695d5110e02057abf9f8b3f4a0f1cbf878a6441d
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 if (locked_ref->is_data &&
2542 locked_ref->total_ref_mod < 0) {
2543 spin_lock(&delayed_refs->lock);
2544 delayed_refs->pending_csums -= ref->num_bytes;
2545 spin_unlock(&delayed_refs->lock);
2546 }
2547 btrfs_delayed_ref_unlock(locked_ref);
2548 locked_ref = NULL;
2549 }
2550 btrfs_put_delayed_ref(ref);
2551 count++;
2552 cond_resched();
2553 }
2554
2555 /*
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2559 */
2560 if (actual_count > 0) {
2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 u64 avg;
2563
2564 /*
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2567 */
2568 spin_lock(&delayed_refs->lock);
2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2571 spin_unlock(&delayed_refs->lock);
2572 }
2573 return 0;
2574 }
2575
2576 #ifdef SCRAMBLE_DELAYED_REFS
2577 /*
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2581 */
2582 static u64 find_middle(struct rb_root *root)
2583 {
2584 struct rb_node *n = root->rb_node;
2585 struct btrfs_delayed_ref_node *entry;
2586 int alt = 1;
2587 u64 middle;
2588 u64 first = 0, last = 0;
2589
2590 n = rb_first(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 first = entry->bytenr;
2594 }
2595 n = rb_last(root);
2596 if (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 last = entry->bytenr;
2599 }
2600 n = root->rb_node;
2601
2602 while (n) {
2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 WARN_ON(!entry->in_tree);
2605
2606 middle = entry->bytenr;
2607
2608 if (alt)
2609 n = n->rb_left;
2610 else
2611 n = n->rb_right;
2612
2613 alt = 1 - alt;
2614 }
2615 return middle;
2616 }
2617 #endif
2618
2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620 {
2621 u64 num_bytes;
2622
2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 sizeof(struct btrfs_extent_inline_ref));
2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627
2628 /*
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2631 */
2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2633 }
2634
2635 /*
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2638 */
2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2640 {
2641 u64 csum_size;
2642 u64 num_csums_per_leaf;
2643 u64 num_csums;
2644
2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 num_csums_per_leaf = div64_u64(csum_size,
2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 num_csums += num_csums_per_leaf - 1;
2650 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 return num_csums;
2652 }
2653
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655 struct btrfs_root *root)
2656 {
2657 struct btrfs_block_rsv *global_rsv;
2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 u64 num_bytes, num_dirty_bgs_bytes;
2662 int ret = 0;
2663
2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 num_heads = heads_to_leaves(root, num_heads);
2666 if (num_heads > 1)
2667 num_bytes += (num_heads - 1) * root->nodesize;
2668 num_bytes <<= 1;
2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 num_dirty_bgs);
2672 global_rsv = &root->fs_info->global_block_rsv;
2673
2674 /*
2675 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 * wiggle room since running delayed refs can create more delayed refs.
2677 */
2678 if (global_rsv->space_info->full) {
2679 num_dirty_bgs_bytes <<= 1;
2680 num_bytes <<= 1;
2681 }
2682
2683 spin_lock(&global_rsv->lock);
2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2685 ret = 1;
2686 spin_unlock(&global_rsv->lock);
2687 return ret;
2688 }
2689
2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root)
2692 {
2693 struct btrfs_fs_info *fs_info = root->fs_info;
2694 u64 num_entries =
2695 atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 u64 avg_runtime;
2697 u64 val;
2698
2699 smp_mb();
2700 avg_runtime = fs_info->avg_delayed_ref_runtime;
2701 val = num_entries * avg_runtime;
2702 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 return 1;
2704 if (val >= NSEC_PER_SEC / 2)
2705 return 2;
2706
2707 return btrfs_check_space_for_delayed_refs(trans, root);
2708 }
2709
2710 struct async_delayed_refs {
2711 struct btrfs_root *root;
2712 int count;
2713 int error;
2714 int sync;
2715 struct completion wait;
2716 struct btrfs_work work;
2717 };
2718
2719 static void delayed_ref_async_start(struct btrfs_work *work)
2720 {
2721 struct async_delayed_refs *async;
2722 struct btrfs_trans_handle *trans;
2723 int ret;
2724
2725 async = container_of(work, struct async_delayed_refs, work);
2726
2727 trans = btrfs_join_transaction(async->root);
2728 if (IS_ERR(trans)) {
2729 async->error = PTR_ERR(trans);
2730 goto done;
2731 }
2732
2733 /*
2734 * trans->sync means that when we call end_transaciton, we won't
2735 * wait on delayed refs
2736 */
2737 trans->sync = true;
2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 if (ret)
2740 async->error = ret;
2741
2742 ret = btrfs_end_transaction(trans, async->root);
2743 if (ret && !async->error)
2744 async->error = ret;
2745 done:
2746 if (async->sync)
2747 complete(&async->wait);
2748 else
2749 kfree(async);
2750 }
2751
2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 unsigned long count, int wait)
2754 {
2755 struct async_delayed_refs *async;
2756 int ret;
2757
2758 async = kmalloc(sizeof(*async), GFP_NOFS);
2759 if (!async)
2760 return -ENOMEM;
2761
2762 async->root = root->fs_info->tree_root;
2763 async->count = count;
2764 async->error = 0;
2765 if (wait)
2766 async->sync = 1;
2767 else
2768 async->sync = 0;
2769 init_completion(&async->wait);
2770
2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 delayed_ref_async_start, NULL, NULL);
2773
2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775
2776 if (wait) {
2777 wait_for_completion(&async->wait);
2778 ret = async->error;
2779 kfree(async);
2780 return ret;
2781 }
2782 return 0;
2783 }
2784
2785 /*
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far. count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
2791 *
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
2794 */
2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 struct btrfs_root *root, unsigned long count)
2797 {
2798 struct rb_node *node;
2799 struct btrfs_delayed_ref_root *delayed_refs;
2800 struct btrfs_delayed_ref_head *head;
2801 int ret;
2802 int run_all = count == (unsigned long)-1;
2803
2804 /* We'll clean this up in btrfs_cleanup_transaction */
2805 if (trans->aborted)
2806 return 0;
2807
2808 if (root == root->fs_info->extent_root)
2809 root = root->fs_info->tree_root;
2810
2811 delayed_refs = &trans->transaction->delayed_refs;
2812 if (count == 0)
2813 count = atomic_read(&delayed_refs->num_entries) * 2;
2814
2815 again:
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818 #endif
2819 ret = __btrfs_run_delayed_refs(trans, root, count);
2820 if (ret < 0) {
2821 btrfs_abort_transaction(trans, root, ret);
2822 return ret;
2823 }
2824
2825 if (run_all) {
2826 if (!list_empty(&trans->new_bgs))
2827 btrfs_create_pending_block_groups(trans, root);
2828
2829 spin_lock(&delayed_refs->lock);
2830 node = rb_first(&delayed_refs->href_root);
2831 if (!node) {
2832 spin_unlock(&delayed_refs->lock);
2833 goto out;
2834 }
2835 count = (unsigned long)-1;
2836
2837 while (node) {
2838 head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 href_node);
2840 if (btrfs_delayed_ref_is_head(&head->node)) {
2841 struct btrfs_delayed_ref_node *ref;
2842
2843 ref = &head->node;
2844 atomic_inc(&ref->refs);
2845
2846 spin_unlock(&delayed_refs->lock);
2847 /*
2848 * Mutex was contended, block until it's
2849 * released and try again
2850 */
2851 mutex_lock(&head->mutex);
2852 mutex_unlock(&head->mutex);
2853
2854 btrfs_put_delayed_ref(ref);
2855 cond_resched();
2856 goto again;
2857 } else {
2858 WARN_ON(1);
2859 }
2860 node = rb_next(node);
2861 }
2862 spin_unlock(&delayed_refs->lock);
2863 cond_resched();
2864 goto again;
2865 }
2866 out:
2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 if (ret)
2869 return ret;
2870 assert_qgroups_uptodate(trans);
2871 return 0;
2872 }
2873
2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 u64 bytenr, u64 num_bytes, u64 flags,
2877 int level, int is_data)
2878 {
2879 struct btrfs_delayed_extent_op *extent_op;
2880 int ret;
2881
2882 extent_op = btrfs_alloc_delayed_extent_op();
2883 if (!extent_op)
2884 return -ENOMEM;
2885
2886 extent_op->flags_to_set = flags;
2887 extent_op->update_flags = 1;
2888 extent_op->update_key = 0;
2889 extent_op->is_data = is_data ? 1 : 0;
2890 extent_op->level = level;
2891
2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 num_bytes, extent_op);
2894 if (ret)
2895 btrfs_free_delayed_extent_op(extent_op);
2896 return ret;
2897 }
2898
2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 struct btrfs_path *path,
2902 u64 objectid, u64 offset, u64 bytenr)
2903 {
2904 struct btrfs_delayed_ref_head *head;
2905 struct btrfs_delayed_ref_node *ref;
2906 struct btrfs_delayed_data_ref *data_ref;
2907 struct btrfs_delayed_ref_root *delayed_refs;
2908 struct rb_node *node;
2909 int ret = 0;
2910
2911 delayed_refs = &trans->transaction->delayed_refs;
2912 spin_lock(&delayed_refs->lock);
2913 head = btrfs_find_delayed_ref_head(trans, bytenr);
2914 if (!head) {
2915 spin_unlock(&delayed_refs->lock);
2916 return 0;
2917 }
2918
2919 if (!mutex_trylock(&head->mutex)) {
2920 atomic_inc(&head->node.refs);
2921 spin_unlock(&delayed_refs->lock);
2922
2923 btrfs_release_path(path);
2924
2925 /*
2926 * Mutex was contended, block until it's released and let
2927 * caller try again
2928 */
2929 mutex_lock(&head->mutex);
2930 mutex_unlock(&head->mutex);
2931 btrfs_put_delayed_ref(&head->node);
2932 return -EAGAIN;
2933 }
2934 spin_unlock(&delayed_refs->lock);
2935
2936 spin_lock(&head->lock);
2937 node = rb_first(&head->ref_root);
2938 while (node) {
2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 node = rb_next(node);
2941
2942 /* If it's a shared ref we know a cross reference exists */
2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 ret = 1;
2945 break;
2946 }
2947
2948 data_ref = btrfs_delayed_node_to_data_ref(ref);
2949
2950 /*
2951 * If our ref doesn't match the one we're currently looking at
2952 * then we have a cross reference.
2953 */
2954 if (data_ref->root != root->root_key.objectid ||
2955 data_ref->objectid != objectid ||
2956 data_ref->offset != offset) {
2957 ret = 1;
2958 break;
2959 }
2960 }
2961 spin_unlock(&head->lock);
2962 mutex_unlock(&head->mutex);
2963 return ret;
2964 }
2965
2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path,
2969 u64 objectid, u64 offset, u64 bytenr)
2970 {
2971 struct btrfs_root *extent_root = root->fs_info->extent_root;
2972 struct extent_buffer *leaf;
2973 struct btrfs_extent_data_ref *ref;
2974 struct btrfs_extent_inline_ref *iref;
2975 struct btrfs_extent_item *ei;
2976 struct btrfs_key key;
2977 u32 item_size;
2978 int ret;
2979
2980 key.objectid = bytenr;
2981 key.offset = (u64)-1;
2982 key.type = BTRFS_EXTENT_ITEM_KEY;
2983
2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 if (ret < 0)
2986 goto out;
2987 BUG_ON(ret == 0); /* Corruption */
2988
2989 ret = -ENOENT;
2990 if (path->slots[0] == 0)
2991 goto out;
2992
2993 path->slots[0]--;
2994 leaf = path->nodes[0];
2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2996
2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2998 goto out;
2999
3000 ret = 1;
3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 if (item_size < sizeof(*ei)) {
3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 goto out;
3006 }
3007 #endif
3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3009
3010 if (item_size != sizeof(*ei) +
3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 goto out;
3013
3014 if (btrfs_extent_generation(leaf, ei) <=
3015 btrfs_root_last_snapshot(&root->root_item))
3016 goto out;
3017
3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 BTRFS_EXTENT_DATA_REF_KEY)
3021 goto out;
3022
3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 if (btrfs_extent_refs(leaf, ei) !=
3025 btrfs_extent_data_ref_count(leaf, ref) ||
3026 btrfs_extent_data_ref_root(leaf, ref) !=
3027 root->root_key.objectid ||
3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 goto out;
3031
3032 ret = 0;
3033 out:
3034 return ret;
3035 }
3036
3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 struct btrfs_path *path;
3042 int ret;
3043 int ret2;
3044
3045 path = btrfs_alloc_path();
3046 if (!path)
3047 return -ENOENT;
3048
3049 do {
3050 ret = check_committed_ref(trans, root, path, objectid,
3051 offset, bytenr);
3052 if (ret && ret != -ENOENT)
3053 goto out;
3054
3055 ret2 = check_delayed_ref(trans, root, path, objectid,
3056 offset, bytenr);
3057 } while (ret2 == -EAGAIN);
3058
3059 if (ret2 && ret2 != -ENOENT) {
3060 ret = ret2;
3061 goto out;
3062 }
3063
3064 if (ret != -ENOENT || ret2 != -ENOENT)
3065 ret = 0;
3066 out:
3067 btrfs_free_path(path);
3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 WARN_ON(ret > 0);
3070 return ret;
3071 }
3072
3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3074 struct btrfs_root *root,
3075 struct extent_buffer *buf,
3076 int full_backref, int inc)
3077 {
3078 u64 bytenr;
3079 u64 num_bytes;
3080 u64 parent;
3081 u64 ref_root;
3082 u32 nritems;
3083 struct btrfs_key key;
3084 struct btrfs_file_extent_item *fi;
3085 int i;
3086 int level;
3087 int ret = 0;
3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3089 u64, u64, u64, u64, u64, u64, int);
3090
3091
3092 if (btrfs_test_is_dummy_root(root))
3093 return 0;
3094
3095 ref_root = btrfs_header_owner(buf);
3096 nritems = btrfs_header_nritems(buf);
3097 level = btrfs_header_level(buf);
3098
3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3100 return 0;
3101
3102 if (inc)
3103 process_func = btrfs_inc_extent_ref;
3104 else
3105 process_func = btrfs_free_extent;
3106
3107 if (full_backref)
3108 parent = buf->start;
3109 else
3110 parent = 0;
3111
3112 for (i = 0; i < nritems; i++) {
3113 if (level == 0) {
3114 btrfs_item_key_to_cpu(buf, &key, i);
3115 if (key.type != BTRFS_EXTENT_DATA_KEY)
3116 continue;
3117 fi = btrfs_item_ptr(buf, i,
3118 struct btrfs_file_extent_item);
3119 if (btrfs_file_extent_type(buf, fi) ==
3120 BTRFS_FILE_EXTENT_INLINE)
3121 continue;
3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 if (bytenr == 0)
3124 continue;
3125
3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 key.offset -= btrfs_file_extent_offset(buf, fi);
3128 ret = process_func(trans, root, bytenr, num_bytes,
3129 parent, ref_root, key.objectid,
3130 key.offset, 1);
3131 if (ret)
3132 goto fail;
3133 } else {
3134 bytenr = btrfs_node_blockptr(buf, i);
3135 num_bytes = root->nodesize;
3136 ret = process_func(trans, root, bytenr, num_bytes,
3137 parent, ref_root, level - 1, 0,
3138 1);
3139 if (ret)
3140 goto fail;
3141 }
3142 }
3143 return 0;
3144 fail:
3145 return ret;
3146 }
3147
3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3149 struct extent_buffer *buf, int full_backref)
3150 {
3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3152 }
3153
3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3155 struct extent_buffer *buf, int full_backref)
3156 {
3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3158 }
3159
3160 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 struct btrfs_path *path,
3163 struct btrfs_block_group_cache *cache)
3164 {
3165 int ret;
3166 struct btrfs_root *extent_root = root->fs_info->extent_root;
3167 unsigned long bi;
3168 struct extent_buffer *leaf;
3169
3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3171 if (ret) {
3172 if (ret > 0)
3173 ret = -ENOENT;
3174 goto fail;
3175 }
3176
3177 leaf = path->nodes[0];
3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 btrfs_mark_buffer_dirty(leaf);
3181 btrfs_release_path(path);
3182 fail:
3183 if (ret)
3184 btrfs_abort_transaction(trans, root, ret);
3185 return ret;
3186
3187 }
3188
3189 static struct btrfs_block_group_cache *
3190 next_block_group(struct btrfs_root *root,
3191 struct btrfs_block_group_cache *cache)
3192 {
3193 struct rb_node *node;
3194
3195 spin_lock(&root->fs_info->block_group_cache_lock);
3196
3197 /* If our block group was removed, we need a full search. */
3198 if (RB_EMPTY_NODE(&cache->cache_node)) {
3199 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3200
3201 spin_unlock(&root->fs_info->block_group_cache_lock);
3202 btrfs_put_block_group(cache);
3203 cache = btrfs_lookup_first_block_group(root->fs_info,
3204 next_bytenr);
3205 return cache;
3206 }
3207 node = rb_next(&cache->cache_node);
3208 btrfs_put_block_group(cache);
3209 if (node) {
3210 cache = rb_entry(node, struct btrfs_block_group_cache,
3211 cache_node);
3212 btrfs_get_block_group(cache);
3213 } else
3214 cache = NULL;
3215 spin_unlock(&root->fs_info->block_group_cache_lock);
3216 return cache;
3217 }
3218
3219 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3220 struct btrfs_trans_handle *trans,
3221 struct btrfs_path *path)
3222 {
3223 struct btrfs_root *root = block_group->fs_info->tree_root;
3224 struct inode *inode = NULL;
3225 u64 alloc_hint = 0;
3226 int dcs = BTRFS_DC_ERROR;
3227 u64 num_pages = 0;
3228 int retries = 0;
3229 int ret = 0;
3230
3231 /*
3232 * If this block group is smaller than 100 megs don't bother caching the
3233 * block group.
3234 */
3235 if (block_group->key.offset < (100 * 1024 * 1024)) {
3236 spin_lock(&block_group->lock);
3237 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3238 spin_unlock(&block_group->lock);
3239 return 0;
3240 }
3241
3242 if (trans->aborted)
3243 return 0;
3244 again:
3245 inode = lookup_free_space_inode(root, block_group, path);
3246 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3247 ret = PTR_ERR(inode);
3248 btrfs_release_path(path);
3249 goto out;
3250 }
3251
3252 if (IS_ERR(inode)) {
3253 BUG_ON(retries);
3254 retries++;
3255
3256 if (block_group->ro)
3257 goto out_free;
3258
3259 ret = create_free_space_inode(root, trans, block_group, path);
3260 if (ret)
3261 goto out_free;
3262 goto again;
3263 }
3264
3265 /* We've already setup this transaction, go ahead and exit */
3266 if (block_group->cache_generation == trans->transid &&
3267 i_size_read(inode)) {
3268 dcs = BTRFS_DC_SETUP;
3269 goto out_put;
3270 }
3271
3272 /*
3273 * We want to set the generation to 0, that way if anything goes wrong
3274 * from here on out we know not to trust this cache when we load up next
3275 * time.
3276 */
3277 BTRFS_I(inode)->generation = 0;
3278 ret = btrfs_update_inode(trans, root, inode);
3279 if (ret) {
3280 /*
3281 * So theoretically we could recover from this, simply set the
3282 * super cache generation to 0 so we know to invalidate the
3283 * cache, but then we'd have to keep track of the block groups
3284 * that fail this way so we know we _have_ to reset this cache
3285 * before the next commit or risk reading stale cache. So to
3286 * limit our exposure to horrible edge cases lets just abort the
3287 * transaction, this only happens in really bad situations
3288 * anyway.
3289 */
3290 btrfs_abort_transaction(trans, root, ret);
3291 goto out_put;
3292 }
3293 WARN_ON(ret);
3294
3295 if (i_size_read(inode) > 0) {
3296 ret = btrfs_check_trunc_cache_free_space(root,
3297 &root->fs_info->global_block_rsv);
3298 if (ret)
3299 goto out_put;
3300
3301 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3302 if (ret)
3303 goto out_put;
3304 }
3305
3306 spin_lock(&block_group->lock);
3307 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3308 !btrfs_test_opt(root, SPACE_CACHE) ||
3309 block_group->delalloc_bytes) {
3310 /*
3311 * don't bother trying to write stuff out _if_
3312 * a) we're not cached,
3313 * b) we're with nospace_cache mount option.
3314 */
3315 dcs = BTRFS_DC_WRITTEN;
3316 spin_unlock(&block_group->lock);
3317 goto out_put;
3318 }
3319 spin_unlock(&block_group->lock);
3320
3321 /*
3322 * Try to preallocate enough space based on how big the block group is.
3323 * Keep in mind this has to include any pinned space which could end up
3324 * taking up quite a bit since it's not folded into the other space
3325 * cache.
3326 */
3327 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3328 if (!num_pages)
3329 num_pages = 1;
3330
3331 num_pages *= 16;
3332 num_pages *= PAGE_CACHE_SIZE;
3333
3334 ret = btrfs_check_data_free_space(inode, num_pages);
3335 if (ret)
3336 goto out_put;
3337
3338 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3339 num_pages, num_pages,
3340 &alloc_hint);
3341 if (!ret)
3342 dcs = BTRFS_DC_SETUP;
3343 btrfs_free_reserved_data_space(inode, num_pages);
3344
3345 out_put:
3346 iput(inode);
3347 out_free:
3348 btrfs_release_path(path);
3349 out:
3350 spin_lock(&block_group->lock);
3351 if (!ret && dcs == BTRFS_DC_SETUP)
3352 block_group->cache_generation = trans->transid;
3353 block_group->disk_cache_state = dcs;
3354 spin_unlock(&block_group->lock);
3355
3356 return ret;
3357 }
3358
3359 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3360 struct btrfs_root *root)
3361 {
3362 struct btrfs_block_group_cache *cache, *tmp;
3363 struct btrfs_transaction *cur_trans = trans->transaction;
3364 struct btrfs_path *path;
3365
3366 if (list_empty(&cur_trans->dirty_bgs) ||
3367 !btrfs_test_opt(root, SPACE_CACHE))
3368 return 0;
3369
3370 path = btrfs_alloc_path();
3371 if (!path)
3372 return -ENOMEM;
3373
3374 /* Could add new block groups, use _safe just in case */
3375 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3376 dirty_list) {
3377 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3378 cache_save_setup(cache, trans, path);
3379 }
3380
3381 btrfs_free_path(path);
3382 return 0;
3383 }
3384
3385 /*
3386 * transaction commit does final block group cache writeback during a
3387 * critical section where nothing is allowed to change the FS. This is
3388 * required in order for the cache to actually match the block group,
3389 * but can introduce a lot of latency into the commit.
3390 *
3391 * So, btrfs_start_dirty_block_groups is here to kick off block group
3392 * cache IO. There's a chance we'll have to redo some of it if the
3393 * block group changes again during the commit, but it greatly reduces
3394 * the commit latency by getting rid of the easy block groups while
3395 * we're still allowing others to join the commit.
3396 */
3397 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3398 struct btrfs_root *root)
3399 {
3400 struct btrfs_block_group_cache *cache;
3401 struct btrfs_transaction *cur_trans = trans->transaction;
3402 int ret = 0;
3403 int should_put;
3404 struct btrfs_path *path = NULL;
3405 LIST_HEAD(dirty);
3406 struct list_head *io = &cur_trans->io_bgs;
3407 int num_started = 0;
3408 int loops = 0;
3409
3410 spin_lock(&cur_trans->dirty_bgs_lock);
3411 if (!list_empty(&cur_trans->dirty_bgs)) {
3412 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3413 }
3414 spin_unlock(&cur_trans->dirty_bgs_lock);
3415
3416 again:
3417 if (list_empty(&dirty)) {
3418 btrfs_free_path(path);
3419 return 0;
3420 }
3421
3422 /*
3423 * make sure all the block groups on our dirty list actually
3424 * exist
3425 */
3426 btrfs_create_pending_block_groups(trans, root);
3427
3428 if (!path) {
3429 path = btrfs_alloc_path();
3430 if (!path)
3431 return -ENOMEM;
3432 }
3433
3434 while (!list_empty(&dirty)) {
3435 cache = list_first_entry(&dirty,
3436 struct btrfs_block_group_cache,
3437 dirty_list);
3438
3439 /*
3440 * cache_write_mutex is here only to save us from balance
3441 * deleting this block group while we are writing out the
3442 * cache
3443 */
3444 mutex_lock(&trans->transaction->cache_write_mutex);
3445
3446 /*
3447 * this can happen if something re-dirties a block
3448 * group that is already under IO. Just wait for it to
3449 * finish and then do it all again
3450 */
3451 if (!list_empty(&cache->io_list)) {
3452 list_del_init(&cache->io_list);
3453 btrfs_wait_cache_io(root, trans, cache,
3454 &cache->io_ctl, path,
3455 cache->key.objectid);
3456 btrfs_put_block_group(cache);
3457 }
3458
3459
3460 /*
3461 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3462 * if it should update the cache_state. Don't delete
3463 * until after we wait.
3464 *
3465 * Since we're not running in the commit critical section
3466 * we need the dirty_bgs_lock to protect from update_block_group
3467 */
3468 spin_lock(&cur_trans->dirty_bgs_lock);
3469 list_del_init(&cache->dirty_list);
3470 spin_unlock(&cur_trans->dirty_bgs_lock);
3471
3472 should_put = 1;
3473
3474 cache_save_setup(cache, trans, path);
3475
3476 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3477 cache->io_ctl.inode = NULL;
3478 ret = btrfs_write_out_cache(root, trans, cache, path);
3479 if (ret == 0 && cache->io_ctl.inode) {
3480 num_started++;
3481 should_put = 0;
3482
3483 /*
3484 * the cache_write_mutex is protecting
3485 * the io_list
3486 */
3487 list_add_tail(&cache->io_list, io);
3488 } else {
3489 /*
3490 * if we failed to write the cache, the
3491 * generation will be bad and life goes on
3492 */
3493 ret = 0;
3494 }
3495 }
3496 if (!ret)
3497 ret = write_one_cache_group(trans, root, path, cache);
3498 mutex_unlock(&trans->transaction->cache_write_mutex);
3499
3500 /* if its not on the io list, we need to put the block group */
3501 if (should_put)
3502 btrfs_put_block_group(cache);
3503
3504 if (ret)
3505 break;
3506 }
3507
3508 /*
3509 * go through delayed refs for all the stuff we've just kicked off
3510 * and then loop back (just once)
3511 */
3512 ret = btrfs_run_delayed_refs(trans, root, 0);
3513 if (!ret && loops == 0) {
3514 loops++;
3515 spin_lock(&cur_trans->dirty_bgs_lock);
3516 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3517 spin_unlock(&cur_trans->dirty_bgs_lock);
3518 goto again;
3519 }
3520
3521 btrfs_free_path(path);
3522 return ret;
3523 }
3524
3525 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3526 struct btrfs_root *root)
3527 {
3528 struct btrfs_block_group_cache *cache;
3529 struct btrfs_transaction *cur_trans = trans->transaction;
3530 int ret = 0;
3531 int should_put;
3532 struct btrfs_path *path;
3533 struct list_head *io = &cur_trans->io_bgs;
3534 int num_started = 0;
3535
3536 path = btrfs_alloc_path();
3537 if (!path)
3538 return -ENOMEM;
3539
3540 /*
3541 * We don't need the lock here since we are protected by the transaction
3542 * commit. We want to do the cache_save_setup first and then run the
3543 * delayed refs to make sure we have the best chance at doing this all
3544 * in one shot.
3545 */
3546 while (!list_empty(&cur_trans->dirty_bgs)) {
3547 cache = list_first_entry(&cur_trans->dirty_bgs,
3548 struct btrfs_block_group_cache,
3549 dirty_list);
3550
3551 /*
3552 * this can happen if cache_save_setup re-dirties a block
3553 * group that is already under IO. Just wait for it to
3554 * finish and then do it all again
3555 */
3556 if (!list_empty(&cache->io_list)) {
3557 list_del_init(&cache->io_list);
3558 btrfs_wait_cache_io(root, trans, cache,
3559 &cache->io_ctl, path,
3560 cache->key.objectid);
3561 btrfs_put_block_group(cache);
3562 }
3563
3564 /*
3565 * don't remove from the dirty list until after we've waited
3566 * on any pending IO
3567 */
3568 list_del_init(&cache->dirty_list);
3569 should_put = 1;
3570
3571 cache_save_setup(cache, trans, path);
3572
3573 if (!ret)
3574 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3575
3576 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3577 cache->io_ctl.inode = NULL;
3578 ret = btrfs_write_out_cache(root, trans, cache, path);
3579 if (ret == 0 && cache->io_ctl.inode) {
3580 num_started++;
3581 should_put = 0;
3582 list_add_tail(&cache->io_list, io);
3583 } else {
3584 /*
3585 * if we failed to write the cache, the
3586 * generation will be bad and life goes on
3587 */
3588 ret = 0;
3589 }
3590 }
3591 if (!ret)
3592 ret = write_one_cache_group(trans, root, path, cache);
3593
3594 /* if its not on the io list, we need to put the block group */
3595 if (should_put)
3596 btrfs_put_block_group(cache);
3597 }
3598
3599 while (!list_empty(io)) {
3600 cache = list_first_entry(io, struct btrfs_block_group_cache,
3601 io_list);
3602 list_del_init(&cache->io_list);
3603 btrfs_wait_cache_io(root, trans, cache,
3604 &cache->io_ctl, path, cache->key.objectid);
3605 btrfs_put_block_group(cache);
3606 }
3607
3608 btrfs_free_path(path);
3609 return ret;
3610 }
3611
3612 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3613 {
3614 struct btrfs_block_group_cache *block_group;
3615 int readonly = 0;
3616
3617 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3618 if (!block_group || block_group->ro)
3619 readonly = 1;
3620 if (block_group)
3621 btrfs_put_block_group(block_group);
3622 return readonly;
3623 }
3624
3625 static const char *alloc_name(u64 flags)
3626 {
3627 switch (flags) {
3628 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3629 return "mixed";
3630 case BTRFS_BLOCK_GROUP_METADATA:
3631 return "metadata";
3632 case BTRFS_BLOCK_GROUP_DATA:
3633 return "data";
3634 case BTRFS_BLOCK_GROUP_SYSTEM:
3635 return "system";
3636 default:
3637 WARN_ON(1);
3638 return "invalid-combination";
3639 };
3640 }
3641
3642 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3643 u64 total_bytes, u64 bytes_used,
3644 struct btrfs_space_info **space_info)
3645 {
3646 struct btrfs_space_info *found;
3647 int i;
3648 int factor;
3649 int ret;
3650
3651 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3652 BTRFS_BLOCK_GROUP_RAID10))
3653 factor = 2;
3654 else
3655 factor = 1;
3656
3657 found = __find_space_info(info, flags);
3658 if (found) {
3659 spin_lock(&found->lock);
3660 found->total_bytes += total_bytes;
3661 found->disk_total += total_bytes * factor;
3662 found->bytes_used += bytes_used;
3663 found->disk_used += bytes_used * factor;
3664 found->full = 0;
3665 spin_unlock(&found->lock);
3666 *space_info = found;
3667 return 0;
3668 }
3669 found = kzalloc(sizeof(*found), GFP_NOFS);
3670 if (!found)
3671 return -ENOMEM;
3672
3673 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3674 if (ret) {
3675 kfree(found);
3676 return ret;
3677 }
3678
3679 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3680 INIT_LIST_HEAD(&found->block_groups[i]);
3681 init_rwsem(&found->groups_sem);
3682 spin_lock_init(&found->lock);
3683 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3684 found->total_bytes = total_bytes;
3685 found->disk_total = total_bytes * factor;
3686 found->bytes_used = bytes_used;
3687 found->disk_used = bytes_used * factor;
3688 found->bytes_pinned = 0;
3689 found->bytes_reserved = 0;
3690 found->bytes_readonly = 0;
3691 found->bytes_may_use = 0;
3692 found->full = 0;
3693 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3694 found->chunk_alloc = 0;
3695 found->flush = 0;
3696 init_waitqueue_head(&found->wait);
3697 INIT_LIST_HEAD(&found->ro_bgs);
3698
3699 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3700 info->space_info_kobj, "%s",
3701 alloc_name(found->flags));
3702 if (ret) {
3703 kfree(found);
3704 return ret;
3705 }
3706
3707 *space_info = found;
3708 list_add_rcu(&found->list, &info->space_info);
3709 if (flags & BTRFS_BLOCK_GROUP_DATA)
3710 info->data_sinfo = found;
3711
3712 return ret;
3713 }
3714
3715 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3716 {
3717 u64 extra_flags = chunk_to_extended(flags) &
3718 BTRFS_EXTENDED_PROFILE_MASK;
3719
3720 write_seqlock(&fs_info->profiles_lock);
3721 if (flags & BTRFS_BLOCK_GROUP_DATA)
3722 fs_info->avail_data_alloc_bits |= extra_flags;
3723 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3724 fs_info->avail_metadata_alloc_bits |= extra_flags;
3725 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3726 fs_info->avail_system_alloc_bits |= extra_flags;
3727 write_sequnlock(&fs_info->profiles_lock);
3728 }
3729
3730 /*
3731 * returns target flags in extended format or 0 if restripe for this
3732 * chunk_type is not in progress
3733 *
3734 * should be called with either volume_mutex or balance_lock held
3735 */
3736 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3737 {
3738 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3739 u64 target = 0;
3740
3741 if (!bctl)
3742 return 0;
3743
3744 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3745 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3746 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3747 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3748 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3749 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3750 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3751 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3752 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3753 }
3754
3755 return target;
3756 }
3757
3758 /*
3759 * @flags: available profiles in extended format (see ctree.h)
3760 *
3761 * Returns reduced profile in chunk format. If profile changing is in
3762 * progress (either running or paused) picks the target profile (if it's
3763 * already available), otherwise falls back to plain reducing.
3764 */
3765 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3766 {
3767 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3768 u64 target;
3769 u64 tmp;
3770
3771 /*
3772 * see if restripe for this chunk_type is in progress, if so
3773 * try to reduce to the target profile
3774 */
3775 spin_lock(&root->fs_info->balance_lock);
3776 target = get_restripe_target(root->fs_info, flags);
3777 if (target) {
3778 /* pick target profile only if it's already available */
3779 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3780 spin_unlock(&root->fs_info->balance_lock);
3781 return extended_to_chunk(target);
3782 }
3783 }
3784 spin_unlock(&root->fs_info->balance_lock);
3785
3786 /* First, mask out the RAID levels which aren't possible */
3787 if (num_devices == 1)
3788 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3789 BTRFS_BLOCK_GROUP_RAID5);
3790 if (num_devices < 3)
3791 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3792 if (num_devices < 4)
3793 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3794
3795 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3796 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3797 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3798 flags &= ~tmp;
3799
3800 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3801 tmp = BTRFS_BLOCK_GROUP_RAID6;
3802 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3803 tmp = BTRFS_BLOCK_GROUP_RAID5;
3804 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3805 tmp = BTRFS_BLOCK_GROUP_RAID10;
3806 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3807 tmp = BTRFS_BLOCK_GROUP_RAID1;
3808 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3809 tmp = BTRFS_BLOCK_GROUP_RAID0;
3810
3811 return extended_to_chunk(flags | tmp);
3812 }
3813
3814 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3815 {
3816 unsigned seq;
3817 u64 flags;
3818
3819 do {
3820 flags = orig_flags;
3821 seq = read_seqbegin(&root->fs_info->profiles_lock);
3822
3823 if (flags & BTRFS_BLOCK_GROUP_DATA)
3824 flags |= root->fs_info->avail_data_alloc_bits;
3825 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3826 flags |= root->fs_info->avail_system_alloc_bits;
3827 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3828 flags |= root->fs_info->avail_metadata_alloc_bits;
3829 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3830
3831 return btrfs_reduce_alloc_profile(root, flags);
3832 }
3833
3834 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3835 {
3836 u64 flags;
3837 u64 ret;
3838
3839 if (data)
3840 flags = BTRFS_BLOCK_GROUP_DATA;
3841 else if (root == root->fs_info->chunk_root)
3842 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3843 else
3844 flags = BTRFS_BLOCK_GROUP_METADATA;
3845
3846 ret = get_alloc_profile(root, flags);
3847 return ret;
3848 }
3849
3850 /*
3851 * This will check the space that the inode allocates from to make sure we have
3852 * enough space for bytes.
3853 */
3854 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3855 {
3856 struct btrfs_space_info *data_sinfo;
3857 struct btrfs_root *root = BTRFS_I(inode)->root;
3858 struct btrfs_fs_info *fs_info = root->fs_info;
3859 u64 used;
3860 int ret = 0;
3861 int need_commit = 2;
3862 int have_pinned_space;
3863
3864 /* make sure bytes are sectorsize aligned */
3865 bytes = ALIGN(bytes, root->sectorsize);
3866
3867 if (btrfs_is_free_space_inode(inode)) {
3868 need_commit = 0;
3869 ASSERT(current->journal_info);
3870 }
3871
3872 data_sinfo = fs_info->data_sinfo;
3873 if (!data_sinfo)
3874 goto alloc;
3875
3876 again:
3877 /* make sure we have enough space to handle the data first */
3878 spin_lock(&data_sinfo->lock);
3879 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3880 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3881 data_sinfo->bytes_may_use;
3882
3883 if (used + bytes > data_sinfo->total_bytes) {
3884 struct btrfs_trans_handle *trans;
3885
3886 /*
3887 * if we don't have enough free bytes in this space then we need
3888 * to alloc a new chunk.
3889 */
3890 if (!data_sinfo->full) {
3891 u64 alloc_target;
3892
3893 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3894 spin_unlock(&data_sinfo->lock);
3895 alloc:
3896 alloc_target = btrfs_get_alloc_profile(root, 1);
3897 /*
3898 * It is ugly that we don't call nolock join
3899 * transaction for the free space inode case here.
3900 * But it is safe because we only do the data space
3901 * reservation for the free space cache in the
3902 * transaction context, the common join transaction
3903 * just increase the counter of the current transaction
3904 * handler, doesn't try to acquire the trans_lock of
3905 * the fs.
3906 */
3907 trans = btrfs_join_transaction(root);
3908 if (IS_ERR(trans))
3909 return PTR_ERR(trans);
3910
3911 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3912 alloc_target,
3913 CHUNK_ALLOC_NO_FORCE);
3914 btrfs_end_transaction(trans, root);
3915 if (ret < 0) {
3916 if (ret != -ENOSPC)
3917 return ret;
3918 else {
3919 have_pinned_space = 1;
3920 goto commit_trans;
3921 }
3922 }
3923
3924 if (!data_sinfo)
3925 data_sinfo = fs_info->data_sinfo;
3926
3927 goto again;
3928 }
3929
3930 /*
3931 * If we don't have enough pinned space to deal with this
3932 * allocation, and no removed chunk in current transaction,
3933 * don't bother committing the transaction.
3934 */
3935 have_pinned_space = percpu_counter_compare(
3936 &data_sinfo->total_bytes_pinned,
3937 used + bytes - data_sinfo->total_bytes);
3938 spin_unlock(&data_sinfo->lock);
3939
3940 /* commit the current transaction and try again */
3941 commit_trans:
3942 if (need_commit &&
3943 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3944 need_commit--;
3945
3946 trans = btrfs_join_transaction(root);
3947 if (IS_ERR(trans))
3948 return PTR_ERR(trans);
3949 if (have_pinned_space >= 0 ||
3950 trans->transaction->have_free_bgs ||
3951 need_commit > 0) {
3952 ret = btrfs_commit_transaction(trans, root);
3953 if (ret)
3954 return ret;
3955 /*
3956 * make sure that all running delayed iput are
3957 * done
3958 */
3959 down_write(&root->fs_info->delayed_iput_sem);
3960 up_write(&root->fs_info->delayed_iput_sem);
3961 goto again;
3962 } else {
3963 btrfs_end_transaction(trans, root);
3964 }
3965 }
3966
3967 trace_btrfs_space_reservation(root->fs_info,
3968 "space_info:enospc",
3969 data_sinfo->flags, bytes, 1);
3970 return -ENOSPC;
3971 }
3972 data_sinfo->bytes_may_use += bytes;
3973 trace_btrfs_space_reservation(root->fs_info, "space_info",
3974 data_sinfo->flags, bytes, 1);
3975 spin_unlock(&data_sinfo->lock);
3976
3977 return 0;
3978 }
3979
3980 /*
3981 * Called if we need to clear a data reservation for this inode.
3982 */
3983 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3984 {
3985 struct btrfs_root *root = BTRFS_I(inode)->root;
3986 struct btrfs_space_info *data_sinfo;
3987
3988 /* make sure bytes are sectorsize aligned */
3989 bytes = ALIGN(bytes, root->sectorsize);
3990
3991 data_sinfo = root->fs_info->data_sinfo;
3992 spin_lock(&data_sinfo->lock);
3993 WARN_ON(data_sinfo->bytes_may_use < bytes);
3994 data_sinfo->bytes_may_use -= bytes;
3995 trace_btrfs_space_reservation(root->fs_info, "space_info",
3996 data_sinfo->flags, bytes, 0);
3997 spin_unlock(&data_sinfo->lock);
3998 }
3999
4000 static void force_metadata_allocation(struct btrfs_fs_info *info)
4001 {
4002 struct list_head *head = &info->space_info;
4003 struct btrfs_space_info *found;
4004
4005 rcu_read_lock();
4006 list_for_each_entry_rcu(found, head, list) {
4007 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4008 found->force_alloc = CHUNK_ALLOC_FORCE;
4009 }
4010 rcu_read_unlock();
4011 }
4012
4013 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4014 {
4015 return (global->size << 1);
4016 }
4017
4018 static int should_alloc_chunk(struct btrfs_root *root,
4019 struct btrfs_space_info *sinfo, int force)
4020 {
4021 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4022 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4023 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4024 u64 thresh;
4025
4026 if (force == CHUNK_ALLOC_FORCE)
4027 return 1;
4028
4029 /*
4030 * We need to take into account the global rsv because for all intents
4031 * and purposes it's used space. Don't worry about locking the
4032 * global_rsv, it doesn't change except when the transaction commits.
4033 */
4034 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4035 num_allocated += calc_global_rsv_need_space(global_rsv);
4036
4037 /*
4038 * in limited mode, we want to have some free space up to
4039 * about 1% of the FS size.
4040 */
4041 if (force == CHUNK_ALLOC_LIMITED) {
4042 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4043 thresh = max_t(u64, 64 * 1024 * 1024,
4044 div_factor_fine(thresh, 1));
4045
4046 if (num_bytes - num_allocated < thresh)
4047 return 1;
4048 }
4049
4050 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4051 return 0;
4052 return 1;
4053 }
4054
4055 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4056 {
4057 u64 num_dev;
4058
4059 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4060 BTRFS_BLOCK_GROUP_RAID0 |
4061 BTRFS_BLOCK_GROUP_RAID5 |
4062 BTRFS_BLOCK_GROUP_RAID6))
4063 num_dev = root->fs_info->fs_devices->rw_devices;
4064 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4065 num_dev = 2;
4066 else
4067 num_dev = 1; /* DUP or single */
4068
4069 /* metadata for updaing devices and chunk tree */
4070 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4071 }
4072
4073 static void check_system_chunk(struct btrfs_trans_handle *trans,
4074 struct btrfs_root *root, u64 type)
4075 {
4076 struct btrfs_space_info *info;
4077 u64 left;
4078 u64 thresh;
4079
4080 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4081 spin_lock(&info->lock);
4082 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4083 info->bytes_reserved - info->bytes_readonly;
4084 spin_unlock(&info->lock);
4085
4086 thresh = get_system_chunk_thresh(root, type);
4087 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4088 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4089 left, thresh, type);
4090 dump_space_info(info, 0, 0);
4091 }
4092
4093 if (left < thresh) {
4094 u64 flags;
4095
4096 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4097 btrfs_alloc_chunk(trans, root, flags);
4098 }
4099 }
4100
4101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4102 struct btrfs_root *extent_root, u64 flags, int force)
4103 {
4104 struct btrfs_space_info *space_info;
4105 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4106 int wait_for_alloc = 0;
4107 int ret = 0;
4108
4109 /* Don't re-enter if we're already allocating a chunk */
4110 if (trans->allocating_chunk)
4111 return -ENOSPC;
4112
4113 space_info = __find_space_info(extent_root->fs_info, flags);
4114 if (!space_info) {
4115 ret = update_space_info(extent_root->fs_info, flags,
4116 0, 0, &space_info);
4117 BUG_ON(ret); /* -ENOMEM */
4118 }
4119 BUG_ON(!space_info); /* Logic error */
4120
4121 again:
4122 spin_lock(&space_info->lock);
4123 if (force < space_info->force_alloc)
4124 force = space_info->force_alloc;
4125 if (space_info->full) {
4126 if (should_alloc_chunk(extent_root, space_info, force))
4127 ret = -ENOSPC;
4128 else
4129 ret = 0;
4130 spin_unlock(&space_info->lock);
4131 return ret;
4132 }
4133
4134 if (!should_alloc_chunk(extent_root, space_info, force)) {
4135 spin_unlock(&space_info->lock);
4136 return 0;
4137 } else if (space_info->chunk_alloc) {
4138 wait_for_alloc = 1;
4139 } else {
4140 space_info->chunk_alloc = 1;
4141 }
4142
4143 spin_unlock(&space_info->lock);
4144
4145 mutex_lock(&fs_info->chunk_mutex);
4146
4147 /*
4148 * The chunk_mutex is held throughout the entirety of a chunk
4149 * allocation, so once we've acquired the chunk_mutex we know that the
4150 * other guy is done and we need to recheck and see if we should
4151 * allocate.
4152 */
4153 if (wait_for_alloc) {
4154 mutex_unlock(&fs_info->chunk_mutex);
4155 wait_for_alloc = 0;
4156 goto again;
4157 }
4158
4159 trans->allocating_chunk = true;
4160
4161 /*
4162 * If we have mixed data/metadata chunks we want to make sure we keep
4163 * allocating mixed chunks instead of individual chunks.
4164 */
4165 if (btrfs_mixed_space_info(space_info))
4166 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4167
4168 /*
4169 * if we're doing a data chunk, go ahead and make sure that
4170 * we keep a reasonable number of metadata chunks allocated in the
4171 * FS as well.
4172 */
4173 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4174 fs_info->data_chunk_allocations++;
4175 if (!(fs_info->data_chunk_allocations %
4176 fs_info->metadata_ratio))
4177 force_metadata_allocation(fs_info);
4178 }
4179
4180 /*
4181 * Check if we have enough space in SYSTEM chunk because we may need
4182 * to update devices.
4183 */
4184 check_system_chunk(trans, extent_root, flags);
4185
4186 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4187 trans->allocating_chunk = false;
4188
4189 spin_lock(&space_info->lock);
4190 if (ret < 0 && ret != -ENOSPC)
4191 goto out;
4192 if (ret)
4193 space_info->full = 1;
4194 else
4195 ret = 1;
4196
4197 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4198 out:
4199 space_info->chunk_alloc = 0;
4200 spin_unlock(&space_info->lock);
4201 mutex_unlock(&fs_info->chunk_mutex);
4202 return ret;
4203 }
4204
4205 static int can_overcommit(struct btrfs_root *root,
4206 struct btrfs_space_info *space_info, u64 bytes,
4207 enum btrfs_reserve_flush_enum flush)
4208 {
4209 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4210 u64 profile = btrfs_get_alloc_profile(root, 0);
4211 u64 space_size;
4212 u64 avail;
4213 u64 used;
4214
4215 used = space_info->bytes_used + space_info->bytes_reserved +
4216 space_info->bytes_pinned + space_info->bytes_readonly;
4217
4218 /*
4219 * We only want to allow over committing if we have lots of actual space
4220 * free, but if we don't have enough space to handle the global reserve
4221 * space then we could end up having a real enospc problem when trying
4222 * to allocate a chunk or some other such important allocation.
4223 */
4224 spin_lock(&global_rsv->lock);
4225 space_size = calc_global_rsv_need_space(global_rsv);
4226 spin_unlock(&global_rsv->lock);
4227 if (used + space_size >= space_info->total_bytes)
4228 return 0;
4229
4230 used += space_info->bytes_may_use;
4231
4232 spin_lock(&root->fs_info->free_chunk_lock);
4233 avail = root->fs_info->free_chunk_space;
4234 spin_unlock(&root->fs_info->free_chunk_lock);
4235
4236 /*
4237 * If we have dup, raid1 or raid10 then only half of the free
4238 * space is actually useable. For raid56, the space info used
4239 * doesn't include the parity drive, so we don't have to
4240 * change the math
4241 */
4242 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4243 BTRFS_BLOCK_GROUP_RAID1 |
4244 BTRFS_BLOCK_GROUP_RAID10))
4245 avail >>= 1;
4246
4247 /*
4248 * If we aren't flushing all things, let us overcommit up to
4249 * 1/2th of the space. If we can flush, don't let us overcommit
4250 * too much, let it overcommit up to 1/8 of the space.
4251 */
4252 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4253 avail >>= 3;
4254 else
4255 avail >>= 1;
4256
4257 if (used + bytes < space_info->total_bytes + avail)
4258 return 1;
4259 return 0;
4260 }
4261
4262 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4263 unsigned long nr_pages, int nr_items)
4264 {
4265 struct super_block *sb = root->fs_info->sb;
4266
4267 if (down_read_trylock(&sb->s_umount)) {
4268 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4269 up_read(&sb->s_umount);
4270 } else {
4271 /*
4272 * We needn't worry the filesystem going from r/w to r/o though
4273 * we don't acquire ->s_umount mutex, because the filesystem
4274 * should guarantee the delalloc inodes list be empty after
4275 * the filesystem is readonly(all dirty pages are written to
4276 * the disk).
4277 */
4278 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4279 if (!current->journal_info)
4280 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4281 }
4282 }
4283
4284 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4285 {
4286 u64 bytes;
4287 int nr;
4288
4289 bytes = btrfs_calc_trans_metadata_size(root, 1);
4290 nr = (int)div64_u64(to_reclaim, bytes);
4291 if (!nr)
4292 nr = 1;
4293 return nr;
4294 }
4295
4296 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4297
4298 /*
4299 * shrink metadata reservation for delalloc
4300 */
4301 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4302 bool wait_ordered)
4303 {
4304 struct btrfs_block_rsv *block_rsv;
4305 struct btrfs_space_info *space_info;
4306 struct btrfs_trans_handle *trans;
4307 u64 delalloc_bytes;
4308 u64 max_reclaim;
4309 long time_left;
4310 unsigned long nr_pages;
4311 int loops;
4312 int items;
4313 enum btrfs_reserve_flush_enum flush;
4314
4315 /* Calc the number of the pages we need flush for space reservation */
4316 items = calc_reclaim_items_nr(root, to_reclaim);
4317 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4318
4319 trans = (struct btrfs_trans_handle *)current->journal_info;
4320 block_rsv = &root->fs_info->delalloc_block_rsv;
4321 space_info = block_rsv->space_info;
4322
4323 delalloc_bytes = percpu_counter_sum_positive(
4324 &root->fs_info->delalloc_bytes);
4325 if (delalloc_bytes == 0) {
4326 if (trans)
4327 return;
4328 if (wait_ordered)
4329 btrfs_wait_ordered_roots(root->fs_info, items);
4330 return;
4331 }
4332
4333 loops = 0;
4334 while (delalloc_bytes && loops < 3) {
4335 max_reclaim = min(delalloc_bytes, to_reclaim);
4336 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4337 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4338 /*
4339 * We need to wait for the async pages to actually start before
4340 * we do anything.
4341 */
4342 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4343 if (!max_reclaim)
4344 goto skip_async;
4345
4346 if (max_reclaim <= nr_pages)
4347 max_reclaim = 0;
4348 else
4349 max_reclaim -= nr_pages;
4350
4351 wait_event(root->fs_info->async_submit_wait,
4352 atomic_read(&root->fs_info->async_delalloc_pages) <=
4353 (int)max_reclaim);
4354 skip_async:
4355 if (!trans)
4356 flush = BTRFS_RESERVE_FLUSH_ALL;
4357 else
4358 flush = BTRFS_RESERVE_NO_FLUSH;
4359 spin_lock(&space_info->lock);
4360 if (can_overcommit(root, space_info, orig, flush)) {
4361 spin_unlock(&space_info->lock);
4362 break;
4363 }
4364 spin_unlock(&space_info->lock);
4365
4366 loops++;
4367 if (wait_ordered && !trans) {
4368 btrfs_wait_ordered_roots(root->fs_info, items);
4369 } else {
4370 time_left = schedule_timeout_killable(1);
4371 if (time_left)
4372 break;
4373 }
4374 delalloc_bytes = percpu_counter_sum_positive(
4375 &root->fs_info->delalloc_bytes);
4376 }
4377 }
4378
4379 /**
4380 * maybe_commit_transaction - possibly commit the transaction if its ok to
4381 * @root - the root we're allocating for
4382 * @bytes - the number of bytes we want to reserve
4383 * @force - force the commit
4384 *
4385 * This will check to make sure that committing the transaction will actually
4386 * get us somewhere and then commit the transaction if it does. Otherwise it
4387 * will return -ENOSPC.
4388 */
4389 static int may_commit_transaction(struct btrfs_root *root,
4390 struct btrfs_space_info *space_info,
4391 u64 bytes, int force)
4392 {
4393 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4394 struct btrfs_trans_handle *trans;
4395
4396 trans = (struct btrfs_trans_handle *)current->journal_info;
4397 if (trans)
4398 return -EAGAIN;
4399
4400 if (force)
4401 goto commit;
4402
4403 /* See if there is enough pinned space to make this reservation */
4404 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4405 bytes) >= 0)
4406 goto commit;
4407
4408 /*
4409 * See if there is some space in the delayed insertion reservation for
4410 * this reservation.
4411 */
4412 if (space_info != delayed_rsv->space_info)
4413 return -ENOSPC;
4414
4415 spin_lock(&delayed_rsv->lock);
4416 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4417 bytes - delayed_rsv->size) >= 0) {
4418 spin_unlock(&delayed_rsv->lock);
4419 return -ENOSPC;
4420 }
4421 spin_unlock(&delayed_rsv->lock);
4422
4423 commit:
4424 trans = btrfs_join_transaction(root);
4425 if (IS_ERR(trans))
4426 return -ENOSPC;
4427
4428 return btrfs_commit_transaction(trans, root);
4429 }
4430
4431 enum flush_state {
4432 FLUSH_DELAYED_ITEMS_NR = 1,
4433 FLUSH_DELAYED_ITEMS = 2,
4434 FLUSH_DELALLOC = 3,
4435 FLUSH_DELALLOC_WAIT = 4,
4436 ALLOC_CHUNK = 5,
4437 COMMIT_TRANS = 6,
4438 };
4439
4440 static int flush_space(struct btrfs_root *root,
4441 struct btrfs_space_info *space_info, u64 num_bytes,
4442 u64 orig_bytes, int state)
4443 {
4444 struct btrfs_trans_handle *trans;
4445 int nr;
4446 int ret = 0;
4447
4448 switch (state) {
4449 case FLUSH_DELAYED_ITEMS_NR:
4450 case FLUSH_DELAYED_ITEMS:
4451 if (state == FLUSH_DELAYED_ITEMS_NR)
4452 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4453 else
4454 nr = -1;
4455
4456 trans = btrfs_join_transaction(root);
4457 if (IS_ERR(trans)) {
4458 ret = PTR_ERR(trans);
4459 break;
4460 }
4461 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4462 btrfs_end_transaction(trans, root);
4463 break;
4464 case FLUSH_DELALLOC:
4465 case FLUSH_DELALLOC_WAIT:
4466 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4467 state == FLUSH_DELALLOC_WAIT);
4468 break;
4469 case ALLOC_CHUNK:
4470 trans = btrfs_join_transaction(root);
4471 if (IS_ERR(trans)) {
4472 ret = PTR_ERR(trans);
4473 break;
4474 }
4475 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4476 btrfs_get_alloc_profile(root, 0),
4477 CHUNK_ALLOC_NO_FORCE);
4478 btrfs_end_transaction(trans, root);
4479 if (ret == -ENOSPC)
4480 ret = 0;
4481 break;
4482 case COMMIT_TRANS:
4483 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4484 break;
4485 default:
4486 ret = -ENOSPC;
4487 break;
4488 }
4489
4490 return ret;
4491 }
4492
4493 static inline u64
4494 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4495 struct btrfs_space_info *space_info)
4496 {
4497 u64 used;
4498 u64 expected;
4499 u64 to_reclaim;
4500
4501 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4502 16 * 1024 * 1024);
4503 spin_lock(&space_info->lock);
4504 if (can_overcommit(root, space_info, to_reclaim,
4505 BTRFS_RESERVE_FLUSH_ALL)) {
4506 to_reclaim = 0;
4507 goto out;
4508 }
4509
4510 used = space_info->bytes_used + space_info->bytes_reserved +
4511 space_info->bytes_pinned + space_info->bytes_readonly +
4512 space_info->bytes_may_use;
4513 if (can_overcommit(root, space_info, 1024 * 1024,
4514 BTRFS_RESERVE_FLUSH_ALL))
4515 expected = div_factor_fine(space_info->total_bytes, 95);
4516 else
4517 expected = div_factor_fine(space_info->total_bytes, 90);
4518
4519 if (used > expected)
4520 to_reclaim = used - expected;
4521 else
4522 to_reclaim = 0;
4523 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4524 space_info->bytes_reserved);
4525 out:
4526 spin_unlock(&space_info->lock);
4527
4528 return to_reclaim;
4529 }
4530
4531 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4532 struct btrfs_fs_info *fs_info, u64 used)
4533 {
4534 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4535
4536 /* If we're just plain full then async reclaim just slows us down. */
4537 if (space_info->bytes_used >= thresh)
4538 return 0;
4539
4540 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4541 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4542 }
4543
4544 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4545 struct btrfs_fs_info *fs_info,
4546 int flush_state)
4547 {
4548 u64 used;
4549
4550 spin_lock(&space_info->lock);
4551 /*
4552 * We run out of space and have not got any free space via flush_space,
4553 * so don't bother doing async reclaim.
4554 */
4555 if (flush_state > COMMIT_TRANS && space_info->full) {
4556 spin_unlock(&space_info->lock);
4557 return 0;
4558 }
4559
4560 used = space_info->bytes_used + space_info->bytes_reserved +
4561 space_info->bytes_pinned + space_info->bytes_readonly +
4562 space_info->bytes_may_use;
4563 if (need_do_async_reclaim(space_info, fs_info, used)) {
4564 spin_unlock(&space_info->lock);
4565 return 1;
4566 }
4567 spin_unlock(&space_info->lock);
4568
4569 return 0;
4570 }
4571
4572 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4573 {
4574 struct btrfs_fs_info *fs_info;
4575 struct btrfs_space_info *space_info;
4576 u64 to_reclaim;
4577 int flush_state;
4578
4579 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4580 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4581
4582 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4583 space_info);
4584 if (!to_reclaim)
4585 return;
4586
4587 flush_state = FLUSH_DELAYED_ITEMS_NR;
4588 do {
4589 flush_space(fs_info->fs_root, space_info, to_reclaim,
4590 to_reclaim, flush_state);
4591 flush_state++;
4592 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4593 flush_state))
4594 return;
4595 } while (flush_state < COMMIT_TRANS);
4596 }
4597
4598 void btrfs_init_async_reclaim_work(struct work_struct *work)
4599 {
4600 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4601 }
4602
4603 /**
4604 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4605 * @root - the root we're allocating for
4606 * @block_rsv - the block_rsv we're allocating for
4607 * @orig_bytes - the number of bytes we want
4608 * @flush - whether or not we can flush to make our reservation
4609 *
4610 * This will reserve orgi_bytes number of bytes from the space info associated
4611 * with the block_rsv. If there is not enough space it will make an attempt to
4612 * flush out space to make room. It will do this by flushing delalloc if
4613 * possible or committing the transaction. If flush is 0 then no attempts to
4614 * regain reservations will be made and this will fail if there is not enough
4615 * space already.
4616 */
4617 static int reserve_metadata_bytes(struct btrfs_root *root,
4618 struct btrfs_block_rsv *block_rsv,
4619 u64 orig_bytes,
4620 enum btrfs_reserve_flush_enum flush)
4621 {
4622 struct btrfs_space_info *space_info = block_rsv->space_info;
4623 u64 used;
4624 u64 num_bytes = orig_bytes;
4625 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4626 int ret = 0;
4627 bool flushing = false;
4628
4629 again:
4630 ret = 0;
4631 spin_lock(&space_info->lock);
4632 /*
4633 * We only want to wait if somebody other than us is flushing and we
4634 * are actually allowed to flush all things.
4635 */
4636 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4637 space_info->flush) {
4638 spin_unlock(&space_info->lock);
4639 /*
4640 * If we have a trans handle we can't wait because the flusher
4641 * may have to commit the transaction, which would mean we would
4642 * deadlock since we are waiting for the flusher to finish, but
4643 * hold the current transaction open.
4644 */
4645 if (current->journal_info)
4646 return -EAGAIN;
4647 ret = wait_event_killable(space_info->wait, !space_info->flush);
4648 /* Must have been killed, return */
4649 if (ret)
4650 return -EINTR;
4651
4652 spin_lock(&space_info->lock);
4653 }
4654
4655 ret = -ENOSPC;
4656 used = space_info->bytes_used + space_info->bytes_reserved +
4657 space_info->bytes_pinned + space_info->bytes_readonly +
4658 space_info->bytes_may_use;
4659
4660 /*
4661 * The idea here is that we've not already over-reserved the block group
4662 * then we can go ahead and save our reservation first and then start
4663 * flushing if we need to. Otherwise if we've already overcommitted
4664 * lets start flushing stuff first and then come back and try to make
4665 * our reservation.
4666 */
4667 if (used <= space_info->total_bytes) {
4668 if (used + orig_bytes <= space_info->total_bytes) {
4669 space_info->bytes_may_use += orig_bytes;
4670 trace_btrfs_space_reservation(root->fs_info,
4671 "space_info", space_info->flags, orig_bytes, 1);
4672 ret = 0;
4673 } else {
4674 /*
4675 * Ok set num_bytes to orig_bytes since we aren't
4676 * overocmmitted, this way we only try and reclaim what
4677 * we need.
4678 */
4679 num_bytes = orig_bytes;
4680 }
4681 } else {
4682 /*
4683 * Ok we're over committed, set num_bytes to the overcommitted
4684 * amount plus the amount of bytes that we need for this
4685 * reservation.
4686 */
4687 num_bytes = used - space_info->total_bytes +
4688 (orig_bytes * 2);
4689 }
4690
4691 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4692 space_info->bytes_may_use += orig_bytes;
4693 trace_btrfs_space_reservation(root->fs_info, "space_info",
4694 space_info->flags, orig_bytes,
4695 1);
4696 ret = 0;
4697 }
4698
4699 /*
4700 * Couldn't make our reservation, save our place so while we're trying
4701 * to reclaim space we can actually use it instead of somebody else
4702 * stealing it from us.
4703 *
4704 * We make the other tasks wait for the flush only when we can flush
4705 * all things.
4706 */
4707 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4708 flushing = true;
4709 space_info->flush = 1;
4710 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4711 used += orig_bytes;
4712 /*
4713 * We will do the space reservation dance during log replay,
4714 * which means we won't have fs_info->fs_root set, so don't do
4715 * the async reclaim as we will panic.
4716 */
4717 if (!root->fs_info->log_root_recovering &&
4718 need_do_async_reclaim(space_info, root->fs_info, used) &&
4719 !work_busy(&root->fs_info->async_reclaim_work))
4720 queue_work(system_unbound_wq,
4721 &root->fs_info->async_reclaim_work);
4722 }
4723 spin_unlock(&space_info->lock);
4724
4725 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4726 goto out;
4727
4728 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4729 flush_state);
4730 flush_state++;
4731
4732 /*
4733 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4734 * would happen. So skip delalloc flush.
4735 */
4736 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4737 (flush_state == FLUSH_DELALLOC ||
4738 flush_state == FLUSH_DELALLOC_WAIT))
4739 flush_state = ALLOC_CHUNK;
4740
4741 if (!ret)
4742 goto again;
4743 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4744 flush_state < COMMIT_TRANS)
4745 goto again;
4746 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4747 flush_state <= COMMIT_TRANS)
4748 goto again;
4749
4750 out:
4751 if (ret == -ENOSPC &&
4752 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4753 struct btrfs_block_rsv *global_rsv =
4754 &root->fs_info->global_block_rsv;
4755
4756 if (block_rsv != global_rsv &&
4757 !block_rsv_use_bytes(global_rsv, orig_bytes))
4758 ret = 0;
4759 }
4760 if (ret == -ENOSPC)
4761 trace_btrfs_space_reservation(root->fs_info,
4762 "space_info:enospc",
4763 space_info->flags, orig_bytes, 1);
4764 if (flushing) {
4765 spin_lock(&space_info->lock);
4766 space_info->flush = 0;
4767 wake_up_all(&space_info->wait);
4768 spin_unlock(&space_info->lock);
4769 }
4770 return ret;
4771 }
4772
4773 static struct btrfs_block_rsv *get_block_rsv(
4774 const struct btrfs_trans_handle *trans,
4775 const struct btrfs_root *root)
4776 {
4777 struct btrfs_block_rsv *block_rsv = NULL;
4778
4779 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4780 block_rsv = trans->block_rsv;
4781
4782 if (root == root->fs_info->csum_root && trans->adding_csums)
4783 block_rsv = trans->block_rsv;
4784
4785 if (root == root->fs_info->uuid_root)
4786 block_rsv = trans->block_rsv;
4787
4788 if (!block_rsv)
4789 block_rsv = root->block_rsv;
4790
4791 if (!block_rsv)
4792 block_rsv = &root->fs_info->empty_block_rsv;
4793
4794 return block_rsv;
4795 }
4796
4797 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4798 u64 num_bytes)
4799 {
4800 int ret = -ENOSPC;
4801 spin_lock(&block_rsv->lock);
4802 if (block_rsv->reserved >= num_bytes) {
4803 block_rsv->reserved -= num_bytes;
4804 if (block_rsv->reserved < block_rsv->size)
4805 block_rsv->full = 0;
4806 ret = 0;
4807 }
4808 spin_unlock(&block_rsv->lock);
4809 return ret;
4810 }
4811
4812 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4813 u64 num_bytes, int update_size)
4814 {
4815 spin_lock(&block_rsv->lock);
4816 block_rsv->reserved += num_bytes;
4817 if (update_size)
4818 block_rsv->size += num_bytes;
4819 else if (block_rsv->reserved >= block_rsv->size)
4820 block_rsv->full = 1;
4821 spin_unlock(&block_rsv->lock);
4822 }
4823
4824 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4825 struct btrfs_block_rsv *dest, u64 num_bytes,
4826 int min_factor)
4827 {
4828 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4829 u64 min_bytes;
4830
4831 if (global_rsv->space_info != dest->space_info)
4832 return -ENOSPC;
4833
4834 spin_lock(&global_rsv->lock);
4835 min_bytes = div_factor(global_rsv->size, min_factor);
4836 if (global_rsv->reserved < min_bytes + num_bytes) {
4837 spin_unlock(&global_rsv->lock);
4838 return -ENOSPC;
4839 }
4840 global_rsv->reserved -= num_bytes;
4841 if (global_rsv->reserved < global_rsv->size)
4842 global_rsv->full = 0;
4843 spin_unlock(&global_rsv->lock);
4844
4845 block_rsv_add_bytes(dest, num_bytes, 1);
4846 return 0;
4847 }
4848
4849 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4850 struct btrfs_block_rsv *block_rsv,
4851 struct btrfs_block_rsv *dest, u64 num_bytes)
4852 {
4853 struct btrfs_space_info *space_info = block_rsv->space_info;
4854
4855 spin_lock(&block_rsv->lock);
4856 if (num_bytes == (u64)-1)
4857 num_bytes = block_rsv->size;
4858 block_rsv->size -= num_bytes;
4859 if (block_rsv->reserved >= block_rsv->size) {
4860 num_bytes = block_rsv->reserved - block_rsv->size;
4861 block_rsv->reserved = block_rsv->size;
4862 block_rsv->full = 1;
4863 } else {
4864 num_bytes = 0;
4865 }
4866 spin_unlock(&block_rsv->lock);
4867
4868 if (num_bytes > 0) {
4869 if (dest) {
4870 spin_lock(&dest->lock);
4871 if (!dest->full) {
4872 u64 bytes_to_add;
4873
4874 bytes_to_add = dest->size - dest->reserved;
4875 bytes_to_add = min(num_bytes, bytes_to_add);
4876 dest->reserved += bytes_to_add;
4877 if (dest->reserved >= dest->size)
4878 dest->full = 1;
4879 num_bytes -= bytes_to_add;
4880 }
4881 spin_unlock(&dest->lock);
4882 }
4883 if (num_bytes) {
4884 spin_lock(&space_info->lock);
4885 space_info->bytes_may_use -= num_bytes;
4886 trace_btrfs_space_reservation(fs_info, "space_info",
4887 space_info->flags, num_bytes, 0);
4888 spin_unlock(&space_info->lock);
4889 }
4890 }
4891 }
4892
4893 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4894 struct btrfs_block_rsv *dst, u64 num_bytes)
4895 {
4896 int ret;
4897
4898 ret = block_rsv_use_bytes(src, num_bytes);
4899 if (ret)
4900 return ret;
4901
4902 block_rsv_add_bytes(dst, num_bytes, 1);
4903 return 0;
4904 }
4905
4906 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4907 {
4908 memset(rsv, 0, sizeof(*rsv));
4909 spin_lock_init(&rsv->lock);
4910 rsv->type = type;
4911 }
4912
4913 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4914 unsigned short type)
4915 {
4916 struct btrfs_block_rsv *block_rsv;
4917 struct btrfs_fs_info *fs_info = root->fs_info;
4918
4919 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4920 if (!block_rsv)
4921 return NULL;
4922
4923 btrfs_init_block_rsv(block_rsv, type);
4924 block_rsv->space_info = __find_space_info(fs_info,
4925 BTRFS_BLOCK_GROUP_METADATA);
4926 return block_rsv;
4927 }
4928
4929 void btrfs_free_block_rsv(struct btrfs_root *root,
4930 struct btrfs_block_rsv *rsv)
4931 {
4932 if (!rsv)
4933 return;
4934 btrfs_block_rsv_release(root, rsv, (u64)-1);
4935 kfree(rsv);
4936 }
4937
4938 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4939 {
4940 kfree(rsv);
4941 }
4942
4943 int btrfs_block_rsv_add(struct btrfs_root *root,
4944 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4945 enum btrfs_reserve_flush_enum flush)
4946 {
4947 int ret;
4948
4949 if (num_bytes == 0)
4950 return 0;
4951
4952 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4953 if (!ret) {
4954 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4955 return 0;
4956 }
4957
4958 return ret;
4959 }
4960
4961 int btrfs_block_rsv_check(struct btrfs_root *root,
4962 struct btrfs_block_rsv *block_rsv, int min_factor)
4963 {
4964 u64 num_bytes = 0;
4965 int ret = -ENOSPC;
4966
4967 if (!block_rsv)
4968 return 0;
4969
4970 spin_lock(&block_rsv->lock);
4971 num_bytes = div_factor(block_rsv->size, min_factor);
4972 if (block_rsv->reserved >= num_bytes)
4973 ret = 0;
4974 spin_unlock(&block_rsv->lock);
4975
4976 return ret;
4977 }
4978
4979 int btrfs_block_rsv_refill(struct btrfs_root *root,
4980 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4981 enum btrfs_reserve_flush_enum flush)
4982 {
4983 u64 num_bytes = 0;
4984 int ret = -ENOSPC;
4985
4986 if (!block_rsv)
4987 return 0;
4988
4989 spin_lock(&block_rsv->lock);
4990 num_bytes = min_reserved;
4991 if (block_rsv->reserved >= num_bytes)
4992 ret = 0;
4993 else
4994 num_bytes -= block_rsv->reserved;
4995 spin_unlock(&block_rsv->lock);
4996
4997 if (!ret)
4998 return 0;
4999
5000 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5001 if (!ret) {
5002 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5003 return 0;
5004 }
5005
5006 return ret;
5007 }
5008
5009 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5010 struct btrfs_block_rsv *dst_rsv,
5011 u64 num_bytes)
5012 {
5013 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5014 }
5015
5016 void btrfs_block_rsv_release(struct btrfs_root *root,
5017 struct btrfs_block_rsv *block_rsv,
5018 u64 num_bytes)
5019 {
5020 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5021 if (global_rsv == block_rsv ||
5022 block_rsv->space_info != global_rsv->space_info)
5023 global_rsv = NULL;
5024 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5025 num_bytes);
5026 }
5027
5028 /*
5029 * helper to calculate size of global block reservation.
5030 * the desired value is sum of space used by extent tree,
5031 * checksum tree and root tree
5032 */
5033 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5034 {
5035 struct btrfs_space_info *sinfo;
5036 u64 num_bytes;
5037 u64 meta_used;
5038 u64 data_used;
5039 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5040
5041 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5042 spin_lock(&sinfo->lock);
5043 data_used = sinfo->bytes_used;
5044 spin_unlock(&sinfo->lock);
5045
5046 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5047 spin_lock(&sinfo->lock);
5048 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5049 data_used = 0;
5050 meta_used = sinfo->bytes_used;
5051 spin_unlock(&sinfo->lock);
5052
5053 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5054 csum_size * 2;
5055 num_bytes += div_u64(data_used + meta_used, 50);
5056
5057 if (num_bytes * 3 > meta_used)
5058 num_bytes = div_u64(meta_used, 3);
5059
5060 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5061 }
5062
5063 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5064 {
5065 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5066 struct btrfs_space_info *sinfo = block_rsv->space_info;
5067 u64 num_bytes;
5068
5069 num_bytes = calc_global_metadata_size(fs_info);
5070
5071 spin_lock(&sinfo->lock);
5072 spin_lock(&block_rsv->lock);
5073
5074 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5075
5076 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5077 sinfo->bytes_reserved + sinfo->bytes_readonly +
5078 sinfo->bytes_may_use;
5079
5080 if (sinfo->total_bytes > num_bytes) {
5081 num_bytes = sinfo->total_bytes - num_bytes;
5082 block_rsv->reserved += num_bytes;
5083 sinfo->bytes_may_use += num_bytes;
5084 trace_btrfs_space_reservation(fs_info, "space_info",
5085 sinfo->flags, num_bytes, 1);
5086 }
5087
5088 if (block_rsv->reserved >= block_rsv->size) {
5089 num_bytes = block_rsv->reserved - block_rsv->size;
5090 sinfo->bytes_may_use -= num_bytes;
5091 trace_btrfs_space_reservation(fs_info, "space_info",
5092 sinfo->flags, num_bytes, 0);
5093 block_rsv->reserved = block_rsv->size;
5094 block_rsv->full = 1;
5095 }
5096
5097 spin_unlock(&block_rsv->lock);
5098 spin_unlock(&sinfo->lock);
5099 }
5100
5101 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5102 {
5103 struct btrfs_space_info *space_info;
5104
5105 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5106 fs_info->chunk_block_rsv.space_info = space_info;
5107
5108 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5109 fs_info->global_block_rsv.space_info = space_info;
5110 fs_info->delalloc_block_rsv.space_info = space_info;
5111 fs_info->trans_block_rsv.space_info = space_info;
5112 fs_info->empty_block_rsv.space_info = space_info;
5113 fs_info->delayed_block_rsv.space_info = space_info;
5114
5115 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5116 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5117 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5118 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5119 if (fs_info->quota_root)
5120 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5121 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5122
5123 update_global_block_rsv(fs_info);
5124 }
5125
5126 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5127 {
5128 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5129 (u64)-1);
5130 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5131 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5132 WARN_ON(fs_info->trans_block_rsv.size > 0);
5133 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5134 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5135 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5136 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5137 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5138 }
5139
5140 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5141 struct btrfs_root *root)
5142 {
5143 if (!trans->block_rsv)
5144 return;
5145
5146 if (!trans->bytes_reserved)
5147 return;
5148
5149 trace_btrfs_space_reservation(root->fs_info, "transaction",
5150 trans->transid, trans->bytes_reserved, 0);
5151 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5152 trans->bytes_reserved = 0;
5153 }
5154
5155 /* Can only return 0 or -ENOSPC */
5156 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5157 struct inode *inode)
5158 {
5159 struct btrfs_root *root = BTRFS_I(inode)->root;
5160 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5161 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5162
5163 /*
5164 * We need to hold space in order to delete our orphan item once we've
5165 * added it, so this takes the reservation so we can release it later
5166 * when we are truly done with the orphan item.
5167 */
5168 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5169 trace_btrfs_space_reservation(root->fs_info, "orphan",
5170 btrfs_ino(inode), num_bytes, 1);
5171 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5172 }
5173
5174 void btrfs_orphan_release_metadata(struct inode *inode)
5175 {
5176 struct btrfs_root *root = BTRFS_I(inode)->root;
5177 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5178 trace_btrfs_space_reservation(root->fs_info, "orphan",
5179 btrfs_ino(inode), num_bytes, 0);
5180 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5181 }
5182
5183 /*
5184 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5185 * root: the root of the parent directory
5186 * rsv: block reservation
5187 * items: the number of items that we need do reservation
5188 * qgroup_reserved: used to return the reserved size in qgroup
5189 *
5190 * This function is used to reserve the space for snapshot/subvolume
5191 * creation and deletion. Those operations are different with the
5192 * common file/directory operations, they change two fs/file trees
5193 * and root tree, the number of items that the qgroup reserves is
5194 * different with the free space reservation. So we can not use
5195 * the space reseravtion mechanism in start_transaction().
5196 */
5197 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5198 struct btrfs_block_rsv *rsv,
5199 int items,
5200 u64 *qgroup_reserved,
5201 bool use_global_rsv)
5202 {
5203 u64 num_bytes;
5204 int ret;
5205 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5206
5207 if (root->fs_info->quota_enabled) {
5208 /* One for parent inode, two for dir entries */
5209 num_bytes = 3 * root->nodesize;
5210 ret = btrfs_qgroup_reserve(root, num_bytes);
5211 if (ret)
5212 return ret;
5213 } else {
5214 num_bytes = 0;
5215 }
5216
5217 *qgroup_reserved = num_bytes;
5218
5219 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5220 rsv->space_info = __find_space_info(root->fs_info,
5221 BTRFS_BLOCK_GROUP_METADATA);
5222 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5223 BTRFS_RESERVE_FLUSH_ALL);
5224
5225 if (ret == -ENOSPC && use_global_rsv)
5226 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5227
5228 if (ret) {
5229 if (*qgroup_reserved)
5230 btrfs_qgroup_free(root, *qgroup_reserved);
5231 }
5232
5233 return ret;
5234 }
5235
5236 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5237 struct btrfs_block_rsv *rsv,
5238 u64 qgroup_reserved)
5239 {
5240 btrfs_block_rsv_release(root, rsv, (u64)-1);
5241 if (qgroup_reserved)
5242 btrfs_qgroup_free(root, qgroup_reserved);
5243 }
5244
5245 /**
5246 * drop_outstanding_extent - drop an outstanding extent
5247 * @inode: the inode we're dropping the extent for
5248 * @num_bytes: the number of bytes we're relaseing.
5249 *
5250 * This is called when we are freeing up an outstanding extent, either called
5251 * after an error or after an extent is written. This will return the number of
5252 * reserved extents that need to be freed. This must be called with
5253 * BTRFS_I(inode)->lock held.
5254 */
5255 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5256 {
5257 unsigned drop_inode_space = 0;
5258 unsigned dropped_extents = 0;
5259 unsigned num_extents = 0;
5260
5261 num_extents = (unsigned)div64_u64(num_bytes +
5262 BTRFS_MAX_EXTENT_SIZE - 1,
5263 BTRFS_MAX_EXTENT_SIZE);
5264 ASSERT(num_extents);
5265 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5266 BTRFS_I(inode)->outstanding_extents -= num_extents;
5267
5268 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5269 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5270 &BTRFS_I(inode)->runtime_flags))
5271 drop_inode_space = 1;
5272
5273 /*
5274 * If we have more or the same amount of outsanding extents than we have
5275 * reserved then we need to leave the reserved extents count alone.
5276 */
5277 if (BTRFS_I(inode)->outstanding_extents >=
5278 BTRFS_I(inode)->reserved_extents)
5279 return drop_inode_space;
5280
5281 dropped_extents = BTRFS_I(inode)->reserved_extents -
5282 BTRFS_I(inode)->outstanding_extents;
5283 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5284 return dropped_extents + drop_inode_space;
5285 }
5286
5287 /**
5288 * calc_csum_metadata_size - return the amount of metada space that must be
5289 * reserved/free'd for the given bytes.
5290 * @inode: the inode we're manipulating
5291 * @num_bytes: the number of bytes in question
5292 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5293 *
5294 * This adjusts the number of csum_bytes in the inode and then returns the
5295 * correct amount of metadata that must either be reserved or freed. We
5296 * calculate how many checksums we can fit into one leaf and then divide the
5297 * number of bytes that will need to be checksumed by this value to figure out
5298 * how many checksums will be required. If we are adding bytes then the number
5299 * may go up and we will return the number of additional bytes that must be
5300 * reserved. If it is going down we will return the number of bytes that must
5301 * be freed.
5302 *
5303 * This must be called with BTRFS_I(inode)->lock held.
5304 */
5305 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5306 int reserve)
5307 {
5308 struct btrfs_root *root = BTRFS_I(inode)->root;
5309 u64 old_csums, num_csums;
5310
5311 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5312 BTRFS_I(inode)->csum_bytes == 0)
5313 return 0;
5314
5315 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5316 if (reserve)
5317 BTRFS_I(inode)->csum_bytes += num_bytes;
5318 else
5319 BTRFS_I(inode)->csum_bytes -= num_bytes;
5320 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5321
5322 /* No change, no need to reserve more */
5323 if (old_csums == num_csums)
5324 return 0;
5325
5326 if (reserve)
5327 return btrfs_calc_trans_metadata_size(root,
5328 num_csums - old_csums);
5329
5330 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5331 }
5332
5333 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5334 {
5335 struct btrfs_root *root = BTRFS_I(inode)->root;
5336 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5337 u64 to_reserve = 0;
5338 u64 csum_bytes;
5339 unsigned nr_extents = 0;
5340 int extra_reserve = 0;
5341 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5342 int ret = 0;
5343 bool delalloc_lock = true;
5344 u64 to_free = 0;
5345 unsigned dropped;
5346
5347 /* If we are a free space inode we need to not flush since we will be in
5348 * the middle of a transaction commit. We also don't need the delalloc
5349 * mutex since we won't race with anybody. We need this mostly to make
5350 * lockdep shut its filthy mouth.
5351 */
5352 if (btrfs_is_free_space_inode(inode)) {
5353 flush = BTRFS_RESERVE_NO_FLUSH;
5354 delalloc_lock = false;
5355 }
5356
5357 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5358 btrfs_transaction_in_commit(root->fs_info))
5359 schedule_timeout(1);
5360
5361 if (delalloc_lock)
5362 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5363
5364 num_bytes = ALIGN(num_bytes, root->sectorsize);
5365
5366 spin_lock(&BTRFS_I(inode)->lock);
5367 nr_extents = (unsigned)div64_u64(num_bytes +
5368 BTRFS_MAX_EXTENT_SIZE - 1,
5369 BTRFS_MAX_EXTENT_SIZE);
5370 BTRFS_I(inode)->outstanding_extents += nr_extents;
5371 nr_extents = 0;
5372
5373 if (BTRFS_I(inode)->outstanding_extents >
5374 BTRFS_I(inode)->reserved_extents)
5375 nr_extents = BTRFS_I(inode)->outstanding_extents -
5376 BTRFS_I(inode)->reserved_extents;
5377
5378 /*
5379 * Add an item to reserve for updating the inode when we complete the
5380 * delalloc io.
5381 */
5382 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5383 &BTRFS_I(inode)->runtime_flags)) {
5384 nr_extents++;
5385 extra_reserve = 1;
5386 }
5387
5388 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5389 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5390 csum_bytes = BTRFS_I(inode)->csum_bytes;
5391 spin_unlock(&BTRFS_I(inode)->lock);
5392
5393 if (root->fs_info->quota_enabled) {
5394 ret = btrfs_qgroup_reserve(root, num_bytes +
5395 nr_extents * root->nodesize);
5396 if (ret)
5397 goto out_fail;
5398 }
5399
5400 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5401 if (unlikely(ret)) {
5402 if (root->fs_info->quota_enabled)
5403 btrfs_qgroup_free(root, num_bytes +
5404 nr_extents * root->nodesize);
5405 goto out_fail;
5406 }
5407
5408 spin_lock(&BTRFS_I(inode)->lock);
5409 if (extra_reserve) {
5410 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5411 &BTRFS_I(inode)->runtime_flags);
5412 nr_extents--;
5413 }
5414 BTRFS_I(inode)->reserved_extents += nr_extents;
5415 spin_unlock(&BTRFS_I(inode)->lock);
5416
5417 if (delalloc_lock)
5418 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5419
5420 if (to_reserve)
5421 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5422 btrfs_ino(inode), to_reserve, 1);
5423 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5424
5425 return 0;
5426
5427 out_fail:
5428 spin_lock(&BTRFS_I(inode)->lock);
5429 dropped = drop_outstanding_extent(inode, num_bytes);
5430 /*
5431 * If the inodes csum_bytes is the same as the original
5432 * csum_bytes then we know we haven't raced with any free()ers
5433 * so we can just reduce our inodes csum bytes and carry on.
5434 */
5435 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5436 calc_csum_metadata_size(inode, num_bytes, 0);
5437 } else {
5438 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5439 u64 bytes;
5440
5441 /*
5442 * This is tricky, but first we need to figure out how much we
5443 * free'd from any free-ers that occured during this
5444 * reservation, so we reset ->csum_bytes to the csum_bytes
5445 * before we dropped our lock, and then call the free for the
5446 * number of bytes that were freed while we were trying our
5447 * reservation.
5448 */
5449 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5450 BTRFS_I(inode)->csum_bytes = csum_bytes;
5451 to_free = calc_csum_metadata_size(inode, bytes, 0);
5452
5453
5454 /*
5455 * Now we need to see how much we would have freed had we not
5456 * been making this reservation and our ->csum_bytes were not
5457 * artificially inflated.
5458 */
5459 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5460 bytes = csum_bytes - orig_csum_bytes;
5461 bytes = calc_csum_metadata_size(inode, bytes, 0);
5462
5463 /*
5464 * Now reset ->csum_bytes to what it should be. If bytes is
5465 * more than to_free then we would have free'd more space had we
5466 * not had an artificially high ->csum_bytes, so we need to free
5467 * the remainder. If bytes is the same or less then we don't
5468 * need to do anything, the other free-ers did the correct
5469 * thing.
5470 */
5471 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5472 if (bytes > to_free)
5473 to_free = bytes - to_free;
5474 else
5475 to_free = 0;
5476 }
5477 spin_unlock(&BTRFS_I(inode)->lock);
5478 if (dropped) {
5479 if (root->fs_info->quota_enabled)
5480 btrfs_qgroup_free(root, dropped * root->nodesize);
5481 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5482 }
5483
5484 if (to_free) {
5485 btrfs_block_rsv_release(root, block_rsv, to_free);
5486 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5487 btrfs_ino(inode), to_free, 0);
5488 }
5489 if (delalloc_lock)
5490 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5491 return ret;
5492 }
5493
5494 /**
5495 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5496 * @inode: the inode to release the reservation for
5497 * @num_bytes: the number of bytes we're releasing
5498 *
5499 * This will release the metadata reservation for an inode. This can be called
5500 * once we complete IO for a given set of bytes to release their metadata
5501 * reservations.
5502 */
5503 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5504 {
5505 struct btrfs_root *root = BTRFS_I(inode)->root;
5506 u64 to_free = 0;
5507 unsigned dropped;
5508
5509 num_bytes = ALIGN(num_bytes, root->sectorsize);
5510 spin_lock(&BTRFS_I(inode)->lock);
5511 dropped = drop_outstanding_extent(inode, num_bytes);
5512
5513 if (num_bytes)
5514 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5515 spin_unlock(&BTRFS_I(inode)->lock);
5516 if (dropped > 0)
5517 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5518
5519 if (btrfs_test_is_dummy_root(root))
5520 return;
5521
5522 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5523 btrfs_ino(inode), to_free, 0);
5524 if (root->fs_info->quota_enabled) {
5525 btrfs_qgroup_free(root, num_bytes +
5526 dropped * root->nodesize);
5527 }
5528
5529 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5530 to_free);
5531 }
5532
5533 /**
5534 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5535 * @inode: inode we're writing to
5536 * @num_bytes: the number of bytes we want to allocate
5537 *
5538 * This will do the following things
5539 *
5540 * o reserve space in the data space info for num_bytes
5541 * o reserve space in the metadata space info based on number of outstanding
5542 * extents and how much csums will be needed
5543 * o add to the inodes ->delalloc_bytes
5544 * o add it to the fs_info's delalloc inodes list.
5545 *
5546 * This will return 0 for success and -ENOSPC if there is no space left.
5547 */
5548 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5549 {
5550 int ret;
5551
5552 ret = btrfs_check_data_free_space(inode, num_bytes);
5553 if (ret)
5554 return ret;
5555
5556 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5557 if (ret) {
5558 btrfs_free_reserved_data_space(inode, num_bytes);
5559 return ret;
5560 }
5561
5562 return 0;
5563 }
5564
5565 /**
5566 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5567 * @inode: inode we're releasing space for
5568 * @num_bytes: the number of bytes we want to free up
5569 *
5570 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5571 * called in the case that we don't need the metadata AND data reservations
5572 * anymore. So if there is an error or we insert an inline extent.
5573 *
5574 * This function will release the metadata space that was not used and will
5575 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5576 * list if there are no delalloc bytes left.
5577 */
5578 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5579 {
5580 btrfs_delalloc_release_metadata(inode, num_bytes);
5581 btrfs_free_reserved_data_space(inode, num_bytes);
5582 }
5583
5584 static int update_block_group(struct btrfs_trans_handle *trans,
5585 struct btrfs_root *root, u64 bytenr,
5586 u64 num_bytes, int alloc)
5587 {
5588 struct btrfs_block_group_cache *cache = NULL;
5589 struct btrfs_fs_info *info = root->fs_info;
5590 u64 total = num_bytes;
5591 u64 old_val;
5592 u64 byte_in_group;
5593 int factor;
5594
5595 /* block accounting for super block */
5596 spin_lock(&info->delalloc_root_lock);
5597 old_val = btrfs_super_bytes_used(info->super_copy);
5598 if (alloc)
5599 old_val += num_bytes;
5600 else
5601 old_val -= num_bytes;
5602 btrfs_set_super_bytes_used(info->super_copy, old_val);
5603 spin_unlock(&info->delalloc_root_lock);
5604
5605 while (total) {
5606 cache = btrfs_lookup_block_group(info, bytenr);
5607 if (!cache)
5608 return -ENOENT;
5609 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5610 BTRFS_BLOCK_GROUP_RAID1 |
5611 BTRFS_BLOCK_GROUP_RAID10))
5612 factor = 2;
5613 else
5614 factor = 1;
5615 /*
5616 * If this block group has free space cache written out, we
5617 * need to make sure to load it if we are removing space. This
5618 * is because we need the unpinning stage to actually add the
5619 * space back to the block group, otherwise we will leak space.
5620 */
5621 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5622 cache_block_group(cache, 1);
5623
5624 byte_in_group = bytenr - cache->key.objectid;
5625 WARN_ON(byte_in_group > cache->key.offset);
5626
5627 spin_lock(&cache->space_info->lock);
5628 spin_lock(&cache->lock);
5629
5630 if (btrfs_test_opt(root, SPACE_CACHE) &&
5631 cache->disk_cache_state < BTRFS_DC_CLEAR)
5632 cache->disk_cache_state = BTRFS_DC_CLEAR;
5633
5634 old_val = btrfs_block_group_used(&cache->item);
5635 num_bytes = min(total, cache->key.offset - byte_in_group);
5636 if (alloc) {
5637 old_val += num_bytes;
5638 btrfs_set_block_group_used(&cache->item, old_val);
5639 cache->reserved -= num_bytes;
5640 cache->space_info->bytes_reserved -= num_bytes;
5641 cache->space_info->bytes_used += num_bytes;
5642 cache->space_info->disk_used += num_bytes * factor;
5643 spin_unlock(&cache->lock);
5644 spin_unlock(&cache->space_info->lock);
5645 } else {
5646 old_val -= num_bytes;
5647 btrfs_set_block_group_used(&cache->item, old_val);
5648 cache->pinned += num_bytes;
5649 cache->space_info->bytes_pinned += num_bytes;
5650 cache->space_info->bytes_used -= num_bytes;
5651 cache->space_info->disk_used -= num_bytes * factor;
5652 spin_unlock(&cache->lock);
5653 spin_unlock(&cache->space_info->lock);
5654
5655 set_extent_dirty(info->pinned_extents,
5656 bytenr, bytenr + num_bytes - 1,
5657 GFP_NOFS | __GFP_NOFAIL);
5658 /*
5659 * No longer have used bytes in this block group, queue
5660 * it for deletion.
5661 */
5662 if (old_val == 0) {
5663 spin_lock(&info->unused_bgs_lock);
5664 if (list_empty(&cache->bg_list)) {
5665 btrfs_get_block_group(cache);
5666 list_add_tail(&cache->bg_list,
5667 &info->unused_bgs);
5668 }
5669 spin_unlock(&info->unused_bgs_lock);
5670 }
5671 }
5672
5673 spin_lock(&trans->transaction->dirty_bgs_lock);
5674 if (list_empty(&cache->dirty_list)) {
5675 list_add_tail(&cache->dirty_list,
5676 &trans->transaction->dirty_bgs);
5677 trans->transaction->num_dirty_bgs++;
5678 btrfs_get_block_group(cache);
5679 }
5680 spin_unlock(&trans->transaction->dirty_bgs_lock);
5681
5682 btrfs_put_block_group(cache);
5683 total -= num_bytes;
5684 bytenr += num_bytes;
5685 }
5686 return 0;
5687 }
5688
5689 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5690 {
5691 struct btrfs_block_group_cache *cache;
5692 u64 bytenr;
5693
5694 spin_lock(&root->fs_info->block_group_cache_lock);
5695 bytenr = root->fs_info->first_logical_byte;
5696 spin_unlock(&root->fs_info->block_group_cache_lock);
5697
5698 if (bytenr < (u64)-1)
5699 return bytenr;
5700
5701 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5702 if (!cache)
5703 return 0;
5704
5705 bytenr = cache->key.objectid;
5706 btrfs_put_block_group(cache);
5707
5708 return bytenr;
5709 }
5710
5711 static int pin_down_extent(struct btrfs_root *root,
5712 struct btrfs_block_group_cache *cache,
5713 u64 bytenr, u64 num_bytes, int reserved)
5714 {
5715 spin_lock(&cache->space_info->lock);
5716 spin_lock(&cache->lock);
5717 cache->pinned += num_bytes;
5718 cache->space_info->bytes_pinned += num_bytes;
5719 if (reserved) {
5720 cache->reserved -= num_bytes;
5721 cache->space_info->bytes_reserved -= num_bytes;
5722 }
5723 spin_unlock(&cache->lock);
5724 spin_unlock(&cache->space_info->lock);
5725
5726 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5727 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5728 if (reserved)
5729 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5730 return 0;
5731 }
5732
5733 /*
5734 * this function must be called within transaction
5735 */
5736 int btrfs_pin_extent(struct btrfs_root *root,
5737 u64 bytenr, u64 num_bytes, int reserved)
5738 {
5739 struct btrfs_block_group_cache *cache;
5740
5741 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5742 BUG_ON(!cache); /* Logic error */
5743
5744 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5745
5746 btrfs_put_block_group(cache);
5747 return 0;
5748 }
5749
5750 /*
5751 * this function must be called within transaction
5752 */
5753 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5754 u64 bytenr, u64 num_bytes)
5755 {
5756 struct btrfs_block_group_cache *cache;
5757 int ret;
5758
5759 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5760 if (!cache)
5761 return -EINVAL;
5762
5763 /*
5764 * pull in the free space cache (if any) so that our pin
5765 * removes the free space from the cache. We have load_only set
5766 * to one because the slow code to read in the free extents does check
5767 * the pinned extents.
5768 */
5769 cache_block_group(cache, 1);
5770
5771 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5772
5773 /* remove us from the free space cache (if we're there at all) */
5774 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5775 btrfs_put_block_group(cache);
5776 return ret;
5777 }
5778
5779 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5780 {
5781 int ret;
5782 struct btrfs_block_group_cache *block_group;
5783 struct btrfs_caching_control *caching_ctl;
5784
5785 block_group = btrfs_lookup_block_group(root->fs_info, start);
5786 if (!block_group)
5787 return -EINVAL;
5788
5789 cache_block_group(block_group, 0);
5790 caching_ctl = get_caching_control(block_group);
5791
5792 if (!caching_ctl) {
5793 /* Logic error */
5794 BUG_ON(!block_group_cache_done(block_group));
5795 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5796 } else {
5797 mutex_lock(&caching_ctl->mutex);
5798
5799 if (start >= caching_ctl->progress) {
5800 ret = add_excluded_extent(root, start, num_bytes);
5801 } else if (start + num_bytes <= caching_ctl->progress) {
5802 ret = btrfs_remove_free_space(block_group,
5803 start, num_bytes);
5804 } else {
5805 num_bytes = caching_ctl->progress - start;
5806 ret = btrfs_remove_free_space(block_group,
5807 start, num_bytes);
5808 if (ret)
5809 goto out_lock;
5810
5811 num_bytes = (start + num_bytes) -
5812 caching_ctl->progress;
5813 start = caching_ctl->progress;
5814 ret = add_excluded_extent(root, start, num_bytes);
5815 }
5816 out_lock:
5817 mutex_unlock(&caching_ctl->mutex);
5818 put_caching_control(caching_ctl);
5819 }
5820 btrfs_put_block_group(block_group);
5821 return ret;
5822 }
5823
5824 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5825 struct extent_buffer *eb)
5826 {
5827 struct btrfs_file_extent_item *item;
5828 struct btrfs_key key;
5829 int found_type;
5830 int i;
5831
5832 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5833 return 0;
5834
5835 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5836 btrfs_item_key_to_cpu(eb, &key, i);
5837 if (key.type != BTRFS_EXTENT_DATA_KEY)
5838 continue;
5839 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5840 found_type = btrfs_file_extent_type(eb, item);
5841 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5842 continue;
5843 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5844 continue;
5845 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5846 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5847 __exclude_logged_extent(log, key.objectid, key.offset);
5848 }
5849
5850 return 0;
5851 }
5852
5853 /**
5854 * btrfs_update_reserved_bytes - update the block_group and space info counters
5855 * @cache: The cache we are manipulating
5856 * @num_bytes: The number of bytes in question
5857 * @reserve: One of the reservation enums
5858 * @delalloc: The blocks are allocated for the delalloc write
5859 *
5860 * This is called by the allocator when it reserves space, or by somebody who is
5861 * freeing space that was never actually used on disk. For example if you
5862 * reserve some space for a new leaf in transaction A and before transaction A
5863 * commits you free that leaf, you call this with reserve set to 0 in order to
5864 * clear the reservation.
5865 *
5866 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5867 * ENOSPC accounting. For data we handle the reservation through clearing the
5868 * delalloc bits in the io_tree. We have to do this since we could end up
5869 * allocating less disk space for the amount of data we have reserved in the
5870 * case of compression.
5871 *
5872 * If this is a reservation and the block group has become read only we cannot
5873 * make the reservation and return -EAGAIN, otherwise this function always
5874 * succeeds.
5875 */
5876 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5877 u64 num_bytes, int reserve, int delalloc)
5878 {
5879 struct btrfs_space_info *space_info = cache->space_info;
5880 int ret = 0;
5881
5882 spin_lock(&space_info->lock);
5883 spin_lock(&cache->lock);
5884 if (reserve != RESERVE_FREE) {
5885 if (cache->ro) {
5886 ret = -EAGAIN;
5887 } else {
5888 cache->reserved += num_bytes;
5889 space_info->bytes_reserved += num_bytes;
5890 if (reserve == RESERVE_ALLOC) {
5891 trace_btrfs_space_reservation(cache->fs_info,
5892 "space_info", space_info->flags,
5893 num_bytes, 0);
5894 space_info->bytes_may_use -= num_bytes;
5895 }
5896
5897 if (delalloc)
5898 cache->delalloc_bytes += num_bytes;
5899 }
5900 } else {
5901 if (cache->ro)
5902 space_info->bytes_readonly += num_bytes;
5903 cache->reserved -= num_bytes;
5904 space_info->bytes_reserved -= num_bytes;
5905
5906 if (delalloc)
5907 cache->delalloc_bytes -= num_bytes;
5908 }
5909 spin_unlock(&cache->lock);
5910 spin_unlock(&space_info->lock);
5911 return ret;
5912 }
5913
5914 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5915 struct btrfs_root *root)
5916 {
5917 struct btrfs_fs_info *fs_info = root->fs_info;
5918 struct btrfs_caching_control *next;
5919 struct btrfs_caching_control *caching_ctl;
5920 struct btrfs_block_group_cache *cache;
5921
5922 down_write(&fs_info->commit_root_sem);
5923
5924 list_for_each_entry_safe(caching_ctl, next,
5925 &fs_info->caching_block_groups, list) {
5926 cache = caching_ctl->block_group;
5927 if (block_group_cache_done(cache)) {
5928 cache->last_byte_to_unpin = (u64)-1;
5929 list_del_init(&caching_ctl->list);
5930 put_caching_control(caching_ctl);
5931 } else {
5932 cache->last_byte_to_unpin = caching_ctl->progress;
5933 }
5934 }
5935
5936 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5937 fs_info->pinned_extents = &fs_info->freed_extents[1];
5938 else
5939 fs_info->pinned_extents = &fs_info->freed_extents[0];
5940
5941 up_write(&fs_info->commit_root_sem);
5942
5943 update_global_block_rsv(fs_info);
5944 }
5945
5946 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5947 const bool return_free_space)
5948 {
5949 struct btrfs_fs_info *fs_info = root->fs_info;
5950 struct btrfs_block_group_cache *cache = NULL;
5951 struct btrfs_space_info *space_info;
5952 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5953 u64 len;
5954 bool readonly;
5955
5956 while (start <= end) {
5957 readonly = false;
5958 if (!cache ||
5959 start >= cache->key.objectid + cache->key.offset) {
5960 if (cache)
5961 btrfs_put_block_group(cache);
5962 cache = btrfs_lookup_block_group(fs_info, start);
5963 BUG_ON(!cache); /* Logic error */
5964 }
5965
5966 len = cache->key.objectid + cache->key.offset - start;
5967 len = min(len, end + 1 - start);
5968
5969 if (start < cache->last_byte_to_unpin) {
5970 len = min(len, cache->last_byte_to_unpin - start);
5971 if (return_free_space)
5972 btrfs_add_free_space(cache, start, len);
5973 }
5974
5975 start += len;
5976 space_info = cache->space_info;
5977
5978 spin_lock(&space_info->lock);
5979 spin_lock(&cache->lock);
5980 cache->pinned -= len;
5981 space_info->bytes_pinned -= len;
5982 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5983 if (cache->ro) {
5984 space_info->bytes_readonly += len;
5985 readonly = true;
5986 }
5987 spin_unlock(&cache->lock);
5988 if (!readonly && global_rsv->space_info == space_info) {
5989 spin_lock(&global_rsv->lock);
5990 if (!global_rsv->full) {
5991 len = min(len, global_rsv->size -
5992 global_rsv->reserved);
5993 global_rsv->reserved += len;
5994 space_info->bytes_may_use += len;
5995 if (global_rsv->reserved >= global_rsv->size)
5996 global_rsv->full = 1;
5997 }
5998 spin_unlock(&global_rsv->lock);
5999 }
6000 spin_unlock(&space_info->lock);
6001 }
6002
6003 if (cache)
6004 btrfs_put_block_group(cache);
6005 return 0;
6006 }
6007
6008 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6009 struct btrfs_root *root)
6010 {
6011 struct btrfs_fs_info *fs_info = root->fs_info;
6012 struct extent_io_tree *unpin;
6013 u64 start;
6014 u64 end;
6015 int ret;
6016
6017 if (trans->aborted)
6018 return 0;
6019
6020 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6021 unpin = &fs_info->freed_extents[1];
6022 else
6023 unpin = &fs_info->freed_extents[0];
6024
6025 while (1) {
6026 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6027 ret = find_first_extent_bit(unpin, 0, &start, &end,
6028 EXTENT_DIRTY, NULL);
6029 if (ret) {
6030 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6031 break;
6032 }
6033
6034 if (btrfs_test_opt(root, DISCARD))
6035 ret = btrfs_discard_extent(root, start,
6036 end + 1 - start, NULL);
6037
6038 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6039 unpin_extent_range(root, start, end, true);
6040 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6041 cond_resched();
6042 }
6043
6044 return 0;
6045 }
6046
6047 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6048 u64 owner, u64 root_objectid)
6049 {
6050 struct btrfs_space_info *space_info;
6051 u64 flags;
6052
6053 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6054 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6055 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6056 else
6057 flags = BTRFS_BLOCK_GROUP_METADATA;
6058 } else {
6059 flags = BTRFS_BLOCK_GROUP_DATA;
6060 }
6061
6062 space_info = __find_space_info(fs_info, flags);
6063 BUG_ON(!space_info); /* Logic bug */
6064 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6065 }
6066
6067
6068 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6069 struct btrfs_root *root,
6070 u64 bytenr, u64 num_bytes, u64 parent,
6071 u64 root_objectid, u64 owner_objectid,
6072 u64 owner_offset, int refs_to_drop,
6073 struct btrfs_delayed_extent_op *extent_op,
6074 int no_quota)
6075 {
6076 struct btrfs_key key;
6077 struct btrfs_path *path;
6078 struct btrfs_fs_info *info = root->fs_info;
6079 struct btrfs_root *extent_root = info->extent_root;
6080 struct extent_buffer *leaf;
6081 struct btrfs_extent_item *ei;
6082 struct btrfs_extent_inline_ref *iref;
6083 int ret;
6084 int is_data;
6085 int extent_slot = 0;
6086 int found_extent = 0;
6087 int num_to_del = 1;
6088 u32 item_size;
6089 u64 refs;
6090 int last_ref = 0;
6091 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6092 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6093 SKINNY_METADATA);
6094
6095 if (!info->quota_enabled || !is_fstree(root_objectid))
6096 no_quota = 1;
6097
6098 path = btrfs_alloc_path();
6099 if (!path)
6100 return -ENOMEM;
6101
6102 path->reada = 1;
6103 path->leave_spinning = 1;
6104
6105 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6106 BUG_ON(!is_data && refs_to_drop != 1);
6107
6108 if (is_data)
6109 skinny_metadata = 0;
6110
6111 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6112 bytenr, num_bytes, parent,
6113 root_objectid, owner_objectid,
6114 owner_offset);
6115 if (ret == 0) {
6116 extent_slot = path->slots[0];
6117 while (extent_slot >= 0) {
6118 btrfs_item_key_to_cpu(path->nodes[0], &key,
6119 extent_slot);
6120 if (key.objectid != bytenr)
6121 break;
6122 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6123 key.offset == num_bytes) {
6124 found_extent = 1;
6125 break;
6126 }
6127 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6128 key.offset == owner_objectid) {
6129 found_extent = 1;
6130 break;
6131 }
6132 if (path->slots[0] - extent_slot > 5)
6133 break;
6134 extent_slot--;
6135 }
6136 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6137 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6138 if (found_extent && item_size < sizeof(*ei))
6139 found_extent = 0;
6140 #endif
6141 if (!found_extent) {
6142 BUG_ON(iref);
6143 ret = remove_extent_backref(trans, extent_root, path,
6144 NULL, refs_to_drop,
6145 is_data, &last_ref);
6146 if (ret) {
6147 btrfs_abort_transaction(trans, extent_root, ret);
6148 goto out;
6149 }
6150 btrfs_release_path(path);
6151 path->leave_spinning = 1;
6152
6153 key.objectid = bytenr;
6154 key.type = BTRFS_EXTENT_ITEM_KEY;
6155 key.offset = num_bytes;
6156
6157 if (!is_data && skinny_metadata) {
6158 key.type = BTRFS_METADATA_ITEM_KEY;
6159 key.offset = owner_objectid;
6160 }
6161
6162 ret = btrfs_search_slot(trans, extent_root,
6163 &key, path, -1, 1);
6164 if (ret > 0 && skinny_metadata && path->slots[0]) {
6165 /*
6166 * Couldn't find our skinny metadata item,
6167 * see if we have ye olde extent item.
6168 */
6169 path->slots[0]--;
6170 btrfs_item_key_to_cpu(path->nodes[0], &key,
6171 path->slots[0]);
6172 if (key.objectid == bytenr &&
6173 key.type == BTRFS_EXTENT_ITEM_KEY &&
6174 key.offset == num_bytes)
6175 ret = 0;
6176 }
6177
6178 if (ret > 0 && skinny_metadata) {
6179 skinny_metadata = false;
6180 key.objectid = bytenr;
6181 key.type = BTRFS_EXTENT_ITEM_KEY;
6182 key.offset = num_bytes;
6183 btrfs_release_path(path);
6184 ret = btrfs_search_slot(trans, extent_root,
6185 &key, path, -1, 1);
6186 }
6187
6188 if (ret) {
6189 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6190 ret, bytenr);
6191 if (ret > 0)
6192 btrfs_print_leaf(extent_root,
6193 path->nodes[0]);
6194 }
6195 if (ret < 0) {
6196 btrfs_abort_transaction(trans, extent_root, ret);
6197 goto out;
6198 }
6199 extent_slot = path->slots[0];
6200 }
6201 } else if (WARN_ON(ret == -ENOENT)) {
6202 btrfs_print_leaf(extent_root, path->nodes[0]);
6203 btrfs_err(info,
6204 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6205 bytenr, parent, root_objectid, owner_objectid,
6206 owner_offset);
6207 btrfs_abort_transaction(trans, extent_root, ret);
6208 goto out;
6209 } else {
6210 btrfs_abort_transaction(trans, extent_root, ret);
6211 goto out;
6212 }
6213
6214 leaf = path->nodes[0];
6215 item_size = btrfs_item_size_nr(leaf, extent_slot);
6216 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6217 if (item_size < sizeof(*ei)) {
6218 BUG_ON(found_extent || extent_slot != path->slots[0]);
6219 ret = convert_extent_item_v0(trans, extent_root, path,
6220 owner_objectid, 0);
6221 if (ret < 0) {
6222 btrfs_abort_transaction(trans, extent_root, ret);
6223 goto out;
6224 }
6225
6226 btrfs_release_path(path);
6227 path->leave_spinning = 1;
6228
6229 key.objectid = bytenr;
6230 key.type = BTRFS_EXTENT_ITEM_KEY;
6231 key.offset = num_bytes;
6232
6233 ret = btrfs_search_slot(trans, extent_root, &key, path,
6234 -1, 1);
6235 if (ret) {
6236 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6237 ret, bytenr);
6238 btrfs_print_leaf(extent_root, path->nodes[0]);
6239 }
6240 if (ret < 0) {
6241 btrfs_abort_transaction(trans, extent_root, ret);
6242 goto out;
6243 }
6244
6245 extent_slot = path->slots[0];
6246 leaf = path->nodes[0];
6247 item_size = btrfs_item_size_nr(leaf, extent_slot);
6248 }
6249 #endif
6250 BUG_ON(item_size < sizeof(*ei));
6251 ei = btrfs_item_ptr(leaf, extent_slot,
6252 struct btrfs_extent_item);
6253 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6254 key.type == BTRFS_EXTENT_ITEM_KEY) {
6255 struct btrfs_tree_block_info *bi;
6256 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6257 bi = (struct btrfs_tree_block_info *)(ei + 1);
6258 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6259 }
6260
6261 refs = btrfs_extent_refs(leaf, ei);
6262 if (refs < refs_to_drop) {
6263 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6264 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6265 ret = -EINVAL;
6266 btrfs_abort_transaction(trans, extent_root, ret);
6267 goto out;
6268 }
6269 refs -= refs_to_drop;
6270
6271 if (refs > 0) {
6272 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6273 if (extent_op)
6274 __run_delayed_extent_op(extent_op, leaf, ei);
6275 /*
6276 * In the case of inline back ref, reference count will
6277 * be updated by remove_extent_backref
6278 */
6279 if (iref) {
6280 BUG_ON(!found_extent);
6281 } else {
6282 btrfs_set_extent_refs(leaf, ei, refs);
6283 btrfs_mark_buffer_dirty(leaf);
6284 }
6285 if (found_extent) {
6286 ret = remove_extent_backref(trans, extent_root, path,
6287 iref, refs_to_drop,
6288 is_data, &last_ref);
6289 if (ret) {
6290 btrfs_abort_transaction(trans, extent_root, ret);
6291 goto out;
6292 }
6293 }
6294 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6295 root_objectid);
6296 } else {
6297 if (found_extent) {
6298 BUG_ON(is_data && refs_to_drop !=
6299 extent_data_ref_count(root, path, iref));
6300 if (iref) {
6301 BUG_ON(path->slots[0] != extent_slot);
6302 } else {
6303 BUG_ON(path->slots[0] != extent_slot + 1);
6304 path->slots[0] = extent_slot;
6305 num_to_del = 2;
6306 }
6307 }
6308
6309 last_ref = 1;
6310 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6311 num_to_del);
6312 if (ret) {
6313 btrfs_abort_transaction(trans, extent_root, ret);
6314 goto out;
6315 }
6316 btrfs_release_path(path);
6317
6318 if (is_data) {
6319 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6320 if (ret) {
6321 btrfs_abort_transaction(trans, extent_root, ret);
6322 goto out;
6323 }
6324 }
6325
6326 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6327 if (ret) {
6328 btrfs_abort_transaction(trans, extent_root, ret);
6329 goto out;
6330 }
6331 }
6332 btrfs_release_path(path);
6333
6334 /* Deal with the quota accounting */
6335 if (!ret && last_ref && !no_quota) {
6336 int mod_seq = 0;
6337
6338 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6339 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6340 mod_seq = 1;
6341
6342 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6343 bytenr, num_bytes, type,
6344 mod_seq);
6345 }
6346 out:
6347 btrfs_free_path(path);
6348 return ret;
6349 }
6350
6351 /*
6352 * when we free an block, it is possible (and likely) that we free the last
6353 * delayed ref for that extent as well. This searches the delayed ref tree for
6354 * a given extent, and if there are no other delayed refs to be processed, it
6355 * removes it from the tree.
6356 */
6357 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6358 struct btrfs_root *root, u64 bytenr)
6359 {
6360 struct btrfs_delayed_ref_head *head;
6361 struct btrfs_delayed_ref_root *delayed_refs;
6362 int ret = 0;
6363
6364 delayed_refs = &trans->transaction->delayed_refs;
6365 spin_lock(&delayed_refs->lock);
6366 head = btrfs_find_delayed_ref_head(trans, bytenr);
6367 if (!head)
6368 goto out_delayed_unlock;
6369
6370 spin_lock(&head->lock);
6371 if (rb_first(&head->ref_root))
6372 goto out;
6373
6374 if (head->extent_op) {
6375 if (!head->must_insert_reserved)
6376 goto out;
6377 btrfs_free_delayed_extent_op(head->extent_op);
6378 head->extent_op = NULL;
6379 }
6380
6381 /*
6382 * waiting for the lock here would deadlock. If someone else has it
6383 * locked they are already in the process of dropping it anyway
6384 */
6385 if (!mutex_trylock(&head->mutex))
6386 goto out;
6387
6388 /*
6389 * at this point we have a head with no other entries. Go
6390 * ahead and process it.
6391 */
6392 head->node.in_tree = 0;
6393 rb_erase(&head->href_node, &delayed_refs->href_root);
6394
6395 atomic_dec(&delayed_refs->num_entries);
6396
6397 /*
6398 * we don't take a ref on the node because we're removing it from the
6399 * tree, so we just steal the ref the tree was holding.
6400 */
6401 delayed_refs->num_heads--;
6402 if (head->processing == 0)
6403 delayed_refs->num_heads_ready--;
6404 head->processing = 0;
6405 spin_unlock(&head->lock);
6406 spin_unlock(&delayed_refs->lock);
6407
6408 BUG_ON(head->extent_op);
6409 if (head->must_insert_reserved)
6410 ret = 1;
6411
6412 mutex_unlock(&head->mutex);
6413 btrfs_put_delayed_ref(&head->node);
6414 return ret;
6415 out:
6416 spin_unlock(&head->lock);
6417
6418 out_delayed_unlock:
6419 spin_unlock(&delayed_refs->lock);
6420 return 0;
6421 }
6422
6423 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6424 struct btrfs_root *root,
6425 struct extent_buffer *buf,
6426 u64 parent, int last_ref)
6427 {
6428 int pin = 1;
6429 int ret;
6430
6431 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6432 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6433 buf->start, buf->len,
6434 parent, root->root_key.objectid,
6435 btrfs_header_level(buf),
6436 BTRFS_DROP_DELAYED_REF, NULL, 0);
6437 BUG_ON(ret); /* -ENOMEM */
6438 }
6439
6440 if (!last_ref)
6441 return;
6442
6443 if (btrfs_header_generation(buf) == trans->transid) {
6444 struct btrfs_block_group_cache *cache;
6445
6446 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6447 ret = check_ref_cleanup(trans, root, buf->start);
6448 if (!ret)
6449 goto out;
6450 }
6451
6452 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6453
6454 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6455 pin_down_extent(root, cache, buf->start, buf->len, 1);
6456 btrfs_put_block_group(cache);
6457 goto out;
6458 }
6459
6460 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6461
6462 btrfs_add_free_space(cache, buf->start, buf->len);
6463 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6464 btrfs_put_block_group(cache);
6465 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6466 pin = 0;
6467 }
6468 out:
6469 if (pin)
6470 add_pinned_bytes(root->fs_info, buf->len,
6471 btrfs_header_level(buf),
6472 root->root_key.objectid);
6473
6474 /*
6475 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6476 * anymore.
6477 */
6478 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6479 }
6480
6481 /* Can return -ENOMEM */
6482 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6483 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6484 u64 owner, u64 offset, int no_quota)
6485 {
6486 int ret;
6487 struct btrfs_fs_info *fs_info = root->fs_info;
6488
6489 if (btrfs_test_is_dummy_root(root))
6490 return 0;
6491
6492 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6493
6494 /*
6495 * tree log blocks never actually go into the extent allocation
6496 * tree, just update pinning info and exit early.
6497 */
6498 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6499 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6500 /* unlocks the pinned mutex */
6501 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6502 ret = 0;
6503 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6504 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6505 num_bytes,
6506 parent, root_objectid, (int)owner,
6507 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6508 } else {
6509 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6510 num_bytes,
6511 parent, root_objectid, owner,
6512 offset, BTRFS_DROP_DELAYED_REF,
6513 NULL, no_quota);
6514 }
6515 return ret;
6516 }
6517
6518 /*
6519 * when we wait for progress in the block group caching, its because
6520 * our allocation attempt failed at least once. So, we must sleep
6521 * and let some progress happen before we try again.
6522 *
6523 * This function will sleep at least once waiting for new free space to
6524 * show up, and then it will check the block group free space numbers
6525 * for our min num_bytes. Another option is to have it go ahead
6526 * and look in the rbtree for a free extent of a given size, but this
6527 * is a good start.
6528 *
6529 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6530 * any of the information in this block group.
6531 */
6532 static noinline void
6533 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6534 u64 num_bytes)
6535 {
6536 struct btrfs_caching_control *caching_ctl;
6537
6538 caching_ctl = get_caching_control(cache);
6539 if (!caching_ctl)
6540 return;
6541
6542 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6543 (cache->free_space_ctl->free_space >= num_bytes));
6544
6545 put_caching_control(caching_ctl);
6546 }
6547
6548 static noinline int
6549 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6550 {
6551 struct btrfs_caching_control *caching_ctl;
6552 int ret = 0;
6553
6554 caching_ctl = get_caching_control(cache);
6555 if (!caching_ctl)
6556 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6557
6558 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6559 if (cache->cached == BTRFS_CACHE_ERROR)
6560 ret = -EIO;
6561 put_caching_control(caching_ctl);
6562 return ret;
6563 }
6564
6565 int __get_raid_index(u64 flags)
6566 {
6567 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6568 return BTRFS_RAID_RAID10;
6569 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6570 return BTRFS_RAID_RAID1;
6571 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6572 return BTRFS_RAID_DUP;
6573 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6574 return BTRFS_RAID_RAID0;
6575 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6576 return BTRFS_RAID_RAID5;
6577 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6578 return BTRFS_RAID_RAID6;
6579
6580 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6581 }
6582
6583 int get_block_group_index(struct btrfs_block_group_cache *cache)
6584 {
6585 return __get_raid_index(cache->flags);
6586 }
6587
6588 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6589 [BTRFS_RAID_RAID10] = "raid10",
6590 [BTRFS_RAID_RAID1] = "raid1",
6591 [BTRFS_RAID_DUP] = "dup",
6592 [BTRFS_RAID_RAID0] = "raid0",
6593 [BTRFS_RAID_SINGLE] = "single",
6594 [BTRFS_RAID_RAID5] = "raid5",
6595 [BTRFS_RAID_RAID6] = "raid6",
6596 };
6597
6598 static const char *get_raid_name(enum btrfs_raid_types type)
6599 {
6600 if (type >= BTRFS_NR_RAID_TYPES)
6601 return NULL;
6602
6603 return btrfs_raid_type_names[type];
6604 }
6605
6606 enum btrfs_loop_type {
6607 LOOP_CACHING_NOWAIT = 0,
6608 LOOP_CACHING_WAIT = 1,
6609 LOOP_ALLOC_CHUNK = 2,
6610 LOOP_NO_EMPTY_SIZE = 3,
6611 };
6612
6613 static inline void
6614 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6615 int delalloc)
6616 {
6617 if (delalloc)
6618 down_read(&cache->data_rwsem);
6619 }
6620
6621 static inline void
6622 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6623 int delalloc)
6624 {
6625 btrfs_get_block_group(cache);
6626 if (delalloc)
6627 down_read(&cache->data_rwsem);
6628 }
6629
6630 static struct btrfs_block_group_cache *
6631 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6632 struct btrfs_free_cluster *cluster,
6633 int delalloc)
6634 {
6635 struct btrfs_block_group_cache *used_bg;
6636 bool locked = false;
6637 again:
6638 spin_lock(&cluster->refill_lock);
6639 if (locked) {
6640 if (used_bg == cluster->block_group)
6641 return used_bg;
6642
6643 up_read(&used_bg->data_rwsem);
6644 btrfs_put_block_group(used_bg);
6645 }
6646
6647 used_bg = cluster->block_group;
6648 if (!used_bg)
6649 return NULL;
6650
6651 if (used_bg == block_group)
6652 return used_bg;
6653
6654 btrfs_get_block_group(used_bg);
6655
6656 if (!delalloc)
6657 return used_bg;
6658
6659 if (down_read_trylock(&used_bg->data_rwsem))
6660 return used_bg;
6661
6662 spin_unlock(&cluster->refill_lock);
6663 down_read(&used_bg->data_rwsem);
6664 locked = true;
6665 goto again;
6666 }
6667
6668 static inline void
6669 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6670 int delalloc)
6671 {
6672 if (delalloc)
6673 up_read(&cache->data_rwsem);
6674 btrfs_put_block_group(cache);
6675 }
6676
6677 /*
6678 * walks the btree of allocated extents and find a hole of a given size.
6679 * The key ins is changed to record the hole:
6680 * ins->objectid == start position
6681 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6682 * ins->offset == the size of the hole.
6683 * Any available blocks before search_start are skipped.
6684 *
6685 * If there is no suitable free space, we will record the max size of
6686 * the free space extent currently.
6687 */
6688 static noinline int find_free_extent(struct btrfs_root *orig_root,
6689 u64 num_bytes, u64 empty_size,
6690 u64 hint_byte, struct btrfs_key *ins,
6691 u64 flags, int delalloc)
6692 {
6693 int ret = 0;
6694 struct btrfs_root *root = orig_root->fs_info->extent_root;
6695 struct btrfs_free_cluster *last_ptr = NULL;
6696 struct btrfs_block_group_cache *block_group = NULL;
6697 u64 search_start = 0;
6698 u64 max_extent_size = 0;
6699 int empty_cluster = 2 * 1024 * 1024;
6700 struct btrfs_space_info *space_info;
6701 int loop = 0;
6702 int index = __get_raid_index(flags);
6703 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6704 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6705 bool failed_cluster_refill = false;
6706 bool failed_alloc = false;
6707 bool use_cluster = true;
6708 bool have_caching_bg = false;
6709
6710 WARN_ON(num_bytes < root->sectorsize);
6711 ins->type = BTRFS_EXTENT_ITEM_KEY;
6712 ins->objectid = 0;
6713 ins->offset = 0;
6714
6715 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6716
6717 space_info = __find_space_info(root->fs_info, flags);
6718 if (!space_info) {
6719 btrfs_err(root->fs_info, "No space info for %llu", flags);
6720 return -ENOSPC;
6721 }
6722
6723 /*
6724 * If the space info is for both data and metadata it means we have a
6725 * small filesystem and we can't use the clustering stuff.
6726 */
6727 if (btrfs_mixed_space_info(space_info))
6728 use_cluster = false;
6729
6730 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6731 last_ptr = &root->fs_info->meta_alloc_cluster;
6732 if (!btrfs_test_opt(root, SSD))
6733 empty_cluster = 64 * 1024;
6734 }
6735
6736 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6737 btrfs_test_opt(root, SSD)) {
6738 last_ptr = &root->fs_info->data_alloc_cluster;
6739 }
6740
6741 if (last_ptr) {
6742 spin_lock(&last_ptr->lock);
6743 if (last_ptr->block_group)
6744 hint_byte = last_ptr->window_start;
6745 spin_unlock(&last_ptr->lock);
6746 }
6747
6748 search_start = max(search_start, first_logical_byte(root, 0));
6749 search_start = max(search_start, hint_byte);
6750
6751 if (!last_ptr)
6752 empty_cluster = 0;
6753
6754 if (search_start == hint_byte) {
6755 block_group = btrfs_lookup_block_group(root->fs_info,
6756 search_start);
6757 /*
6758 * we don't want to use the block group if it doesn't match our
6759 * allocation bits, or if its not cached.
6760 *
6761 * However if we are re-searching with an ideal block group
6762 * picked out then we don't care that the block group is cached.
6763 */
6764 if (block_group && block_group_bits(block_group, flags) &&
6765 block_group->cached != BTRFS_CACHE_NO) {
6766 down_read(&space_info->groups_sem);
6767 if (list_empty(&block_group->list) ||
6768 block_group->ro) {
6769 /*
6770 * someone is removing this block group,
6771 * we can't jump into the have_block_group
6772 * target because our list pointers are not
6773 * valid
6774 */
6775 btrfs_put_block_group(block_group);
6776 up_read(&space_info->groups_sem);
6777 } else {
6778 index = get_block_group_index(block_group);
6779 btrfs_lock_block_group(block_group, delalloc);
6780 goto have_block_group;
6781 }
6782 } else if (block_group) {
6783 btrfs_put_block_group(block_group);
6784 }
6785 }
6786 search:
6787 have_caching_bg = false;
6788 down_read(&space_info->groups_sem);
6789 list_for_each_entry(block_group, &space_info->block_groups[index],
6790 list) {
6791 u64 offset;
6792 int cached;
6793
6794 btrfs_grab_block_group(block_group, delalloc);
6795 search_start = block_group->key.objectid;
6796
6797 /*
6798 * this can happen if we end up cycling through all the
6799 * raid types, but we want to make sure we only allocate
6800 * for the proper type.
6801 */
6802 if (!block_group_bits(block_group, flags)) {
6803 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6804 BTRFS_BLOCK_GROUP_RAID1 |
6805 BTRFS_BLOCK_GROUP_RAID5 |
6806 BTRFS_BLOCK_GROUP_RAID6 |
6807 BTRFS_BLOCK_GROUP_RAID10;
6808
6809 /*
6810 * if they asked for extra copies and this block group
6811 * doesn't provide them, bail. This does allow us to
6812 * fill raid0 from raid1.
6813 */
6814 if ((flags & extra) && !(block_group->flags & extra))
6815 goto loop;
6816 }
6817
6818 have_block_group:
6819 cached = block_group_cache_done(block_group);
6820 if (unlikely(!cached)) {
6821 ret = cache_block_group(block_group, 0);
6822 BUG_ON(ret < 0);
6823 ret = 0;
6824 }
6825
6826 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6827 goto loop;
6828 if (unlikely(block_group->ro))
6829 goto loop;
6830
6831 /*
6832 * Ok we want to try and use the cluster allocator, so
6833 * lets look there
6834 */
6835 if (last_ptr) {
6836 struct btrfs_block_group_cache *used_block_group;
6837 unsigned long aligned_cluster;
6838 /*
6839 * the refill lock keeps out other
6840 * people trying to start a new cluster
6841 */
6842 used_block_group = btrfs_lock_cluster(block_group,
6843 last_ptr,
6844 delalloc);
6845 if (!used_block_group)
6846 goto refill_cluster;
6847
6848 if (used_block_group != block_group &&
6849 (used_block_group->ro ||
6850 !block_group_bits(used_block_group, flags)))
6851 goto release_cluster;
6852
6853 offset = btrfs_alloc_from_cluster(used_block_group,
6854 last_ptr,
6855 num_bytes,
6856 used_block_group->key.objectid,
6857 &max_extent_size);
6858 if (offset) {
6859 /* we have a block, we're done */
6860 spin_unlock(&last_ptr->refill_lock);
6861 trace_btrfs_reserve_extent_cluster(root,
6862 used_block_group,
6863 search_start, num_bytes);
6864 if (used_block_group != block_group) {
6865 btrfs_release_block_group(block_group,
6866 delalloc);
6867 block_group = used_block_group;
6868 }
6869 goto checks;
6870 }
6871
6872 WARN_ON(last_ptr->block_group != used_block_group);
6873 release_cluster:
6874 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6875 * set up a new clusters, so lets just skip it
6876 * and let the allocator find whatever block
6877 * it can find. If we reach this point, we
6878 * will have tried the cluster allocator
6879 * plenty of times and not have found
6880 * anything, so we are likely way too
6881 * fragmented for the clustering stuff to find
6882 * anything.
6883 *
6884 * However, if the cluster is taken from the
6885 * current block group, release the cluster
6886 * first, so that we stand a better chance of
6887 * succeeding in the unclustered
6888 * allocation. */
6889 if (loop >= LOOP_NO_EMPTY_SIZE &&
6890 used_block_group != block_group) {
6891 spin_unlock(&last_ptr->refill_lock);
6892 btrfs_release_block_group(used_block_group,
6893 delalloc);
6894 goto unclustered_alloc;
6895 }
6896
6897 /*
6898 * this cluster didn't work out, free it and
6899 * start over
6900 */
6901 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6902
6903 if (used_block_group != block_group)
6904 btrfs_release_block_group(used_block_group,
6905 delalloc);
6906 refill_cluster:
6907 if (loop >= LOOP_NO_EMPTY_SIZE) {
6908 spin_unlock(&last_ptr->refill_lock);
6909 goto unclustered_alloc;
6910 }
6911
6912 aligned_cluster = max_t(unsigned long,
6913 empty_cluster + empty_size,
6914 block_group->full_stripe_len);
6915
6916 /* allocate a cluster in this block group */
6917 ret = btrfs_find_space_cluster(root, block_group,
6918 last_ptr, search_start,
6919 num_bytes,
6920 aligned_cluster);
6921 if (ret == 0) {
6922 /*
6923 * now pull our allocation out of this
6924 * cluster
6925 */
6926 offset = btrfs_alloc_from_cluster(block_group,
6927 last_ptr,
6928 num_bytes,
6929 search_start,
6930 &max_extent_size);
6931 if (offset) {
6932 /* we found one, proceed */
6933 spin_unlock(&last_ptr->refill_lock);
6934 trace_btrfs_reserve_extent_cluster(root,
6935 block_group, search_start,
6936 num_bytes);
6937 goto checks;
6938 }
6939 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6940 && !failed_cluster_refill) {
6941 spin_unlock(&last_ptr->refill_lock);
6942
6943 failed_cluster_refill = true;
6944 wait_block_group_cache_progress(block_group,
6945 num_bytes + empty_cluster + empty_size);
6946 goto have_block_group;
6947 }
6948
6949 /*
6950 * at this point we either didn't find a cluster
6951 * or we weren't able to allocate a block from our
6952 * cluster. Free the cluster we've been trying
6953 * to use, and go to the next block group
6954 */
6955 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6956 spin_unlock(&last_ptr->refill_lock);
6957 goto loop;
6958 }
6959
6960 unclustered_alloc:
6961 spin_lock(&block_group->free_space_ctl->tree_lock);
6962 if (cached &&
6963 block_group->free_space_ctl->free_space <
6964 num_bytes + empty_cluster + empty_size) {
6965 if (block_group->free_space_ctl->free_space >
6966 max_extent_size)
6967 max_extent_size =
6968 block_group->free_space_ctl->free_space;
6969 spin_unlock(&block_group->free_space_ctl->tree_lock);
6970 goto loop;
6971 }
6972 spin_unlock(&block_group->free_space_ctl->tree_lock);
6973
6974 offset = btrfs_find_space_for_alloc(block_group, search_start,
6975 num_bytes, empty_size,
6976 &max_extent_size);
6977 /*
6978 * If we didn't find a chunk, and we haven't failed on this
6979 * block group before, and this block group is in the middle of
6980 * caching and we are ok with waiting, then go ahead and wait
6981 * for progress to be made, and set failed_alloc to true.
6982 *
6983 * If failed_alloc is true then we've already waited on this
6984 * block group once and should move on to the next block group.
6985 */
6986 if (!offset && !failed_alloc && !cached &&
6987 loop > LOOP_CACHING_NOWAIT) {
6988 wait_block_group_cache_progress(block_group,
6989 num_bytes + empty_size);
6990 failed_alloc = true;
6991 goto have_block_group;
6992 } else if (!offset) {
6993 if (!cached)
6994 have_caching_bg = true;
6995 goto loop;
6996 }
6997 checks:
6998 search_start = ALIGN(offset, root->stripesize);
6999
7000 /* move on to the next group */
7001 if (search_start + num_bytes >
7002 block_group->key.objectid + block_group->key.offset) {
7003 btrfs_add_free_space(block_group, offset, num_bytes);
7004 goto loop;
7005 }
7006
7007 if (offset < search_start)
7008 btrfs_add_free_space(block_group, offset,
7009 search_start - offset);
7010 BUG_ON(offset > search_start);
7011
7012 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7013 alloc_type, delalloc);
7014 if (ret == -EAGAIN) {
7015 btrfs_add_free_space(block_group, offset, num_bytes);
7016 goto loop;
7017 }
7018
7019 /* we are all good, lets return */
7020 ins->objectid = search_start;
7021 ins->offset = num_bytes;
7022
7023 trace_btrfs_reserve_extent(orig_root, block_group,
7024 search_start, num_bytes);
7025 btrfs_release_block_group(block_group, delalloc);
7026 break;
7027 loop:
7028 failed_cluster_refill = false;
7029 failed_alloc = false;
7030 BUG_ON(index != get_block_group_index(block_group));
7031 btrfs_release_block_group(block_group, delalloc);
7032 }
7033 up_read(&space_info->groups_sem);
7034
7035 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7036 goto search;
7037
7038 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7039 goto search;
7040
7041 /*
7042 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7043 * caching kthreads as we move along
7044 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7045 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7046 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7047 * again
7048 */
7049 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7050 index = 0;
7051 loop++;
7052 if (loop == LOOP_ALLOC_CHUNK) {
7053 struct btrfs_trans_handle *trans;
7054 int exist = 0;
7055
7056 trans = current->journal_info;
7057 if (trans)
7058 exist = 1;
7059 else
7060 trans = btrfs_join_transaction(root);
7061
7062 if (IS_ERR(trans)) {
7063 ret = PTR_ERR(trans);
7064 goto out;
7065 }
7066
7067 ret = do_chunk_alloc(trans, root, flags,
7068 CHUNK_ALLOC_FORCE);
7069 /*
7070 * Do not bail out on ENOSPC since we
7071 * can do more things.
7072 */
7073 if (ret < 0 && ret != -ENOSPC)
7074 btrfs_abort_transaction(trans,
7075 root, ret);
7076 else
7077 ret = 0;
7078 if (!exist)
7079 btrfs_end_transaction(trans, root);
7080 if (ret)
7081 goto out;
7082 }
7083
7084 if (loop == LOOP_NO_EMPTY_SIZE) {
7085 empty_size = 0;
7086 empty_cluster = 0;
7087 }
7088
7089 goto search;
7090 } else if (!ins->objectid) {
7091 ret = -ENOSPC;
7092 } else if (ins->objectid) {
7093 ret = 0;
7094 }
7095 out:
7096 if (ret == -ENOSPC)
7097 ins->offset = max_extent_size;
7098 return ret;
7099 }
7100
7101 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7102 int dump_block_groups)
7103 {
7104 struct btrfs_block_group_cache *cache;
7105 int index = 0;
7106
7107 spin_lock(&info->lock);
7108 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7109 info->flags,
7110 info->total_bytes - info->bytes_used - info->bytes_pinned -
7111 info->bytes_reserved - info->bytes_readonly,
7112 (info->full) ? "" : "not ");
7113 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7114 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7115 info->total_bytes, info->bytes_used, info->bytes_pinned,
7116 info->bytes_reserved, info->bytes_may_use,
7117 info->bytes_readonly);
7118 spin_unlock(&info->lock);
7119
7120 if (!dump_block_groups)
7121 return;
7122
7123 down_read(&info->groups_sem);
7124 again:
7125 list_for_each_entry(cache, &info->block_groups[index], list) {
7126 spin_lock(&cache->lock);
7127 printk(KERN_INFO "BTRFS: "
7128 "block group %llu has %llu bytes, "
7129 "%llu used %llu pinned %llu reserved %s\n",
7130 cache->key.objectid, cache->key.offset,
7131 btrfs_block_group_used(&cache->item), cache->pinned,
7132 cache->reserved, cache->ro ? "[readonly]" : "");
7133 btrfs_dump_free_space(cache, bytes);
7134 spin_unlock(&cache->lock);
7135 }
7136 if (++index < BTRFS_NR_RAID_TYPES)
7137 goto again;
7138 up_read(&info->groups_sem);
7139 }
7140
7141 int btrfs_reserve_extent(struct btrfs_root *root,
7142 u64 num_bytes, u64 min_alloc_size,
7143 u64 empty_size, u64 hint_byte,
7144 struct btrfs_key *ins, int is_data, int delalloc)
7145 {
7146 bool final_tried = false;
7147 u64 flags;
7148 int ret;
7149
7150 flags = btrfs_get_alloc_profile(root, is_data);
7151 again:
7152 WARN_ON(num_bytes < root->sectorsize);
7153 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7154 flags, delalloc);
7155
7156 if (ret == -ENOSPC) {
7157 if (!final_tried && ins->offset) {
7158 num_bytes = min(num_bytes >> 1, ins->offset);
7159 num_bytes = round_down(num_bytes, root->sectorsize);
7160 num_bytes = max(num_bytes, min_alloc_size);
7161 if (num_bytes == min_alloc_size)
7162 final_tried = true;
7163 goto again;
7164 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7165 struct btrfs_space_info *sinfo;
7166
7167 sinfo = __find_space_info(root->fs_info, flags);
7168 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7169 flags, num_bytes);
7170 if (sinfo)
7171 dump_space_info(sinfo, num_bytes, 1);
7172 }
7173 }
7174
7175 return ret;
7176 }
7177
7178 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7179 u64 start, u64 len,
7180 int pin, int delalloc)
7181 {
7182 struct btrfs_block_group_cache *cache;
7183 int ret = 0;
7184
7185 cache = btrfs_lookup_block_group(root->fs_info, start);
7186 if (!cache) {
7187 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7188 start);
7189 return -ENOSPC;
7190 }
7191
7192 if (pin)
7193 pin_down_extent(root, cache, start, len, 1);
7194 else {
7195 if (btrfs_test_opt(root, DISCARD))
7196 ret = btrfs_discard_extent(root, start, len, NULL);
7197 btrfs_add_free_space(cache, start, len);
7198 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7199 }
7200 btrfs_put_block_group(cache);
7201
7202 trace_btrfs_reserved_extent_free(root, start, len);
7203
7204 return ret;
7205 }
7206
7207 int btrfs_free_reserved_extent(struct btrfs_root *root,
7208 u64 start, u64 len, int delalloc)
7209 {
7210 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7211 }
7212
7213 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7214 u64 start, u64 len)
7215 {
7216 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7217 }
7218
7219 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7220 struct btrfs_root *root,
7221 u64 parent, u64 root_objectid,
7222 u64 flags, u64 owner, u64 offset,
7223 struct btrfs_key *ins, int ref_mod)
7224 {
7225 int ret;
7226 struct btrfs_fs_info *fs_info = root->fs_info;
7227 struct btrfs_extent_item *extent_item;
7228 struct btrfs_extent_inline_ref *iref;
7229 struct btrfs_path *path;
7230 struct extent_buffer *leaf;
7231 int type;
7232 u32 size;
7233
7234 if (parent > 0)
7235 type = BTRFS_SHARED_DATA_REF_KEY;
7236 else
7237 type = BTRFS_EXTENT_DATA_REF_KEY;
7238
7239 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7240
7241 path = btrfs_alloc_path();
7242 if (!path)
7243 return -ENOMEM;
7244
7245 path->leave_spinning = 1;
7246 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7247 ins, size);
7248 if (ret) {
7249 btrfs_free_path(path);
7250 return ret;
7251 }
7252
7253 leaf = path->nodes[0];
7254 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7255 struct btrfs_extent_item);
7256 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7257 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7258 btrfs_set_extent_flags(leaf, extent_item,
7259 flags | BTRFS_EXTENT_FLAG_DATA);
7260
7261 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7262 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7263 if (parent > 0) {
7264 struct btrfs_shared_data_ref *ref;
7265 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7266 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7267 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7268 } else {
7269 struct btrfs_extent_data_ref *ref;
7270 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7271 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7272 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7273 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7274 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7275 }
7276
7277 btrfs_mark_buffer_dirty(path->nodes[0]);
7278 btrfs_free_path(path);
7279
7280 /* Always set parent to 0 here since its exclusive anyway. */
7281 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7282 ins->objectid, ins->offset,
7283 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7284 if (ret)
7285 return ret;
7286
7287 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7288 if (ret) { /* -ENOENT, logic error */
7289 btrfs_err(fs_info, "update block group failed for %llu %llu",
7290 ins->objectid, ins->offset);
7291 BUG();
7292 }
7293 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7294 return ret;
7295 }
7296
7297 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7298 struct btrfs_root *root,
7299 u64 parent, u64 root_objectid,
7300 u64 flags, struct btrfs_disk_key *key,
7301 int level, struct btrfs_key *ins,
7302 int no_quota)
7303 {
7304 int ret;
7305 struct btrfs_fs_info *fs_info = root->fs_info;
7306 struct btrfs_extent_item *extent_item;
7307 struct btrfs_tree_block_info *block_info;
7308 struct btrfs_extent_inline_ref *iref;
7309 struct btrfs_path *path;
7310 struct extent_buffer *leaf;
7311 u32 size = sizeof(*extent_item) + sizeof(*iref);
7312 u64 num_bytes = ins->offset;
7313 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7314 SKINNY_METADATA);
7315
7316 if (!skinny_metadata)
7317 size += sizeof(*block_info);
7318
7319 path = btrfs_alloc_path();
7320 if (!path) {
7321 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7322 root->nodesize);
7323 return -ENOMEM;
7324 }
7325
7326 path->leave_spinning = 1;
7327 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7328 ins, size);
7329 if (ret) {
7330 btrfs_free_path(path);
7331 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7332 root->nodesize);
7333 return ret;
7334 }
7335
7336 leaf = path->nodes[0];
7337 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7338 struct btrfs_extent_item);
7339 btrfs_set_extent_refs(leaf, extent_item, 1);
7340 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7341 btrfs_set_extent_flags(leaf, extent_item,
7342 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7343
7344 if (skinny_metadata) {
7345 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7346 num_bytes = root->nodesize;
7347 } else {
7348 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7349 btrfs_set_tree_block_key(leaf, block_info, key);
7350 btrfs_set_tree_block_level(leaf, block_info, level);
7351 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7352 }
7353
7354 if (parent > 0) {
7355 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7356 btrfs_set_extent_inline_ref_type(leaf, iref,
7357 BTRFS_SHARED_BLOCK_REF_KEY);
7358 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7359 } else {
7360 btrfs_set_extent_inline_ref_type(leaf, iref,
7361 BTRFS_TREE_BLOCK_REF_KEY);
7362 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7363 }
7364
7365 btrfs_mark_buffer_dirty(leaf);
7366 btrfs_free_path(path);
7367
7368 if (!no_quota) {
7369 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7370 ins->objectid, num_bytes,
7371 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7372 if (ret)
7373 return ret;
7374 }
7375
7376 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7377 1);
7378 if (ret) { /* -ENOENT, logic error */
7379 btrfs_err(fs_info, "update block group failed for %llu %llu",
7380 ins->objectid, ins->offset);
7381 BUG();
7382 }
7383
7384 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7385 return ret;
7386 }
7387
7388 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7389 struct btrfs_root *root,
7390 u64 root_objectid, u64 owner,
7391 u64 offset, struct btrfs_key *ins)
7392 {
7393 int ret;
7394
7395 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7396
7397 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7398 ins->offset, 0,
7399 root_objectid, owner, offset,
7400 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7401 return ret;
7402 }
7403
7404 /*
7405 * this is used by the tree logging recovery code. It records that
7406 * an extent has been allocated and makes sure to clear the free
7407 * space cache bits as well
7408 */
7409 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7410 struct btrfs_root *root,
7411 u64 root_objectid, u64 owner, u64 offset,
7412 struct btrfs_key *ins)
7413 {
7414 int ret;
7415 struct btrfs_block_group_cache *block_group;
7416
7417 /*
7418 * Mixed block groups will exclude before processing the log so we only
7419 * need to do the exlude dance if this fs isn't mixed.
7420 */
7421 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7422 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7423 if (ret)
7424 return ret;
7425 }
7426
7427 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7428 if (!block_group)
7429 return -EINVAL;
7430
7431 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7432 RESERVE_ALLOC_NO_ACCOUNT, 0);
7433 BUG_ON(ret); /* logic error */
7434 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7435 0, owner, offset, ins, 1);
7436 btrfs_put_block_group(block_group);
7437 return ret;
7438 }
7439
7440 static struct extent_buffer *
7441 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7442 u64 bytenr, int level)
7443 {
7444 struct extent_buffer *buf;
7445
7446 buf = btrfs_find_create_tree_block(root, bytenr);
7447 if (!buf)
7448 return ERR_PTR(-ENOMEM);
7449 btrfs_set_header_generation(buf, trans->transid);
7450 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7451 btrfs_tree_lock(buf);
7452 clean_tree_block(trans, root->fs_info, buf);
7453 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7454
7455 btrfs_set_lock_blocking(buf);
7456 btrfs_set_buffer_uptodate(buf);
7457
7458 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7459 buf->log_index = root->log_transid % 2;
7460 /*
7461 * we allow two log transactions at a time, use different
7462 * EXENT bit to differentiate dirty pages.
7463 */
7464 if (buf->log_index == 0)
7465 set_extent_dirty(&root->dirty_log_pages, buf->start,
7466 buf->start + buf->len - 1, GFP_NOFS);
7467 else
7468 set_extent_new(&root->dirty_log_pages, buf->start,
7469 buf->start + buf->len - 1, GFP_NOFS);
7470 } else {
7471 buf->log_index = -1;
7472 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7473 buf->start + buf->len - 1, GFP_NOFS);
7474 }
7475 trans->blocks_used++;
7476 /* this returns a buffer locked for blocking */
7477 return buf;
7478 }
7479
7480 static struct btrfs_block_rsv *
7481 use_block_rsv(struct btrfs_trans_handle *trans,
7482 struct btrfs_root *root, u32 blocksize)
7483 {
7484 struct btrfs_block_rsv *block_rsv;
7485 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7486 int ret;
7487 bool global_updated = false;
7488
7489 block_rsv = get_block_rsv(trans, root);
7490
7491 if (unlikely(block_rsv->size == 0))
7492 goto try_reserve;
7493 again:
7494 ret = block_rsv_use_bytes(block_rsv, blocksize);
7495 if (!ret)
7496 return block_rsv;
7497
7498 if (block_rsv->failfast)
7499 return ERR_PTR(ret);
7500
7501 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7502 global_updated = true;
7503 update_global_block_rsv(root->fs_info);
7504 goto again;
7505 }
7506
7507 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7508 static DEFINE_RATELIMIT_STATE(_rs,
7509 DEFAULT_RATELIMIT_INTERVAL * 10,
7510 /*DEFAULT_RATELIMIT_BURST*/ 1);
7511 if (__ratelimit(&_rs))
7512 WARN(1, KERN_DEBUG
7513 "BTRFS: block rsv returned %d\n", ret);
7514 }
7515 try_reserve:
7516 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7517 BTRFS_RESERVE_NO_FLUSH);
7518 if (!ret)
7519 return block_rsv;
7520 /*
7521 * If we couldn't reserve metadata bytes try and use some from
7522 * the global reserve if its space type is the same as the global
7523 * reservation.
7524 */
7525 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7526 block_rsv->space_info == global_rsv->space_info) {
7527 ret = block_rsv_use_bytes(global_rsv, blocksize);
7528 if (!ret)
7529 return global_rsv;
7530 }
7531 return ERR_PTR(ret);
7532 }
7533
7534 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7535 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7536 {
7537 block_rsv_add_bytes(block_rsv, blocksize, 0);
7538 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7539 }
7540
7541 /*
7542 * finds a free extent and does all the dirty work required for allocation
7543 * returns the key for the extent through ins, and a tree buffer for
7544 * the first block of the extent through buf.
7545 *
7546 * returns the tree buffer or NULL.
7547 */
7548 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7549 struct btrfs_root *root,
7550 u64 parent, u64 root_objectid,
7551 struct btrfs_disk_key *key, int level,
7552 u64 hint, u64 empty_size)
7553 {
7554 struct btrfs_key ins;
7555 struct btrfs_block_rsv *block_rsv;
7556 struct extent_buffer *buf;
7557 u64 flags = 0;
7558 int ret;
7559 u32 blocksize = root->nodesize;
7560 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7561 SKINNY_METADATA);
7562
7563 if (btrfs_test_is_dummy_root(root)) {
7564 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7565 level);
7566 if (!IS_ERR(buf))
7567 root->alloc_bytenr += blocksize;
7568 return buf;
7569 }
7570
7571 block_rsv = use_block_rsv(trans, root, blocksize);
7572 if (IS_ERR(block_rsv))
7573 return ERR_CAST(block_rsv);
7574
7575 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7576 empty_size, hint, &ins, 0, 0);
7577 if (ret) {
7578 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7579 return ERR_PTR(ret);
7580 }
7581
7582 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7583 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7584
7585 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7586 if (parent == 0)
7587 parent = ins.objectid;
7588 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7589 } else
7590 BUG_ON(parent > 0);
7591
7592 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7593 struct btrfs_delayed_extent_op *extent_op;
7594 extent_op = btrfs_alloc_delayed_extent_op();
7595 BUG_ON(!extent_op); /* -ENOMEM */
7596 if (key)
7597 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7598 else
7599 memset(&extent_op->key, 0, sizeof(extent_op->key));
7600 extent_op->flags_to_set = flags;
7601 if (skinny_metadata)
7602 extent_op->update_key = 0;
7603 else
7604 extent_op->update_key = 1;
7605 extent_op->update_flags = 1;
7606 extent_op->is_data = 0;
7607 extent_op->level = level;
7608
7609 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7610 ins.objectid,
7611 ins.offset, parent, root_objectid,
7612 level, BTRFS_ADD_DELAYED_EXTENT,
7613 extent_op, 0);
7614 BUG_ON(ret); /* -ENOMEM */
7615 }
7616 return buf;
7617 }
7618
7619 struct walk_control {
7620 u64 refs[BTRFS_MAX_LEVEL];
7621 u64 flags[BTRFS_MAX_LEVEL];
7622 struct btrfs_key update_progress;
7623 int stage;
7624 int level;
7625 int shared_level;
7626 int update_ref;
7627 int keep_locks;
7628 int reada_slot;
7629 int reada_count;
7630 int for_reloc;
7631 };
7632
7633 #define DROP_REFERENCE 1
7634 #define UPDATE_BACKREF 2
7635
7636 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7637 struct btrfs_root *root,
7638 struct walk_control *wc,
7639 struct btrfs_path *path)
7640 {
7641 u64 bytenr;
7642 u64 generation;
7643 u64 refs;
7644 u64 flags;
7645 u32 nritems;
7646 u32 blocksize;
7647 struct btrfs_key key;
7648 struct extent_buffer *eb;
7649 int ret;
7650 int slot;
7651 int nread = 0;
7652
7653 if (path->slots[wc->level] < wc->reada_slot) {
7654 wc->reada_count = wc->reada_count * 2 / 3;
7655 wc->reada_count = max(wc->reada_count, 2);
7656 } else {
7657 wc->reada_count = wc->reada_count * 3 / 2;
7658 wc->reada_count = min_t(int, wc->reada_count,
7659 BTRFS_NODEPTRS_PER_BLOCK(root));
7660 }
7661
7662 eb = path->nodes[wc->level];
7663 nritems = btrfs_header_nritems(eb);
7664 blocksize = root->nodesize;
7665
7666 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7667 if (nread >= wc->reada_count)
7668 break;
7669
7670 cond_resched();
7671 bytenr = btrfs_node_blockptr(eb, slot);
7672 generation = btrfs_node_ptr_generation(eb, slot);
7673
7674 if (slot == path->slots[wc->level])
7675 goto reada;
7676
7677 if (wc->stage == UPDATE_BACKREF &&
7678 generation <= root->root_key.offset)
7679 continue;
7680
7681 /* We don't lock the tree block, it's OK to be racy here */
7682 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7683 wc->level - 1, 1, &refs,
7684 &flags);
7685 /* We don't care about errors in readahead. */
7686 if (ret < 0)
7687 continue;
7688 BUG_ON(refs == 0);
7689
7690 if (wc->stage == DROP_REFERENCE) {
7691 if (refs == 1)
7692 goto reada;
7693
7694 if (wc->level == 1 &&
7695 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7696 continue;
7697 if (!wc->update_ref ||
7698 generation <= root->root_key.offset)
7699 continue;
7700 btrfs_node_key_to_cpu(eb, &key, slot);
7701 ret = btrfs_comp_cpu_keys(&key,
7702 &wc->update_progress);
7703 if (ret < 0)
7704 continue;
7705 } else {
7706 if (wc->level == 1 &&
7707 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7708 continue;
7709 }
7710 reada:
7711 readahead_tree_block(root, bytenr);
7712 nread++;
7713 }
7714 wc->reada_slot = slot;
7715 }
7716
7717 static int account_leaf_items(struct btrfs_trans_handle *trans,
7718 struct btrfs_root *root,
7719 struct extent_buffer *eb)
7720 {
7721 int nr = btrfs_header_nritems(eb);
7722 int i, extent_type, ret;
7723 struct btrfs_key key;
7724 struct btrfs_file_extent_item *fi;
7725 u64 bytenr, num_bytes;
7726
7727 for (i = 0; i < nr; i++) {
7728 btrfs_item_key_to_cpu(eb, &key, i);
7729
7730 if (key.type != BTRFS_EXTENT_DATA_KEY)
7731 continue;
7732
7733 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7734 /* filter out non qgroup-accountable extents */
7735 extent_type = btrfs_file_extent_type(eb, fi);
7736
7737 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7738 continue;
7739
7740 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7741 if (!bytenr)
7742 continue;
7743
7744 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7745
7746 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7747 root->objectid,
7748 bytenr, num_bytes,
7749 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7750 if (ret)
7751 return ret;
7752 }
7753 return 0;
7754 }
7755
7756 /*
7757 * Walk up the tree from the bottom, freeing leaves and any interior
7758 * nodes which have had all slots visited. If a node (leaf or
7759 * interior) is freed, the node above it will have it's slot
7760 * incremented. The root node will never be freed.
7761 *
7762 * At the end of this function, we should have a path which has all
7763 * slots incremented to the next position for a search. If we need to
7764 * read a new node it will be NULL and the node above it will have the
7765 * correct slot selected for a later read.
7766 *
7767 * If we increment the root nodes slot counter past the number of
7768 * elements, 1 is returned to signal completion of the search.
7769 */
7770 static int adjust_slots_upwards(struct btrfs_root *root,
7771 struct btrfs_path *path, int root_level)
7772 {
7773 int level = 0;
7774 int nr, slot;
7775 struct extent_buffer *eb;
7776
7777 if (root_level == 0)
7778 return 1;
7779
7780 while (level <= root_level) {
7781 eb = path->nodes[level];
7782 nr = btrfs_header_nritems(eb);
7783 path->slots[level]++;
7784 slot = path->slots[level];
7785 if (slot >= nr || level == 0) {
7786 /*
7787 * Don't free the root - we will detect this
7788 * condition after our loop and return a
7789 * positive value for caller to stop walking the tree.
7790 */
7791 if (level != root_level) {
7792 btrfs_tree_unlock_rw(eb, path->locks[level]);
7793 path->locks[level] = 0;
7794
7795 free_extent_buffer(eb);
7796 path->nodes[level] = NULL;
7797 path->slots[level] = 0;
7798 }
7799 } else {
7800 /*
7801 * We have a valid slot to walk back down
7802 * from. Stop here so caller can process these
7803 * new nodes.
7804 */
7805 break;
7806 }
7807
7808 level++;
7809 }
7810
7811 eb = path->nodes[root_level];
7812 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7813 return 1;
7814
7815 return 0;
7816 }
7817
7818 /*
7819 * root_eb is the subtree root and is locked before this function is called.
7820 */
7821 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7822 struct btrfs_root *root,
7823 struct extent_buffer *root_eb,
7824 u64 root_gen,
7825 int root_level)
7826 {
7827 int ret = 0;
7828 int level;
7829 struct extent_buffer *eb = root_eb;
7830 struct btrfs_path *path = NULL;
7831
7832 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7833 BUG_ON(root_eb == NULL);
7834
7835 if (!root->fs_info->quota_enabled)
7836 return 0;
7837
7838 if (!extent_buffer_uptodate(root_eb)) {
7839 ret = btrfs_read_buffer(root_eb, root_gen);
7840 if (ret)
7841 goto out;
7842 }
7843
7844 if (root_level == 0) {
7845 ret = account_leaf_items(trans, root, root_eb);
7846 goto out;
7847 }
7848
7849 path = btrfs_alloc_path();
7850 if (!path)
7851 return -ENOMEM;
7852
7853 /*
7854 * Walk down the tree. Missing extent blocks are filled in as
7855 * we go. Metadata is accounted every time we read a new
7856 * extent block.
7857 *
7858 * When we reach a leaf, we account for file extent items in it,
7859 * walk back up the tree (adjusting slot pointers as we go)
7860 * and restart the search process.
7861 */
7862 extent_buffer_get(root_eb); /* For path */
7863 path->nodes[root_level] = root_eb;
7864 path->slots[root_level] = 0;
7865 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7866 walk_down:
7867 level = root_level;
7868 while (level >= 0) {
7869 if (path->nodes[level] == NULL) {
7870 int parent_slot;
7871 u64 child_gen;
7872 u64 child_bytenr;
7873
7874 /* We need to get child blockptr/gen from
7875 * parent before we can read it. */
7876 eb = path->nodes[level + 1];
7877 parent_slot = path->slots[level + 1];
7878 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7879 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7880
7881 eb = read_tree_block(root, child_bytenr, child_gen);
7882 if (!eb || !extent_buffer_uptodate(eb)) {
7883 ret = -EIO;
7884 goto out;
7885 }
7886
7887 path->nodes[level] = eb;
7888 path->slots[level] = 0;
7889
7890 btrfs_tree_read_lock(eb);
7891 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7892 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7893
7894 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7895 root->objectid,
7896 child_bytenr,
7897 root->nodesize,
7898 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7899 0);
7900 if (ret)
7901 goto out;
7902
7903 }
7904
7905 if (level == 0) {
7906 ret = account_leaf_items(trans, root, path->nodes[level]);
7907 if (ret)
7908 goto out;
7909
7910 /* Nonzero return here means we completed our search */
7911 ret = adjust_slots_upwards(root, path, root_level);
7912 if (ret)
7913 break;
7914
7915 /* Restart search with new slots */
7916 goto walk_down;
7917 }
7918
7919 level--;
7920 }
7921
7922 ret = 0;
7923 out:
7924 btrfs_free_path(path);
7925
7926 return ret;
7927 }
7928
7929 /*
7930 * helper to process tree block while walking down the tree.
7931 *
7932 * when wc->stage == UPDATE_BACKREF, this function updates
7933 * back refs for pointers in the block.
7934 *
7935 * NOTE: return value 1 means we should stop walking down.
7936 */
7937 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7938 struct btrfs_root *root,
7939 struct btrfs_path *path,
7940 struct walk_control *wc, int lookup_info)
7941 {
7942 int level = wc->level;
7943 struct extent_buffer *eb = path->nodes[level];
7944 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7945 int ret;
7946
7947 if (wc->stage == UPDATE_BACKREF &&
7948 btrfs_header_owner(eb) != root->root_key.objectid)
7949 return 1;
7950
7951 /*
7952 * when reference count of tree block is 1, it won't increase
7953 * again. once full backref flag is set, we never clear it.
7954 */
7955 if (lookup_info &&
7956 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7957 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7958 BUG_ON(!path->locks[level]);
7959 ret = btrfs_lookup_extent_info(trans, root,
7960 eb->start, level, 1,
7961 &wc->refs[level],
7962 &wc->flags[level]);
7963 BUG_ON(ret == -ENOMEM);
7964 if (ret)
7965 return ret;
7966 BUG_ON(wc->refs[level] == 0);
7967 }
7968
7969 if (wc->stage == DROP_REFERENCE) {
7970 if (wc->refs[level] > 1)
7971 return 1;
7972
7973 if (path->locks[level] && !wc->keep_locks) {
7974 btrfs_tree_unlock_rw(eb, path->locks[level]);
7975 path->locks[level] = 0;
7976 }
7977 return 0;
7978 }
7979
7980 /* wc->stage == UPDATE_BACKREF */
7981 if (!(wc->flags[level] & flag)) {
7982 BUG_ON(!path->locks[level]);
7983 ret = btrfs_inc_ref(trans, root, eb, 1);
7984 BUG_ON(ret); /* -ENOMEM */
7985 ret = btrfs_dec_ref(trans, root, eb, 0);
7986 BUG_ON(ret); /* -ENOMEM */
7987 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7988 eb->len, flag,
7989 btrfs_header_level(eb), 0);
7990 BUG_ON(ret); /* -ENOMEM */
7991 wc->flags[level] |= flag;
7992 }
7993
7994 /*
7995 * the block is shared by multiple trees, so it's not good to
7996 * keep the tree lock
7997 */
7998 if (path->locks[level] && level > 0) {
7999 btrfs_tree_unlock_rw(eb, path->locks[level]);
8000 path->locks[level] = 0;
8001 }
8002 return 0;
8003 }
8004
8005 /*
8006 * helper to process tree block pointer.
8007 *
8008 * when wc->stage == DROP_REFERENCE, this function checks
8009 * reference count of the block pointed to. if the block
8010 * is shared and we need update back refs for the subtree
8011 * rooted at the block, this function changes wc->stage to
8012 * UPDATE_BACKREF. if the block is shared and there is no
8013 * need to update back, this function drops the reference
8014 * to the block.
8015 *
8016 * NOTE: return value 1 means we should stop walking down.
8017 */
8018 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8019 struct btrfs_root *root,
8020 struct btrfs_path *path,
8021 struct walk_control *wc, int *lookup_info)
8022 {
8023 u64 bytenr;
8024 u64 generation;
8025 u64 parent;
8026 u32 blocksize;
8027 struct btrfs_key key;
8028 struct extent_buffer *next;
8029 int level = wc->level;
8030 int reada = 0;
8031 int ret = 0;
8032 bool need_account = false;
8033
8034 generation = btrfs_node_ptr_generation(path->nodes[level],
8035 path->slots[level]);
8036 /*
8037 * if the lower level block was created before the snapshot
8038 * was created, we know there is no need to update back refs
8039 * for the subtree
8040 */
8041 if (wc->stage == UPDATE_BACKREF &&
8042 generation <= root->root_key.offset) {
8043 *lookup_info = 1;
8044 return 1;
8045 }
8046
8047 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8048 blocksize = root->nodesize;
8049
8050 next = btrfs_find_tree_block(root->fs_info, bytenr);
8051 if (!next) {
8052 next = btrfs_find_create_tree_block(root, bytenr);
8053 if (!next)
8054 return -ENOMEM;
8055 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8056 level - 1);
8057 reada = 1;
8058 }
8059 btrfs_tree_lock(next);
8060 btrfs_set_lock_blocking(next);
8061
8062 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8063 &wc->refs[level - 1],
8064 &wc->flags[level - 1]);
8065 if (ret < 0) {
8066 btrfs_tree_unlock(next);
8067 return ret;
8068 }
8069
8070 if (unlikely(wc->refs[level - 1] == 0)) {
8071 btrfs_err(root->fs_info, "Missing references.");
8072 BUG();
8073 }
8074 *lookup_info = 0;
8075
8076 if (wc->stage == DROP_REFERENCE) {
8077 if (wc->refs[level - 1] > 1) {
8078 need_account = true;
8079 if (level == 1 &&
8080 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8081 goto skip;
8082
8083 if (!wc->update_ref ||
8084 generation <= root->root_key.offset)
8085 goto skip;
8086
8087 btrfs_node_key_to_cpu(path->nodes[level], &key,
8088 path->slots[level]);
8089 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8090 if (ret < 0)
8091 goto skip;
8092
8093 wc->stage = UPDATE_BACKREF;
8094 wc->shared_level = level - 1;
8095 }
8096 } else {
8097 if (level == 1 &&
8098 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8099 goto skip;
8100 }
8101
8102 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8103 btrfs_tree_unlock(next);
8104 free_extent_buffer(next);
8105 next = NULL;
8106 *lookup_info = 1;
8107 }
8108
8109 if (!next) {
8110 if (reada && level == 1)
8111 reada_walk_down(trans, root, wc, path);
8112 next = read_tree_block(root, bytenr, generation);
8113 if (!next || !extent_buffer_uptodate(next)) {
8114 free_extent_buffer(next);
8115 return -EIO;
8116 }
8117 btrfs_tree_lock(next);
8118 btrfs_set_lock_blocking(next);
8119 }
8120
8121 level--;
8122 BUG_ON(level != btrfs_header_level(next));
8123 path->nodes[level] = next;
8124 path->slots[level] = 0;
8125 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8126 wc->level = level;
8127 if (wc->level == 1)
8128 wc->reada_slot = 0;
8129 return 0;
8130 skip:
8131 wc->refs[level - 1] = 0;
8132 wc->flags[level - 1] = 0;
8133 if (wc->stage == DROP_REFERENCE) {
8134 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8135 parent = path->nodes[level]->start;
8136 } else {
8137 BUG_ON(root->root_key.objectid !=
8138 btrfs_header_owner(path->nodes[level]));
8139 parent = 0;
8140 }
8141
8142 if (need_account) {
8143 ret = account_shared_subtree(trans, root, next,
8144 generation, level - 1);
8145 if (ret) {
8146 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8147 "%d accounting shared subtree. Quota "
8148 "is out of sync, rescan required.\n",
8149 root->fs_info->sb->s_id, ret);
8150 }
8151 }
8152 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8153 root->root_key.objectid, level - 1, 0, 0);
8154 BUG_ON(ret); /* -ENOMEM */
8155 }
8156 btrfs_tree_unlock(next);
8157 free_extent_buffer(next);
8158 *lookup_info = 1;
8159 return 1;
8160 }
8161
8162 /*
8163 * helper to process tree block while walking up the tree.
8164 *
8165 * when wc->stage == DROP_REFERENCE, this function drops
8166 * reference count on the block.
8167 *
8168 * when wc->stage == UPDATE_BACKREF, this function changes
8169 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8170 * to UPDATE_BACKREF previously while processing the block.
8171 *
8172 * NOTE: return value 1 means we should stop walking up.
8173 */
8174 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8175 struct btrfs_root *root,
8176 struct btrfs_path *path,
8177 struct walk_control *wc)
8178 {
8179 int ret;
8180 int level = wc->level;
8181 struct extent_buffer *eb = path->nodes[level];
8182 u64 parent = 0;
8183
8184 if (wc->stage == UPDATE_BACKREF) {
8185 BUG_ON(wc->shared_level < level);
8186 if (level < wc->shared_level)
8187 goto out;
8188
8189 ret = find_next_key(path, level + 1, &wc->update_progress);
8190 if (ret > 0)
8191 wc->update_ref = 0;
8192
8193 wc->stage = DROP_REFERENCE;
8194 wc->shared_level = -1;
8195 path->slots[level] = 0;
8196
8197 /*
8198 * check reference count again if the block isn't locked.
8199 * we should start walking down the tree again if reference
8200 * count is one.
8201 */
8202 if (!path->locks[level]) {
8203 BUG_ON(level == 0);
8204 btrfs_tree_lock(eb);
8205 btrfs_set_lock_blocking(eb);
8206 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8207
8208 ret = btrfs_lookup_extent_info(trans, root,
8209 eb->start, level, 1,
8210 &wc->refs[level],
8211 &wc->flags[level]);
8212 if (ret < 0) {
8213 btrfs_tree_unlock_rw(eb, path->locks[level]);
8214 path->locks[level] = 0;
8215 return ret;
8216 }
8217 BUG_ON(wc->refs[level] == 0);
8218 if (wc->refs[level] == 1) {
8219 btrfs_tree_unlock_rw(eb, path->locks[level]);
8220 path->locks[level] = 0;
8221 return 1;
8222 }
8223 }
8224 }
8225
8226 /* wc->stage == DROP_REFERENCE */
8227 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8228
8229 if (wc->refs[level] == 1) {
8230 if (level == 0) {
8231 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8232 ret = btrfs_dec_ref(trans, root, eb, 1);
8233 else
8234 ret = btrfs_dec_ref(trans, root, eb, 0);
8235 BUG_ON(ret); /* -ENOMEM */
8236 ret = account_leaf_items(trans, root, eb);
8237 if (ret) {
8238 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8239 "%d accounting leaf items. Quota "
8240 "is out of sync, rescan required.\n",
8241 root->fs_info->sb->s_id, ret);
8242 }
8243 }
8244 /* make block locked assertion in clean_tree_block happy */
8245 if (!path->locks[level] &&
8246 btrfs_header_generation(eb) == trans->transid) {
8247 btrfs_tree_lock(eb);
8248 btrfs_set_lock_blocking(eb);
8249 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8250 }
8251 clean_tree_block(trans, root->fs_info, eb);
8252 }
8253
8254 if (eb == root->node) {
8255 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8256 parent = eb->start;
8257 else
8258 BUG_ON(root->root_key.objectid !=
8259 btrfs_header_owner(eb));
8260 } else {
8261 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8262 parent = path->nodes[level + 1]->start;
8263 else
8264 BUG_ON(root->root_key.objectid !=
8265 btrfs_header_owner(path->nodes[level + 1]));
8266 }
8267
8268 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8269 out:
8270 wc->refs[level] = 0;
8271 wc->flags[level] = 0;
8272 return 0;
8273 }
8274
8275 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8276 struct btrfs_root *root,
8277 struct btrfs_path *path,
8278 struct walk_control *wc)
8279 {
8280 int level = wc->level;
8281 int lookup_info = 1;
8282 int ret;
8283
8284 while (level >= 0) {
8285 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8286 if (ret > 0)
8287 break;
8288
8289 if (level == 0)
8290 break;
8291
8292 if (path->slots[level] >=
8293 btrfs_header_nritems(path->nodes[level]))
8294 break;
8295
8296 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8297 if (ret > 0) {
8298 path->slots[level]++;
8299 continue;
8300 } else if (ret < 0)
8301 return ret;
8302 level = wc->level;
8303 }
8304 return 0;
8305 }
8306
8307 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8308 struct btrfs_root *root,
8309 struct btrfs_path *path,
8310 struct walk_control *wc, int max_level)
8311 {
8312 int level = wc->level;
8313 int ret;
8314
8315 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8316 while (level < max_level && path->nodes[level]) {
8317 wc->level = level;
8318 if (path->slots[level] + 1 <
8319 btrfs_header_nritems(path->nodes[level])) {
8320 path->slots[level]++;
8321 return 0;
8322 } else {
8323 ret = walk_up_proc(trans, root, path, wc);
8324 if (ret > 0)
8325 return 0;
8326
8327 if (path->locks[level]) {
8328 btrfs_tree_unlock_rw(path->nodes[level],
8329 path->locks[level]);
8330 path->locks[level] = 0;
8331 }
8332 free_extent_buffer(path->nodes[level]);
8333 path->nodes[level] = NULL;
8334 level++;
8335 }
8336 }
8337 return 1;
8338 }
8339
8340 /*
8341 * drop a subvolume tree.
8342 *
8343 * this function traverses the tree freeing any blocks that only
8344 * referenced by the tree.
8345 *
8346 * when a shared tree block is found. this function decreases its
8347 * reference count by one. if update_ref is true, this function
8348 * also make sure backrefs for the shared block and all lower level
8349 * blocks are properly updated.
8350 *
8351 * If called with for_reloc == 0, may exit early with -EAGAIN
8352 */
8353 int btrfs_drop_snapshot(struct btrfs_root *root,
8354 struct btrfs_block_rsv *block_rsv, int update_ref,
8355 int for_reloc)
8356 {
8357 struct btrfs_path *path;
8358 struct btrfs_trans_handle *trans;
8359 struct btrfs_root *tree_root = root->fs_info->tree_root;
8360 struct btrfs_root_item *root_item = &root->root_item;
8361 struct walk_control *wc;
8362 struct btrfs_key key;
8363 int err = 0;
8364 int ret;
8365 int level;
8366 bool root_dropped = false;
8367
8368 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8369
8370 path = btrfs_alloc_path();
8371 if (!path) {
8372 err = -ENOMEM;
8373 goto out;
8374 }
8375
8376 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8377 if (!wc) {
8378 btrfs_free_path(path);
8379 err = -ENOMEM;
8380 goto out;
8381 }
8382
8383 trans = btrfs_start_transaction(tree_root, 0);
8384 if (IS_ERR(trans)) {
8385 err = PTR_ERR(trans);
8386 goto out_free;
8387 }
8388
8389 if (block_rsv)
8390 trans->block_rsv = block_rsv;
8391
8392 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8393 level = btrfs_header_level(root->node);
8394 path->nodes[level] = btrfs_lock_root_node(root);
8395 btrfs_set_lock_blocking(path->nodes[level]);
8396 path->slots[level] = 0;
8397 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8398 memset(&wc->update_progress, 0,
8399 sizeof(wc->update_progress));
8400 } else {
8401 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8402 memcpy(&wc->update_progress, &key,
8403 sizeof(wc->update_progress));
8404
8405 level = root_item->drop_level;
8406 BUG_ON(level == 0);
8407 path->lowest_level = level;
8408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8409 path->lowest_level = 0;
8410 if (ret < 0) {
8411 err = ret;
8412 goto out_end_trans;
8413 }
8414 WARN_ON(ret > 0);
8415
8416 /*
8417 * unlock our path, this is safe because only this
8418 * function is allowed to delete this snapshot
8419 */
8420 btrfs_unlock_up_safe(path, 0);
8421
8422 level = btrfs_header_level(root->node);
8423 while (1) {
8424 btrfs_tree_lock(path->nodes[level]);
8425 btrfs_set_lock_blocking(path->nodes[level]);
8426 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8427
8428 ret = btrfs_lookup_extent_info(trans, root,
8429 path->nodes[level]->start,
8430 level, 1, &wc->refs[level],
8431 &wc->flags[level]);
8432 if (ret < 0) {
8433 err = ret;
8434 goto out_end_trans;
8435 }
8436 BUG_ON(wc->refs[level] == 0);
8437
8438 if (level == root_item->drop_level)
8439 break;
8440
8441 btrfs_tree_unlock(path->nodes[level]);
8442 path->locks[level] = 0;
8443 WARN_ON(wc->refs[level] != 1);
8444 level--;
8445 }
8446 }
8447
8448 wc->level = level;
8449 wc->shared_level = -1;
8450 wc->stage = DROP_REFERENCE;
8451 wc->update_ref = update_ref;
8452 wc->keep_locks = 0;
8453 wc->for_reloc = for_reloc;
8454 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8455
8456 while (1) {
8457
8458 ret = walk_down_tree(trans, root, path, wc);
8459 if (ret < 0) {
8460 err = ret;
8461 break;
8462 }
8463
8464 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8465 if (ret < 0) {
8466 err = ret;
8467 break;
8468 }
8469
8470 if (ret > 0) {
8471 BUG_ON(wc->stage != DROP_REFERENCE);
8472 break;
8473 }
8474
8475 if (wc->stage == DROP_REFERENCE) {
8476 level = wc->level;
8477 btrfs_node_key(path->nodes[level],
8478 &root_item->drop_progress,
8479 path->slots[level]);
8480 root_item->drop_level = level;
8481 }
8482
8483 BUG_ON(wc->level == 0);
8484 if (btrfs_should_end_transaction(trans, tree_root) ||
8485 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8486 ret = btrfs_update_root(trans, tree_root,
8487 &root->root_key,
8488 root_item);
8489 if (ret) {
8490 btrfs_abort_transaction(trans, tree_root, ret);
8491 err = ret;
8492 goto out_end_trans;
8493 }
8494
8495 /*
8496 * Qgroup update accounting is run from
8497 * delayed ref handling. This usually works
8498 * out because delayed refs are normally the
8499 * only way qgroup updates are added. However,
8500 * we may have added updates during our tree
8501 * walk so run qgroups here to make sure we
8502 * don't lose any updates.
8503 */
8504 ret = btrfs_delayed_qgroup_accounting(trans,
8505 root->fs_info);
8506 if (ret)
8507 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8508 "running qgroup updates "
8509 "during snapshot delete. "
8510 "Quota is out of sync, "
8511 "rescan required.\n", ret);
8512
8513 btrfs_end_transaction_throttle(trans, tree_root);
8514 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8515 pr_debug("BTRFS: drop snapshot early exit\n");
8516 err = -EAGAIN;
8517 goto out_free;
8518 }
8519
8520 trans = btrfs_start_transaction(tree_root, 0);
8521 if (IS_ERR(trans)) {
8522 err = PTR_ERR(trans);
8523 goto out_free;
8524 }
8525 if (block_rsv)
8526 trans->block_rsv = block_rsv;
8527 }
8528 }
8529 btrfs_release_path(path);
8530 if (err)
8531 goto out_end_trans;
8532
8533 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8534 if (ret) {
8535 btrfs_abort_transaction(trans, tree_root, ret);
8536 goto out_end_trans;
8537 }
8538
8539 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8540 ret = btrfs_find_root(tree_root, &root->root_key, path,
8541 NULL, NULL);
8542 if (ret < 0) {
8543 btrfs_abort_transaction(trans, tree_root, ret);
8544 err = ret;
8545 goto out_end_trans;
8546 } else if (ret > 0) {
8547 /* if we fail to delete the orphan item this time
8548 * around, it'll get picked up the next time.
8549 *
8550 * The most common failure here is just -ENOENT.
8551 */
8552 btrfs_del_orphan_item(trans, tree_root,
8553 root->root_key.objectid);
8554 }
8555 }
8556
8557 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8558 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8559 } else {
8560 free_extent_buffer(root->node);
8561 free_extent_buffer(root->commit_root);
8562 btrfs_put_fs_root(root);
8563 }
8564 root_dropped = true;
8565 out_end_trans:
8566 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8567 if (ret)
8568 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8569 "running qgroup updates "
8570 "during snapshot delete. "
8571 "Quota is out of sync, "
8572 "rescan required.\n", ret);
8573
8574 btrfs_end_transaction_throttle(trans, tree_root);
8575 out_free:
8576 kfree(wc);
8577 btrfs_free_path(path);
8578 out:
8579 /*
8580 * So if we need to stop dropping the snapshot for whatever reason we
8581 * need to make sure to add it back to the dead root list so that we
8582 * keep trying to do the work later. This also cleans up roots if we
8583 * don't have it in the radix (like when we recover after a power fail
8584 * or unmount) so we don't leak memory.
8585 */
8586 if (!for_reloc && root_dropped == false)
8587 btrfs_add_dead_root(root);
8588 if (err && err != -EAGAIN)
8589 btrfs_std_error(root->fs_info, err);
8590 return err;
8591 }
8592
8593 /*
8594 * drop subtree rooted at tree block 'node'.
8595 *
8596 * NOTE: this function will unlock and release tree block 'node'
8597 * only used by relocation code
8598 */
8599 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8600 struct btrfs_root *root,
8601 struct extent_buffer *node,
8602 struct extent_buffer *parent)
8603 {
8604 struct btrfs_path *path;
8605 struct walk_control *wc;
8606 int level;
8607 int parent_level;
8608 int ret = 0;
8609 int wret;
8610
8611 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8612
8613 path = btrfs_alloc_path();
8614 if (!path)
8615 return -ENOMEM;
8616
8617 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8618 if (!wc) {
8619 btrfs_free_path(path);
8620 return -ENOMEM;
8621 }
8622
8623 btrfs_assert_tree_locked(parent);
8624 parent_level = btrfs_header_level(parent);
8625 extent_buffer_get(parent);
8626 path->nodes[parent_level] = parent;
8627 path->slots[parent_level] = btrfs_header_nritems(parent);
8628
8629 btrfs_assert_tree_locked(node);
8630 level = btrfs_header_level(node);
8631 path->nodes[level] = node;
8632 path->slots[level] = 0;
8633 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8634
8635 wc->refs[parent_level] = 1;
8636 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8637 wc->level = level;
8638 wc->shared_level = -1;
8639 wc->stage = DROP_REFERENCE;
8640 wc->update_ref = 0;
8641 wc->keep_locks = 1;
8642 wc->for_reloc = 1;
8643 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8644
8645 while (1) {
8646 wret = walk_down_tree(trans, root, path, wc);
8647 if (wret < 0) {
8648 ret = wret;
8649 break;
8650 }
8651
8652 wret = walk_up_tree(trans, root, path, wc, parent_level);
8653 if (wret < 0)
8654 ret = wret;
8655 if (wret != 0)
8656 break;
8657 }
8658
8659 kfree(wc);
8660 btrfs_free_path(path);
8661 return ret;
8662 }
8663
8664 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8665 {
8666 u64 num_devices;
8667 u64 stripped;
8668
8669 /*
8670 * if restripe for this chunk_type is on pick target profile and
8671 * return, otherwise do the usual balance
8672 */
8673 stripped = get_restripe_target(root->fs_info, flags);
8674 if (stripped)
8675 return extended_to_chunk(stripped);
8676
8677 num_devices = root->fs_info->fs_devices->rw_devices;
8678
8679 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8680 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8681 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8682
8683 if (num_devices == 1) {
8684 stripped |= BTRFS_BLOCK_GROUP_DUP;
8685 stripped = flags & ~stripped;
8686
8687 /* turn raid0 into single device chunks */
8688 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8689 return stripped;
8690
8691 /* turn mirroring into duplication */
8692 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8693 BTRFS_BLOCK_GROUP_RAID10))
8694 return stripped | BTRFS_BLOCK_GROUP_DUP;
8695 } else {
8696 /* they already had raid on here, just return */
8697 if (flags & stripped)
8698 return flags;
8699
8700 stripped |= BTRFS_BLOCK_GROUP_DUP;
8701 stripped = flags & ~stripped;
8702
8703 /* switch duplicated blocks with raid1 */
8704 if (flags & BTRFS_BLOCK_GROUP_DUP)
8705 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8706
8707 /* this is drive concat, leave it alone */
8708 }
8709
8710 return flags;
8711 }
8712
8713 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8714 {
8715 struct btrfs_space_info *sinfo = cache->space_info;
8716 u64 num_bytes;
8717 u64 min_allocable_bytes;
8718 int ret = -ENOSPC;
8719
8720
8721 /*
8722 * We need some metadata space and system metadata space for
8723 * allocating chunks in some corner cases until we force to set
8724 * it to be readonly.
8725 */
8726 if ((sinfo->flags &
8727 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8728 !force)
8729 min_allocable_bytes = 1 * 1024 * 1024;
8730 else
8731 min_allocable_bytes = 0;
8732
8733 spin_lock(&sinfo->lock);
8734 spin_lock(&cache->lock);
8735
8736 if (cache->ro) {
8737 ret = 0;
8738 goto out;
8739 }
8740
8741 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8742 cache->bytes_super - btrfs_block_group_used(&cache->item);
8743
8744 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8745 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8746 min_allocable_bytes <= sinfo->total_bytes) {
8747 sinfo->bytes_readonly += num_bytes;
8748 cache->ro = 1;
8749 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8750 ret = 0;
8751 }
8752 out:
8753 spin_unlock(&cache->lock);
8754 spin_unlock(&sinfo->lock);
8755 return ret;
8756 }
8757
8758 int btrfs_set_block_group_ro(struct btrfs_root *root,
8759 struct btrfs_block_group_cache *cache)
8760
8761 {
8762 struct btrfs_trans_handle *trans;
8763 u64 alloc_flags;
8764 int ret;
8765
8766 BUG_ON(cache->ro);
8767
8768 again:
8769 trans = btrfs_join_transaction(root);
8770 if (IS_ERR(trans))
8771 return PTR_ERR(trans);
8772
8773 /*
8774 * we're not allowed to set block groups readonly after the dirty
8775 * block groups cache has started writing. If it already started,
8776 * back off and let this transaction commit
8777 */
8778 mutex_lock(&root->fs_info->ro_block_group_mutex);
8779 if (trans->transaction->dirty_bg_run) {
8780 u64 transid = trans->transid;
8781
8782 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8783 btrfs_end_transaction(trans, root);
8784
8785 ret = btrfs_wait_for_commit(root, transid);
8786 if (ret)
8787 return ret;
8788 goto again;
8789 }
8790
8791
8792 ret = set_block_group_ro(cache, 0);
8793 if (!ret)
8794 goto out;
8795 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8796 ret = do_chunk_alloc(trans, root, alloc_flags,
8797 CHUNK_ALLOC_FORCE);
8798 if (ret < 0)
8799 goto out;
8800 ret = set_block_group_ro(cache, 0);
8801 out:
8802 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8803 alloc_flags = update_block_group_flags(root, cache->flags);
8804 check_system_chunk(trans, root, alloc_flags);
8805 }
8806 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8807
8808 btrfs_end_transaction(trans, root);
8809 return ret;
8810 }
8811
8812 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8813 struct btrfs_root *root, u64 type)
8814 {
8815 u64 alloc_flags = get_alloc_profile(root, type);
8816 return do_chunk_alloc(trans, root, alloc_flags,
8817 CHUNK_ALLOC_FORCE);
8818 }
8819
8820 /*
8821 * helper to account the unused space of all the readonly block group in the
8822 * space_info. takes mirrors into account.
8823 */
8824 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8825 {
8826 struct btrfs_block_group_cache *block_group;
8827 u64 free_bytes = 0;
8828 int factor;
8829
8830 /* It's df, we don't care if it's racey */
8831 if (list_empty(&sinfo->ro_bgs))
8832 return 0;
8833
8834 spin_lock(&sinfo->lock);
8835 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8836 spin_lock(&block_group->lock);
8837
8838 if (!block_group->ro) {
8839 spin_unlock(&block_group->lock);
8840 continue;
8841 }
8842
8843 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8844 BTRFS_BLOCK_GROUP_RAID10 |
8845 BTRFS_BLOCK_GROUP_DUP))
8846 factor = 2;
8847 else
8848 factor = 1;
8849
8850 free_bytes += (block_group->key.offset -
8851 btrfs_block_group_used(&block_group->item)) *
8852 factor;
8853
8854 spin_unlock(&block_group->lock);
8855 }
8856 spin_unlock(&sinfo->lock);
8857
8858 return free_bytes;
8859 }
8860
8861 void btrfs_set_block_group_rw(struct btrfs_root *root,
8862 struct btrfs_block_group_cache *cache)
8863 {
8864 struct btrfs_space_info *sinfo = cache->space_info;
8865 u64 num_bytes;
8866
8867 BUG_ON(!cache->ro);
8868
8869 spin_lock(&sinfo->lock);
8870 spin_lock(&cache->lock);
8871 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8872 cache->bytes_super - btrfs_block_group_used(&cache->item);
8873 sinfo->bytes_readonly -= num_bytes;
8874 cache->ro = 0;
8875 list_del_init(&cache->ro_list);
8876 spin_unlock(&cache->lock);
8877 spin_unlock(&sinfo->lock);
8878 }
8879
8880 /*
8881 * checks to see if its even possible to relocate this block group.
8882 *
8883 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8884 * ok to go ahead and try.
8885 */
8886 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8887 {
8888 struct btrfs_block_group_cache *block_group;
8889 struct btrfs_space_info *space_info;
8890 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8891 struct btrfs_device *device;
8892 struct btrfs_trans_handle *trans;
8893 u64 min_free;
8894 u64 dev_min = 1;
8895 u64 dev_nr = 0;
8896 u64 target;
8897 int index;
8898 int full = 0;
8899 int ret = 0;
8900
8901 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8902
8903 /* odd, couldn't find the block group, leave it alone */
8904 if (!block_group)
8905 return -1;
8906
8907 min_free = btrfs_block_group_used(&block_group->item);
8908
8909 /* no bytes used, we're good */
8910 if (!min_free)
8911 goto out;
8912
8913 space_info = block_group->space_info;
8914 spin_lock(&space_info->lock);
8915
8916 full = space_info->full;
8917
8918 /*
8919 * if this is the last block group we have in this space, we can't
8920 * relocate it unless we're able to allocate a new chunk below.
8921 *
8922 * Otherwise, we need to make sure we have room in the space to handle
8923 * all of the extents from this block group. If we can, we're good
8924 */
8925 if ((space_info->total_bytes != block_group->key.offset) &&
8926 (space_info->bytes_used + space_info->bytes_reserved +
8927 space_info->bytes_pinned + space_info->bytes_readonly +
8928 min_free < space_info->total_bytes)) {
8929 spin_unlock(&space_info->lock);
8930 goto out;
8931 }
8932 spin_unlock(&space_info->lock);
8933
8934 /*
8935 * ok we don't have enough space, but maybe we have free space on our
8936 * devices to allocate new chunks for relocation, so loop through our
8937 * alloc devices and guess if we have enough space. if this block
8938 * group is going to be restriped, run checks against the target
8939 * profile instead of the current one.
8940 */
8941 ret = -1;
8942
8943 /*
8944 * index:
8945 * 0: raid10
8946 * 1: raid1
8947 * 2: dup
8948 * 3: raid0
8949 * 4: single
8950 */
8951 target = get_restripe_target(root->fs_info, block_group->flags);
8952 if (target) {
8953 index = __get_raid_index(extended_to_chunk(target));
8954 } else {
8955 /*
8956 * this is just a balance, so if we were marked as full
8957 * we know there is no space for a new chunk
8958 */
8959 if (full)
8960 goto out;
8961
8962 index = get_block_group_index(block_group);
8963 }
8964
8965 if (index == BTRFS_RAID_RAID10) {
8966 dev_min = 4;
8967 /* Divide by 2 */
8968 min_free >>= 1;
8969 } else if (index == BTRFS_RAID_RAID1) {
8970 dev_min = 2;
8971 } else if (index == BTRFS_RAID_DUP) {
8972 /* Multiply by 2 */
8973 min_free <<= 1;
8974 } else if (index == BTRFS_RAID_RAID0) {
8975 dev_min = fs_devices->rw_devices;
8976 min_free = div64_u64(min_free, dev_min);
8977 }
8978
8979 /* We need to do this so that we can look at pending chunks */
8980 trans = btrfs_join_transaction(root);
8981 if (IS_ERR(trans)) {
8982 ret = PTR_ERR(trans);
8983 goto out;
8984 }
8985
8986 mutex_lock(&root->fs_info->chunk_mutex);
8987 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8988 u64 dev_offset;
8989
8990 /*
8991 * check to make sure we can actually find a chunk with enough
8992 * space to fit our block group in.
8993 */
8994 if (device->total_bytes > device->bytes_used + min_free &&
8995 !device->is_tgtdev_for_dev_replace) {
8996 ret = find_free_dev_extent(trans, device, min_free,
8997 &dev_offset, NULL);
8998 if (!ret)
8999 dev_nr++;
9000
9001 if (dev_nr >= dev_min)
9002 break;
9003
9004 ret = -1;
9005 }
9006 }
9007 mutex_unlock(&root->fs_info->chunk_mutex);
9008 btrfs_end_transaction(trans, root);
9009 out:
9010 btrfs_put_block_group(block_group);
9011 return ret;
9012 }
9013
9014 static int find_first_block_group(struct btrfs_root *root,
9015 struct btrfs_path *path, struct btrfs_key *key)
9016 {
9017 int ret = 0;
9018 struct btrfs_key found_key;
9019 struct extent_buffer *leaf;
9020 int slot;
9021
9022 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9023 if (ret < 0)
9024 goto out;
9025
9026 while (1) {
9027 slot = path->slots[0];
9028 leaf = path->nodes[0];
9029 if (slot >= btrfs_header_nritems(leaf)) {
9030 ret = btrfs_next_leaf(root, path);
9031 if (ret == 0)
9032 continue;
9033 if (ret < 0)
9034 goto out;
9035 break;
9036 }
9037 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9038
9039 if (found_key.objectid >= key->objectid &&
9040 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9041 ret = 0;
9042 goto out;
9043 }
9044 path->slots[0]++;
9045 }
9046 out:
9047 return ret;
9048 }
9049
9050 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9051 {
9052 struct btrfs_block_group_cache *block_group;
9053 u64 last = 0;
9054
9055 while (1) {
9056 struct inode *inode;
9057
9058 block_group = btrfs_lookup_first_block_group(info, last);
9059 while (block_group) {
9060 spin_lock(&block_group->lock);
9061 if (block_group->iref)
9062 break;
9063 spin_unlock(&block_group->lock);
9064 block_group = next_block_group(info->tree_root,
9065 block_group);
9066 }
9067 if (!block_group) {
9068 if (last == 0)
9069 break;
9070 last = 0;
9071 continue;
9072 }
9073
9074 inode = block_group->inode;
9075 block_group->iref = 0;
9076 block_group->inode = NULL;
9077 spin_unlock(&block_group->lock);
9078 iput(inode);
9079 last = block_group->key.objectid + block_group->key.offset;
9080 btrfs_put_block_group(block_group);
9081 }
9082 }
9083
9084 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9085 {
9086 struct btrfs_block_group_cache *block_group;
9087 struct btrfs_space_info *space_info;
9088 struct btrfs_caching_control *caching_ctl;
9089 struct rb_node *n;
9090
9091 down_write(&info->commit_root_sem);
9092 while (!list_empty(&info->caching_block_groups)) {
9093 caching_ctl = list_entry(info->caching_block_groups.next,
9094 struct btrfs_caching_control, list);
9095 list_del(&caching_ctl->list);
9096 put_caching_control(caching_ctl);
9097 }
9098 up_write(&info->commit_root_sem);
9099
9100 spin_lock(&info->unused_bgs_lock);
9101 while (!list_empty(&info->unused_bgs)) {
9102 block_group = list_first_entry(&info->unused_bgs,
9103 struct btrfs_block_group_cache,
9104 bg_list);
9105 list_del_init(&block_group->bg_list);
9106 btrfs_put_block_group(block_group);
9107 }
9108 spin_unlock(&info->unused_bgs_lock);
9109
9110 spin_lock(&info->block_group_cache_lock);
9111 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9112 block_group = rb_entry(n, struct btrfs_block_group_cache,
9113 cache_node);
9114 rb_erase(&block_group->cache_node,
9115 &info->block_group_cache_tree);
9116 RB_CLEAR_NODE(&block_group->cache_node);
9117 spin_unlock(&info->block_group_cache_lock);
9118
9119 down_write(&block_group->space_info->groups_sem);
9120 list_del(&block_group->list);
9121 up_write(&block_group->space_info->groups_sem);
9122
9123 if (block_group->cached == BTRFS_CACHE_STARTED)
9124 wait_block_group_cache_done(block_group);
9125
9126 /*
9127 * We haven't cached this block group, which means we could
9128 * possibly have excluded extents on this block group.
9129 */
9130 if (block_group->cached == BTRFS_CACHE_NO ||
9131 block_group->cached == BTRFS_CACHE_ERROR)
9132 free_excluded_extents(info->extent_root, block_group);
9133
9134 btrfs_remove_free_space_cache(block_group);
9135 btrfs_put_block_group(block_group);
9136
9137 spin_lock(&info->block_group_cache_lock);
9138 }
9139 spin_unlock(&info->block_group_cache_lock);
9140
9141 /* now that all the block groups are freed, go through and
9142 * free all the space_info structs. This is only called during
9143 * the final stages of unmount, and so we know nobody is
9144 * using them. We call synchronize_rcu() once before we start,
9145 * just to be on the safe side.
9146 */
9147 synchronize_rcu();
9148
9149 release_global_block_rsv(info);
9150
9151 while (!list_empty(&info->space_info)) {
9152 int i;
9153
9154 space_info = list_entry(info->space_info.next,
9155 struct btrfs_space_info,
9156 list);
9157 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9158 if (WARN_ON(space_info->bytes_pinned > 0 ||
9159 space_info->bytes_reserved > 0 ||
9160 space_info->bytes_may_use > 0)) {
9161 dump_space_info(space_info, 0, 0);
9162 }
9163 }
9164 list_del(&space_info->list);
9165 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9166 struct kobject *kobj;
9167 kobj = space_info->block_group_kobjs[i];
9168 space_info->block_group_kobjs[i] = NULL;
9169 if (kobj) {
9170 kobject_del(kobj);
9171 kobject_put(kobj);
9172 }
9173 }
9174 kobject_del(&space_info->kobj);
9175 kobject_put(&space_info->kobj);
9176 }
9177 return 0;
9178 }
9179
9180 static void __link_block_group(struct btrfs_space_info *space_info,
9181 struct btrfs_block_group_cache *cache)
9182 {
9183 int index = get_block_group_index(cache);
9184 bool first = false;
9185
9186 down_write(&space_info->groups_sem);
9187 if (list_empty(&space_info->block_groups[index]))
9188 first = true;
9189 list_add_tail(&cache->list, &space_info->block_groups[index]);
9190 up_write(&space_info->groups_sem);
9191
9192 if (first) {
9193 struct raid_kobject *rkobj;
9194 int ret;
9195
9196 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9197 if (!rkobj)
9198 goto out_err;
9199 rkobj->raid_type = index;
9200 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9201 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9202 "%s", get_raid_name(index));
9203 if (ret) {
9204 kobject_put(&rkobj->kobj);
9205 goto out_err;
9206 }
9207 space_info->block_group_kobjs[index] = &rkobj->kobj;
9208 }
9209
9210 return;
9211 out_err:
9212 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9213 }
9214
9215 static struct btrfs_block_group_cache *
9216 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9217 {
9218 struct btrfs_block_group_cache *cache;
9219
9220 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9221 if (!cache)
9222 return NULL;
9223
9224 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9225 GFP_NOFS);
9226 if (!cache->free_space_ctl) {
9227 kfree(cache);
9228 return NULL;
9229 }
9230
9231 cache->key.objectid = start;
9232 cache->key.offset = size;
9233 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9234
9235 cache->sectorsize = root->sectorsize;
9236 cache->fs_info = root->fs_info;
9237 cache->full_stripe_len = btrfs_full_stripe_len(root,
9238 &root->fs_info->mapping_tree,
9239 start);
9240 atomic_set(&cache->count, 1);
9241 spin_lock_init(&cache->lock);
9242 init_rwsem(&cache->data_rwsem);
9243 INIT_LIST_HEAD(&cache->list);
9244 INIT_LIST_HEAD(&cache->cluster_list);
9245 INIT_LIST_HEAD(&cache->bg_list);
9246 INIT_LIST_HEAD(&cache->ro_list);
9247 INIT_LIST_HEAD(&cache->dirty_list);
9248 INIT_LIST_HEAD(&cache->io_list);
9249 btrfs_init_free_space_ctl(cache);
9250 atomic_set(&cache->trimming, 0);
9251
9252 return cache;
9253 }
9254
9255 int btrfs_read_block_groups(struct btrfs_root *root)
9256 {
9257 struct btrfs_path *path;
9258 int ret;
9259 struct btrfs_block_group_cache *cache;
9260 struct btrfs_fs_info *info = root->fs_info;
9261 struct btrfs_space_info *space_info;
9262 struct btrfs_key key;
9263 struct btrfs_key found_key;
9264 struct extent_buffer *leaf;
9265 int need_clear = 0;
9266 u64 cache_gen;
9267
9268 root = info->extent_root;
9269 key.objectid = 0;
9270 key.offset = 0;
9271 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9272 path = btrfs_alloc_path();
9273 if (!path)
9274 return -ENOMEM;
9275 path->reada = 1;
9276
9277 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9278 if (btrfs_test_opt(root, SPACE_CACHE) &&
9279 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9280 need_clear = 1;
9281 if (btrfs_test_opt(root, CLEAR_CACHE))
9282 need_clear = 1;
9283
9284 while (1) {
9285 ret = find_first_block_group(root, path, &key);
9286 if (ret > 0)
9287 break;
9288 if (ret != 0)
9289 goto error;
9290
9291 leaf = path->nodes[0];
9292 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9293
9294 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9295 found_key.offset);
9296 if (!cache) {
9297 ret = -ENOMEM;
9298 goto error;
9299 }
9300
9301 if (need_clear) {
9302 /*
9303 * When we mount with old space cache, we need to
9304 * set BTRFS_DC_CLEAR and set dirty flag.
9305 *
9306 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9307 * truncate the old free space cache inode and
9308 * setup a new one.
9309 * b) Setting 'dirty flag' makes sure that we flush
9310 * the new space cache info onto disk.
9311 */
9312 if (btrfs_test_opt(root, SPACE_CACHE))
9313 cache->disk_cache_state = BTRFS_DC_CLEAR;
9314 }
9315
9316 read_extent_buffer(leaf, &cache->item,
9317 btrfs_item_ptr_offset(leaf, path->slots[0]),
9318 sizeof(cache->item));
9319 cache->flags = btrfs_block_group_flags(&cache->item);
9320
9321 key.objectid = found_key.objectid + found_key.offset;
9322 btrfs_release_path(path);
9323
9324 /*
9325 * We need to exclude the super stripes now so that the space
9326 * info has super bytes accounted for, otherwise we'll think
9327 * we have more space than we actually do.
9328 */
9329 ret = exclude_super_stripes(root, cache);
9330 if (ret) {
9331 /*
9332 * We may have excluded something, so call this just in
9333 * case.
9334 */
9335 free_excluded_extents(root, cache);
9336 btrfs_put_block_group(cache);
9337 goto error;
9338 }
9339
9340 /*
9341 * check for two cases, either we are full, and therefore
9342 * don't need to bother with the caching work since we won't
9343 * find any space, or we are empty, and we can just add all
9344 * the space in and be done with it. This saves us _alot_ of
9345 * time, particularly in the full case.
9346 */
9347 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9348 cache->last_byte_to_unpin = (u64)-1;
9349 cache->cached = BTRFS_CACHE_FINISHED;
9350 free_excluded_extents(root, cache);
9351 } else if (btrfs_block_group_used(&cache->item) == 0) {
9352 cache->last_byte_to_unpin = (u64)-1;
9353 cache->cached = BTRFS_CACHE_FINISHED;
9354 add_new_free_space(cache, root->fs_info,
9355 found_key.objectid,
9356 found_key.objectid +
9357 found_key.offset);
9358 free_excluded_extents(root, cache);
9359 }
9360
9361 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9362 if (ret) {
9363 btrfs_remove_free_space_cache(cache);
9364 btrfs_put_block_group(cache);
9365 goto error;
9366 }
9367
9368 ret = update_space_info(info, cache->flags, found_key.offset,
9369 btrfs_block_group_used(&cache->item),
9370 &space_info);
9371 if (ret) {
9372 btrfs_remove_free_space_cache(cache);
9373 spin_lock(&info->block_group_cache_lock);
9374 rb_erase(&cache->cache_node,
9375 &info->block_group_cache_tree);
9376 RB_CLEAR_NODE(&cache->cache_node);
9377 spin_unlock(&info->block_group_cache_lock);
9378 btrfs_put_block_group(cache);
9379 goto error;
9380 }
9381
9382 cache->space_info = space_info;
9383 spin_lock(&cache->space_info->lock);
9384 cache->space_info->bytes_readonly += cache->bytes_super;
9385 spin_unlock(&cache->space_info->lock);
9386
9387 __link_block_group(space_info, cache);
9388
9389 set_avail_alloc_bits(root->fs_info, cache->flags);
9390 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9391 set_block_group_ro(cache, 1);
9392 } else if (btrfs_block_group_used(&cache->item) == 0) {
9393 spin_lock(&info->unused_bgs_lock);
9394 /* Should always be true but just in case. */
9395 if (list_empty(&cache->bg_list)) {
9396 btrfs_get_block_group(cache);
9397 list_add_tail(&cache->bg_list,
9398 &info->unused_bgs);
9399 }
9400 spin_unlock(&info->unused_bgs_lock);
9401 }
9402 }
9403
9404 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9405 if (!(get_alloc_profile(root, space_info->flags) &
9406 (BTRFS_BLOCK_GROUP_RAID10 |
9407 BTRFS_BLOCK_GROUP_RAID1 |
9408 BTRFS_BLOCK_GROUP_RAID5 |
9409 BTRFS_BLOCK_GROUP_RAID6 |
9410 BTRFS_BLOCK_GROUP_DUP)))
9411 continue;
9412 /*
9413 * avoid allocating from un-mirrored block group if there are
9414 * mirrored block groups.
9415 */
9416 list_for_each_entry(cache,
9417 &space_info->block_groups[BTRFS_RAID_RAID0],
9418 list)
9419 set_block_group_ro(cache, 1);
9420 list_for_each_entry(cache,
9421 &space_info->block_groups[BTRFS_RAID_SINGLE],
9422 list)
9423 set_block_group_ro(cache, 1);
9424 }
9425
9426 init_global_block_rsv(info);
9427 ret = 0;
9428 error:
9429 btrfs_free_path(path);
9430 return ret;
9431 }
9432
9433 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9434 struct btrfs_root *root)
9435 {
9436 struct btrfs_block_group_cache *block_group, *tmp;
9437 struct btrfs_root *extent_root = root->fs_info->extent_root;
9438 struct btrfs_block_group_item item;
9439 struct btrfs_key key;
9440 int ret = 0;
9441
9442 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9443 if (ret)
9444 goto next;
9445
9446 spin_lock(&block_group->lock);
9447 memcpy(&item, &block_group->item, sizeof(item));
9448 memcpy(&key, &block_group->key, sizeof(key));
9449 spin_unlock(&block_group->lock);
9450
9451 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9452 sizeof(item));
9453 if (ret)
9454 btrfs_abort_transaction(trans, extent_root, ret);
9455 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9456 key.objectid, key.offset);
9457 if (ret)
9458 btrfs_abort_transaction(trans, extent_root, ret);
9459 next:
9460 list_del_init(&block_group->bg_list);
9461 }
9462 }
9463
9464 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9465 struct btrfs_root *root, u64 bytes_used,
9466 u64 type, u64 chunk_objectid, u64 chunk_offset,
9467 u64 size)
9468 {
9469 int ret;
9470 struct btrfs_root *extent_root;
9471 struct btrfs_block_group_cache *cache;
9472
9473 extent_root = root->fs_info->extent_root;
9474
9475 btrfs_set_log_full_commit(root->fs_info, trans);
9476
9477 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9478 if (!cache)
9479 return -ENOMEM;
9480
9481 btrfs_set_block_group_used(&cache->item, bytes_used);
9482 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9483 btrfs_set_block_group_flags(&cache->item, type);
9484
9485 cache->flags = type;
9486 cache->last_byte_to_unpin = (u64)-1;
9487 cache->cached = BTRFS_CACHE_FINISHED;
9488 ret = exclude_super_stripes(root, cache);
9489 if (ret) {
9490 /*
9491 * We may have excluded something, so call this just in
9492 * case.
9493 */
9494 free_excluded_extents(root, cache);
9495 btrfs_put_block_group(cache);
9496 return ret;
9497 }
9498
9499 add_new_free_space(cache, root->fs_info, chunk_offset,
9500 chunk_offset + size);
9501
9502 free_excluded_extents(root, cache);
9503
9504 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9505 if (ret) {
9506 btrfs_remove_free_space_cache(cache);
9507 btrfs_put_block_group(cache);
9508 return ret;
9509 }
9510
9511 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9512 &cache->space_info);
9513 if (ret) {
9514 btrfs_remove_free_space_cache(cache);
9515 spin_lock(&root->fs_info->block_group_cache_lock);
9516 rb_erase(&cache->cache_node,
9517 &root->fs_info->block_group_cache_tree);
9518 RB_CLEAR_NODE(&cache->cache_node);
9519 spin_unlock(&root->fs_info->block_group_cache_lock);
9520 btrfs_put_block_group(cache);
9521 return ret;
9522 }
9523 update_global_block_rsv(root->fs_info);
9524
9525 spin_lock(&cache->space_info->lock);
9526 cache->space_info->bytes_readonly += cache->bytes_super;
9527 spin_unlock(&cache->space_info->lock);
9528
9529 __link_block_group(cache->space_info, cache);
9530
9531 list_add_tail(&cache->bg_list, &trans->new_bgs);
9532
9533 set_avail_alloc_bits(extent_root->fs_info, type);
9534
9535 return 0;
9536 }
9537
9538 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9539 {
9540 u64 extra_flags = chunk_to_extended(flags) &
9541 BTRFS_EXTENDED_PROFILE_MASK;
9542
9543 write_seqlock(&fs_info->profiles_lock);
9544 if (flags & BTRFS_BLOCK_GROUP_DATA)
9545 fs_info->avail_data_alloc_bits &= ~extra_flags;
9546 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9547 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9548 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9549 fs_info->avail_system_alloc_bits &= ~extra_flags;
9550 write_sequnlock(&fs_info->profiles_lock);
9551 }
9552
9553 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9554 struct btrfs_root *root, u64 group_start,
9555 struct extent_map *em)
9556 {
9557 struct btrfs_path *path;
9558 struct btrfs_block_group_cache *block_group;
9559 struct btrfs_free_cluster *cluster;
9560 struct btrfs_root *tree_root = root->fs_info->tree_root;
9561 struct btrfs_key key;
9562 struct inode *inode;
9563 struct kobject *kobj = NULL;
9564 int ret;
9565 int index;
9566 int factor;
9567 struct btrfs_caching_control *caching_ctl = NULL;
9568 bool remove_em;
9569
9570 root = root->fs_info->extent_root;
9571
9572 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9573 BUG_ON(!block_group);
9574 BUG_ON(!block_group->ro);
9575
9576 /*
9577 * Free the reserved super bytes from this block group before
9578 * remove it.
9579 */
9580 free_excluded_extents(root, block_group);
9581
9582 memcpy(&key, &block_group->key, sizeof(key));
9583 index = get_block_group_index(block_group);
9584 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9585 BTRFS_BLOCK_GROUP_RAID1 |
9586 BTRFS_BLOCK_GROUP_RAID10))
9587 factor = 2;
9588 else
9589 factor = 1;
9590
9591 /* make sure this block group isn't part of an allocation cluster */
9592 cluster = &root->fs_info->data_alloc_cluster;
9593 spin_lock(&cluster->refill_lock);
9594 btrfs_return_cluster_to_free_space(block_group, cluster);
9595 spin_unlock(&cluster->refill_lock);
9596
9597 /*
9598 * make sure this block group isn't part of a metadata
9599 * allocation cluster
9600 */
9601 cluster = &root->fs_info->meta_alloc_cluster;
9602 spin_lock(&cluster->refill_lock);
9603 btrfs_return_cluster_to_free_space(block_group, cluster);
9604 spin_unlock(&cluster->refill_lock);
9605
9606 path = btrfs_alloc_path();
9607 if (!path) {
9608 ret = -ENOMEM;
9609 goto out;
9610 }
9611
9612 /*
9613 * get the inode first so any iput calls done for the io_list
9614 * aren't the final iput (no unlinks allowed now)
9615 */
9616 inode = lookup_free_space_inode(tree_root, block_group, path);
9617
9618 mutex_lock(&trans->transaction->cache_write_mutex);
9619 /*
9620 * make sure our free spache cache IO is done before remove the
9621 * free space inode
9622 */
9623 spin_lock(&trans->transaction->dirty_bgs_lock);
9624 if (!list_empty(&block_group->io_list)) {
9625 list_del_init(&block_group->io_list);
9626
9627 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9628
9629 spin_unlock(&trans->transaction->dirty_bgs_lock);
9630 btrfs_wait_cache_io(root, trans, block_group,
9631 &block_group->io_ctl, path,
9632 block_group->key.objectid);
9633 btrfs_put_block_group(block_group);
9634 spin_lock(&trans->transaction->dirty_bgs_lock);
9635 }
9636
9637 if (!list_empty(&block_group->dirty_list)) {
9638 list_del_init(&block_group->dirty_list);
9639 btrfs_put_block_group(block_group);
9640 }
9641 spin_unlock(&trans->transaction->dirty_bgs_lock);
9642 mutex_unlock(&trans->transaction->cache_write_mutex);
9643
9644 if (!IS_ERR(inode)) {
9645 ret = btrfs_orphan_add(trans, inode);
9646 if (ret) {
9647 btrfs_add_delayed_iput(inode);
9648 goto out;
9649 }
9650 clear_nlink(inode);
9651 /* One for the block groups ref */
9652 spin_lock(&block_group->lock);
9653 if (block_group->iref) {
9654 block_group->iref = 0;
9655 block_group->inode = NULL;
9656 spin_unlock(&block_group->lock);
9657 iput(inode);
9658 } else {
9659 spin_unlock(&block_group->lock);
9660 }
9661 /* One for our lookup ref */
9662 btrfs_add_delayed_iput(inode);
9663 }
9664
9665 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9666 key.offset = block_group->key.objectid;
9667 key.type = 0;
9668
9669 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9670 if (ret < 0)
9671 goto out;
9672 if (ret > 0)
9673 btrfs_release_path(path);
9674 if (ret == 0) {
9675 ret = btrfs_del_item(trans, tree_root, path);
9676 if (ret)
9677 goto out;
9678 btrfs_release_path(path);
9679 }
9680
9681 spin_lock(&root->fs_info->block_group_cache_lock);
9682 rb_erase(&block_group->cache_node,
9683 &root->fs_info->block_group_cache_tree);
9684 RB_CLEAR_NODE(&block_group->cache_node);
9685
9686 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9687 root->fs_info->first_logical_byte = (u64)-1;
9688 spin_unlock(&root->fs_info->block_group_cache_lock);
9689
9690 down_write(&block_group->space_info->groups_sem);
9691 /*
9692 * we must use list_del_init so people can check to see if they
9693 * are still on the list after taking the semaphore
9694 */
9695 list_del_init(&block_group->list);
9696 if (list_empty(&block_group->space_info->block_groups[index])) {
9697 kobj = block_group->space_info->block_group_kobjs[index];
9698 block_group->space_info->block_group_kobjs[index] = NULL;
9699 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9700 }
9701 up_write(&block_group->space_info->groups_sem);
9702 if (kobj) {
9703 kobject_del(kobj);
9704 kobject_put(kobj);
9705 }
9706
9707 if (block_group->has_caching_ctl)
9708 caching_ctl = get_caching_control(block_group);
9709 if (block_group->cached == BTRFS_CACHE_STARTED)
9710 wait_block_group_cache_done(block_group);
9711 if (block_group->has_caching_ctl) {
9712 down_write(&root->fs_info->commit_root_sem);
9713 if (!caching_ctl) {
9714 struct btrfs_caching_control *ctl;
9715
9716 list_for_each_entry(ctl,
9717 &root->fs_info->caching_block_groups, list)
9718 if (ctl->block_group == block_group) {
9719 caching_ctl = ctl;
9720 atomic_inc(&caching_ctl->count);
9721 break;
9722 }
9723 }
9724 if (caching_ctl)
9725 list_del_init(&caching_ctl->list);
9726 up_write(&root->fs_info->commit_root_sem);
9727 if (caching_ctl) {
9728 /* Once for the caching bgs list and once for us. */
9729 put_caching_control(caching_ctl);
9730 put_caching_control(caching_ctl);
9731 }
9732 }
9733
9734 spin_lock(&trans->transaction->dirty_bgs_lock);
9735 if (!list_empty(&block_group->dirty_list)) {
9736 WARN_ON(1);
9737 }
9738 if (!list_empty(&block_group->io_list)) {
9739 WARN_ON(1);
9740 }
9741 spin_unlock(&trans->transaction->dirty_bgs_lock);
9742 btrfs_remove_free_space_cache(block_group);
9743
9744 spin_lock(&block_group->space_info->lock);
9745 list_del_init(&block_group->ro_list);
9746
9747 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9748 WARN_ON(block_group->space_info->total_bytes
9749 < block_group->key.offset);
9750 WARN_ON(block_group->space_info->bytes_readonly
9751 < block_group->key.offset);
9752 WARN_ON(block_group->space_info->disk_total
9753 < block_group->key.offset * factor);
9754 }
9755 block_group->space_info->total_bytes -= block_group->key.offset;
9756 block_group->space_info->bytes_readonly -= block_group->key.offset;
9757 block_group->space_info->disk_total -= block_group->key.offset * factor;
9758
9759 spin_unlock(&block_group->space_info->lock);
9760
9761 memcpy(&key, &block_group->key, sizeof(key));
9762
9763 lock_chunks(root);
9764 if (!list_empty(&em->list)) {
9765 /* We're in the transaction->pending_chunks list. */
9766 free_extent_map(em);
9767 }
9768 spin_lock(&block_group->lock);
9769 block_group->removed = 1;
9770 /*
9771 * At this point trimming can't start on this block group, because we
9772 * removed the block group from the tree fs_info->block_group_cache_tree
9773 * so no one can't find it anymore and even if someone already got this
9774 * block group before we removed it from the rbtree, they have already
9775 * incremented block_group->trimming - if they didn't, they won't find
9776 * any free space entries because we already removed them all when we
9777 * called btrfs_remove_free_space_cache().
9778 *
9779 * And we must not remove the extent map from the fs_info->mapping_tree
9780 * to prevent the same logical address range and physical device space
9781 * ranges from being reused for a new block group. This is because our
9782 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9783 * completely transactionless, so while it is trimming a range the
9784 * currently running transaction might finish and a new one start,
9785 * allowing for new block groups to be created that can reuse the same
9786 * physical device locations unless we take this special care.
9787 */
9788 remove_em = (atomic_read(&block_group->trimming) == 0);
9789 /*
9790 * Make sure a trimmer task always sees the em in the pinned_chunks list
9791 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9792 * before checking block_group->removed).
9793 */
9794 if (!remove_em) {
9795 /*
9796 * Our em might be in trans->transaction->pending_chunks which
9797 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9798 * and so is the fs_info->pinned_chunks list.
9799 *
9800 * So at this point we must be holding the chunk_mutex to avoid
9801 * any races with chunk allocation (more specifically at
9802 * volumes.c:contains_pending_extent()), to ensure it always
9803 * sees the em, either in the pending_chunks list or in the
9804 * pinned_chunks list.
9805 */
9806 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9807 }
9808 spin_unlock(&block_group->lock);
9809
9810 if (remove_em) {
9811 struct extent_map_tree *em_tree;
9812
9813 em_tree = &root->fs_info->mapping_tree.map_tree;
9814 write_lock(&em_tree->lock);
9815 /*
9816 * The em might be in the pending_chunks list, so make sure the
9817 * chunk mutex is locked, since remove_extent_mapping() will
9818 * delete us from that list.
9819 */
9820 remove_extent_mapping(em_tree, em);
9821 write_unlock(&em_tree->lock);
9822 /* once for the tree */
9823 free_extent_map(em);
9824 }
9825
9826 unlock_chunks(root);
9827
9828 btrfs_put_block_group(block_group);
9829 btrfs_put_block_group(block_group);
9830
9831 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9832 if (ret > 0)
9833 ret = -EIO;
9834 if (ret < 0)
9835 goto out;
9836
9837 ret = btrfs_del_item(trans, root, path);
9838 out:
9839 btrfs_free_path(path);
9840 return ret;
9841 }
9842
9843 /*
9844 * Process the unused_bgs list and remove any that don't have any allocated
9845 * space inside of them.
9846 */
9847 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9848 {
9849 struct btrfs_block_group_cache *block_group;
9850 struct btrfs_space_info *space_info;
9851 struct btrfs_root *root = fs_info->extent_root;
9852 struct btrfs_trans_handle *trans;
9853 int ret = 0;
9854
9855 if (!fs_info->open)
9856 return;
9857
9858 spin_lock(&fs_info->unused_bgs_lock);
9859 while (!list_empty(&fs_info->unused_bgs)) {
9860 u64 start, end;
9861
9862 block_group = list_first_entry(&fs_info->unused_bgs,
9863 struct btrfs_block_group_cache,
9864 bg_list);
9865 space_info = block_group->space_info;
9866 list_del_init(&block_group->bg_list);
9867 if (ret || btrfs_mixed_space_info(space_info)) {
9868 btrfs_put_block_group(block_group);
9869 continue;
9870 }
9871 spin_unlock(&fs_info->unused_bgs_lock);
9872
9873 /* Don't want to race with allocators so take the groups_sem */
9874 down_write(&space_info->groups_sem);
9875 spin_lock(&block_group->lock);
9876 if (block_group->reserved ||
9877 btrfs_block_group_used(&block_group->item) ||
9878 block_group->ro) {
9879 /*
9880 * We want to bail if we made new allocations or have
9881 * outstanding allocations in this block group. We do
9882 * the ro check in case balance is currently acting on
9883 * this block group.
9884 */
9885 spin_unlock(&block_group->lock);
9886 up_write(&space_info->groups_sem);
9887 goto next;
9888 }
9889 spin_unlock(&block_group->lock);
9890
9891 /* We don't want to force the issue, only flip if it's ok. */
9892 ret = set_block_group_ro(block_group, 0);
9893 up_write(&space_info->groups_sem);
9894 if (ret < 0) {
9895 ret = 0;
9896 goto next;
9897 }
9898
9899 /*
9900 * Want to do this before we do anything else so we can recover
9901 * properly if we fail to join the transaction.
9902 */
9903 /* 1 for btrfs_orphan_reserve_metadata() */
9904 trans = btrfs_start_transaction(root, 1);
9905 if (IS_ERR(trans)) {
9906 btrfs_set_block_group_rw(root, block_group);
9907 ret = PTR_ERR(trans);
9908 goto next;
9909 }
9910
9911 /*
9912 * We could have pending pinned extents for this block group,
9913 * just delete them, we don't care about them anymore.
9914 */
9915 start = block_group->key.objectid;
9916 end = start + block_group->key.offset - 1;
9917 /*
9918 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9919 * btrfs_finish_extent_commit(). If we are at transaction N,
9920 * another task might be running finish_extent_commit() for the
9921 * previous transaction N - 1, and have seen a range belonging
9922 * to the block group in freed_extents[] before we were able to
9923 * clear the whole block group range from freed_extents[]. This
9924 * means that task can lookup for the block group after we
9925 * unpinned it from freed_extents[] and removed it, leading to
9926 * a BUG_ON() at btrfs_unpin_extent_range().
9927 */
9928 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9929 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9930 EXTENT_DIRTY, GFP_NOFS);
9931 if (ret) {
9932 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9933 btrfs_set_block_group_rw(root, block_group);
9934 goto end_trans;
9935 }
9936 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9937 EXTENT_DIRTY, GFP_NOFS);
9938 if (ret) {
9939 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9940 btrfs_set_block_group_rw(root, block_group);
9941 goto end_trans;
9942 }
9943 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9944
9945 /* Reset pinned so btrfs_put_block_group doesn't complain */
9946 spin_lock(&space_info->lock);
9947 spin_lock(&block_group->lock);
9948
9949 space_info->bytes_pinned -= block_group->pinned;
9950 space_info->bytes_readonly += block_group->pinned;
9951 percpu_counter_add(&space_info->total_bytes_pinned,
9952 -block_group->pinned);
9953 block_group->pinned = 0;
9954
9955 spin_unlock(&block_group->lock);
9956 spin_unlock(&space_info->lock);
9957
9958 /*
9959 * Btrfs_remove_chunk will abort the transaction if things go
9960 * horribly wrong.
9961 */
9962 ret = btrfs_remove_chunk(trans, root,
9963 block_group->key.objectid);
9964 end_trans:
9965 btrfs_end_transaction(trans, root);
9966 next:
9967 btrfs_put_block_group(block_group);
9968 spin_lock(&fs_info->unused_bgs_lock);
9969 }
9970 spin_unlock(&fs_info->unused_bgs_lock);
9971 }
9972
9973 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9974 {
9975 struct btrfs_space_info *space_info;
9976 struct btrfs_super_block *disk_super;
9977 u64 features;
9978 u64 flags;
9979 int mixed = 0;
9980 int ret;
9981
9982 disk_super = fs_info->super_copy;
9983 if (!btrfs_super_root(disk_super))
9984 return 1;
9985
9986 features = btrfs_super_incompat_flags(disk_super);
9987 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9988 mixed = 1;
9989
9990 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9991 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9992 if (ret)
9993 goto out;
9994
9995 if (mixed) {
9996 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9997 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9998 } else {
9999 flags = BTRFS_BLOCK_GROUP_METADATA;
10000 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10001 if (ret)
10002 goto out;
10003
10004 flags = BTRFS_BLOCK_GROUP_DATA;
10005 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10006 }
10007 out:
10008 return ret;
10009 }
10010
10011 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10012 {
10013 return unpin_extent_range(root, start, end, false);
10014 }
10015
10016 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10017 {
10018 struct btrfs_fs_info *fs_info = root->fs_info;
10019 struct btrfs_block_group_cache *cache = NULL;
10020 u64 group_trimmed;
10021 u64 start;
10022 u64 end;
10023 u64 trimmed = 0;
10024 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10025 int ret = 0;
10026
10027 /*
10028 * try to trim all FS space, our block group may start from non-zero.
10029 */
10030 if (range->len == total_bytes)
10031 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10032 else
10033 cache = btrfs_lookup_block_group(fs_info, range->start);
10034
10035 while (cache) {
10036 if (cache->key.objectid >= (range->start + range->len)) {
10037 btrfs_put_block_group(cache);
10038 break;
10039 }
10040
10041 start = max(range->start, cache->key.objectid);
10042 end = min(range->start + range->len,
10043 cache->key.objectid + cache->key.offset);
10044
10045 if (end - start >= range->minlen) {
10046 if (!block_group_cache_done(cache)) {
10047 ret = cache_block_group(cache, 0);
10048 if (ret) {
10049 btrfs_put_block_group(cache);
10050 break;
10051 }
10052 ret = wait_block_group_cache_done(cache);
10053 if (ret) {
10054 btrfs_put_block_group(cache);
10055 break;
10056 }
10057 }
10058 ret = btrfs_trim_block_group(cache,
10059 &group_trimmed,
10060 start,
10061 end,
10062 range->minlen);
10063
10064 trimmed += group_trimmed;
10065 if (ret) {
10066 btrfs_put_block_group(cache);
10067 break;
10068 }
10069 }
10070
10071 cache = next_block_group(fs_info->tree_root, cache);
10072 }
10073
10074 range->len = trimmed;
10075 return ret;
10076 }
10077
10078 /*
10079 * btrfs_{start,end}_write_no_snapshoting() are similar to
10080 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10081 * data into the page cache through nocow before the subvolume is snapshoted,
10082 * but flush the data into disk after the snapshot creation, or to prevent
10083 * operations while snapshoting is ongoing and that cause the snapshot to be
10084 * inconsistent (writes followed by expanding truncates for example).
10085 */
10086 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10087 {
10088 percpu_counter_dec(&root->subv_writers->counter);
10089 /*
10090 * Make sure counter is updated before we wake up
10091 * waiters.
10092 */
10093 smp_mb();
10094 if (waitqueue_active(&root->subv_writers->wait))
10095 wake_up(&root->subv_writers->wait);
10096 }
10097
10098 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10099 {
10100 if (atomic_read(&root->will_be_snapshoted))
10101 return 0;
10102
10103 percpu_counter_inc(&root->subv_writers->counter);
10104 /*
10105 * Make sure counter is updated before we check for snapshot creation.
10106 */
10107 smp_mb();
10108 if (atomic_read(&root->will_be_snapshoted)) {
10109 btrfs_end_write_no_snapshoting(root);
10110 return 0;
10111 }
10112 return 1;
10113 }
This page took 0.241578 seconds and 5 git commands to generate.