Btrfs: add tracepoint for adding block groups
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40
41 #undef SCRAMBLE_DELAYED_REFS
42
43 /*
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
56 */
57 enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
61 };
62
63 /*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72 enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76 };
77
78 static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
83 struct btrfs_delayed_ref_node *node, u64 parent,
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
86 struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333 }
334
335 #ifdef CONFIG_BTRFS_DEBUG
336 static void fragment_free_space(struct btrfs_root *root,
337 struct btrfs_block_group_cache *block_group)
338 {
339 u64 start = block_group->key.objectid;
340 u64 len = block_group->key.offset;
341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 root->nodesize : root->sectorsize;
343 u64 step = chunk << 1;
344
345 while (len > chunk) {
346 btrfs_remove_free_space(block_group, start, chunk);
347 start += step;
348 if (len < step)
349 len = 0;
350 else
351 len -= step;
352 }
353 }
354 #endif
355
356 /*
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
360 */
361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 struct btrfs_fs_info *info, u64 start, u64 end)
363 {
364 u64 extent_start, extent_end, size, total_added = 0;
365 int ret;
366
367 while (start < end) {
368 ret = find_first_extent_bit(info->pinned_extents, start,
369 &extent_start, &extent_end,
370 EXTENT_DIRTY | EXTENT_UPTODATE,
371 NULL);
372 if (ret)
373 break;
374
375 if (extent_start <= start) {
376 start = extent_end + 1;
377 } else if (extent_start > start && extent_start < end) {
378 size = extent_start - start;
379 total_added += size;
380 ret = btrfs_add_free_space(block_group, start,
381 size);
382 BUG_ON(ret); /* -ENOMEM or logic error */
383 start = extent_end + 1;
384 } else {
385 break;
386 }
387 }
388
389 if (start < end) {
390 size = end - start;
391 total_added += size;
392 ret = btrfs_add_free_space(block_group, start, size);
393 BUG_ON(ret); /* -ENOMEM or logic error */
394 }
395
396 return total_added;
397 }
398
399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
400 {
401 struct btrfs_block_group_cache *block_group;
402 struct btrfs_fs_info *fs_info;
403 struct btrfs_root *extent_root;
404 struct btrfs_path *path;
405 struct extent_buffer *leaf;
406 struct btrfs_key key;
407 u64 total_found = 0;
408 u64 last = 0;
409 u32 nritems;
410 int ret;
411 bool wakeup = true;
412
413 block_group = caching_ctl->block_group;
414 fs_info = block_group->fs_info;
415 extent_root = fs_info->extent_root;
416
417 path = btrfs_alloc_path();
418 if (!path)
419 return -ENOMEM;
420
421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
422
423 #ifdef CONFIG_BTRFS_DEBUG
424 /*
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
427 * the free space.
428 */
429 if (btrfs_should_fragment_free_space(extent_root, block_group))
430 wakeup = false;
431 #endif
432 /*
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
437 */
438 path->skip_locking = 1;
439 path->search_commit_root = 1;
440 path->reada = READA_FORWARD;
441
442 key.objectid = last;
443 key.offset = 0;
444 key.type = BTRFS_EXTENT_ITEM_KEY;
445
446 next:
447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
448 if (ret < 0)
449 goto out;
450
451 leaf = path->nodes[0];
452 nritems = btrfs_header_nritems(leaf);
453
454 while (1) {
455 if (btrfs_fs_closing(fs_info) > 1) {
456 last = (u64)-1;
457 break;
458 }
459
460 if (path->slots[0] < nritems) {
461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 } else {
463 ret = find_next_key(path, 0, &key);
464 if (ret)
465 break;
466
467 if (need_resched() ||
468 rwsem_is_contended(&fs_info->commit_root_sem)) {
469 if (wakeup)
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 up_read(&fs_info->commit_root_sem);
473 mutex_unlock(&caching_ctl->mutex);
474 cond_resched();
475 mutex_lock(&caching_ctl->mutex);
476 down_read(&fs_info->commit_root_sem);
477 goto next;
478 }
479
480 ret = btrfs_next_leaf(extent_root, path);
481 if (ret < 0)
482 goto out;
483 if (ret)
484 break;
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(leaf);
487 continue;
488 }
489
490 if (key.objectid < last) {
491 key.objectid = last;
492 key.offset = 0;
493 key.type = BTRFS_EXTENT_ITEM_KEY;
494
495 if (wakeup)
496 caching_ctl->progress = last;
497 btrfs_release_path(path);
498 goto next;
499 }
500
501 if (key.objectid < block_group->key.objectid) {
502 path->slots[0]++;
503 continue;
504 }
505
506 if (key.objectid >= block_group->key.objectid +
507 block_group->key.offset)
508 break;
509
510 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 key.type == BTRFS_METADATA_ITEM_KEY) {
512 total_found += add_new_free_space(block_group,
513 fs_info, last,
514 key.objectid);
515 if (key.type == BTRFS_METADATA_ITEM_KEY)
516 last = key.objectid +
517 fs_info->tree_root->nodesize;
518 else
519 last = key.objectid + key.offset;
520
521 if (total_found > CACHING_CTL_WAKE_UP) {
522 total_found = 0;
523 if (wakeup)
524 wake_up(&caching_ctl->wait);
525 }
526 }
527 path->slots[0]++;
528 }
529 ret = 0;
530
531 total_found += add_new_free_space(block_group, fs_info, last,
532 block_group->key.objectid +
533 block_group->key.offset);
534 caching_ctl->progress = (u64)-1;
535
536 out:
537 btrfs_free_path(path);
538 return ret;
539 }
540
541 static noinline void caching_thread(struct btrfs_work *work)
542 {
543 struct btrfs_block_group_cache *block_group;
544 struct btrfs_fs_info *fs_info;
545 struct btrfs_caching_control *caching_ctl;
546 struct btrfs_root *extent_root;
547 int ret;
548
549 caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 block_group = caching_ctl->block_group;
551 fs_info = block_group->fs_info;
552 extent_root = fs_info->extent_root;
553
554 mutex_lock(&caching_ctl->mutex);
555 down_read(&fs_info->commit_root_sem);
556
557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 ret = load_free_space_tree(caching_ctl);
559 else
560 ret = load_extent_tree_free(caching_ctl);
561
562 spin_lock(&block_group->lock);
563 block_group->caching_ctl = NULL;
564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
565 spin_unlock(&block_group->lock);
566
567 #ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 u64 bytes_used;
570
571 spin_lock(&block_group->space_info->lock);
572 spin_lock(&block_group->lock);
573 bytes_used = block_group->key.offset -
574 btrfs_block_group_used(&block_group->item);
575 block_group->space_info->bytes_used += bytes_used >> 1;
576 spin_unlock(&block_group->lock);
577 spin_unlock(&block_group->space_info->lock);
578 fragment_free_space(extent_root, block_group);
579 }
580 #endif
581
582 caching_ctl->progress = (u64)-1;
583
584 up_read(&fs_info->commit_root_sem);
585 free_excluded_extents(fs_info->extent_root, block_group);
586 mutex_unlock(&caching_ctl->mutex);
587
588 wake_up(&caching_ctl->wait);
589
590 put_caching_control(caching_ctl);
591 btrfs_put_block_group(block_group);
592 }
593
594 static int cache_block_group(struct btrfs_block_group_cache *cache,
595 int load_cache_only)
596 {
597 DEFINE_WAIT(wait);
598 struct btrfs_fs_info *fs_info = cache->fs_info;
599 struct btrfs_caching_control *caching_ctl;
600 int ret = 0;
601
602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
603 if (!caching_ctl)
604 return -ENOMEM;
605
606 INIT_LIST_HEAD(&caching_ctl->list);
607 mutex_init(&caching_ctl->mutex);
608 init_waitqueue_head(&caching_ctl->wait);
609 caching_ctl->block_group = cache;
610 caching_ctl->progress = cache->key.objectid;
611 atomic_set(&caching_ctl->count, 1);
612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 caching_thread, NULL, NULL);
614
615 spin_lock(&cache->lock);
616 /*
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
626 * another.
627 */
628 while (cache->cached == BTRFS_CACHE_FAST) {
629 struct btrfs_caching_control *ctl;
630
631 ctl = cache->caching_ctl;
632 atomic_inc(&ctl->count);
633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 spin_unlock(&cache->lock);
635
636 schedule();
637
638 finish_wait(&ctl->wait, &wait);
639 put_caching_control(ctl);
640 spin_lock(&cache->lock);
641 }
642
643 if (cache->cached != BTRFS_CACHE_NO) {
644 spin_unlock(&cache->lock);
645 kfree(caching_ctl);
646 return 0;
647 }
648 WARN_ON(cache->caching_ctl);
649 cache->caching_ctl = caching_ctl;
650 cache->cached = BTRFS_CACHE_FAST;
651 spin_unlock(&cache->lock);
652
653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
654 mutex_lock(&caching_ctl->mutex);
655 ret = load_free_space_cache(fs_info, cache);
656
657 spin_lock(&cache->lock);
658 if (ret == 1) {
659 cache->caching_ctl = NULL;
660 cache->cached = BTRFS_CACHE_FINISHED;
661 cache->last_byte_to_unpin = (u64)-1;
662 caching_ctl->progress = (u64)-1;
663 } else {
664 if (load_cache_only) {
665 cache->caching_ctl = NULL;
666 cache->cached = BTRFS_CACHE_NO;
667 } else {
668 cache->cached = BTRFS_CACHE_STARTED;
669 cache->has_caching_ctl = 1;
670 }
671 }
672 spin_unlock(&cache->lock);
673 #ifdef CONFIG_BTRFS_DEBUG
674 if (ret == 1 &&
675 btrfs_should_fragment_free_space(fs_info->extent_root,
676 cache)) {
677 u64 bytes_used;
678
679 spin_lock(&cache->space_info->lock);
680 spin_lock(&cache->lock);
681 bytes_used = cache->key.offset -
682 btrfs_block_group_used(&cache->item);
683 cache->space_info->bytes_used += bytes_used >> 1;
684 spin_unlock(&cache->lock);
685 spin_unlock(&cache->space_info->lock);
686 fragment_free_space(fs_info->extent_root, cache);
687 }
688 #endif
689 mutex_unlock(&caching_ctl->mutex);
690
691 wake_up(&caching_ctl->wait);
692 if (ret == 1) {
693 put_caching_control(caching_ctl);
694 free_excluded_extents(fs_info->extent_root, cache);
695 return 0;
696 }
697 } else {
698 /*
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
701 */
702 spin_lock(&cache->lock);
703 if (load_cache_only) {
704 cache->caching_ctl = NULL;
705 cache->cached = BTRFS_CACHE_NO;
706 } else {
707 cache->cached = BTRFS_CACHE_STARTED;
708 cache->has_caching_ctl = 1;
709 }
710 spin_unlock(&cache->lock);
711 wake_up(&caching_ctl->wait);
712 }
713
714 if (load_cache_only) {
715 put_caching_control(caching_ctl);
716 return 0;
717 }
718
719 down_write(&fs_info->commit_root_sem);
720 atomic_inc(&caching_ctl->count);
721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 up_write(&fs_info->commit_root_sem);
723
724 btrfs_get_block_group(cache);
725
726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727
728 return ret;
729 }
730
731 /*
732 * return the block group that starts at or after bytenr
733 */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737 struct btrfs_block_group_cache *cache;
738
739 cache = block_group_cache_tree_search(info, bytenr, 0);
740
741 return cache;
742 }
743
744 /*
745 * return the block group that contains the given bytenr
746 */
747 struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 struct btrfs_fs_info *info,
749 u64 bytenr)
750 {
751 struct btrfs_block_group_cache *cache;
752
753 cache = block_group_cache_tree_search(info, bytenr, 1);
754
755 return cache;
756 }
757
758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 u64 flags)
760 {
761 struct list_head *head = &info->space_info;
762 struct btrfs_space_info *found;
763
764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
765
766 rcu_read_lock();
767 list_for_each_entry_rcu(found, head, list) {
768 if (found->flags & flags) {
769 rcu_read_unlock();
770 return found;
771 }
772 }
773 rcu_read_unlock();
774 return NULL;
775 }
776
777 /*
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
780 */
781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782 {
783 struct list_head *head = &info->space_info;
784 struct btrfs_space_info *found;
785
786 rcu_read_lock();
787 list_for_each_entry_rcu(found, head, list)
788 found->full = 0;
789 rcu_read_unlock();
790 }
791
792 /* simple helper to search for an existing data extent at a given offset */
793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
794 {
795 int ret;
796 struct btrfs_key key;
797 struct btrfs_path *path;
798
799 path = btrfs_alloc_path();
800 if (!path)
801 return -ENOMEM;
802
803 key.objectid = start;
804 key.offset = len;
805 key.type = BTRFS_EXTENT_ITEM_KEY;
806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 0, 0);
808 btrfs_free_path(path);
809 return ret;
810 }
811
812 /*
813 * helper function to lookup reference count and flags of a tree block.
814 *
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
820 */
821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 struct btrfs_root *root, u64 bytenr,
823 u64 offset, int metadata, u64 *refs, u64 *flags)
824 {
825 struct btrfs_delayed_ref_head *head;
826 struct btrfs_delayed_ref_root *delayed_refs;
827 struct btrfs_path *path;
828 struct btrfs_extent_item *ei;
829 struct extent_buffer *leaf;
830 struct btrfs_key key;
831 u32 item_size;
832 u64 num_refs;
833 u64 extent_flags;
834 int ret;
835
836 /*
837 * If we don't have skinny metadata, don't bother doing anything
838 * different
839 */
840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
841 offset = root->nodesize;
842 metadata = 0;
843 }
844
845 path = btrfs_alloc_path();
846 if (!path)
847 return -ENOMEM;
848
849 if (!trans) {
850 path->skip_locking = 1;
851 path->search_commit_root = 1;
852 }
853
854 search_again:
855 key.objectid = bytenr;
856 key.offset = offset;
857 if (metadata)
858 key.type = BTRFS_METADATA_ITEM_KEY;
859 else
860 key.type = BTRFS_EXTENT_ITEM_KEY;
861
862 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 &key, path, 0, 0);
864 if (ret < 0)
865 goto out_free;
866
867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
868 if (path->slots[0]) {
869 path->slots[0]--;
870 btrfs_item_key_to_cpu(path->nodes[0], &key,
871 path->slots[0]);
872 if (key.objectid == bytenr &&
873 key.type == BTRFS_EXTENT_ITEM_KEY &&
874 key.offset == root->nodesize)
875 ret = 0;
876 }
877 }
878
879 if (ret == 0) {
880 leaf = path->nodes[0];
881 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 if (item_size >= sizeof(*ei)) {
883 ei = btrfs_item_ptr(leaf, path->slots[0],
884 struct btrfs_extent_item);
885 num_refs = btrfs_extent_refs(leaf, ei);
886 extent_flags = btrfs_extent_flags(leaf, ei);
887 } else {
888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0 *ei0;
890 BUG_ON(item_size != sizeof(*ei0));
891 ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 struct btrfs_extent_item_v0);
893 num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 /* FIXME: this isn't correct for data */
895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896 #else
897 BUG();
898 #endif
899 }
900 BUG_ON(num_refs == 0);
901 } else {
902 num_refs = 0;
903 extent_flags = 0;
904 ret = 0;
905 }
906
907 if (!trans)
908 goto out;
909
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
912 head = btrfs_find_delayed_ref_head(trans, bytenr);
913 if (head) {
914 if (!mutex_trylock(&head->mutex)) {
915 atomic_inc(&head->node.refs);
916 spin_unlock(&delayed_refs->lock);
917
918 btrfs_release_path(path);
919
920 /*
921 * Mutex was contended, block until it's released and try
922 * again
923 */
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
926 btrfs_put_delayed_ref(&head->node);
927 goto search_again;
928 }
929 spin_lock(&head->lock);
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
932 else
933 BUG_ON(num_refs == 0);
934
935 num_refs += head->node.ref_mod;
936 spin_unlock(&head->lock);
937 mutex_unlock(&head->mutex);
938 }
939 spin_unlock(&delayed_refs->lock);
940 out:
941 WARN_ON(num_refs == 0);
942 if (refs)
943 *refs = num_refs;
944 if (flags)
945 *flags = extent_flags;
946 out_free:
947 btrfs_free_path(path);
948 return ret;
949 }
950
951 /*
952 * Back reference rules. Back refs have three main goals:
953 *
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
957 *
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
960 *
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
964 *
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
975 *
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
982 *
983 * When a tree block is COWed through a tree, there are four cases:
984 *
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
987 *
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
992 *
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
998 *
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
1013 * - different files inside a single subvolume
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
1016 * The extent ref structure for the implicit back refs has fields for:
1017 *
1018 * - Objectid of the subvolume root
1019 * - objectid of the file holding the reference
1020 * - original offset in the file
1021 * - how many bookend extents
1022 *
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
1025 *
1026 * The extent ref structure for the full back refs has field for:
1027 *
1028 * - number of pointers in the tree leaf
1029 *
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
1032 *
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
1035 *
1036 * (root_key.objectid, inode objectid, offset in file, 1)
1037 *
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
1040 *
1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1042 *
1043 * Btree extents can be referenced by:
1044 *
1045 * - Different subvolumes
1046 *
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
1051 *
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
1055 */
1056
1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 struct btrfs_root *root,
1060 struct btrfs_path *path,
1061 u64 owner, u32 extra_size)
1062 {
1063 struct btrfs_extent_item *item;
1064 struct btrfs_extent_item_v0 *ei0;
1065 struct btrfs_extent_ref_v0 *ref0;
1066 struct btrfs_tree_block_info *bi;
1067 struct extent_buffer *leaf;
1068 struct btrfs_key key;
1069 struct btrfs_key found_key;
1070 u32 new_size = sizeof(*item);
1071 u64 refs;
1072 int ret;
1073
1074 leaf = path->nodes[0];
1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 struct btrfs_extent_item_v0);
1080 refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082 if (owner == (u64)-1) {
1083 while (1) {
1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 ret = btrfs_next_leaf(root, path);
1086 if (ret < 0)
1087 return ret;
1088 BUG_ON(ret > 0); /* Corruption */
1089 leaf = path->nodes[0];
1090 }
1091 btrfs_item_key_to_cpu(leaf, &found_key,
1092 path->slots[0]);
1093 BUG_ON(key.objectid != found_key.objectid);
1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 path->slots[0]++;
1096 continue;
1097 }
1098 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 struct btrfs_extent_ref_v0);
1100 owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 break;
1102 }
1103 }
1104 btrfs_release_path(path);
1105
1106 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 new_size += sizeof(*bi);
1108
1109 new_size -= sizeof(*ei0);
1110 ret = btrfs_search_slot(trans, root, &key, path,
1111 new_size + extra_size, 1);
1112 if (ret < 0)
1113 return ret;
1114 BUG_ON(ret); /* Corruption */
1115
1116 btrfs_extend_item(root, path, new_size);
1117
1118 leaf = path->nodes[0];
1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 btrfs_set_extent_refs(leaf, item, refs);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf, item, 0);
1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 btrfs_set_extent_flags(leaf, item,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 bi = (struct btrfs_tree_block_info *)(item + 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 } else {
1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 }
1134 btrfs_mark_buffer_dirty(leaf);
1135 return 0;
1136 }
1137 #endif
1138
1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140 {
1141 u32 high_crc = ~(u32)0;
1142 u32 low_crc = ~(u32)0;
1143 __le64 lenum;
1144
1145 lenum = cpu_to_le64(root_objectid);
1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147 lenum = cpu_to_le64(owner);
1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149 lenum = cpu_to_le64(offset);
1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1151
1152 return ((u64)high_crc << 31) ^ (u64)low_crc;
1153 }
1154
1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 struct btrfs_extent_data_ref *ref)
1157 {
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 btrfs_extent_data_ref_objectid(leaf, ref),
1160 btrfs_extent_data_ref_offset(leaf, ref));
1161 }
1162
1163 static int match_extent_data_ref(struct extent_buffer *leaf,
1164 struct btrfs_extent_data_ref *ref,
1165 u64 root_objectid, u64 owner, u64 offset)
1166 {
1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 return 0;
1171 return 1;
1172 }
1173
1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 struct btrfs_path *path,
1177 u64 bytenr, u64 parent,
1178 u64 root_objectid,
1179 u64 owner, u64 offset)
1180 {
1181 struct btrfs_key key;
1182 struct btrfs_extent_data_ref *ref;
1183 struct extent_buffer *leaf;
1184 u32 nritems;
1185 int ret;
1186 int recow;
1187 int err = -ENOENT;
1188
1189 key.objectid = bytenr;
1190 if (parent) {
1191 key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 key.offset = parent;
1193 } else {
1194 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 key.offset = hash_extent_data_ref(root_objectid,
1196 owner, offset);
1197 }
1198 again:
1199 recow = 0;
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
1205
1206 if (parent) {
1207 if (!ret)
1208 return 0;
1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key.type = BTRFS_EXTENT_REF_V0_KEY;
1211 btrfs_release_path(path);
1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 if (ret < 0) {
1214 err = ret;
1215 goto fail;
1216 }
1217 if (!ret)
1218 return 0;
1219 #endif
1220 goto fail;
1221 }
1222
1223 leaf = path->nodes[0];
1224 nritems = btrfs_header_nritems(leaf);
1225 while (1) {
1226 if (path->slots[0] >= nritems) {
1227 ret = btrfs_next_leaf(root, path);
1228 if (ret < 0)
1229 err = ret;
1230 if (ret)
1231 goto fail;
1232
1233 leaf = path->nodes[0];
1234 nritems = btrfs_header_nritems(leaf);
1235 recow = 1;
1236 }
1237
1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 if (key.objectid != bytenr ||
1240 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 goto fail;
1242
1243 ref = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_data_ref);
1245
1246 if (match_extent_data_ref(leaf, ref, root_objectid,
1247 owner, offset)) {
1248 if (recow) {
1249 btrfs_release_path(path);
1250 goto again;
1251 }
1252 err = 0;
1253 break;
1254 }
1255 path->slots[0]++;
1256 }
1257 fail:
1258 return err;
1259 }
1260
1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 u64 bytenr, u64 parent,
1265 u64 root_objectid, u64 owner,
1266 u64 offset, int refs_to_add)
1267 {
1268 struct btrfs_key key;
1269 struct extent_buffer *leaf;
1270 u32 size;
1271 u32 num_refs;
1272 int ret;
1273
1274 key.objectid = bytenr;
1275 if (parent) {
1276 key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 key.offset = parent;
1278 size = sizeof(struct btrfs_shared_data_ref);
1279 } else {
1280 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 key.offset = hash_extent_data_ref(root_objectid,
1282 owner, offset);
1283 size = sizeof(struct btrfs_extent_data_ref);
1284 }
1285
1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 if (ret && ret != -EEXIST)
1288 goto fail;
1289
1290 leaf = path->nodes[0];
1291 if (parent) {
1292 struct btrfs_shared_data_ref *ref;
1293 ref = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_shared_data_ref);
1295 if (ret == 0) {
1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 } else {
1298 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 num_refs += refs_to_add;
1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1301 }
1302 } else {
1303 struct btrfs_extent_data_ref *ref;
1304 while (ret == -EEXIST) {
1305 ref = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_extent_data_ref);
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset))
1309 break;
1310 btrfs_release_path(path);
1311 key.offset++;
1312 ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 size);
1314 if (ret && ret != -EEXIST)
1315 goto fail;
1316
1317 leaf = path->nodes[0];
1318 }
1319 ref = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 if (ret == 0) {
1322 btrfs_set_extent_data_ref_root(leaf, ref,
1323 root_objectid);
1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 } else {
1328 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 num_refs += refs_to_add;
1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1331 }
1332 }
1333 btrfs_mark_buffer_dirty(leaf);
1334 ret = 0;
1335 fail:
1336 btrfs_release_path(path);
1337 return ret;
1338 }
1339
1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 struct btrfs_root *root,
1342 struct btrfs_path *path,
1343 int refs_to_drop, int *last_ref)
1344 {
1345 struct btrfs_key key;
1346 struct btrfs_extent_data_ref *ref1 = NULL;
1347 struct btrfs_shared_data_ref *ref2 = NULL;
1348 struct extent_buffer *leaf;
1349 u32 num_refs = 0;
1350 int ret = 0;
1351
1352 leaf = path->nodes[0];
1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_extent_data_ref);
1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_shared_data_ref);
1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 struct btrfs_extent_ref_v0 *ref0;
1366 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_ref_v0);
1368 num_refs = btrfs_ref_count_v0(leaf, ref0);
1369 #endif
1370 } else {
1371 BUG();
1372 }
1373
1374 BUG_ON(num_refs < refs_to_drop);
1375 num_refs -= refs_to_drop;
1376
1377 if (num_refs == 0) {
1378 ret = btrfs_del_item(trans, root, path);
1379 *last_ref = 1;
1380 } else {
1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 else {
1387 struct btrfs_extent_ref_v0 *ref0;
1388 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_extent_ref_v0);
1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 }
1392 #endif
1393 btrfs_mark_buffer_dirty(leaf);
1394 }
1395 return ret;
1396 }
1397
1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399 struct btrfs_extent_inline_ref *iref)
1400 {
1401 struct btrfs_key key;
1402 struct extent_buffer *leaf;
1403 struct btrfs_extent_data_ref *ref1;
1404 struct btrfs_shared_data_ref *ref2;
1405 u32 num_refs = 0;
1406
1407 leaf = path->nodes[0];
1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 if (iref) {
1410 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 BTRFS_EXTENT_DATA_REF_KEY) {
1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 } else {
1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 }
1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_extent_data_ref);
1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 struct btrfs_shared_data_ref);
1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 struct btrfs_extent_ref_v0 *ref0;
1429 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_ref_v0);
1431 num_refs = btrfs_ref_count_v0(leaf, ref0);
1432 #endif
1433 } else {
1434 WARN_ON(1);
1435 }
1436 return num_refs;
1437 }
1438
1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root,
1441 struct btrfs_path *path,
1442 u64 bytenr, u64 parent,
1443 u64 root_objectid)
1444 {
1445 struct btrfs_key key;
1446 int ret;
1447
1448 key.objectid = bytenr;
1449 if (parent) {
1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 key.offset = parent;
1452 } else {
1453 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 key.offset = root_objectid;
1455 }
1456
1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 if (ret > 0)
1459 ret = -ENOENT;
1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret == -ENOENT && parent) {
1462 btrfs_release_path(path);
1463 key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret > 0)
1466 ret = -ENOENT;
1467 }
1468 #endif
1469 return ret;
1470 }
1471
1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 struct btrfs_root *root,
1474 struct btrfs_path *path,
1475 u64 bytenr, u64 parent,
1476 u64 root_objectid)
1477 {
1478 struct btrfs_key key;
1479 int ret;
1480
1481 key.objectid = bytenr;
1482 if (parent) {
1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 key.offset = parent;
1485 } else {
1486 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 key.offset = root_objectid;
1488 }
1489
1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491 btrfs_release_path(path);
1492 return ret;
1493 }
1494
1495 static inline int extent_ref_type(u64 parent, u64 owner)
1496 {
1497 int type;
1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 if (parent > 0)
1500 type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 else
1502 type = BTRFS_TREE_BLOCK_REF_KEY;
1503 } else {
1504 if (parent > 0)
1505 type = BTRFS_SHARED_DATA_REF_KEY;
1506 else
1507 type = BTRFS_EXTENT_DATA_REF_KEY;
1508 }
1509 return type;
1510 }
1511
1512 static int find_next_key(struct btrfs_path *path, int level,
1513 struct btrfs_key *key)
1514
1515 {
1516 for (; level < BTRFS_MAX_LEVEL; level++) {
1517 if (!path->nodes[level])
1518 break;
1519 if (path->slots[level] + 1 >=
1520 btrfs_header_nritems(path->nodes[level]))
1521 continue;
1522 if (level == 0)
1523 btrfs_item_key_to_cpu(path->nodes[level], key,
1524 path->slots[level] + 1);
1525 else
1526 btrfs_node_key_to_cpu(path->nodes[level], key,
1527 path->slots[level] + 1);
1528 return 0;
1529 }
1530 return 1;
1531 }
1532
1533 /*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1545 */
1546 static noinline_for_stack
1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 struct btrfs_path *path,
1550 struct btrfs_extent_inline_ref **ref_ret,
1551 u64 bytenr, u64 num_bytes,
1552 u64 parent, u64 root_objectid,
1553 u64 owner, u64 offset, int insert)
1554 {
1555 struct btrfs_key key;
1556 struct extent_buffer *leaf;
1557 struct btrfs_extent_item *ei;
1558 struct btrfs_extent_inline_ref *iref;
1559 u64 flags;
1560 u64 item_size;
1561 unsigned long ptr;
1562 unsigned long end;
1563 int extra_size;
1564 int type;
1565 int want;
1566 int ret;
1567 int err = 0;
1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 SKINNY_METADATA);
1570
1571 key.objectid = bytenr;
1572 key.type = BTRFS_EXTENT_ITEM_KEY;
1573 key.offset = num_bytes;
1574
1575 want = extent_ref_type(parent, owner);
1576 if (insert) {
1577 extra_size = btrfs_extent_inline_ref_size(want);
1578 path->keep_locks = 1;
1579 } else
1580 extra_size = -1;
1581
1582 /*
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1585 */
1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 key.type = BTRFS_METADATA_ITEM_KEY;
1588 key.offset = owner;
1589 }
1590
1591 again:
1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1593 if (ret < 0) {
1594 err = ret;
1595 goto out;
1596 }
1597
1598 /*
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1601 */
1602 if (ret > 0 && skinny_metadata) {
1603 skinny_metadata = false;
1604 if (path->slots[0]) {
1605 path->slots[0]--;
1606 btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 path->slots[0]);
1608 if (key.objectid == bytenr &&
1609 key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 key.offset == num_bytes)
1611 ret = 0;
1612 }
1613 if (ret) {
1614 key.objectid = bytenr;
1615 key.type = BTRFS_EXTENT_ITEM_KEY;
1616 key.offset = num_bytes;
1617 btrfs_release_path(path);
1618 goto again;
1619 }
1620 }
1621
1622 if (ret && !insert) {
1623 err = -ENOENT;
1624 goto out;
1625 } else if (WARN_ON(ret)) {
1626 err = -EIO;
1627 goto out;
1628 }
1629
1630 leaf = path->nodes[0];
1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size < sizeof(*ei)) {
1634 if (!insert) {
1635 err = -ENOENT;
1636 goto out;
1637 }
1638 ret = convert_extent_item_v0(trans, root, path, owner,
1639 extra_size);
1640 if (ret < 0) {
1641 err = ret;
1642 goto out;
1643 }
1644 leaf = path->nodes[0];
1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 }
1647 #endif
1648 BUG_ON(item_size < sizeof(*ei));
1649
1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 flags = btrfs_extent_flags(leaf, ei);
1652
1653 ptr = (unsigned long)(ei + 1);
1654 end = (unsigned long)ei + item_size;
1655
1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657 ptr += sizeof(struct btrfs_tree_block_info);
1658 BUG_ON(ptr > end);
1659 }
1660
1661 err = -ENOENT;
1662 while (1) {
1663 if (ptr >= end) {
1664 WARN_ON(ptr > end);
1665 break;
1666 }
1667 iref = (struct btrfs_extent_inline_ref *)ptr;
1668 type = btrfs_extent_inline_ref_type(leaf, iref);
1669 if (want < type)
1670 break;
1671 if (want > type) {
1672 ptr += btrfs_extent_inline_ref_size(type);
1673 continue;
1674 }
1675
1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 struct btrfs_extent_data_ref *dref;
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 if (match_extent_data_ref(leaf, dref, root_objectid,
1680 owner, offset)) {
1681 err = 0;
1682 break;
1683 }
1684 if (hash_extent_data_ref_item(leaf, dref) <
1685 hash_extent_data_ref(root_objectid, owner, offset))
1686 break;
1687 } else {
1688 u64 ref_offset;
1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 if (parent > 0) {
1691 if (parent == ref_offset) {
1692 err = 0;
1693 break;
1694 }
1695 if (ref_offset < parent)
1696 break;
1697 } else {
1698 if (root_objectid == ref_offset) {
1699 err = 0;
1700 break;
1701 }
1702 if (ref_offset < root_objectid)
1703 break;
1704 }
1705 }
1706 ptr += btrfs_extent_inline_ref_size(type);
1707 }
1708 if (err == -ENOENT && insert) {
1709 if (item_size + extra_size >=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 /*
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1719 */
1720 if (find_next_key(path, 0, &key) == 0 &&
1721 key.objectid == bytenr &&
1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1723 err = -EAGAIN;
1724 goto out;
1725 }
1726 }
1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728 out:
1729 if (insert) {
1730 path->keep_locks = 0;
1731 btrfs_unlock_up_safe(path, 1);
1732 }
1733 return err;
1734 }
1735
1736 /*
1737 * helper to add new inline back ref
1738 */
1739 static noinline_for_stack
1740 void setup_inline_extent_backref(struct btrfs_root *root,
1741 struct btrfs_path *path,
1742 struct btrfs_extent_inline_ref *iref,
1743 u64 parent, u64 root_objectid,
1744 u64 owner, u64 offset, int refs_to_add,
1745 struct btrfs_delayed_extent_op *extent_op)
1746 {
1747 struct extent_buffer *leaf;
1748 struct btrfs_extent_item *ei;
1749 unsigned long ptr;
1750 unsigned long end;
1751 unsigned long item_offset;
1752 u64 refs;
1753 int size;
1754 int type;
1755
1756 leaf = path->nodes[0];
1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760 type = extent_ref_type(parent, owner);
1761 size = btrfs_extent_inline_ref_size(type);
1762
1763 btrfs_extend_item(root, path, size);
1764
1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 refs = btrfs_extent_refs(leaf, ei);
1767 refs += refs_to_add;
1768 btrfs_set_extent_refs(leaf, ei, refs);
1769 if (extent_op)
1770 __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772 ptr = (unsigned long)ei + item_offset;
1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 if (ptr < end - size)
1775 memmove_extent_buffer(leaf, ptr + size, ptr,
1776 end - size - ptr);
1777
1778 iref = (struct btrfs_extent_inline_ref *)ptr;
1779 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 struct btrfs_extent_data_ref *dref;
1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 struct btrfs_shared_data_ref *sref;
1789 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 } else {
1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 }
1797 btrfs_mark_buffer_dirty(leaf);
1798 }
1799
1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref **ref_ret,
1804 u64 bytenr, u64 num_bytes, u64 parent,
1805 u64 root_objectid, u64 owner, u64 offset)
1806 {
1807 int ret;
1808
1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 bytenr, num_bytes, parent,
1811 root_objectid, owner, offset, 0);
1812 if (ret != -ENOENT)
1813 return ret;
1814
1815 btrfs_release_path(path);
1816 *ref_ret = NULL;
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 root_objectid);
1821 } else {
1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 root_objectid, owner, offset);
1824 }
1825 return ret;
1826 }
1827
1828 /*
1829 * helper to update/remove inline back ref
1830 */
1831 static noinline_for_stack
1832 void update_inline_extent_backref(struct btrfs_root *root,
1833 struct btrfs_path *path,
1834 struct btrfs_extent_inline_ref *iref,
1835 int refs_to_mod,
1836 struct btrfs_delayed_extent_op *extent_op,
1837 int *last_ref)
1838 {
1839 struct extent_buffer *leaf;
1840 struct btrfs_extent_item *ei;
1841 struct btrfs_extent_data_ref *dref = NULL;
1842 struct btrfs_shared_data_ref *sref = NULL;
1843 unsigned long ptr;
1844 unsigned long end;
1845 u32 item_size;
1846 int size;
1847 int type;
1848 u64 refs;
1849
1850 leaf = path->nodes[0];
1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 refs = btrfs_extent_refs(leaf, ei);
1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 refs += refs_to_mod;
1855 btrfs_set_extent_refs(leaf, ei, refs);
1856 if (extent_op)
1857 __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859 type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 refs = btrfs_extent_data_ref_count(leaf, dref);
1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 refs = btrfs_shared_data_ref_count(leaf, sref);
1867 } else {
1868 refs = 1;
1869 BUG_ON(refs_to_mod != -1);
1870 }
1871
1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 refs += refs_to_mod;
1874
1875 if (refs > 0) {
1876 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 else
1879 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 } else {
1881 *last_ref = 1;
1882 size = btrfs_extent_inline_ref_size(type);
1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 ptr = (unsigned long)iref;
1885 end = (unsigned long)ei + item_size;
1886 if (ptr + size < end)
1887 memmove_extent_buffer(leaf, ptr, ptr + size,
1888 end - ptr - size);
1889 item_size -= size;
1890 btrfs_truncate_item(root, path, item_size, 1);
1891 }
1892 btrfs_mark_buffer_dirty(leaf);
1893 }
1894
1895 static noinline_for_stack
1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 struct btrfs_root *root,
1898 struct btrfs_path *path,
1899 u64 bytenr, u64 num_bytes, u64 parent,
1900 u64 root_objectid, u64 owner,
1901 u64 offset, int refs_to_add,
1902 struct btrfs_delayed_extent_op *extent_op)
1903 {
1904 struct btrfs_extent_inline_ref *iref;
1905 int ret;
1906
1907 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 bytenr, num_bytes, parent,
1909 root_objectid, owner, offset, 1);
1910 if (ret == 0) {
1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912 update_inline_extent_backref(root, path, iref,
1913 refs_to_add, extent_op, NULL);
1914 } else if (ret == -ENOENT) {
1915 setup_inline_extent_backref(root, path, iref, parent,
1916 root_objectid, owner, offset,
1917 refs_to_add, extent_op);
1918 ret = 0;
1919 }
1920 return ret;
1921 }
1922
1923 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 u64 bytenr, u64 parent, u64 root_objectid,
1927 u64 owner, u64 offset, int refs_to_add)
1928 {
1929 int ret;
1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 BUG_ON(refs_to_add != 1);
1932 ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 parent, root_objectid);
1934 } else {
1935 ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 parent, root_objectid,
1937 owner, offset, refs_to_add);
1938 }
1939 return ret;
1940 }
1941
1942 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 struct btrfs_path *path,
1945 struct btrfs_extent_inline_ref *iref,
1946 int refs_to_drop, int is_data, int *last_ref)
1947 {
1948 int ret = 0;
1949
1950 BUG_ON(!is_data && refs_to_drop != 1);
1951 if (iref) {
1952 update_inline_extent_backref(root, path, iref,
1953 -refs_to_drop, NULL, last_ref);
1954 } else if (is_data) {
1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 last_ref);
1957 } else {
1958 *last_ref = 1;
1959 ret = btrfs_del_item(trans, root, path);
1960 }
1961 return ret;
1962 }
1963
1964 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 u64 *discarded_bytes)
1967 {
1968 int j, ret = 0;
1969 u64 bytes_left, end;
1970 u64 aligned_start = ALIGN(start, 1 << 9);
1971
1972 if (WARN_ON(start != aligned_start)) {
1973 len -= aligned_start - start;
1974 len = round_down(len, 1 << 9);
1975 start = aligned_start;
1976 }
1977
1978 *discarded_bytes = 0;
1979
1980 if (!len)
1981 return 0;
1982
1983 end = start + len;
1984 bytes_left = len;
1985
1986 /* Skip any superblocks on this device. */
1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 u64 sb_start = btrfs_sb_offset(j);
1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 u64 size = sb_start - start;
1991
1992 if (!in_range(sb_start, start, bytes_left) &&
1993 !in_range(sb_end, start, bytes_left) &&
1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 continue;
1996
1997 /*
1998 * Superblock spans beginning of range. Adjust start and
1999 * try again.
2000 */
2001 if (sb_start <= start) {
2002 start += sb_end - start;
2003 if (start > end) {
2004 bytes_left = 0;
2005 break;
2006 }
2007 bytes_left = end - start;
2008 continue;
2009 }
2010
2011 if (size) {
2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 GFP_NOFS, 0);
2014 if (!ret)
2015 *discarded_bytes += size;
2016 else if (ret != -EOPNOTSUPP)
2017 return ret;
2018 }
2019
2020 start = sb_end;
2021 if (start > end) {
2022 bytes_left = 0;
2023 break;
2024 }
2025 bytes_left = end - start;
2026 }
2027
2028 if (bytes_left) {
2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2030 GFP_NOFS, 0);
2031 if (!ret)
2032 *discarded_bytes += bytes_left;
2033 }
2034 return ret;
2035 }
2036
2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 u64 num_bytes, u64 *actual_bytes)
2039 {
2040 int ret;
2041 u64 discarded_bytes = 0;
2042 struct btrfs_bio *bbio = NULL;
2043
2044
2045 /*
2046 * Avoid races with device replace and make sure our bbio has devices
2047 * associated to its stripes that don't go away while we are discarding.
2048 */
2049 btrfs_bio_counter_inc_blocked(root->fs_info);
2050 /* Tell the block device(s) that the sectors can be discarded */
2051 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2052 bytenr, &num_bytes, &bbio, 0);
2053 /* Error condition is -ENOMEM */
2054 if (!ret) {
2055 struct btrfs_bio_stripe *stripe = bbio->stripes;
2056 int i;
2057
2058
2059 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2060 u64 bytes;
2061 if (!stripe->dev->can_discard)
2062 continue;
2063
2064 ret = btrfs_issue_discard(stripe->dev->bdev,
2065 stripe->physical,
2066 stripe->length,
2067 &bytes);
2068 if (!ret)
2069 discarded_bytes += bytes;
2070 else if (ret != -EOPNOTSUPP)
2071 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2072
2073 /*
2074 * Just in case we get back EOPNOTSUPP for some reason,
2075 * just ignore the return value so we don't screw up
2076 * people calling discard_extent.
2077 */
2078 ret = 0;
2079 }
2080 btrfs_put_bbio(bbio);
2081 }
2082 btrfs_bio_counter_dec(root->fs_info);
2083
2084 if (actual_bytes)
2085 *actual_bytes = discarded_bytes;
2086
2087
2088 if (ret == -EOPNOTSUPP)
2089 ret = 0;
2090 return ret;
2091 }
2092
2093 /* Can return -ENOMEM */
2094 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *root,
2096 u64 bytenr, u64 num_bytes, u64 parent,
2097 u64 root_objectid, u64 owner, u64 offset)
2098 {
2099 int ret;
2100 struct btrfs_fs_info *fs_info = root->fs_info;
2101
2102 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2103 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2104
2105 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2106 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2107 num_bytes,
2108 parent, root_objectid, (int)owner,
2109 BTRFS_ADD_DELAYED_REF, NULL);
2110 } else {
2111 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2112 num_bytes, parent, root_objectid,
2113 owner, offset, 0,
2114 BTRFS_ADD_DELAYED_REF, NULL);
2115 }
2116 return ret;
2117 }
2118
2119 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2120 struct btrfs_root *root,
2121 struct btrfs_delayed_ref_node *node,
2122 u64 parent, u64 root_objectid,
2123 u64 owner, u64 offset, int refs_to_add,
2124 struct btrfs_delayed_extent_op *extent_op)
2125 {
2126 struct btrfs_fs_info *fs_info = root->fs_info;
2127 struct btrfs_path *path;
2128 struct extent_buffer *leaf;
2129 struct btrfs_extent_item *item;
2130 struct btrfs_key key;
2131 u64 bytenr = node->bytenr;
2132 u64 num_bytes = node->num_bytes;
2133 u64 refs;
2134 int ret;
2135
2136 path = btrfs_alloc_path();
2137 if (!path)
2138 return -ENOMEM;
2139
2140 path->reada = READA_FORWARD;
2141 path->leave_spinning = 1;
2142 /* this will setup the path even if it fails to insert the back ref */
2143 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2144 bytenr, num_bytes, parent,
2145 root_objectid, owner, offset,
2146 refs_to_add, extent_op);
2147 if ((ret < 0 && ret != -EAGAIN) || !ret)
2148 goto out;
2149
2150 /*
2151 * Ok we had -EAGAIN which means we didn't have space to insert and
2152 * inline extent ref, so just update the reference count and add a
2153 * normal backref.
2154 */
2155 leaf = path->nodes[0];
2156 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2157 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2158 refs = btrfs_extent_refs(leaf, item);
2159 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2160 if (extent_op)
2161 __run_delayed_extent_op(extent_op, leaf, item);
2162
2163 btrfs_mark_buffer_dirty(leaf);
2164 btrfs_release_path(path);
2165
2166 path->reada = READA_FORWARD;
2167 path->leave_spinning = 1;
2168 /* now insert the actual backref */
2169 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2170 path, bytenr, parent, root_objectid,
2171 owner, offset, refs_to_add);
2172 if (ret)
2173 btrfs_abort_transaction(trans, root, ret);
2174 out:
2175 btrfs_free_path(path);
2176 return ret;
2177 }
2178
2179 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2180 struct btrfs_root *root,
2181 struct btrfs_delayed_ref_node *node,
2182 struct btrfs_delayed_extent_op *extent_op,
2183 int insert_reserved)
2184 {
2185 int ret = 0;
2186 struct btrfs_delayed_data_ref *ref;
2187 struct btrfs_key ins;
2188 u64 parent = 0;
2189 u64 ref_root = 0;
2190 u64 flags = 0;
2191
2192 ins.objectid = node->bytenr;
2193 ins.offset = node->num_bytes;
2194 ins.type = BTRFS_EXTENT_ITEM_KEY;
2195
2196 ref = btrfs_delayed_node_to_data_ref(node);
2197 trace_run_delayed_data_ref(node, ref, node->action);
2198
2199 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2200 parent = ref->parent;
2201 ref_root = ref->root;
2202
2203 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2204 if (extent_op)
2205 flags |= extent_op->flags_to_set;
2206 ret = alloc_reserved_file_extent(trans, root,
2207 parent, ref_root, flags,
2208 ref->objectid, ref->offset,
2209 &ins, node->ref_mod);
2210 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2211 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2212 ref_root, ref->objectid,
2213 ref->offset, node->ref_mod,
2214 extent_op);
2215 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2216 ret = __btrfs_free_extent(trans, root, node, parent,
2217 ref_root, ref->objectid,
2218 ref->offset, node->ref_mod,
2219 extent_op);
2220 } else {
2221 BUG();
2222 }
2223 return ret;
2224 }
2225
2226 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2227 struct extent_buffer *leaf,
2228 struct btrfs_extent_item *ei)
2229 {
2230 u64 flags = btrfs_extent_flags(leaf, ei);
2231 if (extent_op->update_flags) {
2232 flags |= extent_op->flags_to_set;
2233 btrfs_set_extent_flags(leaf, ei, flags);
2234 }
2235
2236 if (extent_op->update_key) {
2237 struct btrfs_tree_block_info *bi;
2238 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2239 bi = (struct btrfs_tree_block_info *)(ei + 1);
2240 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2241 }
2242 }
2243
2244 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root,
2246 struct btrfs_delayed_ref_node *node,
2247 struct btrfs_delayed_extent_op *extent_op)
2248 {
2249 struct btrfs_key key;
2250 struct btrfs_path *path;
2251 struct btrfs_extent_item *ei;
2252 struct extent_buffer *leaf;
2253 u32 item_size;
2254 int ret;
2255 int err = 0;
2256 int metadata = !extent_op->is_data;
2257
2258 if (trans->aborted)
2259 return 0;
2260
2261 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2262 metadata = 0;
2263
2264 path = btrfs_alloc_path();
2265 if (!path)
2266 return -ENOMEM;
2267
2268 key.objectid = node->bytenr;
2269
2270 if (metadata) {
2271 key.type = BTRFS_METADATA_ITEM_KEY;
2272 key.offset = extent_op->level;
2273 } else {
2274 key.type = BTRFS_EXTENT_ITEM_KEY;
2275 key.offset = node->num_bytes;
2276 }
2277
2278 again:
2279 path->reada = READA_FORWARD;
2280 path->leave_spinning = 1;
2281 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2282 path, 0, 1);
2283 if (ret < 0) {
2284 err = ret;
2285 goto out;
2286 }
2287 if (ret > 0) {
2288 if (metadata) {
2289 if (path->slots[0] > 0) {
2290 path->slots[0]--;
2291 btrfs_item_key_to_cpu(path->nodes[0], &key,
2292 path->slots[0]);
2293 if (key.objectid == node->bytenr &&
2294 key.type == BTRFS_EXTENT_ITEM_KEY &&
2295 key.offset == node->num_bytes)
2296 ret = 0;
2297 }
2298 if (ret > 0) {
2299 btrfs_release_path(path);
2300 metadata = 0;
2301
2302 key.objectid = node->bytenr;
2303 key.offset = node->num_bytes;
2304 key.type = BTRFS_EXTENT_ITEM_KEY;
2305 goto again;
2306 }
2307 } else {
2308 err = -EIO;
2309 goto out;
2310 }
2311 }
2312
2313 leaf = path->nodes[0];
2314 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2316 if (item_size < sizeof(*ei)) {
2317 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2318 path, (u64)-1, 0);
2319 if (ret < 0) {
2320 err = ret;
2321 goto out;
2322 }
2323 leaf = path->nodes[0];
2324 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325 }
2326 #endif
2327 BUG_ON(item_size < sizeof(*ei));
2328 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329 __run_delayed_extent_op(extent_op, leaf, ei);
2330
2331 btrfs_mark_buffer_dirty(leaf);
2332 out:
2333 btrfs_free_path(path);
2334 return err;
2335 }
2336
2337 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2338 struct btrfs_root *root,
2339 struct btrfs_delayed_ref_node *node,
2340 struct btrfs_delayed_extent_op *extent_op,
2341 int insert_reserved)
2342 {
2343 int ret = 0;
2344 struct btrfs_delayed_tree_ref *ref;
2345 struct btrfs_key ins;
2346 u64 parent = 0;
2347 u64 ref_root = 0;
2348 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2349 SKINNY_METADATA);
2350
2351 ref = btrfs_delayed_node_to_tree_ref(node);
2352 trace_run_delayed_tree_ref(node, ref, node->action);
2353
2354 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2355 parent = ref->parent;
2356 ref_root = ref->root;
2357
2358 ins.objectid = node->bytenr;
2359 if (skinny_metadata) {
2360 ins.offset = ref->level;
2361 ins.type = BTRFS_METADATA_ITEM_KEY;
2362 } else {
2363 ins.offset = node->num_bytes;
2364 ins.type = BTRFS_EXTENT_ITEM_KEY;
2365 }
2366
2367 BUG_ON(node->ref_mod != 1);
2368 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2369 BUG_ON(!extent_op || !extent_op->update_flags);
2370 ret = alloc_reserved_tree_block(trans, root,
2371 parent, ref_root,
2372 extent_op->flags_to_set,
2373 &extent_op->key,
2374 ref->level, &ins);
2375 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2376 ret = __btrfs_inc_extent_ref(trans, root, node,
2377 parent, ref_root,
2378 ref->level, 0, 1,
2379 extent_op);
2380 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2381 ret = __btrfs_free_extent(trans, root, node,
2382 parent, ref_root,
2383 ref->level, 0, 1, extent_op);
2384 } else {
2385 BUG();
2386 }
2387 return ret;
2388 }
2389
2390 /* helper function to actually process a single delayed ref entry */
2391 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *root,
2393 struct btrfs_delayed_ref_node *node,
2394 struct btrfs_delayed_extent_op *extent_op,
2395 int insert_reserved)
2396 {
2397 int ret = 0;
2398
2399 if (trans->aborted) {
2400 if (insert_reserved)
2401 btrfs_pin_extent(root, node->bytenr,
2402 node->num_bytes, 1);
2403 return 0;
2404 }
2405
2406 if (btrfs_delayed_ref_is_head(node)) {
2407 struct btrfs_delayed_ref_head *head;
2408 /*
2409 * we've hit the end of the chain and we were supposed
2410 * to insert this extent into the tree. But, it got
2411 * deleted before we ever needed to insert it, so all
2412 * we have to do is clean up the accounting
2413 */
2414 BUG_ON(extent_op);
2415 head = btrfs_delayed_node_to_head(node);
2416 trace_run_delayed_ref_head(node, head, node->action);
2417
2418 if (insert_reserved) {
2419 btrfs_pin_extent(root, node->bytenr,
2420 node->num_bytes, 1);
2421 if (head->is_data) {
2422 ret = btrfs_del_csums(trans, root,
2423 node->bytenr,
2424 node->num_bytes);
2425 }
2426 }
2427
2428 /* Also free its reserved qgroup space */
2429 btrfs_qgroup_free_delayed_ref(root->fs_info,
2430 head->qgroup_ref_root,
2431 head->qgroup_reserved);
2432 return ret;
2433 }
2434
2435 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2436 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2437 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2438 insert_reserved);
2439 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2440 node->type == BTRFS_SHARED_DATA_REF_KEY)
2441 ret = run_delayed_data_ref(trans, root, node, extent_op,
2442 insert_reserved);
2443 else
2444 BUG();
2445 return ret;
2446 }
2447
2448 static inline struct btrfs_delayed_ref_node *
2449 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2450 {
2451 struct btrfs_delayed_ref_node *ref;
2452
2453 if (list_empty(&head->ref_list))
2454 return NULL;
2455
2456 /*
2457 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2458 * This is to prevent a ref count from going down to zero, which deletes
2459 * the extent item from the extent tree, when there still are references
2460 * to add, which would fail because they would not find the extent item.
2461 */
2462 list_for_each_entry(ref, &head->ref_list, list) {
2463 if (ref->action == BTRFS_ADD_DELAYED_REF)
2464 return ref;
2465 }
2466
2467 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2468 list);
2469 }
2470
2471 /*
2472 * Returns 0 on success or if called with an already aborted transaction.
2473 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2474 */
2475 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2476 struct btrfs_root *root,
2477 unsigned long nr)
2478 {
2479 struct btrfs_delayed_ref_root *delayed_refs;
2480 struct btrfs_delayed_ref_node *ref;
2481 struct btrfs_delayed_ref_head *locked_ref = NULL;
2482 struct btrfs_delayed_extent_op *extent_op;
2483 struct btrfs_fs_info *fs_info = root->fs_info;
2484 ktime_t start = ktime_get();
2485 int ret;
2486 unsigned long count = 0;
2487 unsigned long actual_count = 0;
2488 int must_insert_reserved = 0;
2489
2490 delayed_refs = &trans->transaction->delayed_refs;
2491 while (1) {
2492 if (!locked_ref) {
2493 if (count >= nr)
2494 break;
2495
2496 spin_lock(&delayed_refs->lock);
2497 locked_ref = btrfs_select_ref_head(trans);
2498 if (!locked_ref) {
2499 spin_unlock(&delayed_refs->lock);
2500 break;
2501 }
2502
2503 /* grab the lock that says we are going to process
2504 * all the refs for this head */
2505 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2506 spin_unlock(&delayed_refs->lock);
2507 /*
2508 * we may have dropped the spin lock to get the head
2509 * mutex lock, and that might have given someone else
2510 * time to free the head. If that's true, it has been
2511 * removed from our list and we can move on.
2512 */
2513 if (ret == -EAGAIN) {
2514 locked_ref = NULL;
2515 count++;
2516 continue;
2517 }
2518 }
2519
2520 /*
2521 * We need to try and merge add/drops of the same ref since we
2522 * can run into issues with relocate dropping the implicit ref
2523 * and then it being added back again before the drop can
2524 * finish. If we merged anything we need to re-loop so we can
2525 * get a good ref.
2526 * Or we can get node references of the same type that weren't
2527 * merged when created due to bumps in the tree mod seq, and
2528 * we need to merge them to prevent adding an inline extent
2529 * backref before dropping it (triggering a BUG_ON at
2530 * insert_inline_extent_backref()).
2531 */
2532 spin_lock(&locked_ref->lock);
2533 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2534 locked_ref);
2535
2536 /*
2537 * locked_ref is the head node, so we have to go one
2538 * node back for any delayed ref updates
2539 */
2540 ref = select_delayed_ref(locked_ref);
2541
2542 if (ref && ref->seq &&
2543 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2544 spin_unlock(&locked_ref->lock);
2545 btrfs_delayed_ref_unlock(locked_ref);
2546 spin_lock(&delayed_refs->lock);
2547 locked_ref->processing = 0;
2548 delayed_refs->num_heads_ready++;
2549 spin_unlock(&delayed_refs->lock);
2550 locked_ref = NULL;
2551 cond_resched();
2552 count++;
2553 continue;
2554 }
2555
2556 /*
2557 * record the must insert reserved flag before we
2558 * drop the spin lock.
2559 */
2560 must_insert_reserved = locked_ref->must_insert_reserved;
2561 locked_ref->must_insert_reserved = 0;
2562
2563 extent_op = locked_ref->extent_op;
2564 locked_ref->extent_op = NULL;
2565
2566 if (!ref) {
2567
2568
2569 /* All delayed refs have been processed, Go ahead
2570 * and send the head node to run_one_delayed_ref,
2571 * so that any accounting fixes can happen
2572 */
2573 ref = &locked_ref->node;
2574
2575 if (extent_op && must_insert_reserved) {
2576 btrfs_free_delayed_extent_op(extent_op);
2577 extent_op = NULL;
2578 }
2579
2580 if (extent_op) {
2581 spin_unlock(&locked_ref->lock);
2582 ret = run_delayed_extent_op(trans, root,
2583 ref, extent_op);
2584 btrfs_free_delayed_extent_op(extent_op);
2585
2586 if (ret) {
2587 /*
2588 * Need to reset must_insert_reserved if
2589 * there was an error so the abort stuff
2590 * can cleanup the reserved space
2591 * properly.
2592 */
2593 if (must_insert_reserved)
2594 locked_ref->must_insert_reserved = 1;
2595 locked_ref->processing = 0;
2596 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2597 btrfs_delayed_ref_unlock(locked_ref);
2598 return ret;
2599 }
2600 continue;
2601 }
2602
2603 /*
2604 * Need to drop our head ref lock and re-acquire the
2605 * delayed ref lock and then re-check to make sure
2606 * nobody got added.
2607 */
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
2611 if (!list_empty(&locked_ref->ref_list) ||
2612 locked_ref->extent_op) {
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2615 continue;
2616 }
2617 ref->in_tree = 0;
2618 delayed_refs->num_heads--;
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
2621 spin_unlock(&delayed_refs->lock);
2622 } else {
2623 actual_count++;
2624 ref->in_tree = 0;
2625 list_del(&ref->list);
2626 }
2627 atomic_dec(&delayed_refs->num_entries);
2628
2629 if (!btrfs_delayed_ref_is_head(ref)) {
2630 /*
2631 * when we play the delayed ref, also correct the
2632 * ref_mod on head
2633 */
2634 switch (ref->action) {
2635 case BTRFS_ADD_DELAYED_REF:
2636 case BTRFS_ADD_DELAYED_EXTENT:
2637 locked_ref->node.ref_mod -= ref->ref_mod;
2638 break;
2639 case BTRFS_DROP_DELAYED_REF:
2640 locked_ref->node.ref_mod += ref->ref_mod;
2641 break;
2642 default:
2643 WARN_ON(1);
2644 }
2645 }
2646 spin_unlock(&locked_ref->lock);
2647
2648 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2649 must_insert_reserved);
2650
2651 btrfs_free_delayed_extent_op(extent_op);
2652 if (ret) {
2653 locked_ref->processing = 0;
2654 btrfs_delayed_ref_unlock(locked_ref);
2655 btrfs_put_delayed_ref(ref);
2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2657 return ret;
2658 }
2659
2660 /*
2661 * If this node is a head, that means all the refs in this head
2662 * have been dealt with, and we will pick the next head to deal
2663 * with, so we must unlock the head and drop it from the cluster
2664 * list before we release it.
2665 */
2666 if (btrfs_delayed_ref_is_head(ref)) {
2667 if (locked_ref->is_data &&
2668 locked_ref->total_ref_mod < 0) {
2669 spin_lock(&delayed_refs->lock);
2670 delayed_refs->pending_csums -= ref->num_bytes;
2671 spin_unlock(&delayed_refs->lock);
2672 }
2673 btrfs_delayed_ref_unlock(locked_ref);
2674 locked_ref = NULL;
2675 }
2676 btrfs_put_delayed_ref(ref);
2677 count++;
2678 cond_resched();
2679 }
2680
2681 /*
2682 * We don't want to include ref heads since we can have empty ref heads
2683 * and those will drastically skew our runtime down since we just do
2684 * accounting, no actual extent tree updates.
2685 */
2686 if (actual_count > 0) {
2687 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688 u64 avg;
2689
2690 /*
2691 * We weigh the current average higher than our current runtime
2692 * to avoid large swings in the average.
2693 */
2694 spin_lock(&delayed_refs->lock);
2695 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2696 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2697 spin_unlock(&delayed_refs->lock);
2698 }
2699 return 0;
2700 }
2701
2702 #ifdef SCRAMBLE_DELAYED_REFS
2703 /*
2704 * Normally delayed refs get processed in ascending bytenr order. This
2705 * correlates in most cases to the order added. To expose dependencies on this
2706 * order, we start to process the tree in the middle instead of the beginning
2707 */
2708 static u64 find_middle(struct rb_root *root)
2709 {
2710 struct rb_node *n = root->rb_node;
2711 struct btrfs_delayed_ref_node *entry;
2712 int alt = 1;
2713 u64 middle;
2714 u64 first = 0, last = 0;
2715
2716 n = rb_first(root);
2717 if (n) {
2718 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 first = entry->bytenr;
2720 }
2721 n = rb_last(root);
2722 if (n) {
2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 last = entry->bytenr;
2725 }
2726 n = root->rb_node;
2727
2728 while (n) {
2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 WARN_ON(!entry->in_tree);
2731
2732 middle = entry->bytenr;
2733
2734 if (alt)
2735 n = n->rb_left;
2736 else
2737 n = n->rb_right;
2738
2739 alt = 1 - alt;
2740 }
2741 return middle;
2742 }
2743 #endif
2744
2745 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746 {
2747 u64 num_bytes;
2748
2749 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750 sizeof(struct btrfs_extent_inline_ref));
2751 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753
2754 /*
2755 * We don't ever fill up leaves all the way so multiply by 2 just to be
2756 * closer to what we're really going to want to use.
2757 */
2758 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2759 }
2760
2761 /*
2762 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763 * would require to store the csums for that many bytes.
2764 */
2765 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2766 {
2767 u64 csum_size;
2768 u64 num_csums_per_leaf;
2769 u64 num_csums;
2770
2771 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2772 num_csums_per_leaf = div64_u64(csum_size,
2773 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774 num_csums = div64_u64(csum_bytes, root->sectorsize);
2775 num_csums += num_csums_per_leaf - 1;
2776 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777 return num_csums;
2778 }
2779
2780 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2781 struct btrfs_root *root)
2782 {
2783 struct btrfs_block_rsv *global_rsv;
2784 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2785 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2786 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787 u64 num_bytes, num_dirty_bgs_bytes;
2788 int ret = 0;
2789
2790 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791 num_heads = heads_to_leaves(root, num_heads);
2792 if (num_heads > 1)
2793 num_bytes += (num_heads - 1) * root->nodesize;
2794 num_bytes <<= 1;
2795 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2796 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797 num_dirty_bgs);
2798 global_rsv = &root->fs_info->global_block_rsv;
2799
2800 /*
2801 * If we can't allocate any more chunks lets make sure we have _lots_ of
2802 * wiggle room since running delayed refs can create more delayed refs.
2803 */
2804 if (global_rsv->space_info->full) {
2805 num_dirty_bgs_bytes <<= 1;
2806 num_bytes <<= 1;
2807 }
2808
2809 spin_lock(&global_rsv->lock);
2810 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2811 ret = 1;
2812 spin_unlock(&global_rsv->lock);
2813 return ret;
2814 }
2815
2816 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817 struct btrfs_root *root)
2818 {
2819 struct btrfs_fs_info *fs_info = root->fs_info;
2820 u64 num_entries =
2821 atomic_read(&trans->transaction->delayed_refs.num_entries);
2822 u64 avg_runtime;
2823 u64 val;
2824
2825 smp_mb();
2826 avg_runtime = fs_info->avg_delayed_ref_runtime;
2827 val = num_entries * avg_runtime;
2828 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829 return 1;
2830 if (val >= NSEC_PER_SEC / 2)
2831 return 2;
2832
2833 return btrfs_check_space_for_delayed_refs(trans, root);
2834 }
2835
2836 struct async_delayed_refs {
2837 struct btrfs_root *root;
2838 u64 transid;
2839 int count;
2840 int error;
2841 int sync;
2842 struct completion wait;
2843 struct btrfs_work work;
2844 };
2845
2846 static void delayed_ref_async_start(struct btrfs_work *work)
2847 {
2848 struct async_delayed_refs *async;
2849 struct btrfs_trans_handle *trans;
2850 int ret;
2851
2852 async = container_of(work, struct async_delayed_refs, work);
2853
2854 /* if the commit is already started, we don't need to wait here */
2855 if (btrfs_transaction_blocked(async->root->fs_info))
2856 goto done;
2857
2858 trans = btrfs_join_transaction(async->root);
2859 if (IS_ERR(trans)) {
2860 async->error = PTR_ERR(trans);
2861 goto done;
2862 }
2863
2864 /*
2865 * trans->sync means that when we call end_transaction, we won't
2866 * wait on delayed refs
2867 */
2868 trans->sync = true;
2869
2870 /* Don't bother flushing if we got into a different transaction */
2871 if (trans->transid > async->transid)
2872 goto end;
2873
2874 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2875 if (ret)
2876 async->error = ret;
2877 end:
2878 ret = btrfs_end_transaction(trans, async->root);
2879 if (ret && !async->error)
2880 async->error = ret;
2881 done:
2882 if (async->sync)
2883 complete(&async->wait);
2884 else
2885 kfree(async);
2886 }
2887
2888 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2889 unsigned long count, u64 transid, int wait)
2890 {
2891 struct async_delayed_refs *async;
2892 int ret;
2893
2894 async = kmalloc(sizeof(*async), GFP_NOFS);
2895 if (!async)
2896 return -ENOMEM;
2897
2898 async->root = root->fs_info->tree_root;
2899 async->count = count;
2900 async->error = 0;
2901 async->transid = transid;
2902 if (wait)
2903 async->sync = 1;
2904 else
2905 async->sync = 0;
2906 init_completion(&async->wait);
2907
2908 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2909 delayed_ref_async_start, NULL, NULL);
2910
2911 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2912
2913 if (wait) {
2914 wait_for_completion(&async->wait);
2915 ret = async->error;
2916 kfree(async);
2917 return ret;
2918 }
2919 return 0;
2920 }
2921
2922 /*
2923 * this starts processing the delayed reference count updates and
2924 * extent insertions we have queued up so far. count can be
2925 * 0, which means to process everything in the tree at the start
2926 * of the run (but not newly added entries), or it can be some target
2927 * number you'd like to process.
2928 *
2929 * Returns 0 on success or if called with an aborted transaction
2930 * Returns <0 on error and aborts the transaction
2931 */
2932 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root, unsigned long count)
2934 {
2935 struct rb_node *node;
2936 struct btrfs_delayed_ref_root *delayed_refs;
2937 struct btrfs_delayed_ref_head *head;
2938 int ret;
2939 int run_all = count == (unsigned long)-1;
2940 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2941
2942 /* We'll clean this up in btrfs_cleanup_transaction */
2943 if (trans->aborted)
2944 return 0;
2945
2946 if (root->fs_info->creating_free_space_tree)
2947 return 0;
2948
2949 if (root == root->fs_info->extent_root)
2950 root = root->fs_info->tree_root;
2951
2952 delayed_refs = &trans->transaction->delayed_refs;
2953 if (count == 0)
2954 count = atomic_read(&delayed_refs->num_entries) * 2;
2955
2956 again:
2957 #ifdef SCRAMBLE_DELAYED_REFS
2958 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2959 #endif
2960 trans->can_flush_pending_bgs = false;
2961 ret = __btrfs_run_delayed_refs(trans, root, count);
2962 if (ret < 0) {
2963 btrfs_abort_transaction(trans, root, ret);
2964 return ret;
2965 }
2966
2967 if (run_all) {
2968 if (!list_empty(&trans->new_bgs))
2969 btrfs_create_pending_block_groups(trans, root);
2970
2971 spin_lock(&delayed_refs->lock);
2972 node = rb_first(&delayed_refs->href_root);
2973 if (!node) {
2974 spin_unlock(&delayed_refs->lock);
2975 goto out;
2976 }
2977 count = (unsigned long)-1;
2978
2979 while (node) {
2980 head = rb_entry(node, struct btrfs_delayed_ref_head,
2981 href_node);
2982 if (btrfs_delayed_ref_is_head(&head->node)) {
2983 struct btrfs_delayed_ref_node *ref;
2984
2985 ref = &head->node;
2986 atomic_inc(&ref->refs);
2987
2988 spin_unlock(&delayed_refs->lock);
2989 /*
2990 * Mutex was contended, block until it's
2991 * released and try again
2992 */
2993 mutex_lock(&head->mutex);
2994 mutex_unlock(&head->mutex);
2995
2996 btrfs_put_delayed_ref(ref);
2997 cond_resched();
2998 goto again;
2999 } else {
3000 WARN_ON(1);
3001 }
3002 node = rb_next(node);
3003 }
3004 spin_unlock(&delayed_refs->lock);
3005 cond_resched();
3006 goto again;
3007 }
3008 out:
3009 assert_qgroups_uptodate(trans);
3010 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3011 return 0;
3012 }
3013
3014 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3015 struct btrfs_root *root,
3016 u64 bytenr, u64 num_bytes, u64 flags,
3017 int level, int is_data)
3018 {
3019 struct btrfs_delayed_extent_op *extent_op;
3020 int ret;
3021
3022 extent_op = btrfs_alloc_delayed_extent_op();
3023 if (!extent_op)
3024 return -ENOMEM;
3025
3026 extent_op->flags_to_set = flags;
3027 extent_op->update_flags = true;
3028 extent_op->update_key = false;
3029 extent_op->is_data = is_data ? true : false;
3030 extent_op->level = level;
3031
3032 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3033 num_bytes, extent_op);
3034 if (ret)
3035 btrfs_free_delayed_extent_op(extent_op);
3036 return ret;
3037 }
3038
3039 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3040 struct btrfs_root *root,
3041 struct btrfs_path *path,
3042 u64 objectid, u64 offset, u64 bytenr)
3043 {
3044 struct btrfs_delayed_ref_head *head;
3045 struct btrfs_delayed_ref_node *ref;
3046 struct btrfs_delayed_data_ref *data_ref;
3047 struct btrfs_delayed_ref_root *delayed_refs;
3048 int ret = 0;
3049
3050 delayed_refs = &trans->transaction->delayed_refs;
3051 spin_lock(&delayed_refs->lock);
3052 head = btrfs_find_delayed_ref_head(trans, bytenr);
3053 if (!head) {
3054 spin_unlock(&delayed_refs->lock);
3055 return 0;
3056 }
3057
3058 if (!mutex_trylock(&head->mutex)) {
3059 atomic_inc(&head->node.refs);
3060 spin_unlock(&delayed_refs->lock);
3061
3062 btrfs_release_path(path);
3063
3064 /*
3065 * Mutex was contended, block until it's released and let
3066 * caller try again
3067 */
3068 mutex_lock(&head->mutex);
3069 mutex_unlock(&head->mutex);
3070 btrfs_put_delayed_ref(&head->node);
3071 return -EAGAIN;
3072 }
3073 spin_unlock(&delayed_refs->lock);
3074
3075 spin_lock(&head->lock);
3076 list_for_each_entry(ref, &head->ref_list, list) {
3077 /* If it's a shared ref we know a cross reference exists */
3078 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079 ret = 1;
3080 break;
3081 }
3082
3083 data_ref = btrfs_delayed_node_to_data_ref(ref);
3084
3085 /*
3086 * If our ref doesn't match the one we're currently looking at
3087 * then we have a cross reference.
3088 */
3089 if (data_ref->root != root->root_key.objectid ||
3090 data_ref->objectid != objectid ||
3091 data_ref->offset != offset) {
3092 ret = 1;
3093 break;
3094 }
3095 }
3096 spin_unlock(&head->lock);
3097 mutex_unlock(&head->mutex);
3098 return ret;
3099 }
3100
3101 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *root,
3103 struct btrfs_path *path,
3104 u64 objectid, u64 offset, u64 bytenr)
3105 {
3106 struct btrfs_root *extent_root = root->fs_info->extent_root;
3107 struct extent_buffer *leaf;
3108 struct btrfs_extent_data_ref *ref;
3109 struct btrfs_extent_inline_ref *iref;
3110 struct btrfs_extent_item *ei;
3111 struct btrfs_key key;
3112 u32 item_size;
3113 int ret;
3114
3115 key.objectid = bytenr;
3116 key.offset = (u64)-1;
3117 key.type = BTRFS_EXTENT_ITEM_KEY;
3118
3119 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120 if (ret < 0)
3121 goto out;
3122 BUG_ON(ret == 0); /* Corruption */
3123
3124 ret = -ENOENT;
3125 if (path->slots[0] == 0)
3126 goto out;
3127
3128 path->slots[0]--;
3129 leaf = path->nodes[0];
3130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3131
3132 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3133 goto out;
3134
3135 ret = 1;
3136 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 if (item_size < sizeof(*ei)) {
3139 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140 goto out;
3141 }
3142 #endif
3143 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3144
3145 if (item_size != sizeof(*ei) +
3146 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147 goto out;
3148
3149 if (btrfs_extent_generation(leaf, ei) <=
3150 btrfs_root_last_snapshot(&root->root_item))
3151 goto out;
3152
3153 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155 BTRFS_EXTENT_DATA_REF_KEY)
3156 goto out;
3157
3158 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159 if (btrfs_extent_refs(leaf, ei) !=
3160 btrfs_extent_data_ref_count(leaf, ref) ||
3161 btrfs_extent_data_ref_root(leaf, ref) !=
3162 root->root_key.objectid ||
3163 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165 goto out;
3166
3167 ret = 0;
3168 out:
3169 return ret;
3170 }
3171
3172 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root,
3174 u64 objectid, u64 offset, u64 bytenr)
3175 {
3176 struct btrfs_path *path;
3177 int ret;
3178 int ret2;
3179
3180 path = btrfs_alloc_path();
3181 if (!path)
3182 return -ENOENT;
3183
3184 do {
3185 ret = check_committed_ref(trans, root, path, objectid,
3186 offset, bytenr);
3187 if (ret && ret != -ENOENT)
3188 goto out;
3189
3190 ret2 = check_delayed_ref(trans, root, path, objectid,
3191 offset, bytenr);
3192 } while (ret2 == -EAGAIN);
3193
3194 if (ret2 && ret2 != -ENOENT) {
3195 ret = ret2;
3196 goto out;
3197 }
3198
3199 if (ret != -ENOENT || ret2 != -ENOENT)
3200 ret = 0;
3201 out:
3202 btrfs_free_path(path);
3203 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204 WARN_ON(ret > 0);
3205 return ret;
3206 }
3207
3208 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3209 struct btrfs_root *root,
3210 struct extent_buffer *buf,
3211 int full_backref, int inc)
3212 {
3213 u64 bytenr;
3214 u64 num_bytes;
3215 u64 parent;
3216 u64 ref_root;
3217 u32 nritems;
3218 struct btrfs_key key;
3219 struct btrfs_file_extent_item *fi;
3220 int i;
3221 int level;
3222 int ret = 0;
3223 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3224 u64, u64, u64, u64, u64, u64);
3225
3226
3227 if (btrfs_test_is_dummy_root(root))
3228 return 0;
3229
3230 ref_root = btrfs_header_owner(buf);
3231 nritems = btrfs_header_nritems(buf);
3232 level = btrfs_header_level(buf);
3233
3234 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3235 return 0;
3236
3237 if (inc)
3238 process_func = btrfs_inc_extent_ref;
3239 else
3240 process_func = btrfs_free_extent;
3241
3242 if (full_backref)
3243 parent = buf->start;
3244 else
3245 parent = 0;
3246
3247 for (i = 0; i < nritems; i++) {
3248 if (level == 0) {
3249 btrfs_item_key_to_cpu(buf, &key, i);
3250 if (key.type != BTRFS_EXTENT_DATA_KEY)
3251 continue;
3252 fi = btrfs_item_ptr(buf, i,
3253 struct btrfs_file_extent_item);
3254 if (btrfs_file_extent_type(buf, fi) ==
3255 BTRFS_FILE_EXTENT_INLINE)
3256 continue;
3257 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3258 if (bytenr == 0)
3259 continue;
3260
3261 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3262 key.offset -= btrfs_file_extent_offset(buf, fi);
3263 ret = process_func(trans, root, bytenr, num_bytes,
3264 parent, ref_root, key.objectid,
3265 key.offset);
3266 if (ret)
3267 goto fail;
3268 } else {
3269 bytenr = btrfs_node_blockptr(buf, i);
3270 num_bytes = root->nodesize;
3271 ret = process_func(trans, root, bytenr, num_bytes,
3272 parent, ref_root, level - 1, 0);
3273 if (ret)
3274 goto fail;
3275 }
3276 }
3277 return 0;
3278 fail:
3279 return ret;
3280 }
3281
3282 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3283 struct extent_buffer *buf, int full_backref)
3284 {
3285 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3286 }
3287
3288 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3289 struct extent_buffer *buf, int full_backref)
3290 {
3291 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3292 }
3293
3294 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3295 struct btrfs_root *root,
3296 struct btrfs_path *path,
3297 struct btrfs_block_group_cache *cache)
3298 {
3299 int ret;
3300 struct btrfs_root *extent_root = root->fs_info->extent_root;
3301 unsigned long bi;
3302 struct extent_buffer *leaf;
3303
3304 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3305 if (ret) {
3306 if (ret > 0)
3307 ret = -ENOENT;
3308 goto fail;
3309 }
3310
3311 leaf = path->nodes[0];
3312 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3313 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3314 btrfs_mark_buffer_dirty(leaf);
3315 fail:
3316 btrfs_release_path(path);
3317 return ret;
3318
3319 }
3320
3321 static struct btrfs_block_group_cache *
3322 next_block_group(struct btrfs_root *root,
3323 struct btrfs_block_group_cache *cache)
3324 {
3325 struct rb_node *node;
3326
3327 spin_lock(&root->fs_info->block_group_cache_lock);
3328
3329 /* If our block group was removed, we need a full search. */
3330 if (RB_EMPTY_NODE(&cache->cache_node)) {
3331 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3332
3333 spin_unlock(&root->fs_info->block_group_cache_lock);
3334 btrfs_put_block_group(cache);
3335 cache = btrfs_lookup_first_block_group(root->fs_info,
3336 next_bytenr);
3337 return cache;
3338 }
3339 node = rb_next(&cache->cache_node);
3340 btrfs_put_block_group(cache);
3341 if (node) {
3342 cache = rb_entry(node, struct btrfs_block_group_cache,
3343 cache_node);
3344 btrfs_get_block_group(cache);
3345 } else
3346 cache = NULL;
3347 spin_unlock(&root->fs_info->block_group_cache_lock);
3348 return cache;
3349 }
3350
3351 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352 struct btrfs_trans_handle *trans,
3353 struct btrfs_path *path)
3354 {
3355 struct btrfs_root *root = block_group->fs_info->tree_root;
3356 struct inode *inode = NULL;
3357 u64 alloc_hint = 0;
3358 int dcs = BTRFS_DC_ERROR;
3359 u64 num_pages = 0;
3360 int retries = 0;
3361 int ret = 0;
3362
3363 /*
3364 * If this block group is smaller than 100 megs don't bother caching the
3365 * block group.
3366 */
3367 if (block_group->key.offset < (100 * SZ_1M)) {
3368 spin_lock(&block_group->lock);
3369 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370 spin_unlock(&block_group->lock);
3371 return 0;
3372 }
3373
3374 if (trans->aborted)
3375 return 0;
3376 again:
3377 inode = lookup_free_space_inode(root, block_group, path);
3378 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379 ret = PTR_ERR(inode);
3380 btrfs_release_path(path);
3381 goto out;
3382 }
3383
3384 if (IS_ERR(inode)) {
3385 BUG_ON(retries);
3386 retries++;
3387
3388 if (block_group->ro)
3389 goto out_free;
3390
3391 ret = create_free_space_inode(root, trans, block_group, path);
3392 if (ret)
3393 goto out_free;
3394 goto again;
3395 }
3396
3397 /* We've already setup this transaction, go ahead and exit */
3398 if (block_group->cache_generation == trans->transid &&
3399 i_size_read(inode)) {
3400 dcs = BTRFS_DC_SETUP;
3401 goto out_put;
3402 }
3403
3404 /*
3405 * We want to set the generation to 0, that way if anything goes wrong
3406 * from here on out we know not to trust this cache when we load up next
3407 * time.
3408 */
3409 BTRFS_I(inode)->generation = 0;
3410 ret = btrfs_update_inode(trans, root, inode);
3411 if (ret) {
3412 /*
3413 * So theoretically we could recover from this, simply set the
3414 * super cache generation to 0 so we know to invalidate the
3415 * cache, but then we'd have to keep track of the block groups
3416 * that fail this way so we know we _have_ to reset this cache
3417 * before the next commit or risk reading stale cache. So to
3418 * limit our exposure to horrible edge cases lets just abort the
3419 * transaction, this only happens in really bad situations
3420 * anyway.
3421 */
3422 btrfs_abort_transaction(trans, root, ret);
3423 goto out_put;
3424 }
3425 WARN_ON(ret);
3426
3427 if (i_size_read(inode) > 0) {
3428 ret = btrfs_check_trunc_cache_free_space(root,
3429 &root->fs_info->global_block_rsv);
3430 if (ret)
3431 goto out_put;
3432
3433 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3434 if (ret)
3435 goto out_put;
3436 }
3437
3438 spin_lock(&block_group->lock);
3439 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3440 !btrfs_test_opt(root, SPACE_CACHE)) {
3441 /*
3442 * don't bother trying to write stuff out _if_
3443 * a) we're not cached,
3444 * b) we're with nospace_cache mount option.
3445 */
3446 dcs = BTRFS_DC_WRITTEN;
3447 spin_unlock(&block_group->lock);
3448 goto out_put;
3449 }
3450 spin_unlock(&block_group->lock);
3451
3452 /*
3453 * We hit an ENOSPC when setting up the cache in this transaction, just
3454 * skip doing the setup, we've already cleared the cache so we're safe.
3455 */
3456 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3457 ret = -ENOSPC;
3458 goto out_put;
3459 }
3460
3461 /*
3462 * Try to preallocate enough space based on how big the block group is.
3463 * Keep in mind this has to include any pinned space which could end up
3464 * taking up quite a bit since it's not folded into the other space
3465 * cache.
3466 */
3467 num_pages = div_u64(block_group->key.offset, SZ_256M);
3468 if (!num_pages)
3469 num_pages = 1;
3470
3471 num_pages *= 16;
3472 num_pages *= PAGE_SIZE;
3473
3474 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3475 if (ret)
3476 goto out_put;
3477
3478 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3479 num_pages, num_pages,
3480 &alloc_hint);
3481 /*
3482 * Our cache requires contiguous chunks so that we don't modify a bunch
3483 * of metadata or split extents when writing the cache out, which means
3484 * we can enospc if we are heavily fragmented in addition to just normal
3485 * out of space conditions. So if we hit this just skip setting up any
3486 * other block groups for this transaction, maybe we'll unpin enough
3487 * space the next time around.
3488 */
3489 if (!ret)
3490 dcs = BTRFS_DC_SETUP;
3491 else if (ret == -ENOSPC)
3492 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3493 btrfs_free_reserved_data_space(inode, 0, num_pages);
3494
3495 out_put:
3496 iput(inode);
3497 out_free:
3498 btrfs_release_path(path);
3499 out:
3500 spin_lock(&block_group->lock);
3501 if (!ret && dcs == BTRFS_DC_SETUP)
3502 block_group->cache_generation = trans->transid;
3503 block_group->disk_cache_state = dcs;
3504 spin_unlock(&block_group->lock);
3505
3506 return ret;
3507 }
3508
3509 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root)
3511 {
3512 struct btrfs_block_group_cache *cache, *tmp;
3513 struct btrfs_transaction *cur_trans = trans->transaction;
3514 struct btrfs_path *path;
3515
3516 if (list_empty(&cur_trans->dirty_bgs) ||
3517 !btrfs_test_opt(root, SPACE_CACHE))
3518 return 0;
3519
3520 path = btrfs_alloc_path();
3521 if (!path)
3522 return -ENOMEM;
3523
3524 /* Could add new block groups, use _safe just in case */
3525 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3526 dirty_list) {
3527 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3528 cache_save_setup(cache, trans, path);
3529 }
3530
3531 btrfs_free_path(path);
3532 return 0;
3533 }
3534
3535 /*
3536 * transaction commit does final block group cache writeback during a
3537 * critical section where nothing is allowed to change the FS. This is
3538 * required in order for the cache to actually match the block group,
3539 * but can introduce a lot of latency into the commit.
3540 *
3541 * So, btrfs_start_dirty_block_groups is here to kick off block group
3542 * cache IO. There's a chance we'll have to redo some of it if the
3543 * block group changes again during the commit, but it greatly reduces
3544 * the commit latency by getting rid of the easy block groups while
3545 * we're still allowing others to join the commit.
3546 */
3547 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3548 struct btrfs_root *root)
3549 {
3550 struct btrfs_block_group_cache *cache;
3551 struct btrfs_transaction *cur_trans = trans->transaction;
3552 int ret = 0;
3553 int should_put;
3554 struct btrfs_path *path = NULL;
3555 LIST_HEAD(dirty);
3556 struct list_head *io = &cur_trans->io_bgs;
3557 int num_started = 0;
3558 int loops = 0;
3559
3560 spin_lock(&cur_trans->dirty_bgs_lock);
3561 if (list_empty(&cur_trans->dirty_bgs)) {
3562 spin_unlock(&cur_trans->dirty_bgs_lock);
3563 return 0;
3564 }
3565 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3566 spin_unlock(&cur_trans->dirty_bgs_lock);
3567
3568 again:
3569 /*
3570 * make sure all the block groups on our dirty list actually
3571 * exist
3572 */
3573 btrfs_create_pending_block_groups(trans, root);
3574
3575 if (!path) {
3576 path = btrfs_alloc_path();
3577 if (!path)
3578 return -ENOMEM;
3579 }
3580
3581 /*
3582 * cache_write_mutex is here only to save us from balance or automatic
3583 * removal of empty block groups deleting this block group while we are
3584 * writing out the cache
3585 */
3586 mutex_lock(&trans->transaction->cache_write_mutex);
3587 while (!list_empty(&dirty)) {
3588 cache = list_first_entry(&dirty,
3589 struct btrfs_block_group_cache,
3590 dirty_list);
3591 /*
3592 * this can happen if something re-dirties a block
3593 * group that is already under IO. Just wait for it to
3594 * finish and then do it all again
3595 */
3596 if (!list_empty(&cache->io_list)) {
3597 list_del_init(&cache->io_list);
3598 btrfs_wait_cache_io(root, trans, cache,
3599 &cache->io_ctl, path,
3600 cache->key.objectid);
3601 btrfs_put_block_group(cache);
3602 }
3603
3604
3605 /*
3606 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3607 * if it should update the cache_state. Don't delete
3608 * until after we wait.
3609 *
3610 * Since we're not running in the commit critical section
3611 * we need the dirty_bgs_lock to protect from update_block_group
3612 */
3613 spin_lock(&cur_trans->dirty_bgs_lock);
3614 list_del_init(&cache->dirty_list);
3615 spin_unlock(&cur_trans->dirty_bgs_lock);
3616
3617 should_put = 1;
3618
3619 cache_save_setup(cache, trans, path);
3620
3621 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3622 cache->io_ctl.inode = NULL;
3623 ret = btrfs_write_out_cache(root, trans, cache, path);
3624 if (ret == 0 && cache->io_ctl.inode) {
3625 num_started++;
3626 should_put = 0;
3627
3628 /*
3629 * the cache_write_mutex is protecting
3630 * the io_list
3631 */
3632 list_add_tail(&cache->io_list, io);
3633 } else {
3634 /*
3635 * if we failed to write the cache, the
3636 * generation will be bad and life goes on
3637 */
3638 ret = 0;
3639 }
3640 }
3641 if (!ret) {
3642 ret = write_one_cache_group(trans, root, path, cache);
3643 /*
3644 * Our block group might still be attached to the list
3645 * of new block groups in the transaction handle of some
3646 * other task (struct btrfs_trans_handle->new_bgs). This
3647 * means its block group item isn't yet in the extent
3648 * tree. If this happens ignore the error, as we will
3649 * try again later in the critical section of the
3650 * transaction commit.
3651 */
3652 if (ret == -ENOENT) {
3653 ret = 0;
3654 spin_lock(&cur_trans->dirty_bgs_lock);
3655 if (list_empty(&cache->dirty_list)) {
3656 list_add_tail(&cache->dirty_list,
3657 &cur_trans->dirty_bgs);
3658 btrfs_get_block_group(cache);
3659 }
3660 spin_unlock(&cur_trans->dirty_bgs_lock);
3661 } else if (ret) {
3662 btrfs_abort_transaction(trans, root, ret);
3663 }
3664 }
3665
3666 /* if its not on the io list, we need to put the block group */
3667 if (should_put)
3668 btrfs_put_block_group(cache);
3669
3670 if (ret)
3671 break;
3672
3673 /*
3674 * Avoid blocking other tasks for too long. It might even save
3675 * us from writing caches for block groups that are going to be
3676 * removed.
3677 */
3678 mutex_unlock(&trans->transaction->cache_write_mutex);
3679 mutex_lock(&trans->transaction->cache_write_mutex);
3680 }
3681 mutex_unlock(&trans->transaction->cache_write_mutex);
3682
3683 /*
3684 * go through delayed refs for all the stuff we've just kicked off
3685 * and then loop back (just once)
3686 */
3687 ret = btrfs_run_delayed_refs(trans, root, 0);
3688 if (!ret && loops == 0) {
3689 loops++;
3690 spin_lock(&cur_trans->dirty_bgs_lock);
3691 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3692 /*
3693 * dirty_bgs_lock protects us from concurrent block group
3694 * deletes too (not just cache_write_mutex).
3695 */
3696 if (!list_empty(&dirty)) {
3697 spin_unlock(&cur_trans->dirty_bgs_lock);
3698 goto again;
3699 }
3700 spin_unlock(&cur_trans->dirty_bgs_lock);
3701 }
3702
3703 btrfs_free_path(path);
3704 return ret;
3705 }
3706
3707 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3708 struct btrfs_root *root)
3709 {
3710 struct btrfs_block_group_cache *cache;
3711 struct btrfs_transaction *cur_trans = trans->transaction;
3712 int ret = 0;
3713 int should_put;
3714 struct btrfs_path *path;
3715 struct list_head *io = &cur_trans->io_bgs;
3716 int num_started = 0;
3717
3718 path = btrfs_alloc_path();
3719 if (!path)
3720 return -ENOMEM;
3721
3722 /*
3723 * Even though we are in the critical section of the transaction commit,
3724 * we can still have concurrent tasks adding elements to this
3725 * transaction's list of dirty block groups. These tasks correspond to
3726 * endio free space workers started when writeback finishes for a
3727 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3728 * allocate new block groups as a result of COWing nodes of the root
3729 * tree when updating the free space inode. The writeback for the space
3730 * caches is triggered by an earlier call to
3731 * btrfs_start_dirty_block_groups() and iterations of the following
3732 * loop.
3733 * Also we want to do the cache_save_setup first and then run the
3734 * delayed refs to make sure we have the best chance at doing this all
3735 * in one shot.
3736 */
3737 spin_lock(&cur_trans->dirty_bgs_lock);
3738 while (!list_empty(&cur_trans->dirty_bgs)) {
3739 cache = list_first_entry(&cur_trans->dirty_bgs,
3740 struct btrfs_block_group_cache,
3741 dirty_list);
3742
3743 /*
3744 * this can happen if cache_save_setup re-dirties a block
3745 * group that is already under IO. Just wait for it to
3746 * finish and then do it all again
3747 */
3748 if (!list_empty(&cache->io_list)) {
3749 spin_unlock(&cur_trans->dirty_bgs_lock);
3750 list_del_init(&cache->io_list);
3751 btrfs_wait_cache_io(root, trans, cache,
3752 &cache->io_ctl, path,
3753 cache->key.objectid);
3754 btrfs_put_block_group(cache);
3755 spin_lock(&cur_trans->dirty_bgs_lock);
3756 }
3757
3758 /*
3759 * don't remove from the dirty list until after we've waited
3760 * on any pending IO
3761 */
3762 list_del_init(&cache->dirty_list);
3763 spin_unlock(&cur_trans->dirty_bgs_lock);
3764 should_put = 1;
3765
3766 cache_save_setup(cache, trans, path);
3767
3768 if (!ret)
3769 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3770
3771 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3772 cache->io_ctl.inode = NULL;
3773 ret = btrfs_write_out_cache(root, trans, cache, path);
3774 if (ret == 0 && cache->io_ctl.inode) {
3775 num_started++;
3776 should_put = 0;
3777 list_add_tail(&cache->io_list, io);
3778 } else {
3779 /*
3780 * if we failed to write the cache, the
3781 * generation will be bad and life goes on
3782 */
3783 ret = 0;
3784 }
3785 }
3786 if (!ret) {
3787 ret = write_one_cache_group(trans, root, path, cache);
3788 /*
3789 * One of the free space endio workers might have
3790 * created a new block group while updating a free space
3791 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3792 * and hasn't released its transaction handle yet, in
3793 * which case the new block group is still attached to
3794 * its transaction handle and its creation has not
3795 * finished yet (no block group item in the extent tree
3796 * yet, etc). If this is the case, wait for all free
3797 * space endio workers to finish and retry. This is a
3798 * a very rare case so no need for a more efficient and
3799 * complex approach.
3800 */
3801 if (ret == -ENOENT) {
3802 wait_event(cur_trans->writer_wait,
3803 atomic_read(&cur_trans->num_writers) == 1);
3804 ret = write_one_cache_group(trans, root, path,
3805 cache);
3806 }
3807 if (ret)
3808 btrfs_abort_transaction(trans, root, ret);
3809 }
3810
3811 /* if its not on the io list, we need to put the block group */
3812 if (should_put)
3813 btrfs_put_block_group(cache);
3814 spin_lock(&cur_trans->dirty_bgs_lock);
3815 }
3816 spin_unlock(&cur_trans->dirty_bgs_lock);
3817
3818 while (!list_empty(io)) {
3819 cache = list_first_entry(io, struct btrfs_block_group_cache,
3820 io_list);
3821 list_del_init(&cache->io_list);
3822 btrfs_wait_cache_io(root, trans, cache,
3823 &cache->io_ctl, path, cache->key.objectid);
3824 btrfs_put_block_group(cache);
3825 }
3826
3827 btrfs_free_path(path);
3828 return ret;
3829 }
3830
3831 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3832 {
3833 struct btrfs_block_group_cache *block_group;
3834 int readonly = 0;
3835
3836 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3837 if (!block_group || block_group->ro)
3838 readonly = 1;
3839 if (block_group)
3840 btrfs_put_block_group(block_group);
3841 return readonly;
3842 }
3843
3844 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3845 {
3846 struct btrfs_block_group_cache *bg;
3847 bool ret = true;
3848
3849 bg = btrfs_lookup_block_group(fs_info, bytenr);
3850 if (!bg)
3851 return false;
3852
3853 spin_lock(&bg->lock);
3854 if (bg->ro)
3855 ret = false;
3856 else
3857 atomic_inc(&bg->nocow_writers);
3858 spin_unlock(&bg->lock);
3859
3860 /* no put on block group, done by btrfs_dec_nocow_writers */
3861 if (!ret)
3862 btrfs_put_block_group(bg);
3863
3864 return ret;
3865
3866 }
3867
3868 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3869 {
3870 struct btrfs_block_group_cache *bg;
3871
3872 bg = btrfs_lookup_block_group(fs_info, bytenr);
3873 ASSERT(bg);
3874 if (atomic_dec_and_test(&bg->nocow_writers))
3875 wake_up_atomic_t(&bg->nocow_writers);
3876 /*
3877 * Once for our lookup and once for the lookup done by a previous call
3878 * to btrfs_inc_nocow_writers()
3879 */
3880 btrfs_put_block_group(bg);
3881 btrfs_put_block_group(bg);
3882 }
3883
3884 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3885 {
3886 schedule();
3887 return 0;
3888 }
3889
3890 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3891 {
3892 wait_on_atomic_t(&bg->nocow_writers,
3893 btrfs_wait_nocow_writers_atomic_t,
3894 TASK_UNINTERRUPTIBLE);
3895 }
3896
3897 static const char *alloc_name(u64 flags)
3898 {
3899 switch (flags) {
3900 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3901 return "mixed";
3902 case BTRFS_BLOCK_GROUP_METADATA:
3903 return "metadata";
3904 case BTRFS_BLOCK_GROUP_DATA:
3905 return "data";
3906 case BTRFS_BLOCK_GROUP_SYSTEM:
3907 return "system";
3908 default:
3909 WARN_ON(1);
3910 return "invalid-combination";
3911 };
3912 }
3913
3914 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3915 u64 total_bytes, u64 bytes_used,
3916 u64 bytes_readonly,
3917 struct btrfs_space_info **space_info)
3918 {
3919 struct btrfs_space_info *found;
3920 int i;
3921 int factor;
3922 int ret;
3923
3924 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3925 BTRFS_BLOCK_GROUP_RAID10))
3926 factor = 2;
3927 else
3928 factor = 1;
3929
3930 found = __find_space_info(info, flags);
3931 if (found) {
3932 spin_lock(&found->lock);
3933 found->total_bytes += total_bytes;
3934 found->disk_total += total_bytes * factor;
3935 found->bytes_used += bytes_used;
3936 found->disk_used += bytes_used * factor;
3937 found->bytes_readonly += bytes_readonly;
3938 if (total_bytes > 0)
3939 found->full = 0;
3940 spin_unlock(&found->lock);
3941 *space_info = found;
3942 return 0;
3943 }
3944 found = kzalloc(sizeof(*found), GFP_NOFS);
3945 if (!found)
3946 return -ENOMEM;
3947
3948 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3949 if (ret) {
3950 kfree(found);
3951 return ret;
3952 }
3953
3954 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3955 INIT_LIST_HEAD(&found->block_groups[i]);
3956 init_rwsem(&found->groups_sem);
3957 spin_lock_init(&found->lock);
3958 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3959 found->total_bytes = total_bytes;
3960 found->disk_total = total_bytes * factor;
3961 found->bytes_used = bytes_used;
3962 found->disk_used = bytes_used * factor;
3963 found->bytes_pinned = 0;
3964 found->bytes_reserved = 0;
3965 found->bytes_readonly = bytes_readonly;
3966 found->bytes_may_use = 0;
3967 found->full = 0;
3968 found->max_extent_size = 0;
3969 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3970 found->chunk_alloc = 0;
3971 found->flush = 0;
3972 init_waitqueue_head(&found->wait);
3973 INIT_LIST_HEAD(&found->ro_bgs);
3974
3975 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3976 info->space_info_kobj, "%s",
3977 alloc_name(found->flags));
3978 if (ret) {
3979 kfree(found);
3980 return ret;
3981 }
3982
3983 *space_info = found;
3984 list_add_rcu(&found->list, &info->space_info);
3985 if (flags & BTRFS_BLOCK_GROUP_DATA)
3986 info->data_sinfo = found;
3987
3988 return ret;
3989 }
3990
3991 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3992 {
3993 u64 extra_flags = chunk_to_extended(flags) &
3994 BTRFS_EXTENDED_PROFILE_MASK;
3995
3996 write_seqlock(&fs_info->profiles_lock);
3997 if (flags & BTRFS_BLOCK_GROUP_DATA)
3998 fs_info->avail_data_alloc_bits |= extra_flags;
3999 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4000 fs_info->avail_metadata_alloc_bits |= extra_flags;
4001 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4002 fs_info->avail_system_alloc_bits |= extra_flags;
4003 write_sequnlock(&fs_info->profiles_lock);
4004 }
4005
4006 /*
4007 * returns target flags in extended format or 0 if restripe for this
4008 * chunk_type is not in progress
4009 *
4010 * should be called with either volume_mutex or balance_lock held
4011 */
4012 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4013 {
4014 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4015 u64 target = 0;
4016
4017 if (!bctl)
4018 return 0;
4019
4020 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4021 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4022 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4023 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4024 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4025 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4026 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4027 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4028 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4029 }
4030
4031 return target;
4032 }
4033
4034 /*
4035 * @flags: available profiles in extended format (see ctree.h)
4036 *
4037 * Returns reduced profile in chunk format. If profile changing is in
4038 * progress (either running or paused) picks the target profile (if it's
4039 * already available), otherwise falls back to plain reducing.
4040 */
4041 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4042 {
4043 u64 num_devices = root->fs_info->fs_devices->rw_devices;
4044 u64 target;
4045 u64 raid_type;
4046 u64 allowed = 0;
4047
4048 /*
4049 * see if restripe for this chunk_type is in progress, if so
4050 * try to reduce to the target profile
4051 */
4052 spin_lock(&root->fs_info->balance_lock);
4053 target = get_restripe_target(root->fs_info, flags);
4054 if (target) {
4055 /* pick target profile only if it's already available */
4056 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4057 spin_unlock(&root->fs_info->balance_lock);
4058 return extended_to_chunk(target);
4059 }
4060 }
4061 spin_unlock(&root->fs_info->balance_lock);
4062
4063 /* First, mask out the RAID levels which aren't possible */
4064 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4065 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4066 allowed |= btrfs_raid_group[raid_type];
4067 }
4068 allowed &= flags;
4069
4070 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4071 allowed = BTRFS_BLOCK_GROUP_RAID6;
4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4073 allowed = BTRFS_BLOCK_GROUP_RAID5;
4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4075 allowed = BTRFS_BLOCK_GROUP_RAID10;
4076 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4077 allowed = BTRFS_BLOCK_GROUP_RAID1;
4078 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4079 allowed = BTRFS_BLOCK_GROUP_RAID0;
4080
4081 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4082
4083 return extended_to_chunk(flags | allowed);
4084 }
4085
4086 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4087 {
4088 unsigned seq;
4089 u64 flags;
4090
4091 do {
4092 flags = orig_flags;
4093 seq = read_seqbegin(&root->fs_info->profiles_lock);
4094
4095 if (flags & BTRFS_BLOCK_GROUP_DATA)
4096 flags |= root->fs_info->avail_data_alloc_bits;
4097 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4098 flags |= root->fs_info->avail_system_alloc_bits;
4099 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4100 flags |= root->fs_info->avail_metadata_alloc_bits;
4101 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4102
4103 return btrfs_reduce_alloc_profile(root, flags);
4104 }
4105
4106 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4107 {
4108 u64 flags;
4109 u64 ret;
4110
4111 if (data)
4112 flags = BTRFS_BLOCK_GROUP_DATA;
4113 else if (root == root->fs_info->chunk_root)
4114 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4115 else
4116 flags = BTRFS_BLOCK_GROUP_METADATA;
4117
4118 ret = get_alloc_profile(root, flags);
4119 return ret;
4120 }
4121
4122 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4123 {
4124 struct btrfs_space_info *data_sinfo;
4125 struct btrfs_root *root = BTRFS_I(inode)->root;
4126 struct btrfs_fs_info *fs_info = root->fs_info;
4127 u64 used;
4128 int ret = 0;
4129 int need_commit = 2;
4130 int have_pinned_space;
4131
4132 /* make sure bytes are sectorsize aligned */
4133 bytes = ALIGN(bytes, root->sectorsize);
4134
4135 if (btrfs_is_free_space_inode(inode)) {
4136 need_commit = 0;
4137 ASSERT(current->journal_info);
4138 }
4139
4140 data_sinfo = fs_info->data_sinfo;
4141 if (!data_sinfo)
4142 goto alloc;
4143
4144 again:
4145 /* make sure we have enough space to handle the data first */
4146 spin_lock(&data_sinfo->lock);
4147 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4148 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4149 data_sinfo->bytes_may_use;
4150
4151 if (used + bytes > data_sinfo->total_bytes) {
4152 struct btrfs_trans_handle *trans;
4153
4154 /*
4155 * if we don't have enough free bytes in this space then we need
4156 * to alloc a new chunk.
4157 */
4158 if (!data_sinfo->full) {
4159 u64 alloc_target;
4160
4161 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4162 spin_unlock(&data_sinfo->lock);
4163 alloc:
4164 alloc_target = btrfs_get_alloc_profile(root, 1);
4165 /*
4166 * It is ugly that we don't call nolock join
4167 * transaction for the free space inode case here.
4168 * But it is safe because we only do the data space
4169 * reservation for the free space cache in the
4170 * transaction context, the common join transaction
4171 * just increase the counter of the current transaction
4172 * handler, doesn't try to acquire the trans_lock of
4173 * the fs.
4174 */
4175 trans = btrfs_join_transaction(root);
4176 if (IS_ERR(trans))
4177 return PTR_ERR(trans);
4178
4179 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4180 alloc_target,
4181 CHUNK_ALLOC_NO_FORCE);
4182 btrfs_end_transaction(trans, root);
4183 if (ret < 0) {
4184 if (ret != -ENOSPC)
4185 return ret;
4186 else {
4187 have_pinned_space = 1;
4188 goto commit_trans;
4189 }
4190 }
4191
4192 if (!data_sinfo)
4193 data_sinfo = fs_info->data_sinfo;
4194
4195 goto again;
4196 }
4197
4198 /*
4199 * If we don't have enough pinned space to deal with this
4200 * allocation, and no removed chunk in current transaction,
4201 * don't bother committing the transaction.
4202 */
4203 have_pinned_space = percpu_counter_compare(
4204 &data_sinfo->total_bytes_pinned,
4205 used + bytes - data_sinfo->total_bytes);
4206 spin_unlock(&data_sinfo->lock);
4207
4208 /* commit the current transaction and try again */
4209 commit_trans:
4210 if (need_commit &&
4211 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4212 need_commit--;
4213
4214 if (need_commit > 0) {
4215 btrfs_start_delalloc_roots(fs_info, 0, -1);
4216 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4217 }
4218
4219 trans = btrfs_join_transaction(root);
4220 if (IS_ERR(trans))
4221 return PTR_ERR(trans);
4222 if (have_pinned_space >= 0 ||
4223 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4224 &trans->transaction->flags) ||
4225 need_commit > 0) {
4226 ret = btrfs_commit_transaction(trans, root);
4227 if (ret)
4228 return ret;
4229 /*
4230 * The cleaner kthread might still be doing iput
4231 * operations. Wait for it to finish so that
4232 * more space is released.
4233 */
4234 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4235 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4236 goto again;
4237 } else {
4238 btrfs_end_transaction(trans, root);
4239 }
4240 }
4241
4242 trace_btrfs_space_reservation(root->fs_info,
4243 "space_info:enospc",
4244 data_sinfo->flags, bytes, 1);
4245 return -ENOSPC;
4246 }
4247 data_sinfo->bytes_may_use += bytes;
4248 trace_btrfs_space_reservation(root->fs_info, "space_info",
4249 data_sinfo->flags, bytes, 1);
4250 spin_unlock(&data_sinfo->lock);
4251
4252 return ret;
4253 }
4254
4255 /*
4256 * New check_data_free_space() with ability for precious data reservation
4257 * Will replace old btrfs_check_data_free_space(), but for patch split,
4258 * add a new function first and then replace it.
4259 */
4260 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4261 {
4262 struct btrfs_root *root = BTRFS_I(inode)->root;
4263 int ret;
4264
4265 /* align the range */
4266 len = round_up(start + len, root->sectorsize) -
4267 round_down(start, root->sectorsize);
4268 start = round_down(start, root->sectorsize);
4269
4270 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4271 if (ret < 0)
4272 return ret;
4273
4274 /*
4275 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4276 *
4277 * TODO: Find a good method to avoid reserve data space for NOCOW
4278 * range, but don't impact performance on quota disable case.
4279 */
4280 ret = btrfs_qgroup_reserve_data(inode, start, len);
4281 return ret;
4282 }
4283
4284 /*
4285 * Called if we need to clear a data reservation for this inode
4286 * Normally in a error case.
4287 *
4288 * This one will *NOT* use accurate qgroup reserved space API, just for case
4289 * which we can't sleep and is sure it won't affect qgroup reserved space.
4290 * Like clear_bit_hook().
4291 */
4292 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4293 u64 len)
4294 {
4295 struct btrfs_root *root = BTRFS_I(inode)->root;
4296 struct btrfs_space_info *data_sinfo;
4297
4298 /* Make sure the range is aligned to sectorsize */
4299 len = round_up(start + len, root->sectorsize) -
4300 round_down(start, root->sectorsize);
4301 start = round_down(start, root->sectorsize);
4302
4303 data_sinfo = root->fs_info->data_sinfo;
4304 spin_lock(&data_sinfo->lock);
4305 if (WARN_ON(data_sinfo->bytes_may_use < len))
4306 data_sinfo->bytes_may_use = 0;
4307 else
4308 data_sinfo->bytes_may_use -= len;
4309 trace_btrfs_space_reservation(root->fs_info, "space_info",
4310 data_sinfo->flags, len, 0);
4311 spin_unlock(&data_sinfo->lock);
4312 }
4313
4314 /*
4315 * Called if we need to clear a data reservation for this inode
4316 * Normally in a error case.
4317 *
4318 * This one will handle the per-inode data rsv map for accurate reserved
4319 * space framework.
4320 */
4321 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4322 {
4323 btrfs_free_reserved_data_space_noquota(inode, start, len);
4324 btrfs_qgroup_free_data(inode, start, len);
4325 }
4326
4327 static void force_metadata_allocation(struct btrfs_fs_info *info)
4328 {
4329 struct list_head *head = &info->space_info;
4330 struct btrfs_space_info *found;
4331
4332 rcu_read_lock();
4333 list_for_each_entry_rcu(found, head, list) {
4334 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4335 found->force_alloc = CHUNK_ALLOC_FORCE;
4336 }
4337 rcu_read_unlock();
4338 }
4339
4340 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4341 {
4342 return (global->size << 1);
4343 }
4344
4345 static int should_alloc_chunk(struct btrfs_root *root,
4346 struct btrfs_space_info *sinfo, int force)
4347 {
4348 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4349 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4350 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4351 u64 thresh;
4352
4353 if (force == CHUNK_ALLOC_FORCE)
4354 return 1;
4355
4356 /*
4357 * We need to take into account the global rsv because for all intents
4358 * and purposes it's used space. Don't worry about locking the
4359 * global_rsv, it doesn't change except when the transaction commits.
4360 */
4361 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4362 num_allocated += calc_global_rsv_need_space(global_rsv);
4363
4364 /*
4365 * in limited mode, we want to have some free space up to
4366 * about 1% of the FS size.
4367 */
4368 if (force == CHUNK_ALLOC_LIMITED) {
4369 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4370 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4371
4372 if (num_bytes - num_allocated < thresh)
4373 return 1;
4374 }
4375
4376 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4377 return 0;
4378 return 1;
4379 }
4380
4381 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4382 {
4383 u64 num_dev;
4384
4385 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4386 BTRFS_BLOCK_GROUP_RAID0 |
4387 BTRFS_BLOCK_GROUP_RAID5 |
4388 BTRFS_BLOCK_GROUP_RAID6))
4389 num_dev = root->fs_info->fs_devices->rw_devices;
4390 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4391 num_dev = 2;
4392 else
4393 num_dev = 1; /* DUP or single */
4394
4395 return num_dev;
4396 }
4397
4398 /*
4399 * If @is_allocation is true, reserve space in the system space info necessary
4400 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4401 * removing a chunk.
4402 */
4403 void check_system_chunk(struct btrfs_trans_handle *trans,
4404 struct btrfs_root *root,
4405 u64 type)
4406 {
4407 struct btrfs_space_info *info;
4408 u64 left;
4409 u64 thresh;
4410 int ret = 0;
4411 u64 num_devs;
4412
4413 /*
4414 * Needed because we can end up allocating a system chunk and for an
4415 * atomic and race free space reservation in the chunk block reserve.
4416 */
4417 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4418
4419 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4420 spin_lock(&info->lock);
4421 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4422 info->bytes_reserved - info->bytes_readonly -
4423 info->bytes_may_use;
4424 spin_unlock(&info->lock);
4425
4426 num_devs = get_profile_num_devs(root, type);
4427
4428 /* num_devs device items to update and 1 chunk item to add or remove */
4429 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4430 btrfs_calc_trans_metadata_size(root, 1);
4431
4432 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4433 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4434 left, thresh, type);
4435 dump_space_info(info, 0, 0);
4436 }
4437
4438 if (left < thresh) {
4439 u64 flags;
4440
4441 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4442 /*
4443 * Ignore failure to create system chunk. We might end up not
4444 * needing it, as we might not need to COW all nodes/leafs from
4445 * the paths we visit in the chunk tree (they were already COWed
4446 * or created in the current transaction for example).
4447 */
4448 ret = btrfs_alloc_chunk(trans, root, flags);
4449 }
4450
4451 if (!ret) {
4452 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4453 &root->fs_info->chunk_block_rsv,
4454 thresh, BTRFS_RESERVE_NO_FLUSH);
4455 if (!ret)
4456 trans->chunk_bytes_reserved += thresh;
4457 }
4458 }
4459
4460 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4461 struct btrfs_root *extent_root, u64 flags, int force)
4462 {
4463 struct btrfs_space_info *space_info;
4464 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4465 int wait_for_alloc = 0;
4466 int ret = 0;
4467
4468 /* Don't re-enter if we're already allocating a chunk */
4469 if (trans->allocating_chunk)
4470 return -ENOSPC;
4471
4472 space_info = __find_space_info(extent_root->fs_info, flags);
4473 if (!space_info) {
4474 ret = update_space_info(extent_root->fs_info, flags,
4475 0, 0, 0, &space_info);
4476 BUG_ON(ret); /* -ENOMEM */
4477 }
4478 BUG_ON(!space_info); /* Logic error */
4479
4480 again:
4481 spin_lock(&space_info->lock);
4482 if (force < space_info->force_alloc)
4483 force = space_info->force_alloc;
4484 if (space_info->full) {
4485 if (should_alloc_chunk(extent_root, space_info, force))
4486 ret = -ENOSPC;
4487 else
4488 ret = 0;
4489 spin_unlock(&space_info->lock);
4490 return ret;
4491 }
4492
4493 if (!should_alloc_chunk(extent_root, space_info, force)) {
4494 spin_unlock(&space_info->lock);
4495 return 0;
4496 } else if (space_info->chunk_alloc) {
4497 wait_for_alloc = 1;
4498 } else {
4499 space_info->chunk_alloc = 1;
4500 }
4501
4502 spin_unlock(&space_info->lock);
4503
4504 mutex_lock(&fs_info->chunk_mutex);
4505
4506 /*
4507 * The chunk_mutex is held throughout the entirety of a chunk
4508 * allocation, so once we've acquired the chunk_mutex we know that the
4509 * other guy is done and we need to recheck and see if we should
4510 * allocate.
4511 */
4512 if (wait_for_alloc) {
4513 mutex_unlock(&fs_info->chunk_mutex);
4514 wait_for_alloc = 0;
4515 goto again;
4516 }
4517
4518 trans->allocating_chunk = true;
4519
4520 /*
4521 * If we have mixed data/metadata chunks we want to make sure we keep
4522 * allocating mixed chunks instead of individual chunks.
4523 */
4524 if (btrfs_mixed_space_info(space_info))
4525 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4526
4527 /*
4528 * if we're doing a data chunk, go ahead and make sure that
4529 * we keep a reasonable number of metadata chunks allocated in the
4530 * FS as well.
4531 */
4532 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4533 fs_info->data_chunk_allocations++;
4534 if (!(fs_info->data_chunk_allocations %
4535 fs_info->metadata_ratio))
4536 force_metadata_allocation(fs_info);
4537 }
4538
4539 /*
4540 * Check if we have enough space in SYSTEM chunk because we may need
4541 * to update devices.
4542 */
4543 check_system_chunk(trans, extent_root, flags);
4544
4545 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4546 trans->allocating_chunk = false;
4547
4548 spin_lock(&space_info->lock);
4549 if (ret < 0 && ret != -ENOSPC)
4550 goto out;
4551 if (ret)
4552 space_info->full = 1;
4553 else
4554 ret = 1;
4555
4556 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4557 out:
4558 space_info->chunk_alloc = 0;
4559 spin_unlock(&space_info->lock);
4560 mutex_unlock(&fs_info->chunk_mutex);
4561 /*
4562 * When we allocate a new chunk we reserve space in the chunk block
4563 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4564 * add new nodes/leafs to it if we end up needing to do it when
4565 * inserting the chunk item and updating device items as part of the
4566 * second phase of chunk allocation, performed by
4567 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4568 * large number of new block groups to create in our transaction
4569 * handle's new_bgs list to avoid exhausting the chunk block reserve
4570 * in extreme cases - like having a single transaction create many new
4571 * block groups when starting to write out the free space caches of all
4572 * the block groups that were made dirty during the lifetime of the
4573 * transaction.
4574 */
4575 if (trans->can_flush_pending_bgs &&
4576 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4577 btrfs_create_pending_block_groups(trans, trans->root);
4578 btrfs_trans_release_chunk_metadata(trans);
4579 }
4580 return ret;
4581 }
4582
4583 static int can_overcommit(struct btrfs_root *root,
4584 struct btrfs_space_info *space_info, u64 bytes,
4585 enum btrfs_reserve_flush_enum flush)
4586 {
4587 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4588 u64 profile = btrfs_get_alloc_profile(root, 0);
4589 u64 space_size;
4590 u64 avail;
4591 u64 used;
4592
4593 used = space_info->bytes_used + space_info->bytes_reserved +
4594 space_info->bytes_pinned + space_info->bytes_readonly;
4595
4596 /*
4597 * We only want to allow over committing if we have lots of actual space
4598 * free, but if we don't have enough space to handle the global reserve
4599 * space then we could end up having a real enospc problem when trying
4600 * to allocate a chunk or some other such important allocation.
4601 */
4602 spin_lock(&global_rsv->lock);
4603 space_size = calc_global_rsv_need_space(global_rsv);
4604 spin_unlock(&global_rsv->lock);
4605 if (used + space_size >= space_info->total_bytes)
4606 return 0;
4607
4608 used += space_info->bytes_may_use;
4609
4610 spin_lock(&root->fs_info->free_chunk_lock);
4611 avail = root->fs_info->free_chunk_space;
4612 spin_unlock(&root->fs_info->free_chunk_lock);
4613
4614 /*
4615 * If we have dup, raid1 or raid10 then only half of the free
4616 * space is actually useable. For raid56, the space info used
4617 * doesn't include the parity drive, so we don't have to
4618 * change the math
4619 */
4620 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4621 BTRFS_BLOCK_GROUP_RAID1 |
4622 BTRFS_BLOCK_GROUP_RAID10))
4623 avail >>= 1;
4624
4625 /*
4626 * If we aren't flushing all things, let us overcommit up to
4627 * 1/2th of the space. If we can flush, don't let us overcommit
4628 * too much, let it overcommit up to 1/8 of the space.
4629 */
4630 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4631 avail >>= 3;
4632 else
4633 avail >>= 1;
4634
4635 if (used + bytes < space_info->total_bytes + avail)
4636 return 1;
4637 return 0;
4638 }
4639
4640 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4641 unsigned long nr_pages, int nr_items)
4642 {
4643 struct super_block *sb = root->fs_info->sb;
4644
4645 if (down_read_trylock(&sb->s_umount)) {
4646 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4647 up_read(&sb->s_umount);
4648 } else {
4649 /*
4650 * We needn't worry the filesystem going from r/w to r/o though
4651 * we don't acquire ->s_umount mutex, because the filesystem
4652 * should guarantee the delalloc inodes list be empty after
4653 * the filesystem is readonly(all dirty pages are written to
4654 * the disk).
4655 */
4656 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4657 if (!current->journal_info)
4658 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4659 0, (u64)-1);
4660 }
4661 }
4662
4663 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4664 {
4665 u64 bytes;
4666 int nr;
4667
4668 bytes = btrfs_calc_trans_metadata_size(root, 1);
4669 nr = (int)div64_u64(to_reclaim, bytes);
4670 if (!nr)
4671 nr = 1;
4672 return nr;
4673 }
4674
4675 #define EXTENT_SIZE_PER_ITEM SZ_256K
4676
4677 /*
4678 * shrink metadata reservation for delalloc
4679 */
4680 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4681 bool wait_ordered)
4682 {
4683 struct btrfs_block_rsv *block_rsv;
4684 struct btrfs_space_info *space_info;
4685 struct btrfs_trans_handle *trans;
4686 u64 delalloc_bytes;
4687 u64 max_reclaim;
4688 long time_left;
4689 unsigned long nr_pages;
4690 int loops;
4691 int items;
4692 enum btrfs_reserve_flush_enum flush;
4693
4694 /* Calc the number of the pages we need flush for space reservation */
4695 items = calc_reclaim_items_nr(root, to_reclaim);
4696 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4697
4698 trans = (struct btrfs_trans_handle *)current->journal_info;
4699 block_rsv = &root->fs_info->delalloc_block_rsv;
4700 space_info = block_rsv->space_info;
4701
4702 delalloc_bytes = percpu_counter_sum_positive(
4703 &root->fs_info->delalloc_bytes);
4704 if (delalloc_bytes == 0) {
4705 if (trans)
4706 return;
4707 if (wait_ordered)
4708 btrfs_wait_ordered_roots(root->fs_info, items,
4709 0, (u64)-1);
4710 return;
4711 }
4712
4713 loops = 0;
4714 while (delalloc_bytes && loops < 3) {
4715 max_reclaim = min(delalloc_bytes, to_reclaim);
4716 nr_pages = max_reclaim >> PAGE_SHIFT;
4717 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4718 /*
4719 * We need to wait for the async pages to actually start before
4720 * we do anything.
4721 */
4722 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4723 if (!max_reclaim)
4724 goto skip_async;
4725
4726 if (max_reclaim <= nr_pages)
4727 max_reclaim = 0;
4728 else
4729 max_reclaim -= nr_pages;
4730
4731 wait_event(root->fs_info->async_submit_wait,
4732 atomic_read(&root->fs_info->async_delalloc_pages) <=
4733 (int)max_reclaim);
4734 skip_async:
4735 if (!trans)
4736 flush = BTRFS_RESERVE_FLUSH_ALL;
4737 else
4738 flush = BTRFS_RESERVE_NO_FLUSH;
4739 spin_lock(&space_info->lock);
4740 if (can_overcommit(root, space_info, orig, flush)) {
4741 spin_unlock(&space_info->lock);
4742 break;
4743 }
4744 spin_unlock(&space_info->lock);
4745
4746 loops++;
4747 if (wait_ordered && !trans) {
4748 btrfs_wait_ordered_roots(root->fs_info, items,
4749 0, (u64)-1);
4750 } else {
4751 time_left = schedule_timeout_killable(1);
4752 if (time_left)
4753 break;
4754 }
4755 delalloc_bytes = percpu_counter_sum_positive(
4756 &root->fs_info->delalloc_bytes);
4757 }
4758 }
4759
4760 /**
4761 * maybe_commit_transaction - possibly commit the transaction if its ok to
4762 * @root - the root we're allocating for
4763 * @bytes - the number of bytes we want to reserve
4764 * @force - force the commit
4765 *
4766 * This will check to make sure that committing the transaction will actually
4767 * get us somewhere and then commit the transaction if it does. Otherwise it
4768 * will return -ENOSPC.
4769 */
4770 static int may_commit_transaction(struct btrfs_root *root,
4771 struct btrfs_space_info *space_info,
4772 u64 bytes, int force)
4773 {
4774 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4775 struct btrfs_trans_handle *trans;
4776
4777 trans = (struct btrfs_trans_handle *)current->journal_info;
4778 if (trans)
4779 return -EAGAIN;
4780
4781 if (force)
4782 goto commit;
4783
4784 /* See if there is enough pinned space to make this reservation */
4785 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4786 bytes) >= 0)
4787 goto commit;
4788
4789 /*
4790 * See if there is some space in the delayed insertion reservation for
4791 * this reservation.
4792 */
4793 if (space_info != delayed_rsv->space_info)
4794 return -ENOSPC;
4795
4796 spin_lock(&delayed_rsv->lock);
4797 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4798 bytes - delayed_rsv->size) >= 0) {
4799 spin_unlock(&delayed_rsv->lock);
4800 return -ENOSPC;
4801 }
4802 spin_unlock(&delayed_rsv->lock);
4803
4804 commit:
4805 trans = btrfs_join_transaction(root);
4806 if (IS_ERR(trans))
4807 return -ENOSPC;
4808
4809 return btrfs_commit_transaction(trans, root);
4810 }
4811
4812 enum flush_state {
4813 FLUSH_DELAYED_ITEMS_NR = 1,
4814 FLUSH_DELAYED_ITEMS = 2,
4815 FLUSH_DELALLOC = 3,
4816 FLUSH_DELALLOC_WAIT = 4,
4817 ALLOC_CHUNK = 5,
4818 COMMIT_TRANS = 6,
4819 };
4820
4821 static int flush_space(struct btrfs_root *root,
4822 struct btrfs_space_info *space_info, u64 num_bytes,
4823 u64 orig_bytes, int state)
4824 {
4825 struct btrfs_trans_handle *trans;
4826 int nr;
4827 int ret = 0;
4828
4829 switch (state) {
4830 case FLUSH_DELAYED_ITEMS_NR:
4831 case FLUSH_DELAYED_ITEMS:
4832 if (state == FLUSH_DELAYED_ITEMS_NR)
4833 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4834 else
4835 nr = -1;
4836
4837 trans = btrfs_join_transaction(root);
4838 if (IS_ERR(trans)) {
4839 ret = PTR_ERR(trans);
4840 break;
4841 }
4842 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4843 btrfs_end_transaction(trans, root);
4844 break;
4845 case FLUSH_DELALLOC:
4846 case FLUSH_DELALLOC_WAIT:
4847 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4848 state == FLUSH_DELALLOC_WAIT);
4849 break;
4850 case ALLOC_CHUNK:
4851 trans = btrfs_join_transaction(root);
4852 if (IS_ERR(trans)) {
4853 ret = PTR_ERR(trans);
4854 break;
4855 }
4856 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4857 btrfs_get_alloc_profile(root, 0),
4858 CHUNK_ALLOC_NO_FORCE);
4859 btrfs_end_transaction(trans, root);
4860 if (ret == -ENOSPC)
4861 ret = 0;
4862 break;
4863 case COMMIT_TRANS:
4864 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4865 break;
4866 default:
4867 ret = -ENOSPC;
4868 break;
4869 }
4870
4871 return ret;
4872 }
4873
4874 static inline u64
4875 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4876 struct btrfs_space_info *space_info)
4877 {
4878 u64 used;
4879 u64 expected;
4880 u64 to_reclaim;
4881
4882 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4883 spin_lock(&space_info->lock);
4884 if (can_overcommit(root, space_info, to_reclaim,
4885 BTRFS_RESERVE_FLUSH_ALL)) {
4886 to_reclaim = 0;
4887 goto out;
4888 }
4889
4890 used = space_info->bytes_used + space_info->bytes_reserved +
4891 space_info->bytes_pinned + space_info->bytes_readonly +
4892 space_info->bytes_may_use;
4893 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4894 expected = div_factor_fine(space_info->total_bytes, 95);
4895 else
4896 expected = div_factor_fine(space_info->total_bytes, 90);
4897
4898 if (used > expected)
4899 to_reclaim = used - expected;
4900 else
4901 to_reclaim = 0;
4902 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4903 space_info->bytes_reserved);
4904 out:
4905 spin_unlock(&space_info->lock);
4906
4907 return to_reclaim;
4908 }
4909
4910 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4911 struct btrfs_fs_info *fs_info, u64 used)
4912 {
4913 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4914
4915 /* If we're just plain full then async reclaim just slows us down. */
4916 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4917 return 0;
4918
4919 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4920 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4921 }
4922
4923 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4924 struct btrfs_fs_info *fs_info,
4925 int flush_state)
4926 {
4927 u64 used;
4928
4929 spin_lock(&space_info->lock);
4930 /*
4931 * We run out of space and have not got any free space via flush_space,
4932 * so don't bother doing async reclaim.
4933 */
4934 if (flush_state > COMMIT_TRANS && space_info->full) {
4935 spin_unlock(&space_info->lock);
4936 return 0;
4937 }
4938
4939 used = space_info->bytes_used + space_info->bytes_reserved +
4940 space_info->bytes_pinned + space_info->bytes_readonly +
4941 space_info->bytes_may_use;
4942 if (need_do_async_reclaim(space_info, fs_info, used)) {
4943 spin_unlock(&space_info->lock);
4944 return 1;
4945 }
4946 spin_unlock(&space_info->lock);
4947
4948 return 0;
4949 }
4950
4951 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4952 {
4953 struct btrfs_fs_info *fs_info;
4954 struct btrfs_space_info *space_info;
4955 u64 to_reclaim;
4956 int flush_state;
4957
4958 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4959 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4960
4961 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4962 space_info);
4963 if (!to_reclaim)
4964 return;
4965
4966 flush_state = FLUSH_DELAYED_ITEMS_NR;
4967 do {
4968 flush_space(fs_info->fs_root, space_info, to_reclaim,
4969 to_reclaim, flush_state);
4970 flush_state++;
4971 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4972 flush_state))
4973 return;
4974 } while (flush_state < COMMIT_TRANS);
4975 }
4976
4977 void btrfs_init_async_reclaim_work(struct work_struct *work)
4978 {
4979 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4980 }
4981
4982 /**
4983 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4984 * @root - the root we're allocating for
4985 * @block_rsv - the block_rsv we're allocating for
4986 * @orig_bytes - the number of bytes we want
4987 * @flush - whether or not we can flush to make our reservation
4988 *
4989 * This will reserve orig_bytes number of bytes from the space info associated
4990 * with the block_rsv. If there is not enough space it will make an attempt to
4991 * flush out space to make room. It will do this by flushing delalloc if
4992 * possible or committing the transaction. If flush is 0 then no attempts to
4993 * regain reservations will be made and this will fail if there is not enough
4994 * space already.
4995 */
4996 static int reserve_metadata_bytes(struct btrfs_root *root,
4997 struct btrfs_block_rsv *block_rsv,
4998 u64 orig_bytes,
4999 enum btrfs_reserve_flush_enum flush)
5000 {
5001 struct btrfs_space_info *space_info = block_rsv->space_info;
5002 u64 used;
5003 u64 num_bytes = orig_bytes;
5004 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5005 int ret = 0;
5006 bool flushing = false;
5007
5008 again:
5009 ret = 0;
5010 spin_lock(&space_info->lock);
5011 /*
5012 * We only want to wait if somebody other than us is flushing and we
5013 * are actually allowed to flush all things.
5014 */
5015 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
5016 space_info->flush) {
5017 spin_unlock(&space_info->lock);
5018 /*
5019 * If we have a trans handle we can't wait because the flusher
5020 * may have to commit the transaction, which would mean we would
5021 * deadlock since we are waiting for the flusher to finish, but
5022 * hold the current transaction open.
5023 */
5024 if (current->journal_info)
5025 return -EAGAIN;
5026 ret = wait_event_killable(space_info->wait, !space_info->flush);
5027 /* Must have been killed, return */
5028 if (ret)
5029 return -EINTR;
5030
5031 spin_lock(&space_info->lock);
5032 }
5033
5034 ret = -ENOSPC;
5035 used = space_info->bytes_used + space_info->bytes_reserved +
5036 space_info->bytes_pinned + space_info->bytes_readonly +
5037 space_info->bytes_may_use;
5038
5039 /*
5040 * The idea here is that we've not already over-reserved the block group
5041 * then we can go ahead and save our reservation first and then start
5042 * flushing if we need to. Otherwise if we've already overcommitted
5043 * lets start flushing stuff first and then come back and try to make
5044 * our reservation.
5045 */
5046 if (used <= space_info->total_bytes) {
5047 if (used + orig_bytes <= space_info->total_bytes) {
5048 space_info->bytes_may_use += orig_bytes;
5049 trace_btrfs_space_reservation(root->fs_info,
5050 "space_info", space_info->flags, orig_bytes, 1);
5051 ret = 0;
5052 } else {
5053 /*
5054 * Ok set num_bytes to orig_bytes since we aren't
5055 * overocmmitted, this way we only try and reclaim what
5056 * we need.
5057 */
5058 num_bytes = orig_bytes;
5059 }
5060 } else {
5061 /*
5062 * Ok we're over committed, set num_bytes to the overcommitted
5063 * amount plus the amount of bytes that we need for this
5064 * reservation.
5065 */
5066 num_bytes = used - space_info->total_bytes +
5067 (orig_bytes * 2);
5068 }
5069
5070 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5071 space_info->bytes_may_use += orig_bytes;
5072 trace_btrfs_space_reservation(root->fs_info, "space_info",
5073 space_info->flags, orig_bytes,
5074 1);
5075 ret = 0;
5076 }
5077
5078 /*
5079 * Couldn't make our reservation, save our place so while we're trying
5080 * to reclaim space we can actually use it instead of somebody else
5081 * stealing it from us.
5082 *
5083 * We make the other tasks wait for the flush only when we can flush
5084 * all things.
5085 */
5086 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5087 flushing = true;
5088 space_info->flush = 1;
5089 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5090 used += orig_bytes;
5091 /*
5092 * We will do the space reservation dance during log replay,
5093 * which means we won't have fs_info->fs_root set, so don't do
5094 * the async reclaim as we will panic.
5095 */
5096 if (!root->fs_info->log_root_recovering &&
5097 need_do_async_reclaim(space_info, root->fs_info, used) &&
5098 !work_busy(&root->fs_info->async_reclaim_work))
5099 queue_work(system_unbound_wq,
5100 &root->fs_info->async_reclaim_work);
5101 }
5102 spin_unlock(&space_info->lock);
5103
5104 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5105 goto out;
5106
5107 ret = flush_space(root, space_info, num_bytes, orig_bytes,
5108 flush_state);
5109 flush_state++;
5110
5111 /*
5112 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5113 * would happen. So skip delalloc flush.
5114 */
5115 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5116 (flush_state == FLUSH_DELALLOC ||
5117 flush_state == FLUSH_DELALLOC_WAIT))
5118 flush_state = ALLOC_CHUNK;
5119
5120 if (!ret)
5121 goto again;
5122 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5123 flush_state < COMMIT_TRANS)
5124 goto again;
5125 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5126 flush_state <= COMMIT_TRANS)
5127 goto again;
5128
5129 out:
5130 if (ret == -ENOSPC &&
5131 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5132 struct btrfs_block_rsv *global_rsv =
5133 &root->fs_info->global_block_rsv;
5134
5135 if (block_rsv != global_rsv &&
5136 !block_rsv_use_bytes(global_rsv, orig_bytes))
5137 ret = 0;
5138 }
5139 if (ret == -ENOSPC)
5140 trace_btrfs_space_reservation(root->fs_info,
5141 "space_info:enospc",
5142 space_info->flags, orig_bytes, 1);
5143 if (flushing) {
5144 spin_lock(&space_info->lock);
5145 space_info->flush = 0;
5146 wake_up_all(&space_info->wait);
5147 spin_unlock(&space_info->lock);
5148 }
5149 return ret;
5150 }
5151
5152 static struct btrfs_block_rsv *get_block_rsv(
5153 const struct btrfs_trans_handle *trans,
5154 const struct btrfs_root *root)
5155 {
5156 struct btrfs_block_rsv *block_rsv = NULL;
5157
5158 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5159 (root == root->fs_info->csum_root && trans->adding_csums) ||
5160 (root == root->fs_info->uuid_root))
5161 block_rsv = trans->block_rsv;
5162
5163 if (!block_rsv)
5164 block_rsv = root->block_rsv;
5165
5166 if (!block_rsv)
5167 block_rsv = &root->fs_info->empty_block_rsv;
5168
5169 return block_rsv;
5170 }
5171
5172 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5173 u64 num_bytes)
5174 {
5175 int ret = -ENOSPC;
5176 spin_lock(&block_rsv->lock);
5177 if (block_rsv->reserved >= num_bytes) {
5178 block_rsv->reserved -= num_bytes;
5179 if (block_rsv->reserved < block_rsv->size)
5180 block_rsv->full = 0;
5181 ret = 0;
5182 }
5183 spin_unlock(&block_rsv->lock);
5184 return ret;
5185 }
5186
5187 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5188 u64 num_bytes, int update_size)
5189 {
5190 spin_lock(&block_rsv->lock);
5191 block_rsv->reserved += num_bytes;
5192 if (update_size)
5193 block_rsv->size += num_bytes;
5194 else if (block_rsv->reserved >= block_rsv->size)
5195 block_rsv->full = 1;
5196 spin_unlock(&block_rsv->lock);
5197 }
5198
5199 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5200 struct btrfs_block_rsv *dest, u64 num_bytes,
5201 int min_factor)
5202 {
5203 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5204 u64 min_bytes;
5205
5206 if (global_rsv->space_info != dest->space_info)
5207 return -ENOSPC;
5208
5209 spin_lock(&global_rsv->lock);
5210 min_bytes = div_factor(global_rsv->size, min_factor);
5211 if (global_rsv->reserved < min_bytes + num_bytes) {
5212 spin_unlock(&global_rsv->lock);
5213 return -ENOSPC;
5214 }
5215 global_rsv->reserved -= num_bytes;
5216 if (global_rsv->reserved < global_rsv->size)
5217 global_rsv->full = 0;
5218 spin_unlock(&global_rsv->lock);
5219
5220 block_rsv_add_bytes(dest, num_bytes, 1);
5221 return 0;
5222 }
5223
5224 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5225 struct btrfs_block_rsv *block_rsv,
5226 struct btrfs_block_rsv *dest, u64 num_bytes)
5227 {
5228 struct btrfs_space_info *space_info = block_rsv->space_info;
5229
5230 spin_lock(&block_rsv->lock);
5231 if (num_bytes == (u64)-1)
5232 num_bytes = block_rsv->size;
5233 block_rsv->size -= num_bytes;
5234 if (block_rsv->reserved >= block_rsv->size) {
5235 num_bytes = block_rsv->reserved - block_rsv->size;
5236 block_rsv->reserved = block_rsv->size;
5237 block_rsv->full = 1;
5238 } else {
5239 num_bytes = 0;
5240 }
5241 spin_unlock(&block_rsv->lock);
5242
5243 if (num_bytes > 0) {
5244 if (dest) {
5245 spin_lock(&dest->lock);
5246 if (!dest->full) {
5247 u64 bytes_to_add;
5248
5249 bytes_to_add = dest->size - dest->reserved;
5250 bytes_to_add = min(num_bytes, bytes_to_add);
5251 dest->reserved += bytes_to_add;
5252 if (dest->reserved >= dest->size)
5253 dest->full = 1;
5254 num_bytes -= bytes_to_add;
5255 }
5256 spin_unlock(&dest->lock);
5257 }
5258 if (num_bytes) {
5259 spin_lock(&space_info->lock);
5260 space_info->bytes_may_use -= num_bytes;
5261 trace_btrfs_space_reservation(fs_info, "space_info",
5262 space_info->flags, num_bytes, 0);
5263 spin_unlock(&space_info->lock);
5264 }
5265 }
5266 }
5267
5268 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5269 struct btrfs_block_rsv *dst, u64 num_bytes,
5270 int update_size)
5271 {
5272 int ret;
5273
5274 ret = block_rsv_use_bytes(src, num_bytes);
5275 if (ret)
5276 return ret;
5277
5278 block_rsv_add_bytes(dst, num_bytes, update_size);
5279 return 0;
5280 }
5281
5282 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5283 {
5284 memset(rsv, 0, sizeof(*rsv));
5285 spin_lock_init(&rsv->lock);
5286 rsv->type = type;
5287 }
5288
5289 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5290 unsigned short type)
5291 {
5292 struct btrfs_block_rsv *block_rsv;
5293 struct btrfs_fs_info *fs_info = root->fs_info;
5294
5295 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5296 if (!block_rsv)
5297 return NULL;
5298
5299 btrfs_init_block_rsv(block_rsv, type);
5300 block_rsv->space_info = __find_space_info(fs_info,
5301 BTRFS_BLOCK_GROUP_METADATA);
5302 return block_rsv;
5303 }
5304
5305 void btrfs_free_block_rsv(struct btrfs_root *root,
5306 struct btrfs_block_rsv *rsv)
5307 {
5308 if (!rsv)
5309 return;
5310 btrfs_block_rsv_release(root, rsv, (u64)-1);
5311 kfree(rsv);
5312 }
5313
5314 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5315 {
5316 kfree(rsv);
5317 }
5318
5319 int btrfs_block_rsv_add(struct btrfs_root *root,
5320 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5321 enum btrfs_reserve_flush_enum flush)
5322 {
5323 int ret;
5324
5325 if (num_bytes == 0)
5326 return 0;
5327
5328 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5329 if (!ret) {
5330 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5331 return 0;
5332 }
5333
5334 return ret;
5335 }
5336
5337 int btrfs_block_rsv_check(struct btrfs_root *root,
5338 struct btrfs_block_rsv *block_rsv, int min_factor)
5339 {
5340 u64 num_bytes = 0;
5341 int ret = -ENOSPC;
5342
5343 if (!block_rsv)
5344 return 0;
5345
5346 spin_lock(&block_rsv->lock);
5347 num_bytes = div_factor(block_rsv->size, min_factor);
5348 if (block_rsv->reserved >= num_bytes)
5349 ret = 0;
5350 spin_unlock(&block_rsv->lock);
5351
5352 return ret;
5353 }
5354
5355 int btrfs_block_rsv_refill(struct btrfs_root *root,
5356 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5357 enum btrfs_reserve_flush_enum flush)
5358 {
5359 u64 num_bytes = 0;
5360 int ret = -ENOSPC;
5361
5362 if (!block_rsv)
5363 return 0;
5364
5365 spin_lock(&block_rsv->lock);
5366 num_bytes = min_reserved;
5367 if (block_rsv->reserved >= num_bytes)
5368 ret = 0;
5369 else
5370 num_bytes -= block_rsv->reserved;
5371 spin_unlock(&block_rsv->lock);
5372
5373 if (!ret)
5374 return 0;
5375
5376 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5377 if (!ret) {
5378 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5379 return 0;
5380 }
5381
5382 return ret;
5383 }
5384
5385 void btrfs_block_rsv_release(struct btrfs_root *root,
5386 struct btrfs_block_rsv *block_rsv,
5387 u64 num_bytes)
5388 {
5389 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5390 if (global_rsv == block_rsv ||
5391 block_rsv->space_info != global_rsv->space_info)
5392 global_rsv = NULL;
5393 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5394 num_bytes);
5395 }
5396
5397 /*
5398 * helper to calculate size of global block reservation.
5399 * the desired value is sum of space used by extent tree,
5400 * checksum tree and root tree
5401 */
5402 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5403 {
5404 struct btrfs_space_info *sinfo;
5405 u64 num_bytes;
5406 u64 meta_used;
5407 u64 data_used;
5408 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5409
5410 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5411 spin_lock(&sinfo->lock);
5412 data_used = sinfo->bytes_used;
5413 spin_unlock(&sinfo->lock);
5414
5415 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5416 spin_lock(&sinfo->lock);
5417 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5418 data_used = 0;
5419 meta_used = sinfo->bytes_used;
5420 spin_unlock(&sinfo->lock);
5421
5422 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5423 csum_size * 2;
5424 num_bytes += div_u64(data_used + meta_used, 50);
5425
5426 if (num_bytes * 3 > meta_used)
5427 num_bytes = div_u64(meta_used, 3);
5428
5429 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5430 }
5431
5432 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5433 {
5434 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5435 struct btrfs_space_info *sinfo = block_rsv->space_info;
5436 u64 num_bytes;
5437
5438 num_bytes = calc_global_metadata_size(fs_info);
5439
5440 spin_lock(&sinfo->lock);
5441 spin_lock(&block_rsv->lock);
5442
5443 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5444
5445 if (block_rsv->reserved < block_rsv->size) {
5446 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5447 sinfo->bytes_reserved + sinfo->bytes_readonly +
5448 sinfo->bytes_may_use;
5449 if (sinfo->total_bytes > num_bytes) {
5450 num_bytes = sinfo->total_bytes - num_bytes;
5451 num_bytes = min(num_bytes,
5452 block_rsv->size - block_rsv->reserved);
5453 block_rsv->reserved += num_bytes;
5454 sinfo->bytes_may_use += num_bytes;
5455 trace_btrfs_space_reservation(fs_info, "space_info",
5456 sinfo->flags, num_bytes,
5457 1);
5458 }
5459 } else if (block_rsv->reserved > block_rsv->size) {
5460 num_bytes = block_rsv->reserved - block_rsv->size;
5461 sinfo->bytes_may_use -= num_bytes;
5462 trace_btrfs_space_reservation(fs_info, "space_info",
5463 sinfo->flags, num_bytes, 0);
5464 block_rsv->reserved = block_rsv->size;
5465 }
5466
5467 if (block_rsv->reserved == block_rsv->size)
5468 block_rsv->full = 1;
5469 else
5470 block_rsv->full = 0;
5471
5472 spin_unlock(&block_rsv->lock);
5473 spin_unlock(&sinfo->lock);
5474 }
5475
5476 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5477 {
5478 struct btrfs_space_info *space_info;
5479
5480 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5481 fs_info->chunk_block_rsv.space_info = space_info;
5482
5483 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5484 fs_info->global_block_rsv.space_info = space_info;
5485 fs_info->delalloc_block_rsv.space_info = space_info;
5486 fs_info->trans_block_rsv.space_info = space_info;
5487 fs_info->empty_block_rsv.space_info = space_info;
5488 fs_info->delayed_block_rsv.space_info = space_info;
5489
5490 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5491 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5492 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5493 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5494 if (fs_info->quota_root)
5495 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5496 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5497
5498 update_global_block_rsv(fs_info);
5499 }
5500
5501 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5502 {
5503 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5504 (u64)-1);
5505 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5506 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5507 WARN_ON(fs_info->trans_block_rsv.size > 0);
5508 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5509 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5510 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5511 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5512 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5513 }
5514
5515 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5516 struct btrfs_root *root)
5517 {
5518 if (!trans->block_rsv)
5519 return;
5520
5521 if (!trans->bytes_reserved)
5522 return;
5523
5524 trace_btrfs_space_reservation(root->fs_info, "transaction",
5525 trans->transid, trans->bytes_reserved, 0);
5526 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5527 trans->bytes_reserved = 0;
5528 }
5529
5530 /*
5531 * To be called after all the new block groups attached to the transaction
5532 * handle have been created (btrfs_create_pending_block_groups()).
5533 */
5534 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5535 {
5536 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5537
5538 if (!trans->chunk_bytes_reserved)
5539 return;
5540
5541 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5542
5543 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5544 trans->chunk_bytes_reserved);
5545 trans->chunk_bytes_reserved = 0;
5546 }
5547
5548 /* Can only return 0 or -ENOSPC */
5549 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5550 struct inode *inode)
5551 {
5552 struct btrfs_root *root = BTRFS_I(inode)->root;
5553 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5554 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5555
5556 /*
5557 * We need to hold space in order to delete our orphan item once we've
5558 * added it, so this takes the reservation so we can release it later
5559 * when we are truly done with the orphan item.
5560 */
5561 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5562 trace_btrfs_space_reservation(root->fs_info, "orphan",
5563 btrfs_ino(inode), num_bytes, 1);
5564 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5565 }
5566
5567 void btrfs_orphan_release_metadata(struct inode *inode)
5568 {
5569 struct btrfs_root *root = BTRFS_I(inode)->root;
5570 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5571 trace_btrfs_space_reservation(root->fs_info, "orphan",
5572 btrfs_ino(inode), num_bytes, 0);
5573 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5574 }
5575
5576 /*
5577 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5578 * root: the root of the parent directory
5579 * rsv: block reservation
5580 * items: the number of items that we need do reservation
5581 * qgroup_reserved: used to return the reserved size in qgroup
5582 *
5583 * This function is used to reserve the space for snapshot/subvolume
5584 * creation and deletion. Those operations are different with the
5585 * common file/directory operations, they change two fs/file trees
5586 * and root tree, the number of items that the qgroup reserves is
5587 * different with the free space reservation. So we can not use
5588 * the space reservation mechanism in start_transaction().
5589 */
5590 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5591 struct btrfs_block_rsv *rsv,
5592 int items,
5593 u64 *qgroup_reserved,
5594 bool use_global_rsv)
5595 {
5596 u64 num_bytes;
5597 int ret;
5598 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5599
5600 if (root->fs_info->quota_enabled) {
5601 /* One for parent inode, two for dir entries */
5602 num_bytes = 3 * root->nodesize;
5603 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5604 if (ret)
5605 return ret;
5606 } else {
5607 num_bytes = 0;
5608 }
5609
5610 *qgroup_reserved = num_bytes;
5611
5612 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5613 rsv->space_info = __find_space_info(root->fs_info,
5614 BTRFS_BLOCK_GROUP_METADATA);
5615 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5616 BTRFS_RESERVE_FLUSH_ALL);
5617
5618 if (ret == -ENOSPC && use_global_rsv)
5619 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5620
5621 if (ret && *qgroup_reserved)
5622 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5623
5624 return ret;
5625 }
5626
5627 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5628 struct btrfs_block_rsv *rsv,
5629 u64 qgroup_reserved)
5630 {
5631 btrfs_block_rsv_release(root, rsv, (u64)-1);
5632 }
5633
5634 /**
5635 * drop_outstanding_extent - drop an outstanding extent
5636 * @inode: the inode we're dropping the extent for
5637 * @num_bytes: the number of bytes we're releasing.
5638 *
5639 * This is called when we are freeing up an outstanding extent, either called
5640 * after an error or after an extent is written. This will return the number of
5641 * reserved extents that need to be freed. This must be called with
5642 * BTRFS_I(inode)->lock held.
5643 */
5644 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5645 {
5646 unsigned drop_inode_space = 0;
5647 unsigned dropped_extents = 0;
5648 unsigned num_extents = 0;
5649
5650 num_extents = (unsigned)div64_u64(num_bytes +
5651 BTRFS_MAX_EXTENT_SIZE - 1,
5652 BTRFS_MAX_EXTENT_SIZE);
5653 ASSERT(num_extents);
5654 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5655 BTRFS_I(inode)->outstanding_extents -= num_extents;
5656
5657 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5658 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5659 &BTRFS_I(inode)->runtime_flags))
5660 drop_inode_space = 1;
5661
5662 /*
5663 * If we have more or the same amount of outstanding extents than we have
5664 * reserved then we need to leave the reserved extents count alone.
5665 */
5666 if (BTRFS_I(inode)->outstanding_extents >=
5667 BTRFS_I(inode)->reserved_extents)
5668 return drop_inode_space;
5669
5670 dropped_extents = BTRFS_I(inode)->reserved_extents -
5671 BTRFS_I(inode)->outstanding_extents;
5672 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5673 return dropped_extents + drop_inode_space;
5674 }
5675
5676 /**
5677 * calc_csum_metadata_size - return the amount of metadata space that must be
5678 * reserved/freed for the given bytes.
5679 * @inode: the inode we're manipulating
5680 * @num_bytes: the number of bytes in question
5681 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5682 *
5683 * This adjusts the number of csum_bytes in the inode and then returns the
5684 * correct amount of metadata that must either be reserved or freed. We
5685 * calculate how many checksums we can fit into one leaf and then divide the
5686 * number of bytes that will need to be checksumed by this value to figure out
5687 * how many checksums will be required. If we are adding bytes then the number
5688 * may go up and we will return the number of additional bytes that must be
5689 * reserved. If it is going down we will return the number of bytes that must
5690 * be freed.
5691 *
5692 * This must be called with BTRFS_I(inode)->lock held.
5693 */
5694 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5695 int reserve)
5696 {
5697 struct btrfs_root *root = BTRFS_I(inode)->root;
5698 u64 old_csums, num_csums;
5699
5700 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5701 BTRFS_I(inode)->csum_bytes == 0)
5702 return 0;
5703
5704 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5705 if (reserve)
5706 BTRFS_I(inode)->csum_bytes += num_bytes;
5707 else
5708 BTRFS_I(inode)->csum_bytes -= num_bytes;
5709 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5710
5711 /* No change, no need to reserve more */
5712 if (old_csums == num_csums)
5713 return 0;
5714
5715 if (reserve)
5716 return btrfs_calc_trans_metadata_size(root,
5717 num_csums - old_csums);
5718
5719 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5720 }
5721
5722 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5723 {
5724 struct btrfs_root *root = BTRFS_I(inode)->root;
5725 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5726 u64 to_reserve = 0;
5727 u64 csum_bytes;
5728 unsigned nr_extents = 0;
5729 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5730 int ret = 0;
5731 bool delalloc_lock = true;
5732 u64 to_free = 0;
5733 unsigned dropped;
5734 bool release_extra = false;
5735
5736 /* If we are a free space inode we need to not flush since we will be in
5737 * the middle of a transaction commit. We also don't need the delalloc
5738 * mutex since we won't race with anybody. We need this mostly to make
5739 * lockdep shut its filthy mouth.
5740 */
5741 if (btrfs_is_free_space_inode(inode)) {
5742 flush = BTRFS_RESERVE_NO_FLUSH;
5743 delalloc_lock = false;
5744 }
5745
5746 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5747 btrfs_transaction_in_commit(root->fs_info))
5748 schedule_timeout(1);
5749
5750 if (delalloc_lock)
5751 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5752
5753 num_bytes = ALIGN(num_bytes, root->sectorsize);
5754
5755 spin_lock(&BTRFS_I(inode)->lock);
5756 nr_extents = (unsigned)div64_u64(num_bytes +
5757 BTRFS_MAX_EXTENT_SIZE - 1,
5758 BTRFS_MAX_EXTENT_SIZE);
5759 BTRFS_I(inode)->outstanding_extents += nr_extents;
5760
5761 nr_extents = 0;
5762 if (BTRFS_I(inode)->outstanding_extents >
5763 BTRFS_I(inode)->reserved_extents)
5764 nr_extents += BTRFS_I(inode)->outstanding_extents -
5765 BTRFS_I(inode)->reserved_extents;
5766
5767 /* We always want to reserve a slot for updating the inode. */
5768 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
5769 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5770 csum_bytes = BTRFS_I(inode)->csum_bytes;
5771 spin_unlock(&BTRFS_I(inode)->lock);
5772
5773 if (root->fs_info->quota_enabled) {
5774 ret = btrfs_qgroup_reserve_meta(root,
5775 nr_extents * root->nodesize);
5776 if (ret)
5777 goto out_fail;
5778 }
5779
5780 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5781 if (unlikely(ret)) {
5782 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5783 goto out_fail;
5784 }
5785
5786 spin_lock(&BTRFS_I(inode)->lock);
5787 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5788 &BTRFS_I(inode)->runtime_flags))
5789 release_extra = true;
5790 BTRFS_I(inode)->reserved_extents += nr_extents;
5791 spin_unlock(&BTRFS_I(inode)->lock);
5792
5793 if (delalloc_lock)
5794 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5795
5796 if (to_reserve)
5797 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5798 btrfs_ino(inode), to_reserve, 1);
5799 if (release_extra)
5800 btrfs_block_rsv_release(root, block_rsv,
5801 btrfs_calc_trans_metadata_size(root,
5802 1));
5803 return 0;
5804
5805 out_fail:
5806 spin_lock(&BTRFS_I(inode)->lock);
5807 dropped = drop_outstanding_extent(inode, num_bytes);
5808 /*
5809 * If the inodes csum_bytes is the same as the original
5810 * csum_bytes then we know we haven't raced with any free()ers
5811 * so we can just reduce our inodes csum bytes and carry on.
5812 */
5813 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5814 calc_csum_metadata_size(inode, num_bytes, 0);
5815 } else {
5816 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5817 u64 bytes;
5818
5819 /*
5820 * This is tricky, but first we need to figure out how much we
5821 * freed from any free-ers that occurred during this
5822 * reservation, so we reset ->csum_bytes to the csum_bytes
5823 * before we dropped our lock, and then call the free for the
5824 * number of bytes that were freed while we were trying our
5825 * reservation.
5826 */
5827 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5828 BTRFS_I(inode)->csum_bytes = csum_bytes;
5829 to_free = calc_csum_metadata_size(inode, bytes, 0);
5830
5831
5832 /*
5833 * Now we need to see how much we would have freed had we not
5834 * been making this reservation and our ->csum_bytes were not
5835 * artificially inflated.
5836 */
5837 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5838 bytes = csum_bytes - orig_csum_bytes;
5839 bytes = calc_csum_metadata_size(inode, bytes, 0);
5840
5841 /*
5842 * Now reset ->csum_bytes to what it should be. If bytes is
5843 * more than to_free then we would have freed more space had we
5844 * not had an artificially high ->csum_bytes, so we need to free
5845 * the remainder. If bytes is the same or less then we don't
5846 * need to do anything, the other free-ers did the correct
5847 * thing.
5848 */
5849 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5850 if (bytes > to_free)
5851 to_free = bytes - to_free;
5852 else
5853 to_free = 0;
5854 }
5855 spin_unlock(&BTRFS_I(inode)->lock);
5856 if (dropped)
5857 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5858
5859 if (to_free) {
5860 btrfs_block_rsv_release(root, block_rsv, to_free);
5861 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5862 btrfs_ino(inode), to_free, 0);
5863 }
5864 if (delalloc_lock)
5865 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5866 return ret;
5867 }
5868
5869 /**
5870 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5871 * @inode: the inode to release the reservation for
5872 * @num_bytes: the number of bytes we're releasing
5873 *
5874 * This will release the metadata reservation for an inode. This can be called
5875 * once we complete IO for a given set of bytes to release their metadata
5876 * reservations.
5877 */
5878 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5879 {
5880 struct btrfs_root *root = BTRFS_I(inode)->root;
5881 u64 to_free = 0;
5882 unsigned dropped;
5883
5884 num_bytes = ALIGN(num_bytes, root->sectorsize);
5885 spin_lock(&BTRFS_I(inode)->lock);
5886 dropped = drop_outstanding_extent(inode, num_bytes);
5887
5888 if (num_bytes)
5889 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5890 spin_unlock(&BTRFS_I(inode)->lock);
5891 if (dropped > 0)
5892 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5893
5894 if (btrfs_test_is_dummy_root(root))
5895 return;
5896
5897 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5898 btrfs_ino(inode), to_free, 0);
5899
5900 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5901 to_free);
5902 }
5903
5904 /**
5905 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5906 * delalloc
5907 * @inode: inode we're writing to
5908 * @start: start range we are writing to
5909 * @len: how long the range we are writing to
5910 *
5911 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5912 *
5913 * This will do the following things
5914 *
5915 * o reserve space in data space info for num bytes
5916 * and reserve precious corresponding qgroup space
5917 * (Done in check_data_free_space)
5918 *
5919 * o reserve space for metadata space, based on the number of outstanding
5920 * extents and how much csums will be needed
5921 * also reserve metadata space in a per root over-reserve method.
5922 * o add to the inodes->delalloc_bytes
5923 * o add it to the fs_info's delalloc inodes list.
5924 * (Above 3 all done in delalloc_reserve_metadata)
5925 *
5926 * Return 0 for success
5927 * Return <0 for error(-ENOSPC or -EQUOT)
5928 */
5929 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5930 {
5931 int ret;
5932
5933 ret = btrfs_check_data_free_space(inode, start, len);
5934 if (ret < 0)
5935 return ret;
5936 ret = btrfs_delalloc_reserve_metadata(inode, len);
5937 if (ret < 0)
5938 btrfs_free_reserved_data_space(inode, start, len);
5939 return ret;
5940 }
5941
5942 /**
5943 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5944 * @inode: inode we're releasing space for
5945 * @start: start position of the space already reserved
5946 * @len: the len of the space already reserved
5947 *
5948 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5949 * called in the case that we don't need the metadata AND data reservations
5950 * anymore. So if there is an error or we insert an inline extent.
5951 *
5952 * This function will release the metadata space that was not used and will
5953 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5954 * list if there are no delalloc bytes left.
5955 * Also it will handle the qgroup reserved space.
5956 */
5957 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5958 {
5959 btrfs_delalloc_release_metadata(inode, len);
5960 btrfs_free_reserved_data_space(inode, start, len);
5961 }
5962
5963 static int update_block_group(struct btrfs_trans_handle *trans,
5964 struct btrfs_root *root, u64 bytenr,
5965 u64 num_bytes, int alloc)
5966 {
5967 struct btrfs_block_group_cache *cache = NULL;
5968 struct btrfs_fs_info *info = root->fs_info;
5969 u64 total = num_bytes;
5970 u64 old_val;
5971 u64 byte_in_group;
5972 int factor;
5973
5974 /* block accounting for super block */
5975 spin_lock(&info->delalloc_root_lock);
5976 old_val = btrfs_super_bytes_used(info->super_copy);
5977 if (alloc)
5978 old_val += num_bytes;
5979 else
5980 old_val -= num_bytes;
5981 btrfs_set_super_bytes_used(info->super_copy, old_val);
5982 spin_unlock(&info->delalloc_root_lock);
5983
5984 while (total) {
5985 cache = btrfs_lookup_block_group(info, bytenr);
5986 if (!cache)
5987 return -ENOENT;
5988 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5989 BTRFS_BLOCK_GROUP_RAID1 |
5990 BTRFS_BLOCK_GROUP_RAID10))
5991 factor = 2;
5992 else
5993 factor = 1;
5994 /*
5995 * If this block group has free space cache written out, we
5996 * need to make sure to load it if we are removing space. This
5997 * is because we need the unpinning stage to actually add the
5998 * space back to the block group, otherwise we will leak space.
5999 */
6000 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6001 cache_block_group(cache, 1);
6002
6003 byte_in_group = bytenr - cache->key.objectid;
6004 WARN_ON(byte_in_group > cache->key.offset);
6005
6006 spin_lock(&cache->space_info->lock);
6007 spin_lock(&cache->lock);
6008
6009 if (btrfs_test_opt(root, SPACE_CACHE) &&
6010 cache->disk_cache_state < BTRFS_DC_CLEAR)
6011 cache->disk_cache_state = BTRFS_DC_CLEAR;
6012
6013 old_val = btrfs_block_group_used(&cache->item);
6014 num_bytes = min(total, cache->key.offset - byte_in_group);
6015 if (alloc) {
6016 old_val += num_bytes;
6017 btrfs_set_block_group_used(&cache->item, old_val);
6018 cache->reserved -= num_bytes;
6019 cache->space_info->bytes_reserved -= num_bytes;
6020 cache->space_info->bytes_used += num_bytes;
6021 cache->space_info->disk_used += num_bytes * factor;
6022 spin_unlock(&cache->lock);
6023 spin_unlock(&cache->space_info->lock);
6024 } else {
6025 old_val -= num_bytes;
6026 btrfs_set_block_group_used(&cache->item, old_val);
6027 cache->pinned += num_bytes;
6028 cache->space_info->bytes_pinned += num_bytes;
6029 cache->space_info->bytes_used -= num_bytes;
6030 cache->space_info->disk_used -= num_bytes * factor;
6031 spin_unlock(&cache->lock);
6032 spin_unlock(&cache->space_info->lock);
6033
6034 set_extent_dirty(info->pinned_extents,
6035 bytenr, bytenr + num_bytes - 1,
6036 GFP_NOFS | __GFP_NOFAIL);
6037 }
6038
6039 spin_lock(&trans->transaction->dirty_bgs_lock);
6040 if (list_empty(&cache->dirty_list)) {
6041 list_add_tail(&cache->dirty_list,
6042 &trans->transaction->dirty_bgs);
6043 trans->transaction->num_dirty_bgs++;
6044 btrfs_get_block_group(cache);
6045 }
6046 spin_unlock(&trans->transaction->dirty_bgs_lock);
6047
6048 /*
6049 * No longer have used bytes in this block group, queue it for
6050 * deletion. We do this after adding the block group to the
6051 * dirty list to avoid races between cleaner kthread and space
6052 * cache writeout.
6053 */
6054 if (!alloc && old_val == 0) {
6055 spin_lock(&info->unused_bgs_lock);
6056 if (list_empty(&cache->bg_list)) {
6057 btrfs_get_block_group(cache);
6058 list_add_tail(&cache->bg_list,
6059 &info->unused_bgs);
6060 }
6061 spin_unlock(&info->unused_bgs_lock);
6062 }
6063
6064 btrfs_put_block_group(cache);
6065 total -= num_bytes;
6066 bytenr += num_bytes;
6067 }
6068 return 0;
6069 }
6070
6071 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6072 {
6073 struct btrfs_block_group_cache *cache;
6074 u64 bytenr;
6075
6076 spin_lock(&root->fs_info->block_group_cache_lock);
6077 bytenr = root->fs_info->first_logical_byte;
6078 spin_unlock(&root->fs_info->block_group_cache_lock);
6079
6080 if (bytenr < (u64)-1)
6081 return bytenr;
6082
6083 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6084 if (!cache)
6085 return 0;
6086
6087 bytenr = cache->key.objectid;
6088 btrfs_put_block_group(cache);
6089
6090 return bytenr;
6091 }
6092
6093 static int pin_down_extent(struct btrfs_root *root,
6094 struct btrfs_block_group_cache *cache,
6095 u64 bytenr, u64 num_bytes, int reserved)
6096 {
6097 spin_lock(&cache->space_info->lock);
6098 spin_lock(&cache->lock);
6099 cache->pinned += num_bytes;
6100 cache->space_info->bytes_pinned += num_bytes;
6101 if (reserved) {
6102 cache->reserved -= num_bytes;
6103 cache->space_info->bytes_reserved -= num_bytes;
6104 }
6105 spin_unlock(&cache->lock);
6106 spin_unlock(&cache->space_info->lock);
6107
6108 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6109 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6110 if (reserved)
6111 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6112 return 0;
6113 }
6114
6115 /*
6116 * this function must be called within transaction
6117 */
6118 int btrfs_pin_extent(struct btrfs_root *root,
6119 u64 bytenr, u64 num_bytes, int reserved)
6120 {
6121 struct btrfs_block_group_cache *cache;
6122
6123 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6124 BUG_ON(!cache); /* Logic error */
6125
6126 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6127
6128 btrfs_put_block_group(cache);
6129 return 0;
6130 }
6131
6132 /*
6133 * this function must be called within transaction
6134 */
6135 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6136 u64 bytenr, u64 num_bytes)
6137 {
6138 struct btrfs_block_group_cache *cache;
6139 int ret;
6140
6141 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6142 if (!cache)
6143 return -EINVAL;
6144
6145 /*
6146 * pull in the free space cache (if any) so that our pin
6147 * removes the free space from the cache. We have load_only set
6148 * to one because the slow code to read in the free extents does check
6149 * the pinned extents.
6150 */
6151 cache_block_group(cache, 1);
6152
6153 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6154
6155 /* remove us from the free space cache (if we're there at all) */
6156 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6157 btrfs_put_block_group(cache);
6158 return ret;
6159 }
6160
6161 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6162 {
6163 int ret;
6164 struct btrfs_block_group_cache *block_group;
6165 struct btrfs_caching_control *caching_ctl;
6166
6167 block_group = btrfs_lookup_block_group(root->fs_info, start);
6168 if (!block_group)
6169 return -EINVAL;
6170
6171 cache_block_group(block_group, 0);
6172 caching_ctl = get_caching_control(block_group);
6173
6174 if (!caching_ctl) {
6175 /* Logic error */
6176 BUG_ON(!block_group_cache_done(block_group));
6177 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6178 } else {
6179 mutex_lock(&caching_ctl->mutex);
6180
6181 if (start >= caching_ctl->progress) {
6182 ret = add_excluded_extent(root, start, num_bytes);
6183 } else if (start + num_bytes <= caching_ctl->progress) {
6184 ret = btrfs_remove_free_space(block_group,
6185 start, num_bytes);
6186 } else {
6187 num_bytes = caching_ctl->progress - start;
6188 ret = btrfs_remove_free_space(block_group,
6189 start, num_bytes);
6190 if (ret)
6191 goto out_lock;
6192
6193 num_bytes = (start + num_bytes) -
6194 caching_ctl->progress;
6195 start = caching_ctl->progress;
6196 ret = add_excluded_extent(root, start, num_bytes);
6197 }
6198 out_lock:
6199 mutex_unlock(&caching_ctl->mutex);
6200 put_caching_control(caching_ctl);
6201 }
6202 btrfs_put_block_group(block_group);
6203 return ret;
6204 }
6205
6206 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6207 struct extent_buffer *eb)
6208 {
6209 struct btrfs_file_extent_item *item;
6210 struct btrfs_key key;
6211 int found_type;
6212 int i;
6213
6214 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6215 return 0;
6216
6217 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6218 btrfs_item_key_to_cpu(eb, &key, i);
6219 if (key.type != BTRFS_EXTENT_DATA_KEY)
6220 continue;
6221 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6222 found_type = btrfs_file_extent_type(eb, item);
6223 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6224 continue;
6225 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6226 continue;
6227 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6228 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6229 __exclude_logged_extent(log, key.objectid, key.offset);
6230 }
6231
6232 return 0;
6233 }
6234
6235 static void
6236 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6237 {
6238 atomic_inc(&bg->reservations);
6239 }
6240
6241 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6242 const u64 start)
6243 {
6244 struct btrfs_block_group_cache *bg;
6245
6246 bg = btrfs_lookup_block_group(fs_info, start);
6247 ASSERT(bg);
6248 if (atomic_dec_and_test(&bg->reservations))
6249 wake_up_atomic_t(&bg->reservations);
6250 btrfs_put_block_group(bg);
6251 }
6252
6253 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6254 {
6255 schedule();
6256 return 0;
6257 }
6258
6259 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6260 {
6261 struct btrfs_space_info *space_info = bg->space_info;
6262
6263 ASSERT(bg->ro);
6264
6265 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6266 return;
6267
6268 /*
6269 * Our block group is read only but before we set it to read only,
6270 * some task might have had allocated an extent from it already, but it
6271 * has not yet created a respective ordered extent (and added it to a
6272 * root's list of ordered extents).
6273 * Therefore wait for any task currently allocating extents, since the
6274 * block group's reservations counter is incremented while a read lock
6275 * on the groups' semaphore is held and decremented after releasing
6276 * the read access on that semaphore and creating the ordered extent.
6277 */
6278 down_write(&space_info->groups_sem);
6279 up_write(&space_info->groups_sem);
6280
6281 wait_on_atomic_t(&bg->reservations,
6282 btrfs_wait_bg_reservations_atomic_t,
6283 TASK_UNINTERRUPTIBLE);
6284 }
6285
6286 /**
6287 * btrfs_update_reserved_bytes - update the block_group and space info counters
6288 * @cache: The cache we are manipulating
6289 * @num_bytes: The number of bytes in question
6290 * @reserve: One of the reservation enums
6291 * @delalloc: The blocks are allocated for the delalloc write
6292 *
6293 * This is called by the allocator when it reserves space, or by somebody who is
6294 * freeing space that was never actually used on disk. For example if you
6295 * reserve some space for a new leaf in transaction A and before transaction A
6296 * commits you free that leaf, you call this with reserve set to 0 in order to
6297 * clear the reservation.
6298 *
6299 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6300 * ENOSPC accounting. For data we handle the reservation through clearing the
6301 * delalloc bits in the io_tree. We have to do this since we could end up
6302 * allocating less disk space for the amount of data we have reserved in the
6303 * case of compression.
6304 *
6305 * If this is a reservation and the block group has become read only we cannot
6306 * make the reservation and return -EAGAIN, otherwise this function always
6307 * succeeds.
6308 */
6309 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6310 u64 num_bytes, int reserve, int delalloc)
6311 {
6312 struct btrfs_space_info *space_info = cache->space_info;
6313 int ret = 0;
6314
6315 spin_lock(&space_info->lock);
6316 spin_lock(&cache->lock);
6317 if (reserve != RESERVE_FREE) {
6318 if (cache->ro) {
6319 ret = -EAGAIN;
6320 } else {
6321 cache->reserved += num_bytes;
6322 space_info->bytes_reserved += num_bytes;
6323 if (reserve == RESERVE_ALLOC) {
6324 trace_btrfs_space_reservation(cache->fs_info,
6325 "space_info", space_info->flags,
6326 num_bytes, 0);
6327 space_info->bytes_may_use -= num_bytes;
6328 }
6329
6330 if (delalloc)
6331 cache->delalloc_bytes += num_bytes;
6332 }
6333 } else {
6334 if (cache->ro)
6335 space_info->bytes_readonly += num_bytes;
6336 cache->reserved -= num_bytes;
6337 space_info->bytes_reserved -= num_bytes;
6338
6339 if (delalloc)
6340 cache->delalloc_bytes -= num_bytes;
6341 }
6342 spin_unlock(&cache->lock);
6343 spin_unlock(&space_info->lock);
6344 return ret;
6345 }
6346
6347 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6348 struct btrfs_root *root)
6349 {
6350 struct btrfs_fs_info *fs_info = root->fs_info;
6351 struct btrfs_caching_control *next;
6352 struct btrfs_caching_control *caching_ctl;
6353 struct btrfs_block_group_cache *cache;
6354
6355 down_write(&fs_info->commit_root_sem);
6356
6357 list_for_each_entry_safe(caching_ctl, next,
6358 &fs_info->caching_block_groups, list) {
6359 cache = caching_ctl->block_group;
6360 if (block_group_cache_done(cache)) {
6361 cache->last_byte_to_unpin = (u64)-1;
6362 list_del_init(&caching_ctl->list);
6363 put_caching_control(caching_ctl);
6364 } else {
6365 cache->last_byte_to_unpin = caching_ctl->progress;
6366 }
6367 }
6368
6369 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6370 fs_info->pinned_extents = &fs_info->freed_extents[1];
6371 else
6372 fs_info->pinned_extents = &fs_info->freed_extents[0];
6373
6374 up_write(&fs_info->commit_root_sem);
6375
6376 update_global_block_rsv(fs_info);
6377 }
6378
6379 /*
6380 * Returns the free cluster for the given space info and sets empty_cluster to
6381 * what it should be based on the mount options.
6382 */
6383 static struct btrfs_free_cluster *
6384 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6385 u64 *empty_cluster)
6386 {
6387 struct btrfs_free_cluster *ret = NULL;
6388 bool ssd = btrfs_test_opt(root, SSD);
6389
6390 *empty_cluster = 0;
6391 if (btrfs_mixed_space_info(space_info))
6392 return ret;
6393
6394 if (ssd)
6395 *empty_cluster = SZ_2M;
6396 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6397 ret = &root->fs_info->meta_alloc_cluster;
6398 if (!ssd)
6399 *empty_cluster = SZ_64K;
6400 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6401 ret = &root->fs_info->data_alloc_cluster;
6402 }
6403
6404 return ret;
6405 }
6406
6407 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6408 const bool return_free_space)
6409 {
6410 struct btrfs_fs_info *fs_info = root->fs_info;
6411 struct btrfs_block_group_cache *cache = NULL;
6412 struct btrfs_space_info *space_info;
6413 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6414 struct btrfs_free_cluster *cluster = NULL;
6415 u64 len;
6416 u64 total_unpinned = 0;
6417 u64 empty_cluster = 0;
6418 bool readonly;
6419
6420 while (start <= end) {
6421 readonly = false;
6422 if (!cache ||
6423 start >= cache->key.objectid + cache->key.offset) {
6424 if (cache)
6425 btrfs_put_block_group(cache);
6426 total_unpinned = 0;
6427 cache = btrfs_lookup_block_group(fs_info, start);
6428 BUG_ON(!cache); /* Logic error */
6429
6430 cluster = fetch_cluster_info(root,
6431 cache->space_info,
6432 &empty_cluster);
6433 empty_cluster <<= 1;
6434 }
6435
6436 len = cache->key.objectid + cache->key.offset - start;
6437 len = min(len, end + 1 - start);
6438
6439 if (start < cache->last_byte_to_unpin) {
6440 len = min(len, cache->last_byte_to_unpin - start);
6441 if (return_free_space)
6442 btrfs_add_free_space(cache, start, len);
6443 }
6444
6445 start += len;
6446 total_unpinned += len;
6447 space_info = cache->space_info;
6448
6449 /*
6450 * If this space cluster has been marked as fragmented and we've
6451 * unpinned enough in this block group to potentially allow a
6452 * cluster to be created inside of it go ahead and clear the
6453 * fragmented check.
6454 */
6455 if (cluster && cluster->fragmented &&
6456 total_unpinned > empty_cluster) {
6457 spin_lock(&cluster->lock);
6458 cluster->fragmented = 0;
6459 spin_unlock(&cluster->lock);
6460 }
6461
6462 spin_lock(&space_info->lock);
6463 spin_lock(&cache->lock);
6464 cache->pinned -= len;
6465 space_info->bytes_pinned -= len;
6466 space_info->max_extent_size = 0;
6467 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6468 if (cache->ro) {
6469 space_info->bytes_readonly += len;
6470 readonly = true;
6471 }
6472 spin_unlock(&cache->lock);
6473 if (!readonly && global_rsv->space_info == space_info) {
6474 spin_lock(&global_rsv->lock);
6475 if (!global_rsv->full) {
6476 len = min(len, global_rsv->size -
6477 global_rsv->reserved);
6478 global_rsv->reserved += len;
6479 space_info->bytes_may_use += len;
6480 if (global_rsv->reserved >= global_rsv->size)
6481 global_rsv->full = 1;
6482 }
6483 spin_unlock(&global_rsv->lock);
6484 }
6485 spin_unlock(&space_info->lock);
6486 }
6487
6488 if (cache)
6489 btrfs_put_block_group(cache);
6490 return 0;
6491 }
6492
6493 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6494 struct btrfs_root *root)
6495 {
6496 struct btrfs_fs_info *fs_info = root->fs_info;
6497 struct btrfs_block_group_cache *block_group, *tmp;
6498 struct list_head *deleted_bgs;
6499 struct extent_io_tree *unpin;
6500 u64 start;
6501 u64 end;
6502 int ret;
6503
6504 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6505 unpin = &fs_info->freed_extents[1];
6506 else
6507 unpin = &fs_info->freed_extents[0];
6508
6509 while (!trans->aborted) {
6510 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6511 ret = find_first_extent_bit(unpin, 0, &start, &end,
6512 EXTENT_DIRTY, NULL);
6513 if (ret) {
6514 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6515 break;
6516 }
6517
6518 if (btrfs_test_opt(root, DISCARD))
6519 ret = btrfs_discard_extent(root, start,
6520 end + 1 - start, NULL);
6521
6522 clear_extent_dirty(unpin, start, end);
6523 unpin_extent_range(root, start, end, true);
6524 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6525 cond_resched();
6526 }
6527
6528 /*
6529 * Transaction is finished. We don't need the lock anymore. We
6530 * do need to clean up the block groups in case of a transaction
6531 * abort.
6532 */
6533 deleted_bgs = &trans->transaction->deleted_bgs;
6534 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6535 u64 trimmed = 0;
6536
6537 ret = -EROFS;
6538 if (!trans->aborted)
6539 ret = btrfs_discard_extent(root,
6540 block_group->key.objectid,
6541 block_group->key.offset,
6542 &trimmed);
6543
6544 list_del_init(&block_group->bg_list);
6545 btrfs_put_block_group_trimming(block_group);
6546 btrfs_put_block_group(block_group);
6547
6548 if (ret) {
6549 const char *errstr = btrfs_decode_error(ret);
6550 btrfs_warn(fs_info,
6551 "Discard failed while removing blockgroup: errno=%d %s\n",
6552 ret, errstr);
6553 }
6554 }
6555
6556 return 0;
6557 }
6558
6559 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6560 u64 owner, u64 root_objectid)
6561 {
6562 struct btrfs_space_info *space_info;
6563 u64 flags;
6564
6565 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6566 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6567 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6568 else
6569 flags = BTRFS_BLOCK_GROUP_METADATA;
6570 } else {
6571 flags = BTRFS_BLOCK_GROUP_DATA;
6572 }
6573
6574 space_info = __find_space_info(fs_info, flags);
6575 BUG_ON(!space_info); /* Logic bug */
6576 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6577 }
6578
6579
6580 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6581 struct btrfs_root *root,
6582 struct btrfs_delayed_ref_node *node, u64 parent,
6583 u64 root_objectid, u64 owner_objectid,
6584 u64 owner_offset, int refs_to_drop,
6585 struct btrfs_delayed_extent_op *extent_op)
6586 {
6587 struct btrfs_key key;
6588 struct btrfs_path *path;
6589 struct btrfs_fs_info *info = root->fs_info;
6590 struct btrfs_root *extent_root = info->extent_root;
6591 struct extent_buffer *leaf;
6592 struct btrfs_extent_item *ei;
6593 struct btrfs_extent_inline_ref *iref;
6594 int ret;
6595 int is_data;
6596 int extent_slot = 0;
6597 int found_extent = 0;
6598 int num_to_del = 1;
6599 u32 item_size;
6600 u64 refs;
6601 u64 bytenr = node->bytenr;
6602 u64 num_bytes = node->num_bytes;
6603 int last_ref = 0;
6604 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6605 SKINNY_METADATA);
6606
6607 path = btrfs_alloc_path();
6608 if (!path)
6609 return -ENOMEM;
6610
6611 path->reada = READA_FORWARD;
6612 path->leave_spinning = 1;
6613
6614 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6615 BUG_ON(!is_data && refs_to_drop != 1);
6616
6617 if (is_data)
6618 skinny_metadata = 0;
6619
6620 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6621 bytenr, num_bytes, parent,
6622 root_objectid, owner_objectid,
6623 owner_offset);
6624 if (ret == 0) {
6625 extent_slot = path->slots[0];
6626 while (extent_slot >= 0) {
6627 btrfs_item_key_to_cpu(path->nodes[0], &key,
6628 extent_slot);
6629 if (key.objectid != bytenr)
6630 break;
6631 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6632 key.offset == num_bytes) {
6633 found_extent = 1;
6634 break;
6635 }
6636 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6637 key.offset == owner_objectid) {
6638 found_extent = 1;
6639 break;
6640 }
6641 if (path->slots[0] - extent_slot > 5)
6642 break;
6643 extent_slot--;
6644 }
6645 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6646 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6647 if (found_extent && item_size < sizeof(*ei))
6648 found_extent = 0;
6649 #endif
6650 if (!found_extent) {
6651 BUG_ON(iref);
6652 ret = remove_extent_backref(trans, extent_root, path,
6653 NULL, refs_to_drop,
6654 is_data, &last_ref);
6655 if (ret) {
6656 btrfs_abort_transaction(trans, extent_root, ret);
6657 goto out;
6658 }
6659 btrfs_release_path(path);
6660 path->leave_spinning = 1;
6661
6662 key.objectid = bytenr;
6663 key.type = BTRFS_EXTENT_ITEM_KEY;
6664 key.offset = num_bytes;
6665
6666 if (!is_data && skinny_metadata) {
6667 key.type = BTRFS_METADATA_ITEM_KEY;
6668 key.offset = owner_objectid;
6669 }
6670
6671 ret = btrfs_search_slot(trans, extent_root,
6672 &key, path, -1, 1);
6673 if (ret > 0 && skinny_metadata && path->slots[0]) {
6674 /*
6675 * Couldn't find our skinny metadata item,
6676 * see if we have ye olde extent item.
6677 */
6678 path->slots[0]--;
6679 btrfs_item_key_to_cpu(path->nodes[0], &key,
6680 path->slots[0]);
6681 if (key.objectid == bytenr &&
6682 key.type == BTRFS_EXTENT_ITEM_KEY &&
6683 key.offset == num_bytes)
6684 ret = 0;
6685 }
6686
6687 if (ret > 0 && skinny_metadata) {
6688 skinny_metadata = false;
6689 key.objectid = bytenr;
6690 key.type = BTRFS_EXTENT_ITEM_KEY;
6691 key.offset = num_bytes;
6692 btrfs_release_path(path);
6693 ret = btrfs_search_slot(trans, extent_root,
6694 &key, path, -1, 1);
6695 }
6696
6697 if (ret) {
6698 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6699 ret, bytenr);
6700 if (ret > 0)
6701 btrfs_print_leaf(extent_root,
6702 path->nodes[0]);
6703 }
6704 if (ret < 0) {
6705 btrfs_abort_transaction(trans, extent_root, ret);
6706 goto out;
6707 }
6708 extent_slot = path->slots[0];
6709 }
6710 } else if (WARN_ON(ret == -ENOENT)) {
6711 btrfs_print_leaf(extent_root, path->nodes[0]);
6712 btrfs_err(info,
6713 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6714 bytenr, parent, root_objectid, owner_objectid,
6715 owner_offset);
6716 btrfs_abort_transaction(trans, extent_root, ret);
6717 goto out;
6718 } else {
6719 btrfs_abort_transaction(trans, extent_root, ret);
6720 goto out;
6721 }
6722
6723 leaf = path->nodes[0];
6724 item_size = btrfs_item_size_nr(leaf, extent_slot);
6725 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6726 if (item_size < sizeof(*ei)) {
6727 BUG_ON(found_extent || extent_slot != path->slots[0]);
6728 ret = convert_extent_item_v0(trans, extent_root, path,
6729 owner_objectid, 0);
6730 if (ret < 0) {
6731 btrfs_abort_transaction(trans, extent_root, ret);
6732 goto out;
6733 }
6734
6735 btrfs_release_path(path);
6736 path->leave_spinning = 1;
6737
6738 key.objectid = bytenr;
6739 key.type = BTRFS_EXTENT_ITEM_KEY;
6740 key.offset = num_bytes;
6741
6742 ret = btrfs_search_slot(trans, extent_root, &key, path,
6743 -1, 1);
6744 if (ret) {
6745 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6746 ret, bytenr);
6747 btrfs_print_leaf(extent_root, path->nodes[0]);
6748 }
6749 if (ret < 0) {
6750 btrfs_abort_transaction(trans, extent_root, ret);
6751 goto out;
6752 }
6753
6754 extent_slot = path->slots[0];
6755 leaf = path->nodes[0];
6756 item_size = btrfs_item_size_nr(leaf, extent_slot);
6757 }
6758 #endif
6759 BUG_ON(item_size < sizeof(*ei));
6760 ei = btrfs_item_ptr(leaf, extent_slot,
6761 struct btrfs_extent_item);
6762 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6763 key.type == BTRFS_EXTENT_ITEM_KEY) {
6764 struct btrfs_tree_block_info *bi;
6765 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6766 bi = (struct btrfs_tree_block_info *)(ei + 1);
6767 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6768 }
6769
6770 refs = btrfs_extent_refs(leaf, ei);
6771 if (refs < refs_to_drop) {
6772 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6773 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6774 ret = -EINVAL;
6775 btrfs_abort_transaction(trans, extent_root, ret);
6776 goto out;
6777 }
6778 refs -= refs_to_drop;
6779
6780 if (refs > 0) {
6781 if (extent_op)
6782 __run_delayed_extent_op(extent_op, leaf, ei);
6783 /*
6784 * In the case of inline back ref, reference count will
6785 * be updated by remove_extent_backref
6786 */
6787 if (iref) {
6788 BUG_ON(!found_extent);
6789 } else {
6790 btrfs_set_extent_refs(leaf, ei, refs);
6791 btrfs_mark_buffer_dirty(leaf);
6792 }
6793 if (found_extent) {
6794 ret = remove_extent_backref(trans, extent_root, path,
6795 iref, refs_to_drop,
6796 is_data, &last_ref);
6797 if (ret) {
6798 btrfs_abort_transaction(trans, extent_root, ret);
6799 goto out;
6800 }
6801 }
6802 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6803 root_objectid);
6804 } else {
6805 if (found_extent) {
6806 BUG_ON(is_data && refs_to_drop !=
6807 extent_data_ref_count(path, iref));
6808 if (iref) {
6809 BUG_ON(path->slots[0] != extent_slot);
6810 } else {
6811 BUG_ON(path->slots[0] != extent_slot + 1);
6812 path->slots[0] = extent_slot;
6813 num_to_del = 2;
6814 }
6815 }
6816
6817 last_ref = 1;
6818 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6819 num_to_del);
6820 if (ret) {
6821 btrfs_abort_transaction(trans, extent_root, ret);
6822 goto out;
6823 }
6824 btrfs_release_path(path);
6825
6826 if (is_data) {
6827 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6828 if (ret) {
6829 btrfs_abort_transaction(trans, extent_root, ret);
6830 goto out;
6831 }
6832 }
6833
6834 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6835 num_bytes);
6836 if (ret) {
6837 btrfs_abort_transaction(trans, extent_root, ret);
6838 goto out;
6839 }
6840
6841 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6842 if (ret) {
6843 btrfs_abort_transaction(trans, extent_root, ret);
6844 goto out;
6845 }
6846 }
6847 btrfs_release_path(path);
6848
6849 out:
6850 btrfs_free_path(path);
6851 return ret;
6852 }
6853
6854 /*
6855 * when we free an block, it is possible (and likely) that we free the last
6856 * delayed ref for that extent as well. This searches the delayed ref tree for
6857 * a given extent, and if there are no other delayed refs to be processed, it
6858 * removes it from the tree.
6859 */
6860 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6861 struct btrfs_root *root, u64 bytenr)
6862 {
6863 struct btrfs_delayed_ref_head *head;
6864 struct btrfs_delayed_ref_root *delayed_refs;
6865 int ret = 0;
6866
6867 delayed_refs = &trans->transaction->delayed_refs;
6868 spin_lock(&delayed_refs->lock);
6869 head = btrfs_find_delayed_ref_head(trans, bytenr);
6870 if (!head)
6871 goto out_delayed_unlock;
6872
6873 spin_lock(&head->lock);
6874 if (!list_empty(&head->ref_list))
6875 goto out;
6876
6877 if (head->extent_op) {
6878 if (!head->must_insert_reserved)
6879 goto out;
6880 btrfs_free_delayed_extent_op(head->extent_op);
6881 head->extent_op = NULL;
6882 }
6883
6884 /*
6885 * waiting for the lock here would deadlock. If someone else has it
6886 * locked they are already in the process of dropping it anyway
6887 */
6888 if (!mutex_trylock(&head->mutex))
6889 goto out;
6890
6891 /*
6892 * at this point we have a head with no other entries. Go
6893 * ahead and process it.
6894 */
6895 head->node.in_tree = 0;
6896 rb_erase(&head->href_node, &delayed_refs->href_root);
6897
6898 atomic_dec(&delayed_refs->num_entries);
6899
6900 /*
6901 * we don't take a ref on the node because we're removing it from the
6902 * tree, so we just steal the ref the tree was holding.
6903 */
6904 delayed_refs->num_heads--;
6905 if (head->processing == 0)
6906 delayed_refs->num_heads_ready--;
6907 head->processing = 0;
6908 spin_unlock(&head->lock);
6909 spin_unlock(&delayed_refs->lock);
6910
6911 BUG_ON(head->extent_op);
6912 if (head->must_insert_reserved)
6913 ret = 1;
6914
6915 mutex_unlock(&head->mutex);
6916 btrfs_put_delayed_ref(&head->node);
6917 return ret;
6918 out:
6919 spin_unlock(&head->lock);
6920
6921 out_delayed_unlock:
6922 spin_unlock(&delayed_refs->lock);
6923 return 0;
6924 }
6925
6926 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6927 struct btrfs_root *root,
6928 struct extent_buffer *buf,
6929 u64 parent, int last_ref)
6930 {
6931 int pin = 1;
6932 int ret;
6933
6934 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6935 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6936 buf->start, buf->len,
6937 parent, root->root_key.objectid,
6938 btrfs_header_level(buf),
6939 BTRFS_DROP_DELAYED_REF, NULL);
6940 BUG_ON(ret); /* -ENOMEM */
6941 }
6942
6943 if (!last_ref)
6944 return;
6945
6946 if (btrfs_header_generation(buf) == trans->transid) {
6947 struct btrfs_block_group_cache *cache;
6948
6949 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6950 ret = check_ref_cleanup(trans, root, buf->start);
6951 if (!ret)
6952 goto out;
6953 }
6954
6955 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6956
6957 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6958 pin_down_extent(root, cache, buf->start, buf->len, 1);
6959 btrfs_put_block_group(cache);
6960 goto out;
6961 }
6962
6963 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6964
6965 btrfs_add_free_space(cache, buf->start, buf->len);
6966 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6967 btrfs_put_block_group(cache);
6968 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6969 pin = 0;
6970 }
6971 out:
6972 if (pin)
6973 add_pinned_bytes(root->fs_info, buf->len,
6974 btrfs_header_level(buf),
6975 root->root_key.objectid);
6976
6977 /*
6978 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6979 * anymore.
6980 */
6981 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6982 }
6983
6984 /* Can return -ENOMEM */
6985 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6986 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6987 u64 owner, u64 offset)
6988 {
6989 int ret;
6990 struct btrfs_fs_info *fs_info = root->fs_info;
6991
6992 if (btrfs_test_is_dummy_root(root))
6993 return 0;
6994
6995 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6996
6997 /*
6998 * tree log blocks never actually go into the extent allocation
6999 * tree, just update pinning info and exit early.
7000 */
7001 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7002 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7003 /* unlocks the pinned mutex */
7004 btrfs_pin_extent(root, bytenr, num_bytes, 1);
7005 ret = 0;
7006 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7007 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7008 num_bytes,
7009 parent, root_objectid, (int)owner,
7010 BTRFS_DROP_DELAYED_REF, NULL);
7011 } else {
7012 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7013 num_bytes,
7014 parent, root_objectid, owner,
7015 offset, 0,
7016 BTRFS_DROP_DELAYED_REF, NULL);
7017 }
7018 return ret;
7019 }
7020
7021 /*
7022 * when we wait for progress in the block group caching, its because
7023 * our allocation attempt failed at least once. So, we must sleep
7024 * and let some progress happen before we try again.
7025 *
7026 * This function will sleep at least once waiting for new free space to
7027 * show up, and then it will check the block group free space numbers
7028 * for our min num_bytes. Another option is to have it go ahead
7029 * and look in the rbtree for a free extent of a given size, but this
7030 * is a good start.
7031 *
7032 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7033 * any of the information in this block group.
7034 */
7035 static noinline void
7036 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7037 u64 num_bytes)
7038 {
7039 struct btrfs_caching_control *caching_ctl;
7040
7041 caching_ctl = get_caching_control(cache);
7042 if (!caching_ctl)
7043 return;
7044
7045 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7046 (cache->free_space_ctl->free_space >= num_bytes));
7047
7048 put_caching_control(caching_ctl);
7049 }
7050
7051 static noinline int
7052 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7053 {
7054 struct btrfs_caching_control *caching_ctl;
7055 int ret = 0;
7056
7057 caching_ctl = get_caching_control(cache);
7058 if (!caching_ctl)
7059 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7060
7061 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7062 if (cache->cached == BTRFS_CACHE_ERROR)
7063 ret = -EIO;
7064 put_caching_control(caching_ctl);
7065 return ret;
7066 }
7067
7068 int __get_raid_index(u64 flags)
7069 {
7070 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7071 return BTRFS_RAID_RAID10;
7072 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7073 return BTRFS_RAID_RAID1;
7074 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7075 return BTRFS_RAID_DUP;
7076 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7077 return BTRFS_RAID_RAID0;
7078 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7079 return BTRFS_RAID_RAID5;
7080 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7081 return BTRFS_RAID_RAID6;
7082
7083 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7084 }
7085
7086 int get_block_group_index(struct btrfs_block_group_cache *cache)
7087 {
7088 return __get_raid_index(cache->flags);
7089 }
7090
7091 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7092 [BTRFS_RAID_RAID10] = "raid10",
7093 [BTRFS_RAID_RAID1] = "raid1",
7094 [BTRFS_RAID_DUP] = "dup",
7095 [BTRFS_RAID_RAID0] = "raid0",
7096 [BTRFS_RAID_SINGLE] = "single",
7097 [BTRFS_RAID_RAID5] = "raid5",
7098 [BTRFS_RAID_RAID6] = "raid6",
7099 };
7100
7101 static const char *get_raid_name(enum btrfs_raid_types type)
7102 {
7103 if (type >= BTRFS_NR_RAID_TYPES)
7104 return NULL;
7105
7106 return btrfs_raid_type_names[type];
7107 }
7108
7109 enum btrfs_loop_type {
7110 LOOP_CACHING_NOWAIT = 0,
7111 LOOP_CACHING_WAIT = 1,
7112 LOOP_ALLOC_CHUNK = 2,
7113 LOOP_NO_EMPTY_SIZE = 3,
7114 };
7115
7116 static inline void
7117 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7118 int delalloc)
7119 {
7120 if (delalloc)
7121 down_read(&cache->data_rwsem);
7122 }
7123
7124 static inline void
7125 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7126 int delalloc)
7127 {
7128 btrfs_get_block_group(cache);
7129 if (delalloc)
7130 down_read(&cache->data_rwsem);
7131 }
7132
7133 static struct btrfs_block_group_cache *
7134 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7135 struct btrfs_free_cluster *cluster,
7136 int delalloc)
7137 {
7138 struct btrfs_block_group_cache *used_bg = NULL;
7139
7140 spin_lock(&cluster->refill_lock);
7141 while (1) {
7142 used_bg = cluster->block_group;
7143 if (!used_bg)
7144 return NULL;
7145
7146 if (used_bg == block_group)
7147 return used_bg;
7148
7149 btrfs_get_block_group(used_bg);
7150
7151 if (!delalloc)
7152 return used_bg;
7153
7154 if (down_read_trylock(&used_bg->data_rwsem))
7155 return used_bg;
7156
7157 spin_unlock(&cluster->refill_lock);
7158
7159 down_read(&used_bg->data_rwsem);
7160
7161 spin_lock(&cluster->refill_lock);
7162 if (used_bg == cluster->block_group)
7163 return used_bg;
7164
7165 up_read(&used_bg->data_rwsem);
7166 btrfs_put_block_group(used_bg);
7167 }
7168 }
7169
7170 static inline void
7171 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7172 int delalloc)
7173 {
7174 if (delalloc)
7175 up_read(&cache->data_rwsem);
7176 btrfs_put_block_group(cache);
7177 }
7178
7179 /*
7180 * walks the btree of allocated extents and find a hole of a given size.
7181 * The key ins is changed to record the hole:
7182 * ins->objectid == start position
7183 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7184 * ins->offset == the size of the hole.
7185 * Any available blocks before search_start are skipped.
7186 *
7187 * If there is no suitable free space, we will record the max size of
7188 * the free space extent currently.
7189 */
7190 static noinline int find_free_extent(struct btrfs_root *orig_root,
7191 u64 num_bytes, u64 empty_size,
7192 u64 hint_byte, struct btrfs_key *ins,
7193 u64 flags, int delalloc)
7194 {
7195 int ret = 0;
7196 struct btrfs_root *root = orig_root->fs_info->extent_root;
7197 struct btrfs_free_cluster *last_ptr = NULL;
7198 struct btrfs_block_group_cache *block_group = NULL;
7199 u64 search_start = 0;
7200 u64 max_extent_size = 0;
7201 u64 empty_cluster = 0;
7202 struct btrfs_space_info *space_info;
7203 int loop = 0;
7204 int index = __get_raid_index(flags);
7205 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7206 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7207 bool failed_cluster_refill = false;
7208 bool failed_alloc = false;
7209 bool use_cluster = true;
7210 bool have_caching_bg = false;
7211 bool orig_have_caching_bg = false;
7212 bool full_search = false;
7213
7214 WARN_ON(num_bytes < root->sectorsize);
7215 ins->type = BTRFS_EXTENT_ITEM_KEY;
7216 ins->objectid = 0;
7217 ins->offset = 0;
7218
7219 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7220
7221 space_info = __find_space_info(root->fs_info, flags);
7222 if (!space_info) {
7223 btrfs_err(root->fs_info, "No space info for %llu", flags);
7224 return -ENOSPC;
7225 }
7226
7227 /*
7228 * If our free space is heavily fragmented we may not be able to make
7229 * big contiguous allocations, so instead of doing the expensive search
7230 * for free space, simply return ENOSPC with our max_extent_size so we
7231 * can go ahead and search for a more manageable chunk.
7232 *
7233 * If our max_extent_size is large enough for our allocation simply
7234 * disable clustering since we will likely not be able to find enough
7235 * space to create a cluster and induce latency trying.
7236 */
7237 if (unlikely(space_info->max_extent_size)) {
7238 spin_lock(&space_info->lock);
7239 if (space_info->max_extent_size &&
7240 num_bytes > space_info->max_extent_size) {
7241 ins->offset = space_info->max_extent_size;
7242 spin_unlock(&space_info->lock);
7243 return -ENOSPC;
7244 } else if (space_info->max_extent_size) {
7245 use_cluster = false;
7246 }
7247 spin_unlock(&space_info->lock);
7248 }
7249
7250 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7251 if (last_ptr) {
7252 spin_lock(&last_ptr->lock);
7253 if (last_ptr->block_group)
7254 hint_byte = last_ptr->window_start;
7255 if (last_ptr->fragmented) {
7256 /*
7257 * We still set window_start so we can keep track of the
7258 * last place we found an allocation to try and save
7259 * some time.
7260 */
7261 hint_byte = last_ptr->window_start;
7262 use_cluster = false;
7263 }
7264 spin_unlock(&last_ptr->lock);
7265 }
7266
7267 search_start = max(search_start, first_logical_byte(root, 0));
7268 search_start = max(search_start, hint_byte);
7269 if (search_start == hint_byte) {
7270 block_group = btrfs_lookup_block_group(root->fs_info,
7271 search_start);
7272 /*
7273 * we don't want to use the block group if it doesn't match our
7274 * allocation bits, or if its not cached.
7275 *
7276 * However if we are re-searching with an ideal block group
7277 * picked out then we don't care that the block group is cached.
7278 */
7279 if (block_group && block_group_bits(block_group, flags) &&
7280 block_group->cached != BTRFS_CACHE_NO) {
7281 down_read(&space_info->groups_sem);
7282 if (list_empty(&block_group->list) ||
7283 block_group->ro) {
7284 /*
7285 * someone is removing this block group,
7286 * we can't jump into the have_block_group
7287 * target because our list pointers are not
7288 * valid
7289 */
7290 btrfs_put_block_group(block_group);
7291 up_read(&space_info->groups_sem);
7292 } else {
7293 index = get_block_group_index(block_group);
7294 btrfs_lock_block_group(block_group, delalloc);
7295 goto have_block_group;
7296 }
7297 } else if (block_group) {
7298 btrfs_put_block_group(block_group);
7299 }
7300 }
7301 search:
7302 have_caching_bg = false;
7303 if (index == 0 || index == __get_raid_index(flags))
7304 full_search = true;
7305 down_read(&space_info->groups_sem);
7306 list_for_each_entry(block_group, &space_info->block_groups[index],
7307 list) {
7308 u64 offset;
7309 int cached;
7310
7311 btrfs_grab_block_group(block_group, delalloc);
7312 search_start = block_group->key.objectid;
7313
7314 /*
7315 * this can happen if we end up cycling through all the
7316 * raid types, but we want to make sure we only allocate
7317 * for the proper type.
7318 */
7319 if (!block_group_bits(block_group, flags)) {
7320 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7321 BTRFS_BLOCK_GROUP_RAID1 |
7322 BTRFS_BLOCK_GROUP_RAID5 |
7323 BTRFS_BLOCK_GROUP_RAID6 |
7324 BTRFS_BLOCK_GROUP_RAID10;
7325
7326 /*
7327 * if they asked for extra copies and this block group
7328 * doesn't provide them, bail. This does allow us to
7329 * fill raid0 from raid1.
7330 */
7331 if ((flags & extra) && !(block_group->flags & extra))
7332 goto loop;
7333 }
7334
7335 have_block_group:
7336 cached = block_group_cache_done(block_group);
7337 if (unlikely(!cached)) {
7338 have_caching_bg = true;
7339 ret = cache_block_group(block_group, 0);
7340 BUG_ON(ret < 0);
7341 ret = 0;
7342 }
7343
7344 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7345 goto loop;
7346 if (unlikely(block_group->ro))
7347 goto loop;
7348
7349 /*
7350 * Ok we want to try and use the cluster allocator, so
7351 * lets look there
7352 */
7353 if (last_ptr && use_cluster) {
7354 struct btrfs_block_group_cache *used_block_group;
7355 unsigned long aligned_cluster;
7356 /*
7357 * the refill lock keeps out other
7358 * people trying to start a new cluster
7359 */
7360 used_block_group = btrfs_lock_cluster(block_group,
7361 last_ptr,
7362 delalloc);
7363 if (!used_block_group)
7364 goto refill_cluster;
7365
7366 if (used_block_group != block_group &&
7367 (used_block_group->ro ||
7368 !block_group_bits(used_block_group, flags)))
7369 goto release_cluster;
7370
7371 offset = btrfs_alloc_from_cluster(used_block_group,
7372 last_ptr,
7373 num_bytes,
7374 used_block_group->key.objectid,
7375 &max_extent_size);
7376 if (offset) {
7377 /* we have a block, we're done */
7378 spin_unlock(&last_ptr->refill_lock);
7379 trace_btrfs_reserve_extent_cluster(root,
7380 used_block_group,
7381 search_start, num_bytes);
7382 if (used_block_group != block_group) {
7383 btrfs_release_block_group(block_group,
7384 delalloc);
7385 block_group = used_block_group;
7386 }
7387 goto checks;
7388 }
7389
7390 WARN_ON(last_ptr->block_group != used_block_group);
7391 release_cluster:
7392 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7393 * set up a new clusters, so lets just skip it
7394 * and let the allocator find whatever block
7395 * it can find. If we reach this point, we
7396 * will have tried the cluster allocator
7397 * plenty of times and not have found
7398 * anything, so we are likely way too
7399 * fragmented for the clustering stuff to find
7400 * anything.
7401 *
7402 * However, if the cluster is taken from the
7403 * current block group, release the cluster
7404 * first, so that we stand a better chance of
7405 * succeeding in the unclustered
7406 * allocation. */
7407 if (loop >= LOOP_NO_EMPTY_SIZE &&
7408 used_block_group != block_group) {
7409 spin_unlock(&last_ptr->refill_lock);
7410 btrfs_release_block_group(used_block_group,
7411 delalloc);
7412 goto unclustered_alloc;
7413 }
7414
7415 /*
7416 * this cluster didn't work out, free it and
7417 * start over
7418 */
7419 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7420
7421 if (used_block_group != block_group)
7422 btrfs_release_block_group(used_block_group,
7423 delalloc);
7424 refill_cluster:
7425 if (loop >= LOOP_NO_EMPTY_SIZE) {
7426 spin_unlock(&last_ptr->refill_lock);
7427 goto unclustered_alloc;
7428 }
7429
7430 aligned_cluster = max_t(unsigned long,
7431 empty_cluster + empty_size,
7432 block_group->full_stripe_len);
7433
7434 /* allocate a cluster in this block group */
7435 ret = btrfs_find_space_cluster(root, block_group,
7436 last_ptr, search_start,
7437 num_bytes,
7438 aligned_cluster);
7439 if (ret == 0) {
7440 /*
7441 * now pull our allocation out of this
7442 * cluster
7443 */
7444 offset = btrfs_alloc_from_cluster(block_group,
7445 last_ptr,
7446 num_bytes,
7447 search_start,
7448 &max_extent_size);
7449 if (offset) {
7450 /* we found one, proceed */
7451 spin_unlock(&last_ptr->refill_lock);
7452 trace_btrfs_reserve_extent_cluster(root,
7453 block_group, search_start,
7454 num_bytes);
7455 goto checks;
7456 }
7457 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7458 && !failed_cluster_refill) {
7459 spin_unlock(&last_ptr->refill_lock);
7460
7461 failed_cluster_refill = true;
7462 wait_block_group_cache_progress(block_group,
7463 num_bytes + empty_cluster + empty_size);
7464 goto have_block_group;
7465 }
7466
7467 /*
7468 * at this point we either didn't find a cluster
7469 * or we weren't able to allocate a block from our
7470 * cluster. Free the cluster we've been trying
7471 * to use, and go to the next block group
7472 */
7473 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7474 spin_unlock(&last_ptr->refill_lock);
7475 goto loop;
7476 }
7477
7478 unclustered_alloc:
7479 /*
7480 * We are doing an unclustered alloc, set the fragmented flag so
7481 * we don't bother trying to setup a cluster again until we get
7482 * more space.
7483 */
7484 if (unlikely(last_ptr)) {
7485 spin_lock(&last_ptr->lock);
7486 last_ptr->fragmented = 1;
7487 spin_unlock(&last_ptr->lock);
7488 }
7489 spin_lock(&block_group->free_space_ctl->tree_lock);
7490 if (cached &&
7491 block_group->free_space_ctl->free_space <
7492 num_bytes + empty_cluster + empty_size) {
7493 if (block_group->free_space_ctl->free_space >
7494 max_extent_size)
7495 max_extent_size =
7496 block_group->free_space_ctl->free_space;
7497 spin_unlock(&block_group->free_space_ctl->tree_lock);
7498 goto loop;
7499 }
7500 spin_unlock(&block_group->free_space_ctl->tree_lock);
7501
7502 offset = btrfs_find_space_for_alloc(block_group, search_start,
7503 num_bytes, empty_size,
7504 &max_extent_size);
7505 /*
7506 * If we didn't find a chunk, and we haven't failed on this
7507 * block group before, and this block group is in the middle of
7508 * caching and we are ok with waiting, then go ahead and wait
7509 * for progress to be made, and set failed_alloc to true.
7510 *
7511 * If failed_alloc is true then we've already waited on this
7512 * block group once and should move on to the next block group.
7513 */
7514 if (!offset && !failed_alloc && !cached &&
7515 loop > LOOP_CACHING_NOWAIT) {
7516 wait_block_group_cache_progress(block_group,
7517 num_bytes + empty_size);
7518 failed_alloc = true;
7519 goto have_block_group;
7520 } else if (!offset) {
7521 goto loop;
7522 }
7523 checks:
7524 search_start = ALIGN(offset, root->stripesize);
7525
7526 /* move on to the next group */
7527 if (search_start + num_bytes >
7528 block_group->key.objectid + block_group->key.offset) {
7529 btrfs_add_free_space(block_group, offset, num_bytes);
7530 goto loop;
7531 }
7532
7533 if (offset < search_start)
7534 btrfs_add_free_space(block_group, offset,
7535 search_start - offset);
7536 BUG_ON(offset > search_start);
7537
7538 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7539 alloc_type, delalloc);
7540 if (ret == -EAGAIN) {
7541 btrfs_add_free_space(block_group, offset, num_bytes);
7542 goto loop;
7543 }
7544 btrfs_inc_block_group_reservations(block_group);
7545
7546 /* we are all good, lets return */
7547 ins->objectid = search_start;
7548 ins->offset = num_bytes;
7549
7550 trace_btrfs_reserve_extent(orig_root, block_group,
7551 search_start, num_bytes);
7552 btrfs_release_block_group(block_group, delalloc);
7553 break;
7554 loop:
7555 failed_cluster_refill = false;
7556 failed_alloc = false;
7557 BUG_ON(index != get_block_group_index(block_group));
7558 btrfs_release_block_group(block_group, delalloc);
7559 }
7560 up_read(&space_info->groups_sem);
7561
7562 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7563 && !orig_have_caching_bg)
7564 orig_have_caching_bg = true;
7565
7566 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7567 goto search;
7568
7569 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7570 goto search;
7571
7572 /*
7573 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7574 * caching kthreads as we move along
7575 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7576 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7577 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7578 * again
7579 */
7580 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7581 index = 0;
7582 if (loop == LOOP_CACHING_NOWAIT) {
7583 /*
7584 * We want to skip the LOOP_CACHING_WAIT step if we
7585 * don't have any uncached bgs and we've already done a
7586 * full search through.
7587 */
7588 if (orig_have_caching_bg || !full_search)
7589 loop = LOOP_CACHING_WAIT;
7590 else
7591 loop = LOOP_ALLOC_CHUNK;
7592 } else {
7593 loop++;
7594 }
7595
7596 if (loop == LOOP_ALLOC_CHUNK) {
7597 struct btrfs_trans_handle *trans;
7598 int exist = 0;
7599
7600 trans = current->journal_info;
7601 if (trans)
7602 exist = 1;
7603 else
7604 trans = btrfs_join_transaction(root);
7605
7606 if (IS_ERR(trans)) {
7607 ret = PTR_ERR(trans);
7608 goto out;
7609 }
7610
7611 ret = do_chunk_alloc(trans, root, flags,
7612 CHUNK_ALLOC_FORCE);
7613
7614 /*
7615 * If we can't allocate a new chunk we've already looped
7616 * through at least once, move on to the NO_EMPTY_SIZE
7617 * case.
7618 */
7619 if (ret == -ENOSPC)
7620 loop = LOOP_NO_EMPTY_SIZE;
7621
7622 /*
7623 * Do not bail out on ENOSPC since we
7624 * can do more things.
7625 */
7626 if (ret < 0 && ret != -ENOSPC)
7627 btrfs_abort_transaction(trans,
7628 root, ret);
7629 else
7630 ret = 0;
7631 if (!exist)
7632 btrfs_end_transaction(trans, root);
7633 if (ret)
7634 goto out;
7635 }
7636
7637 if (loop == LOOP_NO_EMPTY_SIZE) {
7638 /*
7639 * Don't loop again if we already have no empty_size and
7640 * no empty_cluster.
7641 */
7642 if (empty_size == 0 &&
7643 empty_cluster == 0) {
7644 ret = -ENOSPC;
7645 goto out;
7646 }
7647 empty_size = 0;
7648 empty_cluster = 0;
7649 }
7650
7651 goto search;
7652 } else if (!ins->objectid) {
7653 ret = -ENOSPC;
7654 } else if (ins->objectid) {
7655 if (!use_cluster && last_ptr) {
7656 spin_lock(&last_ptr->lock);
7657 last_ptr->window_start = ins->objectid;
7658 spin_unlock(&last_ptr->lock);
7659 }
7660 ret = 0;
7661 }
7662 out:
7663 if (ret == -ENOSPC) {
7664 spin_lock(&space_info->lock);
7665 space_info->max_extent_size = max_extent_size;
7666 spin_unlock(&space_info->lock);
7667 ins->offset = max_extent_size;
7668 }
7669 return ret;
7670 }
7671
7672 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7673 int dump_block_groups)
7674 {
7675 struct btrfs_block_group_cache *cache;
7676 int index = 0;
7677
7678 spin_lock(&info->lock);
7679 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7680 info->flags,
7681 info->total_bytes - info->bytes_used - info->bytes_pinned -
7682 info->bytes_reserved - info->bytes_readonly,
7683 (info->full) ? "" : "not ");
7684 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7685 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7686 info->total_bytes, info->bytes_used, info->bytes_pinned,
7687 info->bytes_reserved, info->bytes_may_use,
7688 info->bytes_readonly);
7689 spin_unlock(&info->lock);
7690
7691 if (!dump_block_groups)
7692 return;
7693
7694 down_read(&info->groups_sem);
7695 again:
7696 list_for_each_entry(cache, &info->block_groups[index], list) {
7697 spin_lock(&cache->lock);
7698 printk(KERN_INFO "BTRFS: "
7699 "block group %llu has %llu bytes, "
7700 "%llu used %llu pinned %llu reserved %s\n",
7701 cache->key.objectid, cache->key.offset,
7702 btrfs_block_group_used(&cache->item), cache->pinned,
7703 cache->reserved, cache->ro ? "[readonly]" : "");
7704 btrfs_dump_free_space(cache, bytes);
7705 spin_unlock(&cache->lock);
7706 }
7707 if (++index < BTRFS_NR_RAID_TYPES)
7708 goto again;
7709 up_read(&info->groups_sem);
7710 }
7711
7712 int btrfs_reserve_extent(struct btrfs_root *root,
7713 u64 num_bytes, u64 min_alloc_size,
7714 u64 empty_size, u64 hint_byte,
7715 struct btrfs_key *ins, int is_data, int delalloc)
7716 {
7717 bool final_tried = num_bytes == min_alloc_size;
7718 u64 flags;
7719 int ret;
7720
7721 flags = btrfs_get_alloc_profile(root, is_data);
7722 again:
7723 WARN_ON(num_bytes < root->sectorsize);
7724 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7725 flags, delalloc);
7726 if (!ret && !is_data) {
7727 btrfs_dec_block_group_reservations(root->fs_info,
7728 ins->objectid);
7729 } else if (ret == -ENOSPC) {
7730 if (!final_tried && ins->offset) {
7731 num_bytes = min(num_bytes >> 1, ins->offset);
7732 num_bytes = round_down(num_bytes, root->sectorsize);
7733 num_bytes = max(num_bytes, min_alloc_size);
7734 if (num_bytes == min_alloc_size)
7735 final_tried = true;
7736 goto again;
7737 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7738 struct btrfs_space_info *sinfo;
7739
7740 sinfo = __find_space_info(root->fs_info, flags);
7741 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7742 flags, num_bytes);
7743 if (sinfo)
7744 dump_space_info(sinfo, num_bytes, 1);
7745 }
7746 }
7747
7748 return ret;
7749 }
7750
7751 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7752 u64 start, u64 len,
7753 int pin, int delalloc)
7754 {
7755 struct btrfs_block_group_cache *cache;
7756 int ret = 0;
7757
7758 cache = btrfs_lookup_block_group(root->fs_info, start);
7759 if (!cache) {
7760 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7761 start);
7762 return -ENOSPC;
7763 }
7764
7765 if (pin)
7766 pin_down_extent(root, cache, start, len, 1);
7767 else {
7768 if (btrfs_test_opt(root, DISCARD))
7769 ret = btrfs_discard_extent(root, start, len, NULL);
7770 btrfs_add_free_space(cache, start, len);
7771 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7772 }
7773
7774 btrfs_put_block_group(cache);
7775
7776 trace_btrfs_reserved_extent_free(root, start, len);
7777
7778 return ret;
7779 }
7780
7781 int btrfs_free_reserved_extent(struct btrfs_root *root,
7782 u64 start, u64 len, int delalloc)
7783 {
7784 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7785 }
7786
7787 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7788 u64 start, u64 len)
7789 {
7790 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7791 }
7792
7793 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7794 struct btrfs_root *root,
7795 u64 parent, u64 root_objectid,
7796 u64 flags, u64 owner, u64 offset,
7797 struct btrfs_key *ins, int ref_mod)
7798 {
7799 int ret;
7800 struct btrfs_fs_info *fs_info = root->fs_info;
7801 struct btrfs_extent_item *extent_item;
7802 struct btrfs_extent_inline_ref *iref;
7803 struct btrfs_path *path;
7804 struct extent_buffer *leaf;
7805 int type;
7806 u32 size;
7807
7808 if (parent > 0)
7809 type = BTRFS_SHARED_DATA_REF_KEY;
7810 else
7811 type = BTRFS_EXTENT_DATA_REF_KEY;
7812
7813 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7814
7815 path = btrfs_alloc_path();
7816 if (!path)
7817 return -ENOMEM;
7818
7819 path->leave_spinning = 1;
7820 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7821 ins, size);
7822 if (ret) {
7823 btrfs_free_path(path);
7824 return ret;
7825 }
7826
7827 leaf = path->nodes[0];
7828 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7829 struct btrfs_extent_item);
7830 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7831 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7832 btrfs_set_extent_flags(leaf, extent_item,
7833 flags | BTRFS_EXTENT_FLAG_DATA);
7834
7835 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7836 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7837 if (parent > 0) {
7838 struct btrfs_shared_data_ref *ref;
7839 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7840 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7841 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7842 } else {
7843 struct btrfs_extent_data_ref *ref;
7844 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7845 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7846 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7847 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7848 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7849 }
7850
7851 btrfs_mark_buffer_dirty(path->nodes[0]);
7852 btrfs_free_path(path);
7853
7854 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7855 ins->offset);
7856 if (ret)
7857 return ret;
7858
7859 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7860 if (ret) { /* -ENOENT, logic error */
7861 btrfs_err(fs_info, "update block group failed for %llu %llu",
7862 ins->objectid, ins->offset);
7863 BUG();
7864 }
7865 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7866 return ret;
7867 }
7868
7869 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7870 struct btrfs_root *root,
7871 u64 parent, u64 root_objectid,
7872 u64 flags, struct btrfs_disk_key *key,
7873 int level, struct btrfs_key *ins)
7874 {
7875 int ret;
7876 struct btrfs_fs_info *fs_info = root->fs_info;
7877 struct btrfs_extent_item *extent_item;
7878 struct btrfs_tree_block_info *block_info;
7879 struct btrfs_extent_inline_ref *iref;
7880 struct btrfs_path *path;
7881 struct extent_buffer *leaf;
7882 u32 size = sizeof(*extent_item) + sizeof(*iref);
7883 u64 num_bytes = ins->offset;
7884 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7885 SKINNY_METADATA);
7886
7887 if (!skinny_metadata)
7888 size += sizeof(*block_info);
7889
7890 path = btrfs_alloc_path();
7891 if (!path) {
7892 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7893 root->nodesize);
7894 return -ENOMEM;
7895 }
7896
7897 path->leave_spinning = 1;
7898 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7899 ins, size);
7900 if (ret) {
7901 btrfs_free_path(path);
7902 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7903 root->nodesize);
7904 return ret;
7905 }
7906
7907 leaf = path->nodes[0];
7908 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7909 struct btrfs_extent_item);
7910 btrfs_set_extent_refs(leaf, extent_item, 1);
7911 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7912 btrfs_set_extent_flags(leaf, extent_item,
7913 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7914
7915 if (skinny_metadata) {
7916 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7917 num_bytes = root->nodesize;
7918 } else {
7919 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7920 btrfs_set_tree_block_key(leaf, block_info, key);
7921 btrfs_set_tree_block_level(leaf, block_info, level);
7922 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7923 }
7924
7925 if (parent > 0) {
7926 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7927 btrfs_set_extent_inline_ref_type(leaf, iref,
7928 BTRFS_SHARED_BLOCK_REF_KEY);
7929 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7930 } else {
7931 btrfs_set_extent_inline_ref_type(leaf, iref,
7932 BTRFS_TREE_BLOCK_REF_KEY);
7933 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7934 }
7935
7936 btrfs_mark_buffer_dirty(leaf);
7937 btrfs_free_path(path);
7938
7939 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7940 num_bytes);
7941 if (ret)
7942 return ret;
7943
7944 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7945 1);
7946 if (ret) { /* -ENOENT, logic error */
7947 btrfs_err(fs_info, "update block group failed for %llu %llu",
7948 ins->objectid, ins->offset);
7949 BUG();
7950 }
7951
7952 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7953 return ret;
7954 }
7955
7956 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7957 struct btrfs_root *root,
7958 u64 root_objectid, u64 owner,
7959 u64 offset, u64 ram_bytes,
7960 struct btrfs_key *ins)
7961 {
7962 int ret;
7963
7964 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7965
7966 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7967 ins->offset, 0,
7968 root_objectid, owner, offset,
7969 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7970 NULL);
7971 return ret;
7972 }
7973
7974 /*
7975 * this is used by the tree logging recovery code. It records that
7976 * an extent has been allocated and makes sure to clear the free
7977 * space cache bits as well
7978 */
7979 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7980 struct btrfs_root *root,
7981 u64 root_objectid, u64 owner, u64 offset,
7982 struct btrfs_key *ins)
7983 {
7984 int ret;
7985 struct btrfs_block_group_cache *block_group;
7986
7987 /*
7988 * Mixed block groups will exclude before processing the log so we only
7989 * need to do the exclude dance if this fs isn't mixed.
7990 */
7991 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7992 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7993 if (ret)
7994 return ret;
7995 }
7996
7997 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7998 if (!block_group)
7999 return -EINVAL;
8000
8001 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
8002 RESERVE_ALLOC_NO_ACCOUNT, 0);
8003 BUG_ON(ret); /* logic error */
8004 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8005 0, owner, offset, ins, 1);
8006 btrfs_put_block_group(block_group);
8007 return ret;
8008 }
8009
8010 static struct extent_buffer *
8011 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8012 u64 bytenr, int level)
8013 {
8014 struct extent_buffer *buf;
8015
8016 buf = btrfs_find_create_tree_block(root, bytenr);
8017 if (IS_ERR(buf))
8018 return buf;
8019
8020 btrfs_set_header_generation(buf, trans->transid);
8021 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8022 btrfs_tree_lock(buf);
8023 clean_tree_block(trans, root->fs_info, buf);
8024 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8025
8026 btrfs_set_lock_blocking(buf);
8027 set_extent_buffer_uptodate(buf);
8028
8029 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8030 buf->log_index = root->log_transid % 2;
8031 /*
8032 * we allow two log transactions at a time, use different
8033 * EXENT bit to differentiate dirty pages.
8034 */
8035 if (buf->log_index == 0)
8036 set_extent_dirty(&root->dirty_log_pages, buf->start,
8037 buf->start + buf->len - 1, GFP_NOFS);
8038 else
8039 set_extent_new(&root->dirty_log_pages, buf->start,
8040 buf->start + buf->len - 1);
8041 } else {
8042 buf->log_index = -1;
8043 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8044 buf->start + buf->len - 1, GFP_NOFS);
8045 }
8046 trans->dirty = true;
8047 /* this returns a buffer locked for blocking */
8048 return buf;
8049 }
8050
8051 static struct btrfs_block_rsv *
8052 use_block_rsv(struct btrfs_trans_handle *trans,
8053 struct btrfs_root *root, u32 blocksize)
8054 {
8055 struct btrfs_block_rsv *block_rsv;
8056 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8057 int ret;
8058 bool global_updated = false;
8059
8060 block_rsv = get_block_rsv(trans, root);
8061
8062 if (unlikely(block_rsv->size == 0))
8063 goto try_reserve;
8064 again:
8065 ret = block_rsv_use_bytes(block_rsv, blocksize);
8066 if (!ret)
8067 return block_rsv;
8068
8069 if (block_rsv->failfast)
8070 return ERR_PTR(ret);
8071
8072 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8073 global_updated = true;
8074 update_global_block_rsv(root->fs_info);
8075 goto again;
8076 }
8077
8078 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8079 static DEFINE_RATELIMIT_STATE(_rs,
8080 DEFAULT_RATELIMIT_INTERVAL * 10,
8081 /*DEFAULT_RATELIMIT_BURST*/ 1);
8082 if (__ratelimit(&_rs))
8083 WARN(1, KERN_DEBUG
8084 "BTRFS: block rsv returned %d\n", ret);
8085 }
8086 try_reserve:
8087 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8088 BTRFS_RESERVE_NO_FLUSH);
8089 if (!ret)
8090 return block_rsv;
8091 /*
8092 * If we couldn't reserve metadata bytes try and use some from
8093 * the global reserve if its space type is the same as the global
8094 * reservation.
8095 */
8096 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8097 block_rsv->space_info == global_rsv->space_info) {
8098 ret = block_rsv_use_bytes(global_rsv, blocksize);
8099 if (!ret)
8100 return global_rsv;
8101 }
8102 return ERR_PTR(ret);
8103 }
8104
8105 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8106 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8107 {
8108 block_rsv_add_bytes(block_rsv, blocksize, 0);
8109 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8110 }
8111
8112 /*
8113 * finds a free extent and does all the dirty work required for allocation
8114 * returns the tree buffer or an ERR_PTR on error.
8115 */
8116 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8117 struct btrfs_root *root,
8118 u64 parent, u64 root_objectid,
8119 struct btrfs_disk_key *key, int level,
8120 u64 hint, u64 empty_size)
8121 {
8122 struct btrfs_key ins;
8123 struct btrfs_block_rsv *block_rsv;
8124 struct extent_buffer *buf;
8125 struct btrfs_delayed_extent_op *extent_op;
8126 u64 flags = 0;
8127 int ret;
8128 u32 blocksize = root->nodesize;
8129 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8130 SKINNY_METADATA);
8131
8132 if (btrfs_test_is_dummy_root(root)) {
8133 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8134 level);
8135 if (!IS_ERR(buf))
8136 root->alloc_bytenr += blocksize;
8137 return buf;
8138 }
8139
8140 block_rsv = use_block_rsv(trans, root, blocksize);
8141 if (IS_ERR(block_rsv))
8142 return ERR_CAST(block_rsv);
8143
8144 ret = btrfs_reserve_extent(root, blocksize, blocksize,
8145 empty_size, hint, &ins, 0, 0);
8146 if (ret)
8147 goto out_unuse;
8148
8149 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8150 if (IS_ERR(buf)) {
8151 ret = PTR_ERR(buf);
8152 goto out_free_reserved;
8153 }
8154
8155 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8156 if (parent == 0)
8157 parent = ins.objectid;
8158 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8159 } else
8160 BUG_ON(parent > 0);
8161
8162 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8163 extent_op = btrfs_alloc_delayed_extent_op();
8164 if (!extent_op) {
8165 ret = -ENOMEM;
8166 goto out_free_buf;
8167 }
8168 if (key)
8169 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8170 else
8171 memset(&extent_op->key, 0, sizeof(extent_op->key));
8172 extent_op->flags_to_set = flags;
8173 extent_op->update_key = skinny_metadata ? false : true;
8174 extent_op->update_flags = true;
8175 extent_op->is_data = false;
8176 extent_op->level = level;
8177
8178 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8179 ins.objectid, ins.offset,
8180 parent, root_objectid, level,
8181 BTRFS_ADD_DELAYED_EXTENT,
8182 extent_op);
8183 if (ret)
8184 goto out_free_delayed;
8185 }
8186 return buf;
8187
8188 out_free_delayed:
8189 btrfs_free_delayed_extent_op(extent_op);
8190 out_free_buf:
8191 free_extent_buffer(buf);
8192 out_free_reserved:
8193 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8194 out_unuse:
8195 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8196 return ERR_PTR(ret);
8197 }
8198
8199 struct walk_control {
8200 u64 refs[BTRFS_MAX_LEVEL];
8201 u64 flags[BTRFS_MAX_LEVEL];
8202 struct btrfs_key update_progress;
8203 int stage;
8204 int level;
8205 int shared_level;
8206 int update_ref;
8207 int keep_locks;
8208 int reada_slot;
8209 int reada_count;
8210 int for_reloc;
8211 };
8212
8213 #define DROP_REFERENCE 1
8214 #define UPDATE_BACKREF 2
8215
8216 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8217 struct btrfs_root *root,
8218 struct walk_control *wc,
8219 struct btrfs_path *path)
8220 {
8221 u64 bytenr;
8222 u64 generation;
8223 u64 refs;
8224 u64 flags;
8225 u32 nritems;
8226 u32 blocksize;
8227 struct btrfs_key key;
8228 struct extent_buffer *eb;
8229 int ret;
8230 int slot;
8231 int nread = 0;
8232
8233 if (path->slots[wc->level] < wc->reada_slot) {
8234 wc->reada_count = wc->reada_count * 2 / 3;
8235 wc->reada_count = max(wc->reada_count, 2);
8236 } else {
8237 wc->reada_count = wc->reada_count * 3 / 2;
8238 wc->reada_count = min_t(int, wc->reada_count,
8239 BTRFS_NODEPTRS_PER_BLOCK(root));
8240 }
8241
8242 eb = path->nodes[wc->level];
8243 nritems = btrfs_header_nritems(eb);
8244 blocksize = root->nodesize;
8245
8246 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8247 if (nread >= wc->reada_count)
8248 break;
8249
8250 cond_resched();
8251 bytenr = btrfs_node_blockptr(eb, slot);
8252 generation = btrfs_node_ptr_generation(eb, slot);
8253
8254 if (slot == path->slots[wc->level])
8255 goto reada;
8256
8257 if (wc->stage == UPDATE_BACKREF &&
8258 generation <= root->root_key.offset)
8259 continue;
8260
8261 /* We don't lock the tree block, it's OK to be racy here */
8262 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8263 wc->level - 1, 1, &refs,
8264 &flags);
8265 /* We don't care about errors in readahead. */
8266 if (ret < 0)
8267 continue;
8268 BUG_ON(refs == 0);
8269
8270 if (wc->stage == DROP_REFERENCE) {
8271 if (refs == 1)
8272 goto reada;
8273
8274 if (wc->level == 1 &&
8275 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8276 continue;
8277 if (!wc->update_ref ||
8278 generation <= root->root_key.offset)
8279 continue;
8280 btrfs_node_key_to_cpu(eb, &key, slot);
8281 ret = btrfs_comp_cpu_keys(&key,
8282 &wc->update_progress);
8283 if (ret < 0)
8284 continue;
8285 } else {
8286 if (wc->level == 1 &&
8287 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8288 continue;
8289 }
8290 reada:
8291 readahead_tree_block(root, bytenr);
8292 nread++;
8293 }
8294 wc->reada_slot = slot;
8295 }
8296
8297 /*
8298 * These may not be seen by the usual inc/dec ref code so we have to
8299 * add them here.
8300 */
8301 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8302 struct btrfs_root *root, u64 bytenr,
8303 u64 num_bytes)
8304 {
8305 struct btrfs_qgroup_extent_record *qrecord;
8306 struct btrfs_delayed_ref_root *delayed_refs;
8307
8308 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8309 if (!qrecord)
8310 return -ENOMEM;
8311
8312 qrecord->bytenr = bytenr;
8313 qrecord->num_bytes = num_bytes;
8314 qrecord->old_roots = NULL;
8315
8316 delayed_refs = &trans->transaction->delayed_refs;
8317 spin_lock(&delayed_refs->lock);
8318 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8319 kfree(qrecord);
8320 spin_unlock(&delayed_refs->lock);
8321
8322 return 0;
8323 }
8324
8325 static int account_leaf_items(struct btrfs_trans_handle *trans,
8326 struct btrfs_root *root,
8327 struct extent_buffer *eb)
8328 {
8329 int nr = btrfs_header_nritems(eb);
8330 int i, extent_type, ret;
8331 struct btrfs_key key;
8332 struct btrfs_file_extent_item *fi;
8333 u64 bytenr, num_bytes;
8334
8335 /* We can be called directly from walk_up_proc() */
8336 if (!root->fs_info->quota_enabled)
8337 return 0;
8338
8339 for (i = 0; i < nr; i++) {
8340 btrfs_item_key_to_cpu(eb, &key, i);
8341
8342 if (key.type != BTRFS_EXTENT_DATA_KEY)
8343 continue;
8344
8345 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8346 /* filter out non qgroup-accountable extents */
8347 extent_type = btrfs_file_extent_type(eb, fi);
8348
8349 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8350 continue;
8351
8352 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8353 if (!bytenr)
8354 continue;
8355
8356 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8357
8358 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8359 if (ret)
8360 return ret;
8361 }
8362 return 0;
8363 }
8364
8365 /*
8366 * Walk up the tree from the bottom, freeing leaves and any interior
8367 * nodes which have had all slots visited. If a node (leaf or
8368 * interior) is freed, the node above it will have it's slot
8369 * incremented. The root node will never be freed.
8370 *
8371 * At the end of this function, we should have a path which has all
8372 * slots incremented to the next position for a search. If we need to
8373 * read a new node it will be NULL and the node above it will have the
8374 * correct slot selected for a later read.
8375 *
8376 * If we increment the root nodes slot counter past the number of
8377 * elements, 1 is returned to signal completion of the search.
8378 */
8379 static int adjust_slots_upwards(struct btrfs_root *root,
8380 struct btrfs_path *path, int root_level)
8381 {
8382 int level = 0;
8383 int nr, slot;
8384 struct extent_buffer *eb;
8385
8386 if (root_level == 0)
8387 return 1;
8388
8389 while (level <= root_level) {
8390 eb = path->nodes[level];
8391 nr = btrfs_header_nritems(eb);
8392 path->slots[level]++;
8393 slot = path->slots[level];
8394 if (slot >= nr || level == 0) {
8395 /*
8396 * Don't free the root - we will detect this
8397 * condition after our loop and return a
8398 * positive value for caller to stop walking the tree.
8399 */
8400 if (level != root_level) {
8401 btrfs_tree_unlock_rw(eb, path->locks[level]);
8402 path->locks[level] = 0;
8403
8404 free_extent_buffer(eb);
8405 path->nodes[level] = NULL;
8406 path->slots[level] = 0;
8407 }
8408 } else {
8409 /*
8410 * We have a valid slot to walk back down
8411 * from. Stop here so caller can process these
8412 * new nodes.
8413 */
8414 break;
8415 }
8416
8417 level++;
8418 }
8419
8420 eb = path->nodes[root_level];
8421 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8422 return 1;
8423
8424 return 0;
8425 }
8426
8427 /*
8428 * root_eb is the subtree root and is locked before this function is called.
8429 */
8430 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8431 struct btrfs_root *root,
8432 struct extent_buffer *root_eb,
8433 u64 root_gen,
8434 int root_level)
8435 {
8436 int ret = 0;
8437 int level;
8438 struct extent_buffer *eb = root_eb;
8439 struct btrfs_path *path = NULL;
8440
8441 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8442 BUG_ON(root_eb == NULL);
8443
8444 if (!root->fs_info->quota_enabled)
8445 return 0;
8446
8447 if (!extent_buffer_uptodate(root_eb)) {
8448 ret = btrfs_read_buffer(root_eb, root_gen);
8449 if (ret)
8450 goto out;
8451 }
8452
8453 if (root_level == 0) {
8454 ret = account_leaf_items(trans, root, root_eb);
8455 goto out;
8456 }
8457
8458 path = btrfs_alloc_path();
8459 if (!path)
8460 return -ENOMEM;
8461
8462 /*
8463 * Walk down the tree. Missing extent blocks are filled in as
8464 * we go. Metadata is accounted every time we read a new
8465 * extent block.
8466 *
8467 * When we reach a leaf, we account for file extent items in it,
8468 * walk back up the tree (adjusting slot pointers as we go)
8469 * and restart the search process.
8470 */
8471 extent_buffer_get(root_eb); /* For path */
8472 path->nodes[root_level] = root_eb;
8473 path->slots[root_level] = 0;
8474 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8475 walk_down:
8476 level = root_level;
8477 while (level >= 0) {
8478 if (path->nodes[level] == NULL) {
8479 int parent_slot;
8480 u64 child_gen;
8481 u64 child_bytenr;
8482
8483 /* We need to get child blockptr/gen from
8484 * parent before we can read it. */
8485 eb = path->nodes[level + 1];
8486 parent_slot = path->slots[level + 1];
8487 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8488 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8489
8490 eb = read_tree_block(root, child_bytenr, child_gen);
8491 if (IS_ERR(eb)) {
8492 ret = PTR_ERR(eb);
8493 goto out;
8494 } else if (!extent_buffer_uptodate(eb)) {
8495 free_extent_buffer(eb);
8496 ret = -EIO;
8497 goto out;
8498 }
8499
8500 path->nodes[level] = eb;
8501 path->slots[level] = 0;
8502
8503 btrfs_tree_read_lock(eb);
8504 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8505 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8506
8507 ret = record_one_subtree_extent(trans, root, child_bytenr,
8508 root->nodesize);
8509 if (ret)
8510 goto out;
8511 }
8512
8513 if (level == 0) {
8514 ret = account_leaf_items(trans, root, path->nodes[level]);
8515 if (ret)
8516 goto out;
8517
8518 /* Nonzero return here means we completed our search */
8519 ret = adjust_slots_upwards(root, path, root_level);
8520 if (ret)
8521 break;
8522
8523 /* Restart search with new slots */
8524 goto walk_down;
8525 }
8526
8527 level--;
8528 }
8529
8530 ret = 0;
8531 out:
8532 btrfs_free_path(path);
8533
8534 return ret;
8535 }
8536
8537 /*
8538 * helper to process tree block while walking down the tree.
8539 *
8540 * when wc->stage == UPDATE_BACKREF, this function updates
8541 * back refs for pointers in the block.
8542 *
8543 * NOTE: return value 1 means we should stop walking down.
8544 */
8545 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8546 struct btrfs_root *root,
8547 struct btrfs_path *path,
8548 struct walk_control *wc, int lookup_info)
8549 {
8550 int level = wc->level;
8551 struct extent_buffer *eb = path->nodes[level];
8552 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8553 int ret;
8554
8555 if (wc->stage == UPDATE_BACKREF &&
8556 btrfs_header_owner(eb) != root->root_key.objectid)
8557 return 1;
8558
8559 /*
8560 * when reference count of tree block is 1, it won't increase
8561 * again. once full backref flag is set, we never clear it.
8562 */
8563 if (lookup_info &&
8564 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8565 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8566 BUG_ON(!path->locks[level]);
8567 ret = btrfs_lookup_extent_info(trans, root,
8568 eb->start, level, 1,
8569 &wc->refs[level],
8570 &wc->flags[level]);
8571 BUG_ON(ret == -ENOMEM);
8572 if (ret)
8573 return ret;
8574 BUG_ON(wc->refs[level] == 0);
8575 }
8576
8577 if (wc->stage == DROP_REFERENCE) {
8578 if (wc->refs[level] > 1)
8579 return 1;
8580
8581 if (path->locks[level] && !wc->keep_locks) {
8582 btrfs_tree_unlock_rw(eb, path->locks[level]);
8583 path->locks[level] = 0;
8584 }
8585 return 0;
8586 }
8587
8588 /* wc->stage == UPDATE_BACKREF */
8589 if (!(wc->flags[level] & flag)) {
8590 BUG_ON(!path->locks[level]);
8591 ret = btrfs_inc_ref(trans, root, eb, 1);
8592 BUG_ON(ret); /* -ENOMEM */
8593 ret = btrfs_dec_ref(trans, root, eb, 0);
8594 BUG_ON(ret); /* -ENOMEM */
8595 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8596 eb->len, flag,
8597 btrfs_header_level(eb), 0);
8598 BUG_ON(ret); /* -ENOMEM */
8599 wc->flags[level] |= flag;
8600 }
8601
8602 /*
8603 * the block is shared by multiple trees, so it's not good to
8604 * keep the tree lock
8605 */
8606 if (path->locks[level] && level > 0) {
8607 btrfs_tree_unlock_rw(eb, path->locks[level]);
8608 path->locks[level] = 0;
8609 }
8610 return 0;
8611 }
8612
8613 /*
8614 * helper to process tree block pointer.
8615 *
8616 * when wc->stage == DROP_REFERENCE, this function checks
8617 * reference count of the block pointed to. if the block
8618 * is shared and we need update back refs for the subtree
8619 * rooted at the block, this function changes wc->stage to
8620 * UPDATE_BACKREF. if the block is shared and there is no
8621 * need to update back, this function drops the reference
8622 * to the block.
8623 *
8624 * NOTE: return value 1 means we should stop walking down.
8625 */
8626 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8627 struct btrfs_root *root,
8628 struct btrfs_path *path,
8629 struct walk_control *wc, int *lookup_info)
8630 {
8631 u64 bytenr;
8632 u64 generation;
8633 u64 parent;
8634 u32 blocksize;
8635 struct btrfs_key key;
8636 struct extent_buffer *next;
8637 int level = wc->level;
8638 int reada = 0;
8639 int ret = 0;
8640 bool need_account = false;
8641
8642 generation = btrfs_node_ptr_generation(path->nodes[level],
8643 path->slots[level]);
8644 /*
8645 * if the lower level block was created before the snapshot
8646 * was created, we know there is no need to update back refs
8647 * for the subtree
8648 */
8649 if (wc->stage == UPDATE_BACKREF &&
8650 generation <= root->root_key.offset) {
8651 *lookup_info = 1;
8652 return 1;
8653 }
8654
8655 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8656 blocksize = root->nodesize;
8657
8658 next = btrfs_find_tree_block(root->fs_info, bytenr);
8659 if (!next) {
8660 next = btrfs_find_create_tree_block(root, bytenr);
8661 if (IS_ERR(next))
8662 return PTR_ERR(next);
8663
8664 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8665 level - 1);
8666 reada = 1;
8667 }
8668 btrfs_tree_lock(next);
8669 btrfs_set_lock_blocking(next);
8670
8671 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8672 &wc->refs[level - 1],
8673 &wc->flags[level - 1]);
8674 if (ret < 0) {
8675 btrfs_tree_unlock(next);
8676 return ret;
8677 }
8678
8679 if (unlikely(wc->refs[level - 1] == 0)) {
8680 btrfs_err(root->fs_info, "Missing references.");
8681 BUG();
8682 }
8683 *lookup_info = 0;
8684
8685 if (wc->stage == DROP_REFERENCE) {
8686 if (wc->refs[level - 1] > 1) {
8687 need_account = true;
8688 if (level == 1 &&
8689 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8690 goto skip;
8691
8692 if (!wc->update_ref ||
8693 generation <= root->root_key.offset)
8694 goto skip;
8695
8696 btrfs_node_key_to_cpu(path->nodes[level], &key,
8697 path->slots[level]);
8698 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8699 if (ret < 0)
8700 goto skip;
8701
8702 wc->stage = UPDATE_BACKREF;
8703 wc->shared_level = level - 1;
8704 }
8705 } else {
8706 if (level == 1 &&
8707 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8708 goto skip;
8709 }
8710
8711 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8712 btrfs_tree_unlock(next);
8713 free_extent_buffer(next);
8714 next = NULL;
8715 *lookup_info = 1;
8716 }
8717
8718 if (!next) {
8719 if (reada && level == 1)
8720 reada_walk_down(trans, root, wc, path);
8721 next = read_tree_block(root, bytenr, generation);
8722 if (IS_ERR(next)) {
8723 return PTR_ERR(next);
8724 } else if (!extent_buffer_uptodate(next)) {
8725 free_extent_buffer(next);
8726 return -EIO;
8727 }
8728 btrfs_tree_lock(next);
8729 btrfs_set_lock_blocking(next);
8730 }
8731
8732 level--;
8733 BUG_ON(level != btrfs_header_level(next));
8734 path->nodes[level] = next;
8735 path->slots[level] = 0;
8736 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8737 wc->level = level;
8738 if (wc->level == 1)
8739 wc->reada_slot = 0;
8740 return 0;
8741 skip:
8742 wc->refs[level - 1] = 0;
8743 wc->flags[level - 1] = 0;
8744 if (wc->stage == DROP_REFERENCE) {
8745 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8746 parent = path->nodes[level]->start;
8747 } else {
8748 BUG_ON(root->root_key.objectid !=
8749 btrfs_header_owner(path->nodes[level]));
8750 parent = 0;
8751 }
8752
8753 if (need_account) {
8754 ret = account_shared_subtree(trans, root, next,
8755 generation, level - 1);
8756 if (ret) {
8757 btrfs_err_rl(root->fs_info,
8758 "Error "
8759 "%d accounting shared subtree. Quota "
8760 "is out of sync, rescan required.",
8761 ret);
8762 }
8763 }
8764 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8765 root->root_key.objectid, level - 1, 0);
8766 BUG_ON(ret); /* -ENOMEM */
8767 }
8768 btrfs_tree_unlock(next);
8769 free_extent_buffer(next);
8770 *lookup_info = 1;
8771 return 1;
8772 }
8773
8774 /*
8775 * helper to process tree block while walking up the tree.
8776 *
8777 * when wc->stage == DROP_REFERENCE, this function drops
8778 * reference count on the block.
8779 *
8780 * when wc->stage == UPDATE_BACKREF, this function changes
8781 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8782 * to UPDATE_BACKREF previously while processing the block.
8783 *
8784 * NOTE: return value 1 means we should stop walking up.
8785 */
8786 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8787 struct btrfs_root *root,
8788 struct btrfs_path *path,
8789 struct walk_control *wc)
8790 {
8791 int ret;
8792 int level = wc->level;
8793 struct extent_buffer *eb = path->nodes[level];
8794 u64 parent = 0;
8795
8796 if (wc->stage == UPDATE_BACKREF) {
8797 BUG_ON(wc->shared_level < level);
8798 if (level < wc->shared_level)
8799 goto out;
8800
8801 ret = find_next_key(path, level + 1, &wc->update_progress);
8802 if (ret > 0)
8803 wc->update_ref = 0;
8804
8805 wc->stage = DROP_REFERENCE;
8806 wc->shared_level = -1;
8807 path->slots[level] = 0;
8808
8809 /*
8810 * check reference count again if the block isn't locked.
8811 * we should start walking down the tree again if reference
8812 * count is one.
8813 */
8814 if (!path->locks[level]) {
8815 BUG_ON(level == 0);
8816 btrfs_tree_lock(eb);
8817 btrfs_set_lock_blocking(eb);
8818 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8819
8820 ret = btrfs_lookup_extent_info(trans, root,
8821 eb->start, level, 1,
8822 &wc->refs[level],
8823 &wc->flags[level]);
8824 if (ret < 0) {
8825 btrfs_tree_unlock_rw(eb, path->locks[level]);
8826 path->locks[level] = 0;
8827 return ret;
8828 }
8829 BUG_ON(wc->refs[level] == 0);
8830 if (wc->refs[level] == 1) {
8831 btrfs_tree_unlock_rw(eb, path->locks[level]);
8832 path->locks[level] = 0;
8833 return 1;
8834 }
8835 }
8836 }
8837
8838 /* wc->stage == DROP_REFERENCE */
8839 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8840
8841 if (wc->refs[level] == 1) {
8842 if (level == 0) {
8843 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8844 ret = btrfs_dec_ref(trans, root, eb, 1);
8845 else
8846 ret = btrfs_dec_ref(trans, root, eb, 0);
8847 BUG_ON(ret); /* -ENOMEM */
8848 ret = account_leaf_items(trans, root, eb);
8849 if (ret) {
8850 btrfs_err_rl(root->fs_info,
8851 "error "
8852 "%d accounting leaf items. Quota "
8853 "is out of sync, rescan required.",
8854 ret);
8855 }
8856 }
8857 /* make block locked assertion in clean_tree_block happy */
8858 if (!path->locks[level] &&
8859 btrfs_header_generation(eb) == trans->transid) {
8860 btrfs_tree_lock(eb);
8861 btrfs_set_lock_blocking(eb);
8862 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8863 }
8864 clean_tree_block(trans, root->fs_info, eb);
8865 }
8866
8867 if (eb == root->node) {
8868 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8869 parent = eb->start;
8870 else
8871 BUG_ON(root->root_key.objectid !=
8872 btrfs_header_owner(eb));
8873 } else {
8874 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8875 parent = path->nodes[level + 1]->start;
8876 else
8877 BUG_ON(root->root_key.objectid !=
8878 btrfs_header_owner(path->nodes[level + 1]));
8879 }
8880
8881 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8882 out:
8883 wc->refs[level] = 0;
8884 wc->flags[level] = 0;
8885 return 0;
8886 }
8887
8888 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8889 struct btrfs_root *root,
8890 struct btrfs_path *path,
8891 struct walk_control *wc)
8892 {
8893 int level = wc->level;
8894 int lookup_info = 1;
8895 int ret;
8896
8897 while (level >= 0) {
8898 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8899 if (ret > 0)
8900 break;
8901
8902 if (level == 0)
8903 break;
8904
8905 if (path->slots[level] >=
8906 btrfs_header_nritems(path->nodes[level]))
8907 break;
8908
8909 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8910 if (ret > 0) {
8911 path->slots[level]++;
8912 continue;
8913 } else if (ret < 0)
8914 return ret;
8915 level = wc->level;
8916 }
8917 return 0;
8918 }
8919
8920 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8921 struct btrfs_root *root,
8922 struct btrfs_path *path,
8923 struct walk_control *wc, int max_level)
8924 {
8925 int level = wc->level;
8926 int ret;
8927
8928 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8929 while (level < max_level && path->nodes[level]) {
8930 wc->level = level;
8931 if (path->slots[level] + 1 <
8932 btrfs_header_nritems(path->nodes[level])) {
8933 path->slots[level]++;
8934 return 0;
8935 } else {
8936 ret = walk_up_proc(trans, root, path, wc);
8937 if (ret > 0)
8938 return 0;
8939
8940 if (path->locks[level]) {
8941 btrfs_tree_unlock_rw(path->nodes[level],
8942 path->locks[level]);
8943 path->locks[level] = 0;
8944 }
8945 free_extent_buffer(path->nodes[level]);
8946 path->nodes[level] = NULL;
8947 level++;
8948 }
8949 }
8950 return 1;
8951 }
8952
8953 /*
8954 * drop a subvolume tree.
8955 *
8956 * this function traverses the tree freeing any blocks that only
8957 * referenced by the tree.
8958 *
8959 * when a shared tree block is found. this function decreases its
8960 * reference count by one. if update_ref is true, this function
8961 * also make sure backrefs for the shared block and all lower level
8962 * blocks are properly updated.
8963 *
8964 * If called with for_reloc == 0, may exit early with -EAGAIN
8965 */
8966 int btrfs_drop_snapshot(struct btrfs_root *root,
8967 struct btrfs_block_rsv *block_rsv, int update_ref,
8968 int for_reloc)
8969 {
8970 struct btrfs_path *path;
8971 struct btrfs_trans_handle *trans;
8972 struct btrfs_root *tree_root = root->fs_info->tree_root;
8973 struct btrfs_root_item *root_item = &root->root_item;
8974 struct walk_control *wc;
8975 struct btrfs_key key;
8976 int err = 0;
8977 int ret;
8978 int level;
8979 bool root_dropped = false;
8980
8981 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8982
8983 path = btrfs_alloc_path();
8984 if (!path) {
8985 err = -ENOMEM;
8986 goto out;
8987 }
8988
8989 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8990 if (!wc) {
8991 btrfs_free_path(path);
8992 err = -ENOMEM;
8993 goto out;
8994 }
8995
8996 trans = btrfs_start_transaction(tree_root, 0);
8997 if (IS_ERR(trans)) {
8998 err = PTR_ERR(trans);
8999 goto out_free;
9000 }
9001
9002 if (block_rsv)
9003 trans->block_rsv = block_rsv;
9004
9005 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9006 level = btrfs_header_level(root->node);
9007 path->nodes[level] = btrfs_lock_root_node(root);
9008 btrfs_set_lock_blocking(path->nodes[level]);
9009 path->slots[level] = 0;
9010 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9011 memset(&wc->update_progress, 0,
9012 sizeof(wc->update_progress));
9013 } else {
9014 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9015 memcpy(&wc->update_progress, &key,
9016 sizeof(wc->update_progress));
9017
9018 level = root_item->drop_level;
9019 BUG_ON(level == 0);
9020 path->lowest_level = level;
9021 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9022 path->lowest_level = 0;
9023 if (ret < 0) {
9024 err = ret;
9025 goto out_end_trans;
9026 }
9027 WARN_ON(ret > 0);
9028
9029 /*
9030 * unlock our path, this is safe because only this
9031 * function is allowed to delete this snapshot
9032 */
9033 btrfs_unlock_up_safe(path, 0);
9034
9035 level = btrfs_header_level(root->node);
9036 while (1) {
9037 btrfs_tree_lock(path->nodes[level]);
9038 btrfs_set_lock_blocking(path->nodes[level]);
9039 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9040
9041 ret = btrfs_lookup_extent_info(trans, root,
9042 path->nodes[level]->start,
9043 level, 1, &wc->refs[level],
9044 &wc->flags[level]);
9045 if (ret < 0) {
9046 err = ret;
9047 goto out_end_trans;
9048 }
9049 BUG_ON(wc->refs[level] == 0);
9050
9051 if (level == root_item->drop_level)
9052 break;
9053
9054 btrfs_tree_unlock(path->nodes[level]);
9055 path->locks[level] = 0;
9056 WARN_ON(wc->refs[level] != 1);
9057 level--;
9058 }
9059 }
9060
9061 wc->level = level;
9062 wc->shared_level = -1;
9063 wc->stage = DROP_REFERENCE;
9064 wc->update_ref = update_ref;
9065 wc->keep_locks = 0;
9066 wc->for_reloc = for_reloc;
9067 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9068
9069 while (1) {
9070
9071 ret = walk_down_tree(trans, root, path, wc);
9072 if (ret < 0) {
9073 err = ret;
9074 break;
9075 }
9076
9077 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9078 if (ret < 0) {
9079 err = ret;
9080 break;
9081 }
9082
9083 if (ret > 0) {
9084 BUG_ON(wc->stage != DROP_REFERENCE);
9085 break;
9086 }
9087
9088 if (wc->stage == DROP_REFERENCE) {
9089 level = wc->level;
9090 btrfs_node_key(path->nodes[level],
9091 &root_item->drop_progress,
9092 path->slots[level]);
9093 root_item->drop_level = level;
9094 }
9095
9096 BUG_ON(wc->level == 0);
9097 if (btrfs_should_end_transaction(trans, tree_root) ||
9098 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9099 ret = btrfs_update_root(trans, tree_root,
9100 &root->root_key,
9101 root_item);
9102 if (ret) {
9103 btrfs_abort_transaction(trans, tree_root, ret);
9104 err = ret;
9105 goto out_end_trans;
9106 }
9107
9108 btrfs_end_transaction_throttle(trans, tree_root);
9109 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9110 pr_debug("BTRFS: drop snapshot early exit\n");
9111 err = -EAGAIN;
9112 goto out_free;
9113 }
9114
9115 trans = btrfs_start_transaction(tree_root, 0);
9116 if (IS_ERR(trans)) {
9117 err = PTR_ERR(trans);
9118 goto out_free;
9119 }
9120 if (block_rsv)
9121 trans->block_rsv = block_rsv;
9122 }
9123 }
9124 btrfs_release_path(path);
9125 if (err)
9126 goto out_end_trans;
9127
9128 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9129 if (ret) {
9130 btrfs_abort_transaction(trans, tree_root, ret);
9131 goto out_end_trans;
9132 }
9133
9134 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9135 ret = btrfs_find_root(tree_root, &root->root_key, path,
9136 NULL, NULL);
9137 if (ret < 0) {
9138 btrfs_abort_transaction(trans, tree_root, ret);
9139 err = ret;
9140 goto out_end_trans;
9141 } else if (ret > 0) {
9142 /* if we fail to delete the orphan item this time
9143 * around, it'll get picked up the next time.
9144 *
9145 * The most common failure here is just -ENOENT.
9146 */
9147 btrfs_del_orphan_item(trans, tree_root,
9148 root->root_key.objectid);
9149 }
9150 }
9151
9152 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9153 btrfs_add_dropped_root(trans, root);
9154 } else {
9155 free_extent_buffer(root->node);
9156 free_extent_buffer(root->commit_root);
9157 btrfs_put_fs_root(root);
9158 }
9159 root_dropped = true;
9160 out_end_trans:
9161 btrfs_end_transaction_throttle(trans, tree_root);
9162 out_free:
9163 kfree(wc);
9164 btrfs_free_path(path);
9165 out:
9166 /*
9167 * So if we need to stop dropping the snapshot for whatever reason we
9168 * need to make sure to add it back to the dead root list so that we
9169 * keep trying to do the work later. This also cleans up roots if we
9170 * don't have it in the radix (like when we recover after a power fail
9171 * or unmount) so we don't leak memory.
9172 */
9173 if (!for_reloc && root_dropped == false)
9174 btrfs_add_dead_root(root);
9175 if (err && err != -EAGAIN)
9176 btrfs_handle_fs_error(root->fs_info, err, NULL);
9177 return err;
9178 }
9179
9180 /*
9181 * drop subtree rooted at tree block 'node'.
9182 *
9183 * NOTE: this function will unlock and release tree block 'node'
9184 * only used by relocation code
9185 */
9186 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9187 struct btrfs_root *root,
9188 struct extent_buffer *node,
9189 struct extent_buffer *parent)
9190 {
9191 struct btrfs_path *path;
9192 struct walk_control *wc;
9193 int level;
9194 int parent_level;
9195 int ret = 0;
9196 int wret;
9197
9198 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9199
9200 path = btrfs_alloc_path();
9201 if (!path)
9202 return -ENOMEM;
9203
9204 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9205 if (!wc) {
9206 btrfs_free_path(path);
9207 return -ENOMEM;
9208 }
9209
9210 btrfs_assert_tree_locked(parent);
9211 parent_level = btrfs_header_level(parent);
9212 extent_buffer_get(parent);
9213 path->nodes[parent_level] = parent;
9214 path->slots[parent_level] = btrfs_header_nritems(parent);
9215
9216 btrfs_assert_tree_locked(node);
9217 level = btrfs_header_level(node);
9218 path->nodes[level] = node;
9219 path->slots[level] = 0;
9220 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9221
9222 wc->refs[parent_level] = 1;
9223 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9224 wc->level = level;
9225 wc->shared_level = -1;
9226 wc->stage = DROP_REFERENCE;
9227 wc->update_ref = 0;
9228 wc->keep_locks = 1;
9229 wc->for_reloc = 1;
9230 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9231
9232 while (1) {
9233 wret = walk_down_tree(trans, root, path, wc);
9234 if (wret < 0) {
9235 ret = wret;
9236 break;
9237 }
9238
9239 wret = walk_up_tree(trans, root, path, wc, parent_level);
9240 if (wret < 0)
9241 ret = wret;
9242 if (wret != 0)
9243 break;
9244 }
9245
9246 kfree(wc);
9247 btrfs_free_path(path);
9248 return ret;
9249 }
9250
9251 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9252 {
9253 u64 num_devices;
9254 u64 stripped;
9255
9256 /*
9257 * if restripe for this chunk_type is on pick target profile and
9258 * return, otherwise do the usual balance
9259 */
9260 stripped = get_restripe_target(root->fs_info, flags);
9261 if (stripped)
9262 return extended_to_chunk(stripped);
9263
9264 num_devices = root->fs_info->fs_devices->rw_devices;
9265
9266 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9267 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9268 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9269
9270 if (num_devices == 1) {
9271 stripped |= BTRFS_BLOCK_GROUP_DUP;
9272 stripped = flags & ~stripped;
9273
9274 /* turn raid0 into single device chunks */
9275 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9276 return stripped;
9277
9278 /* turn mirroring into duplication */
9279 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9280 BTRFS_BLOCK_GROUP_RAID10))
9281 return stripped | BTRFS_BLOCK_GROUP_DUP;
9282 } else {
9283 /* they already had raid on here, just return */
9284 if (flags & stripped)
9285 return flags;
9286
9287 stripped |= BTRFS_BLOCK_GROUP_DUP;
9288 stripped = flags & ~stripped;
9289
9290 /* switch duplicated blocks with raid1 */
9291 if (flags & BTRFS_BLOCK_GROUP_DUP)
9292 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9293
9294 /* this is drive concat, leave it alone */
9295 }
9296
9297 return flags;
9298 }
9299
9300 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9301 {
9302 struct btrfs_space_info *sinfo = cache->space_info;
9303 u64 num_bytes;
9304 u64 min_allocable_bytes;
9305 int ret = -ENOSPC;
9306
9307 /*
9308 * We need some metadata space and system metadata space for
9309 * allocating chunks in some corner cases until we force to set
9310 * it to be readonly.
9311 */
9312 if ((sinfo->flags &
9313 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9314 !force)
9315 min_allocable_bytes = SZ_1M;
9316 else
9317 min_allocable_bytes = 0;
9318
9319 spin_lock(&sinfo->lock);
9320 spin_lock(&cache->lock);
9321
9322 if (cache->ro) {
9323 cache->ro++;
9324 ret = 0;
9325 goto out;
9326 }
9327
9328 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9329 cache->bytes_super - btrfs_block_group_used(&cache->item);
9330
9331 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9332 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9333 min_allocable_bytes <= sinfo->total_bytes) {
9334 sinfo->bytes_readonly += num_bytes;
9335 cache->ro++;
9336 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9337 ret = 0;
9338 }
9339 out:
9340 spin_unlock(&cache->lock);
9341 spin_unlock(&sinfo->lock);
9342 return ret;
9343 }
9344
9345 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9346 struct btrfs_block_group_cache *cache)
9347
9348 {
9349 struct btrfs_trans_handle *trans;
9350 u64 alloc_flags;
9351 int ret;
9352
9353 again:
9354 trans = btrfs_join_transaction(root);
9355 if (IS_ERR(trans))
9356 return PTR_ERR(trans);
9357
9358 /*
9359 * we're not allowed to set block groups readonly after the dirty
9360 * block groups cache has started writing. If it already started,
9361 * back off and let this transaction commit
9362 */
9363 mutex_lock(&root->fs_info->ro_block_group_mutex);
9364 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9365 u64 transid = trans->transid;
9366
9367 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9368 btrfs_end_transaction(trans, root);
9369
9370 ret = btrfs_wait_for_commit(root, transid);
9371 if (ret)
9372 return ret;
9373 goto again;
9374 }
9375
9376 /*
9377 * if we are changing raid levels, try to allocate a corresponding
9378 * block group with the new raid level.
9379 */
9380 alloc_flags = update_block_group_flags(root, cache->flags);
9381 if (alloc_flags != cache->flags) {
9382 ret = do_chunk_alloc(trans, root, alloc_flags,
9383 CHUNK_ALLOC_FORCE);
9384 /*
9385 * ENOSPC is allowed here, we may have enough space
9386 * already allocated at the new raid level to
9387 * carry on
9388 */
9389 if (ret == -ENOSPC)
9390 ret = 0;
9391 if (ret < 0)
9392 goto out;
9393 }
9394
9395 ret = inc_block_group_ro(cache, 0);
9396 if (!ret)
9397 goto out;
9398 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9399 ret = do_chunk_alloc(trans, root, alloc_flags,
9400 CHUNK_ALLOC_FORCE);
9401 if (ret < 0)
9402 goto out;
9403 ret = inc_block_group_ro(cache, 0);
9404 out:
9405 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9406 alloc_flags = update_block_group_flags(root, cache->flags);
9407 lock_chunks(root->fs_info->chunk_root);
9408 check_system_chunk(trans, root, alloc_flags);
9409 unlock_chunks(root->fs_info->chunk_root);
9410 }
9411 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9412
9413 btrfs_end_transaction(trans, root);
9414 return ret;
9415 }
9416
9417 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9418 struct btrfs_root *root, u64 type)
9419 {
9420 u64 alloc_flags = get_alloc_profile(root, type);
9421 return do_chunk_alloc(trans, root, alloc_flags,
9422 CHUNK_ALLOC_FORCE);
9423 }
9424
9425 /*
9426 * helper to account the unused space of all the readonly block group in the
9427 * space_info. takes mirrors into account.
9428 */
9429 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9430 {
9431 struct btrfs_block_group_cache *block_group;
9432 u64 free_bytes = 0;
9433 int factor;
9434
9435 /* It's df, we don't care if it's racy */
9436 if (list_empty(&sinfo->ro_bgs))
9437 return 0;
9438
9439 spin_lock(&sinfo->lock);
9440 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9441 spin_lock(&block_group->lock);
9442
9443 if (!block_group->ro) {
9444 spin_unlock(&block_group->lock);
9445 continue;
9446 }
9447
9448 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9449 BTRFS_BLOCK_GROUP_RAID10 |
9450 BTRFS_BLOCK_GROUP_DUP))
9451 factor = 2;
9452 else
9453 factor = 1;
9454
9455 free_bytes += (block_group->key.offset -
9456 btrfs_block_group_used(&block_group->item)) *
9457 factor;
9458
9459 spin_unlock(&block_group->lock);
9460 }
9461 spin_unlock(&sinfo->lock);
9462
9463 return free_bytes;
9464 }
9465
9466 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9467 struct btrfs_block_group_cache *cache)
9468 {
9469 struct btrfs_space_info *sinfo = cache->space_info;
9470 u64 num_bytes;
9471
9472 BUG_ON(!cache->ro);
9473
9474 spin_lock(&sinfo->lock);
9475 spin_lock(&cache->lock);
9476 if (!--cache->ro) {
9477 num_bytes = cache->key.offset - cache->reserved -
9478 cache->pinned - cache->bytes_super -
9479 btrfs_block_group_used(&cache->item);
9480 sinfo->bytes_readonly -= num_bytes;
9481 list_del_init(&cache->ro_list);
9482 }
9483 spin_unlock(&cache->lock);
9484 spin_unlock(&sinfo->lock);
9485 }
9486
9487 /*
9488 * checks to see if its even possible to relocate this block group.
9489 *
9490 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9491 * ok to go ahead and try.
9492 */
9493 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9494 {
9495 struct btrfs_block_group_cache *block_group;
9496 struct btrfs_space_info *space_info;
9497 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9498 struct btrfs_device *device;
9499 struct btrfs_trans_handle *trans;
9500 u64 min_free;
9501 u64 dev_min = 1;
9502 u64 dev_nr = 0;
9503 u64 target;
9504 int debug;
9505 int index;
9506 int full = 0;
9507 int ret = 0;
9508
9509 debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9510
9511 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9512
9513 /* odd, couldn't find the block group, leave it alone */
9514 if (!block_group) {
9515 if (debug)
9516 btrfs_warn(root->fs_info,
9517 "can't find block group for bytenr %llu",
9518 bytenr);
9519 return -1;
9520 }
9521
9522 min_free = btrfs_block_group_used(&block_group->item);
9523
9524 /* no bytes used, we're good */
9525 if (!min_free)
9526 goto out;
9527
9528 space_info = block_group->space_info;
9529 spin_lock(&space_info->lock);
9530
9531 full = space_info->full;
9532
9533 /*
9534 * if this is the last block group we have in this space, we can't
9535 * relocate it unless we're able to allocate a new chunk below.
9536 *
9537 * Otherwise, we need to make sure we have room in the space to handle
9538 * all of the extents from this block group. If we can, we're good
9539 */
9540 if ((space_info->total_bytes != block_group->key.offset) &&
9541 (space_info->bytes_used + space_info->bytes_reserved +
9542 space_info->bytes_pinned + space_info->bytes_readonly +
9543 min_free < space_info->total_bytes)) {
9544 spin_unlock(&space_info->lock);
9545 goto out;
9546 }
9547 spin_unlock(&space_info->lock);
9548
9549 /*
9550 * ok we don't have enough space, but maybe we have free space on our
9551 * devices to allocate new chunks for relocation, so loop through our
9552 * alloc devices and guess if we have enough space. if this block
9553 * group is going to be restriped, run checks against the target
9554 * profile instead of the current one.
9555 */
9556 ret = -1;
9557
9558 /*
9559 * index:
9560 * 0: raid10
9561 * 1: raid1
9562 * 2: dup
9563 * 3: raid0
9564 * 4: single
9565 */
9566 target = get_restripe_target(root->fs_info, block_group->flags);
9567 if (target) {
9568 index = __get_raid_index(extended_to_chunk(target));
9569 } else {
9570 /*
9571 * this is just a balance, so if we were marked as full
9572 * we know there is no space for a new chunk
9573 */
9574 if (full) {
9575 if (debug)
9576 btrfs_warn(root->fs_info,
9577 "no space to alloc new chunk for block group %llu",
9578 block_group->key.objectid);
9579 goto out;
9580 }
9581
9582 index = get_block_group_index(block_group);
9583 }
9584
9585 if (index == BTRFS_RAID_RAID10) {
9586 dev_min = 4;
9587 /* Divide by 2 */
9588 min_free >>= 1;
9589 } else if (index == BTRFS_RAID_RAID1) {
9590 dev_min = 2;
9591 } else if (index == BTRFS_RAID_DUP) {
9592 /* Multiply by 2 */
9593 min_free <<= 1;
9594 } else if (index == BTRFS_RAID_RAID0) {
9595 dev_min = fs_devices->rw_devices;
9596 min_free = div64_u64(min_free, dev_min);
9597 }
9598
9599 /* We need to do this so that we can look at pending chunks */
9600 trans = btrfs_join_transaction(root);
9601 if (IS_ERR(trans)) {
9602 ret = PTR_ERR(trans);
9603 goto out;
9604 }
9605
9606 mutex_lock(&root->fs_info->chunk_mutex);
9607 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9608 u64 dev_offset;
9609
9610 /*
9611 * check to make sure we can actually find a chunk with enough
9612 * space to fit our block group in.
9613 */
9614 if (device->total_bytes > device->bytes_used + min_free &&
9615 !device->is_tgtdev_for_dev_replace) {
9616 ret = find_free_dev_extent(trans, device, min_free,
9617 &dev_offset, NULL);
9618 if (!ret)
9619 dev_nr++;
9620
9621 if (dev_nr >= dev_min)
9622 break;
9623
9624 ret = -1;
9625 }
9626 }
9627 if (debug && ret == -1)
9628 btrfs_warn(root->fs_info,
9629 "no space to allocate a new chunk for block group %llu",
9630 block_group->key.objectid);
9631 mutex_unlock(&root->fs_info->chunk_mutex);
9632 btrfs_end_transaction(trans, root);
9633 out:
9634 btrfs_put_block_group(block_group);
9635 return ret;
9636 }
9637
9638 static int find_first_block_group(struct btrfs_root *root,
9639 struct btrfs_path *path, struct btrfs_key *key)
9640 {
9641 int ret = 0;
9642 struct btrfs_key found_key;
9643 struct extent_buffer *leaf;
9644 int slot;
9645
9646 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9647 if (ret < 0)
9648 goto out;
9649
9650 while (1) {
9651 slot = path->slots[0];
9652 leaf = path->nodes[0];
9653 if (slot >= btrfs_header_nritems(leaf)) {
9654 ret = btrfs_next_leaf(root, path);
9655 if (ret == 0)
9656 continue;
9657 if (ret < 0)
9658 goto out;
9659 break;
9660 }
9661 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9662
9663 if (found_key.objectid >= key->objectid &&
9664 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9665 ret = 0;
9666 goto out;
9667 }
9668 path->slots[0]++;
9669 }
9670 out:
9671 return ret;
9672 }
9673
9674 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9675 {
9676 struct btrfs_block_group_cache *block_group;
9677 u64 last = 0;
9678
9679 while (1) {
9680 struct inode *inode;
9681
9682 block_group = btrfs_lookup_first_block_group(info, last);
9683 while (block_group) {
9684 spin_lock(&block_group->lock);
9685 if (block_group->iref)
9686 break;
9687 spin_unlock(&block_group->lock);
9688 block_group = next_block_group(info->tree_root,
9689 block_group);
9690 }
9691 if (!block_group) {
9692 if (last == 0)
9693 break;
9694 last = 0;
9695 continue;
9696 }
9697
9698 inode = block_group->inode;
9699 block_group->iref = 0;
9700 block_group->inode = NULL;
9701 spin_unlock(&block_group->lock);
9702 iput(inode);
9703 last = block_group->key.objectid + block_group->key.offset;
9704 btrfs_put_block_group(block_group);
9705 }
9706 }
9707
9708 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9709 {
9710 struct btrfs_block_group_cache *block_group;
9711 struct btrfs_space_info *space_info;
9712 struct btrfs_caching_control *caching_ctl;
9713 struct rb_node *n;
9714
9715 down_write(&info->commit_root_sem);
9716 while (!list_empty(&info->caching_block_groups)) {
9717 caching_ctl = list_entry(info->caching_block_groups.next,
9718 struct btrfs_caching_control, list);
9719 list_del(&caching_ctl->list);
9720 put_caching_control(caching_ctl);
9721 }
9722 up_write(&info->commit_root_sem);
9723
9724 spin_lock(&info->unused_bgs_lock);
9725 while (!list_empty(&info->unused_bgs)) {
9726 block_group = list_first_entry(&info->unused_bgs,
9727 struct btrfs_block_group_cache,
9728 bg_list);
9729 list_del_init(&block_group->bg_list);
9730 btrfs_put_block_group(block_group);
9731 }
9732 spin_unlock(&info->unused_bgs_lock);
9733
9734 spin_lock(&info->block_group_cache_lock);
9735 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9736 block_group = rb_entry(n, struct btrfs_block_group_cache,
9737 cache_node);
9738 rb_erase(&block_group->cache_node,
9739 &info->block_group_cache_tree);
9740 RB_CLEAR_NODE(&block_group->cache_node);
9741 spin_unlock(&info->block_group_cache_lock);
9742
9743 down_write(&block_group->space_info->groups_sem);
9744 list_del(&block_group->list);
9745 up_write(&block_group->space_info->groups_sem);
9746
9747 if (block_group->cached == BTRFS_CACHE_STARTED)
9748 wait_block_group_cache_done(block_group);
9749
9750 /*
9751 * We haven't cached this block group, which means we could
9752 * possibly have excluded extents on this block group.
9753 */
9754 if (block_group->cached == BTRFS_CACHE_NO ||
9755 block_group->cached == BTRFS_CACHE_ERROR)
9756 free_excluded_extents(info->extent_root, block_group);
9757
9758 btrfs_remove_free_space_cache(block_group);
9759 btrfs_put_block_group(block_group);
9760
9761 spin_lock(&info->block_group_cache_lock);
9762 }
9763 spin_unlock(&info->block_group_cache_lock);
9764
9765 /* now that all the block groups are freed, go through and
9766 * free all the space_info structs. This is only called during
9767 * the final stages of unmount, and so we know nobody is
9768 * using them. We call synchronize_rcu() once before we start,
9769 * just to be on the safe side.
9770 */
9771 synchronize_rcu();
9772
9773 release_global_block_rsv(info);
9774
9775 while (!list_empty(&info->space_info)) {
9776 int i;
9777
9778 space_info = list_entry(info->space_info.next,
9779 struct btrfs_space_info,
9780 list);
9781
9782 /*
9783 * Do not hide this behind enospc_debug, this is actually
9784 * important and indicates a real bug if this happens.
9785 */
9786 if (WARN_ON(space_info->bytes_pinned > 0 ||
9787 space_info->bytes_reserved > 0 ||
9788 space_info->bytes_may_use > 0))
9789 dump_space_info(space_info, 0, 0);
9790 list_del(&space_info->list);
9791 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9792 struct kobject *kobj;
9793 kobj = space_info->block_group_kobjs[i];
9794 space_info->block_group_kobjs[i] = NULL;
9795 if (kobj) {
9796 kobject_del(kobj);
9797 kobject_put(kobj);
9798 }
9799 }
9800 kobject_del(&space_info->kobj);
9801 kobject_put(&space_info->kobj);
9802 }
9803 return 0;
9804 }
9805
9806 static void __link_block_group(struct btrfs_space_info *space_info,
9807 struct btrfs_block_group_cache *cache)
9808 {
9809 int index = get_block_group_index(cache);
9810 bool first = false;
9811
9812 down_write(&space_info->groups_sem);
9813 if (list_empty(&space_info->block_groups[index]))
9814 first = true;
9815 list_add_tail(&cache->list, &space_info->block_groups[index]);
9816 up_write(&space_info->groups_sem);
9817
9818 if (first) {
9819 struct raid_kobject *rkobj;
9820 int ret;
9821
9822 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9823 if (!rkobj)
9824 goto out_err;
9825 rkobj->raid_type = index;
9826 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9827 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9828 "%s", get_raid_name(index));
9829 if (ret) {
9830 kobject_put(&rkobj->kobj);
9831 goto out_err;
9832 }
9833 space_info->block_group_kobjs[index] = &rkobj->kobj;
9834 }
9835
9836 return;
9837 out_err:
9838 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9839 }
9840
9841 static struct btrfs_block_group_cache *
9842 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9843 {
9844 struct btrfs_block_group_cache *cache;
9845
9846 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9847 if (!cache)
9848 return NULL;
9849
9850 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9851 GFP_NOFS);
9852 if (!cache->free_space_ctl) {
9853 kfree(cache);
9854 return NULL;
9855 }
9856
9857 cache->key.objectid = start;
9858 cache->key.offset = size;
9859 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9860
9861 cache->sectorsize = root->sectorsize;
9862 cache->fs_info = root->fs_info;
9863 cache->full_stripe_len = btrfs_full_stripe_len(root,
9864 &root->fs_info->mapping_tree,
9865 start);
9866 set_free_space_tree_thresholds(cache);
9867
9868 atomic_set(&cache->count, 1);
9869 spin_lock_init(&cache->lock);
9870 init_rwsem(&cache->data_rwsem);
9871 INIT_LIST_HEAD(&cache->list);
9872 INIT_LIST_HEAD(&cache->cluster_list);
9873 INIT_LIST_HEAD(&cache->bg_list);
9874 INIT_LIST_HEAD(&cache->ro_list);
9875 INIT_LIST_HEAD(&cache->dirty_list);
9876 INIT_LIST_HEAD(&cache->io_list);
9877 btrfs_init_free_space_ctl(cache);
9878 atomic_set(&cache->trimming, 0);
9879 mutex_init(&cache->free_space_lock);
9880
9881 return cache;
9882 }
9883
9884 int btrfs_read_block_groups(struct btrfs_root *root)
9885 {
9886 struct btrfs_path *path;
9887 int ret;
9888 struct btrfs_block_group_cache *cache;
9889 struct btrfs_fs_info *info = root->fs_info;
9890 struct btrfs_space_info *space_info;
9891 struct btrfs_key key;
9892 struct btrfs_key found_key;
9893 struct extent_buffer *leaf;
9894 int need_clear = 0;
9895 u64 cache_gen;
9896
9897 root = info->extent_root;
9898 key.objectid = 0;
9899 key.offset = 0;
9900 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9901 path = btrfs_alloc_path();
9902 if (!path)
9903 return -ENOMEM;
9904 path->reada = READA_FORWARD;
9905
9906 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9907 if (btrfs_test_opt(root, SPACE_CACHE) &&
9908 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9909 need_clear = 1;
9910 if (btrfs_test_opt(root, CLEAR_CACHE))
9911 need_clear = 1;
9912
9913 while (1) {
9914 ret = find_first_block_group(root, path, &key);
9915 if (ret > 0)
9916 break;
9917 if (ret != 0)
9918 goto error;
9919
9920 leaf = path->nodes[0];
9921 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9922
9923 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9924 found_key.offset);
9925 if (!cache) {
9926 ret = -ENOMEM;
9927 goto error;
9928 }
9929
9930 if (need_clear) {
9931 /*
9932 * When we mount with old space cache, we need to
9933 * set BTRFS_DC_CLEAR and set dirty flag.
9934 *
9935 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9936 * truncate the old free space cache inode and
9937 * setup a new one.
9938 * b) Setting 'dirty flag' makes sure that we flush
9939 * the new space cache info onto disk.
9940 */
9941 if (btrfs_test_opt(root, SPACE_CACHE))
9942 cache->disk_cache_state = BTRFS_DC_CLEAR;
9943 }
9944
9945 read_extent_buffer(leaf, &cache->item,
9946 btrfs_item_ptr_offset(leaf, path->slots[0]),
9947 sizeof(cache->item));
9948 cache->flags = btrfs_block_group_flags(&cache->item);
9949
9950 key.objectid = found_key.objectid + found_key.offset;
9951 btrfs_release_path(path);
9952
9953 /*
9954 * We need to exclude the super stripes now so that the space
9955 * info has super bytes accounted for, otherwise we'll think
9956 * we have more space than we actually do.
9957 */
9958 ret = exclude_super_stripes(root, cache);
9959 if (ret) {
9960 /*
9961 * We may have excluded something, so call this just in
9962 * case.
9963 */
9964 free_excluded_extents(root, cache);
9965 btrfs_put_block_group(cache);
9966 goto error;
9967 }
9968
9969 /*
9970 * check for two cases, either we are full, and therefore
9971 * don't need to bother with the caching work since we won't
9972 * find any space, or we are empty, and we can just add all
9973 * the space in and be done with it. This saves us _alot_ of
9974 * time, particularly in the full case.
9975 */
9976 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9977 cache->last_byte_to_unpin = (u64)-1;
9978 cache->cached = BTRFS_CACHE_FINISHED;
9979 free_excluded_extents(root, cache);
9980 } else if (btrfs_block_group_used(&cache->item) == 0) {
9981 cache->last_byte_to_unpin = (u64)-1;
9982 cache->cached = BTRFS_CACHE_FINISHED;
9983 add_new_free_space(cache, root->fs_info,
9984 found_key.objectid,
9985 found_key.objectid +
9986 found_key.offset);
9987 free_excluded_extents(root, cache);
9988 }
9989
9990 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9991 if (ret) {
9992 btrfs_remove_free_space_cache(cache);
9993 btrfs_put_block_group(cache);
9994 goto error;
9995 }
9996
9997 trace_btrfs_add_block_group(root->fs_info, cache, 0);
9998 ret = update_space_info(info, cache->flags, found_key.offset,
9999 btrfs_block_group_used(&cache->item),
10000 cache->bytes_super, &space_info);
10001 if (ret) {
10002 btrfs_remove_free_space_cache(cache);
10003 spin_lock(&info->block_group_cache_lock);
10004 rb_erase(&cache->cache_node,
10005 &info->block_group_cache_tree);
10006 RB_CLEAR_NODE(&cache->cache_node);
10007 spin_unlock(&info->block_group_cache_lock);
10008 btrfs_put_block_group(cache);
10009 goto error;
10010 }
10011
10012 cache->space_info = space_info;
10013
10014 __link_block_group(space_info, cache);
10015
10016 set_avail_alloc_bits(root->fs_info, cache->flags);
10017 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10018 inc_block_group_ro(cache, 1);
10019 } else if (btrfs_block_group_used(&cache->item) == 0) {
10020 spin_lock(&info->unused_bgs_lock);
10021 /* Should always be true but just in case. */
10022 if (list_empty(&cache->bg_list)) {
10023 btrfs_get_block_group(cache);
10024 list_add_tail(&cache->bg_list,
10025 &info->unused_bgs);
10026 }
10027 spin_unlock(&info->unused_bgs_lock);
10028 }
10029 }
10030
10031 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10032 if (!(get_alloc_profile(root, space_info->flags) &
10033 (BTRFS_BLOCK_GROUP_RAID10 |
10034 BTRFS_BLOCK_GROUP_RAID1 |
10035 BTRFS_BLOCK_GROUP_RAID5 |
10036 BTRFS_BLOCK_GROUP_RAID6 |
10037 BTRFS_BLOCK_GROUP_DUP)))
10038 continue;
10039 /*
10040 * avoid allocating from un-mirrored block group if there are
10041 * mirrored block groups.
10042 */
10043 list_for_each_entry(cache,
10044 &space_info->block_groups[BTRFS_RAID_RAID0],
10045 list)
10046 inc_block_group_ro(cache, 1);
10047 list_for_each_entry(cache,
10048 &space_info->block_groups[BTRFS_RAID_SINGLE],
10049 list)
10050 inc_block_group_ro(cache, 1);
10051 }
10052
10053 init_global_block_rsv(info);
10054 ret = 0;
10055 error:
10056 btrfs_free_path(path);
10057 return ret;
10058 }
10059
10060 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10061 struct btrfs_root *root)
10062 {
10063 struct btrfs_block_group_cache *block_group, *tmp;
10064 struct btrfs_root *extent_root = root->fs_info->extent_root;
10065 struct btrfs_block_group_item item;
10066 struct btrfs_key key;
10067 int ret = 0;
10068 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10069
10070 trans->can_flush_pending_bgs = false;
10071 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10072 if (ret)
10073 goto next;
10074
10075 spin_lock(&block_group->lock);
10076 memcpy(&item, &block_group->item, sizeof(item));
10077 memcpy(&key, &block_group->key, sizeof(key));
10078 spin_unlock(&block_group->lock);
10079
10080 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10081 sizeof(item));
10082 if (ret)
10083 btrfs_abort_transaction(trans, extent_root, ret);
10084 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10085 key.objectid, key.offset);
10086 if (ret)
10087 btrfs_abort_transaction(trans, extent_root, ret);
10088 add_block_group_free_space(trans, root->fs_info, block_group);
10089 /* already aborted the transaction if it failed. */
10090 next:
10091 list_del_init(&block_group->bg_list);
10092 }
10093 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10094 }
10095
10096 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10097 struct btrfs_root *root, u64 bytes_used,
10098 u64 type, u64 chunk_objectid, u64 chunk_offset,
10099 u64 size)
10100 {
10101 int ret;
10102 struct btrfs_root *extent_root;
10103 struct btrfs_block_group_cache *cache;
10104 extent_root = root->fs_info->extent_root;
10105
10106 btrfs_set_log_full_commit(root->fs_info, trans);
10107
10108 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10109 if (!cache)
10110 return -ENOMEM;
10111
10112 btrfs_set_block_group_used(&cache->item, bytes_used);
10113 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10114 btrfs_set_block_group_flags(&cache->item, type);
10115
10116 cache->flags = type;
10117 cache->last_byte_to_unpin = (u64)-1;
10118 cache->cached = BTRFS_CACHE_FINISHED;
10119 cache->needs_free_space = 1;
10120 ret = exclude_super_stripes(root, cache);
10121 if (ret) {
10122 /*
10123 * We may have excluded something, so call this just in
10124 * case.
10125 */
10126 free_excluded_extents(root, cache);
10127 btrfs_put_block_group(cache);
10128 return ret;
10129 }
10130
10131 add_new_free_space(cache, root->fs_info, chunk_offset,
10132 chunk_offset + size);
10133
10134 free_excluded_extents(root, cache);
10135
10136 #ifdef CONFIG_BTRFS_DEBUG
10137 if (btrfs_should_fragment_free_space(root, cache)) {
10138 u64 new_bytes_used = size - bytes_used;
10139
10140 bytes_used += new_bytes_used >> 1;
10141 fragment_free_space(root, cache);
10142 }
10143 #endif
10144 /*
10145 * Call to ensure the corresponding space_info object is created and
10146 * assigned to our block group, but don't update its counters just yet.
10147 * We want our bg to be added to the rbtree with its ->space_info set.
10148 */
10149 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10150 &cache->space_info);
10151 if (ret) {
10152 btrfs_remove_free_space_cache(cache);
10153 btrfs_put_block_group(cache);
10154 return ret;
10155 }
10156
10157 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10158 if (ret) {
10159 btrfs_remove_free_space_cache(cache);
10160 btrfs_put_block_group(cache);
10161 return ret;
10162 }
10163
10164 /*
10165 * Now that our block group has its ->space_info set and is inserted in
10166 * the rbtree, update the space info's counters.
10167 */
10168 trace_btrfs_add_block_group(root->fs_info, cache, 1);
10169 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10170 cache->bytes_super, &cache->space_info);
10171 if (ret) {
10172 btrfs_remove_free_space_cache(cache);
10173 spin_lock(&root->fs_info->block_group_cache_lock);
10174 rb_erase(&cache->cache_node,
10175 &root->fs_info->block_group_cache_tree);
10176 RB_CLEAR_NODE(&cache->cache_node);
10177 spin_unlock(&root->fs_info->block_group_cache_lock);
10178 btrfs_put_block_group(cache);
10179 return ret;
10180 }
10181 update_global_block_rsv(root->fs_info);
10182
10183 __link_block_group(cache->space_info, cache);
10184
10185 list_add_tail(&cache->bg_list, &trans->new_bgs);
10186
10187 set_avail_alloc_bits(extent_root->fs_info, type);
10188 return 0;
10189 }
10190
10191 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10192 {
10193 u64 extra_flags = chunk_to_extended(flags) &
10194 BTRFS_EXTENDED_PROFILE_MASK;
10195
10196 write_seqlock(&fs_info->profiles_lock);
10197 if (flags & BTRFS_BLOCK_GROUP_DATA)
10198 fs_info->avail_data_alloc_bits &= ~extra_flags;
10199 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10200 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10201 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10202 fs_info->avail_system_alloc_bits &= ~extra_flags;
10203 write_sequnlock(&fs_info->profiles_lock);
10204 }
10205
10206 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10207 struct btrfs_root *root, u64 group_start,
10208 struct extent_map *em)
10209 {
10210 struct btrfs_path *path;
10211 struct btrfs_block_group_cache *block_group;
10212 struct btrfs_free_cluster *cluster;
10213 struct btrfs_root *tree_root = root->fs_info->tree_root;
10214 struct btrfs_key key;
10215 struct inode *inode;
10216 struct kobject *kobj = NULL;
10217 int ret;
10218 int index;
10219 int factor;
10220 struct btrfs_caching_control *caching_ctl = NULL;
10221 bool remove_em;
10222
10223 root = root->fs_info->extent_root;
10224
10225 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10226 BUG_ON(!block_group);
10227 BUG_ON(!block_group->ro);
10228
10229 /*
10230 * Free the reserved super bytes from this block group before
10231 * remove it.
10232 */
10233 free_excluded_extents(root, block_group);
10234
10235 memcpy(&key, &block_group->key, sizeof(key));
10236 index = get_block_group_index(block_group);
10237 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10238 BTRFS_BLOCK_GROUP_RAID1 |
10239 BTRFS_BLOCK_GROUP_RAID10))
10240 factor = 2;
10241 else
10242 factor = 1;
10243
10244 /* make sure this block group isn't part of an allocation cluster */
10245 cluster = &root->fs_info->data_alloc_cluster;
10246 spin_lock(&cluster->refill_lock);
10247 btrfs_return_cluster_to_free_space(block_group, cluster);
10248 spin_unlock(&cluster->refill_lock);
10249
10250 /*
10251 * make sure this block group isn't part of a metadata
10252 * allocation cluster
10253 */
10254 cluster = &root->fs_info->meta_alloc_cluster;
10255 spin_lock(&cluster->refill_lock);
10256 btrfs_return_cluster_to_free_space(block_group, cluster);
10257 spin_unlock(&cluster->refill_lock);
10258
10259 path = btrfs_alloc_path();
10260 if (!path) {
10261 ret = -ENOMEM;
10262 goto out;
10263 }
10264
10265 /*
10266 * get the inode first so any iput calls done for the io_list
10267 * aren't the final iput (no unlinks allowed now)
10268 */
10269 inode = lookup_free_space_inode(tree_root, block_group, path);
10270
10271 mutex_lock(&trans->transaction->cache_write_mutex);
10272 /*
10273 * make sure our free spache cache IO is done before remove the
10274 * free space inode
10275 */
10276 spin_lock(&trans->transaction->dirty_bgs_lock);
10277 if (!list_empty(&block_group->io_list)) {
10278 list_del_init(&block_group->io_list);
10279
10280 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10281
10282 spin_unlock(&trans->transaction->dirty_bgs_lock);
10283 btrfs_wait_cache_io(root, trans, block_group,
10284 &block_group->io_ctl, path,
10285 block_group->key.objectid);
10286 btrfs_put_block_group(block_group);
10287 spin_lock(&trans->transaction->dirty_bgs_lock);
10288 }
10289
10290 if (!list_empty(&block_group->dirty_list)) {
10291 list_del_init(&block_group->dirty_list);
10292 btrfs_put_block_group(block_group);
10293 }
10294 spin_unlock(&trans->transaction->dirty_bgs_lock);
10295 mutex_unlock(&trans->transaction->cache_write_mutex);
10296
10297 if (!IS_ERR(inode)) {
10298 ret = btrfs_orphan_add(trans, inode);
10299 if (ret) {
10300 btrfs_add_delayed_iput(inode);
10301 goto out;
10302 }
10303 clear_nlink(inode);
10304 /* One for the block groups ref */
10305 spin_lock(&block_group->lock);
10306 if (block_group->iref) {
10307 block_group->iref = 0;
10308 block_group->inode = NULL;
10309 spin_unlock(&block_group->lock);
10310 iput(inode);
10311 } else {
10312 spin_unlock(&block_group->lock);
10313 }
10314 /* One for our lookup ref */
10315 btrfs_add_delayed_iput(inode);
10316 }
10317
10318 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10319 key.offset = block_group->key.objectid;
10320 key.type = 0;
10321
10322 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10323 if (ret < 0)
10324 goto out;
10325 if (ret > 0)
10326 btrfs_release_path(path);
10327 if (ret == 0) {
10328 ret = btrfs_del_item(trans, tree_root, path);
10329 if (ret)
10330 goto out;
10331 btrfs_release_path(path);
10332 }
10333
10334 spin_lock(&root->fs_info->block_group_cache_lock);
10335 rb_erase(&block_group->cache_node,
10336 &root->fs_info->block_group_cache_tree);
10337 RB_CLEAR_NODE(&block_group->cache_node);
10338
10339 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10340 root->fs_info->first_logical_byte = (u64)-1;
10341 spin_unlock(&root->fs_info->block_group_cache_lock);
10342
10343 down_write(&block_group->space_info->groups_sem);
10344 /*
10345 * we must use list_del_init so people can check to see if they
10346 * are still on the list after taking the semaphore
10347 */
10348 list_del_init(&block_group->list);
10349 if (list_empty(&block_group->space_info->block_groups[index])) {
10350 kobj = block_group->space_info->block_group_kobjs[index];
10351 block_group->space_info->block_group_kobjs[index] = NULL;
10352 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10353 }
10354 up_write(&block_group->space_info->groups_sem);
10355 if (kobj) {
10356 kobject_del(kobj);
10357 kobject_put(kobj);
10358 }
10359
10360 if (block_group->has_caching_ctl)
10361 caching_ctl = get_caching_control(block_group);
10362 if (block_group->cached == BTRFS_CACHE_STARTED)
10363 wait_block_group_cache_done(block_group);
10364 if (block_group->has_caching_ctl) {
10365 down_write(&root->fs_info->commit_root_sem);
10366 if (!caching_ctl) {
10367 struct btrfs_caching_control *ctl;
10368
10369 list_for_each_entry(ctl,
10370 &root->fs_info->caching_block_groups, list)
10371 if (ctl->block_group == block_group) {
10372 caching_ctl = ctl;
10373 atomic_inc(&caching_ctl->count);
10374 break;
10375 }
10376 }
10377 if (caching_ctl)
10378 list_del_init(&caching_ctl->list);
10379 up_write(&root->fs_info->commit_root_sem);
10380 if (caching_ctl) {
10381 /* Once for the caching bgs list and once for us. */
10382 put_caching_control(caching_ctl);
10383 put_caching_control(caching_ctl);
10384 }
10385 }
10386
10387 spin_lock(&trans->transaction->dirty_bgs_lock);
10388 if (!list_empty(&block_group->dirty_list)) {
10389 WARN_ON(1);
10390 }
10391 if (!list_empty(&block_group->io_list)) {
10392 WARN_ON(1);
10393 }
10394 spin_unlock(&trans->transaction->dirty_bgs_lock);
10395 btrfs_remove_free_space_cache(block_group);
10396
10397 spin_lock(&block_group->space_info->lock);
10398 list_del_init(&block_group->ro_list);
10399
10400 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10401 WARN_ON(block_group->space_info->total_bytes
10402 < block_group->key.offset);
10403 WARN_ON(block_group->space_info->bytes_readonly
10404 < block_group->key.offset);
10405 WARN_ON(block_group->space_info->disk_total
10406 < block_group->key.offset * factor);
10407 }
10408 block_group->space_info->total_bytes -= block_group->key.offset;
10409 block_group->space_info->bytes_readonly -= block_group->key.offset;
10410 block_group->space_info->disk_total -= block_group->key.offset * factor;
10411
10412 spin_unlock(&block_group->space_info->lock);
10413
10414 memcpy(&key, &block_group->key, sizeof(key));
10415
10416 lock_chunks(root);
10417 if (!list_empty(&em->list)) {
10418 /* We're in the transaction->pending_chunks list. */
10419 free_extent_map(em);
10420 }
10421 spin_lock(&block_group->lock);
10422 block_group->removed = 1;
10423 /*
10424 * At this point trimming can't start on this block group, because we
10425 * removed the block group from the tree fs_info->block_group_cache_tree
10426 * so no one can't find it anymore and even if someone already got this
10427 * block group before we removed it from the rbtree, they have already
10428 * incremented block_group->trimming - if they didn't, they won't find
10429 * any free space entries because we already removed them all when we
10430 * called btrfs_remove_free_space_cache().
10431 *
10432 * And we must not remove the extent map from the fs_info->mapping_tree
10433 * to prevent the same logical address range and physical device space
10434 * ranges from being reused for a new block group. This is because our
10435 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10436 * completely transactionless, so while it is trimming a range the
10437 * currently running transaction might finish and a new one start,
10438 * allowing for new block groups to be created that can reuse the same
10439 * physical device locations unless we take this special care.
10440 *
10441 * There may also be an implicit trim operation if the file system
10442 * is mounted with -odiscard. The same protections must remain
10443 * in place until the extents have been discarded completely when
10444 * the transaction commit has completed.
10445 */
10446 remove_em = (atomic_read(&block_group->trimming) == 0);
10447 /*
10448 * Make sure a trimmer task always sees the em in the pinned_chunks list
10449 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10450 * before checking block_group->removed).
10451 */
10452 if (!remove_em) {
10453 /*
10454 * Our em might be in trans->transaction->pending_chunks which
10455 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10456 * and so is the fs_info->pinned_chunks list.
10457 *
10458 * So at this point we must be holding the chunk_mutex to avoid
10459 * any races with chunk allocation (more specifically at
10460 * volumes.c:contains_pending_extent()), to ensure it always
10461 * sees the em, either in the pending_chunks list or in the
10462 * pinned_chunks list.
10463 */
10464 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10465 }
10466 spin_unlock(&block_group->lock);
10467
10468 if (remove_em) {
10469 struct extent_map_tree *em_tree;
10470
10471 em_tree = &root->fs_info->mapping_tree.map_tree;
10472 write_lock(&em_tree->lock);
10473 /*
10474 * The em might be in the pending_chunks list, so make sure the
10475 * chunk mutex is locked, since remove_extent_mapping() will
10476 * delete us from that list.
10477 */
10478 remove_extent_mapping(em_tree, em);
10479 write_unlock(&em_tree->lock);
10480 /* once for the tree */
10481 free_extent_map(em);
10482 }
10483
10484 unlock_chunks(root);
10485
10486 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10487 if (ret)
10488 goto out;
10489
10490 btrfs_put_block_group(block_group);
10491 btrfs_put_block_group(block_group);
10492
10493 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10494 if (ret > 0)
10495 ret = -EIO;
10496 if (ret < 0)
10497 goto out;
10498
10499 ret = btrfs_del_item(trans, root, path);
10500 out:
10501 btrfs_free_path(path);
10502 return ret;
10503 }
10504
10505 struct btrfs_trans_handle *
10506 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10507 const u64 chunk_offset)
10508 {
10509 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10510 struct extent_map *em;
10511 struct map_lookup *map;
10512 unsigned int num_items;
10513
10514 read_lock(&em_tree->lock);
10515 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10516 read_unlock(&em_tree->lock);
10517 ASSERT(em && em->start == chunk_offset);
10518
10519 /*
10520 * We need to reserve 3 + N units from the metadata space info in order
10521 * to remove a block group (done at btrfs_remove_chunk() and at
10522 * btrfs_remove_block_group()), which are used for:
10523 *
10524 * 1 unit for adding the free space inode's orphan (located in the tree
10525 * of tree roots).
10526 * 1 unit for deleting the block group item (located in the extent
10527 * tree).
10528 * 1 unit for deleting the free space item (located in tree of tree
10529 * roots).
10530 * N units for deleting N device extent items corresponding to each
10531 * stripe (located in the device tree).
10532 *
10533 * In order to remove a block group we also need to reserve units in the
10534 * system space info in order to update the chunk tree (update one or
10535 * more device items and remove one chunk item), but this is done at
10536 * btrfs_remove_chunk() through a call to check_system_chunk().
10537 */
10538 map = em->map_lookup;
10539 num_items = 3 + map->num_stripes;
10540 free_extent_map(em);
10541
10542 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10543 num_items, 1);
10544 }
10545
10546 /*
10547 * Process the unused_bgs list and remove any that don't have any allocated
10548 * space inside of them.
10549 */
10550 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10551 {
10552 struct btrfs_block_group_cache *block_group;
10553 struct btrfs_space_info *space_info;
10554 struct btrfs_root *root = fs_info->extent_root;
10555 struct btrfs_trans_handle *trans;
10556 int ret = 0;
10557
10558 if (!fs_info->open)
10559 return;
10560
10561 spin_lock(&fs_info->unused_bgs_lock);
10562 while (!list_empty(&fs_info->unused_bgs)) {
10563 u64 start, end;
10564 int trimming;
10565
10566 block_group = list_first_entry(&fs_info->unused_bgs,
10567 struct btrfs_block_group_cache,
10568 bg_list);
10569 list_del_init(&block_group->bg_list);
10570
10571 space_info = block_group->space_info;
10572
10573 if (ret || btrfs_mixed_space_info(space_info)) {
10574 btrfs_put_block_group(block_group);
10575 continue;
10576 }
10577 spin_unlock(&fs_info->unused_bgs_lock);
10578
10579 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10580
10581 /* Don't want to race with allocators so take the groups_sem */
10582 down_write(&space_info->groups_sem);
10583 spin_lock(&block_group->lock);
10584 if (block_group->reserved ||
10585 btrfs_block_group_used(&block_group->item) ||
10586 block_group->ro ||
10587 list_is_singular(&block_group->list)) {
10588 /*
10589 * We want to bail if we made new allocations or have
10590 * outstanding allocations in this block group. We do
10591 * the ro check in case balance is currently acting on
10592 * this block group.
10593 */
10594 spin_unlock(&block_group->lock);
10595 up_write(&space_info->groups_sem);
10596 goto next;
10597 }
10598 spin_unlock(&block_group->lock);
10599
10600 /* We don't want to force the issue, only flip if it's ok. */
10601 ret = inc_block_group_ro(block_group, 0);
10602 up_write(&space_info->groups_sem);
10603 if (ret < 0) {
10604 ret = 0;
10605 goto next;
10606 }
10607
10608 /*
10609 * Want to do this before we do anything else so we can recover
10610 * properly if we fail to join the transaction.
10611 */
10612 trans = btrfs_start_trans_remove_block_group(fs_info,
10613 block_group->key.objectid);
10614 if (IS_ERR(trans)) {
10615 btrfs_dec_block_group_ro(root, block_group);
10616 ret = PTR_ERR(trans);
10617 goto next;
10618 }
10619
10620 /*
10621 * We could have pending pinned extents for this block group,
10622 * just delete them, we don't care about them anymore.
10623 */
10624 start = block_group->key.objectid;
10625 end = start + block_group->key.offset - 1;
10626 /*
10627 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10628 * btrfs_finish_extent_commit(). If we are at transaction N,
10629 * another task might be running finish_extent_commit() for the
10630 * previous transaction N - 1, and have seen a range belonging
10631 * to the block group in freed_extents[] before we were able to
10632 * clear the whole block group range from freed_extents[]. This
10633 * means that task can lookup for the block group after we
10634 * unpinned it from freed_extents[] and removed it, leading to
10635 * a BUG_ON() at btrfs_unpin_extent_range().
10636 */
10637 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10638 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10639 EXTENT_DIRTY);
10640 if (ret) {
10641 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10642 btrfs_dec_block_group_ro(root, block_group);
10643 goto end_trans;
10644 }
10645 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10646 EXTENT_DIRTY);
10647 if (ret) {
10648 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10649 btrfs_dec_block_group_ro(root, block_group);
10650 goto end_trans;
10651 }
10652 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10653
10654 /* Reset pinned so btrfs_put_block_group doesn't complain */
10655 spin_lock(&space_info->lock);
10656 spin_lock(&block_group->lock);
10657
10658 space_info->bytes_pinned -= block_group->pinned;
10659 space_info->bytes_readonly += block_group->pinned;
10660 percpu_counter_add(&space_info->total_bytes_pinned,
10661 -block_group->pinned);
10662 block_group->pinned = 0;
10663
10664 spin_unlock(&block_group->lock);
10665 spin_unlock(&space_info->lock);
10666
10667 /* DISCARD can flip during remount */
10668 trimming = btrfs_test_opt(root, DISCARD);
10669
10670 /* Implicit trim during transaction commit. */
10671 if (trimming)
10672 btrfs_get_block_group_trimming(block_group);
10673
10674 /*
10675 * Btrfs_remove_chunk will abort the transaction if things go
10676 * horribly wrong.
10677 */
10678 ret = btrfs_remove_chunk(trans, root,
10679 block_group->key.objectid);
10680
10681 if (ret) {
10682 if (trimming)
10683 btrfs_put_block_group_trimming(block_group);
10684 goto end_trans;
10685 }
10686
10687 /*
10688 * If we're not mounted with -odiscard, we can just forget
10689 * about this block group. Otherwise we'll need to wait
10690 * until transaction commit to do the actual discard.
10691 */
10692 if (trimming) {
10693 spin_lock(&fs_info->unused_bgs_lock);
10694 /*
10695 * A concurrent scrub might have added us to the list
10696 * fs_info->unused_bgs, so use a list_move operation
10697 * to add the block group to the deleted_bgs list.
10698 */
10699 list_move(&block_group->bg_list,
10700 &trans->transaction->deleted_bgs);
10701 spin_unlock(&fs_info->unused_bgs_lock);
10702 btrfs_get_block_group(block_group);
10703 }
10704 end_trans:
10705 btrfs_end_transaction(trans, root);
10706 next:
10707 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10708 btrfs_put_block_group(block_group);
10709 spin_lock(&fs_info->unused_bgs_lock);
10710 }
10711 spin_unlock(&fs_info->unused_bgs_lock);
10712 }
10713
10714 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10715 {
10716 struct btrfs_space_info *space_info;
10717 struct btrfs_super_block *disk_super;
10718 u64 features;
10719 u64 flags;
10720 int mixed = 0;
10721 int ret;
10722
10723 disk_super = fs_info->super_copy;
10724 if (!btrfs_super_root(disk_super))
10725 return -EINVAL;
10726
10727 features = btrfs_super_incompat_flags(disk_super);
10728 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10729 mixed = 1;
10730
10731 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10732 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10733 if (ret)
10734 goto out;
10735
10736 if (mixed) {
10737 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10738 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10739 } else {
10740 flags = BTRFS_BLOCK_GROUP_METADATA;
10741 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10742 if (ret)
10743 goto out;
10744
10745 flags = BTRFS_BLOCK_GROUP_DATA;
10746 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10747 }
10748 out:
10749 return ret;
10750 }
10751
10752 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10753 {
10754 return unpin_extent_range(root, start, end, false);
10755 }
10756
10757 /*
10758 * It used to be that old block groups would be left around forever.
10759 * Iterating over them would be enough to trim unused space. Since we
10760 * now automatically remove them, we also need to iterate over unallocated
10761 * space.
10762 *
10763 * We don't want a transaction for this since the discard may take a
10764 * substantial amount of time. We don't require that a transaction be
10765 * running, but we do need to take a running transaction into account
10766 * to ensure that we're not discarding chunks that were released in
10767 * the current transaction.
10768 *
10769 * Holding the chunks lock will prevent other threads from allocating
10770 * or releasing chunks, but it won't prevent a running transaction
10771 * from committing and releasing the memory that the pending chunks
10772 * list head uses. For that, we need to take a reference to the
10773 * transaction.
10774 */
10775 static int btrfs_trim_free_extents(struct btrfs_device *device,
10776 u64 minlen, u64 *trimmed)
10777 {
10778 u64 start = 0, len = 0;
10779 int ret;
10780
10781 *trimmed = 0;
10782
10783 /* Not writeable = nothing to do. */
10784 if (!device->writeable)
10785 return 0;
10786
10787 /* No free space = nothing to do. */
10788 if (device->total_bytes <= device->bytes_used)
10789 return 0;
10790
10791 ret = 0;
10792
10793 while (1) {
10794 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10795 struct btrfs_transaction *trans;
10796 u64 bytes;
10797
10798 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10799 if (ret)
10800 return ret;
10801
10802 down_read(&fs_info->commit_root_sem);
10803
10804 spin_lock(&fs_info->trans_lock);
10805 trans = fs_info->running_transaction;
10806 if (trans)
10807 atomic_inc(&trans->use_count);
10808 spin_unlock(&fs_info->trans_lock);
10809
10810 ret = find_free_dev_extent_start(trans, device, minlen, start,
10811 &start, &len);
10812 if (trans)
10813 btrfs_put_transaction(trans);
10814
10815 if (ret) {
10816 up_read(&fs_info->commit_root_sem);
10817 mutex_unlock(&fs_info->chunk_mutex);
10818 if (ret == -ENOSPC)
10819 ret = 0;
10820 break;
10821 }
10822
10823 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10824 up_read(&fs_info->commit_root_sem);
10825 mutex_unlock(&fs_info->chunk_mutex);
10826
10827 if (ret)
10828 break;
10829
10830 start += len;
10831 *trimmed += bytes;
10832
10833 if (fatal_signal_pending(current)) {
10834 ret = -ERESTARTSYS;
10835 break;
10836 }
10837
10838 cond_resched();
10839 }
10840
10841 return ret;
10842 }
10843
10844 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10845 {
10846 struct btrfs_fs_info *fs_info = root->fs_info;
10847 struct btrfs_block_group_cache *cache = NULL;
10848 struct btrfs_device *device;
10849 struct list_head *devices;
10850 u64 group_trimmed;
10851 u64 start;
10852 u64 end;
10853 u64 trimmed = 0;
10854 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10855 int ret = 0;
10856
10857 /*
10858 * try to trim all FS space, our block group may start from non-zero.
10859 */
10860 if (range->len == total_bytes)
10861 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10862 else
10863 cache = btrfs_lookup_block_group(fs_info, range->start);
10864
10865 while (cache) {
10866 if (cache->key.objectid >= (range->start + range->len)) {
10867 btrfs_put_block_group(cache);
10868 break;
10869 }
10870
10871 start = max(range->start, cache->key.objectid);
10872 end = min(range->start + range->len,
10873 cache->key.objectid + cache->key.offset);
10874
10875 if (end - start >= range->minlen) {
10876 if (!block_group_cache_done(cache)) {
10877 ret = cache_block_group(cache, 0);
10878 if (ret) {
10879 btrfs_put_block_group(cache);
10880 break;
10881 }
10882 ret = wait_block_group_cache_done(cache);
10883 if (ret) {
10884 btrfs_put_block_group(cache);
10885 break;
10886 }
10887 }
10888 ret = btrfs_trim_block_group(cache,
10889 &group_trimmed,
10890 start,
10891 end,
10892 range->minlen);
10893
10894 trimmed += group_trimmed;
10895 if (ret) {
10896 btrfs_put_block_group(cache);
10897 break;
10898 }
10899 }
10900
10901 cache = next_block_group(fs_info->tree_root, cache);
10902 }
10903
10904 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10905 devices = &root->fs_info->fs_devices->alloc_list;
10906 list_for_each_entry(device, devices, dev_alloc_list) {
10907 ret = btrfs_trim_free_extents(device, range->minlen,
10908 &group_trimmed);
10909 if (ret)
10910 break;
10911
10912 trimmed += group_trimmed;
10913 }
10914 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10915
10916 range->len = trimmed;
10917 return ret;
10918 }
10919
10920 /*
10921 * btrfs_{start,end}_write_no_snapshoting() are similar to
10922 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10923 * data into the page cache through nocow before the subvolume is snapshoted,
10924 * but flush the data into disk after the snapshot creation, or to prevent
10925 * operations while snapshoting is ongoing and that cause the snapshot to be
10926 * inconsistent (writes followed by expanding truncates for example).
10927 */
10928 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10929 {
10930 percpu_counter_dec(&root->subv_writers->counter);
10931 /*
10932 * Make sure counter is updated before we wake up waiters.
10933 */
10934 smp_mb();
10935 if (waitqueue_active(&root->subv_writers->wait))
10936 wake_up(&root->subv_writers->wait);
10937 }
10938
10939 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10940 {
10941 if (atomic_read(&root->will_be_snapshoted))
10942 return 0;
10943
10944 percpu_counter_inc(&root->subv_writers->counter);
10945 /*
10946 * Make sure counter is updated before we check for snapshot creation.
10947 */
10948 smp_mb();
10949 if (atomic_read(&root->will_be_snapshoted)) {
10950 btrfs_end_write_no_snapshoting(root);
10951 return 0;
10952 }
10953 return 1;
10954 }
10955
10956 static int wait_snapshoting_atomic_t(atomic_t *a)
10957 {
10958 schedule();
10959 return 0;
10960 }
10961
10962 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10963 {
10964 while (true) {
10965 int ret;
10966
10967 ret = btrfs_start_write_no_snapshoting(root);
10968 if (ret)
10969 break;
10970 wait_on_atomic_t(&root->will_be_snapshoted,
10971 wait_snapshoting_atomic_t,
10972 TASK_UNINTERRUPTIBLE);
10973 }
10974 }
This page took 0.461516 seconds and 5 git commands to generate.