Btrfs: fix scrub preventing unused block groups from being deleted
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 struct btrfs_delayed_ref_node *node, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins);
99 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
100 struct btrfs_root *extent_root, u64 flags,
101 int force);
102 static int find_next_key(struct btrfs_path *path, int level,
103 struct btrfs_key *key);
104 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
105 int dump_block_groups);
106 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
107 u64 num_bytes, int reserve,
108 int delalloc);
109 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
110 u64 num_bytes);
111 int btrfs_pin_extent(struct btrfs_root *root,
112 u64 bytenr, u64 num_bytes, int reserved);
113
114 static noinline int
115 block_group_cache_done(struct btrfs_block_group_cache *cache)
116 {
117 smp_mb();
118 return cache->cached == BTRFS_CACHE_FINISHED ||
119 cache->cached == BTRFS_CACHE_ERROR;
120 }
121
122 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
123 {
124 return (cache->flags & bits) == bits;
125 }
126
127 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
128 {
129 atomic_inc(&cache->count);
130 }
131
132 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
133 {
134 if (atomic_dec_and_test(&cache->count)) {
135 WARN_ON(cache->pinned > 0);
136 WARN_ON(cache->reserved > 0);
137 kfree(cache->free_space_ctl);
138 kfree(cache);
139 }
140 }
141
142 /*
143 * this adds the block group to the fs_info rb tree for the block group
144 * cache
145 */
146 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
147 struct btrfs_block_group_cache *block_group)
148 {
149 struct rb_node **p;
150 struct rb_node *parent = NULL;
151 struct btrfs_block_group_cache *cache;
152
153 spin_lock(&info->block_group_cache_lock);
154 p = &info->block_group_cache_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 cache = rb_entry(parent, struct btrfs_block_group_cache,
159 cache_node);
160 if (block_group->key.objectid < cache->key.objectid) {
161 p = &(*p)->rb_left;
162 } else if (block_group->key.objectid > cache->key.objectid) {
163 p = &(*p)->rb_right;
164 } else {
165 spin_unlock(&info->block_group_cache_lock);
166 return -EEXIST;
167 }
168 }
169
170 rb_link_node(&block_group->cache_node, parent, p);
171 rb_insert_color(&block_group->cache_node,
172 &info->block_group_cache_tree);
173
174 if (info->first_logical_byte > block_group->key.objectid)
175 info->first_logical_byte = block_group->key.objectid;
176
177 spin_unlock(&info->block_group_cache_lock);
178
179 return 0;
180 }
181
182 /*
183 * This will return the block group at or after bytenr if contains is 0, else
184 * it will return the block group that contains the bytenr
185 */
186 static struct btrfs_block_group_cache *
187 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
188 int contains)
189 {
190 struct btrfs_block_group_cache *cache, *ret = NULL;
191 struct rb_node *n;
192 u64 end, start;
193
194 spin_lock(&info->block_group_cache_lock);
195 n = info->block_group_cache_tree.rb_node;
196
197 while (n) {
198 cache = rb_entry(n, struct btrfs_block_group_cache,
199 cache_node);
200 end = cache->key.objectid + cache->key.offset - 1;
201 start = cache->key.objectid;
202
203 if (bytenr < start) {
204 if (!contains && (!ret || start < ret->key.objectid))
205 ret = cache;
206 n = n->rb_left;
207 } else if (bytenr > start) {
208 if (contains && bytenr <= end) {
209 ret = cache;
210 break;
211 }
212 n = n->rb_right;
213 } else {
214 ret = cache;
215 break;
216 }
217 }
218 if (ret) {
219 btrfs_get_block_group(ret);
220 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
221 info->first_logical_byte = ret->key.objectid;
222 }
223 spin_unlock(&info->block_group_cache_lock);
224
225 return ret;
226 }
227
228 static int add_excluded_extent(struct btrfs_root *root,
229 u64 start, u64 num_bytes)
230 {
231 u64 end = start + num_bytes - 1;
232 set_extent_bits(&root->fs_info->freed_extents[0],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 set_extent_bits(&root->fs_info->freed_extents[1],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 return 0;
237 }
238
239 static void free_excluded_extents(struct btrfs_root *root,
240 struct btrfs_block_group_cache *cache)
241 {
242 u64 start, end;
243
244 start = cache->key.objectid;
245 end = start + cache->key.offset - 1;
246
247 clear_extent_bits(&root->fs_info->freed_extents[0],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249 clear_extent_bits(&root->fs_info->freed_extents[1],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 }
252
253 static int exclude_super_stripes(struct btrfs_root *root,
254 struct btrfs_block_group_cache *cache)
255 {
256 u64 bytenr;
257 u64 *logical;
258 int stripe_len;
259 int i, nr, ret;
260
261 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
262 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
263 cache->bytes_super += stripe_len;
264 ret = add_excluded_extent(root, cache->key.objectid,
265 stripe_len);
266 if (ret)
267 return ret;
268 }
269
270 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
271 bytenr = btrfs_sb_offset(i);
272 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
273 cache->key.objectid, bytenr,
274 0, &logical, &nr, &stripe_len);
275 if (ret)
276 return ret;
277
278 while (nr--) {
279 u64 start, len;
280
281 if (logical[nr] > cache->key.objectid +
282 cache->key.offset)
283 continue;
284
285 if (logical[nr] + stripe_len <= cache->key.objectid)
286 continue;
287
288 start = logical[nr];
289 if (start < cache->key.objectid) {
290 start = cache->key.objectid;
291 len = (logical[nr] + stripe_len) - start;
292 } else {
293 len = min_t(u64, stripe_len,
294 cache->key.objectid +
295 cache->key.offset - start);
296 }
297
298 cache->bytes_super += len;
299 ret = add_excluded_extent(root, start, len);
300 if (ret) {
301 kfree(logical);
302 return ret;
303 }
304 }
305
306 kfree(logical);
307 }
308 return 0;
309 }
310
311 static struct btrfs_caching_control *
312 get_caching_control(struct btrfs_block_group_cache *cache)
313 {
314 struct btrfs_caching_control *ctl;
315
316 spin_lock(&cache->lock);
317 if (!cache->caching_ctl) {
318 spin_unlock(&cache->lock);
319 return NULL;
320 }
321
322 ctl = cache->caching_ctl;
323 atomic_inc(&ctl->count);
324 spin_unlock(&cache->lock);
325 return ctl;
326 }
327
328 static void put_caching_control(struct btrfs_caching_control *ctl)
329 {
330 if (atomic_dec_and_test(&ctl->count))
331 kfree(ctl);
332 }
333
334 #ifdef CONFIG_BTRFS_DEBUG
335 static void fragment_free_space(struct btrfs_root *root,
336 struct btrfs_block_group_cache *block_group)
337 {
338 u64 start = block_group->key.objectid;
339 u64 len = block_group->key.offset;
340 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
341 root->nodesize : root->sectorsize;
342 u64 step = chunk << 1;
343
344 while (len > chunk) {
345 btrfs_remove_free_space(block_group, start, chunk);
346 start += step;
347 if (len < step)
348 len = 0;
349 else
350 len -= step;
351 }
352 }
353 #endif
354
355 /*
356 * this is only called by cache_block_group, since we could have freed extents
357 * we need to check the pinned_extents for any extents that can't be used yet
358 * since their free space will be released as soon as the transaction commits.
359 */
360 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
361 struct btrfs_fs_info *info, u64 start, u64 end)
362 {
363 u64 extent_start, extent_end, size, total_added = 0;
364 int ret;
365
366 while (start < end) {
367 ret = find_first_extent_bit(info->pinned_extents, start,
368 &extent_start, &extent_end,
369 EXTENT_DIRTY | EXTENT_UPTODATE,
370 NULL);
371 if (ret)
372 break;
373
374 if (extent_start <= start) {
375 start = extent_end + 1;
376 } else if (extent_start > start && extent_start < end) {
377 size = extent_start - start;
378 total_added += size;
379 ret = btrfs_add_free_space(block_group, start,
380 size);
381 BUG_ON(ret); /* -ENOMEM or logic error */
382 start = extent_end + 1;
383 } else {
384 break;
385 }
386 }
387
388 if (start < end) {
389 size = end - start;
390 total_added += size;
391 ret = btrfs_add_free_space(block_group, start, size);
392 BUG_ON(ret); /* -ENOMEM or logic error */
393 }
394
395 return total_added;
396 }
397
398 static noinline void caching_thread(struct btrfs_work *work)
399 {
400 struct btrfs_block_group_cache *block_group;
401 struct btrfs_fs_info *fs_info;
402 struct btrfs_caching_control *caching_ctl;
403 struct btrfs_root *extent_root;
404 struct btrfs_path *path;
405 struct extent_buffer *leaf;
406 struct btrfs_key key;
407 u64 total_found = 0;
408 u64 last = 0;
409 u32 nritems;
410 int ret = -ENOMEM;
411 bool wakeup = true;
412
413 caching_ctl = container_of(work, struct btrfs_caching_control, work);
414 block_group = caching_ctl->block_group;
415 fs_info = block_group->fs_info;
416 extent_root = fs_info->extent_root;
417
418 path = btrfs_alloc_path();
419 if (!path)
420 goto out;
421
422 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423
424 #ifdef CONFIG_BTRFS_DEBUG
425 /*
426 * If we're fragmenting we don't want to make anybody think we can
427 * allocate from this block group until we've had a chance to fragment
428 * the free space.
429 */
430 if (btrfs_should_fragment_free_space(extent_root, block_group))
431 wakeup = false;
432 #endif
433 /*
434 * We don't want to deadlock with somebody trying to allocate a new
435 * extent for the extent root while also trying to search the extent
436 * root to add free space. So we skip locking and search the commit
437 * root, since its read-only
438 */
439 path->skip_locking = 1;
440 path->search_commit_root = 1;
441 path->reada = 1;
442
443 key.objectid = last;
444 key.offset = 0;
445 key.type = BTRFS_EXTENT_ITEM_KEY;
446 again:
447 mutex_lock(&caching_ctl->mutex);
448 /* need to make sure the commit_root doesn't disappear */
449 down_read(&fs_info->commit_root_sem);
450
451 next:
452 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
453 if (ret < 0)
454 goto err;
455
456 leaf = path->nodes[0];
457 nritems = btrfs_header_nritems(leaf);
458
459 while (1) {
460 if (btrfs_fs_closing(fs_info) > 1) {
461 last = (u64)-1;
462 break;
463 }
464
465 if (path->slots[0] < nritems) {
466 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
467 } else {
468 ret = find_next_key(path, 0, &key);
469 if (ret)
470 break;
471
472 if (need_resched() ||
473 rwsem_is_contended(&fs_info->commit_root_sem)) {
474 if (wakeup)
475 caching_ctl->progress = last;
476 btrfs_release_path(path);
477 up_read(&fs_info->commit_root_sem);
478 mutex_unlock(&caching_ctl->mutex);
479 cond_resched();
480 goto again;
481 }
482
483 ret = btrfs_next_leaf(extent_root, path);
484 if (ret < 0)
485 goto err;
486 if (ret)
487 break;
488 leaf = path->nodes[0];
489 nritems = btrfs_header_nritems(leaf);
490 continue;
491 }
492
493 if (key.objectid < last) {
494 key.objectid = last;
495 key.offset = 0;
496 key.type = BTRFS_EXTENT_ITEM_KEY;
497
498 if (wakeup)
499 caching_ctl->progress = last;
500 btrfs_release_path(path);
501 goto next;
502 }
503
504 if (key.objectid < block_group->key.objectid) {
505 path->slots[0]++;
506 continue;
507 }
508
509 if (key.objectid >= block_group->key.objectid +
510 block_group->key.offset)
511 break;
512
513 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
514 key.type == BTRFS_METADATA_ITEM_KEY) {
515 total_found += add_new_free_space(block_group,
516 fs_info, last,
517 key.objectid);
518 if (key.type == BTRFS_METADATA_ITEM_KEY)
519 last = key.objectid +
520 fs_info->tree_root->nodesize;
521 else
522 last = key.objectid + key.offset;
523
524 if (total_found > (1024 * 1024 * 2)) {
525 total_found = 0;
526 if (wakeup)
527 wake_up(&caching_ctl->wait);
528 }
529 }
530 path->slots[0]++;
531 }
532 ret = 0;
533
534 total_found += add_new_free_space(block_group, fs_info, last,
535 block_group->key.objectid +
536 block_group->key.offset);
537 spin_lock(&block_group->lock);
538 block_group->caching_ctl = NULL;
539 block_group->cached = BTRFS_CACHE_FINISHED;
540 spin_unlock(&block_group->lock);
541
542 #ifdef CONFIG_BTRFS_DEBUG
543 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
544 u64 bytes_used;
545
546 spin_lock(&block_group->space_info->lock);
547 spin_lock(&block_group->lock);
548 bytes_used = block_group->key.offset -
549 btrfs_block_group_used(&block_group->item);
550 block_group->space_info->bytes_used += bytes_used >> 1;
551 spin_unlock(&block_group->lock);
552 spin_unlock(&block_group->space_info->lock);
553 fragment_free_space(extent_root, block_group);
554 }
555 #endif
556
557 caching_ctl->progress = (u64)-1;
558 err:
559 btrfs_free_path(path);
560 up_read(&fs_info->commit_root_sem);
561
562 free_excluded_extents(extent_root, block_group);
563
564 mutex_unlock(&caching_ctl->mutex);
565 out:
566 if (ret) {
567 spin_lock(&block_group->lock);
568 block_group->caching_ctl = NULL;
569 block_group->cached = BTRFS_CACHE_ERROR;
570 spin_unlock(&block_group->lock);
571 }
572 wake_up(&caching_ctl->wait);
573
574 put_caching_control(caching_ctl);
575 btrfs_put_block_group(block_group);
576 }
577
578 static int cache_block_group(struct btrfs_block_group_cache *cache,
579 int load_cache_only)
580 {
581 DEFINE_WAIT(wait);
582 struct btrfs_fs_info *fs_info = cache->fs_info;
583 struct btrfs_caching_control *caching_ctl;
584 int ret = 0;
585
586 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
587 if (!caching_ctl)
588 return -ENOMEM;
589
590 INIT_LIST_HEAD(&caching_ctl->list);
591 mutex_init(&caching_ctl->mutex);
592 init_waitqueue_head(&caching_ctl->wait);
593 caching_ctl->block_group = cache;
594 caching_ctl->progress = cache->key.objectid;
595 atomic_set(&caching_ctl->count, 1);
596 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
597 caching_thread, NULL, NULL);
598
599 spin_lock(&cache->lock);
600 /*
601 * This should be a rare occasion, but this could happen I think in the
602 * case where one thread starts to load the space cache info, and then
603 * some other thread starts a transaction commit which tries to do an
604 * allocation while the other thread is still loading the space cache
605 * info. The previous loop should have kept us from choosing this block
606 * group, but if we've moved to the state where we will wait on caching
607 * block groups we need to first check if we're doing a fast load here,
608 * so we can wait for it to finish, otherwise we could end up allocating
609 * from a block group who's cache gets evicted for one reason or
610 * another.
611 */
612 while (cache->cached == BTRFS_CACHE_FAST) {
613 struct btrfs_caching_control *ctl;
614
615 ctl = cache->caching_ctl;
616 atomic_inc(&ctl->count);
617 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
618 spin_unlock(&cache->lock);
619
620 schedule();
621
622 finish_wait(&ctl->wait, &wait);
623 put_caching_control(ctl);
624 spin_lock(&cache->lock);
625 }
626
627 if (cache->cached != BTRFS_CACHE_NO) {
628 spin_unlock(&cache->lock);
629 kfree(caching_ctl);
630 return 0;
631 }
632 WARN_ON(cache->caching_ctl);
633 cache->caching_ctl = caching_ctl;
634 cache->cached = BTRFS_CACHE_FAST;
635 spin_unlock(&cache->lock);
636
637 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
638 mutex_lock(&caching_ctl->mutex);
639 ret = load_free_space_cache(fs_info, cache);
640
641 spin_lock(&cache->lock);
642 if (ret == 1) {
643 cache->caching_ctl = NULL;
644 cache->cached = BTRFS_CACHE_FINISHED;
645 cache->last_byte_to_unpin = (u64)-1;
646 caching_ctl->progress = (u64)-1;
647 } else {
648 if (load_cache_only) {
649 cache->caching_ctl = NULL;
650 cache->cached = BTRFS_CACHE_NO;
651 } else {
652 cache->cached = BTRFS_CACHE_STARTED;
653 cache->has_caching_ctl = 1;
654 }
655 }
656 spin_unlock(&cache->lock);
657 #ifdef CONFIG_BTRFS_DEBUG
658 if (ret == 1 &&
659 btrfs_should_fragment_free_space(fs_info->extent_root,
660 cache)) {
661 u64 bytes_used;
662
663 spin_lock(&cache->space_info->lock);
664 spin_lock(&cache->lock);
665 bytes_used = cache->key.offset -
666 btrfs_block_group_used(&cache->item);
667 cache->space_info->bytes_used += bytes_used >> 1;
668 spin_unlock(&cache->lock);
669 spin_unlock(&cache->space_info->lock);
670 fragment_free_space(fs_info->extent_root, cache);
671 }
672 #endif
673 mutex_unlock(&caching_ctl->mutex);
674
675 wake_up(&caching_ctl->wait);
676 if (ret == 1) {
677 put_caching_control(caching_ctl);
678 free_excluded_extents(fs_info->extent_root, cache);
679 return 0;
680 }
681 } else {
682 /*
683 * We are not going to do the fast caching, set cached to the
684 * appropriate value and wakeup any waiters.
685 */
686 spin_lock(&cache->lock);
687 if (load_cache_only) {
688 cache->caching_ctl = NULL;
689 cache->cached = BTRFS_CACHE_NO;
690 } else {
691 cache->cached = BTRFS_CACHE_STARTED;
692 cache->has_caching_ctl = 1;
693 }
694 spin_unlock(&cache->lock);
695 wake_up(&caching_ctl->wait);
696 }
697
698 if (load_cache_only) {
699 put_caching_control(caching_ctl);
700 return 0;
701 }
702
703 down_write(&fs_info->commit_root_sem);
704 atomic_inc(&caching_ctl->count);
705 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
706 up_write(&fs_info->commit_root_sem);
707
708 btrfs_get_block_group(cache);
709
710 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
711
712 return ret;
713 }
714
715 /*
716 * return the block group that starts at or after bytenr
717 */
718 static struct btrfs_block_group_cache *
719 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
720 {
721 struct btrfs_block_group_cache *cache;
722
723 cache = block_group_cache_tree_search(info, bytenr, 0);
724
725 return cache;
726 }
727
728 /*
729 * return the block group that contains the given bytenr
730 */
731 struct btrfs_block_group_cache *btrfs_lookup_block_group(
732 struct btrfs_fs_info *info,
733 u64 bytenr)
734 {
735 struct btrfs_block_group_cache *cache;
736
737 cache = block_group_cache_tree_search(info, bytenr, 1);
738
739 return cache;
740 }
741
742 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
743 u64 flags)
744 {
745 struct list_head *head = &info->space_info;
746 struct btrfs_space_info *found;
747
748 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
749
750 rcu_read_lock();
751 list_for_each_entry_rcu(found, head, list) {
752 if (found->flags & flags) {
753 rcu_read_unlock();
754 return found;
755 }
756 }
757 rcu_read_unlock();
758 return NULL;
759 }
760
761 /*
762 * after adding space to the filesystem, we need to clear the full flags
763 * on all the space infos.
764 */
765 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
766 {
767 struct list_head *head = &info->space_info;
768 struct btrfs_space_info *found;
769
770 rcu_read_lock();
771 list_for_each_entry_rcu(found, head, list)
772 found->full = 0;
773 rcu_read_unlock();
774 }
775
776 /* simple helper to search for an existing data extent at a given offset */
777 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
778 {
779 int ret;
780 struct btrfs_key key;
781 struct btrfs_path *path;
782
783 path = btrfs_alloc_path();
784 if (!path)
785 return -ENOMEM;
786
787 key.objectid = start;
788 key.offset = len;
789 key.type = BTRFS_EXTENT_ITEM_KEY;
790 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
791 0, 0);
792 btrfs_free_path(path);
793 return ret;
794 }
795
796 /*
797 * helper function to lookup reference count and flags of a tree block.
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_root *root, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
824 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
825 offset = root->nodesize;
826 metadata = 0;
827 }
828
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
837
838 search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
847 &key, path, 0, 0);
848 if (ret < 0)
849 goto out_free;
850
851 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
852 if (path->slots[0]) {
853 path->slots[0]--;
854 btrfs_item_key_to_cpu(path->nodes[0], &key,
855 path->slots[0]);
856 if (key.objectid == bytenr &&
857 key.type == BTRFS_EXTENT_ITEM_KEY &&
858 key.offset == root->nodesize)
859 ret = 0;
860 }
861 }
862
863 if (ret == 0) {
864 leaf = path->nodes[0];
865 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
866 if (item_size >= sizeof(*ei)) {
867 ei = btrfs_item_ptr(leaf, path->slots[0],
868 struct btrfs_extent_item);
869 num_refs = btrfs_extent_refs(leaf, ei);
870 extent_flags = btrfs_extent_flags(leaf, ei);
871 } else {
872 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
873 struct btrfs_extent_item_v0 *ei0;
874 BUG_ON(item_size != sizeof(*ei0));
875 ei0 = btrfs_item_ptr(leaf, path->slots[0],
876 struct btrfs_extent_item_v0);
877 num_refs = btrfs_extent_refs_v0(leaf, ei0);
878 /* FIXME: this isn't correct for data */
879 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
880 #else
881 BUG();
882 #endif
883 }
884 BUG_ON(num_refs == 0);
885 } else {
886 num_refs = 0;
887 extent_flags = 0;
888 ret = 0;
889 }
890
891 if (!trans)
892 goto out;
893
894 delayed_refs = &trans->transaction->delayed_refs;
895 spin_lock(&delayed_refs->lock);
896 head = btrfs_find_delayed_ref_head(trans, bytenr);
897 if (head) {
898 if (!mutex_trylock(&head->mutex)) {
899 atomic_inc(&head->node.refs);
900 spin_unlock(&delayed_refs->lock);
901
902 btrfs_release_path(path);
903
904 /*
905 * Mutex was contended, block until it's released and try
906 * again
907 */
908 mutex_lock(&head->mutex);
909 mutex_unlock(&head->mutex);
910 btrfs_put_delayed_ref(&head->node);
911 goto search_again;
912 }
913 spin_lock(&head->lock);
914 if (head->extent_op && head->extent_op->update_flags)
915 extent_flags |= head->extent_op->flags_to_set;
916 else
917 BUG_ON(num_refs == 0);
918
919 num_refs += head->node.ref_mod;
920 spin_unlock(&head->lock);
921 mutex_unlock(&head->mutex);
922 }
923 spin_unlock(&delayed_refs->lock);
924 out:
925 WARN_ON(num_refs == 0);
926 if (refs)
927 *refs = num_refs;
928 if (flags)
929 *flags = extent_flags;
930 out_free:
931 btrfs_free_path(path);
932 return ret;
933 }
934
935 /*
936 * Back reference rules. Back refs have three main goals:
937 *
938 * 1) differentiate between all holders of references to an extent so that
939 * when a reference is dropped we can make sure it was a valid reference
940 * before freeing the extent.
941 *
942 * 2) Provide enough information to quickly find the holders of an extent
943 * if we notice a given block is corrupted or bad.
944 *
945 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
946 * maintenance. This is actually the same as #2, but with a slightly
947 * different use case.
948 *
949 * There are two kinds of back refs. The implicit back refs is optimized
950 * for pointers in non-shared tree blocks. For a given pointer in a block,
951 * back refs of this kind provide information about the block's owner tree
952 * and the pointer's key. These information allow us to find the block by
953 * b-tree searching. The full back refs is for pointers in tree blocks not
954 * referenced by their owner trees. The location of tree block is recorded
955 * in the back refs. Actually the full back refs is generic, and can be
956 * used in all cases the implicit back refs is used. The major shortcoming
957 * of the full back refs is its overhead. Every time a tree block gets
958 * COWed, we have to update back refs entry for all pointers in it.
959 *
960 * For a newly allocated tree block, we use implicit back refs for
961 * pointers in it. This means most tree related operations only involve
962 * implicit back refs. For a tree block created in old transaction, the
963 * only way to drop a reference to it is COW it. So we can detect the
964 * event that tree block loses its owner tree's reference and do the
965 * back refs conversion.
966 *
967 * When a tree block is COW'd through a tree, there are four cases:
968 *
969 * The reference count of the block is one and the tree is the block's
970 * owner tree. Nothing to do in this case.
971 *
972 * The reference count of the block is one and the tree is not the
973 * block's owner tree. In this case, full back refs is used for pointers
974 * in the block. Remove these full back refs, add implicit back refs for
975 * every pointers in the new block.
976 *
977 * The reference count of the block is greater than one and the tree is
978 * the block's owner tree. In this case, implicit back refs is used for
979 * pointers in the block. Add full back refs for every pointers in the
980 * block, increase lower level extents' reference counts. The original
981 * implicit back refs are entailed to the new block.
982 *
983 * The reference count of the block is greater than one and the tree is
984 * not the block's owner tree. Add implicit back refs for every pointer in
985 * the new block, increase lower level extents' reference count.
986 *
987 * Back Reference Key composing:
988 *
989 * The key objectid corresponds to the first byte in the extent,
990 * The key type is used to differentiate between types of back refs.
991 * There are different meanings of the key offset for different types
992 * of back refs.
993 *
994 * File extents can be referenced by:
995 *
996 * - multiple snapshots, subvolumes, or different generations in one subvol
997 * - different files inside a single subvolume
998 * - different offsets inside a file (bookend extents in file.c)
999 *
1000 * The extent ref structure for the implicit back refs has fields for:
1001 *
1002 * - Objectid of the subvolume root
1003 * - objectid of the file holding the reference
1004 * - original offset in the file
1005 * - how many bookend extents
1006 *
1007 * The key offset for the implicit back refs is hash of the first
1008 * three fields.
1009 *
1010 * The extent ref structure for the full back refs has field for:
1011 *
1012 * - number of pointers in the tree leaf
1013 *
1014 * The key offset for the implicit back refs is the first byte of
1015 * the tree leaf
1016 *
1017 * When a file extent is allocated, The implicit back refs is used.
1018 * the fields are filled in:
1019 *
1020 * (root_key.objectid, inode objectid, offset in file, 1)
1021 *
1022 * When a file extent is removed file truncation, we find the
1023 * corresponding implicit back refs and check the following fields:
1024 *
1025 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1026 *
1027 * Btree extents can be referenced by:
1028 *
1029 * - Different subvolumes
1030 *
1031 * Both the implicit back refs and the full back refs for tree blocks
1032 * only consist of key. The key offset for the implicit back refs is
1033 * objectid of block's owner tree. The key offset for the full back refs
1034 * is the first byte of parent block.
1035 *
1036 * When implicit back refs is used, information about the lowest key and
1037 * level of the tree block are required. These information are stored in
1038 * tree block info structure.
1039 */
1040
1041 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1042 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1043 struct btrfs_root *root,
1044 struct btrfs_path *path,
1045 u64 owner, u32 extra_size)
1046 {
1047 struct btrfs_extent_item *item;
1048 struct btrfs_extent_item_v0 *ei0;
1049 struct btrfs_extent_ref_v0 *ref0;
1050 struct btrfs_tree_block_info *bi;
1051 struct extent_buffer *leaf;
1052 struct btrfs_key key;
1053 struct btrfs_key found_key;
1054 u32 new_size = sizeof(*item);
1055 u64 refs;
1056 int ret;
1057
1058 leaf = path->nodes[0];
1059 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1060
1061 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1062 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1063 struct btrfs_extent_item_v0);
1064 refs = btrfs_extent_refs_v0(leaf, ei0);
1065
1066 if (owner == (u64)-1) {
1067 while (1) {
1068 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1069 ret = btrfs_next_leaf(root, path);
1070 if (ret < 0)
1071 return ret;
1072 BUG_ON(ret > 0); /* Corruption */
1073 leaf = path->nodes[0];
1074 }
1075 btrfs_item_key_to_cpu(leaf, &found_key,
1076 path->slots[0]);
1077 BUG_ON(key.objectid != found_key.objectid);
1078 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1079 path->slots[0]++;
1080 continue;
1081 }
1082 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1083 struct btrfs_extent_ref_v0);
1084 owner = btrfs_ref_objectid_v0(leaf, ref0);
1085 break;
1086 }
1087 }
1088 btrfs_release_path(path);
1089
1090 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1091 new_size += sizeof(*bi);
1092
1093 new_size -= sizeof(*ei0);
1094 ret = btrfs_search_slot(trans, root, &key, path,
1095 new_size + extra_size, 1);
1096 if (ret < 0)
1097 return ret;
1098 BUG_ON(ret); /* Corruption */
1099
1100 btrfs_extend_item(root, path, new_size);
1101
1102 leaf = path->nodes[0];
1103 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104 btrfs_set_extent_refs(leaf, item, refs);
1105 /* FIXME: get real generation */
1106 btrfs_set_extent_generation(leaf, item, 0);
1107 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1108 btrfs_set_extent_flags(leaf, item,
1109 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1110 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1111 bi = (struct btrfs_tree_block_info *)(item + 1);
1112 /* FIXME: get first key of the block */
1113 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1114 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1115 } else {
1116 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1117 }
1118 btrfs_mark_buffer_dirty(leaf);
1119 return 0;
1120 }
1121 #endif
1122
1123 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1124 {
1125 u32 high_crc = ~(u32)0;
1126 u32 low_crc = ~(u32)0;
1127 __le64 lenum;
1128
1129 lenum = cpu_to_le64(root_objectid);
1130 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1131 lenum = cpu_to_le64(owner);
1132 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1133 lenum = cpu_to_le64(offset);
1134 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1135
1136 return ((u64)high_crc << 31) ^ (u64)low_crc;
1137 }
1138
1139 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1140 struct btrfs_extent_data_ref *ref)
1141 {
1142 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1143 btrfs_extent_data_ref_objectid(leaf, ref),
1144 btrfs_extent_data_ref_offset(leaf, ref));
1145 }
1146
1147 static int match_extent_data_ref(struct extent_buffer *leaf,
1148 struct btrfs_extent_data_ref *ref,
1149 u64 root_objectid, u64 owner, u64 offset)
1150 {
1151 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1152 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1153 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1154 return 0;
1155 return 1;
1156 }
1157
1158 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1159 struct btrfs_root *root,
1160 struct btrfs_path *path,
1161 u64 bytenr, u64 parent,
1162 u64 root_objectid,
1163 u64 owner, u64 offset)
1164 {
1165 struct btrfs_key key;
1166 struct btrfs_extent_data_ref *ref;
1167 struct extent_buffer *leaf;
1168 u32 nritems;
1169 int ret;
1170 int recow;
1171 int err = -ENOENT;
1172
1173 key.objectid = bytenr;
1174 if (parent) {
1175 key.type = BTRFS_SHARED_DATA_REF_KEY;
1176 key.offset = parent;
1177 } else {
1178 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 key.offset = hash_extent_data_ref(root_objectid,
1180 owner, offset);
1181 }
1182 again:
1183 recow = 0;
1184 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1185 if (ret < 0) {
1186 err = ret;
1187 goto fail;
1188 }
1189
1190 if (parent) {
1191 if (!ret)
1192 return 0;
1193 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1194 key.type = BTRFS_EXTENT_REF_V0_KEY;
1195 btrfs_release_path(path);
1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 if (ret < 0) {
1198 err = ret;
1199 goto fail;
1200 }
1201 if (!ret)
1202 return 0;
1203 #endif
1204 goto fail;
1205 }
1206
1207 leaf = path->nodes[0];
1208 nritems = btrfs_header_nritems(leaf);
1209 while (1) {
1210 if (path->slots[0] >= nritems) {
1211 ret = btrfs_next_leaf(root, path);
1212 if (ret < 0)
1213 err = ret;
1214 if (ret)
1215 goto fail;
1216
1217 leaf = path->nodes[0];
1218 nritems = btrfs_header_nritems(leaf);
1219 recow = 1;
1220 }
1221
1222 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1223 if (key.objectid != bytenr ||
1224 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1225 goto fail;
1226
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229
1230 if (match_extent_data_ref(leaf, ref, root_objectid,
1231 owner, offset)) {
1232 if (recow) {
1233 btrfs_release_path(path);
1234 goto again;
1235 }
1236 err = 0;
1237 break;
1238 }
1239 path->slots[0]++;
1240 }
1241 fail:
1242 return err;
1243 }
1244
1245 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1246 struct btrfs_root *root,
1247 struct btrfs_path *path,
1248 u64 bytenr, u64 parent,
1249 u64 root_objectid, u64 owner,
1250 u64 offset, int refs_to_add)
1251 {
1252 struct btrfs_key key;
1253 struct extent_buffer *leaf;
1254 u32 size;
1255 u32 num_refs;
1256 int ret;
1257
1258 key.objectid = bytenr;
1259 if (parent) {
1260 key.type = BTRFS_SHARED_DATA_REF_KEY;
1261 key.offset = parent;
1262 size = sizeof(struct btrfs_shared_data_ref);
1263 } else {
1264 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1265 key.offset = hash_extent_data_ref(root_objectid,
1266 owner, offset);
1267 size = sizeof(struct btrfs_extent_data_ref);
1268 }
1269
1270 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1271 if (ret && ret != -EEXIST)
1272 goto fail;
1273
1274 leaf = path->nodes[0];
1275 if (parent) {
1276 struct btrfs_shared_data_ref *ref;
1277 ref = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_shared_data_ref);
1279 if (ret == 0) {
1280 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1281 } else {
1282 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1283 num_refs += refs_to_add;
1284 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1285 }
1286 } else {
1287 struct btrfs_extent_data_ref *ref;
1288 while (ret == -EEXIST) {
1289 ref = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_extent_data_ref);
1291 if (match_extent_data_ref(leaf, ref, root_objectid,
1292 owner, offset))
1293 break;
1294 btrfs_release_path(path);
1295 key.offset++;
1296 ret = btrfs_insert_empty_item(trans, root, path, &key,
1297 size);
1298 if (ret && ret != -EEXIST)
1299 goto fail;
1300
1301 leaf = path->nodes[0];
1302 }
1303 ref = btrfs_item_ptr(leaf, path->slots[0],
1304 struct btrfs_extent_data_ref);
1305 if (ret == 0) {
1306 btrfs_set_extent_data_ref_root(leaf, ref,
1307 root_objectid);
1308 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1309 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1310 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1311 } else {
1312 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1313 num_refs += refs_to_add;
1314 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1315 }
1316 }
1317 btrfs_mark_buffer_dirty(leaf);
1318 ret = 0;
1319 fail:
1320 btrfs_release_path(path);
1321 return ret;
1322 }
1323
1324 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1325 struct btrfs_root *root,
1326 struct btrfs_path *path,
1327 int refs_to_drop, int *last_ref)
1328 {
1329 struct btrfs_key key;
1330 struct btrfs_extent_data_ref *ref1 = NULL;
1331 struct btrfs_shared_data_ref *ref2 = NULL;
1332 struct extent_buffer *leaf;
1333 u32 num_refs = 0;
1334 int ret = 0;
1335
1336 leaf = path->nodes[0];
1337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1338
1339 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341 struct btrfs_extent_data_ref);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_shared_data_ref);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349 struct btrfs_extent_ref_v0 *ref0;
1350 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_extent_ref_v0);
1352 num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354 } else {
1355 BUG();
1356 }
1357
1358 BUG_ON(num_refs < refs_to_drop);
1359 num_refs -= refs_to_drop;
1360
1361 if (num_refs == 0) {
1362 ret = btrfs_del_item(trans, root, path);
1363 *last_ref = 1;
1364 } else {
1365 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1366 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1367 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1368 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1369 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1370 else {
1371 struct btrfs_extent_ref_v0 *ref0;
1372 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1373 struct btrfs_extent_ref_v0);
1374 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1375 }
1376 #endif
1377 btrfs_mark_buffer_dirty(leaf);
1378 }
1379 return ret;
1380 }
1381
1382 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1383 struct btrfs_extent_inline_ref *iref)
1384 {
1385 struct btrfs_key key;
1386 struct extent_buffer *leaf;
1387 struct btrfs_extent_data_ref *ref1;
1388 struct btrfs_shared_data_ref *ref2;
1389 u32 num_refs = 0;
1390
1391 leaf = path->nodes[0];
1392 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1393 if (iref) {
1394 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1395 BTRFS_EXTENT_DATA_REF_KEY) {
1396 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1397 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1398 } else {
1399 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1400 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1401 }
1402 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1403 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1404 struct btrfs_extent_data_ref);
1405 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1406 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1407 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1408 struct btrfs_shared_data_ref);
1409 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1411 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1412 struct btrfs_extent_ref_v0 *ref0;
1413 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1414 struct btrfs_extent_ref_v0);
1415 num_refs = btrfs_ref_count_v0(leaf, ref0);
1416 #endif
1417 } else {
1418 WARN_ON(1);
1419 }
1420 return num_refs;
1421 }
1422
1423 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1424 struct btrfs_root *root,
1425 struct btrfs_path *path,
1426 u64 bytenr, u64 parent,
1427 u64 root_objectid)
1428 {
1429 struct btrfs_key key;
1430 int ret;
1431
1432 key.objectid = bytenr;
1433 if (parent) {
1434 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1435 key.offset = parent;
1436 } else {
1437 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1438 key.offset = root_objectid;
1439 }
1440
1441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442 if (ret > 0)
1443 ret = -ENOENT;
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445 if (ret == -ENOENT && parent) {
1446 btrfs_release_path(path);
1447 key.type = BTRFS_EXTENT_REF_V0_KEY;
1448 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1449 if (ret > 0)
1450 ret = -ENOENT;
1451 }
1452 #endif
1453 return ret;
1454 }
1455
1456 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1457 struct btrfs_root *root,
1458 struct btrfs_path *path,
1459 u64 bytenr, u64 parent,
1460 u64 root_objectid)
1461 {
1462 struct btrfs_key key;
1463 int ret;
1464
1465 key.objectid = bytenr;
1466 if (parent) {
1467 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1468 key.offset = parent;
1469 } else {
1470 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1471 key.offset = root_objectid;
1472 }
1473
1474 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1475 btrfs_release_path(path);
1476 return ret;
1477 }
1478
1479 static inline int extent_ref_type(u64 parent, u64 owner)
1480 {
1481 int type;
1482 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1483 if (parent > 0)
1484 type = BTRFS_SHARED_BLOCK_REF_KEY;
1485 else
1486 type = BTRFS_TREE_BLOCK_REF_KEY;
1487 } else {
1488 if (parent > 0)
1489 type = BTRFS_SHARED_DATA_REF_KEY;
1490 else
1491 type = BTRFS_EXTENT_DATA_REF_KEY;
1492 }
1493 return type;
1494 }
1495
1496 static int find_next_key(struct btrfs_path *path, int level,
1497 struct btrfs_key *key)
1498
1499 {
1500 for (; level < BTRFS_MAX_LEVEL; level++) {
1501 if (!path->nodes[level])
1502 break;
1503 if (path->slots[level] + 1 >=
1504 btrfs_header_nritems(path->nodes[level]))
1505 continue;
1506 if (level == 0)
1507 btrfs_item_key_to_cpu(path->nodes[level], key,
1508 path->slots[level] + 1);
1509 else
1510 btrfs_node_key_to_cpu(path->nodes[level], key,
1511 path->slots[level] + 1);
1512 return 0;
1513 }
1514 return 1;
1515 }
1516
1517 /*
1518 * look for inline back ref. if back ref is found, *ref_ret is set
1519 * to the address of inline back ref, and 0 is returned.
1520 *
1521 * if back ref isn't found, *ref_ret is set to the address where it
1522 * should be inserted, and -ENOENT is returned.
1523 *
1524 * if insert is true and there are too many inline back refs, the path
1525 * points to the extent item, and -EAGAIN is returned.
1526 *
1527 * NOTE: inline back refs are ordered in the same way that back ref
1528 * items in the tree are ordered.
1529 */
1530 static noinline_for_stack
1531 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root,
1533 struct btrfs_path *path,
1534 struct btrfs_extent_inline_ref **ref_ret,
1535 u64 bytenr, u64 num_bytes,
1536 u64 parent, u64 root_objectid,
1537 u64 owner, u64 offset, int insert)
1538 {
1539 struct btrfs_key key;
1540 struct extent_buffer *leaf;
1541 struct btrfs_extent_item *ei;
1542 struct btrfs_extent_inline_ref *iref;
1543 u64 flags;
1544 u64 item_size;
1545 unsigned long ptr;
1546 unsigned long end;
1547 int extra_size;
1548 int type;
1549 int want;
1550 int ret;
1551 int err = 0;
1552 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1553 SKINNY_METADATA);
1554
1555 key.objectid = bytenr;
1556 key.type = BTRFS_EXTENT_ITEM_KEY;
1557 key.offset = num_bytes;
1558
1559 want = extent_ref_type(parent, owner);
1560 if (insert) {
1561 extra_size = btrfs_extent_inline_ref_size(want);
1562 path->keep_locks = 1;
1563 } else
1564 extra_size = -1;
1565
1566 /*
1567 * Owner is our parent level, so we can just add one to get the level
1568 * for the block we are interested in.
1569 */
1570 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1571 key.type = BTRFS_METADATA_ITEM_KEY;
1572 key.offset = owner;
1573 }
1574
1575 again:
1576 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1577 if (ret < 0) {
1578 err = ret;
1579 goto out;
1580 }
1581
1582 /*
1583 * We may be a newly converted file system which still has the old fat
1584 * extent entries for metadata, so try and see if we have one of those.
1585 */
1586 if (ret > 0 && skinny_metadata) {
1587 skinny_metadata = false;
1588 if (path->slots[0]) {
1589 path->slots[0]--;
1590 btrfs_item_key_to_cpu(path->nodes[0], &key,
1591 path->slots[0]);
1592 if (key.objectid == bytenr &&
1593 key.type == BTRFS_EXTENT_ITEM_KEY &&
1594 key.offset == num_bytes)
1595 ret = 0;
1596 }
1597 if (ret) {
1598 key.objectid = bytenr;
1599 key.type = BTRFS_EXTENT_ITEM_KEY;
1600 key.offset = num_bytes;
1601 btrfs_release_path(path);
1602 goto again;
1603 }
1604 }
1605
1606 if (ret && !insert) {
1607 err = -ENOENT;
1608 goto out;
1609 } else if (WARN_ON(ret)) {
1610 err = -EIO;
1611 goto out;
1612 }
1613
1614 leaf = path->nodes[0];
1615 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1616 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1617 if (item_size < sizeof(*ei)) {
1618 if (!insert) {
1619 err = -ENOENT;
1620 goto out;
1621 }
1622 ret = convert_extent_item_v0(trans, root, path, owner,
1623 extra_size);
1624 if (ret < 0) {
1625 err = ret;
1626 goto out;
1627 }
1628 leaf = path->nodes[0];
1629 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1630 }
1631 #endif
1632 BUG_ON(item_size < sizeof(*ei));
1633
1634 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635 flags = btrfs_extent_flags(leaf, ei);
1636
1637 ptr = (unsigned long)(ei + 1);
1638 end = (unsigned long)ei + item_size;
1639
1640 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1641 ptr += sizeof(struct btrfs_tree_block_info);
1642 BUG_ON(ptr > end);
1643 }
1644
1645 err = -ENOENT;
1646 while (1) {
1647 if (ptr >= end) {
1648 WARN_ON(ptr > end);
1649 break;
1650 }
1651 iref = (struct btrfs_extent_inline_ref *)ptr;
1652 type = btrfs_extent_inline_ref_type(leaf, iref);
1653 if (want < type)
1654 break;
1655 if (want > type) {
1656 ptr += btrfs_extent_inline_ref_size(type);
1657 continue;
1658 }
1659
1660 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1661 struct btrfs_extent_data_ref *dref;
1662 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663 if (match_extent_data_ref(leaf, dref, root_objectid,
1664 owner, offset)) {
1665 err = 0;
1666 break;
1667 }
1668 if (hash_extent_data_ref_item(leaf, dref) <
1669 hash_extent_data_ref(root_objectid, owner, offset))
1670 break;
1671 } else {
1672 u64 ref_offset;
1673 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1674 if (parent > 0) {
1675 if (parent == ref_offset) {
1676 err = 0;
1677 break;
1678 }
1679 if (ref_offset < parent)
1680 break;
1681 } else {
1682 if (root_objectid == ref_offset) {
1683 err = 0;
1684 break;
1685 }
1686 if (ref_offset < root_objectid)
1687 break;
1688 }
1689 }
1690 ptr += btrfs_extent_inline_ref_size(type);
1691 }
1692 if (err == -ENOENT && insert) {
1693 if (item_size + extra_size >=
1694 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1695 err = -EAGAIN;
1696 goto out;
1697 }
1698 /*
1699 * To add new inline back ref, we have to make sure
1700 * there is no corresponding back ref item.
1701 * For simplicity, we just do not add new inline back
1702 * ref if there is any kind of item for this block
1703 */
1704 if (find_next_key(path, 0, &key) == 0 &&
1705 key.objectid == bytenr &&
1706 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1707 err = -EAGAIN;
1708 goto out;
1709 }
1710 }
1711 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1712 out:
1713 if (insert) {
1714 path->keep_locks = 0;
1715 btrfs_unlock_up_safe(path, 1);
1716 }
1717 return err;
1718 }
1719
1720 /*
1721 * helper to add new inline back ref
1722 */
1723 static noinline_for_stack
1724 void setup_inline_extent_backref(struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref *iref,
1727 u64 parent, u64 root_objectid,
1728 u64 owner, u64 offset, int refs_to_add,
1729 struct btrfs_delayed_extent_op *extent_op)
1730 {
1731 struct extent_buffer *leaf;
1732 struct btrfs_extent_item *ei;
1733 unsigned long ptr;
1734 unsigned long end;
1735 unsigned long item_offset;
1736 u64 refs;
1737 int size;
1738 int type;
1739
1740 leaf = path->nodes[0];
1741 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1742 item_offset = (unsigned long)iref - (unsigned long)ei;
1743
1744 type = extent_ref_type(parent, owner);
1745 size = btrfs_extent_inline_ref_size(type);
1746
1747 btrfs_extend_item(root, path, size);
1748
1749 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1750 refs = btrfs_extent_refs(leaf, ei);
1751 refs += refs_to_add;
1752 btrfs_set_extent_refs(leaf, ei, refs);
1753 if (extent_op)
1754 __run_delayed_extent_op(extent_op, leaf, ei);
1755
1756 ptr = (unsigned long)ei + item_offset;
1757 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1758 if (ptr < end - size)
1759 memmove_extent_buffer(leaf, ptr + size, ptr,
1760 end - size - ptr);
1761
1762 iref = (struct btrfs_extent_inline_ref *)ptr;
1763 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1764 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1765 struct btrfs_extent_data_ref *dref;
1766 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1767 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1768 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1769 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1770 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1771 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1772 struct btrfs_shared_data_ref *sref;
1773 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1774 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1775 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1776 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1777 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1778 } else {
1779 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1780 }
1781 btrfs_mark_buffer_dirty(leaf);
1782 }
1783
1784 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1785 struct btrfs_root *root,
1786 struct btrfs_path *path,
1787 struct btrfs_extent_inline_ref **ref_ret,
1788 u64 bytenr, u64 num_bytes, u64 parent,
1789 u64 root_objectid, u64 owner, u64 offset)
1790 {
1791 int ret;
1792
1793 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1794 bytenr, num_bytes, parent,
1795 root_objectid, owner, offset, 0);
1796 if (ret != -ENOENT)
1797 return ret;
1798
1799 btrfs_release_path(path);
1800 *ref_ret = NULL;
1801
1802 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1803 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1804 root_objectid);
1805 } else {
1806 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1807 root_objectid, owner, offset);
1808 }
1809 return ret;
1810 }
1811
1812 /*
1813 * helper to update/remove inline back ref
1814 */
1815 static noinline_for_stack
1816 void update_inline_extent_backref(struct btrfs_root *root,
1817 struct btrfs_path *path,
1818 struct btrfs_extent_inline_ref *iref,
1819 int refs_to_mod,
1820 struct btrfs_delayed_extent_op *extent_op,
1821 int *last_ref)
1822 {
1823 struct extent_buffer *leaf;
1824 struct btrfs_extent_item *ei;
1825 struct btrfs_extent_data_ref *dref = NULL;
1826 struct btrfs_shared_data_ref *sref = NULL;
1827 unsigned long ptr;
1828 unsigned long end;
1829 u32 item_size;
1830 int size;
1831 int type;
1832 u64 refs;
1833
1834 leaf = path->nodes[0];
1835 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1836 refs = btrfs_extent_refs(leaf, ei);
1837 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1838 refs += refs_to_mod;
1839 btrfs_set_extent_refs(leaf, ei, refs);
1840 if (extent_op)
1841 __run_delayed_extent_op(extent_op, leaf, ei);
1842
1843 type = btrfs_extent_inline_ref_type(leaf, iref);
1844
1845 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1846 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1847 refs = btrfs_extent_data_ref_count(leaf, dref);
1848 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1849 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1850 refs = btrfs_shared_data_ref_count(leaf, sref);
1851 } else {
1852 refs = 1;
1853 BUG_ON(refs_to_mod != -1);
1854 }
1855
1856 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1857 refs += refs_to_mod;
1858
1859 if (refs > 0) {
1860 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1861 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1862 else
1863 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1864 } else {
1865 *last_ref = 1;
1866 size = btrfs_extent_inline_ref_size(type);
1867 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1868 ptr = (unsigned long)iref;
1869 end = (unsigned long)ei + item_size;
1870 if (ptr + size < end)
1871 memmove_extent_buffer(leaf, ptr, ptr + size,
1872 end - ptr - size);
1873 item_size -= size;
1874 btrfs_truncate_item(root, path, item_size, 1);
1875 }
1876 btrfs_mark_buffer_dirty(leaf);
1877 }
1878
1879 static noinline_for_stack
1880 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root,
1882 struct btrfs_path *path,
1883 u64 bytenr, u64 num_bytes, u64 parent,
1884 u64 root_objectid, u64 owner,
1885 u64 offset, int refs_to_add,
1886 struct btrfs_delayed_extent_op *extent_op)
1887 {
1888 struct btrfs_extent_inline_ref *iref;
1889 int ret;
1890
1891 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1892 bytenr, num_bytes, parent,
1893 root_objectid, owner, offset, 1);
1894 if (ret == 0) {
1895 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1896 update_inline_extent_backref(root, path, iref,
1897 refs_to_add, extent_op, NULL);
1898 } else if (ret == -ENOENT) {
1899 setup_inline_extent_backref(root, path, iref, parent,
1900 root_objectid, owner, offset,
1901 refs_to_add, extent_op);
1902 ret = 0;
1903 }
1904 return ret;
1905 }
1906
1907 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1908 struct btrfs_root *root,
1909 struct btrfs_path *path,
1910 u64 bytenr, u64 parent, u64 root_objectid,
1911 u64 owner, u64 offset, int refs_to_add)
1912 {
1913 int ret;
1914 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1915 BUG_ON(refs_to_add != 1);
1916 ret = insert_tree_block_ref(trans, root, path, bytenr,
1917 parent, root_objectid);
1918 } else {
1919 ret = insert_extent_data_ref(trans, root, path, bytenr,
1920 parent, root_objectid,
1921 owner, offset, refs_to_add);
1922 }
1923 return ret;
1924 }
1925
1926 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1927 struct btrfs_root *root,
1928 struct btrfs_path *path,
1929 struct btrfs_extent_inline_ref *iref,
1930 int refs_to_drop, int is_data, int *last_ref)
1931 {
1932 int ret = 0;
1933
1934 BUG_ON(!is_data && refs_to_drop != 1);
1935 if (iref) {
1936 update_inline_extent_backref(root, path, iref,
1937 -refs_to_drop, NULL, last_ref);
1938 } else if (is_data) {
1939 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1940 last_ref);
1941 } else {
1942 *last_ref = 1;
1943 ret = btrfs_del_item(trans, root, path);
1944 }
1945 return ret;
1946 }
1947
1948 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1949 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1950 u64 *discarded_bytes)
1951 {
1952 int j, ret = 0;
1953 u64 bytes_left, end;
1954 u64 aligned_start = ALIGN(start, 1 << 9);
1955
1956 if (WARN_ON(start != aligned_start)) {
1957 len -= aligned_start - start;
1958 len = round_down(len, 1 << 9);
1959 start = aligned_start;
1960 }
1961
1962 *discarded_bytes = 0;
1963
1964 if (!len)
1965 return 0;
1966
1967 end = start + len;
1968 bytes_left = len;
1969
1970 /* Skip any superblocks on this device. */
1971 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1972 u64 sb_start = btrfs_sb_offset(j);
1973 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1974 u64 size = sb_start - start;
1975
1976 if (!in_range(sb_start, start, bytes_left) &&
1977 !in_range(sb_end, start, bytes_left) &&
1978 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1979 continue;
1980
1981 /*
1982 * Superblock spans beginning of range. Adjust start and
1983 * try again.
1984 */
1985 if (sb_start <= start) {
1986 start += sb_end - start;
1987 if (start > end) {
1988 bytes_left = 0;
1989 break;
1990 }
1991 bytes_left = end - start;
1992 continue;
1993 }
1994
1995 if (size) {
1996 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1997 GFP_NOFS, 0);
1998 if (!ret)
1999 *discarded_bytes += size;
2000 else if (ret != -EOPNOTSUPP)
2001 return ret;
2002 }
2003
2004 start = sb_end;
2005 if (start > end) {
2006 bytes_left = 0;
2007 break;
2008 }
2009 bytes_left = end - start;
2010 }
2011
2012 if (bytes_left) {
2013 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2014 GFP_NOFS, 0);
2015 if (!ret)
2016 *discarded_bytes += bytes_left;
2017 }
2018 return ret;
2019 }
2020
2021 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2022 u64 num_bytes, u64 *actual_bytes)
2023 {
2024 int ret;
2025 u64 discarded_bytes = 0;
2026 struct btrfs_bio *bbio = NULL;
2027
2028
2029 /* Tell the block device(s) that the sectors can be discarded */
2030 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2031 bytenr, &num_bytes, &bbio, 0);
2032 /* Error condition is -ENOMEM */
2033 if (!ret) {
2034 struct btrfs_bio_stripe *stripe = bbio->stripes;
2035 int i;
2036
2037
2038 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2039 u64 bytes;
2040 if (!stripe->dev->can_discard)
2041 continue;
2042
2043 ret = btrfs_issue_discard(stripe->dev->bdev,
2044 stripe->physical,
2045 stripe->length,
2046 &bytes);
2047 if (!ret)
2048 discarded_bytes += bytes;
2049 else if (ret != -EOPNOTSUPP)
2050 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2051
2052 /*
2053 * Just in case we get back EOPNOTSUPP for some reason,
2054 * just ignore the return value so we don't screw up
2055 * people calling discard_extent.
2056 */
2057 ret = 0;
2058 }
2059 btrfs_put_bbio(bbio);
2060 }
2061
2062 if (actual_bytes)
2063 *actual_bytes = discarded_bytes;
2064
2065
2066 if (ret == -EOPNOTSUPP)
2067 ret = 0;
2068 return ret;
2069 }
2070
2071 /* Can return -ENOMEM */
2072 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2073 struct btrfs_root *root,
2074 u64 bytenr, u64 num_bytes, u64 parent,
2075 u64 root_objectid, u64 owner, u64 offset)
2076 {
2077 int ret;
2078 struct btrfs_fs_info *fs_info = root->fs_info;
2079
2080 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2081 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2082
2083 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2084 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2085 num_bytes,
2086 parent, root_objectid, (int)owner,
2087 BTRFS_ADD_DELAYED_REF, NULL);
2088 } else {
2089 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2090 num_bytes, parent, root_objectid,
2091 owner, offset, 0,
2092 BTRFS_ADD_DELAYED_REF, NULL);
2093 }
2094 return ret;
2095 }
2096
2097 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2098 struct btrfs_root *root,
2099 struct btrfs_delayed_ref_node *node,
2100 u64 parent, u64 root_objectid,
2101 u64 owner, u64 offset, int refs_to_add,
2102 struct btrfs_delayed_extent_op *extent_op)
2103 {
2104 struct btrfs_fs_info *fs_info = root->fs_info;
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
2108 struct btrfs_key key;
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
2111 u64 refs;
2112 int ret;
2113
2114 path = btrfs_alloc_path();
2115 if (!path)
2116 return -ENOMEM;
2117
2118 path->reada = 1;
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
2121 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2122 bytenr, num_bytes, parent,
2123 root_objectid, owner, offset,
2124 refs_to_add, extent_op);
2125 if ((ret < 0 && ret != -EAGAIN) || !ret)
2126 goto out;
2127
2128 /*
2129 * Ok we had -EAGAIN which means we didn't have space to insert and
2130 * inline extent ref, so just update the reference count and add a
2131 * normal backref.
2132 */
2133 leaf = path->nodes[0];
2134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2135 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2136 refs = btrfs_extent_refs(leaf, item);
2137 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2138 if (extent_op)
2139 __run_delayed_extent_op(extent_op, leaf, item);
2140
2141 btrfs_mark_buffer_dirty(leaf);
2142 btrfs_release_path(path);
2143
2144 path->reada = 1;
2145 path->leave_spinning = 1;
2146 /* now insert the actual backref */
2147 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2148 path, bytenr, parent, root_objectid,
2149 owner, offset, refs_to_add);
2150 if (ret)
2151 btrfs_abort_transaction(trans, root, ret);
2152 out:
2153 btrfs_free_path(path);
2154 return ret;
2155 }
2156
2157 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2158 struct btrfs_root *root,
2159 struct btrfs_delayed_ref_node *node,
2160 struct btrfs_delayed_extent_op *extent_op,
2161 int insert_reserved)
2162 {
2163 int ret = 0;
2164 struct btrfs_delayed_data_ref *ref;
2165 struct btrfs_key ins;
2166 u64 parent = 0;
2167 u64 ref_root = 0;
2168 u64 flags = 0;
2169
2170 ins.objectid = node->bytenr;
2171 ins.offset = node->num_bytes;
2172 ins.type = BTRFS_EXTENT_ITEM_KEY;
2173
2174 ref = btrfs_delayed_node_to_data_ref(node);
2175 trace_run_delayed_data_ref(node, ref, node->action);
2176
2177 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2178 parent = ref->parent;
2179 ref_root = ref->root;
2180
2181 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2182 if (extent_op)
2183 flags |= extent_op->flags_to_set;
2184 ret = alloc_reserved_file_extent(trans, root,
2185 parent, ref_root, flags,
2186 ref->objectid, ref->offset,
2187 &ins, node->ref_mod);
2188 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2189 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2190 ref_root, ref->objectid,
2191 ref->offset, node->ref_mod,
2192 extent_op);
2193 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2194 ret = __btrfs_free_extent(trans, root, node, parent,
2195 ref_root, ref->objectid,
2196 ref->offset, node->ref_mod,
2197 extent_op);
2198 } else {
2199 BUG();
2200 }
2201 return ret;
2202 }
2203
2204 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2205 struct extent_buffer *leaf,
2206 struct btrfs_extent_item *ei)
2207 {
2208 u64 flags = btrfs_extent_flags(leaf, ei);
2209 if (extent_op->update_flags) {
2210 flags |= extent_op->flags_to_set;
2211 btrfs_set_extent_flags(leaf, ei, flags);
2212 }
2213
2214 if (extent_op->update_key) {
2215 struct btrfs_tree_block_info *bi;
2216 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2217 bi = (struct btrfs_tree_block_info *)(ei + 1);
2218 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2219 }
2220 }
2221
2222 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2223 struct btrfs_root *root,
2224 struct btrfs_delayed_ref_node *node,
2225 struct btrfs_delayed_extent_op *extent_op)
2226 {
2227 struct btrfs_key key;
2228 struct btrfs_path *path;
2229 struct btrfs_extent_item *ei;
2230 struct extent_buffer *leaf;
2231 u32 item_size;
2232 int ret;
2233 int err = 0;
2234 int metadata = !extent_op->is_data;
2235
2236 if (trans->aborted)
2237 return 0;
2238
2239 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2240 metadata = 0;
2241
2242 path = btrfs_alloc_path();
2243 if (!path)
2244 return -ENOMEM;
2245
2246 key.objectid = node->bytenr;
2247
2248 if (metadata) {
2249 key.type = BTRFS_METADATA_ITEM_KEY;
2250 key.offset = extent_op->level;
2251 } else {
2252 key.type = BTRFS_EXTENT_ITEM_KEY;
2253 key.offset = node->num_bytes;
2254 }
2255
2256 again:
2257 path->reada = 1;
2258 path->leave_spinning = 1;
2259 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2260 path, 0, 1);
2261 if (ret < 0) {
2262 err = ret;
2263 goto out;
2264 }
2265 if (ret > 0) {
2266 if (metadata) {
2267 if (path->slots[0] > 0) {
2268 path->slots[0]--;
2269 btrfs_item_key_to_cpu(path->nodes[0], &key,
2270 path->slots[0]);
2271 if (key.objectid == node->bytenr &&
2272 key.type == BTRFS_EXTENT_ITEM_KEY &&
2273 key.offset == node->num_bytes)
2274 ret = 0;
2275 }
2276 if (ret > 0) {
2277 btrfs_release_path(path);
2278 metadata = 0;
2279
2280 key.objectid = node->bytenr;
2281 key.offset = node->num_bytes;
2282 key.type = BTRFS_EXTENT_ITEM_KEY;
2283 goto again;
2284 }
2285 } else {
2286 err = -EIO;
2287 goto out;
2288 }
2289 }
2290
2291 leaf = path->nodes[0];
2292 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2294 if (item_size < sizeof(*ei)) {
2295 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2296 path, (u64)-1, 0);
2297 if (ret < 0) {
2298 err = ret;
2299 goto out;
2300 }
2301 leaf = path->nodes[0];
2302 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303 }
2304 #endif
2305 BUG_ON(item_size < sizeof(*ei));
2306 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2307 __run_delayed_extent_op(extent_op, leaf, ei);
2308
2309 btrfs_mark_buffer_dirty(leaf);
2310 out:
2311 btrfs_free_path(path);
2312 return err;
2313 }
2314
2315 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2316 struct btrfs_root *root,
2317 struct btrfs_delayed_ref_node *node,
2318 struct btrfs_delayed_extent_op *extent_op,
2319 int insert_reserved)
2320 {
2321 int ret = 0;
2322 struct btrfs_delayed_tree_ref *ref;
2323 struct btrfs_key ins;
2324 u64 parent = 0;
2325 u64 ref_root = 0;
2326 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2327 SKINNY_METADATA);
2328
2329 ref = btrfs_delayed_node_to_tree_ref(node);
2330 trace_run_delayed_tree_ref(node, ref, node->action);
2331
2332 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2333 parent = ref->parent;
2334 ref_root = ref->root;
2335
2336 ins.objectid = node->bytenr;
2337 if (skinny_metadata) {
2338 ins.offset = ref->level;
2339 ins.type = BTRFS_METADATA_ITEM_KEY;
2340 } else {
2341 ins.offset = node->num_bytes;
2342 ins.type = BTRFS_EXTENT_ITEM_KEY;
2343 }
2344
2345 BUG_ON(node->ref_mod != 1);
2346 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2347 BUG_ON(!extent_op || !extent_op->update_flags);
2348 ret = alloc_reserved_tree_block(trans, root,
2349 parent, ref_root,
2350 extent_op->flags_to_set,
2351 &extent_op->key,
2352 ref->level, &ins);
2353 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2354 ret = __btrfs_inc_extent_ref(trans, root, node,
2355 parent, ref_root,
2356 ref->level, 0, 1,
2357 extent_op);
2358 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2359 ret = __btrfs_free_extent(trans, root, node,
2360 parent, ref_root,
2361 ref->level, 0, 1, extent_op);
2362 } else {
2363 BUG();
2364 }
2365 return ret;
2366 }
2367
2368 /* helper function to actually process a single delayed ref entry */
2369 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2370 struct btrfs_root *root,
2371 struct btrfs_delayed_ref_node *node,
2372 struct btrfs_delayed_extent_op *extent_op,
2373 int insert_reserved)
2374 {
2375 int ret = 0;
2376
2377 if (trans->aborted) {
2378 if (insert_reserved)
2379 btrfs_pin_extent(root, node->bytenr,
2380 node->num_bytes, 1);
2381 return 0;
2382 }
2383
2384 if (btrfs_delayed_ref_is_head(node)) {
2385 struct btrfs_delayed_ref_head *head;
2386 /*
2387 * we've hit the end of the chain and we were supposed
2388 * to insert this extent into the tree. But, it got
2389 * deleted before we ever needed to insert it, so all
2390 * we have to do is clean up the accounting
2391 */
2392 BUG_ON(extent_op);
2393 head = btrfs_delayed_node_to_head(node);
2394 trace_run_delayed_ref_head(node, head, node->action);
2395
2396 if (insert_reserved) {
2397 btrfs_pin_extent(root, node->bytenr,
2398 node->num_bytes, 1);
2399 if (head->is_data) {
2400 ret = btrfs_del_csums(trans, root,
2401 node->bytenr,
2402 node->num_bytes);
2403 }
2404 }
2405
2406 /* Also free its reserved qgroup space */
2407 btrfs_qgroup_free_delayed_ref(root->fs_info,
2408 head->qgroup_ref_root,
2409 head->qgroup_reserved);
2410 return ret;
2411 }
2412
2413 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2414 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2415 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2416 insert_reserved);
2417 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2418 node->type == BTRFS_SHARED_DATA_REF_KEY)
2419 ret = run_delayed_data_ref(trans, root, node, extent_op,
2420 insert_reserved);
2421 else
2422 BUG();
2423 return ret;
2424 }
2425
2426 static inline struct btrfs_delayed_ref_node *
2427 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2428 {
2429 struct btrfs_delayed_ref_node *ref;
2430
2431 if (list_empty(&head->ref_list))
2432 return NULL;
2433
2434 /*
2435 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2436 * This is to prevent a ref count from going down to zero, which deletes
2437 * the extent item from the extent tree, when there still are references
2438 * to add, which would fail because they would not find the extent item.
2439 */
2440 list_for_each_entry(ref, &head->ref_list, list) {
2441 if (ref->action == BTRFS_ADD_DELAYED_REF)
2442 return ref;
2443 }
2444
2445 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2446 list);
2447 }
2448
2449 /*
2450 * Returns 0 on success or if called with an already aborted transaction.
2451 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2452 */
2453 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2454 struct btrfs_root *root,
2455 unsigned long nr)
2456 {
2457 struct btrfs_delayed_ref_root *delayed_refs;
2458 struct btrfs_delayed_ref_node *ref;
2459 struct btrfs_delayed_ref_head *locked_ref = NULL;
2460 struct btrfs_delayed_extent_op *extent_op;
2461 struct btrfs_fs_info *fs_info = root->fs_info;
2462 ktime_t start = ktime_get();
2463 int ret;
2464 unsigned long count = 0;
2465 unsigned long actual_count = 0;
2466 int must_insert_reserved = 0;
2467
2468 delayed_refs = &trans->transaction->delayed_refs;
2469 while (1) {
2470 if (!locked_ref) {
2471 if (count >= nr)
2472 break;
2473
2474 spin_lock(&delayed_refs->lock);
2475 locked_ref = btrfs_select_ref_head(trans);
2476 if (!locked_ref) {
2477 spin_unlock(&delayed_refs->lock);
2478 break;
2479 }
2480
2481 /* grab the lock that says we are going to process
2482 * all the refs for this head */
2483 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2484 spin_unlock(&delayed_refs->lock);
2485 /*
2486 * we may have dropped the spin lock to get the head
2487 * mutex lock, and that might have given someone else
2488 * time to free the head. If that's true, it has been
2489 * removed from our list and we can move on.
2490 */
2491 if (ret == -EAGAIN) {
2492 locked_ref = NULL;
2493 count++;
2494 continue;
2495 }
2496 }
2497
2498 /*
2499 * We need to try and merge add/drops of the same ref since we
2500 * can run into issues with relocate dropping the implicit ref
2501 * and then it being added back again before the drop can
2502 * finish. If we merged anything we need to re-loop so we can
2503 * get a good ref.
2504 * Or we can get node references of the same type that weren't
2505 * merged when created due to bumps in the tree mod seq, and
2506 * we need to merge them to prevent adding an inline extent
2507 * backref before dropping it (triggering a BUG_ON at
2508 * insert_inline_extent_backref()).
2509 */
2510 spin_lock(&locked_ref->lock);
2511 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2512 locked_ref);
2513
2514 /*
2515 * locked_ref is the head node, so we have to go one
2516 * node back for any delayed ref updates
2517 */
2518 ref = select_delayed_ref(locked_ref);
2519
2520 if (ref && ref->seq &&
2521 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2522 spin_unlock(&locked_ref->lock);
2523 btrfs_delayed_ref_unlock(locked_ref);
2524 spin_lock(&delayed_refs->lock);
2525 locked_ref->processing = 0;
2526 delayed_refs->num_heads_ready++;
2527 spin_unlock(&delayed_refs->lock);
2528 locked_ref = NULL;
2529 cond_resched();
2530 count++;
2531 continue;
2532 }
2533
2534 /*
2535 * record the must insert reserved flag before we
2536 * drop the spin lock.
2537 */
2538 must_insert_reserved = locked_ref->must_insert_reserved;
2539 locked_ref->must_insert_reserved = 0;
2540
2541 extent_op = locked_ref->extent_op;
2542 locked_ref->extent_op = NULL;
2543
2544 if (!ref) {
2545
2546
2547 /* All delayed refs have been processed, Go ahead
2548 * and send the head node to run_one_delayed_ref,
2549 * so that any accounting fixes can happen
2550 */
2551 ref = &locked_ref->node;
2552
2553 if (extent_op && must_insert_reserved) {
2554 btrfs_free_delayed_extent_op(extent_op);
2555 extent_op = NULL;
2556 }
2557
2558 if (extent_op) {
2559 spin_unlock(&locked_ref->lock);
2560 ret = run_delayed_extent_op(trans, root,
2561 ref, extent_op);
2562 btrfs_free_delayed_extent_op(extent_op);
2563
2564 if (ret) {
2565 /*
2566 * Need to reset must_insert_reserved if
2567 * there was an error so the abort stuff
2568 * can cleanup the reserved space
2569 * properly.
2570 */
2571 if (must_insert_reserved)
2572 locked_ref->must_insert_reserved = 1;
2573 locked_ref->processing = 0;
2574 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2575 btrfs_delayed_ref_unlock(locked_ref);
2576 return ret;
2577 }
2578 continue;
2579 }
2580
2581 /*
2582 * Need to drop our head ref lock and re-aqcuire the
2583 * delayed ref lock and then re-check to make sure
2584 * nobody got added.
2585 */
2586 spin_unlock(&locked_ref->lock);
2587 spin_lock(&delayed_refs->lock);
2588 spin_lock(&locked_ref->lock);
2589 if (!list_empty(&locked_ref->ref_list) ||
2590 locked_ref->extent_op) {
2591 spin_unlock(&locked_ref->lock);
2592 spin_unlock(&delayed_refs->lock);
2593 continue;
2594 }
2595 ref->in_tree = 0;
2596 delayed_refs->num_heads--;
2597 rb_erase(&locked_ref->href_node,
2598 &delayed_refs->href_root);
2599 spin_unlock(&delayed_refs->lock);
2600 } else {
2601 actual_count++;
2602 ref->in_tree = 0;
2603 list_del(&ref->list);
2604 }
2605 atomic_dec(&delayed_refs->num_entries);
2606
2607 if (!btrfs_delayed_ref_is_head(ref)) {
2608 /*
2609 * when we play the delayed ref, also correct the
2610 * ref_mod on head
2611 */
2612 switch (ref->action) {
2613 case BTRFS_ADD_DELAYED_REF:
2614 case BTRFS_ADD_DELAYED_EXTENT:
2615 locked_ref->node.ref_mod -= ref->ref_mod;
2616 break;
2617 case BTRFS_DROP_DELAYED_REF:
2618 locked_ref->node.ref_mod += ref->ref_mod;
2619 break;
2620 default:
2621 WARN_ON(1);
2622 }
2623 }
2624 spin_unlock(&locked_ref->lock);
2625
2626 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2627 must_insert_reserved);
2628
2629 btrfs_free_delayed_extent_op(extent_op);
2630 if (ret) {
2631 locked_ref->processing = 0;
2632 btrfs_delayed_ref_unlock(locked_ref);
2633 btrfs_put_delayed_ref(ref);
2634 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2635 return ret;
2636 }
2637
2638 /*
2639 * If this node is a head, that means all the refs in this head
2640 * have been dealt with, and we will pick the next head to deal
2641 * with, so we must unlock the head and drop it from the cluster
2642 * list before we release it.
2643 */
2644 if (btrfs_delayed_ref_is_head(ref)) {
2645 if (locked_ref->is_data &&
2646 locked_ref->total_ref_mod < 0) {
2647 spin_lock(&delayed_refs->lock);
2648 delayed_refs->pending_csums -= ref->num_bytes;
2649 spin_unlock(&delayed_refs->lock);
2650 }
2651 btrfs_delayed_ref_unlock(locked_ref);
2652 locked_ref = NULL;
2653 }
2654 btrfs_put_delayed_ref(ref);
2655 count++;
2656 cond_resched();
2657 }
2658
2659 /*
2660 * We don't want to include ref heads since we can have empty ref heads
2661 * and those will drastically skew our runtime down since we just do
2662 * accounting, no actual extent tree updates.
2663 */
2664 if (actual_count > 0) {
2665 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2666 u64 avg;
2667
2668 /*
2669 * We weigh the current average higher than our current runtime
2670 * to avoid large swings in the average.
2671 */
2672 spin_lock(&delayed_refs->lock);
2673 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2674 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2675 spin_unlock(&delayed_refs->lock);
2676 }
2677 return 0;
2678 }
2679
2680 #ifdef SCRAMBLE_DELAYED_REFS
2681 /*
2682 * Normally delayed refs get processed in ascending bytenr order. This
2683 * correlates in most cases to the order added. To expose dependencies on this
2684 * order, we start to process the tree in the middle instead of the beginning
2685 */
2686 static u64 find_middle(struct rb_root *root)
2687 {
2688 struct rb_node *n = root->rb_node;
2689 struct btrfs_delayed_ref_node *entry;
2690 int alt = 1;
2691 u64 middle;
2692 u64 first = 0, last = 0;
2693
2694 n = rb_first(root);
2695 if (n) {
2696 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2697 first = entry->bytenr;
2698 }
2699 n = rb_last(root);
2700 if (n) {
2701 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2702 last = entry->bytenr;
2703 }
2704 n = root->rb_node;
2705
2706 while (n) {
2707 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2708 WARN_ON(!entry->in_tree);
2709
2710 middle = entry->bytenr;
2711
2712 if (alt)
2713 n = n->rb_left;
2714 else
2715 n = n->rb_right;
2716
2717 alt = 1 - alt;
2718 }
2719 return middle;
2720 }
2721 #endif
2722
2723 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2724 {
2725 u64 num_bytes;
2726
2727 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2728 sizeof(struct btrfs_extent_inline_ref));
2729 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2730 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2731
2732 /*
2733 * We don't ever fill up leaves all the way so multiply by 2 just to be
2734 * closer to what we're really going to want to ouse.
2735 */
2736 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2737 }
2738
2739 /*
2740 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2741 * would require to store the csums for that many bytes.
2742 */
2743 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2744 {
2745 u64 csum_size;
2746 u64 num_csums_per_leaf;
2747 u64 num_csums;
2748
2749 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2750 num_csums_per_leaf = div64_u64(csum_size,
2751 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2752 num_csums = div64_u64(csum_bytes, root->sectorsize);
2753 num_csums += num_csums_per_leaf - 1;
2754 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2755 return num_csums;
2756 }
2757
2758 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2759 struct btrfs_root *root)
2760 {
2761 struct btrfs_block_rsv *global_rsv;
2762 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2763 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2764 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2765 u64 num_bytes, num_dirty_bgs_bytes;
2766 int ret = 0;
2767
2768 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2769 num_heads = heads_to_leaves(root, num_heads);
2770 if (num_heads > 1)
2771 num_bytes += (num_heads - 1) * root->nodesize;
2772 num_bytes <<= 1;
2773 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2774 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2775 num_dirty_bgs);
2776 global_rsv = &root->fs_info->global_block_rsv;
2777
2778 /*
2779 * If we can't allocate any more chunks lets make sure we have _lots_ of
2780 * wiggle room since running delayed refs can create more delayed refs.
2781 */
2782 if (global_rsv->space_info->full) {
2783 num_dirty_bgs_bytes <<= 1;
2784 num_bytes <<= 1;
2785 }
2786
2787 spin_lock(&global_rsv->lock);
2788 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2789 ret = 1;
2790 spin_unlock(&global_rsv->lock);
2791 return ret;
2792 }
2793
2794 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2795 struct btrfs_root *root)
2796 {
2797 struct btrfs_fs_info *fs_info = root->fs_info;
2798 u64 num_entries =
2799 atomic_read(&trans->transaction->delayed_refs.num_entries);
2800 u64 avg_runtime;
2801 u64 val;
2802
2803 smp_mb();
2804 avg_runtime = fs_info->avg_delayed_ref_runtime;
2805 val = num_entries * avg_runtime;
2806 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2807 return 1;
2808 if (val >= NSEC_PER_SEC / 2)
2809 return 2;
2810
2811 return btrfs_check_space_for_delayed_refs(trans, root);
2812 }
2813
2814 struct async_delayed_refs {
2815 struct btrfs_root *root;
2816 int count;
2817 int error;
2818 int sync;
2819 struct completion wait;
2820 struct btrfs_work work;
2821 };
2822
2823 static void delayed_ref_async_start(struct btrfs_work *work)
2824 {
2825 struct async_delayed_refs *async;
2826 struct btrfs_trans_handle *trans;
2827 int ret;
2828
2829 async = container_of(work, struct async_delayed_refs, work);
2830
2831 trans = btrfs_join_transaction(async->root);
2832 if (IS_ERR(trans)) {
2833 async->error = PTR_ERR(trans);
2834 goto done;
2835 }
2836
2837 /*
2838 * trans->sync means that when we call end_transaciton, we won't
2839 * wait on delayed refs
2840 */
2841 trans->sync = true;
2842 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2843 if (ret)
2844 async->error = ret;
2845
2846 ret = btrfs_end_transaction(trans, async->root);
2847 if (ret && !async->error)
2848 async->error = ret;
2849 done:
2850 if (async->sync)
2851 complete(&async->wait);
2852 else
2853 kfree(async);
2854 }
2855
2856 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2857 unsigned long count, int wait)
2858 {
2859 struct async_delayed_refs *async;
2860 int ret;
2861
2862 async = kmalloc(sizeof(*async), GFP_NOFS);
2863 if (!async)
2864 return -ENOMEM;
2865
2866 async->root = root->fs_info->tree_root;
2867 async->count = count;
2868 async->error = 0;
2869 if (wait)
2870 async->sync = 1;
2871 else
2872 async->sync = 0;
2873 init_completion(&async->wait);
2874
2875 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2876 delayed_ref_async_start, NULL, NULL);
2877
2878 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2879
2880 if (wait) {
2881 wait_for_completion(&async->wait);
2882 ret = async->error;
2883 kfree(async);
2884 return ret;
2885 }
2886 return 0;
2887 }
2888
2889 /*
2890 * this starts processing the delayed reference count updates and
2891 * extent insertions we have queued up so far. count can be
2892 * 0, which means to process everything in the tree at the start
2893 * of the run (but not newly added entries), or it can be some target
2894 * number you'd like to process.
2895 *
2896 * Returns 0 on success or if called with an aborted transaction
2897 * Returns <0 on error and aborts the transaction
2898 */
2899 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root, unsigned long count)
2901 {
2902 struct rb_node *node;
2903 struct btrfs_delayed_ref_root *delayed_refs;
2904 struct btrfs_delayed_ref_head *head;
2905 int ret;
2906 int run_all = count == (unsigned long)-1;
2907 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2908
2909 /* We'll clean this up in btrfs_cleanup_transaction */
2910 if (trans->aborted)
2911 return 0;
2912
2913 if (root == root->fs_info->extent_root)
2914 root = root->fs_info->tree_root;
2915
2916 delayed_refs = &trans->transaction->delayed_refs;
2917 if (count == 0)
2918 count = atomic_read(&delayed_refs->num_entries) * 2;
2919
2920 again:
2921 #ifdef SCRAMBLE_DELAYED_REFS
2922 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2923 #endif
2924 trans->can_flush_pending_bgs = false;
2925 ret = __btrfs_run_delayed_refs(trans, root, count);
2926 if (ret < 0) {
2927 btrfs_abort_transaction(trans, root, ret);
2928 return ret;
2929 }
2930
2931 if (run_all) {
2932 if (!list_empty(&trans->new_bgs))
2933 btrfs_create_pending_block_groups(trans, root);
2934
2935 spin_lock(&delayed_refs->lock);
2936 node = rb_first(&delayed_refs->href_root);
2937 if (!node) {
2938 spin_unlock(&delayed_refs->lock);
2939 goto out;
2940 }
2941 count = (unsigned long)-1;
2942
2943 while (node) {
2944 head = rb_entry(node, struct btrfs_delayed_ref_head,
2945 href_node);
2946 if (btrfs_delayed_ref_is_head(&head->node)) {
2947 struct btrfs_delayed_ref_node *ref;
2948
2949 ref = &head->node;
2950 atomic_inc(&ref->refs);
2951
2952 spin_unlock(&delayed_refs->lock);
2953 /*
2954 * Mutex was contended, block until it's
2955 * released and try again
2956 */
2957 mutex_lock(&head->mutex);
2958 mutex_unlock(&head->mutex);
2959
2960 btrfs_put_delayed_ref(ref);
2961 cond_resched();
2962 goto again;
2963 } else {
2964 WARN_ON(1);
2965 }
2966 node = rb_next(node);
2967 }
2968 spin_unlock(&delayed_refs->lock);
2969 cond_resched();
2970 goto again;
2971 }
2972 out:
2973 assert_qgroups_uptodate(trans);
2974 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2975 return 0;
2976 }
2977
2978 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2979 struct btrfs_root *root,
2980 u64 bytenr, u64 num_bytes, u64 flags,
2981 int level, int is_data)
2982 {
2983 struct btrfs_delayed_extent_op *extent_op;
2984 int ret;
2985
2986 extent_op = btrfs_alloc_delayed_extent_op();
2987 if (!extent_op)
2988 return -ENOMEM;
2989
2990 extent_op->flags_to_set = flags;
2991 extent_op->update_flags = 1;
2992 extent_op->update_key = 0;
2993 extent_op->is_data = is_data ? 1 : 0;
2994 extent_op->level = level;
2995
2996 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2997 num_bytes, extent_op);
2998 if (ret)
2999 btrfs_free_delayed_extent_op(extent_op);
3000 return ret;
3001 }
3002
3003 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3004 struct btrfs_root *root,
3005 struct btrfs_path *path,
3006 u64 objectid, u64 offset, u64 bytenr)
3007 {
3008 struct btrfs_delayed_ref_head *head;
3009 struct btrfs_delayed_ref_node *ref;
3010 struct btrfs_delayed_data_ref *data_ref;
3011 struct btrfs_delayed_ref_root *delayed_refs;
3012 int ret = 0;
3013
3014 delayed_refs = &trans->transaction->delayed_refs;
3015 spin_lock(&delayed_refs->lock);
3016 head = btrfs_find_delayed_ref_head(trans, bytenr);
3017 if (!head) {
3018 spin_unlock(&delayed_refs->lock);
3019 return 0;
3020 }
3021
3022 if (!mutex_trylock(&head->mutex)) {
3023 atomic_inc(&head->node.refs);
3024 spin_unlock(&delayed_refs->lock);
3025
3026 btrfs_release_path(path);
3027
3028 /*
3029 * Mutex was contended, block until it's released and let
3030 * caller try again
3031 */
3032 mutex_lock(&head->mutex);
3033 mutex_unlock(&head->mutex);
3034 btrfs_put_delayed_ref(&head->node);
3035 return -EAGAIN;
3036 }
3037 spin_unlock(&delayed_refs->lock);
3038
3039 spin_lock(&head->lock);
3040 list_for_each_entry(ref, &head->ref_list, list) {
3041 /* If it's a shared ref we know a cross reference exists */
3042 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3043 ret = 1;
3044 break;
3045 }
3046
3047 data_ref = btrfs_delayed_node_to_data_ref(ref);
3048
3049 /*
3050 * If our ref doesn't match the one we're currently looking at
3051 * then we have a cross reference.
3052 */
3053 if (data_ref->root != root->root_key.objectid ||
3054 data_ref->objectid != objectid ||
3055 data_ref->offset != offset) {
3056 ret = 1;
3057 break;
3058 }
3059 }
3060 spin_unlock(&head->lock);
3061 mutex_unlock(&head->mutex);
3062 return ret;
3063 }
3064
3065 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3066 struct btrfs_root *root,
3067 struct btrfs_path *path,
3068 u64 objectid, u64 offset, u64 bytenr)
3069 {
3070 struct btrfs_root *extent_root = root->fs_info->extent_root;
3071 struct extent_buffer *leaf;
3072 struct btrfs_extent_data_ref *ref;
3073 struct btrfs_extent_inline_ref *iref;
3074 struct btrfs_extent_item *ei;
3075 struct btrfs_key key;
3076 u32 item_size;
3077 int ret;
3078
3079 key.objectid = bytenr;
3080 key.offset = (u64)-1;
3081 key.type = BTRFS_EXTENT_ITEM_KEY;
3082
3083 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3084 if (ret < 0)
3085 goto out;
3086 BUG_ON(ret == 0); /* Corruption */
3087
3088 ret = -ENOENT;
3089 if (path->slots[0] == 0)
3090 goto out;
3091
3092 path->slots[0]--;
3093 leaf = path->nodes[0];
3094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3095
3096 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3097 goto out;
3098
3099 ret = 1;
3100 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3101 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3102 if (item_size < sizeof(*ei)) {
3103 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3104 goto out;
3105 }
3106 #endif
3107 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3108
3109 if (item_size != sizeof(*ei) +
3110 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111 goto out;
3112
3113 if (btrfs_extent_generation(leaf, ei) <=
3114 btrfs_root_last_snapshot(&root->root_item))
3115 goto out;
3116
3117 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3118 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3119 BTRFS_EXTENT_DATA_REF_KEY)
3120 goto out;
3121
3122 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3123 if (btrfs_extent_refs(leaf, ei) !=
3124 btrfs_extent_data_ref_count(leaf, ref) ||
3125 btrfs_extent_data_ref_root(leaf, ref) !=
3126 root->root_key.objectid ||
3127 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3128 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3129 goto out;
3130
3131 ret = 0;
3132 out:
3133 return ret;
3134 }
3135
3136 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3137 struct btrfs_root *root,
3138 u64 objectid, u64 offset, u64 bytenr)
3139 {
3140 struct btrfs_path *path;
3141 int ret;
3142 int ret2;
3143
3144 path = btrfs_alloc_path();
3145 if (!path)
3146 return -ENOENT;
3147
3148 do {
3149 ret = check_committed_ref(trans, root, path, objectid,
3150 offset, bytenr);
3151 if (ret && ret != -ENOENT)
3152 goto out;
3153
3154 ret2 = check_delayed_ref(trans, root, path, objectid,
3155 offset, bytenr);
3156 } while (ret2 == -EAGAIN);
3157
3158 if (ret2 && ret2 != -ENOENT) {
3159 ret = ret2;
3160 goto out;
3161 }
3162
3163 if (ret != -ENOENT || ret2 != -ENOENT)
3164 ret = 0;
3165 out:
3166 btrfs_free_path(path);
3167 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3168 WARN_ON(ret > 0);
3169 return ret;
3170 }
3171
3172 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root,
3174 struct extent_buffer *buf,
3175 int full_backref, int inc)
3176 {
3177 u64 bytenr;
3178 u64 num_bytes;
3179 u64 parent;
3180 u64 ref_root;
3181 u32 nritems;
3182 struct btrfs_key key;
3183 struct btrfs_file_extent_item *fi;
3184 int i;
3185 int level;
3186 int ret = 0;
3187 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3188 u64, u64, u64, u64, u64, u64);
3189
3190
3191 if (btrfs_test_is_dummy_root(root))
3192 return 0;
3193
3194 ref_root = btrfs_header_owner(buf);
3195 nritems = btrfs_header_nritems(buf);
3196 level = btrfs_header_level(buf);
3197
3198 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3199 return 0;
3200
3201 if (inc)
3202 process_func = btrfs_inc_extent_ref;
3203 else
3204 process_func = btrfs_free_extent;
3205
3206 if (full_backref)
3207 parent = buf->start;
3208 else
3209 parent = 0;
3210
3211 for (i = 0; i < nritems; i++) {
3212 if (level == 0) {
3213 btrfs_item_key_to_cpu(buf, &key, i);
3214 if (key.type != BTRFS_EXTENT_DATA_KEY)
3215 continue;
3216 fi = btrfs_item_ptr(buf, i,
3217 struct btrfs_file_extent_item);
3218 if (btrfs_file_extent_type(buf, fi) ==
3219 BTRFS_FILE_EXTENT_INLINE)
3220 continue;
3221 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3222 if (bytenr == 0)
3223 continue;
3224
3225 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3226 key.offset -= btrfs_file_extent_offset(buf, fi);
3227 ret = process_func(trans, root, bytenr, num_bytes,
3228 parent, ref_root, key.objectid,
3229 key.offset);
3230 if (ret)
3231 goto fail;
3232 } else {
3233 bytenr = btrfs_node_blockptr(buf, i);
3234 num_bytes = root->nodesize;
3235 ret = process_func(trans, root, bytenr, num_bytes,
3236 parent, ref_root, level - 1, 0);
3237 if (ret)
3238 goto fail;
3239 }
3240 }
3241 return 0;
3242 fail:
3243 return ret;
3244 }
3245
3246 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3247 struct extent_buffer *buf, int full_backref)
3248 {
3249 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3250 }
3251
3252 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3253 struct extent_buffer *buf, int full_backref)
3254 {
3255 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3256 }
3257
3258 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3259 struct btrfs_root *root,
3260 struct btrfs_path *path,
3261 struct btrfs_block_group_cache *cache)
3262 {
3263 int ret;
3264 struct btrfs_root *extent_root = root->fs_info->extent_root;
3265 unsigned long bi;
3266 struct extent_buffer *leaf;
3267
3268 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3269 if (ret) {
3270 if (ret > 0)
3271 ret = -ENOENT;
3272 goto fail;
3273 }
3274
3275 leaf = path->nodes[0];
3276 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3277 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3278 btrfs_mark_buffer_dirty(leaf);
3279 fail:
3280 btrfs_release_path(path);
3281 return ret;
3282
3283 }
3284
3285 static struct btrfs_block_group_cache *
3286 next_block_group(struct btrfs_root *root,
3287 struct btrfs_block_group_cache *cache)
3288 {
3289 struct rb_node *node;
3290
3291 spin_lock(&root->fs_info->block_group_cache_lock);
3292
3293 /* If our block group was removed, we need a full search. */
3294 if (RB_EMPTY_NODE(&cache->cache_node)) {
3295 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3296
3297 spin_unlock(&root->fs_info->block_group_cache_lock);
3298 btrfs_put_block_group(cache);
3299 cache = btrfs_lookup_first_block_group(root->fs_info,
3300 next_bytenr);
3301 return cache;
3302 }
3303 node = rb_next(&cache->cache_node);
3304 btrfs_put_block_group(cache);
3305 if (node) {
3306 cache = rb_entry(node, struct btrfs_block_group_cache,
3307 cache_node);
3308 btrfs_get_block_group(cache);
3309 } else
3310 cache = NULL;
3311 spin_unlock(&root->fs_info->block_group_cache_lock);
3312 return cache;
3313 }
3314
3315 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3316 struct btrfs_trans_handle *trans,
3317 struct btrfs_path *path)
3318 {
3319 struct btrfs_root *root = block_group->fs_info->tree_root;
3320 struct inode *inode = NULL;
3321 u64 alloc_hint = 0;
3322 int dcs = BTRFS_DC_ERROR;
3323 u64 num_pages = 0;
3324 int retries = 0;
3325 int ret = 0;
3326
3327 /*
3328 * If this block group is smaller than 100 megs don't bother caching the
3329 * block group.
3330 */
3331 if (block_group->key.offset < (100 * 1024 * 1024)) {
3332 spin_lock(&block_group->lock);
3333 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3334 spin_unlock(&block_group->lock);
3335 return 0;
3336 }
3337
3338 if (trans->aborted)
3339 return 0;
3340 again:
3341 inode = lookup_free_space_inode(root, block_group, path);
3342 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3343 ret = PTR_ERR(inode);
3344 btrfs_release_path(path);
3345 goto out;
3346 }
3347
3348 if (IS_ERR(inode)) {
3349 BUG_ON(retries);
3350 retries++;
3351
3352 if (block_group->ro)
3353 goto out_free;
3354
3355 ret = create_free_space_inode(root, trans, block_group, path);
3356 if (ret)
3357 goto out_free;
3358 goto again;
3359 }
3360
3361 /* We've already setup this transaction, go ahead and exit */
3362 if (block_group->cache_generation == trans->transid &&
3363 i_size_read(inode)) {
3364 dcs = BTRFS_DC_SETUP;
3365 goto out_put;
3366 }
3367
3368 /*
3369 * We want to set the generation to 0, that way if anything goes wrong
3370 * from here on out we know not to trust this cache when we load up next
3371 * time.
3372 */
3373 BTRFS_I(inode)->generation = 0;
3374 ret = btrfs_update_inode(trans, root, inode);
3375 if (ret) {
3376 /*
3377 * So theoretically we could recover from this, simply set the
3378 * super cache generation to 0 so we know to invalidate the
3379 * cache, but then we'd have to keep track of the block groups
3380 * that fail this way so we know we _have_ to reset this cache
3381 * before the next commit or risk reading stale cache. So to
3382 * limit our exposure to horrible edge cases lets just abort the
3383 * transaction, this only happens in really bad situations
3384 * anyway.
3385 */
3386 btrfs_abort_transaction(trans, root, ret);
3387 goto out_put;
3388 }
3389 WARN_ON(ret);
3390
3391 if (i_size_read(inode) > 0) {
3392 ret = btrfs_check_trunc_cache_free_space(root,
3393 &root->fs_info->global_block_rsv);
3394 if (ret)
3395 goto out_put;
3396
3397 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3398 if (ret)
3399 goto out_put;
3400 }
3401
3402 spin_lock(&block_group->lock);
3403 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3404 !btrfs_test_opt(root, SPACE_CACHE)) {
3405 /*
3406 * don't bother trying to write stuff out _if_
3407 * a) we're not cached,
3408 * b) we're with nospace_cache mount option.
3409 */
3410 dcs = BTRFS_DC_WRITTEN;
3411 spin_unlock(&block_group->lock);
3412 goto out_put;
3413 }
3414 spin_unlock(&block_group->lock);
3415
3416 /*
3417 * We hit an ENOSPC when setting up the cache in this transaction, just
3418 * skip doing the setup, we've already cleared the cache so we're safe.
3419 */
3420 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3421 ret = -ENOSPC;
3422 goto out_put;
3423 }
3424
3425 /*
3426 * Try to preallocate enough space based on how big the block group is.
3427 * Keep in mind this has to include any pinned space which could end up
3428 * taking up quite a bit since it's not folded into the other space
3429 * cache.
3430 */
3431 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3432 if (!num_pages)
3433 num_pages = 1;
3434
3435 num_pages *= 16;
3436 num_pages *= PAGE_CACHE_SIZE;
3437
3438 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3439 if (ret)
3440 goto out_put;
3441
3442 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3443 num_pages, num_pages,
3444 &alloc_hint);
3445 /*
3446 * Our cache requires contiguous chunks so that we don't modify a bunch
3447 * of metadata or split extents when writing the cache out, which means
3448 * we can enospc if we are heavily fragmented in addition to just normal
3449 * out of space conditions. So if we hit this just skip setting up any
3450 * other block groups for this transaction, maybe we'll unpin enough
3451 * space the next time around.
3452 */
3453 if (!ret)
3454 dcs = BTRFS_DC_SETUP;
3455 else if (ret == -ENOSPC)
3456 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3457 btrfs_free_reserved_data_space(inode, 0, num_pages);
3458
3459 out_put:
3460 iput(inode);
3461 out_free:
3462 btrfs_release_path(path);
3463 out:
3464 spin_lock(&block_group->lock);
3465 if (!ret && dcs == BTRFS_DC_SETUP)
3466 block_group->cache_generation = trans->transid;
3467 block_group->disk_cache_state = dcs;
3468 spin_unlock(&block_group->lock);
3469
3470 return ret;
3471 }
3472
3473 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3474 struct btrfs_root *root)
3475 {
3476 struct btrfs_block_group_cache *cache, *tmp;
3477 struct btrfs_transaction *cur_trans = trans->transaction;
3478 struct btrfs_path *path;
3479
3480 if (list_empty(&cur_trans->dirty_bgs) ||
3481 !btrfs_test_opt(root, SPACE_CACHE))
3482 return 0;
3483
3484 path = btrfs_alloc_path();
3485 if (!path)
3486 return -ENOMEM;
3487
3488 /* Could add new block groups, use _safe just in case */
3489 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3490 dirty_list) {
3491 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3492 cache_save_setup(cache, trans, path);
3493 }
3494
3495 btrfs_free_path(path);
3496 return 0;
3497 }
3498
3499 /*
3500 * transaction commit does final block group cache writeback during a
3501 * critical section where nothing is allowed to change the FS. This is
3502 * required in order for the cache to actually match the block group,
3503 * but can introduce a lot of latency into the commit.
3504 *
3505 * So, btrfs_start_dirty_block_groups is here to kick off block group
3506 * cache IO. There's a chance we'll have to redo some of it if the
3507 * block group changes again during the commit, but it greatly reduces
3508 * the commit latency by getting rid of the easy block groups while
3509 * we're still allowing others to join the commit.
3510 */
3511 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3512 struct btrfs_root *root)
3513 {
3514 struct btrfs_block_group_cache *cache;
3515 struct btrfs_transaction *cur_trans = trans->transaction;
3516 int ret = 0;
3517 int should_put;
3518 struct btrfs_path *path = NULL;
3519 LIST_HEAD(dirty);
3520 struct list_head *io = &cur_trans->io_bgs;
3521 int num_started = 0;
3522 int loops = 0;
3523
3524 spin_lock(&cur_trans->dirty_bgs_lock);
3525 if (list_empty(&cur_trans->dirty_bgs)) {
3526 spin_unlock(&cur_trans->dirty_bgs_lock);
3527 return 0;
3528 }
3529 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3530 spin_unlock(&cur_trans->dirty_bgs_lock);
3531
3532 again:
3533 /*
3534 * make sure all the block groups on our dirty list actually
3535 * exist
3536 */
3537 btrfs_create_pending_block_groups(trans, root);
3538
3539 if (!path) {
3540 path = btrfs_alloc_path();
3541 if (!path)
3542 return -ENOMEM;
3543 }
3544
3545 /*
3546 * cache_write_mutex is here only to save us from balance or automatic
3547 * removal of empty block groups deleting this block group while we are
3548 * writing out the cache
3549 */
3550 mutex_lock(&trans->transaction->cache_write_mutex);
3551 while (!list_empty(&dirty)) {
3552 cache = list_first_entry(&dirty,
3553 struct btrfs_block_group_cache,
3554 dirty_list);
3555 /*
3556 * this can happen if something re-dirties a block
3557 * group that is already under IO. Just wait for it to
3558 * finish and then do it all again
3559 */
3560 if (!list_empty(&cache->io_list)) {
3561 list_del_init(&cache->io_list);
3562 btrfs_wait_cache_io(root, trans, cache,
3563 &cache->io_ctl, path,
3564 cache->key.objectid);
3565 btrfs_put_block_group(cache);
3566 }
3567
3568
3569 /*
3570 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3571 * if it should update the cache_state. Don't delete
3572 * until after we wait.
3573 *
3574 * Since we're not running in the commit critical section
3575 * we need the dirty_bgs_lock to protect from update_block_group
3576 */
3577 spin_lock(&cur_trans->dirty_bgs_lock);
3578 list_del_init(&cache->dirty_list);
3579 spin_unlock(&cur_trans->dirty_bgs_lock);
3580
3581 should_put = 1;
3582
3583 cache_save_setup(cache, trans, path);
3584
3585 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3586 cache->io_ctl.inode = NULL;
3587 ret = btrfs_write_out_cache(root, trans, cache, path);
3588 if (ret == 0 && cache->io_ctl.inode) {
3589 num_started++;
3590 should_put = 0;
3591
3592 /*
3593 * the cache_write_mutex is protecting
3594 * the io_list
3595 */
3596 list_add_tail(&cache->io_list, io);
3597 } else {
3598 /*
3599 * if we failed to write the cache, the
3600 * generation will be bad and life goes on
3601 */
3602 ret = 0;
3603 }
3604 }
3605 if (!ret) {
3606 ret = write_one_cache_group(trans, root, path, cache);
3607 /*
3608 * Our block group might still be attached to the list
3609 * of new block groups in the transaction handle of some
3610 * other task (struct btrfs_trans_handle->new_bgs). This
3611 * means its block group item isn't yet in the extent
3612 * tree. If this happens ignore the error, as we will
3613 * try again later in the critical section of the
3614 * transaction commit.
3615 */
3616 if (ret == -ENOENT) {
3617 ret = 0;
3618 spin_lock(&cur_trans->dirty_bgs_lock);
3619 if (list_empty(&cache->dirty_list)) {
3620 list_add_tail(&cache->dirty_list,
3621 &cur_trans->dirty_bgs);
3622 btrfs_get_block_group(cache);
3623 }
3624 spin_unlock(&cur_trans->dirty_bgs_lock);
3625 } else if (ret) {
3626 btrfs_abort_transaction(trans, root, ret);
3627 }
3628 }
3629
3630 /* if its not on the io list, we need to put the block group */
3631 if (should_put)
3632 btrfs_put_block_group(cache);
3633
3634 if (ret)
3635 break;
3636
3637 /*
3638 * Avoid blocking other tasks for too long. It might even save
3639 * us from writing caches for block groups that are going to be
3640 * removed.
3641 */
3642 mutex_unlock(&trans->transaction->cache_write_mutex);
3643 mutex_lock(&trans->transaction->cache_write_mutex);
3644 }
3645 mutex_unlock(&trans->transaction->cache_write_mutex);
3646
3647 /*
3648 * go through delayed refs for all the stuff we've just kicked off
3649 * and then loop back (just once)
3650 */
3651 ret = btrfs_run_delayed_refs(trans, root, 0);
3652 if (!ret && loops == 0) {
3653 loops++;
3654 spin_lock(&cur_trans->dirty_bgs_lock);
3655 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3656 /*
3657 * dirty_bgs_lock protects us from concurrent block group
3658 * deletes too (not just cache_write_mutex).
3659 */
3660 if (!list_empty(&dirty)) {
3661 spin_unlock(&cur_trans->dirty_bgs_lock);
3662 goto again;
3663 }
3664 spin_unlock(&cur_trans->dirty_bgs_lock);
3665 }
3666
3667 btrfs_free_path(path);
3668 return ret;
3669 }
3670
3671 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3672 struct btrfs_root *root)
3673 {
3674 struct btrfs_block_group_cache *cache;
3675 struct btrfs_transaction *cur_trans = trans->transaction;
3676 int ret = 0;
3677 int should_put;
3678 struct btrfs_path *path;
3679 struct list_head *io = &cur_trans->io_bgs;
3680 int num_started = 0;
3681
3682 path = btrfs_alloc_path();
3683 if (!path)
3684 return -ENOMEM;
3685
3686 /*
3687 * We don't need the lock here since we are protected by the transaction
3688 * commit. We want to do the cache_save_setup first and then run the
3689 * delayed refs to make sure we have the best chance at doing this all
3690 * in one shot.
3691 */
3692 while (!list_empty(&cur_trans->dirty_bgs)) {
3693 cache = list_first_entry(&cur_trans->dirty_bgs,
3694 struct btrfs_block_group_cache,
3695 dirty_list);
3696
3697 /*
3698 * this can happen if cache_save_setup re-dirties a block
3699 * group that is already under IO. Just wait for it to
3700 * finish and then do it all again
3701 */
3702 if (!list_empty(&cache->io_list)) {
3703 list_del_init(&cache->io_list);
3704 btrfs_wait_cache_io(root, trans, cache,
3705 &cache->io_ctl, path,
3706 cache->key.objectid);
3707 btrfs_put_block_group(cache);
3708 }
3709
3710 /*
3711 * don't remove from the dirty list until after we've waited
3712 * on any pending IO
3713 */
3714 list_del_init(&cache->dirty_list);
3715 should_put = 1;
3716
3717 cache_save_setup(cache, trans, path);
3718
3719 if (!ret)
3720 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3721
3722 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3723 cache->io_ctl.inode = NULL;
3724 ret = btrfs_write_out_cache(root, trans, cache, path);
3725 if (ret == 0 && cache->io_ctl.inode) {
3726 num_started++;
3727 should_put = 0;
3728 list_add_tail(&cache->io_list, io);
3729 } else {
3730 /*
3731 * if we failed to write the cache, the
3732 * generation will be bad and life goes on
3733 */
3734 ret = 0;
3735 }
3736 }
3737 if (!ret) {
3738 ret = write_one_cache_group(trans, root, path, cache);
3739 if (ret)
3740 btrfs_abort_transaction(trans, root, ret);
3741 }
3742
3743 /* if its not on the io list, we need to put the block group */
3744 if (should_put)
3745 btrfs_put_block_group(cache);
3746 }
3747
3748 while (!list_empty(io)) {
3749 cache = list_first_entry(io, struct btrfs_block_group_cache,
3750 io_list);
3751 list_del_init(&cache->io_list);
3752 btrfs_wait_cache_io(root, trans, cache,
3753 &cache->io_ctl, path, cache->key.objectid);
3754 btrfs_put_block_group(cache);
3755 }
3756
3757 btrfs_free_path(path);
3758 return ret;
3759 }
3760
3761 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3762 {
3763 struct btrfs_block_group_cache *block_group;
3764 int readonly = 0;
3765
3766 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3767 if (!block_group || block_group->ro)
3768 readonly = 1;
3769 if (block_group)
3770 btrfs_put_block_group(block_group);
3771 return readonly;
3772 }
3773
3774 static const char *alloc_name(u64 flags)
3775 {
3776 switch (flags) {
3777 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3778 return "mixed";
3779 case BTRFS_BLOCK_GROUP_METADATA:
3780 return "metadata";
3781 case BTRFS_BLOCK_GROUP_DATA:
3782 return "data";
3783 case BTRFS_BLOCK_GROUP_SYSTEM:
3784 return "system";
3785 default:
3786 WARN_ON(1);
3787 return "invalid-combination";
3788 };
3789 }
3790
3791 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3792 u64 total_bytes, u64 bytes_used,
3793 struct btrfs_space_info **space_info)
3794 {
3795 struct btrfs_space_info *found;
3796 int i;
3797 int factor;
3798 int ret;
3799
3800 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3801 BTRFS_BLOCK_GROUP_RAID10))
3802 factor = 2;
3803 else
3804 factor = 1;
3805
3806 found = __find_space_info(info, flags);
3807 if (found) {
3808 spin_lock(&found->lock);
3809 found->total_bytes += total_bytes;
3810 found->disk_total += total_bytes * factor;
3811 found->bytes_used += bytes_used;
3812 found->disk_used += bytes_used * factor;
3813 if (total_bytes > 0)
3814 found->full = 0;
3815 spin_unlock(&found->lock);
3816 *space_info = found;
3817 return 0;
3818 }
3819 found = kzalloc(sizeof(*found), GFP_NOFS);
3820 if (!found)
3821 return -ENOMEM;
3822
3823 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3824 if (ret) {
3825 kfree(found);
3826 return ret;
3827 }
3828
3829 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3830 INIT_LIST_HEAD(&found->block_groups[i]);
3831 init_rwsem(&found->groups_sem);
3832 spin_lock_init(&found->lock);
3833 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3834 found->total_bytes = total_bytes;
3835 found->disk_total = total_bytes * factor;
3836 found->bytes_used = bytes_used;
3837 found->disk_used = bytes_used * factor;
3838 found->bytes_pinned = 0;
3839 found->bytes_reserved = 0;
3840 found->bytes_readonly = 0;
3841 found->bytes_may_use = 0;
3842 found->full = 0;
3843 found->max_extent_size = 0;
3844 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3845 found->chunk_alloc = 0;
3846 found->flush = 0;
3847 init_waitqueue_head(&found->wait);
3848 INIT_LIST_HEAD(&found->ro_bgs);
3849
3850 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3851 info->space_info_kobj, "%s",
3852 alloc_name(found->flags));
3853 if (ret) {
3854 kfree(found);
3855 return ret;
3856 }
3857
3858 *space_info = found;
3859 list_add_rcu(&found->list, &info->space_info);
3860 if (flags & BTRFS_BLOCK_GROUP_DATA)
3861 info->data_sinfo = found;
3862
3863 return ret;
3864 }
3865
3866 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3867 {
3868 u64 extra_flags = chunk_to_extended(flags) &
3869 BTRFS_EXTENDED_PROFILE_MASK;
3870
3871 write_seqlock(&fs_info->profiles_lock);
3872 if (flags & BTRFS_BLOCK_GROUP_DATA)
3873 fs_info->avail_data_alloc_bits |= extra_flags;
3874 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3875 fs_info->avail_metadata_alloc_bits |= extra_flags;
3876 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3877 fs_info->avail_system_alloc_bits |= extra_flags;
3878 write_sequnlock(&fs_info->profiles_lock);
3879 }
3880
3881 /*
3882 * returns target flags in extended format or 0 if restripe for this
3883 * chunk_type is not in progress
3884 *
3885 * should be called with either volume_mutex or balance_lock held
3886 */
3887 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3888 {
3889 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3890 u64 target = 0;
3891
3892 if (!bctl)
3893 return 0;
3894
3895 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3896 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3897 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3898 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3899 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3900 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3901 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3902 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3903 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3904 }
3905
3906 return target;
3907 }
3908
3909 /*
3910 * @flags: available profiles in extended format (see ctree.h)
3911 *
3912 * Returns reduced profile in chunk format. If profile changing is in
3913 * progress (either running or paused) picks the target profile (if it's
3914 * already available), otherwise falls back to plain reducing.
3915 */
3916 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3917 {
3918 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3919 u64 target;
3920 u64 raid_type;
3921 u64 allowed = 0;
3922
3923 /*
3924 * see if restripe for this chunk_type is in progress, if so
3925 * try to reduce to the target profile
3926 */
3927 spin_lock(&root->fs_info->balance_lock);
3928 target = get_restripe_target(root->fs_info, flags);
3929 if (target) {
3930 /* pick target profile only if it's already available */
3931 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3932 spin_unlock(&root->fs_info->balance_lock);
3933 return extended_to_chunk(target);
3934 }
3935 }
3936 spin_unlock(&root->fs_info->balance_lock);
3937
3938 /* First, mask out the RAID levels which aren't possible */
3939 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3940 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3941 allowed |= btrfs_raid_group[raid_type];
3942 }
3943 allowed &= flags;
3944
3945 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3946 allowed = BTRFS_BLOCK_GROUP_RAID6;
3947 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3948 allowed = BTRFS_BLOCK_GROUP_RAID5;
3949 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3950 allowed = BTRFS_BLOCK_GROUP_RAID10;
3951 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3952 allowed = BTRFS_BLOCK_GROUP_RAID1;
3953 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3954 allowed = BTRFS_BLOCK_GROUP_RAID0;
3955
3956 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3957
3958 return extended_to_chunk(flags | allowed);
3959 }
3960
3961 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3962 {
3963 unsigned seq;
3964 u64 flags;
3965
3966 do {
3967 flags = orig_flags;
3968 seq = read_seqbegin(&root->fs_info->profiles_lock);
3969
3970 if (flags & BTRFS_BLOCK_GROUP_DATA)
3971 flags |= root->fs_info->avail_data_alloc_bits;
3972 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3973 flags |= root->fs_info->avail_system_alloc_bits;
3974 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3975 flags |= root->fs_info->avail_metadata_alloc_bits;
3976 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3977
3978 return btrfs_reduce_alloc_profile(root, flags);
3979 }
3980
3981 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3982 {
3983 u64 flags;
3984 u64 ret;
3985
3986 if (data)
3987 flags = BTRFS_BLOCK_GROUP_DATA;
3988 else if (root == root->fs_info->chunk_root)
3989 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3990 else
3991 flags = BTRFS_BLOCK_GROUP_METADATA;
3992
3993 ret = get_alloc_profile(root, flags);
3994 return ret;
3995 }
3996
3997 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
3998 {
3999 struct btrfs_space_info *data_sinfo;
4000 struct btrfs_root *root = BTRFS_I(inode)->root;
4001 struct btrfs_fs_info *fs_info = root->fs_info;
4002 u64 used;
4003 int ret = 0;
4004 int need_commit = 2;
4005 int have_pinned_space;
4006
4007 /* make sure bytes are sectorsize aligned */
4008 bytes = ALIGN(bytes, root->sectorsize);
4009
4010 if (btrfs_is_free_space_inode(inode)) {
4011 need_commit = 0;
4012 ASSERT(current->journal_info);
4013 }
4014
4015 data_sinfo = fs_info->data_sinfo;
4016 if (!data_sinfo)
4017 goto alloc;
4018
4019 again:
4020 /* make sure we have enough space to handle the data first */
4021 spin_lock(&data_sinfo->lock);
4022 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4023 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4024 data_sinfo->bytes_may_use;
4025
4026 if (used + bytes > data_sinfo->total_bytes) {
4027 struct btrfs_trans_handle *trans;
4028
4029 /*
4030 * if we don't have enough free bytes in this space then we need
4031 * to alloc a new chunk.
4032 */
4033 if (!data_sinfo->full) {
4034 u64 alloc_target;
4035
4036 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4037 spin_unlock(&data_sinfo->lock);
4038 alloc:
4039 alloc_target = btrfs_get_alloc_profile(root, 1);
4040 /*
4041 * It is ugly that we don't call nolock join
4042 * transaction for the free space inode case here.
4043 * But it is safe because we only do the data space
4044 * reservation for the free space cache in the
4045 * transaction context, the common join transaction
4046 * just increase the counter of the current transaction
4047 * handler, doesn't try to acquire the trans_lock of
4048 * the fs.
4049 */
4050 trans = btrfs_join_transaction(root);
4051 if (IS_ERR(trans))
4052 return PTR_ERR(trans);
4053
4054 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4055 alloc_target,
4056 CHUNK_ALLOC_NO_FORCE);
4057 btrfs_end_transaction(trans, root);
4058 if (ret < 0) {
4059 if (ret != -ENOSPC)
4060 return ret;
4061 else {
4062 have_pinned_space = 1;
4063 goto commit_trans;
4064 }
4065 }
4066
4067 if (!data_sinfo)
4068 data_sinfo = fs_info->data_sinfo;
4069
4070 goto again;
4071 }
4072
4073 /*
4074 * If we don't have enough pinned space to deal with this
4075 * allocation, and no removed chunk in current transaction,
4076 * don't bother committing the transaction.
4077 */
4078 have_pinned_space = percpu_counter_compare(
4079 &data_sinfo->total_bytes_pinned,
4080 used + bytes - data_sinfo->total_bytes);
4081 spin_unlock(&data_sinfo->lock);
4082
4083 /* commit the current transaction and try again */
4084 commit_trans:
4085 if (need_commit &&
4086 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4087 need_commit--;
4088
4089 if (need_commit > 0)
4090 btrfs_wait_ordered_roots(fs_info, -1);
4091
4092 trans = btrfs_join_transaction(root);
4093 if (IS_ERR(trans))
4094 return PTR_ERR(trans);
4095 if (have_pinned_space >= 0 ||
4096 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4097 &trans->transaction->flags) ||
4098 need_commit > 0) {
4099 ret = btrfs_commit_transaction(trans, root);
4100 if (ret)
4101 return ret;
4102 /*
4103 * make sure that all running delayed iput are
4104 * done
4105 */
4106 down_write(&root->fs_info->delayed_iput_sem);
4107 up_write(&root->fs_info->delayed_iput_sem);
4108 goto again;
4109 } else {
4110 btrfs_end_transaction(trans, root);
4111 }
4112 }
4113
4114 trace_btrfs_space_reservation(root->fs_info,
4115 "space_info:enospc",
4116 data_sinfo->flags, bytes, 1);
4117 return -ENOSPC;
4118 }
4119 data_sinfo->bytes_may_use += bytes;
4120 trace_btrfs_space_reservation(root->fs_info, "space_info",
4121 data_sinfo->flags, bytes, 1);
4122 spin_unlock(&data_sinfo->lock);
4123
4124 return ret;
4125 }
4126
4127 /*
4128 * New check_data_free_space() with ability for precious data reservation
4129 * Will replace old btrfs_check_data_free_space(), but for patch split,
4130 * add a new function first and then replace it.
4131 */
4132 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4133 {
4134 struct btrfs_root *root = BTRFS_I(inode)->root;
4135 int ret;
4136
4137 /* align the range */
4138 len = round_up(start + len, root->sectorsize) -
4139 round_down(start, root->sectorsize);
4140 start = round_down(start, root->sectorsize);
4141
4142 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4143 if (ret < 0)
4144 return ret;
4145
4146 /*
4147 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4148 *
4149 * TODO: Find a good method to avoid reserve data space for NOCOW
4150 * range, but don't impact performance on quota disable case.
4151 */
4152 ret = btrfs_qgroup_reserve_data(inode, start, len);
4153 return ret;
4154 }
4155
4156 /*
4157 * Called if we need to clear a data reservation for this inode
4158 * Normally in a error case.
4159 *
4160 * This one will *NOT* use accurate qgroup reserved space API, just for case
4161 * which we can't sleep and is sure it won't affect qgroup reserved space.
4162 * Like clear_bit_hook().
4163 */
4164 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4165 u64 len)
4166 {
4167 struct btrfs_root *root = BTRFS_I(inode)->root;
4168 struct btrfs_space_info *data_sinfo;
4169
4170 /* Make sure the range is aligned to sectorsize */
4171 len = round_up(start + len, root->sectorsize) -
4172 round_down(start, root->sectorsize);
4173 start = round_down(start, root->sectorsize);
4174
4175 data_sinfo = root->fs_info->data_sinfo;
4176 spin_lock(&data_sinfo->lock);
4177 if (WARN_ON(data_sinfo->bytes_may_use < len))
4178 data_sinfo->bytes_may_use = 0;
4179 else
4180 data_sinfo->bytes_may_use -= len;
4181 trace_btrfs_space_reservation(root->fs_info, "space_info",
4182 data_sinfo->flags, len, 0);
4183 spin_unlock(&data_sinfo->lock);
4184 }
4185
4186 /*
4187 * Called if we need to clear a data reservation for this inode
4188 * Normally in a error case.
4189 *
4190 * This one will handle the per-indoe data rsv map for accurate reserved
4191 * space framework.
4192 */
4193 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4194 {
4195 btrfs_free_reserved_data_space_noquota(inode, start, len);
4196 btrfs_qgroup_free_data(inode, start, len);
4197 }
4198
4199 static void force_metadata_allocation(struct btrfs_fs_info *info)
4200 {
4201 struct list_head *head = &info->space_info;
4202 struct btrfs_space_info *found;
4203
4204 rcu_read_lock();
4205 list_for_each_entry_rcu(found, head, list) {
4206 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4207 found->force_alloc = CHUNK_ALLOC_FORCE;
4208 }
4209 rcu_read_unlock();
4210 }
4211
4212 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4213 {
4214 return (global->size << 1);
4215 }
4216
4217 static int should_alloc_chunk(struct btrfs_root *root,
4218 struct btrfs_space_info *sinfo, int force)
4219 {
4220 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4221 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4222 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4223 u64 thresh;
4224
4225 if (force == CHUNK_ALLOC_FORCE)
4226 return 1;
4227
4228 /*
4229 * We need to take into account the global rsv because for all intents
4230 * and purposes it's used space. Don't worry about locking the
4231 * global_rsv, it doesn't change except when the transaction commits.
4232 */
4233 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4234 num_allocated += calc_global_rsv_need_space(global_rsv);
4235
4236 /*
4237 * in limited mode, we want to have some free space up to
4238 * about 1% of the FS size.
4239 */
4240 if (force == CHUNK_ALLOC_LIMITED) {
4241 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4242 thresh = max_t(u64, 64 * 1024 * 1024,
4243 div_factor_fine(thresh, 1));
4244
4245 if (num_bytes - num_allocated < thresh)
4246 return 1;
4247 }
4248
4249 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4250 return 0;
4251 return 1;
4252 }
4253
4254 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4255 {
4256 u64 num_dev;
4257
4258 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4259 BTRFS_BLOCK_GROUP_RAID0 |
4260 BTRFS_BLOCK_GROUP_RAID5 |
4261 BTRFS_BLOCK_GROUP_RAID6))
4262 num_dev = root->fs_info->fs_devices->rw_devices;
4263 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4264 num_dev = 2;
4265 else
4266 num_dev = 1; /* DUP or single */
4267
4268 return num_dev;
4269 }
4270
4271 /*
4272 * If @is_allocation is true, reserve space in the system space info necessary
4273 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4274 * removing a chunk.
4275 */
4276 void check_system_chunk(struct btrfs_trans_handle *trans,
4277 struct btrfs_root *root,
4278 u64 type)
4279 {
4280 struct btrfs_space_info *info;
4281 u64 left;
4282 u64 thresh;
4283 int ret = 0;
4284 u64 num_devs;
4285
4286 /*
4287 * Needed because we can end up allocating a system chunk and for an
4288 * atomic and race free space reservation in the chunk block reserve.
4289 */
4290 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4291
4292 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4293 spin_lock(&info->lock);
4294 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4295 info->bytes_reserved - info->bytes_readonly -
4296 info->bytes_may_use;
4297 spin_unlock(&info->lock);
4298
4299 num_devs = get_profile_num_devs(root, type);
4300
4301 /* num_devs device items to update and 1 chunk item to add or remove */
4302 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4303 btrfs_calc_trans_metadata_size(root, 1);
4304
4305 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4306 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4307 left, thresh, type);
4308 dump_space_info(info, 0, 0);
4309 }
4310
4311 if (left < thresh) {
4312 u64 flags;
4313
4314 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4315 /*
4316 * Ignore failure to create system chunk. We might end up not
4317 * needing it, as we might not need to COW all nodes/leafs from
4318 * the paths we visit in the chunk tree (they were already COWed
4319 * or created in the current transaction for example).
4320 */
4321 ret = btrfs_alloc_chunk(trans, root, flags);
4322 }
4323
4324 if (!ret) {
4325 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4326 &root->fs_info->chunk_block_rsv,
4327 thresh, BTRFS_RESERVE_NO_FLUSH);
4328 if (!ret)
4329 trans->chunk_bytes_reserved += thresh;
4330 }
4331 }
4332
4333 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4334 struct btrfs_root *extent_root, u64 flags, int force)
4335 {
4336 struct btrfs_space_info *space_info;
4337 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4338 int wait_for_alloc = 0;
4339 int ret = 0;
4340
4341 /* Don't re-enter if we're already allocating a chunk */
4342 if (trans->allocating_chunk)
4343 return -ENOSPC;
4344
4345 space_info = __find_space_info(extent_root->fs_info, flags);
4346 if (!space_info) {
4347 ret = update_space_info(extent_root->fs_info, flags,
4348 0, 0, &space_info);
4349 BUG_ON(ret); /* -ENOMEM */
4350 }
4351 BUG_ON(!space_info); /* Logic error */
4352
4353 again:
4354 spin_lock(&space_info->lock);
4355 if (force < space_info->force_alloc)
4356 force = space_info->force_alloc;
4357 if (space_info->full) {
4358 if (should_alloc_chunk(extent_root, space_info, force))
4359 ret = -ENOSPC;
4360 else
4361 ret = 0;
4362 spin_unlock(&space_info->lock);
4363 return ret;
4364 }
4365
4366 if (!should_alloc_chunk(extent_root, space_info, force)) {
4367 spin_unlock(&space_info->lock);
4368 return 0;
4369 } else if (space_info->chunk_alloc) {
4370 wait_for_alloc = 1;
4371 } else {
4372 space_info->chunk_alloc = 1;
4373 }
4374
4375 spin_unlock(&space_info->lock);
4376
4377 mutex_lock(&fs_info->chunk_mutex);
4378
4379 /*
4380 * The chunk_mutex is held throughout the entirety of a chunk
4381 * allocation, so once we've acquired the chunk_mutex we know that the
4382 * other guy is done and we need to recheck and see if we should
4383 * allocate.
4384 */
4385 if (wait_for_alloc) {
4386 mutex_unlock(&fs_info->chunk_mutex);
4387 wait_for_alloc = 0;
4388 goto again;
4389 }
4390
4391 trans->allocating_chunk = true;
4392
4393 /*
4394 * If we have mixed data/metadata chunks we want to make sure we keep
4395 * allocating mixed chunks instead of individual chunks.
4396 */
4397 if (btrfs_mixed_space_info(space_info))
4398 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4399
4400 /*
4401 * if we're doing a data chunk, go ahead and make sure that
4402 * we keep a reasonable number of metadata chunks allocated in the
4403 * FS as well.
4404 */
4405 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4406 fs_info->data_chunk_allocations++;
4407 if (!(fs_info->data_chunk_allocations %
4408 fs_info->metadata_ratio))
4409 force_metadata_allocation(fs_info);
4410 }
4411
4412 /*
4413 * Check if we have enough space in SYSTEM chunk because we may need
4414 * to update devices.
4415 */
4416 check_system_chunk(trans, extent_root, flags);
4417
4418 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4419 trans->allocating_chunk = false;
4420
4421 spin_lock(&space_info->lock);
4422 if (ret < 0 && ret != -ENOSPC)
4423 goto out;
4424 if (ret)
4425 space_info->full = 1;
4426 else
4427 ret = 1;
4428
4429 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4430 out:
4431 space_info->chunk_alloc = 0;
4432 spin_unlock(&space_info->lock);
4433 mutex_unlock(&fs_info->chunk_mutex);
4434 /*
4435 * When we allocate a new chunk we reserve space in the chunk block
4436 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4437 * add new nodes/leafs to it if we end up needing to do it when
4438 * inserting the chunk item and updating device items as part of the
4439 * second phase of chunk allocation, performed by
4440 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4441 * large number of new block groups to create in our transaction
4442 * handle's new_bgs list to avoid exhausting the chunk block reserve
4443 * in extreme cases - like having a single transaction create many new
4444 * block groups when starting to write out the free space caches of all
4445 * the block groups that were made dirty during the lifetime of the
4446 * transaction.
4447 */
4448 if (trans->can_flush_pending_bgs &&
4449 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4450 btrfs_create_pending_block_groups(trans, trans->root);
4451 btrfs_trans_release_chunk_metadata(trans);
4452 }
4453 return ret;
4454 }
4455
4456 static int can_overcommit(struct btrfs_root *root,
4457 struct btrfs_space_info *space_info, u64 bytes,
4458 enum btrfs_reserve_flush_enum flush)
4459 {
4460 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4461 u64 profile = btrfs_get_alloc_profile(root, 0);
4462 u64 space_size;
4463 u64 avail;
4464 u64 used;
4465
4466 used = space_info->bytes_used + space_info->bytes_reserved +
4467 space_info->bytes_pinned + space_info->bytes_readonly;
4468
4469 /*
4470 * We only want to allow over committing if we have lots of actual space
4471 * free, but if we don't have enough space to handle the global reserve
4472 * space then we could end up having a real enospc problem when trying
4473 * to allocate a chunk or some other such important allocation.
4474 */
4475 spin_lock(&global_rsv->lock);
4476 space_size = calc_global_rsv_need_space(global_rsv);
4477 spin_unlock(&global_rsv->lock);
4478 if (used + space_size >= space_info->total_bytes)
4479 return 0;
4480
4481 used += space_info->bytes_may_use;
4482
4483 spin_lock(&root->fs_info->free_chunk_lock);
4484 avail = root->fs_info->free_chunk_space;
4485 spin_unlock(&root->fs_info->free_chunk_lock);
4486
4487 /*
4488 * If we have dup, raid1 or raid10 then only half of the free
4489 * space is actually useable. For raid56, the space info used
4490 * doesn't include the parity drive, so we don't have to
4491 * change the math
4492 */
4493 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4494 BTRFS_BLOCK_GROUP_RAID1 |
4495 BTRFS_BLOCK_GROUP_RAID10))
4496 avail >>= 1;
4497
4498 /*
4499 * If we aren't flushing all things, let us overcommit up to
4500 * 1/2th of the space. If we can flush, don't let us overcommit
4501 * too much, let it overcommit up to 1/8 of the space.
4502 */
4503 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4504 avail >>= 3;
4505 else
4506 avail >>= 1;
4507
4508 if (used + bytes < space_info->total_bytes + avail)
4509 return 1;
4510 return 0;
4511 }
4512
4513 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4514 unsigned long nr_pages, int nr_items)
4515 {
4516 struct super_block *sb = root->fs_info->sb;
4517
4518 if (down_read_trylock(&sb->s_umount)) {
4519 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4520 up_read(&sb->s_umount);
4521 } else {
4522 /*
4523 * We needn't worry the filesystem going from r/w to r/o though
4524 * we don't acquire ->s_umount mutex, because the filesystem
4525 * should guarantee the delalloc inodes list be empty after
4526 * the filesystem is readonly(all dirty pages are written to
4527 * the disk).
4528 */
4529 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4530 if (!current->journal_info)
4531 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4532 }
4533 }
4534
4535 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4536 {
4537 u64 bytes;
4538 int nr;
4539
4540 bytes = btrfs_calc_trans_metadata_size(root, 1);
4541 nr = (int)div64_u64(to_reclaim, bytes);
4542 if (!nr)
4543 nr = 1;
4544 return nr;
4545 }
4546
4547 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4548
4549 /*
4550 * shrink metadata reservation for delalloc
4551 */
4552 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4553 bool wait_ordered)
4554 {
4555 struct btrfs_block_rsv *block_rsv;
4556 struct btrfs_space_info *space_info;
4557 struct btrfs_trans_handle *trans;
4558 u64 delalloc_bytes;
4559 u64 max_reclaim;
4560 long time_left;
4561 unsigned long nr_pages;
4562 int loops;
4563 int items;
4564 enum btrfs_reserve_flush_enum flush;
4565
4566 /* Calc the number of the pages we need flush for space reservation */
4567 items = calc_reclaim_items_nr(root, to_reclaim);
4568 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4569
4570 trans = (struct btrfs_trans_handle *)current->journal_info;
4571 block_rsv = &root->fs_info->delalloc_block_rsv;
4572 space_info = block_rsv->space_info;
4573
4574 delalloc_bytes = percpu_counter_sum_positive(
4575 &root->fs_info->delalloc_bytes);
4576 if (delalloc_bytes == 0) {
4577 if (trans)
4578 return;
4579 if (wait_ordered)
4580 btrfs_wait_ordered_roots(root->fs_info, items);
4581 return;
4582 }
4583
4584 loops = 0;
4585 while (delalloc_bytes && loops < 3) {
4586 max_reclaim = min(delalloc_bytes, to_reclaim);
4587 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4588 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4589 /*
4590 * We need to wait for the async pages to actually start before
4591 * we do anything.
4592 */
4593 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4594 if (!max_reclaim)
4595 goto skip_async;
4596
4597 if (max_reclaim <= nr_pages)
4598 max_reclaim = 0;
4599 else
4600 max_reclaim -= nr_pages;
4601
4602 wait_event(root->fs_info->async_submit_wait,
4603 atomic_read(&root->fs_info->async_delalloc_pages) <=
4604 (int)max_reclaim);
4605 skip_async:
4606 if (!trans)
4607 flush = BTRFS_RESERVE_FLUSH_ALL;
4608 else
4609 flush = BTRFS_RESERVE_NO_FLUSH;
4610 spin_lock(&space_info->lock);
4611 if (can_overcommit(root, space_info, orig, flush)) {
4612 spin_unlock(&space_info->lock);
4613 break;
4614 }
4615 spin_unlock(&space_info->lock);
4616
4617 loops++;
4618 if (wait_ordered && !trans) {
4619 btrfs_wait_ordered_roots(root->fs_info, items);
4620 } else {
4621 time_left = schedule_timeout_killable(1);
4622 if (time_left)
4623 break;
4624 }
4625 delalloc_bytes = percpu_counter_sum_positive(
4626 &root->fs_info->delalloc_bytes);
4627 }
4628 }
4629
4630 /**
4631 * maybe_commit_transaction - possibly commit the transaction if its ok to
4632 * @root - the root we're allocating for
4633 * @bytes - the number of bytes we want to reserve
4634 * @force - force the commit
4635 *
4636 * This will check to make sure that committing the transaction will actually
4637 * get us somewhere and then commit the transaction if it does. Otherwise it
4638 * will return -ENOSPC.
4639 */
4640 static int may_commit_transaction(struct btrfs_root *root,
4641 struct btrfs_space_info *space_info,
4642 u64 bytes, int force)
4643 {
4644 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4645 struct btrfs_trans_handle *trans;
4646
4647 trans = (struct btrfs_trans_handle *)current->journal_info;
4648 if (trans)
4649 return -EAGAIN;
4650
4651 if (force)
4652 goto commit;
4653
4654 /* See if there is enough pinned space to make this reservation */
4655 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4656 bytes) >= 0)
4657 goto commit;
4658
4659 /*
4660 * See if there is some space in the delayed insertion reservation for
4661 * this reservation.
4662 */
4663 if (space_info != delayed_rsv->space_info)
4664 return -ENOSPC;
4665
4666 spin_lock(&delayed_rsv->lock);
4667 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4668 bytes - delayed_rsv->size) >= 0) {
4669 spin_unlock(&delayed_rsv->lock);
4670 return -ENOSPC;
4671 }
4672 spin_unlock(&delayed_rsv->lock);
4673
4674 commit:
4675 trans = btrfs_join_transaction(root);
4676 if (IS_ERR(trans))
4677 return -ENOSPC;
4678
4679 return btrfs_commit_transaction(trans, root);
4680 }
4681
4682 enum flush_state {
4683 FLUSH_DELAYED_ITEMS_NR = 1,
4684 FLUSH_DELAYED_ITEMS = 2,
4685 FLUSH_DELALLOC = 3,
4686 FLUSH_DELALLOC_WAIT = 4,
4687 ALLOC_CHUNK = 5,
4688 COMMIT_TRANS = 6,
4689 };
4690
4691 static int flush_space(struct btrfs_root *root,
4692 struct btrfs_space_info *space_info, u64 num_bytes,
4693 u64 orig_bytes, int state)
4694 {
4695 struct btrfs_trans_handle *trans;
4696 int nr;
4697 int ret = 0;
4698
4699 switch (state) {
4700 case FLUSH_DELAYED_ITEMS_NR:
4701 case FLUSH_DELAYED_ITEMS:
4702 if (state == FLUSH_DELAYED_ITEMS_NR)
4703 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4704 else
4705 nr = -1;
4706
4707 trans = btrfs_join_transaction(root);
4708 if (IS_ERR(trans)) {
4709 ret = PTR_ERR(trans);
4710 break;
4711 }
4712 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4713 btrfs_end_transaction(trans, root);
4714 break;
4715 case FLUSH_DELALLOC:
4716 case FLUSH_DELALLOC_WAIT:
4717 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4718 state == FLUSH_DELALLOC_WAIT);
4719 break;
4720 case ALLOC_CHUNK:
4721 trans = btrfs_join_transaction(root);
4722 if (IS_ERR(trans)) {
4723 ret = PTR_ERR(trans);
4724 break;
4725 }
4726 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4727 btrfs_get_alloc_profile(root, 0),
4728 CHUNK_ALLOC_NO_FORCE);
4729 btrfs_end_transaction(trans, root);
4730 if (ret == -ENOSPC)
4731 ret = 0;
4732 break;
4733 case COMMIT_TRANS:
4734 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4735 break;
4736 default:
4737 ret = -ENOSPC;
4738 break;
4739 }
4740
4741 return ret;
4742 }
4743
4744 static inline u64
4745 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4746 struct btrfs_space_info *space_info)
4747 {
4748 u64 used;
4749 u64 expected;
4750 u64 to_reclaim;
4751
4752 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4753 16 * 1024 * 1024);
4754 spin_lock(&space_info->lock);
4755 if (can_overcommit(root, space_info, to_reclaim,
4756 BTRFS_RESERVE_FLUSH_ALL)) {
4757 to_reclaim = 0;
4758 goto out;
4759 }
4760
4761 used = space_info->bytes_used + space_info->bytes_reserved +
4762 space_info->bytes_pinned + space_info->bytes_readonly +
4763 space_info->bytes_may_use;
4764 if (can_overcommit(root, space_info, 1024 * 1024,
4765 BTRFS_RESERVE_FLUSH_ALL))
4766 expected = div_factor_fine(space_info->total_bytes, 95);
4767 else
4768 expected = div_factor_fine(space_info->total_bytes, 90);
4769
4770 if (used > expected)
4771 to_reclaim = used - expected;
4772 else
4773 to_reclaim = 0;
4774 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4775 space_info->bytes_reserved);
4776 out:
4777 spin_unlock(&space_info->lock);
4778
4779 return to_reclaim;
4780 }
4781
4782 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4783 struct btrfs_fs_info *fs_info, u64 used)
4784 {
4785 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4786
4787 /* If we're just plain full then async reclaim just slows us down. */
4788 if (space_info->bytes_used >= thresh)
4789 return 0;
4790
4791 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4792 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4793 }
4794
4795 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4796 struct btrfs_fs_info *fs_info,
4797 int flush_state)
4798 {
4799 u64 used;
4800
4801 spin_lock(&space_info->lock);
4802 /*
4803 * We run out of space and have not got any free space via flush_space,
4804 * so don't bother doing async reclaim.
4805 */
4806 if (flush_state > COMMIT_TRANS && space_info->full) {
4807 spin_unlock(&space_info->lock);
4808 return 0;
4809 }
4810
4811 used = space_info->bytes_used + space_info->bytes_reserved +
4812 space_info->bytes_pinned + space_info->bytes_readonly +
4813 space_info->bytes_may_use;
4814 if (need_do_async_reclaim(space_info, fs_info, used)) {
4815 spin_unlock(&space_info->lock);
4816 return 1;
4817 }
4818 spin_unlock(&space_info->lock);
4819
4820 return 0;
4821 }
4822
4823 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4824 {
4825 struct btrfs_fs_info *fs_info;
4826 struct btrfs_space_info *space_info;
4827 u64 to_reclaim;
4828 int flush_state;
4829
4830 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4831 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4832
4833 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4834 space_info);
4835 if (!to_reclaim)
4836 return;
4837
4838 flush_state = FLUSH_DELAYED_ITEMS_NR;
4839 do {
4840 flush_space(fs_info->fs_root, space_info, to_reclaim,
4841 to_reclaim, flush_state);
4842 flush_state++;
4843 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4844 flush_state))
4845 return;
4846 } while (flush_state < COMMIT_TRANS);
4847 }
4848
4849 void btrfs_init_async_reclaim_work(struct work_struct *work)
4850 {
4851 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4852 }
4853
4854 /**
4855 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4856 * @root - the root we're allocating for
4857 * @block_rsv - the block_rsv we're allocating for
4858 * @orig_bytes - the number of bytes we want
4859 * @flush - whether or not we can flush to make our reservation
4860 *
4861 * This will reserve orgi_bytes number of bytes from the space info associated
4862 * with the block_rsv. If there is not enough space it will make an attempt to
4863 * flush out space to make room. It will do this by flushing delalloc if
4864 * possible or committing the transaction. If flush is 0 then no attempts to
4865 * regain reservations will be made and this will fail if there is not enough
4866 * space already.
4867 */
4868 static int reserve_metadata_bytes(struct btrfs_root *root,
4869 struct btrfs_block_rsv *block_rsv,
4870 u64 orig_bytes,
4871 enum btrfs_reserve_flush_enum flush)
4872 {
4873 struct btrfs_space_info *space_info = block_rsv->space_info;
4874 u64 used;
4875 u64 num_bytes = orig_bytes;
4876 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4877 int ret = 0;
4878 bool flushing = false;
4879
4880 again:
4881 ret = 0;
4882 spin_lock(&space_info->lock);
4883 /*
4884 * We only want to wait if somebody other than us is flushing and we
4885 * are actually allowed to flush all things.
4886 */
4887 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4888 space_info->flush) {
4889 spin_unlock(&space_info->lock);
4890 /*
4891 * If we have a trans handle we can't wait because the flusher
4892 * may have to commit the transaction, which would mean we would
4893 * deadlock since we are waiting for the flusher to finish, but
4894 * hold the current transaction open.
4895 */
4896 if (current->journal_info)
4897 return -EAGAIN;
4898 ret = wait_event_killable(space_info->wait, !space_info->flush);
4899 /* Must have been killed, return */
4900 if (ret)
4901 return -EINTR;
4902
4903 spin_lock(&space_info->lock);
4904 }
4905
4906 ret = -ENOSPC;
4907 used = space_info->bytes_used + space_info->bytes_reserved +
4908 space_info->bytes_pinned + space_info->bytes_readonly +
4909 space_info->bytes_may_use;
4910
4911 /*
4912 * The idea here is that we've not already over-reserved the block group
4913 * then we can go ahead and save our reservation first and then start
4914 * flushing if we need to. Otherwise if we've already overcommitted
4915 * lets start flushing stuff first and then come back and try to make
4916 * our reservation.
4917 */
4918 if (used <= space_info->total_bytes) {
4919 if (used + orig_bytes <= space_info->total_bytes) {
4920 space_info->bytes_may_use += orig_bytes;
4921 trace_btrfs_space_reservation(root->fs_info,
4922 "space_info", space_info->flags, orig_bytes, 1);
4923 ret = 0;
4924 } else {
4925 /*
4926 * Ok set num_bytes to orig_bytes since we aren't
4927 * overocmmitted, this way we only try and reclaim what
4928 * we need.
4929 */
4930 num_bytes = orig_bytes;
4931 }
4932 } else {
4933 /*
4934 * Ok we're over committed, set num_bytes to the overcommitted
4935 * amount plus the amount of bytes that we need for this
4936 * reservation.
4937 */
4938 num_bytes = used - space_info->total_bytes +
4939 (orig_bytes * 2);
4940 }
4941
4942 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4943 space_info->bytes_may_use += orig_bytes;
4944 trace_btrfs_space_reservation(root->fs_info, "space_info",
4945 space_info->flags, orig_bytes,
4946 1);
4947 ret = 0;
4948 }
4949
4950 /*
4951 * Couldn't make our reservation, save our place so while we're trying
4952 * to reclaim space we can actually use it instead of somebody else
4953 * stealing it from us.
4954 *
4955 * We make the other tasks wait for the flush only when we can flush
4956 * all things.
4957 */
4958 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4959 flushing = true;
4960 space_info->flush = 1;
4961 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4962 used += orig_bytes;
4963 /*
4964 * We will do the space reservation dance during log replay,
4965 * which means we won't have fs_info->fs_root set, so don't do
4966 * the async reclaim as we will panic.
4967 */
4968 if (!root->fs_info->log_root_recovering &&
4969 need_do_async_reclaim(space_info, root->fs_info, used) &&
4970 !work_busy(&root->fs_info->async_reclaim_work))
4971 queue_work(system_unbound_wq,
4972 &root->fs_info->async_reclaim_work);
4973 }
4974 spin_unlock(&space_info->lock);
4975
4976 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4977 goto out;
4978
4979 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4980 flush_state);
4981 flush_state++;
4982
4983 /*
4984 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4985 * would happen. So skip delalloc flush.
4986 */
4987 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4988 (flush_state == FLUSH_DELALLOC ||
4989 flush_state == FLUSH_DELALLOC_WAIT))
4990 flush_state = ALLOC_CHUNK;
4991
4992 if (!ret)
4993 goto again;
4994 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4995 flush_state < COMMIT_TRANS)
4996 goto again;
4997 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4998 flush_state <= COMMIT_TRANS)
4999 goto again;
5000
5001 out:
5002 if (ret == -ENOSPC &&
5003 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5004 struct btrfs_block_rsv *global_rsv =
5005 &root->fs_info->global_block_rsv;
5006
5007 if (block_rsv != global_rsv &&
5008 !block_rsv_use_bytes(global_rsv, orig_bytes))
5009 ret = 0;
5010 }
5011 if (ret == -ENOSPC)
5012 trace_btrfs_space_reservation(root->fs_info,
5013 "space_info:enospc",
5014 space_info->flags, orig_bytes, 1);
5015 if (flushing) {
5016 spin_lock(&space_info->lock);
5017 space_info->flush = 0;
5018 wake_up_all(&space_info->wait);
5019 spin_unlock(&space_info->lock);
5020 }
5021 return ret;
5022 }
5023
5024 static struct btrfs_block_rsv *get_block_rsv(
5025 const struct btrfs_trans_handle *trans,
5026 const struct btrfs_root *root)
5027 {
5028 struct btrfs_block_rsv *block_rsv = NULL;
5029
5030 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5031 (root == root->fs_info->csum_root && trans->adding_csums) ||
5032 (root == root->fs_info->uuid_root))
5033 block_rsv = trans->block_rsv;
5034
5035 if (!block_rsv)
5036 block_rsv = root->block_rsv;
5037
5038 if (!block_rsv)
5039 block_rsv = &root->fs_info->empty_block_rsv;
5040
5041 return block_rsv;
5042 }
5043
5044 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5045 u64 num_bytes)
5046 {
5047 int ret = -ENOSPC;
5048 spin_lock(&block_rsv->lock);
5049 if (block_rsv->reserved >= num_bytes) {
5050 block_rsv->reserved -= num_bytes;
5051 if (block_rsv->reserved < block_rsv->size)
5052 block_rsv->full = 0;
5053 ret = 0;
5054 }
5055 spin_unlock(&block_rsv->lock);
5056 return ret;
5057 }
5058
5059 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5060 u64 num_bytes, int update_size)
5061 {
5062 spin_lock(&block_rsv->lock);
5063 block_rsv->reserved += num_bytes;
5064 if (update_size)
5065 block_rsv->size += num_bytes;
5066 else if (block_rsv->reserved >= block_rsv->size)
5067 block_rsv->full = 1;
5068 spin_unlock(&block_rsv->lock);
5069 }
5070
5071 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5072 struct btrfs_block_rsv *dest, u64 num_bytes,
5073 int min_factor)
5074 {
5075 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5076 u64 min_bytes;
5077
5078 if (global_rsv->space_info != dest->space_info)
5079 return -ENOSPC;
5080
5081 spin_lock(&global_rsv->lock);
5082 min_bytes = div_factor(global_rsv->size, min_factor);
5083 if (global_rsv->reserved < min_bytes + num_bytes) {
5084 spin_unlock(&global_rsv->lock);
5085 return -ENOSPC;
5086 }
5087 global_rsv->reserved -= num_bytes;
5088 if (global_rsv->reserved < global_rsv->size)
5089 global_rsv->full = 0;
5090 spin_unlock(&global_rsv->lock);
5091
5092 block_rsv_add_bytes(dest, num_bytes, 1);
5093 return 0;
5094 }
5095
5096 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5097 struct btrfs_block_rsv *block_rsv,
5098 struct btrfs_block_rsv *dest, u64 num_bytes)
5099 {
5100 struct btrfs_space_info *space_info = block_rsv->space_info;
5101
5102 spin_lock(&block_rsv->lock);
5103 if (num_bytes == (u64)-1)
5104 num_bytes = block_rsv->size;
5105 block_rsv->size -= num_bytes;
5106 if (block_rsv->reserved >= block_rsv->size) {
5107 num_bytes = block_rsv->reserved - block_rsv->size;
5108 block_rsv->reserved = block_rsv->size;
5109 block_rsv->full = 1;
5110 } else {
5111 num_bytes = 0;
5112 }
5113 spin_unlock(&block_rsv->lock);
5114
5115 if (num_bytes > 0) {
5116 if (dest) {
5117 spin_lock(&dest->lock);
5118 if (!dest->full) {
5119 u64 bytes_to_add;
5120
5121 bytes_to_add = dest->size - dest->reserved;
5122 bytes_to_add = min(num_bytes, bytes_to_add);
5123 dest->reserved += bytes_to_add;
5124 if (dest->reserved >= dest->size)
5125 dest->full = 1;
5126 num_bytes -= bytes_to_add;
5127 }
5128 spin_unlock(&dest->lock);
5129 }
5130 if (num_bytes) {
5131 spin_lock(&space_info->lock);
5132 space_info->bytes_may_use -= num_bytes;
5133 trace_btrfs_space_reservation(fs_info, "space_info",
5134 space_info->flags, num_bytes, 0);
5135 spin_unlock(&space_info->lock);
5136 }
5137 }
5138 }
5139
5140 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5141 struct btrfs_block_rsv *dst, u64 num_bytes)
5142 {
5143 int ret;
5144
5145 ret = block_rsv_use_bytes(src, num_bytes);
5146 if (ret)
5147 return ret;
5148
5149 block_rsv_add_bytes(dst, num_bytes, 1);
5150 return 0;
5151 }
5152
5153 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5154 {
5155 memset(rsv, 0, sizeof(*rsv));
5156 spin_lock_init(&rsv->lock);
5157 rsv->type = type;
5158 }
5159
5160 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5161 unsigned short type)
5162 {
5163 struct btrfs_block_rsv *block_rsv;
5164 struct btrfs_fs_info *fs_info = root->fs_info;
5165
5166 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5167 if (!block_rsv)
5168 return NULL;
5169
5170 btrfs_init_block_rsv(block_rsv, type);
5171 block_rsv->space_info = __find_space_info(fs_info,
5172 BTRFS_BLOCK_GROUP_METADATA);
5173 return block_rsv;
5174 }
5175
5176 void btrfs_free_block_rsv(struct btrfs_root *root,
5177 struct btrfs_block_rsv *rsv)
5178 {
5179 if (!rsv)
5180 return;
5181 btrfs_block_rsv_release(root, rsv, (u64)-1);
5182 kfree(rsv);
5183 }
5184
5185 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5186 {
5187 kfree(rsv);
5188 }
5189
5190 int btrfs_block_rsv_add(struct btrfs_root *root,
5191 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5192 enum btrfs_reserve_flush_enum flush)
5193 {
5194 int ret;
5195
5196 if (num_bytes == 0)
5197 return 0;
5198
5199 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5200 if (!ret) {
5201 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5202 return 0;
5203 }
5204
5205 return ret;
5206 }
5207
5208 int btrfs_block_rsv_check(struct btrfs_root *root,
5209 struct btrfs_block_rsv *block_rsv, int min_factor)
5210 {
5211 u64 num_bytes = 0;
5212 int ret = -ENOSPC;
5213
5214 if (!block_rsv)
5215 return 0;
5216
5217 spin_lock(&block_rsv->lock);
5218 num_bytes = div_factor(block_rsv->size, min_factor);
5219 if (block_rsv->reserved >= num_bytes)
5220 ret = 0;
5221 spin_unlock(&block_rsv->lock);
5222
5223 return ret;
5224 }
5225
5226 int btrfs_block_rsv_refill(struct btrfs_root *root,
5227 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5228 enum btrfs_reserve_flush_enum flush)
5229 {
5230 u64 num_bytes = 0;
5231 int ret = -ENOSPC;
5232
5233 if (!block_rsv)
5234 return 0;
5235
5236 spin_lock(&block_rsv->lock);
5237 num_bytes = min_reserved;
5238 if (block_rsv->reserved >= num_bytes)
5239 ret = 0;
5240 else
5241 num_bytes -= block_rsv->reserved;
5242 spin_unlock(&block_rsv->lock);
5243
5244 if (!ret)
5245 return 0;
5246
5247 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5248 if (!ret) {
5249 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5250 return 0;
5251 }
5252
5253 return ret;
5254 }
5255
5256 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5257 struct btrfs_block_rsv *dst_rsv,
5258 u64 num_bytes)
5259 {
5260 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5261 }
5262
5263 void btrfs_block_rsv_release(struct btrfs_root *root,
5264 struct btrfs_block_rsv *block_rsv,
5265 u64 num_bytes)
5266 {
5267 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5268 if (global_rsv == block_rsv ||
5269 block_rsv->space_info != global_rsv->space_info)
5270 global_rsv = NULL;
5271 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5272 num_bytes);
5273 }
5274
5275 /*
5276 * helper to calculate size of global block reservation.
5277 * the desired value is sum of space used by extent tree,
5278 * checksum tree and root tree
5279 */
5280 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5281 {
5282 struct btrfs_space_info *sinfo;
5283 u64 num_bytes;
5284 u64 meta_used;
5285 u64 data_used;
5286 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5287
5288 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5289 spin_lock(&sinfo->lock);
5290 data_used = sinfo->bytes_used;
5291 spin_unlock(&sinfo->lock);
5292
5293 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5294 spin_lock(&sinfo->lock);
5295 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5296 data_used = 0;
5297 meta_used = sinfo->bytes_used;
5298 spin_unlock(&sinfo->lock);
5299
5300 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5301 csum_size * 2;
5302 num_bytes += div_u64(data_used + meta_used, 50);
5303
5304 if (num_bytes * 3 > meta_used)
5305 num_bytes = div_u64(meta_used, 3);
5306
5307 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5308 }
5309
5310 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5311 {
5312 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5313 struct btrfs_space_info *sinfo = block_rsv->space_info;
5314 u64 num_bytes;
5315
5316 num_bytes = calc_global_metadata_size(fs_info);
5317
5318 spin_lock(&sinfo->lock);
5319 spin_lock(&block_rsv->lock);
5320
5321 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5322
5323 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5324 sinfo->bytes_reserved + sinfo->bytes_readonly +
5325 sinfo->bytes_may_use;
5326
5327 if (sinfo->total_bytes > num_bytes) {
5328 num_bytes = sinfo->total_bytes - num_bytes;
5329 block_rsv->reserved += num_bytes;
5330 sinfo->bytes_may_use += num_bytes;
5331 trace_btrfs_space_reservation(fs_info, "space_info",
5332 sinfo->flags, num_bytes, 1);
5333 }
5334
5335 if (block_rsv->reserved >= block_rsv->size) {
5336 num_bytes = block_rsv->reserved - block_rsv->size;
5337 sinfo->bytes_may_use -= num_bytes;
5338 trace_btrfs_space_reservation(fs_info, "space_info",
5339 sinfo->flags, num_bytes, 0);
5340 block_rsv->reserved = block_rsv->size;
5341 block_rsv->full = 1;
5342 }
5343
5344 spin_unlock(&block_rsv->lock);
5345 spin_unlock(&sinfo->lock);
5346 }
5347
5348 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5349 {
5350 struct btrfs_space_info *space_info;
5351
5352 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5353 fs_info->chunk_block_rsv.space_info = space_info;
5354
5355 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5356 fs_info->global_block_rsv.space_info = space_info;
5357 fs_info->delalloc_block_rsv.space_info = space_info;
5358 fs_info->trans_block_rsv.space_info = space_info;
5359 fs_info->empty_block_rsv.space_info = space_info;
5360 fs_info->delayed_block_rsv.space_info = space_info;
5361
5362 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5363 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5364 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5365 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5366 if (fs_info->quota_root)
5367 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5368 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5369
5370 update_global_block_rsv(fs_info);
5371 }
5372
5373 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5374 {
5375 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5376 (u64)-1);
5377 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5378 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5379 WARN_ON(fs_info->trans_block_rsv.size > 0);
5380 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5381 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5382 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5383 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5384 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5385 }
5386
5387 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5388 struct btrfs_root *root)
5389 {
5390 if (!trans->block_rsv)
5391 return;
5392
5393 if (!trans->bytes_reserved)
5394 return;
5395
5396 trace_btrfs_space_reservation(root->fs_info, "transaction",
5397 trans->transid, trans->bytes_reserved, 0);
5398 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5399 trans->bytes_reserved = 0;
5400 }
5401
5402 /*
5403 * To be called after all the new block groups attached to the transaction
5404 * handle have been created (btrfs_create_pending_block_groups()).
5405 */
5406 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5407 {
5408 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5409
5410 if (!trans->chunk_bytes_reserved)
5411 return;
5412
5413 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5414
5415 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5416 trans->chunk_bytes_reserved);
5417 trans->chunk_bytes_reserved = 0;
5418 }
5419
5420 /* Can only return 0 or -ENOSPC */
5421 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5422 struct inode *inode)
5423 {
5424 struct btrfs_root *root = BTRFS_I(inode)->root;
5425 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5426 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5427
5428 /*
5429 * We need to hold space in order to delete our orphan item once we've
5430 * added it, so this takes the reservation so we can release it later
5431 * when we are truly done with the orphan item.
5432 */
5433 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5434 trace_btrfs_space_reservation(root->fs_info, "orphan",
5435 btrfs_ino(inode), num_bytes, 1);
5436 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5437 }
5438
5439 void btrfs_orphan_release_metadata(struct inode *inode)
5440 {
5441 struct btrfs_root *root = BTRFS_I(inode)->root;
5442 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5443 trace_btrfs_space_reservation(root->fs_info, "orphan",
5444 btrfs_ino(inode), num_bytes, 0);
5445 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5446 }
5447
5448 /*
5449 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5450 * root: the root of the parent directory
5451 * rsv: block reservation
5452 * items: the number of items that we need do reservation
5453 * qgroup_reserved: used to return the reserved size in qgroup
5454 *
5455 * This function is used to reserve the space for snapshot/subvolume
5456 * creation and deletion. Those operations are different with the
5457 * common file/directory operations, they change two fs/file trees
5458 * and root tree, the number of items that the qgroup reserves is
5459 * different with the free space reservation. So we can not use
5460 * the space reseravtion mechanism in start_transaction().
5461 */
5462 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5463 struct btrfs_block_rsv *rsv,
5464 int items,
5465 u64 *qgroup_reserved,
5466 bool use_global_rsv)
5467 {
5468 u64 num_bytes;
5469 int ret;
5470 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5471
5472 if (root->fs_info->quota_enabled) {
5473 /* One for parent inode, two for dir entries */
5474 num_bytes = 3 * root->nodesize;
5475 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5476 if (ret)
5477 return ret;
5478 } else {
5479 num_bytes = 0;
5480 }
5481
5482 *qgroup_reserved = num_bytes;
5483
5484 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5485 rsv->space_info = __find_space_info(root->fs_info,
5486 BTRFS_BLOCK_GROUP_METADATA);
5487 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5488 BTRFS_RESERVE_FLUSH_ALL);
5489
5490 if (ret == -ENOSPC && use_global_rsv)
5491 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5492
5493 if (ret && *qgroup_reserved)
5494 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5495
5496 return ret;
5497 }
5498
5499 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5500 struct btrfs_block_rsv *rsv,
5501 u64 qgroup_reserved)
5502 {
5503 btrfs_block_rsv_release(root, rsv, (u64)-1);
5504 }
5505
5506 /**
5507 * drop_outstanding_extent - drop an outstanding extent
5508 * @inode: the inode we're dropping the extent for
5509 * @num_bytes: the number of bytes we're relaseing.
5510 *
5511 * This is called when we are freeing up an outstanding extent, either called
5512 * after an error or after an extent is written. This will return the number of
5513 * reserved extents that need to be freed. This must be called with
5514 * BTRFS_I(inode)->lock held.
5515 */
5516 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5517 {
5518 unsigned drop_inode_space = 0;
5519 unsigned dropped_extents = 0;
5520 unsigned num_extents = 0;
5521
5522 num_extents = (unsigned)div64_u64(num_bytes +
5523 BTRFS_MAX_EXTENT_SIZE - 1,
5524 BTRFS_MAX_EXTENT_SIZE);
5525 ASSERT(num_extents);
5526 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5527 BTRFS_I(inode)->outstanding_extents -= num_extents;
5528
5529 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5530 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5531 &BTRFS_I(inode)->runtime_flags))
5532 drop_inode_space = 1;
5533
5534 /*
5535 * If we have more or the same amount of outsanding extents than we have
5536 * reserved then we need to leave the reserved extents count alone.
5537 */
5538 if (BTRFS_I(inode)->outstanding_extents >=
5539 BTRFS_I(inode)->reserved_extents)
5540 return drop_inode_space;
5541
5542 dropped_extents = BTRFS_I(inode)->reserved_extents -
5543 BTRFS_I(inode)->outstanding_extents;
5544 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5545 return dropped_extents + drop_inode_space;
5546 }
5547
5548 /**
5549 * calc_csum_metadata_size - return the amount of metada space that must be
5550 * reserved/free'd for the given bytes.
5551 * @inode: the inode we're manipulating
5552 * @num_bytes: the number of bytes in question
5553 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5554 *
5555 * This adjusts the number of csum_bytes in the inode and then returns the
5556 * correct amount of metadata that must either be reserved or freed. We
5557 * calculate how many checksums we can fit into one leaf and then divide the
5558 * number of bytes that will need to be checksumed by this value to figure out
5559 * how many checksums will be required. If we are adding bytes then the number
5560 * may go up and we will return the number of additional bytes that must be
5561 * reserved. If it is going down we will return the number of bytes that must
5562 * be freed.
5563 *
5564 * This must be called with BTRFS_I(inode)->lock held.
5565 */
5566 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5567 int reserve)
5568 {
5569 struct btrfs_root *root = BTRFS_I(inode)->root;
5570 u64 old_csums, num_csums;
5571
5572 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5573 BTRFS_I(inode)->csum_bytes == 0)
5574 return 0;
5575
5576 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5577 if (reserve)
5578 BTRFS_I(inode)->csum_bytes += num_bytes;
5579 else
5580 BTRFS_I(inode)->csum_bytes -= num_bytes;
5581 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5582
5583 /* No change, no need to reserve more */
5584 if (old_csums == num_csums)
5585 return 0;
5586
5587 if (reserve)
5588 return btrfs_calc_trans_metadata_size(root,
5589 num_csums - old_csums);
5590
5591 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5592 }
5593
5594 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5595 {
5596 struct btrfs_root *root = BTRFS_I(inode)->root;
5597 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5598 u64 to_reserve = 0;
5599 u64 csum_bytes;
5600 unsigned nr_extents = 0;
5601 int extra_reserve = 0;
5602 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5603 int ret = 0;
5604 bool delalloc_lock = true;
5605 u64 to_free = 0;
5606 unsigned dropped;
5607
5608 /* If we are a free space inode we need to not flush since we will be in
5609 * the middle of a transaction commit. We also don't need the delalloc
5610 * mutex since we won't race with anybody. We need this mostly to make
5611 * lockdep shut its filthy mouth.
5612 */
5613 if (btrfs_is_free_space_inode(inode)) {
5614 flush = BTRFS_RESERVE_NO_FLUSH;
5615 delalloc_lock = false;
5616 }
5617
5618 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5619 btrfs_transaction_in_commit(root->fs_info))
5620 schedule_timeout(1);
5621
5622 if (delalloc_lock)
5623 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5624
5625 num_bytes = ALIGN(num_bytes, root->sectorsize);
5626
5627 spin_lock(&BTRFS_I(inode)->lock);
5628 nr_extents = (unsigned)div64_u64(num_bytes +
5629 BTRFS_MAX_EXTENT_SIZE - 1,
5630 BTRFS_MAX_EXTENT_SIZE);
5631 BTRFS_I(inode)->outstanding_extents += nr_extents;
5632 nr_extents = 0;
5633
5634 if (BTRFS_I(inode)->outstanding_extents >
5635 BTRFS_I(inode)->reserved_extents)
5636 nr_extents = BTRFS_I(inode)->outstanding_extents -
5637 BTRFS_I(inode)->reserved_extents;
5638
5639 /*
5640 * Add an item to reserve for updating the inode when we complete the
5641 * delalloc io.
5642 */
5643 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5644 &BTRFS_I(inode)->runtime_flags)) {
5645 nr_extents++;
5646 extra_reserve = 1;
5647 }
5648
5649 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5650 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5651 csum_bytes = BTRFS_I(inode)->csum_bytes;
5652 spin_unlock(&BTRFS_I(inode)->lock);
5653
5654 if (root->fs_info->quota_enabled) {
5655 ret = btrfs_qgroup_reserve_meta(root,
5656 nr_extents * root->nodesize);
5657 if (ret)
5658 goto out_fail;
5659 }
5660
5661 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5662 if (unlikely(ret)) {
5663 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5664 goto out_fail;
5665 }
5666
5667 spin_lock(&BTRFS_I(inode)->lock);
5668 if (extra_reserve) {
5669 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5670 &BTRFS_I(inode)->runtime_flags);
5671 nr_extents--;
5672 }
5673 BTRFS_I(inode)->reserved_extents += nr_extents;
5674 spin_unlock(&BTRFS_I(inode)->lock);
5675
5676 if (delalloc_lock)
5677 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5678
5679 if (to_reserve)
5680 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5681 btrfs_ino(inode), to_reserve, 1);
5682 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5683
5684 return 0;
5685
5686 out_fail:
5687 spin_lock(&BTRFS_I(inode)->lock);
5688 dropped = drop_outstanding_extent(inode, num_bytes);
5689 /*
5690 * If the inodes csum_bytes is the same as the original
5691 * csum_bytes then we know we haven't raced with any free()ers
5692 * so we can just reduce our inodes csum bytes and carry on.
5693 */
5694 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5695 calc_csum_metadata_size(inode, num_bytes, 0);
5696 } else {
5697 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5698 u64 bytes;
5699
5700 /*
5701 * This is tricky, but first we need to figure out how much we
5702 * free'd from any free-ers that occured during this
5703 * reservation, so we reset ->csum_bytes to the csum_bytes
5704 * before we dropped our lock, and then call the free for the
5705 * number of bytes that were freed while we were trying our
5706 * reservation.
5707 */
5708 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5709 BTRFS_I(inode)->csum_bytes = csum_bytes;
5710 to_free = calc_csum_metadata_size(inode, bytes, 0);
5711
5712
5713 /*
5714 * Now we need to see how much we would have freed had we not
5715 * been making this reservation and our ->csum_bytes were not
5716 * artificially inflated.
5717 */
5718 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5719 bytes = csum_bytes - orig_csum_bytes;
5720 bytes = calc_csum_metadata_size(inode, bytes, 0);
5721
5722 /*
5723 * Now reset ->csum_bytes to what it should be. If bytes is
5724 * more than to_free then we would have free'd more space had we
5725 * not had an artificially high ->csum_bytes, so we need to free
5726 * the remainder. If bytes is the same or less then we don't
5727 * need to do anything, the other free-ers did the correct
5728 * thing.
5729 */
5730 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5731 if (bytes > to_free)
5732 to_free = bytes - to_free;
5733 else
5734 to_free = 0;
5735 }
5736 spin_unlock(&BTRFS_I(inode)->lock);
5737 if (dropped)
5738 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5739
5740 if (to_free) {
5741 btrfs_block_rsv_release(root, block_rsv, to_free);
5742 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5743 btrfs_ino(inode), to_free, 0);
5744 }
5745 if (delalloc_lock)
5746 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5747 return ret;
5748 }
5749
5750 /**
5751 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5752 * @inode: the inode to release the reservation for
5753 * @num_bytes: the number of bytes we're releasing
5754 *
5755 * This will release the metadata reservation for an inode. This can be called
5756 * once we complete IO for a given set of bytes to release their metadata
5757 * reservations.
5758 */
5759 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5760 {
5761 struct btrfs_root *root = BTRFS_I(inode)->root;
5762 u64 to_free = 0;
5763 unsigned dropped;
5764
5765 num_bytes = ALIGN(num_bytes, root->sectorsize);
5766 spin_lock(&BTRFS_I(inode)->lock);
5767 dropped = drop_outstanding_extent(inode, num_bytes);
5768
5769 if (num_bytes)
5770 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5771 spin_unlock(&BTRFS_I(inode)->lock);
5772 if (dropped > 0)
5773 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5774
5775 if (btrfs_test_is_dummy_root(root))
5776 return;
5777
5778 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5779 btrfs_ino(inode), to_free, 0);
5780
5781 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5782 to_free);
5783 }
5784
5785 /**
5786 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5787 * delalloc
5788 * @inode: inode we're writing to
5789 * @start: start range we are writing to
5790 * @len: how long the range we are writing to
5791 *
5792 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5793 *
5794 * This will do the following things
5795 *
5796 * o reserve space in data space info for num bytes
5797 * and reserve precious corresponding qgroup space
5798 * (Done in check_data_free_space)
5799 *
5800 * o reserve space for metadata space, based on the number of outstanding
5801 * extents and how much csums will be needed
5802 * also reserve metadata space in a per root over-reserve method.
5803 * o add to the inodes->delalloc_bytes
5804 * o add it to the fs_info's delalloc inodes list.
5805 * (Above 3 all done in delalloc_reserve_metadata)
5806 *
5807 * Return 0 for success
5808 * Return <0 for error(-ENOSPC or -EQUOT)
5809 */
5810 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5811 {
5812 int ret;
5813
5814 ret = btrfs_check_data_free_space(inode, start, len);
5815 if (ret < 0)
5816 return ret;
5817 ret = btrfs_delalloc_reserve_metadata(inode, len);
5818 if (ret < 0)
5819 btrfs_free_reserved_data_space(inode, start, len);
5820 return ret;
5821 }
5822
5823 /**
5824 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5825 * @inode: inode we're releasing space for
5826 * @start: start position of the space already reserved
5827 * @len: the len of the space already reserved
5828 *
5829 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5830 * called in the case that we don't need the metadata AND data reservations
5831 * anymore. So if there is an error or we insert an inline extent.
5832 *
5833 * This function will release the metadata space that was not used and will
5834 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5835 * list if there are no delalloc bytes left.
5836 * Also it will handle the qgroup reserved space.
5837 */
5838 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5839 {
5840 btrfs_delalloc_release_metadata(inode, len);
5841 btrfs_free_reserved_data_space(inode, start, len);
5842 }
5843
5844 static int update_block_group(struct btrfs_trans_handle *trans,
5845 struct btrfs_root *root, u64 bytenr,
5846 u64 num_bytes, int alloc)
5847 {
5848 struct btrfs_block_group_cache *cache = NULL;
5849 struct btrfs_fs_info *info = root->fs_info;
5850 u64 total = num_bytes;
5851 u64 old_val;
5852 u64 byte_in_group;
5853 int factor;
5854
5855 /* block accounting for super block */
5856 spin_lock(&info->delalloc_root_lock);
5857 old_val = btrfs_super_bytes_used(info->super_copy);
5858 if (alloc)
5859 old_val += num_bytes;
5860 else
5861 old_val -= num_bytes;
5862 btrfs_set_super_bytes_used(info->super_copy, old_val);
5863 spin_unlock(&info->delalloc_root_lock);
5864
5865 while (total) {
5866 cache = btrfs_lookup_block_group(info, bytenr);
5867 if (!cache)
5868 return -ENOENT;
5869 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5870 BTRFS_BLOCK_GROUP_RAID1 |
5871 BTRFS_BLOCK_GROUP_RAID10))
5872 factor = 2;
5873 else
5874 factor = 1;
5875 /*
5876 * If this block group has free space cache written out, we
5877 * need to make sure to load it if we are removing space. This
5878 * is because we need the unpinning stage to actually add the
5879 * space back to the block group, otherwise we will leak space.
5880 */
5881 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5882 cache_block_group(cache, 1);
5883
5884 byte_in_group = bytenr - cache->key.objectid;
5885 WARN_ON(byte_in_group > cache->key.offset);
5886
5887 spin_lock(&cache->space_info->lock);
5888 spin_lock(&cache->lock);
5889
5890 if (btrfs_test_opt(root, SPACE_CACHE) &&
5891 cache->disk_cache_state < BTRFS_DC_CLEAR)
5892 cache->disk_cache_state = BTRFS_DC_CLEAR;
5893
5894 old_val = btrfs_block_group_used(&cache->item);
5895 num_bytes = min(total, cache->key.offset - byte_in_group);
5896 if (alloc) {
5897 old_val += num_bytes;
5898 btrfs_set_block_group_used(&cache->item, old_val);
5899 cache->reserved -= num_bytes;
5900 cache->space_info->bytes_reserved -= num_bytes;
5901 cache->space_info->bytes_used += num_bytes;
5902 cache->space_info->disk_used += num_bytes * factor;
5903 spin_unlock(&cache->lock);
5904 spin_unlock(&cache->space_info->lock);
5905 } else {
5906 old_val -= num_bytes;
5907 btrfs_set_block_group_used(&cache->item, old_val);
5908 cache->pinned += num_bytes;
5909 cache->space_info->bytes_pinned += num_bytes;
5910 cache->space_info->bytes_used -= num_bytes;
5911 cache->space_info->disk_used -= num_bytes * factor;
5912 spin_unlock(&cache->lock);
5913 spin_unlock(&cache->space_info->lock);
5914
5915 set_extent_dirty(info->pinned_extents,
5916 bytenr, bytenr + num_bytes - 1,
5917 GFP_NOFS | __GFP_NOFAIL);
5918 /*
5919 * No longer have used bytes in this block group, queue
5920 * it for deletion.
5921 */
5922 if (old_val == 0) {
5923 spin_lock(&info->unused_bgs_lock);
5924 if (list_empty(&cache->bg_list)) {
5925 btrfs_get_block_group(cache);
5926 list_add_tail(&cache->bg_list,
5927 &info->unused_bgs);
5928 }
5929 spin_unlock(&info->unused_bgs_lock);
5930 }
5931 }
5932
5933 spin_lock(&trans->transaction->dirty_bgs_lock);
5934 if (list_empty(&cache->dirty_list)) {
5935 list_add_tail(&cache->dirty_list,
5936 &trans->transaction->dirty_bgs);
5937 trans->transaction->num_dirty_bgs++;
5938 btrfs_get_block_group(cache);
5939 }
5940 spin_unlock(&trans->transaction->dirty_bgs_lock);
5941
5942 btrfs_put_block_group(cache);
5943 total -= num_bytes;
5944 bytenr += num_bytes;
5945 }
5946 return 0;
5947 }
5948
5949 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5950 {
5951 struct btrfs_block_group_cache *cache;
5952 u64 bytenr;
5953
5954 spin_lock(&root->fs_info->block_group_cache_lock);
5955 bytenr = root->fs_info->first_logical_byte;
5956 spin_unlock(&root->fs_info->block_group_cache_lock);
5957
5958 if (bytenr < (u64)-1)
5959 return bytenr;
5960
5961 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5962 if (!cache)
5963 return 0;
5964
5965 bytenr = cache->key.objectid;
5966 btrfs_put_block_group(cache);
5967
5968 return bytenr;
5969 }
5970
5971 static int pin_down_extent(struct btrfs_root *root,
5972 struct btrfs_block_group_cache *cache,
5973 u64 bytenr, u64 num_bytes, int reserved)
5974 {
5975 spin_lock(&cache->space_info->lock);
5976 spin_lock(&cache->lock);
5977 cache->pinned += num_bytes;
5978 cache->space_info->bytes_pinned += num_bytes;
5979 if (reserved) {
5980 cache->reserved -= num_bytes;
5981 cache->space_info->bytes_reserved -= num_bytes;
5982 }
5983 spin_unlock(&cache->lock);
5984 spin_unlock(&cache->space_info->lock);
5985
5986 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5987 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5988 if (reserved)
5989 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5990 return 0;
5991 }
5992
5993 /*
5994 * this function must be called within transaction
5995 */
5996 int btrfs_pin_extent(struct btrfs_root *root,
5997 u64 bytenr, u64 num_bytes, int reserved)
5998 {
5999 struct btrfs_block_group_cache *cache;
6000
6001 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6002 BUG_ON(!cache); /* Logic error */
6003
6004 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6005
6006 btrfs_put_block_group(cache);
6007 return 0;
6008 }
6009
6010 /*
6011 * this function must be called within transaction
6012 */
6013 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6014 u64 bytenr, u64 num_bytes)
6015 {
6016 struct btrfs_block_group_cache *cache;
6017 int ret;
6018
6019 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6020 if (!cache)
6021 return -EINVAL;
6022
6023 /*
6024 * pull in the free space cache (if any) so that our pin
6025 * removes the free space from the cache. We have load_only set
6026 * to one because the slow code to read in the free extents does check
6027 * the pinned extents.
6028 */
6029 cache_block_group(cache, 1);
6030
6031 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6032
6033 /* remove us from the free space cache (if we're there at all) */
6034 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6035 btrfs_put_block_group(cache);
6036 return ret;
6037 }
6038
6039 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6040 {
6041 int ret;
6042 struct btrfs_block_group_cache *block_group;
6043 struct btrfs_caching_control *caching_ctl;
6044
6045 block_group = btrfs_lookup_block_group(root->fs_info, start);
6046 if (!block_group)
6047 return -EINVAL;
6048
6049 cache_block_group(block_group, 0);
6050 caching_ctl = get_caching_control(block_group);
6051
6052 if (!caching_ctl) {
6053 /* Logic error */
6054 BUG_ON(!block_group_cache_done(block_group));
6055 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6056 } else {
6057 mutex_lock(&caching_ctl->mutex);
6058
6059 if (start >= caching_ctl->progress) {
6060 ret = add_excluded_extent(root, start, num_bytes);
6061 } else if (start + num_bytes <= caching_ctl->progress) {
6062 ret = btrfs_remove_free_space(block_group,
6063 start, num_bytes);
6064 } else {
6065 num_bytes = caching_ctl->progress - start;
6066 ret = btrfs_remove_free_space(block_group,
6067 start, num_bytes);
6068 if (ret)
6069 goto out_lock;
6070
6071 num_bytes = (start + num_bytes) -
6072 caching_ctl->progress;
6073 start = caching_ctl->progress;
6074 ret = add_excluded_extent(root, start, num_bytes);
6075 }
6076 out_lock:
6077 mutex_unlock(&caching_ctl->mutex);
6078 put_caching_control(caching_ctl);
6079 }
6080 btrfs_put_block_group(block_group);
6081 return ret;
6082 }
6083
6084 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6085 struct extent_buffer *eb)
6086 {
6087 struct btrfs_file_extent_item *item;
6088 struct btrfs_key key;
6089 int found_type;
6090 int i;
6091
6092 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6093 return 0;
6094
6095 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6096 btrfs_item_key_to_cpu(eb, &key, i);
6097 if (key.type != BTRFS_EXTENT_DATA_KEY)
6098 continue;
6099 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6100 found_type = btrfs_file_extent_type(eb, item);
6101 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6102 continue;
6103 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6104 continue;
6105 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6106 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6107 __exclude_logged_extent(log, key.objectid, key.offset);
6108 }
6109
6110 return 0;
6111 }
6112
6113 /**
6114 * btrfs_update_reserved_bytes - update the block_group and space info counters
6115 * @cache: The cache we are manipulating
6116 * @num_bytes: The number of bytes in question
6117 * @reserve: One of the reservation enums
6118 * @delalloc: The blocks are allocated for the delalloc write
6119 *
6120 * This is called by the allocator when it reserves space, or by somebody who is
6121 * freeing space that was never actually used on disk. For example if you
6122 * reserve some space for a new leaf in transaction A and before transaction A
6123 * commits you free that leaf, you call this with reserve set to 0 in order to
6124 * clear the reservation.
6125 *
6126 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6127 * ENOSPC accounting. For data we handle the reservation through clearing the
6128 * delalloc bits in the io_tree. We have to do this since we could end up
6129 * allocating less disk space for the amount of data we have reserved in the
6130 * case of compression.
6131 *
6132 * If this is a reservation and the block group has become read only we cannot
6133 * make the reservation and return -EAGAIN, otherwise this function always
6134 * succeeds.
6135 */
6136 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6137 u64 num_bytes, int reserve, int delalloc)
6138 {
6139 struct btrfs_space_info *space_info = cache->space_info;
6140 int ret = 0;
6141
6142 spin_lock(&space_info->lock);
6143 spin_lock(&cache->lock);
6144 if (reserve != RESERVE_FREE) {
6145 if (cache->ro) {
6146 ret = -EAGAIN;
6147 } else {
6148 cache->reserved += num_bytes;
6149 space_info->bytes_reserved += num_bytes;
6150 if (reserve == RESERVE_ALLOC) {
6151 trace_btrfs_space_reservation(cache->fs_info,
6152 "space_info", space_info->flags,
6153 num_bytes, 0);
6154 space_info->bytes_may_use -= num_bytes;
6155 }
6156
6157 if (delalloc)
6158 cache->delalloc_bytes += num_bytes;
6159 }
6160 } else {
6161 if (cache->ro)
6162 space_info->bytes_readonly += num_bytes;
6163 cache->reserved -= num_bytes;
6164 space_info->bytes_reserved -= num_bytes;
6165
6166 if (delalloc)
6167 cache->delalloc_bytes -= num_bytes;
6168 }
6169 spin_unlock(&cache->lock);
6170 spin_unlock(&space_info->lock);
6171 return ret;
6172 }
6173
6174 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6175 struct btrfs_root *root)
6176 {
6177 struct btrfs_fs_info *fs_info = root->fs_info;
6178 struct btrfs_caching_control *next;
6179 struct btrfs_caching_control *caching_ctl;
6180 struct btrfs_block_group_cache *cache;
6181
6182 down_write(&fs_info->commit_root_sem);
6183
6184 list_for_each_entry_safe(caching_ctl, next,
6185 &fs_info->caching_block_groups, list) {
6186 cache = caching_ctl->block_group;
6187 if (block_group_cache_done(cache)) {
6188 cache->last_byte_to_unpin = (u64)-1;
6189 list_del_init(&caching_ctl->list);
6190 put_caching_control(caching_ctl);
6191 } else {
6192 cache->last_byte_to_unpin = caching_ctl->progress;
6193 }
6194 }
6195
6196 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6197 fs_info->pinned_extents = &fs_info->freed_extents[1];
6198 else
6199 fs_info->pinned_extents = &fs_info->freed_extents[0];
6200
6201 up_write(&fs_info->commit_root_sem);
6202
6203 update_global_block_rsv(fs_info);
6204 }
6205
6206 /*
6207 * Returns the free cluster for the given space info and sets empty_cluster to
6208 * what it should be based on the mount options.
6209 */
6210 static struct btrfs_free_cluster *
6211 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6212 u64 *empty_cluster)
6213 {
6214 struct btrfs_free_cluster *ret = NULL;
6215 bool ssd = btrfs_test_opt(root, SSD);
6216
6217 *empty_cluster = 0;
6218 if (btrfs_mixed_space_info(space_info))
6219 return ret;
6220
6221 if (ssd)
6222 *empty_cluster = 2 * 1024 * 1024;
6223 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6224 ret = &root->fs_info->meta_alloc_cluster;
6225 if (!ssd)
6226 *empty_cluster = 64 * 1024;
6227 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6228 ret = &root->fs_info->data_alloc_cluster;
6229 }
6230
6231 return ret;
6232 }
6233
6234 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6235 const bool return_free_space)
6236 {
6237 struct btrfs_fs_info *fs_info = root->fs_info;
6238 struct btrfs_block_group_cache *cache = NULL;
6239 struct btrfs_space_info *space_info;
6240 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6241 struct btrfs_free_cluster *cluster = NULL;
6242 u64 len;
6243 u64 total_unpinned = 0;
6244 u64 empty_cluster = 0;
6245 bool readonly;
6246
6247 while (start <= end) {
6248 readonly = false;
6249 if (!cache ||
6250 start >= cache->key.objectid + cache->key.offset) {
6251 if (cache)
6252 btrfs_put_block_group(cache);
6253 total_unpinned = 0;
6254 cache = btrfs_lookup_block_group(fs_info, start);
6255 BUG_ON(!cache); /* Logic error */
6256
6257 cluster = fetch_cluster_info(root,
6258 cache->space_info,
6259 &empty_cluster);
6260 empty_cluster <<= 1;
6261 }
6262
6263 len = cache->key.objectid + cache->key.offset - start;
6264 len = min(len, end + 1 - start);
6265
6266 if (start < cache->last_byte_to_unpin) {
6267 len = min(len, cache->last_byte_to_unpin - start);
6268 if (return_free_space)
6269 btrfs_add_free_space(cache, start, len);
6270 }
6271
6272 start += len;
6273 total_unpinned += len;
6274 space_info = cache->space_info;
6275
6276 /*
6277 * If this space cluster has been marked as fragmented and we've
6278 * unpinned enough in this block group to potentially allow a
6279 * cluster to be created inside of it go ahead and clear the
6280 * fragmented check.
6281 */
6282 if (cluster && cluster->fragmented &&
6283 total_unpinned > empty_cluster) {
6284 spin_lock(&cluster->lock);
6285 cluster->fragmented = 0;
6286 spin_unlock(&cluster->lock);
6287 }
6288
6289 spin_lock(&space_info->lock);
6290 spin_lock(&cache->lock);
6291 cache->pinned -= len;
6292 space_info->bytes_pinned -= len;
6293 space_info->max_extent_size = 0;
6294 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6295 if (cache->ro) {
6296 space_info->bytes_readonly += len;
6297 readonly = true;
6298 }
6299 spin_unlock(&cache->lock);
6300 if (!readonly && global_rsv->space_info == space_info) {
6301 spin_lock(&global_rsv->lock);
6302 if (!global_rsv->full) {
6303 len = min(len, global_rsv->size -
6304 global_rsv->reserved);
6305 global_rsv->reserved += len;
6306 space_info->bytes_may_use += len;
6307 if (global_rsv->reserved >= global_rsv->size)
6308 global_rsv->full = 1;
6309 }
6310 spin_unlock(&global_rsv->lock);
6311 }
6312 spin_unlock(&space_info->lock);
6313 }
6314
6315 if (cache)
6316 btrfs_put_block_group(cache);
6317 return 0;
6318 }
6319
6320 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6321 struct btrfs_root *root)
6322 {
6323 struct btrfs_fs_info *fs_info = root->fs_info;
6324 struct btrfs_block_group_cache *block_group, *tmp;
6325 struct list_head *deleted_bgs;
6326 struct extent_io_tree *unpin;
6327 u64 start;
6328 u64 end;
6329 int ret;
6330
6331 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6332 unpin = &fs_info->freed_extents[1];
6333 else
6334 unpin = &fs_info->freed_extents[0];
6335
6336 while (!trans->aborted) {
6337 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6338 ret = find_first_extent_bit(unpin, 0, &start, &end,
6339 EXTENT_DIRTY, NULL);
6340 if (ret) {
6341 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6342 break;
6343 }
6344
6345 if (btrfs_test_opt(root, DISCARD))
6346 ret = btrfs_discard_extent(root, start,
6347 end + 1 - start, NULL);
6348
6349 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6350 unpin_extent_range(root, start, end, true);
6351 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6352 cond_resched();
6353 }
6354
6355 /*
6356 * Transaction is finished. We don't need the lock anymore. We
6357 * do need to clean up the block groups in case of a transaction
6358 * abort.
6359 */
6360 deleted_bgs = &trans->transaction->deleted_bgs;
6361 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6362 u64 trimmed = 0;
6363
6364 ret = -EROFS;
6365 if (!trans->aborted)
6366 ret = btrfs_discard_extent(root,
6367 block_group->key.objectid,
6368 block_group->key.offset,
6369 &trimmed);
6370
6371 list_del_init(&block_group->bg_list);
6372 btrfs_put_block_group_trimming(block_group);
6373 btrfs_put_block_group(block_group);
6374
6375 if (ret) {
6376 const char *errstr = btrfs_decode_error(ret);
6377 btrfs_warn(fs_info,
6378 "Discard failed while removing blockgroup: errno=%d %s\n",
6379 ret, errstr);
6380 }
6381 }
6382
6383 return 0;
6384 }
6385
6386 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6387 u64 owner, u64 root_objectid)
6388 {
6389 struct btrfs_space_info *space_info;
6390 u64 flags;
6391
6392 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6393 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6394 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6395 else
6396 flags = BTRFS_BLOCK_GROUP_METADATA;
6397 } else {
6398 flags = BTRFS_BLOCK_GROUP_DATA;
6399 }
6400
6401 space_info = __find_space_info(fs_info, flags);
6402 BUG_ON(!space_info); /* Logic bug */
6403 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6404 }
6405
6406
6407 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6408 struct btrfs_root *root,
6409 struct btrfs_delayed_ref_node *node, u64 parent,
6410 u64 root_objectid, u64 owner_objectid,
6411 u64 owner_offset, int refs_to_drop,
6412 struct btrfs_delayed_extent_op *extent_op)
6413 {
6414 struct btrfs_key key;
6415 struct btrfs_path *path;
6416 struct btrfs_fs_info *info = root->fs_info;
6417 struct btrfs_root *extent_root = info->extent_root;
6418 struct extent_buffer *leaf;
6419 struct btrfs_extent_item *ei;
6420 struct btrfs_extent_inline_ref *iref;
6421 int ret;
6422 int is_data;
6423 int extent_slot = 0;
6424 int found_extent = 0;
6425 int num_to_del = 1;
6426 u32 item_size;
6427 u64 refs;
6428 u64 bytenr = node->bytenr;
6429 u64 num_bytes = node->num_bytes;
6430 int last_ref = 0;
6431 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6432 SKINNY_METADATA);
6433
6434 path = btrfs_alloc_path();
6435 if (!path)
6436 return -ENOMEM;
6437
6438 path->reada = 1;
6439 path->leave_spinning = 1;
6440
6441 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6442 BUG_ON(!is_data && refs_to_drop != 1);
6443
6444 if (is_data)
6445 skinny_metadata = 0;
6446
6447 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6448 bytenr, num_bytes, parent,
6449 root_objectid, owner_objectid,
6450 owner_offset);
6451 if (ret == 0) {
6452 extent_slot = path->slots[0];
6453 while (extent_slot >= 0) {
6454 btrfs_item_key_to_cpu(path->nodes[0], &key,
6455 extent_slot);
6456 if (key.objectid != bytenr)
6457 break;
6458 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6459 key.offset == num_bytes) {
6460 found_extent = 1;
6461 break;
6462 }
6463 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6464 key.offset == owner_objectid) {
6465 found_extent = 1;
6466 break;
6467 }
6468 if (path->slots[0] - extent_slot > 5)
6469 break;
6470 extent_slot--;
6471 }
6472 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6473 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6474 if (found_extent && item_size < sizeof(*ei))
6475 found_extent = 0;
6476 #endif
6477 if (!found_extent) {
6478 BUG_ON(iref);
6479 ret = remove_extent_backref(trans, extent_root, path,
6480 NULL, refs_to_drop,
6481 is_data, &last_ref);
6482 if (ret) {
6483 btrfs_abort_transaction(trans, extent_root, ret);
6484 goto out;
6485 }
6486 btrfs_release_path(path);
6487 path->leave_spinning = 1;
6488
6489 key.objectid = bytenr;
6490 key.type = BTRFS_EXTENT_ITEM_KEY;
6491 key.offset = num_bytes;
6492
6493 if (!is_data && skinny_metadata) {
6494 key.type = BTRFS_METADATA_ITEM_KEY;
6495 key.offset = owner_objectid;
6496 }
6497
6498 ret = btrfs_search_slot(trans, extent_root,
6499 &key, path, -1, 1);
6500 if (ret > 0 && skinny_metadata && path->slots[0]) {
6501 /*
6502 * Couldn't find our skinny metadata item,
6503 * see if we have ye olde extent item.
6504 */
6505 path->slots[0]--;
6506 btrfs_item_key_to_cpu(path->nodes[0], &key,
6507 path->slots[0]);
6508 if (key.objectid == bytenr &&
6509 key.type == BTRFS_EXTENT_ITEM_KEY &&
6510 key.offset == num_bytes)
6511 ret = 0;
6512 }
6513
6514 if (ret > 0 && skinny_metadata) {
6515 skinny_metadata = false;
6516 key.objectid = bytenr;
6517 key.type = BTRFS_EXTENT_ITEM_KEY;
6518 key.offset = num_bytes;
6519 btrfs_release_path(path);
6520 ret = btrfs_search_slot(trans, extent_root,
6521 &key, path, -1, 1);
6522 }
6523
6524 if (ret) {
6525 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6526 ret, bytenr);
6527 if (ret > 0)
6528 btrfs_print_leaf(extent_root,
6529 path->nodes[0]);
6530 }
6531 if (ret < 0) {
6532 btrfs_abort_transaction(trans, extent_root, ret);
6533 goto out;
6534 }
6535 extent_slot = path->slots[0];
6536 }
6537 } else if (WARN_ON(ret == -ENOENT)) {
6538 btrfs_print_leaf(extent_root, path->nodes[0]);
6539 btrfs_err(info,
6540 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6541 bytenr, parent, root_objectid, owner_objectid,
6542 owner_offset);
6543 btrfs_abort_transaction(trans, extent_root, ret);
6544 goto out;
6545 } else {
6546 btrfs_abort_transaction(trans, extent_root, ret);
6547 goto out;
6548 }
6549
6550 leaf = path->nodes[0];
6551 item_size = btrfs_item_size_nr(leaf, extent_slot);
6552 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6553 if (item_size < sizeof(*ei)) {
6554 BUG_ON(found_extent || extent_slot != path->slots[0]);
6555 ret = convert_extent_item_v0(trans, extent_root, path,
6556 owner_objectid, 0);
6557 if (ret < 0) {
6558 btrfs_abort_transaction(trans, extent_root, ret);
6559 goto out;
6560 }
6561
6562 btrfs_release_path(path);
6563 path->leave_spinning = 1;
6564
6565 key.objectid = bytenr;
6566 key.type = BTRFS_EXTENT_ITEM_KEY;
6567 key.offset = num_bytes;
6568
6569 ret = btrfs_search_slot(trans, extent_root, &key, path,
6570 -1, 1);
6571 if (ret) {
6572 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6573 ret, bytenr);
6574 btrfs_print_leaf(extent_root, path->nodes[0]);
6575 }
6576 if (ret < 0) {
6577 btrfs_abort_transaction(trans, extent_root, ret);
6578 goto out;
6579 }
6580
6581 extent_slot = path->slots[0];
6582 leaf = path->nodes[0];
6583 item_size = btrfs_item_size_nr(leaf, extent_slot);
6584 }
6585 #endif
6586 BUG_ON(item_size < sizeof(*ei));
6587 ei = btrfs_item_ptr(leaf, extent_slot,
6588 struct btrfs_extent_item);
6589 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6590 key.type == BTRFS_EXTENT_ITEM_KEY) {
6591 struct btrfs_tree_block_info *bi;
6592 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6593 bi = (struct btrfs_tree_block_info *)(ei + 1);
6594 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6595 }
6596
6597 refs = btrfs_extent_refs(leaf, ei);
6598 if (refs < refs_to_drop) {
6599 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6600 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6601 ret = -EINVAL;
6602 btrfs_abort_transaction(trans, extent_root, ret);
6603 goto out;
6604 }
6605 refs -= refs_to_drop;
6606
6607 if (refs > 0) {
6608 if (extent_op)
6609 __run_delayed_extent_op(extent_op, leaf, ei);
6610 /*
6611 * In the case of inline back ref, reference count will
6612 * be updated by remove_extent_backref
6613 */
6614 if (iref) {
6615 BUG_ON(!found_extent);
6616 } else {
6617 btrfs_set_extent_refs(leaf, ei, refs);
6618 btrfs_mark_buffer_dirty(leaf);
6619 }
6620 if (found_extent) {
6621 ret = remove_extent_backref(trans, extent_root, path,
6622 iref, refs_to_drop,
6623 is_data, &last_ref);
6624 if (ret) {
6625 btrfs_abort_transaction(trans, extent_root, ret);
6626 goto out;
6627 }
6628 }
6629 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6630 root_objectid);
6631 } else {
6632 if (found_extent) {
6633 BUG_ON(is_data && refs_to_drop !=
6634 extent_data_ref_count(path, iref));
6635 if (iref) {
6636 BUG_ON(path->slots[0] != extent_slot);
6637 } else {
6638 BUG_ON(path->slots[0] != extent_slot + 1);
6639 path->slots[0] = extent_slot;
6640 num_to_del = 2;
6641 }
6642 }
6643
6644 last_ref = 1;
6645 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6646 num_to_del);
6647 if (ret) {
6648 btrfs_abort_transaction(trans, extent_root, ret);
6649 goto out;
6650 }
6651 btrfs_release_path(path);
6652
6653 if (is_data) {
6654 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6655 if (ret) {
6656 btrfs_abort_transaction(trans, extent_root, ret);
6657 goto out;
6658 }
6659 }
6660
6661 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6662 if (ret) {
6663 btrfs_abort_transaction(trans, extent_root, ret);
6664 goto out;
6665 }
6666 }
6667 btrfs_release_path(path);
6668
6669 out:
6670 btrfs_free_path(path);
6671 return ret;
6672 }
6673
6674 /*
6675 * when we free an block, it is possible (and likely) that we free the last
6676 * delayed ref for that extent as well. This searches the delayed ref tree for
6677 * a given extent, and if there are no other delayed refs to be processed, it
6678 * removes it from the tree.
6679 */
6680 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6681 struct btrfs_root *root, u64 bytenr)
6682 {
6683 struct btrfs_delayed_ref_head *head;
6684 struct btrfs_delayed_ref_root *delayed_refs;
6685 int ret = 0;
6686
6687 delayed_refs = &trans->transaction->delayed_refs;
6688 spin_lock(&delayed_refs->lock);
6689 head = btrfs_find_delayed_ref_head(trans, bytenr);
6690 if (!head)
6691 goto out_delayed_unlock;
6692
6693 spin_lock(&head->lock);
6694 if (!list_empty(&head->ref_list))
6695 goto out;
6696
6697 if (head->extent_op) {
6698 if (!head->must_insert_reserved)
6699 goto out;
6700 btrfs_free_delayed_extent_op(head->extent_op);
6701 head->extent_op = NULL;
6702 }
6703
6704 /*
6705 * waiting for the lock here would deadlock. If someone else has it
6706 * locked they are already in the process of dropping it anyway
6707 */
6708 if (!mutex_trylock(&head->mutex))
6709 goto out;
6710
6711 /*
6712 * at this point we have a head with no other entries. Go
6713 * ahead and process it.
6714 */
6715 head->node.in_tree = 0;
6716 rb_erase(&head->href_node, &delayed_refs->href_root);
6717
6718 atomic_dec(&delayed_refs->num_entries);
6719
6720 /*
6721 * we don't take a ref on the node because we're removing it from the
6722 * tree, so we just steal the ref the tree was holding.
6723 */
6724 delayed_refs->num_heads--;
6725 if (head->processing == 0)
6726 delayed_refs->num_heads_ready--;
6727 head->processing = 0;
6728 spin_unlock(&head->lock);
6729 spin_unlock(&delayed_refs->lock);
6730
6731 BUG_ON(head->extent_op);
6732 if (head->must_insert_reserved)
6733 ret = 1;
6734
6735 mutex_unlock(&head->mutex);
6736 btrfs_put_delayed_ref(&head->node);
6737 return ret;
6738 out:
6739 spin_unlock(&head->lock);
6740
6741 out_delayed_unlock:
6742 spin_unlock(&delayed_refs->lock);
6743 return 0;
6744 }
6745
6746 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6747 struct btrfs_root *root,
6748 struct extent_buffer *buf,
6749 u64 parent, int last_ref)
6750 {
6751 int pin = 1;
6752 int ret;
6753
6754 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6755 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6756 buf->start, buf->len,
6757 parent, root->root_key.objectid,
6758 btrfs_header_level(buf),
6759 BTRFS_DROP_DELAYED_REF, NULL);
6760 BUG_ON(ret); /* -ENOMEM */
6761 }
6762
6763 if (!last_ref)
6764 return;
6765
6766 if (btrfs_header_generation(buf) == trans->transid) {
6767 struct btrfs_block_group_cache *cache;
6768
6769 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6770 ret = check_ref_cleanup(trans, root, buf->start);
6771 if (!ret)
6772 goto out;
6773 }
6774
6775 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6776
6777 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6778 pin_down_extent(root, cache, buf->start, buf->len, 1);
6779 btrfs_put_block_group(cache);
6780 goto out;
6781 }
6782
6783 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6784
6785 btrfs_add_free_space(cache, buf->start, buf->len);
6786 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6787 btrfs_put_block_group(cache);
6788 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6789 pin = 0;
6790 }
6791 out:
6792 if (pin)
6793 add_pinned_bytes(root->fs_info, buf->len,
6794 btrfs_header_level(buf),
6795 root->root_key.objectid);
6796
6797 /*
6798 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6799 * anymore.
6800 */
6801 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6802 }
6803
6804 /* Can return -ENOMEM */
6805 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6806 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6807 u64 owner, u64 offset)
6808 {
6809 int ret;
6810 struct btrfs_fs_info *fs_info = root->fs_info;
6811
6812 if (btrfs_test_is_dummy_root(root))
6813 return 0;
6814
6815 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6816
6817 /*
6818 * tree log blocks never actually go into the extent allocation
6819 * tree, just update pinning info and exit early.
6820 */
6821 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6822 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6823 /* unlocks the pinned mutex */
6824 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6825 ret = 0;
6826 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6827 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6828 num_bytes,
6829 parent, root_objectid, (int)owner,
6830 BTRFS_DROP_DELAYED_REF, NULL);
6831 } else {
6832 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6833 num_bytes,
6834 parent, root_objectid, owner,
6835 offset, 0,
6836 BTRFS_DROP_DELAYED_REF, NULL);
6837 }
6838 return ret;
6839 }
6840
6841 /*
6842 * when we wait for progress in the block group caching, its because
6843 * our allocation attempt failed at least once. So, we must sleep
6844 * and let some progress happen before we try again.
6845 *
6846 * This function will sleep at least once waiting for new free space to
6847 * show up, and then it will check the block group free space numbers
6848 * for our min num_bytes. Another option is to have it go ahead
6849 * and look in the rbtree for a free extent of a given size, but this
6850 * is a good start.
6851 *
6852 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6853 * any of the information in this block group.
6854 */
6855 static noinline void
6856 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6857 u64 num_bytes)
6858 {
6859 struct btrfs_caching_control *caching_ctl;
6860
6861 caching_ctl = get_caching_control(cache);
6862 if (!caching_ctl)
6863 return;
6864
6865 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6866 (cache->free_space_ctl->free_space >= num_bytes));
6867
6868 put_caching_control(caching_ctl);
6869 }
6870
6871 static noinline int
6872 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6873 {
6874 struct btrfs_caching_control *caching_ctl;
6875 int ret = 0;
6876
6877 caching_ctl = get_caching_control(cache);
6878 if (!caching_ctl)
6879 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6880
6881 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6882 if (cache->cached == BTRFS_CACHE_ERROR)
6883 ret = -EIO;
6884 put_caching_control(caching_ctl);
6885 return ret;
6886 }
6887
6888 int __get_raid_index(u64 flags)
6889 {
6890 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6891 return BTRFS_RAID_RAID10;
6892 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6893 return BTRFS_RAID_RAID1;
6894 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6895 return BTRFS_RAID_DUP;
6896 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6897 return BTRFS_RAID_RAID0;
6898 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6899 return BTRFS_RAID_RAID5;
6900 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6901 return BTRFS_RAID_RAID6;
6902
6903 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6904 }
6905
6906 int get_block_group_index(struct btrfs_block_group_cache *cache)
6907 {
6908 return __get_raid_index(cache->flags);
6909 }
6910
6911 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6912 [BTRFS_RAID_RAID10] = "raid10",
6913 [BTRFS_RAID_RAID1] = "raid1",
6914 [BTRFS_RAID_DUP] = "dup",
6915 [BTRFS_RAID_RAID0] = "raid0",
6916 [BTRFS_RAID_SINGLE] = "single",
6917 [BTRFS_RAID_RAID5] = "raid5",
6918 [BTRFS_RAID_RAID6] = "raid6",
6919 };
6920
6921 static const char *get_raid_name(enum btrfs_raid_types type)
6922 {
6923 if (type >= BTRFS_NR_RAID_TYPES)
6924 return NULL;
6925
6926 return btrfs_raid_type_names[type];
6927 }
6928
6929 enum btrfs_loop_type {
6930 LOOP_CACHING_NOWAIT = 0,
6931 LOOP_CACHING_WAIT = 1,
6932 LOOP_ALLOC_CHUNK = 2,
6933 LOOP_NO_EMPTY_SIZE = 3,
6934 };
6935
6936 static inline void
6937 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6938 int delalloc)
6939 {
6940 if (delalloc)
6941 down_read(&cache->data_rwsem);
6942 }
6943
6944 static inline void
6945 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6946 int delalloc)
6947 {
6948 btrfs_get_block_group(cache);
6949 if (delalloc)
6950 down_read(&cache->data_rwsem);
6951 }
6952
6953 static struct btrfs_block_group_cache *
6954 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6955 struct btrfs_free_cluster *cluster,
6956 int delalloc)
6957 {
6958 struct btrfs_block_group_cache *used_bg;
6959 bool locked = false;
6960 again:
6961 spin_lock(&cluster->refill_lock);
6962 if (locked) {
6963 if (used_bg == cluster->block_group)
6964 return used_bg;
6965
6966 up_read(&used_bg->data_rwsem);
6967 btrfs_put_block_group(used_bg);
6968 }
6969
6970 used_bg = cluster->block_group;
6971 if (!used_bg)
6972 return NULL;
6973
6974 if (used_bg == block_group)
6975 return used_bg;
6976
6977 btrfs_get_block_group(used_bg);
6978
6979 if (!delalloc)
6980 return used_bg;
6981
6982 if (down_read_trylock(&used_bg->data_rwsem))
6983 return used_bg;
6984
6985 spin_unlock(&cluster->refill_lock);
6986 down_read(&used_bg->data_rwsem);
6987 locked = true;
6988 goto again;
6989 }
6990
6991 static inline void
6992 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6993 int delalloc)
6994 {
6995 if (delalloc)
6996 up_read(&cache->data_rwsem);
6997 btrfs_put_block_group(cache);
6998 }
6999
7000 /*
7001 * walks the btree of allocated extents and find a hole of a given size.
7002 * The key ins is changed to record the hole:
7003 * ins->objectid == start position
7004 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7005 * ins->offset == the size of the hole.
7006 * Any available blocks before search_start are skipped.
7007 *
7008 * If there is no suitable free space, we will record the max size of
7009 * the free space extent currently.
7010 */
7011 static noinline int find_free_extent(struct btrfs_root *orig_root,
7012 u64 num_bytes, u64 empty_size,
7013 u64 hint_byte, struct btrfs_key *ins,
7014 u64 flags, int delalloc)
7015 {
7016 int ret = 0;
7017 struct btrfs_root *root = orig_root->fs_info->extent_root;
7018 struct btrfs_free_cluster *last_ptr = NULL;
7019 struct btrfs_block_group_cache *block_group = NULL;
7020 u64 search_start = 0;
7021 u64 max_extent_size = 0;
7022 u64 empty_cluster = 0;
7023 struct btrfs_space_info *space_info;
7024 int loop = 0;
7025 int index = __get_raid_index(flags);
7026 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7027 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7028 bool failed_cluster_refill = false;
7029 bool failed_alloc = false;
7030 bool use_cluster = true;
7031 bool have_caching_bg = false;
7032 bool orig_have_caching_bg = false;
7033 bool full_search = false;
7034
7035 WARN_ON(num_bytes < root->sectorsize);
7036 ins->type = BTRFS_EXTENT_ITEM_KEY;
7037 ins->objectid = 0;
7038 ins->offset = 0;
7039
7040 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7041
7042 space_info = __find_space_info(root->fs_info, flags);
7043 if (!space_info) {
7044 btrfs_err(root->fs_info, "No space info for %llu", flags);
7045 return -ENOSPC;
7046 }
7047
7048 /*
7049 * If our free space is heavily fragmented we may not be able to make
7050 * big contiguous allocations, so instead of doing the expensive search
7051 * for free space, simply return ENOSPC with our max_extent_size so we
7052 * can go ahead and search for a more manageable chunk.
7053 *
7054 * If our max_extent_size is large enough for our allocation simply
7055 * disable clustering since we will likely not be able to find enough
7056 * space to create a cluster and induce latency trying.
7057 */
7058 if (unlikely(space_info->max_extent_size)) {
7059 spin_lock(&space_info->lock);
7060 if (space_info->max_extent_size &&
7061 num_bytes > space_info->max_extent_size) {
7062 ins->offset = space_info->max_extent_size;
7063 spin_unlock(&space_info->lock);
7064 return -ENOSPC;
7065 } else if (space_info->max_extent_size) {
7066 use_cluster = false;
7067 }
7068 spin_unlock(&space_info->lock);
7069 }
7070
7071 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7072 if (last_ptr) {
7073 spin_lock(&last_ptr->lock);
7074 if (last_ptr->block_group)
7075 hint_byte = last_ptr->window_start;
7076 if (last_ptr->fragmented) {
7077 /*
7078 * We still set window_start so we can keep track of the
7079 * last place we found an allocation to try and save
7080 * some time.
7081 */
7082 hint_byte = last_ptr->window_start;
7083 use_cluster = false;
7084 }
7085 spin_unlock(&last_ptr->lock);
7086 }
7087
7088 search_start = max(search_start, first_logical_byte(root, 0));
7089 search_start = max(search_start, hint_byte);
7090 if (search_start == hint_byte) {
7091 block_group = btrfs_lookup_block_group(root->fs_info,
7092 search_start);
7093 /*
7094 * we don't want to use the block group if it doesn't match our
7095 * allocation bits, or if its not cached.
7096 *
7097 * However if we are re-searching with an ideal block group
7098 * picked out then we don't care that the block group is cached.
7099 */
7100 if (block_group && block_group_bits(block_group, flags) &&
7101 block_group->cached != BTRFS_CACHE_NO) {
7102 down_read(&space_info->groups_sem);
7103 if (list_empty(&block_group->list) ||
7104 block_group->ro) {
7105 /*
7106 * someone is removing this block group,
7107 * we can't jump into the have_block_group
7108 * target because our list pointers are not
7109 * valid
7110 */
7111 btrfs_put_block_group(block_group);
7112 up_read(&space_info->groups_sem);
7113 } else {
7114 index = get_block_group_index(block_group);
7115 btrfs_lock_block_group(block_group, delalloc);
7116 goto have_block_group;
7117 }
7118 } else if (block_group) {
7119 btrfs_put_block_group(block_group);
7120 }
7121 }
7122 search:
7123 have_caching_bg = false;
7124 if (index == 0 || index == __get_raid_index(flags))
7125 full_search = true;
7126 down_read(&space_info->groups_sem);
7127 list_for_each_entry(block_group, &space_info->block_groups[index],
7128 list) {
7129 u64 offset;
7130 int cached;
7131
7132 btrfs_grab_block_group(block_group, delalloc);
7133 search_start = block_group->key.objectid;
7134
7135 /*
7136 * this can happen if we end up cycling through all the
7137 * raid types, but we want to make sure we only allocate
7138 * for the proper type.
7139 */
7140 if (!block_group_bits(block_group, flags)) {
7141 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7142 BTRFS_BLOCK_GROUP_RAID1 |
7143 BTRFS_BLOCK_GROUP_RAID5 |
7144 BTRFS_BLOCK_GROUP_RAID6 |
7145 BTRFS_BLOCK_GROUP_RAID10;
7146
7147 /*
7148 * if they asked for extra copies and this block group
7149 * doesn't provide them, bail. This does allow us to
7150 * fill raid0 from raid1.
7151 */
7152 if ((flags & extra) && !(block_group->flags & extra))
7153 goto loop;
7154 }
7155
7156 have_block_group:
7157 cached = block_group_cache_done(block_group);
7158 if (unlikely(!cached)) {
7159 have_caching_bg = true;
7160 ret = cache_block_group(block_group, 0);
7161 BUG_ON(ret < 0);
7162 ret = 0;
7163 }
7164
7165 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7166 goto loop;
7167 if (unlikely(block_group->ro))
7168 goto loop;
7169
7170 /*
7171 * Ok we want to try and use the cluster allocator, so
7172 * lets look there
7173 */
7174 if (last_ptr && use_cluster) {
7175 struct btrfs_block_group_cache *used_block_group;
7176 unsigned long aligned_cluster;
7177 /*
7178 * the refill lock keeps out other
7179 * people trying to start a new cluster
7180 */
7181 used_block_group = btrfs_lock_cluster(block_group,
7182 last_ptr,
7183 delalloc);
7184 if (!used_block_group)
7185 goto refill_cluster;
7186
7187 if (used_block_group != block_group &&
7188 (used_block_group->ro ||
7189 !block_group_bits(used_block_group, flags)))
7190 goto release_cluster;
7191
7192 offset = btrfs_alloc_from_cluster(used_block_group,
7193 last_ptr,
7194 num_bytes,
7195 used_block_group->key.objectid,
7196 &max_extent_size);
7197 if (offset) {
7198 /* we have a block, we're done */
7199 spin_unlock(&last_ptr->refill_lock);
7200 trace_btrfs_reserve_extent_cluster(root,
7201 used_block_group,
7202 search_start, num_bytes);
7203 if (used_block_group != block_group) {
7204 btrfs_release_block_group(block_group,
7205 delalloc);
7206 block_group = used_block_group;
7207 }
7208 goto checks;
7209 }
7210
7211 WARN_ON(last_ptr->block_group != used_block_group);
7212 release_cluster:
7213 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7214 * set up a new clusters, so lets just skip it
7215 * and let the allocator find whatever block
7216 * it can find. If we reach this point, we
7217 * will have tried the cluster allocator
7218 * plenty of times and not have found
7219 * anything, so we are likely way too
7220 * fragmented for the clustering stuff to find
7221 * anything.
7222 *
7223 * However, if the cluster is taken from the
7224 * current block group, release the cluster
7225 * first, so that we stand a better chance of
7226 * succeeding in the unclustered
7227 * allocation. */
7228 if (loop >= LOOP_NO_EMPTY_SIZE &&
7229 used_block_group != block_group) {
7230 spin_unlock(&last_ptr->refill_lock);
7231 btrfs_release_block_group(used_block_group,
7232 delalloc);
7233 goto unclustered_alloc;
7234 }
7235
7236 /*
7237 * this cluster didn't work out, free it and
7238 * start over
7239 */
7240 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7241
7242 if (used_block_group != block_group)
7243 btrfs_release_block_group(used_block_group,
7244 delalloc);
7245 refill_cluster:
7246 if (loop >= LOOP_NO_EMPTY_SIZE) {
7247 spin_unlock(&last_ptr->refill_lock);
7248 goto unclustered_alloc;
7249 }
7250
7251 aligned_cluster = max_t(unsigned long,
7252 empty_cluster + empty_size,
7253 block_group->full_stripe_len);
7254
7255 /* allocate a cluster in this block group */
7256 ret = btrfs_find_space_cluster(root, block_group,
7257 last_ptr, search_start,
7258 num_bytes,
7259 aligned_cluster);
7260 if (ret == 0) {
7261 /*
7262 * now pull our allocation out of this
7263 * cluster
7264 */
7265 offset = btrfs_alloc_from_cluster(block_group,
7266 last_ptr,
7267 num_bytes,
7268 search_start,
7269 &max_extent_size);
7270 if (offset) {
7271 /* we found one, proceed */
7272 spin_unlock(&last_ptr->refill_lock);
7273 trace_btrfs_reserve_extent_cluster(root,
7274 block_group, search_start,
7275 num_bytes);
7276 goto checks;
7277 }
7278 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7279 && !failed_cluster_refill) {
7280 spin_unlock(&last_ptr->refill_lock);
7281
7282 failed_cluster_refill = true;
7283 wait_block_group_cache_progress(block_group,
7284 num_bytes + empty_cluster + empty_size);
7285 goto have_block_group;
7286 }
7287
7288 /*
7289 * at this point we either didn't find a cluster
7290 * or we weren't able to allocate a block from our
7291 * cluster. Free the cluster we've been trying
7292 * to use, and go to the next block group
7293 */
7294 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7295 spin_unlock(&last_ptr->refill_lock);
7296 goto loop;
7297 }
7298
7299 unclustered_alloc:
7300 /*
7301 * We are doing an unclustered alloc, set the fragmented flag so
7302 * we don't bother trying to setup a cluster again until we get
7303 * more space.
7304 */
7305 if (unlikely(last_ptr)) {
7306 spin_lock(&last_ptr->lock);
7307 last_ptr->fragmented = 1;
7308 spin_unlock(&last_ptr->lock);
7309 }
7310 spin_lock(&block_group->free_space_ctl->tree_lock);
7311 if (cached &&
7312 block_group->free_space_ctl->free_space <
7313 num_bytes + empty_cluster + empty_size) {
7314 if (block_group->free_space_ctl->free_space >
7315 max_extent_size)
7316 max_extent_size =
7317 block_group->free_space_ctl->free_space;
7318 spin_unlock(&block_group->free_space_ctl->tree_lock);
7319 goto loop;
7320 }
7321 spin_unlock(&block_group->free_space_ctl->tree_lock);
7322
7323 offset = btrfs_find_space_for_alloc(block_group, search_start,
7324 num_bytes, empty_size,
7325 &max_extent_size);
7326 /*
7327 * If we didn't find a chunk, and we haven't failed on this
7328 * block group before, and this block group is in the middle of
7329 * caching and we are ok with waiting, then go ahead and wait
7330 * for progress to be made, and set failed_alloc to true.
7331 *
7332 * If failed_alloc is true then we've already waited on this
7333 * block group once and should move on to the next block group.
7334 */
7335 if (!offset && !failed_alloc && !cached &&
7336 loop > LOOP_CACHING_NOWAIT) {
7337 wait_block_group_cache_progress(block_group,
7338 num_bytes + empty_size);
7339 failed_alloc = true;
7340 goto have_block_group;
7341 } else if (!offset) {
7342 goto loop;
7343 }
7344 checks:
7345 search_start = ALIGN(offset, root->stripesize);
7346
7347 /* move on to the next group */
7348 if (search_start + num_bytes >
7349 block_group->key.objectid + block_group->key.offset) {
7350 btrfs_add_free_space(block_group, offset, num_bytes);
7351 goto loop;
7352 }
7353
7354 if (offset < search_start)
7355 btrfs_add_free_space(block_group, offset,
7356 search_start - offset);
7357 BUG_ON(offset > search_start);
7358
7359 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7360 alloc_type, delalloc);
7361 if (ret == -EAGAIN) {
7362 btrfs_add_free_space(block_group, offset, num_bytes);
7363 goto loop;
7364 }
7365
7366 /* we are all good, lets return */
7367 ins->objectid = search_start;
7368 ins->offset = num_bytes;
7369
7370 trace_btrfs_reserve_extent(orig_root, block_group,
7371 search_start, num_bytes);
7372 btrfs_release_block_group(block_group, delalloc);
7373 break;
7374 loop:
7375 failed_cluster_refill = false;
7376 failed_alloc = false;
7377 BUG_ON(index != get_block_group_index(block_group));
7378 btrfs_release_block_group(block_group, delalloc);
7379 }
7380 up_read(&space_info->groups_sem);
7381
7382 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7383 && !orig_have_caching_bg)
7384 orig_have_caching_bg = true;
7385
7386 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7387 goto search;
7388
7389 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7390 goto search;
7391
7392 /*
7393 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7394 * caching kthreads as we move along
7395 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7396 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7397 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7398 * again
7399 */
7400 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7401 index = 0;
7402 if (loop == LOOP_CACHING_NOWAIT) {
7403 /*
7404 * We want to skip the LOOP_CACHING_WAIT step if we
7405 * don't have any unached bgs and we've alrelady done a
7406 * full search through.
7407 */
7408 if (orig_have_caching_bg || !full_search)
7409 loop = LOOP_CACHING_WAIT;
7410 else
7411 loop = LOOP_ALLOC_CHUNK;
7412 } else {
7413 loop++;
7414 }
7415
7416 if (loop == LOOP_ALLOC_CHUNK) {
7417 struct btrfs_trans_handle *trans;
7418 int exist = 0;
7419
7420 trans = current->journal_info;
7421 if (trans)
7422 exist = 1;
7423 else
7424 trans = btrfs_join_transaction(root);
7425
7426 if (IS_ERR(trans)) {
7427 ret = PTR_ERR(trans);
7428 goto out;
7429 }
7430
7431 ret = do_chunk_alloc(trans, root, flags,
7432 CHUNK_ALLOC_FORCE);
7433
7434 /*
7435 * If we can't allocate a new chunk we've already looped
7436 * through at least once, move on to the NO_EMPTY_SIZE
7437 * case.
7438 */
7439 if (ret == -ENOSPC)
7440 loop = LOOP_NO_EMPTY_SIZE;
7441
7442 /*
7443 * Do not bail out on ENOSPC since we
7444 * can do more things.
7445 */
7446 if (ret < 0 && ret != -ENOSPC)
7447 btrfs_abort_transaction(trans,
7448 root, ret);
7449 else
7450 ret = 0;
7451 if (!exist)
7452 btrfs_end_transaction(trans, root);
7453 if (ret)
7454 goto out;
7455 }
7456
7457 if (loop == LOOP_NO_EMPTY_SIZE) {
7458 /*
7459 * Don't loop again if we already have no empty_size and
7460 * no empty_cluster.
7461 */
7462 if (empty_size == 0 &&
7463 empty_cluster == 0) {
7464 ret = -ENOSPC;
7465 goto out;
7466 }
7467 empty_size = 0;
7468 empty_cluster = 0;
7469 }
7470
7471 goto search;
7472 } else if (!ins->objectid) {
7473 ret = -ENOSPC;
7474 } else if (ins->objectid) {
7475 if (!use_cluster && last_ptr) {
7476 spin_lock(&last_ptr->lock);
7477 last_ptr->window_start = ins->objectid;
7478 spin_unlock(&last_ptr->lock);
7479 }
7480 ret = 0;
7481 }
7482 out:
7483 if (ret == -ENOSPC) {
7484 spin_lock(&space_info->lock);
7485 space_info->max_extent_size = max_extent_size;
7486 spin_unlock(&space_info->lock);
7487 ins->offset = max_extent_size;
7488 }
7489 return ret;
7490 }
7491
7492 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7493 int dump_block_groups)
7494 {
7495 struct btrfs_block_group_cache *cache;
7496 int index = 0;
7497
7498 spin_lock(&info->lock);
7499 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7500 info->flags,
7501 info->total_bytes - info->bytes_used - info->bytes_pinned -
7502 info->bytes_reserved - info->bytes_readonly,
7503 (info->full) ? "" : "not ");
7504 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7505 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7506 info->total_bytes, info->bytes_used, info->bytes_pinned,
7507 info->bytes_reserved, info->bytes_may_use,
7508 info->bytes_readonly);
7509 spin_unlock(&info->lock);
7510
7511 if (!dump_block_groups)
7512 return;
7513
7514 down_read(&info->groups_sem);
7515 again:
7516 list_for_each_entry(cache, &info->block_groups[index], list) {
7517 spin_lock(&cache->lock);
7518 printk(KERN_INFO "BTRFS: "
7519 "block group %llu has %llu bytes, "
7520 "%llu used %llu pinned %llu reserved %s\n",
7521 cache->key.objectid, cache->key.offset,
7522 btrfs_block_group_used(&cache->item), cache->pinned,
7523 cache->reserved, cache->ro ? "[readonly]" : "");
7524 btrfs_dump_free_space(cache, bytes);
7525 spin_unlock(&cache->lock);
7526 }
7527 if (++index < BTRFS_NR_RAID_TYPES)
7528 goto again;
7529 up_read(&info->groups_sem);
7530 }
7531
7532 int btrfs_reserve_extent(struct btrfs_root *root,
7533 u64 num_bytes, u64 min_alloc_size,
7534 u64 empty_size, u64 hint_byte,
7535 struct btrfs_key *ins, int is_data, int delalloc)
7536 {
7537 bool final_tried = num_bytes == min_alloc_size;
7538 u64 flags;
7539 int ret;
7540
7541 flags = btrfs_get_alloc_profile(root, is_data);
7542 again:
7543 WARN_ON(num_bytes < root->sectorsize);
7544 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7545 flags, delalloc);
7546
7547 if (ret == -ENOSPC) {
7548 if (!final_tried && ins->offset) {
7549 num_bytes = min(num_bytes >> 1, ins->offset);
7550 num_bytes = round_down(num_bytes, root->sectorsize);
7551 num_bytes = max(num_bytes, min_alloc_size);
7552 if (num_bytes == min_alloc_size)
7553 final_tried = true;
7554 goto again;
7555 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7556 struct btrfs_space_info *sinfo;
7557
7558 sinfo = __find_space_info(root->fs_info, flags);
7559 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7560 flags, num_bytes);
7561 if (sinfo)
7562 dump_space_info(sinfo, num_bytes, 1);
7563 }
7564 }
7565
7566 return ret;
7567 }
7568
7569 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7570 u64 start, u64 len,
7571 int pin, int delalloc)
7572 {
7573 struct btrfs_block_group_cache *cache;
7574 int ret = 0;
7575
7576 cache = btrfs_lookup_block_group(root->fs_info, start);
7577 if (!cache) {
7578 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7579 start);
7580 return -ENOSPC;
7581 }
7582
7583 if (pin)
7584 pin_down_extent(root, cache, start, len, 1);
7585 else {
7586 if (btrfs_test_opt(root, DISCARD))
7587 ret = btrfs_discard_extent(root, start, len, NULL);
7588 btrfs_add_free_space(cache, start, len);
7589 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7590 }
7591
7592 btrfs_put_block_group(cache);
7593
7594 trace_btrfs_reserved_extent_free(root, start, len);
7595
7596 return ret;
7597 }
7598
7599 int btrfs_free_reserved_extent(struct btrfs_root *root,
7600 u64 start, u64 len, int delalloc)
7601 {
7602 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7603 }
7604
7605 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7606 u64 start, u64 len)
7607 {
7608 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7609 }
7610
7611 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7612 struct btrfs_root *root,
7613 u64 parent, u64 root_objectid,
7614 u64 flags, u64 owner, u64 offset,
7615 struct btrfs_key *ins, int ref_mod)
7616 {
7617 int ret;
7618 struct btrfs_fs_info *fs_info = root->fs_info;
7619 struct btrfs_extent_item *extent_item;
7620 struct btrfs_extent_inline_ref *iref;
7621 struct btrfs_path *path;
7622 struct extent_buffer *leaf;
7623 int type;
7624 u32 size;
7625
7626 if (parent > 0)
7627 type = BTRFS_SHARED_DATA_REF_KEY;
7628 else
7629 type = BTRFS_EXTENT_DATA_REF_KEY;
7630
7631 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7632
7633 path = btrfs_alloc_path();
7634 if (!path)
7635 return -ENOMEM;
7636
7637 path->leave_spinning = 1;
7638 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7639 ins, size);
7640 if (ret) {
7641 btrfs_free_path(path);
7642 return ret;
7643 }
7644
7645 leaf = path->nodes[0];
7646 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7647 struct btrfs_extent_item);
7648 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7649 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7650 btrfs_set_extent_flags(leaf, extent_item,
7651 flags | BTRFS_EXTENT_FLAG_DATA);
7652
7653 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7654 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7655 if (parent > 0) {
7656 struct btrfs_shared_data_ref *ref;
7657 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7658 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7659 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7660 } else {
7661 struct btrfs_extent_data_ref *ref;
7662 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7663 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7664 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7665 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7666 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7667 }
7668
7669 btrfs_mark_buffer_dirty(path->nodes[0]);
7670 btrfs_free_path(path);
7671
7672 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7673 if (ret) { /* -ENOENT, logic error */
7674 btrfs_err(fs_info, "update block group failed for %llu %llu",
7675 ins->objectid, ins->offset);
7676 BUG();
7677 }
7678 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7679 return ret;
7680 }
7681
7682 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7683 struct btrfs_root *root,
7684 u64 parent, u64 root_objectid,
7685 u64 flags, struct btrfs_disk_key *key,
7686 int level, struct btrfs_key *ins)
7687 {
7688 int ret;
7689 struct btrfs_fs_info *fs_info = root->fs_info;
7690 struct btrfs_extent_item *extent_item;
7691 struct btrfs_tree_block_info *block_info;
7692 struct btrfs_extent_inline_ref *iref;
7693 struct btrfs_path *path;
7694 struct extent_buffer *leaf;
7695 u32 size = sizeof(*extent_item) + sizeof(*iref);
7696 u64 num_bytes = ins->offset;
7697 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7698 SKINNY_METADATA);
7699
7700 if (!skinny_metadata)
7701 size += sizeof(*block_info);
7702
7703 path = btrfs_alloc_path();
7704 if (!path) {
7705 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7706 root->nodesize);
7707 return -ENOMEM;
7708 }
7709
7710 path->leave_spinning = 1;
7711 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7712 ins, size);
7713 if (ret) {
7714 btrfs_free_path(path);
7715 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7716 root->nodesize);
7717 return ret;
7718 }
7719
7720 leaf = path->nodes[0];
7721 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7722 struct btrfs_extent_item);
7723 btrfs_set_extent_refs(leaf, extent_item, 1);
7724 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7725 btrfs_set_extent_flags(leaf, extent_item,
7726 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7727
7728 if (skinny_metadata) {
7729 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7730 num_bytes = root->nodesize;
7731 } else {
7732 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7733 btrfs_set_tree_block_key(leaf, block_info, key);
7734 btrfs_set_tree_block_level(leaf, block_info, level);
7735 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7736 }
7737
7738 if (parent > 0) {
7739 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7740 btrfs_set_extent_inline_ref_type(leaf, iref,
7741 BTRFS_SHARED_BLOCK_REF_KEY);
7742 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7743 } else {
7744 btrfs_set_extent_inline_ref_type(leaf, iref,
7745 BTRFS_TREE_BLOCK_REF_KEY);
7746 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7747 }
7748
7749 btrfs_mark_buffer_dirty(leaf);
7750 btrfs_free_path(path);
7751
7752 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7753 1);
7754 if (ret) { /* -ENOENT, logic error */
7755 btrfs_err(fs_info, "update block group failed for %llu %llu",
7756 ins->objectid, ins->offset);
7757 BUG();
7758 }
7759
7760 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7761 return ret;
7762 }
7763
7764 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7765 struct btrfs_root *root,
7766 u64 root_objectid, u64 owner,
7767 u64 offset, u64 ram_bytes,
7768 struct btrfs_key *ins)
7769 {
7770 int ret;
7771
7772 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7773
7774 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7775 ins->offset, 0,
7776 root_objectid, owner, offset,
7777 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7778 NULL);
7779 return ret;
7780 }
7781
7782 /*
7783 * this is used by the tree logging recovery code. It records that
7784 * an extent has been allocated and makes sure to clear the free
7785 * space cache bits as well
7786 */
7787 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7788 struct btrfs_root *root,
7789 u64 root_objectid, u64 owner, u64 offset,
7790 struct btrfs_key *ins)
7791 {
7792 int ret;
7793 struct btrfs_block_group_cache *block_group;
7794
7795 /*
7796 * Mixed block groups will exclude before processing the log so we only
7797 * need to do the exlude dance if this fs isn't mixed.
7798 */
7799 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7800 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7801 if (ret)
7802 return ret;
7803 }
7804
7805 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7806 if (!block_group)
7807 return -EINVAL;
7808
7809 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7810 RESERVE_ALLOC_NO_ACCOUNT, 0);
7811 BUG_ON(ret); /* logic error */
7812 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7813 0, owner, offset, ins, 1);
7814 btrfs_put_block_group(block_group);
7815 return ret;
7816 }
7817
7818 static struct extent_buffer *
7819 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7820 u64 bytenr, int level)
7821 {
7822 struct extent_buffer *buf;
7823
7824 buf = btrfs_find_create_tree_block(root, bytenr);
7825 if (!buf)
7826 return ERR_PTR(-ENOMEM);
7827 btrfs_set_header_generation(buf, trans->transid);
7828 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7829 btrfs_tree_lock(buf);
7830 clean_tree_block(trans, root->fs_info, buf);
7831 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7832
7833 btrfs_set_lock_blocking(buf);
7834 btrfs_set_buffer_uptodate(buf);
7835
7836 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7837 buf->log_index = root->log_transid % 2;
7838 /*
7839 * we allow two log transactions at a time, use different
7840 * EXENT bit to differentiate dirty pages.
7841 */
7842 if (buf->log_index == 0)
7843 set_extent_dirty(&root->dirty_log_pages, buf->start,
7844 buf->start + buf->len - 1, GFP_NOFS);
7845 else
7846 set_extent_new(&root->dirty_log_pages, buf->start,
7847 buf->start + buf->len - 1, GFP_NOFS);
7848 } else {
7849 buf->log_index = -1;
7850 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7851 buf->start + buf->len - 1, GFP_NOFS);
7852 }
7853 trans->blocks_used++;
7854 /* this returns a buffer locked for blocking */
7855 return buf;
7856 }
7857
7858 static struct btrfs_block_rsv *
7859 use_block_rsv(struct btrfs_trans_handle *trans,
7860 struct btrfs_root *root, u32 blocksize)
7861 {
7862 struct btrfs_block_rsv *block_rsv;
7863 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7864 int ret;
7865 bool global_updated = false;
7866
7867 block_rsv = get_block_rsv(trans, root);
7868
7869 if (unlikely(block_rsv->size == 0))
7870 goto try_reserve;
7871 again:
7872 ret = block_rsv_use_bytes(block_rsv, blocksize);
7873 if (!ret)
7874 return block_rsv;
7875
7876 if (block_rsv->failfast)
7877 return ERR_PTR(ret);
7878
7879 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7880 global_updated = true;
7881 update_global_block_rsv(root->fs_info);
7882 goto again;
7883 }
7884
7885 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7886 static DEFINE_RATELIMIT_STATE(_rs,
7887 DEFAULT_RATELIMIT_INTERVAL * 10,
7888 /*DEFAULT_RATELIMIT_BURST*/ 1);
7889 if (__ratelimit(&_rs))
7890 WARN(1, KERN_DEBUG
7891 "BTRFS: block rsv returned %d\n", ret);
7892 }
7893 try_reserve:
7894 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7895 BTRFS_RESERVE_NO_FLUSH);
7896 if (!ret)
7897 return block_rsv;
7898 /*
7899 * If we couldn't reserve metadata bytes try and use some from
7900 * the global reserve if its space type is the same as the global
7901 * reservation.
7902 */
7903 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7904 block_rsv->space_info == global_rsv->space_info) {
7905 ret = block_rsv_use_bytes(global_rsv, blocksize);
7906 if (!ret)
7907 return global_rsv;
7908 }
7909 return ERR_PTR(ret);
7910 }
7911
7912 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7913 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7914 {
7915 block_rsv_add_bytes(block_rsv, blocksize, 0);
7916 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7917 }
7918
7919 /*
7920 * finds a free extent and does all the dirty work required for allocation
7921 * returns the tree buffer or an ERR_PTR on error.
7922 */
7923 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7924 struct btrfs_root *root,
7925 u64 parent, u64 root_objectid,
7926 struct btrfs_disk_key *key, int level,
7927 u64 hint, u64 empty_size)
7928 {
7929 struct btrfs_key ins;
7930 struct btrfs_block_rsv *block_rsv;
7931 struct extent_buffer *buf;
7932 struct btrfs_delayed_extent_op *extent_op;
7933 u64 flags = 0;
7934 int ret;
7935 u32 blocksize = root->nodesize;
7936 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7937 SKINNY_METADATA);
7938
7939 if (btrfs_test_is_dummy_root(root)) {
7940 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7941 level);
7942 if (!IS_ERR(buf))
7943 root->alloc_bytenr += blocksize;
7944 return buf;
7945 }
7946
7947 block_rsv = use_block_rsv(trans, root, blocksize);
7948 if (IS_ERR(block_rsv))
7949 return ERR_CAST(block_rsv);
7950
7951 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7952 empty_size, hint, &ins, 0, 0);
7953 if (ret)
7954 goto out_unuse;
7955
7956 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7957 if (IS_ERR(buf)) {
7958 ret = PTR_ERR(buf);
7959 goto out_free_reserved;
7960 }
7961
7962 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7963 if (parent == 0)
7964 parent = ins.objectid;
7965 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7966 } else
7967 BUG_ON(parent > 0);
7968
7969 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7970 extent_op = btrfs_alloc_delayed_extent_op();
7971 if (!extent_op) {
7972 ret = -ENOMEM;
7973 goto out_free_buf;
7974 }
7975 if (key)
7976 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7977 else
7978 memset(&extent_op->key, 0, sizeof(extent_op->key));
7979 extent_op->flags_to_set = flags;
7980 if (skinny_metadata)
7981 extent_op->update_key = 0;
7982 else
7983 extent_op->update_key = 1;
7984 extent_op->update_flags = 1;
7985 extent_op->is_data = 0;
7986 extent_op->level = level;
7987
7988 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7989 ins.objectid, ins.offset,
7990 parent, root_objectid, level,
7991 BTRFS_ADD_DELAYED_EXTENT,
7992 extent_op);
7993 if (ret)
7994 goto out_free_delayed;
7995 }
7996 return buf;
7997
7998 out_free_delayed:
7999 btrfs_free_delayed_extent_op(extent_op);
8000 out_free_buf:
8001 free_extent_buffer(buf);
8002 out_free_reserved:
8003 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8004 out_unuse:
8005 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8006 return ERR_PTR(ret);
8007 }
8008
8009 struct walk_control {
8010 u64 refs[BTRFS_MAX_LEVEL];
8011 u64 flags[BTRFS_MAX_LEVEL];
8012 struct btrfs_key update_progress;
8013 int stage;
8014 int level;
8015 int shared_level;
8016 int update_ref;
8017 int keep_locks;
8018 int reada_slot;
8019 int reada_count;
8020 int for_reloc;
8021 };
8022
8023 #define DROP_REFERENCE 1
8024 #define UPDATE_BACKREF 2
8025
8026 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8027 struct btrfs_root *root,
8028 struct walk_control *wc,
8029 struct btrfs_path *path)
8030 {
8031 u64 bytenr;
8032 u64 generation;
8033 u64 refs;
8034 u64 flags;
8035 u32 nritems;
8036 u32 blocksize;
8037 struct btrfs_key key;
8038 struct extent_buffer *eb;
8039 int ret;
8040 int slot;
8041 int nread = 0;
8042
8043 if (path->slots[wc->level] < wc->reada_slot) {
8044 wc->reada_count = wc->reada_count * 2 / 3;
8045 wc->reada_count = max(wc->reada_count, 2);
8046 } else {
8047 wc->reada_count = wc->reada_count * 3 / 2;
8048 wc->reada_count = min_t(int, wc->reada_count,
8049 BTRFS_NODEPTRS_PER_BLOCK(root));
8050 }
8051
8052 eb = path->nodes[wc->level];
8053 nritems = btrfs_header_nritems(eb);
8054 blocksize = root->nodesize;
8055
8056 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8057 if (nread >= wc->reada_count)
8058 break;
8059
8060 cond_resched();
8061 bytenr = btrfs_node_blockptr(eb, slot);
8062 generation = btrfs_node_ptr_generation(eb, slot);
8063
8064 if (slot == path->slots[wc->level])
8065 goto reada;
8066
8067 if (wc->stage == UPDATE_BACKREF &&
8068 generation <= root->root_key.offset)
8069 continue;
8070
8071 /* We don't lock the tree block, it's OK to be racy here */
8072 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8073 wc->level - 1, 1, &refs,
8074 &flags);
8075 /* We don't care about errors in readahead. */
8076 if (ret < 0)
8077 continue;
8078 BUG_ON(refs == 0);
8079
8080 if (wc->stage == DROP_REFERENCE) {
8081 if (refs == 1)
8082 goto reada;
8083
8084 if (wc->level == 1 &&
8085 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8086 continue;
8087 if (!wc->update_ref ||
8088 generation <= root->root_key.offset)
8089 continue;
8090 btrfs_node_key_to_cpu(eb, &key, slot);
8091 ret = btrfs_comp_cpu_keys(&key,
8092 &wc->update_progress);
8093 if (ret < 0)
8094 continue;
8095 } else {
8096 if (wc->level == 1 &&
8097 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8098 continue;
8099 }
8100 reada:
8101 readahead_tree_block(root, bytenr);
8102 nread++;
8103 }
8104 wc->reada_slot = slot;
8105 }
8106
8107 /*
8108 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
8109 * for later qgroup accounting.
8110 *
8111 * Current, this function does nothing.
8112 */
8113 static int account_leaf_items(struct btrfs_trans_handle *trans,
8114 struct btrfs_root *root,
8115 struct extent_buffer *eb)
8116 {
8117 int nr = btrfs_header_nritems(eb);
8118 int i, extent_type;
8119 struct btrfs_key key;
8120 struct btrfs_file_extent_item *fi;
8121 u64 bytenr, num_bytes;
8122
8123 for (i = 0; i < nr; i++) {
8124 btrfs_item_key_to_cpu(eb, &key, i);
8125
8126 if (key.type != BTRFS_EXTENT_DATA_KEY)
8127 continue;
8128
8129 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8130 /* filter out non qgroup-accountable extents */
8131 extent_type = btrfs_file_extent_type(eb, fi);
8132
8133 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8134 continue;
8135
8136 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8137 if (!bytenr)
8138 continue;
8139
8140 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8141 }
8142 return 0;
8143 }
8144
8145 /*
8146 * Walk up the tree from the bottom, freeing leaves and any interior
8147 * nodes which have had all slots visited. If a node (leaf or
8148 * interior) is freed, the node above it will have it's slot
8149 * incremented. The root node will never be freed.
8150 *
8151 * At the end of this function, we should have a path which has all
8152 * slots incremented to the next position for a search. If we need to
8153 * read a new node it will be NULL and the node above it will have the
8154 * correct slot selected for a later read.
8155 *
8156 * If we increment the root nodes slot counter past the number of
8157 * elements, 1 is returned to signal completion of the search.
8158 */
8159 static int adjust_slots_upwards(struct btrfs_root *root,
8160 struct btrfs_path *path, int root_level)
8161 {
8162 int level = 0;
8163 int nr, slot;
8164 struct extent_buffer *eb;
8165
8166 if (root_level == 0)
8167 return 1;
8168
8169 while (level <= root_level) {
8170 eb = path->nodes[level];
8171 nr = btrfs_header_nritems(eb);
8172 path->slots[level]++;
8173 slot = path->slots[level];
8174 if (slot >= nr || level == 0) {
8175 /*
8176 * Don't free the root - we will detect this
8177 * condition after our loop and return a
8178 * positive value for caller to stop walking the tree.
8179 */
8180 if (level != root_level) {
8181 btrfs_tree_unlock_rw(eb, path->locks[level]);
8182 path->locks[level] = 0;
8183
8184 free_extent_buffer(eb);
8185 path->nodes[level] = NULL;
8186 path->slots[level] = 0;
8187 }
8188 } else {
8189 /*
8190 * We have a valid slot to walk back down
8191 * from. Stop here so caller can process these
8192 * new nodes.
8193 */
8194 break;
8195 }
8196
8197 level++;
8198 }
8199
8200 eb = path->nodes[root_level];
8201 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8202 return 1;
8203
8204 return 0;
8205 }
8206
8207 /*
8208 * root_eb is the subtree root and is locked before this function is called.
8209 * TODO: Modify this function to mark all (including complete shared node)
8210 * to dirty_extent_root to allow it get accounted in qgroup.
8211 */
8212 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8213 struct btrfs_root *root,
8214 struct extent_buffer *root_eb,
8215 u64 root_gen,
8216 int root_level)
8217 {
8218 int ret = 0;
8219 int level;
8220 struct extent_buffer *eb = root_eb;
8221 struct btrfs_path *path = NULL;
8222
8223 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8224 BUG_ON(root_eb == NULL);
8225
8226 if (!root->fs_info->quota_enabled)
8227 return 0;
8228
8229 if (!extent_buffer_uptodate(root_eb)) {
8230 ret = btrfs_read_buffer(root_eb, root_gen);
8231 if (ret)
8232 goto out;
8233 }
8234
8235 if (root_level == 0) {
8236 ret = account_leaf_items(trans, root, root_eb);
8237 goto out;
8238 }
8239
8240 path = btrfs_alloc_path();
8241 if (!path)
8242 return -ENOMEM;
8243
8244 /*
8245 * Walk down the tree. Missing extent blocks are filled in as
8246 * we go. Metadata is accounted every time we read a new
8247 * extent block.
8248 *
8249 * When we reach a leaf, we account for file extent items in it,
8250 * walk back up the tree (adjusting slot pointers as we go)
8251 * and restart the search process.
8252 */
8253 extent_buffer_get(root_eb); /* For path */
8254 path->nodes[root_level] = root_eb;
8255 path->slots[root_level] = 0;
8256 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8257 walk_down:
8258 level = root_level;
8259 while (level >= 0) {
8260 if (path->nodes[level] == NULL) {
8261 int parent_slot;
8262 u64 child_gen;
8263 u64 child_bytenr;
8264
8265 /* We need to get child blockptr/gen from
8266 * parent before we can read it. */
8267 eb = path->nodes[level + 1];
8268 parent_slot = path->slots[level + 1];
8269 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8270 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8271
8272 eb = read_tree_block(root, child_bytenr, child_gen);
8273 if (IS_ERR(eb)) {
8274 ret = PTR_ERR(eb);
8275 goto out;
8276 } else if (!extent_buffer_uptodate(eb)) {
8277 free_extent_buffer(eb);
8278 ret = -EIO;
8279 goto out;
8280 }
8281
8282 path->nodes[level] = eb;
8283 path->slots[level] = 0;
8284
8285 btrfs_tree_read_lock(eb);
8286 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8287 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8288 }
8289
8290 if (level == 0) {
8291 ret = account_leaf_items(trans, root, path->nodes[level]);
8292 if (ret)
8293 goto out;
8294
8295 /* Nonzero return here means we completed our search */
8296 ret = adjust_slots_upwards(root, path, root_level);
8297 if (ret)
8298 break;
8299
8300 /* Restart search with new slots */
8301 goto walk_down;
8302 }
8303
8304 level--;
8305 }
8306
8307 ret = 0;
8308 out:
8309 btrfs_free_path(path);
8310
8311 return ret;
8312 }
8313
8314 /*
8315 * helper to process tree block while walking down the tree.
8316 *
8317 * when wc->stage == UPDATE_BACKREF, this function updates
8318 * back refs for pointers in the block.
8319 *
8320 * NOTE: return value 1 means we should stop walking down.
8321 */
8322 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8323 struct btrfs_root *root,
8324 struct btrfs_path *path,
8325 struct walk_control *wc, int lookup_info)
8326 {
8327 int level = wc->level;
8328 struct extent_buffer *eb = path->nodes[level];
8329 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8330 int ret;
8331
8332 if (wc->stage == UPDATE_BACKREF &&
8333 btrfs_header_owner(eb) != root->root_key.objectid)
8334 return 1;
8335
8336 /*
8337 * when reference count of tree block is 1, it won't increase
8338 * again. once full backref flag is set, we never clear it.
8339 */
8340 if (lookup_info &&
8341 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8342 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8343 BUG_ON(!path->locks[level]);
8344 ret = btrfs_lookup_extent_info(trans, root,
8345 eb->start, level, 1,
8346 &wc->refs[level],
8347 &wc->flags[level]);
8348 BUG_ON(ret == -ENOMEM);
8349 if (ret)
8350 return ret;
8351 BUG_ON(wc->refs[level] == 0);
8352 }
8353
8354 if (wc->stage == DROP_REFERENCE) {
8355 if (wc->refs[level] > 1)
8356 return 1;
8357
8358 if (path->locks[level] && !wc->keep_locks) {
8359 btrfs_tree_unlock_rw(eb, path->locks[level]);
8360 path->locks[level] = 0;
8361 }
8362 return 0;
8363 }
8364
8365 /* wc->stage == UPDATE_BACKREF */
8366 if (!(wc->flags[level] & flag)) {
8367 BUG_ON(!path->locks[level]);
8368 ret = btrfs_inc_ref(trans, root, eb, 1);
8369 BUG_ON(ret); /* -ENOMEM */
8370 ret = btrfs_dec_ref(trans, root, eb, 0);
8371 BUG_ON(ret); /* -ENOMEM */
8372 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8373 eb->len, flag,
8374 btrfs_header_level(eb), 0);
8375 BUG_ON(ret); /* -ENOMEM */
8376 wc->flags[level] |= flag;
8377 }
8378
8379 /*
8380 * the block is shared by multiple trees, so it's not good to
8381 * keep the tree lock
8382 */
8383 if (path->locks[level] && level > 0) {
8384 btrfs_tree_unlock_rw(eb, path->locks[level]);
8385 path->locks[level] = 0;
8386 }
8387 return 0;
8388 }
8389
8390 /*
8391 * helper to process tree block pointer.
8392 *
8393 * when wc->stage == DROP_REFERENCE, this function checks
8394 * reference count of the block pointed to. if the block
8395 * is shared and we need update back refs for the subtree
8396 * rooted at the block, this function changes wc->stage to
8397 * UPDATE_BACKREF. if the block is shared and there is no
8398 * need to update back, this function drops the reference
8399 * to the block.
8400 *
8401 * NOTE: return value 1 means we should stop walking down.
8402 */
8403 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8404 struct btrfs_root *root,
8405 struct btrfs_path *path,
8406 struct walk_control *wc, int *lookup_info)
8407 {
8408 u64 bytenr;
8409 u64 generation;
8410 u64 parent;
8411 u32 blocksize;
8412 struct btrfs_key key;
8413 struct extent_buffer *next;
8414 int level = wc->level;
8415 int reada = 0;
8416 int ret = 0;
8417 bool need_account = false;
8418
8419 generation = btrfs_node_ptr_generation(path->nodes[level],
8420 path->slots[level]);
8421 /*
8422 * if the lower level block was created before the snapshot
8423 * was created, we know there is no need to update back refs
8424 * for the subtree
8425 */
8426 if (wc->stage == UPDATE_BACKREF &&
8427 generation <= root->root_key.offset) {
8428 *lookup_info = 1;
8429 return 1;
8430 }
8431
8432 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8433 blocksize = root->nodesize;
8434
8435 next = btrfs_find_tree_block(root->fs_info, bytenr);
8436 if (!next) {
8437 next = btrfs_find_create_tree_block(root, bytenr);
8438 if (!next)
8439 return -ENOMEM;
8440 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8441 level - 1);
8442 reada = 1;
8443 }
8444 btrfs_tree_lock(next);
8445 btrfs_set_lock_blocking(next);
8446
8447 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8448 &wc->refs[level - 1],
8449 &wc->flags[level - 1]);
8450 if (ret < 0) {
8451 btrfs_tree_unlock(next);
8452 return ret;
8453 }
8454
8455 if (unlikely(wc->refs[level - 1] == 0)) {
8456 btrfs_err(root->fs_info, "Missing references.");
8457 BUG();
8458 }
8459 *lookup_info = 0;
8460
8461 if (wc->stage == DROP_REFERENCE) {
8462 if (wc->refs[level - 1] > 1) {
8463 need_account = true;
8464 if (level == 1 &&
8465 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8466 goto skip;
8467
8468 if (!wc->update_ref ||
8469 generation <= root->root_key.offset)
8470 goto skip;
8471
8472 btrfs_node_key_to_cpu(path->nodes[level], &key,
8473 path->slots[level]);
8474 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8475 if (ret < 0)
8476 goto skip;
8477
8478 wc->stage = UPDATE_BACKREF;
8479 wc->shared_level = level - 1;
8480 }
8481 } else {
8482 if (level == 1 &&
8483 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8484 goto skip;
8485 }
8486
8487 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8488 btrfs_tree_unlock(next);
8489 free_extent_buffer(next);
8490 next = NULL;
8491 *lookup_info = 1;
8492 }
8493
8494 if (!next) {
8495 if (reada && level == 1)
8496 reada_walk_down(trans, root, wc, path);
8497 next = read_tree_block(root, bytenr, generation);
8498 if (IS_ERR(next)) {
8499 return PTR_ERR(next);
8500 } else if (!extent_buffer_uptodate(next)) {
8501 free_extent_buffer(next);
8502 return -EIO;
8503 }
8504 btrfs_tree_lock(next);
8505 btrfs_set_lock_blocking(next);
8506 }
8507
8508 level--;
8509 BUG_ON(level != btrfs_header_level(next));
8510 path->nodes[level] = next;
8511 path->slots[level] = 0;
8512 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8513 wc->level = level;
8514 if (wc->level == 1)
8515 wc->reada_slot = 0;
8516 return 0;
8517 skip:
8518 wc->refs[level - 1] = 0;
8519 wc->flags[level - 1] = 0;
8520 if (wc->stage == DROP_REFERENCE) {
8521 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8522 parent = path->nodes[level]->start;
8523 } else {
8524 BUG_ON(root->root_key.objectid !=
8525 btrfs_header_owner(path->nodes[level]));
8526 parent = 0;
8527 }
8528
8529 if (need_account) {
8530 ret = account_shared_subtree(trans, root, next,
8531 generation, level - 1);
8532 if (ret) {
8533 btrfs_err_rl(root->fs_info,
8534 "Error "
8535 "%d accounting shared subtree. Quota "
8536 "is out of sync, rescan required.",
8537 ret);
8538 }
8539 }
8540 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8541 root->root_key.objectid, level - 1, 0);
8542 BUG_ON(ret); /* -ENOMEM */
8543 }
8544 btrfs_tree_unlock(next);
8545 free_extent_buffer(next);
8546 *lookup_info = 1;
8547 return 1;
8548 }
8549
8550 /*
8551 * helper to process tree block while walking up the tree.
8552 *
8553 * when wc->stage == DROP_REFERENCE, this function drops
8554 * reference count on the block.
8555 *
8556 * when wc->stage == UPDATE_BACKREF, this function changes
8557 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8558 * to UPDATE_BACKREF previously while processing the block.
8559 *
8560 * NOTE: return value 1 means we should stop walking up.
8561 */
8562 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8563 struct btrfs_root *root,
8564 struct btrfs_path *path,
8565 struct walk_control *wc)
8566 {
8567 int ret;
8568 int level = wc->level;
8569 struct extent_buffer *eb = path->nodes[level];
8570 u64 parent = 0;
8571
8572 if (wc->stage == UPDATE_BACKREF) {
8573 BUG_ON(wc->shared_level < level);
8574 if (level < wc->shared_level)
8575 goto out;
8576
8577 ret = find_next_key(path, level + 1, &wc->update_progress);
8578 if (ret > 0)
8579 wc->update_ref = 0;
8580
8581 wc->stage = DROP_REFERENCE;
8582 wc->shared_level = -1;
8583 path->slots[level] = 0;
8584
8585 /*
8586 * check reference count again if the block isn't locked.
8587 * we should start walking down the tree again if reference
8588 * count is one.
8589 */
8590 if (!path->locks[level]) {
8591 BUG_ON(level == 0);
8592 btrfs_tree_lock(eb);
8593 btrfs_set_lock_blocking(eb);
8594 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8595
8596 ret = btrfs_lookup_extent_info(trans, root,
8597 eb->start, level, 1,
8598 &wc->refs[level],
8599 &wc->flags[level]);
8600 if (ret < 0) {
8601 btrfs_tree_unlock_rw(eb, path->locks[level]);
8602 path->locks[level] = 0;
8603 return ret;
8604 }
8605 BUG_ON(wc->refs[level] == 0);
8606 if (wc->refs[level] == 1) {
8607 btrfs_tree_unlock_rw(eb, path->locks[level]);
8608 path->locks[level] = 0;
8609 return 1;
8610 }
8611 }
8612 }
8613
8614 /* wc->stage == DROP_REFERENCE */
8615 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8616
8617 if (wc->refs[level] == 1) {
8618 if (level == 0) {
8619 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8620 ret = btrfs_dec_ref(trans, root, eb, 1);
8621 else
8622 ret = btrfs_dec_ref(trans, root, eb, 0);
8623 BUG_ON(ret); /* -ENOMEM */
8624 ret = account_leaf_items(trans, root, eb);
8625 if (ret) {
8626 btrfs_err_rl(root->fs_info,
8627 "error "
8628 "%d accounting leaf items. Quota "
8629 "is out of sync, rescan required.",
8630 ret);
8631 }
8632 }
8633 /* make block locked assertion in clean_tree_block happy */
8634 if (!path->locks[level] &&
8635 btrfs_header_generation(eb) == trans->transid) {
8636 btrfs_tree_lock(eb);
8637 btrfs_set_lock_blocking(eb);
8638 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8639 }
8640 clean_tree_block(trans, root->fs_info, eb);
8641 }
8642
8643 if (eb == root->node) {
8644 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8645 parent = eb->start;
8646 else
8647 BUG_ON(root->root_key.objectid !=
8648 btrfs_header_owner(eb));
8649 } else {
8650 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8651 parent = path->nodes[level + 1]->start;
8652 else
8653 BUG_ON(root->root_key.objectid !=
8654 btrfs_header_owner(path->nodes[level + 1]));
8655 }
8656
8657 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8658 out:
8659 wc->refs[level] = 0;
8660 wc->flags[level] = 0;
8661 return 0;
8662 }
8663
8664 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8665 struct btrfs_root *root,
8666 struct btrfs_path *path,
8667 struct walk_control *wc)
8668 {
8669 int level = wc->level;
8670 int lookup_info = 1;
8671 int ret;
8672
8673 while (level >= 0) {
8674 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8675 if (ret > 0)
8676 break;
8677
8678 if (level == 0)
8679 break;
8680
8681 if (path->slots[level] >=
8682 btrfs_header_nritems(path->nodes[level]))
8683 break;
8684
8685 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8686 if (ret > 0) {
8687 path->slots[level]++;
8688 continue;
8689 } else if (ret < 0)
8690 return ret;
8691 level = wc->level;
8692 }
8693 return 0;
8694 }
8695
8696 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8697 struct btrfs_root *root,
8698 struct btrfs_path *path,
8699 struct walk_control *wc, int max_level)
8700 {
8701 int level = wc->level;
8702 int ret;
8703
8704 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8705 while (level < max_level && path->nodes[level]) {
8706 wc->level = level;
8707 if (path->slots[level] + 1 <
8708 btrfs_header_nritems(path->nodes[level])) {
8709 path->slots[level]++;
8710 return 0;
8711 } else {
8712 ret = walk_up_proc(trans, root, path, wc);
8713 if (ret > 0)
8714 return 0;
8715
8716 if (path->locks[level]) {
8717 btrfs_tree_unlock_rw(path->nodes[level],
8718 path->locks[level]);
8719 path->locks[level] = 0;
8720 }
8721 free_extent_buffer(path->nodes[level]);
8722 path->nodes[level] = NULL;
8723 level++;
8724 }
8725 }
8726 return 1;
8727 }
8728
8729 /*
8730 * drop a subvolume tree.
8731 *
8732 * this function traverses the tree freeing any blocks that only
8733 * referenced by the tree.
8734 *
8735 * when a shared tree block is found. this function decreases its
8736 * reference count by one. if update_ref is true, this function
8737 * also make sure backrefs for the shared block and all lower level
8738 * blocks are properly updated.
8739 *
8740 * If called with for_reloc == 0, may exit early with -EAGAIN
8741 */
8742 int btrfs_drop_snapshot(struct btrfs_root *root,
8743 struct btrfs_block_rsv *block_rsv, int update_ref,
8744 int for_reloc)
8745 {
8746 struct btrfs_path *path;
8747 struct btrfs_trans_handle *trans;
8748 struct btrfs_root *tree_root = root->fs_info->tree_root;
8749 struct btrfs_root_item *root_item = &root->root_item;
8750 struct walk_control *wc;
8751 struct btrfs_key key;
8752 int err = 0;
8753 int ret;
8754 int level;
8755 bool root_dropped = false;
8756
8757 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8758
8759 path = btrfs_alloc_path();
8760 if (!path) {
8761 err = -ENOMEM;
8762 goto out;
8763 }
8764
8765 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8766 if (!wc) {
8767 btrfs_free_path(path);
8768 err = -ENOMEM;
8769 goto out;
8770 }
8771
8772 trans = btrfs_start_transaction(tree_root, 0);
8773 if (IS_ERR(trans)) {
8774 err = PTR_ERR(trans);
8775 goto out_free;
8776 }
8777
8778 if (block_rsv)
8779 trans->block_rsv = block_rsv;
8780
8781 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8782 level = btrfs_header_level(root->node);
8783 path->nodes[level] = btrfs_lock_root_node(root);
8784 btrfs_set_lock_blocking(path->nodes[level]);
8785 path->slots[level] = 0;
8786 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8787 memset(&wc->update_progress, 0,
8788 sizeof(wc->update_progress));
8789 } else {
8790 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8791 memcpy(&wc->update_progress, &key,
8792 sizeof(wc->update_progress));
8793
8794 level = root_item->drop_level;
8795 BUG_ON(level == 0);
8796 path->lowest_level = level;
8797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8798 path->lowest_level = 0;
8799 if (ret < 0) {
8800 err = ret;
8801 goto out_end_trans;
8802 }
8803 WARN_ON(ret > 0);
8804
8805 /*
8806 * unlock our path, this is safe because only this
8807 * function is allowed to delete this snapshot
8808 */
8809 btrfs_unlock_up_safe(path, 0);
8810
8811 level = btrfs_header_level(root->node);
8812 while (1) {
8813 btrfs_tree_lock(path->nodes[level]);
8814 btrfs_set_lock_blocking(path->nodes[level]);
8815 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8816
8817 ret = btrfs_lookup_extent_info(trans, root,
8818 path->nodes[level]->start,
8819 level, 1, &wc->refs[level],
8820 &wc->flags[level]);
8821 if (ret < 0) {
8822 err = ret;
8823 goto out_end_trans;
8824 }
8825 BUG_ON(wc->refs[level] == 0);
8826
8827 if (level == root_item->drop_level)
8828 break;
8829
8830 btrfs_tree_unlock(path->nodes[level]);
8831 path->locks[level] = 0;
8832 WARN_ON(wc->refs[level] != 1);
8833 level--;
8834 }
8835 }
8836
8837 wc->level = level;
8838 wc->shared_level = -1;
8839 wc->stage = DROP_REFERENCE;
8840 wc->update_ref = update_ref;
8841 wc->keep_locks = 0;
8842 wc->for_reloc = for_reloc;
8843 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8844
8845 while (1) {
8846
8847 ret = walk_down_tree(trans, root, path, wc);
8848 if (ret < 0) {
8849 err = ret;
8850 break;
8851 }
8852
8853 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8854 if (ret < 0) {
8855 err = ret;
8856 break;
8857 }
8858
8859 if (ret > 0) {
8860 BUG_ON(wc->stage != DROP_REFERENCE);
8861 break;
8862 }
8863
8864 if (wc->stage == DROP_REFERENCE) {
8865 level = wc->level;
8866 btrfs_node_key(path->nodes[level],
8867 &root_item->drop_progress,
8868 path->slots[level]);
8869 root_item->drop_level = level;
8870 }
8871
8872 BUG_ON(wc->level == 0);
8873 if (btrfs_should_end_transaction(trans, tree_root) ||
8874 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8875 ret = btrfs_update_root(trans, tree_root,
8876 &root->root_key,
8877 root_item);
8878 if (ret) {
8879 btrfs_abort_transaction(trans, tree_root, ret);
8880 err = ret;
8881 goto out_end_trans;
8882 }
8883
8884 btrfs_end_transaction_throttle(trans, tree_root);
8885 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8886 pr_debug("BTRFS: drop snapshot early exit\n");
8887 err = -EAGAIN;
8888 goto out_free;
8889 }
8890
8891 trans = btrfs_start_transaction(tree_root, 0);
8892 if (IS_ERR(trans)) {
8893 err = PTR_ERR(trans);
8894 goto out_free;
8895 }
8896 if (block_rsv)
8897 trans->block_rsv = block_rsv;
8898 }
8899 }
8900 btrfs_release_path(path);
8901 if (err)
8902 goto out_end_trans;
8903
8904 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8905 if (ret) {
8906 btrfs_abort_transaction(trans, tree_root, ret);
8907 goto out_end_trans;
8908 }
8909
8910 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8911 ret = btrfs_find_root(tree_root, &root->root_key, path,
8912 NULL, NULL);
8913 if (ret < 0) {
8914 btrfs_abort_transaction(trans, tree_root, ret);
8915 err = ret;
8916 goto out_end_trans;
8917 } else if (ret > 0) {
8918 /* if we fail to delete the orphan item this time
8919 * around, it'll get picked up the next time.
8920 *
8921 * The most common failure here is just -ENOENT.
8922 */
8923 btrfs_del_orphan_item(trans, tree_root,
8924 root->root_key.objectid);
8925 }
8926 }
8927
8928 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8929 btrfs_add_dropped_root(trans, root);
8930 } else {
8931 free_extent_buffer(root->node);
8932 free_extent_buffer(root->commit_root);
8933 btrfs_put_fs_root(root);
8934 }
8935 root_dropped = true;
8936 out_end_trans:
8937 btrfs_end_transaction_throttle(trans, tree_root);
8938 out_free:
8939 kfree(wc);
8940 btrfs_free_path(path);
8941 out:
8942 /*
8943 * So if we need to stop dropping the snapshot for whatever reason we
8944 * need to make sure to add it back to the dead root list so that we
8945 * keep trying to do the work later. This also cleans up roots if we
8946 * don't have it in the radix (like when we recover after a power fail
8947 * or unmount) so we don't leak memory.
8948 */
8949 if (!for_reloc && root_dropped == false)
8950 btrfs_add_dead_root(root);
8951 if (err && err != -EAGAIN)
8952 btrfs_std_error(root->fs_info, err, NULL);
8953 return err;
8954 }
8955
8956 /*
8957 * drop subtree rooted at tree block 'node'.
8958 *
8959 * NOTE: this function will unlock and release tree block 'node'
8960 * only used by relocation code
8961 */
8962 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8963 struct btrfs_root *root,
8964 struct extent_buffer *node,
8965 struct extent_buffer *parent)
8966 {
8967 struct btrfs_path *path;
8968 struct walk_control *wc;
8969 int level;
8970 int parent_level;
8971 int ret = 0;
8972 int wret;
8973
8974 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8975
8976 path = btrfs_alloc_path();
8977 if (!path)
8978 return -ENOMEM;
8979
8980 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8981 if (!wc) {
8982 btrfs_free_path(path);
8983 return -ENOMEM;
8984 }
8985
8986 btrfs_assert_tree_locked(parent);
8987 parent_level = btrfs_header_level(parent);
8988 extent_buffer_get(parent);
8989 path->nodes[parent_level] = parent;
8990 path->slots[parent_level] = btrfs_header_nritems(parent);
8991
8992 btrfs_assert_tree_locked(node);
8993 level = btrfs_header_level(node);
8994 path->nodes[level] = node;
8995 path->slots[level] = 0;
8996 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8997
8998 wc->refs[parent_level] = 1;
8999 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9000 wc->level = level;
9001 wc->shared_level = -1;
9002 wc->stage = DROP_REFERENCE;
9003 wc->update_ref = 0;
9004 wc->keep_locks = 1;
9005 wc->for_reloc = 1;
9006 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9007
9008 while (1) {
9009 wret = walk_down_tree(trans, root, path, wc);
9010 if (wret < 0) {
9011 ret = wret;
9012 break;
9013 }
9014
9015 wret = walk_up_tree(trans, root, path, wc, parent_level);
9016 if (wret < 0)
9017 ret = wret;
9018 if (wret != 0)
9019 break;
9020 }
9021
9022 kfree(wc);
9023 btrfs_free_path(path);
9024 return ret;
9025 }
9026
9027 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9028 {
9029 u64 num_devices;
9030 u64 stripped;
9031
9032 /*
9033 * if restripe for this chunk_type is on pick target profile and
9034 * return, otherwise do the usual balance
9035 */
9036 stripped = get_restripe_target(root->fs_info, flags);
9037 if (stripped)
9038 return extended_to_chunk(stripped);
9039
9040 num_devices = root->fs_info->fs_devices->rw_devices;
9041
9042 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9043 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9044 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9045
9046 if (num_devices == 1) {
9047 stripped |= BTRFS_BLOCK_GROUP_DUP;
9048 stripped = flags & ~stripped;
9049
9050 /* turn raid0 into single device chunks */
9051 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9052 return stripped;
9053
9054 /* turn mirroring into duplication */
9055 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9056 BTRFS_BLOCK_GROUP_RAID10))
9057 return stripped | BTRFS_BLOCK_GROUP_DUP;
9058 } else {
9059 /* they already had raid on here, just return */
9060 if (flags & stripped)
9061 return flags;
9062
9063 stripped |= BTRFS_BLOCK_GROUP_DUP;
9064 stripped = flags & ~stripped;
9065
9066 /* switch duplicated blocks with raid1 */
9067 if (flags & BTRFS_BLOCK_GROUP_DUP)
9068 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9069
9070 /* this is drive concat, leave it alone */
9071 }
9072
9073 return flags;
9074 }
9075
9076 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9077 {
9078 struct btrfs_space_info *sinfo = cache->space_info;
9079 u64 num_bytes;
9080 u64 min_allocable_bytes;
9081 int ret = -ENOSPC;
9082
9083 /*
9084 * We need some metadata space and system metadata space for
9085 * allocating chunks in some corner cases until we force to set
9086 * it to be readonly.
9087 */
9088 if ((sinfo->flags &
9089 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9090 !force)
9091 min_allocable_bytes = 1 * 1024 * 1024;
9092 else
9093 min_allocable_bytes = 0;
9094
9095 spin_lock(&sinfo->lock);
9096 spin_lock(&cache->lock);
9097
9098 if (cache->ro) {
9099 cache->ro++;
9100 ret = 0;
9101 goto out;
9102 }
9103
9104 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9105 cache->bytes_super - btrfs_block_group_used(&cache->item);
9106
9107 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9108 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9109 min_allocable_bytes <= sinfo->total_bytes) {
9110 sinfo->bytes_readonly += num_bytes;
9111 cache->ro++;
9112 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9113 ret = 0;
9114 }
9115 out:
9116 spin_unlock(&cache->lock);
9117 spin_unlock(&sinfo->lock);
9118 return ret;
9119 }
9120
9121 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9122 struct btrfs_block_group_cache *cache)
9123
9124 {
9125 struct btrfs_trans_handle *trans;
9126 u64 alloc_flags;
9127 int ret;
9128
9129 again:
9130 trans = btrfs_join_transaction(root);
9131 if (IS_ERR(trans))
9132 return PTR_ERR(trans);
9133
9134 /*
9135 * we're not allowed to set block groups readonly after the dirty
9136 * block groups cache has started writing. If it already started,
9137 * back off and let this transaction commit
9138 */
9139 mutex_lock(&root->fs_info->ro_block_group_mutex);
9140 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9141 u64 transid = trans->transid;
9142
9143 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9144 btrfs_end_transaction(trans, root);
9145
9146 ret = btrfs_wait_for_commit(root, transid);
9147 if (ret)
9148 return ret;
9149 goto again;
9150 }
9151
9152 /*
9153 * if we are changing raid levels, try to allocate a corresponding
9154 * block group with the new raid level.
9155 */
9156 alloc_flags = update_block_group_flags(root, cache->flags);
9157 if (alloc_flags != cache->flags) {
9158 ret = do_chunk_alloc(trans, root, alloc_flags,
9159 CHUNK_ALLOC_FORCE);
9160 /*
9161 * ENOSPC is allowed here, we may have enough space
9162 * already allocated at the new raid level to
9163 * carry on
9164 */
9165 if (ret == -ENOSPC)
9166 ret = 0;
9167 if (ret < 0)
9168 goto out;
9169 }
9170
9171 ret = inc_block_group_ro(cache, 0);
9172 if (!ret)
9173 goto out;
9174 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9175 ret = do_chunk_alloc(trans, root, alloc_flags,
9176 CHUNK_ALLOC_FORCE);
9177 if (ret < 0)
9178 goto out;
9179 ret = inc_block_group_ro(cache, 0);
9180 out:
9181 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9182 alloc_flags = update_block_group_flags(root, cache->flags);
9183 lock_chunks(root->fs_info->chunk_root);
9184 check_system_chunk(trans, root, alloc_flags);
9185 unlock_chunks(root->fs_info->chunk_root);
9186 }
9187 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9188
9189 btrfs_end_transaction(trans, root);
9190 return ret;
9191 }
9192
9193 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9194 struct btrfs_root *root, u64 type)
9195 {
9196 u64 alloc_flags = get_alloc_profile(root, type);
9197 return do_chunk_alloc(trans, root, alloc_flags,
9198 CHUNK_ALLOC_FORCE);
9199 }
9200
9201 /*
9202 * helper to account the unused space of all the readonly block group in the
9203 * space_info. takes mirrors into account.
9204 */
9205 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9206 {
9207 struct btrfs_block_group_cache *block_group;
9208 u64 free_bytes = 0;
9209 int factor;
9210
9211 /* It's df, we don't care if it's racey */
9212 if (list_empty(&sinfo->ro_bgs))
9213 return 0;
9214
9215 spin_lock(&sinfo->lock);
9216 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9217 spin_lock(&block_group->lock);
9218
9219 if (!block_group->ro) {
9220 spin_unlock(&block_group->lock);
9221 continue;
9222 }
9223
9224 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9225 BTRFS_BLOCK_GROUP_RAID10 |
9226 BTRFS_BLOCK_GROUP_DUP))
9227 factor = 2;
9228 else
9229 factor = 1;
9230
9231 free_bytes += (block_group->key.offset -
9232 btrfs_block_group_used(&block_group->item)) *
9233 factor;
9234
9235 spin_unlock(&block_group->lock);
9236 }
9237 spin_unlock(&sinfo->lock);
9238
9239 return free_bytes;
9240 }
9241
9242 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9243 struct btrfs_block_group_cache *cache)
9244 {
9245 struct btrfs_space_info *sinfo = cache->space_info;
9246 u64 num_bytes;
9247
9248 BUG_ON(!cache->ro);
9249
9250 spin_lock(&sinfo->lock);
9251 spin_lock(&cache->lock);
9252 if (!--cache->ro) {
9253 num_bytes = cache->key.offset - cache->reserved -
9254 cache->pinned - cache->bytes_super -
9255 btrfs_block_group_used(&cache->item);
9256 sinfo->bytes_readonly -= num_bytes;
9257 list_del_init(&cache->ro_list);
9258 }
9259 spin_unlock(&cache->lock);
9260 spin_unlock(&sinfo->lock);
9261 }
9262
9263 /*
9264 * checks to see if its even possible to relocate this block group.
9265 *
9266 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9267 * ok to go ahead and try.
9268 */
9269 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9270 {
9271 struct btrfs_block_group_cache *block_group;
9272 struct btrfs_space_info *space_info;
9273 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9274 struct btrfs_device *device;
9275 struct btrfs_trans_handle *trans;
9276 u64 min_free;
9277 u64 dev_min = 1;
9278 u64 dev_nr = 0;
9279 u64 target;
9280 int index;
9281 int full = 0;
9282 int ret = 0;
9283
9284 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9285
9286 /* odd, couldn't find the block group, leave it alone */
9287 if (!block_group)
9288 return -1;
9289
9290 min_free = btrfs_block_group_used(&block_group->item);
9291
9292 /* no bytes used, we're good */
9293 if (!min_free)
9294 goto out;
9295
9296 space_info = block_group->space_info;
9297 spin_lock(&space_info->lock);
9298
9299 full = space_info->full;
9300
9301 /*
9302 * if this is the last block group we have in this space, we can't
9303 * relocate it unless we're able to allocate a new chunk below.
9304 *
9305 * Otherwise, we need to make sure we have room in the space to handle
9306 * all of the extents from this block group. If we can, we're good
9307 */
9308 if ((space_info->total_bytes != block_group->key.offset) &&
9309 (space_info->bytes_used + space_info->bytes_reserved +
9310 space_info->bytes_pinned + space_info->bytes_readonly +
9311 min_free < space_info->total_bytes)) {
9312 spin_unlock(&space_info->lock);
9313 goto out;
9314 }
9315 spin_unlock(&space_info->lock);
9316
9317 /*
9318 * ok we don't have enough space, but maybe we have free space on our
9319 * devices to allocate new chunks for relocation, so loop through our
9320 * alloc devices and guess if we have enough space. if this block
9321 * group is going to be restriped, run checks against the target
9322 * profile instead of the current one.
9323 */
9324 ret = -1;
9325
9326 /*
9327 * index:
9328 * 0: raid10
9329 * 1: raid1
9330 * 2: dup
9331 * 3: raid0
9332 * 4: single
9333 */
9334 target = get_restripe_target(root->fs_info, block_group->flags);
9335 if (target) {
9336 index = __get_raid_index(extended_to_chunk(target));
9337 } else {
9338 /*
9339 * this is just a balance, so if we were marked as full
9340 * we know there is no space for a new chunk
9341 */
9342 if (full)
9343 goto out;
9344
9345 index = get_block_group_index(block_group);
9346 }
9347
9348 if (index == BTRFS_RAID_RAID10) {
9349 dev_min = 4;
9350 /* Divide by 2 */
9351 min_free >>= 1;
9352 } else if (index == BTRFS_RAID_RAID1) {
9353 dev_min = 2;
9354 } else if (index == BTRFS_RAID_DUP) {
9355 /* Multiply by 2 */
9356 min_free <<= 1;
9357 } else if (index == BTRFS_RAID_RAID0) {
9358 dev_min = fs_devices->rw_devices;
9359 min_free = div64_u64(min_free, dev_min);
9360 }
9361
9362 /* We need to do this so that we can look at pending chunks */
9363 trans = btrfs_join_transaction(root);
9364 if (IS_ERR(trans)) {
9365 ret = PTR_ERR(trans);
9366 goto out;
9367 }
9368
9369 mutex_lock(&root->fs_info->chunk_mutex);
9370 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9371 u64 dev_offset;
9372
9373 /*
9374 * check to make sure we can actually find a chunk with enough
9375 * space to fit our block group in.
9376 */
9377 if (device->total_bytes > device->bytes_used + min_free &&
9378 !device->is_tgtdev_for_dev_replace) {
9379 ret = find_free_dev_extent(trans, device, min_free,
9380 &dev_offset, NULL);
9381 if (!ret)
9382 dev_nr++;
9383
9384 if (dev_nr >= dev_min)
9385 break;
9386
9387 ret = -1;
9388 }
9389 }
9390 mutex_unlock(&root->fs_info->chunk_mutex);
9391 btrfs_end_transaction(trans, root);
9392 out:
9393 btrfs_put_block_group(block_group);
9394 return ret;
9395 }
9396
9397 static int find_first_block_group(struct btrfs_root *root,
9398 struct btrfs_path *path, struct btrfs_key *key)
9399 {
9400 int ret = 0;
9401 struct btrfs_key found_key;
9402 struct extent_buffer *leaf;
9403 int slot;
9404
9405 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9406 if (ret < 0)
9407 goto out;
9408
9409 while (1) {
9410 slot = path->slots[0];
9411 leaf = path->nodes[0];
9412 if (slot >= btrfs_header_nritems(leaf)) {
9413 ret = btrfs_next_leaf(root, path);
9414 if (ret == 0)
9415 continue;
9416 if (ret < 0)
9417 goto out;
9418 break;
9419 }
9420 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9421
9422 if (found_key.objectid >= key->objectid &&
9423 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9424 ret = 0;
9425 goto out;
9426 }
9427 path->slots[0]++;
9428 }
9429 out:
9430 return ret;
9431 }
9432
9433 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9434 {
9435 struct btrfs_block_group_cache *block_group;
9436 u64 last = 0;
9437
9438 while (1) {
9439 struct inode *inode;
9440
9441 block_group = btrfs_lookup_first_block_group(info, last);
9442 while (block_group) {
9443 spin_lock(&block_group->lock);
9444 if (block_group->iref)
9445 break;
9446 spin_unlock(&block_group->lock);
9447 block_group = next_block_group(info->tree_root,
9448 block_group);
9449 }
9450 if (!block_group) {
9451 if (last == 0)
9452 break;
9453 last = 0;
9454 continue;
9455 }
9456
9457 inode = block_group->inode;
9458 block_group->iref = 0;
9459 block_group->inode = NULL;
9460 spin_unlock(&block_group->lock);
9461 iput(inode);
9462 last = block_group->key.objectid + block_group->key.offset;
9463 btrfs_put_block_group(block_group);
9464 }
9465 }
9466
9467 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9468 {
9469 struct btrfs_block_group_cache *block_group;
9470 struct btrfs_space_info *space_info;
9471 struct btrfs_caching_control *caching_ctl;
9472 struct rb_node *n;
9473
9474 down_write(&info->commit_root_sem);
9475 while (!list_empty(&info->caching_block_groups)) {
9476 caching_ctl = list_entry(info->caching_block_groups.next,
9477 struct btrfs_caching_control, list);
9478 list_del(&caching_ctl->list);
9479 put_caching_control(caching_ctl);
9480 }
9481 up_write(&info->commit_root_sem);
9482
9483 spin_lock(&info->unused_bgs_lock);
9484 while (!list_empty(&info->unused_bgs)) {
9485 block_group = list_first_entry(&info->unused_bgs,
9486 struct btrfs_block_group_cache,
9487 bg_list);
9488 list_del_init(&block_group->bg_list);
9489 btrfs_put_block_group(block_group);
9490 }
9491 spin_unlock(&info->unused_bgs_lock);
9492
9493 spin_lock(&info->block_group_cache_lock);
9494 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9495 block_group = rb_entry(n, struct btrfs_block_group_cache,
9496 cache_node);
9497 rb_erase(&block_group->cache_node,
9498 &info->block_group_cache_tree);
9499 RB_CLEAR_NODE(&block_group->cache_node);
9500 spin_unlock(&info->block_group_cache_lock);
9501
9502 down_write(&block_group->space_info->groups_sem);
9503 list_del(&block_group->list);
9504 up_write(&block_group->space_info->groups_sem);
9505
9506 if (block_group->cached == BTRFS_CACHE_STARTED)
9507 wait_block_group_cache_done(block_group);
9508
9509 /*
9510 * We haven't cached this block group, which means we could
9511 * possibly have excluded extents on this block group.
9512 */
9513 if (block_group->cached == BTRFS_CACHE_NO ||
9514 block_group->cached == BTRFS_CACHE_ERROR)
9515 free_excluded_extents(info->extent_root, block_group);
9516
9517 btrfs_remove_free_space_cache(block_group);
9518 btrfs_put_block_group(block_group);
9519
9520 spin_lock(&info->block_group_cache_lock);
9521 }
9522 spin_unlock(&info->block_group_cache_lock);
9523
9524 /* now that all the block groups are freed, go through and
9525 * free all the space_info structs. This is only called during
9526 * the final stages of unmount, and so we know nobody is
9527 * using them. We call synchronize_rcu() once before we start,
9528 * just to be on the safe side.
9529 */
9530 synchronize_rcu();
9531
9532 release_global_block_rsv(info);
9533
9534 while (!list_empty(&info->space_info)) {
9535 int i;
9536
9537 space_info = list_entry(info->space_info.next,
9538 struct btrfs_space_info,
9539 list);
9540 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9541 if (WARN_ON(space_info->bytes_pinned > 0 ||
9542 space_info->bytes_reserved > 0 ||
9543 space_info->bytes_may_use > 0)) {
9544 dump_space_info(space_info, 0, 0);
9545 }
9546 }
9547 list_del(&space_info->list);
9548 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9549 struct kobject *kobj;
9550 kobj = space_info->block_group_kobjs[i];
9551 space_info->block_group_kobjs[i] = NULL;
9552 if (kobj) {
9553 kobject_del(kobj);
9554 kobject_put(kobj);
9555 }
9556 }
9557 kobject_del(&space_info->kobj);
9558 kobject_put(&space_info->kobj);
9559 }
9560 return 0;
9561 }
9562
9563 static void __link_block_group(struct btrfs_space_info *space_info,
9564 struct btrfs_block_group_cache *cache)
9565 {
9566 int index = get_block_group_index(cache);
9567 bool first = false;
9568
9569 down_write(&space_info->groups_sem);
9570 if (list_empty(&space_info->block_groups[index]))
9571 first = true;
9572 list_add_tail(&cache->list, &space_info->block_groups[index]);
9573 up_write(&space_info->groups_sem);
9574
9575 if (first) {
9576 struct raid_kobject *rkobj;
9577 int ret;
9578
9579 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9580 if (!rkobj)
9581 goto out_err;
9582 rkobj->raid_type = index;
9583 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9584 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9585 "%s", get_raid_name(index));
9586 if (ret) {
9587 kobject_put(&rkobj->kobj);
9588 goto out_err;
9589 }
9590 space_info->block_group_kobjs[index] = &rkobj->kobj;
9591 }
9592
9593 return;
9594 out_err:
9595 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9596 }
9597
9598 static struct btrfs_block_group_cache *
9599 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9600 {
9601 struct btrfs_block_group_cache *cache;
9602
9603 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9604 if (!cache)
9605 return NULL;
9606
9607 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9608 GFP_NOFS);
9609 if (!cache->free_space_ctl) {
9610 kfree(cache);
9611 return NULL;
9612 }
9613
9614 cache->key.objectid = start;
9615 cache->key.offset = size;
9616 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9617
9618 cache->sectorsize = root->sectorsize;
9619 cache->fs_info = root->fs_info;
9620 cache->full_stripe_len = btrfs_full_stripe_len(root,
9621 &root->fs_info->mapping_tree,
9622 start);
9623 atomic_set(&cache->count, 1);
9624 spin_lock_init(&cache->lock);
9625 init_rwsem(&cache->data_rwsem);
9626 INIT_LIST_HEAD(&cache->list);
9627 INIT_LIST_HEAD(&cache->cluster_list);
9628 INIT_LIST_HEAD(&cache->bg_list);
9629 INIT_LIST_HEAD(&cache->ro_list);
9630 INIT_LIST_HEAD(&cache->dirty_list);
9631 INIT_LIST_HEAD(&cache->io_list);
9632 btrfs_init_free_space_ctl(cache);
9633 atomic_set(&cache->trimming, 0);
9634
9635 return cache;
9636 }
9637
9638 int btrfs_read_block_groups(struct btrfs_root *root)
9639 {
9640 struct btrfs_path *path;
9641 int ret;
9642 struct btrfs_block_group_cache *cache;
9643 struct btrfs_fs_info *info = root->fs_info;
9644 struct btrfs_space_info *space_info;
9645 struct btrfs_key key;
9646 struct btrfs_key found_key;
9647 struct extent_buffer *leaf;
9648 int need_clear = 0;
9649 u64 cache_gen;
9650
9651 root = info->extent_root;
9652 key.objectid = 0;
9653 key.offset = 0;
9654 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9655 path = btrfs_alloc_path();
9656 if (!path)
9657 return -ENOMEM;
9658 path->reada = 1;
9659
9660 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9661 if (btrfs_test_opt(root, SPACE_CACHE) &&
9662 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9663 need_clear = 1;
9664 if (btrfs_test_opt(root, CLEAR_CACHE))
9665 need_clear = 1;
9666
9667 while (1) {
9668 ret = find_first_block_group(root, path, &key);
9669 if (ret > 0)
9670 break;
9671 if (ret != 0)
9672 goto error;
9673
9674 leaf = path->nodes[0];
9675 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9676
9677 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9678 found_key.offset);
9679 if (!cache) {
9680 ret = -ENOMEM;
9681 goto error;
9682 }
9683
9684 if (need_clear) {
9685 /*
9686 * When we mount with old space cache, we need to
9687 * set BTRFS_DC_CLEAR and set dirty flag.
9688 *
9689 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9690 * truncate the old free space cache inode and
9691 * setup a new one.
9692 * b) Setting 'dirty flag' makes sure that we flush
9693 * the new space cache info onto disk.
9694 */
9695 if (btrfs_test_opt(root, SPACE_CACHE))
9696 cache->disk_cache_state = BTRFS_DC_CLEAR;
9697 }
9698
9699 read_extent_buffer(leaf, &cache->item,
9700 btrfs_item_ptr_offset(leaf, path->slots[0]),
9701 sizeof(cache->item));
9702 cache->flags = btrfs_block_group_flags(&cache->item);
9703
9704 key.objectid = found_key.objectid + found_key.offset;
9705 btrfs_release_path(path);
9706
9707 /*
9708 * We need to exclude the super stripes now so that the space
9709 * info has super bytes accounted for, otherwise we'll think
9710 * we have more space than we actually do.
9711 */
9712 ret = exclude_super_stripes(root, cache);
9713 if (ret) {
9714 /*
9715 * We may have excluded something, so call this just in
9716 * case.
9717 */
9718 free_excluded_extents(root, cache);
9719 btrfs_put_block_group(cache);
9720 goto error;
9721 }
9722
9723 /*
9724 * check for two cases, either we are full, and therefore
9725 * don't need to bother with the caching work since we won't
9726 * find any space, or we are empty, and we can just add all
9727 * the space in and be done with it. This saves us _alot_ of
9728 * time, particularly in the full case.
9729 */
9730 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9731 cache->last_byte_to_unpin = (u64)-1;
9732 cache->cached = BTRFS_CACHE_FINISHED;
9733 free_excluded_extents(root, cache);
9734 } else if (btrfs_block_group_used(&cache->item) == 0) {
9735 cache->last_byte_to_unpin = (u64)-1;
9736 cache->cached = BTRFS_CACHE_FINISHED;
9737 add_new_free_space(cache, root->fs_info,
9738 found_key.objectid,
9739 found_key.objectid +
9740 found_key.offset);
9741 free_excluded_extents(root, cache);
9742 }
9743
9744 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9745 if (ret) {
9746 btrfs_remove_free_space_cache(cache);
9747 btrfs_put_block_group(cache);
9748 goto error;
9749 }
9750
9751 ret = update_space_info(info, cache->flags, found_key.offset,
9752 btrfs_block_group_used(&cache->item),
9753 &space_info);
9754 if (ret) {
9755 btrfs_remove_free_space_cache(cache);
9756 spin_lock(&info->block_group_cache_lock);
9757 rb_erase(&cache->cache_node,
9758 &info->block_group_cache_tree);
9759 RB_CLEAR_NODE(&cache->cache_node);
9760 spin_unlock(&info->block_group_cache_lock);
9761 btrfs_put_block_group(cache);
9762 goto error;
9763 }
9764
9765 cache->space_info = space_info;
9766 spin_lock(&cache->space_info->lock);
9767 cache->space_info->bytes_readonly += cache->bytes_super;
9768 spin_unlock(&cache->space_info->lock);
9769
9770 __link_block_group(space_info, cache);
9771
9772 set_avail_alloc_bits(root->fs_info, cache->flags);
9773 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9774 inc_block_group_ro(cache, 1);
9775 } else if (btrfs_block_group_used(&cache->item) == 0) {
9776 spin_lock(&info->unused_bgs_lock);
9777 /* Should always be true but just in case. */
9778 if (list_empty(&cache->bg_list)) {
9779 btrfs_get_block_group(cache);
9780 list_add_tail(&cache->bg_list,
9781 &info->unused_bgs);
9782 }
9783 spin_unlock(&info->unused_bgs_lock);
9784 }
9785 }
9786
9787 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9788 if (!(get_alloc_profile(root, space_info->flags) &
9789 (BTRFS_BLOCK_GROUP_RAID10 |
9790 BTRFS_BLOCK_GROUP_RAID1 |
9791 BTRFS_BLOCK_GROUP_RAID5 |
9792 BTRFS_BLOCK_GROUP_RAID6 |
9793 BTRFS_BLOCK_GROUP_DUP)))
9794 continue;
9795 /*
9796 * avoid allocating from un-mirrored block group if there are
9797 * mirrored block groups.
9798 */
9799 list_for_each_entry(cache,
9800 &space_info->block_groups[BTRFS_RAID_RAID0],
9801 list)
9802 inc_block_group_ro(cache, 1);
9803 list_for_each_entry(cache,
9804 &space_info->block_groups[BTRFS_RAID_SINGLE],
9805 list)
9806 inc_block_group_ro(cache, 1);
9807 }
9808
9809 init_global_block_rsv(info);
9810 ret = 0;
9811 error:
9812 btrfs_free_path(path);
9813 return ret;
9814 }
9815
9816 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9817 struct btrfs_root *root)
9818 {
9819 struct btrfs_block_group_cache *block_group, *tmp;
9820 struct btrfs_root *extent_root = root->fs_info->extent_root;
9821 struct btrfs_block_group_item item;
9822 struct btrfs_key key;
9823 int ret = 0;
9824 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9825
9826 trans->can_flush_pending_bgs = false;
9827 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9828 if (ret)
9829 goto next;
9830
9831 spin_lock(&block_group->lock);
9832 memcpy(&item, &block_group->item, sizeof(item));
9833 memcpy(&key, &block_group->key, sizeof(key));
9834 spin_unlock(&block_group->lock);
9835
9836 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9837 sizeof(item));
9838 if (ret)
9839 btrfs_abort_transaction(trans, extent_root, ret);
9840 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9841 key.objectid, key.offset);
9842 if (ret)
9843 btrfs_abort_transaction(trans, extent_root, ret);
9844 next:
9845 list_del_init(&block_group->bg_list);
9846 }
9847 trans->can_flush_pending_bgs = can_flush_pending_bgs;
9848 }
9849
9850 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9851 struct btrfs_root *root, u64 bytes_used,
9852 u64 type, u64 chunk_objectid, u64 chunk_offset,
9853 u64 size)
9854 {
9855 int ret;
9856 struct btrfs_root *extent_root;
9857 struct btrfs_block_group_cache *cache;
9858
9859 extent_root = root->fs_info->extent_root;
9860
9861 btrfs_set_log_full_commit(root->fs_info, trans);
9862
9863 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9864 if (!cache)
9865 return -ENOMEM;
9866
9867 btrfs_set_block_group_used(&cache->item, bytes_used);
9868 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9869 btrfs_set_block_group_flags(&cache->item, type);
9870
9871 cache->flags = type;
9872 cache->last_byte_to_unpin = (u64)-1;
9873 cache->cached = BTRFS_CACHE_FINISHED;
9874 ret = exclude_super_stripes(root, cache);
9875 if (ret) {
9876 /*
9877 * We may have excluded something, so call this just in
9878 * case.
9879 */
9880 free_excluded_extents(root, cache);
9881 btrfs_put_block_group(cache);
9882 return ret;
9883 }
9884
9885 add_new_free_space(cache, root->fs_info, chunk_offset,
9886 chunk_offset + size);
9887
9888 free_excluded_extents(root, cache);
9889
9890 #ifdef CONFIG_BTRFS_DEBUG
9891 if (btrfs_should_fragment_free_space(root, cache)) {
9892 u64 new_bytes_used = size - bytes_used;
9893
9894 bytes_used += new_bytes_used >> 1;
9895 fragment_free_space(root, cache);
9896 }
9897 #endif
9898 /*
9899 * Call to ensure the corresponding space_info object is created and
9900 * assigned to our block group, but don't update its counters just yet.
9901 * We want our bg to be added to the rbtree with its ->space_info set.
9902 */
9903 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9904 &cache->space_info);
9905 if (ret) {
9906 btrfs_remove_free_space_cache(cache);
9907 btrfs_put_block_group(cache);
9908 return ret;
9909 }
9910
9911 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9912 if (ret) {
9913 btrfs_remove_free_space_cache(cache);
9914 btrfs_put_block_group(cache);
9915 return ret;
9916 }
9917
9918 /*
9919 * Now that our block group has its ->space_info set and is inserted in
9920 * the rbtree, update the space info's counters.
9921 */
9922 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9923 &cache->space_info);
9924 if (ret) {
9925 btrfs_remove_free_space_cache(cache);
9926 spin_lock(&root->fs_info->block_group_cache_lock);
9927 rb_erase(&cache->cache_node,
9928 &root->fs_info->block_group_cache_tree);
9929 RB_CLEAR_NODE(&cache->cache_node);
9930 spin_unlock(&root->fs_info->block_group_cache_lock);
9931 btrfs_put_block_group(cache);
9932 return ret;
9933 }
9934 update_global_block_rsv(root->fs_info);
9935
9936 spin_lock(&cache->space_info->lock);
9937 cache->space_info->bytes_readonly += cache->bytes_super;
9938 spin_unlock(&cache->space_info->lock);
9939
9940 __link_block_group(cache->space_info, cache);
9941
9942 list_add_tail(&cache->bg_list, &trans->new_bgs);
9943
9944 set_avail_alloc_bits(extent_root->fs_info, type);
9945
9946 return 0;
9947 }
9948
9949 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9950 {
9951 u64 extra_flags = chunk_to_extended(flags) &
9952 BTRFS_EXTENDED_PROFILE_MASK;
9953
9954 write_seqlock(&fs_info->profiles_lock);
9955 if (flags & BTRFS_BLOCK_GROUP_DATA)
9956 fs_info->avail_data_alloc_bits &= ~extra_flags;
9957 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9958 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9959 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9960 fs_info->avail_system_alloc_bits &= ~extra_flags;
9961 write_sequnlock(&fs_info->profiles_lock);
9962 }
9963
9964 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9965 struct btrfs_root *root, u64 group_start,
9966 struct extent_map *em)
9967 {
9968 struct btrfs_path *path;
9969 struct btrfs_block_group_cache *block_group;
9970 struct btrfs_free_cluster *cluster;
9971 struct btrfs_root *tree_root = root->fs_info->tree_root;
9972 struct btrfs_key key;
9973 struct inode *inode;
9974 struct kobject *kobj = NULL;
9975 int ret;
9976 int index;
9977 int factor;
9978 struct btrfs_caching_control *caching_ctl = NULL;
9979 bool remove_em;
9980
9981 root = root->fs_info->extent_root;
9982
9983 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9984 BUG_ON(!block_group);
9985 BUG_ON(!block_group->ro);
9986
9987 /*
9988 * Free the reserved super bytes from this block group before
9989 * remove it.
9990 */
9991 free_excluded_extents(root, block_group);
9992
9993 memcpy(&key, &block_group->key, sizeof(key));
9994 index = get_block_group_index(block_group);
9995 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9996 BTRFS_BLOCK_GROUP_RAID1 |
9997 BTRFS_BLOCK_GROUP_RAID10))
9998 factor = 2;
9999 else
10000 factor = 1;
10001
10002 /* make sure this block group isn't part of an allocation cluster */
10003 cluster = &root->fs_info->data_alloc_cluster;
10004 spin_lock(&cluster->refill_lock);
10005 btrfs_return_cluster_to_free_space(block_group, cluster);
10006 spin_unlock(&cluster->refill_lock);
10007
10008 /*
10009 * make sure this block group isn't part of a metadata
10010 * allocation cluster
10011 */
10012 cluster = &root->fs_info->meta_alloc_cluster;
10013 spin_lock(&cluster->refill_lock);
10014 btrfs_return_cluster_to_free_space(block_group, cluster);
10015 spin_unlock(&cluster->refill_lock);
10016
10017 path = btrfs_alloc_path();
10018 if (!path) {
10019 ret = -ENOMEM;
10020 goto out;
10021 }
10022
10023 /*
10024 * get the inode first so any iput calls done for the io_list
10025 * aren't the final iput (no unlinks allowed now)
10026 */
10027 inode = lookup_free_space_inode(tree_root, block_group, path);
10028
10029 mutex_lock(&trans->transaction->cache_write_mutex);
10030 /*
10031 * make sure our free spache cache IO is done before remove the
10032 * free space inode
10033 */
10034 spin_lock(&trans->transaction->dirty_bgs_lock);
10035 if (!list_empty(&block_group->io_list)) {
10036 list_del_init(&block_group->io_list);
10037
10038 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10039
10040 spin_unlock(&trans->transaction->dirty_bgs_lock);
10041 btrfs_wait_cache_io(root, trans, block_group,
10042 &block_group->io_ctl, path,
10043 block_group->key.objectid);
10044 btrfs_put_block_group(block_group);
10045 spin_lock(&trans->transaction->dirty_bgs_lock);
10046 }
10047
10048 if (!list_empty(&block_group->dirty_list)) {
10049 list_del_init(&block_group->dirty_list);
10050 btrfs_put_block_group(block_group);
10051 }
10052 spin_unlock(&trans->transaction->dirty_bgs_lock);
10053 mutex_unlock(&trans->transaction->cache_write_mutex);
10054
10055 if (!IS_ERR(inode)) {
10056 ret = btrfs_orphan_add(trans, inode);
10057 if (ret) {
10058 btrfs_add_delayed_iput(inode);
10059 goto out;
10060 }
10061 clear_nlink(inode);
10062 /* One for the block groups ref */
10063 spin_lock(&block_group->lock);
10064 if (block_group->iref) {
10065 block_group->iref = 0;
10066 block_group->inode = NULL;
10067 spin_unlock(&block_group->lock);
10068 iput(inode);
10069 } else {
10070 spin_unlock(&block_group->lock);
10071 }
10072 /* One for our lookup ref */
10073 btrfs_add_delayed_iput(inode);
10074 }
10075
10076 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10077 key.offset = block_group->key.objectid;
10078 key.type = 0;
10079
10080 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10081 if (ret < 0)
10082 goto out;
10083 if (ret > 0)
10084 btrfs_release_path(path);
10085 if (ret == 0) {
10086 ret = btrfs_del_item(trans, tree_root, path);
10087 if (ret)
10088 goto out;
10089 btrfs_release_path(path);
10090 }
10091
10092 spin_lock(&root->fs_info->block_group_cache_lock);
10093 rb_erase(&block_group->cache_node,
10094 &root->fs_info->block_group_cache_tree);
10095 RB_CLEAR_NODE(&block_group->cache_node);
10096
10097 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10098 root->fs_info->first_logical_byte = (u64)-1;
10099 spin_unlock(&root->fs_info->block_group_cache_lock);
10100
10101 down_write(&block_group->space_info->groups_sem);
10102 /*
10103 * we must use list_del_init so people can check to see if they
10104 * are still on the list after taking the semaphore
10105 */
10106 list_del_init(&block_group->list);
10107 if (list_empty(&block_group->space_info->block_groups[index])) {
10108 kobj = block_group->space_info->block_group_kobjs[index];
10109 block_group->space_info->block_group_kobjs[index] = NULL;
10110 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10111 }
10112 up_write(&block_group->space_info->groups_sem);
10113 if (kobj) {
10114 kobject_del(kobj);
10115 kobject_put(kobj);
10116 }
10117
10118 if (block_group->has_caching_ctl)
10119 caching_ctl = get_caching_control(block_group);
10120 if (block_group->cached == BTRFS_CACHE_STARTED)
10121 wait_block_group_cache_done(block_group);
10122 if (block_group->has_caching_ctl) {
10123 down_write(&root->fs_info->commit_root_sem);
10124 if (!caching_ctl) {
10125 struct btrfs_caching_control *ctl;
10126
10127 list_for_each_entry(ctl,
10128 &root->fs_info->caching_block_groups, list)
10129 if (ctl->block_group == block_group) {
10130 caching_ctl = ctl;
10131 atomic_inc(&caching_ctl->count);
10132 break;
10133 }
10134 }
10135 if (caching_ctl)
10136 list_del_init(&caching_ctl->list);
10137 up_write(&root->fs_info->commit_root_sem);
10138 if (caching_ctl) {
10139 /* Once for the caching bgs list and once for us. */
10140 put_caching_control(caching_ctl);
10141 put_caching_control(caching_ctl);
10142 }
10143 }
10144
10145 spin_lock(&trans->transaction->dirty_bgs_lock);
10146 if (!list_empty(&block_group->dirty_list)) {
10147 WARN_ON(1);
10148 }
10149 if (!list_empty(&block_group->io_list)) {
10150 WARN_ON(1);
10151 }
10152 spin_unlock(&trans->transaction->dirty_bgs_lock);
10153 btrfs_remove_free_space_cache(block_group);
10154
10155 spin_lock(&block_group->space_info->lock);
10156 list_del_init(&block_group->ro_list);
10157
10158 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10159 WARN_ON(block_group->space_info->total_bytes
10160 < block_group->key.offset);
10161 WARN_ON(block_group->space_info->bytes_readonly
10162 < block_group->key.offset);
10163 WARN_ON(block_group->space_info->disk_total
10164 < block_group->key.offset * factor);
10165 }
10166 block_group->space_info->total_bytes -= block_group->key.offset;
10167 block_group->space_info->bytes_readonly -= block_group->key.offset;
10168 block_group->space_info->disk_total -= block_group->key.offset * factor;
10169
10170 spin_unlock(&block_group->space_info->lock);
10171
10172 memcpy(&key, &block_group->key, sizeof(key));
10173
10174 lock_chunks(root);
10175 if (!list_empty(&em->list)) {
10176 /* We're in the transaction->pending_chunks list. */
10177 free_extent_map(em);
10178 }
10179 spin_lock(&block_group->lock);
10180 block_group->removed = 1;
10181 /*
10182 * At this point trimming can't start on this block group, because we
10183 * removed the block group from the tree fs_info->block_group_cache_tree
10184 * so no one can't find it anymore and even if someone already got this
10185 * block group before we removed it from the rbtree, they have already
10186 * incremented block_group->trimming - if they didn't, they won't find
10187 * any free space entries because we already removed them all when we
10188 * called btrfs_remove_free_space_cache().
10189 *
10190 * And we must not remove the extent map from the fs_info->mapping_tree
10191 * to prevent the same logical address range and physical device space
10192 * ranges from being reused for a new block group. This is because our
10193 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10194 * completely transactionless, so while it is trimming a range the
10195 * currently running transaction might finish and a new one start,
10196 * allowing for new block groups to be created that can reuse the same
10197 * physical device locations unless we take this special care.
10198 *
10199 * There may also be an implicit trim operation if the file system
10200 * is mounted with -odiscard. The same protections must remain
10201 * in place until the extents have been discarded completely when
10202 * the transaction commit has completed.
10203 */
10204 remove_em = (atomic_read(&block_group->trimming) == 0);
10205 /*
10206 * Make sure a trimmer task always sees the em in the pinned_chunks list
10207 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10208 * before checking block_group->removed).
10209 */
10210 if (!remove_em) {
10211 /*
10212 * Our em might be in trans->transaction->pending_chunks which
10213 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10214 * and so is the fs_info->pinned_chunks list.
10215 *
10216 * So at this point we must be holding the chunk_mutex to avoid
10217 * any races with chunk allocation (more specifically at
10218 * volumes.c:contains_pending_extent()), to ensure it always
10219 * sees the em, either in the pending_chunks list or in the
10220 * pinned_chunks list.
10221 */
10222 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10223 }
10224 spin_unlock(&block_group->lock);
10225
10226 if (remove_em) {
10227 struct extent_map_tree *em_tree;
10228
10229 em_tree = &root->fs_info->mapping_tree.map_tree;
10230 write_lock(&em_tree->lock);
10231 /*
10232 * The em might be in the pending_chunks list, so make sure the
10233 * chunk mutex is locked, since remove_extent_mapping() will
10234 * delete us from that list.
10235 */
10236 remove_extent_mapping(em_tree, em);
10237 write_unlock(&em_tree->lock);
10238 /* once for the tree */
10239 free_extent_map(em);
10240 }
10241
10242 unlock_chunks(root);
10243
10244 btrfs_put_block_group(block_group);
10245 btrfs_put_block_group(block_group);
10246
10247 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10248 if (ret > 0)
10249 ret = -EIO;
10250 if (ret < 0)
10251 goto out;
10252
10253 ret = btrfs_del_item(trans, root, path);
10254 out:
10255 btrfs_free_path(path);
10256 return ret;
10257 }
10258
10259 struct btrfs_trans_handle *
10260 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10261 const u64 chunk_offset)
10262 {
10263 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10264 struct extent_map *em;
10265 struct map_lookup *map;
10266 unsigned int num_items;
10267
10268 read_lock(&em_tree->lock);
10269 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10270 read_unlock(&em_tree->lock);
10271 ASSERT(em && em->start == chunk_offset);
10272
10273 /*
10274 * We need to reserve 3 + N units from the metadata space info in order
10275 * to remove a block group (done at btrfs_remove_chunk() and at
10276 * btrfs_remove_block_group()), which are used for:
10277 *
10278 * 1 unit for adding the free space inode's orphan (located in the tree
10279 * of tree roots).
10280 * 1 unit for deleting the block group item (located in the extent
10281 * tree).
10282 * 1 unit for deleting the free space item (located in tree of tree
10283 * roots).
10284 * N units for deleting N device extent items corresponding to each
10285 * stripe (located in the device tree).
10286 *
10287 * In order to remove a block group we also need to reserve units in the
10288 * system space info in order to update the chunk tree (update one or
10289 * more device items and remove one chunk item), but this is done at
10290 * btrfs_remove_chunk() through a call to check_system_chunk().
10291 */
10292 map = (struct map_lookup *)em->bdev;
10293 num_items = 3 + map->num_stripes;
10294 free_extent_map(em);
10295
10296 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10297 num_items, 1);
10298 }
10299
10300 /*
10301 * Process the unused_bgs list and remove any that don't have any allocated
10302 * space inside of them.
10303 */
10304 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10305 {
10306 struct btrfs_block_group_cache *block_group;
10307 struct btrfs_space_info *space_info;
10308 struct btrfs_root *root = fs_info->extent_root;
10309 struct btrfs_trans_handle *trans;
10310 int ret = 0;
10311
10312 if (!fs_info->open)
10313 return;
10314
10315 spin_lock(&fs_info->unused_bgs_lock);
10316 while (!list_empty(&fs_info->unused_bgs)) {
10317 u64 start, end;
10318 int trimming;
10319
10320 block_group = list_first_entry(&fs_info->unused_bgs,
10321 struct btrfs_block_group_cache,
10322 bg_list);
10323 list_del_init(&block_group->bg_list);
10324
10325 space_info = block_group->space_info;
10326
10327 if (ret || btrfs_mixed_space_info(space_info)) {
10328 btrfs_put_block_group(block_group);
10329 continue;
10330 }
10331 spin_unlock(&fs_info->unused_bgs_lock);
10332
10333 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10334
10335 /* Don't want to race with allocators so take the groups_sem */
10336 down_write(&space_info->groups_sem);
10337 spin_lock(&block_group->lock);
10338 if (block_group->reserved ||
10339 btrfs_block_group_used(&block_group->item) ||
10340 block_group->ro ||
10341 list_is_singular(&block_group->list)) {
10342 /*
10343 * We want to bail if we made new allocations or have
10344 * outstanding allocations in this block group. We do
10345 * the ro check in case balance is currently acting on
10346 * this block group.
10347 */
10348 spin_unlock(&block_group->lock);
10349 up_write(&space_info->groups_sem);
10350 goto next;
10351 }
10352 spin_unlock(&block_group->lock);
10353
10354 /* We don't want to force the issue, only flip if it's ok. */
10355 ret = inc_block_group_ro(block_group, 0);
10356 up_write(&space_info->groups_sem);
10357 if (ret < 0) {
10358 ret = 0;
10359 goto next;
10360 }
10361
10362 /*
10363 * Want to do this before we do anything else so we can recover
10364 * properly if we fail to join the transaction.
10365 */
10366 trans = btrfs_start_trans_remove_block_group(fs_info,
10367 block_group->key.objectid);
10368 if (IS_ERR(trans)) {
10369 btrfs_dec_block_group_ro(root, block_group);
10370 ret = PTR_ERR(trans);
10371 goto next;
10372 }
10373
10374 /*
10375 * We could have pending pinned extents for this block group,
10376 * just delete them, we don't care about them anymore.
10377 */
10378 start = block_group->key.objectid;
10379 end = start + block_group->key.offset - 1;
10380 /*
10381 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10382 * btrfs_finish_extent_commit(). If we are at transaction N,
10383 * another task might be running finish_extent_commit() for the
10384 * previous transaction N - 1, and have seen a range belonging
10385 * to the block group in freed_extents[] before we were able to
10386 * clear the whole block group range from freed_extents[]. This
10387 * means that task can lookup for the block group after we
10388 * unpinned it from freed_extents[] and removed it, leading to
10389 * a BUG_ON() at btrfs_unpin_extent_range().
10390 */
10391 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10392 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10393 EXTENT_DIRTY, GFP_NOFS);
10394 if (ret) {
10395 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10396 btrfs_dec_block_group_ro(root, block_group);
10397 goto end_trans;
10398 }
10399 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10400 EXTENT_DIRTY, GFP_NOFS);
10401 if (ret) {
10402 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10403 btrfs_dec_block_group_ro(root, block_group);
10404 goto end_trans;
10405 }
10406 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10407
10408 /* Reset pinned so btrfs_put_block_group doesn't complain */
10409 spin_lock(&space_info->lock);
10410 spin_lock(&block_group->lock);
10411
10412 space_info->bytes_pinned -= block_group->pinned;
10413 space_info->bytes_readonly += block_group->pinned;
10414 percpu_counter_add(&space_info->total_bytes_pinned,
10415 -block_group->pinned);
10416 block_group->pinned = 0;
10417
10418 spin_unlock(&block_group->lock);
10419 spin_unlock(&space_info->lock);
10420
10421 /* DISCARD can flip during remount */
10422 trimming = btrfs_test_opt(root, DISCARD);
10423
10424 /* Implicit trim during transaction commit. */
10425 if (trimming)
10426 btrfs_get_block_group_trimming(block_group);
10427
10428 /*
10429 * Btrfs_remove_chunk will abort the transaction if things go
10430 * horribly wrong.
10431 */
10432 ret = btrfs_remove_chunk(trans, root,
10433 block_group->key.objectid);
10434
10435 if (ret) {
10436 if (trimming)
10437 btrfs_put_block_group_trimming(block_group);
10438 goto end_trans;
10439 }
10440
10441 /*
10442 * If we're not mounted with -odiscard, we can just forget
10443 * about this block group. Otherwise we'll need to wait
10444 * until transaction commit to do the actual discard.
10445 */
10446 if (trimming) {
10447 WARN_ON(!list_empty(&block_group->bg_list));
10448 spin_lock(&trans->transaction->deleted_bgs_lock);
10449 list_move(&block_group->bg_list,
10450 &trans->transaction->deleted_bgs);
10451 spin_unlock(&trans->transaction->deleted_bgs_lock);
10452 btrfs_get_block_group(block_group);
10453 }
10454 end_trans:
10455 btrfs_end_transaction(trans, root);
10456 next:
10457 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10458 btrfs_put_block_group(block_group);
10459 spin_lock(&fs_info->unused_bgs_lock);
10460 }
10461 spin_unlock(&fs_info->unused_bgs_lock);
10462 }
10463
10464 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10465 {
10466 struct btrfs_space_info *space_info;
10467 struct btrfs_super_block *disk_super;
10468 u64 features;
10469 u64 flags;
10470 int mixed = 0;
10471 int ret;
10472
10473 disk_super = fs_info->super_copy;
10474 if (!btrfs_super_root(disk_super))
10475 return 1;
10476
10477 features = btrfs_super_incompat_flags(disk_super);
10478 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10479 mixed = 1;
10480
10481 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10482 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10483 if (ret)
10484 goto out;
10485
10486 if (mixed) {
10487 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10488 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10489 } else {
10490 flags = BTRFS_BLOCK_GROUP_METADATA;
10491 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10492 if (ret)
10493 goto out;
10494
10495 flags = BTRFS_BLOCK_GROUP_DATA;
10496 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10497 }
10498 out:
10499 return ret;
10500 }
10501
10502 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10503 {
10504 return unpin_extent_range(root, start, end, false);
10505 }
10506
10507 /*
10508 * It used to be that old block groups would be left around forever.
10509 * Iterating over them would be enough to trim unused space. Since we
10510 * now automatically remove them, we also need to iterate over unallocated
10511 * space.
10512 *
10513 * We don't want a transaction for this since the discard may take a
10514 * substantial amount of time. We don't require that a transaction be
10515 * running, but we do need to take a running transaction into account
10516 * to ensure that we're not discarding chunks that were released in
10517 * the current transaction.
10518 *
10519 * Holding the chunks lock will prevent other threads from allocating
10520 * or releasing chunks, but it won't prevent a running transaction
10521 * from committing and releasing the memory that the pending chunks
10522 * list head uses. For that, we need to take a reference to the
10523 * transaction.
10524 */
10525 static int btrfs_trim_free_extents(struct btrfs_device *device,
10526 u64 minlen, u64 *trimmed)
10527 {
10528 u64 start = 0, len = 0;
10529 int ret;
10530
10531 *trimmed = 0;
10532
10533 /* Not writeable = nothing to do. */
10534 if (!device->writeable)
10535 return 0;
10536
10537 /* No free space = nothing to do. */
10538 if (device->total_bytes <= device->bytes_used)
10539 return 0;
10540
10541 ret = 0;
10542
10543 while (1) {
10544 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10545 struct btrfs_transaction *trans;
10546 u64 bytes;
10547
10548 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10549 if (ret)
10550 return ret;
10551
10552 down_read(&fs_info->commit_root_sem);
10553
10554 spin_lock(&fs_info->trans_lock);
10555 trans = fs_info->running_transaction;
10556 if (trans)
10557 atomic_inc(&trans->use_count);
10558 spin_unlock(&fs_info->trans_lock);
10559
10560 ret = find_free_dev_extent_start(trans, device, minlen, start,
10561 &start, &len);
10562 if (trans)
10563 btrfs_put_transaction(trans);
10564
10565 if (ret) {
10566 up_read(&fs_info->commit_root_sem);
10567 mutex_unlock(&fs_info->chunk_mutex);
10568 if (ret == -ENOSPC)
10569 ret = 0;
10570 break;
10571 }
10572
10573 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10574 up_read(&fs_info->commit_root_sem);
10575 mutex_unlock(&fs_info->chunk_mutex);
10576
10577 if (ret)
10578 break;
10579
10580 start += len;
10581 *trimmed += bytes;
10582
10583 if (fatal_signal_pending(current)) {
10584 ret = -ERESTARTSYS;
10585 break;
10586 }
10587
10588 cond_resched();
10589 }
10590
10591 return ret;
10592 }
10593
10594 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10595 {
10596 struct btrfs_fs_info *fs_info = root->fs_info;
10597 struct btrfs_block_group_cache *cache = NULL;
10598 struct btrfs_device *device;
10599 struct list_head *devices;
10600 u64 group_trimmed;
10601 u64 start;
10602 u64 end;
10603 u64 trimmed = 0;
10604 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10605 int ret = 0;
10606
10607 /*
10608 * try to trim all FS space, our block group may start from non-zero.
10609 */
10610 if (range->len == total_bytes)
10611 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10612 else
10613 cache = btrfs_lookup_block_group(fs_info, range->start);
10614
10615 while (cache) {
10616 if (cache->key.objectid >= (range->start + range->len)) {
10617 btrfs_put_block_group(cache);
10618 break;
10619 }
10620
10621 start = max(range->start, cache->key.objectid);
10622 end = min(range->start + range->len,
10623 cache->key.objectid + cache->key.offset);
10624
10625 if (end - start >= range->minlen) {
10626 if (!block_group_cache_done(cache)) {
10627 ret = cache_block_group(cache, 0);
10628 if (ret) {
10629 btrfs_put_block_group(cache);
10630 break;
10631 }
10632 ret = wait_block_group_cache_done(cache);
10633 if (ret) {
10634 btrfs_put_block_group(cache);
10635 break;
10636 }
10637 }
10638 ret = btrfs_trim_block_group(cache,
10639 &group_trimmed,
10640 start,
10641 end,
10642 range->minlen);
10643
10644 trimmed += group_trimmed;
10645 if (ret) {
10646 btrfs_put_block_group(cache);
10647 break;
10648 }
10649 }
10650
10651 cache = next_block_group(fs_info->tree_root, cache);
10652 }
10653
10654 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10655 devices = &root->fs_info->fs_devices->alloc_list;
10656 list_for_each_entry(device, devices, dev_alloc_list) {
10657 ret = btrfs_trim_free_extents(device, range->minlen,
10658 &group_trimmed);
10659 if (ret)
10660 break;
10661
10662 trimmed += group_trimmed;
10663 }
10664 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10665
10666 range->len = trimmed;
10667 return ret;
10668 }
10669
10670 /*
10671 * btrfs_{start,end}_write_no_snapshoting() are similar to
10672 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10673 * data into the page cache through nocow before the subvolume is snapshoted,
10674 * but flush the data into disk after the snapshot creation, or to prevent
10675 * operations while snapshoting is ongoing and that cause the snapshot to be
10676 * inconsistent (writes followed by expanding truncates for example).
10677 */
10678 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10679 {
10680 percpu_counter_dec(&root->subv_writers->counter);
10681 /*
10682 * Make sure counter is updated before we wake up waiters.
10683 */
10684 smp_mb();
10685 if (waitqueue_active(&root->subv_writers->wait))
10686 wake_up(&root->subv_writers->wait);
10687 }
10688
10689 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10690 {
10691 if (atomic_read(&root->will_be_snapshoted))
10692 return 0;
10693
10694 percpu_counter_inc(&root->subv_writers->counter);
10695 /*
10696 * Make sure counter is updated before we check for snapshot creation.
10697 */
10698 smp_mb();
10699 if (atomic_read(&root->will_be_snapshoted)) {
10700 btrfs_end_write_no_snapshoting(root);
10701 return 0;
10702 }
10703 return 1;
10704 }
This page took 0.612932 seconds and 5 git commands to generate.