Btrfs: don't wait on ordered extents if we have a trans open
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38
39 #undef SCRAMBLE_DELAYED_REFS
40
41 /*
42 * control flags for do_chunk_alloc's force field
43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44 * if we really need one.
45 *
46 * CHUNK_ALLOC_LIMITED means to only try and allocate one
47 * if we have very few chunks already allocated. This is
48 * used as part of the clustering code to help make sure
49 * we have a good pool of storage to cluster in, without
50 * filling the FS with empty chunks
51 *
52 * CHUNK_ALLOC_FORCE means it must try to allocate one
53 *
54 */
55 enum {
56 CHUNK_ALLOC_NO_FORCE = 0,
57 CHUNK_ALLOC_LIMITED = 1,
58 CHUNK_ALLOC_FORCE = 2,
59 };
60
61 /*
62 * Control how reservations are dealt with.
63 *
64 * RESERVE_FREE - freeing a reservation.
65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66 * ENOSPC accounting
67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 */
70 enum {
71 RESERVE_FREE = 0,
72 RESERVE_ALLOC = 1,
73 RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75
76 static int update_block_group(struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
99 int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 u64 num_bytes);
108
109 static noinline int
110 block_group_cache_done(struct btrfs_block_group_cache *cache)
111 {
112 smp_mb();
113 return cache->cached == BTRFS_CACHE_FINISHED;
114 }
115
116 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
117 {
118 return (cache->flags & bits) == bits;
119 }
120
121 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
122 {
123 atomic_inc(&cache->count);
124 }
125
126 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
127 {
128 if (atomic_dec_and_test(&cache->count)) {
129 WARN_ON(cache->pinned > 0);
130 WARN_ON(cache->reserved > 0);
131 kfree(cache->free_space_ctl);
132 kfree(cache);
133 }
134 }
135
136 /*
137 * this adds the block group to the fs_info rb tree for the block group
138 * cache
139 */
140 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
141 struct btrfs_block_group_cache *block_group)
142 {
143 struct rb_node **p;
144 struct rb_node *parent = NULL;
145 struct btrfs_block_group_cache *cache;
146
147 spin_lock(&info->block_group_cache_lock);
148 p = &info->block_group_cache_tree.rb_node;
149
150 while (*p) {
151 parent = *p;
152 cache = rb_entry(parent, struct btrfs_block_group_cache,
153 cache_node);
154 if (block_group->key.objectid < cache->key.objectid) {
155 p = &(*p)->rb_left;
156 } else if (block_group->key.objectid > cache->key.objectid) {
157 p = &(*p)->rb_right;
158 } else {
159 spin_unlock(&info->block_group_cache_lock);
160 return -EEXIST;
161 }
162 }
163
164 rb_link_node(&block_group->cache_node, parent, p);
165 rb_insert_color(&block_group->cache_node,
166 &info->block_group_cache_tree);
167
168 if (info->first_logical_byte > block_group->key.objectid)
169 info->first_logical_byte = block_group->key.objectid;
170
171 spin_unlock(&info->block_group_cache_lock);
172
173 return 0;
174 }
175
176 /*
177 * This will return the block group at or after bytenr if contains is 0, else
178 * it will return the block group that contains the bytenr
179 */
180 static struct btrfs_block_group_cache *
181 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
182 int contains)
183 {
184 struct btrfs_block_group_cache *cache, *ret = NULL;
185 struct rb_node *n;
186 u64 end, start;
187
188 spin_lock(&info->block_group_cache_lock);
189 n = info->block_group_cache_tree.rb_node;
190
191 while (n) {
192 cache = rb_entry(n, struct btrfs_block_group_cache,
193 cache_node);
194 end = cache->key.objectid + cache->key.offset - 1;
195 start = cache->key.objectid;
196
197 if (bytenr < start) {
198 if (!contains && (!ret || start < ret->key.objectid))
199 ret = cache;
200 n = n->rb_left;
201 } else if (bytenr > start) {
202 if (contains && bytenr <= end) {
203 ret = cache;
204 break;
205 }
206 n = n->rb_right;
207 } else {
208 ret = cache;
209 break;
210 }
211 }
212 if (ret) {
213 btrfs_get_block_group(ret);
214 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
215 info->first_logical_byte = ret->key.objectid;
216 }
217 spin_unlock(&info->block_group_cache_lock);
218
219 return ret;
220 }
221
222 static int add_excluded_extent(struct btrfs_root *root,
223 u64 start, u64 num_bytes)
224 {
225 u64 end = start + num_bytes - 1;
226 set_extent_bits(&root->fs_info->freed_extents[0],
227 start, end, EXTENT_UPTODATE, GFP_NOFS);
228 set_extent_bits(&root->fs_info->freed_extents[1],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 return 0;
231 }
232
233 static void free_excluded_extents(struct btrfs_root *root,
234 struct btrfs_block_group_cache *cache)
235 {
236 u64 start, end;
237
238 start = cache->key.objectid;
239 end = start + cache->key.offset - 1;
240
241 clear_extent_bits(&root->fs_info->freed_extents[0],
242 start, end, EXTENT_UPTODATE, GFP_NOFS);
243 clear_extent_bits(&root->fs_info->freed_extents[1],
244 start, end, EXTENT_UPTODATE, GFP_NOFS);
245 }
246
247 static int exclude_super_stripes(struct btrfs_root *root,
248 struct btrfs_block_group_cache *cache)
249 {
250 u64 bytenr;
251 u64 *logical;
252 int stripe_len;
253 int i, nr, ret;
254
255 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
256 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
257 cache->bytes_super += stripe_len;
258 ret = add_excluded_extent(root, cache->key.objectid,
259 stripe_len);
260 if (ret)
261 return ret;
262 }
263
264 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
265 bytenr = btrfs_sb_offset(i);
266 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
267 cache->key.objectid, bytenr,
268 0, &logical, &nr, &stripe_len);
269 if (ret)
270 return ret;
271
272 while (nr--) {
273 cache->bytes_super += stripe_len;
274 ret = add_excluded_extent(root, logical[nr],
275 stripe_len);
276 if (ret) {
277 kfree(logical);
278 return ret;
279 }
280 }
281
282 kfree(logical);
283 }
284 return 0;
285 }
286
287 static struct btrfs_caching_control *
288 get_caching_control(struct btrfs_block_group_cache *cache)
289 {
290 struct btrfs_caching_control *ctl;
291
292 spin_lock(&cache->lock);
293 if (cache->cached != BTRFS_CACHE_STARTED) {
294 spin_unlock(&cache->lock);
295 return NULL;
296 }
297
298 /* We're loading it the fast way, so we don't have a caching_ctl. */
299 if (!cache->caching_ctl) {
300 spin_unlock(&cache->lock);
301 return NULL;
302 }
303
304 ctl = cache->caching_ctl;
305 atomic_inc(&ctl->count);
306 spin_unlock(&cache->lock);
307 return ctl;
308 }
309
310 static void put_caching_control(struct btrfs_caching_control *ctl)
311 {
312 if (atomic_dec_and_test(&ctl->count))
313 kfree(ctl);
314 }
315
316 /*
317 * this is only called by cache_block_group, since we could have freed extents
318 * we need to check the pinned_extents for any extents that can't be used yet
319 * since their free space will be released as soon as the transaction commits.
320 */
321 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
322 struct btrfs_fs_info *info, u64 start, u64 end)
323 {
324 u64 extent_start, extent_end, size, total_added = 0;
325 int ret;
326
327 while (start < end) {
328 ret = find_first_extent_bit(info->pinned_extents, start,
329 &extent_start, &extent_end,
330 EXTENT_DIRTY | EXTENT_UPTODATE,
331 NULL);
332 if (ret)
333 break;
334
335 if (extent_start <= start) {
336 start = extent_end + 1;
337 } else if (extent_start > start && extent_start < end) {
338 size = extent_start - start;
339 total_added += size;
340 ret = btrfs_add_free_space(block_group, start,
341 size);
342 BUG_ON(ret); /* -ENOMEM or logic error */
343 start = extent_end + 1;
344 } else {
345 break;
346 }
347 }
348
349 if (start < end) {
350 size = end - start;
351 total_added += size;
352 ret = btrfs_add_free_space(block_group, start, size);
353 BUG_ON(ret); /* -ENOMEM or logic error */
354 }
355
356 return total_added;
357 }
358
359 static noinline void caching_thread(struct btrfs_work *work)
360 {
361 struct btrfs_block_group_cache *block_group;
362 struct btrfs_fs_info *fs_info;
363 struct btrfs_caching_control *caching_ctl;
364 struct btrfs_root *extent_root;
365 struct btrfs_path *path;
366 struct extent_buffer *leaf;
367 struct btrfs_key key;
368 u64 total_found = 0;
369 u64 last = 0;
370 u32 nritems;
371 int ret = 0;
372
373 caching_ctl = container_of(work, struct btrfs_caching_control, work);
374 block_group = caching_ctl->block_group;
375 fs_info = block_group->fs_info;
376 extent_root = fs_info->extent_root;
377
378 path = btrfs_alloc_path();
379 if (!path)
380 goto out;
381
382 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
383
384 /*
385 * We don't want to deadlock with somebody trying to allocate a new
386 * extent for the extent root while also trying to search the extent
387 * root to add free space. So we skip locking and search the commit
388 * root, since its read-only
389 */
390 path->skip_locking = 1;
391 path->search_commit_root = 1;
392 path->reada = 1;
393
394 key.objectid = last;
395 key.offset = 0;
396 key.type = BTRFS_EXTENT_ITEM_KEY;
397 again:
398 mutex_lock(&caching_ctl->mutex);
399 /* need to make sure the commit_root doesn't disappear */
400 down_read(&fs_info->extent_commit_sem);
401
402 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
403 if (ret < 0)
404 goto err;
405
406 leaf = path->nodes[0];
407 nritems = btrfs_header_nritems(leaf);
408
409 while (1) {
410 if (btrfs_fs_closing(fs_info) > 1) {
411 last = (u64)-1;
412 break;
413 }
414
415 if (path->slots[0] < nritems) {
416 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
417 } else {
418 ret = find_next_key(path, 0, &key);
419 if (ret)
420 break;
421
422 if (need_resched() ||
423 btrfs_next_leaf(extent_root, path)) {
424 caching_ctl->progress = last;
425 btrfs_release_path(path);
426 up_read(&fs_info->extent_commit_sem);
427 mutex_unlock(&caching_ctl->mutex);
428 cond_resched();
429 goto again;
430 }
431 leaf = path->nodes[0];
432 nritems = btrfs_header_nritems(leaf);
433 continue;
434 }
435
436 if (key.objectid < block_group->key.objectid) {
437 path->slots[0]++;
438 continue;
439 }
440
441 if (key.objectid >= block_group->key.objectid +
442 block_group->key.offset)
443 break;
444
445 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
446 key.type == BTRFS_METADATA_ITEM_KEY) {
447 total_found += add_new_free_space(block_group,
448 fs_info, last,
449 key.objectid);
450 if (key.type == BTRFS_METADATA_ITEM_KEY)
451 last = key.objectid +
452 fs_info->tree_root->leafsize;
453 else
454 last = key.objectid + key.offset;
455
456 if (total_found > (1024 * 1024 * 2)) {
457 total_found = 0;
458 wake_up(&caching_ctl->wait);
459 }
460 }
461 path->slots[0]++;
462 }
463 ret = 0;
464
465 total_found += add_new_free_space(block_group, fs_info, last,
466 block_group->key.objectid +
467 block_group->key.offset);
468 caching_ctl->progress = (u64)-1;
469
470 spin_lock(&block_group->lock);
471 block_group->caching_ctl = NULL;
472 block_group->cached = BTRFS_CACHE_FINISHED;
473 spin_unlock(&block_group->lock);
474
475 err:
476 btrfs_free_path(path);
477 up_read(&fs_info->extent_commit_sem);
478
479 free_excluded_extents(extent_root, block_group);
480
481 mutex_unlock(&caching_ctl->mutex);
482 out:
483 wake_up(&caching_ctl->wait);
484
485 put_caching_control(caching_ctl);
486 btrfs_put_block_group(block_group);
487 }
488
489 static int cache_block_group(struct btrfs_block_group_cache *cache,
490 int load_cache_only)
491 {
492 DEFINE_WAIT(wait);
493 struct btrfs_fs_info *fs_info = cache->fs_info;
494 struct btrfs_caching_control *caching_ctl;
495 int ret = 0;
496
497 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
498 if (!caching_ctl)
499 return -ENOMEM;
500
501 INIT_LIST_HEAD(&caching_ctl->list);
502 mutex_init(&caching_ctl->mutex);
503 init_waitqueue_head(&caching_ctl->wait);
504 caching_ctl->block_group = cache;
505 caching_ctl->progress = cache->key.objectid;
506 atomic_set(&caching_ctl->count, 1);
507 caching_ctl->work.func = caching_thread;
508
509 spin_lock(&cache->lock);
510 /*
511 * This should be a rare occasion, but this could happen I think in the
512 * case where one thread starts to load the space cache info, and then
513 * some other thread starts a transaction commit which tries to do an
514 * allocation while the other thread is still loading the space cache
515 * info. The previous loop should have kept us from choosing this block
516 * group, but if we've moved to the state where we will wait on caching
517 * block groups we need to first check if we're doing a fast load here,
518 * so we can wait for it to finish, otherwise we could end up allocating
519 * from a block group who's cache gets evicted for one reason or
520 * another.
521 */
522 while (cache->cached == BTRFS_CACHE_FAST) {
523 struct btrfs_caching_control *ctl;
524
525 ctl = cache->caching_ctl;
526 atomic_inc(&ctl->count);
527 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
528 spin_unlock(&cache->lock);
529
530 schedule();
531
532 finish_wait(&ctl->wait, &wait);
533 put_caching_control(ctl);
534 spin_lock(&cache->lock);
535 }
536
537 if (cache->cached != BTRFS_CACHE_NO) {
538 spin_unlock(&cache->lock);
539 kfree(caching_ctl);
540 return 0;
541 }
542 WARN_ON(cache->caching_ctl);
543 cache->caching_ctl = caching_ctl;
544 cache->cached = BTRFS_CACHE_FAST;
545 spin_unlock(&cache->lock);
546
547 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
548 ret = load_free_space_cache(fs_info, cache);
549
550 spin_lock(&cache->lock);
551 if (ret == 1) {
552 cache->caching_ctl = NULL;
553 cache->cached = BTRFS_CACHE_FINISHED;
554 cache->last_byte_to_unpin = (u64)-1;
555 } else {
556 if (load_cache_only) {
557 cache->caching_ctl = NULL;
558 cache->cached = BTRFS_CACHE_NO;
559 } else {
560 cache->cached = BTRFS_CACHE_STARTED;
561 }
562 }
563 spin_unlock(&cache->lock);
564 wake_up(&caching_ctl->wait);
565 if (ret == 1) {
566 put_caching_control(caching_ctl);
567 free_excluded_extents(fs_info->extent_root, cache);
568 return 0;
569 }
570 } else {
571 /*
572 * We are not going to do the fast caching, set cached to the
573 * appropriate value and wakeup any waiters.
574 */
575 spin_lock(&cache->lock);
576 if (load_cache_only) {
577 cache->caching_ctl = NULL;
578 cache->cached = BTRFS_CACHE_NO;
579 } else {
580 cache->cached = BTRFS_CACHE_STARTED;
581 }
582 spin_unlock(&cache->lock);
583 wake_up(&caching_ctl->wait);
584 }
585
586 if (load_cache_only) {
587 put_caching_control(caching_ctl);
588 return 0;
589 }
590
591 down_write(&fs_info->extent_commit_sem);
592 atomic_inc(&caching_ctl->count);
593 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
594 up_write(&fs_info->extent_commit_sem);
595
596 btrfs_get_block_group(cache);
597
598 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
599
600 return ret;
601 }
602
603 /*
604 * return the block group that starts at or after bytenr
605 */
606 static struct btrfs_block_group_cache *
607 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
608 {
609 struct btrfs_block_group_cache *cache;
610
611 cache = block_group_cache_tree_search(info, bytenr, 0);
612
613 return cache;
614 }
615
616 /*
617 * return the block group that contains the given bytenr
618 */
619 struct btrfs_block_group_cache *btrfs_lookup_block_group(
620 struct btrfs_fs_info *info,
621 u64 bytenr)
622 {
623 struct btrfs_block_group_cache *cache;
624
625 cache = block_group_cache_tree_search(info, bytenr, 1);
626
627 return cache;
628 }
629
630 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
631 u64 flags)
632 {
633 struct list_head *head = &info->space_info;
634 struct btrfs_space_info *found;
635
636 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
637
638 rcu_read_lock();
639 list_for_each_entry_rcu(found, head, list) {
640 if (found->flags & flags) {
641 rcu_read_unlock();
642 return found;
643 }
644 }
645 rcu_read_unlock();
646 return NULL;
647 }
648
649 /*
650 * after adding space to the filesystem, we need to clear the full flags
651 * on all the space infos.
652 */
653 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
654 {
655 struct list_head *head = &info->space_info;
656 struct btrfs_space_info *found;
657
658 rcu_read_lock();
659 list_for_each_entry_rcu(found, head, list)
660 found->full = 0;
661 rcu_read_unlock();
662 }
663
664 u64 btrfs_find_block_group(struct btrfs_root *root,
665 u64 search_start, u64 search_hint, int owner)
666 {
667 struct btrfs_block_group_cache *cache;
668 u64 used;
669 u64 last = max(search_hint, search_start);
670 u64 group_start = 0;
671 int full_search = 0;
672 int factor = 9;
673 int wrapped = 0;
674 again:
675 while (1) {
676 cache = btrfs_lookup_first_block_group(root->fs_info, last);
677 if (!cache)
678 break;
679
680 spin_lock(&cache->lock);
681 last = cache->key.objectid + cache->key.offset;
682 used = btrfs_block_group_used(&cache->item);
683
684 if ((full_search || !cache->ro) &&
685 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
686 if (used + cache->pinned + cache->reserved <
687 div_factor(cache->key.offset, factor)) {
688 group_start = cache->key.objectid;
689 spin_unlock(&cache->lock);
690 btrfs_put_block_group(cache);
691 goto found;
692 }
693 }
694 spin_unlock(&cache->lock);
695 btrfs_put_block_group(cache);
696 cond_resched();
697 }
698 if (!wrapped) {
699 last = search_start;
700 wrapped = 1;
701 goto again;
702 }
703 if (!full_search && factor < 10) {
704 last = search_start;
705 full_search = 1;
706 factor = 10;
707 goto again;
708 }
709 found:
710 return group_start;
711 }
712
713 /* simple helper to search for an existing extent at a given offset */
714 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 int ret;
717 struct btrfs_key key;
718 struct btrfs_path *path;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = start;
725 key.offset = len;
726 key.type = BTRFS_EXTENT_ITEM_KEY;
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
729 if (ret > 0) {
730 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
731 if (key.objectid == start &&
732 key.type == BTRFS_METADATA_ITEM_KEY)
733 ret = 0;
734 }
735 btrfs_free_path(path);
736 return ret;
737 }
738
739 /*
740 * helper function to lookup reference count and flags of a tree block.
741 *
742 * the head node for delayed ref is used to store the sum of all the
743 * reference count modifications queued up in the rbtree. the head
744 * node may also store the extent flags to set. This way you can check
745 * to see what the reference count and extent flags would be if all of
746 * the delayed refs are not processed.
747 */
748 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
749 struct btrfs_root *root, u64 bytenr,
750 u64 offset, int metadata, u64 *refs, u64 *flags)
751 {
752 struct btrfs_delayed_ref_head *head;
753 struct btrfs_delayed_ref_root *delayed_refs;
754 struct btrfs_path *path;
755 struct btrfs_extent_item *ei;
756 struct extent_buffer *leaf;
757 struct btrfs_key key;
758 u32 item_size;
759 u64 num_refs;
760 u64 extent_flags;
761 int ret;
762
763 /*
764 * If we don't have skinny metadata, don't bother doing anything
765 * different
766 */
767 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
768 offset = root->leafsize;
769 metadata = 0;
770 }
771
772 path = btrfs_alloc_path();
773 if (!path)
774 return -ENOMEM;
775
776 if (metadata) {
777 key.objectid = bytenr;
778 key.type = BTRFS_METADATA_ITEM_KEY;
779 key.offset = offset;
780 } else {
781 key.objectid = bytenr;
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783 key.offset = offset;
784 }
785
786 if (!trans) {
787 path->skip_locking = 1;
788 path->search_commit_root = 1;
789 }
790 again:
791 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
792 &key, path, 0, 0);
793 if (ret < 0)
794 goto out_free;
795
796 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
797 key.type = BTRFS_EXTENT_ITEM_KEY;
798 key.offset = root->leafsize;
799 btrfs_release_path(path);
800 goto again;
801 }
802
803 if (ret == 0) {
804 leaf = path->nodes[0];
805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
806 if (item_size >= sizeof(*ei)) {
807 ei = btrfs_item_ptr(leaf, path->slots[0],
808 struct btrfs_extent_item);
809 num_refs = btrfs_extent_refs(leaf, ei);
810 extent_flags = btrfs_extent_flags(leaf, ei);
811 } else {
812 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
813 struct btrfs_extent_item_v0 *ei0;
814 BUG_ON(item_size != sizeof(*ei0));
815 ei0 = btrfs_item_ptr(leaf, path->slots[0],
816 struct btrfs_extent_item_v0);
817 num_refs = btrfs_extent_refs_v0(leaf, ei0);
818 /* FIXME: this isn't correct for data */
819 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
820 #else
821 BUG();
822 #endif
823 }
824 BUG_ON(num_refs == 0);
825 } else {
826 num_refs = 0;
827 extent_flags = 0;
828 ret = 0;
829 }
830
831 if (!trans)
832 goto out;
833
834 delayed_refs = &trans->transaction->delayed_refs;
835 spin_lock(&delayed_refs->lock);
836 head = btrfs_find_delayed_ref_head(trans, bytenr);
837 if (head) {
838 if (!mutex_trylock(&head->mutex)) {
839 atomic_inc(&head->node.refs);
840 spin_unlock(&delayed_refs->lock);
841
842 btrfs_release_path(path);
843
844 /*
845 * Mutex was contended, block until it's released and try
846 * again
847 */
848 mutex_lock(&head->mutex);
849 mutex_unlock(&head->mutex);
850 btrfs_put_delayed_ref(&head->node);
851 goto again;
852 }
853 if (head->extent_op && head->extent_op->update_flags)
854 extent_flags |= head->extent_op->flags_to_set;
855 else
856 BUG_ON(num_refs == 0);
857
858 num_refs += head->node.ref_mod;
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(trans, root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 } else {
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313 #endif
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
1316 return ret;
1317 }
1318
1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 struct btrfs_path *path,
1321 struct btrfs_extent_inline_ref *iref)
1322 {
1323 struct btrfs_key key;
1324 struct extent_buffer *leaf;
1325 struct btrfs_extent_data_ref *ref1;
1326 struct btrfs_shared_data_ref *ref2;
1327 u32 num_refs = 0;
1328
1329 leaf = path->nodes[0];
1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 if (iref) {
1332 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 BTRFS_EXTENT_DATA_REF_KEY) {
1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 } else {
1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 }
1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
1354 #endif
1355 } else {
1356 WARN_ON(1);
1357 }
1358 return num_refs;
1359 }
1360
1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root,
1363 struct btrfs_path *path,
1364 u64 bytenr, u64 parent,
1365 u64 root_objectid)
1366 {
1367 struct btrfs_key key;
1368 int ret;
1369
1370 key.objectid = bytenr;
1371 if (parent) {
1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 key.offset = parent;
1374 } else {
1375 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 key.offset = root_objectid;
1377 }
1378
1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 if (ret > 0)
1381 ret = -ENOENT;
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret == -ENOENT && parent) {
1384 btrfs_release_path(path);
1385 key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 }
1390 #endif
1391 return ret;
1392 }
1393
1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 struct btrfs_root *root,
1396 struct btrfs_path *path,
1397 u64 bytenr, u64 parent,
1398 u64 root_objectid)
1399 {
1400 struct btrfs_key key;
1401 int ret;
1402
1403 key.objectid = bytenr;
1404 if (parent) {
1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 key.offset = parent;
1407 } else {
1408 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 key.offset = root_objectid;
1410 }
1411
1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1413 btrfs_release_path(path);
1414 return ret;
1415 }
1416
1417 static inline int extent_ref_type(u64 parent, u64 owner)
1418 {
1419 int type;
1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 if (parent > 0)
1422 type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 else
1424 type = BTRFS_TREE_BLOCK_REF_KEY;
1425 } else {
1426 if (parent > 0)
1427 type = BTRFS_SHARED_DATA_REF_KEY;
1428 else
1429 type = BTRFS_EXTENT_DATA_REF_KEY;
1430 }
1431 return type;
1432 }
1433
1434 static int find_next_key(struct btrfs_path *path, int level,
1435 struct btrfs_key *key)
1436
1437 {
1438 for (; level < BTRFS_MAX_LEVEL; level++) {
1439 if (!path->nodes[level])
1440 break;
1441 if (path->slots[level] + 1 >=
1442 btrfs_header_nritems(path->nodes[level]))
1443 continue;
1444 if (level == 0)
1445 btrfs_item_key_to_cpu(path->nodes[level], key,
1446 path->slots[level] + 1);
1447 else
1448 btrfs_node_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 return 0;
1451 }
1452 return 1;
1453 }
1454
1455 /*
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1458 *
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1461 *
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1464 *
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1467 */
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 struct btrfs_extent_inline_ref **ref_ret,
1473 u64 bytenr, u64 num_bytes,
1474 u64 parent, u64 root_objectid,
1475 u64 owner, u64 offset, int insert)
1476 {
1477 struct btrfs_key key;
1478 struct extent_buffer *leaf;
1479 struct btrfs_extent_item *ei;
1480 struct btrfs_extent_inline_ref *iref;
1481 u64 flags;
1482 u64 item_size;
1483 unsigned long ptr;
1484 unsigned long end;
1485 int extra_size;
1486 int type;
1487 int want;
1488 int ret;
1489 int err = 0;
1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 SKINNY_METADATA);
1492
1493 key.objectid = bytenr;
1494 key.type = BTRFS_EXTENT_ITEM_KEY;
1495 key.offset = num_bytes;
1496
1497 want = extent_ref_type(parent, owner);
1498 if (insert) {
1499 extra_size = btrfs_extent_inline_ref_size(want);
1500 path->keep_locks = 1;
1501 } else
1502 extra_size = -1;
1503
1504 /*
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1507 */
1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 key.type = BTRFS_METADATA_ITEM_KEY;
1510 key.offset = owner;
1511 }
1512
1513 again:
1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1515 if (ret < 0) {
1516 err = ret;
1517 goto out;
1518 }
1519
1520 /*
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1523 */
1524 if (ret > 0 && skinny_metadata) {
1525 skinny_metadata = false;
1526 if (path->slots[0]) {
1527 path->slots[0]--;
1528 btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 path->slots[0]);
1530 if (key.objectid == bytenr &&
1531 key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 key.offset == num_bytes)
1533 ret = 0;
1534 }
1535 if (ret) {
1536 key.type = BTRFS_EXTENT_ITEM_KEY;
1537 key.offset = num_bytes;
1538 btrfs_release_path(path);
1539 goto again;
1540 }
1541 }
1542
1543 if (ret && !insert) {
1544 err = -ENOENT;
1545 goto out;
1546 } else if (ret) {
1547 err = -EIO;
1548 WARN_ON(1);
1549 goto out;
1550 }
1551
1552 leaf = path->nodes[0];
1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size < sizeof(*ei)) {
1556 if (!insert) {
1557 err = -ENOENT;
1558 goto out;
1559 }
1560 ret = convert_extent_item_v0(trans, root, path, owner,
1561 extra_size);
1562 if (ret < 0) {
1563 err = ret;
1564 goto out;
1565 }
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 }
1569 #endif
1570 BUG_ON(item_size < sizeof(*ei));
1571
1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 flags = btrfs_extent_flags(leaf, ei);
1574
1575 ptr = (unsigned long)(ei + 1);
1576 end = (unsigned long)ei + item_size;
1577
1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1579 ptr += sizeof(struct btrfs_tree_block_info);
1580 BUG_ON(ptr > end);
1581 }
1582
1583 err = -ENOENT;
1584 while (1) {
1585 if (ptr >= end) {
1586 WARN_ON(ptr > end);
1587 break;
1588 }
1589 iref = (struct btrfs_extent_inline_ref *)ptr;
1590 type = btrfs_extent_inline_ref_type(leaf, iref);
1591 if (want < type)
1592 break;
1593 if (want > type) {
1594 ptr += btrfs_extent_inline_ref_size(type);
1595 continue;
1596 }
1597
1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 struct btrfs_extent_data_ref *dref;
1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 if (match_extent_data_ref(leaf, dref, root_objectid,
1602 owner, offset)) {
1603 err = 0;
1604 break;
1605 }
1606 if (hash_extent_data_ref_item(leaf, dref) <
1607 hash_extent_data_ref(root_objectid, owner, offset))
1608 break;
1609 } else {
1610 u64 ref_offset;
1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 if (parent > 0) {
1613 if (parent == ref_offset) {
1614 err = 0;
1615 break;
1616 }
1617 if (ref_offset < parent)
1618 break;
1619 } else {
1620 if (root_objectid == ref_offset) {
1621 err = 0;
1622 break;
1623 }
1624 if (ref_offset < root_objectid)
1625 break;
1626 }
1627 }
1628 ptr += btrfs_extent_inline_ref_size(type);
1629 }
1630 if (err == -ENOENT && insert) {
1631 if (item_size + extra_size >=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 err = -EAGAIN;
1634 goto out;
1635 }
1636 /*
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1641 */
1642 if (find_next_key(path, 0, &key) == 0 &&
1643 key.objectid == bytenr &&
1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1645 err = -EAGAIN;
1646 goto out;
1647 }
1648 }
1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650 out:
1651 if (insert) {
1652 path->keep_locks = 0;
1653 btrfs_unlock_up_safe(path, 1);
1654 }
1655 return err;
1656 }
1657
1658 /*
1659 * helper to add new inline back ref
1660 */
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1663 struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(trans, root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1756 struct btrfs_root *root,
1757 struct btrfs_path *path,
1758 struct btrfs_extent_inline_ref *iref,
1759 int refs_to_mod,
1760 struct btrfs_delayed_extent_op *extent_op)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 size = btrfs_extent_inline_ref_size(type);
1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 ptr = (unsigned long)iref;
1807 end = (unsigned long)ei + item_size;
1808 if (ptr + size < end)
1809 memmove_extent_buffer(leaf, ptr, ptr + size,
1810 end - ptr - size);
1811 item_size -= size;
1812 btrfs_truncate_item(trans, root, path, item_size, 1);
1813 }
1814 btrfs_mark_buffer_dirty(leaf);
1815 }
1816
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 u64 bytenr, u64 num_bytes, u64 parent,
1822 u64 root_objectid, u64 owner,
1823 u64 offset, int refs_to_add,
1824 struct btrfs_delayed_extent_op *extent_op)
1825 {
1826 struct btrfs_extent_inline_ref *iref;
1827 int ret;
1828
1829 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 bytenr, num_bytes, parent,
1831 root_objectid, owner, offset, 1);
1832 if (ret == 0) {
1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1834 update_inline_extent_backref(trans, root, path, iref,
1835 refs_to_add, extent_op);
1836 } else if (ret == -ENOENT) {
1837 setup_inline_extent_backref(trans, root, path, iref, parent,
1838 root_objectid, owner, offset,
1839 refs_to_add, extent_op);
1840 ret = 0;
1841 }
1842 return ret;
1843 }
1844
1845 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 struct btrfs_root *root,
1847 struct btrfs_path *path,
1848 u64 bytenr, u64 parent, u64 root_objectid,
1849 u64 owner, u64 offset, int refs_to_add)
1850 {
1851 int ret;
1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 BUG_ON(refs_to_add != 1);
1854 ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 parent, root_objectid);
1856 } else {
1857 ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 parent, root_objectid,
1859 owner, offset, refs_to_add);
1860 }
1861 return ret;
1862 }
1863
1864 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 struct btrfs_root *root,
1866 struct btrfs_path *path,
1867 struct btrfs_extent_inline_ref *iref,
1868 int refs_to_drop, int is_data)
1869 {
1870 int ret = 0;
1871
1872 BUG_ON(!is_data && refs_to_drop != 1);
1873 if (iref) {
1874 update_inline_extent_backref(trans, root, path, iref,
1875 -refs_to_drop, NULL);
1876 } else if (is_data) {
1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1878 } else {
1879 ret = btrfs_del_item(trans, root, path);
1880 }
1881 return ret;
1882 }
1883
1884 static int btrfs_issue_discard(struct block_device *bdev,
1885 u64 start, u64 len)
1886 {
1887 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1888 }
1889
1890 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1891 u64 num_bytes, u64 *actual_bytes)
1892 {
1893 int ret;
1894 u64 discarded_bytes = 0;
1895 struct btrfs_bio *bbio = NULL;
1896
1897
1898 /* Tell the block device(s) that the sectors can be discarded */
1899 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1900 bytenr, &num_bytes, &bbio, 0);
1901 /* Error condition is -ENOMEM */
1902 if (!ret) {
1903 struct btrfs_bio_stripe *stripe = bbio->stripes;
1904 int i;
1905
1906
1907 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1908 if (!stripe->dev->can_discard)
1909 continue;
1910
1911 ret = btrfs_issue_discard(stripe->dev->bdev,
1912 stripe->physical,
1913 stripe->length);
1914 if (!ret)
1915 discarded_bytes += stripe->length;
1916 else if (ret != -EOPNOTSUPP)
1917 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1918
1919 /*
1920 * Just in case we get back EOPNOTSUPP for some reason,
1921 * just ignore the return value so we don't screw up
1922 * people calling discard_extent.
1923 */
1924 ret = 0;
1925 }
1926 kfree(bbio);
1927 }
1928
1929 if (actual_bytes)
1930 *actual_bytes = discarded_bytes;
1931
1932
1933 if (ret == -EOPNOTSUPP)
1934 ret = 0;
1935 return ret;
1936 }
1937
1938 /* Can return -ENOMEM */
1939 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1940 struct btrfs_root *root,
1941 u64 bytenr, u64 num_bytes, u64 parent,
1942 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1943 {
1944 int ret;
1945 struct btrfs_fs_info *fs_info = root->fs_info;
1946
1947 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1948 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1949
1950 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1951 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1952 num_bytes,
1953 parent, root_objectid, (int)owner,
1954 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1955 } else {
1956 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1957 num_bytes,
1958 parent, root_objectid, owner, offset,
1959 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1960 }
1961 return ret;
1962 }
1963
1964 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1965 struct btrfs_root *root,
1966 u64 bytenr, u64 num_bytes,
1967 u64 parent, u64 root_objectid,
1968 u64 owner, u64 offset, int refs_to_add,
1969 struct btrfs_delayed_extent_op *extent_op)
1970 {
1971 struct btrfs_path *path;
1972 struct extent_buffer *leaf;
1973 struct btrfs_extent_item *item;
1974 u64 refs;
1975 int ret;
1976 int err = 0;
1977
1978 path = btrfs_alloc_path();
1979 if (!path)
1980 return -ENOMEM;
1981
1982 path->reada = 1;
1983 path->leave_spinning = 1;
1984 /* this will setup the path even if it fails to insert the back ref */
1985 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1986 path, bytenr, num_bytes, parent,
1987 root_objectid, owner, offset,
1988 refs_to_add, extent_op);
1989 if (ret == 0)
1990 goto out;
1991
1992 if (ret != -EAGAIN) {
1993 err = ret;
1994 goto out;
1995 }
1996
1997 leaf = path->nodes[0];
1998 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1999 refs = btrfs_extent_refs(leaf, item);
2000 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2001 if (extent_op)
2002 __run_delayed_extent_op(extent_op, leaf, item);
2003
2004 btrfs_mark_buffer_dirty(leaf);
2005 btrfs_release_path(path);
2006
2007 path->reada = 1;
2008 path->leave_spinning = 1;
2009
2010 /* now insert the actual backref */
2011 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2012 path, bytenr, parent, root_objectid,
2013 owner, offset, refs_to_add);
2014 if (ret)
2015 btrfs_abort_transaction(trans, root, ret);
2016 out:
2017 btrfs_free_path(path);
2018 return err;
2019 }
2020
2021 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2022 struct btrfs_root *root,
2023 struct btrfs_delayed_ref_node *node,
2024 struct btrfs_delayed_extent_op *extent_op,
2025 int insert_reserved)
2026 {
2027 int ret = 0;
2028 struct btrfs_delayed_data_ref *ref;
2029 struct btrfs_key ins;
2030 u64 parent = 0;
2031 u64 ref_root = 0;
2032 u64 flags = 0;
2033
2034 ins.objectid = node->bytenr;
2035 ins.offset = node->num_bytes;
2036 ins.type = BTRFS_EXTENT_ITEM_KEY;
2037
2038 ref = btrfs_delayed_node_to_data_ref(node);
2039 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2040 parent = ref->parent;
2041 else
2042 ref_root = ref->root;
2043
2044 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2045 if (extent_op)
2046 flags |= extent_op->flags_to_set;
2047 ret = alloc_reserved_file_extent(trans, root,
2048 parent, ref_root, flags,
2049 ref->objectid, ref->offset,
2050 &ins, node->ref_mod);
2051 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2052 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2053 node->num_bytes, parent,
2054 ref_root, ref->objectid,
2055 ref->offset, node->ref_mod,
2056 extent_op);
2057 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2058 ret = __btrfs_free_extent(trans, root, node->bytenr,
2059 node->num_bytes, parent,
2060 ref_root, ref->objectid,
2061 ref->offset, node->ref_mod,
2062 extent_op);
2063 } else {
2064 BUG();
2065 }
2066 return ret;
2067 }
2068
2069 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2070 struct extent_buffer *leaf,
2071 struct btrfs_extent_item *ei)
2072 {
2073 u64 flags = btrfs_extent_flags(leaf, ei);
2074 if (extent_op->update_flags) {
2075 flags |= extent_op->flags_to_set;
2076 btrfs_set_extent_flags(leaf, ei, flags);
2077 }
2078
2079 if (extent_op->update_key) {
2080 struct btrfs_tree_block_info *bi;
2081 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2082 bi = (struct btrfs_tree_block_info *)(ei + 1);
2083 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2084 }
2085 }
2086
2087 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2088 struct btrfs_root *root,
2089 struct btrfs_delayed_ref_node *node,
2090 struct btrfs_delayed_extent_op *extent_op)
2091 {
2092 struct btrfs_key key;
2093 struct btrfs_path *path;
2094 struct btrfs_extent_item *ei;
2095 struct extent_buffer *leaf;
2096 u32 item_size;
2097 int ret;
2098 int err = 0;
2099 int metadata = (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2100 node->type == BTRFS_SHARED_BLOCK_REF_KEY);
2101
2102 if (trans->aborted)
2103 return 0;
2104
2105 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2106 metadata = 0;
2107
2108 path = btrfs_alloc_path();
2109 if (!path)
2110 return -ENOMEM;
2111
2112 key.objectid = node->bytenr;
2113
2114 if (metadata) {
2115 struct btrfs_delayed_tree_ref *tree_ref;
2116
2117 tree_ref = btrfs_delayed_node_to_tree_ref(node);
2118 key.type = BTRFS_METADATA_ITEM_KEY;
2119 key.offset = tree_ref->level;
2120 } else {
2121 key.type = BTRFS_EXTENT_ITEM_KEY;
2122 key.offset = node->num_bytes;
2123 }
2124
2125 again:
2126 path->reada = 1;
2127 path->leave_spinning = 1;
2128 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2129 path, 0, 1);
2130 if (ret < 0) {
2131 err = ret;
2132 goto out;
2133 }
2134 if (ret > 0) {
2135 if (metadata) {
2136 btrfs_release_path(path);
2137 metadata = 0;
2138
2139 key.offset = node->num_bytes;
2140 key.type = BTRFS_EXTENT_ITEM_KEY;
2141 goto again;
2142 }
2143 err = -EIO;
2144 goto out;
2145 }
2146
2147 leaf = path->nodes[0];
2148 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2149 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2150 if (item_size < sizeof(*ei)) {
2151 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2152 path, (u64)-1, 0);
2153 if (ret < 0) {
2154 err = ret;
2155 goto out;
2156 }
2157 leaf = path->nodes[0];
2158 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2159 }
2160 #endif
2161 BUG_ON(item_size < sizeof(*ei));
2162 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2163 __run_delayed_extent_op(extent_op, leaf, ei);
2164
2165 btrfs_mark_buffer_dirty(leaf);
2166 out:
2167 btrfs_free_path(path);
2168 return err;
2169 }
2170
2171 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2172 struct btrfs_root *root,
2173 struct btrfs_delayed_ref_node *node,
2174 struct btrfs_delayed_extent_op *extent_op,
2175 int insert_reserved)
2176 {
2177 int ret = 0;
2178 struct btrfs_delayed_tree_ref *ref;
2179 struct btrfs_key ins;
2180 u64 parent = 0;
2181 u64 ref_root = 0;
2182 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2183 SKINNY_METADATA);
2184
2185 ref = btrfs_delayed_node_to_tree_ref(node);
2186 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2187 parent = ref->parent;
2188 else
2189 ref_root = ref->root;
2190
2191 ins.objectid = node->bytenr;
2192 if (skinny_metadata) {
2193 ins.offset = ref->level;
2194 ins.type = BTRFS_METADATA_ITEM_KEY;
2195 } else {
2196 ins.offset = node->num_bytes;
2197 ins.type = BTRFS_EXTENT_ITEM_KEY;
2198 }
2199
2200 BUG_ON(node->ref_mod != 1);
2201 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2202 BUG_ON(!extent_op || !extent_op->update_flags);
2203 ret = alloc_reserved_tree_block(trans, root,
2204 parent, ref_root,
2205 extent_op->flags_to_set,
2206 &extent_op->key,
2207 ref->level, &ins);
2208 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2209 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2210 node->num_bytes, parent, ref_root,
2211 ref->level, 0, 1, extent_op);
2212 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2213 ret = __btrfs_free_extent(trans, root, node->bytenr,
2214 node->num_bytes, parent, ref_root,
2215 ref->level, 0, 1, extent_op);
2216 } else {
2217 BUG();
2218 }
2219 return ret;
2220 }
2221
2222 /* helper function to actually process a single delayed ref entry */
2223 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2224 struct btrfs_root *root,
2225 struct btrfs_delayed_ref_node *node,
2226 struct btrfs_delayed_extent_op *extent_op,
2227 int insert_reserved)
2228 {
2229 int ret = 0;
2230
2231 if (trans->aborted)
2232 return 0;
2233
2234 if (btrfs_delayed_ref_is_head(node)) {
2235 struct btrfs_delayed_ref_head *head;
2236 /*
2237 * we've hit the end of the chain and we were supposed
2238 * to insert this extent into the tree. But, it got
2239 * deleted before we ever needed to insert it, so all
2240 * we have to do is clean up the accounting
2241 */
2242 BUG_ON(extent_op);
2243 head = btrfs_delayed_node_to_head(node);
2244 if (insert_reserved) {
2245 btrfs_pin_extent(root, node->bytenr,
2246 node->num_bytes, 1);
2247 if (head->is_data) {
2248 ret = btrfs_del_csums(trans, root,
2249 node->bytenr,
2250 node->num_bytes);
2251 }
2252 }
2253 return ret;
2254 }
2255
2256 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2257 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2258 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2259 insert_reserved);
2260 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2261 node->type == BTRFS_SHARED_DATA_REF_KEY)
2262 ret = run_delayed_data_ref(trans, root, node, extent_op,
2263 insert_reserved);
2264 else
2265 BUG();
2266 return ret;
2267 }
2268
2269 static noinline struct btrfs_delayed_ref_node *
2270 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2271 {
2272 struct rb_node *node;
2273 struct btrfs_delayed_ref_node *ref;
2274 int action = BTRFS_ADD_DELAYED_REF;
2275 again:
2276 /*
2277 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2278 * this prevents ref count from going down to zero when
2279 * there still are pending delayed ref.
2280 */
2281 node = rb_prev(&head->node.rb_node);
2282 while (1) {
2283 if (!node)
2284 break;
2285 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2286 rb_node);
2287 if (ref->bytenr != head->node.bytenr)
2288 break;
2289 if (ref->action == action)
2290 return ref;
2291 node = rb_prev(node);
2292 }
2293 if (action == BTRFS_ADD_DELAYED_REF) {
2294 action = BTRFS_DROP_DELAYED_REF;
2295 goto again;
2296 }
2297 return NULL;
2298 }
2299
2300 /*
2301 * Returns 0 on success or if called with an already aborted transaction.
2302 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2303 */
2304 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2305 struct btrfs_root *root,
2306 struct list_head *cluster)
2307 {
2308 struct btrfs_delayed_ref_root *delayed_refs;
2309 struct btrfs_delayed_ref_node *ref;
2310 struct btrfs_delayed_ref_head *locked_ref = NULL;
2311 struct btrfs_delayed_extent_op *extent_op;
2312 struct btrfs_fs_info *fs_info = root->fs_info;
2313 int ret;
2314 int count = 0;
2315 int must_insert_reserved = 0;
2316
2317 delayed_refs = &trans->transaction->delayed_refs;
2318 while (1) {
2319 if (!locked_ref) {
2320 /* pick a new head ref from the cluster list */
2321 if (list_empty(cluster))
2322 break;
2323
2324 locked_ref = list_entry(cluster->next,
2325 struct btrfs_delayed_ref_head, cluster);
2326
2327 /* grab the lock that says we are going to process
2328 * all the refs for this head */
2329 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2330
2331 /*
2332 * we may have dropped the spin lock to get the head
2333 * mutex lock, and that might have given someone else
2334 * time to free the head. If that's true, it has been
2335 * removed from our list and we can move on.
2336 */
2337 if (ret == -EAGAIN) {
2338 locked_ref = NULL;
2339 count++;
2340 continue;
2341 }
2342 }
2343
2344 /*
2345 * We need to try and merge add/drops of the same ref since we
2346 * can run into issues with relocate dropping the implicit ref
2347 * and then it being added back again before the drop can
2348 * finish. If we merged anything we need to re-loop so we can
2349 * get a good ref.
2350 */
2351 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2352 locked_ref);
2353
2354 /*
2355 * locked_ref is the head node, so we have to go one
2356 * node back for any delayed ref updates
2357 */
2358 ref = select_delayed_ref(locked_ref);
2359
2360 if (ref && ref->seq &&
2361 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2362 /*
2363 * there are still refs with lower seq numbers in the
2364 * process of being added. Don't run this ref yet.
2365 */
2366 list_del_init(&locked_ref->cluster);
2367 btrfs_delayed_ref_unlock(locked_ref);
2368 locked_ref = NULL;
2369 delayed_refs->num_heads_ready++;
2370 spin_unlock(&delayed_refs->lock);
2371 cond_resched();
2372 spin_lock(&delayed_refs->lock);
2373 continue;
2374 }
2375
2376 /*
2377 * record the must insert reserved flag before we
2378 * drop the spin lock.
2379 */
2380 must_insert_reserved = locked_ref->must_insert_reserved;
2381 locked_ref->must_insert_reserved = 0;
2382
2383 extent_op = locked_ref->extent_op;
2384 locked_ref->extent_op = NULL;
2385
2386 if (!ref) {
2387 /* All delayed refs have been processed, Go ahead
2388 * and send the head node to run_one_delayed_ref,
2389 * so that any accounting fixes can happen
2390 */
2391 ref = &locked_ref->node;
2392
2393 if (extent_op && must_insert_reserved) {
2394 btrfs_free_delayed_extent_op(extent_op);
2395 extent_op = NULL;
2396 }
2397
2398 if (extent_op) {
2399 spin_unlock(&delayed_refs->lock);
2400
2401 ret = run_delayed_extent_op(trans, root,
2402 ref, extent_op);
2403 btrfs_free_delayed_extent_op(extent_op);
2404
2405 if (ret) {
2406 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2407 spin_lock(&delayed_refs->lock);
2408 btrfs_delayed_ref_unlock(locked_ref);
2409 return ret;
2410 }
2411
2412 goto next;
2413 }
2414 }
2415
2416 ref->in_tree = 0;
2417 rb_erase(&ref->rb_node, &delayed_refs->root);
2418 delayed_refs->num_entries--;
2419 if (!btrfs_delayed_ref_is_head(ref)) {
2420 /*
2421 * when we play the delayed ref, also correct the
2422 * ref_mod on head
2423 */
2424 switch (ref->action) {
2425 case BTRFS_ADD_DELAYED_REF:
2426 case BTRFS_ADD_DELAYED_EXTENT:
2427 locked_ref->node.ref_mod -= ref->ref_mod;
2428 break;
2429 case BTRFS_DROP_DELAYED_REF:
2430 locked_ref->node.ref_mod += ref->ref_mod;
2431 break;
2432 default:
2433 WARN_ON(1);
2434 }
2435 }
2436 spin_unlock(&delayed_refs->lock);
2437
2438 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2439 must_insert_reserved);
2440
2441 btrfs_free_delayed_extent_op(extent_op);
2442 if (ret) {
2443 btrfs_delayed_ref_unlock(locked_ref);
2444 btrfs_put_delayed_ref(ref);
2445 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2446 spin_lock(&delayed_refs->lock);
2447 return ret;
2448 }
2449
2450 /*
2451 * If this node is a head, that means all the refs in this head
2452 * have been dealt with, and we will pick the next head to deal
2453 * with, so we must unlock the head and drop it from the cluster
2454 * list before we release it.
2455 */
2456 if (btrfs_delayed_ref_is_head(ref)) {
2457 list_del_init(&locked_ref->cluster);
2458 btrfs_delayed_ref_unlock(locked_ref);
2459 locked_ref = NULL;
2460 }
2461 btrfs_put_delayed_ref(ref);
2462 count++;
2463 next:
2464 cond_resched();
2465 spin_lock(&delayed_refs->lock);
2466 }
2467 return count;
2468 }
2469
2470 #ifdef SCRAMBLE_DELAYED_REFS
2471 /*
2472 * Normally delayed refs get processed in ascending bytenr order. This
2473 * correlates in most cases to the order added. To expose dependencies on this
2474 * order, we start to process the tree in the middle instead of the beginning
2475 */
2476 static u64 find_middle(struct rb_root *root)
2477 {
2478 struct rb_node *n = root->rb_node;
2479 struct btrfs_delayed_ref_node *entry;
2480 int alt = 1;
2481 u64 middle;
2482 u64 first = 0, last = 0;
2483
2484 n = rb_first(root);
2485 if (n) {
2486 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2487 first = entry->bytenr;
2488 }
2489 n = rb_last(root);
2490 if (n) {
2491 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2492 last = entry->bytenr;
2493 }
2494 n = root->rb_node;
2495
2496 while (n) {
2497 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2498 WARN_ON(!entry->in_tree);
2499
2500 middle = entry->bytenr;
2501
2502 if (alt)
2503 n = n->rb_left;
2504 else
2505 n = n->rb_right;
2506
2507 alt = 1 - alt;
2508 }
2509 return middle;
2510 }
2511 #endif
2512
2513 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2514 struct btrfs_fs_info *fs_info)
2515 {
2516 struct qgroup_update *qgroup_update;
2517 int ret = 0;
2518
2519 if (list_empty(&trans->qgroup_ref_list) !=
2520 !trans->delayed_ref_elem.seq) {
2521 /* list without seq or seq without list */
2522 btrfs_err(fs_info,
2523 "qgroup accounting update error, list is%s empty, seq is %llu",
2524 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2525 trans->delayed_ref_elem.seq);
2526 BUG();
2527 }
2528
2529 if (!trans->delayed_ref_elem.seq)
2530 return 0;
2531
2532 while (!list_empty(&trans->qgroup_ref_list)) {
2533 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2534 struct qgroup_update, list);
2535 list_del(&qgroup_update->list);
2536 if (!ret)
2537 ret = btrfs_qgroup_account_ref(
2538 trans, fs_info, qgroup_update->node,
2539 qgroup_update->extent_op);
2540 kfree(qgroup_update);
2541 }
2542
2543 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2544
2545 return ret;
2546 }
2547
2548 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2549 int count)
2550 {
2551 int val = atomic_read(&delayed_refs->ref_seq);
2552
2553 if (val < seq || val >= seq + count)
2554 return 1;
2555 return 0;
2556 }
2557
2558 /*
2559 * this starts processing the delayed reference count updates and
2560 * extent insertions we have queued up so far. count can be
2561 * 0, which means to process everything in the tree at the start
2562 * of the run (but not newly added entries), or it can be some target
2563 * number you'd like to process.
2564 *
2565 * Returns 0 on success or if called with an aborted transaction
2566 * Returns <0 on error and aborts the transaction
2567 */
2568 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2569 struct btrfs_root *root, unsigned long count)
2570 {
2571 struct rb_node *node;
2572 struct btrfs_delayed_ref_root *delayed_refs;
2573 struct btrfs_delayed_ref_node *ref;
2574 struct list_head cluster;
2575 int ret;
2576 u64 delayed_start;
2577 int run_all = count == (unsigned long)-1;
2578 int run_most = 0;
2579 int loops;
2580
2581 /* We'll clean this up in btrfs_cleanup_transaction */
2582 if (trans->aborted)
2583 return 0;
2584
2585 if (root == root->fs_info->extent_root)
2586 root = root->fs_info->tree_root;
2587
2588 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2589
2590 delayed_refs = &trans->transaction->delayed_refs;
2591 INIT_LIST_HEAD(&cluster);
2592 if (count == 0) {
2593 count = delayed_refs->num_entries * 2;
2594 run_most = 1;
2595 }
2596
2597 if (!run_all && !run_most) {
2598 int old;
2599 int seq = atomic_read(&delayed_refs->ref_seq);
2600
2601 progress:
2602 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2603 if (old) {
2604 DEFINE_WAIT(__wait);
2605 if (delayed_refs->num_entries < 16348)
2606 return 0;
2607
2608 prepare_to_wait(&delayed_refs->wait, &__wait,
2609 TASK_UNINTERRUPTIBLE);
2610
2611 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2612 if (old) {
2613 schedule();
2614 finish_wait(&delayed_refs->wait, &__wait);
2615
2616 if (!refs_newer(delayed_refs, seq, 256))
2617 goto progress;
2618 else
2619 return 0;
2620 } else {
2621 finish_wait(&delayed_refs->wait, &__wait);
2622 goto again;
2623 }
2624 }
2625
2626 } else {
2627 atomic_inc(&delayed_refs->procs_running_refs);
2628 }
2629
2630 again:
2631 loops = 0;
2632 spin_lock(&delayed_refs->lock);
2633
2634 #ifdef SCRAMBLE_DELAYED_REFS
2635 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2636 #endif
2637
2638 while (1) {
2639 if (!(run_all || run_most) &&
2640 delayed_refs->num_heads_ready < 64)
2641 break;
2642
2643 /*
2644 * go find something we can process in the rbtree. We start at
2645 * the beginning of the tree, and then build a cluster
2646 * of refs to process starting at the first one we are able to
2647 * lock
2648 */
2649 delayed_start = delayed_refs->run_delayed_start;
2650 ret = btrfs_find_ref_cluster(trans, &cluster,
2651 delayed_refs->run_delayed_start);
2652 if (ret)
2653 break;
2654
2655 ret = run_clustered_refs(trans, root, &cluster);
2656 if (ret < 0) {
2657 btrfs_release_ref_cluster(&cluster);
2658 spin_unlock(&delayed_refs->lock);
2659 btrfs_abort_transaction(trans, root, ret);
2660 atomic_dec(&delayed_refs->procs_running_refs);
2661 return ret;
2662 }
2663
2664 atomic_add(ret, &delayed_refs->ref_seq);
2665
2666 count -= min_t(unsigned long, ret, count);
2667
2668 if (count == 0)
2669 break;
2670
2671 if (delayed_start >= delayed_refs->run_delayed_start) {
2672 if (loops == 0) {
2673 /*
2674 * btrfs_find_ref_cluster looped. let's do one
2675 * more cycle. if we don't run any delayed ref
2676 * during that cycle (because we can't because
2677 * all of them are blocked), bail out.
2678 */
2679 loops = 1;
2680 } else {
2681 /*
2682 * no runnable refs left, stop trying
2683 */
2684 BUG_ON(run_all);
2685 break;
2686 }
2687 }
2688 if (ret) {
2689 /* refs were run, let's reset staleness detection */
2690 loops = 0;
2691 }
2692 }
2693
2694 if (run_all) {
2695 if (!list_empty(&trans->new_bgs)) {
2696 spin_unlock(&delayed_refs->lock);
2697 btrfs_create_pending_block_groups(trans, root);
2698 spin_lock(&delayed_refs->lock);
2699 }
2700
2701 node = rb_first(&delayed_refs->root);
2702 if (!node)
2703 goto out;
2704 count = (unsigned long)-1;
2705
2706 while (node) {
2707 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2708 rb_node);
2709 if (btrfs_delayed_ref_is_head(ref)) {
2710 struct btrfs_delayed_ref_head *head;
2711
2712 head = btrfs_delayed_node_to_head(ref);
2713 atomic_inc(&ref->refs);
2714
2715 spin_unlock(&delayed_refs->lock);
2716 /*
2717 * Mutex was contended, block until it's
2718 * released and try again
2719 */
2720 mutex_lock(&head->mutex);
2721 mutex_unlock(&head->mutex);
2722
2723 btrfs_put_delayed_ref(ref);
2724 cond_resched();
2725 goto again;
2726 }
2727 node = rb_next(node);
2728 }
2729 spin_unlock(&delayed_refs->lock);
2730 schedule_timeout(1);
2731 goto again;
2732 }
2733 out:
2734 atomic_dec(&delayed_refs->procs_running_refs);
2735 smp_mb();
2736 if (waitqueue_active(&delayed_refs->wait))
2737 wake_up(&delayed_refs->wait);
2738
2739 spin_unlock(&delayed_refs->lock);
2740 assert_qgroups_uptodate(trans);
2741 return 0;
2742 }
2743
2744 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2745 struct btrfs_root *root,
2746 u64 bytenr, u64 num_bytes, u64 flags,
2747 int is_data)
2748 {
2749 struct btrfs_delayed_extent_op *extent_op;
2750 int ret;
2751
2752 extent_op = btrfs_alloc_delayed_extent_op();
2753 if (!extent_op)
2754 return -ENOMEM;
2755
2756 extent_op->flags_to_set = flags;
2757 extent_op->update_flags = 1;
2758 extent_op->update_key = 0;
2759 extent_op->is_data = is_data ? 1 : 0;
2760
2761 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2762 num_bytes, extent_op);
2763 if (ret)
2764 btrfs_free_delayed_extent_op(extent_op);
2765 return ret;
2766 }
2767
2768 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2769 struct btrfs_root *root,
2770 struct btrfs_path *path,
2771 u64 objectid, u64 offset, u64 bytenr)
2772 {
2773 struct btrfs_delayed_ref_head *head;
2774 struct btrfs_delayed_ref_node *ref;
2775 struct btrfs_delayed_data_ref *data_ref;
2776 struct btrfs_delayed_ref_root *delayed_refs;
2777 struct rb_node *node;
2778 int ret = 0;
2779
2780 ret = -ENOENT;
2781 delayed_refs = &trans->transaction->delayed_refs;
2782 spin_lock(&delayed_refs->lock);
2783 head = btrfs_find_delayed_ref_head(trans, bytenr);
2784 if (!head)
2785 goto out;
2786
2787 if (!mutex_trylock(&head->mutex)) {
2788 atomic_inc(&head->node.refs);
2789 spin_unlock(&delayed_refs->lock);
2790
2791 btrfs_release_path(path);
2792
2793 /*
2794 * Mutex was contended, block until it's released and let
2795 * caller try again
2796 */
2797 mutex_lock(&head->mutex);
2798 mutex_unlock(&head->mutex);
2799 btrfs_put_delayed_ref(&head->node);
2800 return -EAGAIN;
2801 }
2802
2803 node = rb_prev(&head->node.rb_node);
2804 if (!node)
2805 goto out_unlock;
2806
2807 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2808
2809 if (ref->bytenr != bytenr)
2810 goto out_unlock;
2811
2812 ret = 1;
2813 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2814 goto out_unlock;
2815
2816 data_ref = btrfs_delayed_node_to_data_ref(ref);
2817
2818 node = rb_prev(node);
2819 if (node) {
2820 int seq = ref->seq;
2821
2822 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2823 if (ref->bytenr == bytenr && ref->seq == seq)
2824 goto out_unlock;
2825 }
2826
2827 if (data_ref->root != root->root_key.objectid ||
2828 data_ref->objectid != objectid || data_ref->offset != offset)
2829 goto out_unlock;
2830
2831 ret = 0;
2832 out_unlock:
2833 mutex_unlock(&head->mutex);
2834 out:
2835 spin_unlock(&delayed_refs->lock);
2836 return ret;
2837 }
2838
2839 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2840 struct btrfs_root *root,
2841 struct btrfs_path *path,
2842 u64 objectid, u64 offset, u64 bytenr)
2843 {
2844 struct btrfs_root *extent_root = root->fs_info->extent_root;
2845 struct extent_buffer *leaf;
2846 struct btrfs_extent_data_ref *ref;
2847 struct btrfs_extent_inline_ref *iref;
2848 struct btrfs_extent_item *ei;
2849 struct btrfs_key key;
2850 u32 item_size;
2851 int ret;
2852
2853 key.objectid = bytenr;
2854 key.offset = (u64)-1;
2855 key.type = BTRFS_EXTENT_ITEM_KEY;
2856
2857 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2858 if (ret < 0)
2859 goto out;
2860 BUG_ON(ret == 0); /* Corruption */
2861
2862 ret = -ENOENT;
2863 if (path->slots[0] == 0)
2864 goto out;
2865
2866 path->slots[0]--;
2867 leaf = path->nodes[0];
2868 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2869
2870 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2871 goto out;
2872
2873 ret = 1;
2874 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2876 if (item_size < sizeof(*ei)) {
2877 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2878 goto out;
2879 }
2880 #endif
2881 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2882
2883 if (item_size != sizeof(*ei) +
2884 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2885 goto out;
2886
2887 if (btrfs_extent_generation(leaf, ei) <=
2888 btrfs_root_last_snapshot(&root->root_item))
2889 goto out;
2890
2891 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2892 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2893 BTRFS_EXTENT_DATA_REF_KEY)
2894 goto out;
2895
2896 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2897 if (btrfs_extent_refs(leaf, ei) !=
2898 btrfs_extent_data_ref_count(leaf, ref) ||
2899 btrfs_extent_data_ref_root(leaf, ref) !=
2900 root->root_key.objectid ||
2901 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2902 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2903 goto out;
2904
2905 ret = 0;
2906 out:
2907 return ret;
2908 }
2909
2910 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2911 struct btrfs_root *root,
2912 u64 objectid, u64 offset, u64 bytenr)
2913 {
2914 struct btrfs_path *path;
2915 int ret;
2916 int ret2;
2917
2918 path = btrfs_alloc_path();
2919 if (!path)
2920 return -ENOENT;
2921
2922 do {
2923 ret = check_committed_ref(trans, root, path, objectid,
2924 offset, bytenr);
2925 if (ret && ret != -ENOENT)
2926 goto out;
2927
2928 ret2 = check_delayed_ref(trans, root, path, objectid,
2929 offset, bytenr);
2930 } while (ret2 == -EAGAIN);
2931
2932 if (ret2 && ret2 != -ENOENT) {
2933 ret = ret2;
2934 goto out;
2935 }
2936
2937 if (ret != -ENOENT || ret2 != -ENOENT)
2938 ret = 0;
2939 out:
2940 btrfs_free_path(path);
2941 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2942 WARN_ON(ret > 0);
2943 return ret;
2944 }
2945
2946 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2947 struct btrfs_root *root,
2948 struct extent_buffer *buf,
2949 int full_backref, int inc, int for_cow)
2950 {
2951 u64 bytenr;
2952 u64 num_bytes;
2953 u64 parent;
2954 u64 ref_root;
2955 u32 nritems;
2956 struct btrfs_key key;
2957 struct btrfs_file_extent_item *fi;
2958 int i;
2959 int level;
2960 int ret = 0;
2961 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2962 u64, u64, u64, u64, u64, u64, int);
2963
2964 ref_root = btrfs_header_owner(buf);
2965 nritems = btrfs_header_nritems(buf);
2966 level = btrfs_header_level(buf);
2967
2968 if (!root->ref_cows && level == 0)
2969 return 0;
2970
2971 if (inc)
2972 process_func = btrfs_inc_extent_ref;
2973 else
2974 process_func = btrfs_free_extent;
2975
2976 if (full_backref)
2977 parent = buf->start;
2978 else
2979 parent = 0;
2980
2981 for (i = 0; i < nritems; i++) {
2982 if (level == 0) {
2983 btrfs_item_key_to_cpu(buf, &key, i);
2984 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2985 continue;
2986 fi = btrfs_item_ptr(buf, i,
2987 struct btrfs_file_extent_item);
2988 if (btrfs_file_extent_type(buf, fi) ==
2989 BTRFS_FILE_EXTENT_INLINE)
2990 continue;
2991 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2992 if (bytenr == 0)
2993 continue;
2994
2995 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2996 key.offset -= btrfs_file_extent_offset(buf, fi);
2997 ret = process_func(trans, root, bytenr, num_bytes,
2998 parent, ref_root, key.objectid,
2999 key.offset, for_cow);
3000 if (ret)
3001 goto fail;
3002 } else {
3003 bytenr = btrfs_node_blockptr(buf, i);
3004 num_bytes = btrfs_level_size(root, level - 1);
3005 ret = process_func(trans, root, bytenr, num_bytes,
3006 parent, ref_root, level - 1, 0,
3007 for_cow);
3008 if (ret)
3009 goto fail;
3010 }
3011 }
3012 return 0;
3013 fail:
3014 return ret;
3015 }
3016
3017 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3018 struct extent_buffer *buf, int full_backref, int for_cow)
3019 {
3020 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3021 }
3022
3023 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3024 struct extent_buffer *buf, int full_backref, int for_cow)
3025 {
3026 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3027 }
3028
3029 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3030 struct btrfs_root *root,
3031 struct btrfs_path *path,
3032 struct btrfs_block_group_cache *cache)
3033 {
3034 int ret;
3035 struct btrfs_root *extent_root = root->fs_info->extent_root;
3036 unsigned long bi;
3037 struct extent_buffer *leaf;
3038
3039 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3040 if (ret < 0)
3041 goto fail;
3042 BUG_ON(ret); /* Corruption */
3043
3044 leaf = path->nodes[0];
3045 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3046 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3047 btrfs_mark_buffer_dirty(leaf);
3048 btrfs_release_path(path);
3049 fail:
3050 if (ret) {
3051 btrfs_abort_transaction(trans, root, ret);
3052 return ret;
3053 }
3054 return 0;
3055
3056 }
3057
3058 static struct btrfs_block_group_cache *
3059 next_block_group(struct btrfs_root *root,
3060 struct btrfs_block_group_cache *cache)
3061 {
3062 struct rb_node *node;
3063 spin_lock(&root->fs_info->block_group_cache_lock);
3064 node = rb_next(&cache->cache_node);
3065 btrfs_put_block_group(cache);
3066 if (node) {
3067 cache = rb_entry(node, struct btrfs_block_group_cache,
3068 cache_node);
3069 btrfs_get_block_group(cache);
3070 } else
3071 cache = NULL;
3072 spin_unlock(&root->fs_info->block_group_cache_lock);
3073 return cache;
3074 }
3075
3076 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3077 struct btrfs_trans_handle *trans,
3078 struct btrfs_path *path)
3079 {
3080 struct btrfs_root *root = block_group->fs_info->tree_root;
3081 struct inode *inode = NULL;
3082 u64 alloc_hint = 0;
3083 int dcs = BTRFS_DC_ERROR;
3084 int num_pages = 0;
3085 int retries = 0;
3086 int ret = 0;
3087
3088 /*
3089 * If this block group is smaller than 100 megs don't bother caching the
3090 * block group.
3091 */
3092 if (block_group->key.offset < (100 * 1024 * 1024)) {
3093 spin_lock(&block_group->lock);
3094 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3095 spin_unlock(&block_group->lock);
3096 return 0;
3097 }
3098
3099 again:
3100 inode = lookup_free_space_inode(root, block_group, path);
3101 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3102 ret = PTR_ERR(inode);
3103 btrfs_release_path(path);
3104 goto out;
3105 }
3106
3107 if (IS_ERR(inode)) {
3108 BUG_ON(retries);
3109 retries++;
3110
3111 if (block_group->ro)
3112 goto out_free;
3113
3114 ret = create_free_space_inode(root, trans, block_group, path);
3115 if (ret)
3116 goto out_free;
3117 goto again;
3118 }
3119
3120 /* We've already setup this transaction, go ahead and exit */
3121 if (block_group->cache_generation == trans->transid &&
3122 i_size_read(inode)) {
3123 dcs = BTRFS_DC_SETUP;
3124 goto out_put;
3125 }
3126
3127 /*
3128 * We want to set the generation to 0, that way if anything goes wrong
3129 * from here on out we know not to trust this cache when we load up next
3130 * time.
3131 */
3132 BTRFS_I(inode)->generation = 0;
3133 ret = btrfs_update_inode(trans, root, inode);
3134 WARN_ON(ret);
3135
3136 if (i_size_read(inode) > 0) {
3137 ret = btrfs_truncate_free_space_cache(root, trans, path,
3138 inode);
3139 if (ret)
3140 goto out_put;
3141 }
3142
3143 spin_lock(&block_group->lock);
3144 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3145 !btrfs_test_opt(root, SPACE_CACHE)) {
3146 /*
3147 * don't bother trying to write stuff out _if_
3148 * a) we're not cached,
3149 * b) we're with nospace_cache mount option.
3150 */
3151 dcs = BTRFS_DC_WRITTEN;
3152 spin_unlock(&block_group->lock);
3153 goto out_put;
3154 }
3155 spin_unlock(&block_group->lock);
3156
3157 /*
3158 * Try to preallocate enough space based on how big the block group is.
3159 * Keep in mind this has to include any pinned space which could end up
3160 * taking up quite a bit since it's not folded into the other space
3161 * cache.
3162 */
3163 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3164 if (!num_pages)
3165 num_pages = 1;
3166
3167 num_pages *= 16;
3168 num_pages *= PAGE_CACHE_SIZE;
3169
3170 ret = btrfs_check_data_free_space(inode, num_pages);
3171 if (ret)
3172 goto out_put;
3173
3174 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3175 num_pages, num_pages,
3176 &alloc_hint);
3177 if (!ret)
3178 dcs = BTRFS_DC_SETUP;
3179 btrfs_free_reserved_data_space(inode, num_pages);
3180
3181 out_put:
3182 iput(inode);
3183 out_free:
3184 btrfs_release_path(path);
3185 out:
3186 spin_lock(&block_group->lock);
3187 if (!ret && dcs == BTRFS_DC_SETUP)
3188 block_group->cache_generation = trans->transid;
3189 block_group->disk_cache_state = dcs;
3190 spin_unlock(&block_group->lock);
3191
3192 return ret;
3193 }
3194
3195 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3196 struct btrfs_root *root)
3197 {
3198 struct btrfs_block_group_cache *cache;
3199 int err = 0;
3200 struct btrfs_path *path;
3201 u64 last = 0;
3202
3203 path = btrfs_alloc_path();
3204 if (!path)
3205 return -ENOMEM;
3206
3207 again:
3208 while (1) {
3209 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3210 while (cache) {
3211 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3212 break;
3213 cache = next_block_group(root, cache);
3214 }
3215 if (!cache) {
3216 if (last == 0)
3217 break;
3218 last = 0;
3219 continue;
3220 }
3221 err = cache_save_setup(cache, trans, path);
3222 last = cache->key.objectid + cache->key.offset;
3223 btrfs_put_block_group(cache);
3224 }
3225
3226 while (1) {
3227 if (last == 0) {
3228 err = btrfs_run_delayed_refs(trans, root,
3229 (unsigned long)-1);
3230 if (err) /* File system offline */
3231 goto out;
3232 }
3233
3234 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3235 while (cache) {
3236 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3237 btrfs_put_block_group(cache);
3238 goto again;
3239 }
3240
3241 if (cache->dirty)
3242 break;
3243 cache = next_block_group(root, cache);
3244 }
3245 if (!cache) {
3246 if (last == 0)
3247 break;
3248 last = 0;
3249 continue;
3250 }
3251
3252 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3253 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3254 cache->dirty = 0;
3255 last = cache->key.objectid + cache->key.offset;
3256
3257 err = write_one_cache_group(trans, root, path, cache);
3258 if (err) /* File system offline */
3259 goto out;
3260
3261 btrfs_put_block_group(cache);
3262 }
3263
3264 while (1) {
3265 /*
3266 * I don't think this is needed since we're just marking our
3267 * preallocated extent as written, but just in case it can't
3268 * hurt.
3269 */
3270 if (last == 0) {
3271 err = btrfs_run_delayed_refs(trans, root,
3272 (unsigned long)-1);
3273 if (err) /* File system offline */
3274 goto out;
3275 }
3276
3277 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3278 while (cache) {
3279 /*
3280 * Really this shouldn't happen, but it could if we
3281 * couldn't write the entire preallocated extent and
3282 * splitting the extent resulted in a new block.
3283 */
3284 if (cache->dirty) {
3285 btrfs_put_block_group(cache);
3286 goto again;
3287 }
3288 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3289 break;
3290 cache = next_block_group(root, cache);
3291 }
3292 if (!cache) {
3293 if (last == 0)
3294 break;
3295 last = 0;
3296 continue;
3297 }
3298
3299 err = btrfs_write_out_cache(root, trans, cache, path);
3300
3301 /*
3302 * If we didn't have an error then the cache state is still
3303 * NEED_WRITE, so we can set it to WRITTEN.
3304 */
3305 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3306 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3307 last = cache->key.objectid + cache->key.offset;
3308 btrfs_put_block_group(cache);
3309 }
3310 out:
3311
3312 btrfs_free_path(path);
3313 return err;
3314 }
3315
3316 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3317 {
3318 struct btrfs_block_group_cache *block_group;
3319 int readonly = 0;
3320
3321 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3322 if (!block_group || block_group->ro)
3323 readonly = 1;
3324 if (block_group)
3325 btrfs_put_block_group(block_group);
3326 return readonly;
3327 }
3328
3329 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3330 u64 total_bytes, u64 bytes_used,
3331 struct btrfs_space_info **space_info)
3332 {
3333 struct btrfs_space_info *found;
3334 int i;
3335 int factor;
3336
3337 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3338 BTRFS_BLOCK_GROUP_RAID10))
3339 factor = 2;
3340 else
3341 factor = 1;
3342
3343 found = __find_space_info(info, flags);
3344 if (found) {
3345 spin_lock(&found->lock);
3346 found->total_bytes += total_bytes;
3347 found->disk_total += total_bytes * factor;
3348 found->bytes_used += bytes_used;
3349 found->disk_used += bytes_used * factor;
3350 found->full = 0;
3351 spin_unlock(&found->lock);
3352 *space_info = found;
3353 return 0;
3354 }
3355 found = kzalloc(sizeof(*found), GFP_NOFS);
3356 if (!found)
3357 return -ENOMEM;
3358
3359 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3360 INIT_LIST_HEAD(&found->block_groups[i]);
3361 init_rwsem(&found->groups_sem);
3362 spin_lock_init(&found->lock);
3363 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3364 found->total_bytes = total_bytes;
3365 found->disk_total = total_bytes * factor;
3366 found->bytes_used = bytes_used;
3367 found->disk_used = bytes_used * factor;
3368 found->bytes_pinned = 0;
3369 found->bytes_reserved = 0;
3370 found->bytes_readonly = 0;
3371 found->bytes_may_use = 0;
3372 found->full = 0;
3373 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3374 found->chunk_alloc = 0;
3375 found->flush = 0;
3376 init_waitqueue_head(&found->wait);
3377 *space_info = found;
3378 list_add_rcu(&found->list, &info->space_info);
3379 if (flags & BTRFS_BLOCK_GROUP_DATA)
3380 info->data_sinfo = found;
3381 return 0;
3382 }
3383
3384 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3385 {
3386 u64 extra_flags = chunk_to_extended(flags) &
3387 BTRFS_EXTENDED_PROFILE_MASK;
3388
3389 write_seqlock(&fs_info->profiles_lock);
3390 if (flags & BTRFS_BLOCK_GROUP_DATA)
3391 fs_info->avail_data_alloc_bits |= extra_flags;
3392 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3393 fs_info->avail_metadata_alloc_bits |= extra_flags;
3394 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3395 fs_info->avail_system_alloc_bits |= extra_flags;
3396 write_sequnlock(&fs_info->profiles_lock);
3397 }
3398
3399 /*
3400 * returns target flags in extended format or 0 if restripe for this
3401 * chunk_type is not in progress
3402 *
3403 * should be called with either volume_mutex or balance_lock held
3404 */
3405 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3406 {
3407 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3408 u64 target = 0;
3409
3410 if (!bctl)
3411 return 0;
3412
3413 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3414 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3415 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3416 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3417 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3418 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3419 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3420 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3421 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3422 }
3423
3424 return target;
3425 }
3426
3427 /*
3428 * @flags: available profiles in extended format (see ctree.h)
3429 *
3430 * Returns reduced profile in chunk format. If profile changing is in
3431 * progress (either running or paused) picks the target profile (if it's
3432 * already available), otherwise falls back to plain reducing.
3433 */
3434 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3435 {
3436 /*
3437 * we add in the count of missing devices because we want
3438 * to make sure that any RAID levels on a degraded FS
3439 * continue to be honored.
3440 */
3441 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3442 root->fs_info->fs_devices->missing_devices;
3443 u64 target;
3444 u64 tmp;
3445
3446 /*
3447 * see if restripe for this chunk_type is in progress, if so
3448 * try to reduce to the target profile
3449 */
3450 spin_lock(&root->fs_info->balance_lock);
3451 target = get_restripe_target(root->fs_info, flags);
3452 if (target) {
3453 /* pick target profile only if it's already available */
3454 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3455 spin_unlock(&root->fs_info->balance_lock);
3456 return extended_to_chunk(target);
3457 }
3458 }
3459 spin_unlock(&root->fs_info->balance_lock);
3460
3461 /* First, mask out the RAID levels which aren't possible */
3462 if (num_devices == 1)
3463 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3464 BTRFS_BLOCK_GROUP_RAID5);
3465 if (num_devices < 3)
3466 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3467 if (num_devices < 4)
3468 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3469
3470 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3471 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3472 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3473 flags &= ~tmp;
3474
3475 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3476 tmp = BTRFS_BLOCK_GROUP_RAID6;
3477 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3478 tmp = BTRFS_BLOCK_GROUP_RAID5;
3479 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3480 tmp = BTRFS_BLOCK_GROUP_RAID10;
3481 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3482 tmp = BTRFS_BLOCK_GROUP_RAID1;
3483 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3484 tmp = BTRFS_BLOCK_GROUP_RAID0;
3485
3486 return extended_to_chunk(flags | tmp);
3487 }
3488
3489 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3490 {
3491 unsigned seq;
3492
3493 do {
3494 seq = read_seqbegin(&root->fs_info->profiles_lock);
3495
3496 if (flags & BTRFS_BLOCK_GROUP_DATA)
3497 flags |= root->fs_info->avail_data_alloc_bits;
3498 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3499 flags |= root->fs_info->avail_system_alloc_bits;
3500 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3501 flags |= root->fs_info->avail_metadata_alloc_bits;
3502 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3503
3504 return btrfs_reduce_alloc_profile(root, flags);
3505 }
3506
3507 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3508 {
3509 u64 flags;
3510 u64 ret;
3511
3512 if (data)
3513 flags = BTRFS_BLOCK_GROUP_DATA;
3514 else if (root == root->fs_info->chunk_root)
3515 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3516 else
3517 flags = BTRFS_BLOCK_GROUP_METADATA;
3518
3519 ret = get_alloc_profile(root, flags);
3520 return ret;
3521 }
3522
3523 /*
3524 * This will check the space that the inode allocates from to make sure we have
3525 * enough space for bytes.
3526 */
3527 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3528 {
3529 struct btrfs_space_info *data_sinfo;
3530 struct btrfs_root *root = BTRFS_I(inode)->root;
3531 struct btrfs_fs_info *fs_info = root->fs_info;
3532 u64 used;
3533 int ret = 0, committed = 0, alloc_chunk = 1;
3534
3535 /* make sure bytes are sectorsize aligned */
3536 bytes = ALIGN(bytes, root->sectorsize);
3537
3538 if (root == root->fs_info->tree_root ||
3539 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3540 alloc_chunk = 0;
3541 committed = 1;
3542 }
3543
3544 data_sinfo = fs_info->data_sinfo;
3545 if (!data_sinfo)
3546 goto alloc;
3547
3548 again:
3549 /* make sure we have enough space to handle the data first */
3550 spin_lock(&data_sinfo->lock);
3551 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3552 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3553 data_sinfo->bytes_may_use;
3554
3555 if (used + bytes > data_sinfo->total_bytes) {
3556 struct btrfs_trans_handle *trans;
3557
3558 /*
3559 * if we don't have enough free bytes in this space then we need
3560 * to alloc a new chunk.
3561 */
3562 if (!data_sinfo->full && alloc_chunk) {
3563 u64 alloc_target;
3564
3565 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3566 spin_unlock(&data_sinfo->lock);
3567 alloc:
3568 alloc_target = btrfs_get_alloc_profile(root, 1);
3569 trans = btrfs_join_transaction(root);
3570 if (IS_ERR(trans))
3571 return PTR_ERR(trans);
3572
3573 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3574 alloc_target,
3575 CHUNK_ALLOC_NO_FORCE);
3576 btrfs_end_transaction(trans, root);
3577 if (ret < 0) {
3578 if (ret != -ENOSPC)
3579 return ret;
3580 else
3581 goto commit_trans;
3582 }
3583
3584 if (!data_sinfo)
3585 data_sinfo = fs_info->data_sinfo;
3586
3587 goto again;
3588 }
3589
3590 /*
3591 * If we have less pinned bytes than we want to allocate then
3592 * don't bother committing the transaction, it won't help us.
3593 */
3594 if (data_sinfo->bytes_pinned < bytes)
3595 committed = 1;
3596 spin_unlock(&data_sinfo->lock);
3597
3598 /* commit the current transaction and try again */
3599 commit_trans:
3600 if (!committed &&
3601 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3602 committed = 1;
3603 trans = btrfs_join_transaction(root);
3604 if (IS_ERR(trans))
3605 return PTR_ERR(trans);
3606 ret = btrfs_commit_transaction(trans, root);
3607 if (ret)
3608 return ret;
3609 goto again;
3610 }
3611
3612 return -ENOSPC;
3613 }
3614 data_sinfo->bytes_may_use += bytes;
3615 trace_btrfs_space_reservation(root->fs_info, "space_info",
3616 data_sinfo->flags, bytes, 1);
3617 spin_unlock(&data_sinfo->lock);
3618
3619 return 0;
3620 }
3621
3622 /*
3623 * Called if we need to clear a data reservation for this inode.
3624 */
3625 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3626 {
3627 struct btrfs_root *root = BTRFS_I(inode)->root;
3628 struct btrfs_space_info *data_sinfo;
3629
3630 /* make sure bytes are sectorsize aligned */
3631 bytes = ALIGN(bytes, root->sectorsize);
3632
3633 data_sinfo = root->fs_info->data_sinfo;
3634 spin_lock(&data_sinfo->lock);
3635 data_sinfo->bytes_may_use -= bytes;
3636 trace_btrfs_space_reservation(root->fs_info, "space_info",
3637 data_sinfo->flags, bytes, 0);
3638 spin_unlock(&data_sinfo->lock);
3639 }
3640
3641 static void force_metadata_allocation(struct btrfs_fs_info *info)
3642 {
3643 struct list_head *head = &info->space_info;
3644 struct btrfs_space_info *found;
3645
3646 rcu_read_lock();
3647 list_for_each_entry_rcu(found, head, list) {
3648 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3649 found->force_alloc = CHUNK_ALLOC_FORCE;
3650 }
3651 rcu_read_unlock();
3652 }
3653
3654 static int should_alloc_chunk(struct btrfs_root *root,
3655 struct btrfs_space_info *sinfo, int force)
3656 {
3657 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3658 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3659 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3660 u64 thresh;
3661
3662 if (force == CHUNK_ALLOC_FORCE)
3663 return 1;
3664
3665 /*
3666 * We need to take into account the global rsv because for all intents
3667 * and purposes it's used space. Don't worry about locking the
3668 * global_rsv, it doesn't change except when the transaction commits.
3669 */
3670 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3671 num_allocated += global_rsv->size;
3672
3673 /*
3674 * in limited mode, we want to have some free space up to
3675 * about 1% of the FS size.
3676 */
3677 if (force == CHUNK_ALLOC_LIMITED) {
3678 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3679 thresh = max_t(u64, 64 * 1024 * 1024,
3680 div_factor_fine(thresh, 1));
3681
3682 if (num_bytes - num_allocated < thresh)
3683 return 1;
3684 }
3685
3686 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3687 return 0;
3688 return 1;
3689 }
3690
3691 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3692 {
3693 u64 num_dev;
3694
3695 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3696 BTRFS_BLOCK_GROUP_RAID0 |
3697 BTRFS_BLOCK_GROUP_RAID5 |
3698 BTRFS_BLOCK_GROUP_RAID6))
3699 num_dev = root->fs_info->fs_devices->rw_devices;
3700 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3701 num_dev = 2;
3702 else
3703 num_dev = 1; /* DUP or single */
3704
3705 /* metadata for updaing devices and chunk tree */
3706 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3707 }
3708
3709 static void check_system_chunk(struct btrfs_trans_handle *trans,
3710 struct btrfs_root *root, u64 type)
3711 {
3712 struct btrfs_space_info *info;
3713 u64 left;
3714 u64 thresh;
3715
3716 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3717 spin_lock(&info->lock);
3718 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3719 info->bytes_reserved - info->bytes_readonly;
3720 spin_unlock(&info->lock);
3721
3722 thresh = get_system_chunk_thresh(root, type);
3723 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3724 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3725 left, thresh, type);
3726 dump_space_info(info, 0, 0);
3727 }
3728
3729 if (left < thresh) {
3730 u64 flags;
3731
3732 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3733 btrfs_alloc_chunk(trans, root, flags);
3734 }
3735 }
3736
3737 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3738 struct btrfs_root *extent_root, u64 flags, int force)
3739 {
3740 struct btrfs_space_info *space_info;
3741 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3742 int wait_for_alloc = 0;
3743 int ret = 0;
3744
3745 /* Don't re-enter if we're already allocating a chunk */
3746 if (trans->allocating_chunk)
3747 return -ENOSPC;
3748
3749 space_info = __find_space_info(extent_root->fs_info, flags);
3750 if (!space_info) {
3751 ret = update_space_info(extent_root->fs_info, flags,
3752 0, 0, &space_info);
3753 BUG_ON(ret); /* -ENOMEM */
3754 }
3755 BUG_ON(!space_info); /* Logic error */
3756
3757 again:
3758 spin_lock(&space_info->lock);
3759 if (force < space_info->force_alloc)
3760 force = space_info->force_alloc;
3761 if (space_info->full) {
3762 spin_unlock(&space_info->lock);
3763 return 0;
3764 }
3765
3766 if (!should_alloc_chunk(extent_root, space_info, force)) {
3767 spin_unlock(&space_info->lock);
3768 return 0;
3769 } else if (space_info->chunk_alloc) {
3770 wait_for_alloc = 1;
3771 } else {
3772 space_info->chunk_alloc = 1;
3773 }
3774
3775 spin_unlock(&space_info->lock);
3776
3777 mutex_lock(&fs_info->chunk_mutex);
3778
3779 /*
3780 * The chunk_mutex is held throughout the entirety of a chunk
3781 * allocation, so once we've acquired the chunk_mutex we know that the
3782 * other guy is done and we need to recheck and see if we should
3783 * allocate.
3784 */
3785 if (wait_for_alloc) {
3786 mutex_unlock(&fs_info->chunk_mutex);
3787 wait_for_alloc = 0;
3788 goto again;
3789 }
3790
3791 trans->allocating_chunk = true;
3792
3793 /*
3794 * If we have mixed data/metadata chunks we want to make sure we keep
3795 * allocating mixed chunks instead of individual chunks.
3796 */
3797 if (btrfs_mixed_space_info(space_info))
3798 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3799
3800 /*
3801 * if we're doing a data chunk, go ahead and make sure that
3802 * we keep a reasonable number of metadata chunks allocated in the
3803 * FS as well.
3804 */
3805 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3806 fs_info->data_chunk_allocations++;
3807 if (!(fs_info->data_chunk_allocations %
3808 fs_info->metadata_ratio))
3809 force_metadata_allocation(fs_info);
3810 }
3811
3812 /*
3813 * Check if we have enough space in SYSTEM chunk because we may need
3814 * to update devices.
3815 */
3816 check_system_chunk(trans, extent_root, flags);
3817
3818 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3819 trans->allocating_chunk = false;
3820
3821 spin_lock(&space_info->lock);
3822 if (ret < 0 && ret != -ENOSPC)
3823 goto out;
3824 if (ret)
3825 space_info->full = 1;
3826 else
3827 ret = 1;
3828
3829 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3830 out:
3831 space_info->chunk_alloc = 0;
3832 spin_unlock(&space_info->lock);
3833 mutex_unlock(&fs_info->chunk_mutex);
3834 return ret;
3835 }
3836
3837 static int can_overcommit(struct btrfs_root *root,
3838 struct btrfs_space_info *space_info, u64 bytes,
3839 enum btrfs_reserve_flush_enum flush)
3840 {
3841 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3842 u64 profile = btrfs_get_alloc_profile(root, 0);
3843 u64 rsv_size = 0;
3844 u64 avail;
3845 u64 used;
3846 u64 to_add;
3847
3848 used = space_info->bytes_used + space_info->bytes_reserved +
3849 space_info->bytes_pinned + space_info->bytes_readonly;
3850
3851 spin_lock(&global_rsv->lock);
3852 rsv_size = global_rsv->size;
3853 spin_unlock(&global_rsv->lock);
3854
3855 /*
3856 * We only want to allow over committing if we have lots of actual space
3857 * free, but if we don't have enough space to handle the global reserve
3858 * space then we could end up having a real enospc problem when trying
3859 * to allocate a chunk or some other such important allocation.
3860 */
3861 rsv_size <<= 1;
3862 if (used + rsv_size >= space_info->total_bytes)
3863 return 0;
3864
3865 used += space_info->bytes_may_use;
3866
3867 spin_lock(&root->fs_info->free_chunk_lock);
3868 avail = root->fs_info->free_chunk_space;
3869 spin_unlock(&root->fs_info->free_chunk_lock);
3870
3871 /*
3872 * If we have dup, raid1 or raid10 then only half of the free
3873 * space is actually useable. For raid56, the space info used
3874 * doesn't include the parity drive, so we don't have to
3875 * change the math
3876 */
3877 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3878 BTRFS_BLOCK_GROUP_RAID1 |
3879 BTRFS_BLOCK_GROUP_RAID10))
3880 avail >>= 1;
3881
3882 to_add = space_info->total_bytes;
3883
3884 /*
3885 * If we aren't flushing all things, let us overcommit up to
3886 * 1/2th of the space. If we can flush, don't let us overcommit
3887 * too much, let it overcommit up to 1/8 of the space.
3888 */
3889 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3890 to_add >>= 3;
3891 else
3892 to_add >>= 1;
3893
3894 /*
3895 * Limit the overcommit to the amount of free space we could possibly
3896 * allocate for chunks.
3897 */
3898 to_add = min(avail, to_add);
3899
3900 if (used + bytes < space_info->total_bytes + to_add)
3901 return 1;
3902 return 0;
3903 }
3904
3905 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3906 unsigned long nr_pages)
3907 {
3908 struct super_block *sb = root->fs_info->sb;
3909 int started;
3910
3911 /* If we can not start writeback, just sync all the delalloc file. */
3912 started = try_to_writeback_inodes_sb_nr(sb, nr_pages,
3913 WB_REASON_FS_FREE_SPACE);
3914 if (!started) {
3915 /*
3916 * We needn't worry the filesystem going from r/w to r/o though
3917 * we don't acquire ->s_umount mutex, because the filesystem
3918 * should guarantee the delalloc inodes list be empty after
3919 * the filesystem is readonly(all dirty pages are written to
3920 * the disk).
3921 */
3922 btrfs_start_delalloc_inodes(root, 0);
3923 if (!current->journal_info)
3924 btrfs_wait_ordered_extents(root, 0);
3925 }
3926 }
3927
3928 /*
3929 * shrink metadata reservation for delalloc
3930 */
3931 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3932 bool wait_ordered)
3933 {
3934 struct btrfs_block_rsv *block_rsv;
3935 struct btrfs_space_info *space_info;
3936 struct btrfs_trans_handle *trans;
3937 u64 delalloc_bytes;
3938 u64 max_reclaim;
3939 long time_left;
3940 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3941 int loops = 0;
3942 enum btrfs_reserve_flush_enum flush;
3943
3944 trans = (struct btrfs_trans_handle *)current->journal_info;
3945 block_rsv = &root->fs_info->delalloc_block_rsv;
3946 space_info = block_rsv->space_info;
3947
3948 smp_mb();
3949 delalloc_bytes = percpu_counter_sum_positive(
3950 &root->fs_info->delalloc_bytes);
3951 if (delalloc_bytes == 0) {
3952 if (trans)
3953 return;
3954 btrfs_wait_ordered_extents(root, 0);
3955 return;
3956 }
3957
3958 while (delalloc_bytes && loops < 3) {
3959 max_reclaim = min(delalloc_bytes, to_reclaim);
3960 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3961 btrfs_writeback_inodes_sb_nr(root, nr_pages);
3962 /*
3963 * We need to wait for the async pages to actually start before
3964 * we do anything.
3965 */
3966 wait_event(root->fs_info->async_submit_wait,
3967 !atomic_read(&root->fs_info->async_delalloc_pages));
3968
3969 if (!trans)
3970 flush = BTRFS_RESERVE_FLUSH_ALL;
3971 else
3972 flush = BTRFS_RESERVE_NO_FLUSH;
3973 spin_lock(&space_info->lock);
3974 if (can_overcommit(root, space_info, orig, flush)) {
3975 spin_unlock(&space_info->lock);
3976 break;
3977 }
3978 spin_unlock(&space_info->lock);
3979
3980 loops++;
3981 if (wait_ordered && !trans) {
3982 btrfs_wait_ordered_extents(root, 0);
3983 } else {
3984 time_left = schedule_timeout_killable(1);
3985 if (time_left)
3986 break;
3987 }
3988 smp_mb();
3989 delalloc_bytes = percpu_counter_sum_positive(
3990 &root->fs_info->delalloc_bytes);
3991 }
3992 }
3993
3994 /**
3995 * maybe_commit_transaction - possibly commit the transaction if its ok to
3996 * @root - the root we're allocating for
3997 * @bytes - the number of bytes we want to reserve
3998 * @force - force the commit
3999 *
4000 * This will check to make sure that committing the transaction will actually
4001 * get us somewhere and then commit the transaction if it does. Otherwise it
4002 * will return -ENOSPC.
4003 */
4004 static int may_commit_transaction(struct btrfs_root *root,
4005 struct btrfs_space_info *space_info,
4006 u64 bytes, int force)
4007 {
4008 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4009 struct btrfs_trans_handle *trans;
4010
4011 trans = (struct btrfs_trans_handle *)current->journal_info;
4012 if (trans)
4013 return -EAGAIN;
4014
4015 if (force)
4016 goto commit;
4017
4018 /* See if there is enough pinned space to make this reservation */
4019 spin_lock(&space_info->lock);
4020 if (space_info->bytes_pinned >= bytes) {
4021 spin_unlock(&space_info->lock);
4022 goto commit;
4023 }
4024 spin_unlock(&space_info->lock);
4025
4026 /*
4027 * See if there is some space in the delayed insertion reservation for
4028 * this reservation.
4029 */
4030 if (space_info != delayed_rsv->space_info)
4031 return -ENOSPC;
4032
4033 spin_lock(&space_info->lock);
4034 spin_lock(&delayed_rsv->lock);
4035 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
4036 spin_unlock(&delayed_rsv->lock);
4037 spin_unlock(&space_info->lock);
4038 return -ENOSPC;
4039 }
4040 spin_unlock(&delayed_rsv->lock);
4041 spin_unlock(&space_info->lock);
4042
4043 commit:
4044 trans = btrfs_join_transaction(root);
4045 if (IS_ERR(trans))
4046 return -ENOSPC;
4047
4048 return btrfs_commit_transaction(trans, root);
4049 }
4050
4051 enum flush_state {
4052 FLUSH_DELAYED_ITEMS_NR = 1,
4053 FLUSH_DELAYED_ITEMS = 2,
4054 FLUSH_DELALLOC = 3,
4055 FLUSH_DELALLOC_WAIT = 4,
4056 ALLOC_CHUNK = 5,
4057 COMMIT_TRANS = 6,
4058 };
4059
4060 static int flush_space(struct btrfs_root *root,
4061 struct btrfs_space_info *space_info, u64 num_bytes,
4062 u64 orig_bytes, int state)
4063 {
4064 struct btrfs_trans_handle *trans;
4065 int nr;
4066 int ret = 0;
4067
4068 switch (state) {
4069 case FLUSH_DELAYED_ITEMS_NR:
4070 case FLUSH_DELAYED_ITEMS:
4071 if (state == FLUSH_DELAYED_ITEMS_NR) {
4072 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4073
4074 nr = (int)div64_u64(num_bytes, bytes);
4075 if (!nr)
4076 nr = 1;
4077 nr *= 2;
4078 } else {
4079 nr = -1;
4080 }
4081 trans = btrfs_join_transaction(root);
4082 if (IS_ERR(trans)) {
4083 ret = PTR_ERR(trans);
4084 break;
4085 }
4086 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4087 btrfs_end_transaction(trans, root);
4088 break;
4089 case FLUSH_DELALLOC:
4090 case FLUSH_DELALLOC_WAIT:
4091 shrink_delalloc(root, num_bytes, orig_bytes,
4092 state == FLUSH_DELALLOC_WAIT);
4093 break;
4094 case ALLOC_CHUNK:
4095 trans = btrfs_join_transaction(root);
4096 if (IS_ERR(trans)) {
4097 ret = PTR_ERR(trans);
4098 break;
4099 }
4100 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4101 btrfs_get_alloc_profile(root, 0),
4102 CHUNK_ALLOC_NO_FORCE);
4103 btrfs_end_transaction(trans, root);
4104 if (ret == -ENOSPC)
4105 ret = 0;
4106 break;
4107 case COMMIT_TRANS:
4108 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4109 break;
4110 default:
4111 ret = -ENOSPC;
4112 break;
4113 }
4114
4115 return ret;
4116 }
4117 /**
4118 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4119 * @root - the root we're allocating for
4120 * @block_rsv - the block_rsv we're allocating for
4121 * @orig_bytes - the number of bytes we want
4122 * @flush - whether or not we can flush to make our reservation
4123 *
4124 * This will reserve orgi_bytes number of bytes from the space info associated
4125 * with the block_rsv. If there is not enough space it will make an attempt to
4126 * flush out space to make room. It will do this by flushing delalloc if
4127 * possible or committing the transaction. If flush is 0 then no attempts to
4128 * regain reservations will be made and this will fail if there is not enough
4129 * space already.
4130 */
4131 static int reserve_metadata_bytes(struct btrfs_root *root,
4132 struct btrfs_block_rsv *block_rsv,
4133 u64 orig_bytes,
4134 enum btrfs_reserve_flush_enum flush)
4135 {
4136 struct btrfs_space_info *space_info = block_rsv->space_info;
4137 u64 used;
4138 u64 num_bytes = orig_bytes;
4139 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4140 int ret = 0;
4141 bool flushing = false;
4142
4143 again:
4144 ret = 0;
4145 spin_lock(&space_info->lock);
4146 /*
4147 * We only want to wait if somebody other than us is flushing and we
4148 * are actually allowed to flush all things.
4149 */
4150 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4151 space_info->flush) {
4152 spin_unlock(&space_info->lock);
4153 /*
4154 * If we have a trans handle we can't wait because the flusher
4155 * may have to commit the transaction, which would mean we would
4156 * deadlock since we are waiting for the flusher to finish, but
4157 * hold the current transaction open.
4158 */
4159 if (current->journal_info)
4160 return -EAGAIN;
4161 ret = wait_event_killable(space_info->wait, !space_info->flush);
4162 /* Must have been killed, return */
4163 if (ret)
4164 return -EINTR;
4165
4166 spin_lock(&space_info->lock);
4167 }
4168
4169 ret = -ENOSPC;
4170 used = space_info->bytes_used + space_info->bytes_reserved +
4171 space_info->bytes_pinned + space_info->bytes_readonly +
4172 space_info->bytes_may_use;
4173
4174 /*
4175 * The idea here is that we've not already over-reserved the block group
4176 * then we can go ahead and save our reservation first and then start
4177 * flushing if we need to. Otherwise if we've already overcommitted
4178 * lets start flushing stuff first and then come back and try to make
4179 * our reservation.
4180 */
4181 if (used <= space_info->total_bytes) {
4182 if (used + orig_bytes <= space_info->total_bytes) {
4183 space_info->bytes_may_use += orig_bytes;
4184 trace_btrfs_space_reservation(root->fs_info,
4185 "space_info", space_info->flags, orig_bytes, 1);
4186 ret = 0;
4187 } else {
4188 /*
4189 * Ok set num_bytes to orig_bytes since we aren't
4190 * overocmmitted, this way we only try and reclaim what
4191 * we need.
4192 */
4193 num_bytes = orig_bytes;
4194 }
4195 } else {
4196 /*
4197 * Ok we're over committed, set num_bytes to the overcommitted
4198 * amount plus the amount of bytes that we need for this
4199 * reservation.
4200 */
4201 num_bytes = used - space_info->total_bytes +
4202 (orig_bytes * 2);
4203 }
4204
4205 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4206 space_info->bytes_may_use += orig_bytes;
4207 trace_btrfs_space_reservation(root->fs_info, "space_info",
4208 space_info->flags, orig_bytes,
4209 1);
4210 ret = 0;
4211 }
4212
4213 /*
4214 * Couldn't make our reservation, save our place so while we're trying
4215 * to reclaim space we can actually use it instead of somebody else
4216 * stealing it from us.
4217 *
4218 * We make the other tasks wait for the flush only when we can flush
4219 * all things.
4220 */
4221 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4222 flushing = true;
4223 space_info->flush = 1;
4224 }
4225
4226 spin_unlock(&space_info->lock);
4227
4228 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4229 goto out;
4230
4231 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4232 flush_state);
4233 flush_state++;
4234
4235 /*
4236 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4237 * would happen. So skip delalloc flush.
4238 */
4239 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4240 (flush_state == FLUSH_DELALLOC ||
4241 flush_state == FLUSH_DELALLOC_WAIT))
4242 flush_state = ALLOC_CHUNK;
4243
4244 if (!ret)
4245 goto again;
4246 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4247 flush_state < COMMIT_TRANS)
4248 goto again;
4249 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4250 flush_state <= COMMIT_TRANS)
4251 goto again;
4252
4253 out:
4254 if (ret == -ENOSPC &&
4255 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4256 struct btrfs_block_rsv *global_rsv =
4257 &root->fs_info->global_block_rsv;
4258
4259 if (block_rsv != global_rsv &&
4260 !block_rsv_use_bytes(global_rsv, orig_bytes))
4261 ret = 0;
4262 }
4263 if (flushing) {
4264 spin_lock(&space_info->lock);
4265 space_info->flush = 0;
4266 wake_up_all(&space_info->wait);
4267 spin_unlock(&space_info->lock);
4268 }
4269 return ret;
4270 }
4271
4272 static struct btrfs_block_rsv *get_block_rsv(
4273 const struct btrfs_trans_handle *trans,
4274 const struct btrfs_root *root)
4275 {
4276 struct btrfs_block_rsv *block_rsv = NULL;
4277
4278 if (root->ref_cows)
4279 block_rsv = trans->block_rsv;
4280
4281 if (root == root->fs_info->csum_root && trans->adding_csums)
4282 block_rsv = trans->block_rsv;
4283
4284 if (!block_rsv)
4285 block_rsv = root->block_rsv;
4286
4287 if (!block_rsv)
4288 block_rsv = &root->fs_info->empty_block_rsv;
4289
4290 return block_rsv;
4291 }
4292
4293 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4294 u64 num_bytes)
4295 {
4296 int ret = -ENOSPC;
4297 spin_lock(&block_rsv->lock);
4298 if (block_rsv->reserved >= num_bytes) {
4299 block_rsv->reserved -= num_bytes;
4300 if (block_rsv->reserved < block_rsv->size)
4301 block_rsv->full = 0;
4302 ret = 0;
4303 }
4304 spin_unlock(&block_rsv->lock);
4305 return ret;
4306 }
4307
4308 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4309 u64 num_bytes, int update_size)
4310 {
4311 spin_lock(&block_rsv->lock);
4312 block_rsv->reserved += num_bytes;
4313 if (update_size)
4314 block_rsv->size += num_bytes;
4315 else if (block_rsv->reserved >= block_rsv->size)
4316 block_rsv->full = 1;
4317 spin_unlock(&block_rsv->lock);
4318 }
4319
4320 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4321 struct btrfs_block_rsv *block_rsv,
4322 struct btrfs_block_rsv *dest, u64 num_bytes)
4323 {
4324 struct btrfs_space_info *space_info = block_rsv->space_info;
4325
4326 spin_lock(&block_rsv->lock);
4327 if (num_bytes == (u64)-1)
4328 num_bytes = block_rsv->size;
4329 block_rsv->size -= num_bytes;
4330 if (block_rsv->reserved >= block_rsv->size) {
4331 num_bytes = block_rsv->reserved - block_rsv->size;
4332 block_rsv->reserved = block_rsv->size;
4333 block_rsv->full = 1;
4334 } else {
4335 num_bytes = 0;
4336 }
4337 spin_unlock(&block_rsv->lock);
4338
4339 if (num_bytes > 0) {
4340 if (dest) {
4341 spin_lock(&dest->lock);
4342 if (!dest->full) {
4343 u64 bytes_to_add;
4344
4345 bytes_to_add = dest->size - dest->reserved;
4346 bytes_to_add = min(num_bytes, bytes_to_add);
4347 dest->reserved += bytes_to_add;
4348 if (dest->reserved >= dest->size)
4349 dest->full = 1;
4350 num_bytes -= bytes_to_add;
4351 }
4352 spin_unlock(&dest->lock);
4353 }
4354 if (num_bytes) {
4355 spin_lock(&space_info->lock);
4356 space_info->bytes_may_use -= num_bytes;
4357 trace_btrfs_space_reservation(fs_info, "space_info",
4358 space_info->flags, num_bytes, 0);
4359 space_info->reservation_progress++;
4360 spin_unlock(&space_info->lock);
4361 }
4362 }
4363 }
4364
4365 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4366 struct btrfs_block_rsv *dst, u64 num_bytes)
4367 {
4368 int ret;
4369
4370 ret = block_rsv_use_bytes(src, num_bytes);
4371 if (ret)
4372 return ret;
4373
4374 block_rsv_add_bytes(dst, num_bytes, 1);
4375 return 0;
4376 }
4377
4378 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4379 {
4380 memset(rsv, 0, sizeof(*rsv));
4381 spin_lock_init(&rsv->lock);
4382 rsv->type = type;
4383 }
4384
4385 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4386 unsigned short type)
4387 {
4388 struct btrfs_block_rsv *block_rsv;
4389 struct btrfs_fs_info *fs_info = root->fs_info;
4390
4391 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4392 if (!block_rsv)
4393 return NULL;
4394
4395 btrfs_init_block_rsv(block_rsv, type);
4396 block_rsv->space_info = __find_space_info(fs_info,
4397 BTRFS_BLOCK_GROUP_METADATA);
4398 return block_rsv;
4399 }
4400
4401 void btrfs_free_block_rsv(struct btrfs_root *root,
4402 struct btrfs_block_rsv *rsv)
4403 {
4404 if (!rsv)
4405 return;
4406 btrfs_block_rsv_release(root, rsv, (u64)-1);
4407 kfree(rsv);
4408 }
4409
4410 int btrfs_block_rsv_add(struct btrfs_root *root,
4411 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4412 enum btrfs_reserve_flush_enum flush)
4413 {
4414 int ret;
4415
4416 if (num_bytes == 0)
4417 return 0;
4418
4419 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4420 if (!ret) {
4421 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4422 return 0;
4423 }
4424
4425 return ret;
4426 }
4427
4428 int btrfs_block_rsv_check(struct btrfs_root *root,
4429 struct btrfs_block_rsv *block_rsv, int min_factor)
4430 {
4431 u64 num_bytes = 0;
4432 int ret = -ENOSPC;
4433
4434 if (!block_rsv)
4435 return 0;
4436
4437 spin_lock(&block_rsv->lock);
4438 num_bytes = div_factor(block_rsv->size, min_factor);
4439 if (block_rsv->reserved >= num_bytes)
4440 ret = 0;
4441 spin_unlock(&block_rsv->lock);
4442
4443 return ret;
4444 }
4445
4446 int btrfs_block_rsv_refill(struct btrfs_root *root,
4447 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4448 enum btrfs_reserve_flush_enum flush)
4449 {
4450 u64 num_bytes = 0;
4451 int ret = -ENOSPC;
4452
4453 if (!block_rsv)
4454 return 0;
4455
4456 spin_lock(&block_rsv->lock);
4457 num_bytes = min_reserved;
4458 if (block_rsv->reserved >= num_bytes)
4459 ret = 0;
4460 else
4461 num_bytes -= block_rsv->reserved;
4462 spin_unlock(&block_rsv->lock);
4463
4464 if (!ret)
4465 return 0;
4466
4467 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4468 if (!ret) {
4469 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4470 return 0;
4471 }
4472
4473 return ret;
4474 }
4475
4476 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4477 struct btrfs_block_rsv *dst_rsv,
4478 u64 num_bytes)
4479 {
4480 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4481 }
4482
4483 void btrfs_block_rsv_release(struct btrfs_root *root,
4484 struct btrfs_block_rsv *block_rsv,
4485 u64 num_bytes)
4486 {
4487 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4488 if (global_rsv->full || global_rsv == block_rsv ||
4489 block_rsv->space_info != global_rsv->space_info)
4490 global_rsv = NULL;
4491 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4492 num_bytes);
4493 }
4494
4495 /*
4496 * helper to calculate size of global block reservation.
4497 * the desired value is sum of space used by extent tree,
4498 * checksum tree and root tree
4499 */
4500 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4501 {
4502 struct btrfs_space_info *sinfo;
4503 u64 num_bytes;
4504 u64 meta_used;
4505 u64 data_used;
4506 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4507
4508 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4509 spin_lock(&sinfo->lock);
4510 data_used = sinfo->bytes_used;
4511 spin_unlock(&sinfo->lock);
4512
4513 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4514 spin_lock(&sinfo->lock);
4515 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4516 data_used = 0;
4517 meta_used = sinfo->bytes_used;
4518 spin_unlock(&sinfo->lock);
4519
4520 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4521 csum_size * 2;
4522 num_bytes += div64_u64(data_used + meta_used, 50);
4523
4524 if (num_bytes * 3 > meta_used)
4525 num_bytes = div64_u64(meta_used, 3);
4526
4527 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4528 }
4529
4530 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4531 {
4532 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4533 struct btrfs_space_info *sinfo = block_rsv->space_info;
4534 u64 num_bytes;
4535
4536 num_bytes = calc_global_metadata_size(fs_info);
4537
4538 spin_lock(&sinfo->lock);
4539 spin_lock(&block_rsv->lock);
4540
4541 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4542
4543 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4544 sinfo->bytes_reserved + sinfo->bytes_readonly +
4545 sinfo->bytes_may_use;
4546
4547 if (sinfo->total_bytes > num_bytes) {
4548 num_bytes = sinfo->total_bytes - num_bytes;
4549 block_rsv->reserved += num_bytes;
4550 sinfo->bytes_may_use += num_bytes;
4551 trace_btrfs_space_reservation(fs_info, "space_info",
4552 sinfo->flags, num_bytes, 1);
4553 }
4554
4555 if (block_rsv->reserved >= block_rsv->size) {
4556 num_bytes = block_rsv->reserved - block_rsv->size;
4557 sinfo->bytes_may_use -= num_bytes;
4558 trace_btrfs_space_reservation(fs_info, "space_info",
4559 sinfo->flags, num_bytes, 0);
4560 sinfo->reservation_progress++;
4561 block_rsv->reserved = block_rsv->size;
4562 block_rsv->full = 1;
4563 }
4564
4565 spin_unlock(&block_rsv->lock);
4566 spin_unlock(&sinfo->lock);
4567 }
4568
4569 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4570 {
4571 struct btrfs_space_info *space_info;
4572
4573 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4574 fs_info->chunk_block_rsv.space_info = space_info;
4575
4576 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4577 fs_info->global_block_rsv.space_info = space_info;
4578 fs_info->delalloc_block_rsv.space_info = space_info;
4579 fs_info->trans_block_rsv.space_info = space_info;
4580 fs_info->empty_block_rsv.space_info = space_info;
4581 fs_info->delayed_block_rsv.space_info = space_info;
4582
4583 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4584 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4585 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4586 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4587 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4588
4589 update_global_block_rsv(fs_info);
4590 }
4591
4592 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4593 {
4594 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4595 (u64)-1);
4596 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4597 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4598 WARN_ON(fs_info->trans_block_rsv.size > 0);
4599 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4600 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4601 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4602 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4603 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4604 }
4605
4606 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4607 struct btrfs_root *root)
4608 {
4609 if (!trans->block_rsv)
4610 return;
4611
4612 if (!trans->bytes_reserved)
4613 return;
4614
4615 trace_btrfs_space_reservation(root->fs_info, "transaction",
4616 trans->transid, trans->bytes_reserved, 0);
4617 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4618 trans->bytes_reserved = 0;
4619 }
4620
4621 /* Can only return 0 or -ENOSPC */
4622 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4623 struct inode *inode)
4624 {
4625 struct btrfs_root *root = BTRFS_I(inode)->root;
4626 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4627 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4628
4629 /*
4630 * We need to hold space in order to delete our orphan item once we've
4631 * added it, so this takes the reservation so we can release it later
4632 * when we are truly done with the orphan item.
4633 */
4634 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4635 trace_btrfs_space_reservation(root->fs_info, "orphan",
4636 btrfs_ino(inode), num_bytes, 1);
4637 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4638 }
4639
4640 void btrfs_orphan_release_metadata(struct inode *inode)
4641 {
4642 struct btrfs_root *root = BTRFS_I(inode)->root;
4643 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4644 trace_btrfs_space_reservation(root->fs_info, "orphan",
4645 btrfs_ino(inode), num_bytes, 0);
4646 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4647 }
4648
4649 /*
4650 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4651 * root: the root of the parent directory
4652 * rsv: block reservation
4653 * items: the number of items that we need do reservation
4654 * qgroup_reserved: used to return the reserved size in qgroup
4655 *
4656 * This function is used to reserve the space for snapshot/subvolume
4657 * creation and deletion. Those operations are different with the
4658 * common file/directory operations, they change two fs/file trees
4659 * and root tree, the number of items that the qgroup reserves is
4660 * different with the free space reservation. So we can not use
4661 * the space reseravtion mechanism in start_transaction().
4662 */
4663 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4664 struct btrfs_block_rsv *rsv,
4665 int items,
4666 u64 *qgroup_reserved)
4667 {
4668 u64 num_bytes;
4669 int ret;
4670
4671 if (root->fs_info->quota_enabled) {
4672 /* One for parent inode, two for dir entries */
4673 num_bytes = 3 * root->leafsize;
4674 ret = btrfs_qgroup_reserve(root, num_bytes);
4675 if (ret)
4676 return ret;
4677 } else {
4678 num_bytes = 0;
4679 }
4680
4681 *qgroup_reserved = num_bytes;
4682
4683 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4684 rsv->space_info = __find_space_info(root->fs_info,
4685 BTRFS_BLOCK_GROUP_METADATA);
4686 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4687 BTRFS_RESERVE_FLUSH_ALL);
4688 if (ret) {
4689 if (*qgroup_reserved)
4690 btrfs_qgroup_free(root, *qgroup_reserved);
4691 }
4692
4693 return ret;
4694 }
4695
4696 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4697 struct btrfs_block_rsv *rsv,
4698 u64 qgroup_reserved)
4699 {
4700 btrfs_block_rsv_release(root, rsv, (u64)-1);
4701 if (qgroup_reserved)
4702 btrfs_qgroup_free(root, qgroup_reserved);
4703 }
4704
4705 /**
4706 * drop_outstanding_extent - drop an outstanding extent
4707 * @inode: the inode we're dropping the extent for
4708 *
4709 * This is called when we are freeing up an outstanding extent, either called
4710 * after an error or after an extent is written. This will return the number of
4711 * reserved extents that need to be freed. This must be called with
4712 * BTRFS_I(inode)->lock held.
4713 */
4714 static unsigned drop_outstanding_extent(struct inode *inode)
4715 {
4716 unsigned drop_inode_space = 0;
4717 unsigned dropped_extents = 0;
4718
4719 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4720 BTRFS_I(inode)->outstanding_extents--;
4721
4722 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4723 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4724 &BTRFS_I(inode)->runtime_flags))
4725 drop_inode_space = 1;
4726
4727 /*
4728 * If we have more or the same amount of outsanding extents than we have
4729 * reserved then we need to leave the reserved extents count alone.
4730 */
4731 if (BTRFS_I(inode)->outstanding_extents >=
4732 BTRFS_I(inode)->reserved_extents)
4733 return drop_inode_space;
4734
4735 dropped_extents = BTRFS_I(inode)->reserved_extents -
4736 BTRFS_I(inode)->outstanding_extents;
4737 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4738 return dropped_extents + drop_inode_space;
4739 }
4740
4741 /**
4742 * calc_csum_metadata_size - return the amount of metada space that must be
4743 * reserved/free'd for the given bytes.
4744 * @inode: the inode we're manipulating
4745 * @num_bytes: the number of bytes in question
4746 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4747 *
4748 * This adjusts the number of csum_bytes in the inode and then returns the
4749 * correct amount of metadata that must either be reserved or freed. We
4750 * calculate how many checksums we can fit into one leaf and then divide the
4751 * number of bytes that will need to be checksumed by this value to figure out
4752 * how many checksums will be required. If we are adding bytes then the number
4753 * may go up and we will return the number of additional bytes that must be
4754 * reserved. If it is going down we will return the number of bytes that must
4755 * be freed.
4756 *
4757 * This must be called with BTRFS_I(inode)->lock held.
4758 */
4759 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4760 int reserve)
4761 {
4762 struct btrfs_root *root = BTRFS_I(inode)->root;
4763 u64 csum_size;
4764 int num_csums_per_leaf;
4765 int num_csums;
4766 int old_csums;
4767
4768 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4769 BTRFS_I(inode)->csum_bytes == 0)
4770 return 0;
4771
4772 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4773 if (reserve)
4774 BTRFS_I(inode)->csum_bytes += num_bytes;
4775 else
4776 BTRFS_I(inode)->csum_bytes -= num_bytes;
4777 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4778 num_csums_per_leaf = (int)div64_u64(csum_size,
4779 sizeof(struct btrfs_csum_item) +
4780 sizeof(struct btrfs_disk_key));
4781 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4782 num_csums = num_csums + num_csums_per_leaf - 1;
4783 num_csums = num_csums / num_csums_per_leaf;
4784
4785 old_csums = old_csums + num_csums_per_leaf - 1;
4786 old_csums = old_csums / num_csums_per_leaf;
4787
4788 /* No change, no need to reserve more */
4789 if (old_csums == num_csums)
4790 return 0;
4791
4792 if (reserve)
4793 return btrfs_calc_trans_metadata_size(root,
4794 num_csums - old_csums);
4795
4796 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4797 }
4798
4799 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4800 {
4801 struct btrfs_root *root = BTRFS_I(inode)->root;
4802 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4803 u64 to_reserve = 0;
4804 u64 csum_bytes;
4805 unsigned nr_extents = 0;
4806 int extra_reserve = 0;
4807 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4808 int ret = 0;
4809 bool delalloc_lock = true;
4810 u64 to_free = 0;
4811 unsigned dropped;
4812
4813 /* If we are a free space inode we need to not flush since we will be in
4814 * the middle of a transaction commit. We also don't need the delalloc
4815 * mutex since we won't race with anybody. We need this mostly to make
4816 * lockdep shut its filthy mouth.
4817 */
4818 if (btrfs_is_free_space_inode(inode)) {
4819 flush = BTRFS_RESERVE_NO_FLUSH;
4820 delalloc_lock = false;
4821 }
4822
4823 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4824 btrfs_transaction_in_commit(root->fs_info))
4825 schedule_timeout(1);
4826
4827 if (delalloc_lock)
4828 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4829
4830 num_bytes = ALIGN(num_bytes, root->sectorsize);
4831
4832 spin_lock(&BTRFS_I(inode)->lock);
4833 BTRFS_I(inode)->outstanding_extents++;
4834
4835 if (BTRFS_I(inode)->outstanding_extents >
4836 BTRFS_I(inode)->reserved_extents)
4837 nr_extents = BTRFS_I(inode)->outstanding_extents -
4838 BTRFS_I(inode)->reserved_extents;
4839
4840 /*
4841 * Add an item to reserve for updating the inode when we complete the
4842 * delalloc io.
4843 */
4844 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4845 &BTRFS_I(inode)->runtime_flags)) {
4846 nr_extents++;
4847 extra_reserve = 1;
4848 }
4849
4850 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4851 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4852 csum_bytes = BTRFS_I(inode)->csum_bytes;
4853 spin_unlock(&BTRFS_I(inode)->lock);
4854
4855 if (root->fs_info->quota_enabled) {
4856 ret = btrfs_qgroup_reserve(root, num_bytes +
4857 nr_extents * root->leafsize);
4858 if (ret)
4859 goto out_fail;
4860 }
4861
4862 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4863 if (unlikely(ret)) {
4864 if (root->fs_info->quota_enabled)
4865 btrfs_qgroup_free(root, num_bytes +
4866 nr_extents * root->leafsize);
4867 goto out_fail;
4868 }
4869
4870 spin_lock(&BTRFS_I(inode)->lock);
4871 if (extra_reserve) {
4872 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4873 &BTRFS_I(inode)->runtime_flags);
4874 nr_extents--;
4875 }
4876 BTRFS_I(inode)->reserved_extents += nr_extents;
4877 spin_unlock(&BTRFS_I(inode)->lock);
4878
4879 if (delalloc_lock)
4880 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4881
4882 if (to_reserve)
4883 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4884 btrfs_ino(inode), to_reserve, 1);
4885 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4886
4887 return 0;
4888
4889 out_fail:
4890 spin_lock(&BTRFS_I(inode)->lock);
4891 dropped = drop_outstanding_extent(inode);
4892 /*
4893 * If the inodes csum_bytes is the same as the original
4894 * csum_bytes then we know we haven't raced with any free()ers
4895 * so we can just reduce our inodes csum bytes and carry on.
4896 */
4897 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
4898 calc_csum_metadata_size(inode, num_bytes, 0);
4899 } else {
4900 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
4901 u64 bytes;
4902
4903 /*
4904 * This is tricky, but first we need to figure out how much we
4905 * free'd from any free-ers that occured during this
4906 * reservation, so we reset ->csum_bytes to the csum_bytes
4907 * before we dropped our lock, and then call the free for the
4908 * number of bytes that were freed while we were trying our
4909 * reservation.
4910 */
4911 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
4912 BTRFS_I(inode)->csum_bytes = csum_bytes;
4913 to_free = calc_csum_metadata_size(inode, bytes, 0);
4914
4915
4916 /*
4917 * Now we need to see how much we would have freed had we not
4918 * been making this reservation and our ->csum_bytes were not
4919 * artificially inflated.
4920 */
4921 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
4922 bytes = csum_bytes - orig_csum_bytes;
4923 bytes = calc_csum_metadata_size(inode, bytes, 0);
4924
4925 /*
4926 * Now reset ->csum_bytes to what it should be. If bytes is
4927 * more than to_free then we would have free'd more space had we
4928 * not had an artificially high ->csum_bytes, so we need to free
4929 * the remainder. If bytes is the same or less then we don't
4930 * need to do anything, the other free-ers did the correct
4931 * thing.
4932 */
4933 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
4934 if (bytes > to_free)
4935 to_free = bytes - to_free;
4936 else
4937 to_free = 0;
4938 }
4939 spin_unlock(&BTRFS_I(inode)->lock);
4940 if (dropped)
4941 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4942
4943 if (to_free) {
4944 btrfs_block_rsv_release(root, block_rsv, to_free);
4945 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4946 btrfs_ino(inode), to_free, 0);
4947 }
4948 if (delalloc_lock)
4949 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4950 return ret;
4951 }
4952
4953 /**
4954 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4955 * @inode: the inode to release the reservation for
4956 * @num_bytes: the number of bytes we're releasing
4957 *
4958 * This will release the metadata reservation for an inode. This can be called
4959 * once we complete IO for a given set of bytes to release their metadata
4960 * reservations.
4961 */
4962 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4963 {
4964 struct btrfs_root *root = BTRFS_I(inode)->root;
4965 u64 to_free = 0;
4966 unsigned dropped;
4967
4968 num_bytes = ALIGN(num_bytes, root->sectorsize);
4969 spin_lock(&BTRFS_I(inode)->lock);
4970 dropped = drop_outstanding_extent(inode);
4971
4972 if (num_bytes)
4973 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4974 spin_unlock(&BTRFS_I(inode)->lock);
4975 if (dropped > 0)
4976 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4977
4978 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4979 btrfs_ino(inode), to_free, 0);
4980 if (root->fs_info->quota_enabled) {
4981 btrfs_qgroup_free(root, num_bytes +
4982 dropped * root->leafsize);
4983 }
4984
4985 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4986 to_free);
4987 }
4988
4989 /**
4990 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4991 * @inode: inode we're writing to
4992 * @num_bytes: the number of bytes we want to allocate
4993 *
4994 * This will do the following things
4995 *
4996 * o reserve space in the data space info for num_bytes
4997 * o reserve space in the metadata space info based on number of outstanding
4998 * extents and how much csums will be needed
4999 * o add to the inodes ->delalloc_bytes
5000 * o add it to the fs_info's delalloc inodes list.
5001 *
5002 * This will return 0 for success and -ENOSPC if there is no space left.
5003 */
5004 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5005 {
5006 int ret;
5007
5008 ret = btrfs_check_data_free_space(inode, num_bytes);
5009 if (ret)
5010 return ret;
5011
5012 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5013 if (ret) {
5014 btrfs_free_reserved_data_space(inode, num_bytes);
5015 return ret;
5016 }
5017
5018 return 0;
5019 }
5020
5021 /**
5022 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5023 * @inode: inode we're releasing space for
5024 * @num_bytes: the number of bytes we want to free up
5025 *
5026 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5027 * called in the case that we don't need the metadata AND data reservations
5028 * anymore. So if there is an error or we insert an inline extent.
5029 *
5030 * This function will release the metadata space that was not used and will
5031 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5032 * list if there are no delalloc bytes left.
5033 */
5034 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5035 {
5036 btrfs_delalloc_release_metadata(inode, num_bytes);
5037 btrfs_free_reserved_data_space(inode, num_bytes);
5038 }
5039
5040 static int update_block_group(struct btrfs_root *root,
5041 u64 bytenr, u64 num_bytes, int alloc)
5042 {
5043 struct btrfs_block_group_cache *cache = NULL;
5044 struct btrfs_fs_info *info = root->fs_info;
5045 u64 total = num_bytes;
5046 u64 old_val;
5047 u64 byte_in_group;
5048 int factor;
5049
5050 /* block accounting for super block */
5051 spin_lock(&info->delalloc_lock);
5052 old_val = btrfs_super_bytes_used(info->super_copy);
5053 if (alloc)
5054 old_val += num_bytes;
5055 else
5056 old_val -= num_bytes;
5057 btrfs_set_super_bytes_used(info->super_copy, old_val);
5058 spin_unlock(&info->delalloc_lock);
5059
5060 while (total) {
5061 cache = btrfs_lookup_block_group(info, bytenr);
5062 if (!cache)
5063 return -ENOENT;
5064 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5065 BTRFS_BLOCK_GROUP_RAID1 |
5066 BTRFS_BLOCK_GROUP_RAID10))
5067 factor = 2;
5068 else
5069 factor = 1;
5070 /*
5071 * If this block group has free space cache written out, we
5072 * need to make sure to load it if we are removing space. This
5073 * is because we need the unpinning stage to actually add the
5074 * space back to the block group, otherwise we will leak space.
5075 */
5076 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5077 cache_block_group(cache, 1);
5078
5079 byte_in_group = bytenr - cache->key.objectid;
5080 WARN_ON(byte_in_group > cache->key.offset);
5081
5082 spin_lock(&cache->space_info->lock);
5083 spin_lock(&cache->lock);
5084
5085 if (btrfs_test_opt(root, SPACE_CACHE) &&
5086 cache->disk_cache_state < BTRFS_DC_CLEAR)
5087 cache->disk_cache_state = BTRFS_DC_CLEAR;
5088
5089 cache->dirty = 1;
5090 old_val = btrfs_block_group_used(&cache->item);
5091 num_bytes = min(total, cache->key.offset - byte_in_group);
5092 if (alloc) {
5093 old_val += num_bytes;
5094 btrfs_set_block_group_used(&cache->item, old_val);
5095 cache->reserved -= num_bytes;
5096 cache->space_info->bytes_reserved -= num_bytes;
5097 cache->space_info->bytes_used += num_bytes;
5098 cache->space_info->disk_used += num_bytes * factor;
5099 spin_unlock(&cache->lock);
5100 spin_unlock(&cache->space_info->lock);
5101 } else {
5102 old_val -= num_bytes;
5103 btrfs_set_block_group_used(&cache->item, old_val);
5104 cache->pinned += num_bytes;
5105 cache->space_info->bytes_pinned += num_bytes;
5106 cache->space_info->bytes_used -= num_bytes;
5107 cache->space_info->disk_used -= num_bytes * factor;
5108 spin_unlock(&cache->lock);
5109 spin_unlock(&cache->space_info->lock);
5110
5111 set_extent_dirty(info->pinned_extents,
5112 bytenr, bytenr + num_bytes - 1,
5113 GFP_NOFS | __GFP_NOFAIL);
5114 }
5115 btrfs_put_block_group(cache);
5116 total -= num_bytes;
5117 bytenr += num_bytes;
5118 }
5119 return 0;
5120 }
5121
5122 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5123 {
5124 struct btrfs_block_group_cache *cache;
5125 u64 bytenr;
5126
5127 spin_lock(&root->fs_info->block_group_cache_lock);
5128 bytenr = root->fs_info->first_logical_byte;
5129 spin_unlock(&root->fs_info->block_group_cache_lock);
5130
5131 if (bytenr < (u64)-1)
5132 return bytenr;
5133
5134 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5135 if (!cache)
5136 return 0;
5137
5138 bytenr = cache->key.objectid;
5139 btrfs_put_block_group(cache);
5140
5141 return bytenr;
5142 }
5143
5144 static int pin_down_extent(struct btrfs_root *root,
5145 struct btrfs_block_group_cache *cache,
5146 u64 bytenr, u64 num_bytes, int reserved)
5147 {
5148 spin_lock(&cache->space_info->lock);
5149 spin_lock(&cache->lock);
5150 cache->pinned += num_bytes;
5151 cache->space_info->bytes_pinned += num_bytes;
5152 if (reserved) {
5153 cache->reserved -= num_bytes;
5154 cache->space_info->bytes_reserved -= num_bytes;
5155 }
5156 spin_unlock(&cache->lock);
5157 spin_unlock(&cache->space_info->lock);
5158
5159 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5160 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5161 return 0;
5162 }
5163
5164 /*
5165 * this function must be called within transaction
5166 */
5167 int btrfs_pin_extent(struct btrfs_root *root,
5168 u64 bytenr, u64 num_bytes, int reserved)
5169 {
5170 struct btrfs_block_group_cache *cache;
5171
5172 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5173 BUG_ON(!cache); /* Logic error */
5174
5175 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5176
5177 btrfs_put_block_group(cache);
5178 return 0;
5179 }
5180
5181 /*
5182 * this function must be called within transaction
5183 */
5184 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5185 u64 bytenr, u64 num_bytes)
5186 {
5187 struct btrfs_block_group_cache *cache;
5188
5189 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5190 BUG_ON(!cache); /* Logic error */
5191
5192 /*
5193 * pull in the free space cache (if any) so that our pin
5194 * removes the free space from the cache. We have load_only set
5195 * to one because the slow code to read in the free extents does check
5196 * the pinned extents.
5197 */
5198 cache_block_group(cache, 1);
5199
5200 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5201
5202 /* remove us from the free space cache (if we're there at all) */
5203 btrfs_remove_free_space(cache, bytenr, num_bytes);
5204 btrfs_put_block_group(cache);
5205 return 0;
5206 }
5207
5208 /**
5209 * btrfs_update_reserved_bytes - update the block_group and space info counters
5210 * @cache: The cache we are manipulating
5211 * @num_bytes: The number of bytes in question
5212 * @reserve: One of the reservation enums
5213 *
5214 * This is called by the allocator when it reserves space, or by somebody who is
5215 * freeing space that was never actually used on disk. For example if you
5216 * reserve some space for a new leaf in transaction A and before transaction A
5217 * commits you free that leaf, you call this with reserve set to 0 in order to
5218 * clear the reservation.
5219 *
5220 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5221 * ENOSPC accounting. For data we handle the reservation through clearing the
5222 * delalloc bits in the io_tree. We have to do this since we could end up
5223 * allocating less disk space for the amount of data we have reserved in the
5224 * case of compression.
5225 *
5226 * If this is a reservation and the block group has become read only we cannot
5227 * make the reservation and return -EAGAIN, otherwise this function always
5228 * succeeds.
5229 */
5230 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5231 u64 num_bytes, int reserve)
5232 {
5233 struct btrfs_space_info *space_info = cache->space_info;
5234 int ret = 0;
5235
5236 spin_lock(&space_info->lock);
5237 spin_lock(&cache->lock);
5238 if (reserve != RESERVE_FREE) {
5239 if (cache->ro) {
5240 ret = -EAGAIN;
5241 } else {
5242 cache->reserved += num_bytes;
5243 space_info->bytes_reserved += num_bytes;
5244 if (reserve == RESERVE_ALLOC) {
5245 trace_btrfs_space_reservation(cache->fs_info,
5246 "space_info", space_info->flags,
5247 num_bytes, 0);
5248 space_info->bytes_may_use -= num_bytes;
5249 }
5250 }
5251 } else {
5252 if (cache->ro)
5253 space_info->bytes_readonly += num_bytes;
5254 cache->reserved -= num_bytes;
5255 space_info->bytes_reserved -= num_bytes;
5256 space_info->reservation_progress++;
5257 }
5258 spin_unlock(&cache->lock);
5259 spin_unlock(&space_info->lock);
5260 return ret;
5261 }
5262
5263 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5264 struct btrfs_root *root)
5265 {
5266 struct btrfs_fs_info *fs_info = root->fs_info;
5267 struct btrfs_caching_control *next;
5268 struct btrfs_caching_control *caching_ctl;
5269 struct btrfs_block_group_cache *cache;
5270
5271 down_write(&fs_info->extent_commit_sem);
5272
5273 list_for_each_entry_safe(caching_ctl, next,
5274 &fs_info->caching_block_groups, list) {
5275 cache = caching_ctl->block_group;
5276 if (block_group_cache_done(cache)) {
5277 cache->last_byte_to_unpin = (u64)-1;
5278 list_del_init(&caching_ctl->list);
5279 put_caching_control(caching_ctl);
5280 } else {
5281 cache->last_byte_to_unpin = caching_ctl->progress;
5282 }
5283 }
5284
5285 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5286 fs_info->pinned_extents = &fs_info->freed_extents[1];
5287 else
5288 fs_info->pinned_extents = &fs_info->freed_extents[0];
5289
5290 up_write(&fs_info->extent_commit_sem);
5291
5292 update_global_block_rsv(fs_info);
5293 }
5294
5295 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5296 {
5297 struct btrfs_fs_info *fs_info = root->fs_info;
5298 struct btrfs_block_group_cache *cache = NULL;
5299 struct btrfs_space_info *space_info;
5300 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5301 u64 len;
5302 bool readonly;
5303
5304 while (start <= end) {
5305 readonly = false;
5306 if (!cache ||
5307 start >= cache->key.objectid + cache->key.offset) {
5308 if (cache)
5309 btrfs_put_block_group(cache);
5310 cache = btrfs_lookup_block_group(fs_info, start);
5311 BUG_ON(!cache); /* Logic error */
5312 }
5313
5314 len = cache->key.objectid + cache->key.offset - start;
5315 len = min(len, end + 1 - start);
5316
5317 if (start < cache->last_byte_to_unpin) {
5318 len = min(len, cache->last_byte_to_unpin - start);
5319 btrfs_add_free_space(cache, start, len);
5320 }
5321
5322 start += len;
5323 space_info = cache->space_info;
5324
5325 spin_lock(&space_info->lock);
5326 spin_lock(&cache->lock);
5327 cache->pinned -= len;
5328 space_info->bytes_pinned -= len;
5329 if (cache->ro) {
5330 space_info->bytes_readonly += len;
5331 readonly = true;
5332 }
5333 spin_unlock(&cache->lock);
5334 if (!readonly && global_rsv->space_info == space_info) {
5335 spin_lock(&global_rsv->lock);
5336 if (!global_rsv->full) {
5337 len = min(len, global_rsv->size -
5338 global_rsv->reserved);
5339 global_rsv->reserved += len;
5340 space_info->bytes_may_use += len;
5341 if (global_rsv->reserved >= global_rsv->size)
5342 global_rsv->full = 1;
5343 }
5344 spin_unlock(&global_rsv->lock);
5345 }
5346 spin_unlock(&space_info->lock);
5347 }
5348
5349 if (cache)
5350 btrfs_put_block_group(cache);
5351 return 0;
5352 }
5353
5354 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5355 struct btrfs_root *root)
5356 {
5357 struct btrfs_fs_info *fs_info = root->fs_info;
5358 struct extent_io_tree *unpin;
5359 u64 start;
5360 u64 end;
5361 int ret;
5362
5363 if (trans->aborted)
5364 return 0;
5365
5366 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5367 unpin = &fs_info->freed_extents[1];
5368 else
5369 unpin = &fs_info->freed_extents[0];
5370
5371 while (1) {
5372 ret = find_first_extent_bit(unpin, 0, &start, &end,
5373 EXTENT_DIRTY, NULL);
5374 if (ret)
5375 break;
5376
5377 if (btrfs_test_opt(root, DISCARD))
5378 ret = btrfs_discard_extent(root, start,
5379 end + 1 - start, NULL);
5380
5381 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5382 unpin_extent_range(root, start, end);
5383 cond_resched();
5384 }
5385
5386 return 0;
5387 }
5388
5389 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5390 struct btrfs_root *root,
5391 u64 bytenr, u64 num_bytes, u64 parent,
5392 u64 root_objectid, u64 owner_objectid,
5393 u64 owner_offset, int refs_to_drop,
5394 struct btrfs_delayed_extent_op *extent_op)
5395 {
5396 struct btrfs_key key;
5397 struct btrfs_path *path;
5398 struct btrfs_fs_info *info = root->fs_info;
5399 struct btrfs_root *extent_root = info->extent_root;
5400 struct extent_buffer *leaf;
5401 struct btrfs_extent_item *ei;
5402 struct btrfs_extent_inline_ref *iref;
5403 int ret;
5404 int is_data;
5405 int extent_slot = 0;
5406 int found_extent = 0;
5407 int num_to_del = 1;
5408 u32 item_size;
5409 u64 refs;
5410 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5411 SKINNY_METADATA);
5412
5413 path = btrfs_alloc_path();
5414 if (!path)
5415 return -ENOMEM;
5416
5417 path->reada = 1;
5418 path->leave_spinning = 1;
5419
5420 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5421 BUG_ON(!is_data && refs_to_drop != 1);
5422
5423 if (is_data)
5424 skinny_metadata = 0;
5425
5426 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5427 bytenr, num_bytes, parent,
5428 root_objectid, owner_objectid,
5429 owner_offset);
5430 if (ret == 0) {
5431 extent_slot = path->slots[0];
5432 while (extent_slot >= 0) {
5433 btrfs_item_key_to_cpu(path->nodes[0], &key,
5434 extent_slot);
5435 if (key.objectid != bytenr)
5436 break;
5437 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5438 key.offset == num_bytes) {
5439 found_extent = 1;
5440 break;
5441 }
5442 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5443 key.offset == owner_objectid) {
5444 found_extent = 1;
5445 break;
5446 }
5447 if (path->slots[0] - extent_slot > 5)
5448 break;
5449 extent_slot--;
5450 }
5451 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5452 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5453 if (found_extent && item_size < sizeof(*ei))
5454 found_extent = 0;
5455 #endif
5456 if (!found_extent) {
5457 BUG_ON(iref);
5458 ret = remove_extent_backref(trans, extent_root, path,
5459 NULL, refs_to_drop,
5460 is_data);
5461 if (ret) {
5462 btrfs_abort_transaction(trans, extent_root, ret);
5463 goto out;
5464 }
5465 btrfs_release_path(path);
5466 path->leave_spinning = 1;
5467
5468 key.objectid = bytenr;
5469 key.type = BTRFS_EXTENT_ITEM_KEY;
5470 key.offset = num_bytes;
5471
5472 if (!is_data && skinny_metadata) {
5473 key.type = BTRFS_METADATA_ITEM_KEY;
5474 key.offset = owner_objectid;
5475 }
5476
5477 ret = btrfs_search_slot(trans, extent_root,
5478 &key, path, -1, 1);
5479 if (ret > 0 && skinny_metadata && path->slots[0]) {
5480 /*
5481 * Couldn't find our skinny metadata item,
5482 * see if we have ye olde extent item.
5483 */
5484 path->slots[0]--;
5485 btrfs_item_key_to_cpu(path->nodes[0], &key,
5486 path->slots[0]);
5487 if (key.objectid == bytenr &&
5488 key.type == BTRFS_EXTENT_ITEM_KEY &&
5489 key.offset == num_bytes)
5490 ret = 0;
5491 }
5492
5493 if (ret > 0 && skinny_metadata) {
5494 skinny_metadata = false;
5495 key.type = BTRFS_EXTENT_ITEM_KEY;
5496 key.offset = num_bytes;
5497 btrfs_release_path(path);
5498 ret = btrfs_search_slot(trans, extent_root,
5499 &key, path, -1, 1);
5500 }
5501
5502 if (ret) {
5503 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5504 ret, (unsigned long long)bytenr);
5505 if (ret > 0)
5506 btrfs_print_leaf(extent_root,
5507 path->nodes[0]);
5508 }
5509 if (ret < 0) {
5510 btrfs_abort_transaction(trans, extent_root, ret);
5511 goto out;
5512 }
5513 extent_slot = path->slots[0];
5514 }
5515 } else if (ret == -ENOENT) {
5516 btrfs_print_leaf(extent_root, path->nodes[0]);
5517 WARN_ON(1);
5518 btrfs_err(info,
5519 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5520 (unsigned long long)bytenr,
5521 (unsigned long long)parent,
5522 (unsigned long long)root_objectid,
5523 (unsigned long long)owner_objectid,
5524 (unsigned long long)owner_offset);
5525 } else {
5526 btrfs_abort_transaction(trans, extent_root, ret);
5527 goto out;
5528 }
5529
5530 leaf = path->nodes[0];
5531 item_size = btrfs_item_size_nr(leaf, extent_slot);
5532 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5533 if (item_size < sizeof(*ei)) {
5534 BUG_ON(found_extent || extent_slot != path->slots[0]);
5535 ret = convert_extent_item_v0(trans, extent_root, path,
5536 owner_objectid, 0);
5537 if (ret < 0) {
5538 btrfs_abort_transaction(trans, extent_root, ret);
5539 goto out;
5540 }
5541
5542 btrfs_release_path(path);
5543 path->leave_spinning = 1;
5544
5545 key.objectid = bytenr;
5546 key.type = BTRFS_EXTENT_ITEM_KEY;
5547 key.offset = num_bytes;
5548
5549 ret = btrfs_search_slot(trans, extent_root, &key, path,
5550 -1, 1);
5551 if (ret) {
5552 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5553 ret, (unsigned long long)bytenr);
5554 btrfs_print_leaf(extent_root, path->nodes[0]);
5555 }
5556 if (ret < 0) {
5557 btrfs_abort_transaction(trans, extent_root, ret);
5558 goto out;
5559 }
5560
5561 extent_slot = path->slots[0];
5562 leaf = path->nodes[0];
5563 item_size = btrfs_item_size_nr(leaf, extent_slot);
5564 }
5565 #endif
5566 BUG_ON(item_size < sizeof(*ei));
5567 ei = btrfs_item_ptr(leaf, extent_slot,
5568 struct btrfs_extent_item);
5569 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5570 key.type == BTRFS_EXTENT_ITEM_KEY) {
5571 struct btrfs_tree_block_info *bi;
5572 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5573 bi = (struct btrfs_tree_block_info *)(ei + 1);
5574 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5575 }
5576
5577 refs = btrfs_extent_refs(leaf, ei);
5578 BUG_ON(refs < refs_to_drop);
5579 refs -= refs_to_drop;
5580
5581 if (refs > 0) {
5582 if (extent_op)
5583 __run_delayed_extent_op(extent_op, leaf, ei);
5584 /*
5585 * In the case of inline back ref, reference count will
5586 * be updated by remove_extent_backref
5587 */
5588 if (iref) {
5589 BUG_ON(!found_extent);
5590 } else {
5591 btrfs_set_extent_refs(leaf, ei, refs);
5592 btrfs_mark_buffer_dirty(leaf);
5593 }
5594 if (found_extent) {
5595 ret = remove_extent_backref(trans, extent_root, path,
5596 iref, refs_to_drop,
5597 is_data);
5598 if (ret) {
5599 btrfs_abort_transaction(trans, extent_root, ret);
5600 goto out;
5601 }
5602 }
5603 } else {
5604 if (found_extent) {
5605 BUG_ON(is_data && refs_to_drop !=
5606 extent_data_ref_count(root, path, iref));
5607 if (iref) {
5608 BUG_ON(path->slots[0] != extent_slot);
5609 } else {
5610 BUG_ON(path->slots[0] != extent_slot + 1);
5611 path->slots[0] = extent_slot;
5612 num_to_del = 2;
5613 }
5614 }
5615
5616 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5617 num_to_del);
5618 if (ret) {
5619 btrfs_abort_transaction(trans, extent_root, ret);
5620 goto out;
5621 }
5622 btrfs_release_path(path);
5623
5624 if (is_data) {
5625 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5626 if (ret) {
5627 btrfs_abort_transaction(trans, extent_root, ret);
5628 goto out;
5629 }
5630 }
5631
5632 ret = update_block_group(root, bytenr, num_bytes, 0);
5633 if (ret) {
5634 btrfs_abort_transaction(trans, extent_root, ret);
5635 goto out;
5636 }
5637 }
5638 out:
5639 btrfs_free_path(path);
5640 return ret;
5641 }
5642
5643 /*
5644 * when we free an block, it is possible (and likely) that we free the last
5645 * delayed ref for that extent as well. This searches the delayed ref tree for
5646 * a given extent, and if there are no other delayed refs to be processed, it
5647 * removes it from the tree.
5648 */
5649 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5650 struct btrfs_root *root, u64 bytenr)
5651 {
5652 struct btrfs_delayed_ref_head *head;
5653 struct btrfs_delayed_ref_root *delayed_refs;
5654 struct btrfs_delayed_ref_node *ref;
5655 struct rb_node *node;
5656 int ret = 0;
5657
5658 delayed_refs = &trans->transaction->delayed_refs;
5659 spin_lock(&delayed_refs->lock);
5660 head = btrfs_find_delayed_ref_head(trans, bytenr);
5661 if (!head)
5662 goto out;
5663
5664 node = rb_prev(&head->node.rb_node);
5665 if (!node)
5666 goto out;
5667
5668 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5669
5670 /* there are still entries for this ref, we can't drop it */
5671 if (ref->bytenr == bytenr)
5672 goto out;
5673
5674 if (head->extent_op) {
5675 if (!head->must_insert_reserved)
5676 goto out;
5677 btrfs_free_delayed_extent_op(head->extent_op);
5678 head->extent_op = NULL;
5679 }
5680
5681 /*
5682 * waiting for the lock here would deadlock. If someone else has it
5683 * locked they are already in the process of dropping it anyway
5684 */
5685 if (!mutex_trylock(&head->mutex))
5686 goto out;
5687
5688 /*
5689 * at this point we have a head with no other entries. Go
5690 * ahead and process it.
5691 */
5692 head->node.in_tree = 0;
5693 rb_erase(&head->node.rb_node, &delayed_refs->root);
5694
5695 delayed_refs->num_entries--;
5696
5697 /*
5698 * we don't take a ref on the node because we're removing it from the
5699 * tree, so we just steal the ref the tree was holding.
5700 */
5701 delayed_refs->num_heads--;
5702 if (list_empty(&head->cluster))
5703 delayed_refs->num_heads_ready--;
5704
5705 list_del_init(&head->cluster);
5706 spin_unlock(&delayed_refs->lock);
5707
5708 BUG_ON(head->extent_op);
5709 if (head->must_insert_reserved)
5710 ret = 1;
5711
5712 mutex_unlock(&head->mutex);
5713 btrfs_put_delayed_ref(&head->node);
5714 return ret;
5715 out:
5716 spin_unlock(&delayed_refs->lock);
5717 return 0;
5718 }
5719
5720 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5721 struct btrfs_root *root,
5722 struct extent_buffer *buf,
5723 u64 parent, int last_ref)
5724 {
5725 struct btrfs_block_group_cache *cache = NULL;
5726 int ret;
5727
5728 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5729 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5730 buf->start, buf->len,
5731 parent, root->root_key.objectid,
5732 btrfs_header_level(buf),
5733 BTRFS_DROP_DELAYED_REF, NULL, 0);
5734 BUG_ON(ret); /* -ENOMEM */
5735 }
5736
5737 if (!last_ref)
5738 return;
5739
5740 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5741
5742 if (btrfs_header_generation(buf) == trans->transid) {
5743 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5744 ret = check_ref_cleanup(trans, root, buf->start);
5745 if (!ret)
5746 goto out;
5747 }
5748
5749 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5750 pin_down_extent(root, cache, buf->start, buf->len, 1);
5751 goto out;
5752 }
5753
5754 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5755
5756 btrfs_add_free_space(cache, buf->start, buf->len);
5757 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5758 }
5759 out:
5760 /*
5761 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5762 * anymore.
5763 */
5764 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5765 btrfs_put_block_group(cache);
5766 }
5767
5768 /* Can return -ENOMEM */
5769 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5770 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5771 u64 owner, u64 offset, int for_cow)
5772 {
5773 int ret;
5774 struct btrfs_fs_info *fs_info = root->fs_info;
5775
5776 /*
5777 * tree log blocks never actually go into the extent allocation
5778 * tree, just update pinning info and exit early.
5779 */
5780 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5781 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5782 /* unlocks the pinned mutex */
5783 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5784 ret = 0;
5785 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5786 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5787 num_bytes,
5788 parent, root_objectid, (int)owner,
5789 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5790 } else {
5791 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5792 num_bytes,
5793 parent, root_objectid, owner,
5794 offset, BTRFS_DROP_DELAYED_REF,
5795 NULL, for_cow);
5796 }
5797 return ret;
5798 }
5799
5800 static u64 stripe_align(struct btrfs_root *root,
5801 struct btrfs_block_group_cache *cache,
5802 u64 val, u64 num_bytes)
5803 {
5804 u64 ret = ALIGN(val, root->stripesize);
5805 return ret;
5806 }
5807
5808 /*
5809 * when we wait for progress in the block group caching, its because
5810 * our allocation attempt failed at least once. So, we must sleep
5811 * and let some progress happen before we try again.
5812 *
5813 * This function will sleep at least once waiting for new free space to
5814 * show up, and then it will check the block group free space numbers
5815 * for our min num_bytes. Another option is to have it go ahead
5816 * and look in the rbtree for a free extent of a given size, but this
5817 * is a good start.
5818 */
5819 static noinline int
5820 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5821 u64 num_bytes)
5822 {
5823 struct btrfs_caching_control *caching_ctl;
5824
5825 caching_ctl = get_caching_control(cache);
5826 if (!caching_ctl)
5827 return 0;
5828
5829 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5830 (cache->free_space_ctl->free_space >= num_bytes));
5831
5832 put_caching_control(caching_ctl);
5833 return 0;
5834 }
5835
5836 static noinline int
5837 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5838 {
5839 struct btrfs_caching_control *caching_ctl;
5840
5841 caching_ctl = get_caching_control(cache);
5842 if (!caching_ctl)
5843 return 0;
5844
5845 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5846
5847 put_caching_control(caching_ctl);
5848 return 0;
5849 }
5850
5851 int __get_raid_index(u64 flags)
5852 {
5853 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5854 return BTRFS_RAID_RAID10;
5855 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5856 return BTRFS_RAID_RAID1;
5857 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5858 return BTRFS_RAID_DUP;
5859 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5860 return BTRFS_RAID_RAID0;
5861 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
5862 return BTRFS_RAID_RAID5;
5863 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
5864 return BTRFS_RAID_RAID6;
5865
5866 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
5867 }
5868
5869 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5870 {
5871 return __get_raid_index(cache->flags);
5872 }
5873
5874 enum btrfs_loop_type {
5875 LOOP_CACHING_NOWAIT = 0,
5876 LOOP_CACHING_WAIT = 1,
5877 LOOP_ALLOC_CHUNK = 2,
5878 LOOP_NO_EMPTY_SIZE = 3,
5879 };
5880
5881 /*
5882 * walks the btree of allocated extents and find a hole of a given size.
5883 * The key ins is changed to record the hole:
5884 * ins->objectid == block start
5885 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5886 * ins->offset == number of blocks
5887 * Any available blocks before search_start are skipped.
5888 */
5889 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5890 struct btrfs_root *orig_root,
5891 u64 num_bytes, u64 empty_size,
5892 u64 hint_byte, struct btrfs_key *ins,
5893 u64 data)
5894 {
5895 int ret = 0;
5896 struct btrfs_root *root = orig_root->fs_info->extent_root;
5897 struct btrfs_free_cluster *last_ptr = NULL;
5898 struct btrfs_block_group_cache *block_group = NULL;
5899 struct btrfs_block_group_cache *used_block_group;
5900 u64 search_start = 0;
5901 int empty_cluster = 2 * 1024 * 1024;
5902 struct btrfs_space_info *space_info;
5903 int loop = 0;
5904 int index = __get_raid_index(data);
5905 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5906 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5907 bool found_uncached_bg = false;
5908 bool failed_cluster_refill = false;
5909 bool failed_alloc = false;
5910 bool use_cluster = true;
5911 bool have_caching_bg = false;
5912
5913 WARN_ON(num_bytes < root->sectorsize);
5914 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5915 ins->objectid = 0;
5916 ins->offset = 0;
5917
5918 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5919
5920 space_info = __find_space_info(root->fs_info, data);
5921 if (!space_info) {
5922 btrfs_err(root->fs_info, "No space info for %llu", data);
5923 return -ENOSPC;
5924 }
5925
5926 /*
5927 * If the space info is for both data and metadata it means we have a
5928 * small filesystem and we can't use the clustering stuff.
5929 */
5930 if (btrfs_mixed_space_info(space_info))
5931 use_cluster = false;
5932
5933 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5934 last_ptr = &root->fs_info->meta_alloc_cluster;
5935 if (!btrfs_test_opt(root, SSD))
5936 empty_cluster = 64 * 1024;
5937 }
5938
5939 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5940 btrfs_test_opt(root, SSD)) {
5941 last_ptr = &root->fs_info->data_alloc_cluster;
5942 }
5943
5944 if (last_ptr) {
5945 spin_lock(&last_ptr->lock);
5946 if (last_ptr->block_group)
5947 hint_byte = last_ptr->window_start;
5948 spin_unlock(&last_ptr->lock);
5949 }
5950
5951 search_start = max(search_start, first_logical_byte(root, 0));
5952 search_start = max(search_start, hint_byte);
5953
5954 if (!last_ptr)
5955 empty_cluster = 0;
5956
5957 if (search_start == hint_byte) {
5958 block_group = btrfs_lookup_block_group(root->fs_info,
5959 search_start);
5960 used_block_group = block_group;
5961 /*
5962 * we don't want to use the block group if it doesn't match our
5963 * allocation bits, or if its not cached.
5964 *
5965 * However if we are re-searching with an ideal block group
5966 * picked out then we don't care that the block group is cached.
5967 */
5968 if (block_group && block_group_bits(block_group, data) &&
5969 block_group->cached != BTRFS_CACHE_NO) {
5970 down_read(&space_info->groups_sem);
5971 if (list_empty(&block_group->list) ||
5972 block_group->ro) {
5973 /*
5974 * someone is removing this block group,
5975 * we can't jump into the have_block_group
5976 * target because our list pointers are not
5977 * valid
5978 */
5979 btrfs_put_block_group(block_group);
5980 up_read(&space_info->groups_sem);
5981 } else {
5982 index = get_block_group_index(block_group);
5983 goto have_block_group;
5984 }
5985 } else if (block_group) {
5986 btrfs_put_block_group(block_group);
5987 }
5988 }
5989 search:
5990 have_caching_bg = false;
5991 down_read(&space_info->groups_sem);
5992 list_for_each_entry(block_group, &space_info->block_groups[index],
5993 list) {
5994 u64 offset;
5995 int cached;
5996
5997 used_block_group = block_group;
5998 btrfs_get_block_group(block_group);
5999 search_start = block_group->key.objectid;
6000
6001 /*
6002 * this can happen if we end up cycling through all the
6003 * raid types, but we want to make sure we only allocate
6004 * for the proper type.
6005 */
6006 if (!block_group_bits(block_group, data)) {
6007 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6008 BTRFS_BLOCK_GROUP_RAID1 |
6009 BTRFS_BLOCK_GROUP_RAID5 |
6010 BTRFS_BLOCK_GROUP_RAID6 |
6011 BTRFS_BLOCK_GROUP_RAID10;
6012
6013 /*
6014 * if they asked for extra copies and this block group
6015 * doesn't provide them, bail. This does allow us to
6016 * fill raid0 from raid1.
6017 */
6018 if ((data & extra) && !(block_group->flags & extra))
6019 goto loop;
6020 }
6021
6022 have_block_group:
6023 cached = block_group_cache_done(block_group);
6024 if (unlikely(!cached)) {
6025 found_uncached_bg = true;
6026 ret = cache_block_group(block_group, 0);
6027 BUG_ON(ret < 0);
6028 ret = 0;
6029 }
6030
6031 if (unlikely(block_group->ro))
6032 goto loop;
6033
6034 /*
6035 * Ok we want to try and use the cluster allocator, so
6036 * lets look there
6037 */
6038 if (last_ptr) {
6039 unsigned long aligned_cluster;
6040 /*
6041 * the refill lock keeps out other
6042 * people trying to start a new cluster
6043 */
6044 spin_lock(&last_ptr->refill_lock);
6045 used_block_group = last_ptr->block_group;
6046 if (used_block_group != block_group &&
6047 (!used_block_group ||
6048 used_block_group->ro ||
6049 !block_group_bits(used_block_group, data))) {
6050 used_block_group = block_group;
6051 goto refill_cluster;
6052 }
6053
6054 if (used_block_group != block_group)
6055 btrfs_get_block_group(used_block_group);
6056
6057 offset = btrfs_alloc_from_cluster(used_block_group,
6058 last_ptr, num_bytes, used_block_group->key.objectid);
6059 if (offset) {
6060 /* we have a block, we're done */
6061 spin_unlock(&last_ptr->refill_lock);
6062 trace_btrfs_reserve_extent_cluster(root,
6063 block_group, search_start, num_bytes);
6064 goto checks;
6065 }
6066
6067 WARN_ON(last_ptr->block_group != used_block_group);
6068 if (used_block_group != block_group) {
6069 btrfs_put_block_group(used_block_group);
6070 used_block_group = block_group;
6071 }
6072 refill_cluster:
6073 BUG_ON(used_block_group != block_group);
6074 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6075 * set up a new clusters, so lets just skip it
6076 * and let the allocator find whatever block
6077 * it can find. If we reach this point, we
6078 * will have tried the cluster allocator
6079 * plenty of times and not have found
6080 * anything, so we are likely way too
6081 * fragmented for the clustering stuff to find
6082 * anything.
6083 *
6084 * However, if the cluster is taken from the
6085 * current block group, release the cluster
6086 * first, so that we stand a better chance of
6087 * succeeding in the unclustered
6088 * allocation. */
6089 if (loop >= LOOP_NO_EMPTY_SIZE &&
6090 last_ptr->block_group != block_group) {
6091 spin_unlock(&last_ptr->refill_lock);
6092 goto unclustered_alloc;
6093 }
6094
6095 /*
6096 * this cluster didn't work out, free it and
6097 * start over
6098 */
6099 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6100
6101 if (loop >= LOOP_NO_EMPTY_SIZE) {
6102 spin_unlock(&last_ptr->refill_lock);
6103 goto unclustered_alloc;
6104 }
6105
6106 aligned_cluster = max_t(unsigned long,
6107 empty_cluster + empty_size,
6108 block_group->full_stripe_len);
6109
6110 /* allocate a cluster in this block group */
6111 ret = btrfs_find_space_cluster(trans, root,
6112 block_group, last_ptr,
6113 search_start, num_bytes,
6114 aligned_cluster);
6115 if (ret == 0) {
6116 /*
6117 * now pull our allocation out of this
6118 * cluster
6119 */
6120 offset = btrfs_alloc_from_cluster(block_group,
6121 last_ptr, num_bytes,
6122 search_start);
6123 if (offset) {
6124 /* we found one, proceed */
6125 spin_unlock(&last_ptr->refill_lock);
6126 trace_btrfs_reserve_extent_cluster(root,
6127 block_group, search_start,
6128 num_bytes);
6129 goto checks;
6130 }
6131 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6132 && !failed_cluster_refill) {
6133 spin_unlock(&last_ptr->refill_lock);
6134
6135 failed_cluster_refill = true;
6136 wait_block_group_cache_progress(block_group,
6137 num_bytes + empty_cluster + empty_size);
6138 goto have_block_group;
6139 }
6140
6141 /*
6142 * at this point we either didn't find a cluster
6143 * or we weren't able to allocate a block from our
6144 * cluster. Free the cluster we've been trying
6145 * to use, and go to the next block group
6146 */
6147 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6148 spin_unlock(&last_ptr->refill_lock);
6149 goto loop;
6150 }
6151
6152 unclustered_alloc:
6153 spin_lock(&block_group->free_space_ctl->tree_lock);
6154 if (cached &&
6155 block_group->free_space_ctl->free_space <
6156 num_bytes + empty_cluster + empty_size) {
6157 spin_unlock(&block_group->free_space_ctl->tree_lock);
6158 goto loop;
6159 }
6160 spin_unlock(&block_group->free_space_ctl->tree_lock);
6161
6162 offset = btrfs_find_space_for_alloc(block_group, search_start,
6163 num_bytes, empty_size);
6164 /*
6165 * If we didn't find a chunk, and we haven't failed on this
6166 * block group before, and this block group is in the middle of
6167 * caching and we are ok with waiting, then go ahead and wait
6168 * for progress to be made, and set failed_alloc to true.
6169 *
6170 * If failed_alloc is true then we've already waited on this
6171 * block group once and should move on to the next block group.
6172 */
6173 if (!offset && !failed_alloc && !cached &&
6174 loop > LOOP_CACHING_NOWAIT) {
6175 wait_block_group_cache_progress(block_group,
6176 num_bytes + empty_size);
6177 failed_alloc = true;
6178 goto have_block_group;
6179 } else if (!offset) {
6180 if (!cached)
6181 have_caching_bg = true;
6182 goto loop;
6183 }
6184 checks:
6185 search_start = stripe_align(root, used_block_group,
6186 offset, num_bytes);
6187
6188 /* move on to the next group */
6189 if (search_start + num_bytes >
6190 used_block_group->key.objectid + used_block_group->key.offset) {
6191 btrfs_add_free_space(used_block_group, offset, num_bytes);
6192 goto loop;
6193 }
6194
6195 if (offset < search_start)
6196 btrfs_add_free_space(used_block_group, offset,
6197 search_start - offset);
6198 BUG_ON(offset > search_start);
6199
6200 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6201 alloc_type);
6202 if (ret == -EAGAIN) {
6203 btrfs_add_free_space(used_block_group, offset, num_bytes);
6204 goto loop;
6205 }
6206
6207 /* we are all good, lets return */
6208 ins->objectid = search_start;
6209 ins->offset = num_bytes;
6210
6211 trace_btrfs_reserve_extent(orig_root, block_group,
6212 search_start, num_bytes);
6213 if (used_block_group != block_group)
6214 btrfs_put_block_group(used_block_group);
6215 btrfs_put_block_group(block_group);
6216 break;
6217 loop:
6218 failed_cluster_refill = false;
6219 failed_alloc = false;
6220 BUG_ON(index != get_block_group_index(block_group));
6221 if (used_block_group != block_group)
6222 btrfs_put_block_group(used_block_group);
6223 btrfs_put_block_group(block_group);
6224 }
6225 up_read(&space_info->groups_sem);
6226
6227 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6228 goto search;
6229
6230 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6231 goto search;
6232
6233 /*
6234 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6235 * caching kthreads as we move along
6236 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6237 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6238 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6239 * again
6240 */
6241 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6242 index = 0;
6243 loop++;
6244 if (loop == LOOP_ALLOC_CHUNK) {
6245 ret = do_chunk_alloc(trans, root, data,
6246 CHUNK_ALLOC_FORCE);
6247 /*
6248 * Do not bail out on ENOSPC since we
6249 * can do more things.
6250 */
6251 if (ret < 0 && ret != -ENOSPC) {
6252 btrfs_abort_transaction(trans,
6253 root, ret);
6254 goto out;
6255 }
6256 }
6257
6258 if (loop == LOOP_NO_EMPTY_SIZE) {
6259 empty_size = 0;
6260 empty_cluster = 0;
6261 }
6262
6263 goto search;
6264 } else if (!ins->objectid) {
6265 ret = -ENOSPC;
6266 } else if (ins->objectid) {
6267 ret = 0;
6268 }
6269 out:
6270
6271 return ret;
6272 }
6273
6274 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6275 int dump_block_groups)
6276 {
6277 struct btrfs_block_group_cache *cache;
6278 int index = 0;
6279
6280 spin_lock(&info->lock);
6281 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6282 (unsigned long long)info->flags,
6283 (unsigned long long)(info->total_bytes - info->bytes_used -
6284 info->bytes_pinned - info->bytes_reserved -
6285 info->bytes_readonly),
6286 (info->full) ? "" : "not ");
6287 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6288 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6289 (unsigned long long)info->total_bytes,
6290 (unsigned long long)info->bytes_used,
6291 (unsigned long long)info->bytes_pinned,
6292 (unsigned long long)info->bytes_reserved,
6293 (unsigned long long)info->bytes_may_use,
6294 (unsigned long long)info->bytes_readonly);
6295 spin_unlock(&info->lock);
6296
6297 if (!dump_block_groups)
6298 return;
6299
6300 down_read(&info->groups_sem);
6301 again:
6302 list_for_each_entry(cache, &info->block_groups[index], list) {
6303 spin_lock(&cache->lock);
6304 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6305 (unsigned long long)cache->key.objectid,
6306 (unsigned long long)cache->key.offset,
6307 (unsigned long long)btrfs_block_group_used(&cache->item),
6308 (unsigned long long)cache->pinned,
6309 (unsigned long long)cache->reserved,
6310 cache->ro ? "[readonly]" : "");
6311 btrfs_dump_free_space(cache, bytes);
6312 spin_unlock(&cache->lock);
6313 }
6314 if (++index < BTRFS_NR_RAID_TYPES)
6315 goto again;
6316 up_read(&info->groups_sem);
6317 }
6318
6319 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6320 struct btrfs_root *root,
6321 u64 num_bytes, u64 min_alloc_size,
6322 u64 empty_size, u64 hint_byte,
6323 struct btrfs_key *ins, u64 data)
6324 {
6325 bool final_tried = false;
6326 int ret;
6327
6328 data = btrfs_get_alloc_profile(root, data);
6329 again:
6330 WARN_ON(num_bytes < root->sectorsize);
6331 ret = find_free_extent(trans, root, num_bytes, empty_size,
6332 hint_byte, ins, data);
6333
6334 if (ret == -ENOSPC) {
6335 if (!final_tried) {
6336 num_bytes = num_bytes >> 1;
6337 num_bytes = round_down(num_bytes, root->sectorsize);
6338 num_bytes = max(num_bytes, min_alloc_size);
6339 if (num_bytes == min_alloc_size)
6340 final_tried = true;
6341 goto again;
6342 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6343 struct btrfs_space_info *sinfo;
6344
6345 sinfo = __find_space_info(root->fs_info, data);
6346 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6347 (unsigned long long)data,
6348 (unsigned long long)num_bytes);
6349 if (sinfo)
6350 dump_space_info(sinfo, num_bytes, 1);
6351 }
6352 }
6353
6354 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6355
6356 return ret;
6357 }
6358
6359 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6360 u64 start, u64 len, int pin)
6361 {
6362 struct btrfs_block_group_cache *cache;
6363 int ret = 0;
6364
6365 cache = btrfs_lookup_block_group(root->fs_info, start);
6366 if (!cache) {
6367 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6368 (unsigned long long)start);
6369 return -ENOSPC;
6370 }
6371
6372 if (btrfs_test_opt(root, DISCARD))
6373 ret = btrfs_discard_extent(root, start, len, NULL);
6374
6375 if (pin)
6376 pin_down_extent(root, cache, start, len, 1);
6377 else {
6378 btrfs_add_free_space(cache, start, len);
6379 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6380 }
6381 btrfs_put_block_group(cache);
6382
6383 trace_btrfs_reserved_extent_free(root, start, len);
6384
6385 return ret;
6386 }
6387
6388 int btrfs_free_reserved_extent(struct btrfs_root *root,
6389 u64 start, u64 len)
6390 {
6391 return __btrfs_free_reserved_extent(root, start, len, 0);
6392 }
6393
6394 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6395 u64 start, u64 len)
6396 {
6397 return __btrfs_free_reserved_extent(root, start, len, 1);
6398 }
6399
6400 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6401 struct btrfs_root *root,
6402 u64 parent, u64 root_objectid,
6403 u64 flags, u64 owner, u64 offset,
6404 struct btrfs_key *ins, int ref_mod)
6405 {
6406 int ret;
6407 struct btrfs_fs_info *fs_info = root->fs_info;
6408 struct btrfs_extent_item *extent_item;
6409 struct btrfs_extent_inline_ref *iref;
6410 struct btrfs_path *path;
6411 struct extent_buffer *leaf;
6412 int type;
6413 u32 size;
6414
6415 if (parent > 0)
6416 type = BTRFS_SHARED_DATA_REF_KEY;
6417 else
6418 type = BTRFS_EXTENT_DATA_REF_KEY;
6419
6420 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6421
6422 path = btrfs_alloc_path();
6423 if (!path)
6424 return -ENOMEM;
6425
6426 path->leave_spinning = 1;
6427 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6428 ins, size);
6429 if (ret) {
6430 btrfs_free_path(path);
6431 return ret;
6432 }
6433
6434 leaf = path->nodes[0];
6435 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6436 struct btrfs_extent_item);
6437 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6438 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6439 btrfs_set_extent_flags(leaf, extent_item,
6440 flags | BTRFS_EXTENT_FLAG_DATA);
6441
6442 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6443 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6444 if (parent > 0) {
6445 struct btrfs_shared_data_ref *ref;
6446 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6447 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6448 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6449 } else {
6450 struct btrfs_extent_data_ref *ref;
6451 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6452 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6453 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6454 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6455 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6456 }
6457
6458 btrfs_mark_buffer_dirty(path->nodes[0]);
6459 btrfs_free_path(path);
6460
6461 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6462 if (ret) { /* -ENOENT, logic error */
6463 btrfs_err(fs_info, "update block group failed for %llu %llu",
6464 (unsigned long long)ins->objectid,
6465 (unsigned long long)ins->offset);
6466 BUG();
6467 }
6468 return ret;
6469 }
6470
6471 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6472 struct btrfs_root *root,
6473 u64 parent, u64 root_objectid,
6474 u64 flags, struct btrfs_disk_key *key,
6475 int level, struct btrfs_key *ins)
6476 {
6477 int ret;
6478 struct btrfs_fs_info *fs_info = root->fs_info;
6479 struct btrfs_extent_item *extent_item;
6480 struct btrfs_tree_block_info *block_info;
6481 struct btrfs_extent_inline_ref *iref;
6482 struct btrfs_path *path;
6483 struct extent_buffer *leaf;
6484 u32 size = sizeof(*extent_item) + sizeof(*iref);
6485 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6486 SKINNY_METADATA);
6487
6488 if (!skinny_metadata)
6489 size += sizeof(*block_info);
6490
6491 path = btrfs_alloc_path();
6492 if (!path)
6493 return -ENOMEM;
6494
6495 path->leave_spinning = 1;
6496 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6497 ins, size);
6498 if (ret) {
6499 btrfs_free_path(path);
6500 return ret;
6501 }
6502
6503 leaf = path->nodes[0];
6504 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6505 struct btrfs_extent_item);
6506 btrfs_set_extent_refs(leaf, extent_item, 1);
6507 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6508 btrfs_set_extent_flags(leaf, extent_item,
6509 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6510
6511 if (skinny_metadata) {
6512 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6513 } else {
6514 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6515 btrfs_set_tree_block_key(leaf, block_info, key);
6516 btrfs_set_tree_block_level(leaf, block_info, level);
6517 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6518 }
6519
6520 if (parent > 0) {
6521 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6522 btrfs_set_extent_inline_ref_type(leaf, iref,
6523 BTRFS_SHARED_BLOCK_REF_KEY);
6524 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6525 } else {
6526 btrfs_set_extent_inline_ref_type(leaf, iref,
6527 BTRFS_TREE_BLOCK_REF_KEY);
6528 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6529 }
6530
6531 btrfs_mark_buffer_dirty(leaf);
6532 btrfs_free_path(path);
6533
6534 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6535 if (ret) { /* -ENOENT, logic error */
6536 btrfs_err(fs_info, "update block group failed for %llu %llu",
6537 (unsigned long long)ins->objectid,
6538 (unsigned long long)ins->offset);
6539 BUG();
6540 }
6541 return ret;
6542 }
6543
6544 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6545 struct btrfs_root *root,
6546 u64 root_objectid, u64 owner,
6547 u64 offset, struct btrfs_key *ins)
6548 {
6549 int ret;
6550
6551 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6552
6553 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6554 ins->offset, 0,
6555 root_objectid, owner, offset,
6556 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6557 return ret;
6558 }
6559
6560 /*
6561 * this is used by the tree logging recovery code. It records that
6562 * an extent has been allocated and makes sure to clear the free
6563 * space cache bits as well
6564 */
6565 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6566 struct btrfs_root *root,
6567 u64 root_objectid, u64 owner, u64 offset,
6568 struct btrfs_key *ins)
6569 {
6570 int ret;
6571 struct btrfs_block_group_cache *block_group;
6572 struct btrfs_caching_control *caching_ctl;
6573 u64 start = ins->objectid;
6574 u64 num_bytes = ins->offset;
6575
6576 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6577 cache_block_group(block_group, 0);
6578 caching_ctl = get_caching_control(block_group);
6579
6580 if (!caching_ctl) {
6581 BUG_ON(!block_group_cache_done(block_group));
6582 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6583 BUG_ON(ret); /* -ENOMEM */
6584 } else {
6585 mutex_lock(&caching_ctl->mutex);
6586
6587 if (start >= caching_ctl->progress) {
6588 ret = add_excluded_extent(root, start, num_bytes);
6589 BUG_ON(ret); /* -ENOMEM */
6590 } else if (start + num_bytes <= caching_ctl->progress) {
6591 ret = btrfs_remove_free_space(block_group,
6592 start, num_bytes);
6593 BUG_ON(ret); /* -ENOMEM */
6594 } else {
6595 num_bytes = caching_ctl->progress - start;
6596 ret = btrfs_remove_free_space(block_group,
6597 start, num_bytes);
6598 BUG_ON(ret); /* -ENOMEM */
6599
6600 start = caching_ctl->progress;
6601 num_bytes = ins->objectid + ins->offset -
6602 caching_ctl->progress;
6603 ret = add_excluded_extent(root, start, num_bytes);
6604 BUG_ON(ret); /* -ENOMEM */
6605 }
6606
6607 mutex_unlock(&caching_ctl->mutex);
6608 put_caching_control(caching_ctl);
6609 }
6610
6611 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6612 RESERVE_ALLOC_NO_ACCOUNT);
6613 BUG_ON(ret); /* logic error */
6614 btrfs_put_block_group(block_group);
6615 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6616 0, owner, offset, ins, 1);
6617 return ret;
6618 }
6619
6620 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6621 struct btrfs_root *root,
6622 u64 bytenr, u32 blocksize,
6623 int level)
6624 {
6625 struct extent_buffer *buf;
6626
6627 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6628 if (!buf)
6629 return ERR_PTR(-ENOMEM);
6630 btrfs_set_header_generation(buf, trans->transid);
6631 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6632 btrfs_tree_lock(buf);
6633 clean_tree_block(trans, root, buf);
6634 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6635
6636 btrfs_set_lock_blocking(buf);
6637 btrfs_set_buffer_uptodate(buf);
6638
6639 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6640 /*
6641 * we allow two log transactions at a time, use different
6642 * EXENT bit to differentiate dirty pages.
6643 */
6644 if (root->log_transid % 2 == 0)
6645 set_extent_dirty(&root->dirty_log_pages, buf->start,
6646 buf->start + buf->len - 1, GFP_NOFS);
6647 else
6648 set_extent_new(&root->dirty_log_pages, buf->start,
6649 buf->start + buf->len - 1, GFP_NOFS);
6650 } else {
6651 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6652 buf->start + buf->len - 1, GFP_NOFS);
6653 }
6654 trans->blocks_used++;
6655 /* this returns a buffer locked for blocking */
6656 return buf;
6657 }
6658
6659 static struct btrfs_block_rsv *
6660 use_block_rsv(struct btrfs_trans_handle *trans,
6661 struct btrfs_root *root, u32 blocksize)
6662 {
6663 struct btrfs_block_rsv *block_rsv;
6664 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6665 int ret;
6666
6667 block_rsv = get_block_rsv(trans, root);
6668
6669 if (block_rsv->size == 0) {
6670 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6671 BTRFS_RESERVE_NO_FLUSH);
6672 /*
6673 * If we couldn't reserve metadata bytes try and use some from
6674 * the global reserve.
6675 */
6676 if (ret && block_rsv != global_rsv) {
6677 ret = block_rsv_use_bytes(global_rsv, blocksize);
6678 if (!ret)
6679 return global_rsv;
6680 return ERR_PTR(ret);
6681 } else if (ret) {
6682 return ERR_PTR(ret);
6683 }
6684 return block_rsv;
6685 }
6686
6687 ret = block_rsv_use_bytes(block_rsv, blocksize);
6688 if (!ret)
6689 return block_rsv;
6690 if (ret && !block_rsv->failfast) {
6691 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6692 static DEFINE_RATELIMIT_STATE(_rs,
6693 DEFAULT_RATELIMIT_INTERVAL * 10,
6694 /*DEFAULT_RATELIMIT_BURST*/ 1);
6695 if (__ratelimit(&_rs))
6696 WARN(1, KERN_DEBUG
6697 "btrfs: block rsv returned %d\n", ret);
6698 }
6699 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6700 BTRFS_RESERVE_NO_FLUSH);
6701 if (!ret) {
6702 return block_rsv;
6703 } else if (ret && block_rsv != global_rsv) {
6704 ret = block_rsv_use_bytes(global_rsv, blocksize);
6705 if (!ret)
6706 return global_rsv;
6707 }
6708 }
6709
6710 return ERR_PTR(-ENOSPC);
6711 }
6712
6713 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6714 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6715 {
6716 block_rsv_add_bytes(block_rsv, blocksize, 0);
6717 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6718 }
6719
6720 /*
6721 * finds a free extent and does all the dirty work required for allocation
6722 * returns the key for the extent through ins, and a tree buffer for
6723 * the first block of the extent through buf.
6724 *
6725 * returns the tree buffer or NULL.
6726 */
6727 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6728 struct btrfs_root *root, u32 blocksize,
6729 u64 parent, u64 root_objectid,
6730 struct btrfs_disk_key *key, int level,
6731 u64 hint, u64 empty_size)
6732 {
6733 struct btrfs_key ins;
6734 struct btrfs_block_rsv *block_rsv;
6735 struct extent_buffer *buf;
6736 u64 flags = 0;
6737 int ret;
6738 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6739 SKINNY_METADATA);
6740
6741 block_rsv = use_block_rsv(trans, root, blocksize);
6742 if (IS_ERR(block_rsv))
6743 return ERR_CAST(block_rsv);
6744
6745 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6746 empty_size, hint, &ins, 0);
6747 if (ret) {
6748 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6749 return ERR_PTR(ret);
6750 }
6751
6752 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6753 blocksize, level);
6754 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6755
6756 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6757 if (parent == 0)
6758 parent = ins.objectid;
6759 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6760 } else
6761 BUG_ON(parent > 0);
6762
6763 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6764 struct btrfs_delayed_extent_op *extent_op;
6765 extent_op = btrfs_alloc_delayed_extent_op();
6766 BUG_ON(!extent_op); /* -ENOMEM */
6767 if (key)
6768 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6769 else
6770 memset(&extent_op->key, 0, sizeof(extent_op->key));
6771 extent_op->flags_to_set = flags;
6772 if (skinny_metadata)
6773 extent_op->update_key = 0;
6774 else
6775 extent_op->update_key = 1;
6776 extent_op->update_flags = 1;
6777 extent_op->is_data = 0;
6778
6779 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6780 ins.objectid,
6781 ins.offset, parent, root_objectid,
6782 level, BTRFS_ADD_DELAYED_EXTENT,
6783 extent_op, 0);
6784 BUG_ON(ret); /* -ENOMEM */
6785 }
6786 return buf;
6787 }
6788
6789 struct walk_control {
6790 u64 refs[BTRFS_MAX_LEVEL];
6791 u64 flags[BTRFS_MAX_LEVEL];
6792 struct btrfs_key update_progress;
6793 int stage;
6794 int level;
6795 int shared_level;
6796 int update_ref;
6797 int keep_locks;
6798 int reada_slot;
6799 int reada_count;
6800 int for_reloc;
6801 };
6802
6803 #define DROP_REFERENCE 1
6804 #define UPDATE_BACKREF 2
6805
6806 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6807 struct btrfs_root *root,
6808 struct walk_control *wc,
6809 struct btrfs_path *path)
6810 {
6811 u64 bytenr;
6812 u64 generation;
6813 u64 refs;
6814 u64 flags;
6815 u32 nritems;
6816 u32 blocksize;
6817 struct btrfs_key key;
6818 struct extent_buffer *eb;
6819 int ret;
6820 int slot;
6821 int nread = 0;
6822
6823 if (path->slots[wc->level] < wc->reada_slot) {
6824 wc->reada_count = wc->reada_count * 2 / 3;
6825 wc->reada_count = max(wc->reada_count, 2);
6826 } else {
6827 wc->reada_count = wc->reada_count * 3 / 2;
6828 wc->reada_count = min_t(int, wc->reada_count,
6829 BTRFS_NODEPTRS_PER_BLOCK(root));
6830 }
6831
6832 eb = path->nodes[wc->level];
6833 nritems = btrfs_header_nritems(eb);
6834 blocksize = btrfs_level_size(root, wc->level - 1);
6835
6836 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6837 if (nread >= wc->reada_count)
6838 break;
6839
6840 cond_resched();
6841 bytenr = btrfs_node_blockptr(eb, slot);
6842 generation = btrfs_node_ptr_generation(eb, slot);
6843
6844 if (slot == path->slots[wc->level])
6845 goto reada;
6846
6847 if (wc->stage == UPDATE_BACKREF &&
6848 generation <= root->root_key.offset)
6849 continue;
6850
6851 /* We don't lock the tree block, it's OK to be racy here */
6852 ret = btrfs_lookup_extent_info(trans, root, bytenr,
6853 wc->level - 1, 1, &refs,
6854 &flags);
6855 /* We don't care about errors in readahead. */
6856 if (ret < 0)
6857 continue;
6858 BUG_ON(refs == 0);
6859
6860 if (wc->stage == DROP_REFERENCE) {
6861 if (refs == 1)
6862 goto reada;
6863
6864 if (wc->level == 1 &&
6865 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6866 continue;
6867 if (!wc->update_ref ||
6868 generation <= root->root_key.offset)
6869 continue;
6870 btrfs_node_key_to_cpu(eb, &key, slot);
6871 ret = btrfs_comp_cpu_keys(&key,
6872 &wc->update_progress);
6873 if (ret < 0)
6874 continue;
6875 } else {
6876 if (wc->level == 1 &&
6877 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6878 continue;
6879 }
6880 reada:
6881 ret = readahead_tree_block(root, bytenr, blocksize,
6882 generation);
6883 if (ret)
6884 break;
6885 nread++;
6886 }
6887 wc->reada_slot = slot;
6888 }
6889
6890 /*
6891 * helper to process tree block while walking down the tree.
6892 *
6893 * when wc->stage == UPDATE_BACKREF, this function updates
6894 * back refs for pointers in the block.
6895 *
6896 * NOTE: return value 1 means we should stop walking down.
6897 */
6898 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6899 struct btrfs_root *root,
6900 struct btrfs_path *path,
6901 struct walk_control *wc, int lookup_info)
6902 {
6903 int level = wc->level;
6904 struct extent_buffer *eb = path->nodes[level];
6905 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6906 int ret;
6907
6908 if (wc->stage == UPDATE_BACKREF &&
6909 btrfs_header_owner(eb) != root->root_key.objectid)
6910 return 1;
6911
6912 /*
6913 * when reference count of tree block is 1, it won't increase
6914 * again. once full backref flag is set, we never clear it.
6915 */
6916 if (lookup_info &&
6917 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6918 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6919 BUG_ON(!path->locks[level]);
6920 ret = btrfs_lookup_extent_info(trans, root,
6921 eb->start, level, 1,
6922 &wc->refs[level],
6923 &wc->flags[level]);
6924 BUG_ON(ret == -ENOMEM);
6925 if (ret)
6926 return ret;
6927 BUG_ON(wc->refs[level] == 0);
6928 }
6929
6930 if (wc->stage == DROP_REFERENCE) {
6931 if (wc->refs[level] > 1)
6932 return 1;
6933
6934 if (path->locks[level] && !wc->keep_locks) {
6935 btrfs_tree_unlock_rw(eb, path->locks[level]);
6936 path->locks[level] = 0;
6937 }
6938 return 0;
6939 }
6940
6941 /* wc->stage == UPDATE_BACKREF */
6942 if (!(wc->flags[level] & flag)) {
6943 BUG_ON(!path->locks[level]);
6944 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6945 BUG_ON(ret); /* -ENOMEM */
6946 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6947 BUG_ON(ret); /* -ENOMEM */
6948 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6949 eb->len, flag, 0);
6950 BUG_ON(ret); /* -ENOMEM */
6951 wc->flags[level] |= flag;
6952 }
6953
6954 /*
6955 * the block is shared by multiple trees, so it's not good to
6956 * keep the tree lock
6957 */
6958 if (path->locks[level] && level > 0) {
6959 btrfs_tree_unlock_rw(eb, path->locks[level]);
6960 path->locks[level] = 0;
6961 }
6962 return 0;
6963 }
6964
6965 /*
6966 * helper to process tree block pointer.
6967 *
6968 * when wc->stage == DROP_REFERENCE, this function checks
6969 * reference count of the block pointed to. if the block
6970 * is shared and we need update back refs for the subtree
6971 * rooted at the block, this function changes wc->stage to
6972 * UPDATE_BACKREF. if the block is shared and there is no
6973 * need to update back, this function drops the reference
6974 * to the block.
6975 *
6976 * NOTE: return value 1 means we should stop walking down.
6977 */
6978 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6979 struct btrfs_root *root,
6980 struct btrfs_path *path,
6981 struct walk_control *wc, int *lookup_info)
6982 {
6983 u64 bytenr;
6984 u64 generation;
6985 u64 parent;
6986 u32 blocksize;
6987 struct btrfs_key key;
6988 struct extent_buffer *next;
6989 int level = wc->level;
6990 int reada = 0;
6991 int ret = 0;
6992
6993 generation = btrfs_node_ptr_generation(path->nodes[level],
6994 path->slots[level]);
6995 /*
6996 * if the lower level block was created before the snapshot
6997 * was created, we know there is no need to update back refs
6998 * for the subtree
6999 */
7000 if (wc->stage == UPDATE_BACKREF &&
7001 generation <= root->root_key.offset) {
7002 *lookup_info = 1;
7003 return 1;
7004 }
7005
7006 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7007 blocksize = btrfs_level_size(root, level - 1);
7008
7009 next = btrfs_find_tree_block(root, bytenr, blocksize);
7010 if (!next) {
7011 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7012 if (!next)
7013 return -ENOMEM;
7014 reada = 1;
7015 }
7016 btrfs_tree_lock(next);
7017 btrfs_set_lock_blocking(next);
7018
7019 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7020 &wc->refs[level - 1],
7021 &wc->flags[level - 1]);
7022 if (ret < 0) {
7023 btrfs_tree_unlock(next);
7024 return ret;
7025 }
7026
7027 if (unlikely(wc->refs[level - 1] == 0)) {
7028 btrfs_err(root->fs_info, "Missing references.");
7029 BUG();
7030 }
7031 *lookup_info = 0;
7032
7033 if (wc->stage == DROP_REFERENCE) {
7034 if (wc->refs[level - 1] > 1) {
7035 if (level == 1 &&
7036 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7037 goto skip;
7038
7039 if (!wc->update_ref ||
7040 generation <= root->root_key.offset)
7041 goto skip;
7042
7043 btrfs_node_key_to_cpu(path->nodes[level], &key,
7044 path->slots[level]);
7045 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7046 if (ret < 0)
7047 goto skip;
7048
7049 wc->stage = UPDATE_BACKREF;
7050 wc->shared_level = level - 1;
7051 }
7052 } else {
7053 if (level == 1 &&
7054 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7055 goto skip;
7056 }
7057
7058 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7059 btrfs_tree_unlock(next);
7060 free_extent_buffer(next);
7061 next = NULL;
7062 *lookup_info = 1;
7063 }
7064
7065 if (!next) {
7066 if (reada && level == 1)
7067 reada_walk_down(trans, root, wc, path);
7068 next = read_tree_block(root, bytenr, blocksize, generation);
7069 if (!next)
7070 return -EIO;
7071 btrfs_tree_lock(next);
7072 btrfs_set_lock_blocking(next);
7073 }
7074
7075 level--;
7076 BUG_ON(level != btrfs_header_level(next));
7077 path->nodes[level] = next;
7078 path->slots[level] = 0;
7079 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7080 wc->level = level;
7081 if (wc->level == 1)
7082 wc->reada_slot = 0;
7083 return 0;
7084 skip:
7085 wc->refs[level - 1] = 0;
7086 wc->flags[level - 1] = 0;
7087 if (wc->stage == DROP_REFERENCE) {
7088 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7089 parent = path->nodes[level]->start;
7090 } else {
7091 BUG_ON(root->root_key.objectid !=
7092 btrfs_header_owner(path->nodes[level]));
7093 parent = 0;
7094 }
7095
7096 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7097 root->root_key.objectid, level - 1, 0, 0);
7098 BUG_ON(ret); /* -ENOMEM */
7099 }
7100 btrfs_tree_unlock(next);
7101 free_extent_buffer(next);
7102 *lookup_info = 1;
7103 return 1;
7104 }
7105
7106 /*
7107 * helper to process tree block while walking up the tree.
7108 *
7109 * when wc->stage == DROP_REFERENCE, this function drops
7110 * reference count on the block.
7111 *
7112 * when wc->stage == UPDATE_BACKREF, this function changes
7113 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7114 * to UPDATE_BACKREF previously while processing the block.
7115 *
7116 * NOTE: return value 1 means we should stop walking up.
7117 */
7118 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7119 struct btrfs_root *root,
7120 struct btrfs_path *path,
7121 struct walk_control *wc)
7122 {
7123 int ret;
7124 int level = wc->level;
7125 struct extent_buffer *eb = path->nodes[level];
7126 u64 parent = 0;
7127
7128 if (wc->stage == UPDATE_BACKREF) {
7129 BUG_ON(wc->shared_level < level);
7130 if (level < wc->shared_level)
7131 goto out;
7132
7133 ret = find_next_key(path, level + 1, &wc->update_progress);
7134 if (ret > 0)
7135 wc->update_ref = 0;
7136
7137 wc->stage = DROP_REFERENCE;
7138 wc->shared_level = -1;
7139 path->slots[level] = 0;
7140
7141 /*
7142 * check reference count again if the block isn't locked.
7143 * we should start walking down the tree again if reference
7144 * count is one.
7145 */
7146 if (!path->locks[level]) {
7147 BUG_ON(level == 0);
7148 btrfs_tree_lock(eb);
7149 btrfs_set_lock_blocking(eb);
7150 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7151
7152 ret = btrfs_lookup_extent_info(trans, root,
7153 eb->start, level, 1,
7154 &wc->refs[level],
7155 &wc->flags[level]);
7156 if (ret < 0) {
7157 btrfs_tree_unlock_rw(eb, path->locks[level]);
7158 path->locks[level] = 0;
7159 return ret;
7160 }
7161 BUG_ON(wc->refs[level] == 0);
7162 if (wc->refs[level] == 1) {
7163 btrfs_tree_unlock_rw(eb, path->locks[level]);
7164 path->locks[level] = 0;
7165 return 1;
7166 }
7167 }
7168 }
7169
7170 /* wc->stage == DROP_REFERENCE */
7171 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7172
7173 if (wc->refs[level] == 1) {
7174 if (level == 0) {
7175 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7176 ret = btrfs_dec_ref(trans, root, eb, 1,
7177 wc->for_reloc);
7178 else
7179 ret = btrfs_dec_ref(trans, root, eb, 0,
7180 wc->for_reloc);
7181 BUG_ON(ret); /* -ENOMEM */
7182 }
7183 /* make block locked assertion in clean_tree_block happy */
7184 if (!path->locks[level] &&
7185 btrfs_header_generation(eb) == trans->transid) {
7186 btrfs_tree_lock(eb);
7187 btrfs_set_lock_blocking(eb);
7188 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7189 }
7190 clean_tree_block(trans, root, eb);
7191 }
7192
7193 if (eb == root->node) {
7194 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7195 parent = eb->start;
7196 else
7197 BUG_ON(root->root_key.objectid !=
7198 btrfs_header_owner(eb));
7199 } else {
7200 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7201 parent = path->nodes[level + 1]->start;
7202 else
7203 BUG_ON(root->root_key.objectid !=
7204 btrfs_header_owner(path->nodes[level + 1]));
7205 }
7206
7207 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7208 out:
7209 wc->refs[level] = 0;
7210 wc->flags[level] = 0;
7211 return 0;
7212 }
7213
7214 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7215 struct btrfs_root *root,
7216 struct btrfs_path *path,
7217 struct walk_control *wc)
7218 {
7219 int level = wc->level;
7220 int lookup_info = 1;
7221 int ret;
7222
7223 while (level >= 0) {
7224 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7225 if (ret > 0)
7226 break;
7227
7228 if (level == 0)
7229 break;
7230
7231 if (path->slots[level] >=
7232 btrfs_header_nritems(path->nodes[level]))
7233 break;
7234
7235 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7236 if (ret > 0) {
7237 path->slots[level]++;
7238 continue;
7239 } else if (ret < 0)
7240 return ret;
7241 level = wc->level;
7242 }
7243 return 0;
7244 }
7245
7246 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7247 struct btrfs_root *root,
7248 struct btrfs_path *path,
7249 struct walk_control *wc, int max_level)
7250 {
7251 int level = wc->level;
7252 int ret;
7253
7254 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7255 while (level < max_level && path->nodes[level]) {
7256 wc->level = level;
7257 if (path->slots[level] + 1 <
7258 btrfs_header_nritems(path->nodes[level])) {
7259 path->slots[level]++;
7260 return 0;
7261 } else {
7262 ret = walk_up_proc(trans, root, path, wc);
7263 if (ret > 0)
7264 return 0;
7265
7266 if (path->locks[level]) {
7267 btrfs_tree_unlock_rw(path->nodes[level],
7268 path->locks[level]);
7269 path->locks[level] = 0;
7270 }
7271 free_extent_buffer(path->nodes[level]);
7272 path->nodes[level] = NULL;
7273 level++;
7274 }
7275 }
7276 return 1;
7277 }
7278
7279 /*
7280 * drop a subvolume tree.
7281 *
7282 * this function traverses the tree freeing any blocks that only
7283 * referenced by the tree.
7284 *
7285 * when a shared tree block is found. this function decreases its
7286 * reference count by one. if update_ref is true, this function
7287 * also make sure backrefs for the shared block and all lower level
7288 * blocks are properly updated.
7289 *
7290 * If called with for_reloc == 0, may exit early with -EAGAIN
7291 */
7292 int btrfs_drop_snapshot(struct btrfs_root *root,
7293 struct btrfs_block_rsv *block_rsv, int update_ref,
7294 int for_reloc)
7295 {
7296 struct btrfs_path *path;
7297 struct btrfs_trans_handle *trans;
7298 struct btrfs_root *tree_root = root->fs_info->tree_root;
7299 struct btrfs_root_item *root_item = &root->root_item;
7300 struct walk_control *wc;
7301 struct btrfs_key key;
7302 int err = 0;
7303 int ret;
7304 int level;
7305
7306 path = btrfs_alloc_path();
7307 if (!path) {
7308 err = -ENOMEM;
7309 goto out;
7310 }
7311
7312 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7313 if (!wc) {
7314 btrfs_free_path(path);
7315 err = -ENOMEM;
7316 goto out;
7317 }
7318
7319 trans = btrfs_start_transaction(tree_root, 0);
7320 if (IS_ERR(trans)) {
7321 err = PTR_ERR(trans);
7322 goto out_free;
7323 }
7324
7325 if (block_rsv)
7326 trans->block_rsv = block_rsv;
7327
7328 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7329 level = btrfs_header_level(root->node);
7330 path->nodes[level] = btrfs_lock_root_node(root);
7331 btrfs_set_lock_blocking(path->nodes[level]);
7332 path->slots[level] = 0;
7333 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7334 memset(&wc->update_progress, 0,
7335 sizeof(wc->update_progress));
7336 } else {
7337 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7338 memcpy(&wc->update_progress, &key,
7339 sizeof(wc->update_progress));
7340
7341 level = root_item->drop_level;
7342 BUG_ON(level == 0);
7343 path->lowest_level = level;
7344 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7345 path->lowest_level = 0;
7346 if (ret < 0) {
7347 err = ret;
7348 goto out_end_trans;
7349 }
7350 WARN_ON(ret > 0);
7351
7352 /*
7353 * unlock our path, this is safe because only this
7354 * function is allowed to delete this snapshot
7355 */
7356 btrfs_unlock_up_safe(path, 0);
7357
7358 level = btrfs_header_level(root->node);
7359 while (1) {
7360 btrfs_tree_lock(path->nodes[level]);
7361 btrfs_set_lock_blocking(path->nodes[level]);
7362
7363 ret = btrfs_lookup_extent_info(trans, root,
7364 path->nodes[level]->start,
7365 level, 1, &wc->refs[level],
7366 &wc->flags[level]);
7367 if (ret < 0) {
7368 err = ret;
7369 goto out_end_trans;
7370 }
7371 BUG_ON(wc->refs[level] == 0);
7372
7373 if (level == root_item->drop_level)
7374 break;
7375
7376 btrfs_tree_unlock(path->nodes[level]);
7377 WARN_ON(wc->refs[level] != 1);
7378 level--;
7379 }
7380 }
7381
7382 wc->level = level;
7383 wc->shared_level = -1;
7384 wc->stage = DROP_REFERENCE;
7385 wc->update_ref = update_ref;
7386 wc->keep_locks = 0;
7387 wc->for_reloc = for_reloc;
7388 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7389
7390 while (1) {
7391 if (!for_reloc && btrfs_fs_closing(root->fs_info)) {
7392 pr_debug("btrfs: drop snapshot early exit\n");
7393 err = -EAGAIN;
7394 goto out_end_trans;
7395 }
7396
7397 ret = walk_down_tree(trans, root, path, wc);
7398 if (ret < 0) {
7399 err = ret;
7400 break;
7401 }
7402
7403 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7404 if (ret < 0) {
7405 err = ret;
7406 break;
7407 }
7408
7409 if (ret > 0) {
7410 BUG_ON(wc->stage != DROP_REFERENCE);
7411 break;
7412 }
7413
7414 if (wc->stage == DROP_REFERENCE) {
7415 level = wc->level;
7416 btrfs_node_key(path->nodes[level],
7417 &root_item->drop_progress,
7418 path->slots[level]);
7419 root_item->drop_level = level;
7420 }
7421
7422 BUG_ON(wc->level == 0);
7423 if (btrfs_should_end_transaction(trans, tree_root)) {
7424 ret = btrfs_update_root(trans, tree_root,
7425 &root->root_key,
7426 root_item);
7427 if (ret) {
7428 btrfs_abort_transaction(trans, tree_root, ret);
7429 err = ret;
7430 goto out_end_trans;
7431 }
7432
7433 btrfs_end_transaction_throttle(trans, tree_root);
7434 trans = btrfs_start_transaction(tree_root, 0);
7435 if (IS_ERR(trans)) {
7436 err = PTR_ERR(trans);
7437 goto out_free;
7438 }
7439 if (block_rsv)
7440 trans->block_rsv = block_rsv;
7441 }
7442 }
7443 btrfs_release_path(path);
7444 if (err)
7445 goto out_end_trans;
7446
7447 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7448 if (ret) {
7449 btrfs_abort_transaction(trans, tree_root, ret);
7450 goto out_end_trans;
7451 }
7452
7453 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7454 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7455 NULL, NULL);
7456 if (ret < 0) {
7457 btrfs_abort_transaction(trans, tree_root, ret);
7458 err = ret;
7459 goto out_end_trans;
7460 } else if (ret > 0) {
7461 /* if we fail to delete the orphan item this time
7462 * around, it'll get picked up the next time.
7463 *
7464 * The most common failure here is just -ENOENT.
7465 */
7466 btrfs_del_orphan_item(trans, tree_root,
7467 root->root_key.objectid);
7468 }
7469 }
7470
7471 if (root->in_radix) {
7472 btrfs_free_fs_root(tree_root->fs_info, root);
7473 } else {
7474 free_extent_buffer(root->node);
7475 free_extent_buffer(root->commit_root);
7476 kfree(root);
7477 }
7478 out_end_trans:
7479 btrfs_end_transaction_throttle(trans, tree_root);
7480 out_free:
7481 kfree(wc);
7482 btrfs_free_path(path);
7483 out:
7484 if (err)
7485 btrfs_std_error(root->fs_info, err);
7486 return err;
7487 }
7488
7489 /*
7490 * drop subtree rooted at tree block 'node'.
7491 *
7492 * NOTE: this function will unlock and release tree block 'node'
7493 * only used by relocation code
7494 */
7495 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7496 struct btrfs_root *root,
7497 struct extent_buffer *node,
7498 struct extent_buffer *parent)
7499 {
7500 struct btrfs_path *path;
7501 struct walk_control *wc;
7502 int level;
7503 int parent_level;
7504 int ret = 0;
7505 int wret;
7506
7507 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7508
7509 path = btrfs_alloc_path();
7510 if (!path)
7511 return -ENOMEM;
7512
7513 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7514 if (!wc) {
7515 btrfs_free_path(path);
7516 return -ENOMEM;
7517 }
7518
7519 btrfs_assert_tree_locked(parent);
7520 parent_level = btrfs_header_level(parent);
7521 extent_buffer_get(parent);
7522 path->nodes[parent_level] = parent;
7523 path->slots[parent_level] = btrfs_header_nritems(parent);
7524
7525 btrfs_assert_tree_locked(node);
7526 level = btrfs_header_level(node);
7527 path->nodes[level] = node;
7528 path->slots[level] = 0;
7529 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7530
7531 wc->refs[parent_level] = 1;
7532 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7533 wc->level = level;
7534 wc->shared_level = -1;
7535 wc->stage = DROP_REFERENCE;
7536 wc->update_ref = 0;
7537 wc->keep_locks = 1;
7538 wc->for_reloc = 1;
7539 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7540
7541 while (1) {
7542 wret = walk_down_tree(trans, root, path, wc);
7543 if (wret < 0) {
7544 ret = wret;
7545 break;
7546 }
7547
7548 wret = walk_up_tree(trans, root, path, wc, parent_level);
7549 if (wret < 0)
7550 ret = wret;
7551 if (wret != 0)
7552 break;
7553 }
7554
7555 kfree(wc);
7556 btrfs_free_path(path);
7557 return ret;
7558 }
7559
7560 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7561 {
7562 u64 num_devices;
7563 u64 stripped;
7564
7565 /*
7566 * if restripe for this chunk_type is on pick target profile and
7567 * return, otherwise do the usual balance
7568 */
7569 stripped = get_restripe_target(root->fs_info, flags);
7570 if (stripped)
7571 return extended_to_chunk(stripped);
7572
7573 /*
7574 * we add in the count of missing devices because we want
7575 * to make sure that any RAID levels on a degraded FS
7576 * continue to be honored.
7577 */
7578 num_devices = root->fs_info->fs_devices->rw_devices +
7579 root->fs_info->fs_devices->missing_devices;
7580
7581 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7582 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7583 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7584
7585 if (num_devices == 1) {
7586 stripped |= BTRFS_BLOCK_GROUP_DUP;
7587 stripped = flags & ~stripped;
7588
7589 /* turn raid0 into single device chunks */
7590 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7591 return stripped;
7592
7593 /* turn mirroring into duplication */
7594 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7595 BTRFS_BLOCK_GROUP_RAID10))
7596 return stripped | BTRFS_BLOCK_GROUP_DUP;
7597 } else {
7598 /* they already had raid on here, just return */
7599 if (flags & stripped)
7600 return flags;
7601
7602 stripped |= BTRFS_BLOCK_GROUP_DUP;
7603 stripped = flags & ~stripped;
7604
7605 /* switch duplicated blocks with raid1 */
7606 if (flags & BTRFS_BLOCK_GROUP_DUP)
7607 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7608
7609 /* this is drive concat, leave it alone */
7610 }
7611
7612 return flags;
7613 }
7614
7615 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7616 {
7617 struct btrfs_space_info *sinfo = cache->space_info;
7618 u64 num_bytes;
7619 u64 min_allocable_bytes;
7620 int ret = -ENOSPC;
7621
7622
7623 /*
7624 * We need some metadata space and system metadata space for
7625 * allocating chunks in some corner cases until we force to set
7626 * it to be readonly.
7627 */
7628 if ((sinfo->flags &
7629 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7630 !force)
7631 min_allocable_bytes = 1 * 1024 * 1024;
7632 else
7633 min_allocable_bytes = 0;
7634
7635 spin_lock(&sinfo->lock);
7636 spin_lock(&cache->lock);
7637
7638 if (cache->ro) {
7639 ret = 0;
7640 goto out;
7641 }
7642
7643 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7644 cache->bytes_super - btrfs_block_group_used(&cache->item);
7645
7646 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7647 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7648 min_allocable_bytes <= sinfo->total_bytes) {
7649 sinfo->bytes_readonly += num_bytes;
7650 cache->ro = 1;
7651 ret = 0;
7652 }
7653 out:
7654 spin_unlock(&cache->lock);
7655 spin_unlock(&sinfo->lock);
7656 return ret;
7657 }
7658
7659 int btrfs_set_block_group_ro(struct btrfs_root *root,
7660 struct btrfs_block_group_cache *cache)
7661
7662 {
7663 struct btrfs_trans_handle *trans;
7664 u64 alloc_flags;
7665 int ret;
7666
7667 BUG_ON(cache->ro);
7668
7669 trans = btrfs_join_transaction(root);
7670 if (IS_ERR(trans))
7671 return PTR_ERR(trans);
7672
7673 alloc_flags = update_block_group_flags(root, cache->flags);
7674 if (alloc_flags != cache->flags) {
7675 ret = do_chunk_alloc(trans, root, alloc_flags,
7676 CHUNK_ALLOC_FORCE);
7677 if (ret < 0)
7678 goto out;
7679 }
7680
7681 ret = set_block_group_ro(cache, 0);
7682 if (!ret)
7683 goto out;
7684 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7685 ret = do_chunk_alloc(trans, root, alloc_flags,
7686 CHUNK_ALLOC_FORCE);
7687 if (ret < 0)
7688 goto out;
7689 ret = set_block_group_ro(cache, 0);
7690 out:
7691 btrfs_end_transaction(trans, root);
7692 return ret;
7693 }
7694
7695 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7696 struct btrfs_root *root, u64 type)
7697 {
7698 u64 alloc_flags = get_alloc_profile(root, type);
7699 return do_chunk_alloc(trans, root, alloc_flags,
7700 CHUNK_ALLOC_FORCE);
7701 }
7702
7703 /*
7704 * helper to account the unused space of all the readonly block group in the
7705 * list. takes mirrors into account.
7706 */
7707 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7708 {
7709 struct btrfs_block_group_cache *block_group;
7710 u64 free_bytes = 0;
7711 int factor;
7712
7713 list_for_each_entry(block_group, groups_list, list) {
7714 spin_lock(&block_group->lock);
7715
7716 if (!block_group->ro) {
7717 spin_unlock(&block_group->lock);
7718 continue;
7719 }
7720
7721 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7722 BTRFS_BLOCK_GROUP_RAID10 |
7723 BTRFS_BLOCK_GROUP_DUP))
7724 factor = 2;
7725 else
7726 factor = 1;
7727
7728 free_bytes += (block_group->key.offset -
7729 btrfs_block_group_used(&block_group->item)) *
7730 factor;
7731
7732 spin_unlock(&block_group->lock);
7733 }
7734
7735 return free_bytes;
7736 }
7737
7738 /*
7739 * helper to account the unused space of all the readonly block group in the
7740 * space_info. takes mirrors into account.
7741 */
7742 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7743 {
7744 int i;
7745 u64 free_bytes = 0;
7746
7747 spin_lock(&sinfo->lock);
7748
7749 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7750 if (!list_empty(&sinfo->block_groups[i]))
7751 free_bytes += __btrfs_get_ro_block_group_free_space(
7752 &sinfo->block_groups[i]);
7753
7754 spin_unlock(&sinfo->lock);
7755
7756 return free_bytes;
7757 }
7758
7759 void btrfs_set_block_group_rw(struct btrfs_root *root,
7760 struct btrfs_block_group_cache *cache)
7761 {
7762 struct btrfs_space_info *sinfo = cache->space_info;
7763 u64 num_bytes;
7764
7765 BUG_ON(!cache->ro);
7766
7767 spin_lock(&sinfo->lock);
7768 spin_lock(&cache->lock);
7769 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7770 cache->bytes_super - btrfs_block_group_used(&cache->item);
7771 sinfo->bytes_readonly -= num_bytes;
7772 cache->ro = 0;
7773 spin_unlock(&cache->lock);
7774 spin_unlock(&sinfo->lock);
7775 }
7776
7777 /*
7778 * checks to see if its even possible to relocate this block group.
7779 *
7780 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7781 * ok to go ahead and try.
7782 */
7783 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7784 {
7785 struct btrfs_block_group_cache *block_group;
7786 struct btrfs_space_info *space_info;
7787 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7788 struct btrfs_device *device;
7789 u64 min_free;
7790 u64 dev_min = 1;
7791 u64 dev_nr = 0;
7792 u64 target;
7793 int index;
7794 int full = 0;
7795 int ret = 0;
7796
7797 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7798
7799 /* odd, couldn't find the block group, leave it alone */
7800 if (!block_group)
7801 return -1;
7802
7803 min_free = btrfs_block_group_used(&block_group->item);
7804
7805 /* no bytes used, we're good */
7806 if (!min_free)
7807 goto out;
7808
7809 space_info = block_group->space_info;
7810 spin_lock(&space_info->lock);
7811
7812 full = space_info->full;
7813
7814 /*
7815 * if this is the last block group we have in this space, we can't
7816 * relocate it unless we're able to allocate a new chunk below.
7817 *
7818 * Otherwise, we need to make sure we have room in the space to handle
7819 * all of the extents from this block group. If we can, we're good
7820 */
7821 if ((space_info->total_bytes != block_group->key.offset) &&
7822 (space_info->bytes_used + space_info->bytes_reserved +
7823 space_info->bytes_pinned + space_info->bytes_readonly +
7824 min_free < space_info->total_bytes)) {
7825 spin_unlock(&space_info->lock);
7826 goto out;
7827 }
7828 spin_unlock(&space_info->lock);
7829
7830 /*
7831 * ok we don't have enough space, but maybe we have free space on our
7832 * devices to allocate new chunks for relocation, so loop through our
7833 * alloc devices and guess if we have enough space. if this block
7834 * group is going to be restriped, run checks against the target
7835 * profile instead of the current one.
7836 */
7837 ret = -1;
7838
7839 /*
7840 * index:
7841 * 0: raid10
7842 * 1: raid1
7843 * 2: dup
7844 * 3: raid0
7845 * 4: single
7846 */
7847 target = get_restripe_target(root->fs_info, block_group->flags);
7848 if (target) {
7849 index = __get_raid_index(extended_to_chunk(target));
7850 } else {
7851 /*
7852 * this is just a balance, so if we were marked as full
7853 * we know there is no space for a new chunk
7854 */
7855 if (full)
7856 goto out;
7857
7858 index = get_block_group_index(block_group);
7859 }
7860
7861 if (index == BTRFS_RAID_RAID10) {
7862 dev_min = 4;
7863 /* Divide by 2 */
7864 min_free >>= 1;
7865 } else if (index == BTRFS_RAID_RAID1) {
7866 dev_min = 2;
7867 } else if (index == BTRFS_RAID_DUP) {
7868 /* Multiply by 2 */
7869 min_free <<= 1;
7870 } else if (index == BTRFS_RAID_RAID0) {
7871 dev_min = fs_devices->rw_devices;
7872 do_div(min_free, dev_min);
7873 }
7874
7875 mutex_lock(&root->fs_info->chunk_mutex);
7876 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7877 u64 dev_offset;
7878
7879 /*
7880 * check to make sure we can actually find a chunk with enough
7881 * space to fit our block group in.
7882 */
7883 if (device->total_bytes > device->bytes_used + min_free &&
7884 !device->is_tgtdev_for_dev_replace) {
7885 ret = find_free_dev_extent(device, min_free,
7886 &dev_offset, NULL);
7887 if (!ret)
7888 dev_nr++;
7889
7890 if (dev_nr >= dev_min)
7891 break;
7892
7893 ret = -1;
7894 }
7895 }
7896 mutex_unlock(&root->fs_info->chunk_mutex);
7897 out:
7898 btrfs_put_block_group(block_group);
7899 return ret;
7900 }
7901
7902 static int find_first_block_group(struct btrfs_root *root,
7903 struct btrfs_path *path, struct btrfs_key *key)
7904 {
7905 int ret = 0;
7906 struct btrfs_key found_key;
7907 struct extent_buffer *leaf;
7908 int slot;
7909
7910 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7911 if (ret < 0)
7912 goto out;
7913
7914 while (1) {
7915 slot = path->slots[0];
7916 leaf = path->nodes[0];
7917 if (slot >= btrfs_header_nritems(leaf)) {
7918 ret = btrfs_next_leaf(root, path);
7919 if (ret == 0)
7920 continue;
7921 if (ret < 0)
7922 goto out;
7923 break;
7924 }
7925 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7926
7927 if (found_key.objectid >= key->objectid &&
7928 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7929 ret = 0;
7930 goto out;
7931 }
7932 path->slots[0]++;
7933 }
7934 out:
7935 return ret;
7936 }
7937
7938 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7939 {
7940 struct btrfs_block_group_cache *block_group;
7941 u64 last = 0;
7942
7943 while (1) {
7944 struct inode *inode;
7945
7946 block_group = btrfs_lookup_first_block_group(info, last);
7947 while (block_group) {
7948 spin_lock(&block_group->lock);
7949 if (block_group->iref)
7950 break;
7951 spin_unlock(&block_group->lock);
7952 block_group = next_block_group(info->tree_root,
7953 block_group);
7954 }
7955 if (!block_group) {
7956 if (last == 0)
7957 break;
7958 last = 0;
7959 continue;
7960 }
7961
7962 inode = block_group->inode;
7963 block_group->iref = 0;
7964 block_group->inode = NULL;
7965 spin_unlock(&block_group->lock);
7966 iput(inode);
7967 last = block_group->key.objectid + block_group->key.offset;
7968 btrfs_put_block_group(block_group);
7969 }
7970 }
7971
7972 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7973 {
7974 struct btrfs_block_group_cache *block_group;
7975 struct btrfs_space_info *space_info;
7976 struct btrfs_caching_control *caching_ctl;
7977 struct rb_node *n;
7978
7979 down_write(&info->extent_commit_sem);
7980 while (!list_empty(&info->caching_block_groups)) {
7981 caching_ctl = list_entry(info->caching_block_groups.next,
7982 struct btrfs_caching_control, list);
7983 list_del(&caching_ctl->list);
7984 put_caching_control(caching_ctl);
7985 }
7986 up_write(&info->extent_commit_sem);
7987
7988 spin_lock(&info->block_group_cache_lock);
7989 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7990 block_group = rb_entry(n, struct btrfs_block_group_cache,
7991 cache_node);
7992 rb_erase(&block_group->cache_node,
7993 &info->block_group_cache_tree);
7994 spin_unlock(&info->block_group_cache_lock);
7995
7996 down_write(&block_group->space_info->groups_sem);
7997 list_del(&block_group->list);
7998 up_write(&block_group->space_info->groups_sem);
7999
8000 if (block_group->cached == BTRFS_CACHE_STARTED)
8001 wait_block_group_cache_done(block_group);
8002
8003 /*
8004 * We haven't cached this block group, which means we could
8005 * possibly have excluded extents on this block group.
8006 */
8007 if (block_group->cached == BTRFS_CACHE_NO)
8008 free_excluded_extents(info->extent_root, block_group);
8009
8010 btrfs_remove_free_space_cache(block_group);
8011 btrfs_put_block_group(block_group);
8012
8013 spin_lock(&info->block_group_cache_lock);
8014 }
8015 spin_unlock(&info->block_group_cache_lock);
8016
8017 /* now that all the block groups are freed, go through and
8018 * free all the space_info structs. This is only called during
8019 * the final stages of unmount, and so we know nobody is
8020 * using them. We call synchronize_rcu() once before we start,
8021 * just to be on the safe side.
8022 */
8023 synchronize_rcu();
8024
8025 release_global_block_rsv(info);
8026
8027 while(!list_empty(&info->space_info)) {
8028 space_info = list_entry(info->space_info.next,
8029 struct btrfs_space_info,
8030 list);
8031 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8032 if (space_info->bytes_pinned > 0 ||
8033 space_info->bytes_reserved > 0 ||
8034 space_info->bytes_may_use > 0) {
8035 WARN_ON(1);
8036 dump_space_info(space_info, 0, 0);
8037 }
8038 }
8039 list_del(&space_info->list);
8040 kfree(space_info);
8041 }
8042 return 0;
8043 }
8044
8045 static void __link_block_group(struct btrfs_space_info *space_info,
8046 struct btrfs_block_group_cache *cache)
8047 {
8048 int index = get_block_group_index(cache);
8049
8050 down_write(&space_info->groups_sem);
8051 list_add_tail(&cache->list, &space_info->block_groups[index]);
8052 up_write(&space_info->groups_sem);
8053 }
8054
8055 int btrfs_read_block_groups(struct btrfs_root *root)
8056 {
8057 struct btrfs_path *path;
8058 int ret;
8059 struct btrfs_block_group_cache *cache;
8060 struct btrfs_fs_info *info = root->fs_info;
8061 struct btrfs_space_info *space_info;
8062 struct btrfs_key key;
8063 struct btrfs_key found_key;
8064 struct extent_buffer *leaf;
8065 int need_clear = 0;
8066 u64 cache_gen;
8067
8068 root = info->extent_root;
8069 key.objectid = 0;
8070 key.offset = 0;
8071 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8072 path = btrfs_alloc_path();
8073 if (!path)
8074 return -ENOMEM;
8075 path->reada = 1;
8076
8077 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8078 if (btrfs_test_opt(root, SPACE_CACHE) &&
8079 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8080 need_clear = 1;
8081 if (btrfs_test_opt(root, CLEAR_CACHE))
8082 need_clear = 1;
8083
8084 while (1) {
8085 ret = find_first_block_group(root, path, &key);
8086 if (ret > 0)
8087 break;
8088 if (ret != 0)
8089 goto error;
8090 leaf = path->nodes[0];
8091 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8092 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8093 if (!cache) {
8094 ret = -ENOMEM;
8095 goto error;
8096 }
8097 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8098 GFP_NOFS);
8099 if (!cache->free_space_ctl) {
8100 kfree(cache);
8101 ret = -ENOMEM;
8102 goto error;
8103 }
8104
8105 atomic_set(&cache->count, 1);
8106 spin_lock_init(&cache->lock);
8107 cache->fs_info = info;
8108 INIT_LIST_HEAD(&cache->list);
8109 INIT_LIST_HEAD(&cache->cluster_list);
8110
8111 if (need_clear) {
8112 /*
8113 * When we mount with old space cache, we need to
8114 * set BTRFS_DC_CLEAR and set dirty flag.
8115 *
8116 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8117 * truncate the old free space cache inode and
8118 * setup a new one.
8119 * b) Setting 'dirty flag' makes sure that we flush
8120 * the new space cache info onto disk.
8121 */
8122 cache->disk_cache_state = BTRFS_DC_CLEAR;
8123 if (btrfs_test_opt(root, SPACE_CACHE))
8124 cache->dirty = 1;
8125 }
8126
8127 read_extent_buffer(leaf, &cache->item,
8128 btrfs_item_ptr_offset(leaf, path->slots[0]),
8129 sizeof(cache->item));
8130 memcpy(&cache->key, &found_key, sizeof(found_key));
8131
8132 key.objectid = found_key.objectid + found_key.offset;
8133 btrfs_release_path(path);
8134 cache->flags = btrfs_block_group_flags(&cache->item);
8135 cache->sectorsize = root->sectorsize;
8136 cache->full_stripe_len = btrfs_full_stripe_len(root,
8137 &root->fs_info->mapping_tree,
8138 found_key.objectid);
8139 btrfs_init_free_space_ctl(cache);
8140
8141 /*
8142 * We need to exclude the super stripes now so that the space
8143 * info has super bytes accounted for, otherwise we'll think
8144 * we have more space than we actually do.
8145 */
8146 ret = exclude_super_stripes(root, cache);
8147 if (ret) {
8148 /*
8149 * We may have excluded something, so call this just in
8150 * case.
8151 */
8152 free_excluded_extents(root, cache);
8153 kfree(cache->free_space_ctl);
8154 kfree(cache);
8155 goto error;
8156 }
8157
8158 /*
8159 * check for two cases, either we are full, and therefore
8160 * don't need to bother with the caching work since we won't
8161 * find any space, or we are empty, and we can just add all
8162 * the space in and be done with it. This saves us _alot_ of
8163 * time, particularly in the full case.
8164 */
8165 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8166 cache->last_byte_to_unpin = (u64)-1;
8167 cache->cached = BTRFS_CACHE_FINISHED;
8168 free_excluded_extents(root, cache);
8169 } else if (btrfs_block_group_used(&cache->item) == 0) {
8170 cache->last_byte_to_unpin = (u64)-1;
8171 cache->cached = BTRFS_CACHE_FINISHED;
8172 add_new_free_space(cache, root->fs_info,
8173 found_key.objectid,
8174 found_key.objectid +
8175 found_key.offset);
8176 free_excluded_extents(root, cache);
8177 }
8178
8179 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8180 if (ret) {
8181 btrfs_remove_free_space_cache(cache);
8182 btrfs_put_block_group(cache);
8183 goto error;
8184 }
8185
8186 ret = update_space_info(info, cache->flags, found_key.offset,
8187 btrfs_block_group_used(&cache->item),
8188 &space_info);
8189 if (ret) {
8190 btrfs_remove_free_space_cache(cache);
8191 spin_lock(&info->block_group_cache_lock);
8192 rb_erase(&cache->cache_node,
8193 &info->block_group_cache_tree);
8194 spin_unlock(&info->block_group_cache_lock);
8195 btrfs_put_block_group(cache);
8196 goto error;
8197 }
8198
8199 cache->space_info = space_info;
8200 spin_lock(&cache->space_info->lock);
8201 cache->space_info->bytes_readonly += cache->bytes_super;
8202 spin_unlock(&cache->space_info->lock);
8203
8204 __link_block_group(space_info, cache);
8205
8206 set_avail_alloc_bits(root->fs_info, cache->flags);
8207 if (btrfs_chunk_readonly(root, cache->key.objectid))
8208 set_block_group_ro(cache, 1);
8209 }
8210
8211 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8212 if (!(get_alloc_profile(root, space_info->flags) &
8213 (BTRFS_BLOCK_GROUP_RAID10 |
8214 BTRFS_BLOCK_GROUP_RAID1 |
8215 BTRFS_BLOCK_GROUP_RAID5 |
8216 BTRFS_BLOCK_GROUP_RAID6 |
8217 BTRFS_BLOCK_GROUP_DUP)))
8218 continue;
8219 /*
8220 * avoid allocating from un-mirrored block group if there are
8221 * mirrored block groups.
8222 */
8223 list_for_each_entry(cache, &space_info->block_groups[3], list)
8224 set_block_group_ro(cache, 1);
8225 list_for_each_entry(cache, &space_info->block_groups[4], list)
8226 set_block_group_ro(cache, 1);
8227 }
8228
8229 init_global_block_rsv(info);
8230 ret = 0;
8231 error:
8232 btrfs_free_path(path);
8233 return ret;
8234 }
8235
8236 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8237 struct btrfs_root *root)
8238 {
8239 struct btrfs_block_group_cache *block_group, *tmp;
8240 struct btrfs_root *extent_root = root->fs_info->extent_root;
8241 struct btrfs_block_group_item item;
8242 struct btrfs_key key;
8243 int ret = 0;
8244
8245 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8246 new_bg_list) {
8247 list_del_init(&block_group->new_bg_list);
8248
8249 if (ret)
8250 continue;
8251
8252 spin_lock(&block_group->lock);
8253 memcpy(&item, &block_group->item, sizeof(item));
8254 memcpy(&key, &block_group->key, sizeof(key));
8255 spin_unlock(&block_group->lock);
8256
8257 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8258 sizeof(item));
8259 if (ret)
8260 btrfs_abort_transaction(trans, extent_root, ret);
8261 }
8262 }
8263
8264 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8265 struct btrfs_root *root, u64 bytes_used,
8266 u64 type, u64 chunk_objectid, u64 chunk_offset,
8267 u64 size)
8268 {
8269 int ret;
8270 struct btrfs_root *extent_root;
8271 struct btrfs_block_group_cache *cache;
8272
8273 extent_root = root->fs_info->extent_root;
8274
8275 root->fs_info->last_trans_log_full_commit = trans->transid;
8276
8277 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8278 if (!cache)
8279 return -ENOMEM;
8280 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8281 GFP_NOFS);
8282 if (!cache->free_space_ctl) {
8283 kfree(cache);
8284 return -ENOMEM;
8285 }
8286
8287 cache->key.objectid = chunk_offset;
8288 cache->key.offset = size;
8289 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8290 cache->sectorsize = root->sectorsize;
8291 cache->fs_info = root->fs_info;
8292 cache->full_stripe_len = btrfs_full_stripe_len(root,
8293 &root->fs_info->mapping_tree,
8294 chunk_offset);
8295
8296 atomic_set(&cache->count, 1);
8297 spin_lock_init(&cache->lock);
8298 INIT_LIST_HEAD(&cache->list);
8299 INIT_LIST_HEAD(&cache->cluster_list);
8300 INIT_LIST_HEAD(&cache->new_bg_list);
8301
8302 btrfs_init_free_space_ctl(cache);
8303
8304 btrfs_set_block_group_used(&cache->item, bytes_used);
8305 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8306 cache->flags = type;
8307 btrfs_set_block_group_flags(&cache->item, type);
8308
8309 cache->last_byte_to_unpin = (u64)-1;
8310 cache->cached = BTRFS_CACHE_FINISHED;
8311 ret = exclude_super_stripes(root, cache);
8312 if (ret) {
8313 /*
8314 * We may have excluded something, so call this just in
8315 * case.
8316 */
8317 free_excluded_extents(root, cache);
8318 kfree(cache->free_space_ctl);
8319 kfree(cache);
8320 return ret;
8321 }
8322
8323 add_new_free_space(cache, root->fs_info, chunk_offset,
8324 chunk_offset + size);
8325
8326 free_excluded_extents(root, cache);
8327
8328 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8329 if (ret) {
8330 btrfs_remove_free_space_cache(cache);
8331 btrfs_put_block_group(cache);
8332 return ret;
8333 }
8334
8335 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8336 &cache->space_info);
8337 if (ret) {
8338 btrfs_remove_free_space_cache(cache);
8339 spin_lock(&root->fs_info->block_group_cache_lock);
8340 rb_erase(&cache->cache_node,
8341 &root->fs_info->block_group_cache_tree);
8342 spin_unlock(&root->fs_info->block_group_cache_lock);
8343 btrfs_put_block_group(cache);
8344 return ret;
8345 }
8346 update_global_block_rsv(root->fs_info);
8347
8348 spin_lock(&cache->space_info->lock);
8349 cache->space_info->bytes_readonly += cache->bytes_super;
8350 spin_unlock(&cache->space_info->lock);
8351
8352 __link_block_group(cache->space_info, cache);
8353
8354 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8355
8356 set_avail_alloc_bits(extent_root->fs_info, type);
8357
8358 return 0;
8359 }
8360
8361 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8362 {
8363 u64 extra_flags = chunk_to_extended(flags) &
8364 BTRFS_EXTENDED_PROFILE_MASK;
8365
8366 write_seqlock(&fs_info->profiles_lock);
8367 if (flags & BTRFS_BLOCK_GROUP_DATA)
8368 fs_info->avail_data_alloc_bits &= ~extra_flags;
8369 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8370 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8371 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8372 fs_info->avail_system_alloc_bits &= ~extra_flags;
8373 write_sequnlock(&fs_info->profiles_lock);
8374 }
8375
8376 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8377 struct btrfs_root *root, u64 group_start)
8378 {
8379 struct btrfs_path *path;
8380 struct btrfs_block_group_cache *block_group;
8381 struct btrfs_free_cluster *cluster;
8382 struct btrfs_root *tree_root = root->fs_info->tree_root;
8383 struct btrfs_key key;
8384 struct inode *inode;
8385 int ret;
8386 int index;
8387 int factor;
8388
8389 root = root->fs_info->extent_root;
8390
8391 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8392 BUG_ON(!block_group);
8393 BUG_ON(!block_group->ro);
8394
8395 /*
8396 * Free the reserved super bytes from this block group before
8397 * remove it.
8398 */
8399 free_excluded_extents(root, block_group);
8400
8401 memcpy(&key, &block_group->key, sizeof(key));
8402 index = get_block_group_index(block_group);
8403 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8404 BTRFS_BLOCK_GROUP_RAID1 |
8405 BTRFS_BLOCK_GROUP_RAID10))
8406 factor = 2;
8407 else
8408 factor = 1;
8409
8410 /* make sure this block group isn't part of an allocation cluster */
8411 cluster = &root->fs_info->data_alloc_cluster;
8412 spin_lock(&cluster->refill_lock);
8413 btrfs_return_cluster_to_free_space(block_group, cluster);
8414 spin_unlock(&cluster->refill_lock);
8415
8416 /*
8417 * make sure this block group isn't part of a metadata
8418 * allocation cluster
8419 */
8420 cluster = &root->fs_info->meta_alloc_cluster;
8421 spin_lock(&cluster->refill_lock);
8422 btrfs_return_cluster_to_free_space(block_group, cluster);
8423 spin_unlock(&cluster->refill_lock);
8424
8425 path = btrfs_alloc_path();
8426 if (!path) {
8427 ret = -ENOMEM;
8428 goto out;
8429 }
8430
8431 inode = lookup_free_space_inode(tree_root, block_group, path);
8432 if (!IS_ERR(inode)) {
8433 ret = btrfs_orphan_add(trans, inode);
8434 if (ret) {
8435 btrfs_add_delayed_iput(inode);
8436 goto out;
8437 }
8438 clear_nlink(inode);
8439 /* One for the block groups ref */
8440 spin_lock(&block_group->lock);
8441 if (block_group->iref) {
8442 block_group->iref = 0;
8443 block_group->inode = NULL;
8444 spin_unlock(&block_group->lock);
8445 iput(inode);
8446 } else {
8447 spin_unlock(&block_group->lock);
8448 }
8449 /* One for our lookup ref */
8450 btrfs_add_delayed_iput(inode);
8451 }
8452
8453 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8454 key.offset = block_group->key.objectid;
8455 key.type = 0;
8456
8457 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8458 if (ret < 0)
8459 goto out;
8460 if (ret > 0)
8461 btrfs_release_path(path);
8462 if (ret == 0) {
8463 ret = btrfs_del_item(trans, tree_root, path);
8464 if (ret)
8465 goto out;
8466 btrfs_release_path(path);
8467 }
8468
8469 spin_lock(&root->fs_info->block_group_cache_lock);
8470 rb_erase(&block_group->cache_node,
8471 &root->fs_info->block_group_cache_tree);
8472
8473 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8474 root->fs_info->first_logical_byte = (u64)-1;
8475 spin_unlock(&root->fs_info->block_group_cache_lock);
8476
8477 down_write(&block_group->space_info->groups_sem);
8478 /*
8479 * we must use list_del_init so people can check to see if they
8480 * are still on the list after taking the semaphore
8481 */
8482 list_del_init(&block_group->list);
8483 if (list_empty(&block_group->space_info->block_groups[index]))
8484 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8485 up_write(&block_group->space_info->groups_sem);
8486
8487 if (block_group->cached == BTRFS_CACHE_STARTED)
8488 wait_block_group_cache_done(block_group);
8489
8490 btrfs_remove_free_space_cache(block_group);
8491
8492 spin_lock(&block_group->space_info->lock);
8493 block_group->space_info->total_bytes -= block_group->key.offset;
8494 block_group->space_info->bytes_readonly -= block_group->key.offset;
8495 block_group->space_info->disk_total -= block_group->key.offset * factor;
8496 spin_unlock(&block_group->space_info->lock);
8497
8498 memcpy(&key, &block_group->key, sizeof(key));
8499
8500 btrfs_clear_space_info_full(root->fs_info);
8501
8502 btrfs_put_block_group(block_group);
8503 btrfs_put_block_group(block_group);
8504
8505 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8506 if (ret > 0)
8507 ret = -EIO;
8508 if (ret < 0)
8509 goto out;
8510
8511 ret = btrfs_del_item(trans, root, path);
8512 out:
8513 btrfs_free_path(path);
8514 return ret;
8515 }
8516
8517 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8518 {
8519 struct btrfs_space_info *space_info;
8520 struct btrfs_super_block *disk_super;
8521 u64 features;
8522 u64 flags;
8523 int mixed = 0;
8524 int ret;
8525
8526 disk_super = fs_info->super_copy;
8527 if (!btrfs_super_root(disk_super))
8528 return 1;
8529
8530 features = btrfs_super_incompat_flags(disk_super);
8531 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8532 mixed = 1;
8533
8534 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8535 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8536 if (ret)
8537 goto out;
8538
8539 if (mixed) {
8540 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8541 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8542 } else {
8543 flags = BTRFS_BLOCK_GROUP_METADATA;
8544 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8545 if (ret)
8546 goto out;
8547
8548 flags = BTRFS_BLOCK_GROUP_DATA;
8549 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8550 }
8551 out:
8552 return ret;
8553 }
8554
8555 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8556 {
8557 return unpin_extent_range(root, start, end);
8558 }
8559
8560 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8561 u64 num_bytes, u64 *actual_bytes)
8562 {
8563 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8564 }
8565
8566 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8567 {
8568 struct btrfs_fs_info *fs_info = root->fs_info;
8569 struct btrfs_block_group_cache *cache = NULL;
8570 u64 group_trimmed;
8571 u64 start;
8572 u64 end;
8573 u64 trimmed = 0;
8574 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8575 int ret = 0;
8576
8577 /*
8578 * try to trim all FS space, our block group may start from non-zero.
8579 */
8580 if (range->len == total_bytes)
8581 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8582 else
8583 cache = btrfs_lookup_block_group(fs_info, range->start);
8584
8585 while (cache) {
8586 if (cache->key.objectid >= (range->start + range->len)) {
8587 btrfs_put_block_group(cache);
8588 break;
8589 }
8590
8591 start = max(range->start, cache->key.objectid);
8592 end = min(range->start + range->len,
8593 cache->key.objectid + cache->key.offset);
8594
8595 if (end - start >= range->minlen) {
8596 if (!block_group_cache_done(cache)) {
8597 ret = cache_block_group(cache, 0);
8598 if (!ret)
8599 wait_block_group_cache_done(cache);
8600 }
8601 ret = btrfs_trim_block_group(cache,
8602 &group_trimmed,
8603 start,
8604 end,
8605 range->minlen);
8606
8607 trimmed += group_trimmed;
8608 if (ret) {
8609 btrfs_put_block_group(cache);
8610 break;
8611 }
8612 }
8613
8614 cache = next_block_group(fs_info->tree_root, cache);
8615 }
8616
8617 range->len = trimmed;
8618 return ret;
8619 }
This page took 0.418225 seconds and 5 git commands to generate.