btrfs: fix condition of commit transaction
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 if (locked_ref->is_data &&
2542 locked_ref->total_ref_mod < 0) {
2543 spin_lock(&delayed_refs->lock);
2544 delayed_refs->pending_csums -= ref->num_bytes;
2545 spin_unlock(&delayed_refs->lock);
2546 }
2547 btrfs_delayed_ref_unlock(locked_ref);
2548 locked_ref = NULL;
2549 }
2550 btrfs_put_delayed_ref(ref);
2551 count++;
2552 cond_resched();
2553 }
2554
2555 /*
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2559 */
2560 if (actual_count > 0) {
2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 u64 avg;
2563
2564 /*
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2567 */
2568 spin_lock(&delayed_refs->lock);
2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2571 spin_unlock(&delayed_refs->lock);
2572 }
2573 return 0;
2574 }
2575
2576 #ifdef SCRAMBLE_DELAYED_REFS
2577 /*
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2581 */
2582 static u64 find_middle(struct rb_root *root)
2583 {
2584 struct rb_node *n = root->rb_node;
2585 struct btrfs_delayed_ref_node *entry;
2586 int alt = 1;
2587 u64 middle;
2588 u64 first = 0, last = 0;
2589
2590 n = rb_first(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 first = entry->bytenr;
2594 }
2595 n = rb_last(root);
2596 if (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 last = entry->bytenr;
2599 }
2600 n = root->rb_node;
2601
2602 while (n) {
2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 WARN_ON(!entry->in_tree);
2605
2606 middle = entry->bytenr;
2607
2608 if (alt)
2609 n = n->rb_left;
2610 else
2611 n = n->rb_right;
2612
2613 alt = 1 - alt;
2614 }
2615 return middle;
2616 }
2617 #endif
2618
2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620 {
2621 u64 num_bytes;
2622
2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 sizeof(struct btrfs_extent_inline_ref));
2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627
2628 /*
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2631 */
2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2633 }
2634
2635 /*
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2638 */
2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2640 {
2641 u64 csum_size;
2642 u64 num_csums_per_leaf;
2643 u64 num_csums;
2644
2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 num_csums_per_leaf = div64_u64(csum_size,
2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 num_csums += num_csums_per_leaf - 1;
2650 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 return num_csums;
2652 }
2653
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655 struct btrfs_root *root)
2656 {
2657 struct btrfs_block_rsv *global_rsv;
2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 u64 num_bytes, num_dirty_bgs_bytes;
2662 int ret = 0;
2663
2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 num_heads = heads_to_leaves(root, num_heads);
2666 if (num_heads > 1)
2667 num_bytes += (num_heads - 1) * root->nodesize;
2668 num_bytes <<= 1;
2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 num_dirty_bgs);
2672 global_rsv = &root->fs_info->global_block_rsv;
2673
2674 /*
2675 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 * wiggle room since running delayed refs can create more delayed refs.
2677 */
2678 if (global_rsv->space_info->full) {
2679 num_dirty_bgs_bytes <<= 1;
2680 num_bytes <<= 1;
2681 }
2682
2683 spin_lock(&global_rsv->lock);
2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2685 ret = 1;
2686 spin_unlock(&global_rsv->lock);
2687 return ret;
2688 }
2689
2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root)
2692 {
2693 struct btrfs_fs_info *fs_info = root->fs_info;
2694 u64 num_entries =
2695 atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 u64 avg_runtime;
2697 u64 val;
2698
2699 smp_mb();
2700 avg_runtime = fs_info->avg_delayed_ref_runtime;
2701 val = num_entries * avg_runtime;
2702 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 return 1;
2704 if (val >= NSEC_PER_SEC / 2)
2705 return 2;
2706
2707 return btrfs_check_space_for_delayed_refs(trans, root);
2708 }
2709
2710 struct async_delayed_refs {
2711 struct btrfs_root *root;
2712 int count;
2713 int error;
2714 int sync;
2715 struct completion wait;
2716 struct btrfs_work work;
2717 };
2718
2719 static void delayed_ref_async_start(struct btrfs_work *work)
2720 {
2721 struct async_delayed_refs *async;
2722 struct btrfs_trans_handle *trans;
2723 int ret;
2724
2725 async = container_of(work, struct async_delayed_refs, work);
2726
2727 trans = btrfs_join_transaction(async->root);
2728 if (IS_ERR(trans)) {
2729 async->error = PTR_ERR(trans);
2730 goto done;
2731 }
2732
2733 /*
2734 * trans->sync means that when we call end_transaciton, we won't
2735 * wait on delayed refs
2736 */
2737 trans->sync = true;
2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 if (ret)
2740 async->error = ret;
2741
2742 ret = btrfs_end_transaction(trans, async->root);
2743 if (ret && !async->error)
2744 async->error = ret;
2745 done:
2746 if (async->sync)
2747 complete(&async->wait);
2748 else
2749 kfree(async);
2750 }
2751
2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 unsigned long count, int wait)
2754 {
2755 struct async_delayed_refs *async;
2756 int ret;
2757
2758 async = kmalloc(sizeof(*async), GFP_NOFS);
2759 if (!async)
2760 return -ENOMEM;
2761
2762 async->root = root->fs_info->tree_root;
2763 async->count = count;
2764 async->error = 0;
2765 if (wait)
2766 async->sync = 1;
2767 else
2768 async->sync = 0;
2769 init_completion(&async->wait);
2770
2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 delayed_ref_async_start, NULL, NULL);
2773
2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775
2776 if (wait) {
2777 wait_for_completion(&async->wait);
2778 ret = async->error;
2779 kfree(async);
2780 return ret;
2781 }
2782 return 0;
2783 }
2784
2785 /*
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far. count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
2791 *
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
2794 */
2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 struct btrfs_root *root, unsigned long count)
2797 {
2798 struct rb_node *node;
2799 struct btrfs_delayed_ref_root *delayed_refs;
2800 struct btrfs_delayed_ref_head *head;
2801 int ret;
2802 int run_all = count == (unsigned long)-1;
2803
2804 /* We'll clean this up in btrfs_cleanup_transaction */
2805 if (trans->aborted)
2806 return 0;
2807
2808 if (root == root->fs_info->extent_root)
2809 root = root->fs_info->tree_root;
2810
2811 delayed_refs = &trans->transaction->delayed_refs;
2812 if (count == 0)
2813 count = atomic_read(&delayed_refs->num_entries) * 2;
2814
2815 again:
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818 #endif
2819 ret = __btrfs_run_delayed_refs(trans, root, count);
2820 if (ret < 0) {
2821 btrfs_abort_transaction(trans, root, ret);
2822 return ret;
2823 }
2824
2825 if (run_all) {
2826 if (!list_empty(&trans->new_bgs))
2827 btrfs_create_pending_block_groups(trans, root);
2828
2829 spin_lock(&delayed_refs->lock);
2830 node = rb_first(&delayed_refs->href_root);
2831 if (!node) {
2832 spin_unlock(&delayed_refs->lock);
2833 goto out;
2834 }
2835 count = (unsigned long)-1;
2836
2837 while (node) {
2838 head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 href_node);
2840 if (btrfs_delayed_ref_is_head(&head->node)) {
2841 struct btrfs_delayed_ref_node *ref;
2842
2843 ref = &head->node;
2844 atomic_inc(&ref->refs);
2845
2846 spin_unlock(&delayed_refs->lock);
2847 /*
2848 * Mutex was contended, block until it's
2849 * released and try again
2850 */
2851 mutex_lock(&head->mutex);
2852 mutex_unlock(&head->mutex);
2853
2854 btrfs_put_delayed_ref(ref);
2855 cond_resched();
2856 goto again;
2857 } else {
2858 WARN_ON(1);
2859 }
2860 node = rb_next(node);
2861 }
2862 spin_unlock(&delayed_refs->lock);
2863 cond_resched();
2864 goto again;
2865 }
2866 out:
2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 if (ret)
2869 return ret;
2870 assert_qgroups_uptodate(trans);
2871 return 0;
2872 }
2873
2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 u64 bytenr, u64 num_bytes, u64 flags,
2877 int level, int is_data)
2878 {
2879 struct btrfs_delayed_extent_op *extent_op;
2880 int ret;
2881
2882 extent_op = btrfs_alloc_delayed_extent_op();
2883 if (!extent_op)
2884 return -ENOMEM;
2885
2886 extent_op->flags_to_set = flags;
2887 extent_op->update_flags = 1;
2888 extent_op->update_key = 0;
2889 extent_op->is_data = is_data ? 1 : 0;
2890 extent_op->level = level;
2891
2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 num_bytes, extent_op);
2894 if (ret)
2895 btrfs_free_delayed_extent_op(extent_op);
2896 return ret;
2897 }
2898
2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 struct btrfs_path *path,
2902 u64 objectid, u64 offset, u64 bytenr)
2903 {
2904 struct btrfs_delayed_ref_head *head;
2905 struct btrfs_delayed_ref_node *ref;
2906 struct btrfs_delayed_data_ref *data_ref;
2907 struct btrfs_delayed_ref_root *delayed_refs;
2908 struct rb_node *node;
2909 int ret = 0;
2910
2911 delayed_refs = &trans->transaction->delayed_refs;
2912 spin_lock(&delayed_refs->lock);
2913 head = btrfs_find_delayed_ref_head(trans, bytenr);
2914 if (!head) {
2915 spin_unlock(&delayed_refs->lock);
2916 return 0;
2917 }
2918
2919 if (!mutex_trylock(&head->mutex)) {
2920 atomic_inc(&head->node.refs);
2921 spin_unlock(&delayed_refs->lock);
2922
2923 btrfs_release_path(path);
2924
2925 /*
2926 * Mutex was contended, block until it's released and let
2927 * caller try again
2928 */
2929 mutex_lock(&head->mutex);
2930 mutex_unlock(&head->mutex);
2931 btrfs_put_delayed_ref(&head->node);
2932 return -EAGAIN;
2933 }
2934 spin_unlock(&delayed_refs->lock);
2935
2936 spin_lock(&head->lock);
2937 node = rb_first(&head->ref_root);
2938 while (node) {
2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 node = rb_next(node);
2941
2942 /* If it's a shared ref we know a cross reference exists */
2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 ret = 1;
2945 break;
2946 }
2947
2948 data_ref = btrfs_delayed_node_to_data_ref(ref);
2949
2950 /*
2951 * If our ref doesn't match the one we're currently looking at
2952 * then we have a cross reference.
2953 */
2954 if (data_ref->root != root->root_key.objectid ||
2955 data_ref->objectid != objectid ||
2956 data_ref->offset != offset) {
2957 ret = 1;
2958 break;
2959 }
2960 }
2961 spin_unlock(&head->lock);
2962 mutex_unlock(&head->mutex);
2963 return ret;
2964 }
2965
2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path,
2969 u64 objectid, u64 offset, u64 bytenr)
2970 {
2971 struct btrfs_root *extent_root = root->fs_info->extent_root;
2972 struct extent_buffer *leaf;
2973 struct btrfs_extent_data_ref *ref;
2974 struct btrfs_extent_inline_ref *iref;
2975 struct btrfs_extent_item *ei;
2976 struct btrfs_key key;
2977 u32 item_size;
2978 int ret;
2979
2980 key.objectid = bytenr;
2981 key.offset = (u64)-1;
2982 key.type = BTRFS_EXTENT_ITEM_KEY;
2983
2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 if (ret < 0)
2986 goto out;
2987 BUG_ON(ret == 0); /* Corruption */
2988
2989 ret = -ENOENT;
2990 if (path->slots[0] == 0)
2991 goto out;
2992
2993 path->slots[0]--;
2994 leaf = path->nodes[0];
2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2996
2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2998 goto out;
2999
3000 ret = 1;
3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 if (item_size < sizeof(*ei)) {
3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 goto out;
3006 }
3007 #endif
3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3009
3010 if (item_size != sizeof(*ei) +
3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 goto out;
3013
3014 if (btrfs_extent_generation(leaf, ei) <=
3015 btrfs_root_last_snapshot(&root->root_item))
3016 goto out;
3017
3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 BTRFS_EXTENT_DATA_REF_KEY)
3021 goto out;
3022
3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 if (btrfs_extent_refs(leaf, ei) !=
3025 btrfs_extent_data_ref_count(leaf, ref) ||
3026 btrfs_extent_data_ref_root(leaf, ref) !=
3027 root->root_key.objectid ||
3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 goto out;
3031
3032 ret = 0;
3033 out:
3034 return ret;
3035 }
3036
3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 struct btrfs_path *path;
3042 int ret;
3043 int ret2;
3044
3045 path = btrfs_alloc_path();
3046 if (!path)
3047 return -ENOENT;
3048
3049 do {
3050 ret = check_committed_ref(trans, root, path, objectid,
3051 offset, bytenr);
3052 if (ret && ret != -ENOENT)
3053 goto out;
3054
3055 ret2 = check_delayed_ref(trans, root, path, objectid,
3056 offset, bytenr);
3057 } while (ret2 == -EAGAIN);
3058
3059 if (ret2 && ret2 != -ENOENT) {
3060 ret = ret2;
3061 goto out;
3062 }
3063
3064 if (ret != -ENOENT || ret2 != -ENOENT)
3065 ret = 0;
3066 out:
3067 btrfs_free_path(path);
3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 WARN_ON(ret > 0);
3070 return ret;
3071 }
3072
3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3074 struct btrfs_root *root,
3075 struct extent_buffer *buf,
3076 int full_backref, int inc)
3077 {
3078 u64 bytenr;
3079 u64 num_bytes;
3080 u64 parent;
3081 u64 ref_root;
3082 u32 nritems;
3083 struct btrfs_key key;
3084 struct btrfs_file_extent_item *fi;
3085 int i;
3086 int level;
3087 int ret = 0;
3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3089 u64, u64, u64, u64, u64, u64, int);
3090
3091
3092 if (btrfs_test_is_dummy_root(root))
3093 return 0;
3094
3095 ref_root = btrfs_header_owner(buf);
3096 nritems = btrfs_header_nritems(buf);
3097 level = btrfs_header_level(buf);
3098
3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3100 return 0;
3101
3102 if (inc)
3103 process_func = btrfs_inc_extent_ref;
3104 else
3105 process_func = btrfs_free_extent;
3106
3107 if (full_backref)
3108 parent = buf->start;
3109 else
3110 parent = 0;
3111
3112 for (i = 0; i < nritems; i++) {
3113 if (level == 0) {
3114 btrfs_item_key_to_cpu(buf, &key, i);
3115 if (key.type != BTRFS_EXTENT_DATA_KEY)
3116 continue;
3117 fi = btrfs_item_ptr(buf, i,
3118 struct btrfs_file_extent_item);
3119 if (btrfs_file_extent_type(buf, fi) ==
3120 BTRFS_FILE_EXTENT_INLINE)
3121 continue;
3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 if (bytenr == 0)
3124 continue;
3125
3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 key.offset -= btrfs_file_extent_offset(buf, fi);
3128 ret = process_func(trans, root, bytenr, num_bytes,
3129 parent, ref_root, key.objectid,
3130 key.offset, 1);
3131 if (ret)
3132 goto fail;
3133 } else {
3134 bytenr = btrfs_node_blockptr(buf, i);
3135 num_bytes = root->nodesize;
3136 ret = process_func(trans, root, bytenr, num_bytes,
3137 parent, ref_root, level - 1, 0,
3138 1);
3139 if (ret)
3140 goto fail;
3141 }
3142 }
3143 return 0;
3144 fail:
3145 return ret;
3146 }
3147
3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3149 struct extent_buffer *buf, int full_backref)
3150 {
3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3152 }
3153
3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3155 struct extent_buffer *buf, int full_backref)
3156 {
3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3158 }
3159
3160 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 struct btrfs_path *path,
3163 struct btrfs_block_group_cache *cache)
3164 {
3165 int ret;
3166 struct btrfs_root *extent_root = root->fs_info->extent_root;
3167 unsigned long bi;
3168 struct extent_buffer *leaf;
3169
3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3171 if (ret) {
3172 if (ret > 0)
3173 ret = -ENOENT;
3174 goto fail;
3175 }
3176
3177 leaf = path->nodes[0];
3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 btrfs_mark_buffer_dirty(leaf);
3181 btrfs_release_path(path);
3182 fail:
3183 if (ret)
3184 btrfs_abort_transaction(trans, root, ret);
3185 return ret;
3186
3187 }
3188
3189 static struct btrfs_block_group_cache *
3190 next_block_group(struct btrfs_root *root,
3191 struct btrfs_block_group_cache *cache)
3192 {
3193 struct rb_node *node;
3194
3195 spin_lock(&root->fs_info->block_group_cache_lock);
3196
3197 /* If our block group was removed, we need a full search. */
3198 if (RB_EMPTY_NODE(&cache->cache_node)) {
3199 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3200
3201 spin_unlock(&root->fs_info->block_group_cache_lock);
3202 btrfs_put_block_group(cache);
3203 cache = btrfs_lookup_first_block_group(root->fs_info,
3204 next_bytenr);
3205 return cache;
3206 }
3207 node = rb_next(&cache->cache_node);
3208 btrfs_put_block_group(cache);
3209 if (node) {
3210 cache = rb_entry(node, struct btrfs_block_group_cache,
3211 cache_node);
3212 btrfs_get_block_group(cache);
3213 } else
3214 cache = NULL;
3215 spin_unlock(&root->fs_info->block_group_cache_lock);
3216 return cache;
3217 }
3218
3219 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3220 struct btrfs_trans_handle *trans,
3221 struct btrfs_path *path)
3222 {
3223 struct btrfs_root *root = block_group->fs_info->tree_root;
3224 struct inode *inode = NULL;
3225 u64 alloc_hint = 0;
3226 int dcs = BTRFS_DC_ERROR;
3227 u64 num_pages = 0;
3228 int retries = 0;
3229 int ret = 0;
3230
3231 /*
3232 * If this block group is smaller than 100 megs don't bother caching the
3233 * block group.
3234 */
3235 if (block_group->key.offset < (100 * 1024 * 1024)) {
3236 spin_lock(&block_group->lock);
3237 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3238 spin_unlock(&block_group->lock);
3239 return 0;
3240 }
3241
3242 if (trans->aborted)
3243 return 0;
3244 again:
3245 inode = lookup_free_space_inode(root, block_group, path);
3246 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3247 ret = PTR_ERR(inode);
3248 btrfs_release_path(path);
3249 goto out;
3250 }
3251
3252 if (IS_ERR(inode)) {
3253 BUG_ON(retries);
3254 retries++;
3255
3256 if (block_group->ro)
3257 goto out_free;
3258
3259 ret = create_free_space_inode(root, trans, block_group, path);
3260 if (ret)
3261 goto out_free;
3262 goto again;
3263 }
3264
3265 /* We've already setup this transaction, go ahead and exit */
3266 if (block_group->cache_generation == trans->transid &&
3267 i_size_read(inode)) {
3268 dcs = BTRFS_DC_SETUP;
3269 goto out_put;
3270 }
3271
3272 /*
3273 * We want to set the generation to 0, that way if anything goes wrong
3274 * from here on out we know not to trust this cache when we load up next
3275 * time.
3276 */
3277 BTRFS_I(inode)->generation = 0;
3278 ret = btrfs_update_inode(trans, root, inode);
3279 if (ret) {
3280 /*
3281 * So theoretically we could recover from this, simply set the
3282 * super cache generation to 0 so we know to invalidate the
3283 * cache, but then we'd have to keep track of the block groups
3284 * that fail this way so we know we _have_ to reset this cache
3285 * before the next commit or risk reading stale cache. So to
3286 * limit our exposure to horrible edge cases lets just abort the
3287 * transaction, this only happens in really bad situations
3288 * anyway.
3289 */
3290 btrfs_abort_transaction(trans, root, ret);
3291 goto out_put;
3292 }
3293 WARN_ON(ret);
3294
3295 if (i_size_read(inode) > 0) {
3296 ret = btrfs_check_trunc_cache_free_space(root,
3297 &root->fs_info->global_block_rsv);
3298 if (ret)
3299 goto out_put;
3300
3301 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3302 if (ret)
3303 goto out_put;
3304 }
3305
3306 spin_lock(&block_group->lock);
3307 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3308 !btrfs_test_opt(root, SPACE_CACHE) ||
3309 block_group->delalloc_bytes) {
3310 /*
3311 * don't bother trying to write stuff out _if_
3312 * a) we're not cached,
3313 * b) we're with nospace_cache mount option.
3314 */
3315 dcs = BTRFS_DC_WRITTEN;
3316 spin_unlock(&block_group->lock);
3317 goto out_put;
3318 }
3319 spin_unlock(&block_group->lock);
3320
3321 /*
3322 * Try to preallocate enough space based on how big the block group is.
3323 * Keep in mind this has to include any pinned space which could end up
3324 * taking up quite a bit since it's not folded into the other space
3325 * cache.
3326 */
3327 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3328 if (!num_pages)
3329 num_pages = 1;
3330
3331 num_pages *= 16;
3332 num_pages *= PAGE_CACHE_SIZE;
3333
3334 ret = btrfs_check_data_free_space(inode, num_pages);
3335 if (ret)
3336 goto out_put;
3337
3338 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3339 num_pages, num_pages,
3340 &alloc_hint);
3341 if (!ret)
3342 dcs = BTRFS_DC_SETUP;
3343 btrfs_free_reserved_data_space(inode, num_pages);
3344
3345 out_put:
3346 iput(inode);
3347 out_free:
3348 btrfs_release_path(path);
3349 out:
3350 spin_lock(&block_group->lock);
3351 if (!ret && dcs == BTRFS_DC_SETUP)
3352 block_group->cache_generation = trans->transid;
3353 block_group->disk_cache_state = dcs;
3354 spin_unlock(&block_group->lock);
3355
3356 return ret;
3357 }
3358
3359 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3360 struct btrfs_root *root)
3361 {
3362 struct btrfs_block_group_cache *cache, *tmp;
3363 struct btrfs_transaction *cur_trans = trans->transaction;
3364 struct btrfs_path *path;
3365
3366 if (list_empty(&cur_trans->dirty_bgs) ||
3367 !btrfs_test_opt(root, SPACE_CACHE))
3368 return 0;
3369
3370 path = btrfs_alloc_path();
3371 if (!path)
3372 return -ENOMEM;
3373
3374 /* Could add new block groups, use _safe just in case */
3375 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3376 dirty_list) {
3377 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3378 cache_save_setup(cache, trans, path);
3379 }
3380
3381 btrfs_free_path(path);
3382 return 0;
3383 }
3384
3385 /*
3386 * transaction commit does final block group cache writeback during a
3387 * critical section where nothing is allowed to change the FS. This is
3388 * required in order for the cache to actually match the block group,
3389 * but can introduce a lot of latency into the commit.
3390 *
3391 * So, btrfs_start_dirty_block_groups is here to kick off block group
3392 * cache IO. There's a chance we'll have to redo some of it if the
3393 * block group changes again during the commit, but it greatly reduces
3394 * the commit latency by getting rid of the easy block groups while
3395 * we're still allowing others to join the commit.
3396 */
3397 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3398 struct btrfs_root *root)
3399 {
3400 struct btrfs_block_group_cache *cache;
3401 struct btrfs_transaction *cur_trans = trans->transaction;
3402 int ret = 0;
3403 int should_put;
3404 struct btrfs_path *path = NULL;
3405 LIST_HEAD(dirty);
3406 struct list_head *io = &cur_trans->io_bgs;
3407 int num_started = 0;
3408 int loops = 0;
3409
3410 spin_lock(&cur_trans->dirty_bgs_lock);
3411 if (!list_empty(&cur_trans->dirty_bgs)) {
3412 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3413 }
3414 spin_unlock(&cur_trans->dirty_bgs_lock);
3415
3416 again:
3417 if (list_empty(&dirty)) {
3418 btrfs_free_path(path);
3419 return 0;
3420 }
3421
3422 /*
3423 * make sure all the block groups on our dirty list actually
3424 * exist
3425 */
3426 btrfs_create_pending_block_groups(trans, root);
3427
3428 if (!path) {
3429 path = btrfs_alloc_path();
3430 if (!path)
3431 return -ENOMEM;
3432 }
3433
3434 while (!list_empty(&dirty)) {
3435 cache = list_first_entry(&dirty,
3436 struct btrfs_block_group_cache,
3437 dirty_list);
3438
3439 /*
3440 * cache_write_mutex is here only to save us from balance
3441 * deleting this block group while we are writing out the
3442 * cache
3443 */
3444 mutex_lock(&trans->transaction->cache_write_mutex);
3445
3446 /*
3447 * this can happen if something re-dirties a block
3448 * group that is already under IO. Just wait for it to
3449 * finish and then do it all again
3450 */
3451 if (!list_empty(&cache->io_list)) {
3452 list_del_init(&cache->io_list);
3453 btrfs_wait_cache_io(root, trans, cache,
3454 &cache->io_ctl, path,
3455 cache->key.objectid);
3456 btrfs_put_block_group(cache);
3457 }
3458
3459
3460 /*
3461 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3462 * if it should update the cache_state. Don't delete
3463 * until after we wait.
3464 *
3465 * Since we're not running in the commit critical section
3466 * we need the dirty_bgs_lock to protect from update_block_group
3467 */
3468 spin_lock(&cur_trans->dirty_bgs_lock);
3469 list_del_init(&cache->dirty_list);
3470 spin_unlock(&cur_trans->dirty_bgs_lock);
3471
3472 should_put = 1;
3473
3474 cache_save_setup(cache, trans, path);
3475
3476 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3477 cache->io_ctl.inode = NULL;
3478 ret = btrfs_write_out_cache(root, trans, cache, path);
3479 if (ret == 0 && cache->io_ctl.inode) {
3480 num_started++;
3481 should_put = 0;
3482
3483 /*
3484 * the cache_write_mutex is protecting
3485 * the io_list
3486 */
3487 list_add_tail(&cache->io_list, io);
3488 } else {
3489 /*
3490 * if we failed to write the cache, the
3491 * generation will be bad and life goes on
3492 */
3493 ret = 0;
3494 }
3495 }
3496 if (!ret)
3497 ret = write_one_cache_group(trans, root, path, cache);
3498 mutex_unlock(&trans->transaction->cache_write_mutex);
3499
3500 /* if its not on the io list, we need to put the block group */
3501 if (should_put)
3502 btrfs_put_block_group(cache);
3503
3504 if (ret)
3505 break;
3506 }
3507
3508 /*
3509 * go through delayed refs for all the stuff we've just kicked off
3510 * and then loop back (just once)
3511 */
3512 ret = btrfs_run_delayed_refs(trans, root, 0);
3513 if (!ret && loops == 0) {
3514 loops++;
3515 spin_lock(&cur_trans->dirty_bgs_lock);
3516 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3517 spin_unlock(&cur_trans->dirty_bgs_lock);
3518 goto again;
3519 }
3520
3521 btrfs_free_path(path);
3522 return ret;
3523 }
3524
3525 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3526 struct btrfs_root *root)
3527 {
3528 struct btrfs_block_group_cache *cache;
3529 struct btrfs_transaction *cur_trans = trans->transaction;
3530 int ret = 0;
3531 int should_put;
3532 struct btrfs_path *path;
3533 struct list_head *io = &cur_trans->io_bgs;
3534 int num_started = 0;
3535
3536 path = btrfs_alloc_path();
3537 if (!path)
3538 return -ENOMEM;
3539
3540 /*
3541 * We don't need the lock here since we are protected by the transaction
3542 * commit. We want to do the cache_save_setup first and then run the
3543 * delayed refs to make sure we have the best chance at doing this all
3544 * in one shot.
3545 */
3546 while (!list_empty(&cur_trans->dirty_bgs)) {
3547 cache = list_first_entry(&cur_trans->dirty_bgs,
3548 struct btrfs_block_group_cache,
3549 dirty_list);
3550
3551 /*
3552 * this can happen if cache_save_setup re-dirties a block
3553 * group that is already under IO. Just wait for it to
3554 * finish and then do it all again
3555 */
3556 if (!list_empty(&cache->io_list)) {
3557 list_del_init(&cache->io_list);
3558 btrfs_wait_cache_io(root, trans, cache,
3559 &cache->io_ctl, path,
3560 cache->key.objectid);
3561 btrfs_put_block_group(cache);
3562 }
3563
3564 /*
3565 * don't remove from the dirty list until after we've waited
3566 * on any pending IO
3567 */
3568 list_del_init(&cache->dirty_list);
3569 should_put = 1;
3570
3571 cache_save_setup(cache, trans, path);
3572
3573 if (!ret)
3574 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3575
3576 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3577 cache->io_ctl.inode = NULL;
3578 ret = btrfs_write_out_cache(root, trans, cache, path);
3579 if (ret == 0 && cache->io_ctl.inode) {
3580 num_started++;
3581 should_put = 0;
3582 list_add_tail(&cache->io_list, io);
3583 } else {
3584 /*
3585 * if we failed to write the cache, the
3586 * generation will be bad and life goes on
3587 */
3588 ret = 0;
3589 }
3590 }
3591 if (!ret)
3592 ret = write_one_cache_group(trans, root, path, cache);
3593
3594 /* if its not on the io list, we need to put the block group */
3595 if (should_put)
3596 btrfs_put_block_group(cache);
3597 }
3598
3599 while (!list_empty(io)) {
3600 cache = list_first_entry(io, struct btrfs_block_group_cache,
3601 io_list);
3602 list_del_init(&cache->io_list);
3603 btrfs_wait_cache_io(root, trans, cache,
3604 &cache->io_ctl, path, cache->key.objectid);
3605 btrfs_put_block_group(cache);
3606 }
3607
3608 btrfs_free_path(path);
3609 return ret;
3610 }
3611
3612 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3613 {
3614 struct btrfs_block_group_cache *block_group;
3615 int readonly = 0;
3616
3617 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3618 if (!block_group || block_group->ro)
3619 readonly = 1;
3620 if (block_group)
3621 btrfs_put_block_group(block_group);
3622 return readonly;
3623 }
3624
3625 static const char *alloc_name(u64 flags)
3626 {
3627 switch (flags) {
3628 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3629 return "mixed";
3630 case BTRFS_BLOCK_GROUP_METADATA:
3631 return "metadata";
3632 case BTRFS_BLOCK_GROUP_DATA:
3633 return "data";
3634 case BTRFS_BLOCK_GROUP_SYSTEM:
3635 return "system";
3636 default:
3637 WARN_ON(1);
3638 return "invalid-combination";
3639 };
3640 }
3641
3642 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3643 u64 total_bytes, u64 bytes_used,
3644 struct btrfs_space_info **space_info)
3645 {
3646 struct btrfs_space_info *found;
3647 int i;
3648 int factor;
3649 int ret;
3650
3651 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3652 BTRFS_BLOCK_GROUP_RAID10))
3653 factor = 2;
3654 else
3655 factor = 1;
3656
3657 found = __find_space_info(info, flags);
3658 if (found) {
3659 spin_lock(&found->lock);
3660 found->total_bytes += total_bytes;
3661 found->disk_total += total_bytes * factor;
3662 found->bytes_used += bytes_used;
3663 found->disk_used += bytes_used * factor;
3664 found->full = 0;
3665 spin_unlock(&found->lock);
3666 *space_info = found;
3667 return 0;
3668 }
3669 found = kzalloc(sizeof(*found), GFP_NOFS);
3670 if (!found)
3671 return -ENOMEM;
3672
3673 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3674 if (ret) {
3675 kfree(found);
3676 return ret;
3677 }
3678
3679 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3680 INIT_LIST_HEAD(&found->block_groups[i]);
3681 init_rwsem(&found->groups_sem);
3682 spin_lock_init(&found->lock);
3683 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3684 found->total_bytes = total_bytes;
3685 found->disk_total = total_bytes * factor;
3686 found->bytes_used = bytes_used;
3687 found->disk_used = bytes_used * factor;
3688 found->bytes_pinned = 0;
3689 found->bytes_reserved = 0;
3690 found->bytes_readonly = 0;
3691 found->bytes_may_use = 0;
3692 found->full = 0;
3693 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3694 found->chunk_alloc = 0;
3695 found->flush = 0;
3696 init_waitqueue_head(&found->wait);
3697 INIT_LIST_HEAD(&found->ro_bgs);
3698
3699 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3700 info->space_info_kobj, "%s",
3701 alloc_name(found->flags));
3702 if (ret) {
3703 kfree(found);
3704 return ret;
3705 }
3706
3707 *space_info = found;
3708 list_add_rcu(&found->list, &info->space_info);
3709 if (flags & BTRFS_BLOCK_GROUP_DATA)
3710 info->data_sinfo = found;
3711
3712 return ret;
3713 }
3714
3715 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3716 {
3717 u64 extra_flags = chunk_to_extended(flags) &
3718 BTRFS_EXTENDED_PROFILE_MASK;
3719
3720 write_seqlock(&fs_info->profiles_lock);
3721 if (flags & BTRFS_BLOCK_GROUP_DATA)
3722 fs_info->avail_data_alloc_bits |= extra_flags;
3723 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3724 fs_info->avail_metadata_alloc_bits |= extra_flags;
3725 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3726 fs_info->avail_system_alloc_bits |= extra_flags;
3727 write_sequnlock(&fs_info->profiles_lock);
3728 }
3729
3730 /*
3731 * returns target flags in extended format or 0 if restripe for this
3732 * chunk_type is not in progress
3733 *
3734 * should be called with either volume_mutex or balance_lock held
3735 */
3736 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3737 {
3738 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3739 u64 target = 0;
3740
3741 if (!bctl)
3742 return 0;
3743
3744 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3745 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3746 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3747 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3748 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3749 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3750 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3751 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3752 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3753 }
3754
3755 return target;
3756 }
3757
3758 /*
3759 * @flags: available profiles in extended format (see ctree.h)
3760 *
3761 * Returns reduced profile in chunk format. If profile changing is in
3762 * progress (either running or paused) picks the target profile (if it's
3763 * already available), otherwise falls back to plain reducing.
3764 */
3765 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3766 {
3767 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3768 u64 target;
3769 u64 tmp;
3770
3771 /*
3772 * see if restripe for this chunk_type is in progress, if so
3773 * try to reduce to the target profile
3774 */
3775 spin_lock(&root->fs_info->balance_lock);
3776 target = get_restripe_target(root->fs_info, flags);
3777 if (target) {
3778 /* pick target profile only if it's already available */
3779 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3780 spin_unlock(&root->fs_info->balance_lock);
3781 return extended_to_chunk(target);
3782 }
3783 }
3784 spin_unlock(&root->fs_info->balance_lock);
3785
3786 /* First, mask out the RAID levels which aren't possible */
3787 if (num_devices == 1)
3788 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3789 BTRFS_BLOCK_GROUP_RAID5);
3790 if (num_devices < 3)
3791 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3792 if (num_devices < 4)
3793 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3794
3795 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3796 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3797 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3798 flags &= ~tmp;
3799
3800 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3801 tmp = BTRFS_BLOCK_GROUP_RAID6;
3802 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3803 tmp = BTRFS_BLOCK_GROUP_RAID5;
3804 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3805 tmp = BTRFS_BLOCK_GROUP_RAID10;
3806 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3807 tmp = BTRFS_BLOCK_GROUP_RAID1;
3808 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3809 tmp = BTRFS_BLOCK_GROUP_RAID0;
3810
3811 return extended_to_chunk(flags | tmp);
3812 }
3813
3814 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3815 {
3816 unsigned seq;
3817 u64 flags;
3818
3819 do {
3820 flags = orig_flags;
3821 seq = read_seqbegin(&root->fs_info->profiles_lock);
3822
3823 if (flags & BTRFS_BLOCK_GROUP_DATA)
3824 flags |= root->fs_info->avail_data_alloc_bits;
3825 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3826 flags |= root->fs_info->avail_system_alloc_bits;
3827 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3828 flags |= root->fs_info->avail_metadata_alloc_bits;
3829 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3830
3831 return btrfs_reduce_alloc_profile(root, flags);
3832 }
3833
3834 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3835 {
3836 u64 flags;
3837 u64 ret;
3838
3839 if (data)
3840 flags = BTRFS_BLOCK_GROUP_DATA;
3841 else if (root == root->fs_info->chunk_root)
3842 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3843 else
3844 flags = BTRFS_BLOCK_GROUP_METADATA;
3845
3846 ret = get_alloc_profile(root, flags);
3847 return ret;
3848 }
3849
3850 /*
3851 * This will check the space that the inode allocates from to make sure we have
3852 * enough space for bytes.
3853 */
3854 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3855 {
3856 struct btrfs_space_info *data_sinfo;
3857 struct btrfs_root *root = BTRFS_I(inode)->root;
3858 struct btrfs_fs_info *fs_info = root->fs_info;
3859 u64 used;
3860 int ret = 0;
3861 int committed = 0;
3862 int have_pinned_space = 1;
3863
3864 /* make sure bytes are sectorsize aligned */
3865 bytes = ALIGN(bytes, root->sectorsize);
3866
3867 if (btrfs_is_free_space_inode(inode)) {
3868 committed = 1;
3869 ASSERT(current->journal_info);
3870 }
3871
3872 data_sinfo = fs_info->data_sinfo;
3873 if (!data_sinfo)
3874 goto alloc;
3875
3876 again:
3877 /* make sure we have enough space to handle the data first */
3878 spin_lock(&data_sinfo->lock);
3879 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3880 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3881 data_sinfo->bytes_may_use;
3882
3883 if (used + bytes > data_sinfo->total_bytes) {
3884 struct btrfs_trans_handle *trans;
3885
3886 /*
3887 * if we don't have enough free bytes in this space then we need
3888 * to alloc a new chunk.
3889 */
3890 if (!data_sinfo->full) {
3891 u64 alloc_target;
3892
3893 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3894 spin_unlock(&data_sinfo->lock);
3895 alloc:
3896 alloc_target = btrfs_get_alloc_profile(root, 1);
3897 /*
3898 * It is ugly that we don't call nolock join
3899 * transaction for the free space inode case here.
3900 * But it is safe because we only do the data space
3901 * reservation for the free space cache in the
3902 * transaction context, the common join transaction
3903 * just increase the counter of the current transaction
3904 * handler, doesn't try to acquire the trans_lock of
3905 * the fs.
3906 */
3907 trans = btrfs_join_transaction(root);
3908 if (IS_ERR(trans))
3909 return PTR_ERR(trans);
3910
3911 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3912 alloc_target,
3913 CHUNK_ALLOC_NO_FORCE);
3914 btrfs_end_transaction(trans, root);
3915 if (ret < 0) {
3916 if (ret != -ENOSPC)
3917 return ret;
3918 else
3919 goto commit_trans;
3920 }
3921
3922 if (!data_sinfo)
3923 data_sinfo = fs_info->data_sinfo;
3924
3925 goto again;
3926 }
3927
3928 /*
3929 * If we don't have enough pinned space to deal with this
3930 * allocation, and no removed chunk in current transaction,
3931 * don't bother committing the transaction.
3932 */
3933 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3934 bytes) < 0)
3935 have_pinned_space = 0;
3936 spin_unlock(&data_sinfo->lock);
3937
3938 /* commit the current transaction and try again */
3939 commit_trans:
3940 if (!committed &&
3941 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3942 committed = 1;
3943
3944 trans = btrfs_join_transaction(root);
3945 if (IS_ERR(trans))
3946 return PTR_ERR(trans);
3947 if (have_pinned_space ||
3948 trans->transaction->have_free_bgs) {
3949 ret = btrfs_commit_transaction(trans, root);
3950 if (ret)
3951 return ret;
3952 goto again;
3953 } else {
3954 btrfs_end_transaction(trans, root);
3955 }
3956 }
3957
3958 trace_btrfs_space_reservation(root->fs_info,
3959 "space_info:enospc",
3960 data_sinfo->flags, bytes, 1);
3961 return -ENOSPC;
3962 }
3963 data_sinfo->bytes_may_use += bytes;
3964 trace_btrfs_space_reservation(root->fs_info, "space_info",
3965 data_sinfo->flags, bytes, 1);
3966 spin_unlock(&data_sinfo->lock);
3967
3968 return 0;
3969 }
3970
3971 /*
3972 * Called if we need to clear a data reservation for this inode.
3973 */
3974 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3975 {
3976 struct btrfs_root *root = BTRFS_I(inode)->root;
3977 struct btrfs_space_info *data_sinfo;
3978
3979 /* make sure bytes are sectorsize aligned */
3980 bytes = ALIGN(bytes, root->sectorsize);
3981
3982 data_sinfo = root->fs_info->data_sinfo;
3983 spin_lock(&data_sinfo->lock);
3984 WARN_ON(data_sinfo->bytes_may_use < bytes);
3985 data_sinfo->bytes_may_use -= bytes;
3986 trace_btrfs_space_reservation(root->fs_info, "space_info",
3987 data_sinfo->flags, bytes, 0);
3988 spin_unlock(&data_sinfo->lock);
3989 }
3990
3991 static void force_metadata_allocation(struct btrfs_fs_info *info)
3992 {
3993 struct list_head *head = &info->space_info;
3994 struct btrfs_space_info *found;
3995
3996 rcu_read_lock();
3997 list_for_each_entry_rcu(found, head, list) {
3998 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3999 found->force_alloc = CHUNK_ALLOC_FORCE;
4000 }
4001 rcu_read_unlock();
4002 }
4003
4004 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4005 {
4006 return (global->size << 1);
4007 }
4008
4009 static int should_alloc_chunk(struct btrfs_root *root,
4010 struct btrfs_space_info *sinfo, int force)
4011 {
4012 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4013 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4014 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4015 u64 thresh;
4016
4017 if (force == CHUNK_ALLOC_FORCE)
4018 return 1;
4019
4020 /*
4021 * We need to take into account the global rsv because for all intents
4022 * and purposes it's used space. Don't worry about locking the
4023 * global_rsv, it doesn't change except when the transaction commits.
4024 */
4025 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4026 num_allocated += calc_global_rsv_need_space(global_rsv);
4027
4028 /*
4029 * in limited mode, we want to have some free space up to
4030 * about 1% of the FS size.
4031 */
4032 if (force == CHUNK_ALLOC_LIMITED) {
4033 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4034 thresh = max_t(u64, 64 * 1024 * 1024,
4035 div_factor_fine(thresh, 1));
4036
4037 if (num_bytes - num_allocated < thresh)
4038 return 1;
4039 }
4040
4041 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4042 return 0;
4043 return 1;
4044 }
4045
4046 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4047 {
4048 u64 num_dev;
4049
4050 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4051 BTRFS_BLOCK_GROUP_RAID0 |
4052 BTRFS_BLOCK_GROUP_RAID5 |
4053 BTRFS_BLOCK_GROUP_RAID6))
4054 num_dev = root->fs_info->fs_devices->rw_devices;
4055 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4056 num_dev = 2;
4057 else
4058 num_dev = 1; /* DUP or single */
4059
4060 /* metadata for updaing devices and chunk tree */
4061 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4062 }
4063
4064 static void check_system_chunk(struct btrfs_trans_handle *trans,
4065 struct btrfs_root *root, u64 type)
4066 {
4067 struct btrfs_space_info *info;
4068 u64 left;
4069 u64 thresh;
4070
4071 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4072 spin_lock(&info->lock);
4073 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4074 info->bytes_reserved - info->bytes_readonly;
4075 spin_unlock(&info->lock);
4076
4077 thresh = get_system_chunk_thresh(root, type);
4078 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4079 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4080 left, thresh, type);
4081 dump_space_info(info, 0, 0);
4082 }
4083
4084 if (left < thresh) {
4085 u64 flags;
4086
4087 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4088 btrfs_alloc_chunk(trans, root, flags);
4089 }
4090 }
4091
4092 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4093 struct btrfs_root *extent_root, u64 flags, int force)
4094 {
4095 struct btrfs_space_info *space_info;
4096 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4097 int wait_for_alloc = 0;
4098 int ret = 0;
4099
4100 /* Don't re-enter if we're already allocating a chunk */
4101 if (trans->allocating_chunk)
4102 return -ENOSPC;
4103
4104 space_info = __find_space_info(extent_root->fs_info, flags);
4105 if (!space_info) {
4106 ret = update_space_info(extent_root->fs_info, flags,
4107 0, 0, &space_info);
4108 BUG_ON(ret); /* -ENOMEM */
4109 }
4110 BUG_ON(!space_info); /* Logic error */
4111
4112 again:
4113 spin_lock(&space_info->lock);
4114 if (force < space_info->force_alloc)
4115 force = space_info->force_alloc;
4116 if (space_info->full) {
4117 if (should_alloc_chunk(extent_root, space_info, force))
4118 ret = -ENOSPC;
4119 else
4120 ret = 0;
4121 spin_unlock(&space_info->lock);
4122 return ret;
4123 }
4124
4125 if (!should_alloc_chunk(extent_root, space_info, force)) {
4126 spin_unlock(&space_info->lock);
4127 return 0;
4128 } else if (space_info->chunk_alloc) {
4129 wait_for_alloc = 1;
4130 } else {
4131 space_info->chunk_alloc = 1;
4132 }
4133
4134 spin_unlock(&space_info->lock);
4135
4136 mutex_lock(&fs_info->chunk_mutex);
4137
4138 /*
4139 * The chunk_mutex is held throughout the entirety of a chunk
4140 * allocation, so once we've acquired the chunk_mutex we know that the
4141 * other guy is done and we need to recheck and see if we should
4142 * allocate.
4143 */
4144 if (wait_for_alloc) {
4145 mutex_unlock(&fs_info->chunk_mutex);
4146 wait_for_alloc = 0;
4147 goto again;
4148 }
4149
4150 trans->allocating_chunk = true;
4151
4152 /*
4153 * If we have mixed data/metadata chunks we want to make sure we keep
4154 * allocating mixed chunks instead of individual chunks.
4155 */
4156 if (btrfs_mixed_space_info(space_info))
4157 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4158
4159 /*
4160 * if we're doing a data chunk, go ahead and make sure that
4161 * we keep a reasonable number of metadata chunks allocated in the
4162 * FS as well.
4163 */
4164 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4165 fs_info->data_chunk_allocations++;
4166 if (!(fs_info->data_chunk_allocations %
4167 fs_info->metadata_ratio))
4168 force_metadata_allocation(fs_info);
4169 }
4170
4171 /*
4172 * Check if we have enough space in SYSTEM chunk because we may need
4173 * to update devices.
4174 */
4175 check_system_chunk(trans, extent_root, flags);
4176
4177 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4178 trans->allocating_chunk = false;
4179
4180 spin_lock(&space_info->lock);
4181 if (ret < 0 && ret != -ENOSPC)
4182 goto out;
4183 if (ret)
4184 space_info->full = 1;
4185 else
4186 ret = 1;
4187
4188 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4189 out:
4190 space_info->chunk_alloc = 0;
4191 spin_unlock(&space_info->lock);
4192 mutex_unlock(&fs_info->chunk_mutex);
4193 return ret;
4194 }
4195
4196 static int can_overcommit(struct btrfs_root *root,
4197 struct btrfs_space_info *space_info, u64 bytes,
4198 enum btrfs_reserve_flush_enum flush)
4199 {
4200 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4201 u64 profile = btrfs_get_alloc_profile(root, 0);
4202 u64 space_size;
4203 u64 avail;
4204 u64 used;
4205
4206 used = space_info->bytes_used + space_info->bytes_reserved +
4207 space_info->bytes_pinned + space_info->bytes_readonly;
4208
4209 /*
4210 * We only want to allow over committing if we have lots of actual space
4211 * free, but if we don't have enough space to handle the global reserve
4212 * space then we could end up having a real enospc problem when trying
4213 * to allocate a chunk or some other such important allocation.
4214 */
4215 spin_lock(&global_rsv->lock);
4216 space_size = calc_global_rsv_need_space(global_rsv);
4217 spin_unlock(&global_rsv->lock);
4218 if (used + space_size >= space_info->total_bytes)
4219 return 0;
4220
4221 used += space_info->bytes_may_use;
4222
4223 spin_lock(&root->fs_info->free_chunk_lock);
4224 avail = root->fs_info->free_chunk_space;
4225 spin_unlock(&root->fs_info->free_chunk_lock);
4226
4227 /*
4228 * If we have dup, raid1 or raid10 then only half of the free
4229 * space is actually useable. For raid56, the space info used
4230 * doesn't include the parity drive, so we don't have to
4231 * change the math
4232 */
4233 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4234 BTRFS_BLOCK_GROUP_RAID1 |
4235 BTRFS_BLOCK_GROUP_RAID10))
4236 avail >>= 1;
4237
4238 /*
4239 * If we aren't flushing all things, let us overcommit up to
4240 * 1/2th of the space. If we can flush, don't let us overcommit
4241 * too much, let it overcommit up to 1/8 of the space.
4242 */
4243 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4244 avail >>= 3;
4245 else
4246 avail >>= 1;
4247
4248 if (used + bytes < space_info->total_bytes + avail)
4249 return 1;
4250 return 0;
4251 }
4252
4253 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4254 unsigned long nr_pages, int nr_items)
4255 {
4256 struct super_block *sb = root->fs_info->sb;
4257
4258 if (down_read_trylock(&sb->s_umount)) {
4259 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4260 up_read(&sb->s_umount);
4261 } else {
4262 /*
4263 * We needn't worry the filesystem going from r/w to r/o though
4264 * we don't acquire ->s_umount mutex, because the filesystem
4265 * should guarantee the delalloc inodes list be empty after
4266 * the filesystem is readonly(all dirty pages are written to
4267 * the disk).
4268 */
4269 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4270 if (!current->journal_info)
4271 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4272 }
4273 }
4274
4275 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4276 {
4277 u64 bytes;
4278 int nr;
4279
4280 bytes = btrfs_calc_trans_metadata_size(root, 1);
4281 nr = (int)div64_u64(to_reclaim, bytes);
4282 if (!nr)
4283 nr = 1;
4284 return nr;
4285 }
4286
4287 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4288
4289 /*
4290 * shrink metadata reservation for delalloc
4291 */
4292 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4293 bool wait_ordered)
4294 {
4295 struct btrfs_block_rsv *block_rsv;
4296 struct btrfs_space_info *space_info;
4297 struct btrfs_trans_handle *trans;
4298 u64 delalloc_bytes;
4299 u64 max_reclaim;
4300 long time_left;
4301 unsigned long nr_pages;
4302 int loops;
4303 int items;
4304 enum btrfs_reserve_flush_enum flush;
4305
4306 /* Calc the number of the pages we need flush for space reservation */
4307 items = calc_reclaim_items_nr(root, to_reclaim);
4308 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4309
4310 trans = (struct btrfs_trans_handle *)current->journal_info;
4311 block_rsv = &root->fs_info->delalloc_block_rsv;
4312 space_info = block_rsv->space_info;
4313
4314 delalloc_bytes = percpu_counter_sum_positive(
4315 &root->fs_info->delalloc_bytes);
4316 if (delalloc_bytes == 0) {
4317 if (trans)
4318 return;
4319 if (wait_ordered)
4320 btrfs_wait_ordered_roots(root->fs_info, items);
4321 return;
4322 }
4323
4324 loops = 0;
4325 while (delalloc_bytes && loops < 3) {
4326 max_reclaim = min(delalloc_bytes, to_reclaim);
4327 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4328 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4329 /*
4330 * We need to wait for the async pages to actually start before
4331 * we do anything.
4332 */
4333 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4334 if (!max_reclaim)
4335 goto skip_async;
4336
4337 if (max_reclaim <= nr_pages)
4338 max_reclaim = 0;
4339 else
4340 max_reclaim -= nr_pages;
4341
4342 wait_event(root->fs_info->async_submit_wait,
4343 atomic_read(&root->fs_info->async_delalloc_pages) <=
4344 (int)max_reclaim);
4345 skip_async:
4346 if (!trans)
4347 flush = BTRFS_RESERVE_FLUSH_ALL;
4348 else
4349 flush = BTRFS_RESERVE_NO_FLUSH;
4350 spin_lock(&space_info->lock);
4351 if (can_overcommit(root, space_info, orig, flush)) {
4352 spin_unlock(&space_info->lock);
4353 break;
4354 }
4355 spin_unlock(&space_info->lock);
4356
4357 loops++;
4358 if (wait_ordered && !trans) {
4359 btrfs_wait_ordered_roots(root->fs_info, items);
4360 } else {
4361 time_left = schedule_timeout_killable(1);
4362 if (time_left)
4363 break;
4364 }
4365 delalloc_bytes = percpu_counter_sum_positive(
4366 &root->fs_info->delalloc_bytes);
4367 }
4368 }
4369
4370 /**
4371 * maybe_commit_transaction - possibly commit the transaction if its ok to
4372 * @root - the root we're allocating for
4373 * @bytes - the number of bytes we want to reserve
4374 * @force - force the commit
4375 *
4376 * This will check to make sure that committing the transaction will actually
4377 * get us somewhere and then commit the transaction if it does. Otherwise it
4378 * will return -ENOSPC.
4379 */
4380 static int may_commit_transaction(struct btrfs_root *root,
4381 struct btrfs_space_info *space_info,
4382 u64 bytes, int force)
4383 {
4384 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4385 struct btrfs_trans_handle *trans;
4386
4387 trans = (struct btrfs_trans_handle *)current->journal_info;
4388 if (trans)
4389 return -EAGAIN;
4390
4391 if (force)
4392 goto commit;
4393
4394 /* See if there is enough pinned space to make this reservation */
4395 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4396 bytes) >= 0)
4397 goto commit;
4398
4399 /*
4400 * See if there is some space in the delayed insertion reservation for
4401 * this reservation.
4402 */
4403 if (space_info != delayed_rsv->space_info)
4404 return -ENOSPC;
4405
4406 spin_lock(&delayed_rsv->lock);
4407 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4408 bytes - delayed_rsv->size) >= 0) {
4409 spin_unlock(&delayed_rsv->lock);
4410 return -ENOSPC;
4411 }
4412 spin_unlock(&delayed_rsv->lock);
4413
4414 commit:
4415 trans = btrfs_join_transaction(root);
4416 if (IS_ERR(trans))
4417 return -ENOSPC;
4418
4419 return btrfs_commit_transaction(trans, root);
4420 }
4421
4422 enum flush_state {
4423 FLUSH_DELAYED_ITEMS_NR = 1,
4424 FLUSH_DELAYED_ITEMS = 2,
4425 FLUSH_DELALLOC = 3,
4426 FLUSH_DELALLOC_WAIT = 4,
4427 ALLOC_CHUNK = 5,
4428 COMMIT_TRANS = 6,
4429 };
4430
4431 static int flush_space(struct btrfs_root *root,
4432 struct btrfs_space_info *space_info, u64 num_bytes,
4433 u64 orig_bytes, int state)
4434 {
4435 struct btrfs_trans_handle *trans;
4436 int nr;
4437 int ret = 0;
4438
4439 switch (state) {
4440 case FLUSH_DELAYED_ITEMS_NR:
4441 case FLUSH_DELAYED_ITEMS:
4442 if (state == FLUSH_DELAYED_ITEMS_NR)
4443 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4444 else
4445 nr = -1;
4446
4447 trans = btrfs_join_transaction(root);
4448 if (IS_ERR(trans)) {
4449 ret = PTR_ERR(trans);
4450 break;
4451 }
4452 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4453 btrfs_end_transaction(trans, root);
4454 break;
4455 case FLUSH_DELALLOC:
4456 case FLUSH_DELALLOC_WAIT:
4457 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4458 state == FLUSH_DELALLOC_WAIT);
4459 break;
4460 case ALLOC_CHUNK:
4461 trans = btrfs_join_transaction(root);
4462 if (IS_ERR(trans)) {
4463 ret = PTR_ERR(trans);
4464 break;
4465 }
4466 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4467 btrfs_get_alloc_profile(root, 0),
4468 CHUNK_ALLOC_NO_FORCE);
4469 btrfs_end_transaction(trans, root);
4470 if (ret == -ENOSPC)
4471 ret = 0;
4472 break;
4473 case COMMIT_TRANS:
4474 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4475 break;
4476 default:
4477 ret = -ENOSPC;
4478 break;
4479 }
4480
4481 return ret;
4482 }
4483
4484 static inline u64
4485 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4486 struct btrfs_space_info *space_info)
4487 {
4488 u64 used;
4489 u64 expected;
4490 u64 to_reclaim;
4491
4492 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4493 16 * 1024 * 1024);
4494 spin_lock(&space_info->lock);
4495 if (can_overcommit(root, space_info, to_reclaim,
4496 BTRFS_RESERVE_FLUSH_ALL)) {
4497 to_reclaim = 0;
4498 goto out;
4499 }
4500
4501 used = space_info->bytes_used + space_info->bytes_reserved +
4502 space_info->bytes_pinned + space_info->bytes_readonly +
4503 space_info->bytes_may_use;
4504 if (can_overcommit(root, space_info, 1024 * 1024,
4505 BTRFS_RESERVE_FLUSH_ALL))
4506 expected = div_factor_fine(space_info->total_bytes, 95);
4507 else
4508 expected = div_factor_fine(space_info->total_bytes, 90);
4509
4510 if (used > expected)
4511 to_reclaim = used - expected;
4512 else
4513 to_reclaim = 0;
4514 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4515 space_info->bytes_reserved);
4516 out:
4517 spin_unlock(&space_info->lock);
4518
4519 return to_reclaim;
4520 }
4521
4522 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4523 struct btrfs_fs_info *fs_info, u64 used)
4524 {
4525 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4526
4527 /* If we're just plain full then async reclaim just slows us down. */
4528 if (space_info->bytes_used >= thresh)
4529 return 0;
4530
4531 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4532 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4533 }
4534
4535 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4536 struct btrfs_fs_info *fs_info,
4537 int flush_state)
4538 {
4539 u64 used;
4540
4541 spin_lock(&space_info->lock);
4542 /*
4543 * We run out of space and have not got any free space via flush_space,
4544 * so don't bother doing async reclaim.
4545 */
4546 if (flush_state > COMMIT_TRANS && space_info->full) {
4547 spin_unlock(&space_info->lock);
4548 return 0;
4549 }
4550
4551 used = space_info->bytes_used + space_info->bytes_reserved +
4552 space_info->bytes_pinned + space_info->bytes_readonly +
4553 space_info->bytes_may_use;
4554 if (need_do_async_reclaim(space_info, fs_info, used)) {
4555 spin_unlock(&space_info->lock);
4556 return 1;
4557 }
4558 spin_unlock(&space_info->lock);
4559
4560 return 0;
4561 }
4562
4563 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4564 {
4565 struct btrfs_fs_info *fs_info;
4566 struct btrfs_space_info *space_info;
4567 u64 to_reclaim;
4568 int flush_state;
4569
4570 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4571 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4572
4573 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4574 space_info);
4575 if (!to_reclaim)
4576 return;
4577
4578 flush_state = FLUSH_DELAYED_ITEMS_NR;
4579 do {
4580 flush_space(fs_info->fs_root, space_info, to_reclaim,
4581 to_reclaim, flush_state);
4582 flush_state++;
4583 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4584 flush_state))
4585 return;
4586 } while (flush_state < COMMIT_TRANS);
4587 }
4588
4589 void btrfs_init_async_reclaim_work(struct work_struct *work)
4590 {
4591 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4592 }
4593
4594 /**
4595 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4596 * @root - the root we're allocating for
4597 * @block_rsv - the block_rsv we're allocating for
4598 * @orig_bytes - the number of bytes we want
4599 * @flush - whether or not we can flush to make our reservation
4600 *
4601 * This will reserve orgi_bytes number of bytes from the space info associated
4602 * with the block_rsv. If there is not enough space it will make an attempt to
4603 * flush out space to make room. It will do this by flushing delalloc if
4604 * possible or committing the transaction. If flush is 0 then no attempts to
4605 * regain reservations will be made and this will fail if there is not enough
4606 * space already.
4607 */
4608 static int reserve_metadata_bytes(struct btrfs_root *root,
4609 struct btrfs_block_rsv *block_rsv,
4610 u64 orig_bytes,
4611 enum btrfs_reserve_flush_enum flush)
4612 {
4613 struct btrfs_space_info *space_info = block_rsv->space_info;
4614 u64 used;
4615 u64 num_bytes = orig_bytes;
4616 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4617 int ret = 0;
4618 bool flushing = false;
4619
4620 again:
4621 ret = 0;
4622 spin_lock(&space_info->lock);
4623 /*
4624 * We only want to wait if somebody other than us is flushing and we
4625 * are actually allowed to flush all things.
4626 */
4627 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4628 space_info->flush) {
4629 spin_unlock(&space_info->lock);
4630 /*
4631 * If we have a trans handle we can't wait because the flusher
4632 * may have to commit the transaction, which would mean we would
4633 * deadlock since we are waiting for the flusher to finish, but
4634 * hold the current transaction open.
4635 */
4636 if (current->journal_info)
4637 return -EAGAIN;
4638 ret = wait_event_killable(space_info->wait, !space_info->flush);
4639 /* Must have been killed, return */
4640 if (ret)
4641 return -EINTR;
4642
4643 spin_lock(&space_info->lock);
4644 }
4645
4646 ret = -ENOSPC;
4647 used = space_info->bytes_used + space_info->bytes_reserved +
4648 space_info->bytes_pinned + space_info->bytes_readonly +
4649 space_info->bytes_may_use;
4650
4651 /*
4652 * The idea here is that we've not already over-reserved the block group
4653 * then we can go ahead and save our reservation first and then start
4654 * flushing if we need to. Otherwise if we've already overcommitted
4655 * lets start flushing stuff first and then come back and try to make
4656 * our reservation.
4657 */
4658 if (used <= space_info->total_bytes) {
4659 if (used + orig_bytes <= space_info->total_bytes) {
4660 space_info->bytes_may_use += orig_bytes;
4661 trace_btrfs_space_reservation(root->fs_info,
4662 "space_info", space_info->flags, orig_bytes, 1);
4663 ret = 0;
4664 } else {
4665 /*
4666 * Ok set num_bytes to orig_bytes since we aren't
4667 * overocmmitted, this way we only try and reclaim what
4668 * we need.
4669 */
4670 num_bytes = orig_bytes;
4671 }
4672 } else {
4673 /*
4674 * Ok we're over committed, set num_bytes to the overcommitted
4675 * amount plus the amount of bytes that we need for this
4676 * reservation.
4677 */
4678 num_bytes = used - space_info->total_bytes +
4679 (orig_bytes * 2);
4680 }
4681
4682 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4683 space_info->bytes_may_use += orig_bytes;
4684 trace_btrfs_space_reservation(root->fs_info, "space_info",
4685 space_info->flags, orig_bytes,
4686 1);
4687 ret = 0;
4688 }
4689
4690 /*
4691 * Couldn't make our reservation, save our place so while we're trying
4692 * to reclaim space we can actually use it instead of somebody else
4693 * stealing it from us.
4694 *
4695 * We make the other tasks wait for the flush only when we can flush
4696 * all things.
4697 */
4698 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4699 flushing = true;
4700 space_info->flush = 1;
4701 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4702 used += orig_bytes;
4703 /*
4704 * We will do the space reservation dance during log replay,
4705 * which means we won't have fs_info->fs_root set, so don't do
4706 * the async reclaim as we will panic.
4707 */
4708 if (!root->fs_info->log_root_recovering &&
4709 need_do_async_reclaim(space_info, root->fs_info, used) &&
4710 !work_busy(&root->fs_info->async_reclaim_work))
4711 queue_work(system_unbound_wq,
4712 &root->fs_info->async_reclaim_work);
4713 }
4714 spin_unlock(&space_info->lock);
4715
4716 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4717 goto out;
4718
4719 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4720 flush_state);
4721 flush_state++;
4722
4723 /*
4724 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4725 * would happen. So skip delalloc flush.
4726 */
4727 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4728 (flush_state == FLUSH_DELALLOC ||
4729 flush_state == FLUSH_DELALLOC_WAIT))
4730 flush_state = ALLOC_CHUNK;
4731
4732 if (!ret)
4733 goto again;
4734 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4735 flush_state < COMMIT_TRANS)
4736 goto again;
4737 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4738 flush_state <= COMMIT_TRANS)
4739 goto again;
4740
4741 out:
4742 if (ret == -ENOSPC &&
4743 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4744 struct btrfs_block_rsv *global_rsv =
4745 &root->fs_info->global_block_rsv;
4746
4747 if (block_rsv != global_rsv &&
4748 !block_rsv_use_bytes(global_rsv, orig_bytes))
4749 ret = 0;
4750 }
4751 if (ret == -ENOSPC)
4752 trace_btrfs_space_reservation(root->fs_info,
4753 "space_info:enospc",
4754 space_info->flags, orig_bytes, 1);
4755 if (flushing) {
4756 spin_lock(&space_info->lock);
4757 space_info->flush = 0;
4758 wake_up_all(&space_info->wait);
4759 spin_unlock(&space_info->lock);
4760 }
4761 return ret;
4762 }
4763
4764 static struct btrfs_block_rsv *get_block_rsv(
4765 const struct btrfs_trans_handle *trans,
4766 const struct btrfs_root *root)
4767 {
4768 struct btrfs_block_rsv *block_rsv = NULL;
4769
4770 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4771 block_rsv = trans->block_rsv;
4772
4773 if (root == root->fs_info->csum_root && trans->adding_csums)
4774 block_rsv = trans->block_rsv;
4775
4776 if (root == root->fs_info->uuid_root)
4777 block_rsv = trans->block_rsv;
4778
4779 if (!block_rsv)
4780 block_rsv = root->block_rsv;
4781
4782 if (!block_rsv)
4783 block_rsv = &root->fs_info->empty_block_rsv;
4784
4785 return block_rsv;
4786 }
4787
4788 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4789 u64 num_bytes)
4790 {
4791 int ret = -ENOSPC;
4792 spin_lock(&block_rsv->lock);
4793 if (block_rsv->reserved >= num_bytes) {
4794 block_rsv->reserved -= num_bytes;
4795 if (block_rsv->reserved < block_rsv->size)
4796 block_rsv->full = 0;
4797 ret = 0;
4798 }
4799 spin_unlock(&block_rsv->lock);
4800 return ret;
4801 }
4802
4803 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4804 u64 num_bytes, int update_size)
4805 {
4806 spin_lock(&block_rsv->lock);
4807 block_rsv->reserved += num_bytes;
4808 if (update_size)
4809 block_rsv->size += num_bytes;
4810 else if (block_rsv->reserved >= block_rsv->size)
4811 block_rsv->full = 1;
4812 spin_unlock(&block_rsv->lock);
4813 }
4814
4815 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4816 struct btrfs_block_rsv *dest, u64 num_bytes,
4817 int min_factor)
4818 {
4819 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4820 u64 min_bytes;
4821
4822 if (global_rsv->space_info != dest->space_info)
4823 return -ENOSPC;
4824
4825 spin_lock(&global_rsv->lock);
4826 min_bytes = div_factor(global_rsv->size, min_factor);
4827 if (global_rsv->reserved < min_bytes + num_bytes) {
4828 spin_unlock(&global_rsv->lock);
4829 return -ENOSPC;
4830 }
4831 global_rsv->reserved -= num_bytes;
4832 if (global_rsv->reserved < global_rsv->size)
4833 global_rsv->full = 0;
4834 spin_unlock(&global_rsv->lock);
4835
4836 block_rsv_add_bytes(dest, num_bytes, 1);
4837 return 0;
4838 }
4839
4840 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4841 struct btrfs_block_rsv *block_rsv,
4842 struct btrfs_block_rsv *dest, u64 num_bytes)
4843 {
4844 struct btrfs_space_info *space_info = block_rsv->space_info;
4845
4846 spin_lock(&block_rsv->lock);
4847 if (num_bytes == (u64)-1)
4848 num_bytes = block_rsv->size;
4849 block_rsv->size -= num_bytes;
4850 if (block_rsv->reserved >= block_rsv->size) {
4851 num_bytes = block_rsv->reserved - block_rsv->size;
4852 block_rsv->reserved = block_rsv->size;
4853 block_rsv->full = 1;
4854 } else {
4855 num_bytes = 0;
4856 }
4857 spin_unlock(&block_rsv->lock);
4858
4859 if (num_bytes > 0) {
4860 if (dest) {
4861 spin_lock(&dest->lock);
4862 if (!dest->full) {
4863 u64 bytes_to_add;
4864
4865 bytes_to_add = dest->size - dest->reserved;
4866 bytes_to_add = min(num_bytes, bytes_to_add);
4867 dest->reserved += bytes_to_add;
4868 if (dest->reserved >= dest->size)
4869 dest->full = 1;
4870 num_bytes -= bytes_to_add;
4871 }
4872 spin_unlock(&dest->lock);
4873 }
4874 if (num_bytes) {
4875 spin_lock(&space_info->lock);
4876 space_info->bytes_may_use -= num_bytes;
4877 trace_btrfs_space_reservation(fs_info, "space_info",
4878 space_info->flags, num_bytes, 0);
4879 spin_unlock(&space_info->lock);
4880 }
4881 }
4882 }
4883
4884 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4885 struct btrfs_block_rsv *dst, u64 num_bytes)
4886 {
4887 int ret;
4888
4889 ret = block_rsv_use_bytes(src, num_bytes);
4890 if (ret)
4891 return ret;
4892
4893 block_rsv_add_bytes(dst, num_bytes, 1);
4894 return 0;
4895 }
4896
4897 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4898 {
4899 memset(rsv, 0, sizeof(*rsv));
4900 spin_lock_init(&rsv->lock);
4901 rsv->type = type;
4902 }
4903
4904 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4905 unsigned short type)
4906 {
4907 struct btrfs_block_rsv *block_rsv;
4908 struct btrfs_fs_info *fs_info = root->fs_info;
4909
4910 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4911 if (!block_rsv)
4912 return NULL;
4913
4914 btrfs_init_block_rsv(block_rsv, type);
4915 block_rsv->space_info = __find_space_info(fs_info,
4916 BTRFS_BLOCK_GROUP_METADATA);
4917 return block_rsv;
4918 }
4919
4920 void btrfs_free_block_rsv(struct btrfs_root *root,
4921 struct btrfs_block_rsv *rsv)
4922 {
4923 if (!rsv)
4924 return;
4925 btrfs_block_rsv_release(root, rsv, (u64)-1);
4926 kfree(rsv);
4927 }
4928
4929 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4930 {
4931 kfree(rsv);
4932 }
4933
4934 int btrfs_block_rsv_add(struct btrfs_root *root,
4935 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4936 enum btrfs_reserve_flush_enum flush)
4937 {
4938 int ret;
4939
4940 if (num_bytes == 0)
4941 return 0;
4942
4943 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4944 if (!ret) {
4945 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4946 return 0;
4947 }
4948
4949 return ret;
4950 }
4951
4952 int btrfs_block_rsv_check(struct btrfs_root *root,
4953 struct btrfs_block_rsv *block_rsv, int min_factor)
4954 {
4955 u64 num_bytes = 0;
4956 int ret = -ENOSPC;
4957
4958 if (!block_rsv)
4959 return 0;
4960
4961 spin_lock(&block_rsv->lock);
4962 num_bytes = div_factor(block_rsv->size, min_factor);
4963 if (block_rsv->reserved >= num_bytes)
4964 ret = 0;
4965 spin_unlock(&block_rsv->lock);
4966
4967 return ret;
4968 }
4969
4970 int btrfs_block_rsv_refill(struct btrfs_root *root,
4971 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4972 enum btrfs_reserve_flush_enum flush)
4973 {
4974 u64 num_bytes = 0;
4975 int ret = -ENOSPC;
4976
4977 if (!block_rsv)
4978 return 0;
4979
4980 spin_lock(&block_rsv->lock);
4981 num_bytes = min_reserved;
4982 if (block_rsv->reserved >= num_bytes)
4983 ret = 0;
4984 else
4985 num_bytes -= block_rsv->reserved;
4986 spin_unlock(&block_rsv->lock);
4987
4988 if (!ret)
4989 return 0;
4990
4991 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4992 if (!ret) {
4993 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4994 return 0;
4995 }
4996
4997 return ret;
4998 }
4999
5000 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5001 struct btrfs_block_rsv *dst_rsv,
5002 u64 num_bytes)
5003 {
5004 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5005 }
5006
5007 void btrfs_block_rsv_release(struct btrfs_root *root,
5008 struct btrfs_block_rsv *block_rsv,
5009 u64 num_bytes)
5010 {
5011 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5012 if (global_rsv == block_rsv ||
5013 block_rsv->space_info != global_rsv->space_info)
5014 global_rsv = NULL;
5015 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5016 num_bytes);
5017 }
5018
5019 /*
5020 * helper to calculate size of global block reservation.
5021 * the desired value is sum of space used by extent tree,
5022 * checksum tree and root tree
5023 */
5024 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5025 {
5026 struct btrfs_space_info *sinfo;
5027 u64 num_bytes;
5028 u64 meta_used;
5029 u64 data_used;
5030 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5031
5032 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5033 spin_lock(&sinfo->lock);
5034 data_used = sinfo->bytes_used;
5035 spin_unlock(&sinfo->lock);
5036
5037 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5038 spin_lock(&sinfo->lock);
5039 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5040 data_used = 0;
5041 meta_used = sinfo->bytes_used;
5042 spin_unlock(&sinfo->lock);
5043
5044 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5045 csum_size * 2;
5046 num_bytes += div_u64(data_used + meta_used, 50);
5047
5048 if (num_bytes * 3 > meta_used)
5049 num_bytes = div_u64(meta_used, 3);
5050
5051 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5052 }
5053
5054 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5055 {
5056 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5057 struct btrfs_space_info *sinfo = block_rsv->space_info;
5058 u64 num_bytes;
5059
5060 num_bytes = calc_global_metadata_size(fs_info);
5061
5062 spin_lock(&sinfo->lock);
5063 spin_lock(&block_rsv->lock);
5064
5065 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5066
5067 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5068 sinfo->bytes_reserved + sinfo->bytes_readonly +
5069 sinfo->bytes_may_use;
5070
5071 if (sinfo->total_bytes > num_bytes) {
5072 num_bytes = sinfo->total_bytes - num_bytes;
5073 block_rsv->reserved += num_bytes;
5074 sinfo->bytes_may_use += num_bytes;
5075 trace_btrfs_space_reservation(fs_info, "space_info",
5076 sinfo->flags, num_bytes, 1);
5077 }
5078
5079 if (block_rsv->reserved >= block_rsv->size) {
5080 num_bytes = block_rsv->reserved - block_rsv->size;
5081 sinfo->bytes_may_use -= num_bytes;
5082 trace_btrfs_space_reservation(fs_info, "space_info",
5083 sinfo->flags, num_bytes, 0);
5084 block_rsv->reserved = block_rsv->size;
5085 block_rsv->full = 1;
5086 }
5087
5088 spin_unlock(&block_rsv->lock);
5089 spin_unlock(&sinfo->lock);
5090 }
5091
5092 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5093 {
5094 struct btrfs_space_info *space_info;
5095
5096 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5097 fs_info->chunk_block_rsv.space_info = space_info;
5098
5099 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5100 fs_info->global_block_rsv.space_info = space_info;
5101 fs_info->delalloc_block_rsv.space_info = space_info;
5102 fs_info->trans_block_rsv.space_info = space_info;
5103 fs_info->empty_block_rsv.space_info = space_info;
5104 fs_info->delayed_block_rsv.space_info = space_info;
5105
5106 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5107 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5108 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5109 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5110 if (fs_info->quota_root)
5111 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5112 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5113
5114 update_global_block_rsv(fs_info);
5115 }
5116
5117 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5118 {
5119 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5120 (u64)-1);
5121 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5122 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5123 WARN_ON(fs_info->trans_block_rsv.size > 0);
5124 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5125 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5126 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5127 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5128 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5129 }
5130
5131 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5132 struct btrfs_root *root)
5133 {
5134 if (!trans->block_rsv)
5135 return;
5136
5137 if (!trans->bytes_reserved)
5138 return;
5139
5140 trace_btrfs_space_reservation(root->fs_info, "transaction",
5141 trans->transid, trans->bytes_reserved, 0);
5142 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5143 trans->bytes_reserved = 0;
5144 }
5145
5146 /* Can only return 0 or -ENOSPC */
5147 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5148 struct inode *inode)
5149 {
5150 struct btrfs_root *root = BTRFS_I(inode)->root;
5151 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5152 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5153
5154 /*
5155 * We need to hold space in order to delete our orphan item once we've
5156 * added it, so this takes the reservation so we can release it later
5157 * when we are truly done with the orphan item.
5158 */
5159 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5160 trace_btrfs_space_reservation(root->fs_info, "orphan",
5161 btrfs_ino(inode), num_bytes, 1);
5162 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5163 }
5164
5165 void btrfs_orphan_release_metadata(struct inode *inode)
5166 {
5167 struct btrfs_root *root = BTRFS_I(inode)->root;
5168 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5169 trace_btrfs_space_reservation(root->fs_info, "orphan",
5170 btrfs_ino(inode), num_bytes, 0);
5171 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5172 }
5173
5174 /*
5175 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5176 * root: the root of the parent directory
5177 * rsv: block reservation
5178 * items: the number of items that we need do reservation
5179 * qgroup_reserved: used to return the reserved size in qgroup
5180 *
5181 * This function is used to reserve the space for snapshot/subvolume
5182 * creation and deletion. Those operations are different with the
5183 * common file/directory operations, they change two fs/file trees
5184 * and root tree, the number of items that the qgroup reserves is
5185 * different with the free space reservation. So we can not use
5186 * the space reseravtion mechanism in start_transaction().
5187 */
5188 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5189 struct btrfs_block_rsv *rsv,
5190 int items,
5191 u64 *qgroup_reserved,
5192 bool use_global_rsv)
5193 {
5194 u64 num_bytes;
5195 int ret;
5196 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5197
5198 if (root->fs_info->quota_enabled) {
5199 /* One for parent inode, two for dir entries */
5200 num_bytes = 3 * root->nodesize;
5201 ret = btrfs_qgroup_reserve(root, num_bytes);
5202 if (ret)
5203 return ret;
5204 } else {
5205 num_bytes = 0;
5206 }
5207
5208 *qgroup_reserved = num_bytes;
5209
5210 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5211 rsv->space_info = __find_space_info(root->fs_info,
5212 BTRFS_BLOCK_GROUP_METADATA);
5213 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5214 BTRFS_RESERVE_FLUSH_ALL);
5215
5216 if (ret == -ENOSPC && use_global_rsv)
5217 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5218
5219 if (ret) {
5220 if (*qgroup_reserved)
5221 btrfs_qgroup_free(root, *qgroup_reserved);
5222 }
5223
5224 return ret;
5225 }
5226
5227 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5228 struct btrfs_block_rsv *rsv,
5229 u64 qgroup_reserved)
5230 {
5231 btrfs_block_rsv_release(root, rsv, (u64)-1);
5232 if (qgroup_reserved)
5233 btrfs_qgroup_free(root, qgroup_reserved);
5234 }
5235
5236 /**
5237 * drop_outstanding_extent - drop an outstanding extent
5238 * @inode: the inode we're dropping the extent for
5239 * @num_bytes: the number of bytes we're relaseing.
5240 *
5241 * This is called when we are freeing up an outstanding extent, either called
5242 * after an error or after an extent is written. This will return the number of
5243 * reserved extents that need to be freed. This must be called with
5244 * BTRFS_I(inode)->lock held.
5245 */
5246 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5247 {
5248 unsigned drop_inode_space = 0;
5249 unsigned dropped_extents = 0;
5250 unsigned num_extents = 0;
5251
5252 num_extents = (unsigned)div64_u64(num_bytes +
5253 BTRFS_MAX_EXTENT_SIZE - 1,
5254 BTRFS_MAX_EXTENT_SIZE);
5255 ASSERT(num_extents);
5256 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5257 BTRFS_I(inode)->outstanding_extents -= num_extents;
5258
5259 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5260 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5261 &BTRFS_I(inode)->runtime_flags))
5262 drop_inode_space = 1;
5263
5264 /*
5265 * If we have more or the same amount of outsanding extents than we have
5266 * reserved then we need to leave the reserved extents count alone.
5267 */
5268 if (BTRFS_I(inode)->outstanding_extents >=
5269 BTRFS_I(inode)->reserved_extents)
5270 return drop_inode_space;
5271
5272 dropped_extents = BTRFS_I(inode)->reserved_extents -
5273 BTRFS_I(inode)->outstanding_extents;
5274 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5275 return dropped_extents + drop_inode_space;
5276 }
5277
5278 /**
5279 * calc_csum_metadata_size - return the amount of metada space that must be
5280 * reserved/free'd for the given bytes.
5281 * @inode: the inode we're manipulating
5282 * @num_bytes: the number of bytes in question
5283 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5284 *
5285 * This adjusts the number of csum_bytes in the inode and then returns the
5286 * correct amount of metadata that must either be reserved or freed. We
5287 * calculate how many checksums we can fit into one leaf and then divide the
5288 * number of bytes that will need to be checksumed by this value to figure out
5289 * how many checksums will be required. If we are adding bytes then the number
5290 * may go up and we will return the number of additional bytes that must be
5291 * reserved. If it is going down we will return the number of bytes that must
5292 * be freed.
5293 *
5294 * This must be called with BTRFS_I(inode)->lock held.
5295 */
5296 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5297 int reserve)
5298 {
5299 struct btrfs_root *root = BTRFS_I(inode)->root;
5300 u64 old_csums, num_csums;
5301
5302 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5303 BTRFS_I(inode)->csum_bytes == 0)
5304 return 0;
5305
5306 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5307 if (reserve)
5308 BTRFS_I(inode)->csum_bytes += num_bytes;
5309 else
5310 BTRFS_I(inode)->csum_bytes -= num_bytes;
5311 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5312
5313 /* No change, no need to reserve more */
5314 if (old_csums == num_csums)
5315 return 0;
5316
5317 if (reserve)
5318 return btrfs_calc_trans_metadata_size(root,
5319 num_csums - old_csums);
5320
5321 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5322 }
5323
5324 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5325 {
5326 struct btrfs_root *root = BTRFS_I(inode)->root;
5327 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5328 u64 to_reserve = 0;
5329 u64 csum_bytes;
5330 unsigned nr_extents = 0;
5331 int extra_reserve = 0;
5332 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5333 int ret = 0;
5334 bool delalloc_lock = true;
5335 u64 to_free = 0;
5336 unsigned dropped;
5337
5338 /* If we are a free space inode we need to not flush since we will be in
5339 * the middle of a transaction commit. We also don't need the delalloc
5340 * mutex since we won't race with anybody. We need this mostly to make
5341 * lockdep shut its filthy mouth.
5342 */
5343 if (btrfs_is_free_space_inode(inode)) {
5344 flush = BTRFS_RESERVE_NO_FLUSH;
5345 delalloc_lock = false;
5346 }
5347
5348 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5349 btrfs_transaction_in_commit(root->fs_info))
5350 schedule_timeout(1);
5351
5352 if (delalloc_lock)
5353 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5354
5355 num_bytes = ALIGN(num_bytes, root->sectorsize);
5356
5357 spin_lock(&BTRFS_I(inode)->lock);
5358 nr_extents = (unsigned)div64_u64(num_bytes +
5359 BTRFS_MAX_EXTENT_SIZE - 1,
5360 BTRFS_MAX_EXTENT_SIZE);
5361 BTRFS_I(inode)->outstanding_extents += nr_extents;
5362 nr_extents = 0;
5363
5364 if (BTRFS_I(inode)->outstanding_extents >
5365 BTRFS_I(inode)->reserved_extents)
5366 nr_extents = BTRFS_I(inode)->outstanding_extents -
5367 BTRFS_I(inode)->reserved_extents;
5368
5369 /*
5370 * Add an item to reserve for updating the inode when we complete the
5371 * delalloc io.
5372 */
5373 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5374 &BTRFS_I(inode)->runtime_flags)) {
5375 nr_extents++;
5376 extra_reserve = 1;
5377 }
5378
5379 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5380 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5381 csum_bytes = BTRFS_I(inode)->csum_bytes;
5382 spin_unlock(&BTRFS_I(inode)->lock);
5383
5384 if (root->fs_info->quota_enabled) {
5385 ret = btrfs_qgroup_reserve(root, num_bytes +
5386 nr_extents * root->nodesize);
5387 if (ret)
5388 goto out_fail;
5389 }
5390
5391 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5392 if (unlikely(ret)) {
5393 if (root->fs_info->quota_enabled)
5394 btrfs_qgroup_free(root, num_bytes +
5395 nr_extents * root->nodesize);
5396 goto out_fail;
5397 }
5398
5399 spin_lock(&BTRFS_I(inode)->lock);
5400 if (extra_reserve) {
5401 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5402 &BTRFS_I(inode)->runtime_flags);
5403 nr_extents--;
5404 }
5405 BTRFS_I(inode)->reserved_extents += nr_extents;
5406 spin_unlock(&BTRFS_I(inode)->lock);
5407
5408 if (delalloc_lock)
5409 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5410
5411 if (to_reserve)
5412 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5413 btrfs_ino(inode), to_reserve, 1);
5414 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5415
5416 return 0;
5417
5418 out_fail:
5419 spin_lock(&BTRFS_I(inode)->lock);
5420 dropped = drop_outstanding_extent(inode, num_bytes);
5421 /*
5422 * If the inodes csum_bytes is the same as the original
5423 * csum_bytes then we know we haven't raced with any free()ers
5424 * so we can just reduce our inodes csum bytes and carry on.
5425 */
5426 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5427 calc_csum_metadata_size(inode, num_bytes, 0);
5428 } else {
5429 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5430 u64 bytes;
5431
5432 /*
5433 * This is tricky, but first we need to figure out how much we
5434 * free'd from any free-ers that occured during this
5435 * reservation, so we reset ->csum_bytes to the csum_bytes
5436 * before we dropped our lock, and then call the free for the
5437 * number of bytes that were freed while we were trying our
5438 * reservation.
5439 */
5440 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5441 BTRFS_I(inode)->csum_bytes = csum_bytes;
5442 to_free = calc_csum_metadata_size(inode, bytes, 0);
5443
5444
5445 /*
5446 * Now we need to see how much we would have freed had we not
5447 * been making this reservation and our ->csum_bytes were not
5448 * artificially inflated.
5449 */
5450 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5451 bytes = csum_bytes - orig_csum_bytes;
5452 bytes = calc_csum_metadata_size(inode, bytes, 0);
5453
5454 /*
5455 * Now reset ->csum_bytes to what it should be. If bytes is
5456 * more than to_free then we would have free'd more space had we
5457 * not had an artificially high ->csum_bytes, so we need to free
5458 * the remainder. If bytes is the same or less then we don't
5459 * need to do anything, the other free-ers did the correct
5460 * thing.
5461 */
5462 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5463 if (bytes > to_free)
5464 to_free = bytes - to_free;
5465 else
5466 to_free = 0;
5467 }
5468 spin_unlock(&BTRFS_I(inode)->lock);
5469 if (dropped)
5470 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5471
5472 if (to_free) {
5473 btrfs_block_rsv_release(root, block_rsv, to_free);
5474 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5475 btrfs_ino(inode), to_free, 0);
5476 }
5477 if (delalloc_lock)
5478 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5479 return ret;
5480 }
5481
5482 /**
5483 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5484 * @inode: the inode to release the reservation for
5485 * @num_bytes: the number of bytes we're releasing
5486 *
5487 * This will release the metadata reservation for an inode. This can be called
5488 * once we complete IO for a given set of bytes to release their metadata
5489 * reservations.
5490 */
5491 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5492 {
5493 struct btrfs_root *root = BTRFS_I(inode)->root;
5494 u64 to_free = 0;
5495 unsigned dropped;
5496
5497 num_bytes = ALIGN(num_bytes, root->sectorsize);
5498 spin_lock(&BTRFS_I(inode)->lock);
5499 dropped = drop_outstanding_extent(inode, num_bytes);
5500
5501 if (num_bytes)
5502 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5503 spin_unlock(&BTRFS_I(inode)->lock);
5504 if (dropped > 0)
5505 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5506
5507 if (btrfs_test_is_dummy_root(root))
5508 return;
5509
5510 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5511 btrfs_ino(inode), to_free, 0);
5512 if (root->fs_info->quota_enabled) {
5513 btrfs_qgroup_free(root, num_bytes +
5514 dropped * root->nodesize);
5515 }
5516
5517 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5518 to_free);
5519 }
5520
5521 /**
5522 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5523 * @inode: inode we're writing to
5524 * @num_bytes: the number of bytes we want to allocate
5525 *
5526 * This will do the following things
5527 *
5528 * o reserve space in the data space info for num_bytes
5529 * o reserve space in the metadata space info based on number of outstanding
5530 * extents and how much csums will be needed
5531 * o add to the inodes ->delalloc_bytes
5532 * o add it to the fs_info's delalloc inodes list.
5533 *
5534 * This will return 0 for success and -ENOSPC if there is no space left.
5535 */
5536 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5537 {
5538 int ret;
5539
5540 ret = btrfs_check_data_free_space(inode, num_bytes);
5541 if (ret)
5542 return ret;
5543
5544 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5545 if (ret) {
5546 btrfs_free_reserved_data_space(inode, num_bytes);
5547 return ret;
5548 }
5549
5550 return 0;
5551 }
5552
5553 /**
5554 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5555 * @inode: inode we're releasing space for
5556 * @num_bytes: the number of bytes we want to free up
5557 *
5558 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5559 * called in the case that we don't need the metadata AND data reservations
5560 * anymore. So if there is an error or we insert an inline extent.
5561 *
5562 * This function will release the metadata space that was not used and will
5563 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5564 * list if there are no delalloc bytes left.
5565 */
5566 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5567 {
5568 btrfs_delalloc_release_metadata(inode, num_bytes);
5569 btrfs_free_reserved_data_space(inode, num_bytes);
5570 }
5571
5572 static int update_block_group(struct btrfs_trans_handle *trans,
5573 struct btrfs_root *root, u64 bytenr,
5574 u64 num_bytes, int alloc)
5575 {
5576 struct btrfs_block_group_cache *cache = NULL;
5577 struct btrfs_fs_info *info = root->fs_info;
5578 u64 total = num_bytes;
5579 u64 old_val;
5580 u64 byte_in_group;
5581 int factor;
5582
5583 /* block accounting for super block */
5584 spin_lock(&info->delalloc_root_lock);
5585 old_val = btrfs_super_bytes_used(info->super_copy);
5586 if (alloc)
5587 old_val += num_bytes;
5588 else
5589 old_val -= num_bytes;
5590 btrfs_set_super_bytes_used(info->super_copy, old_val);
5591 spin_unlock(&info->delalloc_root_lock);
5592
5593 while (total) {
5594 cache = btrfs_lookup_block_group(info, bytenr);
5595 if (!cache)
5596 return -ENOENT;
5597 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5598 BTRFS_BLOCK_GROUP_RAID1 |
5599 BTRFS_BLOCK_GROUP_RAID10))
5600 factor = 2;
5601 else
5602 factor = 1;
5603 /*
5604 * If this block group has free space cache written out, we
5605 * need to make sure to load it if we are removing space. This
5606 * is because we need the unpinning stage to actually add the
5607 * space back to the block group, otherwise we will leak space.
5608 */
5609 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5610 cache_block_group(cache, 1);
5611
5612 byte_in_group = bytenr - cache->key.objectid;
5613 WARN_ON(byte_in_group > cache->key.offset);
5614
5615 spin_lock(&cache->space_info->lock);
5616 spin_lock(&cache->lock);
5617
5618 if (btrfs_test_opt(root, SPACE_CACHE) &&
5619 cache->disk_cache_state < BTRFS_DC_CLEAR)
5620 cache->disk_cache_state = BTRFS_DC_CLEAR;
5621
5622 old_val = btrfs_block_group_used(&cache->item);
5623 num_bytes = min(total, cache->key.offset - byte_in_group);
5624 if (alloc) {
5625 old_val += num_bytes;
5626 btrfs_set_block_group_used(&cache->item, old_val);
5627 cache->reserved -= num_bytes;
5628 cache->space_info->bytes_reserved -= num_bytes;
5629 cache->space_info->bytes_used += num_bytes;
5630 cache->space_info->disk_used += num_bytes * factor;
5631 spin_unlock(&cache->lock);
5632 spin_unlock(&cache->space_info->lock);
5633 } else {
5634 old_val -= num_bytes;
5635 btrfs_set_block_group_used(&cache->item, old_val);
5636 cache->pinned += num_bytes;
5637 cache->space_info->bytes_pinned += num_bytes;
5638 cache->space_info->bytes_used -= num_bytes;
5639 cache->space_info->disk_used -= num_bytes * factor;
5640 spin_unlock(&cache->lock);
5641 spin_unlock(&cache->space_info->lock);
5642
5643 set_extent_dirty(info->pinned_extents,
5644 bytenr, bytenr + num_bytes - 1,
5645 GFP_NOFS | __GFP_NOFAIL);
5646 /*
5647 * No longer have used bytes in this block group, queue
5648 * it for deletion.
5649 */
5650 if (old_val == 0) {
5651 spin_lock(&info->unused_bgs_lock);
5652 if (list_empty(&cache->bg_list)) {
5653 btrfs_get_block_group(cache);
5654 list_add_tail(&cache->bg_list,
5655 &info->unused_bgs);
5656 }
5657 spin_unlock(&info->unused_bgs_lock);
5658 }
5659 }
5660
5661 spin_lock(&trans->transaction->dirty_bgs_lock);
5662 if (list_empty(&cache->dirty_list)) {
5663 list_add_tail(&cache->dirty_list,
5664 &trans->transaction->dirty_bgs);
5665 trans->transaction->num_dirty_bgs++;
5666 btrfs_get_block_group(cache);
5667 }
5668 spin_unlock(&trans->transaction->dirty_bgs_lock);
5669
5670 btrfs_put_block_group(cache);
5671 total -= num_bytes;
5672 bytenr += num_bytes;
5673 }
5674 return 0;
5675 }
5676
5677 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5678 {
5679 struct btrfs_block_group_cache *cache;
5680 u64 bytenr;
5681
5682 spin_lock(&root->fs_info->block_group_cache_lock);
5683 bytenr = root->fs_info->first_logical_byte;
5684 spin_unlock(&root->fs_info->block_group_cache_lock);
5685
5686 if (bytenr < (u64)-1)
5687 return bytenr;
5688
5689 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5690 if (!cache)
5691 return 0;
5692
5693 bytenr = cache->key.objectid;
5694 btrfs_put_block_group(cache);
5695
5696 return bytenr;
5697 }
5698
5699 static int pin_down_extent(struct btrfs_root *root,
5700 struct btrfs_block_group_cache *cache,
5701 u64 bytenr, u64 num_bytes, int reserved)
5702 {
5703 spin_lock(&cache->space_info->lock);
5704 spin_lock(&cache->lock);
5705 cache->pinned += num_bytes;
5706 cache->space_info->bytes_pinned += num_bytes;
5707 if (reserved) {
5708 cache->reserved -= num_bytes;
5709 cache->space_info->bytes_reserved -= num_bytes;
5710 }
5711 spin_unlock(&cache->lock);
5712 spin_unlock(&cache->space_info->lock);
5713
5714 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5715 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5716 if (reserved)
5717 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5718 return 0;
5719 }
5720
5721 /*
5722 * this function must be called within transaction
5723 */
5724 int btrfs_pin_extent(struct btrfs_root *root,
5725 u64 bytenr, u64 num_bytes, int reserved)
5726 {
5727 struct btrfs_block_group_cache *cache;
5728
5729 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5730 BUG_ON(!cache); /* Logic error */
5731
5732 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5733
5734 btrfs_put_block_group(cache);
5735 return 0;
5736 }
5737
5738 /*
5739 * this function must be called within transaction
5740 */
5741 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5742 u64 bytenr, u64 num_bytes)
5743 {
5744 struct btrfs_block_group_cache *cache;
5745 int ret;
5746
5747 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5748 if (!cache)
5749 return -EINVAL;
5750
5751 /*
5752 * pull in the free space cache (if any) so that our pin
5753 * removes the free space from the cache. We have load_only set
5754 * to one because the slow code to read in the free extents does check
5755 * the pinned extents.
5756 */
5757 cache_block_group(cache, 1);
5758
5759 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5760
5761 /* remove us from the free space cache (if we're there at all) */
5762 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5763 btrfs_put_block_group(cache);
5764 return ret;
5765 }
5766
5767 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5768 {
5769 int ret;
5770 struct btrfs_block_group_cache *block_group;
5771 struct btrfs_caching_control *caching_ctl;
5772
5773 block_group = btrfs_lookup_block_group(root->fs_info, start);
5774 if (!block_group)
5775 return -EINVAL;
5776
5777 cache_block_group(block_group, 0);
5778 caching_ctl = get_caching_control(block_group);
5779
5780 if (!caching_ctl) {
5781 /* Logic error */
5782 BUG_ON(!block_group_cache_done(block_group));
5783 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5784 } else {
5785 mutex_lock(&caching_ctl->mutex);
5786
5787 if (start >= caching_ctl->progress) {
5788 ret = add_excluded_extent(root, start, num_bytes);
5789 } else if (start + num_bytes <= caching_ctl->progress) {
5790 ret = btrfs_remove_free_space(block_group,
5791 start, num_bytes);
5792 } else {
5793 num_bytes = caching_ctl->progress - start;
5794 ret = btrfs_remove_free_space(block_group,
5795 start, num_bytes);
5796 if (ret)
5797 goto out_lock;
5798
5799 num_bytes = (start + num_bytes) -
5800 caching_ctl->progress;
5801 start = caching_ctl->progress;
5802 ret = add_excluded_extent(root, start, num_bytes);
5803 }
5804 out_lock:
5805 mutex_unlock(&caching_ctl->mutex);
5806 put_caching_control(caching_ctl);
5807 }
5808 btrfs_put_block_group(block_group);
5809 return ret;
5810 }
5811
5812 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5813 struct extent_buffer *eb)
5814 {
5815 struct btrfs_file_extent_item *item;
5816 struct btrfs_key key;
5817 int found_type;
5818 int i;
5819
5820 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5821 return 0;
5822
5823 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5824 btrfs_item_key_to_cpu(eb, &key, i);
5825 if (key.type != BTRFS_EXTENT_DATA_KEY)
5826 continue;
5827 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5828 found_type = btrfs_file_extent_type(eb, item);
5829 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5830 continue;
5831 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5832 continue;
5833 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5834 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5835 __exclude_logged_extent(log, key.objectid, key.offset);
5836 }
5837
5838 return 0;
5839 }
5840
5841 /**
5842 * btrfs_update_reserved_bytes - update the block_group and space info counters
5843 * @cache: The cache we are manipulating
5844 * @num_bytes: The number of bytes in question
5845 * @reserve: One of the reservation enums
5846 * @delalloc: The blocks are allocated for the delalloc write
5847 *
5848 * This is called by the allocator when it reserves space, or by somebody who is
5849 * freeing space that was never actually used on disk. For example if you
5850 * reserve some space for a new leaf in transaction A and before transaction A
5851 * commits you free that leaf, you call this with reserve set to 0 in order to
5852 * clear the reservation.
5853 *
5854 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5855 * ENOSPC accounting. For data we handle the reservation through clearing the
5856 * delalloc bits in the io_tree. We have to do this since we could end up
5857 * allocating less disk space for the amount of data we have reserved in the
5858 * case of compression.
5859 *
5860 * If this is a reservation and the block group has become read only we cannot
5861 * make the reservation and return -EAGAIN, otherwise this function always
5862 * succeeds.
5863 */
5864 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5865 u64 num_bytes, int reserve, int delalloc)
5866 {
5867 struct btrfs_space_info *space_info = cache->space_info;
5868 int ret = 0;
5869
5870 spin_lock(&space_info->lock);
5871 spin_lock(&cache->lock);
5872 if (reserve != RESERVE_FREE) {
5873 if (cache->ro) {
5874 ret = -EAGAIN;
5875 } else {
5876 cache->reserved += num_bytes;
5877 space_info->bytes_reserved += num_bytes;
5878 if (reserve == RESERVE_ALLOC) {
5879 trace_btrfs_space_reservation(cache->fs_info,
5880 "space_info", space_info->flags,
5881 num_bytes, 0);
5882 space_info->bytes_may_use -= num_bytes;
5883 }
5884
5885 if (delalloc)
5886 cache->delalloc_bytes += num_bytes;
5887 }
5888 } else {
5889 if (cache->ro)
5890 space_info->bytes_readonly += num_bytes;
5891 cache->reserved -= num_bytes;
5892 space_info->bytes_reserved -= num_bytes;
5893
5894 if (delalloc)
5895 cache->delalloc_bytes -= num_bytes;
5896 }
5897 spin_unlock(&cache->lock);
5898 spin_unlock(&space_info->lock);
5899 return ret;
5900 }
5901
5902 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5903 struct btrfs_root *root)
5904 {
5905 struct btrfs_fs_info *fs_info = root->fs_info;
5906 struct btrfs_caching_control *next;
5907 struct btrfs_caching_control *caching_ctl;
5908 struct btrfs_block_group_cache *cache;
5909
5910 down_write(&fs_info->commit_root_sem);
5911
5912 list_for_each_entry_safe(caching_ctl, next,
5913 &fs_info->caching_block_groups, list) {
5914 cache = caching_ctl->block_group;
5915 if (block_group_cache_done(cache)) {
5916 cache->last_byte_to_unpin = (u64)-1;
5917 list_del_init(&caching_ctl->list);
5918 put_caching_control(caching_ctl);
5919 } else {
5920 cache->last_byte_to_unpin = caching_ctl->progress;
5921 }
5922 }
5923
5924 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5925 fs_info->pinned_extents = &fs_info->freed_extents[1];
5926 else
5927 fs_info->pinned_extents = &fs_info->freed_extents[0];
5928
5929 up_write(&fs_info->commit_root_sem);
5930
5931 update_global_block_rsv(fs_info);
5932 }
5933
5934 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5935 const bool return_free_space)
5936 {
5937 struct btrfs_fs_info *fs_info = root->fs_info;
5938 struct btrfs_block_group_cache *cache = NULL;
5939 struct btrfs_space_info *space_info;
5940 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5941 u64 len;
5942 bool readonly;
5943
5944 while (start <= end) {
5945 readonly = false;
5946 if (!cache ||
5947 start >= cache->key.objectid + cache->key.offset) {
5948 if (cache)
5949 btrfs_put_block_group(cache);
5950 cache = btrfs_lookup_block_group(fs_info, start);
5951 BUG_ON(!cache); /* Logic error */
5952 }
5953
5954 len = cache->key.objectid + cache->key.offset - start;
5955 len = min(len, end + 1 - start);
5956
5957 if (start < cache->last_byte_to_unpin) {
5958 len = min(len, cache->last_byte_to_unpin - start);
5959 if (return_free_space)
5960 btrfs_add_free_space(cache, start, len);
5961 }
5962
5963 start += len;
5964 space_info = cache->space_info;
5965
5966 spin_lock(&space_info->lock);
5967 spin_lock(&cache->lock);
5968 cache->pinned -= len;
5969 space_info->bytes_pinned -= len;
5970 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5971 if (cache->ro) {
5972 space_info->bytes_readonly += len;
5973 readonly = true;
5974 }
5975 spin_unlock(&cache->lock);
5976 if (!readonly && global_rsv->space_info == space_info) {
5977 spin_lock(&global_rsv->lock);
5978 if (!global_rsv->full) {
5979 len = min(len, global_rsv->size -
5980 global_rsv->reserved);
5981 global_rsv->reserved += len;
5982 space_info->bytes_may_use += len;
5983 if (global_rsv->reserved >= global_rsv->size)
5984 global_rsv->full = 1;
5985 }
5986 spin_unlock(&global_rsv->lock);
5987 }
5988 spin_unlock(&space_info->lock);
5989 }
5990
5991 if (cache)
5992 btrfs_put_block_group(cache);
5993 return 0;
5994 }
5995
5996 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5997 struct btrfs_root *root)
5998 {
5999 struct btrfs_fs_info *fs_info = root->fs_info;
6000 struct extent_io_tree *unpin;
6001 u64 start;
6002 u64 end;
6003 int ret;
6004
6005 if (trans->aborted)
6006 return 0;
6007
6008 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6009 unpin = &fs_info->freed_extents[1];
6010 else
6011 unpin = &fs_info->freed_extents[0];
6012
6013 while (1) {
6014 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6015 ret = find_first_extent_bit(unpin, 0, &start, &end,
6016 EXTENT_DIRTY, NULL);
6017 if (ret) {
6018 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6019 break;
6020 }
6021
6022 if (btrfs_test_opt(root, DISCARD))
6023 ret = btrfs_discard_extent(root, start,
6024 end + 1 - start, NULL);
6025
6026 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6027 unpin_extent_range(root, start, end, true);
6028 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6029 cond_resched();
6030 }
6031
6032 return 0;
6033 }
6034
6035 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6036 u64 owner, u64 root_objectid)
6037 {
6038 struct btrfs_space_info *space_info;
6039 u64 flags;
6040
6041 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6042 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6043 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6044 else
6045 flags = BTRFS_BLOCK_GROUP_METADATA;
6046 } else {
6047 flags = BTRFS_BLOCK_GROUP_DATA;
6048 }
6049
6050 space_info = __find_space_info(fs_info, flags);
6051 BUG_ON(!space_info); /* Logic bug */
6052 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6053 }
6054
6055
6056 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6057 struct btrfs_root *root,
6058 u64 bytenr, u64 num_bytes, u64 parent,
6059 u64 root_objectid, u64 owner_objectid,
6060 u64 owner_offset, int refs_to_drop,
6061 struct btrfs_delayed_extent_op *extent_op,
6062 int no_quota)
6063 {
6064 struct btrfs_key key;
6065 struct btrfs_path *path;
6066 struct btrfs_fs_info *info = root->fs_info;
6067 struct btrfs_root *extent_root = info->extent_root;
6068 struct extent_buffer *leaf;
6069 struct btrfs_extent_item *ei;
6070 struct btrfs_extent_inline_ref *iref;
6071 int ret;
6072 int is_data;
6073 int extent_slot = 0;
6074 int found_extent = 0;
6075 int num_to_del = 1;
6076 u32 item_size;
6077 u64 refs;
6078 int last_ref = 0;
6079 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6080 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6081 SKINNY_METADATA);
6082
6083 if (!info->quota_enabled || !is_fstree(root_objectid))
6084 no_quota = 1;
6085
6086 path = btrfs_alloc_path();
6087 if (!path)
6088 return -ENOMEM;
6089
6090 path->reada = 1;
6091 path->leave_spinning = 1;
6092
6093 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6094 BUG_ON(!is_data && refs_to_drop != 1);
6095
6096 if (is_data)
6097 skinny_metadata = 0;
6098
6099 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6100 bytenr, num_bytes, parent,
6101 root_objectid, owner_objectid,
6102 owner_offset);
6103 if (ret == 0) {
6104 extent_slot = path->slots[0];
6105 while (extent_slot >= 0) {
6106 btrfs_item_key_to_cpu(path->nodes[0], &key,
6107 extent_slot);
6108 if (key.objectid != bytenr)
6109 break;
6110 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6111 key.offset == num_bytes) {
6112 found_extent = 1;
6113 break;
6114 }
6115 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6116 key.offset == owner_objectid) {
6117 found_extent = 1;
6118 break;
6119 }
6120 if (path->slots[0] - extent_slot > 5)
6121 break;
6122 extent_slot--;
6123 }
6124 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6125 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6126 if (found_extent && item_size < sizeof(*ei))
6127 found_extent = 0;
6128 #endif
6129 if (!found_extent) {
6130 BUG_ON(iref);
6131 ret = remove_extent_backref(trans, extent_root, path,
6132 NULL, refs_to_drop,
6133 is_data, &last_ref);
6134 if (ret) {
6135 btrfs_abort_transaction(trans, extent_root, ret);
6136 goto out;
6137 }
6138 btrfs_release_path(path);
6139 path->leave_spinning = 1;
6140
6141 key.objectid = bytenr;
6142 key.type = BTRFS_EXTENT_ITEM_KEY;
6143 key.offset = num_bytes;
6144
6145 if (!is_data && skinny_metadata) {
6146 key.type = BTRFS_METADATA_ITEM_KEY;
6147 key.offset = owner_objectid;
6148 }
6149
6150 ret = btrfs_search_slot(trans, extent_root,
6151 &key, path, -1, 1);
6152 if (ret > 0 && skinny_metadata && path->slots[0]) {
6153 /*
6154 * Couldn't find our skinny metadata item,
6155 * see if we have ye olde extent item.
6156 */
6157 path->slots[0]--;
6158 btrfs_item_key_to_cpu(path->nodes[0], &key,
6159 path->slots[0]);
6160 if (key.objectid == bytenr &&
6161 key.type == BTRFS_EXTENT_ITEM_KEY &&
6162 key.offset == num_bytes)
6163 ret = 0;
6164 }
6165
6166 if (ret > 0 && skinny_metadata) {
6167 skinny_metadata = false;
6168 key.objectid = bytenr;
6169 key.type = BTRFS_EXTENT_ITEM_KEY;
6170 key.offset = num_bytes;
6171 btrfs_release_path(path);
6172 ret = btrfs_search_slot(trans, extent_root,
6173 &key, path, -1, 1);
6174 }
6175
6176 if (ret) {
6177 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6178 ret, bytenr);
6179 if (ret > 0)
6180 btrfs_print_leaf(extent_root,
6181 path->nodes[0]);
6182 }
6183 if (ret < 0) {
6184 btrfs_abort_transaction(trans, extent_root, ret);
6185 goto out;
6186 }
6187 extent_slot = path->slots[0];
6188 }
6189 } else if (WARN_ON(ret == -ENOENT)) {
6190 btrfs_print_leaf(extent_root, path->nodes[0]);
6191 btrfs_err(info,
6192 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6193 bytenr, parent, root_objectid, owner_objectid,
6194 owner_offset);
6195 btrfs_abort_transaction(trans, extent_root, ret);
6196 goto out;
6197 } else {
6198 btrfs_abort_transaction(trans, extent_root, ret);
6199 goto out;
6200 }
6201
6202 leaf = path->nodes[0];
6203 item_size = btrfs_item_size_nr(leaf, extent_slot);
6204 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6205 if (item_size < sizeof(*ei)) {
6206 BUG_ON(found_extent || extent_slot != path->slots[0]);
6207 ret = convert_extent_item_v0(trans, extent_root, path,
6208 owner_objectid, 0);
6209 if (ret < 0) {
6210 btrfs_abort_transaction(trans, extent_root, ret);
6211 goto out;
6212 }
6213
6214 btrfs_release_path(path);
6215 path->leave_spinning = 1;
6216
6217 key.objectid = bytenr;
6218 key.type = BTRFS_EXTENT_ITEM_KEY;
6219 key.offset = num_bytes;
6220
6221 ret = btrfs_search_slot(trans, extent_root, &key, path,
6222 -1, 1);
6223 if (ret) {
6224 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6225 ret, bytenr);
6226 btrfs_print_leaf(extent_root, path->nodes[0]);
6227 }
6228 if (ret < 0) {
6229 btrfs_abort_transaction(trans, extent_root, ret);
6230 goto out;
6231 }
6232
6233 extent_slot = path->slots[0];
6234 leaf = path->nodes[0];
6235 item_size = btrfs_item_size_nr(leaf, extent_slot);
6236 }
6237 #endif
6238 BUG_ON(item_size < sizeof(*ei));
6239 ei = btrfs_item_ptr(leaf, extent_slot,
6240 struct btrfs_extent_item);
6241 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6242 key.type == BTRFS_EXTENT_ITEM_KEY) {
6243 struct btrfs_tree_block_info *bi;
6244 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6245 bi = (struct btrfs_tree_block_info *)(ei + 1);
6246 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6247 }
6248
6249 refs = btrfs_extent_refs(leaf, ei);
6250 if (refs < refs_to_drop) {
6251 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6252 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6253 ret = -EINVAL;
6254 btrfs_abort_transaction(trans, extent_root, ret);
6255 goto out;
6256 }
6257 refs -= refs_to_drop;
6258
6259 if (refs > 0) {
6260 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6261 if (extent_op)
6262 __run_delayed_extent_op(extent_op, leaf, ei);
6263 /*
6264 * In the case of inline back ref, reference count will
6265 * be updated by remove_extent_backref
6266 */
6267 if (iref) {
6268 BUG_ON(!found_extent);
6269 } else {
6270 btrfs_set_extent_refs(leaf, ei, refs);
6271 btrfs_mark_buffer_dirty(leaf);
6272 }
6273 if (found_extent) {
6274 ret = remove_extent_backref(trans, extent_root, path,
6275 iref, refs_to_drop,
6276 is_data, &last_ref);
6277 if (ret) {
6278 btrfs_abort_transaction(trans, extent_root, ret);
6279 goto out;
6280 }
6281 }
6282 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6283 root_objectid);
6284 } else {
6285 if (found_extent) {
6286 BUG_ON(is_data && refs_to_drop !=
6287 extent_data_ref_count(root, path, iref));
6288 if (iref) {
6289 BUG_ON(path->slots[0] != extent_slot);
6290 } else {
6291 BUG_ON(path->slots[0] != extent_slot + 1);
6292 path->slots[0] = extent_slot;
6293 num_to_del = 2;
6294 }
6295 }
6296
6297 last_ref = 1;
6298 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6299 num_to_del);
6300 if (ret) {
6301 btrfs_abort_transaction(trans, extent_root, ret);
6302 goto out;
6303 }
6304 btrfs_release_path(path);
6305
6306 if (is_data) {
6307 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6308 if (ret) {
6309 btrfs_abort_transaction(trans, extent_root, ret);
6310 goto out;
6311 }
6312 }
6313
6314 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6315 if (ret) {
6316 btrfs_abort_transaction(trans, extent_root, ret);
6317 goto out;
6318 }
6319 }
6320 btrfs_release_path(path);
6321
6322 /* Deal with the quota accounting */
6323 if (!ret && last_ref && !no_quota) {
6324 int mod_seq = 0;
6325
6326 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6327 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6328 mod_seq = 1;
6329
6330 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6331 bytenr, num_bytes, type,
6332 mod_seq);
6333 }
6334 out:
6335 btrfs_free_path(path);
6336 return ret;
6337 }
6338
6339 /*
6340 * when we free an block, it is possible (and likely) that we free the last
6341 * delayed ref for that extent as well. This searches the delayed ref tree for
6342 * a given extent, and if there are no other delayed refs to be processed, it
6343 * removes it from the tree.
6344 */
6345 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6346 struct btrfs_root *root, u64 bytenr)
6347 {
6348 struct btrfs_delayed_ref_head *head;
6349 struct btrfs_delayed_ref_root *delayed_refs;
6350 int ret = 0;
6351
6352 delayed_refs = &trans->transaction->delayed_refs;
6353 spin_lock(&delayed_refs->lock);
6354 head = btrfs_find_delayed_ref_head(trans, bytenr);
6355 if (!head)
6356 goto out_delayed_unlock;
6357
6358 spin_lock(&head->lock);
6359 if (rb_first(&head->ref_root))
6360 goto out;
6361
6362 if (head->extent_op) {
6363 if (!head->must_insert_reserved)
6364 goto out;
6365 btrfs_free_delayed_extent_op(head->extent_op);
6366 head->extent_op = NULL;
6367 }
6368
6369 /*
6370 * waiting for the lock here would deadlock. If someone else has it
6371 * locked they are already in the process of dropping it anyway
6372 */
6373 if (!mutex_trylock(&head->mutex))
6374 goto out;
6375
6376 /*
6377 * at this point we have a head with no other entries. Go
6378 * ahead and process it.
6379 */
6380 head->node.in_tree = 0;
6381 rb_erase(&head->href_node, &delayed_refs->href_root);
6382
6383 atomic_dec(&delayed_refs->num_entries);
6384
6385 /*
6386 * we don't take a ref on the node because we're removing it from the
6387 * tree, so we just steal the ref the tree was holding.
6388 */
6389 delayed_refs->num_heads--;
6390 if (head->processing == 0)
6391 delayed_refs->num_heads_ready--;
6392 head->processing = 0;
6393 spin_unlock(&head->lock);
6394 spin_unlock(&delayed_refs->lock);
6395
6396 BUG_ON(head->extent_op);
6397 if (head->must_insert_reserved)
6398 ret = 1;
6399
6400 mutex_unlock(&head->mutex);
6401 btrfs_put_delayed_ref(&head->node);
6402 return ret;
6403 out:
6404 spin_unlock(&head->lock);
6405
6406 out_delayed_unlock:
6407 spin_unlock(&delayed_refs->lock);
6408 return 0;
6409 }
6410
6411 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6412 struct btrfs_root *root,
6413 struct extent_buffer *buf,
6414 u64 parent, int last_ref)
6415 {
6416 int pin = 1;
6417 int ret;
6418
6419 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6420 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6421 buf->start, buf->len,
6422 parent, root->root_key.objectid,
6423 btrfs_header_level(buf),
6424 BTRFS_DROP_DELAYED_REF, NULL, 0);
6425 BUG_ON(ret); /* -ENOMEM */
6426 }
6427
6428 if (!last_ref)
6429 return;
6430
6431 if (btrfs_header_generation(buf) == trans->transid) {
6432 struct btrfs_block_group_cache *cache;
6433
6434 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6435 ret = check_ref_cleanup(trans, root, buf->start);
6436 if (!ret)
6437 goto out;
6438 }
6439
6440 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6441
6442 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6443 pin_down_extent(root, cache, buf->start, buf->len, 1);
6444 btrfs_put_block_group(cache);
6445 goto out;
6446 }
6447
6448 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6449
6450 btrfs_add_free_space(cache, buf->start, buf->len);
6451 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6452 btrfs_put_block_group(cache);
6453 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6454 pin = 0;
6455 }
6456 out:
6457 if (pin)
6458 add_pinned_bytes(root->fs_info, buf->len,
6459 btrfs_header_level(buf),
6460 root->root_key.objectid);
6461
6462 /*
6463 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6464 * anymore.
6465 */
6466 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6467 }
6468
6469 /* Can return -ENOMEM */
6470 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6471 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6472 u64 owner, u64 offset, int no_quota)
6473 {
6474 int ret;
6475 struct btrfs_fs_info *fs_info = root->fs_info;
6476
6477 if (btrfs_test_is_dummy_root(root))
6478 return 0;
6479
6480 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6481
6482 /*
6483 * tree log blocks never actually go into the extent allocation
6484 * tree, just update pinning info and exit early.
6485 */
6486 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6487 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6488 /* unlocks the pinned mutex */
6489 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6490 ret = 0;
6491 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6492 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6493 num_bytes,
6494 parent, root_objectid, (int)owner,
6495 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6496 } else {
6497 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6498 num_bytes,
6499 parent, root_objectid, owner,
6500 offset, BTRFS_DROP_DELAYED_REF,
6501 NULL, no_quota);
6502 }
6503 return ret;
6504 }
6505
6506 /*
6507 * when we wait for progress in the block group caching, its because
6508 * our allocation attempt failed at least once. So, we must sleep
6509 * and let some progress happen before we try again.
6510 *
6511 * This function will sleep at least once waiting for new free space to
6512 * show up, and then it will check the block group free space numbers
6513 * for our min num_bytes. Another option is to have it go ahead
6514 * and look in the rbtree for a free extent of a given size, but this
6515 * is a good start.
6516 *
6517 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6518 * any of the information in this block group.
6519 */
6520 static noinline void
6521 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6522 u64 num_bytes)
6523 {
6524 struct btrfs_caching_control *caching_ctl;
6525
6526 caching_ctl = get_caching_control(cache);
6527 if (!caching_ctl)
6528 return;
6529
6530 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6531 (cache->free_space_ctl->free_space >= num_bytes));
6532
6533 put_caching_control(caching_ctl);
6534 }
6535
6536 static noinline int
6537 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6538 {
6539 struct btrfs_caching_control *caching_ctl;
6540 int ret = 0;
6541
6542 caching_ctl = get_caching_control(cache);
6543 if (!caching_ctl)
6544 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6545
6546 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6547 if (cache->cached == BTRFS_CACHE_ERROR)
6548 ret = -EIO;
6549 put_caching_control(caching_ctl);
6550 return ret;
6551 }
6552
6553 int __get_raid_index(u64 flags)
6554 {
6555 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6556 return BTRFS_RAID_RAID10;
6557 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6558 return BTRFS_RAID_RAID1;
6559 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6560 return BTRFS_RAID_DUP;
6561 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6562 return BTRFS_RAID_RAID0;
6563 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6564 return BTRFS_RAID_RAID5;
6565 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6566 return BTRFS_RAID_RAID6;
6567
6568 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6569 }
6570
6571 int get_block_group_index(struct btrfs_block_group_cache *cache)
6572 {
6573 return __get_raid_index(cache->flags);
6574 }
6575
6576 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6577 [BTRFS_RAID_RAID10] = "raid10",
6578 [BTRFS_RAID_RAID1] = "raid1",
6579 [BTRFS_RAID_DUP] = "dup",
6580 [BTRFS_RAID_RAID0] = "raid0",
6581 [BTRFS_RAID_SINGLE] = "single",
6582 [BTRFS_RAID_RAID5] = "raid5",
6583 [BTRFS_RAID_RAID6] = "raid6",
6584 };
6585
6586 static const char *get_raid_name(enum btrfs_raid_types type)
6587 {
6588 if (type >= BTRFS_NR_RAID_TYPES)
6589 return NULL;
6590
6591 return btrfs_raid_type_names[type];
6592 }
6593
6594 enum btrfs_loop_type {
6595 LOOP_CACHING_NOWAIT = 0,
6596 LOOP_CACHING_WAIT = 1,
6597 LOOP_ALLOC_CHUNK = 2,
6598 LOOP_NO_EMPTY_SIZE = 3,
6599 };
6600
6601 static inline void
6602 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6603 int delalloc)
6604 {
6605 if (delalloc)
6606 down_read(&cache->data_rwsem);
6607 }
6608
6609 static inline void
6610 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6611 int delalloc)
6612 {
6613 btrfs_get_block_group(cache);
6614 if (delalloc)
6615 down_read(&cache->data_rwsem);
6616 }
6617
6618 static struct btrfs_block_group_cache *
6619 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6620 struct btrfs_free_cluster *cluster,
6621 int delalloc)
6622 {
6623 struct btrfs_block_group_cache *used_bg;
6624 bool locked = false;
6625 again:
6626 spin_lock(&cluster->refill_lock);
6627 if (locked) {
6628 if (used_bg == cluster->block_group)
6629 return used_bg;
6630
6631 up_read(&used_bg->data_rwsem);
6632 btrfs_put_block_group(used_bg);
6633 }
6634
6635 used_bg = cluster->block_group;
6636 if (!used_bg)
6637 return NULL;
6638
6639 if (used_bg == block_group)
6640 return used_bg;
6641
6642 btrfs_get_block_group(used_bg);
6643
6644 if (!delalloc)
6645 return used_bg;
6646
6647 if (down_read_trylock(&used_bg->data_rwsem))
6648 return used_bg;
6649
6650 spin_unlock(&cluster->refill_lock);
6651 down_read(&used_bg->data_rwsem);
6652 locked = true;
6653 goto again;
6654 }
6655
6656 static inline void
6657 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6658 int delalloc)
6659 {
6660 if (delalloc)
6661 up_read(&cache->data_rwsem);
6662 btrfs_put_block_group(cache);
6663 }
6664
6665 /*
6666 * walks the btree of allocated extents and find a hole of a given size.
6667 * The key ins is changed to record the hole:
6668 * ins->objectid == start position
6669 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6670 * ins->offset == the size of the hole.
6671 * Any available blocks before search_start are skipped.
6672 *
6673 * If there is no suitable free space, we will record the max size of
6674 * the free space extent currently.
6675 */
6676 static noinline int find_free_extent(struct btrfs_root *orig_root,
6677 u64 num_bytes, u64 empty_size,
6678 u64 hint_byte, struct btrfs_key *ins,
6679 u64 flags, int delalloc)
6680 {
6681 int ret = 0;
6682 struct btrfs_root *root = orig_root->fs_info->extent_root;
6683 struct btrfs_free_cluster *last_ptr = NULL;
6684 struct btrfs_block_group_cache *block_group = NULL;
6685 u64 search_start = 0;
6686 u64 max_extent_size = 0;
6687 int empty_cluster = 2 * 1024 * 1024;
6688 struct btrfs_space_info *space_info;
6689 int loop = 0;
6690 int index = __get_raid_index(flags);
6691 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6692 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6693 bool failed_cluster_refill = false;
6694 bool failed_alloc = false;
6695 bool use_cluster = true;
6696 bool have_caching_bg = false;
6697
6698 WARN_ON(num_bytes < root->sectorsize);
6699 ins->type = BTRFS_EXTENT_ITEM_KEY;
6700 ins->objectid = 0;
6701 ins->offset = 0;
6702
6703 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6704
6705 space_info = __find_space_info(root->fs_info, flags);
6706 if (!space_info) {
6707 btrfs_err(root->fs_info, "No space info for %llu", flags);
6708 return -ENOSPC;
6709 }
6710
6711 /*
6712 * If the space info is for both data and metadata it means we have a
6713 * small filesystem and we can't use the clustering stuff.
6714 */
6715 if (btrfs_mixed_space_info(space_info))
6716 use_cluster = false;
6717
6718 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6719 last_ptr = &root->fs_info->meta_alloc_cluster;
6720 if (!btrfs_test_opt(root, SSD))
6721 empty_cluster = 64 * 1024;
6722 }
6723
6724 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6725 btrfs_test_opt(root, SSD)) {
6726 last_ptr = &root->fs_info->data_alloc_cluster;
6727 }
6728
6729 if (last_ptr) {
6730 spin_lock(&last_ptr->lock);
6731 if (last_ptr->block_group)
6732 hint_byte = last_ptr->window_start;
6733 spin_unlock(&last_ptr->lock);
6734 }
6735
6736 search_start = max(search_start, first_logical_byte(root, 0));
6737 search_start = max(search_start, hint_byte);
6738
6739 if (!last_ptr)
6740 empty_cluster = 0;
6741
6742 if (search_start == hint_byte) {
6743 block_group = btrfs_lookup_block_group(root->fs_info,
6744 search_start);
6745 /*
6746 * we don't want to use the block group if it doesn't match our
6747 * allocation bits, or if its not cached.
6748 *
6749 * However if we are re-searching with an ideal block group
6750 * picked out then we don't care that the block group is cached.
6751 */
6752 if (block_group && block_group_bits(block_group, flags) &&
6753 block_group->cached != BTRFS_CACHE_NO) {
6754 down_read(&space_info->groups_sem);
6755 if (list_empty(&block_group->list) ||
6756 block_group->ro) {
6757 /*
6758 * someone is removing this block group,
6759 * we can't jump into the have_block_group
6760 * target because our list pointers are not
6761 * valid
6762 */
6763 btrfs_put_block_group(block_group);
6764 up_read(&space_info->groups_sem);
6765 } else {
6766 index = get_block_group_index(block_group);
6767 btrfs_lock_block_group(block_group, delalloc);
6768 goto have_block_group;
6769 }
6770 } else if (block_group) {
6771 btrfs_put_block_group(block_group);
6772 }
6773 }
6774 search:
6775 have_caching_bg = false;
6776 down_read(&space_info->groups_sem);
6777 list_for_each_entry(block_group, &space_info->block_groups[index],
6778 list) {
6779 u64 offset;
6780 int cached;
6781
6782 btrfs_grab_block_group(block_group, delalloc);
6783 search_start = block_group->key.objectid;
6784
6785 /*
6786 * this can happen if we end up cycling through all the
6787 * raid types, but we want to make sure we only allocate
6788 * for the proper type.
6789 */
6790 if (!block_group_bits(block_group, flags)) {
6791 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6792 BTRFS_BLOCK_GROUP_RAID1 |
6793 BTRFS_BLOCK_GROUP_RAID5 |
6794 BTRFS_BLOCK_GROUP_RAID6 |
6795 BTRFS_BLOCK_GROUP_RAID10;
6796
6797 /*
6798 * if they asked for extra copies and this block group
6799 * doesn't provide them, bail. This does allow us to
6800 * fill raid0 from raid1.
6801 */
6802 if ((flags & extra) && !(block_group->flags & extra))
6803 goto loop;
6804 }
6805
6806 have_block_group:
6807 cached = block_group_cache_done(block_group);
6808 if (unlikely(!cached)) {
6809 ret = cache_block_group(block_group, 0);
6810 BUG_ON(ret < 0);
6811 ret = 0;
6812 }
6813
6814 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6815 goto loop;
6816 if (unlikely(block_group->ro))
6817 goto loop;
6818
6819 /*
6820 * Ok we want to try and use the cluster allocator, so
6821 * lets look there
6822 */
6823 if (last_ptr) {
6824 struct btrfs_block_group_cache *used_block_group;
6825 unsigned long aligned_cluster;
6826 /*
6827 * the refill lock keeps out other
6828 * people trying to start a new cluster
6829 */
6830 used_block_group = btrfs_lock_cluster(block_group,
6831 last_ptr,
6832 delalloc);
6833 if (!used_block_group)
6834 goto refill_cluster;
6835
6836 if (used_block_group != block_group &&
6837 (used_block_group->ro ||
6838 !block_group_bits(used_block_group, flags)))
6839 goto release_cluster;
6840
6841 offset = btrfs_alloc_from_cluster(used_block_group,
6842 last_ptr,
6843 num_bytes,
6844 used_block_group->key.objectid,
6845 &max_extent_size);
6846 if (offset) {
6847 /* we have a block, we're done */
6848 spin_unlock(&last_ptr->refill_lock);
6849 trace_btrfs_reserve_extent_cluster(root,
6850 used_block_group,
6851 search_start, num_bytes);
6852 if (used_block_group != block_group) {
6853 btrfs_release_block_group(block_group,
6854 delalloc);
6855 block_group = used_block_group;
6856 }
6857 goto checks;
6858 }
6859
6860 WARN_ON(last_ptr->block_group != used_block_group);
6861 release_cluster:
6862 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6863 * set up a new clusters, so lets just skip it
6864 * and let the allocator find whatever block
6865 * it can find. If we reach this point, we
6866 * will have tried the cluster allocator
6867 * plenty of times and not have found
6868 * anything, so we are likely way too
6869 * fragmented for the clustering stuff to find
6870 * anything.
6871 *
6872 * However, if the cluster is taken from the
6873 * current block group, release the cluster
6874 * first, so that we stand a better chance of
6875 * succeeding in the unclustered
6876 * allocation. */
6877 if (loop >= LOOP_NO_EMPTY_SIZE &&
6878 used_block_group != block_group) {
6879 spin_unlock(&last_ptr->refill_lock);
6880 btrfs_release_block_group(used_block_group,
6881 delalloc);
6882 goto unclustered_alloc;
6883 }
6884
6885 /*
6886 * this cluster didn't work out, free it and
6887 * start over
6888 */
6889 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6890
6891 if (used_block_group != block_group)
6892 btrfs_release_block_group(used_block_group,
6893 delalloc);
6894 refill_cluster:
6895 if (loop >= LOOP_NO_EMPTY_SIZE) {
6896 spin_unlock(&last_ptr->refill_lock);
6897 goto unclustered_alloc;
6898 }
6899
6900 aligned_cluster = max_t(unsigned long,
6901 empty_cluster + empty_size,
6902 block_group->full_stripe_len);
6903
6904 /* allocate a cluster in this block group */
6905 ret = btrfs_find_space_cluster(root, block_group,
6906 last_ptr, search_start,
6907 num_bytes,
6908 aligned_cluster);
6909 if (ret == 0) {
6910 /*
6911 * now pull our allocation out of this
6912 * cluster
6913 */
6914 offset = btrfs_alloc_from_cluster(block_group,
6915 last_ptr,
6916 num_bytes,
6917 search_start,
6918 &max_extent_size);
6919 if (offset) {
6920 /* we found one, proceed */
6921 spin_unlock(&last_ptr->refill_lock);
6922 trace_btrfs_reserve_extent_cluster(root,
6923 block_group, search_start,
6924 num_bytes);
6925 goto checks;
6926 }
6927 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6928 && !failed_cluster_refill) {
6929 spin_unlock(&last_ptr->refill_lock);
6930
6931 failed_cluster_refill = true;
6932 wait_block_group_cache_progress(block_group,
6933 num_bytes + empty_cluster + empty_size);
6934 goto have_block_group;
6935 }
6936
6937 /*
6938 * at this point we either didn't find a cluster
6939 * or we weren't able to allocate a block from our
6940 * cluster. Free the cluster we've been trying
6941 * to use, and go to the next block group
6942 */
6943 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6944 spin_unlock(&last_ptr->refill_lock);
6945 goto loop;
6946 }
6947
6948 unclustered_alloc:
6949 spin_lock(&block_group->free_space_ctl->tree_lock);
6950 if (cached &&
6951 block_group->free_space_ctl->free_space <
6952 num_bytes + empty_cluster + empty_size) {
6953 if (block_group->free_space_ctl->free_space >
6954 max_extent_size)
6955 max_extent_size =
6956 block_group->free_space_ctl->free_space;
6957 spin_unlock(&block_group->free_space_ctl->tree_lock);
6958 goto loop;
6959 }
6960 spin_unlock(&block_group->free_space_ctl->tree_lock);
6961
6962 offset = btrfs_find_space_for_alloc(block_group, search_start,
6963 num_bytes, empty_size,
6964 &max_extent_size);
6965 /*
6966 * If we didn't find a chunk, and we haven't failed on this
6967 * block group before, and this block group is in the middle of
6968 * caching and we are ok with waiting, then go ahead and wait
6969 * for progress to be made, and set failed_alloc to true.
6970 *
6971 * If failed_alloc is true then we've already waited on this
6972 * block group once and should move on to the next block group.
6973 */
6974 if (!offset && !failed_alloc && !cached &&
6975 loop > LOOP_CACHING_NOWAIT) {
6976 wait_block_group_cache_progress(block_group,
6977 num_bytes + empty_size);
6978 failed_alloc = true;
6979 goto have_block_group;
6980 } else if (!offset) {
6981 if (!cached)
6982 have_caching_bg = true;
6983 goto loop;
6984 }
6985 checks:
6986 search_start = ALIGN(offset, root->stripesize);
6987
6988 /* move on to the next group */
6989 if (search_start + num_bytes >
6990 block_group->key.objectid + block_group->key.offset) {
6991 btrfs_add_free_space(block_group, offset, num_bytes);
6992 goto loop;
6993 }
6994
6995 if (offset < search_start)
6996 btrfs_add_free_space(block_group, offset,
6997 search_start - offset);
6998 BUG_ON(offset > search_start);
6999
7000 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7001 alloc_type, delalloc);
7002 if (ret == -EAGAIN) {
7003 btrfs_add_free_space(block_group, offset, num_bytes);
7004 goto loop;
7005 }
7006
7007 /* we are all good, lets return */
7008 ins->objectid = search_start;
7009 ins->offset = num_bytes;
7010
7011 trace_btrfs_reserve_extent(orig_root, block_group,
7012 search_start, num_bytes);
7013 btrfs_release_block_group(block_group, delalloc);
7014 break;
7015 loop:
7016 failed_cluster_refill = false;
7017 failed_alloc = false;
7018 BUG_ON(index != get_block_group_index(block_group));
7019 btrfs_release_block_group(block_group, delalloc);
7020 }
7021 up_read(&space_info->groups_sem);
7022
7023 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7024 goto search;
7025
7026 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7027 goto search;
7028
7029 /*
7030 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7031 * caching kthreads as we move along
7032 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7033 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7034 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7035 * again
7036 */
7037 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7038 index = 0;
7039 loop++;
7040 if (loop == LOOP_ALLOC_CHUNK) {
7041 struct btrfs_trans_handle *trans;
7042 int exist = 0;
7043
7044 trans = current->journal_info;
7045 if (trans)
7046 exist = 1;
7047 else
7048 trans = btrfs_join_transaction(root);
7049
7050 if (IS_ERR(trans)) {
7051 ret = PTR_ERR(trans);
7052 goto out;
7053 }
7054
7055 ret = do_chunk_alloc(trans, root, flags,
7056 CHUNK_ALLOC_FORCE);
7057 /*
7058 * Do not bail out on ENOSPC since we
7059 * can do more things.
7060 */
7061 if (ret < 0 && ret != -ENOSPC)
7062 btrfs_abort_transaction(trans,
7063 root, ret);
7064 else
7065 ret = 0;
7066 if (!exist)
7067 btrfs_end_transaction(trans, root);
7068 if (ret)
7069 goto out;
7070 }
7071
7072 if (loop == LOOP_NO_EMPTY_SIZE) {
7073 empty_size = 0;
7074 empty_cluster = 0;
7075 }
7076
7077 goto search;
7078 } else if (!ins->objectid) {
7079 ret = -ENOSPC;
7080 } else if (ins->objectid) {
7081 ret = 0;
7082 }
7083 out:
7084 if (ret == -ENOSPC)
7085 ins->offset = max_extent_size;
7086 return ret;
7087 }
7088
7089 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7090 int dump_block_groups)
7091 {
7092 struct btrfs_block_group_cache *cache;
7093 int index = 0;
7094
7095 spin_lock(&info->lock);
7096 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7097 info->flags,
7098 info->total_bytes - info->bytes_used - info->bytes_pinned -
7099 info->bytes_reserved - info->bytes_readonly,
7100 (info->full) ? "" : "not ");
7101 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7102 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7103 info->total_bytes, info->bytes_used, info->bytes_pinned,
7104 info->bytes_reserved, info->bytes_may_use,
7105 info->bytes_readonly);
7106 spin_unlock(&info->lock);
7107
7108 if (!dump_block_groups)
7109 return;
7110
7111 down_read(&info->groups_sem);
7112 again:
7113 list_for_each_entry(cache, &info->block_groups[index], list) {
7114 spin_lock(&cache->lock);
7115 printk(KERN_INFO "BTRFS: "
7116 "block group %llu has %llu bytes, "
7117 "%llu used %llu pinned %llu reserved %s\n",
7118 cache->key.objectid, cache->key.offset,
7119 btrfs_block_group_used(&cache->item), cache->pinned,
7120 cache->reserved, cache->ro ? "[readonly]" : "");
7121 btrfs_dump_free_space(cache, bytes);
7122 spin_unlock(&cache->lock);
7123 }
7124 if (++index < BTRFS_NR_RAID_TYPES)
7125 goto again;
7126 up_read(&info->groups_sem);
7127 }
7128
7129 int btrfs_reserve_extent(struct btrfs_root *root,
7130 u64 num_bytes, u64 min_alloc_size,
7131 u64 empty_size, u64 hint_byte,
7132 struct btrfs_key *ins, int is_data, int delalloc)
7133 {
7134 bool final_tried = false;
7135 u64 flags;
7136 int ret;
7137
7138 flags = btrfs_get_alloc_profile(root, is_data);
7139 again:
7140 WARN_ON(num_bytes < root->sectorsize);
7141 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7142 flags, delalloc);
7143
7144 if (ret == -ENOSPC) {
7145 if (!final_tried && ins->offset) {
7146 num_bytes = min(num_bytes >> 1, ins->offset);
7147 num_bytes = round_down(num_bytes, root->sectorsize);
7148 num_bytes = max(num_bytes, min_alloc_size);
7149 if (num_bytes == min_alloc_size)
7150 final_tried = true;
7151 goto again;
7152 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7153 struct btrfs_space_info *sinfo;
7154
7155 sinfo = __find_space_info(root->fs_info, flags);
7156 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7157 flags, num_bytes);
7158 if (sinfo)
7159 dump_space_info(sinfo, num_bytes, 1);
7160 }
7161 }
7162
7163 return ret;
7164 }
7165
7166 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7167 u64 start, u64 len,
7168 int pin, int delalloc)
7169 {
7170 struct btrfs_block_group_cache *cache;
7171 int ret = 0;
7172
7173 cache = btrfs_lookup_block_group(root->fs_info, start);
7174 if (!cache) {
7175 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7176 start);
7177 return -ENOSPC;
7178 }
7179
7180 if (pin)
7181 pin_down_extent(root, cache, start, len, 1);
7182 else {
7183 if (btrfs_test_opt(root, DISCARD))
7184 ret = btrfs_discard_extent(root, start, len, NULL);
7185 btrfs_add_free_space(cache, start, len);
7186 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7187 }
7188 btrfs_put_block_group(cache);
7189
7190 trace_btrfs_reserved_extent_free(root, start, len);
7191
7192 return ret;
7193 }
7194
7195 int btrfs_free_reserved_extent(struct btrfs_root *root,
7196 u64 start, u64 len, int delalloc)
7197 {
7198 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7199 }
7200
7201 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7202 u64 start, u64 len)
7203 {
7204 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7205 }
7206
7207 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7208 struct btrfs_root *root,
7209 u64 parent, u64 root_objectid,
7210 u64 flags, u64 owner, u64 offset,
7211 struct btrfs_key *ins, int ref_mod)
7212 {
7213 int ret;
7214 struct btrfs_fs_info *fs_info = root->fs_info;
7215 struct btrfs_extent_item *extent_item;
7216 struct btrfs_extent_inline_ref *iref;
7217 struct btrfs_path *path;
7218 struct extent_buffer *leaf;
7219 int type;
7220 u32 size;
7221
7222 if (parent > 0)
7223 type = BTRFS_SHARED_DATA_REF_KEY;
7224 else
7225 type = BTRFS_EXTENT_DATA_REF_KEY;
7226
7227 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7228
7229 path = btrfs_alloc_path();
7230 if (!path)
7231 return -ENOMEM;
7232
7233 path->leave_spinning = 1;
7234 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7235 ins, size);
7236 if (ret) {
7237 btrfs_free_path(path);
7238 return ret;
7239 }
7240
7241 leaf = path->nodes[0];
7242 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7243 struct btrfs_extent_item);
7244 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7245 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7246 btrfs_set_extent_flags(leaf, extent_item,
7247 flags | BTRFS_EXTENT_FLAG_DATA);
7248
7249 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7250 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7251 if (parent > 0) {
7252 struct btrfs_shared_data_ref *ref;
7253 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7254 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7255 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7256 } else {
7257 struct btrfs_extent_data_ref *ref;
7258 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7259 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7260 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7261 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7262 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7263 }
7264
7265 btrfs_mark_buffer_dirty(path->nodes[0]);
7266 btrfs_free_path(path);
7267
7268 /* Always set parent to 0 here since its exclusive anyway. */
7269 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7270 ins->objectid, ins->offset,
7271 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7272 if (ret)
7273 return ret;
7274
7275 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7276 if (ret) { /* -ENOENT, logic error */
7277 btrfs_err(fs_info, "update block group failed for %llu %llu",
7278 ins->objectid, ins->offset);
7279 BUG();
7280 }
7281 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7282 return ret;
7283 }
7284
7285 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7286 struct btrfs_root *root,
7287 u64 parent, u64 root_objectid,
7288 u64 flags, struct btrfs_disk_key *key,
7289 int level, struct btrfs_key *ins,
7290 int no_quota)
7291 {
7292 int ret;
7293 struct btrfs_fs_info *fs_info = root->fs_info;
7294 struct btrfs_extent_item *extent_item;
7295 struct btrfs_tree_block_info *block_info;
7296 struct btrfs_extent_inline_ref *iref;
7297 struct btrfs_path *path;
7298 struct extent_buffer *leaf;
7299 u32 size = sizeof(*extent_item) + sizeof(*iref);
7300 u64 num_bytes = ins->offset;
7301 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7302 SKINNY_METADATA);
7303
7304 if (!skinny_metadata)
7305 size += sizeof(*block_info);
7306
7307 path = btrfs_alloc_path();
7308 if (!path) {
7309 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7310 root->nodesize);
7311 return -ENOMEM;
7312 }
7313
7314 path->leave_spinning = 1;
7315 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7316 ins, size);
7317 if (ret) {
7318 btrfs_free_path(path);
7319 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7320 root->nodesize);
7321 return ret;
7322 }
7323
7324 leaf = path->nodes[0];
7325 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7326 struct btrfs_extent_item);
7327 btrfs_set_extent_refs(leaf, extent_item, 1);
7328 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7329 btrfs_set_extent_flags(leaf, extent_item,
7330 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7331
7332 if (skinny_metadata) {
7333 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7334 num_bytes = root->nodesize;
7335 } else {
7336 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7337 btrfs_set_tree_block_key(leaf, block_info, key);
7338 btrfs_set_tree_block_level(leaf, block_info, level);
7339 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7340 }
7341
7342 if (parent > 0) {
7343 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7344 btrfs_set_extent_inline_ref_type(leaf, iref,
7345 BTRFS_SHARED_BLOCK_REF_KEY);
7346 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7347 } else {
7348 btrfs_set_extent_inline_ref_type(leaf, iref,
7349 BTRFS_TREE_BLOCK_REF_KEY);
7350 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7351 }
7352
7353 btrfs_mark_buffer_dirty(leaf);
7354 btrfs_free_path(path);
7355
7356 if (!no_quota) {
7357 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7358 ins->objectid, num_bytes,
7359 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7360 if (ret)
7361 return ret;
7362 }
7363
7364 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7365 1);
7366 if (ret) { /* -ENOENT, logic error */
7367 btrfs_err(fs_info, "update block group failed for %llu %llu",
7368 ins->objectid, ins->offset);
7369 BUG();
7370 }
7371
7372 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7373 return ret;
7374 }
7375
7376 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7377 struct btrfs_root *root,
7378 u64 root_objectid, u64 owner,
7379 u64 offset, struct btrfs_key *ins)
7380 {
7381 int ret;
7382
7383 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7384
7385 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7386 ins->offset, 0,
7387 root_objectid, owner, offset,
7388 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7389 return ret;
7390 }
7391
7392 /*
7393 * this is used by the tree logging recovery code. It records that
7394 * an extent has been allocated and makes sure to clear the free
7395 * space cache bits as well
7396 */
7397 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7398 struct btrfs_root *root,
7399 u64 root_objectid, u64 owner, u64 offset,
7400 struct btrfs_key *ins)
7401 {
7402 int ret;
7403 struct btrfs_block_group_cache *block_group;
7404
7405 /*
7406 * Mixed block groups will exclude before processing the log so we only
7407 * need to do the exlude dance if this fs isn't mixed.
7408 */
7409 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7410 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7411 if (ret)
7412 return ret;
7413 }
7414
7415 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7416 if (!block_group)
7417 return -EINVAL;
7418
7419 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7420 RESERVE_ALLOC_NO_ACCOUNT, 0);
7421 BUG_ON(ret); /* logic error */
7422 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7423 0, owner, offset, ins, 1);
7424 btrfs_put_block_group(block_group);
7425 return ret;
7426 }
7427
7428 static struct extent_buffer *
7429 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7430 u64 bytenr, int level)
7431 {
7432 struct extent_buffer *buf;
7433
7434 buf = btrfs_find_create_tree_block(root, bytenr);
7435 if (!buf)
7436 return ERR_PTR(-ENOMEM);
7437 btrfs_set_header_generation(buf, trans->transid);
7438 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7439 btrfs_tree_lock(buf);
7440 clean_tree_block(trans, root->fs_info, buf);
7441 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7442
7443 btrfs_set_lock_blocking(buf);
7444 btrfs_set_buffer_uptodate(buf);
7445
7446 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7447 buf->log_index = root->log_transid % 2;
7448 /*
7449 * we allow two log transactions at a time, use different
7450 * EXENT bit to differentiate dirty pages.
7451 */
7452 if (buf->log_index == 0)
7453 set_extent_dirty(&root->dirty_log_pages, buf->start,
7454 buf->start + buf->len - 1, GFP_NOFS);
7455 else
7456 set_extent_new(&root->dirty_log_pages, buf->start,
7457 buf->start + buf->len - 1, GFP_NOFS);
7458 } else {
7459 buf->log_index = -1;
7460 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7461 buf->start + buf->len - 1, GFP_NOFS);
7462 }
7463 trans->blocks_used++;
7464 /* this returns a buffer locked for blocking */
7465 return buf;
7466 }
7467
7468 static struct btrfs_block_rsv *
7469 use_block_rsv(struct btrfs_trans_handle *trans,
7470 struct btrfs_root *root, u32 blocksize)
7471 {
7472 struct btrfs_block_rsv *block_rsv;
7473 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7474 int ret;
7475 bool global_updated = false;
7476
7477 block_rsv = get_block_rsv(trans, root);
7478
7479 if (unlikely(block_rsv->size == 0))
7480 goto try_reserve;
7481 again:
7482 ret = block_rsv_use_bytes(block_rsv, blocksize);
7483 if (!ret)
7484 return block_rsv;
7485
7486 if (block_rsv->failfast)
7487 return ERR_PTR(ret);
7488
7489 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7490 global_updated = true;
7491 update_global_block_rsv(root->fs_info);
7492 goto again;
7493 }
7494
7495 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7496 static DEFINE_RATELIMIT_STATE(_rs,
7497 DEFAULT_RATELIMIT_INTERVAL * 10,
7498 /*DEFAULT_RATELIMIT_BURST*/ 1);
7499 if (__ratelimit(&_rs))
7500 WARN(1, KERN_DEBUG
7501 "BTRFS: block rsv returned %d\n", ret);
7502 }
7503 try_reserve:
7504 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7505 BTRFS_RESERVE_NO_FLUSH);
7506 if (!ret)
7507 return block_rsv;
7508 /*
7509 * If we couldn't reserve metadata bytes try and use some from
7510 * the global reserve if its space type is the same as the global
7511 * reservation.
7512 */
7513 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7514 block_rsv->space_info == global_rsv->space_info) {
7515 ret = block_rsv_use_bytes(global_rsv, blocksize);
7516 if (!ret)
7517 return global_rsv;
7518 }
7519 return ERR_PTR(ret);
7520 }
7521
7522 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7523 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7524 {
7525 block_rsv_add_bytes(block_rsv, blocksize, 0);
7526 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7527 }
7528
7529 /*
7530 * finds a free extent and does all the dirty work required for allocation
7531 * returns the key for the extent through ins, and a tree buffer for
7532 * the first block of the extent through buf.
7533 *
7534 * returns the tree buffer or NULL.
7535 */
7536 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7537 struct btrfs_root *root,
7538 u64 parent, u64 root_objectid,
7539 struct btrfs_disk_key *key, int level,
7540 u64 hint, u64 empty_size)
7541 {
7542 struct btrfs_key ins;
7543 struct btrfs_block_rsv *block_rsv;
7544 struct extent_buffer *buf;
7545 u64 flags = 0;
7546 int ret;
7547 u32 blocksize = root->nodesize;
7548 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7549 SKINNY_METADATA);
7550
7551 if (btrfs_test_is_dummy_root(root)) {
7552 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7553 level);
7554 if (!IS_ERR(buf))
7555 root->alloc_bytenr += blocksize;
7556 return buf;
7557 }
7558
7559 block_rsv = use_block_rsv(trans, root, blocksize);
7560 if (IS_ERR(block_rsv))
7561 return ERR_CAST(block_rsv);
7562
7563 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7564 empty_size, hint, &ins, 0, 0);
7565 if (ret) {
7566 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7567 return ERR_PTR(ret);
7568 }
7569
7570 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7571 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7572
7573 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7574 if (parent == 0)
7575 parent = ins.objectid;
7576 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7577 } else
7578 BUG_ON(parent > 0);
7579
7580 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7581 struct btrfs_delayed_extent_op *extent_op;
7582 extent_op = btrfs_alloc_delayed_extent_op();
7583 BUG_ON(!extent_op); /* -ENOMEM */
7584 if (key)
7585 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7586 else
7587 memset(&extent_op->key, 0, sizeof(extent_op->key));
7588 extent_op->flags_to_set = flags;
7589 if (skinny_metadata)
7590 extent_op->update_key = 0;
7591 else
7592 extent_op->update_key = 1;
7593 extent_op->update_flags = 1;
7594 extent_op->is_data = 0;
7595 extent_op->level = level;
7596
7597 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7598 ins.objectid,
7599 ins.offset, parent, root_objectid,
7600 level, BTRFS_ADD_DELAYED_EXTENT,
7601 extent_op, 0);
7602 BUG_ON(ret); /* -ENOMEM */
7603 }
7604 return buf;
7605 }
7606
7607 struct walk_control {
7608 u64 refs[BTRFS_MAX_LEVEL];
7609 u64 flags[BTRFS_MAX_LEVEL];
7610 struct btrfs_key update_progress;
7611 int stage;
7612 int level;
7613 int shared_level;
7614 int update_ref;
7615 int keep_locks;
7616 int reada_slot;
7617 int reada_count;
7618 int for_reloc;
7619 };
7620
7621 #define DROP_REFERENCE 1
7622 #define UPDATE_BACKREF 2
7623
7624 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7625 struct btrfs_root *root,
7626 struct walk_control *wc,
7627 struct btrfs_path *path)
7628 {
7629 u64 bytenr;
7630 u64 generation;
7631 u64 refs;
7632 u64 flags;
7633 u32 nritems;
7634 u32 blocksize;
7635 struct btrfs_key key;
7636 struct extent_buffer *eb;
7637 int ret;
7638 int slot;
7639 int nread = 0;
7640
7641 if (path->slots[wc->level] < wc->reada_slot) {
7642 wc->reada_count = wc->reada_count * 2 / 3;
7643 wc->reada_count = max(wc->reada_count, 2);
7644 } else {
7645 wc->reada_count = wc->reada_count * 3 / 2;
7646 wc->reada_count = min_t(int, wc->reada_count,
7647 BTRFS_NODEPTRS_PER_BLOCK(root));
7648 }
7649
7650 eb = path->nodes[wc->level];
7651 nritems = btrfs_header_nritems(eb);
7652 blocksize = root->nodesize;
7653
7654 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7655 if (nread >= wc->reada_count)
7656 break;
7657
7658 cond_resched();
7659 bytenr = btrfs_node_blockptr(eb, slot);
7660 generation = btrfs_node_ptr_generation(eb, slot);
7661
7662 if (slot == path->slots[wc->level])
7663 goto reada;
7664
7665 if (wc->stage == UPDATE_BACKREF &&
7666 generation <= root->root_key.offset)
7667 continue;
7668
7669 /* We don't lock the tree block, it's OK to be racy here */
7670 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7671 wc->level - 1, 1, &refs,
7672 &flags);
7673 /* We don't care about errors in readahead. */
7674 if (ret < 0)
7675 continue;
7676 BUG_ON(refs == 0);
7677
7678 if (wc->stage == DROP_REFERENCE) {
7679 if (refs == 1)
7680 goto reada;
7681
7682 if (wc->level == 1 &&
7683 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7684 continue;
7685 if (!wc->update_ref ||
7686 generation <= root->root_key.offset)
7687 continue;
7688 btrfs_node_key_to_cpu(eb, &key, slot);
7689 ret = btrfs_comp_cpu_keys(&key,
7690 &wc->update_progress);
7691 if (ret < 0)
7692 continue;
7693 } else {
7694 if (wc->level == 1 &&
7695 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7696 continue;
7697 }
7698 reada:
7699 readahead_tree_block(root, bytenr);
7700 nread++;
7701 }
7702 wc->reada_slot = slot;
7703 }
7704
7705 static int account_leaf_items(struct btrfs_trans_handle *trans,
7706 struct btrfs_root *root,
7707 struct extent_buffer *eb)
7708 {
7709 int nr = btrfs_header_nritems(eb);
7710 int i, extent_type, ret;
7711 struct btrfs_key key;
7712 struct btrfs_file_extent_item *fi;
7713 u64 bytenr, num_bytes;
7714
7715 for (i = 0; i < nr; i++) {
7716 btrfs_item_key_to_cpu(eb, &key, i);
7717
7718 if (key.type != BTRFS_EXTENT_DATA_KEY)
7719 continue;
7720
7721 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7722 /* filter out non qgroup-accountable extents */
7723 extent_type = btrfs_file_extent_type(eb, fi);
7724
7725 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7726 continue;
7727
7728 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7729 if (!bytenr)
7730 continue;
7731
7732 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7733
7734 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7735 root->objectid,
7736 bytenr, num_bytes,
7737 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7738 if (ret)
7739 return ret;
7740 }
7741 return 0;
7742 }
7743
7744 /*
7745 * Walk up the tree from the bottom, freeing leaves and any interior
7746 * nodes which have had all slots visited. If a node (leaf or
7747 * interior) is freed, the node above it will have it's slot
7748 * incremented. The root node will never be freed.
7749 *
7750 * At the end of this function, we should have a path which has all
7751 * slots incremented to the next position for a search. If we need to
7752 * read a new node it will be NULL and the node above it will have the
7753 * correct slot selected for a later read.
7754 *
7755 * If we increment the root nodes slot counter past the number of
7756 * elements, 1 is returned to signal completion of the search.
7757 */
7758 static int adjust_slots_upwards(struct btrfs_root *root,
7759 struct btrfs_path *path, int root_level)
7760 {
7761 int level = 0;
7762 int nr, slot;
7763 struct extent_buffer *eb;
7764
7765 if (root_level == 0)
7766 return 1;
7767
7768 while (level <= root_level) {
7769 eb = path->nodes[level];
7770 nr = btrfs_header_nritems(eb);
7771 path->slots[level]++;
7772 slot = path->slots[level];
7773 if (slot >= nr || level == 0) {
7774 /*
7775 * Don't free the root - we will detect this
7776 * condition after our loop and return a
7777 * positive value for caller to stop walking the tree.
7778 */
7779 if (level != root_level) {
7780 btrfs_tree_unlock_rw(eb, path->locks[level]);
7781 path->locks[level] = 0;
7782
7783 free_extent_buffer(eb);
7784 path->nodes[level] = NULL;
7785 path->slots[level] = 0;
7786 }
7787 } else {
7788 /*
7789 * We have a valid slot to walk back down
7790 * from. Stop here so caller can process these
7791 * new nodes.
7792 */
7793 break;
7794 }
7795
7796 level++;
7797 }
7798
7799 eb = path->nodes[root_level];
7800 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7801 return 1;
7802
7803 return 0;
7804 }
7805
7806 /*
7807 * root_eb is the subtree root and is locked before this function is called.
7808 */
7809 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7810 struct btrfs_root *root,
7811 struct extent_buffer *root_eb,
7812 u64 root_gen,
7813 int root_level)
7814 {
7815 int ret = 0;
7816 int level;
7817 struct extent_buffer *eb = root_eb;
7818 struct btrfs_path *path = NULL;
7819
7820 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7821 BUG_ON(root_eb == NULL);
7822
7823 if (!root->fs_info->quota_enabled)
7824 return 0;
7825
7826 if (!extent_buffer_uptodate(root_eb)) {
7827 ret = btrfs_read_buffer(root_eb, root_gen);
7828 if (ret)
7829 goto out;
7830 }
7831
7832 if (root_level == 0) {
7833 ret = account_leaf_items(trans, root, root_eb);
7834 goto out;
7835 }
7836
7837 path = btrfs_alloc_path();
7838 if (!path)
7839 return -ENOMEM;
7840
7841 /*
7842 * Walk down the tree. Missing extent blocks are filled in as
7843 * we go. Metadata is accounted every time we read a new
7844 * extent block.
7845 *
7846 * When we reach a leaf, we account for file extent items in it,
7847 * walk back up the tree (adjusting slot pointers as we go)
7848 * and restart the search process.
7849 */
7850 extent_buffer_get(root_eb); /* For path */
7851 path->nodes[root_level] = root_eb;
7852 path->slots[root_level] = 0;
7853 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7854 walk_down:
7855 level = root_level;
7856 while (level >= 0) {
7857 if (path->nodes[level] == NULL) {
7858 int parent_slot;
7859 u64 child_gen;
7860 u64 child_bytenr;
7861
7862 /* We need to get child blockptr/gen from
7863 * parent before we can read it. */
7864 eb = path->nodes[level + 1];
7865 parent_slot = path->slots[level + 1];
7866 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7867 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7868
7869 eb = read_tree_block(root, child_bytenr, child_gen);
7870 if (!eb || !extent_buffer_uptodate(eb)) {
7871 ret = -EIO;
7872 goto out;
7873 }
7874
7875 path->nodes[level] = eb;
7876 path->slots[level] = 0;
7877
7878 btrfs_tree_read_lock(eb);
7879 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7880 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7881
7882 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7883 root->objectid,
7884 child_bytenr,
7885 root->nodesize,
7886 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7887 0);
7888 if (ret)
7889 goto out;
7890
7891 }
7892
7893 if (level == 0) {
7894 ret = account_leaf_items(trans, root, path->nodes[level]);
7895 if (ret)
7896 goto out;
7897
7898 /* Nonzero return here means we completed our search */
7899 ret = adjust_slots_upwards(root, path, root_level);
7900 if (ret)
7901 break;
7902
7903 /* Restart search with new slots */
7904 goto walk_down;
7905 }
7906
7907 level--;
7908 }
7909
7910 ret = 0;
7911 out:
7912 btrfs_free_path(path);
7913
7914 return ret;
7915 }
7916
7917 /*
7918 * helper to process tree block while walking down the tree.
7919 *
7920 * when wc->stage == UPDATE_BACKREF, this function updates
7921 * back refs for pointers in the block.
7922 *
7923 * NOTE: return value 1 means we should stop walking down.
7924 */
7925 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7926 struct btrfs_root *root,
7927 struct btrfs_path *path,
7928 struct walk_control *wc, int lookup_info)
7929 {
7930 int level = wc->level;
7931 struct extent_buffer *eb = path->nodes[level];
7932 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7933 int ret;
7934
7935 if (wc->stage == UPDATE_BACKREF &&
7936 btrfs_header_owner(eb) != root->root_key.objectid)
7937 return 1;
7938
7939 /*
7940 * when reference count of tree block is 1, it won't increase
7941 * again. once full backref flag is set, we never clear it.
7942 */
7943 if (lookup_info &&
7944 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7945 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7946 BUG_ON(!path->locks[level]);
7947 ret = btrfs_lookup_extent_info(trans, root,
7948 eb->start, level, 1,
7949 &wc->refs[level],
7950 &wc->flags[level]);
7951 BUG_ON(ret == -ENOMEM);
7952 if (ret)
7953 return ret;
7954 BUG_ON(wc->refs[level] == 0);
7955 }
7956
7957 if (wc->stage == DROP_REFERENCE) {
7958 if (wc->refs[level] > 1)
7959 return 1;
7960
7961 if (path->locks[level] && !wc->keep_locks) {
7962 btrfs_tree_unlock_rw(eb, path->locks[level]);
7963 path->locks[level] = 0;
7964 }
7965 return 0;
7966 }
7967
7968 /* wc->stage == UPDATE_BACKREF */
7969 if (!(wc->flags[level] & flag)) {
7970 BUG_ON(!path->locks[level]);
7971 ret = btrfs_inc_ref(trans, root, eb, 1);
7972 BUG_ON(ret); /* -ENOMEM */
7973 ret = btrfs_dec_ref(trans, root, eb, 0);
7974 BUG_ON(ret); /* -ENOMEM */
7975 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7976 eb->len, flag,
7977 btrfs_header_level(eb), 0);
7978 BUG_ON(ret); /* -ENOMEM */
7979 wc->flags[level] |= flag;
7980 }
7981
7982 /*
7983 * the block is shared by multiple trees, so it's not good to
7984 * keep the tree lock
7985 */
7986 if (path->locks[level] && level > 0) {
7987 btrfs_tree_unlock_rw(eb, path->locks[level]);
7988 path->locks[level] = 0;
7989 }
7990 return 0;
7991 }
7992
7993 /*
7994 * helper to process tree block pointer.
7995 *
7996 * when wc->stage == DROP_REFERENCE, this function checks
7997 * reference count of the block pointed to. if the block
7998 * is shared and we need update back refs for the subtree
7999 * rooted at the block, this function changes wc->stage to
8000 * UPDATE_BACKREF. if the block is shared and there is no
8001 * need to update back, this function drops the reference
8002 * to the block.
8003 *
8004 * NOTE: return value 1 means we should stop walking down.
8005 */
8006 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8007 struct btrfs_root *root,
8008 struct btrfs_path *path,
8009 struct walk_control *wc, int *lookup_info)
8010 {
8011 u64 bytenr;
8012 u64 generation;
8013 u64 parent;
8014 u32 blocksize;
8015 struct btrfs_key key;
8016 struct extent_buffer *next;
8017 int level = wc->level;
8018 int reada = 0;
8019 int ret = 0;
8020 bool need_account = false;
8021
8022 generation = btrfs_node_ptr_generation(path->nodes[level],
8023 path->slots[level]);
8024 /*
8025 * if the lower level block was created before the snapshot
8026 * was created, we know there is no need to update back refs
8027 * for the subtree
8028 */
8029 if (wc->stage == UPDATE_BACKREF &&
8030 generation <= root->root_key.offset) {
8031 *lookup_info = 1;
8032 return 1;
8033 }
8034
8035 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8036 blocksize = root->nodesize;
8037
8038 next = btrfs_find_tree_block(root->fs_info, bytenr);
8039 if (!next) {
8040 next = btrfs_find_create_tree_block(root, bytenr);
8041 if (!next)
8042 return -ENOMEM;
8043 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8044 level - 1);
8045 reada = 1;
8046 }
8047 btrfs_tree_lock(next);
8048 btrfs_set_lock_blocking(next);
8049
8050 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8051 &wc->refs[level - 1],
8052 &wc->flags[level - 1]);
8053 if (ret < 0) {
8054 btrfs_tree_unlock(next);
8055 return ret;
8056 }
8057
8058 if (unlikely(wc->refs[level - 1] == 0)) {
8059 btrfs_err(root->fs_info, "Missing references.");
8060 BUG();
8061 }
8062 *lookup_info = 0;
8063
8064 if (wc->stage == DROP_REFERENCE) {
8065 if (wc->refs[level - 1] > 1) {
8066 need_account = true;
8067 if (level == 1 &&
8068 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8069 goto skip;
8070
8071 if (!wc->update_ref ||
8072 generation <= root->root_key.offset)
8073 goto skip;
8074
8075 btrfs_node_key_to_cpu(path->nodes[level], &key,
8076 path->slots[level]);
8077 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8078 if (ret < 0)
8079 goto skip;
8080
8081 wc->stage = UPDATE_BACKREF;
8082 wc->shared_level = level - 1;
8083 }
8084 } else {
8085 if (level == 1 &&
8086 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8087 goto skip;
8088 }
8089
8090 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8091 btrfs_tree_unlock(next);
8092 free_extent_buffer(next);
8093 next = NULL;
8094 *lookup_info = 1;
8095 }
8096
8097 if (!next) {
8098 if (reada && level == 1)
8099 reada_walk_down(trans, root, wc, path);
8100 next = read_tree_block(root, bytenr, generation);
8101 if (!next || !extent_buffer_uptodate(next)) {
8102 free_extent_buffer(next);
8103 return -EIO;
8104 }
8105 btrfs_tree_lock(next);
8106 btrfs_set_lock_blocking(next);
8107 }
8108
8109 level--;
8110 BUG_ON(level != btrfs_header_level(next));
8111 path->nodes[level] = next;
8112 path->slots[level] = 0;
8113 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8114 wc->level = level;
8115 if (wc->level == 1)
8116 wc->reada_slot = 0;
8117 return 0;
8118 skip:
8119 wc->refs[level - 1] = 0;
8120 wc->flags[level - 1] = 0;
8121 if (wc->stage == DROP_REFERENCE) {
8122 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8123 parent = path->nodes[level]->start;
8124 } else {
8125 BUG_ON(root->root_key.objectid !=
8126 btrfs_header_owner(path->nodes[level]));
8127 parent = 0;
8128 }
8129
8130 if (need_account) {
8131 ret = account_shared_subtree(trans, root, next,
8132 generation, level - 1);
8133 if (ret) {
8134 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8135 "%d accounting shared subtree. Quota "
8136 "is out of sync, rescan required.\n",
8137 root->fs_info->sb->s_id, ret);
8138 }
8139 }
8140 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8141 root->root_key.objectid, level - 1, 0, 0);
8142 BUG_ON(ret); /* -ENOMEM */
8143 }
8144 btrfs_tree_unlock(next);
8145 free_extent_buffer(next);
8146 *lookup_info = 1;
8147 return 1;
8148 }
8149
8150 /*
8151 * helper to process tree block while walking up the tree.
8152 *
8153 * when wc->stage == DROP_REFERENCE, this function drops
8154 * reference count on the block.
8155 *
8156 * when wc->stage == UPDATE_BACKREF, this function changes
8157 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8158 * to UPDATE_BACKREF previously while processing the block.
8159 *
8160 * NOTE: return value 1 means we should stop walking up.
8161 */
8162 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8163 struct btrfs_root *root,
8164 struct btrfs_path *path,
8165 struct walk_control *wc)
8166 {
8167 int ret;
8168 int level = wc->level;
8169 struct extent_buffer *eb = path->nodes[level];
8170 u64 parent = 0;
8171
8172 if (wc->stage == UPDATE_BACKREF) {
8173 BUG_ON(wc->shared_level < level);
8174 if (level < wc->shared_level)
8175 goto out;
8176
8177 ret = find_next_key(path, level + 1, &wc->update_progress);
8178 if (ret > 0)
8179 wc->update_ref = 0;
8180
8181 wc->stage = DROP_REFERENCE;
8182 wc->shared_level = -1;
8183 path->slots[level] = 0;
8184
8185 /*
8186 * check reference count again if the block isn't locked.
8187 * we should start walking down the tree again if reference
8188 * count is one.
8189 */
8190 if (!path->locks[level]) {
8191 BUG_ON(level == 0);
8192 btrfs_tree_lock(eb);
8193 btrfs_set_lock_blocking(eb);
8194 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8195
8196 ret = btrfs_lookup_extent_info(trans, root,
8197 eb->start, level, 1,
8198 &wc->refs[level],
8199 &wc->flags[level]);
8200 if (ret < 0) {
8201 btrfs_tree_unlock_rw(eb, path->locks[level]);
8202 path->locks[level] = 0;
8203 return ret;
8204 }
8205 BUG_ON(wc->refs[level] == 0);
8206 if (wc->refs[level] == 1) {
8207 btrfs_tree_unlock_rw(eb, path->locks[level]);
8208 path->locks[level] = 0;
8209 return 1;
8210 }
8211 }
8212 }
8213
8214 /* wc->stage == DROP_REFERENCE */
8215 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8216
8217 if (wc->refs[level] == 1) {
8218 if (level == 0) {
8219 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8220 ret = btrfs_dec_ref(trans, root, eb, 1);
8221 else
8222 ret = btrfs_dec_ref(trans, root, eb, 0);
8223 BUG_ON(ret); /* -ENOMEM */
8224 ret = account_leaf_items(trans, root, eb);
8225 if (ret) {
8226 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8227 "%d accounting leaf items. Quota "
8228 "is out of sync, rescan required.\n",
8229 root->fs_info->sb->s_id, ret);
8230 }
8231 }
8232 /* make block locked assertion in clean_tree_block happy */
8233 if (!path->locks[level] &&
8234 btrfs_header_generation(eb) == trans->transid) {
8235 btrfs_tree_lock(eb);
8236 btrfs_set_lock_blocking(eb);
8237 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8238 }
8239 clean_tree_block(trans, root->fs_info, eb);
8240 }
8241
8242 if (eb == root->node) {
8243 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8244 parent = eb->start;
8245 else
8246 BUG_ON(root->root_key.objectid !=
8247 btrfs_header_owner(eb));
8248 } else {
8249 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8250 parent = path->nodes[level + 1]->start;
8251 else
8252 BUG_ON(root->root_key.objectid !=
8253 btrfs_header_owner(path->nodes[level + 1]));
8254 }
8255
8256 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8257 out:
8258 wc->refs[level] = 0;
8259 wc->flags[level] = 0;
8260 return 0;
8261 }
8262
8263 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8264 struct btrfs_root *root,
8265 struct btrfs_path *path,
8266 struct walk_control *wc)
8267 {
8268 int level = wc->level;
8269 int lookup_info = 1;
8270 int ret;
8271
8272 while (level >= 0) {
8273 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8274 if (ret > 0)
8275 break;
8276
8277 if (level == 0)
8278 break;
8279
8280 if (path->slots[level] >=
8281 btrfs_header_nritems(path->nodes[level]))
8282 break;
8283
8284 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8285 if (ret > 0) {
8286 path->slots[level]++;
8287 continue;
8288 } else if (ret < 0)
8289 return ret;
8290 level = wc->level;
8291 }
8292 return 0;
8293 }
8294
8295 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8296 struct btrfs_root *root,
8297 struct btrfs_path *path,
8298 struct walk_control *wc, int max_level)
8299 {
8300 int level = wc->level;
8301 int ret;
8302
8303 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8304 while (level < max_level && path->nodes[level]) {
8305 wc->level = level;
8306 if (path->slots[level] + 1 <
8307 btrfs_header_nritems(path->nodes[level])) {
8308 path->slots[level]++;
8309 return 0;
8310 } else {
8311 ret = walk_up_proc(trans, root, path, wc);
8312 if (ret > 0)
8313 return 0;
8314
8315 if (path->locks[level]) {
8316 btrfs_tree_unlock_rw(path->nodes[level],
8317 path->locks[level]);
8318 path->locks[level] = 0;
8319 }
8320 free_extent_buffer(path->nodes[level]);
8321 path->nodes[level] = NULL;
8322 level++;
8323 }
8324 }
8325 return 1;
8326 }
8327
8328 /*
8329 * drop a subvolume tree.
8330 *
8331 * this function traverses the tree freeing any blocks that only
8332 * referenced by the tree.
8333 *
8334 * when a shared tree block is found. this function decreases its
8335 * reference count by one. if update_ref is true, this function
8336 * also make sure backrefs for the shared block and all lower level
8337 * blocks are properly updated.
8338 *
8339 * If called with for_reloc == 0, may exit early with -EAGAIN
8340 */
8341 int btrfs_drop_snapshot(struct btrfs_root *root,
8342 struct btrfs_block_rsv *block_rsv, int update_ref,
8343 int for_reloc)
8344 {
8345 struct btrfs_path *path;
8346 struct btrfs_trans_handle *trans;
8347 struct btrfs_root *tree_root = root->fs_info->tree_root;
8348 struct btrfs_root_item *root_item = &root->root_item;
8349 struct walk_control *wc;
8350 struct btrfs_key key;
8351 int err = 0;
8352 int ret;
8353 int level;
8354 bool root_dropped = false;
8355
8356 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8357
8358 path = btrfs_alloc_path();
8359 if (!path) {
8360 err = -ENOMEM;
8361 goto out;
8362 }
8363
8364 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8365 if (!wc) {
8366 btrfs_free_path(path);
8367 err = -ENOMEM;
8368 goto out;
8369 }
8370
8371 trans = btrfs_start_transaction(tree_root, 0);
8372 if (IS_ERR(trans)) {
8373 err = PTR_ERR(trans);
8374 goto out_free;
8375 }
8376
8377 if (block_rsv)
8378 trans->block_rsv = block_rsv;
8379
8380 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8381 level = btrfs_header_level(root->node);
8382 path->nodes[level] = btrfs_lock_root_node(root);
8383 btrfs_set_lock_blocking(path->nodes[level]);
8384 path->slots[level] = 0;
8385 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8386 memset(&wc->update_progress, 0,
8387 sizeof(wc->update_progress));
8388 } else {
8389 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8390 memcpy(&wc->update_progress, &key,
8391 sizeof(wc->update_progress));
8392
8393 level = root_item->drop_level;
8394 BUG_ON(level == 0);
8395 path->lowest_level = level;
8396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8397 path->lowest_level = 0;
8398 if (ret < 0) {
8399 err = ret;
8400 goto out_end_trans;
8401 }
8402 WARN_ON(ret > 0);
8403
8404 /*
8405 * unlock our path, this is safe because only this
8406 * function is allowed to delete this snapshot
8407 */
8408 btrfs_unlock_up_safe(path, 0);
8409
8410 level = btrfs_header_level(root->node);
8411 while (1) {
8412 btrfs_tree_lock(path->nodes[level]);
8413 btrfs_set_lock_blocking(path->nodes[level]);
8414 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8415
8416 ret = btrfs_lookup_extent_info(trans, root,
8417 path->nodes[level]->start,
8418 level, 1, &wc->refs[level],
8419 &wc->flags[level]);
8420 if (ret < 0) {
8421 err = ret;
8422 goto out_end_trans;
8423 }
8424 BUG_ON(wc->refs[level] == 0);
8425
8426 if (level == root_item->drop_level)
8427 break;
8428
8429 btrfs_tree_unlock(path->nodes[level]);
8430 path->locks[level] = 0;
8431 WARN_ON(wc->refs[level] != 1);
8432 level--;
8433 }
8434 }
8435
8436 wc->level = level;
8437 wc->shared_level = -1;
8438 wc->stage = DROP_REFERENCE;
8439 wc->update_ref = update_ref;
8440 wc->keep_locks = 0;
8441 wc->for_reloc = for_reloc;
8442 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8443
8444 while (1) {
8445
8446 ret = walk_down_tree(trans, root, path, wc);
8447 if (ret < 0) {
8448 err = ret;
8449 break;
8450 }
8451
8452 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8453 if (ret < 0) {
8454 err = ret;
8455 break;
8456 }
8457
8458 if (ret > 0) {
8459 BUG_ON(wc->stage != DROP_REFERENCE);
8460 break;
8461 }
8462
8463 if (wc->stage == DROP_REFERENCE) {
8464 level = wc->level;
8465 btrfs_node_key(path->nodes[level],
8466 &root_item->drop_progress,
8467 path->slots[level]);
8468 root_item->drop_level = level;
8469 }
8470
8471 BUG_ON(wc->level == 0);
8472 if (btrfs_should_end_transaction(trans, tree_root) ||
8473 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8474 ret = btrfs_update_root(trans, tree_root,
8475 &root->root_key,
8476 root_item);
8477 if (ret) {
8478 btrfs_abort_transaction(trans, tree_root, ret);
8479 err = ret;
8480 goto out_end_trans;
8481 }
8482
8483 /*
8484 * Qgroup update accounting is run from
8485 * delayed ref handling. This usually works
8486 * out because delayed refs are normally the
8487 * only way qgroup updates are added. However,
8488 * we may have added updates during our tree
8489 * walk so run qgroups here to make sure we
8490 * don't lose any updates.
8491 */
8492 ret = btrfs_delayed_qgroup_accounting(trans,
8493 root->fs_info);
8494 if (ret)
8495 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8496 "running qgroup updates "
8497 "during snapshot delete. "
8498 "Quota is out of sync, "
8499 "rescan required.\n", ret);
8500
8501 btrfs_end_transaction_throttle(trans, tree_root);
8502 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8503 pr_debug("BTRFS: drop snapshot early exit\n");
8504 err = -EAGAIN;
8505 goto out_free;
8506 }
8507
8508 trans = btrfs_start_transaction(tree_root, 0);
8509 if (IS_ERR(trans)) {
8510 err = PTR_ERR(trans);
8511 goto out_free;
8512 }
8513 if (block_rsv)
8514 trans->block_rsv = block_rsv;
8515 }
8516 }
8517 btrfs_release_path(path);
8518 if (err)
8519 goto out_end_trans;
8520
8521 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8522 if (ret) {
8523 btrfs_abort_transaction(trans, tree_root, ret);
8524 goto out_end_trans;
8525 }
8526
8527 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8528 ret = btrfs_find_root(tree_root, &root->root_key, path,
8529 NULL, NULL);
8530 if (ret < 0) {
8531 btrfs_abort_transaction(trans, tree_root, ret);
8532 err = ret;
8533 goto out_end_trans;
8534 } else if (ret > 0) {
8535 /* if we fail to delete the orphan item this time
8536 * around, it'll get picked up the next time.
8537 *
8538 * The most common failure here is just -ENOENT.
8539 */
8540 btrfs_del_orphan_item(trans, tree_root,
8541 root->root_key.objectid);
8542 }
8543 }
8544
8545 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8546 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8547 } else {
8548 free_extent_buffer(root->node);
8549 free_extent_buffer(root->commit_root);
8550 btrfs_put_fs_root(root);
8551 }
8552 root_dropped = true;
8553 out_end_trans:
8554 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8555 if (ret)
8556 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8557 "running qgroup updates "
8558 "during snapshot delete. "
8559 "Quota is out of sync, "
8560 "rescan required.\n", ret);
8561
8562 btrfs_end_transaction_throttle(trans, tree_root);
8563 out_free:
8564 kfree(wc);
8565 btrfs_free_path(path);
8566 out:
8567 /*
8568 * So if we need to stop dropping the snapshot for whatever reason we
8569 * need to make sure to add it back to the dead root list so that we
8570 * keep trying to do the work later. This also cleans up roots if we
8571 * don't have it in the radix (like when we recover after a power fail
8572 * or unmount) so we don't leak memory.
8573 */
8574 if (!for_reloc && root_dropped == false)
8575 btrfs_add_dead_root(root);
8576 if (err && err != -EAGAIN)
8577 btrfs_std_error(root->fs_info, err);
8578 return err;
8579 }
8580
8581 /*
8582 * drop subtree rooted at tree block 'node'.
8583 *
8584 * NOTE: this function will unlock and release tree block 'node'
8585 * only used by relocation code
8586 */
8587 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8588 struct btrfs_root *root,
8589 struct extent_buffer *node,
8590 struct extent_buffer *parent)
8591 {
8592 struct btrfs_path *path;
8593 struct walk_control *wc;
8594 int level;
8595 int parent_level;
8596 int ret = 0;
8597 int wret;
8598
8599 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8600
8601 path = btrfs_alloc_path();
8602 if (!path)
8603 return -ENOMEM;
8604
8605 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8606 if (!wc) {
8607 btrfs_free_path(path);
8608 return -ENOMEM;
8609 }
8610
8611 btrfs_assert_tree_locked(parent);
8612 parent_level = btrfs_header_level(parent);
8613 extent_buffer_get(parent);
8614 path->nodes[parent_level] = parent;
8615 path->slots[parent_level] = btrfs_header_nritems(parent);
8616
8617 btrfs_assert_tree_locked(node);
8618 level = btrfs_header_level(node);
8619 path->nodes[level] = node;
8620 path->slots[level] = 0;
8621 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8622
8623 wc->refs[parent_level] = 1;
8624 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8625 wc->level = level;
8626 wc->shared_level = -1;
8627 wc->stage = DROP_REFERENCE;
8628 wc->update_ref = 0;
8629 wc->keep_locks = 1;
8630 wc->for_reloc = 1;
8631 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8632
8633 while (1) {
8634 wret = walk_down_tree(trans, root, path, wc);
8635 if (wret < 0) {
8636 ret = wret;
8637 break;
8638 }
8639
8640 wret = walk_up_tree(trans, root, path, wc, parent_level);
8641 if (wret < 0)
8642 ret = wret;
8643 if (wret != 0)
8644 break;
8645 }
8646
8647 kfree(wc);
8648 btrfs_free_path(path);
8649 return ret;
8650 }
8651
8652 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8653 {
8654 u64 num_devices;
8655 u64 stripped;
8656
8657 /*
8658 * if restripe for this chunk_type is on pick target profile and
8659 * return, otherwise do the usual balance
8660 */
8661 stripped = get_restripe_target(root->fs_info, flags);
8662 if (stripped)
8663 return extended_to_chunk(stripped);
8664
8665 num_devices = root->fs_info->fs_devices->rw_devices;
8666
8667 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8668 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8669 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8670
8671 if (num_devices == 1) {
8672 stripped |= BTRFS_BLOCK_GROUP_DUP;
8673 stripped = flags & ~stripped;
8674
8675 /* turn raid0 into single device chunks */
8676 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8677 return stripped;
8678
8679 /* turn mirroring into duplication */
8680 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8681 BTRFS_BLOCK_GROUP_RAID10))
8682 return stripped | BTRFS_BLOCK_GROUP_DUP;
8683 } else {
8684 /* they already had raid on here, just return */
8685 if (flags & stripped)
8686 return flags;
8687
8688 stripped |= BTRFS_BLOCK_GROUP_DUP;
8689 stripped = flags & ~stripped;
8690
8691 /* switch duplicated blocks with raid1 */
8692 if (flags & BTRFS_BLOCK_GROUP_DUP)
8693 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8694
8695 /* this is drive concat, leave it alone */
8696 }
8697
8698 return flags;
8699 }
8700
8701 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8702 {
8703 struct btrfs_space_info *sinfo = cache->space_info;
8704 u64 num_bytes;
8705 u64 min_allocable_bytes;
8706 int ret = -ENOSPC;
8707
8708
8709 /*
8710 * We need some metadata space and system metadata space for
8711 * allocating chunks in some corner cases until we force to set
8712 * it to be readonly.
8713 */
8714 if ((sinfo->flags &
8715 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8716 !force)
8717 min_allocable_bytes = 1 * 1024 * 1024;
8718 else
8719 min_allocable_bytes = 0;
8720
8721 spin_lock(&sinfo->lock);
8722 spin_lock(&cache->lock);
8723
8724 if (cache->ro) {
8725 ret = 0;
8726 goto out;
8727 }
8728
8729 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8730 cache->bytes_super - btrfs_block_group_used(&cache->item);
8731
8732 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8733 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8734 min_allocable_bytes <= sinfo->total_bytes) {
8735 sinfo->bytes_readonly += num_bytes;
8736 cache->ro = 1;
8737 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8738 ret = 0;
8739 }
8740 out:
8741 spin_unlock(&cache->lock);
8742 spin_unlock(&sinfo->lock);
8743 return ret;
8744 }
8745
8746 int btrfs_set_block_group_ro(struct btrfs_root *root,
8747 struct btrfs_block_group_cache *cache)
8748
8749 {
8750 struct btrfs_trans_handle *trans;
8751 u64 alloc_flags;
8752 int ret;
8753
8754 BUG_ON(cache->ro);
8755
8756 again:
8757 trans = btrfs_join_transaction(root);
8758 if (IS_ERR(trans))
8759 return PTR_ERR(trans);
8760
8761 /*
8762 * we're not allowed to set block groups readonly after the dirty
8763 * block groups cache has started writing. If it already started,
8764 * back off and let this transaction commit
8765 */
8766 mutex_lock(&root->fs_info->ro_block_group_mutex);
8767 if (trans->transaction->dirty_bg_run) {
8768 u64 transid = trans->transid;
8769
8770 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8771 btrfs_end_transaction(trans, root);
8772
8773 ret = btrfs_wait_for_commit(root, transid);
8774 if (ret)
8775 return ret;
8776 goto again;
8777 }
8778
8779
8780 ret = set_block_group_ro(cache, 0);
8781 if (!ret)
8782 goto out;
8783 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8784 ret = do_chunk_alloc(trans, root, alloc_flags,
8785 CHUNK_ALLOC_FORCE);
8786 if (ret < 0)
8787 goto out;
8788 ret = set_block_group_ro(cache, 0);
8789 out:
8790 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8791 alloc_flags = update_block_group_flags(root, cache->flags);
8792 check_system_chunk(trans, root, alloc_flags);
8793 }
8794 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8795
8796 btrfs_end_transaction(trans, root);
8797 return ret;
8798 }
8799
8800 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8801 struct btrfs_root *root, u64 type)
8802 {
8803 u64 alloc_flags = get_alloc_profile(root, type);
8804 return do_chunk_alloc(trans, root, alloc_flags,
8805 CHUNK_ALLOC_FORCE);
8806 }
8807
8808 /*
8809 * helper to account the unused space of all the readonly block group in the
8810 * space_info. takes mirrors into account.
8811 */
8812 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8813 {
8814 struct btrfs_block_group_cache *block_group;
8815 u64 free_bytes = 0;
8816 int factor;
8817
8818 /* It's df, we don't care if it's racey */
8819 if (list_empty(&sinfo->ro_bgs))
8820 return 0;
8821
8822 spin_lock(&sinfo->lock);
8823 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8824 spin_lock(&block_group->lock);
8825
8826 if (!block_group->ro) {
8827 spin_unlock(&block_group->lock);
8828 continue;
8829 }
8830
8831 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8832 BTRFS_BLOCK_GROUP_RAID10 |
8833 BTRFS_BLOCK_GROUP_DUP))
8834 factor = 2;
8835 else
8836 factor = 1;
8837
8838 free_bytes += (block_group->key.offset -
8839 btrfs_block_group_used(&block_group->item)) *
8840 factor;
8841
8842 spin_unlock(&block_group->lock);
8843 }
8844 spin_unlock(&sinfo->lock);
8845
8846 return free_bytes;
8847 }
8848
8849 void btrfs_set_block_group_rw(struct btrfs_root *root,
8850 struct btrfs_block_group_cache *cache)
8851 {
8852 struct btrfs_space_info *sinfo = cache->space_info;
8853 u64 num_bytes;
8854
8855 BUG_ON(!cache->ro);
8856
8857 spin_lock(&sinfo->lock);
8858 spin_lock(&cache->lock);
8859 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8860 cache->bytes_super - btrfs_block_group_used(&cache->item);
8861 sinfo->bytes_readonly -= num_bytes;
8862 cache->ro = 0;
8863 list_del_init(&cache->ro_list);
8864 spin_unlock(&cache->lock);
8865 spin_unlock(&sinfo->lock);
8866 }
8867
8868 /*
8869 * checks to see if its even possible to relocate this block group.
8870 *
8871 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8872 * ok to go ahead and try.
8873 */
8874 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8875 {
8876 struct btrfs_block_group_cache *block_group;
8877 struct btrfs_space_info *space_info;
8878 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8879 struct btrfs_device *device;
8880 struct btrfs_trans_handle *trans;
8881 u64 min_free;
8882 u64 dev_min = 1;
8883 u64 dev_nr = 0;
8884 u64 target;
8885 int index;
8886 int full = 0;
8887 int ret = 0;
8888
8889 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8890
8891 /* odd, couldn't find the block group, leave it alone */
8892 if (!block_group)
8893 return -1;
8894
8895 min_free = btrfs_block_group_used(&block_group->item);
8896
8897 /* no bytes used, we're good */
8898 if (!min_free)
8899 goto out;
8900
8901 space_info = block_group->space_info;
8902 spin_lock(&space_info->lock);
8903
8904 full = space_info->full;
8905
8906 /*
8907 * if this is the last block group we have in this space, we can't
8908 * relocate it unless we're able to allocate a new chunk below.
8909 *
8910 * Otherwise, we need to make sure we have room in the space to handle
8911 * all of the extents from this block group. If we can, we're good
8912 */
8913 if ((space_info->total_bytes != block_group->key.offset) &&
8914 (space_info->bytes_used + space_info->bytes_reserved +
8915 space_info->bytes_pinned + space_info->bytes_readonly +
8916 min_free < space_info->total_bytes)) {
8917 spin_unlock(&space_info->lock);
8918 goto out;
8919 }
8920 spin_unlock(&space_info->lock);
8921
8922 /*
8923 * ok we don't have enough space, but maybe we have free space on our
8924 * devices to allocate new chunks for relocation, so loop through our
8925 * alloc devices and guess if we have enough space. if this block
8926 * group is going to be restriped, run checks against the target
8927 * profile instead of the current one.
8928 */
8929 ret = -1;
8930
8931 /*
8932 * index:
8933 * 0: raid10
8934 * 1: raid1
8935 * 2: dup
8936 * 3: raid0
8937 * 4: single
8938 */
8939 target = get_restripe_target(root->fs_info, block_group->flags);
8940 if (target) {
8941 index = __get_raid_index(extended_to_chunk(target));
8942 } else {
8943 /*
8944 * this is just a balance, so if we were marked as full
8945 * we know there is no space for a new chunk
8946 */
8947 if (full)
8948 goto out;
8949
8950 index = get_block_group_index(block_group);
8951 }
8952
8953 if (index == BTRFS_RAID_RAID10) {
8954 dev_min = 4;
8955 /* Divide by 2 */
8956 min_free >>= 1;
8957 } else if (index == BTRFS_RAID_RAID1) {
8958 dev_min = 2;
8959 } else if (index == BTRFS_RAID_DUP) {
8960 /* Multiply by 2 */
8961 min_free <<= 1;
8962 } else if (index == BTRFS_RAID_RAID0) {
8963 dev_min = fs_devices->rw_devices;
8964 min_free = div64_u64(min_free, dev_min);
8965 }
8966
8967 /* We need to do this so that we can look at pending chunks */
8968 trans = btrfs_join_transaction(root);
8969 if (IS_ERR(trans)) {
8970 ret = PTR_ERR(trans);
8971 goto out;
8972 }
8973
8974 mutex_lock(&root->fs_info->chunk_mutex);
8975 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8976 u64 dev_offset;
8977
8978 /*
8979 * check to make sure we can actually find a chunk with enough
8980 * space to fit our block group in.
8981 */
8982 if (device->total_bytes > device->bytes_used + min_free &&
8983 !device->is_tgtdev_for_dev_replace) {
8984 ret = find_free_dev_extent(trans, device, min_free,
8985 &dev_offset, NULL);
8986 if (!ret)
8987 dev_nr++;
8988
8989 if (dev_nr >= dev_min)
8990 break;
8991
8992 ret = -1;
8993 }
8994 }
8995 mutex_unlock(&root->fs_info->chunk_mutex);
8996 btrfs_end_transaction(trans, root);
8997 out:
8998 btrfs_put_block_group(block_group);
8999 return ret;
9000 }
9001
9002 static int find_first_block_group(struct btrfs_root *root,
9003 struct btrfs_path *path, struct btrfs_key *key)
9004 {
9005 int ret = 0;
9006 struct btrfs_key found_key;
9007 struct extent_buffer *leaf;
9008 int slot;
9009
9010 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9011 if (ret < 0)
9012 goto out;
9013
9014 while (1) {
9015 slot = path->slots[0];
9016 leaf = path->nodes[0];
9017 if (slot >= btrfs_header_nritems(leaf)) {
9018 ret = btrfs_next_leaf(root, path);
9019 if (ret == 0)
9020 continue;
9021 if (ret < 0)
9022 goto out;
9023 break;
9024 }
9025 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9026
9027 if (found_key.objectid >= key->objectid &&
9028 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9029 ret = 0;
9030 goto out;
9031 }
9032 path->slots[0]++;
9033 }
9034 out:
9035 return ret;
9036 }
9037
9038 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9039 {
9040 struct btrfs_block_group_cache *block_group;
9041 u64 last = 0;
9042
9043 while (1) {
9044 struct inode *inode;
9045
9046 block_group = btrfs_lookup_first_block_group(info, last);
9047 while (block_group) {
9048 spin_lock(&block_group->lock);
9049 if (block_group->iref)
9050 break;
9051 spin_unlock(&block_group->lock);
9052 block_group = next_block_group(info->tree_root,
9053 block_group);
9054 }
9055 if (!block_group) {
9056 if (last == 0)
9057 break;
9058 last = 0;
9059 continue;
9060 }
9061
9062 inode = block_group->inode;
9063 block_group->iref = 0;
9064 block_group->inode = NULL;
9065 spin_unlock(&block_group->lock);
9066 iput(inode);
9067 last = block_group->key.objectid + block_group->key.offset;
9068 btrfs_put_block_group(block_group);
9069 }
9070 }
9071
9072 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9073 {
9074 struct btrfs_block_group_cache *block_group;
9075 struct btrfs_space_info *space_info;
9076 struct btrfs_caching_control *caching_ctl;
9077 struct rb_node *n;
9078
9079 down_write(&info->commit_root_sem);
9080 while (!list_empty(&info->caching_block_groups)) {
9081 caching_ctl = list_entry(info->caching_block_groups.next,
9082 struct btrfs_caching_control, list);
9083 list_del(&caching_ctl->list);
9084 put_caching_control(caching_ctl);
9085 }
9086 up_write(&info->commit_root_sem);
9087
9088 spin_lock(&info->unused_bgs_lock);
9089 while (!list_empty(&info->unused_bgs)) {
9090 block_group = list_first_entry(&info->unused_bgs,
9091 struct btrfs_block_group_cache,
9092 bg_list);
9093 list_del_init(&block_group->bg_list);
9094 btrfs_put_block_group(block_group);
9095 }
9096 spin_unlock(&info->unused_bgs_lock);
9097
9098 spin_lock(&info->block_group_cache_lock);
9099 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9100 block_group = rb_entry(n, struct btrfs_block_group_cache,
9101 cache_node);
9102 rb_erase(&block_group->cache_node,
9103 &info->block_group_cache_tree);
9104 RB_CLEAR_NODE(&block_group->cache_node);
9105 spin_unlock(&info->block_group_cache_lock);
9106
9107 down_write(&block_group->space_info->groups_sem);
9108 list_del(&block_group->list);
9109 up_write(&block_group->space_info->groups_sem);
9110
9111 if (block_group->cached == BTRFS_CACHE_STARTED)
9112 wait_block_group_cache_done(block_group);
9113
9114 /*
9115 * We haven't cached this block group, which means we could
9116 * possibly have excluded extents on this block group.
9117 */
9118 if (block_group->cached == BTRFS_CACHE_NO ||
9119 block_group->cached == BTRFS_CACHE_ERROR)
9120 free_excluded_extents(info->extent_root, block_group);
9121
9122 btrfs_remove_free_space_cache(block_group);
9123 btrfs_put_block_group(block_group);
9124
9125 spin_lock(&info->block_group_cache_lock);
9126 }
9127 spin_unlock(&info->block_group_cache_lock);
9128
9129 /* now that all the block groups are freed, go through and
9130 * free all the space_info structs. This is only called during
9131 * the final stages of unmount, and so we know nobody is
9132 * using them. We call synchronize_rcu() once before we start,
9133 * just to be on the safe side.
9134 */
9135 synchronize_rcu();
9136
9137 release_global_block_rsv(info);
9138
9139 while (!list_empty(&info->space_info)) {
9140 int i;
9141
9142 space_info = list_entry(info->space_info.next,
9143 struct btrfs_space_info,
9144 list);
9145 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9146 if (WARN_ON(space_info->bytes_pinned > 0 ||
9147 space_info->bytes_reserved > 0 ||
9148 space_info->bytes_may_use > 0)) {
9149 dump_space_info(space_info, 0, 0);
9150 }
9151 }
9152 list_del(&space_info->list);
9153 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9154 struct kobject *kobj;
9155 kobj = space_info->block_group_kobjs[i];
9156 space_info->block_group_kobjs[i] = NULL;
9157 if (kobj) {
9158 kobject_del(kobj);
9159 kobject_put(kobj);
9160 }
9161 }
9162 kobject_del(&space_info->kobj);
9163 kobject_put(&space_info->kobj);
9164 }
9165 return 0;
9166 }
9167
9168 static void __link_block_group(struct btrfs_space_info *space_info,
9169 struct btrfs_block_group_cache *cache)
9170 {
9171 int index = get_block_group_index(cache);
9172 bool first = false;
9173
9174 down_write(&space_info->groups_sem);
9175 if (list_empty(&space_info->block_groups[index]))
9176 first = true;
9177 list_add_tail(&cache->list, &space_info->block_groups[index]);
9178 up_write(&space_info->groups_sem);
9179
9180 if (first) {
9181 struct raid_kobject *rkobj;
9182 int ret;
9183
9184 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9185 if (!rkobj)
9186 goto out_err;
9187 rkobj->raid_type = index;
9188 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9189 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9190 "%s", get_raid_name(index));
9191 if (ret) {
9192 kobject_put(&rkobj->kobj);
9193 goto out_err;
9194 }
9195 space_info->block_group_kobjs[index] = &rkobj->kobj;
9196 }
9197
9198 return;
9199 out_err:
9200 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9201 }
9202
9203 static struct btrfs_block_group_cache *
9204 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9205 {
9206 struct btrfs_block_group_cache *cache;
9207
9208 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9209 if (!cache)
9210 return NULL;
9211
9212 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9213 GFP_NOFS);
9214 if (!cache->free_space_ctl) {
9215 kfree(cache);
9216 return NULL;
9217 }
9218
9219 cache->key.objectid = start;
9220 cache->key.offset = size;
9221 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9222
9223 cache->sectorsize = root->sectorsize;
9224 cache->fs_info = root->fs_info;
9225 cache->full_stripe_len = btrfs_full_stripe_len(root,
9226 &root->fs_info->mapping_tree,
9227 start);
9228 atomic_set(&cache->count, 1);
9229 spin_lock_init(&cache->lock);
9230 init_rwsem(&cache->data_rwsem);
9231 INIT_LIST_HEAD(&cache->list);
9232 INIT_LIST_HEAD(&cache->cluster_list);
9233 INIT_LIST_HEAD(&cache->bg_list);
9234 INIT_LIST_HEAD(&cache->ro_list);
9235 INIT_LIST_HEAD(&cache->dirty_list);
9236 INIT_LIST_HEAD(&cache->io_list);
9237 btrfs_init_free_space_ctl(cache);
9238 atomic_set(&cache->trimming, 0);
9239
9240 return cache;
9241 }
9242
9243 int btrfs_read_block_groups(struct btrfs_root *root)
9244 {
9245 struct btrfs_path *path;
9246 int ret;
9247 struct btrfs_block_group_cache *cache;
9248 struct btrfs_fs_info *info = root->fs_info;
9249 struct btrfs_space_info *space_info;
9250 struct btrfs_key key;
9251 struct btrfs_key found_key;
9252 struct extent_buffer *leaf;
9253 int need_clear = 0;
9254 u64 cache_gen;
9255
9256 root = info->extent_root;
9257 key.objectid = 0;
9258 key.offset = 0;
9259 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9260 path = btrfs_alloc_path();
9261 if (!path)
9262 return -ENOMEM;
9263 path->reada = 1;
9264
9265 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9266 if (btrfs_test_opt(root, SPACE_CACHE) &&
9267 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9268 need_clear = 1;
9269 if (btrfs_test_opt(root, CLEAR_CACHE))
9270 need_clear = 1;
9271
9272 while (1) {
9273 ret = find_first_block_group(root, path, &key);
9274 if (ret > 0)
9275 break;
9276 if (ret != 0)
9277 goto error;
9278
9279 leaf = path->nodes[0];
9280 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9281
9282 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9283 found_key.offset);
9284 if (!cache) {
9285 ret = -ENOMEM;
9286 goto error;
9287 }
9288
9289 if (need_clear) {
9290 /*
9291 * When we mount with old space cache, we need to
9292 * set BTRFS_DC_CLEAR and set dirty flag.
9293 *
9294 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9295 * truncate the old free space cache inode and
9296 * setup a new one.
9297 * b) Setting 'dirty flag' makes sure that we flush
9298 * the new space cache info onto disk.
9299 */
9300 if (btrfs_test_opt(root, SPACE_CACHE))
9301 cache->disk_cache_state = BTRFS_DC_CLEAR;
9302 }
9303
9304 read_extent_buffer(leaf, &cache->item,
9305 btrfs_item_ptr_offset(leaf, path->slots[0]),
9306 sizeof(cache->item));
9307 cache->flags = btrfs_block_group_flags(&cache->item);
9308
9309 key.objectid = found_key.objectid + found_key.offset;
9310 btrfs_release_path(path);
9311
9312 /*
9313 * We need to exclude the super stripes now so that the space
9314 * info has super bytes accounted for, otherwise we'll think
9315 * we have more space than we actually do.
9316 */
9317 ret = exclude_super_stripes(root, cache);
9318 if (ret) {
9319 /*
9320 * We may have excluded something, so call this just in
9321 * case.
9322 */
9323 free_excluded_extents(root, cache);
9324 btrfs_put_block_group(cache);
9325 goto error;
9326 }
9327
9328 /*
9329 * check for two cases, either we are full, and therefore
9330 * don't need to bother with the caching work since we won't
9331 * find any space, or we are empty, and we can just add all
9332 * the space in and be done with it. This saves us _alot_ of
9333 * time, particularly in the full case.
9334 */
9335 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9336 cache->last_byte_to_unpin = (u64)-1;
9337 cache->cached = BTRFS_CACHE_FINISHED;
9338 free_excluded_extents(root, cache);
9339 } else if (btrfs_block_group_used(&cache->item) == 0) {
9340 cache->last_byte_to_unpin = (u64)-1;
9341 cache->cached = BTRFS_CACHE_FINISHED;
9342 add_new_free_space(cache, root->fs_info,
9343 found_key.objectid,
9344 found_key.objectid +
9345 found_key.offset);
9346 free_excluded_extents(root, cache);
9347 }
9348
9349 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9350 if (ret) {
9351 btrfs_remove_free_space_cache(cache);
9352 btrfs_put_block_group(cache);
9353 goto error;
9354 }
9355
9356 ret = update_space_info(info, cache->flags, found_key.offset,
9357 btrfs_block_group_used(&cache->item),
9358 &space_info);
9359 if (ret) {
9360 btrfs_remove_free_space_cache(cache);
9361 spin_lock(&info->block_group_cache_lock);
9362 rb_erase(&cache->cache_node,
9363 &info->block_group_cache_tree);
9364 RB_CLEAR_NODE(&cache->cache_node);
9365 spin_unlock(&info->block_group_cache_lock);
9366 btrfs_put_block_group(cache);
9367 goto error;
9368 }
9369
9370 cache->space_info = space_info;
9371 spin_lock(&cache->space_info->lock);
9372 cache->space_info->bytes_readonly += cache->bytes_super;
9373 spin_unlock(&cache->space_info->lock);
9374
9375 __link_block_group(space_info, cache);
9376
9377 set_avail_alloc_bits(root->fs_info, cache->flags);
9378 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9379 set_block_group_ro(cache, 1);
9380 } else if (btrfs_block_group_used(&cache->item) == 0) {
9381 spin_lock(&info->unused_bgs_lock);
9382 /* Should always be true but just in case. */
9383 if (list_empty(&cache->bg_list)) {
9384 btrfs_get_block_group(cache);
9385 list_add_tail(&cache->bg_list,
9386 &info->unused_bgs);
9387 }
9388 spin_unlock(&info->unused_bgs_lock);
9389 }
9390 }
9391
9392 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9393 if (!(get_alloc_profile(root, space_info->flags) &
9394 (BTRFS_BLOCK_GROUP_RAID10 |
9395 BTRFS_BLOCK_GROUP_RAID1 |
9396 BTRFS_BLOCK_GROUP_RAID5 |
9397 BTRFS_BLOCK_GROUP_RAID6 |
9398 BTRFS_BLOCK_GROUP_DUP)))
9399 continue;
9400 /*
9401 * avoid allocating from un-mirrored block group if there are
9402 * mirrored block groups.
9403 */
9404 list_for_each_entry(cache,
9405 &space_info->block_groups[BTRFS_RAID_RAID0],
9406 list)
9407 set_block_group_ro(cache, 1);
9408 list_for_each_entry(cache,
9409 &space_info->block_groups[BTRFS_RAID_SINGLE],
9410 list)
9411 set_block_group_ro(cache, 1);
9412 }
9413
9414 init_global_block_rsv(info);
9415 ret = 0;
9416 error:
9417 btrfs_free_path(path);
9418 return ret;
9419 }
9420
9421 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9422 struct btrfs_root *root)
9423 {
9424 struct btrfs_block_group_cache *block_group, *tmp;
9425 struct btrfs_root *extent_root = root->fs_info->extent_root;
9426 struct btrfs_block_group_item item;
9427 struct btrfs_key key;
9428 int ret = 0;
9429
9430 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9431 if (ret)
9432 goto next;
9433
9434 spin_lock(&block_group->lock);
9435 memcpy(&item, &block_group->item, sizeof(item));
9436 memcpy(&key, &block_group->key, sizeof(key));
9437 spin_unlock(&block_group->lock);
9438
9439 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9440 sizeof(item));
9441 if (ret)
9442 btrfs_abort_transaction(trans, extent_root, ret);
9443 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9444 key.objectid, key.offset);
9445 if (ret)
9446 btrfs_abort_transaction(trans, extent_root, ret);
9447 next:
9448 list_del_init(&block_group->bg_list);
9449 }
9450 }
9451
9452 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9453 struct btrfs_root *root, u64 bytes_used,
9454 u64 type, u64 chunk_objectid, u64 chunk_offset,
9455 u64 size)
9456 {
9457 int ret;
9458 struct btrfs_root *extent_root;
9459 struct btrfs_block_group_cache *cache;
9460
9461 extent_root = root->fs_info->extent_root;
9462
9463 btrfs_set_log_full_commit(root->fs_info, trans);
9464
9465 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9466 if (!cache)
9467 return -ENOMEM;
9468
9469 btrfs_set_block_group_used(&cache->item, bytes_used);
9470 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9471 btrfs_set_block_group_flags(&cache->item, type);
9472
9473 cache->flags = type;
9474 cache->last_byte_to_unpin = (u64)-1;
9475 cache->cached = BTRFS_CACHE_FINISHED;
9476 ret = exclude_super_stripes(root, cache);
9477 if (ret) {
9478 /*
9479 * We may have excluded something, so call this just in
9480 * case.
9481 */
9482 free_excluded_extents(root, cache);
9483 btrfs_put_block_group(cache);
9484 return ret;
9485 }
9486
9487 add_new_free_space(cache, root->fs_info, chunk_offset,
9488 chunk_offset + size);
9489
9490 free_excluded_extents(root, cache);
9491
9492 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9493 if (ret) {
9494 btrfs_remove_free_space_cache(cache);
9495 btrfs_put_block_group(cache);
9496 return ret;
9497 }
9498
9499 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9500 &cache->space_info);
9501 if (ret) {
9502 btrfs_remove_free_space_cache(cache);
9503 spin_lock(&root->fs_info->block_group_cache_lock);
9504 rb_erase(&cache->cache_node,
9505 &root->fs_info->block_group_cache_tree);
9506 RB_CLEAR_NODE(&cache->cache_node);
9507 spin_unlock(&root->fs_info->block_group_cache_lock);
9508 btrfs_put_block_group(cache);
9509 return ret;
9510 }
9511 update_global_block_rsv(root->fs_info);
9512
9513 spin_lock(&cache->space_info->lock);
9514 cache->space_info->bytes_readonly += cache->bytes_super;
9515 spin_unlock(&cache->space_info->lock);
9516
9517 __link_block_group(cache->space_info, cache);
9518
9519 list_add_tail(&cache->bg_list, &trans->new_bgs);
9520
9521 set_avail_alloc_bits(extent_root->fs_info, type);
9522
9523 return 0;
9524 }
9525
9526 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9527 {
9528 u64 extra_flags = chunk_to_extended(flags) &
9529 BTRFS_EXTENDED_PROFILE_MASK;
9530
9531 write_seqlock(&fs_info->profiles_lock);
9532 if (flags & BTRFS_BLOCK_GROUP_DATA)
9533 fs_info->avail_data_alloc_bits &= ~extra_flags;
9534 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9535 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9536 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9537 fs_info->avail_system_alloc_bits &= ~extra_flags;
9538 write_sequnlock(&fs_info->profiles_lock);
9539 }
9540
9541 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9542 struct btrfs_root *root, u64 group_start,
9543 struct extent_map *em)
9544 {
9545 struct btrfs_path *path;
9546 struct btrfs_block_group_cache *block_group;
9547 struct btrfs_free_cluster *cluster;
9548 struct btrfs_root *tree_root = root->fs_info->tree_root;
9549 struct btrfs_key key;
9550 struct inode *inode;
9551 struct kobject *kobj = NULL;
9552 int ret;
9553 int index;
9554 int factor;
9555 struct btrfs_caching_control *caching_ctl = NULL;
9556 bool remove_em;
9557
9558 root = root->fs_info->extent_root;
9559
9560 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9561 BUG_ON(!block_group);
9562 BUG_ON(!block_group->ro);
9563
9564 /*
9565 * Free the reserved super bytes from this block group before
9566 * remove it.
9567 */
9568 free_excluded_extents(root, block_group);
9569
9570 memcpy(&key, &block_group->key, sizeof(key));
9571 index = get_block_group_index(block_group);
9572 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9573 BTRFS_BLOCK_GROUP_RAID1 |
9574 BTRFS_BLOCK_GROUP_RAID10))
9575 factor = 2;
9576 else
9577 factor = 1;
9578
9579 /* make sure this block group isn't part of an allocation cluster */
9580 cluster = &root->fs_info->data_alloc_cluster;
9581 spin_lock(&cluster->refill_lock);
9582 btrfs_return_cluster_to_free_space(block_group, cluster);
9583 spin_unlock(&cluster->refill_lock);
9584
9585 /*
9586 * make sure this block group isn't part of a metadata
9587 * allocation cluster
9588 */
9589 cluster = &root->fs_info->meta_alloc_cluster;
9590 spin_lock(&cluster->refill_lock);
9591 btrfs_return_cluster_to_free_space(block_group, cluster);
9592 spin_unlock(&cluster->refill_lock);
9593
9594 path = btrfs_alloc_path();
9595 if (!path) {
9596 ret = -ENOMEM;
9597 goto out;
9598 }
9599
9600 /*
9601 * get the inode first so any iput calls done for the io_list
9602 * aren't the final iput (no unlinks allowed now)
9603 */
9604 inode = lookup_free_space_inode(tree_root, block_group, path);
9605
9606 mutex_lock(&trans->transaction->cache_write_mutex);
9607 /*
9608 * make sure our free spache cache IO is done before remove the
9609 * free space inode
9610 */
9611 spin_lock(&trans->transaction->dirty_bgs_lock);
9612 if (!list_empty(&block_group->io_list)) {
9613 list_del_init(&block_group->io_list);
9614
9615 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9616
9617 spin_unlock(&trans->transaction->dirty_bgs_lock);
9618 btrfs_wait_cache_io(root, trans, block_group,
9619 &block_group->io_ctl, path,
9620 block_group->key.objectid);
9621 btrfs_put_block_group(block_group);
9622 spin_lock(&trans->transaction->dirty_bgs_lock);
9623 }
9624
9625 if (!list_empty(&block_group->dirty_list)) {
9626 list_del_init(&block_group->dirty_list);
9627 btrfs_put_block_group(block_group);
9628 }
9629 spin_unlock(&trans->transaction->dirty_bgs_lock);
9630 mutex_unlock(&trans->transaction->cache_write_mutex);
9631
9632 if (!IS_ERR(inode)) {
9633 ret = btrfs_orphan_add(trans, inode);
9634 if (ret) {
9635 btrfs_add_delayed_iput(inode);
9636 goto out;
9637 }
9638 clear_nlink(inode);
9639 /* One for the block groups ref */
9640 spin_lock(&block_group->lock);
9641 if (block_group->iref) {
9642 block_group->iref = 0;
9643 block_group->inode = NULL;
9644 spin_unlock(&block_group->lock);
9645 iput(inode);
9646 } else {
9647 spin_unlock(&block_group->lock);
9648 }
9649 /* One for our lookup ref */
9650 btrfs_add_delayed_iput(inode);
9651 }
9652
9653 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9654 key.offset = block_group->key.objectid;
9655 key.type = 0;
9656
9657 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9658 if (ret < 0)
9659 goto out;
9660 if (ret > 0)
9661 btrfs_release_path(path);
9662 if (ret == 0) {
9663 ret = btrfs_del_item(trans, tree_root, path);
9664 if (ret)
9665 goto out;
9666 btrfs_release_path(path);
9667 }
9668
9669 spin_lock(&root->fs_info->block_group_cache_lock);
9670 rb_erase(&block_group->cache_node,
9671 &root->fs_info->block_group_cache_tree);
9672 RB_CLEAR_NODE(&block_group->cache_node);
9673
9674 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9675 root->fs_info->first_logical_byte = (u64)-1;
9676 spin_unlock(&root->fs_info->block_group_cache_lock);
9677
9678 down_write(&block_group->space_info->groups_sem);
9679 /*
9680 * we must use list_del_init so people can check to see if they
9681 * are still on the list after taking the semaphore
9682 */
9683 list_del_init(&block_group->list);
9684 if (list_empty(&block_group->space_info->block_groups[index])) {
9685 kobj = block_group->space_info->block_group_kobjs[index];
9686 block_group->space_info->block_group_kobjs[index] = NULL;
9687 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9688 }
9689 up_write(&block_group->space_info->groups_sem);
9690 if (kobj) {
9691 kobject_del(kobj);
9692 kobject_put(kobj);
9693 }
9694
9695 if (block_group->has_caching_ctl)
9696 caching_ctl = get_caching_control(block_group);
9697 if (block_group->cached == BTRFS_CACHE_STARTED)
9698 wait_block_group_cache_done(block_group);
9699 if (block_group->has_caching_ctl) {
9700 down_write(&root->fs_info->commit_root_sem);
9701 if (!caching_ctl) {
9702 struct btrfs_caching_control *ctl;
9703
9704 list_for_each_entry(ctl,
9705 &root->fs_info->caching_block_groups, list)
9706 if (ctl->block_group == block_group) {
9707 caching_ctl = ctl;
9708 atomic_inc(&caching_ctl->count);
9709 break;
9710 }
9711 }
9712 if (caching_ctl)
9713 list_del_init(&caching_ctl->list);
9714 up_write(&root->fs_info->commit_root_sem);
9715 if (caching_ctl) {
9716 /* Once for the caching bgs list and once for us. */
9717 put_caching_control(caching_ctl);
9718 put_caching_control(caching_ctl);
9719 }
9720 }
9721
9722 spin_lock(&trans->transaction->dirty_bgs_lock);
9723 if (!list_empty(&block_group->dirty_list)) {
9724 WARN_ON(1);
9725 }
9726 if (!list_empty(&block_group->io_list)) {
9727 WARN_ON(1);
9728 }
9729 spin_unlock(&trans->transaction->dirty_bgs_lock);
9730 btrfs_remove_free_space_cache(block_group);
9731
9732 spin_lock(&block_group->space_info->lock);
9733 list_del_init(&block_group->ro_list);
9734 block_group->space_info->total_bytes -= block_group->key.offset;
9735 block_group->space_info->bytes_readonly -= block_group->key.offset;
9736 block_group->space_info->disk_total -= block_group->key.offset * factor;
9737 spin_unlock(&block_group->space_info->lock);
9738
9739 memcpy(&key, &block_group->key, sizeof(key));
9740
9741 lock_chunks(root);
9742 if (!list_empty(&em->list)) {
9743 /* We're in the transaction->pending_chunks list. */
9744 free_extent_map(em);
9745 }
9746 spin_lock(&block_group->lock);
9747 block_group->removed = 1;
9748 /*
9749 * At this point trimming can't start on this block group, because we
9750 * removed the block group from the tree fs_info->block_group_cache_tree
9751 * so no one can't find it anymore and even if someone already got this
9752 * block group before we removed it from the rbtree, they have already
9753 * incremented block_group->trimming - if they didn't, they won't find
9754 * any free space entries because we already removed them all when we
9755 * called btrfs_remove_free_space_cache().
9756 *
9757 * And we must not remove the extent map from the fs_info->mapping_tree
9758 * to prevent the same logical address range and physical device space
9759 * ranges from being reused for a new block group. This is because our
9760 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9761 * completely transactionless, so while it is trimming a range the
9762 * currently running transaction might finish and a new one start,
9763 * allowing for new block groups to be created that can reuse the same
9764 * physical device locations unless we take this special care.
9765 */
9766 remove_em = (atomic_read(&block_group->trimming) == 0);
9767 /*
9768 * Make sure a trimmer task always sees the em in the pinned_chunks list
9769 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9770 * before checking block_group->removed).
9771 */
9772 if (!remove_em) {
9773 /*
9774 * Our em might be in trans->transaction->pending_chunks which
9775 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9776 * and so is the fs_info->pinned_chunks list.
9777 *
9778 * So at this point we must be holding the chunk_mutex to avoid
9779 * any races with chunk allocation (more specifically at
9780 * volumes.c:contains_pending_extent()), to ensure it always
9781 * sees the em, either in the pending_chunks list or in the
9782 * pinned_chunks list.
9783 */
9784 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9785 }
9786 spin_unlock(&block_group->lock);
9787
9788 if (remove_em) {
9789 struct extent_map_tree *em_tree;
9790
9791 em_tree = &root->fs_info->mapping_tree.map_tree;
9792 write_lock(&em_tree->lock);
9793 /*
9794 * The em might be in the pending_chunks list, so make sure the
9795 * chunk mutex is locked, since remove_extent_mapping() will
9796 * delete us from that list.
9797 */
9798 remove_extent_mapping(em_tree, em);
9799 write_unlock(&em_tree->lock);
9800 /* once for the tree */
9801 free_extent_map(em);
9802 }
9803
9804 unlock_chunks(root);
9805
9806 btrfs_put_block_group(block_group);
9807 btrfs_put_block_group(block_group);
9808
9809 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9810 if (ret > 0)
9811 ret = -EIO;
9812 if (ret < 0)
9813 goto out;
9814
9815 ret = btrfs_del_item(trans, root, path);
9816 out:
9817 btrfs_free_path(path);
9818 return ret;
9819 }
9820
9821 /*
9822 * Process the unused_bgs list and remove any that don't have any allocated
9823 * space inside of them.
9824 */
9825 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9826 {
9827 struct btrfs_block_group_cache *block_group;
9828 struct btrfs_space_info *space_info;
9829 struct btrfs_root *root = fs_info->extent_root;
9830 struct btrfs_trans_handle *trans;
9831 int ret = 0;
9832
9833 if (!fs_info->open)
9834 return;
9835
9836 spin_lock(&fs_info->unused_bgs_lock);
9837 while (!list_empty(&fs_info->unused_bgs)) {
9838 u64 start, end;
9839
9840 block_group = list_first_entry(&fs_info->unused_bgs,
9841 struct btrfs_block_group_cache,
9842 bg_list);
9843 space_info = block_group->space_info;
9844 list_del_init(&block_group->bg_list);
9845 if (ret || btrfs_mixed_space_info(space_info)) {
9846 btrfs_put_block_group(block_group);
9847 continue;
9848 }
9849 spin_unlock(&fs_info->unused_bgs_lock);
9850
9851 /* Don't want to race with allocators so take the groups_sem */
9852 down_write(&space_info->groups_sem);
9853 spin_lock(&block_group->lock);
9854 if (block_group->reserved ||
9855 btrfs_block_group_used(&block_group->item) ||
9856 block_group->ro) {
9857 /*
9858 * We want to bail if we made new allocations or have
9859 * outstanding allocations in this block group. We do
9860 * the ro check in case balance is currently acting on
9861 * this block group.
9862 */
9863 spin_unlock(&block_group->lock);
9864 up_write(&space_info->groups_sem);
9865 goto next;
9866 }
9867 spin_unlock(&block_group->lock);
9868
9869 /* We don't want to force the issue, only flip if it's ok. */
9870 ret = set_block_group_ro(block_group, 0);
9871 up_write(&space_info->groups_sem);
9872 if (ret < 0) {
9873 ret = 0;
9874 goto next;
9875 }
9876
9877 /*
9878 * Want to do this before we do anything else so we can recover
9879 * properly if we fail to join the transaction.
9880 */
9881 /* 1 for btrfs_orphan_reserve_metadata() */
9882 trans = btrfs_start_transaction(root, 1);
9883 if (IS_ERR(trans)) {
9884 btrfs_set_block_group_rw(root, block_group);
9885 ret = PTR_ERR(trans);
9886 goto next;
9887 }
9888
9889 /*
9890 * We could have pending pinned extents for this block group,
9891 * just delete them, we don't care about them anymore.
9892 */
9893 start = block_group->key.objectid;
9894 end = start + block_group->key.offset - 1;
9895 /*
9896 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9897 * btrfs_finish_extent_commit(). If we are at transaction N,
9898 * another task might be running finish_extent_commit() for the
9899 * previous transaction N - 1, and have seen a range belonging
9900 * to the block group in freed_extents[] before we were able to
9901 * clear the whole block group range from freed_extents[]. This
9902 * means that task can lookup for the block group after we
9903 * unpinned it from freed_extents[] and removed it, leading to
9904 * a BUG_ON() at btrfs_unpin_extent_range().
9905 */
9906 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9907 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9908 EXTENT_DIRTY, GFP_NOFS);
9909 if (ret) {
9910 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9911 btrfs_set_block_group_rw(root, block_group);
9912 goto end_trans;
9913 }
9914 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9915 EXTENT_DIRTY, GFP_NOFS);
9916 if (ret) {
9917 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9918 btrfs_set_block_group_rw(root, block_group);
9919 goto end_trans;
9920 }
9921 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9922
9923 /* Reset pinned so btrfs_put_block_group doesn't complain */
9924 block_group->pinned = 0;
9925
9926 /*
9927 * Btrfs_remove_chunk will abort the transaction if things go
9928 * horribly wrong.
9929 */
9930 ret = btrfs_remove_chunk(trans, root,
9931 block_group->key.objectid);
9932 end_trans:
9933 btrfs_end_transaction(trans, root);
9934 next:
9935 btrfs_put_block_group(block_group);
9936 spin_lock(&fs_info->unused_bgs_lock);
9937 }
9938 spin_unlock(&fs_info->unused_bgs_lock);
9939 }
9940
9941 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9942 {
9943 struct btrfs_space_info *space_info;
9944 struct btrfs_super_block *disk_super;
9945 u64 features;
9946 u64 flags;
9947 int mixed = 0;
9948 int ret;
9949
9950 disk_super = fs_info->super_copy;
9951 if (!btrfs_super_root(disk_super))
9952 return 1;
9953
9954 features = btrfs_super_incompat_flags(disk_super);
9955 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9956 mixed = 1;
9957
9958 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9959 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9960 if (ret)
9961 goto out;
9962
9963 if (mixed) {
9964 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9965 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9966 } else {
9967 flags = BTRFS_BLOCK_GROUP_METADATA;
9968 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9969 if (ret)
9970 goto out;
9971
9972 flags = BTRFS_BLOCK_GROUP_DATA;
9973 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9974 }
9975 out:
9976 return ret;
9977 }
9978
9979 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9980 {
9981 return unpin_extent_range(root, start, end, false);
9982 }
9983
9984 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9985 {
9986 struct btrfs_fs_info *fs_info = root->fs_info;
9987 struct btrfs_block_group_cache *cache = NULL;
9988 u64 group_trimmed;
9989 u64 start;
9990 u64 end;
9991 u64 trimmed = 0;
9992 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9993 int ret = 0;
9994
9995 /*
9996 * try to trim all FS space, our block group may start from non-zero.
9997 */
9998 if (range->len == total_bytes)
9999 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10000 else
10001 cache = btrfs_lookup_block_group(fs_info, range->start);
10002
10003 while (cache) {
10004 if (cache->key.objectid >= (range->start + range->len)) {
10005 btrfs_put_block_group(cache);
10006 break;
10007 }
10008
10009 start = max(range->start, cache->key.objectid);
10010 end = min(range->start + range->len,
10011 cache->key.objectid + cache->key.offset);
10012
10013 if (end - start >= range->minlen) {
10014 if (!block_group_cache_done(cache)) {
10015 ret = cache_block_group(cache, 0);
10016 if (ret) {
10017 btrfs_put_block_group(cache);
10018 break;
10019 }
10020 ret = wait_block_group_cache_done(cache);
10021 if (ret) {
10022 btrfs_put_block_group(cache);
10023 break;
10024 }
10025 }
10026 ret = btrfs_trim_block_group(cache,
10027 &group_trimmed,
10028 start,
10029 end,
10030 range->minlen);
10031
10032 trimmed += group_trimmed;
10033 if (ret) {
10034 btrfs_put_block_group(cache);
10035 break;
10036 }
10037 }
10038
10039 cache = next_block_group(fs_info->tree_root, cache);
10040 }
10041
10042 range->len = trimmed;
10043 return ret;
10044 }
10045
10046 /*
10047 * btrfs_{start,end}_write_no_snapshoting() are similar to
10048 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10049 * data into the page cache through nocow before the subvolume is snapshoted,
10050 * but flush the data into disk after the snapshot creation, or to prevent
10051 * operations while snapshoting is ongoing and that cause the snapshot to be
10052 * inconsistent (writes followed by expanding truncates for example).
10053 */
10054 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10055 {
10056 percpu_counter_dec(&root->subv_writers->counter);
10057 /*
10058 * Make sure counter is updated before we wake up
10059 * waiters.
10060 */
10061 smp_mb();
10062 if (waitqueue_active(&root->subv_writers->wait))
10063 wake_up(&root->subv_writers->wait);
10064 }
10065
10066 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10067 {
10068 if (atomic_read(&root->will_be_snapshoted))
10069 return 0;
10070
10071 percpu_counter_inc(&root->subv_writers->counter);
10072 /*
10073 * Make sure counter is updated before we check for snapshot creation.
10074 */
10075 smp_mb();
10076 if (atomic_read(&root->will_be_snapshoted)) {
10077 btrfs_end_write_no_snapshoting(root);
10078 return 0;
10079 }
10080 return 1;
10081 }
This page took 0.361538 seconds and 5 git commands to generate.