Btrfs: account for the correct number of extents for delalloc reservations
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 btrfs_delayed_ref_unlock(locked_ref);
2542 locked_ref = NULL;
2543 }
2544 btrfs_put_delayed_ref(ref);
2545 count++;
2546 cond_resched();
2547 }
2548
2549 /*
2550 * We don't want to include ref heads since we can have empty ref heads
2551 * and those will drastically skew our runtime down since we just do
2552 * accounting, no actual extent tree updates.
2553 */
2554 if (actual_count > 0) {
2555 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2556 u64 avg;
2557
2558 /*
2559 * We weigh the current average higher than our current runtime
2560 * to avoid large swings in the average.
2561 */
2562 spin_lock(&delayed_refs->lock);
2563 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2564 avg = div64_u64(avg, 4);
2565 fs_info->avg_delayed_ref_runtime = avg;
2566 spin_unlock(&delayed_refs->lock);
2567 }
2568 return 0;
2569 }
2570
2571 #ifdef SCRAMBLE_DELAYED_REFS
2572 /*
2573 * Normally delayed refs get processed in ascending bytenr order. This
2574 * correlates in most cases to the order added. To expose dependencies on this
2575 * order, we start to process the tree in the middle instead of the beginning
2576 */
2577 static u64 find_middle(struct rb_root *root)
2578 {
2579 struct rb_node *n = root->rb_node;
2580 struct btrfs_delayed_ref_node *entry;
2581 int alt = 1;
2582 u64 middle;
2583 u64 first = 0, last = 0;
2584
2585 n = rb_first(root);
2586 if (n) {
2587 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2588 first = entry->bytenr;
2589 }
2590 n = rb_last(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 last = entry->bytenr;
2594 }
2595 n = root->rb_node;
2596
2597 while (n) {
2598 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2599 WARN_ON(!entry->in_tree);
2600
2601 middle = entry->bytenr;
2602
2603 if (alt)
2604 n = n->rb_left;
2605 else
2606 n = n->rb_right;
2607
2608 alt = 1 - alt;
2609 }
2610 return middle;
2611 }
2612 #endif
2613
2614 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2615 {
2616 u64 num_bytes;
2617
2618 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2619 sizeof(struct btrfs_extent_inline_ref));
2620 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2621 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2622
2623 /*
2624 * We don't ever fill up leaves all the way so multiply by 2 just to be
2625 * closer to what we're really going to want to ouse.
2626 */
2627 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2628 }
2629
2630 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2631 struct btrfs_root *root)
2632 {
2633 struct btrfs_block_rsv *global_rsv;
2634 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2635 u64 num_bytes;
2636 int ret = 0;
2637
2638 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2639 num_heads = heads_to_leaves(root, num_heads);
2640 if (num_heads > 1)
2641 num_bytes += (num_heads - 1) * root->nodesize;
2642 num_bytes <<= 1;
2643 global_rsv = &root->fs_info->global_block_rsv;
2644
2645 /*
2646 * If we can't allocate any more chunks lets make sure we have _lots_ of
2647 * wiggle room since running delayed refs can create more delayed refs.
2648 */
2649 if (global_rsv->space_info->full)
2650 num_bytes <<= 1;
2651
2652 spin_lock(&global_rsv->lock);
2653 if (global_rsv->reserved <= num_bytes)
2654 ret = 1;
2655 spin_unlock(&global_rsv->lock);
2656 return ret;
2657 }
2658
2659 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2660 struct btrfs_root *root)
2661 {
2662 struct btrfs_fs_info *fs_info = root->fs_info;
2663 u64 num_entries =
2664 atomic_read(&trans->transaction->delayed_refs.num_entries);
2665 u64 avg_runtime;
2666 u64 val;
2667
2668 smp_mb();
2669 avg_runtime = fs_info->avg_delayed_ref_runtime;
2670 val = num_entries * avg_runtime;
2671 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2672 return 1;
2673 if (val >= NSEC_PER_SEC / 2)
2674 return 2;
2675
2676 return btrfs_check_space_for_delayed_refs(trans, root);
2677 }
2678
2679 struct async_delayed_refs {
2680 struct btrfs_root *root;
2681 int count;
2682 int error;
2683 int sync;
2684 struct completion wait;
2685 struct btrfs_work work;
2686 };
2687
2688 static void delayed_ref_async_start(struct btrfs_work *work)
2689 {
2690 struct async_delayed_refs *async;
2691 struct btrfs_trans_handle *trans;
2692 int ret;
2693
2694 async = container_of(work, struct async_delayed_refs, work);
2695
2696 trans = btrfs_join_transaction(async->root);
2697 if (IS_ERR(trans)) {
2698 async->error = PTR_ERR(trans);
2699 goto done;
2700 }
2701
2702 /*
2703 * trans->sync means that when we call end_transaciton, we won't
2704 * wait on delayed refs
2705 */
2706 trans->sync = true;
2707 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2708 if (ret)
2709 async->error = ret;
2710
2711 ret = btrfs_end_transaction(trans, async->root);
2712 if (ret && !async->error)
2713 async->error = ret;
2714 done:
2715 if (async->sync)
2716 complete(&async->wait);
2717 else
2718 kfree(async);
2719 }
2720
2721 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2722 unsigned long count, int wait)
2723 {
2724 struct async_delayed_refs *async;
2725 int ret;
2726
2727 async = kmalloc(sizeof(*async), GFP_NOFS);
2728 if (!async)
2729 return -ENOMEM;
2730
2731 async->root = root->fs_info->tree_root;
2732 async->count = count;
2733 async->error = 0;
2734 if (wait)
2735 async->sync = 1;
2736 else
2737 async->sync = 0;
2738 init_completion(&async->wait);
2739
2740 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2741 delayed_ref_async_start, NULL, NULL);
2742
2743 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2744
2745 if (wait) {
2746 wait_for_completion(&async->wait);
2747 ret = async->error;
2748 kfree(async);
2749 return ret;
2750 }
2751 return 0;
2752 }
2753
2754 /*
2755 * this starts processing the delayed reference count updates and
2756 * extent insertions we have queued up so far. count can be
2757 * 0, which means to process everything in the tree at the start
2758 * of the run (but not newly added entries), or it can be some target
2759 * number you'd like to process.
2760 *
2761 * Returns 0 on success or if called with an aborted transaction
2762 * Returns <0 on error and aborts the transaction
2763 */
2764 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *root, unsigned long count)
2766 {
2767 struct rb_node *node;
2768 struct btrfs_delayed_ref_root *delayed_refs;
2769 struct btrfs_delayed_ref_head *head;
2770 int ret;
2771 int run_all = count == (unsigned long)-1;
2772
2773 /* We'll clean this up in btrfs_cleanup_transaction */
2774 if (trans->aborted)
2775 return 0;
2776
2777 if (root == root->fs_info->extent_root)
2778 root = root->fs_info->tree_root;
2779
2780 delayed_refs = &trans->transaction->delayed_refs;
2781 if (count == 0)
2782 count = atomic_read(&delayed_refs->num_entries) * 2;
2783
2784 again:
2785 #ifdef SCRAMBLE_DELAYED_REFS
2786 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2787 #endif
2788 ret = __btrfs_run_delayed_refs(trans, root, count);
2789 if (ret < 0) {
2790 btrfs_abort_transaction(trans, root, ret);
2791 return ret;
2792 }
2793
2794 if (run_all) {
2795 if (!list_empty(&trans->new_bgs))
2796 btrfs_create_pending_block_groups(trans, root);
2797
2798 spin_lock(&delayed_refs->lock);
2799 node = rb_first(&delayed_refs->href_root);
2800 if (!node) {
2801 spin_unlock(&delayed_refs->lock);
2802 goto out;
2803 }
2804 count = (unsigned long)-1;
2805
2806 while (node) {
2807 head = rb_entry(node, struct btrfs_delayed_ref_head,
2808 href_node);
2809 if (btrfs_delayed_ref_is_head(&head->node)) {
2810 struct btrfs_delayed_ref_node *ref;
2811
2812 ref = &head->node;
2813 atomic_inc(&ref->refs);
2814
2815 spin_unlock(&delayed_refs->lock);
2816 /*
2817 * Mutex was contended, block until it's
2818 * released and try again
2819 */
2820 mutex_lock(&head->mutex);
2821 mutex_unlock(&head->mutex);
2822
2823 btrfs_put_delayed_ref(ref);
2824 cond_resched();
2825 goto again;
2826 } else {
2827 WARN_ON(1);
2828 }
2829 node = rb_next(node);
2830 }
2831 spin_unlock(&delayed_refs->lock);
2832 cond_resched();
2833 goto again;
2834 }
2835 out:
2836 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2837 if (ret)
2838 return ret;
2839 assert_qgroups_uptodate(trans);
2840 return 0;
2841 }
2842
2843 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *root,
2845 u64 bytenr, u64 num_bytes, u64 flags,
2846 int level, int is_data)
2847 {
2848 struct btrfs_delayed_extent_op *extent_op;
2849 int ret;
2850
2851 extent_op = btrfs_alloc_delayed_extent_op();
2852 if (!extent_op)
2853 return -ENOMEM;
2854
2855 extent_op->flags_to_set = flags;
2856 extent_op->update_flags = 1;
2857 extent_op->update_key = 0;
2858 extent_op->is_data = is_data ? 1 : 0;
2859 extent_op->level = level;
2860
2861 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2862 num_bytes, extent_op);
2863 if (ret)
2864 btrfs_free_delayed_extent_op(extent_op);
2865 return ret;
2866 }
2867
2868 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2869 struct btrfs_root *root,
2870 struct btrfs_path *path,
2871 u64 objectid, u64 offset, u64 bytenr)
2872 {
2873 struct btrfs_delayed_ref_head *head;
2874 struct btrfs_delayed_ref_node *ref;
2875 struct btrfs_delayed_data_ref *data_ref;
2876 struct btrfs_delayed_ref_root *delayed_refs;
2877 struct rb_node *node;
2878 int ret = 0;
2879
2880 delayed_refs = &trans->transaction->delayed_refs;
2881 spin_lock(&delayed_refs->lock);
2882 head = btrfs_find_delayed_ref_head(trans, bytenr);
2883 if (!head) {
2884 spin_unlock(&delayed_refs->lock);
2885 return 0;
2886 }
2887
2888 if (!mutex_trylock(&head->mutex)) {
2889 atomic_inc(&head->node.refs);
2890 spin_unlock(&delayed_refs->lock);
2891
2892 btrfs_release_path(path);
2893
2894 /*
2895 * Mutex was contended, block until it's released and let
2896 * caller try again
2897 */
2898 mutex_lock(&head->mutex);
2899 mutex_unlock(&head->mutex);
2900 btrfs_put_delayed_ref(&head->node);
2901 return -EAGAIN;
2902 }
2903 spin_unlock(&delayed_refs->lock);
2904
2905 spin_lock(&head->lock);
2906 node = rb_first(&head->ref_root);
2907 while (node) {
2908 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2909 node = rb_next(node);
2910
2911 /* If it's a shared ref we know a cross reference exists */
2912 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2913 ret = 1;
2914 break;
2915 }
2916
2917 data_ref = btrfs_delayed_node_to_data_ref(ref);
2918
2919 /*
2920 * If our ref doesn't match the one we're currently looking at
2921 * then we have a cross reference.
2922 */
2923 if (data_ref->root != root->root_key.objectid ||
2924 data_ref->objectid != objectid ||
2925 data_ref->offset != offset) {
2926 ret = 1;
2927 break;
2928 }
2929 }
2930 spin_unlock(&head->lock);
2931 mutex_unlock(&head->mutex);
2932 return ret;
2933 }
2934
2935 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2936 struct btrfs_root *root,
2937 struct btrfs_path *path,
2938 u64 objectid, u64 offset, u64 bytenr)
2939 {
2940 struct btrfs_root *extent_root = root->fs_info->extent_root;
2941 struct extent_buffer *leaf;
2942 struct btrfs_extent_data_ref *ref;
2943 struct btrfs_extent_inline_ref *iref;
2944 struct btrfs_extent_item *ei;
2945 struct btrfs_key key;
2946 u32 item_size;
2947 int ret;
2948
2949 key.objectid = bytenr;
2950 key.offset = (u64)-1;
2951 key.type = BTRFS_EXTENT_ITEM_KEY;
2952
2953 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2954 if (ret < 0)
2955 goto out;
2956 BUG_ON(ret == 0); /* Corruption */
2957
2958 ret = -ENOENT;
2959 if (path->slots[0] == 0)
2960 goto out;
2961
2962 path->slots[0]--;
2963 leaf = path->nodes[0];
2964 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2965
2966 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2967 goto out;
2968
2969 ret = 1;
2970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2971 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2972 if (item_size < sizeof(*ei)) {
2973 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2974 goto out;
2975 }
2976 #endif
2977 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2978
2979 if (item_size != sizeof(*ei) +
2980 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2981 goto out;
2982
2983 if (btrfs_extent_generation(leaf, ei) <=
2984 btrfs_root_last_snapshot(&root->root_item))
2985 goto out;
2986
2987 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2988 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2989 BTRFS_EXTENT_DATA_REF_KEY)
2990 goto out;
2991
2992 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2993 if (btrfs_extent_refs(leaf, ei) !=
2994 btrfs_extent_data_ref_count(leaf, ref) ||
2995 btrfs_extent_data_ref_root(leaf, ref) !=
2996 root->root_key.objectid ||
2997 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2998 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2999 goto out;
3000
3001 ret = 0;
3002 out:
3003 return ret;
3004 }
3005
3006 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3007 struct btrfs_root *root,
3008 u64 objectid, u64 offset, u64 bytenr)
3009 {
3010 struct btrfs_path *path;
3011 int ret;
3012 int ret2;
3013
3014 path = btrfs_alloc_path();
3015 if (!path)
3016 return -ENOENT;
3017
3018 do {
3019 ret = check_committed_ref(trans, root, path, objectid,
3020 offset, bytenr);
3021 if (ret && ret != -ENOENT)
3022 goto out;
3023
3024 ret2 = check_delayed_ref(trans, root, path, objectid,
3025 offset, bytenr);
3026 } while (ret2 == -EAGAIN);
3027
3028 if (ret2 && ret2 != -ENOENT) {
3029 ret = ret2;
3030 goto out;
3031 }
3032
3033 if (ret != -ENOENT || ret2 != -ENOENT)
3034 ret = 0;
3035 out:
3036 btrfs_free_path(path);
3037 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3038 WARN_ON(ret > 0);
3039 return ret;
3040 }
3041
3042 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3043 struct btrfs_root *root,
3044 struct extent_buffer *buf,
3045 int full_backref, int inc)
3046 {
3047 u64 bytenr;
3048 u64 num_bytes;
3049 u64 parent;
3050 u64 ref_root;
3051 u32 nritems;
3052 struct btrfs_key key;
3053 struct btrfs_file_extent_item *fi;
3054 int i;
3055 int level;
3056 int ret = 0;
3057 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3058 u64, u64, u64, u64, u64, u64, int);
3059
3060
3061 if (btrfs_test_is_dummy_root(root))
3062 return 0;
3063
3064 ref_root = btrfs_header_owner(buf);
3065 nritems = btrfs_header_nritems(buf);
3066 level = btrfs_header_level(buf);
3067
3068 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3069 return 0;
3070
3071 if (inc)
3072 process_func = btrfs_inc_extent_ref;
3073 else
3074 process_func = btrfs_free_extent;
3075
3076 if (full_backref)
3077 parent = buf->start;
3078 else
3079 parent = 0;
3080
3081 for (i = 0; i < nritems; i++) {
3082 if (level == 0) {
3083 btrfs_item_key_to_cpu(buf, &key, i);
3084 if (key.type != BTRFS_EXTENT_DATA_KEY)
3085 continue;
3086 fi = btrfs_item_ptr(buf, i,
3087 struct btrfs_file_extent_item);
3088 if (btrfs_file_extent_type(buf, fi) ==
3089 BTRFS_FILE_EXTENT_INLINE)
3090 continue;
3091 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3092 if (bytenr == 0)
3093 continue;
3094
3095 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3096 key.offset -= btrfs_file_extent_offset(buf, fi);
3097 ret = process_func(trans, root, bytenr, num_bytes,
3098 parent, ref_root, key.objectid,
3099 key.offset, 1);
3100 if (ret)
3101 goto fail;
3102 } else {
3103 bytenr = btrfs_node_blockptr(buf, i);
3104 num_bytes = root->nodesize;
3105 ret = process_func(trans, root, bytenr, num_bytes,
3106 parent, ref_root, level - 1, 0,
3107 1);
3108 if (ret)
3109 goto fail;
3110 }
3111 }
3112 return 0;
3113 fail:
3114 return ret;
3115 }
3116
3117 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3118 struct extent_buffer *buf, int full_backref)
3119 {
3120 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3121 }
3122
3123 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3124 struct extent_buffer *buf, int full_backref)
3125 {
3126 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3127 }
3128
3129 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root,
3131 struct btrfs_path *path,
3132 struct btrfs_block_group_cache *cache)
3133 {
3134 int ret;
3135 struct btrfs_root *extent_root = root->fs_info->extent_root;
3136 unsigned long bi;
3137 struct extent_buffer *leaf;
3138
3139 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3140 if (ret) {
3141 if (ret > 0)
3142 ret = -ENOENT;
3143 goto fail;
3144 }
3145
3146 leaf = path->nodes[0];
3147 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3148 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3149 btrfs_mark_buffer_dirty(leaf);
3150 btrfs_release_path(path);
3151 fail:
3152 if (ret)
3153 btrfs_abort_transaction(trans, root, ret);
3154 return ret;
3155
3156 }
3157
3158 static struct btrfs_block_group_cache *
3159 next_block_group(struct btrfs_root *root,
3160 struct btrfs_block_group_cache *cache)
3161 {
3162 struct rb_node *node;
3163
3164 spin_lock(&root->fs_info->block_group_cache_lock);
3165
3166 /* If our block group was removed, we need a full search. */
3167 if (RB_EMPTY_NODE(&cache->cache_node)) {
3168 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3169
3170 spin_unlock(&root->fs_info->block_group_cache_lock);
3171 btrfs_put_block_group(cache);
3172 cache = btrfs_lookup_first_block_group(root->fs_info,
3173 next_bytenr);
3174 return cache;
3175 }
3176 node = rb_next(&cache->cache_node);
3177 btrfs_put_block_group(cache);
3178 if (node) {
3179 cache = rb_entry(node, struct btrfs_block_group_cache,
3180 cache_node);
3181 btrfs_get_block_group(cache);
3182 } else
3183 cache = NULL;
3184 spin_unlock(&root->fs_info->block_group_cache_lock);
3185 return cache;
3186 }
3187
3188 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3189 struct btrfs_trans_handle *trans,
3190 struct btrfs_path *path)
3191 {
3192 struct btrfs_root *root = block_group->fs_info->tree_root;
3193 struct inode *inode = NULL;
3194 u64 alloc_hint = 0;
3195 int dcs = BTRFS_DC_ERROR;
3196 int num_pages = 0;
3197 int retries = 0;
3198 int ret = 0;
3199
3200 /*
3201 * If this block group is smaller than 100 megs don't bother caching the
3202 * block group.
3203 */
3204 if (block_group->key.offset < (100 * 1024 * 1024)) {
3205 spin_lock(&block_group->lock);
3206 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3207 spin_unlock(&block_group->lock);
3208 return 0;
3209 }
3210
3211 if (trans->aborted)
3212 return 0;
3213 again:
3214 inode = lookup_free_space_inode(root, block_group, path);
3215 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3216 ret = PTR_ERR(inode);
3217 btrfs_release_path(path);
3218 goto out;
3219 }
3220
3221 if (IS_ERR(inode)) {
3222 BUG_ON(retries);
3223 retries++;
3224
3225 if (block_group->ro)
3226 goto out_free;
3227
3228 ret = create_free_space_inode(root, trans, block_group, path);
3229 if (ret)
3230 goto out_free;
3231 goto again;
3232 }
3233
3234 /* We've already setup this transaction, go ahead and exit */
3235 if (block_group->cache_generation == trans->transid &&
3236 i_size_read(inode)) {
3237 dcs = BTRFS_DC_SETUP;
3238 goto out_put;
3239 }
3240
3241 /*
3242 * We want to set the generation to 0, that way if anything goes wrong
3243 * from here on out we know not to trust this cache when we load up next
3244 * time.
3245 */
3246 BTRFS_I(inode)->generation = 0;
3247 ret = btrfs_update_inode(trans, root, inode);
3248 if (ret) {
3249 /*
3250 * So theoretically we could recover from this, simply set the
3251 * super cache generation to 0 so we know to invalidate the
3252 * cache, but then we'd have to keep track of the block groups
3253 * that fail this way so we know we _have_ to reset this cache
3254 * before the next commit or risk reading stale cache. So to
3255 * limit our exposure to horrible edge cases lets just abort the
3256 * transaction, this only happens in really bad situations
3257 * anyway.
3258 */
3259 btrfs_abort_transaction(trans, root, ret);
3260 goto out_put;
3261 }
3262 WARN_ON(ret);
3263
3264 if (i_size_read(inode) > 0) {
3265 ret = btrfs_check_trunc_cache_free_space(root,
3266 &root->fs_info->global_block_rsv);
3267 if (ret)
3268 goto out_put;
3269
3270 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3271 if (ret)
3272 goto out_put;
3273 }
3274
3275 spin_lock(&block_group->lock);
3276 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3277 !btrfs_test_opt(root, SPACE_CACHE) ||
3278 block_group->delalloc_bytes) {
3279 /*
3280 * don't bother trying to write stuff out _if_
3281 * a) we're not cached,
3282 * b) we're with nospace_cache mount option.
3283 */
3284 dcs = BTRFS_DC_WRITTEN;
3285 spin_unlock(&block_group->lock);
3286 goto out_put;
3287 }
3288 spin_unlock(&block_group->lock);
3289
3290 /*
3291 * Try to preallocate enough space based on how big the block group is.
3292 * Keep in mind this has to include any pinned space which could end up
3293 * taking up quite a bit since it's not folded into the other space
3294 * cache.
3295 */
3296 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3297 if (!num_pages)
3298 num_pages = 1;
3299
3300 num_pages *= 16;
3301 num_pages *= PAGE_CACHE_SIZE;
3302
3303 ret = btrfs_check_data_free_space(inode, num_pages);
3304 if (ret)
3305 goto out_put;
3306
3307 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3308 num_pages, num_pages,
3309 &alloc_hint);
3310 if (!ret)
3311 dcs = BTRFS_DC_SETUP;
3312 btrfs_free_reserved_data_space(inode, num_pages);
3313
3314 out_put:
3315 iput(inode);
3316 out_free:
3317 btrfs_release_path(path);
3318 out:
3319 spin_lock(&block_group->lock);
3320 if (!ret && dcs == BTRFS_DC_SETUP)
3321 block_group->cache_generation = trans->transid;
3322 block_group->disk_cache_state = dcs;
3323 spin_unlock(&block_group->lock);
3324
3325 return ret;
3326 }
3327
3328 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3329 struct btrfs_root *root)
3330 {
3331 struct btrfs_block_group_cache *cache;
3332 struct btrfs_transaction *cur_trans = trans->transaction;
3333 int ret = 0;
3334 struct btrfs_path *path;
3335
3336 if (list_empty(&cur_trans->dirty_bgs))
3337 return 0;
3338
3339 path = btrfs_alloc_path();
3340 if (!path)
3341 return -ENOMEM;
3342
3343 /*
3344 * We don't need the lock here since we are protected by the transaction
3345 * commit. We want to do the cache_save_setup first and then run the
3346 * delayed refs to make sure we have the best chance at doing this all
3347 * in one shot.
3348 */
3349 while (!list_empty(&cur_trans->dirty_bgs)) {
3350 cache = list_first_entry(&cur_trans->dirty_bgs,
3351 struct btrfs_block_group_cache,
3352 dirty_list);
3353 list_del_init(&cache->dirty_list);
3354 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3355 cache_save_setup(cache, trans, path);
3356 if (!ret)
3357 ret = btrfs_run_delayed_refs(trans, root,
3358 (unsigned long) -1);
3359 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP)
3360 btrfs_write_out_cache(root, trans, cache, path);
3361 if (!ret)
3362 ret = write_one_cache_group(trans, root, path, cache);
3363 btrfs_put_block_group(cache);
3364 }
3365
3366 btrfs_free_path(path);
3367 return ret;
3368 }
3369
3370 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3371 {
3372 struct btrfs_block_group_cache *block_group;
3373 int readonly = 0;
3374
3375 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3376 if (!block_group || block_group->ro)
3377 readonly = 1;
3378 if (block_group)
3379 btrfs_put_block_group(block_group);
3380 return readonly;
3381 }
3382
3383 static const char *alloc_name(u64 flags)
3384 {
3385 switch (flags) {
3386 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3387 return "mixed";
3388 case BTRFS_BLOCK_GROUP_METADATA:
3389 return "metadata";
3390 case BTRFS_BLOCK_GROUP_DATA:
3391 return "data";
3392 case BTRFS_BLOCK_GROUP_SYSTEM:
3393 return "system";
3394 default:
3395 WARN_ON(1);
3396 return "invalid-combination";
3397 };
3398 }
3399
3400 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3401 u64 total_bytes, u64 bytes_used,
3402 struct btrfs_space_info **space_info)
3403 {
3404 struct btrfs_space_info *found;
3405 int i;
3406 int factor;
3407 int ret;
3408
3409 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3410 BTRFS_BLOCK_GROUP_RAID10))
3411 factor = 2;
3412 else
3413 factor = 1;
3414
3415 found = __find_space_info(info, flags);
3416 if (found) {
3417 spin_lock(&found->lock);
3418 found->total_bytes += total_bytes;
3419 found->disk_total += total_bytes * factor;
3420 found->bytes_used += bytes_used;
3421 found->disk_used += bytes_used * factor;
3422 found->full = 0;
3423 spin_unlock(&found->lock);
3424 *space_info = found;
3425 return 0;
3426 }
3427 found = kzalloc(sizeof(*found), GFP_NOFS);
3428 if (!found)
3429 return -ENOMEM;
3430
3431 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3432 if (ret) {
3433 kfree(found);
3434 return ret;
3435 }
3436
3437 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3438 INIT_LIST_HEAD(&found->block_groups[i]);
3439 init_rwsem(&found->groups_sem);
3440 spin_lock_init(&found->lock);
3441 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3442 found->total_bytes = total_bytes;
3443 found->disk_total = total_bytes * factor;
3444 found->bytes_used = bytes_used;
3445 found->disk_used = bytes_used * factor;
3446 found->bytes_pinned = 0;
3447 found->bytes_reserved = 0;
3448 found->bytes_readonly = 0;
3449 found->bytes_may_use = 0;
3450 found->full = 0;
3451 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3452 found->chunk_alloc = 0;
3453 found->flush = 0;
3454 init_waitqueue_head(&found->wait);
3455 INIT_LIST_HEAD(&found->ro_bgs);
3456
3457 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3458 info->space_info_kobj, "%s",
3459 alloc_name(found->flags));
3460 if (ret) {
3461 kfree(found);
3462 return ret;
3463 }
3464
3465 *space_info = found;
3466 list_add_rcu(&found->list, &info->space_info);
3467 if (flags & BTRFS_BLOCK_GROUP_DATA)
3468 info->data_sinfo = found;
3469
3470 return ret;
3471 }
3472
3473 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3474 {
3475 u64 extra_flags = chunk_to_extended(flags) &
3476 BTRFS_EXTENDED_PROFILE_MASK;
3477
3478 write_seqlock(&fs_info->profiles_lock);
3479 if (flags & BTRFS_BLOCK_GROUP_DATA)
3480 fs_info->avail_data_alloc_bits |= extra_flags;
3481 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3482 fs_info->avail_metadata_alloc_bits |= extra_flags;
3483 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3484 fs_info->avail_system_alloc_bits |= extra_flags;
3485 write_sequnlock(&fs_info->profiles_lock);
3486 }
3487
3488 /*
3489 * returns target flags in extended format or 0 if restripe for this
3490 * chunk_type is not in progress
3491 *
3492 * should be called with either volume_mutex or balance_lock held
3493 */
3494 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3495 {
3496 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3497 u64 target = 0;
3498
3499 if (!bctl)
3500 return 0;
3501
3502 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3503 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3504 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3505 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3506 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3507 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3508 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3509 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3510 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3511 }
3512
3513 return target;
3514 }
3515
3516 /*
3517 * @flags: available profiles in extended format (see ctree.h)
3518 *
3519 * Returns reduced profile in chunk format. If profile changing is in
3520 * progress (either running or paused) picks the target profile (if it's
3521 * already available), otherwise falls back to plain reducing.
3522 */
3523 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3524 {
3525 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3526 u64 target;
3527 u64 tmp;
3528
3529 /*
3530 * see if restripe for this chunk_type is in progress, if so
3531 * try to reduce to the target profile
3532 */
3533 spin_lock(&root->fs_info->balance_lock);
3534 target = get_restripe_target(root->fs_info, flags);
3535 if (target) {
3536 /* pick target profile only if it's already available */
3537 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3538 spin_unlock(&root->fs_info->balance_lock);
3539 return extended_to_chunk(target);
3540 }
3541 }
3542 spin_unlock(&root->fs_info->balance_lock);
3543
3544 /* First, mask out the RAID levels which aren't possible */
3545 if (num_devices == 1)
3546 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3547 BTRFS_BLOCK_GROUP_RAID5);
3548 if (num_devices < 3)
3549 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3550 if (num_devices < 4)
3551 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3552
3553 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3554 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3555 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3556 flags &= ~tmp;
3557
3558 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3559 tmp = BTRFS_BLOCK_GROUP_RAID6;
3560 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3561 tmp = BTRFS_BLOCK_GROUP_RAID5;
3562 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3563 tmp = BTRFS_BLOCK_GROUP_RAID10;
3564 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3565 tmp = BTRFS_BLOCK_GROUP_RAID1;
3566 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3567 tmp = BTRFS_BLOCK_GROUP_RAID0;
3568
3569 return extended_to_chunk(flags | tmp);
3570 }
3571
3572 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3573 {
3574 unsigned seq;
3575 u64 flags;
3576
3577 do {
3578 flags = orig_flags;
3579 seq = read_seqbegin(&root->fs_info->profiles_lock);
3580
3581 if (flags & BTRFS_BLOCK_GROUP_DATA)
3582 flags |= root->fs_info->avail_data_alloc_bits;
3583 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3584 flags |= root->fs_info->avail_system_alloc_bits;
3585 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3586 flags |= root->fs_info->avail_metadata_alloc_bits;
3587 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3588
3589 return btrfs_reduce_alloc_profile(root, flags);
3590 }
3591
3592 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3593 {
3594 u64 flags;
3595 u64 ret;
3596
3597 if (data)
3598 flags = BTRFS_BLOCK_GROUP_DATA;
3599 else if (root == root->fs_info->chunk_root)
3600 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3601 else
3602 flags = BTRFS_BLOCK_GROUP_METADATA;
3603
3604 ret = get_alloc_profile(root, flags);
3605 return ret;
3606 }
3607
3608 /*
3609 * This will check the space that the inode allocates from to make sure we have
3610 * enough space for bytes.
3611 */
3612 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3613 {
3614 struct btrfs_space_info *data_sinfo;
3615 struct btrfs_root *root = BTRFS_I(inode)->root;
3616 struct btrfs_fs_info *fs_info = root->fs_info;
3617 u64 used;
3618 int ret = 0, committed = 0, alloc_chunk = 1;
3619
3620 /* make sure bytes are sectorsize aligned */
3621 bytes = ALIGN(bytes, root->sectorsize);
3622
3623 if (btrfs_is_free_space_inode(inode)) {
3624 committed = 1;
3625 ASSERT(current->journal_info);
3626 }
3627
3628 data_sinfo = fs_info->data_sinfo;
3629 if (!data_sinfo)
3630 goto alloc;
3631
3632 again:
3633 /* make sure we have enough space to handle the data first */
3634 spin_lock(&data_sinfo->lock);
3635 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3636 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3637 data_sinfo->bytes_may_use;
3638
3639 if (used + bytes > data_sinfo->total_bytes) {
3640 struct btrfs_trans_handle *trans;
3641
3642 /*
3643 * if we don't have enough free bytes in this space then we need
3644 * to alloc a new chunk.
3645 */
3646 if (!data_sinfo->full && alloc_chunk) {
3647 u64 alloc_target;
3648
3649 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3650 spin_unlock(&data_sinfo->lock);
3651 alloc:
3652 alloc_target = btrfs_get_alloc_profile(root, 1);
3653 /*
3654 * It is ugly that we don't call nolock join
3655 * transaction for the free space inode case here.
3656 * But it is safe because we only do the data space
3657 * reservation for the free space cache in the
3658 * transaction context, the common join transaction
3659 * just increase the counter of the current transaction
3660 * handler, doesn't try to acquire the trans_lock of
3661 * the fs.
3662 */
3663 trans = btrfs_join_transaction(root);
3664 if (IS_ERR(trans))
3665 return PTR_ERR(trans);
3666
3667 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3668 alloc_target,
3669 CHUNK_ALLOC_NO_FORCE);
3670 btrfs_end_transaction(trans, root);
3671 if (ret < 0) {
3672 if (ret != -ENOSPC)
3673 return ret;
3674 else
3675 goto commit_trans;
3676 }
3677
3678 if (!data_sinfo)
3679 data_sinfo = fs_info->data_sinfo;
3680
3681 goto again;
3682 }
3683
3684 /*
3685 * If we don't have enough pinned space to deal with this
3686 * allocation don't bother committing the transaction.
3687 */
3688 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3689 bytes) < 0)
3690 committed = 1;
3691 spin_unlock(&data_sinfo->lock);
3692
3693 /* commit the current transaction and try again */
3694 commit_trans:
3695 if (!committed &&
3696 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3697 committed = 1;
3698
3699 trans = btrfs_join_transaction(root);
3700 if (IS_ERR(trans))
3701 return PTR_ERR(trans);
3702 ret = btrfs_commit_transaction(trans, root);
3703 if (ret)
3704 return ret;
3705 goto again;
3706 }
3707
3708 trace_btrfs_space_reservation(root->fs_info,
3709 "space_info:enospc",
3710 data_sinfo->flags, bytes, 1);
3711 return -ENOSPC;
3712 }
3713 data_sinfo->bytes_may_use += bytes;
3714 trace_btrfs_space_reservation(root->fs_info, "space_info",
3715 data_sinfo->flags, bytes, 1);
3716 spin_unlock(&data_sinfo->lock);
3717
3718 return 0;
3719 }
3720
3721 /*
3722 * Called if we need to clear a data reservation for this inode.
3723 */
3724 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3725 {
3726 struct btrfs_root *root = BTRFS_I(inode)->root;
3727 struct btrfs_space_info *data_sinfo;
3728
3729 /* make sure bytes are sectorsize aligned */
3730 bytes = ALIGN(bytes, root->sectorsize);
3731
3732 data_sinfo = root->fs_info->data_sinfo;
3733 spin_lock(&data_sinfo->lock);
3734 WARN_ON(data_sinfo->bytes_may_use < bytes);
3735 data_sinfo->bytes_may_use -= bytes;
3736 trace_btrfs_space_reservation(root->fs_info, "space_info",
3737 data_sinfo->flags, bytes, 0);
3738 spin_unlock(&data_sinfo->lock);
3739 }
3740
3741 static void force_metadata_allocation(struct btrfs_fs_info *info)
3742 {
3743 struct list_head *head = &info->space_info;
3744 struct btrfs_space_info *found;
3745
3746 rcu_read_lock();
3747 list_for_each_entry_rcu(found, head, list) {
3748 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3749 found->force_alloc = CHUNK_ALLOC_FORCE;
3750 }
3751 rcu_read_unlock();
3752 }
3753
3754 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3755 {
3756 return (global->size << 1);
3757 }
3758
3759 static int should_alloc_chunk(struct btrfs_root *root,
3760 struct btrfs_space_info *sinfo, int force)
3761 {
3762 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3763 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3764 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3765 u64 thresh;
3766
3767 if (force == CHUNK_ALLOC_FORCE)
3768 return 1;
3769
3770 /*
3771 * We need to take into account the global rsv because for all intents
3772 * and purposes it's used space. Don't worry about locking the
3773 * global_rsv, it doesn't change except when the transaction commits.
3774 */
3775 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3776 num_allocated += calc_global_rsv_need_space(global_rsv);
3777
3778 /*
3779 * in limited mode, we want to have some free space up to
3780 * about 1% of the FS size.
3781 */
3782 if (force == CHUNK_ALLOC_LIMITED) {
3783 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3784 thresh = max_t(u64, 64 * 1024 * 1024,
3785 div_factor_fine(thresh, 1));
3786
3787 if (num_bytes - num_allocated < thresh)
3788 return 1;
3789 }
3790
3791 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3792 return 0;
3793 return 1;
3794 }
3795
3796 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3797 {
3798 u64 num_dev;
3799
3800 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3801 BTRFS_BLOCK_GROUP_RAID0 |
3802 BTRFS_BLOCK_GROUP_RAID5 |
3803 BTRFS_BLOCK_GROUP_RAID6))
3804 num_dev = root->fs_info->fs_devices->rw_devices;
3805 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3806 num_dev = 2;
3807 else
3808 num_dev = 1; /* DUP or single */
3809
3810 /* metadata for updaing devices and chunk tree */
3811 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3812 }
3813
3814 static void check_system_chunk(struct btrfs_trans_handle *trans,
3815 struct btrfs_root *root, u64 type)
3816 {
3817 struct btrfs_space_info *info;
3818 u64 left;
3819 u64 thresh;
3820
3821 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3822 spin_lock(&info->lock);
3823 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3824 info->bytes_reserved - info->bytes_readonly;
3825 spin_unlock(&info->lock);
3826
3827 thresh = get_system_chunk_thresh(root, type);
3828 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3829 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3830 left, thresh, type);
3831 dump_space_info(info, 0, 0);
3832 }
3833
3834 if (left < thresh) {
3835 u64 flags;
3836
3837 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3838 btrfs_alloc_chunk(trans, root, flags);
3839 }
3840 }
3841
3842 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3843 struct btrfs_root *extent_root, u64 flags, int force)
3844 {
3845 struct btrfs_space_info *space_info;
3846 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3847 int wait_for_alloc = 0;
3848 int ret = 0;
3849
3850 /* Don't re-enter if we're already allocating a chunk */
3851 if (trans->allocating_chunk)
3852 return -ENOSPC;
3853
3854 space_info = __find_space_info(extent_root->fs_info, flags);
3855 if (!space_info) {
3856 ret = update_space_info(extent_root->fs_info, flags,
3857 0, 0, &space_info);
3858 BUG_ON(ret); /* -ENOMEM */
3859 }
3860 BUG_ON(!space_info); /* Logic error */
3861
3862 again:
3863 spin_lock(&space_info->lock);
3864 if (force < space_info->force_alloc)
3865 force = space_info->force_alloc;
3866 if (space_info->full) {
3867 if (should_alloc_chunk(extent_root, space_info, force))
3868 ret = -ENOSPC;
3869 else
3870 ret = 0;
3871 spin_unlock(&space_info->lock);
3872 return ret;
3873 }
3874
3875 if (!should_alloc_chunk(extent_root, space_info, force)) {
3876 spin_unlock(&space_info->lock);
3877 return 0;
3878 } else if (space_info->chunk_alloc) {
3879 wait_for_alloc = 1;
3880 } else {
3881 space_info->chunk_alloc = 1;
3882 }
3883
3884 spin_unlock(&space_info->lock);
3885
3886 mutex_lock(&fs_info->chunk_mutex);
3887
3888 /*
3889 * The chunk_mutex is held throughout the entirety of a chunk
3890 * allocation, so once we've acquired the chunk_mutex we know that the
3891 * other guy is done and we need to recheck and see if we should
3892 * allocate.
3893 */
3894 if (wait_for_alloc) {
3895 mutex_unlock(&fs_info->chunk_mutex);
3896 wait_for_alloc = 0;
3897 goto again;
3898 }
3899
3900 trans->allocating_chunk = true;
3901
3902 /*
3903 * If we have mixed data/metadata chunks we want to make sure we keep
3904 * allocating mixed chunks instead of individual chunks.
3905 */
3906 if (btrfs_mixed_space_info(space_info))
3907 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3908
3909 /*
3910 * if we're doing a data chunk, go ahead and make sure that
3911 * we keep a reasonable number of metadata chunks allocated in the
3912 * FS as well.
3913 */
3914 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3915 fs_info->data_chunk_allocations++;
3916 if (!(fs_info->data_chunk_allocations %
3917 fs_info->metadata_ratio))
3918 force_metadata_allocation(fs_info);
3919 }
3920
3921 /*
3922 * Check if we have enough space in SYSTEM chunk because we may need
3923 * to update devices.
3924 */
3925 check_system_chunk(trans, extent_root, flags);
3926
3927 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3928 trans->allocating_chunk = false;
3929
3930 spin_lock(&space_info->lock);
3931 if (ret < 0 && ret != -ENOSPC)
3932 goto out;
3933 if (ret)
3934 space_info->full = 1;
3935 else
3936 ret = 1;
3937
3938 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3939 out:
3940 space_info->chunk_alloc = 0;
3941 spin_unlock(&space_info->lock);
3942 mutex_unlock(&fs_info->chunk_mutex);
3943 return ret;
3944 }
3945
3946 static int can_overcommit(struct btrfs_root *root,
3947 struct btrfs_space_info *space_info, u64 bytes,
3948 enum btrfs_reserve_flush_enum flush)
3949 {
3950 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3951 u64 profile = btrfs_get_alloc_profile(root, 0);
3952 u64 space_size;
3953 u64 avail;
3954 u64 used;
3955
3956 used = space_info->bytes_used + space_info->bytes_reserved +
3957 space_info->bytes_pinned + space_info->bytes_readonly;
3958
3959 /*
3960 * We only want to allow over committing if we have lots of actual space
3961 * free, but if we don't have enough space to handle the global reserve
3962 * space then we could end up having a real enospc problem when trying
3963 * to allocate a chunk or some other such important allocation.
3964 */
3965 spin_lock(&global_rsv->lock);
3966 space_size = calc_global_rsv_need_space(global_rsv);
3967 spin_unlock(&global_rsv->lock);
3968 if (used + space_size >= space_info->total_bytes)
3969 return 0;
3970
3971 used += space_info->bytes_may_use;
3972
3973 spin_lock(&root->fs_info->free_chunk_lock);
3974 avail = root->fs_info->free_chunk_space;
3975 spin_unlock(&root->fs_info->free_chunk_lock);
3976
3977 /*
3978 * If we have dup, raid1 or raid10 then only half of the free
3979 * space is actually useable. For raid56, the space info used
3980 * doesn't include the parity drive, so we don't have to
3981 * change the math
3982 */
3983 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3984 BTRFS_BLOCK_GROUP_RAID1 |
3985 BTRFS_BLOCK_GROUP_RAID10))
3986 avail >>= 1;
3987
3988 /*
3989 * If we aren't flushing all things, let us overcommit up to
3990 * 1/2th of the space. If we can flush, don't let us overcommit
3991 * too much, let it overcommit up to 1/8 of the space.
3992 */
3993 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3994 avail >>= 3;
3995 else
3996 avail >>= 1;
3997
3998 if (used + bytes < space_info->total_bytes + avail)
3999 return 1;
4000 return 0;
4001 }
4002
4003 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4004 unsigned long nr_pages, int nr_items)
4005 {
4006 struct super_block *sb = root->fs_info->sb;
4007
4008 if (down_read_trylock(&sb->s_umount)) {
4009 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4010 up_read(&sb->s_umount);
4011 } else {
4012 /*
4013 * We needn't worry the filesystem going from r/w to r/o though
4014 * we don't acquire ->s_umount mutex, because the filesystem
4015 * should guarantee the delalloc inodes list be empty after
4016 * the filesystem is readonly(all dirty pages are written to
4017 * the disk).
4018 */
4019 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4020 if (!current->journal_info)
4021 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4022 }
4023 }
4024
4025 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4026 {
4027 u64 bytes;
4028 int nr;
4029
4030 bytes = btrfs_calc_trans_metadata_size(root, 1);
4031 nr = (int)div64_u64(to_reclaim, bytes);
4032 if (!nr)
4033 nr = 1;
4034 return nr;
4035 }
4036
4037 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4038
4039 /*
4040 * shrink metadata reservation for delalloc
4041 */
4042 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4043 bool wait_ordered)
4044 {
4045 struct btrfs_block_rsv *block_rsv;
4046 struct btrfs_space_info *space_info;
4047 struct btrfs_trans_handle *trans;
4048 u64 delalloc_bytes;
4049 u64 max_reclaim;
4050 long time_left;
4051 unsigned long nr_pages;
4052 int loops;
4053 int items;
4054 enum btrfs_reserve_flush_enum flush;
4055
4056 /* Calc the number of the pages we need flush for space reservation */
4057 items = calc_reclaim_items_nr(root, to_reclaim);
4058 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4059
4060 trans = (struct btrfs_trans_handle *)current->journal_info;
4061 block_rsv = &root->fs_info->delalloc_block_rsv;
4062 space_info = block_rsv->space_info;
4063
4064 delalloc_bytes = percpu_counter_sum_positive(
4065 &root->fs_info->delalloc_bytes);
4066 if (delalloc_bytes == 0) {
4067 if (trans)
4068 return;
4069 if (wait_ordered)
4070 btrfs_wait_ordered_roots(root->fs_info, items);
4071 return;
4072 }
4073
4074 loops = 0;
4075 while (delalloc_bytes && loops < 3) {
4076 max_reclaim = min(delalloc_bytes, to_reclaim);
4077 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4078 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4079 /*
4080 * We need to wait for the async pages to actually start before
4081 * we do anything.
4082 */
4083 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4084 if (!max_reclaim)
4085 goto skip_async;
4086
4087 if (max_reclaim <= nr_pages)
4088 max_reclaim = 0;
4089 else
4090 max_reclaim -= nr_pages;
4091
4092 wait_event(root->fs_info->async_submit_wait,
4093 atomic_read(&root->fs_info->async_delalloc_pages) <=
4094 (int)max_reclaim);
4095 skip_async:
4096 if (!trans)
4097 flush = BTRFS_RESERVE_FLUSH_ALL;
4098 else
4099 flush = BTRFS_RESERVE_NO_FLUSH;
4100 spin_lock(&space_info->lock);
4101 if (can_overcommit(root, space_info, orig, flush)) {
4102 spin_unlock(&space_info->lock);
4103 break;
4104 }
4105 spin_unlock(&space_info->lock);
4106
4107 loops++;
4108 if (wait_ordered && !trans) {
4109 btrfs_wait_ordered_roots(root->fs_info, items);
4110 } else {
4111 time_left = schedule_timeout_killable(1);
4112 if (time_left)
4113 break;
4114 }
4115 delalloc_bytes = percpu_counter_sum_positive(
4116 &root->fs_info->delalloc_bytes);
4117 }
4118 }
4119
4120 /**
4121 * maybe_commit_transaction - possibly commit the transaction if its ok to
4122 * @root - the root we're allocating for
4123 * @bytes - the number of bytes we want to reserve
4124 * @force - force the commit
4125 *
4126 * This will check to make sure that committing the transaction will actually
4127 * get us somewhere and then commit the transaction if it does. Otherwise it
4128 * will return -ENOSPC.
4129 */
4130 static int may_commit_transaction(struct btrfs_root *root,
4131 struct btrfs_space_info *space_info,
4132 u64 bytes, int force)
4133 {
4134 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4135 struct btrfs_trans_handle *trans;
4136
4137 trans = (struct btrfs_trans_handle *)current->journal_info;
4138 if (trans)
4139 return -EAGAIN;
4140
4141 if (force)
4142 goto commit;
4143
4144 /* See if there is enough pinned space to make this reservation */
4145 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4146 bytes) >= 0)
4147 goto commit;
4148
4149 /*
4150 * See if there is some space in the delayed insertion reservation for
4151 * this reservation.
4152 */
4153 if (space_info != delayed_rsv->space_info)
4154 return -ENOSPC;
4155
4156 spin_lock(&delayed_rsv->lock);
4157 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4158 bytes - delayed_rsv->size) >= 0) {
4159 spin_unlock(&delayed_rsv->lock);
4160 return -ENOSPC;
4161 }
4162 spin_unlock(&delayed_rsv->lock);
4163
4164 commit:
4165 trans = btrfs_join_transaction(root);
4166 if (IS_ERR(trans))
4167 return -ENOSPC;
4168
4169 return btrfs_commit_transaction(trans, root);
4170 }
4171
4172 enum flush_state {
4173 FLUSH_DELAYED_ITEMS_NR = 1,
4174 FLUSH_DELAYED_ITEMS = 2,
4175 FLUSH_DELALLOC = 3,
4176 FLUSH_DELALLOC_WAIT = 4,
4177 ALLOC_CHUNK = 5,
4178 COMMIT_TRANS = 6,
4179 };
4180
4181 static int flush_space(struct btrfs_root *root,
4182 struct btrfs_space_info *space_info, u64 num_bytes,
4183 u64 orig_bytes, int state)
4184 {
4185 struct btrfs_trans_handle *trans;
4186 int nr;
4187 int ret = 0;
4188
4189 switch (state) {
4190 case FLUSH_DELAYED_ITEMS_NR:
4191 case FLUSH_DELAYED_ITEMS:
4192 if (state == FLUSH_DELAYED_ITEMS_NR)
4193 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4194 else
4195 nr = -1;
4196
4197 trans = btrfs_join_transaction(root);
4198 if (IS_ERR(trans)) {
4199 ret = PTR_ERR(trans);
4200 break;
4201 }
4202 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4203 btrfs_end_transaction(trans, root);
4204 break;
4205 case FLUSH_DELALLOC:
4206 case FLUSH_DELALLOC_WAIT:
4207 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4208 state == FLUSH_DELALLOC_WAIT);
4209 break;
4210 case ALLOC_CHUNK:
4211 trans = btrfs_join_transaction(root);
4212 if (IS_ERR(trans)) {
4213 ret = PTR_ERR(trans);
4214 break;
4215 }
4216 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4217 btrfs_get_alloc_profile(root, 0),
4218 CHUNK_ALLOC_NO_FORCE);
4219 btrfs_end_transaction(trans, root);
4220 if (ret == -ENOSPC)
4221 ret = 0;
4222 break;
4223 case COMMIT_TRANS:
4224 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4225 break;
4226 default:
4227 ret = -ENOSPC;
4228 break;
4229 }
4230
4231 return ret;
4232 }
4233
4234 static inline u64
4235 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4236 struct btrfs_space_info *space_info)
4237 {
4238 u64 used;
4239 u64 expected;
4240 u64 to_reclaim;
4241
4242 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4243 16 * 1024 * 1024);
4244 spin_lock(&space_info->lock);
4245 if (can_overcommit(root, space_info, to_reclaim,
4246 BTRFS_RESERVE_FLUSH_ALL)) {
4247 to_reclaim = 0;
4248 goto out;
4249 }
4250
4251 used = space_info->bytes_used + space_info->bytes_reserved +
4252 space_info->bytes_pinned + space_info->bytes_readonly +
4253 space_info->bytes_may_use;
4254 if (can_overcommit(root, space_info, 1024 * 1024,
4255 BTRFS_RESERVE_FLUSH_ALL))
4256 expected = div_factor_fine(space_info->total_bytes, 95);
4257 else
4258 expected = div_factor_fine(space_info->total_bytes, 90);
4259
4260 if (used > expected)
4261 to_reclaim = used - expected;
4262 else
4263 to_reclaim = 0;
4264 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4265 space_info->bytes_reserved);
4266 out:
4267 spin_unlock(&space_info->lock);
4268
4269 return to_reclaim;
4270 }
4271
4272 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4273 struct btrfs_fs_info *fs_info, u64 used)
4274 {
4275 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4276 !btrfs_fs_closing(fs_info) &&
4277 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4278 }
4279
4280 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4281 struct btrfs_fs_info *fs_info,
4282 int flush_state)
4283 {
4284 u64 used;
4285
4286 spin_lock(&space_info->lock);
4287 /*
4288 * We run out of space and have not got any free space via flush_space,
4289 * so don't bother doing async reclaim.
4290 */
4291 if (flush_state > COMMIT_TRANS && space_info->full) {
4292 spin_unlock(&space_info->lock);
4293 return 0;
4294 }
4295
4296 used = space_info->bytes_used + space_info->bytes_reserved +
4297 space_info->bytes_pinned + space_info->bytes_readonly +
4298 space_info->bytes_may_use;
4299 if (need_do_async_reclaim(space_info, fs_info, used)) {
4300 spin_unlock(&space_info->lock);
4301 return 1;
4302 }
4303 spin_unlock(&space_info->lock);
4304
4305 return 0;
4306 }
4307
4308 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4309 {
4310 struct btrfs_fs_info *fs_info;
4311 struct btrfs_space_info *space_info;
4312 u64 to_reclaim;
4313 int flush_state;
4314
4315 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4316 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4317
4318 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4319 space_info);
4320 if (!to_reclaim)
4321 return;
4322
4323 flush_state = FLUSH_DELAYED_ITEMS_NR;
4324 do {
4325 flush_space(fs_info->fs_root, space_info, to_reclaim,
4326 to_reclaim, flush_state);
4327 flush_state++;
4328 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4329 flush_state))
4330 return;
4331 } while (flush_state <= COMMIT_TRANS);
4332
4333 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4334 queue_work(system_unbound_wq, work);
4335 }
4336
4337 void btrfs_init_async_reclaim_work(struct work_struct *work)
4338 {
4339 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4340 }
4341
4342 /**
4343 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4344 * @root - the root we're allocating for
4345 * @block_rsv - the block_rsv we're allocating for
4346 * @orig_bytes - the number of bytes we want
4347 * @flush - whether or not we can flush to make our reservation
4348 *
4349 * This will reserve orgi_bytes number of bytes from the space info associated
4350 * with the block_rsv. If there is not enough space it will make an attempt to
4351 * flush out space to make room. It will do this by flushing delalloc if
4352 * possible or committing the transaction. If flush is 0 then no attempts to
4353 * regain reservations will be made and this will fail if there is not enough
4354 * space already.
4355 */
4356 static int reserve_metadata_bytes(struct btrfs_root *root,
4357 struct btrfs_block_rsv *block_rsv,
4358 u64 orig_bytes,
4359 enum btrfs_reserve_flush_enum flush)
4360 {
4361 struct btrfs_space_info *space_info = block_rsv->space_info;
4362 u64 used;
4363 u64 num_bytes = orig_bytes;
4364 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4365 int ret = 0;
4366 bool flushing = false;
4367
4368 again:
4369 ret = 0;
4370 spin_lock(&space_info->lock);
4371 /*
4372 * We only want to wait if somebody other than us is flushing and we
4373 * are actually allowed to flush all things.
4374 */
4375 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4376 space_info->flush) {
4377 spin_unlock(&space_info->lock);
4378 /*
4379 * If we have a trans handle we can't wait because the flusher
4380 * may have to commit the transaction, which would mean we would
4381 * deadlock since we are waiting for the flusher to finish, but
4382 * hold the current transaction open.
4383 */
4384 if (current->journal_info)
4385 return -EAGAIN;
4386 ret = wait_event_killable(space_info->wait, !space_info->flush);
4387 /* Must have been killed, return */
4388 if (ret)
4389 return -EINTR;
4390
4391 spin_lock(&space_info->lock);
4392 }
4393
4394 ret = -ENOSPC;
4395 used = space_info->bytes_used + space_info->bytes_reserved +
4396 space_info->bytes_pinned + space_info->bytes_readonly +
4397 space_info->bytes_may_use;
4398
4399 /*
4400 * The idea here is that we've not already over-reserved the block group
4401 * then we can go ahead and save our reservation first and then start
4402 * flushing if we need to. Otherwise if we've already overcommitted
4403 * lets start flushing stuff first and then come back and try to make
4404 * our reservation.
4405 */
4406 if (used <= space_info->total_bytes) {
4407 if (used + orig_bytes <= space_info->total_bytes) {
4408 space_info->bytes_may_use += orig_bytes;
4409 trace_btrfs_space_reservation(root->fs_info,
4410 "space_info", space_info->flags, orig_bytes, 1);
4411 ret = 0;
4412 } else {
4413 /*
4414 * Ok set num_bytes to orig_bytes since we aren't
4415 * overocmmitted, this way we only try and reclaim what
4416 * we need.
4417 */
4418 num_bytes = orig_bytes;
4419 }
4420 } else {
4421 /*
4422 * Ok we're over committed, set num_bytes to the overcommitted
4423 * amount plus the amount of bytes that we need for this
4424 * reservation.
4425 */
4426 num_bytes = used - space_info->total_bytes +
4427 (orig_bytes * 2);
4428 }
4429
4430 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4431 space_info->bytes_may_use += orig_bytes;
4432 trace_btrfs_space_reservation(root->fs_info, "space_info",
4433 space_info->flags, orig_bytes,
4434 1);
4435 ret = 0;
4436 }
4437
4438 /*
4439 * Couldn't make our reservation, save our place so while we're trying
4440 * to reclaim space we can actually use it instead of somebody else
4441 * stealing it from us.
4442 *
4443 * We make the other tasks wait for the flush only when we can flush
4444 * all things.
4445 */
4446 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4447 flushing = true;
4448 space_info->flush = 1;
4449 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4450 used += orig_bytes;
4451 /*
4452 * We will do the space reservation dance during log replay,
4453 * which means we won't have fs_info->fs_root set, so don't do
4454 * the async reclaim as we will panic.
4455 */
4456 if (!root->fs_info->log_root_recovering &&
4457 need_do_async_reclaim(space_info, root->fs_info, used) &&
4458 !work_busy(&root->fs_info->async_reclaim_work))
4459 queue_work(system_unbound_wq,
4460 &root->fs_info->async_reclaim_work);
4461 }
4462 spin_unlock(&space_info->lock);
4463
4464 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4465 goto out;
4466
4467 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4468 flush_state);
4469 flush_state++;
4470
4471 /*
4472 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4473 * would happen. So skip delalloc flush.
4474 */
4475 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4476 (flush_state == FLUSH_DELALLOC ||
4477 flush_state == FLUSH_DELALLOC_WAIT))
4478 flush_state = ALLOC_CHUNK;
4479
4480 if (!ret)
4481 goto again;
4482 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4483 flush_state < COMMIT_TRANS)
4484 goto again;
4485 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4486 flush_state <= COMMIT_TRANS)
4487 goto again;
4488
4489 out:
4490 if (ret == -ENOSPC &&
4491 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4492 struct btrfs_block_rsv *global_rsv =
4493 &root->fs_info->global_block_rsv;
4494
4495 if (block_rsv != global_rsv &&
4496 !block_rsv_use_bytes(global_rsv, orig_bytes))
4497 ret = 0;
4498 }
4499 if (ret == -ENOSPC)
4500 trace_btrfs_space_reservation(root->fs_info,
4501 "space_info:enospc",
4502 space_info->flags, orig_bytes, 1);
4503 if (flushing) {
4504 spin_lock(&space_info->lock);
4505 space_info->flush = 0;
4506 wake_up_all(&space_info->wait);
4507 spin_unlock(&space_info->lock);
4508 }
4509 return ret;
4510 }
4511
4512 static struct btrfs_block_rsv *get_block_rsv(
4513 const struct btrfs_trans_handle *trans,
4514 const struct btrfs_root *root)
4515 {
4516 struct btrfs_block_rsv *block_rsv = NULL;
4517
4518 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4519 block_rsv = trans->block_rsv;
4520
4521 if (root == root->fs_info->csum_root && trans->adding_csums)
4522 block_rsv = trans->block_rsv;
4523
4524 if (root == root->fs_info->uuid_root)
4525 block_rsv = trans->block_rsv;
4526
4527 if (!block_rsv)
4528 block_rsv = root->block_rsv;
4529
4530 if (!block_rsv)
4531 block_rsv = &root->fs_info->empty_block_rsv;
4532
4533 return block_rsv;
4534 }
4535
4536 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4537 u64 num_bytes)
4538 {
4539 int ret = -ENOSPC;
4540 spin_lock(&block_rsv->lock);
4541 if (block_rsv->reserved >= num_bytes) {
4542 block_rsv->reserved -= num_bytes;
4543 if (block_rsv->reserved < block_rsv->size)
4544 block_rsv->full = 0;
4545 ret = 0;
4546 }
4547 spin_unlock(&block_rsv->lock);
4548 return ret;
4549 }
4550
4551 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4552 u64 num_bytes, int update_size)
4553 {
4554 spin_lock(&block_rsv->lock);
4555 block_rsv->reserved += num_bytes;
4556 if (update_size)
4557 block_rsv->size += num_bytes;
4558 else if (block_rsv->reserved >= block_rsv->size)
4559 block_rsv->full = 1;
4560 spin_unlock(&block_rsv->lock);
4561 }
4562
4563 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4564 struct btrfs_block_rsv *dest, u64 num_bytes,
4565 int min_factor)
4566 {
4567 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4568 u64 min_bytes;
4569
4570 if (global_rsv->space_info != dest->space_info)
4571 return -ENOSPC;
4572
4573 spin_lock(&global_rsv->lock);
4574 min_bytes = div_factor(global_rsv->size, min_factor);
4575 if (global_rsv->reserved < min_bytes + num_bytes) {
4576 spin_unlock(&global_rsv->lock);
4577 return -ENOSPC;
4578 }
4579 global_rsv->reserved -= num_bytes;
4580 if (global_rsv->reserved < global_rsv->size)
4581 global_rsv->full = 0;
4582 spin_unlock(&global_rsv->lock);
4583
4584 block_rsv_add_bytes(dest, num_bytes, 1);
4585 return 0;
4586 }
4587
4588 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4589 struct btrfs_block_rsv *block_rsv,
4590 struct btrfs_block_rsv *dest, u64 num_bytes)
4591 {
4592 struct btrfs_space_info *space_info = block_rsv->space_info;
4593
4594 spin_lock(&block_rsv->lock);
4595 if (num_bytes == (u64)-1)
4596 num_bytes = block_rsv->size;
4597 block_rsv->size -= num_bytes;
4598 if (block_rsv->reserved >= block_rsv->size) {
4599 num_bytes = block_rsv->reserved - block_rsv->size;
4600 block_rsv->reserved = block_rsv->size;
4601 block_rsv->full = 1;
4602 } else {
4603 num_bytes = 0;
4604 }
4605 spin_unlock(&block_rsv->lock);
4606
4607 if (num_bytes > 0) {
4608 if (dest) {
4609 spin_lock(&dest->lock);
4610 if (!dest->full) {
4611 u64 bytes_to_add;
4612
4613 bytes_to_add = dest->size - dest->reserved;
4614 bytes_to_add = min(num_bytes, bytes_to_add);
4615 dest->reserved += bytes_to_add;
4616 if (dest->reserved >= dest->size)
4617 dest->full = 1;
4618 num_bytes -= bytes_to_add;
4619 }
4620 spin_unlock(&dest->lock);
4621 }
4622 if (num_bytes) {
4623 spin_lock(&space_info->lock);
4624 space_info->bytes_may_use -= num_bytes;
4625 trace_btrfs_space_reservation(fs_info, "space_info",
4626 space_info->flags, num_bytes, 0);
4627 spin_unlock(&space_info->lock);
4628 }
4629 }
4630 }
4631
4632 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4633 struct btrfs_block_rsv *dst, u64 num_bytes)
4634 {
4635 int ret;
4636
4637 ret = block_rsv_use_bytes(src, num_bytes);
4638 if (ret)
4639 return ret;
4640
4641 block_rsv_add_bytes(dst, num_bytes, 1);
4642 return 0;
4643 }
4644
4645 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4646 {
4647 memset(rsv, 0, sizeof(*rsv));
4648 spin_lock_init(&rsv->lock);
4649 rsv->type = type;
4650 }
4651
4652 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4653 unsigned short type)
4654 {
4655 struct btrfs_block_rsv *block_rsv;
4656 struct btrfs_fs_info *fs_info = root->fs_info;
4657
4658 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4659 if (!block_rsv)
4660 return NULL;
4661
4662 btrfs_init_block_rsv(block_rsv, type);
4663 block_rsv->space_info = __find_space_info(fs_info,
4664 BTRFS_BLOCK_GROUP_METADATA);
4665 return block_rsv;
4666 }
4667
4668 void btrfs_free_block_rsv(struct btrfs_root *root,
4669 struct btrfs_block_rsv *rsv)
4670 {
4671 if (!rsv)
4672 return;
4673 btrfs_block_rsv_release(root, rsv, (u64)-1);
4674 kfree(rsv);
4675 }
4676
4677 int btrfs_block_rsv_add(struct btrfs_root *root,
4678 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4679 enum btrfs_reserve_flush_enum flush)
4680 {
4681 int ret;
4682
4683 if (num_bytes == 0)
4684 return 0;
4685
4686 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4687 if (!ret) {
4688 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4689 return 0;
4690 }
4691
4692 return ret;
4693 }
4694
4695 int btrfs_block_rsv_check(struct btrfs_root *root,
4696 struct btrfs_block_rsv *block_rsv, int min_factor)
4697 {
4698 u64 num_bytes = 0;
4699 int ret = -ENOSPC;
4700
4701 if (!block_rsv)
4702 return 0;
4703
4704 spin_lock(&block_rsv->lock);
4705 num_bytes = div_factor(block_rsv->size, min_factor);
4706 if (block_rsv->reserved >= num_bytes)
4707 ret = 0;
4708 spin_unlock(&block_rsv->lock);
4709
4710 return ret;
4711 }
4712
4713 int btrfs_block_rsv_refill(struct btrfs_root *root,
4714 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4715 enum btrfs_reserve_flush_enum flush)
4716 {
4717 u64 num_bytes = 0;
4718 int ret = -ENOSPC;
4719
4720 if (!block_rsv)
4721 return 0;
4722
4723 spin_lock(&block_rsv->lock);
4724 num_bytes = min_reserved;
4725 if (block_rsv->reserved >= num_bytes)
4726 ret = 0;
4727 else
4728 num_bytes -= block_rsv->reserved;
4729 spin_unlock(&block_rsv->lock);
4730
4731 if (!ret)
4732 return 0;
4733
4734 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4735 if (!ret) {
4736 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4737 return 0;
4738 }
4739
4740 return ret;
4741 }
4742
4743 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4744 struct btrfs_block_rsv *dst_rsv,
4745 u64 num_bytes)
4746 {
4747 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4748 }
4749
4750 void btrfs_block_rsv_release(struct btrfs_root *root,
4751 struct btrfs_block_rsv *block_rsv,
4752 u64 num_bytes)
4753 {
4754 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4755 if (global_rsv == block_rsv ||
4756 block_rsv->space_info != global_rsv->space_info)
4757 global_rsv = NULL;
4758 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4759 num_bytes);
4760 }
4761
4762 /*
4763 * helper to calculate size of global block reservation.
4764 * the desired value is sum of space used by extent tree,
4765 * checksum tree and root tree
4766 */
4767 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4768 {
4769 struct btrfs_space_info *sinfo;
4770 u64 num_bytes;
4771 u64 meta_used;
4772 u64 data_used;
4773 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4774
4775 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4776 spin_lock(&sinfo->lock);
4777 data_used = sinfo->bytes_used;
4778 spin_unlock(&sinfo->lock);
4779
4780 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4781 spin_lock(&sinfo->lock);
4782 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4783 data_used = 0;
4784 meta_used = sinfo->bytes_used;
4785 spin_unlock(&sinfo->lock);
4786
4787 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4788 csum_size * 2;
4789 num_bytes += div64_u64(data_used + meta_used, 50);
4790
4791 if (num_bytes * 3 > meta_used)
4792 num_bytes = div64_u64(meta_used, 3);
4793
4794 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4795 }
4796
4797 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4798 {
4799 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4800 struct btrfs_space_info *sinfo = block_rsv->space_info;
4801 u64 num_bytes;
4802
4803 num_bytes = calc_global_metadata_size(fs_info);
4804
4805 spin_lock(&sinfo->lock);
4806 spin_lock(&block_rsv->lock);
4807
4808 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4809
4810 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4811 sinfo->bytes_reserved + sinfo->bytes_readonly +
4812 sinfo->bytes_may_use;
4813
4814 if (sinfo->total_bytes > num_bytes) {
4815 num_bytes = sinfo->total_bytes - num_bytes;
4816 block_rsv->reserved += num_bytes;
4817 sinfo->bytes_may_use += num_bytes;
4818 trace_btrfs_space_reservation(fs_info, "space_info",
4819 sinfo->flags, num_bytes, 1);
4820 }
4821
4822 if (block_rsv->reserved >= block_rsv->size) {
4823 num_bytes = block_rsv->reserved - block_rsv->size;
4824 sinfo->bytes_may_use -= num_bytes;
4825 trace_btrfs_space_reservation(fs_info, "space_info",
4826 sinfo->flags, num_bytes, 0);
4827 block_rsv->reserved = block_rsv->size;
4828 block_rsv->full = 1;
4829 }
4830
4831 spin_unlock(&block_rsv->lock);
4832 spin_unlock(&sinfo->lock);
4833 }
4834
4835 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4836 {
4837 struct btrfs_space_info *space_info;
4838
4839 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4840 fs_info->chunk_block_rsv.space_info = space_info;
4841
4842 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4843 fs_info->global_block_rsv.space_info = space_info;
4844 fs_info->delalloc_block_rsv.space_info = space_info;
4845 fs_info->trans_block_rsv.space_info = space_info;
4846 fs_info->empty_block_rsv.space_info = space_info;
4847 fs_info->delayed_block_rsv.space_info = space_info;
4848
4849 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4850 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4851 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4852 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4853 if (fs_info->quota_root)
4854 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4855 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4856
4857 update_global_block_rsv(fs_info);
4858 }
4859
4860 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4861 {
4862 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4863 (u64)-1);
4864 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4865 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4866 WARN_ON(fs_info->trans_block_rsv.size > 0);
4867 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4868 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4869 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4870 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4871 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4872 }
4873
4874 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4875 struct btrfs_root *root)
4876 {
4877 if (!trans->block_rsv)
4878 return;
4879
4880 if (!trans->bytes_reserved)
4881 return;
4882
4883 trace_btrfs_space_reservation(root->fs_info, "transaction",
4884 trans->transid, trans->bytes_reserved, 0);
4885 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4886 trans->bytes_reserved = 0;
4887 }
4888
4889 /* Can only return 0 or -ENOSPC */
4890 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4891 struct inode *inode)
4892 {
4893 struct btrfs_root *root = BTRFS_I(inode)->root;
4894 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4895 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4896
4897 /*
4898 * We need to hold space in order to delete our orphan item once we've
4899 * added it, so this takes the reservation so we can release it later
4900 * when we are truly done with the orphan item.
4901 */
4902 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4903 trace_btrfs_space_reservation(root->fs_info, "orphan",
4904 btrfs_ino(inode), num_bytes, 1);
4905 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4906 }
4907
4908 void btrfs_orphan_release_metadata(struct inode *inode)
4909 {
4910 struct btrfs_root *root = BTRFS_I(inode)->root;
4911 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4912 trace_btrfs_space_reservation(root->fs_info, "orphan",
4913 btrfs_ino(inode), num_bytes, 0);
4914 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4915 }
4916
4917 /*
4918 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4919 * root: the root of the parent directory
4920 * rsv: block reservation
4921 * items: the number of items that we need do reservation
4922 * qgroup_reserved: used to return the reserved size in qgroup
4923 *
4924 * This function is used to reserve the space for snapshot/subvolume
4925 * creation and deletion. Those operations are different with the
4926 * common file/directory operations, they change two fs/file trees
4927 * and root tree, the number of items that the qgroup reserves is
4928 * different with the free space reservation. So we can not use
4929 * the space reseravtion mechanism in start_transaction().
4930 */
4931 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4932 struct btrfs_block_rsv *rsv,
4933 int items,
4934 u64 *qgroup_reserved,
4935 bool use_global_rsv)
4936 {
4937 u64 num_bytes;
4938 int ret;
4939 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4940
4941 if (root->fs_info->quota_enabled) {
4942 /* One for parent inode, two for dir entries */
4943 num_bytes = 3 * root->nodesize;
4944 ret = btrfs_qgroup_reserve(root, num_bytes);
4945 if (ret)
4946 return ret;
4947 } else {
4948 num_bytes = 0;
4949 }
4950
4951 *qgroup_reserved = num_bytes;
4952
4953 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4954 rsv->space_info = __find_space_info(root->fs_info,
4955 BTRFS_BLOCK_GROUP_METADATA);
4956 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4957 BTRFS_RESERVE_FLUSH_ALL);
4958
4959 if (ret == -ENOSPC && use_global_rsv)
4960 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4961
4962 if (ret) {
4963 if (*qgroup_reserved)
4964 btrfs_qgroup_free(root, *qgroup_reserved);
4965 }
4966
4967 return ret;
4968 }
4969
4970 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4971 struct btrfs_block_rsv *rsv,
4972 u64 qgroup_reserved)
4973 {
4974 btrfs_block_rsv_release(root, rsv, (u64)-1);
4975 if (qgroup_reserved)
4976 btrfs_qgroup_free(root, qgroup_reserved);
4977 }
4978
4979 /**
4980 * drop_outstanding_extent - drop an outstanding extent
4981 * @inode: the inode we're dropping the extent for
4982 * @num_bytes: the number of bytes we're relaseing.
4983 *
4984 * This is called when we are freeing up an outstanding extent, either called
4985 * after an error or after an extent is written. This will return the number of
4986 * reserved extents that need to be freed. This must be called with
4987 * BTRFS_I(inode)->lock held.
4988 */
4989 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
4990 {
4991 unsigned drop_inode_space = 0;
4992 unsigned dropped_extents = 0;
4993 unsigned num_extents = 0;
4994
4995 num_extents = (unsigned)div64_u64(num_bytes +
4996 BTRFS_MAX_EXTENT_SIZE - 1,
4997 BTRFS_MAX_EXTENT_SIZE);
4998 ASSERT(num_extents);
4999 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5000 BTRFS_I(inode)->outstanding_extents -= num_extents;
5001
5002 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5003 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5004 &BTRFS_I(inode)->runtime_flags))
5005 drop_inode_space = 1;
5006
5007 /*
5008 * If we have more or the same amount of outsanding extents than we have
5009 * reserved then we need to leave the reserved extents count alone.
5010 */
5011 if (BTRFS_I(inode)->outstanding_extents >=
5012 BTRFS_I(inode)->reserved_extents)
5013 return drop_inode_space;
5014
5015 dropped_extents = BTRFS_I(inode)->reserved_extents -
5016 BTRFS_I(inode)->outstanding_extents;
5017 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5018 return dropped_extents + drop_inode_space;
5019 }
5020
5021 /**
5022 * calc_csum_metadata_size - return the amount of metada space that must be
5023 * reserved/free'd for the given bytes.
5024 * @inode: the inode we're manipulating
5025 * @num_bytes: the number of bytes in question
5026 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5027 *
5028 * This adjusts the number of csum_bytes in the inode and then returns the
5029 * correct amount of metadata that must either be reserved or freed. We
5030 * calculate how many checksums we can fit into one leaf and then divide the
5031 * number of bytes that will need to be checksumed by this value to figure out
5032 * how many checksums will be required. If we are adding bytes then the number
5033 * may go up and we will return the number of additional bytes that must be
5034 * reserved. If it is going down we will return the number of bytes that must
5035 * be freed.
5036 *
5037 * This must be called with BTRFS_I(inode)->lock held.
5038 */
5039 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5040 int reserve)
5041 {
5042 struct btrfs_root *root = BTRFS_I(inode)->root;
5043 u64 csum_size;
5044 int num_csums_per_leaf;
5045 int num_csums;
5046 int old_csums;
5047
5048 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5049 BTRFS_I(inode)->csum_bytes == 0)
5050 return 0;
5051
5052 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5053 if (reserve)
5054 BTRFS_I(inode)->csum_bytes += num_bytes;
5055 else
5056 BTRFS_I(inode)->csum_bytes -= num_bytes;
5057 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5058 num_csums_per_leaf = (int)div64_u64(csum_size,
5059 sizeof(struct btrfs_csum_item) +
5060 sizeof(struct btrfs_disk_key));
5061 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5062 num_csums = num_csums + num_csums_per_leaf - 1;
5063 num_csums = num_csums / num_csums_per_leaf;
5064
5065 old_csums = old_csums + num_csums_per_leaf - 1;
5066 old_csums = old_csums / num_csums_per_leaf;
5067
5068 /* No change, no need to reserve more */
5069 if (old_csums == num_csums)
5070 return 0;
5071
5072 if (reserve)
5073 return btrfs_calc_trans_metadata_size(root,
5074 num_csums - old_csums);
5075
5076 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5077 }
5078
5079 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5080 {
5081 struct btrfs_root *root = BTRFS_I(inode)->root;
5082 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5083 u64 to_reserve = 0;
5084 u64 csum_bytes;
5085 unsigned nr_extents = 0;
5086 int extra_reserve = 0;
5087 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5088 int ret = 0;
5089 bool delalloc_lock = true;
5090 u64 to_free = 0;
5091 unsigned dropped;
5092
5093 /* If we are a free space inode we need to not flush since we will be in
5094 * the middle of a transaction commit. We also don't need the delalloc
5095 * mutex since we won't race with anybody. We need this mostly to make
5096 * lockdep shut its filthy mouth.
5097 */
5098 if (btrfs_is_free_space_inode(inode)) {
5099 flush = BTRFS_RESERVE_NO_FLUSH;
5100 delalloc_lock = false;
5101 }
5102
5103 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5104 btrfs_transaction_in_commit(root->fs_info))
5105 schedule_timeout(1);
5106
5107 if (delalloc_lock)
5108 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5109
5110 num_bytes = ALIGN(num_bytes, root->sectorsize);
5111
5112 spin_lock(&BTRFS_I(inode)->lock);
5113 nr_extents = (unsigned)div64_u64(num_bytes +
5114 BTRFS_MAX_EXTENT_SIZE - 1,
5115 BTRFS_MAX_EXTENT_SIZE);
5116 BTRFS_I(inode)->outstanding_extents += nr_extents;
5117 nr_extents = 0;
5118
5119 if (BTRFS_I(inode)->outstanding_extents >
5120 BTRFS_I(inode)->reserved_extents)
5121 nr_extents = BTRFS_I(inode)->outstanding_extents -
5122 BTRFS_I(inode)->reserved_extents;
5123
5124 /*
5125 * Add an item to reserve for updating the inode when we complete the
5126 * delalloc io.
5127 */
5128 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5129 &BTRFS_I(inode)->runtime_flags)) {
5130 nr_extents++;
5131 extra_reserve = 1;
5132 }
5133
5134 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5135 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5136 csum_bytes = BTRFS_I(inode)->csum_bytes;
5137 spin_unlock(&BTRFS_I(inode)->lock);
5138
5139 if (root->fs_info->quota_enabled) {
5140 ret = btrfs_qgroup_reserve(root, num_bytes +
5141 nr_extents * root->nodesize);
5142 if (ret)
5143 goto out_fail;
5144 }
5145
5146 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5147 if (unlikely(ret)) {
5148 if (root->fs_info->quota_enabled)
5149 btrfs_qgroup_free(root, num_bytes +
5150 nr_extents * root->nodesize);
5151 goto out_fail;
5152 }
5153
5154 spin_lock(&BTRFS_I(inode)->lock);
5155 if (extra_reserve) {
5156 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5157 &BTRFS_I(inode)->runtime_flags);
5158 nr_extents--;
5159 }
5160 BTRFS_I(inode)->reserved_extents += nr_extents;
5161 spin_unlock(&BTRFS_I(inode)->lock);
5162
5163 if (delalloc_lock)
5164 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5165
5166 if (to_reserve)
5167 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5168 btrfs_ino(inode), to_reserve, 1);
5169 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5170
5171 return 0;
5172
5173 out_fail:
5174 spin_lock(&BTRFS_I(inode)->lock);
5175 dropped = drop_outstanding_extent(inode, num_bytes);
5176 /*
5177 * If the inodes csum_bytes is the same as the original
5178 * csum_bytes then we know we haven't raced with any free()ers
5179 * so we can just reduce our inodes csum bytes and carry on.
5180 */
5181 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5182 calc_csum_metadata_size(inode, num_bytes, 0);
5183 } else {
5184 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5185 u64 bytes;
5186
5187 /*
5188 * This is tricky, but first we need to figure out how much we
5189 * free'd from any free-ers that occured during this
5190 * reservation, so we reset ->csum_bytes to the csum_bytes
5191 * before we dropped our lock, and then call the free for the
5192 * number of bytes that were freed while we were trying our
5193 * reservation.
5194 */
5195 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5196 BTRFS_I(inode)->csum_bytes = csum_bytes;
5197 to_free = calc_csum_metadata_size(inode, bytes, 0);
5198
5199
5200 /*
5201 * Now we need to see how much we would have freed had we not
5202 * been making this reservation and our ->csum_bytes were not
5203 * artificially inflated.
5204 */
5205 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5206 bytes = csum_bytes - orig_csum_bytes;
5207 bytes = calc_csum_metadata_size(inode, bytes, 0);
5208
5209 /*
5210 * Now reset ->csum_bytes to what it should be. If bytes is
5211 * more than to_free then we would have free'd more space had we
5212 * not had an artificially high ->csum_bytes, so we need to free
5213 * the remainder. If bytes is the same or less then we don't
5214 * need to do anything, the other free-ers did the correct
5215 * thing.
5216 */
5217 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5218 if (bytes > to_free)
5219 to_free = bytes - to_free;
5220 else
5221 to_free = 0;
5222 }
5223 spin_unlock(&BTRFS_I(inode)->lock);
5224 if (dropped)
5225 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5226
5227 if (to_free) {
5228 btrfs_block_rsv_release(root, block_rsv, to_free);
5229 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5230 btrfs_ino(inode), to_free, 0);
5231 }
5232 if (delalloc_lock)
5233 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5234 return ret;
5235 }
5236
5237 /**
5238 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5239 * @inode: the inode to release the reservation for
5240 * @num_bytes: the number of bytes we're releasing
5241 *
5242 * This will release the metadata reservation for an inode. This can be called
5243 * once we complete IO for a given set of bytes to release their metadata
5244 * reservations.
5245 */
5246 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5247 {
5248 struct btrfs_root *root = BTRFS_I(inode)->root;
5249 u64 to_free = 0;
5250 unsigned dropped;
5251
5252 num_bytes = ALIGN(num_bytes, root->sectorsize);
5253 spin_lock(&BTRFS_I(inode)->lock);
5254 dropped = drop_outstanding_extent(inode, num_bytes);
5255
5256 if (num_bytes)
5257 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5258 spin_unlock(&BTRFS_I(inode)->lock);
5259 if (dropped > 0)
5260 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5261
5262 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5263 btrfs_ino(inode), to_free, 0);
5264 if (root->fs_info->quota_enabled) {
5265 btrfs_qgroup_free(root, num_bytes +
5266 dropped * root->nodesize);
5267 }
5268
5269 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5270 to_free);
5271 }
5272
5273 /**
5274 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5275 * @inode: inode we're writing to
5276 * @num_bytes: the number of bytes we want to allocate
5277 *
5278 * This will do the following things
5279 *
5280 * o reserve space in the data space info for num_bytes
5281 * o reserve space in the metadata space info based on number of outstanding
5282 * extents and how much csums will be needed
5283 * o add to the inodes ->delalloc_bytes
5284 * o add it to the fs_info's delalloc inodes list.
5285 *
5286 * This will return 0 for success and -ENOSPC if there is no space left.
5287 */
5288 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5289 {
5290 int ret;
5291
5292 ret = btrfs_check_data_free_space(inode, num_bytes);
5293 if (ret)
5294 return ret;
5295
5296 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5297 if (ret) {
5298 btrfs_free_reserved_data_space(inode, num_bytes);
5299 return ret;
5300 }
5301
5302 return 0;
5303 }
5304
5305 /**
5306 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5307 * @inode: inode we're releasing space for
5308 * @num_bytes: the number of bytes we want to free up
5309 *
5310 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5311 * called in the case that we don't need the metadata AND data reservations
5312 * anymore. So if there is an error or we insert an inline extent.
5313 *
5314 * This function will release the metadata space that was not used and will
5315 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5316 * list if there are no delalloc bytes left.
5317 */
5318 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5319 {
5320 btrfs_delalloc_release_metadata(inode, num_bytes);
5321 btrfs_free_reserved_data_space(inode, num_bytes);
5322 }
5323
5324 static int update_block_group(struct btrfs_trans_handle *trans,
5325 struct btrfs_root *root, u64 bytenr,
5326 u64 num_bytes, int alloc)
5327 {
5328 struct btrfs_block_group_cache *cache = NULL;
5329 struct btrfs_fs_info *info = root->fs_info;
5330 u64 total = num_bytes;
5331 u64 old_val;
5332 u64 byte_in_group;
5333 int factor;
5334
5335 /* block accounting for super block */
5336 spin_lock(&info->delalloc_root_lock);
5337 old_val = btrfs_super_bytes_used(info->super_copy);
5338 if (alloc)
5339 old_val += num_bytes;
5340 else
5341 old_val -= num_bytes;
5342 btrfs_set_super_bytes_used(info->super_copy, old_val);
5343 spin_unlock(&info->delalloc_root_lock);
5344
5345 while (total) {
5346 cache = btrfs_lookup_block_group(info, bytenr);
5347 if (!cache)
5348 return -ENOENT;
5349 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5350 BTRFS_BLOCK_GROUP_RAID1 |
5351 BTRFS_BLOCK_GROUP_RAID10))
5352 factor = 2;
5353 else
5354 factor = 1;
5355 /*
5356 * If this block group has free space cache written out, we
5357 * need to make sure to load it if we are removing space. This
5358 * is because we need the unpinning stage to actually add the
5359 * space back to the block group, otherwise we will leak space.
5360 */
5361 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5362 cache_block_group(cache, 1);
5363
5364 spin_lock(&trans->transaction->dirty_bgs_lock);
5365 if (list_empty(&cache->dirty_list)) {
5366 list_add_tail(&cache->dirty_list,
5367 &trans->transaction->dirty_bgs);
5368 btrfs_get_block_group(cache);
5369 }
5370 spin_unlock(&trans->transaction->dirty_bgs_lock);
5371
5372 byte_in_group = bytenr - cache->key.objectid;
5373 WARN_ON(byte_in_group > cache->key.offset);
5374
5375 spin_lock(&cache->space_info->lock);
5376 spin_lock(&cache->lock);
5377
5378 if (btrfs_test_opt(root, SPACE_CACHE) &&
5379 cache->disk_cache_state < BTRFS_DC_CLEAR)
5380 cache->disk_cache_state = BTRFS_DC_CLEAR;
5381
5382 old_val = btrfs_block_group_used(&cache->item);
5383 num_bytes = min(total, cache->key.offset - byte_in_group);
5384 if (alloc) {
5385 old_val += num_bytes;
5386 btrfs_set_block_group_used(&cache->item, old_val);
5387 cache->reserved -= num_bytes;
5388 cache->space_info->bytes_reserved -= num_bytes;
5389 cache->space_info->bytes_used += num_bytes;
5390 cache->space_info->disk_used += num_bytes * factor;
5391 spin_unlock(&cache->lock);
5392 spin_unlock(&cache->space_info->lock);
5393 } else {
5394 old_val -= num_bytes;
5395 btrfs_set_block_group_used(&cache->item, old_val);
5396 cache->pinned += num_bytes;
5397 cache->space_info->bytes_pinned += num_bytes;
5398 cache->space_info->bytes_used -= num_bytes;
5399 cache->space_info->disk_used -= num_bytes * factor;
5400 spin_unlock(&cache->lock);
5401 spin_unlock(&cache->space_info->lock);
5402
5403 set_extent_dirty(info->pinned_extents,
5404 bytenr, bytenr + num_bytes - 1,
5405 GFP_NOFS | __GFP_NOFAIL);
5406 /*
5407 * No longer have used bytes in this block group, queue
5408 * it for deletion.
5409 */
5410 if (old_val == 0) {
5411 spin_lock(&info->unused_bgs_lock);
5412 if (list_empty(&cache->bg_list)) {
5413 btrfs_get_block_group(cache);
5414 list_add_tail(&cache->bg_list,
5415 &info->unused_bgs);
5416 }
5417 spin_unlock(&info->unused_bgs_lock);
5418 }
5419 }
5420 btrfs_put_block_group(cache);
5421 total -= num_bytes;
5422 bytenr += num_bytes;
5423 }
5424 return 0;
5425 }
5426
5427 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5428 {
5429 struct btrfs_block_group_cache *cache;
5430 u64 bytenr;
5431
5432 spin_lock(&root->fs_info->block_group_cache_lock);
5433 bytenr = root->fs_info->first_logical_byte;
5434 spin_unlock(&root->fs_info->block_group_cache_lock);
5435
5436 if (bytenr < (u64)-1)
5437 return bytenr;
5438
5439 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5440 if (!cache)
5441 return 0;
5442
5443 bytenr = cache->key.objectid;
5444 btrfs_put_block_group(cache);
5445
5446 return bytenr;
5447 }
5448
5449 static int pin_down_extent(struct btrfs_root *root,
5450 struct btrfs_block_group_cache *cache,
5451 u64 bytenr, u64 num_bytes, int reserved)
5452 {
5453 spin_lock(&cache->space_info->lock);
5454 spin_lock(&cache->lock);
5455 cache->pinned += num_bytes;
5456 cache->space_info->bytes_pinned += num_bytes;
5457 if (reserved) {
5458 cache->reserved -= num_bytes;
5459 cache->space_info->bytes_reserved -= num_bytes;
5460 }
5461 spin_unlock(&cache->lock);
5462 spin_unlock(&cache->space_info->lock);
5463
5464 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5465 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5466 if (reserved)
5467 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5468 return 0;
5469 }
5470
5471 /*
5472 * this function must be called within transaction
5473 */
5474 int btrfs_pin_extent(struct btrfs_root *root,
5475 u64 bytenr, u64 num_bytes, int reserved)
5476 {
5477 struct btrfs_block_group_cache *cache;
5478
5479 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5480 BUG_ON(!cache); /* Logic error */
5481
5482 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5483
5484 btrfs_put_block_group(cache);
5485 return 0;
5486 }
5487
5488 /*
5489 * this function must be called within transaction
5490 */
5491 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5492 u64 bytenr, u64 num_bytes)
5493 {
5494 struct btrfs_block_group_cache *cache;
5495 int ret;
5496
5497 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5498 if (!cache)
5499 return -EINVAL;
5500
5501 /*
5502 * pull in the free space cache (if any) so that our pin
5503 * removes the free space from the cache. We have load_only set
5504 * to one because the slow code to read in the free extents does check
5505 * the pinned extents.
5506 */
5507 cache_block_group(cache, 1);
5508
5509 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5510
5511 /* remove us from the free space cache (if we're there at all) */
5512 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5513 btrfs_put_block_group(cache);
5514 return ret;
5515 }
5516
5517 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5518 {
5519 int ret;
5520 struct btrfs_block_group_cache *block_group;
5521 struct btrfs_caching_control *caching_ctl;
5522
5523 block_group = btrfs_lookup_block_group(root->fs_info, start);
5524 if (!block_group)
5525 return -EINVAL;
5526
5527 cache_block_group(block_group, 0);
5528 caching_ctl = get_caching_control(block_group);
5529
5530 if (!caching_ctl) {
5531 /* Logic error */
5532 BUG_ON(!block_group_cache_done(block_group));
5533 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5534 } else {
5535 mutex_lock(&caching_ctl->mutex);
5536
5537 if (start >= caching_ctl->progress) {
5538 ret = add_excluded_extent(root, start, num_bytes);
5539 } else if (start + num_bytes <= caching_ctl->progress) {
5540 ret = btrfs_remove_free_space(block_group,
5541 start, num_bytes);
5542 } else {
5543 num_bytes = caching_ctl->progress - start;
5544 ret = btrfs_remove_free_space(block_group,
5545 start, num_bytes);
5546 if (ret)
5547 goto out_lock;
5548
5549 num_bytes = (start + num_bytes) -
5550 caching_ctl->progress;
5551 start = caching_ctl->progress;
5552 ret = add_excluded_extent(root, start, num_bytes);
5553 }
5554 out_lock:
5555 mutex_unlock(&caching_ctl->mutex);
5556 put_caching_control(caching_ctl);
5557 }
5558 btrfs_put_block_group(block_group);
5559 return ret;
5560 }
5561
5562 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5563 struct extent_buffer *eb)
5564 {
5565 struct btrfs_file_extent_item *item;
5566 struct btrfs_key key;
5567 int found_type;
5568 int i;
5569
5570 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5571 return 0;
5572
5573 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5574 btrfs_item_key_to_cpu(eb, &key, i);
5575 if (key.type != BTRFS_EXTENT_DATA_KEY)
5576 continue;
5577 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5578 found_type = btrfs_file_extent_type(eb, item);
5579 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5580 continue;
5581 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5582 continue;
5583 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5584 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5585 __exclude_logged_extent(log, key.objectid, key.offset);
5586 }
5587
5588 return 0;
5589 }
5590
5591 /**
5592 * btrfs_update_reserved_bytes - update the block_group and space info counters
5593 * @cache: The cache we are manipulating
5594 * @num_bytes: The number of bytes in question
5595 * @reserve: One of the reservation enums
5596 * @delalloc: The blocks are allocated for the delalloc write
5597 *
5598 * This is called by the allocator when it reserves space, or by somebody who is
5599 * freeing space that was never actually used on disk. For example if you
5600 * reserve some space for a new leaf in transaction A and before transaction A
5601 * commits you free that leaf, you call this with reserve set to 0 in order to
5602 * clear the reservation.
5603 *
5604 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5605 * ENOSPC accounting. For data we handle the reservation through clearing the
5606 * delalloc bits in the io_tree. We have to do this since we could end up
5607 * allocating less disk space for the amount of data we have reserved in the
5608 * case of compression.
5609 *
5610 * If this is a reservation and the block group has become read only we cannot
5611 * make the reservation and return -EAGAIN, otherwise this function always
5612 * succeeds.
5613 */
5614 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5615 u64 num_bytes, int reserve, int delalloc)
5616 {
5617 struct btrfs_space_info *space_info = cache->space_info;
5618 int ret = 0;
5619
5620 spin_lock(&space_info->lock);
5621 spin_lock(&cache->lock);
5622 if (reserve != RESERVE_FREE) {
5623 if (cache->ro) {
5624 ret = -EAGAIN;
5625 } else {
5626 cache->reserved += num_bytes;
5627 space_info->bytes_reserved += num_bytes;
5628 if (reserve == RESERVE_ALLOC) {
5629 trace_btrfs_space_reservation(cache->fs_info,
5630 "space_info", space_info->flags,
5631 num_bytes, 0);
5632 space_info->bytes_may_use -= num_bytes;
5633 }
5634
5635 if (delalloc)
5636 cache->delalloc_bytes += num_bytes;
5637 }
5638 } else {
5639 if (cache->ro)
5640 space_info->bytes_readonly += num_bytes;
5641 cache->reserved -= num_bytes;
5642 space_info->bytes_reserved -= num_bytes;
5643
5644 if (delalloc)
5645 cache->delalloc_bytes -= num_bytes;
5646 }
5647 spin_unlock(&cache->lock);
5648 spin_unlock(&space_info->lock);
5649 return ret;
5650 }
5651
5652 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5653 struct btrfs_root *root)
5654 {
5655 struct btrfs_fs_info *fs_info = root->fs_info;
5656 struct btrfs_caching_control *next;
5657 struct btrfs_caching_control *caching_ctl;
5658 struct btrfs_block_group_cache *cache;
5659
5660 down_write(&fs_info->commit_root_sem);
5661
5662 list_for_each_entry_safe(caching_ctl, next,
5663 &fs_info->caching_block_groups, list) {
5664 cache = caching_ctl->block_group;
5665 if (block_group_cache_done(cache)) {
5666 cache->last_byte_to_unpin = (u64)-1;
5667 list_del_init(&caching_ctl->list);
5668 put_caching_control(caching_ctl);
5669 } else {
5670 cache->last_byte_to_unpin = caching_ctl->progress;
5671 }
5672 }
5673
5674 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5675 fs_info->pinned_extents = &fs_info->freed_extents[1];
5676 else
5677 fs_info->pinned_extents = &fs_info->freed_extents[0];
5678
5679 up_write(&fs_info->commit_root_sem);
5680
5681 update_global_block_rsv(fs_info);
5682 }
5683
5684 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5685 const bool return_free_space)
5686 {
5687 struct btrfs_fs_info *fs_info = root->fs_info;
5688 struct btrfs_block_group_cache *cache = NULL;
5689 struct btrfs_space_info *space_info;
5690 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5691 u64 len;
5692 bool readonly;
5693
5694 while (start <= end) {
5695 readonly = false;
5696 if (!cache ||
5697 start >= cache->key.objectid + cache->key.offset) {
5698 if (cache)
5699 btrfs_put_block_group(cache);
5700 cache = btrfs_lookup_block_group(fs_info, start);
5701 BUG_ON(!cache); /* Logic error */
5702 }
5703
5704 len = cache->key.objectid + cache->key.offset - start;
5705 len = min(len, end + 1 - start);
5706
5707 if (start < cache->last_byte_to_unpin) {
5708 len = min(len, cache->last_byte_to_unpin - start);
5709 if (return_free_space)
5710 btrfs_add_free_space(cache, start, len);
5711 }
5712
5713 start += len;
5714 space_info = cache->space_info;
5715
5716 spin_lock(&space_info->lock);
5717 spin_lock(&cache->lock);
5718 cache->pinned -= len;
5719 space_info->bytes_pinned -= len;
5720 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5721 if (cache->ro) {
5722 space_info->bytes_readonly += len;
5723 readonly = true;
5724 }
5725 spin_unlock(&cache->lock);
5726 if (!readonly && global_rsv->space_info == space_info) {
5727 spin_lock(&global_rsv->lock);
5728 if (!global_rsv->full) {
5729 len = min(len, global_rsv->size -
5730 global_rsv->reserved);
5731 global_rsv->reserved += len;
5732 space_info->bytes_may_use += len;
5733 if (global_rsv->reserved >= global_rsv->size)
5734 global_rsv->full = 1;
5735 }
5736 spin_unlock(&global_rsv->lock);
5737 }
5738 spin_unlock(&space_info->lock);
5739 }
5740
5741 if (cache)
5742 btrfs_put_block_group(cache);
5743 return 0;
5744 }
5745
5746 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5747 struct btrfs_root *root)
5748 {
5749 struct btrfs_fs_info *fs_info = root->fs_info;
5750 struct extent_io_tree *unpin;
5751 u64 start;
5752 u64 end;
5753 int ret;
5754
5755 if (trans->aborted)
5756 return 0;
5757
5758 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5759 unpin = &fs_info->freed_extents[1];
5760 else
5761 unpin = &fs_info->freed_extents[0];
5762
5763 while (1) {
5764 mutex_lock(&fs_info->unused_bg_unpin_mutex);
5765 ret = find_first_extent_bit(unpin, 0, &start, &end,
5766 EXTENT_DIRTY, NULL);
5767 if (ret) {
5768 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5769 break;
5770 }
5771
5772 if (btrfs_test_opt(root, DISCARD))
5773 ret = btrfs_discard_extent(root, start,
5774 end + 1 - start, NULL);
5775
5776 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5777 unpin_extent_range(root, start, end, true);
5778 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5779 cond_resched();
5780 }
5781
5782 return 0;
5783 }
5784
5785 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5786 u64 owner, u64 root_objectid)
5787 {
5788 struct btrfs_space_info *space_info;
5789 u64 flags;
5790
5791 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5792 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5793 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5794 else
5795 flags = BTRFS_BLOCK_GROUP_METADATA;
5796 } else {
5797 flags = BTRFS_BLOCK_GROUP_DATA;
5798 }
5799
5800 space_info = __find_space_info(fs_info, flags);
5801 BUG_ON(!space_info); /* Logic bug */
5802 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5803 }
5804
5805
5806 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5807 struct btrfs_root *root,
5808 u64 bytenr, u64 num_bytes, u64 parent,
5809 u64 root_objectid, u64 owner_objectid,
5810 u64 owner_offset, int refs_to_drop,
5811 struct btrfs_delayed_extent_op *extent_op,
5812 int no_quota)
5813 {
5814 struct btrfs_key key;
5815 struct btrfs_path *path;
5816 struct btrfs_fs_info *info = root->fs_info;
5817 struct btrfs_root *extent_root = info->extent_root;
5818 struct extent_buffer *leaf;
5819 struct btrfs_extent_item *ei;
5820 struct btrfs_extent_inline_ref *iref;
5821 int ret;
5822 int is_data;
5823 int extent_slot = 0;
5824 int found_extent = 0;
5825 int num_to_del = 1;
5826 u32 item_size;
5827 u64 refs;
5828 int last_ref = 0;
5829 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5830 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5831 SKINNY_METADATA);
5832
5833 if (!info->quota_enabled || !is_fstree(root_objectid))
5834 no_quota = 1;
5835
5836 path = btrfs_alloc_path();
5837 if (!path)
5838 return -ENOMEM;
5839
5840 path->reada = 1;
5841 path->leave_spinning = 1;
5842
5843 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5844 BUG_ON(!is_data && refs_to_drop != 1);
5845
5846 if (is_data)
5847 skinny_metadata = 0;
5848
5849 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5850 bytenr, num_bytes, parent,
5851 root_objectid, owner_objectid,
5852 owner_offset);
5853 if (ret == 0) {
5854 extent_slot = path->slots[0];
5855 while (extent_slot >= 0) {
5856 btrfs_item_key_to_cpu(path->nodes[0], &key,
5857 extent_slot);
5858 if (key.objectid != bytenr)
5859 break;
5860 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5861 key.offset == num_bytes) {
5862 found_extent = 1;
5863 break;
5864 }
5865 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5866 key.offset == owner_objectid) {
5867 found_extent = 1;
5868 break;
5869 }
5870 if (path->slots[0] - extent_slot > 5)
5871 break;
5872 extent_slot--;
5873 }
5874 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5875 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5876 if (found_extent && item_size < sizeof(*ei))
5877 found_extent = 0;
5878 #endif
5879 if (!found_extent) {
5880 BUG_ON(iref);
5881 ret = remove_extent_backref(trans, extent_root, path,
5882 NULL, refs_to_drop,
5883 is_data, &last_ref);
5884 if (ret) {
5885 btrfs_abort_transaction(trans, extent_root, ret);
5886 goto out;
5887 }
5888 btrfs_release_path(path);
5889 path->leave_spinning = 1;
5890
5891 key.objectid = bytenr;
5892 key.type = BTRFS_EXTENT_ITEM_KEY;
5893 key.offset = num_bytes;
5894
5895 if (!is_data && skinny_metadata) {
5896 key.type = BTRFS_METADATA_ITEM_KEY;
5897 key.offset = owner_objectid;
5898 }
5899
5900 ret = btrfs_search_slot(trans, extent_root,
5901 &key, path, -1, 1);
5902 if (ret > 0 && skinny_metadata && path->slots[0]) {
5903 /*
5904 * Couldn't find our skinny metadata item,
5905 * see if we have ye olde extent item.
5906 */
5907 path->slots[0]--;
5908 btrfs_item_key_to_cpu(path->nodes[0], &key,
5909 path->slots[0]);
5910 if (key.objectid == bytenr &&
5911 key.type == BTRFS_EXTENT_ITEM_KEY &&
5912 key.offset == num_bytes)
5913 ret = 0;
5914 }
5915
5916 if (ret > 0 && skinny_metadata) {
5917 skinny_metadata = false;
5918 key.objectid = bytenr;
5919 key.type = BTRFS_EXTENT_ITEM_KEY;
5920 key.offset = num_bytes;
5921 btrfs_release_path(path);
5922 ret = btrfs_search_slot(trans, extent_root,
5923 &key, path, -1, 1);
5924 }
5925
5926 if (ret) {
5927 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5928 ret, bytenr);
5929 if (ret > 0)
5930 btrfs_print_leaf(extent_root,
5931 path->nodes[0]);
5932 }
5933 if (ret < 0) {
5934 btrfs_abort_transaction(trans, extent_root, ret);
5935 goto out;
5936 }
5937 extent_slot = path->slots[0];
5938 }
5939 } else if (WARN_ON(ret == -ENOENT)) {
5940 btrfs_print_leaf(extent_root, path->nodes[0]);
5941 btrfs_err(info,
5942 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5943 bytenr, parent, root_objectid, owner_objectid,
5944 owner_offset);
5945 btrfs_abort_transaction(trans, extent_root, ret);
5946 goto out;
5947 } else {
5948 btrfs_abort_transaction(trans, extent_root, ret);
5949 goto out;
5950 }
5951
5952 leaf = path->nodes[0];
5953 item_size = btrfs_item_size_nr(leaf, extent_slot);
5954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5955 if (item_size < sizeof(*ei)) {
5956 BUG_ON(found_extent || extent_slot != path->slots[0]);
5957 ret = convert_extent_item_v0(trans, extent_root, path,
5958 owner_objectid, 0);
5959 if (ret < 0) {
5960 btrfs_abort_transaction(trans, extent_root, ret);
5961 goto out;
5962 }
5963
5964 btrfs_release_path(path);
5965 path->leave_spinning = 1;
5966
5967 key.objectid = bytenr;
5968 key.type = BTRFS_EXTENT_ITEM_KEY;
5969 key.offset = num_bytes;
5970
5971 ret = btrfs_search_slot(trans, extent_root, &key, path,
5972 -1, 1);
5973 if (ret) {
5974 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5975 ret, bytenr);
5976 btrfs_print_leaf(extent_root, path->nodes[0]);
5977 }
5978 if (ret < 0) {
5979 btrfs_abort_transaction(trans, extent_root, ret);
5980 goto out;
5981 }
5982
5983 extent_slot = path->slots[0];
5984 leaf = path->nodes[0];
5985 item_size = btrfs_item_size_nr(leaf, extent_slot);
5986 }
5987 #endif
5988 BUG_ON(item_size < sizeof(*ei));
5989 ei = btrfs_item_ptr(leaf, extent_slot,
5990 struct btrfs_extent_item);
5991 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5992 key.type == BTRFS_EXTENT_ITEM_KEY) {
5993 struct btrfs_tree_block_info *bi;
5994 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5995 bi = (struct btrfs_tree_block_info *)(ei + 1);
5996 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5997 }
5998
5999 refs = btrfs_extent_refs(leaf, ei);
6000 if (refs < refs_to_drop) {
6001 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6002 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6003 ret = -EINVAL;
6004 btrfs_abort_transaction(trans, extent_root, ret);
6005 goto out;
6006 }
6007 refs -= refs_to_drop;
6008
6009 if (refs > 0) {
6010 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6011 if (extent_op)
6012 __run_delayed_extent_op(extent_op, leaf, ei);
6013 /*
6014 * In the case of inline back ref, reference count will
6015 * be updated by remove_extent_backref
6016 */
6017 if (iref) {
6018 BUG_ON(!found_extent);
6019 } else {
6020 btrfs_set_extent_refs(leaf, ei, refs);
6021 btrfs_mark_buffer_dirty(leaf);
6022 }
6023 if (found_extent) {
6024 ret = remove_extent_backref(trans, extent_root, path,
6025 iref, refs_to_drop,
6026 is_data, &last_ref);
6027 if (ret) {
6028 btrfs_abort_transaction(trans, extent_root, ret);
6029 goto out;
6030 }
6031 }
6032 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6033 root_objectid);
6034 } else {
6035 if (found_extent) {
6036 BUG_ON(is_data && refs_to_drop !=
6037 extent_data_ref_count(root, path, iref));
6038 if (iref) {
6039 BUG_ON(path->slots[0] != extent_slot);
6040 } else {
6041 BUG_ON(path->slots[0] != extent_slot + 1);
6042 path->slots[0] = extent_slot;
6043 num_to_del = 2;
6044 }
6045 }
6046
6047 last_ref = 1;
6048 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6049 num_to_del);
6050 if (ret) {
6051 btrfs_abort_transaction(trans, extent_root, ret);
6052 goto out;
6053 }
6054 btrfs_release_path(path);
6055
6056 if (is_data) {
6057 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6058 if (ret) {
6059 btrfs_abort_transaction(trans, extent_root, ret);
6060 goto out;
6061 }
6062 }
6063
6064 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6065 if (ret) {
6066 btrfs_abort_transaction(trans, extent_root, ret);
6067 goto out;
6068 }
6069 }
6070 btrfs_release_path(path);
6071
6072 /* Deal with the quota accounting */
6073 if (!ret && last_ref && !no_quota) {
6074 int mod_seq = 0;
6075
6076 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6077 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6078 mod_seq = 1;
6079
6080 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6081 bytenr, num_bytes, type,
6082 mod_seq);
6083 }
6084 out:
6085 btrfs_free_path(path);
6086 return ret;
6087 }
6088
6089 /*
6090 * when we free an block, it is possible (and likely) that we free the last
6091 * delayed ref for that extent as well. This searches the delayed ref tree for
6092 * a given extent, and if there are no other delayed refs to be processed, it
6093 * removes it from the tree.
6094 */
6095 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6096 struct btrfs_root *root, u64 bytenr)
6097 {
6098 struct btrfs_delayed_ref_head *head;
6099 struct btrfs_delayed_ref_root *delayed_refs;
6100 int ret = 0;
6101
6102 delayed_refs = &trans->transaction->delayed_refs;
6103 spin_lock(&delayed_refs->lock);
6104 head = btrfs_find_delayed_ref_head(trans, bytenr);
6105 if (!head)
6106 goto out_delayed_unlock;
6107
6108 spin_lock(&head->lock);
6109 if (rb_first(&head->ref_root))
6110 goto out;
6111
6112 if (head->extent_op) {
6113 if (!head->must_insert_reserved)
6114 goto out;
6115 btrfs_free_delayed_extent_op(head->extent_op);
6116 head->extent_op = NULL;
6117 }
6118
6119 /*
6120 * waiting for the lock here would deadlock. If someone else has it
6121 * locked they are already in the process of dropping it anyway
6122 */
6123 if (!mutex_trylock(&head->mutex))
6124 goto out;
6125
6126 /*
6127 * at this point we have a head with no other entries. Go
6128 * ahead and process it.
6129 */
6130 head->node.in_tree = 0;
6131 rb_erase(&head->href_node, &delayed_refs->href_root);
6132
6133 atomic_dec(&delayed_refs->num_entries);
6134
6135 /*
6136 * we don't take a ref on the node because we're removing it from the
6137 * tree, so we just steal the ref the tree was holding.
6138 */
6139 delayed_refs->num_heads--;
6140 if (head->processing == 0)
6141 delayed_refs->num_heads_ready--;
6142 head->processing = 0;
6143 spin_unlock(&head->lock);
6144 spin_unlock(&delayed_refs->lock);
6145
6146 BUG_ON(head->extent_op);
6147 if (head->must_insert_reserved)
6148 ret = 1;
6149
6150 mutex_unlock(&head->mutex);
6151 btrfs_put_delayed_ref(&head->node);
6152 return ret;
6153 out:
6154 spin_unlock(&head->lock);
6155
6156 out_delayed_unlock:
6157 spin_unlock(&delayed_refs->lock);
6158 return 0;
6159 }
6160
6161 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6162 struct btrfs_root *root,
6163 struct extent_buffer *buf,
6164 u64 parent, int last_ref)
6165 {
6166 int pin = 1;
6167 int ret;
6168
6169 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6170 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6171 buf->start, buf->len,
6172 parent, root->root_key.objectid,
6173 btrfs_header_level(buf),
6174 BTRFS_DROP_DELAYED_REF, NULL, 0);
6175 BUG_ON(ret); /* -ENOMEM */
6176 }
6177
6178 if (!last_ref)
6179 return;
6180
6181 if (btrfs_header_generation(buf) == trans->transid) {
6182 struct btrfs_block_group_cache *cache;
6183
6184 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6185 ret = check_ref_cleanup(trans, root, buf->start);
6186 if (!ret)
6187 goto out;
6188 }
6189
6190 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6191
6192 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6193 pin_down_extent(root, cache, buf->start, buf->len, 1);
6194 btrfs_put_block_group(cache);
6195 goto out;
6196 }
6197
6198 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6199
6200 btrfs_add_free_space(cache, buf->start, buf->len);
6201 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6202 btrfs_put_block_group(cache);
6203 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6204 pin = 0;
6205 }
6206 out:
6207 if (pin)
6208 add_pinned_bytes(root->fs_info, buf->len,
6209 btrfs_header_level(buf),
6210 root->root_key.objectid);
6211
6212 /*
6213 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6214 * anymore.
6215 */
6216 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6217 }
6218
6219 /* Can return -ENOMEM */
6220 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6221 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6222 u64 owner, u64 offset, int no_quota)
6223 {
6224 int ret;
6225 struct btrfs_fs_info *fs_info = root->fs_info;
6226
6227 if (btrfs_test_is_dummy_root(root))
6228 return 0;
6229
6230 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6231
6232 /*
6233 * tree log blocks never actually go into the extent allocation
6234 * tree, just update pinning info and exit early.
6235 */
6236 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6237 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6238 /* unlocks the pinned mutex */
6239 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6240 ret = 0;
6241 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6242 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6243 num_bytes,
6244 parent, root_objectid, (int)owner,
6245 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6246 } else {
6247 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6248 num_bytes,
6249 parent, root_objectid, owner,
6250 offset, BTRFS_DROP_DELAYED_REF,
6251 NULL, no_quota);
6252 }
6253 return ret;
6254 }
6255
6256 /*
6257 * when we wait for progress in the block group caching, its because
6258 * our allocation attempt failed at least once. So, we must sleep
6259 * and let some progress happen before we try again.
6260 *
6261 * This function will sleep at least once waiting for new free space to
6262 * show up, and then it will check the block group free space numbers
6263 * for our min num_bytes. Another option is to have it go ahead
6264 * and look in the rbtree for a free extent of a given size, but this
6265 * is a good start.
6266 *
6267 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6268 * any of the information in this block group.
6269 */
6270 static noinline void
6271 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6272 u64 num_bytes)
6273 {
6274 struct btrfs_caching_control *caching_ctl;
6275
6276 caching_ctl = get_caching_control(cache);
6277 if (!caching_ctl)
6278 return;
6279
6280 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6281 (cache->free_space_ctl->free_space >= num_bytes));
6282
6283 put_caching_control(caching_ctl);
6284 }
6285
6286 static noinline int
6287 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6288 {
6289 struct btrfs_caching_control *caching_ctl;
6290 int ret = 0;
6291
6292 caching_ctl = get_caching_control(cache);
6293 if (!caching_ctl)
6294 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6295
6296 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6297 if (cache->cached == BTRFS_CACHE_ERROR)
6298 ret = -EIO;
6299 put_caching_control(caching_ctl);
6300 return ret;
6301 }
6302
6303 int __get_raid_index(u64 flags)
6304 {
6305 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6306 return BTRFS_RAID_RAID10;
6307 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6308 return BTRFS_RAID_RAID1;
6309 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6310 return BTRFS_RAID_DUP;
6311 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6312 return BTRFS_RAID_RAID0;
6313 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6314 return BTRFS_RAID_RAID5;
6315 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6316 return BTRFS_RAID_RAID6;
6317
6318 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6319 }
6320
6321 int get_block_group_index(struct btrfs_block_group_cache *cache)
6322 {
6323 return __get_raid_index(cache->flags);
6324 }
6325
6326 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6327 [BTRFS_RAID_RAID10] = "raid10",
6328 [BTRFS_RAID_RAID1] = "raid1",
6329 [BTRFS_RAID_DUP] = "dup",
6330 [BTRFS_RAID_RAID0] = "raid0",
6331 [BTRFS_RAID_SINGLE] = "single",
6332 [BTRFS_RAID_RAID5] = "raid5",
6333 [BTRFS_RAID_RAID6] = "raid6",
6334 };
6335
6336 static const char *get_raid_name(enum btrfs_raid_types type)
6337 {
6338 if (type >= BTRFS_NR_RAID_TYPES)
6339 return NULL;
6340
6341 return btrfs_raid_type_names[type];
6342 }
6343
6344 enum btrfs_loop_type {
6345 LOOP_CACHING_NOWAIT = 0,
6346 LOOP_CACHING_WAIT = 1,
6347 LOOP_ALLOC_CHUNK = 2,
6348 LOOP_NO_EMPTY_SIZE = 3,
6349 };
6350
6351 static inline void
6352 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6353 int delalloc)
6354 {
6355 if (delalloc)
6356 down_read(&cache->data_rwsem);
6357 }
6358
6359 static inline void
6360 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6361 int delalloc)
6362 {
6363 btrfs_get_block_group(cache);
6364 if (delalloc)
6365 down_read(&cache->data_rwsem);
6366 }
6367
6368 static struct btrfs_block_group_cache *
6369 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6370 struct btrfs_free_cluster *cluster,
6371 int delalloc)
6372 {
6373 struct btrfs_block_group_cache *used_bg;
6374 bool locked = false;
6375 again:
6376 spin_lock(&cluster->refill_lock);
6377 if (locked) {
6378 if (used_bg == cluster->block_group)
6379 return used_bg;
6380
6381 up_read(&used_bg->data_rwsem);
6382 btrfs_put_block_group(used_bg);
6383 }
6384
6385 used_bg = cluster->block_group;
6386 if (!used_bg)
6387 return NULL;
6388
6389 if (used_bg == block_group)
6390 return used_bg;
6391
6392 btrfs_get_block_group(used_bg);
6393
6394 if (!delalloc)
6395 return used_bg;
6396
6397 if (down_read_trylock(&used_bg->data_rwsem))
6398 return used_bg;
6399
6400 spin_unlock(&cluster->refill_lock);
6401 down_read(&used_bg->data_rwsem);
6402 locked = true;
6403 goto again;
6404 }
6405
6406 static inline void
6407 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6408 int delalloc)
6409 {
6410 if (delalloc)
6411 up_read(&cache->data_rwsem);
6412 btrfs_put_block_group(cache);
6413 }
6414
6415 /*
6416 * walks the btree of allocated extents and find a hole of a given size.
6417 * The key ins is changed to record the hole:
6418 * ins->objectid == start position
6419 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6420 * ins->offset == the size of the hole.
6421 * Any available blocks before search_start are skipped.
6422 *
6423 * If there is no suitable free space, we will record the max size of
6424 * the free space extent currently.
6425 */
6426 static noinline int find_free_extent(struct btrfs_root *orig_root,
6427 u64 num_bytes, u64 empty_size,
6428 u64 hint_byte, struct btrfs_key *ins,
6429 u64 flags, int delalloc)
6430 {
6431 int ret = 0;
6432 struct btrfs_root *root = orig_root->fs_info->extent_root;
6433 struct btrfs_free_cluster *last_ptr = NULL;
6434 struct btrfs_block_group_cache *block_group = NULL;
6435 u64 search_start = 0;
6436 u64 max_extent_size = 0;
6437 int empty_cluster = 2 * 1024 * 1024;
6438 struct btrfs_space_info *space_info;
6439 int loop = 0;
6440 int index = __get_raid_index(flags);
6441 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6442 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6443 bool failed_cluster_refill = false;
6444 bool failed_alloc = false;
6445 bool use_cluster = true;
6446 bool have_caching_bg = false;
6447
6448 WARN_ON(num_bytes < root->sectorsize);
6449 ins->type = BTRFS_EXTENT_ITEM_KEY;
6450 ins->objectid = 0;
6451 ins->offset = 0;
6452
6453 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6454
6455 space_info = __find_space_info(root->fs_info, flags);
6456 if (!space_info) {
6457 btrfs_err(root->fs_info, "No space info for %llu", flags);
6458 return -ENOSPC;
6459 }
6460
6461 /*
6462 * If the space info is for both data and metadata it means we have a
6463 * small filesystem and we can't use the clustering stuff.
6464 */
6465 if (btrfs_mixed_space_info(space_info))
6466 use_cluster = false;
6467
6468 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6469 last_ptr = &root->fs_info->meta_alloc_cluster;
6470 if (!btrfs_test_opt(root, SSD))
6471 empty_cluster = 64 * 1024;
6472 }
6473
6474 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6475 btrfs_test_opt(root, SSD)) {
6476 last_ptr = &root->fs_info->data_alloc_cluster;
6477 }
6478
6479 if (last_ptr) {
6480 spin_lock(&last_ptr->lock);
6481 if (last_ptr->block_group)
6482 hint_byte = last_ptr->window_start;
6483 spin_unlock(&last_ptr->lock);
6484 }
6485
6486 search_start = max(search_start, first_logical_byte(root, 0));
6487 search_start = max(search_start, hint_byte);
6488
6489 if (!last_ptr)
6490 empty_cluster = 0;
6491
6492 if (search_start == hint_byte) {
6493 block_group = btrfs_lookup_block_group(root->fs_info,
6494 search_start);
6495 /*
6496 * we don't want to use the block group if it doesn't match our
6497 * allocation bits, or if its not cached.
6498 *
6499 * However if we are re-searching with an ideal block group
6500 * picked out then we don't care that the block group is cached.
6501 */
6502 if (block_group && block_group_bits(block_group, flags) &&
6503 block_group->cached != BTRFS_CACHE_NO) {
6504 down_read(&space_info->groups_sem);
6505 if (list_empty(&block_group->list) ||
6506 block_group->ro) {
6507 /*
6508 * someone is removing this block group,
6509 * we can't jump into the have_block_group
6510 * target because our list pointers are not
6511 * valid
6512 */
6513 btrfs_put_block_group(block_group);
6514 up_read(&space_info->groups_sem);
6515 } else {
6516 index = get_block_group_index(block_group);
6517 btrfs_lock_block_group(block_group, delalloc);
6518 goto have_block_group;
6519 }
6520 } else if (block_group) {
6521 btrfs_put_block_group(block_group);
6522 }
6523 }
6524 search:
6525 have_caching_bg = false;
6526 down_read(&space_info->groups_sem);
6527 list_for_each_entry(block_group, &space_info->block_groups[index],
6528 list) {
6529 u64 offset;
6530 int cached;
6531
6532 btrfs_grab_block_group(block_group, delalloc);
6533 search_start = block_group->key.objectid;
6534
6535 /*
6536 * this can happen if we end up cycling through all the
6537 * raid types, but we want to make sure we only allocate
6538 * for the proper type.
6539 */
6540 if (!block_group_bits(block_group, flags)) {
6541 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6542 BTRFS_BLOCK_GROUP_RAID1 |
6543 BTRFS_BLOCK_GROUP_RAID5 |
6544 BTRFS_BLOCK_GROUP_RAID6 |
6545 BTRFS_BLOCK_GROUP_RAID10;
6546
6547 /*
6548 * if they asked for extra copies and this block group
6549 * doesn't provide them, bail. This does allow us to
6550 * fill raid0 from raid1.
6551 */
6552 if ((flags & extra) && !(block_group->flags & extra))
6553 goto loop;
6554 }
6555
6556 have_block_group:
6557 cached = block_group_cache_done(block_group);
6558 if (unlikely(!cached)) {
6559 ret = cache_block_group(block_group, 0);
6560 BUG_ON(ret < 0);
6561 ret = 0;
6562 }
6563
6564 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6565 goto loop;
6566 if (unlikely(block_group->ro))
6567 goto loop;
6568
6569 /*
6570 * Ok we want to try and use the cluster allocator, so
6571 * lets look there
6572 */
6573 if (last_ptr) {
6574 struct btrfs_block_group_cache *used_block_group;
6575 unsigned long aligned_cluster;
6576 /*
6577 * the refill lock keeps out other
6578 * people trying to start a new cluster
6579 */
6580 used_block_group = btrfs_lock_cluster(block_group,
6581 last_ptr,
6582 delalloc);
6583 if (!used_block_group)
6584 goto refill_cluster;
6585
6586 if (used_block_group != block_group &&
6587 (used_block_group->ro ||
6588 !block_group_bits(used_block_group, flags)))
6589 goto release_cluster;
6590
6591 offset = btrfs_alloc_from_cluster(used_block_group,
6592 last_ptr,
6593 num_bytes,
6594 used_block_group->key.objectid,
6595 &max_extent_size);
6596 if (offset) {
6597 /* we have a block, we're done */
6598 spin_unlock(&last_ptr->refill_lock);
6599 trace_btrfs_reserve_extent_cluster(root,
6600 used_block_group,
6601 search_start, num_bytes);
6602 if (used_block_group != block_group) {
6603 btrfs_release_block_group(block_group,
6604 delalloc);
6605 block_group = used_block_group;
6606 }
6607 goto checks;
6608 }
6609
6610 WARN_ON(last_ptr->block_group != used_block_group);
6611 release_cluster:
6612 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6613 * set up a new clusters, so lets just skip it
6614 * and let the allocator find whatever block
6615 * it can find. If we reach this point, we
6616 * will have tried the cluster allocator
6617 * plenty of times and not have found
6618 * anything, so we are likely way too
6619 * fragmented for the clustering stuff to find
6620 * anything.
6621 *
6622 * However, if the cluster is taken from the
6623 * current block group, release the cluster
6624 * first, so that we stand a better chance of
6625 * succeeding in the unclustered
6626 * allocation. */
6627 if (loop >= LOOP_NO_EMPTY_SIZE &&
6628 used_block_group != block_group) {
6629 spin_unlock(&last_ptr->refill_lock);
6630 btrfs_release_block_group(used_block_group,
6631 delalloc);
6632 goto unclustered_alloc;
6633 }
6634
6635 /*
6636 * this cluster didn't work out, free it and
6637 * start over
6638 */
6639 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6640
6641 if (used_block_group != block_group)
6642 btrfs_release_block_group(used_block_group,
6643 delalloc);
6644 refill_cluster:
6645 if (loop >= LOOP_NO_EMPTY_SIZE) {
6646 spin_unlock(&last_ptr->refill_lock);
6647 goto unclustered_alloc;
6648 }
6649
6650 aligned_cluster = max_t(unsigned long,
6651 empty_cluster + empty_size,
6652 block_group->full_stripe_len);
6653
6654 /* allocate a cluster in this block group */
6655 ret = btrfs_find_space_cluster(root, block_group,
6656 last_ptr, search_start,
6657 num_bytes,
6658 aligned_cluster);
6659 if (ret == 0) {
6660 /*
6661 * now pull our allocation out of this
6662 * cluster
6663 */
6664 offset = btrfs_alloc_from_cluster(block_group,
6665 last_ptr,
6666 num_bytes,
6667 search_start,
6668 &max_extent_size);
6669 if (offset) {
6670 /* we found one, proceed */
6671 spin_unlock(&last_ptr->refill_lock);
6672 trace_btrfs_reserve_extent_cluster(root,
6673 block_group, search_start,
6674 num_bytes);
6675 goto checks;
6676 }
6677 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6678 && !failed_cluster_refill) {
6679 spin_unlock(&last_ptr->refill_lock);
6680
6681 failed_cluster_refill = true;
6682 wait_block_group_cache_progress(block_group,
6683 num_bytes + empty_cluster + empty_size);
6684 goto have_block_group;
6685 }
6686
6687 /*
6688 * at this point we either didn't find a cluster
6689 * or we weren't able to allocate a block from our
6690 * cluster. Free the cluster we've been trying
6691 * to use, and go to the next block group
6692 */
6693 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6694 spin_unlock(&last_ptr->refill_lock);
6695 goto loop;
6696 }
6697
6698 unclustered_alloc:
6699 spin_lock(&block_group->free_space_ctl->tree_lock);
6700 if (cached &&
6701 block_group->free_space_ctl->free_space <
6702 num_bytes + empty_cluster + empty_size) {
6703 if (block_group->free_space_ctl->free_space >
6704 max_extent_size)
6705 max_extent_size =
6706 block_group->free_space_ctl->free_space;
6707 spin_unlock(&block_group->free_space_ctl->tree_lock);
6708 goto loop;
6709 }
6710 spin_unlock(&block_group->free_space_ctl->tree_lock);
6711
6712 offset = btrfs_find_space_for_alloc(block_group, search_start,
6713 num_bytes, empty_size,
6714 &max_extent_size);
6715 /*
6716 * If we didn't find a chunk, and we haven't failed on this
6717 * block group before, and this block group is in the middle of
6718 * caching and we are ok with waiting, then go ahead and wait
6719 * for progress to be made, and set failed_alloc to true.
6720 *
6721 * If failed_alloc is true then we've already waited on this
6722 * block group once and should move on to the next block group.
6723 */
6724 if (!offset && !failed_alloc && !cached &&
6725 loop > LOOP_CACHING_NOWAIT) {
6726 wait_block_group_cache_progress(block_group,
6727 num_bytes + empty_size);
6728 failed_alloc = true;
6729 goto have_block_group;
6730 } else if (!offset) {
6731 if (!cached)
6732 have_caching_bg = true;
6733 goto loop;
6734 }
6735 checks:
6736 search_start = ALIGN(offset, root->stripesize);
6737
6738 /* move on to the next group */
6739 if (search_start + num_bytes >
6740 block_group->key.objectid + block_group->key.offset) {
6741 btrfs_add_free_space(block_group, offset, num_bytes);
6742 goto loop;
6743 }
6744
6745 if (offset < search_start)
6746 btrfs_add_free_space(block_group, offset,
6747 search_start - offset);
6748 BUG_ON(offset > search_start);
6749
6750 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6751 alloc_type, delalloc);
6752 if (ret == -EAGAIN) {
6753 btrfs_add_free_space(block_group, offset, num_bytes);
6754 goto loop;
6755 }
6756
6757 /* we are all good, lets return */
6758 ins->objectid = search_start;
6759 ins->offset = num_bytes;
6760
6761 trace_btrfs_reserve_extent(orig_root, block_group,
6762 search_start, num_bytes);
6763 btrfs_release_block_group(block_group, delalloc);
6764 break;
6765 loop:
6766 failed_cluster_refill = false;
6767 failed_alloc = false;
6768 BUG_ON(index != get_block_group_index(block_group));
6769 btrfs_release_block_group(block_group, delalloc);
6770 }
6771 up_read(&space_info->groups_sem);
6772
6773 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6774 goto search;
6775
6776 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6777 goto search;
6778
6779 /*
6780 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6781 * caching kthreads as we move along
6782 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6783 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6784 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6785 * again
6786 */
6787 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6788 index = 0;
6789 loop++;
6790 if (loop == LOOP_ALLOC_CHUNK) {
6791 struct btrfs_trans_handle *trans;
6792 int exist = 0;
6793
6794 trans = current->journal_info;
6795 if (trans)
6796 exist = 1;
6797 else
6798 trans = btrfs_join_transaction(root);
6799
6800 if (IS_ERR(trans)) {
6801 ret = PTR_ERR(trans);
6802 goto out;
6803 }
6804
6805 ret = do_chunk_alloc(trans, root, flags,
6806 CHUNK_ALLOC_FORCE);
6807 /*
6808 * Do not bail out on ENOSPC since we
6809 * can do more things.
6810 */
6811 if (ret < 0 && ret != -ENOSPC)
6812 btrfs_abort_transaction(trans,
6813 root, ret);
6814 else
6815 ret = 0;
6816 if (!exist)
6817 btrfs_end_transaction(trans, root);
6818 if (ret)
6819 goto out;
6820 }
6821
6822 if (loop == LOOP_NO_EMPTY_SIZE) {
6823 empty_size = 0;
6824 empty_cluster = 0;
6825 }
6826
6827 goto search;
6828 } else if (!ins->objectid) {
6829 ret = -ENOSPC;
6830 } else if (ins->objectid) {
6831 ret = 0;
6832 }
6833 out:
6834 if (ret == -ENOSPC)
6835 ins->offset = max_extent_size;
6836 return ret;
6837 }
6838
6839 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6840 int dump_block_groups)
6841 {
6842 struct btrfs_block_group_cache *cache;
6843 int index = 0;
6844
6845 spin_lock(&info->lock);
6846 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6847 info->flags,
6848 info->total_bytes - info->bytes_used - info->bytes_pinned -
6849 info->bytes_reserved - info->bytes_readonly,
6850 (info->full) ? "" : "not ");
6851 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6852 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6853 info->total_bytes, info->bytes_used, info->bytes_pinned,
6854 info->bytes_reserved, info->bytes_may_use,
6855 info->bytes_readonly);
6856 spin_unlock(&info->lock);
6857
6858 if (!dump_block_groups)
6859 return;
6860
6861 down_read(&info->groups_sem);
6862 again:
6863 list_for_each_entry(cache, &info->block_groups[index], list) {
6864 spin_lock(&cache->lock);
6865 printk(KERN_INFO "BTRFS: "
6866 "block group %llu has %llu bytes, "
6867 "%llu used %llu pinned %llu reserved %s\n",
6868 cache->key.objectid, cache->key.offset,
6869 btrfs_block_group_used(&cache->item), cache->pinned,
6870 cache->reserved, cache->ro ? "[readonly]" : "");
6871 btrfs_dump_free_space(cache, bytes);
6872 spin_unlock(&cache->lock);
6873 }
6874 if (++index < BTRFS_NR_RAID_TYPES)
6875 goto again;
6876 up_read(&info->groups_sem);
6877 }
6878
6879 int btrfs_reserve_extent(struct btrfs_root *root,
6880 u64 num_bytes, u64 min_alloc_size,
6881 u64 empty_size, u64 hint_byte,
6882 struct btrfs_key *ins, int is_data, int delalloc)
6883 {
6884 bool final_tried = false;
6885 u64 flags;
6886 int ret;
6887
6888 flags = btrfs_get_alloc_profile(root, is_data);
6889 again:
6890 WARN_ON(num_bytes < root->sectorsize);
6891 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6892 flags, delalloc);
6893
6894 if (ret == -ENOSPC) {
6895 if (!final_tried && ins->offset) {
6896 num_bytes = min(num_bytes >> 1, ins->offset);
6897 num_bytes = round_down(num_bytes, root->sectorsize);
6898 num_bytes = max(num_bytes, min_alloc_size);
6899 if (num_bytes == min_alloc_size)
6900 final_tried = true;
6901 goto again;
6902 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6903 struct btrfs_space_info *sinfo;
6904
6905 sinfo = __find_space_info(root->fs_info, flags);
6906 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6907 flags, num_bytes);
6908 if (sinfo)
6909 dump_space_info(sinfo, num_bytes, 1);
6910 }
6911 }
6912
6913 return ret;
6914 }
6915
6916 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6917 u64 start, u64 len,
6918 int pin, int delalloc)
6919 {
6920 struct btrfs_block_group_cache *cache;
6921 int ret = 0;
6922
6923 cache = btrfs_lookup_block_group(root->fs_info, start);
6924 if (!cache) {
6925 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6926 start);
6927 return -ENOSPC;
6928 }
6929
6930 if (btrfs_test_opt(root, DISCARD))
6931 ret = btrfs_discard_extent(root, start, len, NULL);
6932
6933 if (pin)
6934 pin_down_extent(root, cache, start, len, 1);
6935 else {
6936 btrfs_add_free_space(cache, start, len);
6937 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6938 }
6939 btrfs_put_block_group(cache);
6940
6941 trace_btrfs_reserved_extent_free(root, start, len);
6942
6943 return ret;
6944 }
6945
6946 int btrfs_free_reserved_extent(struct btrfs_root *root,
6947 u64 start, u64 len, int delalloc)
6948 {
6949 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6950 }
6951
6952 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6953 u64 start, u64 len)
6954 {
6955 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6956 }
6957
6958 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6959 struct btrfs_root *root,
6960 u64 parent, u64 root_objectid,
6961 u64 flags, u64 owner, u64 offset,
6962 struct btrfs_key *ins, int ref_mod)
6963 {
6964 int ret;
6965 struct btrfs_fs_info *fs_info = root->fs_info;
6966 struct btrfs_extent_item *extent_item;
6967 struct btrfs_extent_inline_ref *iref;
6968 struct btrfs_path *path;
6969 struct extent_buffer *leaf;
6970 int type;
6971 u32 size;
6972
6973 if (parent > 0)
6974 type = BTRFS_SHARED_DATA_REF_KEY;
6975 else
6976 type = BTRFS_EXTENT_DATA_REF_KEY;
6977
6978 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6979
6980 path = btrfs_alloc_path();
6981 if (!path)
6982 return -ENOMEM;
6983
6984 path->leave_spinning = 1;
6985 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6986 ins, size);
6987 if (ret) {
6988 btrfs_free_path(path);
6989 return ret;
6990 }
6991
6992 leaf = path->nodes[0];
6993 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6994 struct btrfs_extent_item);
6995 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6996 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6997 btrfs_set_extent_flags(leaf, extent_item,
6998 flags | BTRFS_EXTENT_FLAG_DATA);
6999
7000 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7001 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7002 if (parent > 0) {
7003 struct btrfs_shared_data_ref *ref;
7004 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7005 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7006 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7007 } else {
7008 struct btrfs_extent_data_ref *ref;
7009 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7010 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7011 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7012 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7013 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7014 }
7015
7016 btrfs_mark_buffer_dirty(path->nodes[0]);
7017 btrfs_free_path(path);
7018
7019 /* Always set parent to 0 here since its exclusive anyway. */
7020 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7021 ins->objectid, ins->offset,
7022 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7023 if (ret)
7024 return ret;
7025
7026 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7027 if (ret) { /* -ENOENT, logic error */
7028 btrfs_err(fs_info, "update block group failed for %llu %llu",
7029 ins->objectid, ins->offset);
7030 BUG();
7031 }
7032 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7033 return ret;
7034 }
7035
7036 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7037 struct btrfs_root *root,
7038 u64 parent, u64 root_objectid,
7039 u64 flags, struct btrfs_disk_key *key,
7040 int level, struct btrfs_key *ins,
7041 int no_quota)
7042 {
7043 int ret;
7044 struct btrfs_fs_info *fs_info = root->fs_info;
7045 struct btrfs_extent_item *extent_item;
7046 struct btrfs_tree_block_info *block_info;
7047 struct btrfs_extent_inline_ref *iref;
7048 struct btrfs_path *path;
7049 struct extent_buffer *leaf;
7050 u32 size = sizeof(*extent_item) + sizeof(*iref);
7051 u64 num_bytes = ins->offset;
7052 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7053 SKINNY_METADATA);
7054
7055 if (!skinny_metadata)
7056 size += sizeof(*block_info);
7057
7058 path = btrfs_alloc_path();
7059 if (!path) {
7060 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7061 root->nodesize);
7062 return -ENOMEM;
7063 }
7064
7065 path->leave_spinning = 1;
7066 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7067 ins, size);
7068 if (ret) {
7069 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7070 root->nodesize);
7071 btrfs_free_path(path);
7072 return ret;
7073 }
7074
7075 leaf = path->nodes[0];
7076 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7077 struct btrfs_extent_item);
7078 btrfs_set_extent_refs(leaf, extent_item, 1);
7079 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7080 btrfs_set_extent_flags(leaf, extent_item,
7081 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7082
7083 if (skinny_metadata) {
7084 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7085 num_bytes = root->nodesize;
7086 } else {
7087 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7088 btrfs_set_tree_block_key(leaf, block_info, key);
7089 btrfs_set_tree_block_level(leaf, block_info, level);
7090 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7091 }
7092
7093 if (parent > 0) {
7094 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7095 btrfs_set_extent_inline_ref_type(leaf, iref,
7096 BTRFS_SHARED_BLOCK_REF_KEY);
7097 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7098 } else {
7099 btrfs_set_extent_inline_ref_type(leaf, iref,
7100 BTRFS_TREE_BLOCK_REF_KEY);
7101 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7102 }
7103
7104 btrfs_mark_buffer_dirty(leaf);
7105 btrfs_free_path(path);
7106
7107 if (!no_quota) {
7108 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7109 ins->objectid, num_bytes,
7110 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7111 if (ret)
7112 return ret;
7113 }
7114
7115 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7116 1);
7117 if (ret) { /* -ENOENT, logic error */
7118 btrfs_err(fs_info, "update block group failed for %llu %llu",
7119 ins->objectid, ins->offset);
7120 BUG();
7121 }
7122
7123 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7124 return ret;
7125 }
7126
7127 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7128 struct btrfs_root *root,
7129 u64 root_objectid, u64 owner,
7130 u64 offset, struct btrfs_key *ins)
7131 {
7132 int ret;
7133
7134 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7135
7136 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7137 ins->offset, 0,
7138 root_objectid, owner, offset,
7139 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7140 return ret;
7141 }
7142
7143 /*
7144 * this is used by the tree logging recovery code. It records that
7145 * an extent has been allocated and makes sure to clear the free
7146 * space cache bits as well
7147 */
7148 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7149 struct btrfs_root *root,
7150 u64 root_objectid, u64 owner, u64 offset,
7151 struct btrfs_key *ins)
7152 {
7153 int ret;
7154 struct btrfs_block_group_cache *block_group;
7155
7156 /*
7157 * Mixed block groups will exclude before processing the log so we only
7158 * need to do the exlude dance if this fs isn't mixed.
7159 */
7160 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7161 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7162 if (ret)
7163 return ret;
7164 }
7165
7166 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7167 if (!block_group)
7168 return -EINVAL;
7169
7170 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7171 RESERVE_ALLOC_NO_ACCOUNT, 0);
7172 BUG_ON(ret); /* logic error */
7173 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7174 0, owner, offset, ins, 1);
7175 btrfs_put_block_group(block_group);
7176 return ret;
7177 }
7178
7179 static struct extent_buffer *
7180 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7181 u64 bytenr, int level)
7182 {
7183 struct extent_buffer *buf;
7184
7185 buf = btrfs_find_create_tree_block(root, bytenr);
7186 if (!buf)
7187 return ERR_PTR(-ENOMEM);
7188 btrfs_set_header_generation(buf, trans->transid);
7189 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7190 btrfs_tree_lock(buf);
7191 clean_tree_block(trans, root, buf);
7192 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7193
7194 btrfs_set_lock_blocking(buf);
7195 btrfs_set_buffer_uptodate(buf);
7196
7197 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7198 buf->log_index = root->log_transid % 2;
7199 /*
7200 * we allow two log transactions at a time, use different
7201 * EXENT bit to differentiate dirty pages.
7202 */
7203 if (buf->log_index == 0)
7204 set_extent_dirty(&root->dirty_log_pages, buf->start,
7205 buf->start + buf->len - 1, GFP_NOFS);
7206 else
7207 set_extent_new(&root->dirty_log_pages, buf->start,
7208 buf->start + buf->len - 1, GFP_NOFS);
7209 } else {
7210 buf->log_index = -1;
7211 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7212 buf->start + buf->len - 1, GFP_NOFS);
7213 }
7214 trans->blocks_used++;
7215 /* this returns a buffer locked for blocking */
7216 return buf;
7217 }
7218
7219 static struct btrfs_block_rsv *
7220 use_block_rsv(struct btrfs_trans_handle *trans,
7221 struct btrfs_root *root, u32 blocksize)
7222 {
7223 struct btrfs_block_rsv *block_rsv;
7224 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7225 int ret;
7226 bool global_updated = false;
7227
7228 block_rsv = get_block_rsv(trans, root);
7229
7230 if (unlikely(block_rsv->size == 0))
7231 goto try_reserve;
7232 again:
7233 ret = block_rsv_use_bytes(block_rsv, blocksize);
7234 if (!ret)
7235 return block_rsv;
7236
7237 if (block_rsv->failfast)
7238 return ERR_PTR(ret);
7239
7240 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7241 global_updated = true;
7242 update_global_block_rsv(root->fs_info);
7243 goto again;
7244 }
7245
7246 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7247 static DEFINE_RATELIMIT_STATE(_rs,
7248 DEFAULT_RATELIMIT_INTERVAL * 10,
7249 /*DEFAULT_RATELIMIT_BURST*/ 1);
7250 if (__ratelimit(&_rs))
7251 WARN(1, KERN_DEBUG
7252 "BTRFS: block rsv returned %d\n", ret);
7253 }
7254 try_reserve:
7255 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7256 BTRFS_RESERVE_NO_FLUSH);
7257 if (!ret)
7258 return block_rsv;
7259 /*
7260 * If we couldn't reserve metadata bytes try and use some from
7261 * the global reserve if its space type is the same as the global
7262 * reservation.
7263 */
7264 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7265 block_rsv->space_info == global_rsv->space_info) {
7266 ret = block_rsv_use_bytes(global_rsv, blocksize);
7267 if (!ret)
7268 return global_rsv;
7269 }
7270 return ERR_PTR(ret);
7271 }
7272
7273 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7274 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7275 {
7276 block_rsv_add_bytes(block_rsv, blocksize, 0);
7277 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7278 }
7279
7280 /*
7281 * finds a free extent and does all the dirty work required for allocation
7282 * returns the key for the extent through ins, and a tree buffer for
7283 * the first block of the extent through buf.
7284 *
7285 * returns the tree buffer or NULL.
7286 */
7287 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7288 struct btrfs_root *root,
7289 u64 parent, u64 root_objectid,
7290 struct btrfs_disk_key *key, int level,
7291 u64 hint, u64 empty_size)
7292 {
7293 struct btrfs_key ins;
7294 struct btrfs_block_rsv *block_rsv;
7295 struct extent_buffer *buf;
7296 u64 flags = 0;
7297 int ret;
7298 u32 blocksize = root->nodesize;
7299 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7300 SKINNY_METADATA);
7301
7302 if (btrfs_test_is_dummy_root(root)) {
7303 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7304 level);
7305 if (!IS_ERR(buf))
7306 root->alloc_bytenr += blocksize;
7307 return buf;
7308 }
7309
7310 block_rsv = use_block_rsv(trans, root, blocksize);
7311 if (IS_ERR(block_rsv))
7312 return ERR_CAST(block_rsv);
7313
7314 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7315 empty_size, hint, &ins, 0, 0);
7316 if (ret) {
7317 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7318 return ERR_PTR(ret);
7319 }
7320
7321 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7322 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7323
7324 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7325 if (parent == 0)
7326 parent = ins.objectid;
7327 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7328 } else
7329 BUG_ON(parent > 0);
7330
7331 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7332 struct btrfs_delayed_extent_op *extent_op;
7333 extent_op = btrfs_alloc_delayed_extent_op();
7334 BUG_ON(!extent_op); /* -ENOMEM */
7335 if (key)
7336 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7337 else
7338 memset(&extent_op->key, 0, sizeof(extent_op->key));
7339 extent_op->flags_to_set = flags;
7340 if (skinny_metadata)
7341 extent_op->update_key = 0;
7342 else
7343 extent_op->update_key = 1;
7344 extent_op->update_flags = 1;
7345 extent_op->is_data = 0;
7346 extent_op->level = level;
7347
7348 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7349 ins.objectid,
7350 ins.offset, parent, root_objectid,
7351 level, BTRFS_ADD_DELAYED_EXTENT,
7352 extent_op, 0);
7353 BUG_ON(ret); /* -ENOMEM */
7354 }
7355 return buf;
7356 }
7357
7358 struct walk_control {
7359 u64 refs[BTRFS_MAX_LEVEL];
7360 u64 flags[BTRFS_MAX_LEVEL];
7361 struct btrfs_key update_progress;
7362 int stage;
7363 int level;
7364 int shared_level;
7365 int update_ref;
7366 int keep_locks;
7367 int reada_slot;
7368 int reada_count;
7369 int for_reloc;
7370 };
7371
7372 #define DROP_REFERENCE 1
7373 #define UPDATE_BACKREF 2
7374
7375 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7376 struct btrfs_root *root,
7377 struct walk_control *wc,
7378 struct btrfs_path *path)
7379 {
7380 u64 bytenr;
7381 u64 generation;
7382 u64 refs;
7383 u64 flags;
7384 u32 nritems;
7385 u32 blocksize;
7386 struct btrfs_key key;
7387 struct extent_buffer *eb;
7388 int ret;
7389 int slot;
7390 int nread = 0;
7391
7392 if (path->slots[wc->level] < wc->reada_slot) {
7393 wc->reada_count = wc->reada_count * 2 / 3;
7394 wc->reada_count = max(wc->reada_count, 2);
7395 } else {
7396 wc->reada_count = wc->reada_count * 3 / 2;
7397 wc->reada_count = min_t(int, wc->reada_count,
7398 BTRFS_NODEPTRS_PER_BLOCK(root));
7399 }
7400
7401 eb = path->nodes[wc->level];
7402 nritems = btrfs_header_nritems(eb);
7403 blocksize = root->nodesize;
7404
7405 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7406 if (nread >= wc->reada_count)
7407 break;
7408
7409 cond_resched();
7410 bytenr = btrfs_node_blockptr(eb, slot);
7411 generation = btrfs_node_ptr_generation(eb, slot);
7412
7413 if (slot == path->slots[wc->level])
7414 goto reada;
7415
7416 if (wc->stage == UPDATE_BACKREF &&
7417 generation <= root->root_key.offset)
7418 continue;
7419
7420 /* We don't lock the tree block, it's OK to be racy here */
7421 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7422 wc->level - 1, 1, &refs,
7423 &flags);
7424 /* We don't care about errors in readahead. */
7425 if (ret < 0)
7426 continue;
7427 BUG_ON(refs == 0);
7428
7429 if (wc->stage == DROP_REFERENCE) {
7430 if (refs == 1)
7431 goto reada;
7432
7433 if (wc->level == 1 &&
7434 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7435 continue;
7436 if (!wc->update_ref ||
7437 generation <= root->root_key.offset)
7438 continue;
7439 btrfs_node_key_to_cpu(eb, &key, slot);
7440 ret = btrfs_comp_cpu_keys(&key,
7441 &wc->update_progress);
7442 if (ret < 0)
7443 continue;
7444 } else {
7445 if (wc->level == 1 &&
7446 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7447 continue;
7448 }
7449 reada:
7450 readahead_tree_block(root, bytenr);
7451 nread++;
7452 }
7453 wc->reada_slot = slot;
7454 }
7455
7456 static int account_leaf_items(struct btrfs_trans_handle *trans,
7457 struct btrfs_root *root,
7458 struct extent_buffer *eb)
7459 {
7460 int nr = btrfs_header_nritems(eb);
7461 int i, extent_type, ret;
7462 struct btrfs_key key;
7463 struct btrfs_file_extent_item *fi;
7464 u64 bytenr, num_bytes;
7465
7466 for (i = 0; i < nr; i++) {
7467 btrfs_item_key_to_cpu(eb, &key, i);
7468
7469 if (key.type != BTRFS_EXTENT_DATA_KEY)
7470 continue;
7471
7472 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7473 /* filter out non qgroup-accountable extents */
7474 extent_type = btrfs_file_extent_type(eb, fi);
7475
7476 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7477 continue;
7478
7479 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7480 if (!bytenr)
7481 continue;
7482
7483 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7484
7485 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7486 root->objectid,
7487 bytenr, num_bytes,
7488 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7489 if (ret)
7490 return ret;
7491 }
7492 return 0;
7493 }
7494
7495 /*
7496 * Walk up the tree from the bottom, freeing leaves and any interior
7497 * nodes which have had all slots visited. If a node (leaf or
7498 * interior) is freed, the node above it will have it's slot
7499 * incremented. The root node will never be freed.
7500 *
7501 * At the end of this function, we should have a path which has all
7502 * slots incremented to the next position for a search. If we need to
7503 * read a new node it will be NULL and the node above it will have the
7504 * correct slot selected for a later read.
7505 *
7506 * If we increment the root nodes slot counter past the number of
7507 * elements, 1 is returned to signal completion of the search.
7508 */
7509 static int adjust_slots_upwards(struct btrfs_root *root,
7510 struct btrfs_path *path, int root_level)
7511 {
7512 int level = 0;
7513 int nr, slot;
7514 struct extent_buffer *eb;
7515
7516 if (root_level == 0)
7517 return 1;
7518
7519 while (level <= root_level) {
7520 eb = path->nodes[level];
7521 nr = btrfs_header_nritems(eb);
7522 path->slots[level]++;
7523 slot = path->slots[level];
7524 if (slot >= nr || level == 0) {
7525 /*
7526 * Don't free the root - we will detect this
7527 * condition after our loop and return a
7528 * positive value for caller to stop walking the tree.
7529 */
7530 if (level != root_level) {
7531 btrfs_tree_unlock_rw(eb, path->locks[level]);
7532 path->locks[level] = 0;
7533
7534 free_extent_buffer(eb);
7535 path->nodes[level] = NULL;
7536 path->slots[level] = 0;
7537 }
7538 } else {
7539 /*
7540 * We have a valid slot to walk back down
7541 * from. Stop here so caller can process these
7542 * new nodes.
7543 */
7544 break;
7545 }
7546
7547 level++;
7548 }
7549
7550 eb = path->nodes[root_level];
7551 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7552 return 1;
7553
7554 return 0;
7555 }
7556
7557 /*
7558 * root_eb is the subtree root and is locked before this function is called.
7559 */
7560 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7561 struct btrfs_root *root,
7562 struct extent_buffer *root_eb,
7563 u64 root_gen,
7564 int root_level)
7565 {
7566 int ret = 0;
7567 int level;
7568 struct extent_buffer *eb = root_eb;
7569 struct btrfs_path *path = NULL;
7570
7571 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7572 BUG_ON(root_eb == NULL);
7573
7574 if (!root->fs_info->quota_enabled)
7575 return 0;
7576
7577 if (!extent_buffer_uptodate(root_eb)) {
7578 ret = btrfs_read_buffer(root_eb, root_gen);
7579 if (ret)
7580 goto out;
7581 }
7582
7583 if (root_level == 0) {
7584 ret = account_leaf_items(trans, root, root_eb);
7585 goto out;
7586 }
7587
7588 path = btrfs_alloc_path();
7589 if (!path)
7590 return -ENOMEM;
7591
7592 /*
7593 * Walk down the tree. Missing extent blocks are filled in as
7594 * we go. Metadata is accounted every time we read a new
7595 * extent block.
7596 *
7597 * When we reach a leaf, we account for file extent items in it,
7598 * walk back up the tree (adjusting slot pointers as we go)
7599 * and restart the search process.
7600 */
7601 extent_buffer_get(root_eb); /* For path */
7602 path->nodes[root_level] = root_eb;
7603 path->slots[root_level] = 0;
7604 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7605 walk_down:
7606 level = root_level;
7607 while (level >= 0) {
7608 if (path->nodes[level] == NULL) {
7609 int parent_slot;
7610 u64 child_gen;
7611 u64 child_bytenr;
7612
7613 /* We need to get child blockptr/gen from
7614 * parent before we can read it. */
7615 eb = path->nodes[level + 1];
7616 parent_slot = path->slots[level + 1];
7617 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7618 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7619
7620 eb = read_tree_block(root, child_bytenr, child_gen);
7621 if (!eb || !extent_buffer_uptodate(eb)) {
7622 ret = -EIO;
7623 goto out;
7624 }
7625
7626 path->nodes[level] = eb;
7627 path->slots[level] = 0;
7628
7629 btrfs_tree_read_lock(eb);
7630 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7631 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7632
7633 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7634 root->objectid,
7635 child_bytenr,
7636 root->nodesize,
7637 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7638 0);
7639 if (ret)
7640 goto out;
7641
7642 }
7643
7644 if (level == 0) {
7645 ret = account_leaf_items(trans, root, path->nodes[level]);
7646 if (ret)
7647 goto out;
7648
7649 /* Nonzero return here means we completed our search */
7650 ret = adjust_slots_upwards(root, path, root_level);
7651 if (ret)
7652 break;
7653
7654 /* Restart search with new slots */
7655 goto walk_down;
7656 }
7657
7658 level--;
7659 }
7660
7661 ret = 0;
7662 out:
7663 btrfs_free_path(path);
7664
7665 return ret;
7666 }
7667
7668 /*
7669 * helper to process tree block while walking down the tree.
7670 *
7671 * when wc->stage == UPDATE_BACKREF, this function updates
7672 * back refs for pointers in the block.
7673 *
7674 * NOTE: return value 1 means we should stop walking down.
7675 */
7676 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7677 struct btrfs_root *root,
7678 struct btrfs_path *path,
7679 struct walk_control *wc, int lookup_info)
7680 {
7681 int level = wc->level;
7682 struct extent_buffer *eb = path->nodes[level];
7683 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7684 int ret;
7685
7686 if (wc->stage == UPDATE_BACKREF &&
7687 btrfs_header_owner(eb) != root->root_key.objectid)
7688 return 1;
7689
7690 /*
7691 * when reference count of tree block is 1, it won't increase
7692 * again. once full backref flag is set, we never clear it.
7693 */
7694 if (lookup_info &&
7695 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7696 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7697 BUG_ON(!path->locks[level]);
7698 ret = btrfs_lookup_extent_info(trans, root,
7699 eb->start, level, 1,
7700 &wc->refs[level],
7701 &wc->flags[level]);
7702 BUG_ON(ret == -ENOMEM);
7703 if (ret)
7704 return ret;
7705 BUG_ON(wc->refs[level] == 0);
7706 }
7707
7708 if (wc->stage == DROP_REFERENCE) {
7709 if (wc->refs[level] > 1)
7710 return 1;
7711
7712 if (path->locks[level] && !wc->keep_locks) {
7713 btrfs_tree_unlock_rw(eb, path->locks[level]);
7714 path->locks[level] = 0;
7715 }
7716 return 0;
7717 }
7718
7719 /* wc->stage == UPDATE_BACKREF */
7720 if (!(wc->flags[level] & flag)) {
7721 BUG_ON(!path->locks[level]);
7722 ret = btrfs_inc_ref(trans, root, eb, 1);
7723 BUG_ON(ret); /* -ENOMEM */
7724 ret = btrfs_dec_ref(trans, root, eb, 0);
7725 BUG_ON(ret); /* -ENOMEM */
7726 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7727 eb->len, flag,
7728 btrfs_header_level(eb), 0);
7729 BUG_ON(ret); /* -ENOMEM */
7730 wc->flags[level] |= flag;
7731 }
7732
7733 /*
7734 * the block is shared by multiple trees, so it's not good to
7735 * keep the tree lock
7736 */
7737 if (path->locks[level] && level > 0) {
7738 btrfs_tree_unlock_rw(eb, path->locks[level]);
7739 path->locks[level] = 0;
7740 }
7741 return 0;
7742 }
7743
7744 /*
7745 * helper to process tree block pointer.
7746 *
7747 * when wc->stage == DROP_REFERENCE, this function checks
7748 * reference count of the block pointed to. if the block
7749 * is shared and we need update back refs for the subtree
7750 * rooted at the block, this function changes wc->stage to
7751 * UPDATE_BACKREF. if the block is shared and there is no
7752 * need to update back, this function drops the reference
7753 * to the block.
7754 *
7755 * NOTE: return value 1 means we should stop walking down.
7756 */
7757 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7758 struct btrfs_root *root,
7759 struct btrfs_path *path,
7760 struct walk_control *wc, int *lookup_info)
7761 {
7762 u64 bytenr;
7763 u64 generation;
7764 u64 parent;
7765 u32 blocksize;
7766 struct btrfs_key key;
7767 struct extent_buffer *next;
7768 int level = wc->level;
7769 int reada = 0;
7770 int ret = 0;
7771 bool need_account = false;
7772
7773 generation = btrfs_node_ptr_generation(path->nodes[level],
7774 path->slots[level]);
7775 /*
7776 * if the lower level block was created before the snapshot
7777 * was created, we know there is no need to update back refs
7778 * for the subtree
7779 */
7780 if (wc->stage == UPDATE_BACKREF &&
7781 generation <= root->root_key.offset) {
7782 *lookup_info = 1;
7783 return 1;
7784 }
7785
7786 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7787 blocksize = root->nodesize;
7788
7789 next = btrfs_find_tree_block(root, bytenr);
7790 if (!next) {
7791 next = btrfs_find_create_tree_block(root, bytenr);
7792 if (!next)
7793 return -ENOMEM;
7794 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7795 level - 1);
7796 reada = 1;
7797 }
7798 btrfs_tree_lock(next);
7799 btrfs_set_lock_blocking(next);
7800
7801 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7802 &wc->refs[level - 1],
7803 &wc->flags[level - 1]);
7804 if (ret < 0) {
7805 btrfs_tree_unlock(next);
7806 return ret;
7807 }
7808
7809 if (unlikely(wc->refs[level - 1] == 0)) {
7810 btrfs_err(root->fs_info, "Missing references.");
7811 BUG();
7812 }
7813 *lookup_info = 0;
7814
7815 if (wc->stage == DROP_REFERENCE) {
7816 if (wc->refs[level - 1] > 1) {
7817 need_account = true;
7818 if (level == 1 &&
7819 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7820 goto skip;
7821
7822 if (!wc->update_ref ||
7823 generation <= root->root_key.offset)
7824 goto skip;
7825
7826 btrfs_node_key_to_cpu(path->nodes[level], &key,
7827 path->slots[level]);
7828 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7829 if (ret < 0)
7830 goto skip;
7831
7832 wc->stage = UPDATE_BACKREF;
7833 wc->shared_level = level - 1;
7834 }
7835 } else {
7836 if (level == 1 &&
7837 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7838 goto skip;
7839 }
7840
7841 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7842 btrfs_tree_unlock(next);
7843 free_extent_buffer(next);
7844 next = NULL;
7845 *lookup_info = 1;
7846 }
7847
7848 if (!next) {
7849 if (reada && level == 1)
7850 reada_walk_down(trans, root, wc, path);
7851 next = read_tree_block(root, bytenr, generation);
7852 if (!next || !extent_buffer_uptodate(next)) {
7853 free_extent_buffer(next);
7854 return -EIO;
7855 }
7856 btrfs_tree_lock(next);
7857 btrfs_set_lock_blocking(next);
7858 }
7859
7860 level--;
7861 BUG_ON(level != btrfs_header_level(next));
7862 path->nodes[level] = next;
7863 path->slots[level] = 0;
7864 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7865 wc->level = level;
7866 if (wc->level == 1)
7867 wc->reada_slot = 0;
7868 return 0;
7869 skip:
7870 wc->refs[level - 1] = 0;
7871 wc->flags[level - 1] = 0;
7872 if (wc->stage == DROP_REFERENCE) {
7873 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7874 parent = path->nodes[level]->start;
7875 } else {
7876 BUG_ON(root->root_key.objectid !=
7877 btrfs_header_owner(path->nodes[level]));
7878 parent = 0;
7879 }
7880
7881 if (need_account) {
7882 ret = account_shared_subtree(trans, root, next,
7883 generation, level - 1);
7884 if (ret) {
7885 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7886 "%d accounting shared subtree. Quota "
7887 "is out of sync, rescan required.\n",
7888 root->fs_info->sb->s_id, ret);
7889 }
7890 }
7891 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7892 root->root_key.objectid, level - 1, 0, 0);
7893 BUG_ON(ret); /* -ENOMEM */
7894 }
7895 btrfs_tree_unlock(next);
7896 free_extent_buffer(next);
7897 *lookup_info = 1;
7898 return 1;
7899 }
7900
7901 /*
7902 * helper to process tree block while walking up the tree.
7903 *
7904 * when wc->stage == DROP_REFERENCE, this function drops
7905 * reference count on the block.
7906 *
7907 * when wc->stage == UPDATE_BACKREF, this function changes
7908 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7909 * to UPDATE_BACKREF previously while processing the block.
7910 *
7911 * NOTE: return value 1 means we should stop walking up.
7912 */
7913 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7914 struct btrfs_root *root,
7915 struct btrfs_path *path,
7916 struct walk_control *wc)
7917 {
7918 int ret;
7919 int level = wc->level;
7920 struct extent_buffer *eb = path->nodes[level];
7921 u64 parent = 0;
7922
7923 if (wc->stage == UPDATE_BACKREF) {
7924 BUG_ON(wc->shared_level < level);
7925 if (level < wc->shared_level)
7926 goto out;
7927
7928 ret = find_next_key(path, level + 1, &wc->update_progress);
7929 if (ret > 0)
7930 wc->update_ref = 0;
7931
7932 wc->stage = DROP_REFERENCE;
7933 wc->shared_level = -1;
7934 path->slots[level] = 0;
7935
7936 /*
7937 * check reference count again if the block isn't locked.
7938 * we should start walking down the tree again if reference
7939 * count is one.
7940 */
7941 if (!path->locks[level]) {
7942 BUG_ON(level == 0);
7943 btrfs_tree_lock(eb);
7944 btrfs_set_lock_blocking(eb);
7945 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7946
7947 ret = btrfs_lookup_extent_info(trans, root,
7948 eb->start, level, 1,
7949 &wc->refs[level],
7950 &wc->flags[level]);
7951 if (ret < 0) {
7952 btrfs_tree_unlock_rw(eb, path->locks[level]);
7953 path->locks[level] = 0;
7954 return ret;
7955 }
7956 BUG_ON(wc->refs[level] == 0);
7957 if (wc->refs[level] == 1) {
7958 btrfs_tree_unlock_rw(eb, path->locks[level]);
7959 path->locks[level] = 0;
7960 return 1;
7961 }
7962 }
7963 }
7964
7965 /* wc->stage == DROP_REFERENCE */
7966 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7967
7968 if (wc->refs[level] == 1) {
7969 if (level == 0) {
7970 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7971 ret = btrfs_dec_ref(trans, root, eb, 1);
7972 else
7973 ret = btrfs_dec_ref(trans, root, eb, 0);
7974 BUG_ON(ret); /* -ENOMEM */
7975 ret = account_leaf_items(trans, root, eb);
7976 if (ret) {
7977 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7978 "%d accounting leaf items. Quota "
7979 "is out of sync, rescan required.\n",
7980 root->fs_info->sb->s_id, ret);
7981 }
7982 }
7983 /* make block locked assertion in clean_tree_block happy */
7984 if (!path->locks[level] &&
7985 btrfs_header_generation(eb) == trans->transid) {
7986 btrfs_tree_lock(eb);
7987 btrfs_set_lock_blocking(eb);
7988 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7989 }
7990 clean_tree_block(trans, root, eb);
7991 }
7992
7993 if (eb == root->node) {
7994 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7995 parent = eb->start;
7996 else
7997 BUG_ON(root->root_key.objectid !=
7998 btrfs_header_owner(eb));
7999 } else {
8000 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8001 parent = path->nodes[level + 1]->start;
8002 else
8003 BUG_ON(root->root_key.objectid !=
8004 btrfs_header_owner(path->nodes[level + 1]));
8005 }
8006
8007 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8008 out:
8009 wc->refs[level] = 0;
8010 wc->flags[level] = 0;
8011 return 0;
8012 }
8013
8014 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8015 struct btrfs_root *root,
8016 struct btrfs_path *path,
8017 struct walk_control *wc)
8018 {
8019 int level = wc->level;
8020 int lookup_info = 1;
8021 int ret;
8022
8023 while (level >= 0) {
8024 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8025 if (ret > 0)
8026 break;
8027
8028 if (level == 0)
8029 break;
8030
8031 if (path->slots[level] >=
8032 btrfs_header_nritems(path->nodes[level]))
8033 break;
8034
8035 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8036 if (ret > 0) {
8037 path->slots[level]++;
8038 continue;
8039 } else if (ret < 0)
8040 return ret;
8041 level = wc->level;
8042 }
8043 return 0;
8044 }
8045
8046 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8047 struct btrfs_root *root,
8048 struct btrfs_path *path,
8049 struct walk_control *wc, int max_level)
8050 {
8051 int level = wc->level;
8052 int ret;
8053
8054 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8055 while (level < max_level && path->nodes[level]) {
8056 wc->level = level;
8057 if (path->slots[level] + 1 <
8058 btrfs_header_nritems(path->nodes[level])) {
8059 path->slots[level]++;
8060 return 0;
8061 } else {
8062 ret = walk_up_proc(trans, root, path, wc);
8063 if (ret > 0)
8064 return 0;
8065
8066 if (path->locks[level]) {
8067 btrfs_tree_unlock_rw(path->nodes[level],
8068 path->locks[level]);
8069 path->locks[level] = 0;
8070 }
8071 free_extent_buffer(path->nodes[level]);
8072 path->nodes[level] = NULL;
8073 level++;
8074 }
8075 }
8076 return 1;
8077 }
8078
8079 /*
8080 * drop a subvolume tree.
8081 *
8082 * this function traverses the tree freeing any blocks that only
8083 * referenced by the tree.
8084 *
8085 * when a shared tree block is found. this function decreases its
8086 * reference count by one. if update_ref is true, this function
8087 * also make sure backrefs for the shared block and all lower level
8088 * blocks are properly updated.
8089 *
8090 * If called with for_reloc == 0, may exit early with -EAGAIN
8091 */
8092 int btrfs_drop_snapshot(struct btrfs_root *root,
8093 struct btrfs_block_rsv *block_rsv, int update_ref,
8094 int for_reloc)
8095 {
8096 struct btrfs_path *path;
8097 struct btrfs_trans_handle *trans;
8098 struct btrfs_root *tree_root = root->fs_info->tree_root;
8099 struct btrfs_root_item *root_item = &root->root_item;
8100 struct walk_control *wc;
8101 struct btrfs_key key;
8102 int err = 0;
8103 int ret;
8104 int level;
8105 bool root_dropped = false;
8106
8107 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8108
8109 path = btrfs_alloc_path();
8110 if (!path) {
8111 err = -ENOMEM;
8112 goto out;
8113 }
8114
8115 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8116 if (!wc) {
8117 btrfs_free_path(path);
8118 err = -ENOMEM;
8119 goto out;
8120 }
8121
8122 trans = btrfs_start_transaction(tree_root, 0);
8123 if (IS_ERR(trans)) {
8124 err = PTR_ERR(trans);
8125 goto out_free;
8126 }
8127
8128 if (block_rsv)
8129 trans->block_rsv = block_rsv;
8130
8131 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8132 level = btrfs_header_level(root->node);
8133 path->nodes[level] = btrfs_lock_root_node(root);
8134 btrfs_set_lock_blocking(path->nodes[level]);
8135 path->slots[level] = 0;
8136 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8137 memset(&wc->update_progress, 0,
8138 sizeof(wc->update_progress));
8139 } else {
8140 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8141 memcpy(&wc->update_progress, &key,
8142 sizeof(wc->update_progress));
8143
8144 level = root_item->drop_level;
8145 BUG_ON(level == 0);
8146 path->lowest_level = level;
8147 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8148 path->lowest_level = 0;
8149 if (ret < 0) {
8150 err = ret;
8151 goto out_end_trans;
8152 }
8153 WARN_ON(ret > 0);
8154
8155 /*
8156 * unlock our path, this is safe because only this
8157 * function is allowed to delete this snapshot
8158 */
8159 btrfs_unlock_up_safe(path, 0);
8160
8161 level = btrfs_header_level(root->node);
8162 while (1) {
8163 btrfs_tree_lock(path->nodes[level]);
8164 btrfs_set_lock_blocking(path->nodes[level]);
8165 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8166
8167 ret = btrfs_lookup_extent_info(trans, root,
8168 path->nodes[level]->start,
8169 level, 1, &wc->refs[level],
8170 &wc->flags[level]);
8171 if (ret < 0) {
8172 err = ret;
8173 goto out_end_trans;
8174 }
8175 BUG_ON(wc->refs[level] == 0);
8176
8177 if (level == root_item->drop_level)
8178 break;
8179
8180 btrfs_tree_unlock(path->nodes[level]);
8181 path->locks[level] = 0;
8182 WARN_ON(wc->refs[level] != 1);
8183 level--;
8184 }
8185 }
8186
8187 wc->level = level;
8188 wc->shared_level = -1;
8189 wc->stage = DROP_REFERENCE;
8190 wc->update_ref = update_ref;
8191 wc->keep_locks = 0;
8192 wc->for_reloc = for_reloc;
8193 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8194
8195 while (1) {
8196
8197 ret = walk_down_tree(trans, root, path, wc);
8198 if (ret < 0) {
8199 err = ret;
8200 break;
8201 }
8202
8203 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8204 if (ret < 0) {
8205 err = ret;
8206 break;
8207 }
8208
8209 if (ret > 0) {
8210 BUG_ON(wc->stage != DROP_REFERENCE);
8211 break;
8212 }
8213
8214 if (wc->stage == DROP_REFERENCE) {
8215 level = wc->level;
8216 btrfs_node_key(path->nodes[level],
8217 &root_item->drop_progress,
8218 path->slots[level]);
8219 root_item->drop_level = level;
8220 }
8221
8222 BUG_ON(wc->level == 0);
8223 if (btrfs_should_end_transaction(trans, tree_root) ||
8224 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8225 ret = btrfs_update_root(trans, tree_root,
8226 &root->root_key,
8227 root_item);
8228 if (ret) {
8229 btrfs_abort_transaction(trans, tree_root, ret);
8230 err = ret;
8231 goto out_end_trans;
8232 }
8233
8234 /*
8235 * Qgroup update accounting is run from
8236 * delayed ref handling. This usually works
8237 * out because delayed refs are normally the
8238 * only way qgroup updates are added. However,
8239 * we may have added updates during our tree
8240 * walk so run qgroups here to make sure we
8241 * don't lose any updates.
8242 */
8243 ret = btrfs_delayed_qgroup_accounting(trans,
8244 root->fs_info);
8245 if (ret)
8246 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8247 "running qgroup updates "
8248 "during snapshot delete. "
8249 "Quota is out of sync, "
8250 "rescan required.\n", ret);
8251
8252 btrfs_end_transaction_throttle(trans, tree_root);
8253 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8254 pr_debug("BTRFS: drop snapshot early exit\n");
8255 err = -EAGAIN;
8256 goto out_free;
8257 }
8258
8259 trans = btrfs_start_transaction(tree_root, 0);
8260 if (IS_ERR(trans)) {
8261 err = PTR_ERR(trans);
8262 goto out_free;
8263 }
8264 if (block_rsv)
8265 trans->block_rsv = block_rsv;
8266 }
8267 }
8268 btrfs_release_path(path);
8269 if (err)
8270 goto out_end_trans;
8271
8272 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8273 if (ret) {
8274 btrfs_abort_transaction(trans, tree_root, ret);
8275 goto out_end_trans;
8276 }
8277
8278 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8279 ret = btrfs_find_root(tree_root, &root->root_key, path,
8280 NULL, NULL);
8281 if (ret < 0) {
8282 btrfs_abort_transaction(trans, tree_root, ret);
8283 err = ret;
8284 goto out_end_trans;
8285 } else if (ret > 0) {
8286 /* if we fail to delete the orphan item this time
8287 * around, it'll get picked up the next time.
8288 *
8289 * The most common failure here is just -ENOENT.
8290 */
8291 btrfs_del_orphan_item(trans, tree_root,
8292 root->root_key.objectid);
8293 }
8294 }
8295
8296 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8297 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8298 } else {
8299 free_extent_buffer(root->node);
8300 free_extent_buffer(root->commit_root);
8301 btrfs_put_fs_root(root);
8302 }
8303 root_dropped = true;
8304 out_end_trans:
8305 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8306 if (ret)
8307 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8308 "running qgroup updates "
8309 "during snapshot delete. "
8310 "Quota is out of sync, "
8311 "rescan required.\n", ret);
8312
8313 btrfs_end_transaction_throttle(trans, tree_root);
8314 out_free:
8315 kfree(wc);
8316 btrfs_free_path(path);
8317 out:
8318 /*
8319 * So if we need to stop dropping the snapshot for whatever reason we
8320 * need to make sure to add it back to the dead root list so that we
8321 * keep trying to do the work later. This also cleans up roots if we
8322 * don't have it in the radix (like when we recover after a power fail
8323 * or unmount) so we don't leak memory.
8324 */
8325 if (!for_reloc && root_dropped == false)
8326 btrfs_add_dead_root(root);
8327 if (err && err != -EAGAIN)
8328 btrfs_std_error(root->fs_info, err);
8329 return err;
8330 }
8331
8332 /*
8333 * drop subtree rooted at tree block 'node'.
8334 *
8335 * NOTE: this function will unlock and release tree block 'node'
8336 * only used by relocation code
8337 */
8338 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8339 struct btrfs_root *root,
8340 struct extent_buffer *node,
8341 struct extent_buffer *parent)
8342 {
8343 struct btrfs_path *path;
8344 struct walk_control *wc;
8345 int level;
8346 int parent_level;
8347 int ret = 0;
8348 int wret;
8349
8350 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8351
8352 path = btrfs_alloc_path();
8353 if (!path)
8354 return -ENOMEM;
8355
8356 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8357 if (!wc) {
8358 btrfs_free_path(path);
8359 return -ENOMEM;
8360 }
8361
8362 btrfs_assert_tree_locked(parent);
8363 parent_level = btrfs_header_level(parent);
8364 extent_buffer_get(parent);
8365 path->nodes[parent_level] = parent;
8366 path->slots[parent_level] = btrfs_header_nritems(parent);
8367
8368 btrfs_assert_tree_locked(node);
8369 level = btrfs_header_level(node);
8370 path->nodes[level] = node;
8371 path->slots[level] = 0;
8372 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8373
8374 wc->refs[parent_level] = 1;
8375 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8376 wc->level = level;
8377 wc->shared_level = -1;
8378 wc->stage = DROP_REFERENCE;
8379 wc->update_ref = 0;
8380 wc->keep_locks = 1;
8381 wc->for_reloc = 1;
8382 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8383
8384 while (1) {
8385 wret = walk_down_tree(trans, root, path, wc);
8386 if (wret < 0) {
8387 ret = wret;
8388 break;
8389 }
8390
8391 wret = walk_up_tree(trans, root, path, wc, parent_level);
8392 if (wret < 0)
8393 ret = wret;
8394 if (wret != 0)
8395 break;
8396 }
8397
8398 kfree(wc);
8399 btrfs_free_path(path);
8400 return ret;
8401 }
8402
8403 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8404 {
8405 u64 num_devices;
8406 u64 stripped;
8407
8408 /*
8409 * if restripe for this chunk_type is on pick target profile and
8410 * return, otherwise do the usual balance
8411 */
8412 stripped = get_restripe_target(root->fs_info, flags);
8413 if (stripped)
8414 return extended_to_chunk(stripped);
8415
8416 num_devices = root->fs_info->fs_devices->rw_devices;
8417
8418 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8419 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8420 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8421
8422 if (num_devices == 1) {
8423 stripped |= BTRFS_BLOCK_GROUP_DUP;
8424 stripped = flags & ~stripped;
8425
8426 /* turn raid0 into single device chunks */
8427 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8428 return stripped;
8429
8430 /* turn mirroring into duplication */
8431 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8432 BTRFS_BLOCK_GROUP_RAID10))
8433 return stripped | BTRFS_BLOCK_GROUP_DUP;
8434 } else {
8435 /* they already had raid on here, just return */
8436 if (flags & stripped)
8437 return flags;
8438
8439 stripped |= BTRFS_BLOCK_GROUP_DUP;
8440 stripped = flags & ~stripped;
8441
8442 /* switch duplicated blocks with raid1 */
8443 if (flags & BTRFS_BLOCK_GROUP_DUP)
8444 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8445
8446 /* this is drive concat, leave it alone */
8447 }
8448
8449 return flags;
8450 }
8451
8452 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8453 {
8454 struct btrfs_space_info *sinfo = cache->space_info;
8455 u64 num_bytes;
8456 u64 min_allocable_bytes;
8457 int ret = -ENOSPC;
8458
8459
8460 /*
8461 * We need some metadata space and system metadata space for
8462 * allocating chunks in some corner cases until we force to set
8463 * it to be readonly.
8464 */
8465 if ((sinfo->flags &
8466 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8467 !force)
8468 min_allocable_bytes = 1 * 1024 * 1024;
8469 else
8470 min_allocable_bytes = 0;
8471
8472 spin_lock(&sinfo->lock);
8473 spin_lock(&cache->lock);
8474
8475 if (cache->ro) {
8476 ret = 0;
8477 goto out;
8478 }
8479
8480 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8481 cache->bytes_super - btrfs_block_group_used(&cache->item);
8482
8483 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8484 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8485 min_allocable_bytes <= sinfo->total_bytes) {
8486 sinfo->bytes_readonly += num_bytes;
8487 cache->ro = 1;
8488 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8489 ret = 0;
8490 }
8491 out:
8492 spin_unlock(&cache->lock);
8493 spin_unlock(&sinfo->lock);
8494 return ret;
8495 }
8496
8497 int btrfs_set_block_group_ro(struct btrfs_root *root,
8498 struct btrfs_block_group_cache *cache)
8499
8500 {
8501 struct btrfs_trans_handle *trans;
8502 u64 alloc_flags;
8503 int ret;
8504
8505 BUG_ON(cache->ro);
8506
8507 trans = btrfs_join_transaction(root);
8508 if (IS_ERR(trans))
8509 return PTR_ERR(trans);
8510
8511 ret = set_block_group_ro(cache, 0);
8512 if (!ret)
8513 goto out;
8514 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8515 ret = do_chunk_alloc(trans, root, alloc_flags,
8516 CHUNK_ALLOC_FORCE);
8517 if (ret < 0)
8518 goto out;
8519 ret = set_block_group_ro(cache, 0);
8520 out:
8521 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8522 alloc_flags = update_block_group_flags(root, cache->flags);
8523 check_system_chunk(trans, root, alloc_flags);
8524 }
8525
8526 btrfs_end_transaction(trans, root);
8527 return ret;
8528 }
8529
8530 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8531 struct btrfs_root *root, u64 type)
8532 {
8533 u64 alloc_flags = get_alloc_profile(root, type);
8534 return do_chunk_alloc(trans, root, alloc_flags,
8535 CHUNK_ALLOC_FORCE);
8536 }
8537
8538 /*
8539 * helper to account the unused space of all the readonly block group in the
8540 * space_info. takes mirrors into account.
8541 */
8542 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8543 {
8544 struct btrfs_block_group_cache *block_group;
8545 u64 free_bytes = 0;
8546 int factor;
8547
8548 /* It's df, we don't care if it's racey */
8549 if (list_empty(&sinfo->ro_bgs))
8550 return 0;
8551
8552 spin_lock(&sinfo->lock);
8553 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8554 spin_lock(&block_group->lock);
8555
8556 if (!block_group->ro) {
8557 spin_unlock(&block_group->lock);
8558 continue;
8559 }
8560
8561 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8562 BTRFS_BLOCK_GROUP_RAID10 |
8563 BTRFS_BLOCK_GROUP_DUP))
8564 factor = 2;
8565 else
8566 factor = 1;
8567
8568 free_bytes += (block_group->key.offset -
8569 btrfs_block_group_used(&block_group->item)) *
8570 factor;
8571
8572 spin_unlock(&block_group->lock);
8573 }
8574 spin_unlock(&sinfo->lock);
8575
8576 return free_bytes;
8577 }
8578
8579 void btrfs_set_block_group_rw(struct btrfs_root *root,
8580 struct btrfs_block_group_cache *cache)
8581 {
8582 struct btrfs_space_info *sinfo = cache->space_info;
8583 u64 num_bytes;
8584
8585 BUG_ON(!cache->ro);
8586
8587 spin_lock(&sinfo->lock);
8588 spin_lock(&cache->lock);
8589 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8590 cache->bytes_super - btrfs_block_group_used(&cache->item);
8591 sinfo->bytes_readonly -= num_bytes;
8592 cache->ro = 0;
8593 list_del_init(&cache->ro_list);
8594 spin_unlock(&cache->lock);
8595 spin_unlock(&sinfo->lock);
8596 }
8597
8598 /*
8599 * checks to see if its even possible to relocate this block group.
8600 *
8601 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8602 * ok to go ahead and try.
8603 */
8604 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8605 {
8606 struct btrfs_block_group_cache *block_group;
8607 struct btrfs_space_info *space_info;
8608 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8609 struct btrfs_device *device;
8610 struct btrfs_trans_handle *trans;
8611 u64 min_free;
8612 u64 dev_min = 1;
8613 u64 dev_nr = 0;
8614 u64 target;
8615 int index;
8616 int full = 0;
8617 int ret = 0;
8618
8619 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8620
8621 /* odd, couldn't find the block group, leave it alone */
8622 if (!block_group)
8623 return -1;
8624
8625 min_free = btrfs_block_group_used(&block_group->item);
8626
8627 /* no bytes used, we're good */
8628 if (!min_free)
8629 goto out;
8630
8631 space_info = block_group->space_info;
8632 spin_lock(&space_info->lock);
8633
8634 full = space_info->full;
8635
8636 /*
8637 * if this is the last block group we have in this space, we can't
8638 * relocate it unless we're able to allocate a new chunk below.
8639 *
8640 * Otherwise, we need to make sure we have room in the space to handle
8641 * all of the extents from this block group. If we can, we're good
8642 */
8643 if ((space_info->total_bytes != block_group->key.offset) &&
8644 (space_info->bytes_used + space_info->bytes_reserved +
8645 space_info->bytes_pinned + space_info->bytes_readonly +
8646 min_free < space_info->total_bytes)) {
8647 spin_unlock(&space_info->lock);
8648 goto out;
8649 }
8650 spin_unlock(&space_info->lock);
8651
8652 /*
8653 * ok we don't have enough space, but maybe we have free space on our
8654 * devices to allocate new chunks for relocation, so loop through our
8655 * alloc devices and guess if we have enough space. if this block
8656 * group is going to be restriped, run checks against the target
8657 * profile instead of the current one.
8658 */
8659 ret = -1;
8660
8661 /*
8662 * index:
8663 * 0: raid10
8664 * 1: raid1
8665 * 2: dup
8666 * 3: raid0
8667 * 4: single
8668 */
8669 target = get_restripe_target(root->fs_info, block_group->flags);
8670 if (target) {
8671 index = __get_raid_index(extended_to_chunk(target));
8672 } else {
8673 /*
8674 * this is just a balance, so if we were marked as full
8675 * we know there is no space for a new chunk
8676 */
8677 if (full)
8678 goto out;
8679
8680 index = get_block_group_index(block_group);
8681 }
8682
8683 if (index == BTRFS_RAID_RAID10) {
8684 dev_min = 4;
8685 /* Divide by 2 */
8686 min_free >>= 1;
8687 } else if (index == BTRFS_RAID_RAID1) {
8688 dev_min = 2;
8689 } else if (index == BTRFS_RAID_DUP) {
8690 /* Multiply by 2 */
8691 min_free <<= 1;
8692 } else if (index == BTRFS_RAID_RAID0) {
8693 dev_min = fs_devices->rw_devices;
8694 do_div(min_free, dev_min);
8695 }
8696
8697 /* We need to do this so that we can look at pending chunks */
8698 trans = btrfs_join_transaction(root);
8699 if (IS_ERR(trans)) {
8700 ret = PTR_ERR(trans);
8701 goto out;
8702 }
8703
8704 mutex_lock(&root->fs_info->chunk_mutex);
8705 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8706 u64 dev_offset;
8707
8708 /*
8709 * check to make sure we can actually find a chunk with enough
8710 * space to fit our block group in.
8711 */
8712 if (device->total_bytes > device->bytes_used + min_free &&
8713 !device->is_tgtdev_for_dev_replace) {
8714 ret = find_free_dev_extent(trans, device, min_free,
8715 &dev_offset, NULL);
8716 if (!ret)
8717 dev_nr++;
8718
8719 if (dev_nr >= dev_min)
8720 break;
8721
8722 ret = -1;
8723 }
8724 }
8725 mutex_unlock(&root->fs_info->chunk_mutex);
8726 btrfs_end_transaction(trans, root);
8727 out:
8728 btrfs_put_block_group(block_group);
8729 return ret;
8730 }
8731
8732 static int find_first_block_group(struct btrfs_root *root,
8733 struct btrfs_path *path, struct btrfs_key *key)
8734 {
8735 int ret = 0;
8736 struct btrfs_key found_key;
8737 struct extent_buffer *leaf;
8738 int slot;
8739
8740 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8741 if (ret < 0)
8742 goto out;
8743
8744 while (1) {
8745 slot = path->slots[0];
8746 leaf = path->nodes[0];
8747 if (slot >= btrfs_header_nritems(leaf)) {
8748 ret = btrfs_next_leaf(root, path);
8749 if (ret == 0)
8750 continue;
8751 if (ret < 0)
8752 goto out;
8753 break;
8754 }
8755 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8756
8757 if (found_key.objectid >= key->objectid &&
8758 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8759 ret = 0;
8760 goto out;
8761 }
8762 path->slots[0]++;
8763 }
8764 out:
8765 return ret;
8766 }
8767
8768 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8769 {
8770 struct btrfs_block_group_cache *block_group;
8771 u64 last = 0;
8772
8773 while (1) {
8774 struct inode *inode;
8775
8776 block_group = btrfs_lookup_first_block_group(info, last);
8777 while (block_group) {
8778 spin_lock(&block_group->lock);
8779 if (block_group->iref)
8780 break;
8781 spin_unlock(&block_group->lock);
8782 block_group = next_block_group(info->tree_root,
8783 block_group);
8784 }
8785 if (!block_group) {
8786 if (last == 0)
8787 break;
8788 last = 0;
8789 continue;
8790 }
8791
8792 inode = block_group->inode;
8793 block_group->iref = 0;
8794 block_group->inode = NULL;
8795 spin_unlock(&block_group->lock);
8796 iput(inode);
8797 last = block_group->key.objectid + block_group->key.offset;
8798 btrfs_put_block_group(block_group);
8799 }
8800 }
8801
8802 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8803 {
8804 struct btrfs_block_group_cache *block_group;
8805 struct btrfs_space_info *space_info;
8806 struct btrfs_caching_control *caching_ctl;
8807 struct rb_node *n;
8808
8809 down_write(&info->commit_root_sem);
8810 while (!list_empty(&info->caching_block_groups)) {
8811 caching_ctl = list_entry(info->caching_block_groups.next,
8812 struct btrfs_caching_control, list);
8813 list_del(&caching_ctl->list);
8814 put_caching_control(caching_ctl);
8815 }
8816 up_write(&info->commit_root_sem);
8817
8818 spin_lock(&info->unused_bgs_lock);
8819 while (!list_empty(&info->unused_bgs)) {
8820 block_group = list_first_entry(&info->unused_bgs,
8821 struct btrfs_block_group_cache,
8822 bg_list);
8823 list_del_init(&block_group->bg_list);
8824 btrfs_put_block_group(block_group);
8825 }
8826 spin_unlock(&info->unused_bgs_lock);
8827
8828 spin_lock(&info->block_group_cache_lock);
8829 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8830 block_group = rb_entry(n, struct btrfs_block_group_cache,
8831 cache_node);
8832 rb_erase(&block_group->cache_node,
8833 &info->block_group_cache_tree);
8834 RB_CLEAR_NODE(&block_group->cache_node);
8835 spin_unlock(&info->block_group_cache_lock);
8836
8837 down_write(&block_group->space_info->groups_sem);
8838 list_del(&block_group->list);
8839 up_write(&block_group->space_info->groups_sem);
8840
8841 if (block_group->cached == BTRFS_CACHE_STARTED)
8842 wait_block_group_cache_done(block_group);
8843
8844 /*
8845 * We haven't cached this block group, which means we could
8846 * possibly have excluded extents on this block group.
8847 */
8848 if (block_group->cached == BTRFS_CACHE_NO ||
8849 block_group->cached == BTRFS_CACHE_ERROR)
8850 free_excluded_extents(info->extent_root, block_group);
8851
8852 btrfs_remove_free_space_cache(block_group);
8853 btrfs_put_block_group(block_group);
8854
8855 spin_lock(&info->block_group_cache_lock);
8856 }
8857 spin_unlock(&info->block_group_cache_lock);
8858
8859 /* now that all the block groups are freed, go through and
8860 * free all the space_info structs. This is only called during
8861 * the final stages of unmount, and so we know nobody is
8862 * using them. We call synchronize_rcu() once before we start,
8863 * just to be on the safe side.
8864 */
8865 synchronize_rcu();
8866
8867 release_global_block_rsv(info);
8868
8869 while (!list_empty(&info->space_info)) {
8870 int i;
8871
8872 space_info = list_entry(info->space_info.next,
8873 struct btrfs_space_info,
8874 list);
8875 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8876 if (WARN_ON(space_info->bytes_pinned > 0 ||
8877 space_info->bytes_reserved > 0 ||
8878 space_info->bytes_may_use > 0)) {
8879 dump_space_info(space_info, 0, 0);
8880 }
8881 }
8882 list_del(&space_info->list);
8883 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8884 struct kobject *kobj;
8885 kobj = space_info->block_group_kobjs[i];
8886 space_info->block_group_kobjs[i] = NULL;
8887 if (kobj) {
8888 kobject_del(kobj);
8889 kobject_put(kobj);
8890 }
8891 }
8892 kobject_del(&space_info->kobj);
8893 kobject_put(&space_info->kobj);
8894 }
8895 return 0;
8896 }
8897
8898 static void __link_block_group(struct btrfs_space_info *space_info,
8899 struct btrfs_block_group_cache *cache)
8900 {
8901 int index = get_block_group_index(cache);
8902 bool first = false;
8903
8904 down_write(&space_info->groups_sem);
8905 if (list_empty(&space_info->block_groups[index]))
8906 first = true;
8907 list_add_tail(&cache->list, &space_info->block_groups[index]);
8908 up_write(&space_info->groups_sem);
8909
8910 if (first) {
8911 struct raid_kobject *rkobj;
8912 int ret;
8913
8914 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8915 if (!rkobj)
8916 goto out_err;
8917 rkobj->raid_type = index;
8918 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8919 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8920 "%s", get_raid_name(index));
8921 if (ret) {
8922 kobject_put(&rkobj->kobj);
8923 goto out_err;
8924 }
8925 space_info->block_group_kobjs[index] = &rkobj->kobj;
8926 }
8927
8928 return;
8929 out_err:
8930 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8931 }
8932
8933 static struct btrfs_block_group_cache *
8934 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8935 {
8936 struct btrfs_block_group_cache *cache;
8937
8938 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8939 if (!cache)
8940 return NULL;
8941
8942 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8943 GFP_NOFS);
8944 if (!cache->free_space_ctl) {
8945 kfree(cache);
8946 return NULL;
8947 }
8948
8949 cache->key.objectid = start;
8950 cache->key.offset = size;
8951 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8952
8953 cache->sectorsize = root->sectorsize;
8954 cache->fs_info = root->fs_info;
8955 cache->full_stripe_len = btrfs_full_stripe_len(root,
8956 &root->fs_info->mapping_tree,
8957 start);
8958 atomic_set(&cache->count, 1);
8959 spin_lock_init(&cache->lock);
8960 init_rwsem(&cache->data_rwsem);
8961 INIT_LIST_HEAD(&cache->list);
8962 INIT_LIST_HEAD(&cache->cluster_list);
8963 INIT_LIST_HEAD(&cache->bg_list);
8964 INIT_LIST_HEAD(&cache->ro_list);
8965 INIT_LIST_HEAD(&cache->dirty_list);
8966 btrfs_init_free_space_ctl(cache);
8967 atomic_set(&cache->trimming, 0);
8968
8969 return cache;
8970 }
8971
8972 int btrfs_read_block_groups(struct btrfs_root *root)
8973 {
8974 struct btrfs_path *path;
8975 int ret;
8976 struct btrfs_block_group_cache *cache;
8977 struct btrfs_fs_info *info = root->fs_info;
8978 struct btrfs_space_info *space_info;
8979 struct btrfs_key key;
8980 struct btrfs_key found_key;
8981 struct extent_buffer *leaf;
8982 int need_clear = 0;
8983 u64 cache_gen;
8984
8985 root = info->extent_root;
8986 key.objectid = 0;
8987 key.offset = 0;
8988 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8989 path = btrfs_alloc_path();
8990 if (!path)
8991 return -ENOMEM;
8992 path->reada = 1;
8993
8994 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8995 if (btrfs_test_opt(root, SPACE_CACHE) &&
8996 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8997 need_clear = 1;
8998 if (btrfs_test_opt(root, CLEAR_CACHE))
8999 need_clear = 1;
9000
9001 while (1) {
9002 ret = find_first_block_group(root, path, &key);
9003 if (ret > 0)
9004 break;
9005 if (ret != 0)
9006 goto error;
9007
9008 leaf = path->nodes[0];
9009 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9010
9011 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9012 found_key.offset);
9013 if (!cache) {
9014 ret = -ENOMEM;
9015 goto error;
9016 }
9017
9018 if (need_clear) {
9019 /*
9020 * When we mount with old space cache, we need to
9021 * set BTRFS_DC_CLEAR and set dirty flag.
9022 *
9023 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9024 * truncate the old free space cache inode and
9025 * setup a new one.
9026 * b) Setting 'dirty flag' makes sure that we flush
9027 * the new space cache info onto disk.
9028 */
9029 if (btrfs_test_opt(root, SPACE_CACHE))
9030 cache->disk_cache_state = BTRFS_DC_CLEAR;
9031 }
9032
9033 read_extent_buffer(leaf, &cache->item,
9034 btrfs_item_ptr_offset(leaf, path->slots[0]),
9035 sizeof(cache->item));
9036 cache->flags = btrfs_block_group_flags(&cache->item);
9037
9038 key.objectid = found_key.objectid + found_key.offset;
9039 btrfs_release_path(path);
9040
9041 /*
9042 * We need to exclude the super stripes now so that the space
9043 * info has super bytes accounted for, otherwise we'll think
9044 * we have more space than we actually do.
9045 */
9046 ret = exclude_super_stripes(root, cache);
9047 if (ret) {
9048 /*
9049 * We may have excluded something, so call this just in
9050 * case.
9051 */
9052 free_excluded_extents(root, cache);
9053 btrfs_put_block_group(cache);
9054 goto error;
9055 }
9056
9057 /*
9058 * check for two cases, either we are full, and therefore
9059 * don't need to bother with the caching work since we won't
9060 * find any space, or we are empty, and we can just add all
9061 * the space in and be done with it. This saves us _alot_ of
9062 * time, particularly in the full case.
9063 */
9064 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9065 cache->last_byte_to_unpin = (u64)-1;
9066 cache->cached = BTRFS_CACHE_FINISHED;
9067 free_excluded_extents(root, cache);
9068 } else if (btrfs_block_group_used(&cache->item) == 0) {
9069 cache->last_byte_to_unpin = (u64)-1;
9070 cache->cached = BTRFS_CACHE_FINISHED;
9071 add_new_free_space(cache, root->fs_info,
9072 found_key.objectid,
9073 found_key.objectid +
9074 found_key.offset);
9075 free_excluded_extents(root, cache);
9076 }
9077
9078 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9079 if (ret) {
9080 btrfs_remove_free_space_cache(cache);
9081 btrfs_put_block_group(cache);
9082 goto error;
9083 }
9084
9085 ret = update_space_info(info, cache->flags, found_key.offset,
9086 btrfs_block_group_used(&cache->item),
9087 &space_info);
9088 if (ret) {
9089 btrfs_remove_free_space_cache(cache);
9090 spin_lock(&info->block_group_cache_lock);
9091 rb_erase(&cache->cache_node,
9092 &info->block_group_cache_tree);
9093 RB_CLEAR_NODE(&cache->cache_node);
9094 spin_unlock(&info->block_group_cache_lock);
9095 btrfs_put_block_group(cache);
9096 goto error;
9097 }
9098
9099 cache->space_info = space_info;
9100 spin_lock(&cache->space_info->lock);
9101 cache->space_info->bytes_readonly += cache->bytes_super;
9102 spin_unlock(&cache->space_info->lock);
9103
9104 __link_block_group(space_info, cache);
9105
9106 set_avail_alloc_bits(root->fs_info, cache->flags);
9107 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9108 set_block_group_ro(cache, 1);
9109 } else if (btrfs_block_group_used(&cache->item) == 0) {
9110 spin_lock(&info->unused_bgs_lock);
9111 /* Should always be true but just in case. */
9112 if (list_empty(&cache->bg_list)) {
9113 btrfs_get_block_group(cache);
9114 list_add_tail(&cache->bg_list,
9115 &info->unused_bgs);
9116 }
9117 spin_unlock(&info->unused_bgs_lock);
9118 }
9119 }
9120
9121 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9122 if (!(get_alloc_profile(root, space_info->flags) &
9123 (BTRFS_BLOCK_GROUP_RAID10 |
9124 BTRFS_BLOCK_GROUP_RAID1 |
9125 BTRFS_BLOCK_GROUP_RAID5 |
9126 BTRFS_BLOCK_GROUP_RAID6 |
9127 BTRFS_BLOCK_GROUP_DUP)))
9128 continue;
9129 /*
9130 * avoid allocating from un-mirrored block group if there are
9131 * mirrored block groups.
9132 */
9133 list_for_each_entry(cache,
9134 &space_info->block_groups[BTRFS_RAID_RAID0],
9135 list)
9136 set_block_group_ro(cache, 1);
9137 list_for_each_entry(cache,
9138 &space_info->block_groups[BTRFS_RAID_SINGLE],
9139 list)
9140 set_block_group_ro(cache, 1);
9141 }
9142
9143 init_global_block_rsv(info);
9144 ret = 0;
9145 error:
9146 btrfs_free_path(path);
9147 return ret;
9148 }
9149
9150 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9151 struct btrfs_root *root)
9152 {
9153 struct btrfs_block_group_cache *block_group, *tmp;
9154 struct btrfs_root *extent_root = root->fs_info->extent_root;
9155 struct btrfs_block_group_item item;
9156 struct btrfs_key key;
9157 int ret = 0;
9158
9159 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9160 if (ret)
9161 goto next;
9162
9163 spin_lock(&block_group->lock);
9164 memcpy(&item, &block_group->item, sizeof(item));
9165 memcpy(&key, &block_group->key, sizeof(key));
9166 spin_unlock(&block_group->lock);
9167
9168 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9169 sizeof(item));
9170 if (ret)
9171 btrfs_abort_transaction(trans, extent_root, ret);
9172 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9173 key.objectid, key.offset);
9174 if (ret)
9175 btrfs_abort_transaction(trans, extent_root, ret);
9176 next:
9177 list_del_init(&block_group->bg_list);
9178 }
9179 }
9180
9181 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9182 struct btrfs_root *root, u64 bytes_used,
9183 u64 type, u64 chunk_objectid, u64 chunk_offset,
9184 u64 size)
9185 {
9186 int ret;
9187 struct btrfs_root *extent_root;
9188 struct btrfs_block_group_cache *cache;
9189
9190 extent_root = root->fs_info->extent_root;
9191
9192 btrfs_set_log_full_commit(root->fs_info, trans);
9193
9194 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9195 if (!cache)
9196 return -ENOMEM;
9197
9198 btrfs_set_block_group_used(&cache->item, bytes_used);
9199 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9200 btrfs_set_block_group_flags(&cache->item, type);
9201
9202 cache->flags = type;
9203 cache->last_byte_to_unpin = (u64)-1;
9204 cache->cached = BTRFS_CACHE_FINISHED;
9205 ret = exclude_super_stripes(root, cache);
9206 if (ret) {
9207 /*
9208 * We may have excluded something, so call this just in
9209 * case.
9210 */
9211 free_excluded_extents(root, cache);
9212 btrfs_put_block_group(cache);
9213 return ret;
9214 }
9215
9216 add_new_free_space(cache, root->fs_info, chunk_offset,
9217 chunk_offset + size);
9218
9219 free_excluded_extents(root, cache);
9220
9221 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9222 if (ret) {
9223 btrfs_remove_free_space_cache(cache);
9224 btrfs_put_block_group(cache);
9225 return ret;
9226 }
9227
9228 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9229 &cache->space_info);
9230 if (ret) {
9231 btrfs_remove_free_space_cache(cache);
9232 spin_lock(&root->fs_info->block_group_cache_lock);
9233 rb_erase(&cache->cache_node,
9234 &root->fs_info->block_group_cache_tree);
9235 RB_CLEAR_NODE(&cache->cache_node);
9236 spin_unlock(&root->fs_info->block_group_cache_lock);
9237 btrfs_put_block_group(cache);
9238 return ret;
9239 }
9240 update_global_block_rsv(root->fs_info);
9241
9242 spin_lock(&cache->space_info->lock);
9243 cache->space_info->bytes_readonly += cache->bytes_super;
9244 spin_unlock(&cache->space_info->lock);
9245
9246 __link_block_group(cache->space_info, cache);
9247
9248 list_add_tail(&cache->bg_list, &trans->new_bgs);
9249
9250 set_avail_alloc_bits(extent_root->fs_info, type);
9251
9252 return 0;
9253 }
9254
9255 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9256 {
9257 u64 extra_flags = chunk_to_extended(flags) &
9258 BTRFS_EXTENDED_PROFILE_MASK;
9259
9260 write_seqlock(&fs_info->profiles_lock);
9261 if (flags & BTRFS_BLOCK_GROUP_DATA)
9262 fs_info->avail_data_alloc_bits &= ~extra_flags;
9263 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9264 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9265 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9266 fs_info->avail_system_alloc_bits &= ~extra_flags;
9267 write_sequnlock(&fs_info->profiles_lock);
9268 }
9269
9270 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9271 struct btrfs_root *root, u64 group_start,
9272 struct extent_map *em)
9273 {
9274 struct btrfs_path *path;
9275 struct btrfs_block_group_cache *block_group;
9276 struct btrfs_free_cluster *cluster;
9277 struct btrfs_root *tree_root = root->fs_info->tree_root;
9278 struct btrfs_key key;
9279 struct inode *inode;
9280 struct kobject *kobj = NULL;
9281 int ret;
9282 int index;
9283 int factor;
9284 struct btrfs_caching_control *caching_ctl = NULL;
9285 bool remove_em;
9286
9287 root = root->fs_info->extent_root;
9288
9289 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9290 BUG_ON(!block_group);
9291 BUG_ON(!block_group->ro);
9292
9293 /*
9294 * Free the reserved super bytes from this block group before
9295 * remove it.
9296 */
9297 free_excluded_extents(root, block_group);
9298
9299 memcpy(&key, &block_group->key, sizeof(key));
9300 index = get_block_group_index(block_group);
9301 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9302 BTRFS_BLOCK_GROUP_RAID1 |
9303 BTRFS_BLOCK_GROUP_RAID10))
9304 factor = 2;
9305 else
9306 factor = 1;
9307
9308 /* make sure this block group isn't part of an allocation cluster */
9309 cluster = &root->fs_info->data_alloc_cluster;
9310 spin_lock(&cluster->refill_lock);
9311 btrfs_return_cluster_to_free_space(block_group, cluster);
9312 spin_unlock(&cluster->refill_lock);
9313
9314 /*
9315 * make sure this block group isn't part of a metadata
9316 * allocation cluster
9317 */
9318 cluster = &root->fs_info->meta_alloc_cluster;
9319 spin_lock(&cluster->refill_lock);
9320 btrfs_return_cluster_to_free_space(block_group, cluster);
9321 spin_unlock(&cluster->refill_lock);
9322
9323 path = btrfs_alloc_path();
9324 if (!path) {
9325 ret = -ENOMEM;
9326 goto out;
9327 }
9328
9329 inode = lookup_free_space_inode(tree_root, block_group, path);
9330 if (!IS_ERR(inode)) {
9331 ret = btrfs_orphan_add(trans, inode);
9332 if (ret) {
9333 btrfs_add_delayed_iput(inode);
9334 goto out;
9335 }
9336 clear_nlink(inode);
9337 /* One for the block groups ref */
9338 spin_lock(&block_group->lock);
9339 if (block_group->iref) {
9340 block_group->iref = 0;
9341 block_group->inode = NULL;
9342 spin_unlock(&block_group->lock);
9343 iput(inode);
9344 } else {
9345 spin_unlock(&block_group->lock);
9346 }
9347 /* One for our lookup ref */
9348 btrfs_add_delayed_iput(inode);
9349 }
9350
9351 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9352 key.offset = block_group->key.objectid;
9353 key.type = 0;
9354
9355 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9356 if (ret < 0)
9357 goto out;
9358 if (ret > 0)
9359 btrfs_release_path(path);
9360 if (ret == 0) {
9361 ret = btrfs_del_item(trans, tree_root, path);
9362 if (ret)
9363 goto out;
9364 btrfs_release_path(path);
9365 }
9366
9367 spin_lock(&root->fs_info->block_group_cache_lock);
9368 rb_erase(&block_group->cache_node,
9369 &root->fs_info->block_group_cache_tree);
9370 RB_CLEAR_NODE(&block_group->cache_node);
9371
9372 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9373 root->fs_info->first_logical_byte = (u64)-1;
9374 spin_unlock(&root->fs_info->block_group_cache_lock);
9375
9376 down_write(&block_group->space_info->groups_sem);
9377 /*
9378 * we must use list_del_init so people can check to see if they
9379 * are still on the list after taking the semaphore
9380 */
9381 list_del_init(&block_group->list);
9382 list_del_init(&block_group->ro_list);
9383 if (list_empty(&block_group->space_info->block_groups[index])) {
9384 kobj = block_group->space_info->block_group_kobjs[index];
9385 block_group->space_info->block_group_kobjs[index] = NULL;
9386 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9387 }
9388 up_write(&block_group->space_info->groups_sem);
9389 if (kobj) {
9390 kobject_del(kobj);
9391 kobject_put(kobj);
9392 }
9393
9394 if (block_group->has_caching_ctl)
9395 caching_ctl = get_caching_control(block_group);
9396 if (block_group->cached == BTRFS_CACHE_STARTED)
9397 wait_block_group_cache_done(block_group);
9398 if (block_group->has_caching_ctl) {
9399 down_write(&root->fs_info->commit_root_sem);
9400 if (!caching_ctl) {
9401 struct btrfs_caching_control *ctl;
9402
9403 list_for_each_entry(ctl,
9404 &root->fs_info->caching_block_groups, list)
9405 if (ctl->block_group == block_group) {
9406 caching_ctl = ctl;
9407 atomic_inc(&caching_ctl->count);
9408 break;
9409 }
9410 }
9411 if (caching_ctl)
9412 list_del_init(&caching_ctl->list);
9413 up_write(&root->fs_info->commit_root_sem);
9414 if (caching_ctl) {
9415 /* Once for the caching bgs list and once for us. */
9416 put_caching_control(caching_ctl);
9417 put_caching_control(caching_ctl);
9418 }
9419 }
9420
9421 spin_lock(&trans->transaction->dirty_bgs_lock);
9422 if (!list_empty(&block_group->dirty_list)) {
9423 list_del_init(&block_group->dirty_list);
9424 btrfs_put_block_group(block_group);
9425 }
9426 spin_unlock(&trans->transaction->dirty_bgs_lock);
9427
9428 btrfs_remove_free_space_cache(block_group);
9429
9430 spin_lock(&block_group->space_info->lock);
9431 block_group->space_info->total_bytes -= block_group->key.offset;
9432 block_group->space_info->bytes_readonly -= block_group->key.offset;
9433 block_group->space_info->disk_total -= block_group->key.offset * factor;
9434 spin_unlock(&block_group->space_info->lock);
9435
9436 memcpy(&key, &block_group->key, sizeof(key));
9437
9438 lock_chunks(root);
9439 if (!list_empty(&em->list)) {
9440 /* We're in the transaction->pending_chunks list. */
9441 free_extent_map(em);
9442 }
9443 spin_lock(&block_group->lock);
9444 block_group->removed = 1;
9445 /*
9446 * At this point trimming can't start on this block group, because we
9447 * removed the block group from the tree fs_info->block_group_cache_tree
9448 * so no one can't find it anymore and even if someone already got this
9449 * block group before we removed it from the rbtree, they have already
9450 * incremented block_group->trimming - if they didn't, they won't find
9451 * any free space entries because we already removed them all when we
9452 * called btrfs_remove_free_space_cache().
9453 *
9454 * And we must not remove the extent map from the fs_info->mapping_tree
9455 * to prevent the same logical address range and physical device space
9456 * ranges from being reused for a new block group. This is because our
9457 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9458 * completely transactionless, so while it is trimming a range the
9459 * currently running transaction might finish and a new one start,
9460 * allowing for new block groups to be created that can reuse the same
9461 * physical device locations unless we take this special care.
9462 */
9463 remove_em = (atomic_read(&block_group->trimming) == 0);
9464 /*
9465 * Make sure a trimmer task always sees the em in the pinned_chunks list
9466 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9467 * before checking block_group->removed).
9468 */
9469 if (!remove_em) {
9470 /*
9471 * Our em might be in trans->transaction->pending_chunks which
9472 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9473 * and so is the fs_info->pinned_chunks list.
9474 *
9475 * So at this point we must be holding the chunk_mutex to avoid
9476 * any races with chunk allocation (more specifically at
9477 * volumes.c:contains_pending_extent()), to ensure it always
9478 * sees the em, either in the pending_chunks list or in the
9479 * pinned_chunks list.
9480 */
9481 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9482 }
9483 spin_unlock(&block_group->lock);
9484
9485 if (remove_em) {
9486 struct extent_map_tree *em_tree;
9487
9488 em_tree = &root->fs_info->mapping_tree.map_tree;
9489 write_lock(&em_tree->lock);
9490 /*
9491 * The em might be in the pending_chunks list, so make sure the
9492 * chunk mutex is locked, since remove_extent_mapping() will
9493 * delete us from that list.
9494 */
9495 remove_extent_mapping(em_tree, em);
9496 write_unlock(&em_tree->lock);
9497 /* once for the tree */
9498 free_extent_map(em);
9499 }
9500
9501 unlock_chunks(root);
9502
9503 btrfs_put_block_group(block_group);
9504 btrfs_put_block_group(block_group);
9505
9506 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9507 if (ret > 0)
9508 ret = -EIO;
9509 if (ret < 0)
9510 goto out;
9511
9512 ret = btrfs_del_item(trans, root, path);
9513 out:
9514 btrfs_free_path(path);
9515 return ret;
9516 }
9517
9518 /*
9519 * Process the unused_bgs list and remove any that don't have any allocated
9520 * space inside of them.
9521 */
9522 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9523 {
9524 struct btrfs_block_group_cache *block_group;
9525 struct btrfs_space_info *space_info;
9526 struct btrfs_root *root = fs_info->extent_root;
9527 struct btrfs_trans_handle *trans;
9528 int ret = 0;
9529
9530 if (!fs_info->open)
9531 return;
9532
9533 spin_lock(&fs_info->unused_bgs_lock);
9534 while (!list_empty(&fs_info->unused_bgs)) {
9535 u64 start, end;
9536
9537 block_group = list_first_entry(&fs_info->unused_bgs,
9538 struct btrfs_block_group_cache,
9539 bg_list);
9540 space_info = block_group->space_info;
9541 list_del_init(&block_group->bg_list);
9542 if (ret || btrfs_mixed_space_info(space_info)) {
9543 btrfs_put_block_group(block_group);
9544 continue;
9545 }
9546 spin_unlock(&fs_info->unused_bgs_lock);
9547
9548 /* Don't want to race with allocators so take the groups_sem */
9549 down_write(&space_info->groups_sem);
9550 spin_lock(&block_group->lock);
9551 if (block_group->reserved ||
9552 btrfs_block_group_used(&block_group->item) ||
9553 block_group->ro) {
9554 /*
9555 * We want to bail if we made new allocations or have
9556 * outstanding allocations in this block group. We do
9557 * the ro check in case balance is currently acting on
9558 * this block group.
9559 */
9560 spin_unlock(&block_group->lock);
9561 up_write(&space_info->groups_sem);
9562 goto next;
9563 }
9564 spin_unlock(&block_group->lock);
9565
9566 /* We don't want to force the issue, only flip if it's ok. */
9567 ret = set_block_group_ro(block_group, 0);
9568 up_write(&space_info->groups_sem);
9569 if (ret < 0) {
9570 ret = 0;
9571 goto next;
9572 }
9573
9574 /*
9575 * Want to do this before we do anything else so we can recover
9576 * properly if we fail to join the transaction.
9577 */
9578 /* 1 for btrfs_orphan_reserve_metadata() */
9579 trans = btrfs_start_transaction(root, 1);
9580 if (IS_ERR(trans)) {
9581 btrfs_set_block_group_rw(root, block_group);
9582 ret = PTR_ERR(trans);
9583 goto next;
9584 }
9585
9586 /*
9587 * We could have pending pinned extents for this block group,
9588 * just delete them, we don't care about them anymore.
9589 */
9590 start = block_group->key.objectid;
9591 end = start + block_group->key.offset - 1;
9592 /*
9593 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9594 * btrfs_finish_extent_commit(). If we are at transaction N,
9595 * another task might be running finish_extent_commit() for the
9596 * previous transaction N - 1, and have seen a range belonging
9597 * to the block group in freed_extents[] before we were able to
9598 * clear the whole block group range from freed_extents[]. This
9599 * means that task can lookup for the block group after we
9600 * unpinned it from freed_extents[] and removed it, leading to
9601 * a BUG_ON() at btrfs_unpin_extent_range().
9602 */
9603 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9604 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9605 EXTENT_DIRTY, GFP_NOFS);
9606 if (ret) {
9607 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9608 btrfs_set_block_group_rw(root, block_group);
9609 goto end_trans;
9610 }
9611 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9612 EXTENT_DIRTY, GFP_NOFS);
9613 if (ret) {
9614 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9615 btrfs_set_block_group_rw(root, block_group);
9616 goto end_trans;
9617 }
9618 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9619
9620 /* Reset pinned so btrfs_put_block_group doesn't complain */
9621 block_group->pinned = 0;
9622
9623 /*
9624 * Btrfs_remove_chunk will abort the transaction if things go
9625 * horribly wrong.
9626 */
9627 ret = btrfs_remove_chunk(trans, root,
9628 block_group->key.objectid);
9629 end_trans:
9630 btrfs_end_transaction(trans, root);
9631 next:
9632 btrfs_put_block_group(block_group);
9633 spin_lock(&fs_info->unused_bgs_lock);
9634 }
9635 spin_unlock(&fs_info->unused_bgs_lock);
9636 }
9637
9638 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9639 {
9640 struct btrfs_space_info *space_info;
9641 struct btrfs_super_block *disk_super;
9642 u64 features;
9643 u64 flags;
9644 int mixed = 0;
9645 int ret;
9646
9647 disk_super = fs_info->super_copy;
9648 if (!btrfs_super_root(disk_super))
9649 return 1;
9650
9651 features = btrfs_super_incompat_flags(disk_super);
9652 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9653 mixed = 1;
9654
9655 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9656 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9657 if (ret)
9658 goto out;
9659
9660 if (mixed) {
9661 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9662 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9663 } else {
9664 flags = BTRFS_BLOCK_GROUP_METADATA;
9665 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9666 if (ret)
9667 goto out;
9668
9669 flags = BTRFS_BLOCK_GROUP_DATA;
9670 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9671 }
9672 out:
9673 return ret;
9674 }
9675
9676 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9677 {
9678 return unpin_extent_range(root, start, end, false);
9679 }
9680
9681 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9682 {
9683 struct btrfs_fs_info *fs_info = root->fs_info;
9684 struct btrfs_block_group_cache *cache = NULL;
9685 u64 group_trimmed;
9686 u64 start;
9687 u64 end;
9688 u64 trimmed = 0;
9689 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9690 int ret = 0;
9691
9692 /*
9693 * try to trim all FS space, our block group may start from non-zero.
9694 */
9695 if (range->len == total_bytes)
9696 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9697 else
9698 cache = btrfs_lookup_block_group(fs_info, range->start);
9699
9700 while (cache) {
9701 if (cache->key.objectid >= (range->start + range->len)) {
9702 btrfs_put_block_group(cache);
9703 break;
9704 }
9705
9706 start = max(range->start, cache->key.objectid);
9707 end = min(range->start + range->len,
9708 cache->key.objectid + cache->key.offset);
9709
9710 if (end - start >= range->minlen) {
9711 if (!block_group_cache_done(cache)) {
9712 ret = cache_block_group(cache, 0);
9713 if (ret) {
9714 btrfs_put_block_group(cache);
9715 break;
9716 }
9717 ret = wait_block_group_cache_done(cache);
9718 if (ret) {
9719 btrfs_put_block_group(cache);
9720 break;
9721 }
9722 }
9723 ret = btrfs_trim_block_group(cache,
9724 &group_trimmed,
9725 start,
9726 end,
9727 range->minlen);
9728
9729 trimmed += group_trimmed;
9730 if (ret) {
9731 btrfs_put_block_group(cache);
9732 break;
9733 }
9734 }
9735
9736 cache = next_block_group(fs_info->tree_root, cache);
9737 }
9738
9739 range->len = trimmed;
9740 return ret;
9741 }
9742
9743 /*
9744 * btrfs_{start,end}_write_no_snapshoting() are similar to
9745 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9746 * data into the page cache through nocow before the subvolume is snapshoted,
9747 * but flush the data into disk after the snapshot creation, or to prevent
9748 * operations while snapshoting is ongoing and that cause the snapshot to be
9749 * inconsistent (writes followed by expanding truncates for example).
9750 */
9751 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9752 {
9753 percpu_counter_dec(&root->subv_writers->counter);
9754 /*
9755 * Make sure counter is updated before we wake up
9756 * waiters.
9757 */
9758 smp_mb();
9759 if (waitqueue_active(&root->subv_writers->wait))
9760 wake_up(&root->subv_writers->wait);
9761 }
9762
9763 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9764 {
9765 if (atomic_read(&root->will_be_snapshoted))
9766 return 0;
9767
9768 percpu_counter_inc(&root->subv_writers->counter);
9769 /*
9770 * Make sure counter is updated before we check for snapshot creation.
9771 */
9772 smp_mb();
9773 if (atomic_read(&root->will_be_snapshoted)) {
9774 btrfs_end_write_no_snapshoting(root);
9775 return 0;
9776 }
9777 return 1;
9778 }
This page took 0.346566 seconds and 5 git commands to generate.