559 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5560 struct btrfs_root *root)
5561 {
5562 struct btrfs_fs_info *fs_info = root->fs_info;
5563 struct extent_io_tree *unpin;
5564 u64 start;
5565 u64 end;
5566 int ret;
5567
5568 if (trans->aborted)
5569 return 0;
5570
5571 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5572 unpin = &fs_info->freed_extents[1];
5573 else
5574 unpin = &fs_info->freed_extents[0];
5575
5576 while (1) {
5577 ret = find_first_extent_bit(unpin, 0, &start, &end,
5578 EXTENT_DIRTY, NULL);
5579 if (ret)
5580 break;
5581
5582 if (btrfs_test_opt(root, DISCARD))
5583 ret = btrfs_discard_extent(root, start,
5584 end + 1 - start, NULL);
5585
5586 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5587 unpin_extent_range(root, start, end);
5588 cond_resched();
5589 }
5590
5591 return 0;
5592 }
5593
5594 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5595 u64 owner, u64 root_objectid)
5596 {
5597 struct btrfs_space_info *space_info;
5598 u64 flags;
5599
5600 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5601 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5602 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5603 else
5604 flags = BTRFS_BLOCK_GROUP_METADATA;
5605 } else {
5606 flags = BTRFS_BLOCK_GROUP_DATA;
5607 }
5608
5609 space_info = __find_space_info(fs_info, flags);
5610 BUG_ON(!space_info); /* Logic bug */
5611 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5612 }
5613
5614
5615 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5616 struct btrfs_root *root,
5617 u64 bytenr, u64 num_bytes, u64 parent,
5618 u64 root_objectid, u64 owner_objectid,
5619 u64 owner_offset, int refs_to_drop,
5620 struct btrfs_delayed_extent_op *extent_op)
5621 {
5622 struct btrfs_key key;
5623 struct btrfs_path *path;
5624 struct btrfs_fs_info *info = root->fs_info;
5625 struct btrfs_root *extent_root = info->extent_root;
5626 struct extent_buffer *leaf;
5627 struct btrfs_extent_item *ei;
5628 struct btrfs_extent_inline_ref *iref;
5629 int ret;
5630 int is_data;
5631 int extent_slot = 0;
5632 int found_extent = 0;
5633 int num_to_del = 1;
5634 u32 item_size;
5635 u64 refs;
5636 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5637 SKINNY_METADATA);
5638
5639 path = btrfs_alloc_path();
5640 if (!path)
5641 return -ENOMEM;
5642
5643 path->reada = 1;
5644 path->leave_spinning = 1;
5645
5646 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5647 BUG_ON(!is_data && refs_to_drop != 1);
5648
5649 if (is_data)
5650 skinny_metadata = 0;
5651
5652 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5653 bytenr, num_bytes, parent,
5654 root_objectid, owner_objectid,
5655 owner_offset);
5656 if (ret == 0) {
5657 extent_slot = path->slots[0];
5658 while (extent_slot >= 0) {
5659 btrfs_item_key_to_cpu(path->nodes[0], &key,
5660 extent_slot);
5661 if (key.objectid != bytenr)
5662 break;
5663 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5664 key.offset == num_bytes) {
5665 found_extent = 1;
5666 break;
5667 }
5668 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5669 key.offset == owner_objectid) {
5670 found_extent = 1;
5671 break;
5672 }
5673 if (path->slots[0] - extent_slot > 5)
5674 break;
5675 extent_slot--;
5676 }
5677 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5678 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5679 if (found_extent && item_size < sizeof(*ei))
5680 found_extent = 0;
5681 #endif
5682 if (!found_extent) {
5683 BUG_ON(iref);
5684 ret = remove_extent_backref(trans, extent_root, path,
5685 NULL, refs_to_drop,
5686 is_data);
5687 if (ret) {
5688 btrfs_abort_transaction(trans, extent_root, ret);
5689 goto out;
5690 }
5691 btrfs_release_path(path);
5692 path->leave_spinning = 1;
5693
5694 key.objectid = bytenr;
5695 key.type = BTRFS_EXTENT_ITEM_KEY;
5696 key.offset = num_bytes;
5697
5698 if (!is_data && skinny_metadata) {
5699 key.type = BTRFS_METADATA_ITEM_KEY;
5700 key.offset = owner_objectid;
5701 }
5702
5703 ret = btrfs_search_slot(trans, extent_root,
5704 &key, path, -1, 1);
5705 if (ret > 0 && skinny_metadata && path->slots[0]) {
5706 /*
5707 * Couldn't find our skinny metadata item,
5708 * see if we have ye olde extent item.
5709 */
5710 path->slots[0]--;
5711 btrfs_item_key_to_cpu(path->nodes[0], &key,
5712 path->slots[0]);
5713 if (key.objectid == bytenr &&
5714 key.type == BTRFS_EXTENT_ITEM_KEY &&
5715 key.offset == num_bytes)
5716 ret = 0;
5717 }
5718
5719 if (ret > 0 && skinny_metadata) {
5720 skinny_metadata = false;
5721 key.type = BTRFS_EXTENT_ITEM_KEY;
5722 key.offset = num_bytes;
5723 btrfs_release_path(path);
5724 ret = btrfs_search_slot(trans, extent_root,
5725 &key, path, -1, 1);
5726 }
5727
5728 if (ret) {
5729 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5730 ret, bytenr);
5731 if (ret > 0)
5732 btrfs_print_leaf(extent_root,
5733 path->nodes[0]);
5734 }
5735 if (ret < 0) {
5736 btrfs_abort_transaction(trans, extent_root, ret);
5737 goto out;
5738 }
5739 extent_slot = path->slots[0];
5740 }
5741 } else if (WARN_ON(ret == -ENOENT)) {
5742 btrfs_print_leaf(extent_root, path->nodes[0]);
5743 btrfs_err(info,
5744 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5745 bytenr, parent, root_objectid, owner_objectid,
5746 owner_offset);
5747 } else {
5748 btrfs_abort_transaction(trans, extent_root, ret);
5749 goto out;
5750 }
5751
5752 leaf = path->nodes[0];
5753 item_size = btrfs_item_size_nr(leaf, extent_slot);
5754 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5755 if (item_size < sizeof(*ei)) {
5756 BUG_ON(found_extent || extent_slot != path->slots[0]);
5757 ret = convert_extent_item_v0(trans, extent_root, path,
5758 owner_objectid, 0);
5759 if (ret < 0) {
5760 btrfs_abort_transaction(trans, extent_root, ret);
5761 goto out;
5762 }
5763
5764 btrfs_release_path(path);
5765 path->leave_spinning = 1;
5766
5767 key.objectid = bytenr;
5768 key.type = BTRFS_EXTENT_ITEM_KEY;
5769 key.offset = num_bytes;
5770
5771 ret = btrfs_search_slot(trans, extent_root, &key, path,
5772 -1, 1);
5773 if (ret) {
5774 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5775 ret, bytenr);
5776 btrfs_print_leaf(extent_root, path->nodes[0]);
5777 }
5778 if (ret < 0) {
5779 btrfs_abort_transaction(trans, extent_root, ret);
5780 goto out;
5781 }
5782
5783 extent_slot = path->slots[0];
5784 leaf = path->nodes[0];
5785 item_size = btrfs_item_size_nr(leaf, extent_slot);
5786 }
5787 #endif
5788 BUG_ON(item_size < sizeof(*ei));
5789 ei = btrfs_item_ptr(leaf, extent_slot,
5790 struct btrfs_extent_item);
5791 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5792 key.type == BTRFS_EXTENT_ITEM_KEY) {
5793 struct btrfs_tree_block_info *bi;
5794 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5795 bi = (struct btrfs_tree_block_info *)(ei + 1);
5796 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5797 }
5798
5799 refs = btrfs_extent_refs(leaf, ei);
5800 if (refs < refs_to_drop) {
5801 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5802 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5803 ret = -EINVAL;
5804 btrfs_abort_transaction(trans, extent_root, ret);
5805 goto out;
5806 }
5807 refs -= refs_to_drop;
5808
5809 if (refs > 0) {
5810 if (extent_op)
5811 __run_delayed_extent_op(extent_op, leaf, ei);
5812 /*
5813 * In the case of inline back ref, reference count will
5814 * be updated by remove_extent_backref
5815 */
5816 if (iref) {
5817 BUG_ON(!found_extent);
5818 } else {
5819 btrfs_set_extent_refs(leaf, ei, refs);
5820 btrfs_mark_buffer_dirty(leaf);
5821 }
5822 if (found_extent) {
5823 ret = remove_extent_backref(trans, extent_root, path,
5824 iref, refs_to_drop,
5825 is_data);
5826 if (ret) {
5827 btrfs_abort_transaction(trans, extent_root, ret);
5828 goto out;
5829 }
5830 }
5831 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5832 root_objectid);
5833 } else {
5834 if (found_extent) {
5835 BUG_ON(is_data && refs_to_drop !=
5836 extent_data_ref_count(root, path, iref));
5837 if (iref) {
5838 BUG_ON(path->slots[0] != extent_slot);
5839 } else {
5840 BUG_ON(path->slots[0] != extent_slot + 1);
5841 path->slots[0] = extent_slot;
5842 num_to_del = 2;
5843 }
5844 }
5845
5846 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5847 num_to_del);
5848 if (ret) {
5849 btrfs_abort_transaction(trans, extent_root, ret);
5850 goto out;
5851 }
5852 btrfs_release_path(path);
5853
5854 if (is_data) {
5855 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5856 if (ret) {
5857 btrfs_abort_transaction(trans, extent_root, ret);
5858 goto out;
5859 }
5860 }
5861
5862 ret = update_block_group(root, bytenr, num_bytes, 0);
5863 if (ret) {
5864 btrfs_abort_transaction(trans, extent_root, ret);
5865 goto out;
5866 }
5867 }
5868 out:
5869 btrfs_free_path(path);
5870 return ret;
5871 }
5872
5873 /*
5874 * when we free an block, it is possible (and likely) that we free the last
5875 * delayed ref for that extent as well. This searches the delayed ref tree for
5876 * a given extent, and if there are no other delayed refs to be processed, it
5877 * removes it from the tree.
5878 */
5879 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5880 struct btrfs_root *root, u64 bytenr)
5881 {
5882 struct btrfs_delayed_ref_head *head;
5883 struct btrfs_delayed_ref_root *delayed_refs;
5884 int ret = 0;
5885
5886 delayed_refs = &trans->transaction->delayed_refs;
5887 spin_lock(&delayed_refs->lock);
5888 head = btrfs_find_delayed_ref_head(trans, bytenr);
5889 if (!head)
5890 goto out_delayed_unlock;
5891
5892 spin_lock(&head->lock);
5893 if (rb_first(&head->ref_root))
5894 goto out;
5895
5896 if (head->extent_op) {
5897 if (!head->must_insert_reserved)
5898 goto out;
5899 btrfs_free_delayed_extent_op(head->extent_op);
5900 head->extent_op = NULL;
5901 }
5902
5903 /*
5904 * waiting for the lock here would deadlock. If someone else has it
5905 * locked they are already in the process of dropping it anyway
5906 */
5907 if (!mutex_trylock(&head->mutex))
5908 goto out;
5909
5910 /*
5911 * at this point we have a head with no other entries. Go
5912 * ahead and process it.
5913 */
5914 head->node.in_tree = 0;
5915 rb_erase(&head->href_node, &delayed_refs->href_root);
5916
5917 atomic_dec(&delayed_refs->num_entries);
5918
5919 /*
5920 * we don't take a ref on the node because we're removing it from the
5921 * tree, so we just steal the ref the tree was holding.
5922 */
5923 delayed_refs->num_heads--;
5924 if (head->processing == 0)
5925 delayed_refs->num_heads_ready--;
5926 head->processing = 0;
5927 spin_unlock(&head->lock);
5928 spin_unlock(&delayed_refs->lock);
5929
5930 BUG_ON(head->extent_op);
5931 if (head->must_insert_reserved)
5932 ret = 1;
5933
5934 mutex_unlock(&head->mutex);
5935 btrfs_put_delayed_ref(&head->node);
5936 return ret;
5937 out:
5938 spin_unlock(&head->lock);
5939
5940 out_delayed_unlock:
5941 spin_unlock(&delayed_refs->lock);
5942 return 0;
5943 }
5944
5945 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5946 struct btrfs_root *root,
5947 struct extent_buffer *buf,
5948 u64 parent, int last_ref)
5949 {
5950 struct btrfs_block_group_cache *cache = NULL;
5951 int pin = 1;
5952 int ret;
5953
5954 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5955 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5956 buf->start, buf->len,
5957 parent, root->root_key.objectid,
5958 btrfs_header_level(buf),
5959 BTRFS_DROP_DELAYED_REF, NULL, 0);
5960 BUG_ON(ret); /* -ENOMEM */
5961 }
5962
5963 if (!last_ref)
5964 return;
5965
5966 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5967
5968 if (btrfs_header_generation(buf) == trans->transid) {
5969 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5970 ret = check_ref_cleanup(trans, root, buf->start);
5971 if (!ret)
5972 goto out;
5973 }
5974
5975 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5976 pin_down_extent(root, cache, buf->start, buf->len, 1);
5977 goto out;
5978 }
5979
5980 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5981
5982 btrfs_add_free_space(cache, buf->start, buf->len);
5983 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5984 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
5985 pin = 0;
5986 }
5987 out:
5988 if (pin)
5989 add_pinned_bytes(root->fs_info, buf->len,
5990 btrfs_header_level(buf),
5991 root->root_key.objectid);
5992
5993 /*
5994 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5995 * anymore.
5996 */
5997 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5998 btrfs_put_block_group(cache);
5999 }
6000
6001 /* Can return -ENOMEM */
6002 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6003 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6004 u64 owner, u64 offset, int for_cow)
6005 {
6006 int ret;
6007 struct btrfs_fs_info *fs_info = root->fs_info;
6008
6009 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6010
6011 /*
6012 * tree log blocks never actually go into the extent allocation
6013 * tree, just update pinning info and exit early.
6014 */
6015 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6016 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6017 /* unlocks the pinned mutex */
6018 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6019 ret = 0;
6020 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6021 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6022 num_bytes,
6023 parent, root_objectid, (int)owner,
6024 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6025 } else {
6026 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6027 num_bytes,
6028 parent, root_objectid, owner,
6029 offset, BTRFS_DROP_DELAYED_REF,
6030 NULL, for_cow);
6031 }
6032 return ret;
6033 }
6034
6035 static u64 stripe_align(struct btrfs_root *root,
6036 struct btrfs_block_group_cache *cache,
6037 u64 val, u64 num_bytes)
6038 {
6039 u64 ret = ALIGN(val, root->stripesize);
6040 return ret;
6041 }
6042
6043 /*
6044 * when we wait for progress in the block group caching, its because
6045 * our allocation attempt failed at least once. So, we must sleep
6046 * and let some progress happen before we try again.
6047 *
6048 * This function will sleep at least once waiting for new free space to
6049 * show up, and then it will check the block group free space numbers
6050 * for our min num_bytes. Another option is to have it go ahead
6051 * and look in the rbtree for a free extent of a given size, but this
6052 * is a good start.
6053 *
6054 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6055 * any of the information in this block group.
6056 */
6057 static noinline void
6058 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6059 u64 num_bytes)
6060 {
6061 struct btrfs_caching_control *caching_ctl;
6062
6063 caching_ctl = get_caching_control(cache);
6064 if (!caching_ctl)
6065 return;
6066
6067 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6068 (cache->free_space_ctl->free_space >= num_bytes));
6069
6070 put_caching_control(caching_ctl);
6071 }
6072
6073 static noinline int
6074 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6075 {
6076 struct btrfs_caching_control *caching_ctl;
6077 int ret = 0;
6078
6079 caching_ctl = get_caching_control(cache);
6080 if (!caching_ctl)
6081 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6082
6083 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6084 if (cache->cached == BTRFS_CACHE_ERROR)
6085 ret = -EIO;
6086 put_caching_control(caching_ctl);
6087 return ret;
6088 }
6089
6090 int __get_raid_index(u64 flags)
6091 {
6092 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6093 return BTRFS_RAID_RAID10;
6094 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6095 return BTRFS_RAID_RAID1;
6096 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6097 return BTRFS_RAID_DUP;
6098 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6099 return BTRFS_RAID_RAID0;
6100 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6101 return BTRFS_RAID_RAID5;
6102 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6103 return BTRFS_RAID_RAID6;
6104
6105 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6106 }
6107
6108 int get_block_group_index(struct btrfs_block_group_cache *cache)
6109 {
6110 return __get_raid_index(cache->flags);
6111 }
6112
6113 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6114 [BTRFS_RAID_RAID10] = "raid10",
6115 [BTRFS_RAID_RAID1] = "raid1",
6116 [BTRFS_RAID_DUP] = "dup",
6117 [BTRFS_RAID_RAID0] = "raid0",
6118 [BTRFS_RAID_SINGLE] = "single",
6119 [BTRFS_RAID_RAID5] = "raid5",
6120 [BTRFS_RAID_RAID6] = "raid6",
6121 };
6122
6123 static const char *get_raid_name(enum btrfs_raid_types type)
6124 {
6125 if (type >= BTRFS_NR_RAID_TYPES)
6126 return NULL;
6127
6128 return btrfs_raid_type_names[type];
6129 }
6130
6131 enum btrfs_loop_type {
6132 LOOP_CACHING_NOWAIT = 0,
6133 LOOP_CACHING_WAIT = 1,
6134 LOOP_ALLOC_CHUNK = 2,
6135 LOOP_NO_EMPTY_SIZE = 3,
6136 };
6137
6138 /*
6139 * walks the btree of allocated extents and find a hole of a given size.
6140 * The key ins is changed to record the hole:
6141 * ins->objectid == start position
6142 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6143 * ins->offset == the size of the hole.
6144 * Any available blocks before search_start are skipped.
6145 *
6146 * If there is no suitable free space, we will record the max size of
6147 * the free space extent currently.
6148 */
6149 static noinline int find_free_extent(struct btrfs_root *orig_root,
6150 u64 num_bytes, u64 empty_size,
6151 u64 hint_byte, struct btrfs_key *ins,
6152 u64 flags)
6153 {
6154 int ret = 0;
6155 struct btrfs_root *root = orig_root->fs_info->extent_root;
6156 struct btrfs_free_cluster *last_ptr = NULL;
6157 struct btrfs_block_group_cache *block_group = NULL;
6158 u64 search_start = 0;
6159 u64 max_extent_size = 0;
6160 int empty_cluster = 2 * 1024 * 1024;
6161 struct btrfs_space_info *space_info;
6162 int loop = 0;
6163 int index = __get_raid_index(flags);
6164 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6165 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6166 bool failed_cluster_refill = false;
6167 bool failed_alloc = false;
6168 bool use_cluster = true;
6169 bool have_caching_bg = false;
6170
6171 WARN_ON(num_bytes < root->sectorsize);
6172 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6173 ins->objectid = 0;
6174 ins->offset = 0;
6175
6176 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6177
6178 space_info = __find_space_info(root->fs_info, flags);
6179 if (!space_info) {
6180 btrfs_err(root->fs_info, "No space info for %llu", flags);
6181 return -ENOSPC;
6182 }
6183
6184 /*
6185 * If the space info is for both data and metadata it means we have a
6186 * small filesystem and we can't use the clustering stuff.
6187 */
6188 if (btrfs_mixed_space_info(space_info))
6189 use_cluster = false;
6190
6191 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6192 last_ptr = &root->fs_info->meta_alloc_cluster;
6193 if (!btrfs_test_opt(root, SSD))
6194 empty_cluster = 64 * 1024;
6195 }
6196
6197 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6198 btrfs_test_opt(root, SSD)) {
6199 last_ptr = &root->fs_info->data_alloc_cluster;
6200 }
6201
6202 if (last_ptr) {
6203 spin_lock(&last_ptr->lock);
6204 if (last_ptr->block_group)
6205 hint_byte = last_ptr->window_start;
6206 spin_unlock(&last_ptr->lock);
6207 }
6208
6209 search_start = max(search_start, first_logical_byte(root, 0));
6210 search_start = max(search_start, hint_byte);
6211
6212 if (!last_ptr)
6213 empty_cluster = 0;
6214
6215 if (search_start == hint_byte) {
6216 block_group = btrfs_lookup_block_group(root->fs_info,
6217 search_start);
6218 /*
6219 * we don't want to use the block group if it doesn't match our
6220 * allocation bits, or if its not cached.
6221 *
6222 * However if we are re-searching with an ideal block group
6223 * picked out then we don't care that the block group is cached.
6224 */
6225 if (block_group && block_group_bits(block_group, flags) &&
6226 block_group->cached != BTRFS_CACHE_NO) {
6227 down_read(&space_info->groups_sem);
6228 if (list_empty(&block_group->list) ||
6229 block_group->ro) {
6230 /*
6231 * someone is removing this block group,
6232 * we can't jump into the have_block_group
6233 * target because our list pointers are not
6234 * valid
6235 */
6236 btrfs_put_block_group(block_group);
6237 up_read(&space_info->groups_sem);
6238 } else {
6239 index = get_block_group_index(block_group);
6240 goto have_block_group;
6241 }
6242 } else if (block_group) {
6243 btrfs_put_block_group(block_group);
6244 }
6245 }
6246 search:
6247 have_caching_bg = false;
6248 down_read(&space_info->groups_sem);
6249 list_for_each_entry(block_group, &space_info->block_groups[index],
6250 list) {
6251 u64 offset;
6252 int cached;
6253
6254 btrfs_get_block_group(block_group);
6255 search_start = block_group->key.objectid;
6256
6257 /*
6258 * this can happen if we end up cycling through all the
6259 * raid types, but we want to make sure we only allocate
6260 * for the proper type.
6261 */
6262 if (!block_group_bits(block_group, flags)) {
6263 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6264 BTRFS_BLOCK_GROUP_RAID1 |
6265 BTRFS_BLOCK_GROUP_RAID5 |
6266 BTRFS_BLOCK_GROUP_RAID6 |
6267 BTRFS_BLOCK_GROUP_RAID10;
6268
6269 /*
6270 * if they asked for extra copies and this block group
6271 * doesn't provide them, bail. This does allow us to
6272 * fill raid0 from raid1.
6273 */
6274 if ((flags & extra) && !(block_group->flags & extra))
6275 goto loop;
6276 }
6277
6278 have_block_group:
6279 cached = block_group_cache_done(block_group);
6280 if (unlikely(!cached)) {
6281 ret = cache_block_group(block_group, 0);
6282 BUG_ON(ret < 0);
6283 ret = 0;
6284 }
6285
6286 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6287 goto loop;
6288 if (unlikely(block_group->ro))
6289 goto loop;
6290
6291 /*
6292 * Ok we want to try and use the cluster allocator, so
6293 * lets look there
6294 */
6295 if (last_ptr) {
6296 struct btrfs_block_group_cache *used_block_group;
6297 unsigned long aligned_cluster;
6298 /*
6299 * the refill lock keeps out other
6300 * people trying to start a new cluster
6301 */
6302 spin_lock(&last_ptr->refill_lock);
6303 used_block_group = last_ptr->block_group;
6304 if (used_block_group != block_group &&
6305 (!used_block_group ||
6306 used_block_group->ro ||
6307 !block_group_bits(used_block_group, flags)))
6308 goto refill_cluster;
6309
6310 if (used_block_group != block_group)
6311 btrfs_get_block_group(used_block_group);
6312
6313 offset = btrfs_alloc_from_cluster(used_block_group,
6314 last_ptr,
6315 num_bytes,
6316 used_block_group->key.objectid,
6317 &max_extent_size);
6318 if (offset) {
6319 /* we have a block, we're done */
6320 spin_unlock(&last_ptr->refill_lock);
6321 trace_btrfs_reserve_extent_cluster(root,
6322 used_block_group,
6323 search_start, num_bytes);
6324 if (used_block_group != block_group) {
6325 btrfs_put_block_group(block_group);
6326 block_group = used_block_group;
6327 }
6328 goto checks;
6329 }
6330
6331 WARN_ON(last_ptr->block_group != used_block_group);
6332 if (used_block_group != block_group)
6333 btrfs_put_block_group(used_block_group);
6334 refill_cluster:
6335 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6336 * set up a new clusters, so lets just skip it
6337 * and let the allocator find whatever block
6338 * it can find. If we reach this point, we
6339 * will have tried the cluster allocator
6340 * plenty of times and not have found
6341 * anything, so we are likely way too
6342 * fragmented for the clustering stuff to find
6343 * anything.
6344 *
6345 * However, if the cluster is taken from the
6346 * current block group, release the cluster
6347 * first, so that we stand a better chance of
6348 * succeeding in the unclustered
6349 * allocation. */
6350 if (loop >= LOOP_NO_EMPTY_SIZE &&
6351 last_ptr->block_group != block_group) {
6352 spin_unlock(&last_ptr->refill_lock);
6353 goto unclustered_alloc;
6354 }
6355
6356 /*
6357 * this cluster didn't work out, free it and
6358 * start over
6359 */
6360 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6361
6362 if (loop >= LOOP_NO_EMPTY_SIZE) {
6363 spin_unlock(&last_ptr->refill_lock);
6364 goto unclustered_alloc;
6365 }
6366
6367 aligned_cluster = max_t(unsigned long,
6368 empty_cluster + empty_size,
6369 block_group->full_stripe_len);
6370
6371 /* allocate a cluster in this block group */
6372 ret = btrfs_find_space_cluster(root, block_group,
6373 last_ptr, search_start,
6374 num_bytes,
6375 aligned_cluster);
6376 if (ret == 0) {
6377 /*
6378 * now pull our allocation out of this
6379 * cluster
6380 */
6381 offset = btrfs_alloc_from_cluster(block_group,
6382 last_ptr,
6383 num_bytes,
6384 search_start,
6385 &max_extent_size);
6386 if (offset) {
6387 /* we found one, proceed */
6388 spin_unlock(&last_ptr->refill_lock);
6389 trace_btrfs_reserve_extent_cluster(root,
6390 block_group, search_start,
6391 num_bytes);
6392 goto checks;
6393 }
6394 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6395 && !failed_cluster_refill) {
6396 spin_unlock(&last_ptr->refill_lock);
6397
6398 failed_cluster_refill = true;
6399 wait_block_group_cache_progress(block_group,
6400 num_bytes + empty_cluster + empty_size);
6401 goto have_block_group;
6402 }
6403
6404 /*
6405 * at this point we either didn't find a cluster
6406 * or we weren't able to allocate a block from our
6407 * cluster. Free the cluster we've been trying
6408 * to use, and go to the next block group
6409 */
6410 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6411 spin_unlock(&last_ptr->refill_lock);
6412 goto loop;
6413 }
6414
6415 unclustered_alloc:
6416 spin_lock(&block_group->free_space_ctl->tree_lock);
6417 if (cached &&
6418 block_group->free_space_ctl->free_space <
6419 num_bytes + empty_cluster + empty_size) {
6420 if (block_group->free_space_ctl->free_space >
6421 max_extent_size)
6422 max_extent_size =
6423 block_group->free_space_ctl->free_space;
6424 spin_unlock(&block_group->free_space_ctl->tree_lock);
6425 goto loop;
6426 }
6427 spin_unlock(&block_group->free_space_ctl->tree_lock);
6428
6429 offset = btrfs_find_space_for_alloc(block_group, search_start,
6430 num_bytes, empty_size,
6431 &max_extent_size);
6432 /*
6433 * If we didn't find a chunk, and we haven't failed on this
6434 * block group before, and this block group is in the middle of
6435 * caching and we are ok with waiting, then go ahead and wait
6436 * for progress to be made, and set failed_alloc to true.
6437 *
6438 * If failed_alloc is true then we've already waited on this
6439 * block group once and should move on to the next block group.
6440 */
6441 if (!offset && !failed_alloc && !cached &&
6442 loop > LOOP_CACHING_NOWAIT) {
6443 wait_block_group_cache_progress(block_group,
6444 num_bytes + empty_size);
6445 failed_alloc = true;
6446 goto have_block_group;
6447 } else if (!offset) {
6448 if (!cached)
6449 have_caching_bg = true;
6450 goto loop;
6451 }
6452 checks:
6453 search_start = stripe_align(root, block_group,
6454 offset, num_bytes);
6455
6456 /* move on to the next group */
6457 if (search_start + num_bytes >
6458 block_group->key.objectid + block_group->key.offset) {
6459 btrfs_add_free_space(block_group, offset, num_bytes);
6460 goto loop;
6461 }
6462
6463 if (offset < search_start)
6464 btrfs_add_free_space(block_group, offset,
6465 search_start - offset);
6466 BUG_ON(offset > search_start);
6467
6468 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6469 alloc_type);
6470 if (ret == -EAGAIN) {
6471 btrfs_add_free_space(block_group, offset, num_bytes);
6472 goto loop;
6473 }
6474
6475 /* we are all good, lets return */
6476 ins->objectid = search_start;
6477 ins->offset = num_bytes;
6478
6479 trace_btrfs_reserve_extent(orig_root, block_group,
6480 search_start, num_bytes);
6481 btrfs_put_block_group(block_group);
6482 break;
6483 loop:
6484 failed_cluster_refill = false;
6485 failed_alloc = false;
6486 BUG_ON(index != get_block_group_index(block_group));
6487 btrfs_put_block_group(block_group);
6488 }
6489 up_read(&space_info->groups_sem);
6490
6491 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6492 goto search;
6493
6494 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6495 goto search;
6496
6497 /*
6498 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6499 * caching kthreads as we move along
6500 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6501 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6502 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6503 * again
6504 */
6505 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6506 index = 0;
6507 loop++;
6508 if (loop == LOOP_ALLOC_CHUNK) {
6509 struct btrfs_trans_handle *trans;
6510
6511 trans = btrfs_join_transaction(root);
6512 if (IS_ERR(trans)) {
6513 ret = PTR_ERR(trans);
6514 goto out;
6515 }
6516
6517 ret = do_chunk_alloc(trans, root, flags,
6518 CHUNK_ALLOC_FORCE);
6519 /*
6520 * Do not bail out on ENOSPC since we
6521 * can do more things.
6522 */
6523 if (ret < 0 && ret != -ENOSPC)
6524 btrfs_abort_transaction(trans,
6525 root, ret);
6526 else
6527 ret = 0;
6528 btrfs_end_transaction(trans, root);
6529 if (ret)
6530 goto out;
6531 }
6532
6533 if (loop == LOOP_NO_EMPTY_SIZE) {
6534 empty_size = 0;
6535 empty_cluster = 0;
6536 }
6537
6538 goto search;
6539 } else if (!ins->objectid) {
6540 ret = -ENOSPC;
6541 } else if (ins->objectid) {
6542 ret = 0;
6543 }
6544 out:
6545 if (ret == -ENOSPC)
6546 ins->offset = max_extent_size;
6547 return ret;
6548 }
6549
6550 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6551 int dump_block_groups)
6552 {
6553 struct btrfs_block_group_cache *cache;
6554 int index = 0;
6555
6556 spin_lock(&info->lock);
6557 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6558 info->flags,
6559 info->total_bytes - info->bytes_used - info->bytes_pinned -
6560 info->bytes_reserved - info->bytes_readonly,
6561 (info->full) ? "" : "not ");
6562 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6563 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6564 info->total_bytes, info->bytes_used, info->bytes_pinned,
6565 info->bytes_reserved, info->bytes_may_use,
6566 info->bytes_readonly);
6567 spin_unlock(&info->lock);
6568
6569 if (!dump_block_groups)
6570 return;
6571
6572 down_read(&info->groups_sem);
6573 again:
6574 list_for_each_entry(cache, &info->block_groups[index], list) {
6575 spin_lock(&cache->lock);
6576 printk(KERN_INFO "BTRFS: "
6577 "block group %llu has %llu bytes, "
6578 "%llu used %llu pinned %llu reserved %s\n",
6579 cache->key.objectid, cache->key.offset,
6580 btrfs_block_group_used(&cache->item), cache->pinned,
6581 cache->reserved, cache->ro ? "[readonly]" : "");
6582 btrfs_dump_free_space(cache, bytes);
6583 spin_unlock(&cache->lock);
6584 }
6585 if (++index < BTRFS_NR_RAID_TYPES)
6586 goto again;
6587 up_read(&info->groups_sem);
6588 }
6589
6590 int btrfs_reserve_extent(struct btrfs_root *root,
6591 u64 num_bytes, u64 min_alloc_size,
6592 u64 empty_size, u64 hint_byte,
6593 struct btrfs_key *ins, int is_data)
6594 {
6595 bool final_tried = false;
6596 u64 flags;
6597 int ret;
6598
6599 flags = btrfs_get_alloc_profile(root, is_data);
6600 again:
6601 WARN_ON(num_bytes < root->sectorsize);
6602 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6603 flags);
6604
6605 if (ret == -ENOSPC) {
6606 if (!final_tried && ins->offset) {
6607 num_bytes = min(num_bytes >> 1, ins->offset);
6608 num_bytes = round_down(num_bytes, root->sectorsize);
6609 num_bytes = max(num_bytes, min_alloc_size);
6610 if (num_bytes == min_alloc_size)
6611 final_tried = true;
6612 goto again;
6613 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6614 struct btrfs_space_info *sinfo;
6615
6616 sinfo = __find_space_info(root->fs_info, flags);
6617 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6618 flags, num_bytes);
6619 if (sinfo)
6620 dump_space_info(sinfo, num_bytes, 1);
6621 }
6622 }
6623
6624 return ret;
6625 }
6626
6627 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6628 u64 start, u64 len, int pin)
6629 {
6630 struct btrfs_block_group_cache *cache;
6631 int ret = 0;
6632
6633 cache = btrfs_lookup_block_group(root->fs_info, start);
6634 if (!cache) {
6635 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6636 start);
6637 return -ENOSPC;
6638 }
6639
6640 if (btrfs_test_opt(root, DISCARD))
6641 ret = btrfs_discard_extent(root, start, len, NULL);
6642
6643 if (pin)
6644 pin_down_extent(root, cache, start, len, 1);
6645 else {
6646 btrfs_add_free_space(cache, start, len);
6647 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6648 }
6649 btrfs_put_block_group(cache);
6650
6651 trace_btrfs_reserved_extent_free(root, start, len);
6652
6653 return ret;
6654 }
6655
6656 int btrfs_free_reserved_extent(struct btrfs_root *root,
6657 u64 start, u64 len)
6658 {
6659 return __btrfs_free_reserved_extent(root, start, len, 0);
6660 }
6661
6662 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6663 u64 start, u64 len)
6664 {
6665 return __btrfs_free_reserved_extent(root, start, len, 1);
6666 }
6667
6668 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6669 struct btrfs_root *root,
6670 u64 parent, u64 root_objectid,
6671 u64 flags, u64 owner, u64 offset,
6672 struct btrfs_key *ins, int ref_mod)
6673 {
6674 int ret;
6675 struct btrfs_fs_info *fs_info = root->fs_info;
6676 struct btrfs_extent_item *extent_item;
6677 struct btrfs_extent_inline_ref *iref;
6678 struct btrfs_path *path;
6679 struct extent_buffer *leaf;
6680 int type;
6681 u32 size;
6682
6683 if (parent > 0)
6684 type = BTRFS_SHARED_DATA_REF_KEY;
6685 else
6686 type = BTRFS_EXTENT_DATA_REF_KEY;
6687
6688 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6689
6690 path = btrfs_alloc_path();
6691 if (!path)
6692 return -ENOMEM;
6693
6694 path->leave_spinning = 1;
6695 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6696 ins, size);
6697 if (ret) {
6698 btrfs_free_path(path);
6699 return ret;
6700 }
6701
6702 leaf = path->nodes[0];
6703 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6704 struct btrfs_extent_item);
6705 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6706 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6707 btrfs_set_extent_flags(leaf, extent_item,
6708 flags | BTRFS_EXTENT_FLAG_DATA);
6709
6710 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6711 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6712 if (parent > 0) {
6713 struct btrfs_shared_data_ref *ref;
6714 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6716 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6717 } else {
6718 struct btrfs_extent_data_ref *ref;
6719 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6720 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6721 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6722 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6723 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6724 }
6725
6726 btrfs_mark_buffer_dirty(path->nodes[0]);
6727 btrfs_free_path(path);
6728
6729 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6730 if (ret) { /* -ENOENT, logic error */
6731 btrfs_err(fs_info, "update block group failed for %llu %llu",
6732 ins->objectid, ins->offset);
6733 BUG();
6734 }
6735 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6736 return ret;
6737 }
6738
6739 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6740 struct btrfs_root *root,
6741 u64 parent, u64 root_objectid,
6742 u64 flags, struct btrfs_disk_key *key,
6743 int level, struct btrfs_key *ins)
6744 {
6745 int ret;
6746 struct btrfs_fs_info *fs_info = root->fs_info;
6747 struct btrfs_extent_item *extent_item;
6748 struct btrfs_tree_block_info *block_info;
6749 struct btrfs_extent_inline_ref *iref;
6750 struct btrfs_path *path;
6751 struct extent_buffer *leaf;
6752 u32 size = sizeof(*extent_item) + sizeof(*iref);
6753 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6754 SKINNY_METADATA);
6755
6756 if (!skinny_metadata)
6757 size += sizeof(*block_info);
6758
6759 path = btrfs_alloc_path();
6760 if (!path) {
6761 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6762 root->leafsize);
6763 return -ENOMEM;
6764 }
6765
6766 path->leave_spinning = 1;
6767 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6768 ins, size);
6769 if (ret) {
6770 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6771 root->leafsize);
6772 btrfs_free_path(path);
6773 return ret;
6774 }
6775
6776 leaf = path->nodes[0];
6777 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6778 struct btrfs_extent_item);
6779 btrfs_set_extent_refs(leaf, extent_item, 1);
6780 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6781 btrfs_set_extent_flags(leaf, extent_item,
6782 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6783
6784 if (skinny_metadata) {
6785 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6786 } else {
6787 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6788 btrfs_set_tree_block_key(leaf, block_info, key);
6789 btrfs_set_tree_block_level(leaf, block_info, level);
6790 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6791 }
6792
6793 if (parent > 0) {
6794 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6795 btrfs_set_extent_inline_ref_type(leaf, iref,
6796 BTRFS_SHARED_BLOCK_REF_KEY);
6797 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6798 } else {
6799 btrfs_set_extent_inline_ref_type(leaf, iref,
6800 BTRFS_TREE_BLOCK_REF_KEY);
6801 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6802 }
6803
6804 btrfs_mark_buffer_dirty(leaf);
6805 btrfs_free_path(path);
6806
6807 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6808 if (ret) { /* -ENOENT, logic error */
6809 btrfs_err(fs_info, "update block group failed for %llu %llu",
6810 ins->objectid, ins->offset);
6811 BUG();
6812 }
6813
6814 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6815 return ret;
6816 }
6817
6818 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6819 struct btrfs_root *root,
6820 u64 root_objectid, u64 owner,
6821 u64 offset, struct btrfs_key *ins)
6822 {
6823 int ret;
6824
6825 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6826
6827 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6828 ins->offset, 0,
6829 root_objectid, owner, offset,
6830 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6831 return ret;
6832 }
6833
6834 /*
6835 * this is used by the tree logging recovery code. It records that
6836 * an extent has been allocated and makes sure to clear the free
6837 * space cache bits as well
6838 */
6839 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6840 struct btrfs_root *root,
6841 u64 root_objectid, u64 owner, u64 offset,
6842 struct btrfs_key *ins)
6843 {
6844 int ret;
6845 struct btrfs_block_group_cache *block_group;
6846
6847 /*
6848 * Mixed block groups will exclude before processing the log so we only
6849 * need to do the exlude dance if this fs isn't mixed.
6850 */
6851 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6852 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6853 if (ret)
6854 return ret;
6855 }
6856
6857 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6858 if (!block_group)
6859 return -EINVAL;
6860
6861 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6862 RESERVE_ALLOC_NO_ACCOUNT);
6863 BUG_ON(ret); /* logic error */
6864 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6865 0, owner, offset, ins, 1);
6866 btrfs_put_block_group(block_group);
6867 return ret;
6868 }
6869
6870 static struct extent_buffer *
6871 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6872 u64 bytenr, u32 blocksize, int level)
6873 {
6874 struct extent_buffer *buf;
6875
6876 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6877 if (!buf)
6878 return ERR_PTR(-ENOMEM);
6879 btrfs_set_header_generation(buf, trans->transid);
6880 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6881 btrfs_tree_lock(buf);
6882 clean_tree_block(trans, root, buf);
6883 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6884
6885 btrfs_set_lock_blocking(buf);
6886 btrfs_set_buffer_uptodate(buf);
6887
6888 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6889 /*
6890 * we allow two log transactions at a time, use different
6891 * EXENT bit to differentiate dirty pages.
6892 */
6893 if (root->log_transid % 2 == 0)
6894 set_extent_dirty(&root->dirty_log_pages, buf->start,
6895 buf->start + buf->len - 1, GFP_NOFS);
6896 else
6897 set_extent_new(&root->dirty_log_pages, buf->start,
6898 buf->start + buf->len - 1, GFP_NOFS);
6899 } else {
6900 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6901 buf->start + buf->len - 1, GFP_NOFS);
6902 }
6903 trans->blocks_used++;
6904 /* this returns a buffer locked for blocking */
6905 return buf;
6906 }
6907
6908 static struct btrfs_block_rsv *
6909 use_block_rsv(struct btrfs_trans_handle *trans,
6910 struct btrfs_root *root, u32 blocksize)
6911 {
6912 struct btrfs_block_rsv *block_rsv;
6913 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6914 int ret;
6915 bool global_updated = false;
6916
6917 block_rsv = get_block_rsv(trans, root);
6918
6919 if (unlikely(block_rsv->size == 0))
6920 goto try_reserve;
6921 again:
6922 ret = block_rsv_use_bytes(block_rsv, blocksize);
6923 if (!ret)
6924 return block_rsv;
6925
6926 if (block_rsv->failfast)
6927 return ERR_PTR(ret);
6928
6929 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6930 global_updated = true;
6931 update_global_block_rsv(root->fs_info);
6932 goto again;
6933 }
6934
6935 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6936 static DEFINE_RATELIMIT_STATE(_rs,
6937 DEFAULT_RATELIMIT_INTERVAL * 10,
6938 /*DEFAULT_RATELIMIT_BURST*/ 1);
6939 if (__ratelimit(&_rs))
6940 WARN(1, KERN_DEBUG
6941 "BTRFS: block rsv returned %d\n", ret);
6942 }
6943 try_reserve:
6944 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6945 BTRFS_RESERVE_NO_FLUSH);
6946 if (!ret)
6947 return block_rsv;
6948 /*
6949 * If we couldn't reserve metadata bytes try and use some from
6950 * the global reserve if its space type is the same as the global
6951 * reservation.
6952 */
6953 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6954 block_rsv->space_info == global_rsv->space_info) {
6955 ret = block_rsv_use_bytes(global_rsv, blocksize);
6956 if (!ret)
6957 return global_rsv;
6958 }
6959 return ERR_PTR(ret);
6960 }
6961
6962 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6963 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6964 {
6965 block_rsv_add_bytes(block_rsv, blocksize, 0);
6966 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6967 }
6968
6969 /*
6970 * finds a free extent and does all the dirty work required for allocation
6971 * returns the key for the extent through ins, and a tree buffer for
6972 * the first block of the extent through buf.
6973 *
6974 * returns the tree buffer or NULL.
6975 */
6976 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6977 struct btrfs_root *root, u32 blocksize,
6978 u64 parent, u64 root_objectid,
6979 struct btrfs_disk_key *key, int level,
6980 u64 hint, u64 empty_size)
6981 {
6982 struct btrfs_key ins;
6983 struct btrfs_block_rsv *block_rsv;
6984 struct extent_buffer *buf;
6985 u64 flags = 0;
6986 int ret;
6987 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6988 SKINNY_METADATA);
6989
6990 block_rsv = use_block_rsv(trans, root, blocksize);
6991 if (IS_ERR(block_rsv))
6992 return ERR_CAST(block_rsv);
6993
6994 ret = btrfs_reserve_extent(root, blocksize, blocksize,
6995 empty_size, hint, &ins, 0);
6996 if (ret) {
6997 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6998 return ERR_PTR(ret);
6999 }
7000
7001 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7002 blocksize, level);
7003 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7004
7005 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7006 if (parent == 0)
7007 parent = ins.objectid;
7008 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7009 } else
7010 BUG_ON(parent > 0);
7011
7012 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7013 struct btrfs_delayed_extent_op *extent_op;
7014 extent_op = btrfs_alloc_delayed_extent_op();
7015 BUG_ON(!extent_op); /* -ENOMEM */
7016 if (key)
7017 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7018 else
7019 memset(&extent_op->key, 0, sizeof(extent_op->key));
7020 extent_op->flags_to_set = flags;
7021 if (skinny_metadata)
7022 extent_op->update_key = 0;
7023 else
7024 extent_op->update_key = 1;
7025 extent_op->update_flags = 1;
7026 extent_op->is_data = 0;
7027 extent_op->level = level;
7028
7029 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7030 ins.objectid,
7031 ins.offset, parent, root_objectid,
7032 level, BTRFS_ADD_DELAYED_EXTENT,
7033 extent_op, 0);
7034 BUG_ON(ret); /* -ENOMEM */
7035 }
7036 return buf;
7037 }
7038
7039 struct walk_control {
7040 u64 refs[BTRFS_MAX_LEVEL];
7041 u64 flags[BTRFS_MAX_LEVEL];
7042 struct btrfs_key update_progress;
7043 int stage;
7044 int level;
7045 int shared_level;
7046 int update_ref;
7047 int keep_locks;
7048 int reada_slot;
7049 int reada_count;
7050 int for_reloc;
7051 };
7052
7053 #define DROP_REFERENCE 1
7054 #define UPDATE_BACKREF 2
7055
7056 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7057 struct btrfs_root *root,
7058 struct walk_control *wc,
7059 struct btrfs_path *path)
7060 {
7061 u64 bytenr;
7062 u64 generation;
7063 u64 refs;
7064 u64 flags;
7065 u32 nritems;
7066 u32 blocksize;
7067 struct btrfs_key key;
7068 struct extent_buffer *eb;
7069 int ret;
7070 int slot;
7071 int nread = 0;
7072
7073 if (path->slots[wc->level] < wc->reada_slot) {
7074 wc->reada_count = wc->reada_count * 2 / 3;
7075 wc->reada_count = max(wc->reada_count, 2);
7076 } else {
7077 wc->reada_count = wc->reada_count * 3 / 2;
7078 wc->reada_count = min_t(int, wc->reada_count,
7079 BTRFS_NODEPTRS_PER_BLOCK(root));
7080 }
7081
7082 eb = path->nodes[wc->level];
7083 nritems = btrfs_header_nritems(eb);
7084 blocksize = btrfs_level_size(root, wc->level - 1);
7085
7086 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7087 if (nread >= wc->reada_count)
7088 break;
7089
7090 cond_resched();
7091 bytenr = btrfs_node_blockptr(eb, slot);
7092 generation = btrfs_node_ptr_generation(eb, slot);
7093
7094 if (slot == path->slots[wc->level])
7095 goto reada;
7096
7097 if (wc->stage == UPDATE_BACKREF &&
7098 generation <= root->root_key.offset)
7099 continue;
7100
7101 /* We don't lock the tree block, it's OK to be racy here */
7102 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7103 wc->level - 1, 1, &refs,
7104 &flags);
7105 /* We don't care about errors in readahead. */
7106 if (ret < 0)
7107 continue;
7108 BUG_ON(refs == 0);
7109
7110 if (wc->stage == DROP_REFERENCE) {
7111 if (refs == 1)
7112 goto reada;
7113
7114 if (wc->level == 1 &&
7115 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7116 continue;
7117 if (!wc->update_ref ||
7118 generation <= root->root_key.offset)
7119 continue;
7120 btrfs_node_key_to_cpu(eb, &key, slot);
7121 ret = btrfs_comp_cpu_keys(&key,
7122 &wc->update_progress);
7123 if (ret < 0)
7124 continue;
7125 } else {
7126 if (wc->level == 1 &&
7127 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7128 continue;
7129 }
7130 reada:
7131 ret = readahead_tree_block(root, bytenr, blocksize,
7132 generation);
7133 if (ret)
7134 break;
7135 nread++;
7136 }
7137 wc->reada_slot = slot;
7138 }
7139
7140 /*
7141 * helper to process tree block while walking down the tree.
7142 *
7143 * when wc->stage == UPDATE_BACKREF, this function updates
7144 * back refs for pointers in the block.
7145 *
7146 * NOTE: return value 1 means we should stop walking down.
7147 */
7148 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7149 struct btrfs_root *root,
7150 struct btrfs_path *path,
7151 struct walk_control *wc, int lookup_info)
7152 {
7153 int level = wc->level;
7154 struct extent_buffer *eb = path->nodes[level];
7155 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7156 int ret;
7157
7158 if (wc->stage == UPDATE_BACKREF &&
7159 btrfs_header_owner(eb) != root->root_key.objectid)
7160 return 1;
7161
7162 /*
7163 * when reference count of tree block is 1, it won't increase
7164 * again. once full backref flag is set, we never clear it.
7165 */
7166 if (lookup_info &&
7167 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7168 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7169 BUG_ON(!path->locks[level]);
7170 ret = btrfs_lookup_extent_info(trans, root,
7171 eb->start, level, 1,
7172 &wc->refs[level],
7173 &wc->flags[level]);
7174 BUG_ON(ret == -ENOMEM);
7175 if (ret)
7176 return ret;
7177 BUG_ON(wc->refs[level] == 0);
7178 }
7179
7180 if (wc->stage == DROP_REFERENCE) {
7181 if (wc->refs[level] > 1)
7182 return 1;
7183
7184 if (path->locks[level] && !wc->keep_locks) {
7185 btrfs_tree_unlock_rw(eb, path->locks[level]);
7186 path->locks[level] = 0;
7187 }
7188 return 0;
7189 }
7190
7191 /* wc->stage == UPDATE_BACKREF */
7192 if (!(wc->flags[level] & flag)) {
7193 BUG_ON(!path->locks[level]);
7194 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7195 BUG_ON(ret); /* -ENOMEM */
7196 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7197 BUG_ON(ret); /* -ENOMEM */
7198 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7199 eb->len, flag,
7200 btrfs_header_level(eb), 0);
7201 BUG_ON(ret); /* -ENOMEM */
7202 wc->flags[level] |= flag;
7203 }
7204
7205 /*
7206 * the block is shared by multiple trees, so it's not good to
7207 * keep the tree lock
7208 */
7209 if (path->locks[level] && level > 0) {
7210 btrfs_tree_unlock_rw(eb, path->locks[level]);
7211 path->locks[level] = 0;
7212 }
7213 return 0;
7214 }
7215
7216 /*
7217 * helper to process tree block pointer.
7218 *
7219 * when wc->stage == DROP_REFERENCE, this function checks
7220 * reference count of the block pointed to. if the block
7221 * is shared and we need update back refs for the subtree
7222 * rooted at the block, this function changes wc->stage to
7223 * UPDATE_BACKREF. if the block is shared and there is no
7224 * need to update back, this function drops the reference
7225 * to the block.
7226 *
7227 * NOTE: return value 1 means we should stop walking down.
7228 */
7229 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7230 struct btrfs_root *root,
7231 struct btrfs_path *path,
7232 struct walk_control *wc, int *lookup_info)
7233 {
7234 u64 bytenr;
7235 u64 generation;
7236 u64 parent;
7237 u32 blocksize;
7238 struct btrfs_key key;
7239 struct extent_buffer *next;
7240 int level = wc->level;
7241 int reada = 0;
7242 int ret = 0;
7243
7244 generation = btrfs_node_ptr_generation(path->nodes[level],
7245 path->slots[level]);
7246 /*
7247 * if the lower level block was created before the snapshot
7248 * was created, we know there is no need to update back refs
7249 * for the subtree
7250 */
7251 if (wc->stage == UPDATE_BACKREF &&
7252 generation <= root->root_key.offset) {
7253 *lookup_info = 1;
7254 return 1;
7255 }
7256
7257 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7258 blocksize = btrfs_level_size(root, level - 1);
7259
7260 next = btrfs_find_tree_block(root, bytenr, blocksize);
7261 if (!next) {
7262 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7263 if (!next)
7264 return -ENOMEM;
7265 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7266 level - 1);
7267 reada = 1;
7268 }
7269 btrfs_tree_lock(next);
7270 btrfs_set_lock_blocking(next);
7271
7272 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7273 &wc->refs[level - 1],
7274 &wc->flags[level - 1]);
7275 if (ret < 0) {
7276 btrfs_tree_unlock(next);
7277 return ret;
7278 }
7279
7280 if (unlikely(wc->refs[level - 1] == 0)) {
7281 btrfs_err(root->fs_info, "Missing references.");
7282 BUG();
7283 }
7284 *lookup_info = 0;
7285
7286 if (wc->stage == DROP_REFERENCE) {
7287 if (wc->refs[level - 1] > 1) {
7288 if (level == 1 &&
7289 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7290 goto skip;
7291
7292 if (!wc->update_ref ||
7293 generation <= root->root_key.offset)
7294 goto skip;
7295
7296 btrfs_node_key_to_cpu(path->nodes[level], &key,
7297 path->slots[level]);
7298 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7299 if (ret < 0)
7300 goto skip;
7301
7302 wc->stage = UPDATE_BACKREF;
7303 wc->shared_level = level - 1;
7304 }
7305 } else {
7306 if (level == 1 &&
7307 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7308 goto skip;
7309 }
7310
7311 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7312 btrfs_tree_unlock(next);
7313 free_extent_buffer(next);
7314 next = NULL;
7315 *lookup_info = 1;
7316 }
7317
7318 if (!next) {
7319 if (reada && level == 1)
7320 reada_walk_down(trans, root, wc, path);
7321 next = read_tree_block(root, bytenr, blocksize, generation);
7322 if (!next || !extent_buffer_uptodate(next)) {
7323 free_extent_buffer(next);
7324 return -EIO;
7325 }
7326 btrfs_tree_lock(next);
7327 btrfs_set_lock_blocking(next);
7328 }
7329
7330 level--;
7331 BUG_ON(level != btrfs_header_level(next));
7332 path->nodes[level] = next;
7333 path->slots[level] = 0;
7334 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7335 wc->level = level;
7336 if (wc->level == 1)
7337 wc->reada_slot = 0;
7338 return 0;
7339 skip:
7340 wc->refs[level - 1] = 0;
7341 wc->flags[level - 1] = 0;
7342 if (wc->stage == DROP_REFERENCE) {
7343 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7344 parent = path->nodes[level]->start;
7345 } else {
7346 BUG_ON(root->root_key.objectid !=
7347 btrfs_header_owner(path->nodes[level]));
7348 parent = 0;
7349 }
7350
7351 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7352 root->root_key.objectid, level - 1, 0, 0);
7353 BUG_ON(ret); /* -ENOMEM */
7354 }
7355 btrfs_tree_unlock(next);
7356 free_extent_buffer(next);
7357 *lookup_info = 1;
7358 return 1;
7359 }
7360
7361 /*
7362 * helper to process tree block while walking up the tree.
7363 *
7364 * when wc->stage == DROP_REFERENCE, this function drops
7365 * reference count on the block.
7366 *
7367 * when wc->stage == UPDATE_BACKREF, this function changes
7368 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7369 * to UPDATE_BACKREF previously while processing the block.
7370 *
7371 * NOTE: return value 1 means we should stop walking up.
7372 */
7373 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7374 struct btrfs_root *root,
7375 struct btrfs_path *path,
7376 struct walk_control *wc)
7377 {
7378 int ret;
7379 int level = wc->level;
7380 struct extent_buffer *eb = path->nodes[level];
7381 u64 parent = 0;
7382
7383 if (wc->stage == UPDATE_BACKREF) {
7384 BUG_ON(wc->shared_level < level);
7385 if (level < wc->shared_level)
7386 goto out;
7387
7388 ret = find_next_key(path, level + 1, &wc->update_progress);
7389 if (ret > 0)
7390 wc->update_ref = 0;
7391
7392 wc->stage = DROP_REFERENCE;
7393 wc->shared_level = -1;
7394 path->slots[level] = 0;
7395
7396 /*
7397 * check reference count again if the block isn't locked.
7398 * we should start walking down the tree again if reference
7399 * count is one.
7400 */
7401 if (!path->locks[level]) {
7402 BUG_ON(level == 0);
7403 btrfs_tree_lock(eb);
7404 btrfs_set_lock_blocking(eb);
7405 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7406
7407 ret = btrfs_lookup_extent_info(trans, root,
7408 eb->start, level, 1,
7409 &wc->refs[level],
7410 &wc->flags[level]);
7411 if (ret < 0) {
7412 btrfs_tree_unlock_rw(eb, path->locks[level]);
7413 path->locks[level] = 0;
7414 return ret;
7415 }
7416 BUG_ON(wc->refs[level] == 0);
7417 if (wc->refs[level] == 1) {
7418 btrfs_tree_unlock_rw(eb, path->locks[level]);
7419 path->locks[level] = 0;
7420 return 1;
7421 }
7422 }
7423 }
7424
7425 /* wc->stage == DROP_REFERENCE */
7426 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7427
7428 if (wc->refs[level] == 1) {
7429 if (level == 0) {
7430 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7431 ret = btrfs_dec_ref(trans, root, eb, 1,
7432 wc->for_reloc);
7433 else
7434 ret = btrfs_dec_ref(trans, root, eb, 0,
7435 wc->for_reloc);
7436 BUG_ON(ret); /* -ENOMEM */
7437 }
7438 /* make block locked assertion in clean_tree_block happy */
7439 if (!path->locks[level] &&
7440 btrfs_header_generation(eb) == trans->transid) {
7441 btrfs_tree_lock(eb);
7442 btrfs_set_lock_blocking(eb);
7443 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7444 }
7445 clean_tree_block(trans, root, eb);
7446 }
7447
7448 if (eb == root->node) {
7449 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7450 parent = eb->start;
7451 else
7452 BUG_ON(root->root_key.objectid !=
7453 btrfs_header_owner(eb));
7454 } else {
7455 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7456 parent = path->nodes[level + 1]->start;
7457 else
7458 BUG_ON(root->root_key.objectid !=
7459 btrfs_header_owner(path->nodes[level + 1]));
7460 }
7461
7462 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7463 out:
7464 wc->refs[level] = 0;
7465 wc->flags[level] = 0;
7466 return 0;
7467 }
7468
7469 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7470 struct btrfs_root *root,
7471 struct btrfs_path *path,
7472 struct walk_control *wc)
7473 {
7474 int level = wc->level;
7475 int lookup_info = 1;
7476 int ret;
7477
7478 while (level >= 0) {
7479 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7480 if (ret > 0)
7481 break;
7482
7483 if (level == 0)
7484 break;
7485
7486 if (path->slots[level] >=
7487 btrfs_header_nritems(path->nodes[level]))
7488 break;
7489
7490 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7491 if (ret > 0) {
7492 path->slots[level]++;
7493 continue;
7494 } else if (ret < 0)
7495 return ret;
7496 level = wc->level;
7497 }
7498 return 0;
7499 }
7500
7501 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7502 struct btrfs_root *root,
7503 struct btrfs_path *path,
7504 struct walk_control *wc, int max_level)
7505 {
7506 int level = wc->level;
7507 int ret;
7508
7509 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7510 while (level < max_level && path->nodes[level]) {
7511 wc->level = level;
7512 if (path->slots[level] + 1 <
7513 btrfs_header_nritems(path->nodes[level])) {
7514 path->slots[level]++;
7515 return 0;
7516 } else {
7517 ret = walk_up_proc(trans, root, path, wc);
7518 if (ret > 0)
7519 return 0;
7520
7521 if (path->locks[level]) {
7522 btrfs_tree_unlock_rw(path->nodes[level],
7523 path->locks[level]);
7524 path->locks[level] = 0;
7525 }
7526 free_extent_buffer(path->nodes[level]);
7527 path->nodes[level] = NULL;
7528 level++;
7529 }
7530 }
7531 return 1;
7532 }
7533
7534 /*
7535 * drop a subvolume tree.
7536 *
7537 * this function traverses the tree freeing any blocks that only
7538 * referenced by the tree.
7539 *
7540 * when a shared tree block is found. this function decreases its
7541 * reference count by one. if update_ref is true, this function
7542 * also make sure backrefs for the shared block and all lower level
7543 * blocks are properly updated.
7544 *
7545 * If called with for_reloc == 0, may exit early with -EAGAIN
7546 */
7547 int btrfs_drop_snapshot(struct btrfs_root *root,
7548 struct btrfs_block_rsv *block_rsv, int update_ref,
7549 int for_reloc)
7550 {
7551 struct btrfs_path *path;
7552 struct btrfs_trans_handle *trans;
7553 struct btrfs_root *tree_root = root->fs_info->tree_root;
7554 struct btrfs_root_item *root_item = &root->root_item;
7555 struct walk_control *wc;
7556 struct btrfs_key key;
7557 int err = 0;
7558 int ret;
7559 int level;
7560 bool root_dropped = false;
7561
7562 path = btrfs_alloc_path();
7563 if (!path) {
7564 err = -ENOMEM;
7565 goto out;
7566 }
7567
7568 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7569 if (!wc) {
7570 btrfs_free_path(path);
7571 err = -ENOMEM;
7572 goto out;
7573 }
7574
7575 trans = btrfs_start_transaction(tree_root, 0);
7576 if (IS_ERR(trans)) {
7577 err = PTR_ERR(trans);
7578 goto out_free;
7579 }
7580
7581 if (block_rsv)
7582 trans->block_rsv = block_rsv;
7583
7584 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7585 level = btrfs_header_level(root->node);
7586 path->nodes[level] = btrfs_lock_root_node(root);
7587 btrfs_set_lock_blocking(path->nodes[level]);
7588 path->slots[level] = 0;
7589 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7590 memset(&wc->update_progress, 0,
7591 sizeof(wc->update_progress));
7592 } else {
7593 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7594 memcpy(&wc->update_progress, &key,
7595 sizeof(wc->update_progress));
7596
7597 level = root_item->drop_level;
7598 BUG_ON(level == 0);
7599 path->lowest_level = level;
7600 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7601 path->lowest_level = 0;
7602 if (ret < 0) {
7603 err = ret;
7604 goto out_end_trans;
7605 }
7606 WARN_ON(ret > 0);
7607
7608 /*
7609 * unlock our path, this is safe because only this
7610 * function is allowed to delete this snapshot
7611 */
7612 btrfs_unlock_up_safe(path, 0);
7613
7614 level = btrfs_header_level(root->node);
7615 while (1) {
7616 btrfs_tree_lock(path->nodes[level]);
7617 btrfs_set_lock_blocking(path->nodes[level]);
7618 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7619
7620 ret = btrfs_lookup_extent_info(trans, root,
7621 path->nodes[level]->start,
7622 level, 1, &wc->refs[level],
7623 &wc->flags[level]);
7624 if (ret < 0) {
7625 err = ret;
7626 goto out_end_trans;
7627 }
7628 BUG_ON(wc->refs[level] == 0);
7629
7630 if (level == root_item->drop_level)
7631 break;
7632
7633 btrfs_tree_unlock(path->nodes[level]);
7634 path->locks[level] = 0;
7635 WARN_ON(wc->refs[level] != 1);
7636 level--;
7637 }
7638 }
7639
7640 wc->level = level;
7641 wc->shared_level = -1;
7642 wc->stage = DROP_REFERENCE;
7643 wc->update_ref = update_ref;
7644 wc->keep_locks = 0;
7645 wc->for_reloc = for_reloc;
7646 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7647
7648 while (1) {
7649
7650 ret = walk_down_tree(trans, root, path, wc);
7651 if (ret < 0) {
7652 err = ret;
7653 break;
7654 }
7655
7656 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7657 if (ret < 0) {
7658 err = ret;
7659 break;
7660 }
7661
7662 if (ret > 0) {
7663 BUG_ON(wc->stage != DROP_REFERENCE);
7664 break;
7665 }
7666
7667 if (wc->stage == DROP_REFERENCE) {
7668 level = wc->level;
7669 btrfs_node_key(path->nodes[level],
7670 &root_item->drop_progress,
7671 path->slots[level]);
7672 root_item->drop_level = level;
7673 }
7674
7675 BUG_ON(wc->level == 0);
7676 if (btrfs_should_end_transaction(trans, tree_root) ||
7677 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7678 ret = btrfs_update_root(trans, tree_root,
7679 &root->root_key,
7680 root_item);
7681 if (ret) {
7682 btrfs_abort_transaction(trans, tree_root, ret);
7683 err = ret;
7684 goto out_end_trans;
7685 }
7686
7687 btrfs_end_transaction_throttle(trans, tree_root);
7688 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7689 pr_debug("BTRFS: drop snapshot early exit\n");
7690 err = -EAGAIN;
7691 goto out_free;
7692 }
7693
7694 trans = btrfs_start_transaction(tree_root, 0);
7695 if (IS_ERR(trans)) {
7696 err = PTR_ERR(trans);
7697 goto out_free;
7698 }
7699 if (block_rsv)
7700 trans->block_rsv = block_rsv;
7701 }
7702 }
7703 btrfs_release_path(path);
7704 if (err)
7705 goto out_end_trans;
7706
7707 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7708 if (ret) {
7709 btrfs_abort_transaction(trans, tree_root, ret);
7710 goto out_end_trans;
7711 }
7712
7713 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7714 ret = btrfs_find_root(tree_root, &root->root_key, path,
7715 NULL, NULL);
7716 if (ret < 0) {
7717 btrfs_abort_transaction(trans, tree_root, ret);
7718 err = ret;
7719 goto out_end_trans;
7720 } else if (ret > 0) {
7721 /* if we fail to delete the orphan item this time
7722 * around, it'll get picked up the next time.
7723 *
7724 * The most common failure here is just -ENOENT.
7725 */
7726 btrfs_del_orphan_item(trans, tree_root,
7727 root->root_key.objectid);
7728 }
7729 }
7730
7731 if (root->in_radix) {
7732 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7733 } else {
7734 free_extent_buffer(root->node);
7735 free_extent_buffer(root->commit_root);
7736 btrfs_put_fs_root(root);
7737 }
7738 root_dropped = true;
7739 out_end_trans:
7740 btrfs_end_transaction_throttle(trans, tree_root);
7741 out_free:
7742 kfree(wc);
7743 btrfs_free_path(path);
7744 out:
7745 /*
7746 * So if we need to stop dropping the snapshot for whatever reason we
7747 * need to make sure to add it back to the dead root list so that we
7748 * keep trying to do the work later. This also cleans up roots if we
7749 * don't have it in the radix (like when we recover after a power fail
7750 * or unmount) so we don't leak memory.
7751 */
7752 if (!for_reloc && root_dropped == false)
7753 btrfs_add_dead_root(root);
7754 if (err && err != -EAGAIN)
7755 btrfs_std_error(root->fs_info, err);
7756 return err;
7757 }
7758
7759 /*
7760 * drop subtree rooted at tree block 'node'.
7761 *
7762 * NOTE: this function will unlock and release tree block 'node'
7763 * only used by relocation code
7764 */
7765 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7766 struct btrfs_root *root,
7767 struct extent_buffer *node,
7768 struct extent_buffer *parent)
7769 {
7770 struct btrfs_path *path;
7771 struct walk_control *wc;
7772 int level;
7773 int parent_level;
7774 int ret = 0;
7775 int wret;
7776
7777 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7778
7779 path = btrfs_alloc_path();
7780 if (!path)
7781 return -ENOMEM;
7782
7783 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7784 if (!wc) {
7785 btrfs_free_path(path);
7786 return -ENOMEM;
7787 }
7788
7789 btrfs_assert_tree_locked(parent);
7790 parent_level = btrfs_header_level(parent);
7791 extent_buffer_get(parent);
7792 path->nodes[parent_level] = parent;
7793 path->slots[parent_level] = btrfs_header_nritems(parent);
7794
7795 btrfs_assert_tree_locked(node);
7796 level = btrfs_header_level(node);
7797 path->nodes[level] = node;
7798 path->slots[level] = 0;
7799 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7800
7801 wc->refs[parent_level] = 1;
7802 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7803 wc->level = level;
7804 wc->shared_level = -1;
7805 wc->stage = DROP_REFERENCE;
7806 wc->update_ref = 0;
7807 wc->keep_locks = 1;
7808 wc->for_reloc = 1;
7809 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7810
7811 while (1) {
7812 wret = walk_down_tree(trans, root, path, wc);
7813 if (wret < 0) {
7814 ret = wret;
7815 break;
7816 }
7817
7818 wret = walk_up_tree(trans, root, path, wc, parent_level);
7819 if (wret < 0)
7820 ret = wret;
7821 if (wret != 0)
7822 break;
7823 }
7824
7825 kfree(wc);
7826 btrfs_free_path(path);
7827 return ret;
7828 }
7829
7830 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7831 {
7832 u64 num_devices;
7833 u64 stripped;
7834
7835 /*
7836 * if restripe for this chunk_type is on pick target profile and
7837 * return, otherwise do the usual balance
7838 */
7839 stripped = get_restripe_target(root->fs_info, flags);
7840 if (stripped)
7841 return extended_to_chunk(stripped);
7842
7843 /*
7844 * we add in the count of missing devices because we want
7845 * to make sure that any RAID levels on a degraded FS
7846 * continue to be honored.
7847 */
7848 num_devices = root->fs_info->fs_devices->rw_devices +
7849 root->fs_info->fs_devices->missing_devices;
7850
7851 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7852 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7853 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7854
7855 if (num_devices == 1) {
7856 stripped |= BTRFS_BLOCK_GROUP_DUP;
7857 stripped = flags & ~stripped;
7858
7859 /* turn raid0 into single device chunks */
7860 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7861 return stripped;
7862
7863 /* turn mirroring into duplication */
7864 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7865 BTRFS_BLOCK_GROUP_RAID10))
7866 return stripped | BTRFS_BLOCK_GROUP_DUP;
7867 } else {
7868 /* they already had raid on here, just return */
7869 if (flags & stripped)
7870 return flags;
7871
7872 stripped |= BTRFS_BLOCK_GROUP_DUP;
7873 stripped = flags & ~stripped;
7874
7875 /* switch duplicated blocks with raid1 */
7876 if (flags & BTRFS_BLOCK_GROUP_DUP)
7877 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7878
7879 /* this is drive concat, leave it alone */
7880 }
7881
7882 return flags;
7883 }
7884
7885 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7886 {
7887 struct btrfs_space_info *sinfo = cache->space_info;
7888 u64 num_bytes;
7889 u64 min_allocable_bytes;
7890 int ret = -ENOSPC;
7891
7892
7893 /*
7894 * We need some metadata space and system metadata space for
7895 * allocating chunks in some corner cases until we force to set
7896 * it to be readonly.
7897 */
7898 if ((sinfo->flags &
7899 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7900 !force)
7901 min_allocable_bytes = 1 * 1024 * 1024;
7902 else
7903 min_allocable_bytes = 0;
7904
7905 spin_lock(&sinfo->lock);
7906 spin_lock(&cache->lock);
7907
7908 if (cache->ro) {
7909 ret = 0;
7910 goto out;
7911 }
7912
7913 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7914 cache->bytes_super - btrfs_block_group_used(&cache->item);
7915
7916 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7917 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7918 min_allocable_bytes <= sinfo->total_bytes) {
7919 sinfo->bytes_readonly += num_bytes;
7920 cache->ro = 1;
7921 ret = 0;
7922 }
7923 out:
7924 spin_unlock(&cache->lock);
7925 spin_unlock(&sinfo->lock);
7926 return ret;
7927 }
7928
7929 int btrfs_set_block_group_ro(struct btrfs_root *root,
7930 struct btrfs_block_group_cache *cache)
7931
7932 {
7933 struct btrfs_trans_handle *trans;
7934 u64 alloc_flags;
7935 int ret;
7936
7937 BUG_ON(cache->ro);
7938
7939 trans = btrfs_join_transaction(root);
7940 if (IS_ERR(trans))
7941 return PTR_ERR(trans);
7942
7943 alloc_flags = update_block_group_flags(root, cache->flags);
7944 if (alloc_flags != cache->flags) {
7945 ret = do_chunk_alloc(trans, root, alloc_flags,
7946 CHUNK_ALLOC_FORCE);
7947 if (ret < 0)
7948 goto out;
7949 }
7950
7951 ret = set_block_group_ro(cache, 0);
7952 if (!ret)
7953 goto out;
7954 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7955 ret = do_chunk_alloc(trans, root, alloc_flags,
7956 CHUNK_ALLOC_FORCE);
7957 if (ret < 0)
7958 goto out;
7959 ret = set_block_group_ro(cache, 0);
7960 out:
7961 btrfs_end_transaction(trans, root);
7962 return ret;
7963 }
7964
7965 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7966 struct btrfs_root *root, u64 type)
7967 {
7968 u64 alloc_flags = get_alloc_profile(root, type);
7969 return do_chunk_alloc(trans, root, alloc_flags,
7970 CHUNK_ALLOC_FORCE);
7971 }
7972
7973 /*
7974 * helper to account the unused space of all the readonly block group in the
7975 * list. takes mirrors into account.
7976 */
7977 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7978 {
7979 struct btrfs_block_group_cache *block_group;
7980 u64 free_bytes = 0;
7981 int factor;
7982
7983 list_for_each_entry(block_group, groups_list, list) {
7984 spin_lock(&block_group->lock);
7985
7986 if (!block_group->ro) {
7987 spin_unlock(&block_group->lock);
7988 continue;
7989 }
7990
7991 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7992 BTRFS_BLOCK_GROUP_RAID10 |
7993 BTRFS_BLOCK_GROUP_DUP))
7994 factor = 2;
7995 else
7996 factor = 1;
7997
7998 free_bytes += (block_group->key.offset -
7999 btrfs_block_group_used(&block_group->item)) *
8000 factor;
8001
8002 spin_unlock(&block_group->lock);
8003 }
8004
8005 return free_bytes;
8006 }
8007
8008 /*
8009 * helper to account the unused space of all the readonly block group in the
8010 * space_info. takes mirrors into account.
8011 */
8012 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8013 {
8014 int i;
8015 u64 free_bytes = 0;
8016
8017 spin_lock(&sinfo->lock);
8018
8019 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8020 if (!list_empty(&sinfo->block_groups[i]))
8021 free_bytes += __btrfs_get_ro_block_group_free_space(
8022 &sinfo->block_groups[i]);
8023
8024 spin_unlock(&sinfo->lock);
8025
8026 return free_bytes;
8027 }
8028
8029 void btrfs_set_block_group_rw(struct btrfs_root *root,
8030 struct btrfs_block_group_cache *cache)
8031 {
8032 struct btrfs_space_info *sinfo = cache->space_info;
8033 u64 num_bytes;
8034
8035 BUG_ON(!cache->ro);
8036
8037 spin_lock(&sinfo->lock);
8038 spin_lock(&cache->lock);
8039 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8040 cache->bytes_super - btrfs_block_group_used(&cache->item);
8041 sinfo->bytes_readonly -= num_bytes;
8042 cache->ro = 0;
8043 spin_unlock(&cache->lock);
8044 spin_unlock(&sinfo->lock);
8045 }
8046
8047 /*
8048 * checks to see if its even possible to relocate this block group.
8049 *
8050 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8051 * ok to go ahead and try.
8052 */
8053 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8054 {
8055 struct btrfs_block_group_cache *block_group;
8056 struct btrfs_space_info *space_info;
8057 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8058 struct btrfs_device *device;
8059 struct btrfs_trans_handle *trans;
8060 u64 min_free;
8061 u64 dev_min = 1;
8062 u64 dev_nr = 0;
8063 u64 target;
8064 int index;
8065 int full = 0;
8066 int ret = 0;
8067
8068 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8069
8070 /* odd, couldn't find the block group, leave it alone */
8071 if (!block_group)
8072 return -1;
8073
8074 min_free = btrfs_block_group_used(&block_group->item);
8075
8076 /* no bytes used, we're good */
8077 if (!min_free)
8078 goto out;
8079
8080 space_info = block_group->space_info;
8081 spin_lock(&space_info->lock);
8082
8083 full = space_info->full;
8084
8085 /*
8086 * if this is the last block group we have in this space, we can't
8087 * relocate it unless we're able to allocate a new chunk below.
8088 *
8089 * Otherwise, we need to make sure we have room in the space to handle
8090 * all of the extents from this block group. If we can, we're good
8091 */
8092 if ((space_info->total_bytes != block_group->key.offset) &&
8093 (space_info->bytes_used + space_info->bytes_reserved +
8094 space_info->bytes_pinned + space_info->bytes_readonly +
8095 min_free < space_info->total_bytes)) {
8096 spin_unlock(&space_info->lock);
8097 goto out;
8098 }
8099 spin_unlock(&space_info->lock);
8100
8101 /*
8102 * ok we don't have enough space, but maybe we have free space on our
8103 * devices to allocate new chunks for relocation, so loop through our
8104 * alloc devices and guess if we have enough space. if this block
8105 * group is going to be restriped, run checks against the target
8106 * profile instead of the current one.
8107 */
8108 ret = -1;
8109
8110 /*
8111 * index:
8112 * 0: raid10
8113 * 1: raid1
8114 * 2: dup
8115 * 3: raid0
8116 * 4: single
8117 */
8118 target = get_restripe_target(root->fs_info, block_group->flags);
8119 if (target) {
8120 index = __get_raid_index(extended_to_chunk(target));
8121 } else {
8122 /*
8123 * this is just a balance, so if we were marked as full
8124 * we know there is no space for a new chunk
8125 */
8126 if (full)
8127 goto out;
8128
8129 index = get_block_group_index(block_group);
8130 }
8131
8132 if (index == BTRFS_RAID_RAID10) {
8133 dev_min = 4;
8134 /* Divide by 2 */
8135 min_free >>= 1;
8136 } else if (index == BTRFS_RAID_RAID1) {
8137 dev_min = 2;
8138 } else if (index == BTRFS_RAID_DUP) {
8139 /* Multiply by 2 */
8140 min_free <<= 1;
8141 } else if (index == BTRFS_RAID_RAID0) {
8142 dev_min = fs_devices->rw_devices;
8143 do_div(min_free, dev_min);
8144 }
8145
8146 /* We need to do this so that we can look at pending chunks */
8147 trans = btrfs_join_transaction(root);
8148 if (IS_ERR(trans)) {
8149 ret = PTR_ERR(trans);
8150 goto out;
8151 }
8152
8153 mutex_lock(&root->fs_info->chunk_mutex);
8154 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8155 u64 dev_offset;
8156
8157 /*
8158 * check to make sure we can actually find a chunk with enough
8159 * space to fit our block group in.
8160 */
8161 if (device->total_bytes > device->bytes_used + min_free &&
8162 !device->is_tgtdev_for_dev_replace) {
8163 ret = find_free_dev_extent(trans, device, min_free,
8164 &dev_offset, NULL);
8165 if (!ret)
8166 dev_nr++;
8167
8168 if (dev_nr >= dev_min)
8169 break;
8170
8171 ret = -1;
8172 }
8173 }
8174 mutex_unlock(&root->fs_info->chunk_mutex);
8175 btrfs_end_transaction(trans, root);
8176 out:
8177 btrfs_put_block_group(block_group);
8178 return ret;
8179 }
8180
8181 static int find_first_block_group(struct btrfs_root *root,
8182 struct btrfs_path *path, struct btrfs_key *key)
8183 {
8184 int ret = 0;
8185 struct btrfs_key found_key;
8186 struct extent_buffer *leaf;
8187 int slot;
8188
8189 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8190 if (ret < 0)
8191 goto out;
8192
8193 while (1) {
8194 slot = path->slots[0];
8195 leaf = path->nodes[0];
8196 if (slot >= btrfs_header_nritems(leaf)) {
8197 ret = btrfs_next_leaf(root, path);
8198 if (ret == 0)
8199 continue;
8200 if (ret < 0)
8201 goto out;
8202 break;
8203 }
8204 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8205
8206 if (found_key.objectid >= key->objectid &&
8207 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8208 ret = 0;
8209 goto out;
8210 }
8211 path->slots[0]++;
8212 }
8213 out:
8214 return ret;
8215 }
8216
8217 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8218 {
8219 struct btrfs_block_group_cache *block_group;
8220 u64 last = 0;
8221
8222 while (1) {
8223 struct inode *inode;
8224
8225 block_group = btrfs_lookup_first_block_group(info, last);
8226 while (block_group) {
8227 spin_lock(&block_group->lock);
8228 if (block_group->iref)
8229 break;
8230 spin_unlock(&block_group->lock);
8231 block_group = next_block_group(info->tree_root,
8232 block_group);
8233 }
8234 if (!block_group) {
8235 if (last == 0)
8236 break;
8237 last = 0;
8238 continue;
8239 }
8240
8241 inode = block_group->inode;
8242 block_group->iref = 0;
8243 block_group->inode = NULL;
8244 spin_unlock(&block_group->lock);
8245 iput(inode);
8246 last = block_group->key.objectid + block_group->key.offset;
8247 btrfs_put_block_group(block_group);
8248 }
8249 }
8250
8251 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8252 {
8253 struct btrfs_block_group_cache *block_group;
8254 struct btrfs_space_info *space_info;
8255 struct btrfs_caching_control *caching_ctl;
8256 struct rb_node *n;
8257
8258 down_write(&info->extent_commit_sem);
8259 while (!list_empty(&info->caching_block_groups)) {
8260 caching_ctl = list_entry(info->caching_block_groups.next,
8261 struct btrfs_caching_control, list);
8262 list_del(&caching_ctl->list);
8263 put_caching_control(caching_ctl);
8264 }
8265 up_write(&info->extent_commit_sem);
8266
8267 spin_lock(&info->block_group_cache_lock);
8268 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8269 block_group = rb_entry(n, struct btrfs_block_group_cache,
8270 cache_node);
8271 rb_erase(&block_group->cache_node,
8272 &info->block_group_cache_tree);
8273 spin_unlock(&info->block_group_cache_lock);
8274
8275 down_write(&block_group->space_info->groups_sem);
8276 list_del(&block_group->list);
8277 up_write(&block_group->space_info->groups_sem);
8278
8279 if (block_group->cached == BTRFS_CACHE_STARTED)
8280 wait_block_group_cache_done(block_group);
8281
8282 /*
8283 * We haven't cached this block group, which means we could
8284 * possibly have excluded extents on this block group.
8285 */
8286 if (block_group->cached == BTRFS_CACHE_NO ||
8287 block_group->cached == BTRFS_CACHE_ERROR)
8288 free_excluded_extents(info->extent_root, block_group);
8289
8290 btrfs_remove_free_space_cache(block_group);
8291 btrfs_put_block_group(block_group);
8292
8293 spin_lock(&info->block_group_cache_lock);
8294 }
8295 spin_unlock(&info->block_group_cache_lock);
8296
8297 /* now that all the block groups are freed, go through and
8298 * free all the space_info structs. This is only called during
8299 * the final stages of unmount, and so we know nobody is
8300 * using them. We call synchronize_rcu() once before we start,
8301 * just to be on the safe side.
8302 */
8303 synchronize_rcu();
8304
8305 release_global_block_rsv(info);
8306
8307 while (!list_empty(&info->space_info)) {
8308 int i;
8309
8310 space_info = list_entry(info->space_info.next,
8311 struct btrfs_space_info,
8312 list);
8313 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8314 if (WARN_ON(space_info->bytes_pinned > 0 ||
8315 space_info->bytes_reserved > 0 ||
8316 space_info->bytes_may_use > 0)) {
8317 dump_space_info(space_info, 0, 0);
8318 }
8319 }
8320 list_del(&space_info->list);
8321 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8322 struct kobject *kobj;
8323 kobj = &space_info->block_group_kobjs[i];
8324 if (kobj->parent) {
8325 kobject_del(kobj);
8326 kobject_put(kobj);
8327 }
8328 }
8329 kobject_del(&space_info->kobj);
8330 kobject_put(&space_info->kobj);
8331 }
8332 return 0;
8333 }
8334
8335 static void __link_block_group(struct btrfs_space_info *space_info,
8336 struct btrfs_block_group_cache *cache)
8337 {
8338 int index = get_block_group_index(cache);
8339
8340 down_write(&space_info->groups_sem);
8341 if (list_empty(&space_info->block_groups[index])) {
8342 struct kobject *kobj = &space_info->block_group_kobjs[index];
8343 int ret;
8344
8345 kobject_get(&space_info->kobj); /* put in release */
8346 ret = kobject_add(kobj, &space_info->kobj, "%s",
8347 get_raid_name(index));
8348 if (ret) {
8349 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8350 kobject_put(&space_info->kobj);
8351 }
8352 }
8353 list_add_tail(&cache->list, &space_info->block_groups[index]);
8354 up_write(&space_info->groups_sem);
8355 }
8356
8357 static struct btrfs_block_group_cache *
8358 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8359 {
8360 struct btrfs_block_group_cache *cache;
8361
8362 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8363 if (!cache)
8364 return NULL;
8365
8366 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8367 GFP_NOFS);
8368 if (!cache->free_space_ctl) {
8369 kfree(cache);
8370 return NULL;
8371 }
8372
8373 cache->key.objectid = start;
8374 cache->key.offset = size;
8375 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8376
8377 cache->sectorsize = root->sectorsize;
8378 cache->fs_info = root->fs_info;
8379 cache->full_stripe_len = btrfs_full_stripe_len(root,
8380 &root->fs_info->mapping_tree,
8381 start);
8382 atomic_set(&cache->count, 1);
8383 spin_lock_init(&cache->lock);
8384 INIT_LIST_HEAD(&cache->list);
8385 INIT_LIST_HEAD(&cache->cluster_list);
8386 INIT_LIST_HEAD(&cache->new_bg_list);
8387 btrfs_init_free_space_ctl(cache);
8388
8389 return cache;
8390 }
8391
8392 int btrfs_read_block_groups(struct btrfs_root *root)
8393 {
8394 struct btrfs_path *path;
8395 int ret;
8396 struct btrfs_block_group_cache *cache;
8397 struct btrfs_fs_info *info = root->fs_info;
8398 struct btrfs_space_info *space_info;
8399 struct btrfs_key key;
8400 struct btrfs_key found_key;
8401 struct extent_buffer *leaf;
8402 int need_clear = 0;
8403 u64 cache_gen;
8404
8405 root = info->extent_root;
8406 key.objectid = 0;
8407 key.offset = 0;
8408 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8409 path = btrfs_alloc_path();
8410 if (!path)
8411 return -ENOMEM;
8412 path->reada = 1;
8413
8414 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8415 if (btrfs_test_opt(root, SPACE_CACHE) &&
8416 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8417 need_clear = 1;
8418 if (btrfs_test_opt(root, CLEAR_CACHE))
8419 need_clear = 1;
8420
8421 while (1) {
8422 ret = find_first_block_group(root, path, &key);
8423 if (ret > 0)
8424 break;
8425 if (ret != 0)
8426 goto error;
8427
8428 leaf = path->nodes[0];
8429 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8430
8431 cache = btrfs_create_block_group_cache(root, found_key.objectid,
8432 found_key.offset);
8433 if (!cache) {
8434 ret = -ENOMEM;
8435 goto error;
8436 }
8437
8438 if (need_clear) {
8439 /*
8440 * When we mount with old space cache, we need to
8441 * set BTRFS_DC_CLEAR and set dirty flag.
8442 *
8443 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8444 * truncate the old free space cache inode and
8445 * setup a new one.
8446 * b) Setting 'dirty flag' makes sure that we flush
8447 * the new space cache info onto disk.
8448 */
8449 cache->disk_cache_state = BTRFS_DC_CLEAR;
8450 if (btrfs_test_opt(root, SPACE_CACHE))
8451 cache->dirty = 1;
8452 }
8453
8454 read_extent_buffer(leaf, &cache->item,
8455 btrfs_item_ptr_offset(leaf, path->slots[0]),
8456 sizeof(cache->item));
8457 cache->flags = btrfs_block_group_flags(&cache->item);
8458
8459 key.objectid = found_key.objectid + found_key.offset;
8460 btrfs_release_path(path);
8461
8462 /*
8463 * We need to exclude the super stripes now so that the space
8464 * info has super bytes accounted for, otherwise we'll think
8465 * we have more space than we actually do.
8466 */
8467 ret = exclude_super_stripes(root, cache);
8468 if (ret) {
8469 /*
8470 * We may have excluded something, so call this just in
8471 * case.
8472 */
8473 free_excluded_extents(root, cache);
8474 btrfs_put_block_group(cache);
8475 goto error;
8476 }
8477
8478 /*
8479 * check for two cases, either we are full, and therefore
8480 * don't need to bother with the caching work since we won't
8481 * find any space, or we are empty, and we can just add all
8482 * the space in and be done with it. This saves us _alot_ of
8483 * time, particularly in the full case.
8484 */
8485 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8486 cache->last_byte_to_unpin = (u64)-1;
8487 cache->cached = BTRFS_CACHE_FINISHED;
8488 free_excluded_extents(root, cache);
8489 } else if (btrfs_block_group_used(&cache->item) == 0) {
8490 cache->last_byte_to_unpin = (u64)-1;
8491 cache->cached = BTRFS_CACHE_FINISHED;
8492 add_new_free_space(cache, root->fs_info,
8493 found_key.objectid,
8494 found_key.objectid +
8495 found_key.offset);
8496 free_excluded_extents(root, cache);
8497 }
8498
8499 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8500 if (ret) {
8501 btrfs_remove_free_space_cache(cache);
8502 btrfs_put_block_group(cache);
8503 goto error;
8504 }
8505
8506 ret = update_space_info(info, cache->flags, found_key.offset,
8507 btrfs_block_group_used(&cache->item),
8508 &space_info);
8509 if (ret) {
8510 btrfs_remove_free_space_cache(cache);
8511 spin_lock(&info->block_group_cache_lock);
8512 rb_erase(&cache->cache_node,
8513 &info->block_group_cache_tree);
8514 spin_unlock(&info->block_group_cache_lock);
8515 btrfs_put_block_group(cache);
8516 goto error;
8517 }
8518
8519 cache->space_info = space_info;
8520 spin_lock(&cache->space_info->lock);
8521 cache->space_info->bytes_readonly += cache->bytes_super;
8522 spin_unlock(&cache->space_info->lock);
8523
8524 __link_block_group(space_info, cache);
8525
8526 set_avail_alloc_bits(root->fs_info, cache->flags);
8527 if (btrfs_chunk_readonly(root, cache->key.objectid))
8528 set_block_group_ro(cache, 1);
8529 }
8530
8531 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8532 if (!(get_alloc_profile(root, space_info->flags) &
8533 (BTRFS_BLOCK_GROUP_RAID10 |
8534 BTRFS_BLOCK_GROUP_RAID1 |
8535 BTRFS_BLOCK_GROUP_RAID5 |
8536 BTRFS_BLOCK_GROUP_RAID6 |
8537 BTRFS_BLOCK_GROUP_DUP)))
8538 continue;
8539 /*
8540 * avoid allocating from un-mirrored block group if there are
8541 * mirrored block groups.
8542 */
8543 list_for_each_entry(cache,
8544 &space_info->block_groups[BTRFS_RAID_RAID0],
8545 list)
8546 set_block_group_ro(cache, 1);
8547 list_for_each_entry(cache,
8548 &space_info->block_groups[BTRFS_RAID_SINGLE],
8549 list)
8550 set_block_group_ro(cache, 1);
8551 }
8552
8553 init_global_block_rsv(info);
8554 ret = 0;
8555 error:
8556 btrfs_free_path(path);
8557 return ret;
8558 }
8559
8560 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8561 struct btrfs_root *root)
8562 {
8563 struct btrfs_block_group_cache *block_group, *tmp;
8564 struct btrfs_root *extent_root = root->fs_info->extent_root;
8565 struct btrfs_block_group_item item;
8566 struct btrfs_key key;
8567 int ret = 0;
8568
8569 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8570 new_bg_list) {
8571 list_del_init(&block_group->new_bg_list);
8572
8573 if (ret)
8574 continue;
8575
8576 spin_lock(&block_group->lock);
8577 memcpy(&item, &block_group->item, sizeof(item));
8578 memcpy(&key, &block_group->key, sizeof(key));
8579 spin_unlock(&block_group->lock);
8580
8581 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8582 sizeof(item));
8583 if (ret)
8584 btrfs_abort_transaction(trans, extent_root, ret);
8585 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8586 key.objectid, key.offset);
8587 if (ret)
8588 btrfs_abort_transaction(trans, extent_root, ret);
8589 }
8590 }
8591
8592 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8593 struct btrfs_root *root, u64 bytes_used,
8594 u64 type, u64 chunk_objectid, u64 chunk_offset,
8595 u64 size)
8596 {
8597 int ret;
8598 struct btrfs_root *extent_root;
8599 struct btrfs_block_group_cache *cache;
8600
8601 extent_root = root->fs_info->extent_root;
8602
8603 root->fs_info->last_trans_log_full_commit = trans->transid;
8604
8605 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8606 if (!cache)
8607 return -ENOMEM;
8608
8609 btrfs_set_block_group_used(&cache->item, bytes_used);
8610 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8611 btrfs_set_block_group_flags(&cache->item, type);
8612
8613 cache->flags = type;
8614 cache->last_byte_to_unpin = (u64)-1;
8615 cache->cached = BTRFS_CACHE_FINISHED;
8616 ret = exclude_super_stripes(root, cache);
8617 if (ret) {
8618 /*
8619 * We may have excluded something, so call this just in
8620 * case.
8621 */
8622 free_excluded_extents(root, cache);
8623 btrfs_put_block_group(cache);
8624 return ret;
8625 }
8626
8627 add_new_free_space(cache, root->fs_info, chunk_offset,
8628 chunk_offset + size);
8629
8630 free_excluded_extents(root, cache);
8631
8632 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8633 if (ret) {
8634 btrfs_remove_free_space_cache(cache);
8635 btrfs_put_block_group(cache);
8636 return ret;
8637 }
8638
8639 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8640 &cache->space_info);
8641 if (ret) {
8642 btrfs_remove_free_space_cache(cache);
8643 spin_lock(&root->fs_info->block_group_cache_lock);
8644 rb_erase(&cache->cache_node,
8645 &root->fs_info->block_group_cache_tree);
8646 spin_unlock(&root->fs_info->block_group_cache_lock);
8647 btrfs_put_block_group(cache);
8648 return ret;
8649 }
8650 update_global_block_rsv(root->fs_info);
8651
8652 spin_lock(&cache->space_info->lock);
8653 cache->space_info->bytes_readonly += cache->bytes_super;
8654 spin_unlock(&cache->space_info->lock);
8655
8656 __link_block_group(cache->space_info, cache);
8657
8658 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8659
8660 set_avail_alloc_bits(extent_root->fs_info, type);
8661
8662 return 0;
8663 }
8664
8665 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8666 {
8667 u64 extra_flags = chunk_to_extended(flags) &
8668 BTRFS_EXTENDED_PROFILE_MASK;
8669
8670 write_seqlock(&fs_info->profiles_lock);
8671 if (flags & BTRFS_BLOCK_GROUP_DATA)
8672 fs_info->avail_data_alloc_bits &= ~extra_flags;
8673 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8674 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8675 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8676 fs_info->avail_system_alloc_bits &= ~extra_flags;
8677 write_sequnlock(&fs_info->profiles_lock);
8678 }
8679
8680 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8681 struct btrfs_root *root, u64 group_start)
8682 {
8683 struct btrfs_path *path;
8684 struct btrfs_block_group_cache *block_group;
8685 struct btrfs_free_cluster *cluster;
8686 struct btrfs_root *tree_root = root->fs_info->tree_root;
8687 struct btrfs_key key;
8688 struct inode *inode;
8689 int ret;
8690 int index;
8691 int factor;
8692
8693 root = root->fs_info->extent_root;
8694
8695 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8696 BUG_ON(!block_group);
8697 BUG_ON(!block_group->ro);
8698
8699 /*
8700 * Free the reserved super bytes from this block group before
8701 * remove it.
8702 */
8703 free_excluded_extents(root, block_group);
8704
8705 memcpy(&key, &block_group->key, sizeof(key));
8706 index = get_block_group_index(block_group);
8707 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8708 BTRFS_BLOCK_GROUP_RAID1 |
8709 BTRFS_BLOCK_GROUP_RAID10))
8710 factor = 2;
8711 else
8712 factor = 1;
8713
8714 /* make sure this block group isn't part of an allocation cluster */
8715 cluster = &root->fs_info->data_alloc_cluster;
8716 spin_lock(&cluster->refill_lock);
8717 btrfs_return_cluster_to_free_space(block_group, cluster);
8718 spin_unlock(&cluster->refill_lock);
8719
8720 /*
8721 * make sure this block group isn't part of a metadata
8722 * allocation cluster
8723 */
8724 cluster = &root->fs_info->meta_alloc_cluster;
8725 spin_lock(&cluster->refill_lock);
8726 btrfs_return_cluster_to_free_space(block_group, cluster);
8727 spin_unlock(&cluster->refill_lock);
8728
8729 path = btrfs_alloc_path();
8730 if (!path) {
8731 ret = -ENOMEM;
8732 goto out;
8733 }
8734
8735 inode = lookup_free_space_inode(tree_root, block_group, path);
8736 if (!IS_ERR(inode)) {
8737 ret = btrfs_orphan_add(trans, inode);
8738 if (ret) {
8739 btrfs_add_delayed_iput(inode);
8740 goto out;
8741 }
8742 clear_nlink(inode);
8743 /* One for the block groups ref */
8744 spin_lock(&block_group->lock);
8745 if (block_group->iref) {
8746 block_group->iref = 0;
8747 block_group->inode = NULL;
8748 spin_unlock(&block_group->lock);
8749 iput(inode);
8750 } else {
8751 spin_unlock(&block_group->lock);
8752 }
8753 /* One for our lookup ref */
8754 btrfs_add_delayed_iput(inode);
8755 }
8756
8757 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8758 key.offset = block_group->key.objectid;
8759 key.type = 0;
8760
8761 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8762 if (ret < 0)
8763 goto out;
8764 if (ret > 0)
8765 btrfs_release_path(path);
8766 if (ret == 0) {
8767 ret = btrfs_del_item(trans, tree_root, path);
8768 if (ret)
8769 goto out;
8770 btrfs_release_path(path);
8771 }
8772
8773 spin_lock(&root->fs_info->block_group_cache_lock);
8774 rb_erase(&block_group->cache_node,
8775 &root->fs_info->block_group_cache_tree);
8776
8777 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8778 root->fs_info->first_logical_byte = (u64)-1;
8779 spin_unlock(&root->fs_info->block_group_cache_lock);
8780
8781 down_write(&block_group->space_info->groups_sem);
8782 /*
8783 * we must use list_del_init so people can check to see if they
8784 * are still on the list after taking the semaphore
8785 */
8786 list_del_init(&block_group->list);
8787 if (list_empty(&block_group->space_info->block_groups[index])) {
8788 kobject_del(&block_group->space_info->block_group_kobjs[index]);
8789 kobject_put(&block_group->space_info->block_group_kobjs[index]);
8790 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8791 }
8792 up_write(&block_group->space_info->groups_sem);
8793
8794 if (block_group->cached == BTRFS_CACHE_STARTED)
8795 wait_block_group_cache_done(block_group);
8796
8797 btrfs_remove_free_space_cache(block_group);
8798
8799 spin_lock(&block_group->space_info->lock);
8800 block_group->space_info->total_bytes -= block_group->key.offset;
8801 block_group->space_info->bytes_readonly -= block_group->key.offset;
8802 block_group->space_info->disk_total -= block_group->key.offset * factor;
8803 spin_unlock(&block_group->space_info->lock);
8804
8805 memcpy(&key, &block_group->key, sizeof(key));
8806
8807 btrfs_clear_space_info_full(root->fs_info);
8808
8809 btrfs_put_block_group(block_group);
8810 btrfs_put_block_group(block_group);
8811
8812 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8813 if (ret > 0)
8814 ret = -EIO;
8815 if (ret < 0)
8816 goto out;
8817
8818 ret = btrfs_del_item(trans, root, path);
8819 out:
8820 btrfs_free_path(path);
8821 return ret;
8822 }
8823
8824 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8825 {
8826 struct btrfs_space_info *space_info;
8827 struct btrfs_super_block *disk_super;
8828 u64 features;
8829 u64 flags;
8830 int mixed = 0;
8831 int ret;
8832
8833 disk_super = fs_info->super_copy;
8834 if (!btrfs_super_root(disk_super))
8835 return 1;
8836
8837 features = btrfs_super_incompat_flags(disk_super);
8838 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8839 mixed = 1;
8840
8841 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8842 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8843 if (ret)
8844 goto out;
8845
8846 if (mixed) {
8847 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8848 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8849 } else {
8850 flags = BTRFS_BLOCK_GROUP_METADATA;
8851 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8852 if (ret)
8853 goto out;
8854
8855 flags = BTRFS_BLOCK_GROUP_DATA;
8856 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8857 }
8858 out:
8859 return ret;
8860 }
8861
8862 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8863 {
8864 return unpin_extent_range(root, start, end);
8865 }
8866
8867 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8868 u64 num_bytes, u64 *actual_bytes)
8869 {
8870 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8871 }
8872
8873 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8874 {
8875 struct btrfs_fs_info *fs_info = root->fs_info;
8876 struct btrfs_block_group_cache *cache = NULL;
8877 u64 group_trimmed;
8878 u64 start;
8879 u64 end;
8880 u64 trimmed = 0;
8881 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8882 int ret = 0;
8883
8884 /*
8885 * try to trim all FS space, our block group may start from non-zero.
8886 */
8887 if (range->len == total_bytes)
8888 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8889 else
8890 cache = btrfs_lookup_block_group(fs_info, range->start);
8891
8892 while (cache) {
8893 if (cache->key.objectid >= (range->start + range->len)) {
8894 btrfs_put_block_group(cache);
8895 break;
8896 }
8897
8898 start = max(range->start, cache->key.objectid);
8899 end = min(range->start + range->len,
8900 cache->key.objectid + cache->key.offset);
8901
8902 if (end - start >= range->minlen) {
8903 if (!block_group_cache_done(cache)) {
8904 ret = cache_block_group(cache, 0);
8905 if (ret) {
8906 btrfs_put_block_group(cache);
8907 break;
8908 }
8909 ret = wait_block_group_cache_done(cache);
8910 if (ret) {
8911 btrfs_put_block_group(cache);
8912 break;
8913 }
8914 }
8915 ret = btrfs_trim_block_group(cache,
8916 &group_trimmed,
8917 start,
8918 end,
8919 range->minlen);
8920
8921 trimmed += group_trimmed;
8922 if (ret) {
8923 btrfs_put_block_group(cache);
8924 break;
8925 }
8926 }
8927
8928 cache = next_block_group(fs_info->tree_root, cache);
8929 }
8930
8931 range->len = trimmed;
8932 return ret;
8933 }
8934
8935 /*
8936 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
8937 * they are used to prevent the some tasks writing data into the page cache
8938 * by nocow before the subvolume is snapshoted, but flush the data into
8939 * the disk after the snapshot creation.
8940 */
8941 void btrfs_end_nocow_write(struct btrfs_root *root)
8942 {
8943 percpu_counter_dec(&root->subv_writers->counter);
8944 /*
8945 * Make sure counter is updated before we wake up
8946 * waiters.
8947 */
8948 smp_mb();
8949 if (waitqueue_active(&root->subv_writers->wait))
8950 wake_up(&root->subv_writers->wait);
8951 }
8952
8953 int btrfs_start_nocow_write(struct btrfs_root *root)
8954 {
8955 if (unlikely(atomic_read(&root->will_be_snapshoted)))
8956 return 0;
8957
8958 percpu_counter_inc(&root->subv_writers->counter);
8959 /*
8960 * Make sure counter is updated before we check for snapshot creation.
8961 */
8962 smp_mb();
8963 if (unlikely(atomic_read(&root->will_be_snapshoted))) {
8964 btrfs_end_nocow_write(root);
8965 return 0;
8966 }
8967 return 1;
8968 }
This page took 0.236247 seconds and 5 git commands to generate.