Btrfs: test free space only for unclustered allocation
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 /* control flags for do_chunk_alloc's force field
38 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
39 * if we really need one.
40 *
41 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 *
43 * CHUNK_ALLOC_LIMITED means to only try and allocate one
44 * if we have very few chunks already allocated. This is
45 * used as part of the clustering code to help make sure
46 * we have a good pool of storage to cluster in, without
47 * filling the FS with empty chunks
48 *
49 */
50 enum {
51 CHUNK_ALLOC_NO_FORCE = 0,
52 CHUNK_ALLOC_FORCE = 1,
53 CHUNK_ALLOC_LIMITED = 2,
54 };
55
56 /*
57 * Control how reservations are dealt with.
58 *
59 * RESERVE_FREE - freeing a reservation.
60 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
61 * ENOSPC accounting
62 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
63 * bytes_may_use as the ENOSPC accounting is done elsewhere
64 */
65 enum {
66 RESERVE_FREE = 0,
67 RESERVE_ALLOC = 1,
68 RESERVE_ALLOC_NO_ACCOUNT = 2,
69 };
70
71 static int update_block_group(struct btrfs_trans_handle *trans,
72 struct btrfs_root *root,
73 u64 bytenr, u64 num_bytes, int alloc);
74 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, u64 parent,
77 u64 root_objectid, u64 owner_objectid,
78 u64 owner_offset, int refs_to_drop,
79 struct btrfs_delayed_extent_op *extra_op);
80 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
81 struct extent_buffer *leaf,
82 struct btrfs_extent_item *ei);
83 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84 struct btrfs_root *root,
85 u64 parent, u64 root_objectid,
86 u64 flags, u64 owner, u64 offset,
87 struct btrfs_key *ins, int ref_mod);
88 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, struct btrfs_disk_key *key,
92 int level, struct btrfs_key *ins);
93 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
94 struct btrfs_root *extent_root, u64 alloc_bytes,
95 u64 flags, int force);
96 static int find_next_key(struct btrfs_path *path, int level,
97 struct btrfs_key *key);
98 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
99 int dump_block_groups);
100 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
101 u64 num_bytes, int reserve);
102
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 {
106 smp_mb();
107 return cache->cached == BTRFS_CACHE_FINISHED;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 return (cache->flags & bits) == bits;
113 }
114
115 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
125 kfree(cache->free_space_ctl);
126 kfree(cache);
127 }
128 }
129
130 /*
131 * this adds the block group to the fs_info rb tree for the block group
132 * cache
133 */
134 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
135 struct btrfs_block_group_cache *block_group)
136 {
137 struct rb_node **p;
138 struct rb_node *parent = NULL;
139 struct btrfs_block_group_cache *cache;
140
141 spin_lock(&info->block_group_cache_lock);
142 p = &info->block_group_cache_tree.rb_node;
143
144 while (*p) {
145 parent = *p;
146 cache = rb_entry(parent, struct btrfs_block_group_cache,
147 cache_node);
148 if (block_group->key.objectid < cache->key.objectid) {
149 p = &(*p)->rb_left;
150 } else if (block_group->key.objectid > cache->key.objectid) {
151 p = &(*p)->rb_right;
152 } else {
153 spin_unlock(&info->block_group_cache_lock);
154 return -EEXIST;
155 }
156 }
157
158 rb_link_node(&block_group->cache_node, parent, p);
159 rb_insert_color(&block_group->cache_node,
160 &info->block_group_cache_tree);
161 spin_unlock(&info->block_group_cache_lock);
162
163 return 0;
164 }
165
166 /*
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
169 */
170 static struct btrfs_block_group_cache *
171 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
172 int contains)
173 {
174 struct btrfs_block_group_cache *cache, *ret = NULL;
175 struct rb_node *n;
176 u64 end, start;
177
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
180
181 while (n) {
182 cache = rb_entry(n, struct btrfs_block_group_cache,
183 cache_node);
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
186
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
189 ret = cache;
190 n = n->rb_left;
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
193 ret = cache;
194 break;
195 }
196 n = n->rb_right;
197 } else {
198 ret = cache;
199 break;
200 }
201 }
202 if (ret)
203 btrfs_get_block_group(ret);
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207 }
208
209 static int add_excluded_extent(struct btrfs_root *root,
210 u64 start, u64 num_bytes)
211 {
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&root->fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 set_extent_bits(&root->fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE, GFP_NOFS);
217 return 0;
218 }
219
220 static void free_excluded_extents(struct btrfs_root *root,
221 struct btrfs_block_group_cache *cache)
222 {
223 u64 start, end;
224
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
228 clear_extent_bits(&root->fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 clear_extent_bits(&root->fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 }
233
234 static int exclude_super_stripes(struct btrfs_root *root,
235 struct btrfs_block_group_cache *cache)
236 {
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(root, cache->key.objectid,
246 stripe_len);
247 BUG_ON(ret);
248 }
249
250 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
251 bytenr = btrfs_sb_offset(i);
252 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
253 cache->key.objectid, bytenr,
254 0, &logical, &nr, &stripe_len);
255 BUG_ON(ret);
256
257 while (nr--) {
258 cache->bytes_super += stripe_len;
259 ret = add_excluded_extent(root, logical[nr],
260 stripe_len);
261 BUG_ON(ret);
262 }
263
264 kfree(logical);
265 }
266 return 0;
267 }
268
269 static struct btrfs_caching_control *
270 get_caching_control(struct btrfs_block_group_cache *cache)
271 {
272 struct btrfs_caching_control *ctl;
273
274 spin_lock(&cache->lock);
275 if (cache->cached != BTRFS_CACHE_STARTED) {
276 spin_unlock(&cache->lock);
277 return NULL;
278 }
279
280 /* We're loading it the fast way, so we don't have a caching_ctl. */
281 if (!cache->caching_ctl) {
282 spin_unlock(&cache->lock);
283 return NULL;
284 }
285
286 ctl = cache->caching_ctl;
287 atomic_inc(&ctl->count);
288 spin_unlock(&cache->lock);
289 return ctl;
290 }
291
292 static void put_caching_control(struct btrfs_caching_control *ctl)
293 {
294 if (atomic_dec_and_test(&ctl->count))
295 kfree(ctl);
296 }
297
298 /*
299 * this is only called by cache_block_group, since we could have freed extents
300 * we need to check the pinned_extents for any extents that can't be used yet
301 * since their free space will be released as soon as the transaction commits.
302 */
303 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
304 struct btrfs_fs_info *info, u64 start, u64 end)
305 {
306 u64 extent_start, extent_end, size, total_added = 0;
307 int ret;
308
309 while (start < end) {
310 ret = find_first_extent_bit(info->pinned_extents, start,
311 &extent_start, &extent_end,
312 EXTENT_DIRTY | EXTENT_UPTODATE);
313 if (ret)
314 break;
315
316 if (extent_start <= start) {
317 start = extent_end + 1;
318 } else if (extent_start > start && extent_start < end) {
319 size = extent_start - start;
320 total_added += size;
321 ret = btrfs_add_free_space(block_group, start,
322 size);
323 BUG_ON(ret);
324 start = extent_end + 1;
325 } else {
326 break;
327 }
328 }
329
330 if (start < end) {
331 size = end - start;
332 total_added += size;
333 ret = btrfs_add_free_space(block_group, start, size);
334 BUG_ON(ret);
335 }
336
337 return total_added;
338 }
339
340 static noinline void caching_thread(struct btrfs_work *work)
341 {
342 struct btrfs_block_group_cache *block_group;
343 struct btrfs_fs_info *fs_info;
344 struct btrfs_caching_control *caching_ctl;
345 struct btrfs_root *extent_root;
346 struct btrfs_path *path;
347 struct extent_buffer *leaf;
348 struct btrfs_key key;
349 u64 total_found = 0;
350 u64 last = 0;
351 u32 nritems;
352 int ret = 0;
353
354 caching_ctl = container_of(work, struct btrfs_caching_control, work);
355 block_group = caching_ctl->block_group;
356 fs_info = block_group->fs_info;
357 extent_root = fs_info->extent_root;
358
359 path = btrfs_alloc_path();
360 if (!path)
361 goto out;
362
363 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
364
365 /*
366 * We don't want to deadlock with somebody trying to allocate a new
367 * extent for the extent root while also trying to search the extent
368 * root to add free space. So we skip locking and search the commit
369 * root, since its read-only
370 */
371 path->skip_locking = 1;
372 path->search_commit_root = 1;
373 path->reada = 1;
374
375 key.objectid = last;
376 key.offset = 0;
377 key.type = BTRFS_EXTENT_ITEM_KEY;
378 again:
379 mutex_lock(&caching_ctl->mutex);
380 /* need to make sure the commit_root doesn't disappear */
381 down_read(&fs_info->extent_commit_sem);
382
383 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
384 if (ret < 0)
385 goto err;
386
387 leaf = path->nodes[0];
388 nritems = btrfs_header_nritems(leaf);
389
390 while (1) {
391 if (btrfs_fs_closing(fs_info) > 1) {
392 last = (u64)-1;
393 break;
394 }
395
396 if (path->slots[0] < nritems) {
397 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
398 } else {
399 ret = find_next_key(path, 0, &key);
400 if (ret)
401 break;
402
403 if (need_resched() ||
404 btrfs_next_leaf(extent_root, path)) {
405 caching_ctl->progress = last;
406 btrfs_release_path(path);
407 up_read(&fs_info->extent_commit_sem);
408 mutex_unlock(&caching_ctl->mutex);
409 cond_resched();
410 goto again;
411 }
412 leaf = path->nodes[0];
413 nritems = btrfs_header_nritems(leaf);
414 continue;
415 }
416
417 if (key.objectid < block_group->key.objectid) {
418 path->slots[0]++;
419 continue;
420 }
421
422 if (key.objectid >= block_group->key.objectid +
423 block_group->key.offset)
424 break;
425
426 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
427 total_found += add_new_free_space(block_group,
428 fs_info, last,
429 key.objectid);
430 last = key.objectid + key.offset;
431
432 if (total_found > (1024 * 1024 * 2)) {
433 total_found = 0;
434 wake_up(&caching_ctl->wait);
435 }
436 }
437 path->slots[0]++;
438 }
439 ret = 0;
440
441 total_found += add_new_free_space(block_group, fs_info, last,
442 block_group->key.objectid +
443 block_group->key.offset);
444 caching_ctl->progress = (u64)-1;
445
446 spin_lock(&block_group->lock);
447 block_group->caching_ctl = NULL;
448 block_group->cached = BTRFS_CACHE_FINISHED;
449 spin_unlock(&block_group->lock);
450
451 err:
452 btrfs_free_path(path);
453 up_read(&fs_info->extent_commit_sem);
454
455 free_excluded_extents(extent_root, block_group);
456
457 mutex_unlock(&caching_ctl->mutex);
458 out:
459 wake_up(&caching_ctl->wait);
460
461 put_caching_control(caching_ctl);
462 btrfs_put_block_group(block_group);
463 }
464
465 static int cache_block_group(struct btrfs_block_group_cache *cache,
466 struct btrfs_trans_handle *trans,
467 struct btrfs_root *root,
468 int load_cache_only)
469 {
470 DEFINE_WAIT(wait);
471 struct btrfs_fs_info *fs_info = cache->fs_info;
472 struct btrfs_caching_control *caching_ctl;
473 int ret = 0;
474
475 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
476 BUG_ON(!caching_ctl);
477
478 INIT_LIST_HEAD(&caching_ctl->list);
479 mutex_init(&caching_ctl->mutex);
480 init_waitqueue_head(&caching_ctl->wait);
481 caching_ctl->block_group = cache;
482 caching_ctl->progress = cache->key.objectid;
483 atomic_set(&caching_ctl->count, 1);
484 caching_ctl->work.func = caching_thread;
485
486 spin_lock(&cache->lock);
487 /*
488 * This should be a rare occasion, but this could happen I think in the
489 * case where one thread starts to load the space cache info, and then
490 * some other thread starts a transaction commit which tries to do an
491 * allocation while the other thread is still loading the space cache
492 * info. The previous loop should have kept us from choosing this block
493 * group, but if we've moved to the state where we will wait on caching
494 * block groups we need to first check if we're doing a fast load here,
495 * so we can wait for it to finish, otherwise we could end up allocating
496 * from a block group who's cache gets evicted for one reason or
497 * another.
498 */
499 while (cache->cached == BTRFS_CACHE_FAST) {
500 struct btrfs_caching_control *ctl;
501
502 ctl = cache->caching_ctl;
503 atomic_inc(&ctl->count);
504 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
505 spin_unlock(&cache->lock);
506
507 schedule();
508
509 finish_wait(&ctl->wait, &wait);
510 put_caching_control(ctl);
511 spin_lock(&cache->lock);
512 }
513
514 if (cache->cached != BTRFS_CACHE_NO) {
515 spin_unlock(&cache->lock);
516 kfree(caching_ctl);
517 return 0;
518 }
519 WARN_ON(cache->caching_ctl);
520 cache->caching_ctl = caching_ctl;
521 cache->cached = BTRFS_CACHE_FAST;
522 spin_unlock(&cache->lock);
523
524 /*
525 * We can't do the read from on-disk cache during a commit since we need
526 * to have the normal tree locking. Also if we are currently trying to
527 * allocate blocks for the tree root we can't do the fast caching since
528 * we likely hold important locks.
529 */
530 if (trans && (!trans->transaction->in_commit) &&
531 (root && root != root->fs_info->tree_root) &&
532 btrfs_test_opt(root, SPACE_CACHE)) {
533 ret = load_free_space_cache(fs_info, cache);
534
535 spin_lock(&cache->lock);
536 if (ret == 1) {
537 cache->caching_ctl = NULL;
538 cache->cached = BTRFS_CACHE_FINISHED;
539 cache->last_byte_to_unpin = (u64)-1;
540 } else {
541 if (load_cache_only) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_NO;
544 } else {
545 cache->cached = BTRFS_CACHE_STARTED;
546 }
547 }
548 spin_unlock(&cache->lock);
549 wake_up(&caching_ctl->wait);
550 if (ret == 1) {
551 put_caching_control(caching_ctl);
552 free_excluded_extents(fs_info->extent_root, cache);
553 return 0;
554 }
555 } else {
556 /*
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
559 */
560 spin_lock(&cache->lock);
561 if (load_cache_only) {
562 cache->caching_ctl = NULL;
563 cache->cached = BTRFS_CACHE_NO;
564 } else {
565 cache->cached = BTRFS_CACHE_STARTED;
566 }
567 spin_unlock(&cache->lock);
568 wake_up(&caching_ctl->wait);
569 }
570
571 if (load_cache_only) {
572 put_caching_control(caching_ctl);
573 return 0;
574 }
575
576 down_write(&fs_info->extent_commit_sem);
577 atomic_inc(&caching_ctl->count);
578 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 up_write(&fs_info->extent_commit_sem);
580
581 btrfs_get_block_group(cache);
582
583 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
584
585 return ret;
586 }
587
588 /*
589 * return the block group that starts at or after bytenr
590 */
591 static struct btrfs_block_group_cache *
592 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
593 {
594 struct btrfs_block_group_cache *cache;
595
596 cache = block_group_cache_tree_search(info, bytenr, 0);
597
598 return cache;
599 }
600
601 /*
602 * return the block group that contains the given bytenr
603 */
604 struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 struct btrfs_fs_info *info,
606 u64 bytenr)
607 {
608 struct btrfs_block_group_cache *cache;
609
610 cache = block_group_cache_tree_search(info, bytenr, 1);
611
612 return cache;
613 }
614
615 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
616 u64 flags)
617 {
618 struct list_head *head = &info->space_info;
619 struct btrfs_space_info *found;
620
621 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
622 BTRFS_BLOCK_GROUP_METADATA;
623
624 rcu_read_lock();
625 list_for_each_entry_rcu(found, head, list) {
626 if (found->flags & flags) {
627 rcu_read_unlock();
628 return found;
629 }
630 }
631 rcu_read_unlock();
632 return NULL;
633 }
634
635 /*
636 * after adding space to the filesystem, we need to clear the full flags
637 * on all the space infos.
638 */
639 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
640 {
641 struct list_head *head = &info->space_info;
642 struct btrfs_space_info *found;
643
644 rcu_read_lock();
645 list_for_each_entry_rcu(found, head, list)
646 found->full = 0;
647 rcu_read_unlock();
648 }
649
650 static u64 div_factor(u64 num, int factor)
651 {
652 if (factor == 10)
653 return num;
654 num *= factor;
655 do_div(num, 10);
656 return num;
657 }
658
659 static u64 div_factor_fine(u64 num, int factor)
660 {
661 if (factor == 100)
662 return num;
663 num *= factor;
664 do_div(num, 100);
665 return num;
666 }
667
668 u64 btrfs_find_block_group(struct btrfs_root *root,
669 u64 search_start, u64 search_hint, int owner)
670 {
671 struct btrfs_block_group_cache *cache;
672 u64 used;
673 u64 last = max(search_hint, search_start);
674 u64 group_start = 0;
675 int full_search = 0;
676 int factor = 9;
677 int wrapped = 0;
678 again:
679 while (1) {
680 cache = btrfs_lookup_first_block_group(root->fs_info, last);
681 if (!cache)
682 break;
683
684 spin_lock(&cache->lock);
685 last = cache->key.objectid + cache->key.offset;
686 used = btrfs_block_group_used(&cache->item);
687
688 if ((full_search || !cache->ro) &&
689 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
690 if (used + cache->pinned + cache->reserved <
691 div_factor(cache->key.offset, factor)) {
692 group_start = cache->key.objectid;
693 spin_unlock(&cache->lock);
694 btrfs_put_block_group(cache);
695 goto found;
696 }
697 }
698 spin_unlock(&cache->lock);
699 btrfs_put_block_group(cache);
700 cond_resched();
701 }
702 if (!wrapped) {
703 last = search_start;
704 wrapped = 1;
705 goto again;
706 }
707 if (!full_search && factor < 10) {
708 last = search_start;
709 full_search = 1;
710 factor = 10;
711 goto again;
712 }
713 found:
714 return group_start;
715 }
716
717 /* simple helper to search for an existing extent at a given offset */
718 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
719 {
720 int ret;
721 struct btrfs_key key;
722 struct btrfs_path *path;
723
724 path = btrfs_alloc_path();
725 if (!path)
726 return -ENOMEM;
727
728 key.objectid = start;
729 key.offset = len;
730 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
731 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
732 0, 0);
733 btrfs_free_path(path);
734 return ret;
735 }
736
737 /*
738 * helper function to lookup reference count and flags of extent.
739 *
740 * the head node for delayed ref is used to store the sum of all the
741 * reference count modifications queued up in the rbtree. the head
742 * node may also store the extent flags to set. This way you can check
743 * to see what the reference count and extent flags would be if all of
744 * the delayed refs are not processed.
745 */
746 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root, u64 bytenr,
748 u64 num_bytes, u64 *refs, u64 *flags)
749 {
750 struct btrfs_delayed_ref_head *head;
751 struct btrfs_delayed_ref_root *delayed_refs;
752 struct btrfs_path *path;
753 struct btrfs_extent_item *ei;
754 struct extent_buffer *leaf;
755 struct btrfs_key key;
756 u32 item_size;
757 u64 num_refs;
758 u64 extent_flags;
759 int ret;
760
761 path = btrfs_alloc_path();
762 if (!path)
763 return -ENOMEM;
764
765 key.objectid = bytenr;
766 key.type = BTRFS_EXTENT_ITEM_KEY;
767 key.offset = num_bytes;
768 if (!trans) {
769 path->skip_locking = 1;
770 path->search_commit_root = 1;
771 }
772 again:
773 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
774 &key, path, 0, 0);
775 if (ret < 0)
776 goto out_free;
777
778 if (ret == 0) {
779 leaf = path->nodes[0];
780 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
781 if (item_size >= sizeof(*ei)) {
782 ei = btrfs_item_ptr(leaf, path->slots[0],
783 struct btrfs_extent_item);
784 num_refs = btrfs_extent_refs(leaf, ei);
785 extent_flags = btrfs_extent_flags(leaf, ei);
786 } else {
787 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
788 struct btrfs_extent_item_v0 *ei0;
789 BUG_ON(item_size != sizeof(*ei0));
790 ei0 = btrfs_item_ptr(leaf, path->slots[0],
791 struct btrfs_extent_item_v0);
792 num_refs = btrfs_extent_refs_v0(leaf, ei0);
793 /* FIXME: this isn't correct for data */
794 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
795 #else
796 BUG();
797 #endif
798 }
799 BUG_ON(num_refs == 0);
800 } else {
801 num_refs = 0;
802 extent_flags = 0;
803 ret = 0;
804 }
805
806 if (!trans)
807 goto out;
808
809 delayed_refs = &trans->transaction->delayed_refs;
810 spin_lock(&delayed_refs->lock);
811 head = btrfs_find_delayed_ref_head(trans, bytenr);
812 if (head) {
813 if (!mutex_trylock(&head->mutex)) {
814 atomic_inc(&head->node.refs);
815 spin_unlock(&delayed_refs->lock);
816
817 btrfs_release_path(path);
818
819 /*
820 * Mutex was contended, block until it's released and try
821 * again
822 */
823 mutex_lock(&head->mutex);
824 mutex_unlock(&head->mutex);
825 btrfs_put_delayed_ref(&head->node);
826 goto again;
827 }
828 if (head->extent_op && head->extent_op->update_flags)
829 extent_flags |= head->extent_op->flags_to_set;
830 else
831 BUG_ON(num_refs == 0);
832
833 num_refs += head->node.ref_mod;
834 mutex_unlock(&head->mutex);
835 }
836 spin_unlock(&delayed_refs->lock);
837 out:
838 WARN_ON(num_refs == 0);
839 if (refs)
840 *refs = num_refs;
841 if (flags)
842 *flags = extent_flags;
843 out_free:
844 btrfs_free_path(path);
845 return ret;
846 }
847
848 /*
849 * Back reference rules. Back refs have three main goals:
850 *
851 * 1) differentiate between all holders of references to an extent so that
852 * when a reference is dropped we can make sure it was a valid reference
853 * before freeing the extent.
854 *
855 * 2) Provide enough information to quickly find the holders of an extent
856 * if we notice a given block is corrupted or bad.
857 *
858 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
859 * maintenance. This is actually the same as #2, but with a slightly
860 * different use case.
861 *
862 * There are two kinds of back refs. The implicit back refs is optimized
863 * for pointers in non-shared tree blocks. For a given pointer in a block,
864 * back refs of this kind provide information about the block's owner tree
865 * and the pointer's key. These information allow us to find the block by
866 * b-tree searching. The full back refs is for pointers in tree blocks not
867 * referenced by their owner trees. The location of tree block is recorded
868 * in the back refs. Actually the full back refs is generic, and can be
869 * used in all cases the implicit back refs is used. The major shortcoming
870 * of the full back refs is its overhead. Every time a tree block gets
871 * COWed, we have to update back refs entry for all pointers in it.
872 *
873 * For a newly allocated tree block, we use implicit back refs for
874 * pointers in it. This means most tree related operations only involve
875 * implicit back refs. For a tree block created in old transaction, the
876 * only way to drop a reference to it is COW it. So we can detect the
877 * event that tree block loses its owner tree's reference and do the
878 * back refs conversion.
879 *
880 * When a tree block is COW'd through a tree, there are four cases:
881 *
882 * The reference count of the block is one and the tree is the block's
883 * owner tree. Nothing to do in this case.
884 *
885 * The reference count of the block is one and the tree is not the
886 * block's owner tree. In this case, full back refs is used for pointers
887 * in the block. Remove these full back refs, add implicit back refs for
888 * every pointers in the new block.
889 *
890 * The reference count of the block is greater than one and the tree is
891 * the block's owner tree. In this case, implicit back refs is used for
892 * pointers in the block. Add full back refs for every pointers in the
893 * block, increase lower level extents' reference counts. The original
894 * implicit back refs are entailed to the new block.
895 *
896 * The reference count of the block is greater than one and the tree is
897 * not the block's owner tree. Add implicit back refs for every pointer in
898 * the new block, increase lower level extents' reference count.
899 *
900 * Back Reference Key composing:
901 *
902 * The key objectid corresponds to the first byte in the extent,
903 * The key type is used to differentiate between types of back refs.
904 * There are different meanings of the key offset for different types
905 * of back refs.
906 *
907 * File extents can be referenced by:
908 *
909 * - multiple snapshots, subvolumes, or different generations in one subvol
910 * - different files inside a single subvolume
911 * - different offsets inside a file (bookend extents in file.c)
912 *
913 * The extent ref structure for the implicit back refs has fields for:
914 *
915 * - Objectid of the subvolume root
916 * - objectid of the file holding the reference
917 * - original offset in the file
918 * - how many bookend extents
919 *
920 * The key offset for the implicit back refs is hash of the first
921 * three fields.
922 *
923 * The extent ref structure for the full back refs has field for:
924 *
925 * - number of pointers in the tree leaf
926 *
927 * The key offset for the implicit back refs is the first byte of
928 * the tree leaf
929 *
930 * When a file extent is allocated, The implicit back refs is used.
931 * the fields are filled in:
932 *
933 * (root_key.objectid, inode objectid, offset in file, 1)
934 *
935 * When a file extent is removed file truncation, we find the
936 * corresponding implicit back refs and check the following fields:
937 *
938 * (btrfs_header_owner(leaf), inode objectid, offset in file)
939 *
940 * Btree extents can be referenced by:
941 *
942 * - Different subvolumes
943 *
944 * Both the implicit back refs and the full back refs for tree blocks
945 * only consist of key. The key offset for the implicit back refs is
946 * objectid of block's owner tree. The key offset for the full back refs
947 * is the first byte of parent block.
948 *
949 * When implicit back refs is used, information about the lowest key and
950 * level of the tree block are required. These information are stored in
951 * tree block info structure.
952 */
953
954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
955 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
956 struct btrfs_root *root,
957 struct btrfs_path *path,
958 u64 owner, u32 extra_size)
959 {
960 struct btrfs_extent_item *item;
961 struct btrfs_extent_item_v0 *ei0;
962 struct btrfs_extent_ref_v0 *ref0;
963 struct btrfs_tree_block_info *bi;
964 struct extent_buffer *leaf;
965 struct btrfs_key key;
966 struct btrfs_key found_key;
967 u32 new_size = sizeof(*item);
968 u64 refs;
969 int ret;
970
971 leaf = path->nodes[0];
972 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
973
974 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
975 ei0 = btrfs_item_ptr(leaf, path->slots[0],
976 struct btrfs_extent_item_v0);
977 refs = btrfs_extent_refs_v0(leaf, ei0);
978
979 if (owner == (u64)-1) {
980 while (1) {
981 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982 ret = btrfs_next_leaf(root, path);
983 if (ret < 0)
984 return ret;
985 BUG_ON(ret > 0);
986 leaf = path->nodes[0];
987 }
988 btrfs_item_key_to_cpu(leaf, &found_key,
989 path->slots[0]);
990 BUG_ON(key.objectid != found_key.objectid);
991 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
992 path->slots[0]++;
993 continue;
994 }
995 ref0 = btrfs_item_ptr(leaf, path->slots[0],
996 struct btrfs_extent_ref_v0);
997 owner = btrfs_ref_objectid_v0(leaf, ref0);
998 break;
999 }
1000 }
1001 btrfs_release_path(path);
1002
1003 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1004 new_size += sizeof(*bi);
1005
1006 new_size -= sizeof(*ei0);
1007 ret = btrfs_search_slot(trans, root, &key, path,
1008 new_size + extra_size, 1);
1009 if (ret < 0)
1010 return ret;
1011 BUG_ON(ret);
1012
1013 ret = btrfs_extend_item(trans, root, path, new_size);
1014
1015 leaf = path->nodes[0];
1016 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017 btrfs_set_extent_refs(leaf, item, refs);
1018 /* FIXME: get real generation */
1019 btrfs_set_extent_generation(leaf, item, 0);
1020 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1021 btrfs_set_extent_flags(leaf, item,
1022 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1023 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1024 bi = (struct btrfs_tree_block_info *)(item + 1);
1025 /* FIXME: get first key of the block */
1026 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1027 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1028 } else {
1029 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1030 }
1031 btrfs_mark_buffer_dirty(leaf);
1032 return 0;
1033 }
1034 #endif
1035
1036 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1037 {
1038 u32 high_crc = ~(u32)0;
1039 u32 low_crc = ~(u32)0;
1040 __le64 lenum;
1041
1042 lenum = cpu_to_le64(root_objectid);
1043 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1044 lenum = cpu_to_le64(owner);
1045 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1046 lenum = cpu_to_le64(offset);
1047 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1048
1049 return ((u64)high_crc << 31) ^ (u64)low_crc;
1050 }
1051
1052 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1053 struct btrfs_extent_data_ref *ref)
1054 {
1055 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1056 btrfs_extent_data_ref_objectid(leaf, ref),
1057 btrfs_extent_data_ref_offset(leaf, ref));
1058 }
1059
1060 static int match_extent_data_ref(struct extent_buffer *leaf,
1061 struct btrfs_extent_data_ref *ref,
1062 u64 root_objectid, u64 owner, u64 offset)
1063 {
1064 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1065 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1066 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1067 return 0;
1068 return 1;
1069 }
1070
1071 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root,
1073 struct btrfs_path *path,
1074 u64 bytenr, u64 parent,
1075 u64 root_objectid,
1076 u64 owner, u64 offset)
1077 {
1078 struct btrfs_key key;
1079 struct btrfs_extent_data_ref *ref;
1080 struct extent_buffer *leaf;
1081 u32 nritems;
1082 int ret;
1083 int recow;
1084 int err = -ENOENT;
1085
1086 key.objectid = bytenr;
1087 if (parent) {
1088 key.type = BTRFS_SHARED_DATA_REF_KEY;
1089 key.offset = parent;
1090 } else {
1091 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1092 key.offset = hash_extent_data_ref(root_objectid,
1093 owner, offset);
1094 }
1095 again:
1096 recow = 0;
1097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098 if (ret < 0) {
1099 err = ret;
1100 goto fail;
1101 }
1102
1103 if (parent) {
1104 if (!ret)
1105 return 0;
1106 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1107 key.type = BTRFS_EXTENT_REF_V0_KEY;
1108 btrfs_release_path(path);
1109 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1110 if (ret < 0) {
1111 err = ret;
1112 goto fail;
1113 }
1114 if (!ret)
1115 return 0;
1116 #endif
1117 goto fail;
1118 }
1119
1120 leaf = path->nodes[0];
1121 nritems = btrfs_header_nritems(leaf);
1122 while (1) {
1123 if (path->slots[0] >= nritems) {
1124 ret = btrfs_next_leaf(root, path);
1125 if (ret < 0)
1126 err = ret;
1127 if (ret)
1128 goto fail;
1129
1130 leaf = path->nodes[0];
1131 nritems = btrfs_header_nritems(leaf);
1132 recow = 1;
1133 }
1134
1135 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136 if (key.objectid != bytenr ||
1137 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1138 goto fail;
1139
1140 ref = btrfs_item_ptr(leaf, path->slots[0],
1141 struct btrfs_extent_data_ref);
1142
1143 if (match_extent_data_ref(leaf, ref, root_objectid,
1144 owner, offset)) {
1145 if (recow) {
1146 btrfs_release_path(path);
1147 goto again;
1148 }
1149 err = 0;
1150 break;
1151 }
1152 path->slots[0]++;
1153 }
1154 fail:
1155 return err;
1156 }
1157
1158 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1159 struct btrfs_root *root,
1160 struct btrfs_path *path,
1161 u64 bytenr, u64 parent,
1162 u64 root_objectid, u64 owner,
1163 u64 offset, int refs_to_add)
1164 {
1165 struct btrfs_key key;
1166 struct extent_buffer *leaf;
1167 u32 size;
1168 u32 num_refs;
1169 int ret;
1170
1171 key.objectid = bytenr;
1172 if (parent) {
1173 key.type = BTRFS_SHARED_DATA_REF_KEY;
1174 key.offset = parent;
1175 size = sizeof(struct btrfs_shared_data_ref);
1176 } else {
1177 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1178 key.offset = hash_extent_data_ref(root_objectid,
1179 owner, offset);
1180 size = sizeof(struct btrfs_extent_data_ref);
1181 }
1182
1183 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1184 if (ret && ret != -EEXIST)
1185 goto fail;
1186
1187 leaf = path->nodes[0];
1188 if (parent) {
1189 struct btrfs_shared_data_ref *ref;
1190 ref = btrfs_item_ptr(leaf, path->slots[0],
1191 struct btrfs_shared_data_ref);
1192 if (ret == 0) {
1193 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1194 } else {
1195 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1196 num_refs += refs_to_add;
1197 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1198 }
1199 } else {
1200 struct btrfs_extent_data_ref *ref;
1201 while (ret == -EEXIST) {
1202 ref = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_extent_data_ref);
1204 if (match_extent_data_ref(leaf, ref, root_objectid,
1205 owner, offset))
1206 break;
1207 btrfs_release_path(path);
1208 key.offset++;
1209 ret = btrfs_insert_empty_item(trans, root, path, &key,
1210 size);
1211 if (ret && ret != -EEXIST)
1212 goto fail;
1213
1214 leaf = path->nodes[0];
1215 }
1216 ref = btrfs_item_ptr(leaf, path->slots[0],
1217 struct btrfs_extent_data_ref);
1218 if (ret == 0) {
1219 btrfs_set_extent_data_ref_root(leaf, ref,
1220 root_objectid);
1221 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1222 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1223 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1224 } else {
1225 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1226 num_refs += refs_to_add;
1227 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1228 }
1229 }
1230 btrfs_mark_buffer_dirty(leaf);
1231 ret = 0;
1232 fail:
1233 btrfs_release_path(path);
1234 return ret;
1235 }
1236
1237 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root,
1239 struct btrfs_path *path,
1240 int refs_to_drop)
1241 {
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref1 = NULL;
1244 struct btrfs_shared_data_ref *ref2 = NULL;
1245 struct extent_buffer *leaf;
1246 u32 num_refs = 0;
1247 int ret = 0;
1248
1249 leaf = path->nodes[0];
1250 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1251
1252 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1253 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_extent_data_ref);
1255 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1256 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1257 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_shared_data_ref);
1259 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1261 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1262 struct btrfs_extent_ref_v0 *ref0;
1263 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_extent_ref_v0);
1265 num_refs = btrfs_ref_count_v0(leaf, ref0);
1266 #endif
1267 } else {
1268 BUG();
1269 }
1270
1271 BUG_ON(num_refs < refs_to_drop);
1272 num_refs -= refs_to_drop;
1273
1274 if (num_refs == 0) {
1275 ret = btrfs_del_item(trans, root, path);
1276 } else {
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1278 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1279 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1280 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1282 else {
1283 struct btrfs_extent_ref_v0 *ref0;
1284 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_extent_ref_v0);
1286 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1287 }
1288 #endif
1289 btrfs_mark_buffer_dirty(leaf);
1290 }
1291 return ret;
1292 }
1293
1294 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1295 struct btrfs_path *path,
1296 struct btrfs_extent_inline_ref *iref)
1297 {
1298 struct btrfs_key key;
1299 struct extent_buffer *leaf;
1300 struct btrfs_extent_data_ref *ref1;
1301 struct btrfs_shared_data_ref *ref2;
1302 u32 num_refs = 0;
1303
1304 leaf = path->nodes[0];
1305 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1306 if (iref) {
1307 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1308 BTRFS_EXTENT_DATA_REF_KEY) {
1309 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1310 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1311 } else {
1312 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1313 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1314 }
1315 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1316 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1317 struct btrfs_extent_data_ref);
1318 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1319 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1320 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1321 struct btrfs_shared_data_ref);
1322 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1323 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1324 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1325 struct btrfs_extent_ref_v0 *ref0;
1326 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1327 struct btrfs_extent_ref_v0);
1328 num_refs = btrfs_ref_count_v0(leaf, ref0);
1329 #endif
1330 } else {
1331 WARN_ON(1);
1332 }
1333 return num_refs;
1334 }
1335
1336 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1337 struct btrfs_root *root,
1338 struct btrfs_path *path,
1339 u64 bytenr, u64 parent,
1340 u64 root_objectid)
1341 {
1342 struct btrfs_key key;
1343 int ret;
1344
1345 key.objectid = bytenr;
1346 if (parent) {
1347 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1348 key.offset = parent;
1349 } else {
1350 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1351 key.offset = root_objectid;
1352 }
1353
1354 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1355 if (ret > 0)
1356 ret = -ENOENT;
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (ret == -ENOENT && parent) {
1359 btrfs_release_path(path);
1360 key.type = BTRFS_EXTENT_REF_V0_KEY;
1361 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1362 if (ret > 0)
1363 ret = -ENOENT;
1364 }
1365 #endif
1366 return ret;
1367 }
1368
1369 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *root,
1371 struct btrfs_path *path,
1372 u64 bytenr, u64 parent,
1373 u64 root_objectid)
1374 {
1375 struct btrfs_key key;
1376 int ret;
1377
1378 key.objectid = bytenr;
1379 if (parent) {
1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 key.offset = parent;
1382 } else {
1383 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 key.offset = root_objectid;
1385 }
1386
1387 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1388 btrfs_release_path(path);
1389 return ret;
1390 }
1391
1392 static inline int extent_ref_type(u64 parent, u64 owner)
1393 {
1394 int type;
1395 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1396 if (parent > 0)
1397 type = BTRFS_SHARED_BLOCK_REF_KEY;
1398 else
1399 type = BTRFS_TREE_BLOCK_REF_KEY;
1400 } else {
1401 if (parent > 0)
1402 type = BTRFS_SHARED_DATA_REF_KEY;
1403 else
1404 type = BTRFS_EXTENT_DATA_REF_KEY;
1405 }
1406 return type;
1407 }
1408
1409 static int find_next_key(struct btrfs_path *path, int level,
1410 struct btrfs_key *key)
1411
1412 {
1413 for (; level < BTRFS_MAX_LEVEL; level++) {
1414 if (!path->nodes[level])
1415 break;
1416 if (path->slots[level] + 1 >=
1417 btrfs_header_nritems(path->nodes[level]))
1418 continue;
1419 if (level == 0)
1420 btrfs_item_key_to_cpu(path->nodes[level], key,
1421 path->slots[level] + 1);
1422 else
1423 btrfs_node_key_to_cpu(path->nodes[level], key,
1424 path->slots[level] + 1);
1425 return 0;
1426 }
1427 return 1;
1428 }
1429
1430 /*
1431 * look for inline back ref. if back ref is found, *ref_ret is set
1432 * to the address of inline back ref, and 0 is returned.
1433 *
1434 * if back ref isn't found, *ref_ret is set to the address where it
1435 * should be inserted, and -ENOENT is returned.
1436 *
1437 * if insert is true and there are too many inline back refs, the path
1438 * points to the extent item, and -EAGAIN is returned.
1439 *
1440 * NOTE: inline back refs are ordered in the same way that back ref
1441 * items in the tree are ordered.
1442 */
1443 static noinline_for_stack
1444 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1445 struct btrfs_root *root,
1446 struct btrfs_path *path,
1447 struct btrfs_extent_inline_ref **ref_ret,
1448 u64 bytenr, u64 num_bytes,
1449 u64 parent, u64 root_objectid,
1450 u64 owner, u64 offset, int insert)
1451 {
1452 struct btrfs_key key;
1453 struct extent_buffer *leaf;
1454 struct btrfs_extent_item *ei;
1455 struct btrfs_extent_inline_ref *iref;
1456 u64 flags;
1457 u64 item_size;
1458 unsigned long ptr;
1459 unsigned long end;
1460 int extra_size;
1461 int type;
1462 int want;
1463 int ret;
1464 int err = 0;
1465
1466 key.objectid = bytenr;
1467 key.type = BTRFS_EXTENT_ITEM_KEY;
1468 key.offset = num_bytes;
1469
1470 want = extent_ref_type(parent, owner);
1471 if (insert) {
1472 extra_size = btrfs_extent_inline_ref_size(want);
1473 path->keep_locks = 1;
1474 } else
1475 extra_size = -1;
1476 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1477 if (ret < 0) {
1478 err = ret;
1479 goto out;
1480 }
1481 BUG_ON(ret);
1482
1483 leaf = path->nodes[0];
1484 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1486 if (item_size < sizeof(*ei)) {
1487 if (!insert) {
1488 err = -ENOENT;
1489 goto out;
1490 }
1491 ret = convert_extent_item_v0(trans, root, path, owner,
1492 extra_size);
1493 if (ret < 0) {
1494 err = ret;
1495 goto out;
1496 }
1497 leaf = path->nodes[0];
1498 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1499 }
1500 #endif
1501 BUG_ON(item_size < sizeof(*ei));
1502
1503 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1504 flags = btrfs_extent_flags(leaf, ei);
1505
1506 ptr = (unsigned long)(ei + 1);
1507 end = (unsigned long)ei + item_size;
1508
1509 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1510 ptr += sizeof(struct btrfs_tree_block_info);
1511 BUG_ON(ptr > end);
1512 } else {
1513 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1514 }
1515
1516 err = -ENOENT;
1517 while (1) {
1518 if (ptr >= end) {
1519 WARN_ON(ptr > end);
1520 break;
1521 }
1522 iref = (struct btrfs_extent_inline_ref *)ptr;
1523 type = btrfs_extent_inline_ref_type(leaf, iref);
1524 if (want < type)
1525 break;
1526 if (want > type) {
1527 ptr += btrfs_extent_inline_ref_size(type);
1528 continue;
1529 }
1530
1531 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1532 struct btrfs_extent_data_ref *dref;
1533 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1534 if (match_extent_data_ref(leaf, dref, root_objectid,
1535 owner, offset)) {
1536 err = 0;
1537 break;
1538 }
1539 if (hash_extent_data_ref_item(leaf, dref) <
1540 hash_extent_data_ref(root_objectid, owner, offset))
1541 break;
1542 } else {
1543 u64 ref_offset;
1544 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1545 if (parent > 0) {
1546 if (parent == ref_offset) {
1547 err = 0;
1548 break;
1549 }
1550 if (ref_offset < parent)
1551 break;
1552 } else {
1553 if (root_objectid == ref_offset) {
1554 err = 0;
1555 break;
1556 }
1557 if (ref_offset < root_objectid)
1558 break;
1559 }
1560 }
1561 ptr += btrfs_extent_inline_ref_size(type);
1562 }
1563 if (err == -ENOENT && insert) {
1564 if (item_size + extra_size >=
1565 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1566 err = -EAGAIN;
1567 goto out;
1568 }
1569 /*
1570 * To add new inline back ref, we have to make sure
1571 * there is no corresponding back ref item.
1572 * For simplicity, we just do not add new inline back
1573 * ref if there is any kind of item for this block
1574 */
1575 if (find_next_key(path, 0, &key) == 0 &&
1576 key.objectid == bytenr &&
1577 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1578 err = -EAGAIN;
1579 goto out;
1580 }
1581 }
1582 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1583 out:
1584 if (insert) {
1585 path->keep_locks = 0;
1586 btrfs_unlock_up_safe(path, 1);
1587 }
1588 return err;
1589 }
1590
1591 /*
1592 * helper to add new inline back ref
1593 */
1594 static noinline_for_stack
1595 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1596 struct btrfs_root *root,
1597 struct btrfs_path *path,
1598 struct btrfs_extent_inline_ref *iref,
1599 u64 parent, u64 root_objectid,
1600 u64 owner, u64 offset, int refs_to_add,
1601 struct btrfs_delayed_extent_op *extent_op)
1602 {
1603 struct extent_buffer *leaf;
1604 struct btrfs_extent_item *ei;
1605 unsigned long ptr;
1606 unsigned long end;
1607 unsigned long item_offset;
1608 u64 refs;
1609 int size;
1610 int type;
1611 int ret;
1612
1613 leaf = path->nodes[0];
1614 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1615 item_offset = (unsigned long)iref - (unsigned long)ei;
1616
1617 type = extent_ref_type(parent, owner);
1618 size = btrfs_extent_inline_ref_size(type);
1619
1620 ret = btrfs_extend_item(trans, root, path, size);
1621
1622 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1623 refs = btrfs_extent_refs(leaf, ei);
1624 refs += refs_to_add;
1625 btrfs_set_extent_refs(leaf, ei, refs);
1626 if (extent_op)
1627 __run_delayed_extent_op(extent_op, leaf, ei);
1628
1629 ptr = (unsigned long)ei + item_offset;
1630 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1631 if (ptr < end - size)
1632 memmove_extent_buffer(leaf, ptr + size, ptr,
1633 end - size - ptr);
1634
1635 iref = (struct btrfs_extent_inline_ref *)ptr;
1636 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1637 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1638 struct btrfs_extent_data_ref *dref;
1639 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1640 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1641 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1642 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1643 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1644 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1645 struct btrfs_shared_data_ref *sref;
1646 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1647 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1648 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1649 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1650 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 } else {
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1653 }
1654 btrfs_mark_buffer_dirty(leaf);
1655 return 0;
1656 }
1657
1658 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1659 struct btrfs_root *root,
1660 struct btrfs_path *path,
1661 struct btrfs_extent_inline_ref **ref_ret,
1662 u64 bytenr, u64 num_bytes, u64 parent,
1663 u64 root_objectid, u64 owner, u64 offset)
1664 {
1665 int ret;
1666
1667 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1668 bytenr, num_bytes, parent,
1669 root_objectid, owner, offset, 0);
1670 if (ret != -ENOENT)
1671 return ret;
1672
1673 btrfs_release_path(path);
1674 *ref_ret = NULL;
1675
1676 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1677 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1678 root_objectid);
1679 } else {
1680 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1681 root_objectid, owner, offset);
1682 }
1683 return ret;
1684 }
1685
1686 /*
1687 * helper to update/remove inline back ref
1688 */
1689 static noinline_for_stack
1690 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1691 struct btrfs_root *root,
1692 struct btrfs_path *path,
1693 struct btrfs_extent_inline_ref *iref,
1694 int refs_to_mod,
1695 struct btrfs_delayed_extent_op *extent_op)
1696 {
1697 struct extent_buffer *leaf;
1698 struct btrfs_extent_item *ei;
1699 struct btrfs_extent_data_ref *dref = NULL;
1700 struct btrfs_shared_data_ref *sref = NULL;
1701 unsigned long ptr;
1702 unsigned long end;
1703 u32 item_size;
1704 int size;
1705 int type;
1706 int ret;
1707 u64 refs;
1708
1709 leaf = path->nodes[0];
1710 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 refs = btrfs_extent_refs(leaf, ei);
1712 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 refs += refs_to_mod;
1714 btrfs_set_extent_refs(leaf, ei, refs);
1715 if (extent_op)
1716 __run_delayed_extent_op(extent_op, leaf, ei);
1717
1718 type = btrfs_extent_inline_ref_type(leaf, iref);
1719
1720 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 refs = btrfs_extent_data_ref_count(leaf, dref);
1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 refs = btrfs_shared_data_ref_count(leaf, sref);
1726 } else {
1727 refs = 1;
1728 BUG_ON(refs_to_mod != -1);
1729 }
1730
1731 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 refs += refs_to_mod;
1733
1734 if (refs > 0) {
1735 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 else
1738 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 } else {
1740 size = btrfs_extent_inline_ref_size(type);
1741 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 ptr = (unsigned long)iref;
1743 end = (unsigned long)ei + item_size;
1744 if (ptr + size < end)
1745 memmove_extent_buffer(leaf, ptr, ptr + size,
1746 end - ptr - size);
1747 item_size -= size;
1748 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1749 }
1750 btrfs_mark_buffer_dirty(leaf);
1751 return 0;
1752 }
1753
1754 static noinline_for_stack
1755 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
1757 struct btrfs_path *path,
1758 u64 bytenr, u64 num_bytes, u64 parent,
1759 u64 root_objectid, u64 owner,
1760 u64 offset, int refs_to_add,
1761 struct btrfs_delayed_extent_op *extent_op)
1762 {
1763 struct btrfs_extent_inline_ref *iref;
1764 int ret;
1765
1766 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1767 bytenr, num_bytes, parent,
1768 root_objectid, owner, offset, 1);
1769 if (ret == 0) {
1770 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1771 ret = update_inline_extent_backref(trans, root, path, iref,
1772 refs_to_add, extent_op);
1773 } else if (ret == -ENOENT) {
1774 ret = setup_inline_extent_backref(trans, root, path, iref,
1775 parent, root_objectid,
1776 owner, offset, refs_to_add,
1777 extent_op);
1778 }
1779 return ret;
1780 }
1781
1782 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root,
1784 struct btrfs_path *path,
1785 u64 bytenr, u64 parent, u64 root_objectid,
1786 u64 owner, u64 offset, int refs_to_add)
1787 {
1788 int ret;
1789 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1790 BUG_ON(refs_to_add != 1);
1791 ret = insert_tree_block_ref(trans, root, path, bytenr,
1792 parent, root_objectid);
1793 } else {
1794 ret = insert_extent_data_ref(trans, root, path, bytenr,
1795 parent, root_objectid,
1796 owner, offset, refs_to_add);
1797 }
1798 return ret;
1799 }
1800
1801 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1802 struct btrfs_root *root,
1803 struct btrfs_path *path,
1804 struct btrfs_extent_inline_ref *iref,
1805 int refs_to_drop, int is_data)
1806 {
1807 int ret;
1808
1809 BUG_ON(!is_data && refs_to_drop != 1);
1810 if (iref) {
1811 ret = update_inline_extent_backref(trans, root, path, iref,
1812 -refs_to_drop, NULL);
1813 } else if (is_data) {
1814 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1815 } else {
1816 ret = btrfs_del_item(trans, root, path);
1817 }
1818 return ret;
1819 }
1820
1821 static int btrfs_issue_discard(struct block_device *bdev,
1822 u64 start, u64 len)
1823 {
1824 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1825 }
1826
1827 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1828 u64 num_bytes, u64 *actual_bytes)
1829 {
1830 int ret;
1831 u64 discarded_bytes = 0;
1832 struct btrfs_bio *bbio = NULL;
1833
1834
1835 /* Tell the block device(s) that the sectors can be discarded */
1836 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1837 bytenr, &num_bytes, &bbio, 0);
1838 if (!ret) {
1839 struct btrfs_bio_stripe *stripe = bbio->stripes;
1840 int i;
1841
1842
1843 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 if (!stripe->dev->can_discard)
1845 continue;
1846
1847 ret = btrfs_issue_discard(stripe->dev->bdev,
1848 stripe->physical,
1849 stripe->length);
1850 if (!ret)
1851 discarded_bytes += stripe->length;
1852 else if (ret != -EOPNOTSUPP)
1853 break;
1854
1855 /*
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1859 */
1860 ret = 0;
1861 }
1862 kfree(bbio);
1863 }
1864
1865 if (actual_bytes)
1866 *actual_bytes = discarded_bytes;
1867
1868
1869 return ret;
1870 }
1871
1872 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1873 struct btrfs_root *root,
1874 u64 bytenr, u64 num_bytes, u64 parent,
1875 u64 root_objectid, u64 owner, u64 offset)
1876 {
1877 int ret;
1878 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1879 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1880
1881 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1882 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1883 parent, root_objectid, (int)owner,
1884 BTRFS_ADD_DELAYED_REF, NULL);
1885 } else {
1886 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1887 parent, root_objectid, owner, offset,
1888 BTRFS_ADD_DELAYED_REF, NULL);
1889 }
1890 return ret;
1891 }
1892
1893 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1894 struct btrfs_root *root,
1895 u64 bytenr, u64 num_bytes,
1896 u64 parent, u64 root_objectid,
1897 u64 owner, u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1899 {
1900 struct btrfs_path *path;
1901 struct extent_buffer *leaf;
1902 struct btrfs_extent_item *item;
1903 u64 refs;
1904 int ret;
1905 int err = 0;
1906
1907 path = btrfs_alloc_path();
1908 if (!path)
1909 return -ENOMEM;
1910
1911 path->reada = 1;
1912 path->leave_spinning = 1;
1913 /* this will setup the path even if it fails to insert the back ref */
1914 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1915 path, bytenr, num_bytes, parent,
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 if (ret == 0)
1919 goto out;
1920
1921 if (ret != -EAGAIN) {
1922 err = ret;
1923 goto out;
1924 }
1925
1926 leaf = path->nodes[0];
1927 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1928 refs = btrfs_extent_refs(leaf, item);
1929 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1930 if (extent_op)
1931 __run_delayed_extent_op(extent_op, leaf, item);
1932
1933 btrfs_mark_buffer_dirty(leaf);
1934 btrfs_release_path(path);
1935
1936 path->reada = 1;
1937 path->leave_spinning = 1;
1938
1939 /* now insert the actual backref */
1940 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1941 path, bytenr, parent, root_objectid,
1942 owner, offset, refs_to_add);
1943 BUG_ON(ret);
1944 out:
1945 btrfs_free_path(path);
1946 return err;
1947 }
1948
1949 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1950 struct btrfs_root *root,
1951 struct btrfs_delayed_ref_node *node,
1952 struct btrfs_delayed_extent_op *extent_op,
1953 int insert_reserved)
1954 {
1955 int ret = 0;
1956 struct btrfs_delayed_data_ref *ref;
1957 struct btrfs_key ins;
1958 u64 parent = 0;
1959 u64 ref_root = 0;
1960 u64 flags = 0;
1961
1962 ins.objectid = node->bytenr;
1963 ins.offset = node->num_bytes;
1964 ins.type = BTRFS_EXTENT_ITEM_KEY;
1965
1966 ref = btrfs_delayed_node_to_data_ref(node);
1967 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1968 parent = ref->parent;
1969 else
1970 ref_root = ref->root;
1971
1972 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1973 if (extent_op) {
1974 BUG_ON(extent_op->update_key);
1975 flags |= extent_op->flags_to_set;
1976 }
1977 ret = alloc_reserved_file_extent(trans, root,
1978 parent, ref_root, flags,
1979 ref->objectid, ref->offset,
1980 &ins, node->ref_mod);
1981 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1982 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1983 node->num_bytes, parent,
1984 ref_root, ref->objectid,
1985 ref->offset, node->ref_mod,
1986 extent_op);
1987 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1988 ret = __btrfs_free_extent(trans, root, node->bytenr,
1989 node->num_bytes, parent,
1990 ref_root, ref->objectid,
1991 ref->offset, node->ref_mod,
1992 extent_op);
1993 } else {
1994 BUG();
1995 }
1996 return ret;
1997 }
1998
1999 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2000 struct extent_buffer *leaf,
2001 struct btrfs_extent_item *ei)
2002 {
2003 u64 flags = btrfs_extent_flags(leaf, ei);
2004 if (extent_op->update_flags) {
2005 flags |= extent_op->flags_to_set;
2006 btrfs_set_extent_flags(leaf, ei, flags);
2007 }
2008
2009 if (extent_op->update_key) {
2010 struct btrfs_tree_block_info *bi;
2011 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2012 bi = (struct btrfs_tree_block_info *)(ei + 1);
2013 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2014 }
2015 }
2016
2017 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2018 struct btrfs_root *root,
2019 struct btrfs_delayed_ref_node *node,
2020 struct btrfs_delayed_extent_op *extent_op)
2021 {
2022 struct btrfs_key key;
2023 struct btrfs_path *path;
2024 struct btrfs_extent_item *ei;
2025 struct extent_buffer *leaf;
2026 u32 item_size;
2027 int ret;
2028 int err = 0;
2029
2030 path = btrfs_alloc_path();
2031 if (!path)
2032 return -ENOMEM;
2033
2034 key.objectid = node->bytenr;
2035 key.type = BTRFS_EXTENT_ITEM_KEY;
2036 key.offset = node->num_bytes;
2037
2038 path->reada = 1;
2039 path->leave_spinning = 1;
2040 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2041 path, 0, 1);
2042 if (ret < 0) {
2043 err = ret;
2044 goto out;
2045 }
2046 if (ret > 0) {
2047 err = -EIO;
2048 goto out;
2049 }
2050
2051 leaf = path->nodes[0];
2052 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2053 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2054 if (item_size < sizeof(*ei)) {
2055 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2056 path, (u64)-1, 0);
2057 if (ret < 0) {
2058 err = ret;
2059 goto out;
2060 }
2061 leaf = path->nodes[0];
2062 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2063 }
2064 #endif
2065 BUG_ON(item_size < sizeof(*ei));
2066 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2067 __run_delayed_extent_op(extent_op, leaf, ei);
2068
2069 btrfs_mark_buffer_dirty(leaf);
2070 out:
2071 btrfs_free_path(path);
2072 return err;
2073 }
2074
2075 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2076 struct btrfs_root *root,
2077 struct btrfs_delayed_ref_node *node,
2078 struct btrfs_delayed_extent_op *extent_op,
2079 int insert_reserved)
2080 {
2081 int ret = 0;
2082 struct btrfs_delayed_tree_ref *ref;
2083 struct btrfs_key ins;
2084 u64 parent = 0;
2085 u64 ref_root = 0;
2086
2087 ins.objectid = node->bytenr;
2088 ins.offset = node->num_bytes;
2089 ins.type = BTRFS_EXTENT_ITEM_KEY;
2090
2091 ref = btrfs_delayed_node_to_tree_ref(node);
2092 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2093 parent = ref->parent;
2094 else
2095 ref_root = ref->root;
2096
2097 BUG_ON(node->ref_mod != 1);
2098 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2099 BUG_ON(!extent_op || !extent_op->update_flags ||
2100 !extent_op->update_key);
2101 ret = alloc_reserved_tree_block(trans, root,
2102 parent, ref_root,
2103 extent_op->flags_to_set,
2104 &extent_op->key,
2105 ref->level, &ins);
2106 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2107 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2108 node->num_bytes, parent, ref_root,
2109 ref->level, 0, 1, extent_op);
2110 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2111 ret = __btrfs_free_extent(trans, root, node->bytenr,
2112 node->num_bytes, parent, ref_root,
2113 ref->level, 0, 1, extent_op);
2114 } else {
2115 BUG();
2116 }
2117 return ret;
2118 }
2119
2120 /* helper function to actually process a single delayed ref entry */
2121 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2122 struct btrfs_root *root,
2123 struct btrfs_delayed_ref_node *node,
2124 struct btrfs_delayed_extent_op *extent_op,
2125 int insert_reserved)
2126 {
2127 int ret;
2128 if (btrfs_delayed_ref_is_head(node)) {
2129 struct btrfs_delayed_ref_head *head;
2130 /*
2131 * we've hit the end of the chain and we were supposed
2132 * to insert this extent into the tree. But, it got
2133 * deleted before we ever needed to insert it, so all
2134 * we have to do is clean up the accounting
2135 */
2136 BUG_ON(extent_op);
2137 head = btrfs_delayed_node_to_head(node);
2138 if (insert_reserved) {
2139 btrfs_pin_extent(root, node->bytenr,
2140 node->num_bytes, 1);
2141 if (head->is_data) {
2142 ret = btrfs_del_csums(trans, root,
2143 node->bytenr,
2144 node->num_bytes);
2145 BUG_ON(ret);
2146 }
2147 }
2148 mutex_unlock(&head->mutex);
2149 return 0;
2150 }
2151
2152 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2153 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2154 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2155 insert_reserved);
2156 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2157 node->type == BTRFS_SHARED_DATA_REF_KEY)
2158 ret = run_delayed_data_ref(trans, root, node, extent_op,
2159 insert_reserved);
2160 else
2161 BUG();
2162 return ret;
2163 }
2164
2165 static noinline struct btrfs_delayed_ref_node *
2166 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2167 {
2168 struct rb_node *node;
2169 struct btrfs_delayed_ref_node *ref;
2170 int action = BTRFS_ADD_DELAYED_REF;
2171 again:
2172 /*
2173 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2174 * this prevents ref count from going down to zero when
2175 * there still are pending delayed ref.
2176 */
2177 node = rb_prev(&head->node.rb_node);
2178 while (1) {
2179 if (!node)
2180 break;
2181 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2182 rb_node);
2183 if (ref->bytenr != head->node.bytenr)
2184 break;
2185 if (ref->action == action)
2186 return ref;
2187 node = rb_prev(node);
2188 }
2189 if (action == BTRFS_ADD_DELAYED_REF) {
2190 action = BTRFS_DROP_DELAYED_REF;
2191 goto again;
2192 }
2193 return NULL;
2194 }
2195
2196 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2197 struct btrfs_root *root,
2198 struct list_head *cluster)
2199 {
2200 struct btrfs_delayed_ref_root *delayed_refs;
2201 struct btrfs_delayed_ref_node *ref;
2202 struct btrfs_delayed_ref_head *locked_ref = NULL;
2203 struct btrfs_delayed_extent_op *extent_op;
2204 int ret;
2205 int count = 0;
2206 int must_insert_reserved = 0;
2207
2208 delayed_refs = &trans->transaction->delayed_refs;
2209 while (1) {
2210 if (!locked_ref) {
2211 /* pick a new head ref from the cluster list */
2212 if (list_empty(cluster))
2213 break;
2214
2215 locked_ref = list_entry(cluster->next,
2216 struct btrfs_delayed_ref_head, cluster);
2217
2218 /* grab the lock that says we are going to process
2219 * all the refs for this head */
2220 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2221
2222 /*
2223 * we may have dropped the spin lock to get the head
2224 * mutex lock, and that might have given someone else
2225 * time to free the head. If that's true, it has been
2226 * removed from our list and we can move on.
2227 */
2228 if (ret == -EAGAIN) {
2229 locked_ref = NULL;
2230 count++;
2231 continue;
2232 }
2233 }
2234
2235 /*
2236 * record the must insert reserved flag before we
2237 * drop the spin lock.
2238 */
2239 must_insert_reserved = locked_ref->must_insert_reserved;
2240 locked_ref->must_insert_reserved = 0;
2241
2242 extent_op = locked_ref->extent_op;
2243 locked_ref->extent_op = NULL;
2244
2245 /*
2246 * locked_ref is the head node, so we have to go one
2247 * node back for any delayed ref updates
2248 */
2249 ref = select_delayed_ref(locked_ref);
2250 if (!ref) {
2251 /* All delayed refs have been processed, Go ahead
2252 * and send the head node to run_one_delayed_ref,
2253 * so that any accounting fixes can happen
2254 */
2255 ref = &locked_ref->node;
2256
2257 if (extent_op && must_insert_reserved) {
2258 kfree(extent_op);
2259 extent_op = NULL;
2260 }
2261
2262 if (extent_op) {
2263 spin_unlock(&delayed_refs->lock);
2264
2265 ret = run_delayed_extent_op(trans, root,
2266 ref, extent_op);
2267 BUG_ON(ret);
2268 kfree(extent_op);
2269
2270 goto next;
2271 }
2272
2273 list_del_init(&locked_ref->cluster);
2274 locked_ref = NULL;
2275 }
2276
2277 ref->in_tree = 0;
2278 rb_erase(&ref->rb_node, &delayed_refs->root);
2279 delayed_refs->num_entries--;
2280
2281 spin_unlock(&delayed_refs->lock);
2282
2283 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2284 must_insert_reserved);
2285 BUG_ON(ret);
2286
2287 btrfs_put_delayed_ref(ref);
2288 kfree(extent_op);
2289 count++;
2290 next:
2291 do_chunk_alloc(trans, root->fs_info->extent_root,
2292 2 * 1024 * 1024,
2293 btrfs_get_alloc_profile(root, 0),
2294 CHUNK_ALLOC_NO_FORCE);
2295 cond_resched();
2296 spin_lock(&delayed_refs->lock);
2297 }
2298 return count;
2299 }
2300
2301 /*
2302 * this starts processing the delayed reference count updates and
2303 * extent insertions we have queued up so far. count can be
2304 * 0, which means to process everything in the tree at the start
2305 * of the run (but not newly added entries), or it can be some target
2306 * number you'd like to process.
2307 */
2308 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2309 struct btrfs_root *root, unsigned long count)
2310 {
2311 struct rb_node *node;
2312 struct btrfs_delayed_ref_root *delayed_refs;
2313 struct btrfs_delayed_ref_node *ref;
2314 struct list_head cluster;
2315 int ret;
2316 int run_all = count == (unsigned long)-1;
2317 int run_most = 0;
2318
2319 if (root == root->fs_info->extent_root)
2320 root = root->fs_info->tree_root;
2321
2322 do_chunk_alloc(trans, root->fs_info->extent_root,
2323 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2324 CHUNK_ALLOC_NO_FORCE);
2325
2326 delayed_refs = &trans->transaction->delayed_refs;
2327 INIT_LIST_HEAD(&cluster);
2328 again:
2329 spin_lock(&delayed_refs->lock);
2330 if (count == 0) {
2331 count = delayed_refs->num_entries * 2;
2332 run_most = 1;
2333 }
2334 while (1) {
2335 if (!(run_all || run_most) &&
2336 delayed_refs->num_heads_ready < 64)
2337 break;
2338
2339 /*
2340 * go find something we can process in the rbtree. We start at
2341 * the beginning of the tree, and then build a cluster
2342 * of refs to process starting at the first one we are able to
2343 * lock
2344 */
2345 ret = btrfs_find_ref_cluster(trans, &cluster,
2346 delayed_refs->run_delayed_start);
2347 if (ret)
2348 break;
2349
2350 ret = run_clustered_refs(trans, root, &cluster);
2351 BUG_ON(ret < 0);
2352
2353 count -= min_t(unsigned long, ret, count);
2354
2355 if (count == 0)
2356 break;
2357 }
2358
2359 if (run_all) {
2360 node = rb_first(&delayed_refs->root);
2361 if (!node)
2362 goto out;
2363 count = (unsigned long)-1;
2364
2365 while (node) {
2366 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2367 rb_node);
2368 if (btrfs_delayed_ref_is_head(ref)) {
2369 struct btrfs_delayed_ref_head *head;
2370
2371 head = btrfs_delayed_node_to_head(ref);
2372 atomic_inc(&ref->refs);
2373
2374 spin_unlock(&delayed_refs->lock);
2375 /*
2376 * Mutex was contended, block until it's
2377 * released and try again
2378 */
2379 mutex_lock(&head->mutex);
2380 mutex_unlock(&head->mutex);
2381
2382 btrfs_put_delayed_ref(ref);
2383 cond_resched();
2384 goto again;
2385 }
2386 node = rb_next(node);
2387 }
2388 spin_unlock(&delayed_refs->lock);
2389 schedule_timeout(1);
2390 goto again;
2391 }
2392 out:
2393 spin_unlock(&delayed_refs->lock);
2394 return 0;
2395 }
2396
2397 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2398 struct btrfs_root *root,
2399 u64 bytenr, u64 num_bytes, u64 flags,
2400 int is_data)
2401 {
2402 struct btrfs_delayed_extent_op *extent_op;
2403 int ret;
2404
2405 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2406 if (!extent_op)
2407 return -ENOMEM;
2408
2409 extent_op->flags_to_set = flags;
2410 extent_op->update_flags = 1;
2411 extent_op->update_key = 0;
2412 extent_op->is_data = is_data ? 1 : 0;
2413
2414 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2415 if (ret)
2416 kfree(extent_op);
2417 return ret;
2418 }
2419
2420 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2421 struct btrfs_root *root,
2422 struct btrfs_path *path,
2423 u64 objectid, u64 offset, u64 bytenr)
2424 {
2425 struct btrfs_delayed_ref_head *head;
2426 struct btrfs_delayed_ref_node *ref;
2427 struct btrfs_delayed_data_ref *data_ref;
2428 struct btrfs_delayed_ref_root *delayed_refs;
2429 struct rb_node *node;
2430 int ret = 0;
2431
2432 ret = -ENOENT;
2433 delayed_refs = &trans->transaction->delayed_refs;
2434 spin_lock(&delayed_refs->lock);
2435 head = btrfs_find_delayed_ref_head(trans, bytenr);
2436 if (!head)
2437 goto out;
2438
2439 if (!mutex_trylock(&head->mutex)) {
2440 atomic_inc(&head->node.refs);
2441 spin_unlock(&delayed_refs->lock);
2442
2443 btrfs_release_path(path);
2444
2445 /*
2446 * Mutex was contended, block until it's released and let
2447 * caller try again
2448 */
2449 mutex_lock(&head->mutex);
2450 mutex_unlock(&head->mutex);
2451 btrfs_put_delayed_ref(&head->node);
2452 return -EAGAIN;
2453 }
2454
2455 node = rb_prev(&head->node.rb_node);
2456 if (!node)
2457 goto out_unlock;
2458
2459 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2460
2461 if (ref->bytenr != bytenr)
2462 goto out_unlock;
2463
2464 ret = 1;
2465 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2466 goto out_unlock;
2467
2468 data_ref = btrfs_delayed_node_to_data_ref(ref);
2469
2470 node = rb_prev(node);
2471 if (node) {
2472 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2473 if (ref->bytenr == bytenr)
2474 goto out_unlock;
2475 }
2476
2477 if (data_ref->root != root->root_key.objectid ||
2478 data_ref->objectid != objectid || data_ref->offset != offset)
2479 goto out_unlock;
2480
2481 ret = 0;
2482 out_unlock:
2483 mutex_unlock(&head->mutex);
2484 out:
2485 spin_unlock(&delayed_refs->lock);
2486 return ret;
2487 }
2488
2489 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2490 struct btrfs_root *root,
2491 struct btrfs_path *path,
2492 u64 objectid, u64 offset, u64 bytenr)
2493 {
2494 struct btrfs_root *extent_root = root->fs_info->extent_root;
2495 struct extent_buffer *leaf;
2496 struct btrfs_extent_data_ref *ref;
2497 struct btrfs_extent_inline_ref *iref;
2498 struct btrfs_extent_item *ei;
2499 struct btrfs_key key;
2500 u32 item_size;
2501 int ret;
2502
2503 key.objectid = bytenr;
2504 key.offset = (u64)-1;
2505 key.type = BTRFS_EXTENT_ITEM_KEY;
2506
2507 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2508 if (ret < 0)
2509 goto out;
2510 BUG_ON(ret == 0);
2511
2512 ret = -ENOENT;
2513 if (path->slots[0] == 0)
2514 goto out;
2515
2516 path->slots[0]--;
2517 leaf = path->nodes[0];
2518 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2519
2520 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2521 goto out;
2522
2523 ret = 1;
2524 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2525 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2526 if (item_size < sizeof(*ei)) {
2527 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2528 goto out;
2529 }
2530 #endif
2531 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2532
2533 if (item_size != sizeof(*ei) +
2534 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2535 goto out;
2536
2537 if (btrfs_extent_generation(leaf, ei) <=
2538 btrfs_root_last_snapshot(&root->root_item))
2539 goto out;
2540
2541 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2542 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2543 BTRFS_EXTENT_DATA_REF_KEY)
2544 goto out;
2545
2546 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2547 if (btrfs_extent_refs(leaf, ei) !=
2548 btrfs_extent_data_ref_count(leaf, ref) ||
2549 btrfs_extent_data_ref_root(leaf, ref) !=
2550 root->root_key.objectid ||
2551 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2552 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2553 goto out;
2554
2555 ret = 0;
2556 out:
2557 return ret;
2558 }
2559
2560 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2561 struct btrfs_root *root,
2562 u64 objectid, u64 offset, u64 bytenr)
2563 {
2564 struct btrfs_path *path;
2565 int ret;
2566 int ret2;
2567
2568 path = btrfs_alloc_path();
2569 if (!path)
2570 return -ENOENT;
2571
2572 do {
2573 ret = check_committed_ref(trans, root, path, objectid,
2574 offset, bytenr);
2575 if (ret && ret != -ENOENT)
2576 goto out;
2577
2578 ret2 = check_delayed_ref(trans, root, path, objectid,
2579 offset, bytenr);
2580 } while (ret2 == -EAGAIN);
2581
2582 if (ret2 && ret2 != -ENOENT) {
2583 ret = ret2;
2584 goto out;
2585 }
2586
2587 if (ret != -ENOENT || ret2 != -ENOENT)
2588 ret = 0;
2589 out:
2590 btrfs_free_path(path);
2591 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2592 WARN_ON(ret > 0);
2593 return ret;
2594 }
2595
2596 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2597 struct btrfs_root *root,
2598 struct extent_buffer *buf,
2599 int full_backref, int inc)
2600 {
2601 u64 bytenr;
2602 u64 num_bytes;
2603 u64 parent;
2604 u64 ref_root;
2605 u32 nritems;
2606 struct btrfs_key key;
2607 struct btrfs_file_extent_item *fi;
2608 int i;
2609 int level;
2610 int ret = 0;
2611 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2612 u64, u64, u64, u64, u64, u64);
2613
2614 ref_root = btrfs_header_owner(buf);
2615 nritems = btrfs_header_nritems(buf);
2616 level = btrfs_header_level(buf);
2617
2618 if (!root->ref_cows && level == 0)
2619 return 0;
2620
2621 if (inc)
2622 process_func = btrfs_inc_extent_ref;
2623 else
2624 process_func = btrfs_free_extent;
2625
2626 if (full_backref)
2627 parent = buf->start;
2628 else
2629 parent = 0;
2630
2631 for (i = 0; i < nritems; i++) {
2632 if (level == 0) {
2633 btrfs_item_key_to_cpu(buf, &key, i);
2634 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2635 continue;
2636 fi = btrfs_item_ptr(buf, i,
2637 struct btrfs_file_extent_item);
2638 if (btrfs_file_extent_type(buf, fi) ==
2639 BTRFS_FILE_EXTENT_INLINE)
2640 continue;
2641 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2642 if (bytenr == 0)
2643 continue;
2644
2645 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2646 key.offset -= btrfs_file_extent_offset(buf, fi);
2647 ret = process_func(trans, root, bytenr, num_bytes,
2648 parent, ref_root, key.objectid,
2649 key.offset);
2650 if (ret)
2651 goto fail;
2652 } else {
2653 bytenr = btrfs_node_blockptr(buf, i);
2654 num_bytes = btrfs_level_size(root, level - 1);
2655 ret = process_func(trans, root, bytenr, num_bytes,
2656 parent, ref_root, level - 1, 0);
2657 if (ret)
2658 goto fail;
2659 }
2660 }
2661 return 0;
2662 fail:
2663 BUG();
2664 return ret;
2665 }
2666
2667 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2668 struct extent_buffer *buf, int full_backref)
2669 {
2670 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2671 }
2672
2673 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2674 struct extent_buffer *buf, int full_backref)
2675 {
2676 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2677 }
2678
2679 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2680 struct btrfs_root *root,
2681 struct btrfs_path *path,
2682 struct btrfs_block_group_cache *cache)
2683 {
2684 int ret;
2685 struct btrfs_root *extent_root = root->fs_info->extent_root;
2686 unsigned long bi;
2687 struct extent_buffer *leaf;
2688
2689 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2690 if (ret < 0)
2691 goto fail;
2692 BUG_ON(ret);
2693
2694 leaf = path->nodes[0];
2695 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2696 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2697 btrfs_mark_buffer_dirty(leaf);
2698 btrfs_release_path(path);
2699 fail:
2700 if (ret)
2701 return ret;
2702 return 0;
2703
2704 }
2705
2706 static struct btrfs_block_group_cache *
2707 next_block_group(struct btrfs_root *root,
2708 struct btrfs_block_group_cache *cache)
2709 {
2710 struct rb_node *node;
2711 spin_lock(&root->fs_info->block_group_cache_lock);
2712 node = rb_next(&cache->cache_node);
2713 btrfs_put_block_group(cache);
2714 if (node) {
2715 cache = rb_entry(node, struct btrfs_block_group_cache,
2716 cache_node);
2717 btrfs_get_block_group(cache);
2718 } else
2719 cache = NULL;
2720 spin_unlock(&root->fs_info->block_group_cache_lock);
2721 return cache;
2722 }
2723
2724 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2725 struct btrfs_trans_handle *trans,
2726 struct btrfs_path *path)
2727 {
2728 struct btrfs_root *root = block_group->fs_info->tree_root;
2729 struct inode *inode = NULL;
2730 u64 alloc_hint = 0;
2731 int dcs = BTRFS_DC_ERROR;
2732 int num_pages = 0;
2733 int retries = 0;
2734 int ret = 0;
2735
2736 /*
2737 * If this block group is smaller than 100 megs don't bother caching the
2738 * block group.
2739 */
2740 if (block_group->key.offset < (100 * 1024 * 1024)) {
2741 spin_lock(&block_group->lock);
2742 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2743 spin_unlock(&block_group->lock);
2744 return 0;
2745 }
2746
2747 again:
2748 inode = lookup_free_space_inode(root, block_group, path);
2749 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2750 ret = PTR_ERR(inode);
2751 btrfs_release_path(path);
2752 goto out;
2753 }
2754
2755 if (IS_ERR(inode)) {
2756 BUG_ON(retries);
2757 retries++;
2758
2759 if (block_group->ro)
2760 goto out_free;
2761
2762 ret = create_free_space_inode(root, trans, block_group, path);
2763 if (ret)
2764 goto out_free;
2765 goto again;
2766 }
2767
2768 /* We've already setup this transaction, go ahead and exit */
2769 if (block_group->cache_generation == trans->transid &&
2770 i_size_read(inode)) {
2771 dcs = BTRFS_DC_SETUP;
2772 goto out_put;
2773 }
2774
2775 /*
2776 * We want to set the generation to 0, that way if anything goes wrong
2777 * from here on out we know not to trust this cache when we load up next
2778 * time.
2779 */
2780 BTRFS_I(inode)->generation = 0;
2781 ret = btrfs_update_inode(trans, root, inode);
2782 WARN_ON(ret);
2783
2784 if (i_size_read(inode) > 0) {
2785 ret = btrfs_truncate_free_space_cache(root, trans, path,
2786 inode);
2787 if (ret)
2788 goto out_put;
2789 }
2790
2791 spin_lock(&block_group->lock);
2792 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2793 /* We're not cached, don't bother trying to write stuff out */
2794 dcs = BTRFS_DC_WRITTEN;
2795 spin_unlock(&block_group->lock);
2796 goto out_put;
2797 }
2798 spin_unlock(&block_group->lock);
2799
2800 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2801 if (!num_pages)
2802 num_pages = 1;
2803
2804 /*
2805 * Just to make absolutely sure we have enough space, we're going to
2806 * preallocate 12 pages worth of space for each block group. In
2807 * practice we ought to use at most 8, but we need extra space so we can
2808 * add our header and have a terminator between the extents and the
2809 * bitmaps.
2810 */
2811 num_pages *= 16;
2812 num_pages *= PAGE_CACHE_SIZE;
2813
2814 ret = btrfs_check_data_free_space(inode, num_pages);
2815 if (ret)
2816 goto out_put;
2817
2818 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2819 num_pages, num_pages,
2820 &alloc_hint);
2821 if (!ret)
2822 dcs = BTRFS_DC_SETUP;
2823 btrfs_free_reserved_data_space(inode, num_pages);
2824
2825 out_put:
2826 iput(inode);
2827 out_free:
2828 btrfs_release_path(path);
2829 out:
2830 spin_lock(&block_group->lock);
2831 if (!ret && dcs == BTRFS_DC_SETUP)
2832 block_group->cache_generation = trans->transid;
2833 block_group->disk_cache_state = dcs;
2834 spin_unlock(&block_group->lock);
2835
2836 return ret;
2837 }
2838
2839 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2840 struct btrfs_root *root)
2841 {
2842 struct btrfs_block_group_cache *cache;
2843 int err = 0;
2844 struct btrfs_path *path;
2845 u64 last = 0;
2846
2847 path = btrfs_alloc_path();
2848 if (!path)
2849 return -ENOMEM;
2850
2851 again:
2852 while (1) {
2853 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2854 while (cache) {
2855 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2856 break;
2857 cache = next_block_group(root, cache);
2858 }
2859 if (!cache) {
2860 if (last == 0)
2861 break;
2862 last = 0;
2863 continue;
2864 }
2865 err = cache_save_setup(cache, trans, path);
2866 last = cache->key.objectid + cache->key.offset;
2867 btrfs_put_block_group(cache);
2868 }
2869
2870 while (1) {
2871 if (last == 0) {
2872 err = btrfs_run_delayed_refs(trans, root,
2873 (unsigned long)-1);
2874 BUG_ON(err);
2875 }
2876
2877 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2878 while (cache) {
2879 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2880 btrfs_put_block_group(cache);
2881 goto again;
2882 }
2883
2884 if (cache->dirty)
2885 break;
2886 cache = next_block_group(root, cache);
2887 }
2888 if (!cache) {
2889 if (last == 0)
2890 break;
2891 last = 0;
2892 continue;
2893 }
2894
2895 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2896 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2897 cache->dirty = 0;
2898 last = cache->key.objectid + cache->key.offset;
2899
2900 err = write_one_cache_group(trans, root, path, cache);
2901 BUG_ON(err);
2902 btrfs_put_block_group(cache);
2903 }
2904
2905 while (1) {
2906 /*
2907 * I don't think this is needed since we're just marking our
2908 * preallocated extent as written, but just in case it can't
2909 * hurt.
2910 */
2911 if (last == 0) {
2912 err = btrfs_run_delayed_refs(trans, root,
2913 (unsigned long)-1);
2914 BUG_ON(err);
2915 }
2916
2917 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2918 while (cache) {
2919 /*
2920 * Really this shouldn't happen, but it could if we
2921 * couldn't write the entire preallocated extent and
2922 * splitting the extent resulted in a new block.
2923 */
2924 if (cache->dirty) {
2925 btrfs_put_block_group(cache);
2926 goto again;
2927 }
2928 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2929 break;
2930 cache = next_block_group(root, cache);
2931 }
2932 if (!cache) {
2933 if (last == 0)
2934 break;
2935 last = 0;
2936 continue;
2937 }
2938
2939 btrfs_write_out_cache(root, trans, cache, path);
2940
2941 /*
2942 * If we didn't have an error then the cache state is still
2943 * NEED_WRITE, so we can set it to WRITTEN.
2944 */
2945 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2946 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2947 last = cache->key.objectid + cache->key.offset;
2948 btrfs_put_block_group(cache);
2949 }
2950
2951 btrfs_free_path(path);
2952 return 0;
2953 }
2954
2955 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2956 {
2957 struct btrfs_block_group_cache *block_group;
2958 int readonly = 0;
2959
2960 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2961 if (!block_group || block_group->ro)
2962 readonly = 1;
2963 if (block_group)
2964 btrfs_put_block_group(block_group);
2965 return readonly;
2966 }
2967
2968 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2969 u64 total_bytes, u64 bytes_used,
2970 struct btrfs_space_info **space_info)
2971 {
2972 struct btrfs_space_info *found;
2973 int i;
2974 int factor;
2975
2976 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2977 BTRFS_BLOCK_GROUP_RAID10))
2978 factor = 2;
2979 else
2980 factor = 1;
2981
2982 found = __find_space_info(info, flags);
2983 if (found) {
2984 spin_lock(&found->lock);
2985 found->total_bytes += total_bytes;
2986 found->disk_total += total_bytes * factor;
2987 found->bytes_used += bytes_used;
2988 found->disk_used += bytes_used * factor;
2989 found->full = 0;
2990 spin_unlock(&found->lock);
2991 *space_info = found;
2992 return 0;
2993 }
2994 found = kzalloc(sizeof(*found), GFP_NOFS);
2995 if (!found)
2996 return -ENOMEM;
2997
2998 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2999 INIT_LIST_HEAD(&found->block_groups[i]);
3000 init_rwsem(&found->groups_sem);
3001 spin_lock_init(&found->lock);
3002 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
3003 BTRFS_BLOCK_GROUP_SYSTEM |
3004 BTRFS_BLOCK_GROUP_METADATA);
3005 found->total_bytes = total_bytes;
3006 found->disk_total = total_bytes * factor;
3007 found->bytes_used = bytes_used;
3008 found->disk_used = bytes_used * factor;
3009 found->bytes_pinned = 0;
3010 found->bytes_reserved = 0;
3011 found->bytes_readonly = 0;
3012 found->bytes_may_use = 0;
3013 found->full = 0;
3014 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3015 found->chunk_alloc = 0;
3016 found->flush = 0;
3017 init_waitqueue_head(&found->wait);
3018 *space_info = found;
3019 list_add_rcu(&found->list, &info->space_info);
3020 return 0;
3021 }
3022
3023 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3024 {
3025 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
3026 BTRFS_BLOCK_GROUP_RAID1 |
3027 BTRFS_BLOCK_GROUP_RAID10 |
3028 BTRFS_BLOCK_GROUP_DUP);
3029 if (extra_flags) {
3030 if (flags & BTRFS_BLOCK_GROUP_DATA)
3031 fs_info->avail_data_alloc_bits |= extra_flags;
3032 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3033 fs_info->avail_metadata_alloc_bits |= extra_flags;
3034 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3035 fs_info->avail_system_alloc_bits |= extra_flags;
3036 }
3037 }
3038
3039 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3040 {
3041 /*
3042 * we add in the count of missing devices because we want
3043 * to make sure that any RAID levels on a degraded FS
3044 * continue to be honored.
3045 */
3046 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3047 root->fs_info->fs_devices->missing_devices;
3048
3049 if (num_devices == 1)
3050 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3051 if (num_devices < 4)
3052 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3053
3054 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3055 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3056 BTRFS_BLOCK_GROUP_RAID10))) {
3057 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3058 }
3059
3060 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3061 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3062 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3063 }
3064
3065 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3066 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3067 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3068 (flags & BTRFS_BLOCK_GROUP_DUP)))
3069 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3070 return flags;
3071 }
3072
3073 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3074 {
3075 if (flags & BTRFS_BLOCK_GROUP_DATA)
3076 flags |= root->fs_info->avail_data_alloc_bits &
3077 root->fs_info->data_alloc_profile;
3078 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3079 flags |= root->fs_info->avail_system_alloc_bits &
3080 root->fs_info->system_alloc_profile;
3081 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3082 flags |= root->fs_info->avail_metadata_alloc_bits &
3083 root->fs_info->metadata_alloc_profile;
3084 return btrfs_reduce_alloc_profile(root, flags);
3085 }
3086
3087 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3088 {
3089 u64 flags;
3090
3091 if (data)
3092 flags = BTRFS_BLOCK_GROUP_DATA;
3093 else if (root == root->fs_info->chunk_root)
3094 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3095 else
3096 flags = BTRFS_BLOCK_GROUP_METADATA;
3097
3098 return get_alloc_profile(root, flags);
3099 }
3100
3101 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3102 {
3103 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3104 BTRFS_BLOCK_GROUP_DATA);
3105 }
3106
3107 /*
3108 * This will check the space that the inode allocates from to make sure we have
3109 * enough space for bytes.
3110 */
3111 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3112 {
3113 struct btrfs_space_info *data_sinfo;
3114 struct btrfs_root *root = BTRFS_I(inode)->root;
3115 u64 used;
3116 int ret = 0, committed = 0, alloc_chunk = 1;
3117
3118 /* make sure bytes are sectorsize aligned */
3119 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3120
3121 if (root == root->fs_info->tree_root ||
3122 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3123 alloc_chunk = 0;
3124 committed = 1;
3125 }
3126
3127 data_sinfo = BTRFS_I(inode)->space_info;
3128 if (!data_sinfo)
3129 goto alloc;
3130
3131 again:
3132 /* make sure we have enough space to handle the data first */
3133 spin_lock(&data_sinfo->lock);
3134 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3135 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3136 data_sinfo->bytes_may_use;
3137
3138 if (used + bytes > data_sinfo->total_bytes) {
3139 struct btrfs_trans_handle *trans;
3140
3141 /*
3142 * if we don't have enough free bytes in this space then we need
3143 * to alloc a new chunk.
3144 */
3145 if (!data_sinfo->full && alloc_chunk) {
3146 u64 alloc_target;
3147
3148 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3149 spin_unlock(&data_sinfo->lock);
3150 alloc:
3151 alloc_target = btrfs_get_alloc_profile(root, 1);
3152 trans = btrfs_join_transaction(root);
3153 if (IS_ERR(trans))
3154 return PTR_ERR(trans);
3155
3156 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3157 bytes + 2 * 1024 * 1024,
3158 alloc_target,
3159 CHUNK_ALLOC_NO_FORCE);
3160 btrfs_end_transaction(trans, root);
3161 if (ret < 0) {
3162 if (ret != -ENOSPC)
3163 return ret;
3164 else
3165 goto commit_trans;
3166 }
3167
3168 if (!data_sinfo) {
3169 btrfs_set_inode_space_info(root, inode);
3170 data_sinfo = BTRFS_I(inode)->space_info;
3171 }
3172 goto again;
3173 }
3174
3175 /*
3176 * If we have less pinned bytes than we want to allocate then
3177 * don't bother committing the transaction, it won't help us.
3178 */
3179 if (data_sinfo->bytes_pinned < bytes)
3180 committed = 1;
3181 spin_unlock(&data_sinfo->lock);
3182
3183 /* commit the current transaction and try again */
3184 commit_trans:
3185 if (!committed &&
3186 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3187 committed = 1;
3188 trans = btrfs_join_transaction(root);
3189 if (IS_ERR(trans))
3190 return PTR_ERR(trans);
3191 ret = btrfs_commit_transaction(trans, root);
3192 if (ret)
3193 return ret;
3194 goto again;
3195 }
3196
3197 return -ENOSPC;
3198 }
3199 data_sinfo->bytes_may_use += bytes;
3200 spin_unlock(&data_sinfo->lock);
3201
3202 return 0;
3203 }
3204
3205 /*
3206 * Called if we need to clear a data reservation for this inode.
3207 */
3208 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3209 {
3210 struct btrfs_root *root = BTRFS_I(inode)->root;
3211 struct btrfs_space_info *data_sinfo;
3212
3213 /* make sure bytes are sectorsize aligned */
3214 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3215
3216 data_sinfo = BTRFS_I(inode)->space_info;
3217 spin_lock(&data_sinfo->lock);
3218 data_sinfo->bytes_may_use -= bytes;
3219 spin_unlock(&data_sinfo->lock);
3220 }
3221
3222 static void force_metadata_allocation(struct btrfs_fs_info *info)
3223 {
3224 struct list_head *head = &info->space_info;
3225 struct btrfs_space_info *found;
3226
3227 rcu_read_lock();
3228 list_for_each_entry_rcu(found, head, list) {
3229 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3230 found->force_alloc = CHUNK_ALLOC_FORCE;
3231 }
3232 rcu_read_unlock();
3233 }
3234
3235 static int should_alloc_chunk(struct btrfs_root *root,
3236 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3237 int force)
3238 {
3239 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3240 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3241 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3242 u64 thresh;
3243
3244 if (force == CHUNK_ALLOC_FORCE)
3245 return 1;
3246
3247 /*
3248 * We need to take into account the global rsv because for all intents
3249 * and purposes it's used space. Don't worry about locking the
3250 * global_rsv, it doesn't change except when the transaction commits.
3251 */
3252 num_allocated += global_rsv->size;
3253
3254 /*
3255 * in limited mode, we want to have some free space up to
3256 * about 1% of the FS size.
3257 */
3258 if (force == CHUNK_ALLOC_LIMITED) {
3259 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3260 thresh = max_t(u64, 64 * 1024 * 1024,
3261 div_factor_fine(thresh, 1));
3262
3263 if (num_bytes - num_allocated < thresh)
3264 return 1;
3265 }
3266 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3267
3268 /* 256MB or 2% of the FS */
3269 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3270
3271 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3272 return 0;
3273 return 1;
3274 }
3275
3276 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3277 struct btrfs_root *extent_root, u64 alloc_bytes,
3278 u64 flags, int force)
3279 {
3280 struct btrfs_space_info *space_info;
3281 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3282 int wait_for_alloc = 0;
3283 int ret = 0;
3284
3285 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3286
3287 space_info = __find_space_info(extent_root->fs_info, flags);
3288 if (!space_info) {
3289 ret = update_space_info(extent_root->fs_info, flags,
3290 0, 0, &space_info);
3291 BUG_ON(ret);
3292 }
3293 BUG_ON(!space_info);
3294
3295 again:
3296 spin_lock(&space_info->lock);
3297 if (space_info->force_alloc)
3298 force = space_info->force_alloc;
3299 if (space_info->full) {
3300 spin_unlock(&space_info->lock);
3301 return 0;
3302 }
3303
3304 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3305 spin_unlock(&space_info->lock);
3306 return 0;
3307 } else if (space_info->chunk_alloc) {
3308 wait_for_alloc = 1;
3309 } else {
3310 space_info->chunk_alloc = 1;
3311 }
3312
3313 spin_unlock(&space_info->lock);
3314
3315 mutex_lock(&fs_info->chunk_mutex);
3316
3317 /*
3318 * The chunk_mutex is held throughout the entirety of a chunk
3319 * allocation, so once we've acquired the chunk_mutex we know that the
3320 * other guy is done and we need to recheck and see if we should
3321 * allocate.
3322 */
3323 if (wait_for_alloc) {
3324 mutex_unlock(&fs_info->chunk_mutex);
3325 wait_for_alloc = 0;
3326 goto again;
3327 }
3328
3329 /*
3330 * If we have mixed data/metadata chunks we want to make sure we keep
3331 * allocating mixed chunks instead of individual chunks.
3332 */
3333 if (btrfs_mixed_space_info(space_info))
3334 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3335
3336 /*
3337 * if we're doing a data chunk, go ahead and make sure that
3338 * we keep a reasonable number of metadata chunks allocated in the
3339 * FS as well.
3340 */
3341 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3342 fs_info->data_chunk_allocations++;
3343 if (!(fs_info->data_chunk_allocations %
3344 fs_info->metadata_ratio))
3345 force_metadata_allocation(fs_info);
3346 }
3347
3348 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3349 if (ret < 0 && ret != -ENOSPC)
3350 goto out;
3351
3352 spin_lock(&space_info->lock);
3353 if (ret)
3354 space_info->full = 1;
3355 else
3356 ret = 1;
3357
3358 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3359 space_info->chunk_alloc = 0;
3360 spin_unlock(&space_info->lock);
3361 out:
3362 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3363 return ret;
3364 }
3365
3366 /*
3367 * shrink metadata reservation for delalloc
3368 */
3369 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3370 bool wait_ordered)
3371 {
3372 struct btrfs_block_rsv *block_rsv;
3373 struct btrfs_space_info *space_info;
3374 struct btrfs_trans_handle *trans;
3375 u64 reserved;
3376 u64 max_reclaim;
3377 u64 reclaimed = 0;
3378 long time_left;
3379 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3380 int loops = 0;
3381 unsigned long progress;
3382
3383 trans = (struct btrfs_trans_handle *)current->journal_info;
3384 block_rsv = &root->fs_info->delalloc_block_rsv;
3385 space_info = block_rsv->space_info;
3386
3387 smp_mb();
3388 reserved = space_info->bytes_may_use;
3389 progress = space_info->reservation_progress;
3390
3391 if (reserved == 0)
3392 return 0;
3393
3394 smp_mb();
3395 if (root->fs_info->delalloc_bytes == 0) {
3396 if (trans)
3397 return 0;
3398 btrfs_wait_ordered_extents(root, 0, 0);
3399 return 0;
3400 }
3401
3402 max_reclaim = min(reserved, to_reclaim);
3403 nr_pages = max_t(unsigned long, nr_pages,
3404 max_reclaim >> PAGE_CACHE_SHIFT);
3405 while (loops < 1024) {
3406 /* have the flusher threads jump in and do some IO */
3407 smp_mb();
3408 nr_pages = min_t(unsigned long, nr_pages,
3409 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3410 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3411 WB_REASON_FS_FREE_SPACE);
3412
3413 spin_lock(&space_info->lock);
3414 if (reserved > space_info->bytes_may_use)
3415 reclaimed += reserved - space_info->bytes_may_use;
3416 reserved = space_info->bytes_may_use;
3417 spin_unlock(&space_info->lock);
3418
3419 loops++;
3420
3421 if (reserved == 0 || reclaimed >= max_reclaim)
3422 break;
3423
3424 if (trans && trans->transaction->blocked)
3425 return -EAGAIN;
3426
3427 if (wait_ordered && !trans) {
3428 btrfs_wait_ordered_extents(root, 0, 0);
3429 } else {
3430 time_left = schedule_timeout_interruptible(1);
3431
3432 /* We were interrupted, exit */
3433 if (time_left)
3434 break;
3435 }
3436
3437 /* we've kicked the IO a few times, if anything has been freed,
3438 * exit. There is no sense in looping here for a long time
3439 * when we really need to commit the transaction, or there are
3440 * just too many writers without enough free space
3441 */
3442
3443 if (loops > 3) {
3444 smp_mb();
3445 if (progress != space_info->reservation_progress)
3446 break;
3447 }
3448
3449 }
3450
3451 return reclaimed >= to_reclaim;
3452 }
3453
3454 /**
3455 * maybe_commit_transaction - possibly commit the transaction if its ok to
3456 * @root - the root we're allocating for
3457 * @bytes - the number of bytes we want to reserve
3458 * @force - force the commit
3459 *
3460 * This will check to make sure that committing the transaction will actually
3461 * get us somewhere and then commit the transaction if it does. Otherwise it
3462 * will return -ENOSPC.
3463 */
3464 static int may_commit_transaction(struct btrfs_root *root,
3465 struct btrfs_space_info *space_info,
3466 u64 bytes, int force)
3467 {
3468 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3469 struct btrfs_trans_handle *trans;
3470
3471 trans = (struct btrfs_trans_handle *)current->journal_info;
3472 if (trans)
3473 return -EAGAIN;
3474
3475 if (force)
3476 goto commit;
3477
3478 /* See if there is enough pinned space to make this reservation */
3479 spin_lock(&space_info->lock);
3480 if (space_info->bytes_pinned >= bytes) {
3481 spin_unlock(&space_info->lock);
3482 goto commit;
3483 }
3484 spin_unlock(&space_info->lock);
3485
3486 /*
3487 * See if there is some space in the delayed insertion reservation for
3488 * this reservation.
3489 */
3490 if (space_info != delayed_rsv->space_info)
3491 return -ENOSPC;
3492
3493 spin_lock(&delayed_rsv->lock);
3494 if (delayed_rsv->size < bytes) {
3495 spin_unlock(&delayed_rsv->lock);
3496 return -ENOSPC;
3497 }
3498 spin_unlock(&delayed_rsv->lock);
3499
3500 commit:
3501 trans = btrfs_join_transaction(root);
3502 if (IS_ERR(trans))
3503 return -ENOSPC;
3504
3505 return btrfs_commit_transaction(trans, root);
3506 }
3507
3508 /**
3509 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3510 * @root - the root we're allocating for
3511 * @block_rsv - the block_rsv we're allocating for
3512 * @orig_bytes - the number of bytes we want
3513 * @flush - wether or not we can flush to make our reservation
3514 *
3515 * This will reserve orgi_bytes number of bytes from the space info associated
3516 * with the block_rsv. If there is not enough space it will make an attempt to
3517 * flush out space to make room. It will do this by flushing delalloc if
3518 * possible or committing the transaction. If flush is 0 then no attempts to
3519 * regain reservations will be made and this will fail if there is not enough
3520 * space already.
3521 */
3522 static int reserve_metadata_bytes(struct btrfs_root *root,
3523 struct btrfs_block_rsv *block_rsv,
3524 u64 orig_bytes, int flush)
3525 {
3526 struct btrfs_space_info *space_info = block_rsv->space_info;
3527 u64 used;
3528 u64 num_bytes = orig_bytes;
3529 int retries = 0;
3530 int ret = 0;
3531 bool committed = false;
3532 bool flushing = false;
3533 bool wait_ordered = false;
3534
3535 again:
3536 ret = 0;
3537 spin_lock(&space_info->lock);
3538 /*
3539 * We only want to wait if somebody other than us is flushing and we are
3540 * actually alloed to flush.
3541 */
3542 while (flush && !flushing && space_info->flush) {
3543 spin_unlock(&space_info->lock);
3544 /*
3545 * If we have a trans handle we can't wait because the flusher
3546 * may have to commit the transaction, which would mean we would
3547 * deadlock since we are waiting for the flusher to finish, but
3548 * hold the current transaction open.
3549 */
3550 if (current->journal_info)
3551 return -EAGAIN;
3552 ret = wait_event_interruptible(space_info->wait,
3553 !space_info->flush);
3554 /* Must have been interrupted, return */
3555 if (ret)
3556 return -EINTR;
3557
3558 spin_lock(&space_info->lock);
3559 }
3560
3561 ret = -ENOSPC;
3562 used = space_info->bytes_used + space_info->bytes_reserved +
3563 space_info->bytes_pinned + space_info->bytes_readonly +
3564 space_info->bytes_may_use;
3565
3566 /*
3567 * The idea here is that we've not already over-reserved the block group
3568 * then we can go ahead and save our reservation first and then start
3569 * flushing if we need to. Otherwise if we've already overcommitted
3570 * lets start flushing stuff first and then come back and try to make
3571 * our reservation.
3572 */
3573 if (used <= space_info->total_bytes) {
3574 if (used + orig_bytes <= space_info->total_bytes) {
3575 space_info->bytes_may_use += orig_bytes;
3576 ret = 0;
3577 } else {
3578 /*
3579 * Ok set num_bytes to orig_bytes since we aren't
3580 * overocmmitted, this way we only try and reclaim what
3581 * we need.
3582 */
3583 num_bytes = orig_bytes;
3584 }
3585 } else {
3586 /*
3587 * Ok we're over committed, set num_bytes to the overcommitted
3588 * amount plus the amount of bytes that we need for this
3589 * reservation.
3590 */
3591 wait_ordered = true;
3592 num_bytes = used - space_info->total_bytes +
3593 (orig_bytes * (retries + 1));
3594 }
3595
3596 if (ret) {
3597 u64 profile = btrfs_get_alloc_profile(root, 0);
3598 u64 avail;
3599
3600 /*
3601 * If we have a lot of space that's pinned, don't bother doing
3602 * the overcommit dance yet and just commit the transaction.
3603 */
3604 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3605 do_div(avail, 10);
3606 if (space_info->bytes_pinned >= avail && flush && !committed) {
3607 space_info->flush = 1;
3608 flushing = true;
3609 spin_unlock(&space_info->lock);
3610 ret = may_commit_transaction(root, space_info,
3611 orig_bytes, 1);
3612 if (ret)
3613 goto out;
3614 committed = true;
3615 goto again;
3616 }
3617
3618 spin_lock(&root->fs_info->free_chunk_lock);
3619 avail = root->fs_info->free_chunk_space;
3620
3621 /*
3622 * If we have dup, raid1 or raid10 then only half of the free
3623 * space is actually useable.
3624 */
3625 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3626 BTRFS_BLOCK_GROUP_RAID1 |
3627 BTRFS_BLOCK_GROUP_RAID10))
3628 avail >>= 1;
3629
3630 /*
3631 * If we aren't flushing don't let us overcommit too much, say
3632 * 1/8th of the space. If we can flush, let it overcommit up to
3633 * 1/2 of the space.
3634 */
3635 if (flush)
3636 avail >>= 3;
3637 else
3638 avail >>= 1;
3639 spin_unlock(&root->fs_info->free_chunk_lock);
3640
3641 if (used + num_bytes < space_info->total_bytes + avail) {
3642 space_info->bytes_may_use += orig_bytes;
3643 ret = 0;
3644 } else {
3645 wait_ordered = true;
3646 }
3647 }
3648
3649 /*
3650 * Couldn't make our reservation, save our place so while we're trying
3651 * to reclaim space we can actually use it instead of somebody else
3652 * stealing it from us.
3653 */
3654 if (ret && flush) {
3655 flushing = true;
3656 space_info->flush = 1;
3657 }
3658
3659 spin_unlock(&space_info->lock);
3660
3661 if (!ret || !flush)
3662 goto out;
3663
3664 /*
3665 * We do synchronous shrinking since we don't actually unreserve
3666 * metadata until after the IO is completed.
3667 */
3668 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3669 if (ret < 0)
3670 goto out;
3671
3672 ret = 0;
3673
3674 /*
3675 * So if we were overcommitted it's possible that somebody else flushed
3676 * out enough space and we simply didn't have enough space to reclaim,
3677 * so go back around and try again.
3678 */
3679 if (retries < 2) {
3680 wait_ordered = true;
3681 retries++;
3682 goto again;
3683 }
3684
3685 ret = -ENOSPC;
3686 if (committed)
3687 goto out;
3688
3689 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3690 if (!ret) {
3691 committed = true;
3692 goto again;
3693 }
3694
3695 out:
3696 if (flushing) {
3697 spin_lock(&space_info->lock);
3698 space_info->flush = 0;
3699 wake_up_all(&space_info->wait);
3700 spin_unlock(&space_info->lock);
3701 }
3702 return ret;
3703 }
3704
3705 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3706 struct btrfs_root *root)
3707 {
3708 struct btrfs_block_rsv *block_rsv = NULL;
3709
3710 if (root->ref_cows || root == root->fs_info->csum_root)
3711 block_rsv = trans->block_rsv;
3712
3713 if (!block_rsv)
3714 block_rsv = root->block_rsv;
3715
3716 if (!block_rsv)
3717 block_rsv = &root->fs_info->empty_block_rsv;
3718
3719 return block_rsv;
3720 }
3721
3722 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3723 u64 num_bytes)
3724 {
3725 int ret = -ENOSPC;
3726 spin_lock(&block_rsv->lock);
3727 if (block_rsv->reserved >= num_bytes) {
3728 block_rsv->reserved -= num_bytes;
3729 if (block_rsv->reserved < block_rsv->size)
3730 block_rsv->full = 0;
3731 ret = 0;
3732 }
3733 spin_unlock(&block_rsv->lock);
3734 return ret;
3735 }
3736
3737 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3738 u64 num_bytes, int update_size)
3739 {
3740 spin_lock(&block_rsv->lock);
3741 block_rsv->reserved += num_bytes;
3742 if (update_size)
3743 block_rsv->size += num_bytes;
3744 else if (block_rsv->reserved >= block_rsv->size)
3745 block_rsv->full = 1;
3746 spin_unlock(&block_rsv->lock);
3747 }
3748
3749 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3750 struct btrfs_block_rsv *dest, u64 num_bytes)
3751 {
3752 struct btrfs_space_info *space_info = block_rsv->space_info;
3753
3754 spin_lock(&block_rsv->lock);
3755 if (num_bytes == (u64)-1)
3756 num_bytes = block_rsv->size;
3757 block_rsv->size -= num_bytes;
3758 if (block_rsv->reserved >= block_rsv->size) {
3759 num_bytes = block_rsv->reserved - block_rsv->size;
3760 block_rsv->reserved = block_rsv->size;
3761 block_rsv->full = 1;
3762 } else {
3763 num_bytes = 0;
3764 }
3765 spin_unlock(&block_rsv->lock);
3766
3767 if (num_bytes > 0) {
3768 if (dest) {
3769 spin_lock(&dest->lock);
3770 if (!dest->full) {
3771 u64 bytes_to_add;
3772
3773 bytes_to_add = dest->size - dest->reserved;
3774 bytes_to_add = min(num_bytes, bytes_to_add);
3775 dest->reserved += bytes_to_add;
3776 if (dest->reserved >= dest->size)
3777 dest->full = 1;
3778 num_bytes -= bytes_to_add;
3779 }
3780 spin_unlock(&dest->lock);
3781 }
3782 if (num_bytes) {
3783 spin_lock(&space_info->lock);
3784 space_info->bytes_may_use -= num_bytes;
3785 space_info->reservation_progress++;
3786 spin_unlock(&space_info->lock);
3787 }
3788 }
3789 }
3790
3791 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3792 struct btrfs_block_rsv *dst, u64 num_bytes)
3793 {
3794 int ret;
3795
3796 ret = block_rsv_use_bytes(src, num_bytes);
3797 if (ret)
3798 return ret;
3799
3800 block_rsv_add_bytes(dst, num_bytes, 1);
3801 return 0;
3802 }
3803
3804 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3805 {
3806 memset(rsv, 0, sizeof(*rsv));
3807 spin_lock_init(&rsv->lock);
3808 }
3809
3810 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3811 {
3812 struct btrfs_block_rsv *block_rsv;
3813 struct btrfs_fs_info *fs_info = root->fs_info;
3814
3815 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3816 if (!block_rsv)
3817 return NULL;
3818
3819 btrfs_init_block_rsv(block_rsv);
3820 block_rsv->space_info = __find_space_info(fs_info,
3821 BTRFS_BLOCK_GROUP_METADATA);
3822 return block_rsv;
3823 }
3824
3825 void btrfs_free_block_rsv(struct btrfs_root *root,
3826 struct btrfs_block_rsv *rsv)
3827 {
3828 btrfs_block_rsv_release(root, rsv, (u64)-1);
3829 kfree(rsv);
3830 }
3831
3832 static inline int __block_rsv_add(struct btrfs_root *root,
3833 struct btrfs_block_rsv *block_rsv,
3834 u64 num_bytes, int flush)
3835 {
3836 int ret;
3837
3838 if (num_bytes == 0)
3839 return 0;
3840
3841 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3842 if (!ret) {
3843 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3844 return 0;
3845 }
3846
3847 return ret;
3848 }
3849
3850 int btrfs_block_rsv_add(struct btrfs_root *root,
3851 struct btrfs_block_rsv *block_rsv,
3852 u64 num_bytes)
3853 {
3854 return __block_rsv_add(root, block_rsv, num_bytes, 1);
3855 }
3856
3857 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3858 struct btrfs_block_rsv *block_rsv,
3859 u64 num_bytes)
3860 {
3861 return __block_rsv_add(root, block_rsv, num_bytes, 0);
3862 }
3863
3864 int btrfs_block_rsv_check(struct btrfs_root *root,
3865 struct btrfs_block_rsv *block_rsv, int min_factor)
3866 {
3867 u64 num_bytes = 0;
3868 int ret = -ENOSPC;
3869
3870 if (!block_rsv)
3871 return 0;
3872
3873 spin_lock(&block_rsv->lock);
3874 num_bytes = div_factor(block_rsv->size, min_factor);
3875 if (block_rsv->reserved >= num_bytes)
3876 ret = 0;
3877 spin_unlock(&block_rsv->lock);
3878
3879 return ret;
3880 }
3881
3882 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
3883 struct btrfs_block_rsv *block_rsv,
3884 u64 min_reserved, int flush)
3885 {
3886 u64 num_bytes = 0;
3887 int ret = -ENOSPC;
3888
3889 if (!block_rsv)
3890 return 0;
3891
3892 spin_lock(&block_rsv->lock);
3893 num_bytes = min_reserved;
3894 if (block_rsv->reserved >= num_bytes)
3895 ret = 0;
3896 else
3897 num_bytes -= block_rsv->reserved;
3898 spin_unlock(&block_rsv->lock);
3899
3900 if (!ret)
3901 return 0;
3902
3903 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3904 if (!ret) {
3905 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3906 return 0;
3907 }
3908
3909 return ret;
3910 }
3911
3912 int btrfs_block_rsv_refill(struct btrfs_root *root,
3913 struct btrfs_block_rsv *block_rsv,
3914 u64 min_reserved)
3915 {
3916 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
3917 }
3918
3919 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
3920 struct btrfs_block_rsv *block_rsv,
3921 u64 min_reserved)
3922 {
3923 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
3924 }
3925
3926 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3927 struct btrfs_block_rsv *dst_rsv,
3928 u64 num_bytes)
3929 {
3930 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3931 }
3932
3933 void btrfs_block_rsv_release(struct btrfs_root *root,
3934 struct btrfs_block_rsv *block_rsv,
3935 u64 num_bytes)
3936 {
3937 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3938 if (global_rsv->full || global_rsv == block_rsv ||
3939 block_rsv->space_info != global_rsv->space_info)
3940 global_rsv = NULL;
3941 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3942 }
3943
3944 /*
3945 * helper to calculate size of global block reservation.
3946 * the desired value is sum of space used by extent tree,
3947 * checksum tree and root tree
3948 */
3949 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3950 {
3951 struct btrfs_space_info *sinfo;
3952 u64 num_bytes;
3953 u64 meta_used;
3954 u64 data_used;
3955 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
3956
3957 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3958 spin_lock(&sinfo->lock);
3959 data_used = sinfo->bytes_used;
3960 spin_unlock(&sinfo->lock);
3961
3962 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3963 spin_lock(&sinfo->lock);
3964 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3965 data_used = 0;
3966 meta_used = sinfo->bytes_used;
3967 spin_unlock(&sinfo->lock);
3968
3969 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3970 csum_size * 2;
3971 num_bytes += div64_u64(data_used + meta_used, 50);
3972
3973 if (num_bytes * 3 > meta_used)
3974 num_bytes = div64_u64(meta_used, 3);
3975
3976 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3977 }
3978
3979 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3980 {
3981 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3982 struct btrfs_space_info *sinfo = block_rsv->space_info;
3983 u64 num_bytes;
3984
3985 num_bytes = calc_global_metadata_size(fs_info);
3986
3987 spin_lock(&block_rsv->lock);
3988 spin_lock(&sinfo->lock);
3989
3990 block_rsv->size = num_bytes;
3991
3992 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3993 sinfo->bytes_reserved + sinfo->bytes_readonly +
3994 sinfo->bytes_may_use;
3995
3996 if (sinfo->total_bytes > num_bytes) {
3997 num_bytes = sinfo->total_bytes - num_bytes;
3998 block_rsv->reserved += num_bytes;
3999 sinfo->bytes_may_use += num_bytes;
4000 }
4001
4002 if (block_rsv->reserved >= block_rsv->size) {
4003 num_bytes = block_rsv->reserved - block_rsv->size;
4004 sinfo->bytes_may_use -= num_bytes;
4005 sinfo->reservation_progress++;
4006 block_rsv->reserved = block_rsv->size;
4007 block_rsv->full = 1;
4008 }
4009
4010 spin_unlock(&sinfo->lock);
4011 spin_unlock(&block_rsv->lock);
4012 }
4013
4014 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4015 {
4016 struct btrfs_space_info *space_info;
4017
4018 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4019 fs_info->chunk_block_rsv.space_info = space_info;
4020
4021 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4022 fs_info->global_block_rsv.space_info = space_info;
4023 fs_info->delalloc_block_rsv.space_info = space_info;
4024 fs_info->trans_block_rsv.space_info = space_info;
4025 fs_info->empty_block_rsv.space_info = space_info;
4026 fs_info->delayed_block_rsv.space_info = space_info;
4027
4028 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4029 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4030 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4031 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4032 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4033
4034 update_global_block_rsv(fs_info);
4035 }
4036
4037 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4038 {
4039 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
4040 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4041 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4042 WARN_ON(fs_info->trans_block_rsv.size > 0);
4043 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4044 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4045 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4046 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4047 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4048 }
4049
4050 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4051 struct btrfs_root *root)
4052 {
4053 if (!trans->bytes_reserved)
4054 return;
4055
4056 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4057 trans->bytes_reserved = 0;
4058 }
4059
4060 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4061 struct inode *inode)
4062 {
4063 struct btrfs_root *root = BTRFS_I(inode)->root;
4064 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4065 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4066
4067 /*
4068 * We need to hold space in order to delete our orphan item once we've
4069 * added it, so this takes the reservation so we can release it later
4070 * when we are truly done with the orphan item.
4071 */
4072 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4073 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4074 }
4075
4076 void btrfs_orphan_release_metadata(struct inode *inode)
4077 {
4078 struct btrfs_root *root = BTRFS_I(inode)->root;
4079 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4080 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4081 }
4082
4083 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4084 struct btrfs_pending_snapshot *pending)
4085 {
4086 struct btrfs_root *root = pending->root;
4087 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4088 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4089 /*
4090 * two for root back/forward refs, two for directory entries
4091 * and one for root of the snapshot.
4092 */
4093 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4094 dst_rsv->space_info = src_rsv->space_info;
4095 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4096 }
4097
4098 /**
4099 * drop_outstanding_extent - drop an outstanding extent
4100 * @inode: the inode we're dropping the extent for
4101 *
4102 * This is called when we are freeing up an outstanding extent, either called
4103 * after an error or after an extent is written. This will return the number of
4104 * reserved extents that need to be freed. This must be called with
4105 * BTRFS_I(inode)->lock held.
4106 */
4107 static unsigned drop_outstanding_extent(struct inode *inode)
4108 {
4109 unsigned drop_inode_space = 0;
4110 unsigned dropped_extents = 0;
4111
4112 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4113 BTRFS_I(inode)->outstanding_extents--;
4114
4115 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4116 BTRFS_I(inode)->delalloc_meta_reserved) {
4117 drop_inode_space = 1;
4118 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4119 }
4120
4121 /*
4122 * If we have more or the same amount of outsanding extents than we have
4123 * reserved then we need to leave the reserved extents count alone.
4124 */
4125 if (BTRFS_I(inode)->outstanding_extents >=
4126 BTRFS_I(inode)->reserved_extents)
4127 return drop_inode_space;
4128
4129 dropped_extents = BTRFS_I(inode)->reserved_extents -
4130 BTRFS_I(inode)->outstanding_extents;
4131 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4132 return dropped_extents + drop_inode_space;
4133 }
4134
4135 /**
4136 * calc_csum_metadata_size - return the amount of metada space that must be
4137 * reserved/free'd for the given bytes.
4138 * @inode: the inode we're manipulating
4139 * @num_bytes: the number of bytes in question
4140 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4141 *
4142 * This adjusts the number of csum_bytes in the inode and then returns the
4143 * correct amount of metadata that must either be reserved or freed. We
4144 * calculate how many checksums we can fit into one leaf and then divide the
4145 * number of bytes that will need to be checksumed by this value to figure out
4146 * how many checksums will be required. If we are adding bytes then the number
4147 * may go up and we will return the number of additional bytes that must be
4148 * reserved. If it is going down we will return the number of bytes that must
4149 * be freed.
4150 *
4151 * This must be called with BTRFS_I(inode)->lock held.
4152 */
4153 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4154 int reserve)
4155 {
4156 struct btrfs_root *root = BTRFS_I(inode)->root;
4157 u64 csum_size;
4158 int num_csums_per_leaf;
4159 int num_csums;
4160 int old_csums;
4161
4162 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4163 BTRFS_I(inode)->csum_bytes == 0)
4164 return 0;
4165
4166 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4167 if (reserve)
4168 BTRFS_I(inode)->csum_bytes += num_bytes;
4169 else
4170 BTRFS_I(inode)->csum_bytes -= num_bytes;
4171 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4172 num_csums_per_leaf = (int)div64_u64(csum_size,
4173 sizeof(struct btrfs_csum_item) +
4174 sizeof(struct btrfs_disk_key));
4175 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4176 num_csums = num_csums + num_csums_per_leaf - 1;
4177 num_csums = num_csums / num_csums_per_leaf;
4178
4179 old_csums = old_csums + num_csums_per_leaf - 1;
4180 old_csums = old_csums / num_csums_per_leaf;
4181
4182 /* No change, no need to reserve more */
4183 if (old_csums == num_csums)
4184 return 0;
4185
4186 if (reserve)
4187 return btrfs_calc_trans_metadata_size(root,
4188 num_csums - old_csums);
4189
4190 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4191 }
4192
4193 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4194 {
4195 struct btrfs_root *root = BTRFS_I(inode)->root;
4196 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4197 u64 to_reserve = 0;
4198 u64 csum_bytes;
4199 unsigned nr_extents = 0;
4200 int extra_reserve = 0;
4201 int flush = 1;
4202 int ret;
4203
4204 /* Need to be holding the i_mutex here if we aren't free space cache */
4205 if (btrfs_is_free_space_inode(root, inode))
4206 flush = 0;
4207 else
4208 WARN_ON(!mutex_is_locked(&inode->i_mutex));
4209
4210 if (flush && btrfs_transaction_in_commit(root->fs_info))
4211 schedule_timeout(1);
4212
4213 num_bytes = ALIGN(num_bytes, root->sectorsize);
4214
4215 spin_lock(&BTRFS_I(inode)->lock);
4216 BTRFS_I(inode)->outstanding_extents++;
4217
4218 if (BTRFS_I(inode)->outstanding_extents >
4219 BTRFS_I(inode)->reserved_extents)
4220 nr_extents = BTRFS_I(inode)->outstanding_extents -
4221 BTRFS_I(inode)->reserved_extents;
4222
4223 /*
4224 * Add an item to reserve for updating the inode when we complete the
4225 * delalloc io.
4226 */
4227 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4228 nr_extents++;
4229 extra_reserve = 1;
4230 }
4231
4232 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4233 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4234 csum_bytes = BTRFS_I(inode)->csum_bytes;
4235 spin_unlock(&BTRFS_I(inode)->lock);
4236
4237 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4238 if (ret) {
4239 u64 to_free = 0;
4240 unsigned dropped;
4241
4242 spin_lock(&BTRFS_I(inode)->lock);
4243 dropped = drop_outstanding_extent(inode);
4244 /*
4245 * If the inodes csum_bytes is the same as the original
4246 * csum_bytes then we know we haven't raced with any free()ers
4247 * so we can just reduce our inodes csum bytes and carry on.
4248 * Otherwise we have to do the normal free thing to account for
4249 * the case that the free side didn't free up its reserve
4250 * because of this outstanding reservation.
4251 */
4252 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4253 calc_csum_metadata_size(inode, num_bytes, 0);
4254 else
4255 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4256 spin_unlock(&BTRFS_I(inode)->lock);
4257 if (dropped)
4258 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4259
4260 if (to_free)
4261 btrfs_block_rsv_release(root, block_rsv, to_free);
4262 return ret;
4263 }
4264
4265 spin_lock(&BTRFS_I(inode)->lock);
4266 if (extra_reserve) {
4267 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4268 nr_extents--;
4269 }
4270 BTRFS_I(inode)->reserved_extents += nr_extents;
4271 spin_unlock(&BTRFS_I(inode)->lock);
4272
4273 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4274
4275 return 0;
4276 }
4277
4278 /**
4279 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4280 * @inode: the inode to release the reservation for
4281 * @num_bytes: the number of bytes we're releasing
4282 *
4283 * This will release the metadata reservation for an inode. This can be called
4284 * once we complete IO for a given set of bytes to release their metadata
4285 * reservations.
4286 */
4287 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4288 {
4289 struct btrfs_root *root = BTRFS_I(inode)->root;
4290 u64 to_free = 0;
4291 unsigned dropped;
4292
4293 num_bytes = ALIGN(num_bytes, root->sectorsize);
4294 spin_lock(&BTRFS_I(inode)->lock);
4295 dropped = drop_outstanding_extent(inode);
4296
4297 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4298 spin_unlock(&BTRFS_I(inode)->lock);
4299 if (dropped > 0)
4300 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4301
4302 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4303 to_free);
4304 }
4305
4306 /**
4307 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4308 * @inode: inode we're writing to
4309 * @num_bytes: the number of bytes we want to allocate
4310 *
4311 * This will do the following things
4312 *
4313 * o reserve space in the data space info for num_bytes
4314 * o reserve space in the metadata space info based on number of outstanding
4315 * extents and how much csums will be needed
4316 * o add to the inodes ->delalloc_bytes
4317 * o add it to the fs_info's delalloc inodes list.
4318 *
4319 * This will return 0 for success and -ENOSPC if there is no space left.
4320 */
4321 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4322 {
4323 int ret;
4324
4325 ret = btrfs_check_data_free_space(inode, num_bytes);
4326 if (ret)
4327 return ret;
4328
4329 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4330 if (ret) {
4331 btrfs_free_reserved_data_space(inode, num_bytes);
4332 return ret;
4333 }
4334
4335 return 0;
4336 }
4337
4338 /**
4339 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4340 * @inode: inode we're releasing space for
4341 * @num_bytes: the number of bytes we want to free up
4342 *
4343 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4344 * called in the case that we don't need the metadata AND data reservations
4345 * anymore. So if there is an error or we insert an inline extent.
4346 *
4347 * This function will release the metadata space that was not used and will
4348 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4349 * list if there are no delalloc bytes left.
4350 */
4351 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4352 {
4353 btrfs_delalloc_release_metadata(inode, num_bytes);
4354 btrfs_free_reserved_data_space(inode, num_bytes);
4355 }
4356
4357 static int update_block_group(struct btrfs_trans_handle *trans,
4358 struct btrfs_root *root,
4359 u64 bytenr, u64 num_bytes, int alloc)
4360 {
4361 struct btrfs_block_group_cache *cache = NULL;
4362 struct btrfs_fs_info *info = root->fs_info;
4363 u64 total = num_bytes;
4364 u64 old_val;
4365 u64 byte_in_group;
4366 int factor;
4367
4368 /* block accounting for super block */
4369 spin_lock(&info->delalloc_lock);
4370 old_val = btrfs_super_bytes_used(info->super_copy);
4371 if (alloc)
4372 old_val += num_bytes;
4373 else
4374 old_val -= num_bytes;
4375 btrfs_set_super_bytes_used(info->super_copy, old_val);
4376 spin_unlock(&info->delalloc_lock);
4377
4378 while (total) {
4379 cache = btrfs_lookup_block_group(info, bytenr);
4380 if (!cache)
4381 return -1;
4382 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4383 BTRFS_BLOCK_GROUP_RAID1 |
4384 BTRFS_BLOCK_GROUP_RAID10))
4385 factor = 2;
4386 else
4387 factor = 1;
4388 /*
4389 * If this block group has free space cache written out, we
4390 * need to make sure to load it if we are removing space. This
4391 * is because we need the unpinning stage to actually add the
4392 * space back to the block group, otherwise we will leak space.
4393 */
4394 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4395 cache_block_group(cache, trans, NULL, 1);
4396
4397 byte_in_group = bytenr - cache->key.objectid;
4398 WARN_ON(byte_in_group > cache->key.offset);
4399
4400 spin_lock(&cache->space_info->lock);
4401 spin_lock(&cache->lock);
4402
4403 if (btrfs_test_opt(root, SPACE_CACHE) &&
4404 cache->disk_cache_state < BTRFS_DC_CLEAR)
4405 cache->disk_cache_state = BTRFS_DC_CLEAR;
4406
4407 cache->dirty = 1;
4408 old_val = btrfs_block_group_used(&cache->item);
4409 num_bytes = min(total, cache->key.offset - byte_in_group);
4410 if (alloc) {
4411 old_val += num_bytes;
4412 btrfs_set_block_group_used(&cache->item, old_val);
4413 cache->reserved -= num_bytes;
4414 cache->space_info->bytes_reserved -= num_bytes;
4415 cache->space_info->bytes_used += num_bytes;
4416 cache->space_info->disk_used += num_bytes * factor;
4417 spin_unlock(&cache->lock);
4418 spin_unlock(&cache->space_info->lock);
4419 } else {
4420 old_val -= num_bytes;
4421 btrfs_set_block_group_used(&cache->item, old_val);
4422 cache->pinned += num_bytes;
4423 cache->space_info->bytes_pinned += num_bytes;
4424 cache->space_info->bytes_used -= num_bytes;
4425 cache->space_info->disk_used -= num_bytes * factor;
4426 spin_unlock(&cache->lock);
4427 spin_unlock(&cache->space_info->lock);
4428
4429 set_extent_dirty(info->pinned_extents,
4430 bytenr, bytenr + num_bytes - 1,
4431 GFP_NOFS | __GFP_NOFAIL);
4432 }
4433 btrfs_put_block_group(cache);
4434 total -= num_bytes;
4435 bytenr += num_bytes;
4436 }
4437 return 0;
4438 }
4439
4440 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4441 {
4442 struct btrfs_block_group_cache *cache;
4443 u64 bytenr;
4444
4445 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4446 if (!cache)
4447 return 0;
4448
4449 bytenr = cache->key.objectid;
4450 btrfs_put_block_group(cache);
4451
4452 return bytenr;
4453 }
4454
4455 static int pin_down_extent(struct btrfs_root *root,
4456 struct btrfs_block_group_cache *cache,
4457 u64 bytenr, u64 num_bytes, int reserved)
4458 {
4459 spin_lock(&cache->space_info->lock);
4460 spin_lock(&cache->lock);
4461 cache->pinned += num_bytes;
4462 cache->space_info->bytes_pinned += num_bytes;
4463 if (reserved) {
4464 cache->reserved -= num_bytes;
4465 cache->space_info->bytes_reserved -= num_bytes;
4466 }
4467 spin_unlock(&cache->lock);
4468 spin_unlock(&cache->space_info->lock);
4469
4470 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4471 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4472 return 0;
4473 }
4474
4475 /*
4476 * this function must be called within transaction
4477 */
4478 int btrfs_pin_extent(struct btrfs_root *root,
4479 u64 bytenr, u64 num_bytes, int reserved)
4480 {
4481 struct btrfs_block_group_cache *cache;
4482
4483 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4484 BUG_ON(!cache);
4485
4486 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4487
4488 btrfs_put_block_group(cache);
4489 return 0;
4490 }
4491
4492 /*
4493 * this function must be called within transaction
4494 */
4495 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4496 struct btrfs_root *root,
4497 u64 bytenr, u64 num_bytes)
4498 {
4499 struct btrfs_block_group_cache *cache;
4500
4501 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4502 BUG_ON(!cache);
4503
4504 /*
4505 * pull in the free space cache (if any) so that our pin
4506 * removes the free space from the cache. We have load_only set
4507 * to one because the slow code to read in the free extents does check
4508 * the pinned extents.
4509 */
4510 cache_block_group(cache, trans, root, 1);
4511
4512 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4513
4514 /* remove us from the free space cache (if we're there at all) */
4515 btrfs_remove_free_space(cache, bytenr, num_bytes);
4516 btrfs_put_block_group(cache);
4517 return 0;
4518 }
4519
4520 /**
4521 * btrfs_update_reserved_bytes - update the block_group and space info counters
4522 * @cache: The cache we are manipulating
4523 * @num_bytes: The number of bytes in question
4524 * @reserve: One of the reservation enums
4525 *
4526 * This is called by the allocator when it reserves space, or by somebody who is
4527 * freeing space that was never actually used on disk. For example if you
4528 * reserve some space for a new leaf in transaction A and before transaction A
4529 * commits you free that leaf, you call this with reserve set to 0 in order to
4530 * clear the reservation.
4531 *
4532 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4533 * ENOSPC accounting. For data we handle the reservation through clearing the
4534 * delalloc bits in the io_tree. We have to do this since we could end up
4535 * allocating less disk space for the amount of data we have reserved in the
4536 * case of compression.
4537 *
4538 * If this is a reservation and the block group has become read only we cannot
4539 * make the reservation and return -EAGAIN, otherwise this function always
4540 * succeeds.
4541 */
4542 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4543 u64 num_bytes, int reserve)
4544 {
4545 struct btrfs_space_info *space_info = cache->space_info;
4546 int ret = 0;
4547 spin_lock(&space_info->lock);
4548 spin_lock(&cache->lock);
4549 if (reserve != RESERVE_FREE) {
4550 if (cache->ro) {
4551 ret = -EAGAIN;
4552 } else {
4553 cache->reserved += num_bytes;
4554 space_info->bytes_reserved += num_bytes;
4555 if (reserve == RESERVE_ALLOC) {
4556 BUG_ON(space_info->bytes_may_use < num_bytes);
4557 space_info->bytes_may_use -= num_bytes;
4558 }
4559 }
4560 } else {
4561 if (cache->ro)
4562 space_info->bytes_readonly += num_bytes;
4563 cache->reserved -= num_bytes;
4564 space_info->bytes_reserved -= num_bytes;
4565 space_info->reservation_progress++;
4566 }
4567 spin_unlock(&cache->lock);
4568 spin_unlock(&space_info->lock);
4569 return ret;
4570 }
4571
4572 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4573 struct btrfs_root *root)
4574 {
4575 struct btrfs_fs_info *fs_info = root->fs_info;
4576 struct btrfs_caching_control *next;
4577 struct btrfs_caching_control *caching_ctl;
4578 struct btrfs_block_group_cache *cache;
4579
4580 down_write(&fs_info->extent_commit_sem);
4581
4582 list_for_each_entry_safe(caching_ctl, next,
4583 &fs_info->caching_block_groups, list) {
4584 cache = caching_ctl->block_group;
4585 if (block_group_cache_done(cache)) {
4586 cache->last_byte_to_unpin = (u64)-1;
4587 list_del_init(&caching_ctl->list);
4588 put_caching_control(caching_ctl);
4589 } else {
4590 cache->last_byte_to_unpin = caching_ctl->progress;
4591 }
4592 }
4593
4594 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4595 fs_info->pinned_extents = &fs_info->freed_extents[1];
4596 else
4597 fs_info->pinned_extents = &fs_info->freed_extents[0];
4598
4599 up_write(&fs_info->extent_commit_sem);
4600
4601 update_global_block_rsv(fs_info);
4602 return 0;
4603 }
4604
4605 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4606 {
4607 struct btrfs_fs_info *fs_info = root->fs_info;
4608 struct btrfs_block_group_cache *cache = NULL;
4609 u64 len;
4610
4611 while (start <= end) {
4612 if (!cache ||
4613 start >= cache->key.objectid + cache->key.offset) {
4614 if (cache)
4615 btrfs_put_block_group(cache);
4616 cache = btrfs_lookup_block_group(fs_info, start);
4617 BUG_ON(!cache);
4618 }
4619
4620 len = cache->key.objectid + cache->key.offset - start;
4621 len = min(len, end + 1 - start);
4622
4623 if (start < cache->last_byte_to_unpin) {
4624 len = min(len, cache->last_byte_to_unpin - start);
4625 btrfs_add_free_space(cache, start, len);
4626 }
4627
4628 start += len;
4629
4630 spin_lock(&cache->space_info->lock);
4631 spin_lock(&cache->lock);
4632 cache->pinned -= len;
4633 cache->space_info->bytes_pinned -= len;
4634 if (cache->ro)
4635 cache->space_info->bytes_readonly += len;
4636 spin_unlock(&cache->lock);
4637 spin_unlock(&cache->space_info->lock);
4638 }
4639
4640 if (cache)
4641 btrfs_put_block_group(cache);
4642 return 0;
4643 }
4644
4645 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4646 struct btrfs_root *root)
4647 {
4648 struct btrfs_fs_info *fs_info = root->fs_info;
4649 struct extent_io_tree *unpin;
4650 u64 start;
4651 u64 end;
4652 int ret;
4653
4654 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4655 unpin = &fs_info->freed_extents[1];
4656 else
4657 unpin = &fs_info->freed_extents[0];
4658
4659 while (1) {
4660 ret = find_first_extent_bit(unpin, 0, &start, &end,
4661 EXTENT_DIRTY);
4662 if (ret)
4663 break;
4664
4665 if (btrfs_test_opt(root, DISCARD))
4666 ret = btrfs_discard_extent(root, start,
4667 end + 1 - start, NULL);
4668
4669 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4670 unpin_extent_range(root, start, end);
4671 cond_resched();
4672 }
4673
4674 return 0;
4675 }
4676
4677 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4678 struct btrfs_root *root,
4679 u64 bytenr, u64 num_bytes, u64 parent,
4680 u64 root_objectid, u64 owner_objectid,
4681 u64 owner_offset, int refs_to_drop,
4682 struct btrfs_delayed_extent_op *extent_op)
4683 {
4684 struct btrfs_key key;
4685 struct btrfs_path *path;
4686 struct btrfs_fs_info *info = root->fs_info;
4687 struct btrfs_root *extent_root = info->extent_root;
4688 struct extent_buffer *leaf;
4689 struct btrfs_extent_item *ei;
4690 struct btrfs_extent_inline_ref *iref;
4691 int ret;
4692 int is_data;
4693 int extent_slot = 0;
4694 int found_extent = 0;
4695 int num_to_del = 1;
4696 u32 item_size;
4697 u64 refs;
4698
4699 path = btrfs_alloc_path();
4700 if (!path)
4701 return -ENOMEM;
4702
4703 path->reada = 1;
4704 path->leave_spinning = 1;
4705
4706 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4707 BUG_ON(!is_data && refs_to_drop != 1);
4708
4709 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4710 bytenr, num_bytes, parent,
4711 root_objectid, owner_objectid,
4712 owner_offset);
4713 if (ret == 0) {
4714 extent_slot = path->slots[0];
4715 while (extent_slot >= 0) {
4716 btrfs_item_key_to_cpu(path->nodes[0], &key,
4717 extent_slot);
4718 if (key.objectid != bytenr)
4719 break;
4720 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4721 key.offset == num_bytes) {
4722 found_extent = 1;
4723 break;
4724 }
4725 if (path->slots[0] - extent_slot > 5)
4726 break;
4727 extent_slot--;
4728 }
4729 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4730 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4731 if (found_extent && item_size < sizeof(*ei))
4732 found_extent = 0;
4733 #endif
4734 if (!found_extent) {
4735 BUG_ON(iref);
4736 ret = remove_extent_backref(trans, extent_root, path,
4737 NULL, refs_to_drop,
4738 is_data);
4739 BUG_ON(ret);
4740 btrfs_release_path(path);
4741 path->leave_spinning = 1;
4742
4743 key.objectid = bytenr;
4744 key.type = BTRFS_EXTENT_ITEM_KEY;
4745 key.offset = num_bytes;
4746
4747 ret = btrfs_search_slot(trans, extent_root,
4748 &key, path, -1, 1);
4749 if (ret) {
4750 printk(KERN_ERR "umm, got %d back from search"
4751 ", was looking for %llu\n", ret,
4752 (unsigned long long)bytenr);
4753 if (ret > 0)
4754 btrfs_print_leaf(extent_root,
4755 path->nodes[0]);
4756 }
4757 BUG_ON(ret);
4758 extent_slot = path->slots[0];
4759 }
4760 } else {
4761 btrfs_print_leaf(extent_root, path->nodes[0]);
4762 WARN_ON(1);
4763 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4764 "parent %llu root %llu owner %llu offset %llu\n",
4765 (unsigned long long)bytenr,
4766 (unsigned long long)parent,
4767 (unsigned long long)root_objectid,
4768 (unsigned long long)owner_objectid,
4769 (unsigned long long)owner_offset);
4770 }
4771
4772 leaf = path->nodes[0];
4773 item_size = btrfs_item_size_nr(leaf, extent_slot);
4774 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4775 if (item_size < sizeof(*ei)) {
4776 BUG_ON(found_extent || extent_slot != path->slots[0]);
4777 ret = convert_extent_item_v0(trans, extent_root, path,
4778 owner_objectid, 0);
4779 BUG_ON(ret < 0);
4780
4781 btrfs_release_path(path);
4782 path->leave_spinning = 1;
4783
4784 key.objectid = bytenr;
4785 key.type = BTRFS_EXTENT_ITEM_KEY;
4786 key.offset = num_bytes;
4787
4788 ret = btrfs_search_slot(trans, extent_root, &key, path,
4789 -1, 1);
4790 if (ret) {
4791 printk(KERN_ERR "umm, got %d back from search"
4792 ", was looking for %llu\n", ret,
4793 (unsigned long long)bytenr);
4794 btrfs_print_leaf(extent_root, path->nodes[0]);
4795 }
4796 BUG_ON(ret);
4797 extent_slot = path->slots[0];
4798 leaf = path->nodes[0];
4799 item_size = btrfs_item_size_nr(leaf, extent_slot);
4800 }
4801 #endif
4802 BUG_ON(item_size < sizeof(*ei));
4803 ei = btrfs_item_ptr(leaf, extent_slot,
4804 struct btrfs_extent_item);
4805 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4806 struct btrfs_tree_block_info *bi;
4807 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4808 bi = (struct btrfs_tree_block_info *)(ei + 1);
4809 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4810 }
4811
4812 refs = btrfs_extent_refs(leaf, ei);
4813 BUG_ON(refs < refs_to_drop);
4814 refs -= refs_to_drop;
4815
4816 if (refs > 0) {
4817 if (extent_op)
4818 __run_delayed_extent_op(extent_op, leaf, ei);
4819 /*
4820 * In the case of inline back ref, reference count will
4821 * be updated by remove_extent_backref
4822 */
4823 if (iref) {
4824 BUG_ON(!found_extent);
4825 } else {
4826 btrfs_set_extent_refs(leaf, ei, refs);
4827 btrfs_mark_buffer_dirty(leaf);
4828 }
4829 if (found_extent) {
4830 ret = remove_extent_backref(trans, extent_root, path,
4831 iref, refs_to_drop,
4832 is_data);
4833 BUG_ON(ret);
4834 }
4835 } else {
4836 if (found_extent) {
4837 BUG_ON(is_data && refs_to_drop !=
4838 extent_data_ref_count(root, path, iref));
4839 if (iref) {
4840 BUG_ON(path->slots[0] != extent_slot);
4841 } else {
4842 BUG_ON(path->slots[0] != extent_slot + 1);
4843 path->slots[0] = extent_slot;
4844 num_to_del = 2;
4845 }
4846 }
4847
4848 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4849 num_to_del);
4850 BUG_ON(ret);
4851 btrfs_release_path(path);
4852
4853 if (is_data) {
4854 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4855 BUG_ON(ret);
4856 } else {
4857 invalidate_mapping_pages(info->btree_inode->i_mapping,
4858 bytenr >> PAGE_CACHE_SHIFT,
4859 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4860 }
4861
4862 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4863 BUG_ON(ret);
4864 }
4865 btrfs_free_path(path);
4866 return ret;
4867 }
4868
4869 /*
4870 * when we free an block, it is possible (and likely) that we free the last
4871 * delayed ref for that extent as well. This searches the delayed ref tree for
4872 * a given extent, and if there are no other delayed refs to be processed, it
4873 * removes it from the tree.
4874 */
4875 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4876 struct btrfs_root *root, u64 bytenr)
4877 {
4878 struct btrfs_delayed_ref_head *head;
4879 struct btrfs_delayed_ref_root *delayed_refs;
4880 struct btrfs_delayed_ref_node *ref;
4881 struct rb_node *node;
4882 int ret = 0;
4883
4884 delayed_refs = &trans->transaction->delayed_refs;
4885 spin_lock(&delayed_refs->lock);
4886 head = btrfs_find_delayed_ref_head(trans, bytenr);
4887 if (!head)
4888 goto out;
4889
4890 node = rb_prev(&head->node.rb_node);
4891 if (!node)
4892 goto out;
4893
4894 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4895
4896 /* there are still entries for this ref, we can't drop it */
4897 if (ref->bytenr == bytenr)
4898 goto out;
4899
4900 if (head->extent_op) {
4901 if (!head->must_insert_reserved)
4902 goto out;
4903 kfree(head->extent_op);
4904 head->extent_op = NULL;
4905 }
4906
4907 /*
4908 * waiting for the lock here would deadlock. If someone else has it
4909 * locked they are already in the process of dropping it anyway
4910 */
4911 if (!mutex_trylock(&head->mutex))
4912 goto out;
4913
4914 /*
4915 * at this point we have a head with no other entries. Go
4916 * ahead and process it.
4917 */
4918 head->node.in_tree = 0;
4919 rb_erase(&head->node.rb_node, &delayed_refs->root);
4920
4921 delayed_refs->num_entries--;
4922
4923 /*
4924 * we don't take a ref on the node because we're removing it from the
4925 * tree, so we just steal the ref the tree was holding.
4926 */
4927 delayed_refs->num_heads--;
4928 if (list_empty(&head->cluster))
4929 delayed_refs->num_heads_ready--;
4930
4931 list_del_init(&head->cluster);
4932 spin_unlock(&delayed_refs->lock);
4933
4934 BUG_ON(head->extent_op);
4935 if (head->must_insert_reserved)
4936 ret = 1;
4937
4938 mutex_unlock(&head->mutex);
4939 btrfs_put_delayed_ref(&head->node);
4940 return ret;
4941 out:
4942 spin_unlock(&delayed_refs->lock);
4943 return 0;
4944 }
4945
4946 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4947 struct btrfs_root *root,
4948 struct extent_buffer *buf,
4949 u64 parent, int last_ref)
4950 {
4951 struct btrfs_block_group_cache *cache = NULL;
4952 int ret;
4953
4954 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4955 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4956 parent, root->root_key.objectid,
4957 btrfs_header_level(buf),
4958 BTRFS_DROP_DELAYED_REF, NULL);
4959 BUG_ON(ret);
4960 }
4961
4962 if (!last_ref)
4963 return;
4964
4965 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4966
4967 if (btrfs_header_generation(buf) == trans->transid) {
4968 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4969 ret = check_ref_cleanup(trans, root, buf->start);
4970 if (!ret)
4971 goto out;
4972 }
4973
4974 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4975 pin_down_extent(root, cache, buf->start, buf->len, 1);
4976 goto out;
4977 }
4978
4979 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4980
4981 btrfs_add_free_space(cache, buf->start, buf->len);
4982 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
4983 }
4984 out:
4985 /*
4986 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4987 * anymore.
4988 */
4989 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4990 btrfs_put_block_group(cache);
4991 }
4992
4993 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4994 struct btrfs_root *root,
4995 u64 bytenr, u64 num_bytes, u64 parent,
4996 u64 root_objectid, u64 owner, u64 offset)
4997 {
4998 int ret;
4999
5000 /*
5001 * tree log blocks never actually go into the extent allocation
5002 * tree, just update pinning info and exit early.
5003 */
5004 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5005 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5006 /* unlocks the pinned mutex */
5007 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5008 ret = 0;
5009 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5010 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
5011 parent, root_objectid, (int)owner,
5012 BTRFS_DROP_DELAYED_REF, NULL);
5013 BUG_ON(ret);
5014 } else {
5015 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
5016 parent, root_objectid, owner,
5017 offset, BTRFS_DROP_DELAYED_REF, NULL);
5018 BUG_ON(ret);
5019 }
5020 return ret;
5021 }
5022
5023 static u64 stripe_align(struct btrfs_root *root, u64 val)
5024 {
5025 u64 mask = ((u64)root->stripesize - 1);
5026 u64 ret = (val + mask) & ~mask;
5027 return ret;
5028 }
5029
5030 /*
5031 * when we wait for progress in the block group caching, its because
5032 * our allocation attempt failed at least once. So, we must sleep
5033 * and let some progress happen before we try again.
5034 *
5035 * This function will sleep at least once waiting for new free space to
5036 * show up, and then it will check the block group free space numbers
5037 * for our min num_bytes. Another option is to have it go ahead
5038 * and look in the rbtree for a free extent of a given size, but this
5039 * is a good start.
5040 */
5041 static noinline int
5042 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5043 u64 num_bytes)
5044 {
5045 struct btrfs_caching_control *caching_ctl;
5046 DEFINE_WAIT(wait);
5047
5048 caching_ctl = get_caching_control(cache);
5049 if (!caching_ctl)
5050 return 0;
5051
5052 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5053 (cache->free_space_ctl->free_space >= num_bytes));
5054
5055 put_caching_control(caching_ctl);
5056 return 0;
5057 }
5058
5059 static noinline int
5060 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5061 {
5062 struct btrfs_caching_control *caching_ctl;
5063 DEFINE_WAIT(wait);
5064
5065 caching_ctl = get_caching_control(cache);
5066 if (!caching_ctl)
5067 return 0;
5068
5069 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5070
5071 put_caching_control(caching_ctl);
5072 return 0;
5073 }
5074
5075 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5076 {
5077 int index;
5078 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5079 index = 0;
5080 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5081 index = 1;
5082 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5083 index = 2;
5084 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5085 index = 3;
5086 else
5087 index = 4;
5088 return index;
5089 }
5090
5091 enum btrfs_loop_type {
5092 LOOP_FIND_IDEAL = 0,
5093 LOOP_CACHING_NOWAIT = 1,
5094 LOOP_CACHING_WAIT = 2,
5095 LOOP_ALLOC_CHUNK = 3,
5096 LOOP_NO_EMPTY_SIZE = 4,
5097 };
5098
5099 /*
5100 * walks the btree of allocated extents and find a hole of a given size.
5101 * The key ins is changed to record the hole:
5102 * ins->objectid == block start
5103 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5104 * ins->offset == number of blocks
5105 * Any available blocks before search_start are skipped.
5106 */
5107 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5108 struct btrfs_root *orig_root,
5109 u64 num_bytes, u64 empty_size,
5110 u64 search_start, u64 search_end,
5111 u64 hint_byte, struct btrfs_key *ins,
5112 u64 data)
5113 {
5114 int ret = 0;
5115 struct btrfs_root *root = orig_root->fs_info->extent_root;
5116 struct btrfs_free_cluster *last_ptr = NULL;
5117 struct btrfs_block_group_cache *block_group = NULL;
5118 struct btrfs_block_group_cache *used_block_group;
5119 int empty_cluster = 2 * 1024 * 1024;
5120 int allowed_chunk_alloc = 0;
5121 int done_chunk_alloc = 0;
5122 struct btrfs_space_info *space_info;
5123 int loop = 0;
5124 int index = 0;
5125 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5126 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5127 bool found_uncached_bg = false;
5128 bool failed_cluster_refill = false;
5129 bool failed_alloc = false;
5130 bool use_cluster = true;
5131 bool have_caching_bg = false;
5132 u64 ideal_cache_percent = 0;
5133 u64 ideal_cache_offset = 0;
5134
5135 WARN_ON(num_bytes < root->sectorsize);
5136 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5137 ins->objectid = 0;
5138 ins->offset = 0;
5139
5140 space_info = __find_space_info(root->fs_info, data);
5141 if (!space_info) {
5142 printk(KERN_ERR "No space info for %llu\n", data);
5143 return -ENOSPC;
5144 }
5145
5146 /*
5147 * If the space info is for both data and metadata it means we have a
5148 * small filesystem and we can't use the clustering stuff.
5149 */
5150 if (btrfs_mixed_space_info(space_info))
5151 use_cluster = false;
5152
5153 if (orig_root->ref_cows || empty_size)
5154 allowed_chunk_alloc = 1;
5155
5156 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5157 last_ptr = &root->fs_info->meta_alloc_cluster;
5158 if (!btrfs_test_opt(root, SSD))
5159 empty_cluster = 64 * 1024;
5160 }
5161
5162 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5163 btrfs_test_opt(root, SSD)) {
5164 last_ptr = &root->fs_info->data_alloc_cluster;
5165 }
5166
5167 if (last_ptr) {
5168 spin_lock(&last_ptr->lock);
5169 if (last_ptr->block_group)
5170 hint_byte = last_ptr->window_start;
5171 spin_unlock(&last_ptr->lock);
5172 }
5173
5174 search_start = max(search_start, first_logical_byte(root, 0));
5175 search_start = max(search_start, hint_byte);
5176
5177 if (!last_ptr)
5178 empty_cluster = 0;
5179
5180 if (search_start == hint_byte) {
5181 ideal_cache:
5182 block_group = btrfs_lookup_block_group(root->fs_info,
5183 search_start);
5184 used_block_group = block_group;
5185 /*
5186 * we don't want to use the block group if it doesn't match our
5187 * allocation bits, or if its not cached.
5188 *
5189 * However if we are re-searching with an ideal block group
5190 * picked out then we don't care that the block group is cached.
5191 */
5192 if (block_group && block_group_bits(block_group, data) &&
5193 (block_group->cached != BTRFS_CACHE_NO ||
5194 search_start == ideal_cache_offset)) {
5195 down_read(&space_info->groups_sem);
5196 if (list_empty(&block_group->list) ||
5197 block_group->ro) {
5198 /*
5199 * someone is removing this block group,
5200 * we can't jump into the have_block_group
5201 * target because our list pointers are not
5202 * valid
5203 */
5204 btrfs_put_block_group(block_group);
5205 up_read(&space_info->groups_sem);
5206 } else {
5207 index = get_block_group_index(block_group);
5208 goto have_block_group;
5209 }
5210 } else if (block_group) {
5211 btrfs_put_block_group(block_group);
5212 }
5213 }
5214 search:
5215 have_caching_bg = false;
5216 down_read(&space_info->groups_sem);
5217 list_for_each_entry(block_group, &space_info->block_groups[index],
5218 list) {
5219 u64 offset;
5220 int cached;
5221
5222 used_block_group = block_group;
5223 btrfs_get_block_group(block_group);
5224 search_start = block_group->key.objectid;
5225
5226 /*
5227 * this can happen if we end up cycling through all the
5228 * raid types, but we want to make sure we only allocate
5229 * for the proper type.
5230 */
5231 if (!block_group_bits(block_group, data)) {
5232 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5233 BTRFS_BLOCK_GROUP_RAID1 |
5234 BTRFS_BLOCK_GROUP_RAID10;
5235
5236 /*
5237 * if they asked for extra copies and this block group
5238 * doesn't provide them, bail. This does allow us to
5239 * fill raid0 from raid1.
5240 */
5241 if ((data & extra) && !(block_group->flags & extra))
5242 goto loop;
5243 }
5244
5245 have_block_group:
5246 cached = block_group_cache_done(block_group);
5247 if (unlikely(!cached)) {
5248 u64 free_percent;
5249
5250 found_uncached_bg = true;
5251 ret = cache_block_group(block_group, trans,
5252 orig_root, 1);
5253 if (block_group->cached == BTRFS_CACHE_FINISHED)
5254 goto alloc;
5255
5256 free_percent = btrfs_block_group_used(&block_group->item);
5257 free_percent *= 100;
5258 free_percent = div64_u64(free_percent,
5259 block_group->key.offset);
5260 free_percent = 100 - free_percent;
5261 if (free_percent > ideal_cache_percent &&
5262 likely(!block_group->ro)) {
5263 ideal_cache_offset = block_group->key.objectid;
5264 ideal_cache_percent = free_percent;
5265 }
5266
5267 /*
5268 * The caching workers are limited to 2 threads, so we
5269 * can queue as much work as we care to.
5270 */
5271 if (loop > LOOP_FIND_IDEAL) {
5272 ret = cache_block_group(block_group, trans,
5273 orig_root, 0);
5274 BUG_ON(ret);
5275 }
5276
5277 /*
5278 * If loop is set for cached only, try the next block
5279 * group.
5280 */
5281 if (loop == LOOP_FIND_IDEAL)
5282 goto loop;
5283 }
5284
5285 alloc:
5286 if (unlikely(block_group->ro))
5287 goto loop;
5288
5289 /*
5290 * Ok we want to try and use the cluster allocator, so
5291 * lets look there
5292 */
5293 if (last_ptr) {
5294 /*
5295 * the refill lock keeps out other
5296 * people trying to start a new cluster
5297 */
5298 spin_lock(&last_ptr->refill_lock);
5299 used_block_group = last_ptr->block_group;
5300 if (used_block_group != block_group &&
5301 (!used_block_group ||
5302 used_block_group->ro ||
5303 !block_group_bits(used_block_group, data))) {
5304 used_block_group = block_group;
5305 goto refill_cluster;
5306 }
5307
5308 if (used_block_group != block_group)
5309 btrfs_get_block_group(used_block_group);
5310
5311 offset = btrfs_alloc_from_cluster(used_block_group,
5312 last_ptr, num_bytes, used_block_group->key.objectid);
5313 if (offset) {
5314 /* we have a block, we're done */
5315 spin_unlock(&last_ptr->refill_lock);
5316 goto checks;
5317 }
5318
5319 WARN_ON(last_ptr->block_group != used_block_group);
5320 if (used_block_group != block_group) {
5321 btrfs_put_block_group(used_block_group);
5322 used_block_group = block_group;
5323 }
5324 refill_cluster:
5325 BUG_ON(used_block_group != block_group);
5326 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5327 * set up a new clusters, so lets just skip it
5328 * and let the allocator find whatever block
5329 * it can find. If we reach this point, we
5330 * will have tried the cluster allocator
5331 * plenty of times and not have found
5332 * anything, so we are likely way too
5333 * fragmented for the clustering stuff to find
5334 * anything.
5335 *
5336 * However, if the cluster is taken from the
5337 * current block group, release the cluster
5338 * first, so that we stand a better chance of
5339 * succeeding in the unclustered
5340 * allocation. */
5341 if (loop >= LOOP_NO_EMPTY_SIZE &&
5342 last_ptr->block_group != block_group) {
5343 spin_unlock(&last_ptr->refill_lock);
5344 goto unclustered_alloc;
5345 }
5346
5347 /*
5348 * this cluster didn't work out, free it and
5349 * start over
5350 */
5351 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5352
5353 if (loop >= LOOP_NO_EMPTY_SIZE) {
5354 spin_unlock(&last_ptr->refill_lock);
5355 goto unclustered_alloc;
5356 }
5357
5358 /* allocate a cluster in this block group */
5359 ret = btrfs_find_space_cluster(trans, root,
5360 block_group, last_ptr,
5361 search_start, num_bytes,
5362 empty_cluster + empty_size);
5363 if (ret == 0) {
5364 /*
5365 * now pull our allocation out of this
5366 * cluster
5367 */
5368 offset = btrfs_alloc_from_cluster(block_group,
5369 last_ptr, num_bytes,
5370 search_start);
5371 if (offset) {
5372 /* we found one, proceed */
5373 spin_unlock(&last_ptr->refill_lock);
5374 goto checks;
5375 }
5376 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5377 && !failed_cluster_refill) {
5378 spin_unlock(&last_ptr->refill_lock);
5379
5380 failed_cluster_refill = true;
5381 wait_block_group_cache_progress(block_group,
5382 num_bytes + empty_cluster + empty_size);
5383 goto have_block_group;
5384 }
5385
5386 /*
5387 * at this point we either didn't find a cluster
5388 * or we weren't able to allocate a block from our
5389 * cluster. Free the cluster we've been trying
5390 * to use, and go to the next block group
5391 */
5392 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5393 spin_unlock(&last_ptr->refill_lock);
5394 goto loop;
5395 }
5396
5397 unclustered_alloc:
5398 spin_lock(&block_group->free_space_ctl->tree_lock);
5399 if (cached &&
5400 block_group->free_space_ctl->free_space <
5401 num_bytes + empty_cluster + empty_size) {
5402 spin_unlock(&block_group->free_space_ctl->tree_lock);
5403 goto loop;
5404 }
5405 spin_unlock(&block_group->free_space_ctl->tree_lock);
5406
5407 offset = btrfs_find_space_for_alloc(block_group, search_start,
5408 num_bytes, empty_size);
5409 /*
5410 * If we didn't find a chunk, and we haven't failed on this
5411 * block group before, and this block group is in the middle of
5412 * caching and we are ok with waiting, then go ahead and wait
5413 * for progress to be made, and set failed_alloc to true.
5414 *
5415 * If failed_alloc is true then we've already waited on this
5416 * block group once and should move on to the next block group.
5417 */
5418 if (!offset && !failed_alloc && !cached &&
5419 loop > LOOP_CACHING_NOWAIT) {
5420 wait_block_group_cache_progress(block_group,
5421 num_bytes + empty_size);
5422 failed_alloc = true;
5423 goto have_block_group;
5424 } else if (!offset) {
5425 if (!cached)
5426 have_caching_bg = true;
5427 goto loop;
5428 }
5429 checks:
5430 search_start = stripe_align(root, offset);
5431 /* move on to the next group */
5432 if (search_start + num_bytes >= search_end) {
5433 btrfs_add_free_space(used_block_group, offset, num_bytes);
5434 goto loop;
5435 }
5436
5437 /* move on to the next group */
5438 if (search_start + num_bytes >
5439 used_block_group->key.objectid + used_block_group->key.offset) {
5440 btrfs_add_free_space(used_block_group, offset, num_bytes);
5441 goto loop;
5442 }
5443
5444 ins->objectid = search_start;
5445 ins->offset = num_bytes;
5446
5447 if (offset < search_start)
5448 btrfs_add_free_space(used_block_group, offset,
5449 search_start - offset);
5450 BUG_ON(offset > search_start);
5451
5452 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5453 alloc_type);
5454 if (ret == -EAGAIN) {
5455 btrfs_add_free_space(used_block_group, offset, num_bytes);
5456 goto loop;
5457 }
5458
5459 /* we are all good, lets return */
5460 ins->objectid = search_start;
5461 ins->offset = num_bytes;
5462
5463 if (offset < search_start)
5464 btrfs_add_free_space(used_block_group, offset,
5465 search_start - offset);
5466 BUG_ON(offset > search_start);
5467 if (used_block_group != block_group)
5468 btrfs_put_block_group(used_block_group);
5469 btrfs_put_block_group(block_group);
5470 break;
5471 loop:
5472 failed_cluster_refill = false;
5473 failed_alloc = false;
5474 BUG_ON(index != get_block_group_index(block_group));
5475 if (used_block_group != block_group)
5476 btrfs_put_block_group(used_block_group);
5477 btrfs_put_block_group(block_group);
5478 }
5479 up_read(&space_info->groups_sem);
5480
5481 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5482 goto search;
5483
5484 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5485 goto search;
5486
5487 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5488 * for them to make caching progress. Also
5489 * determine the best possible bg to cache
5490 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5491 * caching kthreads as we move along
5492 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5493 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5494 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5495 * again
5496 */
5497 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5498 index = 0;
5499 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5500 found_uncached_bg = false;
5501 loop++;
5502 if (!ideal_cache_percent)
5503 goto search;
5504
5505 /*
5506 * 1 of the following 2 things have happened so far
5507 *
5508 * 1) We found an ideal block group for caching that
5509 * is mostly full and will cache quickly, so we might
5510 * as well wait for it.
5511 *
5512 * 2) We searched for cached only and we didn't find
5513 * anything, and we didn't start any caching kthreads
5514 * either, so chances are we will loop through and
5515 * start a couple caching kthreads, and then come back
5516 * around and just wait for them. This will be slower
5517 * because we will have 2 caching kthreads reading at
5518 * the same time when we could have just started one
5519 * and waited for it to get far enough to give us an
5520 * allocation, so go ahead and go to the wait caching
5521 * loop.
5522 */
5523 loop = LOOP_CACHING_WAIT;
5524 search_start = ideal_cache_offset;
5525 ideal_cache_percent = 0;
5526 goto ideal_cache;
5527 } else if (loop == LOOP_FIND_IDEAL) {
5528 /*
5529 * Didn't find a uncached bg, wait on anything we find
5530 * next.
5531 */
5532 loop = LOOP_CACHING_WAIT;
5533 goto search;
5534 }
5535
5536 loop++;
5537
5538 if (loop == LOOP_ALLOC_CHUNK) {
5539 if (allowed_chunk_alloc) {
5540 ret = do_chunk_alloc(trans, root, num_bytes +
5541 2 * 1024 * 1024, data,
5542 CHUNK_ALLOC_LIMITED);
5543 allowed_chunk_alloc = 0;
5544 if (ret == 1)
5545 done_chunk_alloc = 1;
5546 } else if (!done_chunk_alloc &&
5547 space_info->force_alloc ==
5548 CHUNK_ALLOC_NO_FORCE) {
5549 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5550 }
5551
5552 /*
5553 * We didn't allocate a chunk, go ahead and drop the
5554 * empty size and loop again.
5555 */
5556 if (!done_chunk_alloc)
5557 loop = LOOP_NO_EMPTY_SIZE;
5558 }
5559
5560 if (loop == LOOP_NO_EMPTY_SIZE) {
5561 empty_size = 0;
5562 empty_cluster = 0;
5563 }
5564
5565 goto search;
5566 } else if (!ins->objectid) {
5567 ret = -ENOSPC;
5568 } else if (ins->objectid) {
5569 ret = 0;
5570 }
5571
5572 return ret;
5573 }
5574
5575 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5576 int dump_block_groups)
5577 {
5578 struct btrfs_block_group_cache *cache;
5579 int index = 0;
5580
5581 spin_lock(&info->lock);
5582 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5583 (unsigned long long)info->flags,
5584 (unsigned long long)(info->total_bytes - info->bytes_used -
5585 info->bytes_pinned - info->bytes_reserved -
5586 info->bytes_readonly),
5587 (info->full) ? "" : "not ");
5588 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5589 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5590 (unsigned long long)info->total_bytes,
5591 (unsigned long long)info->bytes_used,
5592 (unsigned long long)info->bytes_pinned,
5593 (unsigned long long)info->bytes_reserved,
5594 (unsigned long long)info->bytes_may_use,
5595 (unsigned long long)info->bytes_readonly);
5596 spin_unlock(&info->lock);
5597
5598 if (!dump_block_groups)
5599 return;
5600
5601 down_read(&info->groups_sem);
5602 again:
5603 list_for_each_entry(cache, &info->block_groups[index], list) {
5604 spin_lock(&cache->lock);
5605 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5606 "%llu pinned %llu reserved\n",
5607 (unsigned long long)cache->key.objectid,
5608 (unsigned long long)cache->key.offset,
5609 (unsigned long long)btrfs_block_group_used(&cache->item),
5610 (unsigned long long)cache->pinned,
5611 (unsigned long long)cache->reserved);
5612 btrfs_dump_free_space(cache, bytes);
5613 spin_unlock(&cache->lock);
5614 }
5615 if (++index < BTRFS_NR_RAID_TYPES)
5616 goto again;
5617 up_read(&info->groups_sem);
5618 }
5619
5620 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5621 struct btrfs_root *root,
5622 u64 num_bytes, u64 min_alloc_size,
5623 u64 empty_size, u64 hint_byte,
5624 u64 search_end, struct btrfs_key *ins,
5625 u64 data)
5626 {
5627 int ret;
5628 u64 search_start = 0;
5629
5630 data = btrfs_get_alloc_profile(root, data);
5631 again:
5632 /*
5633 * the only place that sets empty_size is btrfs_realloc_node, which
5634 * is not called recursively on allocations
5635 */
5636 if (empty_size || root->ref_cows)
5637 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5638 num_bytes + 2 * 1024 * 1024, data,
5639 CHUNK_ALLOC_NO_FORCE);
5640
5641 WARN_ON(num_bytes < root->sectorsize);
5642 ret = find_free_extent(trans, root, num_bytes, empty_size,
5643 search_start, search_end, hint_byte,
5644 ins, data);
5645
5646 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5647 num_bytes = num_bytes >> 1;
5648 num_bytes = num_bytes & ~(root->sectorsize - 1);
5649 num_bytes = max(num_bytes, min_alloc_size);
5650 do_chunk_alloc(trans, root->fs_info->extent_root,
5651 num_bytes, data, CHUNK_ALLOC_FORCE);
5652 goto again;
5653 }
5654 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5655 struct btrfs_space_info *sinfo;
5656
5657 sinfo = __find_space_info(root->fs_info, data);
5658 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5659 "wanted %llu\n", (unsigned long long)data,
5660 (unsigned long long)num_bytes);
5661 dump_space_info(sinfo, num_bytes, 1);
5662 }
5663
5664 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5665
5666 return ret;
5667 }
5668
5669 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5670 u64 start, u64 len, int pin)
5671 {
5672 struct btrfs_block_group_cache *cache;
5673 int ret = 0;
5674
5675 cache = btrfs_lookup_block_group(root->fs_info, start);
5676 if (!cache) {
5677 printk(KERN_ERR "Unable to find block group for %llu\n",
5678 (unsigned long long)start);
5679 return -ENOSPC;
5680 }
5681
5682 if (btrfs_test_opt(root, DISCARD))
5683 ret = btrfs_discard_extent(root, start, len, NULL);
5684
5685 if (pin)
5686 pin_down_extent(root, cache, start, len, 1);
5687 else {
5688 btrfs_add_free_space(cache, start, len);
5689 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5690 }
5691 btrfs_put_block_group(cache);
5692
5693 trace_btrfs_reserved_extent_free(root, start, len);
5694
5695 return ret;
5696 }
5697
5698 int btrfs_free_reserved_extent(struct btrfs_root *root,
5699 u64 start, u64 len)
5700 {
5701 return __btrfs_free_reserved_extent(root, start, len, 0);
5702 }
5703
5704 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5705 u64 start, u64 len)
5706 {
5707 return __btrfs_free_reserved_extent(root, start, len, 1);
5708 }
5709
5710 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5711 struct btrfs_root *root,
5712 u64 parent, u64 root_objectid,
5713 u64 flags, u64 owner, u64 offset,
5714 struct btrfs_key *ins, int ref_mod)
5715 {
5716 int ret;
5717 struct btrfs_fs_info *fs_info = root->fs_info;
5718 struct btrfs_extent_item *extent_item;
5719 struct btrfs_extent_inline_ref *iref;
5720 struct btrfs_path *path;
5721 struct extent_buffer *leaf;
5722 int type;
5723 u32 size;
5724
5725 if (parent > 0)
5726 type = BTRFS_SHARED_DATA_REF_KEY;
5727 else
5728 type = BTRFS_EXTENT_DATA_REF_KEY;
5729
5730 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5731
5732 path = btrfs_alloc_path();
5733 if (!path)
5734 return -ENOMEM;
5735
5736 path->leave_spinning = 1;
5737 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5738 ins, size);
5739 BUG_ON(ret);
5740
5741 leaf = path->nodes[0];
5742 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5743 struct btrfs_extent_item);
5744 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5745 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5746 btrfs_set_extent_flags(leaf, extent_item,
5747 flags | BTRFS_EXTENT_FLAG_DATA);
5748
5749 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5750 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5751 if (parent > 0) {
5752 struct btrfs_shared_data_ref *ref;
5753 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5754 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5755 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5756 } else {
5757 struct btrfs_extent_data_ref *ref;
5758 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5759 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5760 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5761 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5762 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5763 }
5764
5765 btrfs_mark_buffer_dirty(path->nodes[0]);
5766 btrfs_free_path(path);
5767
5768 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5769 if (ret) {
5770 printk(KERN_ERR "btrfs update block group failed for %llu "
5771 "%llu\n", (unsigned long long)ins->objectid,
5772 (unsigned long long)ins->offset);
5773 BUG();
5774 }
5775 return ret;
5776 }
5777
5778 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5779 struct btrfs_root *root,
5780 u64 parent, u64 root_objectid,
5781 u64 flags, struct btrfs_disk_key *key,
5782 int level, struct btrfs_key *ins)
5783 {
5784 int ret;
5785 struct btrfs_fs_info *fs_info = root->fs_info;
5786 struct btrfs_extent_item *extent_item;
5787 struct btrfs_tree_block_info *block_info;
5788 struct btrfs_extent_inline_ref *iref;
5789 struct btrfs_path *path;
5790 struct extent_buffer *leaf;
5791 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5792
5793 path = btrfs_alloc_path();
5794 if (!path)
5795 return -ENOMEM;
5796
5797 path->leave_spinning = 1;
5798 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5799 ins, size);
5800 BUG_ON(ret);
5801
5802 leaf = path->nodes[0];
5803 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5804 struct btrfs_extent_item);
5805 btrfs_set_extent_refs(leaf, extent_item, 1);
5806 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5807 btrfs_set_extent_flags(leaf, extent_item,
5808 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5809 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5810
5811 btrfs_set_tree_block_key(leaf, block_info, key);
5812 btrfs_set_tree_block_level(leaf, block_info, level);
5813
5814 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5815 if (parent > 0) {
5816 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5817 btrfs_set_extent_inline_ref_type(leaf, iref,
5818 BTRFS_SHARED_BLOCK_REF_KEY);
5819 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5820 } else {
5821 btrfs_set_extent_inline_ref_type(leaf, iref,
5822 BTRFS_TREE_BLOCK_REF_KEY);
5823 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5824 }
5825
5826 btrfs_mark_buffer_dirty(leaf);
5827 btrfs_free_path(path);
5828
5829 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5830 if (ret) {
5831 printk(KERN_ERR "btrfs update block group failed for %llu "
5832 "%llu\n", (unsigned long long)ins->objectid,
5833 (unsigned long long)ins->offset);
5834 BUG();
5835 }
5836 return ret;
5837 }
5838
5839 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5840 struct btrfs_root *root,
5841 u64 root_objectid, u64 owner,
5842 u64 offset, struct btrfs_key *ins)
5843 {
5844 int ret;
5845
5846 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5847
5848 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5849 0, root_objectid, owner, offset,
5850 BTRFS_ADD_DELAYED_EXTENT, NULL);
5851 return ret;
5852 }
5853
5854 /*
5855 * this is used by the tree logging recovery code. It records that
5856 * an extent has been allocated and makes sure to clear the free
5857 * space cache bits as well
5858 */
5859 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5860 struct btrfs_root *root,
5861 u64 root_objectid, u64 owner, u64 offset,
5862 struct btrfs_key *ins)
5863 {
5864 int ret;
5865 struct btrfs_block_group_cache *block_group;
5866 struct btrfs_caching_control *caching_ctl;
5867 u64 start = ins->objectid;
5868 u64 num_bytes = ins->offset;
5869
5870 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5871 cache_block_group(block_group, trans, NULL, 0);
5872 caching_ctl = get_caching_control(block_group);
5873
5874 if (!caching_ctl) {
5875 BUG_ON(!block_group_cache_done(block_group));
5876 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5877 BUG_ON(ret);
5878 } else {
5879 mutex_lock(&caching_ctl->mutex);
5880
5881 if (start >= caching_ctl->progress) {
5882 ret = add_excluded_extent(root, start, num_bytes);
5883 BUG_ON(ret);
5884 } else if (start + num_bytes <= caching_ctl->progress) {
5885 ret = btrfs_remove_free_space(block_group,
5886 start, num_bytes);
5887 BUG_ON(ret);
5888 } else {
5889 num_bytes = caching_ctl->progress - start;
5890 ret = btrfs_remove_free_space(block_group,
5891 start, num_bytes);
5892 BUG_ON(ret);
5893
5894 start = caching_ctl->progress;
5895 num_bytes = ins->objectid + ins->offset -
5896 caching_ctl->progress;
5897 ret = add_excluded_extent(root, start, num_bytes);
5898 BUG_ON(ret);
5899 }
5900
5901 mutex_unlock(&caching_ctl->mutex);
5902 put_caching_control(caching_ctl);
5903 }
5904
5905 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5906 RESERVE_ALLOC_NO_ACCOUNT);
5907 BUG_ON(ret);
5908 btrfs_put_block_group(block_group);
5909 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5910 0, owner, offset, ins, 1);
5911 return ret;
5912 }
5913
5914 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5915 struct btrfs_root *root,
5916 u64 bytenr, u32 blocksize,
5917 int level)
5918 {
5919 struct extent_buffer *buf;
5920
5921 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5922 if (!buf)
5923 return ERR_PTR(-ENOMEM);
5924 btrfs_set_header_generation(buf, trans->transid);
5925 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5926 btrfs_tree_lock(buf);
5927 clean_tree_block(trans, root, buf);
5928
5929 btrfs_set_lock_blocking(buf);
5930 btrfs_set_buffer_uptodate(buf);
5931
5932 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5933 /*
5934 * we allow two log transactions at a time, use different
5935 * EXENT bit to differentiate dirty pages.
5936 */
5937 if (root->log_transid % 2 == 0)
5938 set_extent_dirty(&root->dirty_log_pages, buf->start,
5939 buf->start + buf->len - 1, GFP_NOFS);
5940 else
5941 set_extent_new(&root->dirty_log_pages, buf->start,
5942 buf->start + buf->len - 1, GFP_NOFS);
5943 } else {
5944 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5945 buf->start + buf->len - 1, GFP_NOFS);
5946 }
5947 trans->blocks_used++;
5948 /* this returns a buffer locked for blocking */
5949 return buf;
5950 }
5951
5952 static struct btrfs_block_rsv *
5953 use_block_rsv(struct btrfs_trans_handle *trans,
5954 struct btrfs_root *root, u32 blocksize)
5955 {
5956 struct btrfs_block_rsv *block_rsv;
5957 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5958 int ret;
5959
5960 block_rsv = get_block_rsv(trans, root);
5961
5962 if (block_rsv->size == 0) {
5963 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5964 /*
5965 * If we couldn't reserve metadata bytes try and use some from
5966 * the global reserve.
5967 */
5968 if (ret && block_rsv != global_rsv) {
5969 ret = block_rsv_use_bytes(global_rsv, blocksize);
5970 if (!ret)
5971 return global_rsv;
5972 return ERR_PTR(ret);
5973 } else if (ret) {
5974 return ERR_PTR(ret);
5975 }
5976 return block_rsv;
5977 }
5978
5979 ret = block_rsv_use_bytes(block_rsv, blocksize);
5980 if (!ret)
5981 return block_rsv;
5982 if (ret) {
5983 static DEFINE_RATELIMIT_STATE(_rs,
5984 DEFAULT_RATELIMIT_INTERVAL,
5985 /*DEFAULT_RATELIMIT_BURST*/ 2);
5986 if (__ratelimit(&_rs)) {
5987 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
5988 WARN_ON(1);
5989 }
5990 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5991 if (!ret) {
5992 return block_rsv;
5993 } else if (ret && block_rsv != global_rsv) {
5994 ret = block_rsv_use_bytes(global_rsv, blocksize);
5995 if (!ret)
5996 return global_rsv;
5997 }
5998 }
5999
6000 return ERR_PTR(-ENOSPC);
6001 }
6002
6003 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
6004 {
6005 block_rsv_add_bytes(block_rsv, blocksize, 0);
6006 block_rsv_release_bytes(block_rsv, NULL, 0);
6007 }
6008
6009 /*
6010 * finds a free extent and does all the dirty work required for allocation
6011 * returns the key for the extent through ins, and a tree buffer for
6012 * the first block of the extent through buf.
6013 *
6014 * returns the tree buffer or NULL.
6015 */
6016 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6017 struct btrfs_root *root, u32 blocksize,
6018 u64 parent, u64 root_objectid,
6019 struct btrfs_disk_key *key, int level,
6020 u64 hint, u64 empty_size)
6021 {
6022 struct btrfs_key ins;
6023 struct btrfs_block_rsv *block_rsv;
6024 struct extent_buffer *buf;
6025 u64 flags = 0;
6026 int ret;
6027
6028
6029 block_rsv = use_block_rsv(trans, root, blocksize);
6030 if (IS_ERR(block_rsv))
6031 return ERR_CAST(block_rsv);
6032
6033 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6034 empty_size, hint, (u64)-1, &ins, 0);
6035 if (ret) {
6036 unuse_block_rsv(block_rsv, blocksize);
6037 return ERR_PTR(ret);
6038 }
6039
6040 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6041 blocksize, level);
6042 BUG_ON(IS_ERR(buf));
6043
6044 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6045 if (parent == 0)
6046 parent = ins.objectid;
6047 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6048 } else
6049 BUG_ON(parent > 0);
6050
6051 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6052 struct btrfs_delayed_extent_op *extent_op;
6053 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6054 BUG_ON(!extent_op);
6055 if (key)
6056 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6057 else
6058 memset(&extent_op->key, 0, sizeof(extent_op->key));
6059 extent_op->flags_to_set = flags;
6060 extent_op->update_key = 1;
6061 extent_op->update_flags = 1;
6062 extent_op->is_data = 0;
6063
6064 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
6065 ins.offset, parent, root_objectid,
6066 level, BTRFS_ADD_DELAYED_EXTENT,
6067 extent_op);
6068 BUG_ON(ret);
6069 }
6070 return buf;
6071 }
6072
6073 struct walk_control {
6074 u64 refs[BTRFS_MAX_LEVEL];
6075 u64 flags[BTRFS_MAX_LEVEL];
6076 struct btrfs_key update_progress;
6077 int stage;
6078 int level;
6079 int shared_level;
6080 int update_ref;
6081 int keep_locks;
6082 int reada_slot;
6083 int reada_count;
6084 };
6085
6086 #define DROP_REFERENCE 1
6087 #define UPDATE_BACKREF 2
6088
6089 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6090 struct btrfs_root *root,
6091 struct walk_control *wc,
6092 struct btrfs_path *path)
6093 {
6094 u64 bytenr;
6095 u64 generation;
6096 u64 refs;
6097 u64 flags;
6098 u32 nritems;
6099 u32 blocksize;
6100 struct btrfs_key key;
6101 struct extent_buffer *eb;
6102 int ret;
6103 int slot;
6104 int nread = 0;
6105
6106 if (path->slots[wc->level] < wc->reada_slot) {
6107 wc->reada_count = wc->reada_count * 2 / 3;
6108 wc->reada_count = max(wc->reada_count, 2);
6109 } else {
6110 wc->reada_count = wc->reada_count * 3 / 2;
6111 wc->reada_count = min_t(int, wc->reada_count,
6112 BTRFS_NODEPTRS_PER_BLOCK(root));
6113 }
6114
6115 eb = path->nodes[wc->level];
6116 nritems = btrfs_header_nritems(eb);
6117 blocksize = btrfs_level_size(root, wc->level - 1);
6118
6119 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6120 if (nread >= wc->reada_count)
6121 break;
6122
6123 cond_resched();
6124 bytenr = btrfs_node_blockptr(eb, slot);
6125 generation = btrfs_node_ptr_generation(eb, slot);
6126
6127 if (slot == path->slots[wc->level])
6128 goto reada;
6129
6130 if (wc->stage == UPDATE_BACKREF &&
6131 generation <= root->root_key.offset)
6132 continue;
6133
6134 /* We don't lock the tree block, it's OK to be racy here */
6135 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6136 &refs, &flags);
6137 BUG_ON(ret);
6138 BUG_ON(refs == 0);
6139
6140 if (wc->stage == DROP_REFERENCE) {
6141 if (refs == 1)
6142 goto reada;
6143
6144 if (wc->level == 1 &&
6145 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6146 continue;
6147 if (!wc->update_ref ||
6148 generation <= root->root_key.offset)
6149 continue;
6150 btrfs_node_key_to_cpu(eb, &key, slot);
6151 ret = btrfs_comp_cpu_keys(&key,
6152 &wc->update_progress);
6153 if (ret < 0)
6154 continue;
6155 } else {
6156 if (wc->level == 1 &&
6157 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6158 continue;
6159 }
6160 reada:
6161 ret = readahead_tree_block(root, bytenr, blocksize,
6162 generation);
6163 if (ret)
6164 break;
6165 nread++;
6166 }
6167 wc->reada_slot = slot;
6168 }
6169
6170 /*
6171 * hepler to process tree block while walking down the tree.
6172 *
6173 * when wc->stage == UPDATE_BACKREF, this function updates
6174 * back refs for pointers in the block.
6175 *
6176 * NOTE: return value 1 means we should stop walking down.
6177 */
6178 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6179 struct btrfs_root *root,
6180 struct btrfs_path *path,
6181 struct walk_control *wc, int lookup_info)
6182 {
6183 int level = wc->level;
6184 struct extent_buffer *eb = path->nodes[level];
6185 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6186 int ret;
6187
6188 if (wc->stage == UPDATE_BACKREF &&
6189 btrfs_header_owner(eb) != root->root_key.objectid)
6190 return 1;
6191
6192 /*
6193 * when reference count of tree block is 1, it won't increase
6194 * again. once full backref flag is set, we never clear it.
6195 */
6196 if (lookup_info &&
6197 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6198 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6199 BUG_ON(!path->locks[level]);
6200 ret = btrfs_lookup_extent_info(trans, root,
6201 eb->start, eb->len,
6202 &wc->refs[level],
6203 &wc->flags[level]);
6204 BUG_ON(ret);
6205 BUG_ON(wc->refs[level] == 0);
6206 }
6207
6208 if (wc->stage == DROP_REFERENCE) {
6209 if (wc->refs[level] > 1)
6210 return 1;
6211
6212 if (path->locks[level] && !wc->keep_locks) {
6213 btrfs_tree_unlock_rw(eb, path->locks[level]);
6214 path->locks[level] = 0;
6215 }
6216 return 0;
6217 }
6218
6219 /* wc->stage == UPDATE_BACKREF */
6220 if (!(wc->flags[level] & flag)) {
6221 BUG_ON(!path->locks[level]);
6222 ret = btrfs_inc_ref(trans, root, eb, 1);
6223 BUG_ON(ret);
6224 ret = btrfs_dec_ref(trans, root, eb, 0);
6225 BUG_ON(ret);
6226 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6227 eb->len, flag, 0);
6228 BUG_ON(ret);
6229 wc->flags[level] |= flag;
6230 }
6231
6232 /*
6233 * the block is shared by multiple trees, so it's not good to
6234 * keep the tree lock
6235 */
6236 if (path->locks[level] && level > 0) {
6237 btrfs_tree_unlock_rw(eb, path->locks[level]);
6238 path->locks[level] = 0;
6239 }
6240 return 0;
6241 }
6242
6243 /*
6244 * hepler to process tree block pointer.
6245 *
6246 * when wc->stage == DROP_REFERENCE, this function checks
6247 * reference count of the block pointed to. if the block
6248 * is shared and we need update back refs for the subtree
6249 * rooted at the block, this function changes wc->stage to
6250 * UPDATE_BACKREF. if the block is shared and there is no
6251 * need to update back, this function drops the reference
6252 * to the block.
6253 *
6254 * NOTE: return value 1 means we should stop walking down.
6255 */
6256 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6257 struct btrfs_root *root,
6258 struct btrfs_path *path,
6259 struct walk_control *wc, int *lookup_info)
6260 {
6261 u64 bytenr;
6262 u64 generation;
6263 u64 parent;
6264 u32 blocksize;
6265 struct btrfs_key key;
6266 struct extent_buffer *next;
6267 int level = wc->level;
6268 int reada = 0;
6269 int ret = 0;
6270
6271 generation = btrfs_node_ptr_generation(path->nodes[level],
6272 path->slots[level]);
6273 /*
6274 * if the lower level block was created before the snapshot
6275 * was created, we know there is no need to update back refs
6276 * for the subtree
6277 */
6278 if (wc->stage == UPDATE_BACKREF &&
6279 generation <= root->root_key.offset) {
6280 *lookup_info = 1;
6281 return 1;
6282 }
6283
6284 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6285 blocksize = btrfs_level_size(root, level - 1);
6286
6287 next = btrfs_find_tree_block(root, bytenr, blocksize);
6288 if (!next) {
6289 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6290 if (!next)
6291 return -ENOMEM;
6292 reada = 1;
6293 }
6294 btrfs_tree_lock(next);
6295 btrfs_set_lock_blocking(next);
6296
6297 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6298 &wc->refs[level - 1],
6299 &wc->flags[level - 1]);
6300 BUG_ON(ret);
6301 BUG_ON(wc->refs[level - 1] == 0);
6302 *lookup_info = 0;
6303
6304 if (wc->stage == DROP_REFERENCE) {
6305 if (wc->refs[level - 1] > 1) {
6306 if (level == 1 &&
6307 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6308 goto skip;
6309
6310 if (!wc->update_ref ||
6311 generation <= root->root_key.offset)
6312 goto skip;
6313
6314 btrfs_node_key_to_cpu(path->nodes[level], &key,
6315 path->slots[level]);
6316 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6317 if (ret < 0)
6318 goto skip;
6319
6320 wc->stage = UPDATE_BACKREF;
6321 wc->shared_level = level - 1;
6322 }
6323 } else {
6324 if (level == 1 &&
6325 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6326 goto skip;
6327 }
6328
6329 if (!btrfs_buffer_uptodate(next, generation)) {
6330 btrfs_tree_unlock(next);
6331 free_extent_buffer(next);
6332 next = NULL;
6333 *lookup_info = 1;
6334 }
6335
6336 if (!next) {
6337 if (reada && level == 1)
6338 reada_walk_down(trans, root, wc, path);
6339 next = read_tree_block(root, bytenr, blocksize, generation);
6340 if (!next)
6341 return -EIO;
6342 btrfs_tree_lock(next);
6343 btrfs_set_lock_blocking(next);
6344 }
6345
6346 level--;
6347 BUG_ON(level != btrfs_header_level(next));
6348 path->nodes[level] = next;
6349 path->slots[level] = 0;
6350 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6351 wc->level = level;
6352 if (wc->level == 1)
6353 wc->reada_slot = 0;
6354 return 0;
6355 skip:
6356 wc->refs[level - 1] = 0;
6357 wc->flags[level - 1] = 0;
6358 if (wc->stage == DROP_REFERENCE) {
6359 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6360 parent = path->nodes[level]->start;
6361 } else {
6362 BUG_ON(root->root_key.objectid !=
6363 btrfs_header_owner(path->nodes[level]));
6364 parent = 0;
6365 }
6366
6367 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6368 root->root_key.objectid, level - 1, 0);
6369 BUG_ON(ret);
6370 }
6371 btrfs_tree_unlock(next);
6372 free_extent_buffer(next);
6373 *lookup_info = 1;
6374 return 1;
6375 }
6376
6377 /*
6378 * hepler to process tree block while walking up the tree.
6379 *
6380 * when wc->stage == DROP_REFERENCE, this function drops
6381 * reference count on the block.
6382 *
6383 * when wc->stage == UPDATE_BACKREF, this function changes
6384 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6385 * to UPDATE_BACKREF previously while processing the block.
6386 *
6387 * NOTE: return value 1 means we should stop walking up.
6388 */
6389 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6390 struct btrfs_root *root,
6391 struct btrfs_path *path,
6392 struct walk_control *wc)
6393 {
6394 int ret;
6395 int level = wc->level;
6396 struct extent_buffer *eb = path->nodes[level];
6397 u64 parent = 0;
6398
6399 if (wc->stage == UPDATE_BACKREF) {
6400 BUG_ON(wc->shared_level < level);
6401 if (level < wc->shared_level)
6402 goto out;
6403
6404 ret = find_next_key(path, level + 1, &wc->update_progress);
6405 if (ret > 0)
6406 wc->update_ref = 0;
6407
6408 wc->stage = DROP_REFERENCE;
6409 wc->shared_level = -1;
6410 path->slots[level] = 0;
6411
6412 /*
6413 * check reference count again if the block isn't locked.
6414 * we should start walking down the tree again if reference
6415 * count is one.
6416 */
6417 if (!path->locks[level]) {
6418 BUG_ON(level == 0);
6419 btrfs_tree_lock(eb);
6420 btrfs_set_lock_blocking(eb);
6421 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6422
6423 ret = btrfs_lookup_extent_info(trans, root,
6424 eb->start, eb->len,
6425 &wc->refs[level],
6426 &wc->flags[level]);
6427 BUG_ON(ret);
6428 BUG_ON(wc->refs[level] == 0);
6429 if (wc->refs[level] == 1) {
6430 btrfs_tree_unlock_rw(eb, path->locks[level]);
6431 return 1;
6432 }
6433 }
6434 }
6435
6436 /* wc->stage == DROP_REFERENCE */
6437 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6438
6439 if (wc->refs[level] == 1) {
6440 if (level == 0) {
6441 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6442 ret = btrfs_dec_ref(trans, root, eb, 1);
6443 else
6444 ret = btrfs_dec_ref(trans, root, eb, 0);
6445 BUG_ON(ret);
6446 }
6447 /* make block locked assertion in clean_tree_block happy */
6448 if (!path->locks[level] &&
6449 btrfs_header_generation(eb) == trans->transid) {
6450 btrfs_tree_lock(eb);
6451 btrfs_set_lock_blocking(eb);
6452 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6453 }
6454 clean_tree_block(trans, root, eb);
6455 }
6456
6457 if (eb == root->node) {
6458 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6459 parent = eb->start;
6460 else
6461 BUG_ON(root->root_key.objectid !=
6462 btrfs_header_owner(eb));
6463 } else {
6464 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6465 parent = path->nodes[level + 1]->start;
6466 else
6467 BUG_ON(root->root_key.objectid !=
6468 btrfs_header_owner(path->nodes[level + 1]));
6469 }
6470
6471 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6472 out:
6473 wc->refs[level] = 0;
6474 wc->flags[level] = 0;
6475 return 0;
6476 }
6477
6478 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6479 struct btrfs_root *root,
6480 struct btrfs_path *path,
6481 struct walk_control *wc)
6482 {
6483 int level = wc->level;
6484 int lookup_info = 1;
6485 int ret;
6486
6487 while (level >= 0) {
6488 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6489 if (ret > 0)
6490 break;
6491
6492 if (level == 0)
6493 break;
6494
6495 if (path->slots[level] >=
6496 btrfs_header_nritems(path->nodes[level]))
6497 break;
6498
6499 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6500 if (ret > 0) {
6501 path->slots[level]++;
6502 continue;
6503 } else if (ret < 0)
6504 return ret;
6505 level = wc->level;
6506 }
6507 return 0;
6508 }
6509
6510 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6511 struct btrfs_root *root,
6512 struct btrfs_path *path,
6513 struct walk_control *wc, int max_level)
6514 {
6515 int level = wc->level;
6516 int ret;
6517
6518 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6519 while (level < max_level && path->nodes[level]) {
6520 wc->level = level;
6521 if (path->slots[level] + 1 <
6522 btrfs_header_nritems(path->nodes[level])) {
6523 path->slots[level]++;
6524 return 0;
6525 } else {
6526 ret = walk_up_proc(trans, root, path, wc);
6527 if (ret > 0)
6528 return 0;
6529
6530 if (path->locks[level]) {
6531 btrfs_tree_unlock_rw(path->nodes[level],
6532 path->locks[level]);
6533 path->locks[level] = 0;
6534 }
6535 free_extent_buffer(path->nodes[level]);
6536 path->nodes[level] = NULL;
6537 level++;
6538 }
6539 }
6540 return 1;
6541 }
6542
6543 /*
6544 * drop a subvolume tree.
6545 *
6546 * this function traverses the tree freeing any blocks that only
6547 * referenced by the tree.
6548 *
6549 * when a shared tree block is found. this function decreases its
6550 * reference count by one. if update_ref is true, this function
6551 * also make sure backrefs for the shared block and all lower level
6552 * blocks are properly updated.
6553 */
6554 void btrfs_drop_snapshot(struct btrfs_root *root,
6555 struct btrfs_block_rsv *block_rsv, int update_ref)
6556 {
6557 struct btrfs_path *path;
6558 struct btrfs_trans_handle *trans;
6559 struct btrfs_root *tree_root = root->fs_info->tree_root;
6560 struct btrfs_root_item *root_item = &root->root_item;
6561 struct walk_control *wc;
6562 struct btrfs_key key;
6563 int err = 0;
6564 int ret;
6565 int level;
6566
6567 path = btrfs_alloc_path();
6568 if (!path) {
6569 err = -ENOMEM;
6570 goto out;
6571 }
6572
6573 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6574 if (!wc) {
6575 btrfs_free_path(path);
6576 err = -ENOMEM;
6577 goto out;
6578 }
6579
6580 trans = btrfs_start_transaction(tree_root, 0);
6581 BUG_ON(IS_ERR(trans));
6582
6583 if (block_rsv)
6584 trans->block_rsv = block_rsv;
6585
6586 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6587 level = btrfs_header_level(root->node);
6588 path->nodes[level] = btrfs_lock_root_node(root);
6589 btrfs_set_lock_blocking(path->nodes[level]);
6590 path->slots[level] = 0;
6591 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6592 memset(&wc->update_progress, 0,
6593 sizeof(wc->update_progress));
6594 } else {
6595 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6596 memcpy(&wc->update_progress, &key,
6597 sizeof(wc->update_progress));
6598
6599 level = root_item->drop_level;
6600 BUG_ON(level == 0);
6601 path->lowest_level = level;
6602 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6603 path->lowest_level = 0;
6604 if (ret < 0) {
6605 err = ret;
6606 goto out_free;
6607 }
6608 WARN_ON(ret > 0);
6609
6610 /*
6611 * unlock our path, this is safe because only this
6612 * function is allowed to delete this snapshot
6613 */
6614 btrfs_unlock_up_safe(path, 0);
6615
6616 level = btrfs_header_level(root->node);
6617 while (1) {
6618 btrfs_tree_lock(path->nodes[level]);
6619 btrfs_set_lock_blocking(path->nodes[level]);
6620
6621 ret = btrfs_lookup_extent_info(trans, root,
6622 path->nodes[level]->start,
6623 path->nodes[level]->len,
6624 &wc->refs[level],
6625 &wc->flags[level]);
6626 BUG_ON(ret);
6627 BUG_ON(wc->refs[level] == 0);
6628
6629 if (level == root_item->drop_level)
6630 break;
6631
6632 btrfs_tree_unlock(path->nodes[level]);
6633 WARN_ON(wc->refs[level] != 1);
6634 level--;
6635 }
6636 }
6637
6638 wc->level = level;
6639 wc->shared_level = -1;
6640 wc->stage = DROP_REFERENCE;
6641 wc->update_ref = update_ref;
6642 wc->keep_locks = 0;
6643 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6644
6645 while (1) {
6646 ret = walk_down_tree(trans, root, path, wc);
6647 if (ret < 0) {
6648 err = ret;
6649 break;
6650 }
6651
6652 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6653 if (ret < 0) {
6654 err = ret;
6655 break;
6656 }
6657
6658 if (ret > 0) {
6659 BUG_ON(wc->stage != DROP_REFERENCE);
6660 break;
6661 }
6662
6663 if (wc->stage == DROP_REFERENCE) {
6664 level = wc->level;
6665 btrfs_node_key(path->nodes[level],
6666 &root_item->drop_progress,
6667 path->slots[level]);
6668 root_item->drop_level = level;
6669 }
6670
6671 BUG_ON(wc->level == 0);
6672 if (btrfs_should_end_transaction(trans, tree_root)) {
6673 ret = btrfs_update_root(trans, tree_root,
6674 &root->root_key,
6675 root_item);
6676 BUG_ON(ret);
6677
6678 btrfs_end_transaction_throttle(trans, tree_root);
6679 trans = btrfs_start_transaction(tree_root, 0);
6680 BUG_ON(IS_ERR(trans));
6681 if (block_rsv)
6682 trans->block_rsv = block_rsv;
6683 }
6684 }
6685 btrfs_release_path(path);
6686 BUG_ON(err);
6687
6688 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6689 BUG_ON(ret);
6690
6691 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6692 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6693 NULL, NULL);
6694 BUG_ON(ret < 0);
6695 if (ret > 0) {
6696 /* if we fail to delete the orphan item this time
6697 * around, it'll get picked up the next time.
6698 *
6699 * The most common failure here is just -ENOENT.
6700 */
6701 btrfs_del_orphan_item(trans, tree_root,
6702 root->root_key.objectid);
6703 }
6704 }
6705
6706 if (root->in_radix) {
6707 btrfs_free_fs_root(tree_root->fs_info, root);
6708 } else {
6709 free_extent_buffer(root->node);
6710 free_extent_buffer(root->commit_root);
6711 kfree(root);
6712 }
6713 out_free:
6714 btrfs_end_transaction_throttle(trans, tree_root);
6715 kfree(wc);
6716 btrfs_free_path(path);
6717 out:
6718 if (err)
6719 btrfs_std_error(root->fs_info, err);
6720 return;
6721 }
6722
6723 /*
6724 * drop subtree rooted at tree block 'node'.
6725 *
6726 * NOTE: this function will unlock and release tree block 'node'
6727 */
6728 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6729 struct btrfs_root *root,
6730 struct extent_buffer *node,
6731 struct extent_buffer *parent)
6732 {
6733 struct btrfs_path *path;
6734 struct walk_control *wc;
6735 int level;
6736 int parent_level;
6737 int ret = 0;
6738 int wret;
6739
6740 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6741
6742 path = btrfs_alloc_path();
6743 if (!path)
6744 return -ENOMEM;
6745
6746 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6747 if (!wc) {
6748 btrfs_free_path(path);
6749 return -ENOMEM;
6750 }
6751
6752 btrfs_assert_tree_locked(parent);
6753 parent_level = btrfs_header_level(parent);
6754 extent_buffer_get(parent);
6755 path->nodes[parent_level] = parent;
6756 path->slots[parent_level] = btrfs_header_nritems(parent);
6757
6758 btrfs_assert_tree_locked(node);
6759 level = btrfs_header_level(node);
6760 path->nodes[level] = node;
6761 path->slots[level] = 0;
6762 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6763
6764 wc->refs[parent_level] = 1;
6765 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6766 wc->level = level;
6767 wc->shared_level = -1;
6768 wc->stage = DROP_REFERENCE;
6769 wc->update_ref = 0;
6770 wc->keep_locks = 1;
6771 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6772
6773 while (1) {
6774 wret = walk_down_tree(trans, root, path, wc);
6775 if (wret < 0) {
6776 ret = wret;
6777 break;
6778 }
6779
6780 wret = walk_up_tree(trans, root, path, wc, parent_level);
6781 if (wret < 0)
6782 ret = wret;
6783 if (wret != 0)
6784 break;
6785 }
6786
6787 kfree(wc);
6788 btrfs_free_path(path);
6789 return ret;
6790 }
6791
6792 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6793 {
6794 u64 num_devices;
6795 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6796 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6797
6798 /*
6799 * we add in the count of missing devices because we want
6800 * to make sure that any RAID levels on a degraded FS
6801 * continue to be honored.
6802 */
6803 num_devices = root->fs_info->fs_devices->rw_devices +
6804 root->fs_info->fs_devices->missing_devices;
6805
6806 if (num_devices == 1) {
6807 stripped |= BTRFS_BLOCK_GROUP_DUP;
6808 stripped = flags & ~stripped;
6809
6810 /* turn raid0 into single device chunks */
6811 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6812 return stripped;
6813
6814 /* turn mirroring into duplication */
6815 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6816 BTRFS_BLOCK_GROUP_RAID10))
6817 return stripped | BTRFS_BLOCK_GROUP_DUP;
6818 return flags;
6819 } else {
6820 /* they already had raid on here, just return */
6821 if (flags & stripped)
6822 return flags;
6823
6824 stripped |= BTRFS_BLOCK_GROUP_DUP;
6825 stripped = flags & ~stripped;
6826
6827 /* switch duplicated blocks with raid1 */
6828 if (flags & BTRFS_BLOCK_GROUP_DUP)
6829 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6830
6831 /* turn single device chunks into raid0 */
6832 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6833 }
6834 return flags;
6835 }
6836
6837 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6838 {
6839 struct btrfs_space_info *sinfo = cache->space_info;
6840 u64 num_bytes;
6841 u64 min_allocable_bytes;
6842 int ret = -ENOSPC;
6843
6844
6845 /*
6846 * We need some metadata space and system metadata space for
6847 * allocating chunks in some corner cases until we force to set
6848 * it to be readonly.
6849 */
6850 if ((sinfo->flags &
6851 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6852 !force)
6853 min_allocable_bytes = 1 * 1024 * 1024;
6854 else
6855 min_allocable_bytes = 0;
6856
6857 spin_lock(&sinfo->lock);
6858 spin_lock(&cache->lock);
6859
6860 if (cache->ro) {
6861 ret = 0;
6862 goto out;
6863 }
6864
6865 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6866 cache->bytes_super - btrfs_block_group_used(&cache->item);
6867
6868 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6869 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6870 min_allocable_bytes <= sinfo->total_bytes) {
6871 sinfo->bytes_readonly += num_bytes;
6872 cache->ro = 1;
6873 ret = 0;
6874 }
6875 out:
6876 spin_unlock(&cache->lock);
6877 spin_unlock(&sinfo->lock);
6878 return ret;
6879 }
6880
6881 int btrfs_set_block_group_ro(struct btrfs_root *root,
6882 struct btrfs_block_group_cache *cache)
6883
6884 {
6885 struct btrfs_trans_handle *trans;
6886 u64 alloc_flags;
6887 int ret;
6888
6889 BUG_ON(cache->ro);
6890
6891 trans = btrfs_join_transaction(root);
6892 BUG_ON(IS_ERR(trans));
6893
6894 alloc_flags = update_block_group_flags(root, cache->flags);
6895 if (alloc_flags != cache->flags)
6896 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6897 CHUNK_ALLOC_FORCE);
6898
6899 ret = set_block_group_ro(cache, 0);
6900 if (!ret)
6901 goto out;
6902 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6903 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6904 CHUNK_ALLOC_FORCE);
6905 if (ret < 0)
6906 goto out;
6907 ret = set_block_group_ro(cache, 0);
6908 out:
6909 btrfs_end_transaction(trans, root);
6910 return ret;
6911 }
6912
6913 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6914 struct btrfs_root *root, u64 type)
6915 {
6916 u64 alloc_flags = get_alloc_profile(root, type);
6917 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6918 CHUNK_ALLOC_FORCE);
6919 }
6920
6921 /*
6922 * helper to account the unused space of all the readonly block group in the
6923 * list. takes mirrors into account.
6924 */
6925 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6926 {
6927 struct btrfs_block_group_cache *block_group;
6928 u64 free_bytes = 0;
6929 int factor;
6930
6931 list_for_each_entry(block_group, groups_list, list) {
6932 spin_lock(&block_group->lock);
6933
6934 if (!block_group->ro) {
6935 spin_unlock(&block_group->lock);
6936 continue;
6937 }
6938
6939 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6940 BTRFS_BLOCK_GROUP_RAID10 |
6941 BTRFS_BLOCK_GROUP_DUP))
6942 factor = 2;
6943 else
6944 factor = 1;
6945
6946 free_bytes += (block_group->key.offset -
6947 btrfs_block_group_used(&block_group->item)) *
6948 factor;
6949
6950 spin_unlock(&block_group->lock);
6951 }
6952
6953 return free_bytes;
6954 }
6955
6956 /*
6957 * helper to account the unused space of all the readonly block group in the
6958 * space_info. takes mirrors into account.
6959 */
6960 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6961 {
6962 int i;
6963 u64 free_bytes = 0;
6964
6965 spin_lock(&sinfo->lock);
6966
6967 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6968 if (!list_empty(&sinfo->block_groups[i]))
6969 free_bytes += __btrfs_get_ro_block_group_free_space(
6970 &sinfo->block_groups[i]);
6971
6972 spin_unlock(&sinfo->lock);
6973
6974 return free_bytes;
6975 }
6976
6977 int btrfs_set_block_group_rw(struct btrfs_root *root,
6978 struct btrfs_block_group_cache *cache)
6979 {
6980 struct btrfs_space_info *sinfo = cache->space_info;
6981 u64 num_bytes;
6982
6983 BUG_ON(!cache->ro);
6984
6985 spin_lock(&sinfo->lock);
6986 spin_lock(&cache->lock);
6987 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6988 cache->bytes_super - btrfs_block_group_used(&cache->item);
6989 sinfo->bytes_readonly -= num_bytes;
6990 cache->ro = 0;
6991 spin_unlock(&cache->lock);
6992 spin_unlock(&sinfo->lock);
6993 return 0;
6994 }
6995
6996 /*
6997 * checks to see if its even possible to relocate this block group.
6998 *
6999 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7000 * ok to go ahead and try.
7001 */
7002 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7003 {
7004 struct btrfs_block_group_cache *block_group;
7005 struct btrfs_space_info *space_info;
7006 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7007 struct btrfs_device *device;
7008 u64 min_free;
7009 u64 dev_min = 1;
7010 u64 dev_nr = 0;
7011 int index;
7012 int full = 0;
7013 int ret = 0;
7014
7015 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7016
7017 /* odd, couldn't find the block group, leave it alone */
7018 if (!block_group)
7019 return -1;
7020
7021 min_free = btrfs_block_group_used(&block_group->item);
7022
7023 /* no bytes used, we're good */
7024 if (!min_free)
7025 goto out;
7026
7027 space_info = block_group->space_info;
7028 spin_lock(&space_info->lock);
7029
7030 full = space_info->full;
7031
7032 /*
7033 * if this is the last block group we have in this space, we can't
7034 * relocate it unless we're able to allocate a new chunk below.
7035 *
7036 * Otherwise, we need to make sure we have room in the space to handle
7037 * all of the extents from this block group. If we can, we're good
7038 */
7039 if ((space_info->total_bytes != block_group->key.offset) &&
7040 (space_info->bytes_used + space_info->bytes_reserved +
7041 space_info->bytes_pinned + space_info->bytes_readonly +
7042 min_free < space_info->total_bytes)) {
7043 spin_unlock(&space_info->lock);
7044 goto out;
7045 }
7046 spin_unlock(&space_info->lock);
7047
7048 /*
7049 * ok we don't have enough space, but maybe we have free space on our
7050 * devices to allocate new chunks for relocation, so loop through our
7051 * alloc devices and guess if we have enough space. However, if we
7052 * were marked as full, then we know there aren't enough chunks, and we
7053 * can just return.
7054 */
7055 ret = -1;
7056 if (full)
7057 goto out;
7058
7059 /*
7060 * index:
7061 * 0: raid10
7062 * 1: raid1
7063 * 2: dup
7064 * 3: raid0
7065 * 4: single
7066 */
7067 index = get_block_group_index(block_group);
7068 if (index == 0) {
7069 dev_min = 4;
7070 /* Divide by 2 */
7071 min_free >>= 1;
7072 } else if (index == 1) {
7073 dev_min = 2;
7074 } else if (index == 2) {
7075 /* Multiply by 2 */
7076 min_free <<= 1;
7077 } else if (index == 3) {
7078 dev_min = fs_devices->rw_devices;
7079 do_div(min_free, dev_min);
7080 }
7081
7082 mutex_lock(&root->fs_info->chunk_mutex);
7083 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7084 u64 dev_offset;
7085
7086 /*
7087 * check to make sure we can actually find a chunk with enough
7088 * space to fit our block group in.
7089 */
7090 if (device->total_bytes > device->bytes_used + min_free) {
7091 ret = find_free_dev_extent(NULL, device, min_free,
7092 &dev_offset, NULL);
7093 if (!ret)
7094 dev_nr++;
7095
7096 if (dev_nr >= dev_min)
7097 break;
7098
7099 ret = -1;
7100 }
7101 }
7102 mutex_unlock(&root->fs_info->chunk_mutex);
7103 out:
7104 btrfs_put_block_group(block_group);
7105 return ret;
7106 }
7107
7108 static int find_first_block_group(struct btrfs_root *root,
7109 struct btrfs_path *path, struct btrfs_key *key)
7110 {
7111 int ret = 0;
7112 struct btrfs_key found_key;
7113 struct extent_buffer *leaf;
7114 int slot;
7115
7116 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7117 if (ret < 0)
7118 goto out;
7119
7120 while (1) {
7121 slot = path->slots[0];
7122 leaf = path->nodes[0];
7123 if (slot >= btrfs_header_nritems(leaf)) {
7124 ret = btrfs_next_leaf(root, path);
7125 if (ret == 0)
7126 continue;
7127 if (ret < 0)
7128 goto out;
7129 break;
7130 }
7131 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7132
7133 if (found_key.objectid >= key->objectid &&
7134 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7135 ret = 0;
7136 goto out;
7137 }
7138 path->slots[0]++;
7139 }
7140 out:
7141 return ret;
7142 }
7143
7144 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7145 {
7146 struct btrfs_block_group_cache *block_group;
7147 u64 last = 0;
7148
7149 while (1) {
7150 struct inode *inode;
7151
7152 block_group = btrfs_lookup_first_block_group(info, last);
7153 while (block_group) {
7154 spin_lock(&block_group->lock);
7155 if (block_group->iref)
7156 break;
7157 spin_unlock(&block_group->lock);
7158 block_group = next_block_group(info->tree_root,
7159 block_group);
7160 }
7161 if (!block_group) {
7162 if (last == 0)
7163 break;
7164 last = 0;
7165 continue;
7166 }
7167
7168 inode = block_group->inode;
7169 block_group->iref = 0;
7170 block_group->inode = NULL;
7171 spin_unlock(&block_group->lock);
7172 iput(inode);
7173 last = block_group->key.objectid + block_group->key.offset;
7174 btrfs_put_block_group(block_group);
7175 }
7176 }
7177
7178 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7179 {
7180 struct btrfs_block_group_cache *block_group;
7181 struct btrfs_space_info *space_info;
7182 struct btrfs_caching_control *caching_ctl;
7183 struct rb_node *n;
7184
7185 down_write(&info->extent_commit_sem);
7186 while (!list_empty(&info->caching_block_groups)) {
7187 caching_ctl = list_entry(info->caching_block_groups.next,
7188 struct btrfs_caching_control, list);
7189 list_del(&caching_ctl->list);
7190 put_caching_control(caching_ctl);
7191 }
7192 up_write(&info->extent_commit_sem);
7193
7194 spin_lock(&info->block_group_cache_lock);
7195 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7196 block_group = rb_entry(n, struct btrfs_block_group_cache,
7197 cache_node);
7198 rb_erase(&block_group->cache_node,
7199 &info->block_group_cache_tree);
7200 spin_unlock(&info->block_group_cache_lock);
7201
7202 down_write(&block_group->space_info->groups_sem);
7203 list_del(&block_group->list);
7204 up_write(&block_group->space_info->groups_sem);
7205
7206 if (block_group->cached == BTRFS_CACHE_STARTED)
7207 wait_block_group_cache_done(block_group);
7208
7209 /*
7210 * We haven't cached this block group, which means we could
7211 * possibly have excluded extents on this block group.
7212 */
7213 if (block_group->cached == BTRFS_CACHE_NO)
7214 free_excluded_extents(info->extent_root, block_group);
7215
7216 btrfs_remove_free_space_cache(block_group);
7217 btrfs_put_block_group(block_group);
7218
7219 spin_lock(&info->block_group_cache_lock);
7220 }
7221 spin_unlock(&info->block_group_cache_lock);
7222
7223 /* now that all the block groups are freed, go through and
7224 * free all the space_info structs. This is only called during
7225 * the final stages of unmount, and so we know nobody is
7226 * using them. We call synchronize_rcu() once before we start,
7227 * just to be on the safe side.
7228 */
7229 synchronize_rcu();
7230
7231 release_global_block_rsv(info);
7232
7233 while(!list_empty(&info->space_info)) {
7234 space_info = list_entry(info->space_info.next,
7235 struct btrfs_space_info,
7236 list);
7237 if (space_info->bytes_pinned > 0 ||
7238 space_info->bytes_reserved > 0 ||
7239 space_info->bytes_may_use > 0) {
7240 WARN_ON(1);
7241 dump_space_info(space_info, 0, 0);
7242 }
7243 list_del(&space_info->list);
7244 kfree(space_info);
7245 }
7246 return 0;
7247 }
7248
7249 static void __link_block_group(struct btrfs_space_info *space_info,
7250 struct btrfs_block_group_cache *cache)
7251 {
7252 int index = get_block_group_index(cache);
7253
7254 down_write(&space_info->groups_sem);
7255 list_add_tail(&cache->list, &space_info->block_groups[index]);
7256 up_write(&space_info->groups_sem);
7257 }
7258
7259 int btrfs_read_block_groups(struct btrfs_root *root)
7260 {
7261 struct btrfs_path *path;
7262 int ret;
7263 struct btrfs_block_group_cache *cache;
7264 struct btrfs_fs_info *info = root->fs_info;
7265 struct btrfs_space_info *space_info;
7266 struct btrfs_key key;
7267 struct btrfs_key found_key;
7268 struct extent_buffer *leaf;
7269 int need_clear = 0;
7270 u64 cache_gen;
7271
7272 root = info->extent_root;
7273 key.objectid = 0;
7274 key.offset = 0;
7275 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7276 path = btrfs_alloc_path();
7277 if (!path)
7278 return -ENOMEM;
7279 path->reada = 1;
7280
7281 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7282 if (btrfs_test_opt(root, SPACE_CACHE) &&
7283 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7284 need_clear = 1;
7285 if (btrfs_test_opt(root, CLEAR_CACHE))
7286 need_clear = 1;
7287
7288 while (1) {
7289 ret = find_first_block_group(root, path, &key);
7290 if (ret > 0)
7291 break;
7292 if (ret != 0)
7293 goto error;
7294 leaf = path->nodes[0];
7295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7296 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7297 if (!cache) {
7298 ret = -ENOMEM;
7299 goto error;
7300 }
7301 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7302 GFP_NOFS);
7303 if (!cache->free_space_ctl) {
7304 kfree(cache);
7305 ret = -ENOMEM;
7306 goto error;
7307 }
7308
7309 atomic_set(&cache->count, 1);
7310 spin_lock_init(&cache->lock);
7311 cache->fs_info = info;
7312 INIT_LIST_HEAD(&cache->list);
7313 INIT_LIST_HEAD(&cache->cluster_list);
7314
7315 if (need_clear)
7316 cache->disk_cache_state = BTRFS_DC_CLEAR;
7317
7318 read_extent_buffer(leaf, &cache->item,
7319 btrfs_item_ptr_offset(leaf, path->slots[0]),
7320 sizeof(cache->item));
7321 memcpy(&cache->key, &found_key, sizeof(found_key));
7322
7323 key.objectid = found_key.objectid + found_key.offset;
7324 btrfs_release_path(path);
7325 cache->flags = btrfs_block_group_flags(&cache->item);
7326 cache->sectorsize = root->sectorsize;
7327
7328 btrfs_init_free_space_ctl(cache);
7329
7330 /*
7331 * We need to exclude the super stripes now so that the space
7332 * info has super bytes accounted for, otherwise we'll think
7333 * we have more space than we actually do.
7334 */
7335 exclude_super_stripes(root, cache);
7336
7337 /*
7338 * check for two cases, either we are full, and therefore
7339 * don't need to bother with the caching work since we won't
7340 * find any space, or we are empty, and we can just add all
7341 * the space in and be done with it. This saves us _alot_ of
7342 * time, particularly in the full case.
7343 */
7344 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7345 cache->last_byte_to_unpin = (u64)-1;
7346 cache->cached = BTRFS_CACHE_FINISHED;
7347 free_excluded_extents(root, cache);
7348 } else if (btrfs_block_group_used(&cache->item) == 0) {
7349 cache->last_byte_to_unpin = (u64)-1;
7350 cache->cached = BTRFS_CACHE_FINISHED;
7351 add_new_free_space(cache, root->fs_info,
7352 found_key.objectid,
7353 found_key.objectid +
7354 found_key.offset);
7355 free_excluded_extents(root, cache);
7356 }
7357
7358 ret = update_space_info(info, cache->flags, found_key.offset,
7359 btrfs_block_group_used(&cache->item),
7360 &space_info);
7361 BUG_ON(ret);
7362 cache->space_info = space_info;
7363 spin_lock(&cache->space_info->lock);
7364 cache->space_info->bytes_readonly += cache->bytes_super;
7365 spin_unlock(&cache->space_info->lock);
7366
7367 __link_block_group(space_info, cache);
7368
7369 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7370 BUG_ON(ret);
7371
7372 set_avail_alloc_bits(root->fs_info, cache->flags);
7373 if (btrfs_chunk_readonly(root, cache->key.objectid))
7374 set_block_group_ro(cache, 1);
7375 }
7376
7377 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7378 if (!(get_alloc_profile(root, space_info->flags) &
7379 (BTRFS_BLOCK_GROUP_RAID10 |
7380 BTRFS_BLOCK_GROUP_RAID1 |
7381 BTRFS_BLOCK_GROUP_DUP)))
7382 continue;
7383 /*
7384 * avoid allocating from un-mirrored block group if there are
7385 * mirrored block groups.
7386 */
7387 list_for_each_entry(cache, &space_info->block_groups[3], list)
7388 set_block_group_ro(cache, 1);
7389 list_for_each_entry(cache, &space_info->block_groups[4], list)
7390 set_block_group_ro(cache, 1);
7391 }
7392
7393 init_global_block_rsv(info);
7394 ret = 0;
7395 error:
7396 btrfs_free_path(path);
7397 return ret;
7398 }
7399
7400 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7401 struct btrfs_root *root, u64 bytes_used,
7402 u64 type, u64 chunk_objectid, u64 chunk_offset,
7403 u64 size)
7404 {
7405 int ret;
7406 struct btrfs_root *extent_root;
7407 struct btrfs_block_group_cache *cache;
7408
7409 extent_root = root->fs_info->extent_root;
7410
7411 root->fs_info->last_trans_log_full_commit = trans->transid;
7412
7413 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7414 if (!cache)
7415 return -ENOMEM;
7416 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7417 GFP_NOFS);
7418 if (!cache->free_space_ctl) {
7419 kfree(cache);
7420 return -ENOMEM;
7421 }
7422
7423 cache->key.objectid = chunk_offset;
7424 cache->key.offset = size;
7425 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7426 cache->sectorsize = root->sectorsize;
7427 cache->fs_info = root->fs_info;
7428
7429 atomic_set(&cache->count, 1);
7430 spin_lock_init(&cache->lock);
7431 INIT_LIST_HEAD(&cache->list);
7432 INIT_LIST_HEAD(&cache->cluster_list);
7433
7434 btrfs_init_free_space_ctl(cache);
7435
7436 btrfs_set_block_group_used(&cache->item, bytes_used);
7437 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7438 cache->flags = type;
7439 btrfs_set_block_group_flags(&cache->item, type);
7440
7441 cache->last_byte_to_unpin = (u64)-1;
7442 cache->cached = BTRFS_CACHE_FINISHED;
7443 exclude_super_stripes(root, cache);
7444
7445 add_new_free_space(cache, root->fs_info, chunk_offset,
7446 chunk_offset + size);
7447
7448 free_excluded_extents(root, cache);
7449
7450 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7451 &cache->space_info);
7452 BUG_ON(ret);
7453
7454 spin_lock(&cache->space_info->lock);
7455 cache->space_info->bytes_readonly += cache->bytes_super;
7456 spin_unlock(&cache->space_info->lock);
7457
7458 __link_block_group(cache->space_info, cache);
7459
7460 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7461 BUG_ON(ret);
7462
7463 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7464 sizeof(cache->item));
7465 BUG_ON(ret);
7466
7467 set_avail_alloc_bits(extent_root->fs_info, type);
7468
7469 return 0;
7470 }
7471
7472 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7473 struct btrfs_root *root, u64 group_start)
7474 {
7475 struct btrfs_path *path;
7476 struct btrfs_block_group_cache *block_group;
7477 struct btrfs_free_cluster *cluster;
7478 struct btrfs_root *tree_root = root->fs_info->tree_root;
7479 struct btrfs_key key;
7480 struct inode *inode;
7481 int ret;
7482 int factor;
7483
7484 root = root->fs_info->extent_root;
7485
7486 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7487 BUG_ON(!block_group);
7488 BUG_ON(!block_group->ro);
7489
7490 /*
7491 * Free the reserved super bytes from this block group before
7492 * remove it.
7493 */
7494 free_excluded_extents(root, block_group);
7495
7496 memcpy(&key, &block_group->key, sizeof(key));
7497 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7498 BTRFS_BLOCK_GROUP_RAID1 |
7499 BTRFS_BLOCK_GROUP_RAID10))
7500 factor = 2;
7501 else
7502 factor = 1;
7503
7504 /* make sure this block group isn't part of an allocation cluster */
7505 cluster = &root->fs_info->data_alloc_cluster;
7506 spin_lock(&cluster->refill_lock);
7507 btrfs_return_cluster_to_free_space(block_group, cluster);
7508 spin_unlock(&cluster->refill_lock);
7509
7510 /*
7511 * make sure this block group isn't part of a metadata
7512 * allocation cluster
7513 */
7514 cluster = &root->fs_info->meta_alloc_cluster;
7515 spin_lock(&cluster->refill_lock);
7516 btrfs_return_cluster_to_free_space(block_group, cluster);
7517 spin_unlock(&cluster->refill_lock);
7518
7519 path = btrfs_alloc_path();
7520 if (!path) {
7521 ret = -ENOMEM;
7522 goto out;
7523 }
7524
7525 inode = lookup_free_space_inode(tree_root, block_group, path);
7526 if (!IS_ERR(inode)) {
7527 ret = btrfs_orphan_add(trans, inode);
7528 BUG_ON(ret);
7529 clear_nlink(inode);
7530 /* One for the block groups ref */
7531 spin_lock(&block_group->lock);
7532 if (block_group->iref) {
7533 block_group->iref = 0;
7534 block_group->inode = NULL;
7535 spin_unlock(&block_group->lock);
7536 iput(inode);
7537 } else {
7538 spin_unlock(&block_group->lock);
7539 }
7540 /* One for our lookup ref */
7541 btrfs_add_delayed_iput(inode);
7542 }
7543
7544 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7545 key.offset = block_group->key.objectid;
7546 key.type = 0;
7547
7548 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7549 if (ret < 0)
7550 goto out;
7551 if (ret > 0)
7552 btrfs_release_path(path);
7553 if (ret == 0) {
7554 ret = btrfs_del_item(trans, tree_root, path);
7555 if (ret)
7556 goto out;
7557 btrfs_release_path(path);
7558 }
7559
7560 spin_lock(&root->fs_info->block_group_cache_lock);
7561 rb_erase(&block_group->cache_node,
7562 &root->fs_info->block_group_cache_tree);
7563 spin_unlock(&root->fs_info->block_group_cache_lock);
7564
7565 down_write(&block_group->space_info->groups_sem);
7566 /*
7567 * we must use list_del_init so people can check to see if they
7568 * are still on the list after taking the semaphore
7569 */
7570 list_del_init(&block_group->list);
7571 up_write(&block_group->space_info->groups_sem);
7572
7573 if (block_group->cached == BTRFS_CACHE_STARTED)
7574 wait_block_group_cache_done(block_group);
7575
7576 btrfs_remove_free_space_cache(block_group);
7577
7578 spin_lock(&block_group->space_info->lock);
7579 block_group->space_info->total_bytes -= block_group->key.offset;
7580 block_group->space_info->bytes_readonly -= block_group->key.offset;
7581 block_group->space_info->disk_total -= block_group->key.offset * factor;
7582 spin_unlock(&block_group->space_info->lock);
7583
7584 memcpy(&key, &block_group->key, sizeof(key));
7585
7586 btrfs_clear_space_info_full(root->fs_info);
7587
7588 btrfs_put_block_group(block_group);
7589 btrfs_put_block_group(block_group);
7590
7591 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7592 if (ret > 0)
7593 ret = -EIO;
7594 if (ret < 0)
7595 goto out;
7596
7597 ret = btrfs_del_item(trans, root, path);
7598 out:
7599 btrfs_free_path(path);
7600 return ret;
7601 }
7602
7603 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7604 {
7605 struct btrfs_space_info *space_info;
7606 struct btrfs_super_block *disk_super;
7607 u64 features;
7608 u64 flags;
7609 int mixed = 0;
7610 int ret;
7611
7612 disk_super = fs_info->super_copy;
7613 if (!btrfs_super_root(disk_super))
7614 return 1;
7615
7616 features = btrfs_super_incompat_flags(disk_super);
7617 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7618 mixed = 1;
7619
7620 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7621 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7622 if (ret)
7623 goto out;
7624
7625 if (mixed) {
7626 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7627 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7628 } else {
7629 flags = BTRFS_BLOCK_GROUP_METADATA;
7630 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7631 if (ret)
7632 goto out;
7633
7634 flags = BTRFS_BLOCK_GROUP_DATA;
7635 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7636 }
7637 out:
7638 return ret;
7639 }
7640
7641 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7642 {
7643 return unpin_extent_range(root, start, end);
7644 }
7645
7646 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7647 u64 num_bytes, u64 *actual_bytes)
7648 {
7649 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7650 }
7651
7652 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7653 {
7654 struct btrfs_fs_info *fs_info = root->fs_info;
7655 struct btrfs_block_group_cache *cache = NULL;
7656 u64 group_trimmed;
7657 u64 start;
7658 u64 end;
7659 u64 trimmed = 0;
7660 int ret = 0;
7661
7662 cache = btrfs_lookup_block_group(fs_info, range->start);
7663
7664 while (cache) {
7665 if (cache->key.objectid >= (range->start + range->len)) {
7666 btrfs_put_block_group(cache);
7667 break;
7668 }
7669
7670 start = max(range->start, cache->key.objectid);
7671 end = min(range->start + range->len,
7672 cache->key.objectid + cache->key.offset);
7673
7674 if (end - start >= range->minlen) {
7675 if (!block_group_cache_done(cache)) {
7676 ret = cache_block_group(cache, NULL, root, 0);
7677 if (!ret)
7678 wait_block_group_cache_done(cache);
7679 }
7680 ret = btrfs_trim_block_group(cache,
7681 &group_trimmed,
7682 start,
7683 end,
7684 range->minlen);
7685
7686 trimmed += group_trimmed;
7687 if (ret) {
7688 btrfs_put_block_group(cache);
7689 break;
7690 }
7691 }
7692
7693 cache = next_block_group(fs_info->tree_root, cache);
7694 }
7695
7696 range->len = trimmed;
7697 return ret;
7698 }
This page took 0.410422 seconds and 5 git commands to generate.