Btrfs: implement the free space B-tree
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 struct btrfs_delayed_ref_node *node, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327 }
328
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333 }
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 u64 extent_start, extent_end, size, total_added = 0;
344 int ret;
345
346 while (start < end) {
347 ret = find_first_extent_bit(info->pinned_extents, start,
348 &extent_start, &extent_end,
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
351 if (ret)
352 break;
353
354 if (extent_start <= start) {
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
358 total_added += size;
359 ret = btrfs_add_free_space(block_group, start,
360 size);
361 BUG_ON(ret); /* -ENOMEM or logic error */
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
370 total_added += size;
371 ret = btrfs_add_free_space(block_group, start, size);
372 BUG_ON(ret); /* -ENOMEM or logic error */
373 }
374
375 return total_added;
376 }
377
378 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
379 {
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_root *extent_root;
383 struct btrfs_path *path;
384 struct extent_buffer *leaf;
385 struct btrfs_key key;
386 u64 total_found = 0;
387 u64 last = 0;
388 u32 nritems;
389 int ret;
390
391 block_group = caching_ctl->block_group;
392 fs_info = block_group->fs_info;
393 extent_root = fs_info->extent_root;
394
395 path = btrfs_alloc_path();
396 if (!path)
397 return -ENOMEM;
398
399 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
400
401 /*
402 * We don't want to deadlock with somebody trying to allocate a new
403 * extent for the extent root while also trying to search the extent
404 * root to add free space. So we skip locking and search the commit
405 * root, since its read-only
406 */
407 path->skip_locking = 1;
408 path->search_commit_root = 1;
409 path->reada = 1;
410
411 key.objectid = last;
412 key.offset = 0;
413 key.type = BTRFS_EXTENT_ITEM_KEY;
414
415 next:
416 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
417 if (ret < 0)
418 goto out;
419
420 leaf = path->nodes[0];
421 nritems = btrfs_header_nritems(leaf);
422
423 while (1) {
424 if (btrfs_fs_closing(fs_info) > 1) {
425 last = (u64)-1;
426 break;
427 }
428
429 if (path->slots[0] < nritems) {
430 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
431 } else {
432 ret = find_next_key(path, 0, &key);
433 if (ret)
434 break;
435
436 if (need_resched() ||
437 rwsem_is_contended(&fs_info->commit_root_sem)) {
438 caching_ctl->progress = last;
439 btrfs_release_path(path);
440 up_read(&fs_info->commit_root_sem);
441 mutex_unlock(&caching_ctl->mutex);
442 cond_resched();
443 mutex_lock(&caching_ctl->mutex);
444 down_read(&fs_info->commit_root_sem);
445 goto next;
446 }
447
448 ret = btrfs_next_leaf(extent_root, path);
449 if (ret < 0)
450 goto out;
451 if (ret)
452 break;
453 leaf = path->nodes[0];
454 nritems = btrfs_header_nritems(leaf);
455 continue;
456 }
457
458 if (key.objectid < last) {
459 key.objectid = last;
460 key.offset = 0;
461 key.type = BTRFS_EXTENT_ITEM_KEY;
462
463 caching_ctl->progress = last;
464 btrfs_release_path(path);
465 goto next;
466 }
467
468 if (key.objectid < block_group->key.objectid) {
469 path->slots[0]++;
470 continue;
471 }
472
473 if (key.objectid >= block_group->key.objectid +
474 block_group->key.offset)
475 break;
476
477 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
478 key.type == BTRFS_METADATA_ITEM_KEY) {
479 total_found += add_new_free_space(block_group,
480 fs_info, last,
481 key.objectid);
482 if (key.type == BTRFS_METADATA_ITEM_KEY)
483 last = key.objectid +
484 fs_info->tree_root->nodesize;
485 else
486 last = key.objectid + key.offset;
487
488 if (total_found > CACHING_CTL_WAKE_UP) {
489 total_found = 0;
490 wake_up(&caching_ctl->wait);
491 }
492 }
493 path->slots[0]++;
494 }
495 ret = 0;
496
497 total_found += add_new_free_space(block_group, fs_info, last,
498 block_group->key.objectid +
499 block_group->key.offset);
500 caching_ctl->progress = (u64)-1;
501
502 out:
503 btrfs_free_path(path);
504 return ret;
505 }
506
507 static noinline void caching_thread(struct btrfs_work *work)
508 {
509 struct btrfs_block_group_cache *block_group;
510 struct btrfs_fs_info *fs_info;
511 struct btrfs_caching_control *caching_ctl;
512 int ret;
513
514 caching_ctl = container_of(work, struct btrfs_caching_control, work);
515 block_group = caching_ctl->block_group;
516 fs_info = block_group->fs_info;
517
518 mutex_lock(&caching_ctl->mutex);
519 down_read(&fs_info->commit_root_sem);
520
521 ret = load_extent_tree_free(caching_ctl);
522
523 spin_lock(&block_group->lock);
524 block_group->caching_ctl = NULL;
525 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
526 spin_unlock(&block_group->lock);
527
528 up_read(&fs_info->commit_root_sem);
529 free_excluded_extents(fs_info->extent_root, block_group);
530 mutex_unlock(&caching_ctl->mutex);
531
532 wake_up(&caching_ctl->wait);
533
534 put_caching_control(caching_ctl);
535 btrfs_put_block_group(block_group);
536 }
537
538 static int cache_block_group(struct btrfs_block_group_cache *cache,
539 int load_cache_only)
540 {
541 DEFINE_WAIT(wait);
542 struct btrfs_fs_info *fs_info = cache->fs_info;
543 struct btrfs_caching_control *caching_ctl;
544 int ret = 0;
545
546 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
547 if (!caching_ctl)
548 return -ENOMEM;
549
550 INIT_LIST_HEAD(&caching_ctl->list);
551 mutex_init(&caching_ctl->mutex);
552 init_waitqueue_head(&caching_ctl->wait);
553 caching_ctl->block_group = cache;
554 caching_ctl->progress = cache->key.objectid;
555 atomic_set(&caching_ctl->count, 1);
556 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
557 caching_thread, NULL, NULL);
558
559 spin_lock(&cache->lock);
560 /*
561 * This should be a rare occasion, but this could happen I think in the
562 * case where one thread starts to load the space cache info, and then
563 * some other thread starts a transaction commit which tries to do an
564 * allocation while the other thread is still loading the space cache
565 * info. The previous loop should have kept us from choosing this block
566 * group, but if we've moved to the state where we will wait on caching
567 * block groups we need to first check if we're doing a fast load here,
568 * so we can wait for it to finish, otherwise we could end up allocating
569 * from a block group who's cache gets evicted for one reason or
570 * another.
571 */
572 while (cache->cached == BTRFS_CACHE_FAST) {
573 struct btrfs_caching_control *ctl;
574
575 ctl = cache->caching_ctl;
576 atomic_inc(&ctl->count);
577 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
578 spin_unlock(&cache->lock);
579
580 schedule();
581
582 finish_wait(&ctl->wait, &wait);
583 put_caching_control(ctl);
584 spin_lock(&cache->lock);
585 }
586
587 if (cache->cached != BTRFS_CACHE_NO) {
588 spin_unlock(&cache->lock);
589 kfree(caching_ctl);
590 return 0;
591 }
592 WARN_ON(cache->caching_ctl);
593 cache->caching_ctl = caching_ctl;
594 cache->cached = BTRFS_CACHE_FAST;
595 spin_unlock(&cache->lock);
596
597 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
598 mutex_lock(&caching_ctl->mutex);
599 ret = load_free_space_cache(fs_info, cache);
600
601 spin_lock(&cache->lock);
602 if (ret == 1) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_FINISHED;
605 cache->last_byte_to_unpin = (u64)-1;
606 caching_ctl->progress = (u64)-1;
607 } else {
608 if (load_cache_only) {
609 cache->caching_ctl = NULL;
610 cache->cached = BTRFS_CACHE_NO;
611 } else {
612 cache->cached = BTRFS_CACHE_STARTED;
613 cache->has_caching_ctl = 1;
614 }
615 }
616 spin_unlock(&cache->lock);
617 mutex_unlock(&caching_ctl->mutex);
618
619 wake_up(&caching_ctl->wait);
620 if (ret == 1) {
621 put_caching_control(caching_ctl);
622 free_excluded_extents(fs_info->extent_root, cache);
623 return 0;
624 }
625 } else {
626 /*
627 * We are not going to do the fast caching, set cached to the
628 * appropriate value and wakeup any waiters.
629 */
630 spin_lock(&cache->lock);
631 if (load_cache_only) {
632 cache->caching_ctl = NULL;
633 cache->cached = BTRFS_CACHE_NO;
634 } else {
635 cache->cached = BTRFS_CACHE_STARTED;
636 cache->has_caching_ctl = 1;
637 }
638 spin_unlock(&cache->lock);
639 wake_up(&caching_ctl->wait);
640 }
641
642 if (load_cache_only) {
643 put_caching_control(caching_ctl);
644 return 0;
645 }
646
647 down_write(&fs_info->commit_root_sem);
648 atomic_inc(&caching_ctl->count);
649 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
650 up_write(&fs_info->commit_root_sem);
651
652 btrfs_get_block_group(cache);
653
654 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
655
656 return ret;
657 }
658
659 /*
660 * return the block group that starts at or after bytenr
661 */
662 static struct btrfs_block_group_cache *
663 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
664 {
665 struct btrfs_block_group_cache *cache;
666
667 cache = block_group_cache_tree_search(info, bytenr, 0);
668
669 return cache;
670 }
671
672 /*
673 * return the block group that contains the given bytenr
674 */
675 struct btrfs_block_group_cache *btrfs_lookup_block_group(
676 struct btrfs_fs_info *info,
677 u64 bytenr)
678 {
679 struct btrfs_block_group_cache *cache;
680
681 cache = block_group_cache_tree_search(info, bytenr, 1);
682
683 return cache;
684 }
685
686 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
687 u64 flags)
688 {
689 struct list_head *head = &info->space_info;
690 struct btrfs_space_info *found;
691
692 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
693
694 rcu_read_lock();
695 list_for_each_entry_rcu(found, head, list) {
696 if (found->flags & flags) {
697 rcu_read_unlock();
698 return found;
699 }
700 }
701 rcu_read_unlock();
702 return NULL;
703 }
704
705 /*
706 * after adding space to the filesystem, we need to clear the full flags
707 * on all the space infos.
708 */
709 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
710 {
711 struct list_head *head = &info->space_info;
712 struct btrfs_space_info *found;
713
714 rcu_read_lock();
715 list_for_each_entry_rcu(found, head, list)
716 found->full = 0;
717 rcu_read_unlock();
718 }
719
720 /* simple helper to search for an existing data extent at a given offset */
721 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
722 {
723 int ret;
724 struct btrfs_key key;
725 struct btrfs_path *path;
726
727 path = btrfs_alloc_path();
728 if (!path)
729 return -ENOMEM;
730
731 key.objectid = start;
732 key.offset = len;
733 key.type = BTRFS_EXTENT_ITEM_KEY;
734 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
735 0, 0);
736 btrfs_free_path(path);
737 return ret;
738 }
739
740 /*
741 * helper function to lookup reference count and flags of a tree block.
742 *
743 * the head node for delayed ref is used to store the sum of all the
744 * reference count modifications queued up in the rbtree. the head
745 * node may also store the extent flags to set. This way you can check
746 * to see what the reference count and extent flags would be if all of
747 * the delayed refs are not processed.
748 */
749 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
750 struct btrfs_root *root, u64 bytenr,
751 u64 offset, int metadata, u64 *refs, u64 *flags)
752 {
753 struct btrfs_delayed_ref_head *head;
754 struct btrfs_delayed_ref_root *delayed_refs;
755 struct btrfs_path *path;
756 struct btrfs_extent_item *ei;
757 struct extent_buffer *leaf;
758 struct btrfs_key key;
759 u32 item_size;
760 u64 num_refs;
761 u64 extent_flags;
762 int ret;
763
764 /*
765 * If we don't have skinny metadata, don't bother doing anything
766 * different
767 */
768 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
769 offset = root->nodesize;
770 metadata = 0;
771 }
772
773 path = btrfs_alloc_path();
774 if (!path)
775 return -ENOMEM;
776
777 if (!trans) {
778 path->skip_locking = 1;
779 path->search_commit_root = 1;
780 }
781
782 search_again:
783 key.objectid = bytenr;
784 key.offset = offset;
785 if (metadata)
786 key.type = BTRFS_METADATA_ITEM_KEY;
787 else
788 key.type = BTRFS_EXTENT_ITEM_KEY;
789
790 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
791 &key, path, 0, 0);
792 if (ret < 0)
793 goto out_free;
794
795 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
796 if (path->slots[0]) {
797 path->slots[0]--;
798 btrfs_item_key_to_cpu(path->nodes[0], &key,
799 path->slots[0]);
800 if (key.objectid == bytenr &&
801 key.type == BTRFS_EXTENT_ITEM_KEY &&
802 key.offset == root->nodesize)
803 ret = 0;
804 }
805 }
806
807 if (ret == 0) {
808 leaf = path->nodes[0];
809 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
810 if (item_size >= sizeof(*ei)) {
811 ei = btrfs_item_ptr(leaf, path->slots[0],
812 struct btrfs_extent_item);
813 num_refs = btrfs_extent_refs(leaf, ei);
814 extent_flags = btrfs_extent_flags(leaf, ei);
815 } else {
816 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
817 struct btrfs_extent_item_v0 *ei0;
818 BUG_ON(item_size != sizeof(*ei0));
819 ei0 = btrfs_item_ptr(leaf, path->slots[0],
820 struct btrfs_extent_item_v0);
821 num_refs = btrfs_extent_refs_v0(leaf, ei0);
822 /* FIXME: this isn't correct for data */
823 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
824 #else
825 BUG();
826 #endif
827 }
828 BUG_ON(num_refs == 0);
829 } else {
830 num_refs = 0;
831 extent_flags = 0;
832 ret = 0;
833 }
834
835 if (!trans)
836 goto out;
837
838 delayed_refs = &trans->transaction->delayed_refs;
839 spin_lock(&delayed_refs->lock);
840 head = btrfs_find_delayed_ref_head(trans, bytenr);
841 if (head) {
842 if (!mutex_trylock(&head->mutex)) {
843 atomic_inc(&head->node.refs);
844 spin_unlock(&delayed_refs->lock);
845
846 btrfs_release_path(path);
847
848 /*
849 * Mutex was contended, block until it's released and try
850 * again
851 */
852 mutex_lock(&head->mutex);
853 mutex_unlock(&head->mutex);
854 btrfs_put_delayed_ref(&head->node);
855 goto search_again;
856 }
857 spin_lock(&head->lock);
858 if (head->extent_op && head->extent_op->update_flags)
859 extent_flags |= head->extent_op->flags_to_set;
860 else
861 BUG_ON(num_refs == 0);
862
863 num_refs += head->node.ref_mod;
864 spin_unlock(&head->lock);
865 mutex_unlock(&head->mutex);
866 }
867 spin_unlock(&delayed_refs->lock);
868 out:
869 WARN_ON(num_refs == 0);
870 if (refs)
871 *refs = num_refs;
872 if (flags)
873 *flags = extent_flags;
874 out_free:
875 btrfs_free_path(path);
876 return ret;
877 }
878
879 /*
880 * Back reference rules. Back refs have three main goals:
881 *
882 * 1) differentiate between all holders of references to an extent so that
883 * when a reference is dropped we can make sure it was a valid reference
884 * before freeing the extent.
885 *
886 * 2) Provide enough information to quickly find the holders of an extent
887 * if we notice a given block is corrupted or bad.
888 *
889 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
890 * maintenance. This is actually the same as #2, but with a slightly
891 * different use case.
892 *
893 * There are two kinds of back refs. The implicit back refs is optimized
894 * for pointers in non-shared tree blocks. For a given pointer in a block,
895 * back refs of this kind provide information about the block's owner tree
896 * and the pointer's key. These information allow us to find the block by
897 * b-tree searching. The full back refs is for pointers in tree blocks not
898 * referenced by their owner trees. The location of tree block is recorded
899 * in the back refs. Actually the full back refs is generic, and can be
900 * used in all cases the implicit back refs is used. The major shortcoming
901 * of the full back refs is its overhead. Every time a tree block gets
902 * COWed, we have to update back refs entry for all pointers in it.
903 *
904 * For a newly allocated tree block, we use implicit back refs for
905 * pointers in it. This means most tree related operations only involve
906 * implicit back refs. For a tree block created in old transaction, the
907 * only way to drop a reference to it is COW it. So we can detect the
908 * event that tree block loses its owner tree's reference and do the
909 * back refs conversion.
910 *
911 * When a tree block is COW'd through a tree, there are four cases:
912 *
913 * The reference count of the block is one and the tree is the block's
914 * owner tree. Nothing to do in this case.
915 *
916 * The reference count of the block is one and the tree is not the
917 * block's owner tree. In this case, full back refs is used for pointers
918 * in the block. Remove these full back refs, add implicit back refs for
919 * every pointers in the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * the block's owner tree. In this case, implicit back refs is used for
923 * pointers in the block. Add full back refs for every pointers in the
924 * block, increase lower level extents' reference counts. The original
925 * implicit back refs are entailed to the new block.
926 *
927 * The reference count of the block is greater than one and the tree is
928 * not the block's owner tree. Add implicit back refs for every pointer in
929 * the new block, increase lower level extents' reference count.
930 *
931 * Back Reference Key composing:
932 *
933 * The key objectid corresponds to the first byte in the extent,
934 * The key type is used to differentiate between types of back refs.
935 * There are different meanings of the key offset for different types
936 * of back refs.
937 *
938 * File extents can be referenced by:
939 *
940 * - multiple snapshots, subvolumes, or different generations in one subvol
941 * - different files inside a single subvolume
942 * - different offsets inside a file (bookend extents in file.c)
943 *
944 * The extent ref structure for the implicit back refs has fields for:
945 *
946 * - Objectid of the subvolume root
947 * - objectid of the file holding the reference
948 * - original offset in the file
949 * - how many bookend extents
950 *
951 * The key offset for the implicit back refs is hash of the first
952 * three fields.
953 *
954 * The extent ref structure for the full back refs has field for:
955 *
956 * - number of pointers in the tree leaf
957 *
958 * The key offset for the implicit back refs is the first byte of
959 * the tree leaf
960 *
961 * When a file extent is allocated, The implicit back refs is used.
962 * the fields are filled in:
963 *
964 * (root_key.objectid, inode objectid, offset in file, 1)
965 *
966 * When a file extent is removed file truncation, we find the
967 * corresponding implicit back refs and check the following fields:
968 *
969 * (btrfs_header_owner(leaf), inode objectid, offset in file)
970 *
971 * Btree extents can be referenced by:
972 *
973 * - Different subvolumes
974 *
975 * Both the implicit back refs and the full back refs for tree blocks
976 * only consist of key. The key offset for the implicit back refs is
977 * objectid of block's owner tree. The key offset for the full back refs
978 * is the first byte of parent block.
979 *
980 * When implicit back refs is used, information about the lowest key and
981 * level of the tree block are required. These information are stored in
982 * tree block info structure.
983 */
984
985 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
986 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
987 struct btrfs_root *root,
988 struct btrfs_path *path,
989 u64 owner, u32 extra_size)
990 {
991 struct btrfs_extent_item *item;
992 struct btrfs_extent_item_v0 *ei0;
993 struct btrfs_extent_ref_v0 *ref0;
994 struct btrfs_tree_block_info *bi;
995 struct extent_buffer *leaf;
996 struct btrfs_key key;
997 struct btrfs_key found_key;
998 u32 new_size = sizeof(*item);
999 u64 refs;
1000 int ret;
1001
1002 leaf = path->nodes[0];
1003 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1004
1005 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1006 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1007 struct btrfs_extent_item_v0);
1008 refs = btrfs_extent_refs_v0(leaf, ei0);
1009
1010 if (owner == (u64)-1) {
1011 while (1) {
1012 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1013 ret = btrfs_next_leaf(root, path);
1014 if (ret < 0)
1015 return ret;
1016 BUG_ON(ret > 0); /* Corruption */
1017 leaf = path->nodes[0];
1018 }
1019 btrfs_item_key_to_cpu(leaf, &found_key,
1020 path->slots[0]);
1021 BUG_ON(key.objectid != found_key.objectid);
1022 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1023 path->slots[0]++;
1024 continue;
1025 }
1026 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1027 struct btrfs_extent_ref_v0);
1028 owner = btrfs_ref_objectid_v0(leaf, ref0);
1029 break;
1030 }
1031 }
1032 btrfs_release_path(path);
1033
1034 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1035 new_size += sizeof(*bi);
1036
1037 new_size -= sizeof(*ei0);
1038 ret = btrfs_search_slot(trans, root, &key, path,
1039 new_size + extra_size, 1);
1040 if (ret < 0)
1041 return ret;
1042 BUG_ON(ret); /* Corruption */
1043
1044 btrfs_extend_item(root, path, new_size);
1045
1046 leaf = path->nodes[0];
1047 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1048 btrfs_set_extent_refs(leaf, item, refs);
1049 /* FIXME: get real generation */
1050 btrfs_set_extent_generation(leaf, item, 0);
1051 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1052 btrfs_set_extent_flags(leaf, item,
1053 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1054 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1055 bi = (struct btrfs_tree_block_info *)(item + 1);
1056 /* FIXME: get first key of the block */
1057 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1058 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1059 } else {
1060 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1061 }
1062 btrfs_mark_buffer_dirty(leaf);
1063 return 0;
1064 }
1065 #endif
1066
1067 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1068 {
1069 u32 high_crc = ~(u32)0;
1070 u32 low_crc = ~(u32)0;
1071 __le64 lenum;
1072
1073 lenum = cpu_to_le64(root_objectid);
1074 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1075 lenum = cpu_to_le64(owner);
1076 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1077 lenum = cpu_to_le64(offset);
1078 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1079
1080 return ((u64)high_crc << 31) ^ (u64)low_crc;
1081 }
1082
1083 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1084 struct btrfs_extent_data_ref *ref)
1085 {
1086 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1087 btrfs_extent_data_ref_objectid(leaf, ref),
1088 btrfs_extent_data_ref_offset(leaf, ref));
1089 }
1090
1091 static int match_extent_data_ref(struct extent_buffer *leaf,
1092 struct btrfs_extent_data_ref *ref,
1093 u64 root_objectid, u64 owner, u64 offset)
1094 {
1095 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1096 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1097 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1098 return 0;
1099 return 1;
1100 }
1101
1102 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1103 struct btrfs_root *root,
1104 struct btrfs_path *path,
1105 u64 bytenr, u64 parent,
1106 u64 root_objectid,
1107 u64 owner, u64 offset)
1108 {
1109 struct btrfs_key key;
1110 struct btrfs_extent_data_ref *ref;
1111 struct extent_buffer *leaf;
1112 u32 nritems;
1113 int ret;
1114 int recow;
1115 int err = -ENOENT;
1116
1117 key.objectid = bytenr;
1118 if (parent) {
1119 key.type = BTRFS_SHARED_DATA_REF_KEY;
1120 key.offset = parent;
1121 } else {
1122 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1123 key.offset = hash_extent_data_ref(root_objectid,
1124 owner, offset);
1125 }
1126 again:
1127 recow = 0;
1128 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1129 if (ret < 0) {
1130 err = ret;
1131 goto fail;
1132 }
1133
1134 if (parent) {
1135 if (!ret)
1136 return 0;
1137 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1138 key.type = BTRFS_EXTENT_REF_V0_KEY;
1139 btrfs_release_path(path);
1140 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1141 if (ret < 0) {
1142 err = ret;
1143 goto fail;
1144 }
1145 if (!ret)
1146 return 0;
1147 #endif
1148 goto fail;
1149 }
1150
1151 leaf = path->nodes[0];
1152 nritems = btrfs_header_nritems(leaf);
1153 while (1) {
1154 if (path->slots[0] >= nritems) {
1155 ret = btrfs_next_leaf(root, path);
1156 if (ret < 0)
1157 err = ret;
1158 if (ret)
1159 goto fail;
1160
1161 leaf = path->nodes[0];
1162 nritems = btrfs_header_nritems(leaf);
1163 recow = 1;
1164 }
1165
1166 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1167 if (key.objectid != bytenr ||
1168 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1169 goto fail;
1170
1171 ref = btrfs_item_ptr(leaf, path->slots[0],
1172 struct btrfs_extent_data_ref);
1173
1174 if (match_extent_data_ref(leaf, ref, root_objectid,
1175 owner, offset)) {
1176 if (recow) {
1177 btrfs_release_path(path);
1178 goto again;
1179 }
1180 err = 0;
1181 break;
1182 }
1183 path->slots[0]++;
1184 }
1185 fail:
1186 return err;
1187 }
1188
1189 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1190 struct btrfs_root *root,
1191 struct btrfs_path *path,
1192 u64 bytenr, u64 parent,
1193 u64 root_objectid, u64 owner,
1194 u64 offset, int refs_to_add)
1195 {
1196 struct btrfs_key key;
1197 struct extent_buffer *leaf;
1198 u32 size;
1199 u32 num_refs;
1200 int ret;
1201
1202 key.objectid = bytenr;
1203 if (parent) {
1204 key.type = BTRFS_SHARED_DATA_REF_KEY;
1205 key.offset = parent;
1206 size = sizeof(struct btrfs_shared_data_ref);
1207 } else {
1208 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1209 key.offset = hash_extent_data_ref(root_objectid,
1210 owner, offset);
1211 size = sizeof(struct btrfs_extent_data_ref);
1212 }
1213
1214 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1215 if (ret && ret != -EEXIST)
1216 goto fail;
1217
1218 leaf = path->nodes[0];
1219 if (parent) {
1220 struct btrfs_shared_data_ref *ref;
1221 ref = btrfs_item_ptr(leaf, path->slots[0],
1222 struct btrfs_shared_data_ref);
1223 if (ret == 0) {
1224 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1225 } else {
1226 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1227 num_refs += refs_to_add;
1228 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1229 }
1230 } else {
1231 struct btrfs_extent_data_ref *ref;
1232 while (ret == -EEXIST) {
1233 ref = btrfs_item_ptr(leaf, path->slots[0],
1234 struct btrfs_extent_data_ref);
1235 if (match_extent_data_ref(leaf, ref, root_objectid,
1236 owner, offset))
1237 break;
1238 btrfs_release_path(path);
1239 key.offset++;
1240 ret = btrfs_insert_empty_item(trans, root, path, &key,
1241 size);
1242 if (ret && ret != -EEXIST)
1243 goto fail;
1244
1245 leaf = path->nodes[0];
1246 }
1247 ref = btrfs_item_ptr(leaf, path->slots[0],
1248 struct btrfs_extent_data_ref);
1249 if (ret == 0) {
1250 btrfs_set_extent_data_ref_root(leaf, ref,
1251 root_objectid);
1252 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1253 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1254 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1255 } else {
1256 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1257 num_refs += refs_to_add;
1258 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1259 }
1260 }
1261 btrfs_mark_buffer_dirty(leaf);
1262 ret = 0;
1263 fail:
1264 btrfs_release_path(path);
1265 return ret;
1266 }
1267
1268 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1269 struct btrfs_root *root,
1270 struct btrfs_path *path,
1271 int refs_to_drop, int *last_ref)
1272 {
1273 struct btrfs_key key;
1274 struct btrfs_extent_data_ref *ref1 = NULL;
1275 struct btrfs_shared_data_ref *ref2 = NULL;
1276 struct extent_buffer *leaf;
1277 u32 num_refs = 0;
1278 int ret = 0;
1279
1280 leaf = path->nodes[0];
1281 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1282
1283 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1284 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_extent_data_ref);
1286 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1287 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1288 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_shared_data_ref);
1290 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1291 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1292 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1293 struct btrfs_extent_ref_v0 *ref0;
1294 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1295 struct btrfs_extent_ref_v0);
1296 num_refs = btrfs_ref_count_v0(leaf, ref0);
1297 #endif
1298 } else {
1299 BUG();
1300 }
1301
1302 BUG_ON(num_refs < refs_to_drop);
1303 num_refs -= refs_to_drop;
1304
1305 if (num_refs == 0) {
1306 ret = btrfs_del_item(trans, root, path);
1307 *last_ref = 1;
1308 } else {
1309 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1310 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1311 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1312 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1313 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1314 else {
1315 struct btrfs_extent_ref_v0 *ref0;
1316 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1317 struct btrfs_extent_ref_v0);
1318 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1319 }
1320 #endif
1321 btrfs_mark_buffer_dirty(leaf);
1322 }
1323 return ret;
1324 }
1325
1326 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1327 struct btrfs_extent_inline_ref *iref)
1328 {
1329 struct btrfs_key key;
1330 struct extent_buffer *leaf;
1331 struct btrfs_extent_data_ref *ref1;
1332 struct btrfs_shared_data_ref *ref2;
1333 u32 num_refs = 0;
1334
1335 leaf = path->nodes[0];
1336 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1337 if (iref) {
1338 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1339 BTRFS_EXTENT_DATA_REF_KEY) {
1340 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1341 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1342 } else {
1343 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1344 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1345 }
1346 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1347 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1348 struct btrfs_extent_data_ref);
1349 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1350 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1351 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_shared_data_ref);
1353 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1354 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1355 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1356 struct btrfs_extent_ref_v0 *ref0;
1357 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1358 struct btrfs_extent_ref_v0);
1359 num_refs = btrfs_ref_count_v0(leaf, ref0);
1360 #endif
1361 } else {
1362 WARN_ON(1);
1363 }
1364 return num_refs;
1365 }
1366
1367 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1368 struct btrfs_root *root,
1369 struct btrfs_path *path,
1370 u64 bytenr, u64 parent,
1371 u64 root_objectid)
1372 {
1373 struct btrfs_key key;
1374 int ret;
1375
1376 key.objectid = bytenr;
1377 if (parent) {
1378 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1379 key.offset = parent;
1380 } else {
1381 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1382 key.offset = root_objectid;
1383 }
1384
1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 if (ret > 0)
1387 ret = -ENOENT;
1388 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1389 if (ret == -ENOENT && parent) {
1390 btrfs_release_path(path);
1391 key.type = BTRFS_EXTENT_REF_V0_KEY;
1392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1393 if (ret > 0)
1394 ret = -ENOENT;
1395 }
1396 #endif
1397 return ret;
1398 }
1399
1400 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1401 struct btrfs_root *root,
1402 struct btrfs_path *path,
1403 u64 bytenr, u64 parent,
1404 u64 root_objectid)
1405 {
1406 struct btrfs_key key;
1407 int ret;
1408
1409 key.objectid = bytenr;
1410 if (parent) {
1411 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1412 key.offset = parent;
1413 } else {
1414 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1415 key.offset = root_objectid;
1416 }
1417
1418 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1419 btrfs_release_path(path);
1420 return ret;
1421 }
1422
1423 static inline int extent_ref_type(u64 parent, u64 owner)
1424 {
1425 int type;
1426 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_BLOCK_REF_KEY;
1429 else
1430 type = BTRFS_TREE_BLOCK_REF_KEY;
1431 } else {
1432 if (parent > 0)
1433 type = BTRFS_SHARED_DATA_REF_KEY;
1434 else
1435 type = BTRFS_EXTENT_DATA_REF_KEY;
1436 }
1437 return type;
1438 }
1439
1440 static int find_next_key(struct btrfs_path *path, int level,
1441 struct btrfs_key *key)
1442
1443 {
1444 for (; level < BTRFS_MAX_LEVEL; level++) {
1445 if (!path->nodes[level])
1446 break;
1447 if (path->slots[level] + 1 >=
1448 btrfs_header_nritems(path->nodes[level]))
1449 continue;
1450 if (level == 0)
1451 btrfs_item_key_to_cpu(path->nodes[level], key,
1452 path->slots[level] + 1);
1453 else
1454 btrfs_node_key_to_cpu(path->nodes[level], key,
1455 path->slots[level] + 1);
1456 return 0;
1457 }
1458 return 1;
1459 }
1460
1461 /*
1462 * look for inline back ref. if back ref is found, *ref_ret is set
1463 * to the address of inline back ref, and 0 is returned.
1464 *
1465 * if back ref isn't found, *ref_ret is set to the address where it
1466 * should be inserted, and -ENOENT is returned.
1467 *
1468 * if insert is true and there are too many inline back refs, the path
1469 * points to the extent item, and -EAGAIN is returned.
1470 *
1471 * NOTE: inline back refs are ordered in the same way that back ref
1472 * items in the tree are ordered.
1473 */
1474 static noinline_for_stack
1475 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1476 struct btrfs_root *root,
1477 struct btrfs_path *path,
1478 struct btrfs_extent_inline_ref **ref_ret,
1479 u64 bytenr, u64 num_bytes,
1480 u64 parent, u64 root_objectid,
1481 u64 owner, u64 offset, int insert)
1482 {
1483 struct btrfs_key key;
1484 struct extent_buffer *leaf;
1485 struct btrfs_extent_item *ei;
1486 struct btrfs_extent_inline_ref *iref;
1487 u64 flags;
1488 u64 item_size;
1489 unsigned long ptr;
1490 unsigned long end;
1491 int extra_size;
1492 int type;
1493 int want;
1494 int ret;
1495 int err = 0;
1496 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1497 SKINNY_METADATA);
1498
1499 key.objectid = bytenr;
1500 key.type = BTRFS_EXTENT_ITEM_KEY;
1501 key.offset = num_bytes;
1502
1503 want = extent_ref_type(parent, owner);
1504 if (insert) {
1505 extra_size = btrfs_extent_inline_ref_size(want);
1506 path->keep_locks = 1;
1507 } else
1508 extra_size = -1;
1509
1510 /*
1511 * Owner is our parent level, so we can just add one to get the level
1512 * for the block we are interested in.
1513 */
1514 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1515 key.type = BTRFS_METADATA_ITEM_KEY;
1516 key.offset = owner;
1517 }
1518
1519 again:
1520 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1521 if (ret < 0) {
1522 err = ret;
1523 goto out;
1524 }
1525
1526 /*
1527 * We may be a newly converted file system which still has the old fat
1528 * extent entries for metadata, so try and see if we have one of those.
1529 */
1530 if (ret > 0 && skinny_metadata) {
1531 skinny_metadata = false;
1532 if (path->slots[0]) {
1533 path->slots[0]--;
1534 btrfs_item_key_to_cpu(path->nodes[0], &key,
1535 path->slots[0]);
1536 if (key.objectid == bytenr &&
1537 key.type == BTRFS_EXTENT_ITEM_KEY &&
1538 key.offset == num_bytes)
1539 ret = 0;
1540 }
1541 if (ret) {
1542 key.objectid = bytenr;
1543 key.type = BTRFS_EXTENT_ITEM_KEY;
1544 key.offset = num_bytes;
1545 btrfs_release_path(path);
1546 goto again;
1547 }
1548 }
1549
1550 if (ret && !insert) {
1551 err = -ENOENT;
1552 goto out;
1553 } else if (WARN_ON(ret)) {
1554 err = -EIO;
1555 goto out;
1556 }
1557
1558 leaf = path->nodes[0];
1559 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1560 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1561 if (item_size < sizeof(*ei)) {
1562 if (!insert) {
1563 err = -ENOENT;
1564 goto out;
1565 }
1566 ret = convert_extent_item_v0(trans, root, path, owner,
1567 extra_size);
1568 if (ret < 0) {
1569 err = ret;
1570 goto out;
1571 }
1572 leaf = path->nodes[0];
1573 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1574 }
1575 #endif
1576 BUG_ON(item_size < sizeof(*ei));
1577
1578 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1579 flags = btrfs_extent_flags(leaf, ei);
1580
1581 ptr = (unsigned long)(ei + 1);
1582 end = (unsigned long)ei + item_size;
1583
1584 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1585 ptr += sizeof(struct btrfs_tree_block_info);
1586 BUG_ON(ptr > end);
1587 }
1588
1589 err = -ENOENT;
1590 while (1) {
1591 if (ptr >= end) {
1592 WARN_ON(ptr > end);
1593 break;
1594 }
1595 iref = (struct btrfs_extent_inline_ref *)ptr;
1596 type = btrfs_extent_inline_ref_type(leaf, iref);
1597 if (want < type)
1598 break;
1599 if (want > type) {
1600 ptr += btrfs_extent_inline_ref_size(type);
1601 continue;
1602 }
1603
1604 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1605 struct btrfs_extent_data_ref *dref;
1606 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1607 if (match_extent_data_ref(leaf, dref, root_objectid,
1608 owner, offset)) {
1609 err = 0;
1610 break;
1611 }
1612 if (hash_extent_data_ref_item(leaf, dref) <
1613 hash_extent_data_ref(root_objectid, owner, offset))
1614 break;
1615 } else {
1616 u64 ref_offset;
1617 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1618 if (parent > 0) {
1619 if (parent == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < parent)
1624 break;
1625 } else {
1626 if (root_objectid == ref_offset) {
1627 err = 0;
1628 break;
1629 }
1630 if (ref_offset < root_objectid)
1631 break;
1632 }
1633 }
1634 ptr += btrfs_extent_inline_ref_size(type);
1635 }
1636 if (err == -ENOENT && insert) {
1637 if (item_size + extra_size >=
1638 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1639 err = -EAGAIN;
1640 goto out;
1641 }
1642 /*
1643 * To add new inline back ref, we have to make sure
1644 * there is no corresponding back ref item.
1645 * For simplicity, we just do not add new inline back
1646 * ref if there is any kind of item for this block
1647 */
1648 if (find_next_key(path, 0, &key) == 0 &&
1649 key.objectid == bytenr &&
1650 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1651 err = -EAGAIN;
1652 goto out;
1653 }
1654 }
1655 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1656 out:
1657 if (insert) {
1658 path->keep_locks = 0;
1659 btrfs_unlock_up_safe(path, 1);
1660 }
1661 return err;
1662 }
1663
1664 /*
1665 * helper to add new inline back ref
1666 */
1667 static noinline_for_stack
1668 void setup_inline_extent_backref(struct btrfs_root *root,
1669 struct btrfs_path *path,
1670 struct btrfs_extent_inline_ref *iref,
1671 u64 parent, u64 root_objectid,
1672 u64 owner, u64 offset, int refs_to_add,
1673 struct btrfs_delayed_extent_op *extent_op)
1674 {
1675 struct extent_buffer *leaf;
1676 struct btrfs_extent_item *ei;
1677 unsigned long ptr;
1678 unsigned long end;
1679 unsigned long item_offset;
1680 u64 refs;
1681 int size;
1682 int type;
1683
1684 leaf = path->nodes[0];
1685 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1686 item_offset = (unsigned long)iref - (unsigned long)ei;
1687
1688 type = extent_ref_type(parent, owner);
1689 size = btrfs_extent_inline_ref_size(type);
1690
1691 btrfs_extend_item(root, path, size);
1692
1693 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1694 refs = btrfs_extent_refs(leaf, ei);
1695 refs += refs_to_add;
1696 btrfs_set_extent_refs(leaf, ei, refs);
1697 if (extent_op)
1698 __run_delayed_extent_op(extent_op, leaf, ei);
1699
1700 ptr = (unsigned long)ei + item_offset;
1701 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1702 if (ptr < end - size)
1703 memmove_extent_buffer(leaf, ptr + size, ptr,
1704 end - size - ptr);
1705
1706 iref = (struct btrfs_extent_inline_ref *)ptr;
1707 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1708 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1709 struct btrfs_extent_data_ref *dref;
1710 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1711 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1712 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1713 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1714 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1715 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1716 struct btrfs_shared_data_ref *sref;
1717 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1718 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 } else {
1723 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1724 }
1725 btrfs_mark_buffer_dirty(leaf);
1726 }
1727
1728 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1729 struct btrfs_root *root,
1730 struct btrfs_path *path,
1731 struct btrfs_extent_inline_ref **ref_ret,
1732 u64 bytenr, u64 num_bytes, u64 parent,
1733 u64 root_objectid, u64 owner, u64 offset)
1734 {
1735 int ret;
1736
1737 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1738 bytenr, num_bytes, parent,
1739 root_objectid, owner, offset, 0);
1740 if (ret != -ENOENT)
1741 return ret;
1742
1743 btrfs_release_path(path);
1744 *ref_ret = NULL;
1745
1746 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1747 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1748 root_objectid);
1749 } else {
1750 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1751 root_objectid, owner, offset);
1752 }
1753 return ret;
1754 }
1755
1756 /*
1757 * helper to update/remove inline back ref
1758 */
1759 static noinline_for_stack
1760 void update_inline_extent_backref(struct btrfs_root *root,
1761 struct btrfs_path *path,
1762 struct btrfs_extent_inline_ref *iref,
1763 int refs_to_mod,
1764 struct btrfs_delayed_extent_op *extent_op,
1765 int *last_ref)
1766 {
1767 struct extent_buffer *leaf;
1768 struct btrfs_extent_item *ei;
1769 struct btrfs_extent_data_ref *dref = NULL;
1770 struct btrfs_shared_data_ref *sref = NULL;
1771 unsigned long ptr;
1772 unsigned long end;
1773 u32 item_size;
1774 int size;
1775 int type;
1776 u64 refs;
1777
1778 leaf = path->nodes[0];
1779 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1780 refs = btrfs_extent_refs(leaf, ei);
1781 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1782 refs += refs_to_mod;
1783 btrfs_set_extent_refs(leaf, ei, refs);
1784 if (extent_op)
1785 __run_delayed_extent_op(extent_op, leaf, ei);
1786
1787 type = btrfs_extent_inline_ref_type(leaf, iref);
1788
1789 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1790 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1791 refs = btrfs_extent_data_ref_count(leaf, dref);
1792 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1793 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1794 refs = btrfs_shared_data_ref_count(leaf, sref);
1795 } else {
1796 refs = 1;
1797 BUG_ON(refs_to_mod != -1);
1798 }
1799
1800 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1801 refs += refs_to_mod;
1802
1803 if (refs > 0) {
1804 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1805 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1806 else
1807 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1808 } else {
1809 *last_ref = 1;
1810 size = btrfs_extent_inline_ref_size(type);
1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 ptr = (unsigned long)iref;
1813 end = (unsigned long)ei + item_size;
1814 if (ptr + size < end)
1815 memmove_extent_buffer(leaf, ptr, ptr + size,
1816 end - ptr - size);
1817 item_size -= size;
1818 btrfs_truncate_item(root, path, item_size, 1);
1819 }
1820 btrfs_mark_buffer_dirty(leaf);
1821 }
1822
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 bytenr, num_bytes, parent,
1837 root_objectid, owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(root, path, iref,
1841 refs_to_add, extent_op, NULL);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(root, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849 }
1850
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 struct btrfs_path *path,
1854 u64 bytenr, u64 parent, u64 root_objectid,
1855 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 int ret;
1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 BUG_ON(refs_to_add != 1);
1860 ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 parent, root_objectid);
1862 } else {
1863 ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 parent, root_objectid,
1865 owner, offset, refs_to_add);
1866 }
1867 return ret;
1868 }
1869
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root,
1872 struct btrfs_path *path,
1873 struct btrfs_extent_inline_ref *iref,
1874 int refs_to_drop, int is_data, int *last_ref)
1875 {
1876 int ret = 0;
1877
1878 BUG_ON(!is_data && refs_to_drop != 1);
1879 if (iref) {
1880 update_inline_extent_backref(root, path, iref,
1881 -refs_to_drop, NULL, last_ref);
1882 } else if (is_data) {
1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1884 last_ref);
1885 } else {
1886 *last_ref = 1;
1887 ret = btrfs_del_item(trans, root, path);
1888 }
1889 return ret;
1890 }
1891
1892 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1893 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1894 u64 *discarded_bytes)
1895 {
1896 int j, ret = 0;
1897 u64 bytes_left, end;
1898 u64 aligned_start = ALIGN(start, 1 << 9);
1899
1900 if (WARN_ON(start != aligned_start)) {
1901 len -= aligned_start - start;
1902 len = round_down(len, 1 << 9);
1903 start = aligned_start;
1904 }
1905
1906 *discarded_bytes = 0;
1907
1908 if (!len)
1909 return 0;
1910
1911 end = start + len;
1912 bytes_left = len;
1913
1914 /* Skip any superblocks on this device. */
1915 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1916 u64 sb_start = btrfs_sb_offset(j);
1917 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1918 u64 size = sb_start - start;
1919
1920 if (!in_range(sb_start, start, bytes_left) &&
1921 !in_range(sb_end, start, bytes_left) &&
1922 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1923 continue;
1924
1925 /*
1926 * Superblock spans beginning of range. Adjust start and
1927 * try again.
1928 */
1929 if (sb_start <= start) {
1930 start += sb_end - start;
1931 if (start > end) {
1932 bytes_left = 0;
1933 break;
1934 }
1935 bytes_left = end - start;
1936 continue;
1937 }
1938
1939 if (size) {
1940 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1941 GFP_NOFS, 0);
1942 if (!ret)
1943 *discarded_bytes += size;
1944 else if (ret != -EOPNOTSUPP)
1945 return ret;
1946 }
1947
1948 start = sb_end;
1949 if (start > end) {
1950 bytes_left = 0;
1951 break;
1952 }
1953 bytes_left = end - start;
1954 }
1955
1956 if (bytes_left) {
1957 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1958 GFP_NOFS, 0);
1959 if (!ret)
1960 *discarded_bytes += bytes_left;
1961 }
1962 return ret;
1963 }
1964
1965 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1966 u64 num_bytes, u64 *actual_bytes)
1967 {
1968 int ret;
1969 u64 discarded_bytes = 0;
1970 struct btrfs_bio *bbio = NULL;
1971
1972
1973 /* Tell the block device(s) that the sectors can be discarded */
1974 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1975 bytenr, &num_bytes, &bbio, 0);
1976 /* Error condition is -ENOMEM */
1977 if (!ret) {
1978 struct btrfs_bio_stripe *stripe = bbio->stripes;
1979 int i;
1980
1981
1982 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1983 u64 bytes;
1984 if (!stripe->dev->can_discard)
1985 continue;
1986
1987 ret = btrfs_issue_discard(stripe->dev->bdev,
1988 stripe->physical,
1989 stripe->length,
1990 &bytes);
1991 if (!ret)
1992 discarded_bytes += bytes;
1993 else if (ret != -EOPNOTSUPP)
1994 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1995
1996 /*
1997 * Just in case we get back EOPNOTSUPP for some reason,
1998 * just ignore the return value so we don't screw up
1999 * people calling discard_extent.
2000 */
2001 ret = 0;
2002 }
2003 btrfs_put_bbio(bbio);
2004 }
2005
2006 if (actual_bytes)
2007 *actual_bytes = discarded_bytes;
2008
2009
2010 if (ret == -EOPNOTSUPP)
2011 ret = 0;
2012 return ret;
2013 }
2014
2015 /* Can return -ENOMEM */
2016 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2017 struct btrfs_root *root,
2018 u64 bytenr, u64 num_bytes, u64 parent,
2019 u64 root_objectid, u64 owner, u64 offset,
2020 int no_quota)
2021 {
2022 int ret;
2023 struct btrfs_fs_info *fs_info = root->fs_info;
2024
2025 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2026 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2027
2028 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2029 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2030 num_bytes,
2031 parent, root_objectid, (int)owner,
2032 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2033 } else {
2034 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2035 num_bytes,
2036 parent, root_objectid, owner, offset,
2037 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
2038 }
2039 return ret;
2040 }
2041
2042 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2043 struct btrfs_root *root,
2044 struct btrfs_delayed_ref_node *node,
2045 u64 parent, u64 root_objectid,
2046 u64 owner, u64 offset, int refs_to_add,
2047 struct btrfs_delayed_extent_op *extent_op)
2048 {
2049 struct btrfs_fs_info *fs_info = root->fs_info;
2050 struct btrfs_path *path;
2051 struct extent_buffer *leaf;
2052 struct btrfs_extent_item *item;
2053 struct btrfs_key key;
2054 u64 bytenr = node->bytenr;
2055 u64 num_bytes = node->num_bytes;
2056 u64 refs;
2057 int ret;
2058 int no_quota = node->no_quota;
2059
2060 path = btrfs_alloc_path();
2061 if (!path)
2062 return -ENOMEM;
2063
2064 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2065 no_quota = 1;
2066
2067 path->reada = 1;
2068 path->leave_spinning = 1;
2069 /* this will setup the path even if it fails to insert the back ref */
2070 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2071 bytenr, num_bytes, parent,
2072 root_objectid, owner, offset,
2073 refs_to_add, extent_op);
2074 if ((ret < 0 && ret != -EAGAIN) || !ret)
2075 goto out;
2076
2077 /*
2078 * Ok we had -EAGAIN which means we didn't have space to insert and
2079 * inline extent ref, so just update the reference count and add a
2080 * normal backref.
2081 */
2082 leaf = path->nodes[0];
2083 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2084 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2085 refs = btrfs_extent_refs(leaf, item);
2086 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2087 if (extent_op)
2088 __run_delayed_extent_op(extent_op, leaf, item);
2089
2090 btrfs_mark_buffer_dirty(leaf);
2091 btrfs_release_path(path);
2092
2093 path->reada = 1;
2094 path->leave_spinning = 1;
2095 /* now insert the actual backref */
2096 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2097 path, bytenr, parent, root_objectid,
2098 owner, offset, refs_to_add);
2099 if (ret)
2100 btrfs_abort_transaction(trans, root, ret);
2101 out:
2102 btrfs_free_path(path);
2103 return ret;
2104 }
2105
2106 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2107 struct btrfs_root *root,
2108 struct btrfs_delayed_ref_node *node,
2109 struct btrfs_delayed_extent_op *extent_op,
2110 int insert_reserved)
2111 {
2112 int ret = 0;
2113 struct btrfs_delayed_data_ref *ref;
2114 struct btrfs_key ins;
2115 u64 parent = 0;
2116 u64 ref_root = 0;
2117 u64 flags = 0;
2118
2119 ins.objectid = node->bytenr;
2120 ins.offset = node->num_bytes;
2121 ins.type = BTRFS_EXTENT_ITEM_KEY;
2122
2123 ref = btrfs_delayed_node_to_data_ref(node);
2124 trace_run_delayed_data_ref(node, ref, node->action);
2125
2126 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2127 parent = ref->parent;
2128 ref_root = ref->root;
2129
2130 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2131 if (extent_op)
2132 flags |= extent_op->flags_to_set;
2133 ret = alloc_reserved_file_extent(trans, root,
2134 parent, ref_root, flags,
2135 ref->objectid, ref->offset,
2136 &ins, node->ref_mod);
2137 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2138 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2139 ref_root, ref->objectid,
2140 ref->offset, node->ref_mod,
2141 extent_op);
2142 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2143 ret = __btrfs_free_extent(trans, root, node, parent,
2144 ref_root, ref->objectid,
2145 ref->offset, node->ref_mod,
2146 extent_op);
2147 } else {
2148 BUG();
2149 }
2150 return ret;
2151 }
2152
2153 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2154 struct extent_buffer *leaf,
2155 struct btrfs_extent_item *ei)
2156 {
2157 u64 flags = btrfs_extent_flags(leaf, ei);
2158 if (extent_op->update_flags) {
2159 flags |= extent_op->flags_to_set;
2160 btrfs_set_extent_flags(leaf, ei, flags);
2161 }
2162
2163 if (extent_op->update_key) {
2164 struct btrfs_tree_block_info *bi;
2165 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2166 bi = (struct btrfs_tree_block_info *)(ei + 1);
2167 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2168 }
2169 }
2170
2171 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2172 struct btrfs_root *root,
2173 struct btrfs_delayed_ref_node *node,
2174 struct btrfs_delayed_extent_op *extent_op)
2175 {
2176 struct btrfs_key key;
2177 struct btrfs_path *path;
2178 struct btrfs_extent_item *ei;
2179 struct extent_buffer *leaf;
2180 u32 item_size;
2181 int ret;
2182 int err = 0;
2183 int metadata = !extent_op->is_data;
2184
2185 if (trans->aborted)
2186 return 0;
2187
2188 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2189 metadata = 0;
2190
2191 path = btrfs_alloc_path();
2192 if (!path)
2193 return -ENOMEM;
2194
2195 key.objectid = node->bytenr;
2196
2197 if (metadata) {
2198 key.type = BTRFS_METADATA_ITEM_KEY;
2199 key.offset = extent_op->level;
2200 } else {
2201 key.type = BTRFS_EXTENT_ITEM_KEY;
2202 key.offset = node->num_bytes;
2203 }
2204
2205 again:
2206 path->reada = 1;
2207 path->leave_spinning = 1;
2208 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2209 path, 0, 1);
2210 if (ret < 0) {
2211 err = ret;
2212 goto out;
2213 }
2214 if (ret > 0) {
2215 if (metadata) {
2216 if (path->slots[0] > 0) {
2217 path->slots[0]--;
2218 btrfs_item_key_to_cpu(path->nodes[0], &key,
2219 path->slots[0]);
2220 if (key.objectid == node->bytenr &&
2221 key.type == BTRFS_EXTENT_ITEM_KEY &&
2222 key.offset == node->num_bytes)
2223 ret = 0;
2224 }
2225 if (ret > 0) {
2226 btrfs_release_path(path);
2227 metadata = 0;
2228
2229 key.objectid = node->bytenr;
2230 key.offset = node->num_bytes;
2231 key.type = BTRFS_EXTENT_ITEM_KEY;
2232 goto again;
2233 }
2234 } else {
2235 err = -EIO;
2236 goto out;
2237 }
2238 }
2239
2240 leaf = path->nodes[0];
2241 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2242 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2243 if (item_size < sizeof(*ei)) {
2244 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2245 path, (u64)-1, 0);
2246 if (ret < 0) {
2247 err = ret;
2248 goto out;
2249 }
2250 leaf = path->nodes[0];
2251 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2252 }
2253 #endif
2254 BUG_ON(item_size < sizeof(*ei));
2255 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2256 __run_delayed_extent_op(extent_op, leaf, ei);
2257
2258 btrfs_mark_buffer_dirty(leaf);
2259 out:
2260 btrfs_free_path(path);
2261 return err;
2262 }
2263
2264 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2265 struct btrfs_root *root,
2266 struct btrfs_delayed_ref_node *node,
2267 struct btrfs_delayed_extent_op *extent_op,
2268 int insert_reserved)
2269 {
2270 int ret = 0;
2271 struct btrfs_delayed_tree_ref *ref;
2272 struct btrfs_key ins;
2273 u64 parent = 0;
2274 u64 ref_root = 0;
2275 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2276 SKINNY_METADATA);
2277
2278 ref = btrfs_delayed_node_to_tree_ref(node);
2279 trace_run_delayed_tree_ref(node, ref, node->action);
2280
2281 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2282 parent = ref->parent;
2283 ref_root = ref->root;
2284
2285 ins.objectid = node->bytenr;
2286 if (skinny_metadata) {
2287 ins.offset = ref->level;
2288 ins.type = BTRFS_METADATA_ITEM_KEY;
2289 } else {
2290 ins.offset = node->num_bytes;
2291 ins.type = BTRFS_EXTENT_ITEM_KEY;
2292 }
2293
2294 BUG_ON(node->ref_mod != 1);
2295 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2296 BUG_ON(!extent_op || !extent_op->update_flags);
2297 ret = alloc_reserved_tree_block(trans, root,
2298 parent, ref_root,
2299 extent_op->flags_to_set,
2300 &extent_op->key,
2301 ref->level, &ins,
2302 node->no_quota);
2303 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2304 ret = __btrfs_inc_extent_ref(trans, root, node,
2305 parent, ref_root,
2306 ref->level, 0, 1,
2307 extent_op);
2308 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2309 ret = __btrfs_free_extent(trans, root, node,
2310 parent, ref_root,
2311 ref->level, 0, 1, extent_op);
2312 } else {
2313 BUG();
2314 }
2315 return ret;
2316 }
2317
2318 /* helper function to actually process a single delayed ref entry */
2319 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2320 struct btrfs_root *root,
2321 struct btrfs_delayed_ref_node *node,
2322 struct btrfs_delayed_extent_op *extent_op,
2323 int insert_reserved)
2324 {
2325 int ret = 0;
2326
2327 if (trans->aborted) {
2328 if (insert_reserved)
2329 btrfs_pin_extent(root, node->bytenr,
2330 node->num_bytes, 1);
2331 return 0;
2332 }
2333
2334 if (btrfs_delayed_ref_is_head(node)) {
2335 struct btrfs_delayed_ref_head *head;
2336 /*
2337 * we've hit the end of the chain and we were supposed
2338 * to insert this extent into the tree. But, it got
2339 * deleted before we ever needed to insert it, so all
2340 * we have to do is clean up the accounting
2341 */
2342 BUG_ON(extent_op);
2343 head = btrfs_delayed_node_to_head(node);
2344 trace_run_delayed_ref_head(node, head, node->action);
2345
2346 if (insert_reserved) {
2347 btrfs_pin_extent(root, node->bytenr,
2348 node->num_bytes, 1);
2349 if (head->is_data) {
2350 ret = btrfs_del_csums(trans, root,
2351 node->bytenr,
2352 node->num_bytes);
2353 }
2354 }
2355 return ret;
2356 }
2357
2358 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2359 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2360 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2361 insert_reserved);
2362 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2363 node->type == BTRFS_SHARED_DATA_REF_KEY)
2364 ret = run_delayed_data_ref(trans, root, node, extent_op,
2365 insert_reserved);
2366 else
2367 BUG();
2368 return ret;
2369 }
2370
2371 static inline struct btrfs_delayed_ref_node *
2372 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2373 {
2374 struct btrfs_delayed_ref_node *ref;
2375
2376 if (list_empty(&head->ref_list))
2377 return NULL;
2378
2379 /*
2380 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2381 * This is to prevent a ref count from going down to zero, which deletes
2382 * the extent item from the extent tree, when there still are references
2383 * to add, which would fail because they would not find the extent item.
2384 */
2385 list_for_each_entry(ref, &head->ref_list, list) {
2386 if (ref->action == BTRFS_ADD_DELAYED_REF)
2387 return ref;
2388 }
2389
2390 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2391 list);
2392 }
2393
2394 /*
2395 * Returns 0 on success or if called with an already aborted transaction.
2396 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2397 */
2398 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2399 struct btrfs_root *root,
2400 unsigned long nr)
2401 {
2402 struct btrfs_delayed_ref_root *delayed_refs;
2403 struct btrfs_delayed_ref_node *ref;
2404 struct btrfs_delayed_ref_head *locked_ref = NULL;
2405 struct btrfs_delayed_extent_op *extent_op;
2406 struct btrfs_fs_info *fs_info = root->fs_info;
2407 ktime_t start = ktime_get();
2408 int ret;
2409 unsigned long count = 0;
2410 unsigned long actual_count = 0;
2411 int must_insert_reserved = 0;
2412
2413 delayed_refs = &trans->transaction->delayed_refs;
2414 while (1) {
2415 if (!locked_ref) {
2416 if (count >= nr)
2417 break;
2418
2419 spin_lock(&delayed_refs->lock);
2420 locked_ref = btrfs_select_ref_head(trans);
2421 if (!locked_ref) {
2422 spin_unlock(&delayed_refs->lock);
2423 break;
2424 }
2425
2426 /* grab the lock that says we are going to process
2427 * all the refs for this head */
2428 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2429 spin_unlock(&delayed_refs->lock);
2430 /*
2431 * we may have dropped the spin lock to get the head
2432 * mutex lock, and that might have given someone else
2433 * time to free the head. If that's true, it has been
2434 * removed from our list and we can move on.
2435 */
2436 if (ret == -EAGAIN) {
2437 locked_ref = NULL;
2438 count++;
2439 continue;
2440 }
2441 }
2442
2443 spin_lock(&locked_ref->lock);
2444
2445 /*
2446 * locked_ref is the head node, so we have to go one
2447 * node back for any delayed ref updates
2448 */
2449 ref = select_delayed_ref(locked_ref);
2450
2451 if (ref && ref->seq &&
2452 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2453 spin_unlock(&locked_ref->lock);
2454 btrfs_delayed_ref_unlock(locked_ref);
2455 spin_lock(&delayed_refs->lock);
2456 locked_ref->processing = 0;
2457 delayed_refs->num_heads_ready++;
2458 spin_unlock(&delayed_refs->lock);
2459 locked_ref = NULL;
2460 cond_resched();
2461 count++;
2462 continue;
2463 }
2464
2465 /*
2466 * record the must insert reserved flag before we
2467 * drop the spin lock.
2468 */
2469 must_insert_reserved = locked_ref->must_insert_reserved;
2470 locked_ref->must_insert_reserved = 0;
2471
2472 extent_op = locked_ref->extent_op;
2473 locked_ref->extent_op = NULL;
2474
2475 if (!ref) {
2476
2477
2478 /* All delayed refs have been processed, Go ahead
2479 * and send the head node to run_one_delayed_ref,
2480 * so that any accounting fixes can happen
2481 */
2482 ref = &locked_ref->node;
2483
2484 if (extent_op && must_insert_reserved) {
2485 btrfs_free_delayed_extent_op(extent_op);
2486 extent_op = NULL;
2487 }
2488
2489 if (extent_op) {
2490 spin_unlock(&locked_ref->lock);
2491 ret = run_delayed_extent_op(trans, root,
2492 ref, extent_op);
2493 btrfs_free_delayed_extent_op(extent_op);
2494
2495 if (ret) {
2496 /*
2497 * Need to reset must_insert_reserved if
2498 * there was an error so the abort stuff
2499 * can cleanup the reserved space
2500 * properly.
2501 */
2502 if (must_insert_reserved)
2503 locked_ref->must_insert_reserved = 1;
2504 locked_ref->processing = 0;
2505 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2506 btrfs_delayed_ref_unlock(locked_ref);
2507 return ret;
2508 }
2509 continue;
2510 }
2511
2512 /*
2513 * Need to drop our head ref lock and re-aqcuire the
2514 * delayed ref lock and then re-check to make sure
2515 * nobody got added.
2516 */
2517 spin_unlock(&locked_ref->lock);
2518 spin_lock(&delayed_refs->lock);
2519 spin_lock(&locked_ref->lock);
2520 if (!list_empty(&locked_ref->ref_list) ||
2521 locked_ref->extent_op) {
2522 spin_unlock(&locked_ref->lock);
2523 spin_unlock(&delayed_refs->lock);
2524 continue;
2525 }
2526 ref->in_tree = 0;
2527 delayed_refs->num_heads--;
2528 rb_erase(&locked_ref->href_node,
2529 &delayed_refs->href_root);
2530 spin_unlock(&delayed_refs->lock);
2531 } else {
2532 actual_count++;
2533 ref->in_tree = 0;
2534 list_del(&ref->list);
2535 }
2536 atomic_dec(&delayed_refs->num_entries);
2537
2538 if (!btrfs_delayed_ref_is_head(ref)) {
2539 /*
2540 * when we play the delayed ref, also correct the
2541 * ref_mod on head
2542 */
2543 switch (ref->action) {
2544 case BTRFS_ADD_DELAYED_REF:
2545 case BTRFS_ADD_DELAYED_EXTENT:
2546 locked_ref->node.ref_mod -= ref->ref_mod;
2547 break;
2548 case BTRFS_DROP_DELAYED_REF:
2549 locked_ref->node.ref_mod += ref->ref_mod;
2550 break;
2551 default:
2552 WARN_ON(1);
2553 }
2554 }
2555 spin_unlock(&locked_ref->lock);
2556
2557 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2558 must_insert_reserved);
2559
2560 btrfs_free_delayed_extent_op(extent_op);
2561 if (ret) {
2562 locked_ref->processing = 0;
2563 btrfs_delayed_ref_unlock(locked_ref);
2564 btrfs_put_delayed_ref(ref);
2565 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2566 return ret;
2567 }
2568
2569 /*
2570 * If this node is a head, that means all the refs in this head
2571 * have been dealt with, and we will pick the next head to deal
2572 * with, so we must unlock the head and drop it from the cluster
2573 * list before we release it.
2574 */
2575 if (btrfs_delayed_ref_is_head(ref)) {
2576 if (locked_ref->is_data &&
2577 locked_ref->total_ref_mod < 0) {
2578 spin_lock(&delayed_refs->lock);
2579 delayed_refs->pending_csums -= ref->num_bytes;
2580 spin_unlock(&delayed_refs->lock);
2581 }
2582 btrfs_delayed_ref_unlock(locked_ref);
2583 locked_ref = NULL;
2584 }
2585 btrfs_put_delayed_ref(ref);
2586 count++;
2587 cond_resched();
2588 }
2589
2590 /*
2591 * We don't want to include ref heads since we can have empty ref heads
2592 * and those will drastically skew our runtime down since we just do
2593 * accounting, no actual extent tree updates.
2594 */
2595 if (actual_count > 0) {
2596 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2597 u64 avg;
2598
2599 /*
2600 * We weigh the current average higher than our current runtime
2601 * to avoid large swings in the average.
2602 */
2603 spin_lock(&delayed_refs->lock);
2604 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2605 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2606 spin_unlock(&delayed_refs->lock);
2607 }
2608 return 0;
2609 }
2610
2611 #ifdef SCRAMBLE_DELAYED_REFS
2612 /*
2613 * Normally delayed refs get processed in ascending bytenr order. This
2614 * correlates in most cases to the order added. To expose dependencies on this
2615 * order, we start to process the tree in the middle instead of the beginning
2616 */
2617 static u64 find_middle(struct rb_root *root)
2618 {
2619 struct rb_node *n = root->rb_node;
2620 struct btrfs_delayed_ref_node *entry;
2621 int alt = 1;
2622 u64 middle;
2623 u64 first = 0, last = 0;
2624
2625 n = rb_first(root);
2626 if (n) {
2627 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2628 first = entry->bytenr;
2629 }
2630 n = rb_last(root);
2631 if (n) {
2632 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2633 last = entry->bytenr;
2634 }
2635 n = root->rb_node;
2636
2637 while (n) {
2638 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2639 WARN_ON(!entry->in_tree);
2640
2641 middle = entry->bytenr;
2642
2643 if (alt)
2644 n = n->rb_left;
2645 else
2646 n = n->rb_right;
2647
2648 alt = 1 - alt;
2649 }
2650 return middle;
2651 }
2652 #endif
2653
2654 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2655 {
2656 u64 num_bytes;
2657
2658 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2659 sizeof(struct btrfs_extent_inline_ref));
2660 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2661 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2662
2663 /*
2664 * We don't ever fill up leaves all the way so multiply by 2 just to be
2665 * closer to what we're really going to want to ouse.
2666 */
2667 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2668 }
2669
2670 /*
2671 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2672 * would require to store the csums for that many bytes.
2673 */
2674 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2675 {
2676 u64 csum_size;
2677 u64 num_csums_per_leaf;
2678 u64 num_csums;
2679
2680 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2681 num_csums_per_leaf = div64_u64(csum_size,
2682 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2683 num_csums = div64_u64(csum_bytes, root->sectorsize);
2684 num_csums += num_csums_per_leaf - 1;
2685 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2686 return num_csums;
2687 }
2688
2689 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2690 struct btrfs_root *root)
2691 {
2692 struct btrfs_block_rsv *global_rsv;
2693 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2694 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2695 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2696 u64 num_bytes, num_dirty_bgs_bytes;
2697 int ret = 0;
2698
2699 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2700 num_heads = heads_to_leaves(root, num_heads);
2701 if (num_heads > 1)
2702 num_bytes += (num_heads - 1) * root->nodesize;
2703 num_bytes <<= 1;
2704 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2705 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2706 num_dirty_bgs);
2707 global_rsv = &root->fs_info->global_block_rsv;
2708
2709 /*
2710 * If we can't allocate any more chunks lets make sure we have _lots_ of
2711 * wiggle room since running delayed refs can create more delayed refs.
2712 */
2713 if (global_rsv->space_info->full) {
2714 num_dirty_bgs_bytes <<= 1;
2715 num_bytes <<= 1;
2716 }
2717
2718 spin_lock(&global_rsv->lock);
2719 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2720 ret = 1;
2721 spin_unlock(&global_rsv->lock);
2722 return ret;
2723 }
2724
2725 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2726 struct btrfs_root *root)
2727 {
2728 struct btrfs_fs_info *fs_info = root->fs_info;
2729 u64 num_entries =
2730 atomic_read(&trans->transaction->delayed_refs.num_entries);
2731 u64 avg_runtime;
2732 u64 val;
2733
2734 smp_mb();
2735 avg_runtime = fs_info->avg_delayed_ref_runtime;
2736 val = num_entries * avg_runtime;
2737 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2738 return 1;
2739 if (val >= NSEC_PER_SEC / 2)
2740 return 2;
2741
2742 return btrfs_check_space_for_delayed_refs(trans, root);
2743 }
2744
2745 struct async_delayed_refs {
2746 struct btrfs_root *root;
2747 int count;
2748 int error;
2749 int sync;
2750 struct completion wait;
2751 struct btrfs_work work;
2752 };
2753
2754 static void delayed_ref_async_start(struct btrfs_work *work)
2755 {
2756 struct async_delayed_refs *async;
2757 struct btrfs_trans_handle *trans;
2758 int ret;
2759
2760 async = container_of(work, struct async_delayed_refs, work);
2761
2762 trans = btrfs_join_transaction(async->root);
2763 if (IS_ERR(trans)) {
2764 async->error = PTR_ERR(trans);
2765 goto done;
2766 }
2767
2768 /*
2769 * trans->sync means that when we call end_transaciton, we won't
2770 * wait on delayed refs
2771 */
2772 trans->sync = true;
2773 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2774 if (ret)
2775 async->error = ret;
2776
2777 ret = btrfs_end_transaction(trans, async->root);
2778 if (ret && !async->error)
2779 async->error = ret;
2780 done:
2781 if (async->sync)
2782 complete(&async->wait);
2783 else
2784 kfree(async);
2785 }
2786
2787 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2788 unsigned long count, int wait)
2789 {
2790 struct async_delayed_refs *async;
2791 int ret;
2792
2793 async = kmalloc(sizeof(*async), GFP_NOFS);
2794 if (!async)
2795 return -ENOMEM;
2796
2797 async->root = root->fs_info->tree_root;
2798 async->count = count;
2799 async->error = 0;
2800 if (wait)
2801 async->sync = 1;
2802 else
2803 async->sync = 0;
2804 init_completion(&async->wait);
2805
2806 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2807 delayed_ref_async_start, NULL, NULL);
2808
2809 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2810
2811 if (wait) {
2812 wait_for_completion(&async->wait);
2813 ret = async->error;
2814 kfree(async);
2815 return ret;
2816 }
2817 return 0;
2818 }
2819
2820 /*
2821 * this starts processing the delayed reference count updates and
2822 * extent insertions we have queued up so far. count can be
2823 * 0, which means to process everything in the tree at the start
2824 * of the run (but not newly added entries), or it can be some target
2825 * number you'd like to process.
2826 *
2827 * Returns 0 on success or if called with an aborted transaction
2828 * Returns <0 on error and aborts the transaction
2829 */
2830 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2831 struct btrfs_root *root, unsigned long count)
2832 {
2833 struct rb_node *node;
2834 struct btrfs_delayed_ref_root *delayed_refs;
2835 struct btrfs_delayed_ref_head *head;
2836 int ret;
2837 int run_all = count == (unsigned long)-1;
2838 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2839
2840 /* We'll clean this up in btrfs_cleanup_transaction */
2841 if (trans->aborted)
2842 return 0;
2843
2844 if (root == root->fs_info->extent_root)
2845 root = root->fs_info->tree_root;
2846
2847 delayed_refs = &trans->transaction->delayed_refs;
2848 if (count == 0)
2849 count = atomic_read(&delayed_refs->num_entries) * 2;
2850
2851 again:
2852 #ifdef SCRAMBLE_DELAYED_REFS
2853 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2854 #endif
2855 trans->can_flush_pending_bgs = false;
2856 ret = __btrfs_run_delayed_refs(trans, root, count);
2857 if (ret < 0) {
2858 btrfs_abort_transaction(trans, root, ret);
2859 return ret;
2860 }
2861
2862 if (run_all) {
2863 if (!list_empty(&trans->new_bgs))
2864 btrfs_create_pending_block_groups(trans, root);
2865
2866 spin_lock(&delayed_refs->lock);
2867 node = rb_first(&delayed_refs->href_root);
2868 if (!node) {
2869 spin_unlock(&delayed_refs->lock);
2870 goto out;
2871 }
2872 count = (unsigned long)-1;
2873
2874 while (node) {
2875 head = rb_entry(node, struct btrfs_delayed_ref_head,
2876 href_node);
2877 if (btrfs_delayed_ref_is_head(&head->node)) {
2878 struct btrfs_delayed_ref_node *ref;
2879
2880 ref = &head->node;
2881 atomic_inc(&ref->refs);
2882
2883 spin_unlock(&delayed_refs->lock);
2884 /*
2885 * Mutex was contended, block until it's
2886 * released and try again
2887 */
2888 mutex_lock(&head->mutex);
2889 mutex_unlock(&head->mutex);
2890
2891 btrfs_put_delayed_ref(ref);
2892 cond_resched();
2893 goto again;
2894 } else {
2895 WARN_ON(1);
2896 }
2897 node = rb_next(node);
2898 }
2899 spin_unlock(&delayed_refs->lock);
2900 cond_resched();
2901 goto again;
2902 }
2903 out:
2904 assert_qgroups_uptodate(trans);
2905 trans->can_flush_pending_bgs = can_flush_pending_bgs;
2906 return 0;
2907 }
2908
2909 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2910 struct btrfs_root *root,
2911 u64 bytenr, u64 num_bytes, u64 flags,
2912 int level, int is_data)
2913 {
2914 struct btrfs_delayed_extent_op *extent_op;
2915 int ret;
2916
2917 extent_op = btrfs_alloc_delayed_extent_op();
2918 if (!extent_op)
2919 return -ENOMEM;
2920
2921 extent_op->flags_to_set = flags;
2922 extent_op->update_flags = 1;
2923 extent_op->update_key = 0;
2924 extent_op->is_data = is_data ? 1 : 0;
2925 extent_op->level = level;
2926
2927 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2928 num_bytes, extent_op);
2929 if (ret)
2930 btrfs_free_delayed_extent_op(extent_op);
2931 return ret;
2932 }
2933
2934 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *root,
2936 struct btrfs_path *path,
2937 u64 objectid, u64 offset, u64 bytenr)
2938 {
2939 struct btrfs_delayed_ref_head *head;
2940 struct btrfs_delayed_ref_node *ref;
2941 struct btrfs_delayed_data_ref *data_ref;
2942 struct btrfs_delayed_ref_root *delayed_refs;
2943 int ret = 0;
2944
2945 delayed_refs = &trans->transaction->delayed_refs;
2946 spin_lock(&delayed_refs->lock);
2947 head = btrfs_find_delayed_ref_head(trans, bytenr);
2948 if (!head) {
2949 spin_unlock(&delayed_refs->lock);
2950 return 0;
2951 }
2952
2953 if (!mutex_trylock(&head->mutex)) {
2954 atomic_inc(&head->node.refs);
2955 spin_unlock(&delayed_refs->lock);
2956
2957 btrfs_release_path(path);
2958
2959 /*
2960 * Mutex was contended, block until it's released and let
2961 * caller try again
2962 */
2963 mutex_lock(&head->mutex);
2964 mutex_unlock(&head->mutex);
2965 btrfs_put_delayed_ref(&head->node);
2966 return -EAGAIN;
2967 }
2968 spin_unlock(&delayed_refs->lock);
2969
2970 spin_lock(&head->lock);
2971 list_for_each_entry(ref, &head->ref_list, list) {
2972 /* If it's a shared ref we know a cross reference exists */
2973 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2974 ret = 1;
2975 break;
2976 }
2977
2978 data_ref = btrfs_delayed_node_to_data_ref(ref);
2979
2980 /*
2981 * If our ref doesn't match the one we're currently looking at
2982 * then we have a cross reference.
2983 */
2984 if (data_ref->root != root->root_key.objectid ||
2985 data_ref->objectid != objectid ||
2986 data_ref->offset != offset) {
2987 ret = 1;
2988 break;
2989 }
2990 }
2991 spin_unlock(&head->lock);
2992 mutex_unlock(&head->mutex);
2993 return ret;
2994 }
2995
2996 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2997 struct btrfs_root *root,
2998 struct btrfs_path *path,
2999 u64 objectid, u64 offset, u64 bytenr)
3000 {
3001 struct btrfs_root *extent_root = root->fs_info->extent_root;
3002 struct extent_buffer *leaf;
3003 struct btrfs_extent_data_ref *ref;
3004 struct btrfs_extent_inline_ref *iref;
3005 struct btrfs_extent_item *ei;
3006 struct btrfs_key key;
3007 u32 item_size;
3008 int ret;
3009
3010 key.objectid = bytenr;
3011 key.offset = (u64)-1;
3012 key.type = BTRFS_EXTENT_ITEM_KEY;
3013
3014 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3015 if (ret < 0)
3016 goto out;
3017 BUG_ON(ret == 0); /* Corruption */
3018
3019 ret = -ENOENT;
3020 if (path->slots[0] == 0)
3021 goto out;
3022
3023 path->slots[0]--;
3024 leaf = path->nodes[0];
3025 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3026
3027 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3028 goto out;
3029
3030 ret = 1;
3031 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3032 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3033 if (item_size < sizeof(*ei)) {
3034 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3035 goto out;
3036 }
3037 #endif
3038 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3039
3040 if (item_size != sizeof(*ei) +
3041 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3042 goto out;
3043
3044 if (btrfs_extent_generation(leaf, ei) <=
3045 btrfs_root_last_snapshot(&root->root_item))
3046 goto out;
3047
3048 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3049 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3050 BTRFS_EXTENT_DATA_REF_KEY)
3051 goto out;
3052
3053 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3054 if (btrfs_extent_refs(leaf, ei) !=
3055 btrfs_extent_data_ref_count(leaf, ref) ||
3056 btrfs_extent_data_ref_root(leaf, ref) !=
3057 root->root_key.objectid ||
3058 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3059 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3060 goto out;
3061
3062 ret = 0;
3063 out:
3064 return ret;
3065 }
3066
3067 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3068 struct btrfs_root *root,
3069 u64 objectid, u64 offset, u64 bytenr)
3070 {
3071 struct btrfs_path *path;
3072 int ret;
3073 int ret2;
3074
3075 path = btrfs_alloc_path();
3076 if (!path)
3077 return -ENOENT;
3078
3079 do {
3080 ret = check_committed_ref(trans, root, path, objectid,
3081 offset, bytenr);
3082 if (ret && ret != -ENOENT)
3083 goto out;
3084
3085 ret2 = check_delayed_ref(trans, root, path, objectid,
3086 offset, bytenr);
3087 } while (ret2 == -EAGAIN);
3088
3089 if (ret2 && ret2 != -ENOENT) {
3090 ret = ret2;
3091 goto out;
3092 }
3093
3094 if (ret != -ENOENT || ret2 != -ENOENT)
3095 ret = 0;
3096 out:
3097 btrfs_free_path(path);
3098 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3099 WARN_ON(ret > 0);
3100 return ret;
3101 }
3102
3103 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3104 struct btrfs_root *root,
3105 struct extent_buffer *buf,
3106 int full_backref, int inc)
3107 {
3108 u64 bytenr;
3109 u64 num_bytes;
3110 u64 parent;
3111 u64 ref_root;
3112 u32 nritems;
3113 struct btrfs_key key;
3114 struct btrfs_file_extent_item *fi;
3115 int i;
3116 int level;
3117 int ret = 0;
3118 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3119 u64, u64, u64, u64, u64, u64, int);
3120
3121
3122 if (btrfs_test_is_dummy_root(root))
3123 return 0;
3124
3125 ref_root = btrfs_header_owner(buf);
3126 nritems = btrfs_header_nritems(buf);
3127 level = btrfs_header_level(buf);
3128
3129 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3130 return 0;
3131
3132 if (inc)
3133 process_func = btrfs_inc_extent_ref;
3134 else
3135 process_func = btrfs_free_extent;
3136
3137 if (full_backref)
3138 parent = buf->start;
3139 else
3140 parent = 0;
3141
3142 for (i = 0; i < nritems; i++) {
3143 if (level == 0) {
3144 btrfs_item_key_to_cpu(buf, &key, i);
3145 if (key.type != BTRFS_EXTENT_DATA_KEY)
3146 continue;
3147 fi = btrfs_item_ptr(buf, i,
3148 struct btrfs_file_extent_item);
3149 if (btrfs_file_extent_type(buf, fi) ==
3150 BTRFS_FILE_EXTENT_INLINE)
3151 continue;
3152 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3153 if (bytenr == 0)
3154 continue;
3155
3156 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3157 key.offset -= btrfs_file_extent_offset(buf, fi);
3158 ret = process_func(trans, root, bytenr, num_bytes,
3159 parent, ref_root, key.objectid,
3160 key.offset, 1);
3161 if (ret)
3162 goto fail;
3163 } else {
3164 bytenr = btrfs_node_blockptr(buf, i);
3165 num_bytes = root->nodesize;
3166 ret = process_func(trans, root, bytenr, num_bytes,
3167 parent, ref_root, level - 1, 0,
3168 1);
3169 if (ret)
3170 goto fail;
3171 }
3172 }
3173 return 0;
3174 fail:
3175 return ret;
3176 }
3177
3178 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3179 struct extent_buffer *buf, int full_backref)
3180 {
3181 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3182 }
3183
3184 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3185 struct extent_buffer *buf, int full_backref)
3186 {
3187 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3188 }
3189
3190 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3191 struct btrfs_root *root,
3192 struct btrfs_path *path,
3193 struct btrfs_block_group_cache *cache)
3194 {
3195 int ret;
3196 struct btrfs_root *extent_root = root->fs_info->extent_root;
3197 unsigned long bi;
3198 struct extent_buffer *leaf;
3199
3200 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3201 if (ret) {
3202 if (ret > 0)
3203 ret = -ENOENT;
3204 goto fail;
3205 }
3206
3207 leaf = path->nodes[0];
3208 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3209 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3210 btrfs_mark_buffer_dirty(leaf);
3211 fail:
3212 btrfs_release_path(path);
3213 return ret;
3214
3215 }
3216
3217 static struct btrfs_block_group_cache *
3218 next_block_group(struct btrfs_root *root,
3219 struct btrfs_block_group_cache *cache)
3220 {
3221 struct rb_node *node;
3222
3223 spin_lock(&root->fs_info->block_group_cache_lock);
3224
3225 /* If our block group was removed, we need a full search. */
3226 if (RB_EMPTY_NODE(&cache->cache_node)) {
3227 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3228
3229 spin_unlock(&root->fs_info->block_group_cache_lock);
3230 btrfs_put_block_group(cache);
3231 cache = btrfs_lookup_first_block_group(root->fs_info,
3232 next_bytenr);
3233 return cache;
3234 }
3235 node = rb_next(&cache->cache_node);
3236 btrfs_put_block_group(cache);
3237 if (node) {
3238 cache = rb_entry(node, struct btrfs_block_group_cache,
3239 cache_node);
3240 btrfs_get_block_group(cache);
3241 } else
3242 cache = NULL;
3243 spin_unlock(&root->fs_info->block_group_cache_lock);
3244 return cache;
3245 }
3246
3247 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3248 struct btrfs_trans_handle *trans,
3249 struct btrfs_path *path)
3250 {
3251 struct btrfs_root *root = block_group->fs_info->tree_root;
3252 struct inode *inode = NULL;
3253 u64 alloc_hint = 0;
3254 int dcs = BTRFS_DC_ERROR;
3255 u64 num_pages = 0;
3256 int retries = 0;
3257 int ret = 0;
3258
3259 /*
3260 * If this block group is smaller than 100 megs don't bother caching the
3261 * block group.
3262 */
3263 if (block_group->key.offset < (100 * 1024 * 1024)) {
3264 spin_lock(&block_group->lock);
3265 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3266 spin_unlock(&block_group->lock);
3267 return 0;
3268 }
3269
3270 if (trans->aborted)
3271 return 0;
3272 again:
3273 inode = lookup_free_space_inode(root, block_group, path);
3274 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3275 ret = PTR_ERR(inode);
3276 btrfs_release_path(path);
3277 goto out;
3278 }
3279
3280 if (IS_ERR(inode)) {
3281 BUG_ON(retries);
3282 retries++;
3283
3284 if (block_group->ro)
3285 goto out_free;
3286
3287 ret = create_free_space_inode(root, trans, block_group, path);
3288 if (ret)
3289 goto out_free;
3290 goto again;
3291 }
3292
3293 /* We've already setup this transaction, go ahead and exit */
3294 if (block_group->cache_generation == trans->transid &&
3295 i_size_read(inode)) {
3296 dcs = BTRFS_DC_SETUP;
3297 goto out_put;
3298 }
3299
3300 /*
3301 * We want to set the generation to 0, that way if anything goes wrong
3302 * from here on out we know not to trust this cache when we load up next
3303 * time.
3304 */
3305 BTRFS_I(inode)->generation = 0;
3306 ret = btrfs_update_inode(trans, root, inode);
3307 if (ret) {
3308 /*
3309 * So theoretically we could recover from this, simply set the
3310 * super cache generation to 0 so we know to invalidate the
3311 * cache, but then we'd have to keep track of the block groups
3312 * that fail this way so we know we _have_ to reset this cache
3313 * before the next commit or risk reading stale cache. So to
3314 * limit our exposure to horrible edge cases lets just abort the
3315 * transaction, this only happens in really bad situations
3316 * anyway.
3317 */
3318 btrfs_abort_transaction(trans, root, ret);
3319 goto out_put;
3320 }
3321 WARN_ON(ret);
3322
3323 if (i_size_read(inode) > 0) {
3324 ret = btrfs_check_trunc_cache_free_space(root,
3325 &root->fs_info->global_block_rsv);
3326 if (ret)
3327 goto out_put;
3328
3329 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3330 if (ret)
3331 goto out_put;
3332 }
3333
3334 spin_lock(&block_group->lock);
3335 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3336 !btrfs_test_opt(root, SPACE_CACHE)) {
3337 /*
3338 * don't bother trying to write stuff out _if_
3339 * a) we're not cached,
3340 * b) we're with nospace_cache mount option.
3341 */
3342 dcs = BTRFS_DC_WRITTEN;
3343 spin_unlock(&block_group->lock);
3344 goto out_put;
3345 }
3346 spin_unlock(&block_group->lock);
3347
3348 /*
3349 * Try to preallocate enough space based on how big the block group is.
3350 * Keep in mind this has to include any pinned space which could end up
3351 * taking up quite a bit since it's not folded into the other space
3352 * cache.
3353 */
3354 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3355 if (!num_pages)
3356 num_pages = 1;
3357
3358 num_pages *= 16;
3359 num_pages *= PAGE_CACHE_SIZE;
3360
3361 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3362 if (ret)
3363 goto out_put;
3364
3365 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3366 num_pages, num_pages,
3367 &alloc_hint);
3368 if (!ret)
3369 dcs = BTRFS_DC_SETUP;
3370 btrfs_free_reserved_data_space(inode, num_pages);
3371
3372 out_put:
3373 iput(inode);
3374 out_free:
3375 btrfs_release_path(path);
3376 out:
3377 spin_lock(&block_group->lock);
3378 if (!ret && dcs == BTRFS_DC_SETUP)
3379 block_group->cache_generation = trans->transid;
3380 block_group->disk_cache_state = dcs;
3381 spin_unlock(&block_group->lock);
3382
3383 return ret;
3384 }
3385
3386 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3387 struct btrfs_root *root)
3388 {
3389 struct btrfs_block_group_cache *cache, *tmp;
3390 struct btrfs_transaction *cur_trans = trans->transaction;
3391 struct btrfs_path *path;
3392
3393 if (list_empty(&cur_trans->dirty_bgs) ||
3394 !btrfs_test_opt(root, SPACE_CACHE))
3395 return 0;
3396
3397 path = btrfs_alloc_path();
3398 if (!path)
3399 return -ENOMEM;
3400
3401 /* Could add new block groups, use _safe just in case */
3402 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3403 dirty_list) {
3404 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3405 cache_save_setup(cache, trans, path);
3406 }
3407
3408 btrfs_free_path(path);
3409 return 0;
3410 }
3411
3412 /*
3413 * transaction commit does final block group cache writeback during a
3414 * critical section where nothing is allowed to change the FS. This is
3415 * required in order for the cache to actually match the block group,
3416 * but can introduce a lot of latency into the commit.
3417 *
3418 * So, btrfs_start_dirty_block_groups is here to kick off block group
3419 * cache IO. There's a chance we'll have to redo some of it if the
3420 * block group changes again during the commit, but it greatly reduces
3421 * the commit latency by getting rid of the easy block groups while
3422 * we're still allowing others to join the commit.
3423 */
3424 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3425 struct btrfs_root *root)
3426 {
3427 struct btrfs_block_group_cache *cache;
3428 struct btrfs_transaction *cur_trans = trans->transaction;
3429 int ret = 0;
3430 int should_put;
3431 struct btrfs_path *path = NULL;
3432 LIST_HEAD(dirty);
3433 struct list_head *io = &cur_trans->io_bgs;
3434 int num_started = 0;
3435 int loops = 0;
3436
3437 spin_lock(&cur_trans->dirty_bgs_lock);
3438 if (list_empty(&cur_trans->dirty_bgs)) {
3439 spin_unlock(&cur_trans->dirty_bgs_lock);
3440 return 0;
3441 }
3442 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3443 spin_unlock(&cur_trans->dirty_bgs_lock);
3444
3445 again:
3446 /*
3447 * make sure all the block groups on our dirty list actually
3448 * exist
3449 */
3450 btrfs_create_pending_block_groups(trans, root);
3451
3452 if (!path) {
3453 path = btrfs_alloc_path();
3454 if (!path)
3455 return -ENOMEM;
3456 }
3457
3458 /*
3459 * cache_write_mutex is here only to save us from balance or automatic
3460 * removal of empty block groups deleting this block group while we are
3461 * writing out the cache
3462 */
3463 mutex_lock(&trans->transaction->cache_write_mutex);
3464 while (!list_empty(&dirty)) {
3465 cache = list_first_entry(&dirty,
3466 struct btrfs_block_group_cache,
3467 dirty_list);
3468 /*
3469 * this can happen if something re-dirties a block
3470 * group that is already under IO. Just wait for it to
3471 * finish and then do it all again
3472 */
3473 if (!list_empty(&cache->io_list)) {
3474 list_del_init(&cache->io_list);
3475 btrfs_wait_cache_io(root, trans, cache,
3476 &cache->io_ctl, path,
3477 cache->key.objectid);
3478 btrfs_put_block_group(cache);
3479 }
3480
3481
3482 /*
3483 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3484 * if it should update the cache_state. Don't delete
3485 * until after we wait.
3486 *
3487 * Since we're not running in the commit critical section
3488 * we need the dirty_bgs_lock to protect from update_block_group
3489 */
3490 spin_lock(&cur_trans->dirty_bgs_lock);
3491 list_del_init(&cache->dirty_list);
3492 spin_unlock(&cur_trans->dirty_bgs_lock);
3493
3494 should_put = 1;
3495
3496 cache_save_setup(cache, trans, path);
3497
3498 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3499 cache->io_ctl.inode = NULL;
3500 ret = btrfs_write_out_cache(root, trans, cache, path);
3501 if (ret == 0 && cache->io_ctl.inode) {
3502 num_started++;
3503 should_put = 0;
3504
3505 /*
3506 * the cache_write_mutex is protecting
3507 * the io_list
3508 */
3509 list_add_tail(&cache->io_list, io);
3510 } else {
3511 /*
3512 * if we failed to write the cache, the
3513 * generation will be bad and life goes on
3514 */
3515 ret = 0;
3516 }
3517 }
3518 if (!ret) {
3519 ret = write_one_cache_group(trans, root, path, cache);
3520 /*
3521 * Our block group might still be attached to the list
3522 * of new block groups in the transaction handle of some
3523 * other task (struct btrfs_trans_handle->new_bgs). This
3524 * means its block group item isn't yet in the extent
3525 * tree. If this happens ignore the error, as we will
3526 * try again later in the critical section of the
3527 * transaction commit.
3528 */
3529 if (ret == -ENOENT) {
3530 ret = 0;
3531 spin_lock(&cur_trans->dirty_bgs_lock);
3532 if (list_empty(&cache->dirty_list)) {
3533 list_add_tail(&cache->dirty_list,
3534 &cur_trans->dirty_bgs);
3535 btrfs_get_block_group(cache);
3536 }
3537 spin_unlock(&cur_trans->dirty_bgs_lock);
3538 } else if (ret) {
3539 btrfs_abort_transaction(trans, root, ret);
3540 }
3541 }
3542
3543 /* if its not on the io list, we need to put the block group */
3544 if (should_put)
3545 btrfs_put_block_group(cache);
3546
3547 if (ret)
3548 break;
3549
3550 /*
3551 * Avoid blocking other tasks for too long. It might even save
3552 * us from writing caches for block groups that are going to be
3553 * removed.
3554 */
3555 mutex_unlock(&trans->transaction->cache_write_mutex);
3556 mutex_lock(&trans->transaction->cache_write_mutex);
3557 }
3558 mutex_unlock(&trans->transaction->cache_write_mutex);
3559
3560 /*
3561 * go through delayed refs for all the stuff we've just kicked off
3562 * and then loop back (just once)
3563 */
3564 ret = btrfs_run_delayed_refs(trans, root, 0);
3565 if (!ret && loops == 0) {
3566 loops++;
3567 spin_lock(&cur_trans->dirty_bgs_lock);
3568 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3569 /*
3570 * dirty_bgs_lock protects us from concurrent block group
3571 * deletes too (not just cache_write_mutex).
3572 */
3573 if (!list_empty(&dirty)) {
3574 spin_unlock(&cur_trans->dirty_bgs_lock);
3575 goto again;
3576 }
3577 spin_unlock(&cur_trans->dirty_bgs_lock);
3578 }
3579
3580 btrfs_free_path(path);
3581 return ret;
3582 }
3583
3584 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3585 struct btrfs_root *root)
3586 {
3587 struct btrfs_block_group_cache *cache;
3588 struct btrfs_transaction *cur_trans = trans->transaction;
3589 int ret = 0;
3590 int should_put;
3591 struct btrfs_path *path;
3592 struct list_head *io = &cur_trans->io_bgs;
3593 int num_started = 0;
3594
3595 path = btrfs_alloc_path();
3596 if (!path)
3597 return -ENOMEM;
3598
3599 /*
3600 * We don't need the lock here since we are protected by the transaction
3601 * commit. We want to do the cache_save_setup first and then run the
3602 * delayed refs to make sure we have the best chance at doing this all
3603 * in one shot.
3604 */
3605 while (!list_empty(&cur_trans->dirty_bgs)) {
3606 cache = list_first_entry(&cur_trans->dirty_bgs,
3607 struct btrfs_block_group_cache,
3608 dirty_list);
3609
3610 /*
3611 * this can happen if cache_save_setup re-dirties a block
3612 * group that is already under IO. Just wait for it to
3613 * finish and then do it all again
3614 */
3615 if (!list_empty(&cache->io_list)) {
3616 list_del_init(&cache->io_list);
3617 btrfs_wait_cache_io(root, trans, cache,
3618 &cache->io_ctl, path,
3619 cache->key.objectid);
3620 btrfs_put_block_group(cache);
3621 }
3622
3623 /*
3624 * don't remove from the dirty list until after we've waited
3625 * on any pending IO
3626 */
3627 list_del_init(&cache->dirty_list);
3628 should_put = 1;
3629
3630 cache_save_setup(cache, trans, path);
3631
3632 if (!ret)
3633 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3634
3635 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3636 cache->io_ctl.inode = NULL;
3637 ret = btrfs_write_out_cache(root, trans, cache, path);
3638 if (ret == 0 && cache->io_ctl.inode) {
3639 num_started++;
3640 should_put = 0;
3641 list_add_tail(&cache->io_list, io);
3642 } else {
3643 /*
3644 * if we failed to write the cache, the
3645 * generation will be bad and life goes on
3646 */
3647 ret = 0;
3648 }
3649 }
3650 if (!ret) {
3651 ret = write_one_cache_group(trans, root, path, cache);
3652 if (ret)
3653 btrfs_abort_transaction(trans, root, ret);
3654 }
3655
3656 /* if its not on the io list, we need to put the block group */
3657 if (should_put)
3658 btrfs_put_block_group(cache);
3659 }
3660
3661 while (!list_empty(io)) {
3662 cache = list_first_entry(io, struct btrfs_block_group_cache,
3663 io_list);
3664 list_del_init(&cache->io_list);
3665 btrfs_wait_cache_io(root, trans, cache,
3666 &cache->io_ctl, path, cache->key.objectid);
3667 btrfs_put_block_group(cache);
3668 }
3669
3670 btrfs_free_path(path);
3671 return ret;
3672 }
3673
3674 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3675 {
3676 struct btrfs_block_group_cache *block_group;
3677 int readonly = 0;
3678
3679 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3680 if (!block_group || block_group->ro)
3681 readonly = 1;
3682 if (block_group)
3683 btrfs_put_block_group(block_group);
3684 return readonly;
3685 }
3686
3687 static const char *alloc_name(u64 flags)
3688 {
3689 switch (flags) {
3690 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3691 return "mixed";
3692 case BTRFS_BLOCK_GROUP_METADATA:
3693 return "metadata";
3694 case BTRFS_BLOCK_GROUP_DATA:
3695 return "data";
3696 case BTRFS_BLOCK_GROUP_SYSTEM:
3697 return "system";
3698 default:
3699 WARN_ON(1);
3700 return "invalid-combination";
3701 };
3702 }
3703
3704 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3705 u64 total_bytes, u64 bytes_used,
3706 struct btrfs_space_info **space_info)
3707 {
3708 struct btrfs_space_info *found;
3709 int i;
3710 int factor;
3711 int ret;
3712
3713 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3714 BTRFS_BLOCK_GROUP_RAID10))
3715 factor = 2;
3716 else
3717 factor = 1;
3718
3719 found = __find_space_info(info, flags);
3720 if (found) {
3721 spin_lock(&found->lock);
3722 found->total_bytes += total_bytes;
3723 found->disk_total += total_bytes * factor;
3724 found->bytes_used += bytes_used;
3725 found->disk_used += bytes_used * factor;
3726 if (total_bytes > 0)
3727 found->full = 0;
3728 spin_unlock(&found->lock);
3729 *space_info = found;
3730 return 0;
3731 }
3732 found = kzalloc(sizeof(*found), GFP_NOFS);
3733 if (!found)
3734 return -ENOMEM;
3735
3736 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3737 if (ret) {
3738 kfree(found);
3739 return ret;
3740 }
3741
3742 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3743 INIT_LIST_HEAD(&found->block_groups[i]);
3744 init_rwsem(&found->groups_sem);
3745 spin_lock_init(&found->lock);
3746 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3747 found->total_bytes = total_bytes;
3748 found->disk_total = total_bytes * factor;
3749 found->bytes_used = bytes_used;
3750 found->disk_used = bytes_used * factor;
3751 found->bytes_pinned = 0;
3752 found->bytes_reserved = 0;
3753 found->bytes_readonly = 0;
3754 found->bytes_may_use = 0;
3755 found->full = 0;
3756 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3757 found->chunk_alloc = 0;
3758 found->flush = 0;
3759 init_waitqueue_head(&found->wait);
3760 INIT_LIST_HEAD(&found->ro_bgs);
3761
3762 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3763 info->space_info_kobj, "%s",
3764 alloc_name(found->flags));
3765 if (ret) {
3766 kfree(found);
3767 return ret;
3768 }
3769
3770 *space_info = found;
3771 list_add_rcu(&found->list, &info->space_info);
3772 if (flags & BTRFS_BLOCK_GROUP_DATA)
3773 info->data_sinfo = found;
3774
3775 return ret;
3776 }
3777
3778 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3779 {
3780 u64 extra_flags = chunk_to_extended(flags) &
3781 BTRFS_EXTENDED_PROFILE_MASK;
3782
3783 write_seqlock(&fs_info->profiles_lock);
3784 if (flags & BTRFS_BLOCK_GROUP_DATA)
3785 fs_info->avail_data_alloc_bits |= extra_flags;
3786 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3787 fs_info->avail_metadata_alloc_bits |= extra_flags;
3788 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3789 fs_info->avail_system_alloc_bits |= extra_flags;
3790 write_sequnlock(&fs_info->profiles_lock);
3791 }
3792
3793 /*
3794 * returns target flags in extended format or 0 if restripe for this
3795 * chunk_type is not in progress
3796 *
3797 * should be called with either volume_mutex or balance_lock held
3798 */
3799 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3800 {
3801 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3802 u64 target = 0;
3803
3804 if (!bctl)
3805 return 0;
3806
3807 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3808 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3809 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3810 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3811 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3812 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3813 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3814 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3815 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3816 }
3817
3818 return target;
3819 }
3820
3821 /*
3822 * @flags: available profiles in extended format (see ctree.h)
3823 *
3824 * Returns reduced profile in chunk format. If profile changing is in
3825 * progress (either running or paused) picks the target profile (if it's
3826 * already available), otherwise falls back to plain reducing.
3827 */
3828 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3829 {
3830 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3831 u64 target;
3832 u64 tmp;
3833
3834 /*
3835 * see if restripe for this chunk_type is in progress, if so
3836 * try to reduce to the target profile
3837 */
3838 spin_lock(&root->fs_info->balance_lock);
3839 target = get_restripe_target(root->fs_info, flags);
3840 if (target) {
3841 /* pick target profile only if it's already available */
3842 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3843 spin_unlock(&root->fs_info->balance_lock);
3844 return extended_to_chunk(target);
3845 }
3846 }
3847 spin_unlock(&root->fs_info->balance_lock);
3848
3849 /* First, mask out the RAID levels which aren't possible */
3850 if (num_devices == 1)
3851 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3852 BTRFS_BLOCK_GROUP_RAID5);
3853 if (num_devices < 3)
3854 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3855 if (num_devices < 4)
3856 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3857
3858 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3859 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3860 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3861 flags &= ~tmp;
3862
3863 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3864 tmp = BTRFS_BLOCK_GROUP_RAID6;
3865 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3866 tmp = BTRFS_BLOCK_GROUP_RAID5;
3867 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3868 tmp = BTRFS_BLOCK_GROUP_RAID10;
3869 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3870 tmp = BTRFS_BLOCK_GROUP_RAID1;
3871 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3872 tmp = BTRFS_BLOCK_GROUP_RAID0;
3873
3874 return extended_to_chunk(flags | tmp);
3875 }
3876
3877 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3878 {
3879 unsigned seq;
3880 u64 flags;
3881
3882 do {
3883 flags = orig_flags;
3884 seq = read_seqbegin(&root->fs_info->profiles_lock);
3885
3886 if (flags & BTRFS_BLOCK_GROUP_DATA)
3887 flags |= root->fs_info->avail_data_alloc_bits;
3888 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3889 flags |= root->fs_info->avail_system_alloc_bits;
3890 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3891 flags |= root->fs_info->avail_metadata_alloc_bits;
3892 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3893
3894 return btrfs_reduce_alloc_profile(root, flags);
3895 }
3896
3897 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3898 {
3899 u64 flags;
3900 u64 ret;
3901
3902 if (data)
3903 flags = BTRFS_BLOCK_GROUP_DATA;
3904 else if (root == root->fs_info->chunk_root)
3905 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3906 else
3907 flags = BTRFS_BLOCK_GROUP_METADATA;
3908
3909 ret = get_alloc_profile(root, flags);
3910 return ret;
3911 }
3912
3913 /*
3914 * This will check the space that the inode allocates from to make sure we have
3915 * enough space for bytes.
3916 */
3917 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3918 {
3919 struct btrfs_space_info *data_sinfo;
3920 struct btrfs_root *root = BTRFS_I(inode)->root;
3921 struct btrfs_fs_info *fs_info = root->fs_info;
3922 u64 used;
3923 int ret = 0;
3924 int need_commit = 2;
3925 int have_pinned_space;
3926
3927 /* make sure bytes are sectorsize aligned */
3928 bytes = ALIGN(bytes, root->sectorsize);
3929
3930 if (btrfs_is_free_space_inode(inode)) {
3931 need_commit = 0;
3932 ASSERT(current->journal_info);
3933 }
3934
3935 data_sinfo = fs_info->data_sinfo;
3936 if (!data_sinfo)
3937 goto alloc;
3938
3939 again:
3940 /* make sure we have enough space to handle the data first */
3941 spin_lock(&data_sinfo->lock);
3942 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3943 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3944 data_sinfo->bytes_may_use;
3945
3946 if (used + bytes > data_sinfo->total_bytes) {
3947 struct btrfs_trans_handle *trans;
3948
3949 /*
3950 * if we don't have enough free bytes in this space then we need
3951 * to alloc a new chunk.
3952 */
3953 if (!data_sinfo->full) {
3954 u64 alloc_target;
3955
3956 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3957 spin_unlock(&data_sinfo->lock);
3958 alloc:
3959 alloc_target = btrfs_get_alloc_profile(root, 1);
3960 /*
3961 * It is ugly that we don't call nolock join
3962 * transaction for the free space inode case here.
3963 * But it is safe because we only do the data space
3964 * reservation for the free space cache in the
3965 * transaction context, the common join transaction
3966 * just increase the counter of the current transaction
3967 * handler, doesn't try to acquire the trans_lock of
3968 * the fs.
3969 */
3970 trans = btrfs_join_transaction(root);
3971 if (IS_ERR(trans))
3972 return PTR_ERR(trans);
3973
3974 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3975 alloc_target,
3976 CHUNK_ALLOC_NO_FORCE);
3977 btrfs_end_transaction(trans, root);
3978 if (ret < 0) {
3979 if (ret != -ENOSPC)
3980 return ret;
3981 else {
3982 have_pinned_space = 1;
3983 goto commit_trans;
3984 }
3985 }
3986
3987 if (!data_sinfo)
3988 data_sinfo = fs_info->data_sinfo;
3989
3990 goto again;
3991 }
3992
3993 /*
3994 * If we don't have enough pinned space to deal with this
3995 * allocation, and no removed chunk in current transaction,
3996 * don't bother committing the transaction.
3997 */
3998 have_pinned_space = percpu_counter_compare(
3999 &data_sinfo->total_bytes_pinned,
4000 used + bytes - data_sinfo->total_bytes);
4001 spin_unlock(&data_sinfo->lock);
4002
4003 /* commit the current transaction and try again */
4004 commit_trans:
4005 if (need_commit &&
4006 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4007 need_commit--;
4008
4009 if (need_commit > 0)
4010 btrfs_wait_ordered_roots(fs_info, -1);
4011
4012 trans = btrfs_join_transaction(root);
4013 if (IS_ERR(trans))
4014 return PTR_ERR(trans);
4015 if (have_pinned_space >= 0 ||
4016 trans->transaction->have_free_bgs ||
4017 need_commit > 0) {
4018 ret = btrfs_commit_transaction(trans, root);
4019 if (ret)
4020 return ret;
4021 /*
4022 * make sure that all running delayed iput are
4023 * done
4024 */
4025 down_write(&root->fs_info->delayed_iput_sem);
4026 up_write(&root->fs_info->delayed_iput_sem);
4027 goto again;
4028 } else {
4029 btrfs_end_transaction(trans, root);
4030 }
4031 }
4032
4033 trace_btrfs_space_reservation(root->fs_info,
4034 "space_info:enospc",
4035 data_sinfo->flags, bytes, 1);
4036 return -ENOSPC;
4037 }
4038 ret = btrfs_qgroup_reserve(root, write_bytes);
4039 if (ret)
4040 goto out;
4041 data_sinfo->bytes_may_use += bytes;
4042 trace_btrfs_space_reservation(root->fs_info, "space_info",
4043 data_sinfo->flags, bytes, 1);
4044 out:
4045 spin_unlock(&data_sinfo->lock);
4046
4047 return ret;
4048 }
4049
4050 /*
4051 * Called if we need to clear a data reservation for this inode.
4052 */
4053 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4054 {
4055 struct btrfs_root *root = BTRFS_I(inode)->root;
4056 struct btrfs_space_info *data_sinfo;
4057
4058 /* make sure bytes are sectorsize aligned */
4059 bytes = ALIGN(bytes, root->sectorsize);
4060
4061 data_sinfo = root->fs_info->data_sinfo;
4062 spin_lock(&data_sinfo->lock);
4063 WARN_ON(data_sinfo->bytes_may_use < bytes);
4064 data_sinfo->bytes_may_use -= bytes;
4065 trace_btrfs_space_reservation(root->fs_info, "space_info",
4066 data_sinfo->flags, bytes, 0);
4067 spin_unlock(&data_sinfo->lock);
4068 }
4069
4070 static void force_metadata_allocation(struct btrfs_fs_info *info)
4071 {
4072 struct list_head *head = &info->space_info;
4073 struct btrfs_space_info *found;
4074
4075 rcu_read_lock();
4076 list_for_each_entry_rcu(found, head, list) {
4077 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4078 found->force_alloc = CHUNK_ALLOC_FORCE;
4079 }
4080 rcu_read_unlock();
4081 }
4082
4083 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4084 {
4085 return (global->size << 1);
4086 }
4087
4088 static int should_alloc_chunk(struct btrfs_root *root,
4089 struct btrfs_space_info *sinfo, int force)
4090 {
4091 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4092 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4093 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4094 u64 thresh;
4095
4096 if (force == CHUNK_ALLOC_FORCE)
4097 return 1;
4098
4099 /*
4100 * We need to take into account the global rsv because for all intents
4101 * and purposes it's used space. Don't worry about locking the
4102 * global_rsv, it doesn't change except when the transaction commits.
4103 */
4104 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4105 num_allocated += calc_global_rsv_need_space(global_rsv);
4106
4107 /*
4108 * in limited mode, we want to have some free space up to
4109 * about 1% of the FS size.
4110 */
4111 if (force == CHUNK_ALLOC_LIMITED) {
4112 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4113 thresh = max_t(u64, 64 * 1024 * 1024,
4114 div_factor_fine(thresh, 1));
4115
4116 if (num_bytes - num_allocated < thresh)
4117 return 1;
4118 }
4119
4120 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4121 return 0;
4122 return 1;
4123 }
4124
4125 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4126 {
4127 u64 num_dev;
4128
4129 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4130 BTRFS_BLOCK_GROUP_RAID0 |
4131 BTRFS_BLOCK_GROUP_RAID5 |
4132 BTRFS_BLOCK_GROUP_RAID6))
4133 num_dev = root->fs_info->fs_devices->rw_devices;
4134 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4135 num_dev = 2;
4136 else
4137 num_dev = 1; /* DUP or single */
4138
4139 return num_dev;
4140 }
4141
4142 /*
4143 * If @is_allocation is true, reserve space in the system space info necessary
4144 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4145 * removing a chunk.
4146 */
4147 void check_system_chunk(struct btrfs_trans_handle *trans,
4148 struct btrfs_root *root,
4149 u64 type)
4150 {
4151 struct btrfs_space_info *info;
4152 u64 left;
4153 u64 thresh;
4154 int ret = 0;
4155 u64 num_devs;
4156
4157 /*
4158 * Needed because we can end up allocating a system chunk and for an
4159 * atomic and race free space reservation in the chunk block reserve.
4160 */
4161 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4162
4163 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4164 spin_lock(&info->lock);
4165 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4166 info->bytes_reserved - info->bytes_readonly -
4167 info->bytes_may_use;
4168 spin_unlock(&info->lock);
4169
4170 num_devs = get_profile_num_devs(root, type);
4171
4172 /* num_devs device items to update and 1 chunk item to add or remove */
4173 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4174 btrfs_calc_trans_metadata_size(root, 1);
4175
4176 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4177 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4178 left, thresh, type);
4179 dump_space_info(info, 0, 0);
4180 }
4181
4182 if (left < thresh) {
4183 u64 flags;
4184
4185 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4186 /*
4187 * Ignore failure to create system chunk. We might end up not
4188 * needing it, as we might not need to COW all nodes/leafs from
4189 * the paths we visit in the chunk tree (they were already COWed
4190 * or created in the current transaction for example).
4191 */
4192 ret = btrfs_alloc_chunk(trans, root, flags);
4193 }
4194
4195 if (!ret) {
4196 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4197 &root->fs_info->chunk_block_rsv,
4198 thresh, BTRFS_RESERVE_NO_FLUSH);
4199 if (!ret)
4200 trans->chunk_bytes_reserved += thresh;
4201 }
4202 }
4203
4204 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4205 struct btrfs_root *extent_root, u64 flags, int force)
4206 {
4207 struct btrfs_space_info *space_info;
4208 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4209 int wait_for_alloc = 0;
4210 int ret = 0;
4211
4212 /* Don't re-enter if we're already allocating a chunk */
4213 if (trans->allocating_chunk)
4214 return -ENOSPC;
4215
4216 space_info = __find_space_info(extent_root->fs_info, flags);
4217 if (!space_info) {
4218 ret = update_space_info(extent_root->fs_info, flags,
4219 0, 0, &space_info);
4220 BUG_ON(ret); /* -ENOMEM */
4221 }
4222 BUG_ON(!space_info); /* Logic error */
4223
4224 again:
4225 spin_lock(&space_info->lock);
4226 if (force < space_info->force_alloc)
4227 force = space_info->force_alloc;
4228 if (space_info->full) {
4229 if (should_alloc_chunk(extent_root, space_info, force))
4230 ret = -ENOSPC;
4231 else
4232 ret = 0;
4233 spin_unlock(&space_info->lock);
4234 return ret;
4235 }
4236
4237 if (!should_alloc_chunk(extent_root, space_info, force)) {
4238 spin_unlock(&space_info->lock);
4239 return 0;
4240 } else if (space_info->chunk_alloc) {
4241 wait_for_alloc = 1;
4242 } else {
4243 space_info->chunk_alloc = 1;
4244 }
4245
4246 spin_unlock(&space_info->lock);
4247
4248 mutex_lock(&fs_info->chunk_mutex);
4249
4250 /*
4251 * The chunk_mutex is held throughout the entirety of a chunk
4252 * allocation, so once we've acquired the chunk_mutex we know that the
4253 * other guy is done and we need to recheck and see if we should
4254 * allocate.
4255 */
4256 if (wait_for_alloc) {
4257 mutex_unlock(&fs_info->chunk_mutex);
4258 wait_for_alloc = 0;
4259 goto again;
4260 }
4261
4262 trans->allocating_chunk = true;
4263
4264 /*
4265 * If we have mixed data/metadata chunks we want to make sure we keep
4266 * allocating mixed chunks instead of individual chunks.
4267 */
4268 if (btrfs_mixed_space_info(space_info))
4269 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4270
4271 /*
4272 * if we're doing a data chunk, go ahead and make sure that
4273 * we keep a reasonable number of metadata chunks allocated in the
4274 * FS as well.
4275 */
4276 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4277 fs_info->data_chunk_allocations++;
4278 if (!(fs_info->data_chunk_allocations %
4279 fs_info->metadata_ratio))
4280 force_metadata_allocation(fs_info);
4281 }
4282
4283 /*
4284 * Check if we have enough space in SYSTEM chunk because we may need
4285 * to update devices.
4286 */
4287 check_system_chunk(trans, extent_root, flags);
4288
4289 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4290 trans->allocating_chunk = false;
4291
4292 spin_lock(&space_info->lock);
4293 if (ret < 0 && ret != -ENOSPC)
4294 goto out;
4295 if (ret)
4296 space_info->full = 1;
4297 else
4298 ret = 1;
4299
4300 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4301 out:
4302 space_info->chunk_alloc = 0;
4303 spin_unlock(&space_info->lock);
4304 mutex_unlock(&fs_info->chunk_mutex);
4305 /*
4306 * When we allocate a new chunk we reserve space in the chunk block
4307 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4308 * add new nodes/leafs to it if we end up needing to do it when
4309 * inserting the chunk item and updating device items as part of the
4310 * second phase of chunk allocation, performed by
4311 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4312 * large number of new block groups to create in our transaction
4313 * handle's new_bgs list to avoid exhausting the chunk block reserve
4314 * in extreme cases - like having a single transaction create many new
4315 * block groups when starting to write out the free space caches of all
4316 * the block groups that were made dirty during the lifetime of the
4317 * transaction.
4318 */
4319 if (trans->can_flush_pending_bgs &&
4320 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4321 btrfs_create_pending_block_groups(trans, trans->root);
4322 btrfs_trans_release_chunk_metadata(trans);
4323 }
4324 return ret;
4325 }
4326
4327 static int can_overcommit(struct btrfs_root *root,
4328 struct btrfs_space_info *space_info, u64 bytes,
4329 enum btrfs_reserve_flush_enum flush)
4330 {
4331 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4332 u64 profile = btrfs_get_alloc_profile(root, 0);
4333 u64 space_size;
4334 u64 avail;
4335 u64 used;
4336
4337 used = space_info->bytes_used + space_info->bytes_reserved +
4338 space_info->bytes_pinned + space_info->bytes_readonly;
4339
4340 /*
4341 * We only want to allow over committing if we have lots of actual space
4342 * free, but if we don't have enough space to handle the global reserve
4343 * space then we could end up having a real enospc problem when trying
4344 * to allocate a chunk or some other such important allocation.
4345 */
4346 spin_lock(&global_rsv->lock);
4347 space_size = calc_global_rsv_need_space(global_rsv);
4348 spin_unlock(&global_rsv->lock);
4349 if (used + space_size >= space_info->total_bytes)
4350 return 0;
4351
4352 used += space_info->bytes_may_use;
4353
4354 spin_lock(&root->fs_info->free_chunk_lock);
4355 avail = root->fs_info->free_chunk_space;
4356 spin_unlock(&root->fs_info->free_chunk_lock);
4357
4358 /*
4359 * If we have dup, raid1 or raid10 then only half of the free
4360 * space is actually useable. For raid56, the space info used
4361 * doesn't include the parity drive, so we don't have to
4362 * change the math
4363 */
4364 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4365 BTRFS_BLOCK_GROUP_RAID1 |
4366 BTRFS_BLOCK_GROUP_RAID10))
4367 avail >>= 1;
4368
4369 /*
4370 * If we aren't flushing all things, let us overcommit up to
4371 * 1/2th of the space. If we can flush, don't let us overcommit
4372 * too much, let it overcommit up to 1/8 of the space.
4373 */
4374 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4375 avail >>= 3;
4376 else
4377 avail >>= 1;
4378
4379 if (used + bytes < space_info->total_bytes + avail)
4380 return 1;
4381 return 0;
4382 }
4383
4384 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4385 unsigned long nr_pages, int nr_items)
4386 {
4387 struct super_block *sb = root->fs_info->sb;
4388
4389 if (down_read_trylock(&sb->s_umount)) {
4390 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4391 up_read(&sb->s_umount);
4392 } else {
4393 /*
4394 * We needn't worry the filesystem going from r/w to r/o though
4395 * we don't acquire ->s_umount mutex, because the filesystem
4396 * should guarantee the delalloc inodes list be empty after
4397 * the filesystem is readonly(all dirty pages are written to
4398 * the disk).
4399 */
4400 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4401 if (!current->journal_info)
4402 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4403 }
4404 }
4405
4406 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4407 {
4408 u64 bytes;
4409 int nr;
4410
4411 bytes = btrfs_calc_trans_metadata_size(root, 1);
4412 nr = (int)div64_u64(to_reclaim, bytes);
4413 if (!nr)
4414 nr = 1;
4415 return nr;
4416 }
4417
4418 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4419
4420 /*
4421 * shrink metadata reservation for delalloc
4422 */
4423 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4424 bool wait_ordered)
4425 {
4426 struct btrfs_block_rsv *block_rsv;
4427 struct btrfs_space_info *space_info;
4428 struct btrfs_trans_handle *trans;
4429 u64 delalloc_bytes;
4430 u64 max_reclaim;
4431 long time_left;
4432 unsigned long nr_pages;
4433 int loops;
4434 int items;
4435 enum btrfs_reserve_flush_enum flush;
4436
4437 /* Calc the number of the pages we need flush for space reservation */
4438 items = calc_reclaim_items_nr(root, to_reclaim);
4439 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4440
4441 trans = (struct btrfs_trans_handle *)current->journal_info;
4442 block_rsv = &root->fs_info->delalloc_block_rsv;
4443 space_info = block_rsv->space_info;
4444
4445 delalloc_bytes = percpu_counter_sum_positive(
4446 &root->fs_info->delalloc_bytes);
4447 if (delalloc_bytes == 0) {
4448 if (trans)
4449 return;
4450 if (wait_ordered)
4451 btrfs_wait_ordered_roots(root->fs_info, items);
4452 return;
4453 }
4454
4455 loops = 0;
4456 while (delalloc_bytes && loops < 3) {
4457 max_reclaim = min(delalloc_bytes, to_reclaim);
4458 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4459 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4460 /*
4461 * We need to wait for the async pages to actually start before
4462 * we do anything.
4463 */
4464 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4465 if (!max_reclaim)
4466 goto skip_async;
4467
4468 if (max_reclaim <= nr_pages)
4469 max_reclaim = 0;
4470 else
4471 max_reclaim -= nr_pages;
4472
4473 wait_event(root->fs_info->async_submit_wait,
4474 atomic_read(&root->fs_info->async_delalloc_pages) <=
4475 (int)max_reclaim);
4476 skip_async:
4477 if (!trans)
4478 flush = BTRFS_RESERVE_FLUSH_ALL;
4479 else
4480 flush = BTRFS_RESERVE_NO_FLUSH;
4481 spin_lock(&space_info->lock);
4482 if (can_overcommit(root, space_info, orig, flush)) {
4483 spin_unlock(&space_info->lock);
4484 break;
4485 }
4486 spin_unlock(&space_info->lock);
4487
4488 loops++;
4489 if (wait_ordered && !trans) {
4490 btrfs_wait_ordered_roots(root->fs_info, items);
4491 } else {
4492 time_left = schedule_timeout_killable(1);
4493 if (time_left)
4494 break;
4495 }
4496 delalloc_bytes = percpu_counter_sum_positive(
4497 &root->fs_info->delalloc_bytes);
4498 }
4499 }
4500
4501 /**
4502 * maybe_commit_transaction - possibly commit the transaction if its ok to
4503 * @root - the root we're allocating for
4504 * @bytes - the number of bytes we want to reserve
4505 * @force - force the commit
4506 *
4507 * This will check to make sure that committing the transaction will actually
4508 * get us somewhere and then commit the transaction if it does. Otherwise it
4509 * will return -ENOSPC.
4510 */
4511 static int may_commit_transaction(struct btrfs_root *root,
4512 struct btrfs_space_info *space_info,
4513 u64 bytes, int force)
4514 {
4515 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4516 struct btrfs_trans_handle *trans;
4517
4518 trans = (struct btrfs_trans_handle *)current->journal_info;
4519 if (trans)
4520 return -EAGAIN;
4521
4522 if (force)
4523 goto commit;
4524
4525 /* See if there is enough pinned space to make this reservation */
4526 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4527 bytes) >= 0)
4528 goto commit;
4529
4530 /*
4531 * See if there is some space in the delayed insertion reservation for
4532 * this reservation.
4533 */
4534 if (space_info != delayed_rsv->space_info)
4535 return -ENOSPC;
4536
4537 spin_lock(&delayed_rsv->lock);
4538 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4539 bytes - delayed_rsv->size) >= 0) {
4540 spin_unlock(&delayed_rsv->lock);
4541 return -ENOSPC;
4542 }
4543 spin_unlock(&delayed_rsv->lock);
4544
4545 commit:
4546 trans = btrfs_join_transaction(root);
4547 if (IS_ERR(trans))
4548 return -ENOSPC;
4549
4550 return btrfs_commit_transaction(trans, root);
4551 }
4552
4553 enum flush_state {
4554 FLUSH_DELAYED_ITEMS_NR = 1,
4555 FLUSH_DELAYED_ITEMS = 2,
4556 FLUSH_DELALLOC = 3,
4557 FLUSH_DELALLOC_WAIT = 4,
4558 ALLOC_CHUNK = 5,
4559 COMMIT_TRANS = 6,
4560 };
4561
4562 static int flush_space(struct btrfs_root *root,
4563 struct btrfs_space_info *space_info, u64 num_bytes,
4564 u64 orig_bytes, int state)
4565 {
4566 struct btrfs_trans_handle *trans;
4567 int nr;
4568 int ret = 0;
4569
4570 switch (state) {
4571 case FLUSH_DELAYED_ITEMS_NR:
4572 case FLUSH_DELAYED_ITEMS:
4573 if (state == FLUSH_DELAYED_ITEMS_NR)
4574 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4575 else
4576 nr = -1;
4577
4578 trans = btrfs_join_transaction(root);
4579 if (IS_ERR(trans)) {
4580 ret = PTR_ERR(trans);
4581 break;
4582 }
4583 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4584 btrfs_end_transaction(trans, root);
4585 break;
4586 case FLUSH_DELALLOC:
4587 case FLUSH_DELALLOC_WAIT:
4588 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4589 state == FLUSH_DELALLOC_WAIT);
4590 break;
4591 case ALLOC_CHUNK:
4592 trans = btrfs_join_transaction(root);
4593 if (IS_ERR(trans)) {
4594 ret = PTR_ERR(trans);
4595 break;
4596 }
4597 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4598 btrfs_get_alloc_profile(root, 0),
4599 CHUNK_ALLOC_NO_FORCE);
4600 btrfs_end_transaction(trans, root);
4601 if (ret == -ENOSPC)
4602 ret = 0;
4603 break;
4604 case COMMIT_TRANS:
4605 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4606 break;
4607 default:
4608 ret = -ENOSPC;
4609 break;
4610 }
4611
4612 return ret;
4613 }
4614
4615 static inline u64
4616 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4617 struct btrfs_space_info *space_info)
4618 {
4619 u64 used;
4620 u64 expected;
4621 u64 to_reclaim;
4622
4623 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4624 16 * 1024 * 1024);
4625 spin_lock(&space_info->lock);
4626 if (can_overcommit(root, space_info, to_reclaim,
4627 BTRFS_RESERVE_FLUSH_ALL)) {
4628 to_reclaim = 0;
4629 goto out;
4630 }
4631
4632 used = space_info->bytes_used + space_info->bytes_reserved +
4633 space_info->bytes_pinned + space_info->bytes_readonly +
4634 space_info->bytes_may_use;
4635 if (can_overcommit(root, space_info, 1024 * 1024,
4636 BTRFS_RESERVE_FLUSH_ALL))
4637 expected = div_factor_fine(space_info->total_bytes, 95);
4638 else
4639 expected = div_factor_fine(space_info->total_bytes, 90);
4640
4641 if (used > expected)
4642 to_reclaim = used - expected;
4643 else
4644 to_reclaim = 0;
4645 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4646 space_info->bytes_reserved);
4647 out:
4648 spin_unlock(&space_info->lock);
4649
4650 return to_reclaim;
4651 }
4652
4653 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4654 struct btrfs_fs_info *fs_info, u64 used)
4655 {
4656 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4657
4658 /* If we're just plain full then async reclaim just slows us down. */
4659 if (space_info->bytes_used >= thresh)
4660 return 0;
4661
4662 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4663 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4664 }
4665
4666 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4667 struct btrfs_fs_info *fs_info,
4668 int flush_state)
4669 {
4670 u64 used;
4671
4672 spin_lock(&space_info->lock);
4673 /*
4674 * We run out of space and have not got any free space via flush_space,
4675 * so don't bother doing async reclaim.
4676 */
4677 if (flush_state > COMMIT_TRANS && space_info->full) {
4678 spin_unlock(&space_info->lock);
4679 return 0;
4680 }
4681
4682 used = space_info->bytes_used + space_info->bytes_reserved +
4683 space_info->bytes_pinned + space_info->bytes_readonly +
4684 space_info->bytes_may_use;
4685 if (need_do_async_reclaim(space_info, fs_info, used)) {
4686 spin_unlock(&space_info->lock);
4687 return 1;
4688 }
4689 spin_unlock(&space_info->lock);
4690
4691 return 0;
4692 }
4693
4694 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4695 {
4696 struct btrfs_fs_info *fs_info;
4697 struct btrfs_space_info *space_info;
4698 u64 to_reclaim;
4699 int flush_state;
4700
4701 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4702 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4703
4704 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4705 space_info);
4706 if (!to_reclaim)
4707 return;
4708
4709 flush_state = FLUSH_DELAYED_ITEMS_NR;
4710 do {
4711 flush_space(fs_info->fs_root, space_info, to_reclaim,
4712 to_reclaim, flush_state);
4713 flush_state++;
4714 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4715 flush_state))
4716 return;
4717 } while (flush_state < COMMIT_TRANS);
4718 }
4719
4720 void btrfs_init_async_reclaim_work(struct work_struct *work)
4721 {
4722 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4723 }
4724
4725 /**
4726 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4727 * @root - the root we're allocating for
4728 * @block_rsv - the block_rsv we're allocating for
4729 * @orig_bytes - the number of bytes we want
4730 * @flush - whether or not we can flush to make our reservation
4731 *
4732 * This will reserve orgi_bytes number of bytes from the space info associated
4733 * with the block_rsv. If there is not enough space it will make an attempt to
4734 * flush out space to make room. It will do this by flushing delalloc if
4735 * possible or committing the transaction. If flush is 0 then no attempts to
4736 * regain reservations will be made and this will fail if there is not enough
4737 * space already.
4738 */
4739 static int reserve_metadata_bytes(struct btrfs_root *root,
4740 struct btrfs_block_rsv *block_rsv,
4741 u64 orig_bytes,
4742 enum btrfs_reserve_flush_enum flush)
4743 {
4744 struct btrfs_space_info *space_info = block_rsv->space_info;
4745 u64 used;
4746 u64 num_bytes = orig_bytes;
4747 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4748 int ret = 0;
4749 bool flushing = false;
4750
4751 again:
4752 ret = 0;
4753 spin_lock(&space_info->lock);
4754 /*
4755 * We only want to wait if somebody other than us is flushing and we
4756 * are actually allowed to flush all things.
4757 */
4758 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4759 space_info->flush) {
4760 spin_unlock(&space_info->lock);
4761 /*
4762 * If we have a trans handle we can't wait because the flusher
4763 * may have to commit the transaction, which would mean we would
4764 * deadlock since we are waiting for the flusher to finish, but
4765 * hold the current transaction open.
4766 */
4767 if (current->journal_info)
4768 return -EAGAIN;
4769 ret = wait_event_killable(space_info->wait, !space_info->flush);
4770 /* Must have been killed, return */
4771 if (ret)
4772 return -EINTR;
4773
4774 spin_lock(&space_info->lock);
4775 }
4776
4777 ret = -ENOSPC;
4778 used = space_info->bytes_used + space_info->bytes_reserved +
4779 space_info->bytes_pinned + space_info->bytes_readonly +
4780 space_info->bytes_may_use;
4781
4782 /*
4783 * The idea here is that we've not already over-reserved the block group
4784 * then we can go ahead and save our reservation first and then start
4785 * flushing if we need to. Otherwise if we've already overcommitted
4786 * lets start flushing stuff first and then come back and try to make
4787 * our reservation.
4788 */
4789 if (used <= space_info->total_bytes) {
4790 if (used + orig_bytes <= space_info->total_bytes) {
4791 space_info->bytes_may_use += orig_bytes;
4792 trace_btrfs_space_reservation(root->fs_info,
4793 "space_info", space_info->flags, orig_bytes, 1);
4794 ret = 0;
4795 } else {
4796 /*
4797 * Ok set num_bytes to orig_bytes since we aren't
4798 * overocmmitted, this way we only try and reclaim what
4799 * we need.
4800 */
4801 num_bytes = orig_bytes;
4802 }
4803 } else {
4804 /*
4805 * Ok we're over committed, set num_bytes to the overcommitted
4806 * amount plus the amount of bytes that we need for this
4807 * reservation.
4808 */
4809 num_bytes = used - space_info->total_bytes +
4810 (orig_bytes * 2);
4811 }
4812
4813 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4814 space_info->bytes_may_use += orig_bytes;
4815 trace_btrfs_space_reservation(root->fs_info, "space_info",
4816 space_info->flags, orig_bytes,
4817 1);
4818 ret = 0;
4819 }
4820
4821 /*
4822 * Couldn't make our reservation, save our place so while we're trying
4823 * to reclaim space we can actually use it instead of somebody else
4824 * stealing it from us.
4825 *
4826 * We make the other tasks wait for the flush only when we can flush
4827 * all things.
4828 */
4829 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4830 flushing = true;
4831 space_info->flush = 1;
4832 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4833 used += orig_bytes;
4834 /*
4835 * We will do the space reservation dance during log replay,
4836 * which means we won't have fs_info->fs_root set, so don't do
4837 * the async reclaim as we will panic.
4838 */
4839 if (!root->fs_info->log_root_recovering &&
4840 need_do_async_reclaim(space_info, root->fs_info, used) &&
4841 !work_busy(&root->fs_info->async_reclaim_work))
4842 queue_work(system_unbound_wq,
4843 &root->fs_info->async_reclaim_work);
4844 }
4845 spin_unlock(&space_info->lock);
4846
4847 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4848 goto out;
4849
4850 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4851 flush_state);
4852 flush_state++;
4853
4854 /*
4855 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4856 * would happen. So skip delalloc flush.
4857 */
4858 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4859 (flush_state == FLUSH_DELALLOC ||
4860 flush_state == FLUSH_DELALLOC_WAIT))
4861 flush_state = ALLOC_CHUNK;
4862
4863 if (!ret)
4864 goto again;
4865 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4866 flush_state < COMMIT_TRANS)
4867 goto again;
4868 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4869 flush_state <= COMMIT_TRANS)
4870 goto again;
4871
4872 out:
4873 if (ret == -ENOSPC &&
4874 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4875 struct btrfs_block_rsv *global_rsv =
4876 &root->fs_info->global_block_rsv;
4877
4878 if (block_rsv != global_rsv &&
4879 !block_rsv_use_bytes(global_rsv, orig_bytes))
4880 ret = 0;
4881 }
4882 if (ret == -ENOSPC)
4883 trace_btrfs_space_reservation(root->fs_info,
4884 "space_info:enospc",
4885 space_info->flags, orig_bytes, 1);
4886 if (flushing) {
4887 spin_lock(&space_info->lock);
4888 space_info->flush = 0;
4889 wake_up_all(&space_info->wait);
4890 spin_unlock(&space_info->lock);
4891 }
4892 return ret;
4893 }
4894
4895 static struct btrfs_block_rsv *get_block_rsv(
4896 const struct btrfs_trans_handle *trans,
4897 const struct btrfs_root *root)
4898 {
4899 struct btrfs_block_rsv *block_rsv = NULL;
4900
4901 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4902 block_rsv = trans->block_rsv;
4903
4904 if (root == root->fs_info->csum_root && trans->adding_csums)
4905 block_rsv = trans->block_rsv;
4906
4907 if (root == root->fs_info->uuid_root)
4908 block_rsv = trans->block_rsv;
4909
4910 if (!block_rsv)
4911 block_rsv = root->block_rsv;
4912
4913 if (!block_rsv)
4914 block_rsv = &root->fs_info->empty_block_rsv;
4915
4916 return block_rsv;
4917 }
4918
4919 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4920 u64 num_bytes)
4921 {
4922 int ret = -ENOSPC;
4923 spin_lock(&block_rsv->lock);
4924 if (block_rsv->reserved >= num_bytes) {
4925 block_rsv->reserved -= num_bytes;
4926 if (block_rsv->reserved < block_rsv->size)
4927 block_rsv->full = 0;
4928 ret = 0;
4929 }
4930 spin_unlock(&block_rsv->lock);
4931 return ret;
4932 }
4933
4934 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4935 u64 num_bytes, int update_size)
4936 {
4937 spin_lock(&block_rsv->lock);
4938 block_rsv->reserved += num_bytes;
4939 if (update_size)
4940 block_rsv->size += num_bytes;
4941 else if (block_rsv->reserved >= block_rsv->size)
4942 block_rsv->full = 1;
4943 spin_unlock(&block_rsv->lock);
4944 }
4945
4946 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4947 struct btrfs_block_rsv *dest, u64 num_bytes,
4948 int min_factor)
4949 {
4950 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4951 u64 min_bytes;
4952
4953 if (global_rsv->space_info != dest->space_info)
4954 return -ENOSPC;
4955
4956 spin_lock(&global_rsv->lock);
4957 min_bytes = div_factor(global_rsv->size, min_factor);
4958 if (global_rsv->reserved < min_bytes + num_bytes) {
4959 spin_unlock(&global_rsv->lock);
4960 return -ENOSPC;
4961 }
4962 global_rsv->reserved -= num_bytes;
4963 if (global_rsv->reserved < global_rsv->size)
4964 global_rsv->full = 0;
4965 spin_unlock(&global_rsv->lock);
4966
4967 block_rsv_add_bytes(dest, num_bytes, 1);
4968 return 0;
4969 }
4970
4971 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4972 struct btrfs_block_rsv *block_rsv,
4973 struct btrfs_block_rsv *dest, u64 num_bytes)
4974 {
4975 struct btrfs_space_info *space_info = block_rsv->space_info;
4976
4977 spin_lock(&block_rsv->lock);
4978 if (num_bytes == (u64)-1)
4979 num_bytes = block_rsv->size;
4980 block_rsv->size -= num_bytes;
4981 if (block_rsv->reserved >= block_rsv->size) {
4982 num_bytes = block_rsv->reserved - block_rsv->size;
4983 block_rsv->reserved = block_rsv->size;
4984 block_rsv->full = 1;
4985 } else {
4986 num_bytes = 0;
4987 }
4988 spin_unlock(&block_rsv->lock);
4989
4990 if (num_bytes > 0) {
4991 if (dest) {
4992 spin_lock(&dest->lock);
4993 if (!dest->full) {
4994 u64 bytes_to_add;
4995
4996 bytes_to_add = dest->size - dest->reserved;
4997 bytes_to_add = min(num_bytes, bytes_to_add);
4998 dest->reserved += bytes_to_add;
4999 if (dest->reserved >= dest->size)
5000 dest->full = 1;
5001 num_bytes -= bytes_to_add;
5002 }
5003 spin_unlock(&dest->lock);
5004 }
5005 if (num_bytes) {
5006 spin_lock(&space_info->lock);
5007 space_info->bytes_may_use -= num_bytes;
5008 trace_btrfs_space_reservation(fs_info, "space_info",
5009 space_info->flags, num_bytes, 0);
5010 spin_unlock(&space_info->lock);
5011 }
5012 }
5013 }
5014
5015 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5016 struct btrfs_block_rsv *dst, u64 num_bytes)
5017 {
5018 int ret;
5019
5020 ret = block_rsv_use_bytes(src, num_bytes);
5021 if (ret)
5022 return ret;
5023
5024 block_rsv_add_bytes(dst, num_bytes, 1);
5025 return 0;
5026 }
5027
5028 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5029 {
5030 memset(rsv, 0, sizeof(*rsv));
5031 spin_lock_init(&rsv->lock);
5032 rsv->type = type;
5033 }
5034
5035 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5036 unsigned short type)
5037 {
5038 struct btrfs_block_rsv *block_rsv;
5039 struct btrfs_fs_info *fs_info = root->fs_info;
5040
5041 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5042 if (!block_rsv)
5043 return NULL;
5044
5045 btrfs_init_block_rsv(block_rsv, type);
5046 block_rsv->space_info = __find_space_info(fs_info,
5047 BTRFS_BLOCK_GROUP_METADATA);
5048 return block_rsv;
5049 }
5050
5051 void btrfs_free_block_rsv(struct btrfs_root *root,
5052 struct btrfs_block_rsv *rsv)
5053 {
5054 if (!rsv)
5055 return;
5056 btrfs_block_rsv_release(root, rsv, (u64)-1);
5057 kfree(rsv);
5058 }
5059
5060 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5061 {
5062 kfree(rsv);
5063 }
5064
5065 int btrfs_block_rsv_add(struct btrfs_root *root,
5066 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5067 enum btrfs_reserve_flush_enum flush)
5068 {
5069 int ret;
5070
5071 if (num_bytes == 0)
5072 return 0;
5073
5074 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5075 if (!ret) {
5076 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5077 return 0;
5078 }
5079
5080 return ret;
5081 }
5082
5083 int btrfs_block_rsv_check(struct btrfs_root *root,
5084 struct btrfs_block_rsv *block_rsv, int min_factor)
5085 {
5086 u64 num_bytes = 0;
5087 int ret = -ENOSPC;
5088
5089 if (!block_rsv)
5090 return 0;
5091
5092 spin_lock(&block_rsv->lock);
5093 num_bytes = div_factor(block_rsv->size, min_factor);
5094 if (block_rsv->reserved >= num_bytes)
5095 ret = 0;
5096 spin_unlock(&block_rsv->lock);
5097
5098 return ret;
5099 }
5100
5101 int btrfs_block_rsv_refill(struct btrfs_root *root,
5102 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5103 enum btrfs_reserve_flush_enum flush)
5104 {
5105 u64 num_bytes = 0;
5106 int ret = -ENOSPC;
5107
5108 if (!block_rsv)
5109 return 0;
5110
5111 spin_lock(&block_rsv->lock);
5112 num_bytes = min_reserved;
5113 if (block_rsv->reserved >= num_bytes)
5114 ret = 0;
5115 else
5116 num_bytes -= block_rsv->reserved;
5117 spin_unlock(&block_rsv->lock);
5118
5119 if (!ret)
5120 return 0;
5121
5122 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5123 if (!ret) {
5124 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5125 return 0;
5126 }
5127
5128 return ret;
5129 }
5130
5131 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5132 struct btrfs_block_rsv *dst_rsv,
5133 u64 num_bytes)
5134 {
5135 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5136 }
5137
5138 void btrfs_block_rsv_release(struct btrfs_root *root,
5139 struct btrfs_block_rsv *block_rsv,
5140 u64 num_bytes)
5141 {
5142 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5143 if (global_rsv == block_rsv ||
5144 block_rsv->space_info != global_rsv->space_info)
5145 global_rsv = NULL;
5146 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5147 num_bytes);
5148 }
5149
5150 /*
5151 * helper to calculate size of global block reservation.
5152 * the desired value is sum of space used by extent tree,
5153 * checksum tree and root tree
5154 */
5155 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5156 {
5157 struct btrfs_space_info *sinfo;
5158 u64 num_bytes;
5159 u64 meta_used;
5160 u64 data_used;
5161 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5162
5163 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5164 spin_lock(&sinfo->lock);
5165 data_used = sinfo->bytes_used;
5166 spin_unlock(&sinfo->lock);
5167
5168 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5169 spin_lock(&sinfo->lock);
5170 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5171 data_used = 0;
5172 meta_used = sinfo->bytes_used;
5173 spin_unlock(&sinfo->lock);
5174
5175 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5176 csum_size * 2;
5177 num_bytes += div_u64(data_used + meta_used, 50);
5178
5179 if (num_bytes * 3 > meta_used)
5180 num_bytes = div_u64(meta_used, 3);
5181
5182 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5183 }
5184
5185 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5186 {
5187 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5188 struct btrfs_space_info *sinfo = block_rsv->space_info;
5189 u64 num_bytes;
5190
5191 num_bytes = calc_global_metadata_size(fs_info);
5192
5193 spin_lock(&sinfo->lock);
5194 spin_lock(&block_rsv->lock);
5195
5196 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5197
5198 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5199 sinfo->bytes_reserved + sinfo->bytes_readonly +
5200 sinfo->bytes_may_use;
5201
5202 if (sinfo->total_bytes > num_bytes) {
5203 num_bytes = sinfo->total_bytes - num_bytes;
5204 block_rsv->reserved += num_bytes;
5205 sinfo->bytes_may_use += num_bytes;
5206 trace_btrfs_space_reservation(fs_info, "space_info",
5207 sinfo->flags, num_bytes, 1);
5208 }
5209
5210 if (block_rsv->reserved >= block_rsv->size) {
5211 num_bytes = block_rsv->reserved - block_rsv->size;
5212 sinfo->bytes_may_use -= num_bytes;
5213 trace_btrfs_space_reservation(fs_info, "space_info",
5214 sinfo->flags, num_bytes, 0);
5215 block_rsv->reserved = block_rsv->size;
5216 block_rsv->full = 1;
5217 }
5218
5219 spin_unlock(&block_rsv->lock);
5220 spin_unlock(&sinfo->lock);
5221 }
5222
5223 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5224 {
5225 struct btrfs_space_info *space_info;
5226
5227 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5228 fs_info->chunk_block_rsv.space_info = space_info;
5229
5230 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5231 fs_info->global_block_rsv.space_info = space_info;
5232 fs_info->delalloc_block_rsv.space_info = space_info;
5233 fs_info->trans_block_rsv.space_info = space_info;
5234 fs_info->empty_block_rsv.space_info = space_info;
5235 fs_info->delayed_block_rsv.space_info = space_info;
5236
5237 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5238 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5239 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5240 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5241 if (fs_info->quota_root)
5242 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5243 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5244
5245 update_global_block_rsv(fs_info);
5246 }
5247
5248 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5249 {
5250 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5251 (u64)-1);
5252 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5253 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5254 WARN_ON(fs_info->trans_block_rsv.size > 0);
5255 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5256 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5257 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5258 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5259 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5260 }
5261
5262 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5263 struct btrfs_root *root)
5264 {
5265 if (!trans->block_rsv)
5266 return;
5267
5268 if (!trans->bytes_reserved)
5269 return;
5270
5271 trace_btrfs_space_reservation(root->fs_info, "transaction",
5272 trans->transid, trans->bytes_reserved, 0);
5273 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5274 trans->bytes_reserved = 0;
5275 }
5276
5277 /*
5278 * To be called after all the new block groups attached to the transaction
5279 * handle have been created (btrfs_create_pending_block_groups()).
5280 */
5281 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5282 {
5283 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5284
5285 if (!trans->chunk_bytes_reserved)
5286 return;
5287
5288 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5289
5290 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5291 trans->chunk_bytes_reserved);
5292 trans->chunk_bytes_reserved = 0;
5293 }
5294
5295 /* Can only return 0 or -ENOSPC */
5296 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5297 struct inode *inode)
5298 {
5299 struct btrfs_root *root = BTRFS_I(inode)->root;
5300 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5301 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5302
5303 /*
5304 * We need to hold space in order to delete our orphan item once we've
5305 * added it, so this takes the reservation so we can release it later
5306 * when we are truly done with the orphan item.
5307 */
5308 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5309 trace_btrfs_space_reservation(root->fs_info, "orphan",
5310 btrfs_ino(inode), num_bytes, 1);
5311 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5312 }
5313
5314 void btrfs_orphan_release_metadata(struct inode *inode)
5315 {
5316 struct btrfs_root *root = BTRFS_I(inode)->root;
5317 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5318 trace_btrfs_space_reservation(root->fs_info, "orphan",
5319 btrfs_ino(inode), num_bytes, 0);
5320 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5321 }
5322
5323 /*
5324 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5325 * root: the root of the parent directory
5326 * rsv: block reservation
5327 * items: the number of items that we need do reservation
5328 * qgroup_reserved: used to return the reserved size in qgroup
5329 *
5330 * This function is used to reserve the space for snapshot/subvolume
5331 * creation and deletion. Those operations are different with the
5332 * common file/directory operations, they change two fs/file trees
5333 * and root tree, the number of items that the qgroup reserves is
5334 * different with the free space reservation. So we can not use
5335 * the space reseravtion mechanism in start_transaction().
5336 */
5337 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5338 struct btrfs_block_rsv *rsv,
5339 int items,
5340 u64 *qgroup_reserved,
5341 bool use_global_rsv)
5342 {
5343 u64 num_bytes;
5344 int ret;
5345 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5346
5347 if (root->fs_info->quota_enabled) {
5348 /* One for parent inode, two for dir entries */
5349 num_bytes = 3 * root->nodesize;
5350 ret = btrfs_qgroup_reserve(root, num_bytes);
5351 if (ret)
5352 return ret;
5353 } else {
5354 num_bytes = 0;
5355 }
5356
5357 *qgroup_reserved = num_bytes;
5358
5359 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5360 rsv->space_info = __find_space_info(root->fs_info,
5361 BTRFS_BLOCK_GROUP_METADATA);
5362 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5363 BTRFS_RESERVE_FLUSH_ALL);
5364
5365 if (ret == -ENOSPC && use_global_rsv)
5366 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5367
5368 if (ret) {
5369 if (*qgroup_reserved)
5370 btrfs_qgroup_free(root, *qgroup_reserved);
5371 }
5372
5373 return ret;
5374 }
5375
5376 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5377 struct btrfs_block_rsv *rsv,
5378 u64 qgroup_reserved)
5379 {
5380 btrfs_block_rsv_release(root, rsv, (u64)-1);
5381 }
5382
5383 /**
5384 * drop_outstanding_extent - drop an outstanding extent
5385 * @inode: the inode we're dropping the extent for
5386 * @num_bytes: the number of bytes we're relaseing.
5387 *
5388 * This is called when we are freeing up an outstanding extent, either called
5389 * after an error or after an extent is written. This will return the number of
5390 * reserved extents that need to be freed. This must be called with
5391 * BTRFS_I(inode)->lock held.
5392 */
5393 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5394 {
5395 unsigned drop_inode_space = 0;
5396 unsigned dropped_extents = 0;
5397 unsigned num_extents = 0;
5398
5399 num_extents = (unsigned)div64_u64(num_bytes +
5400 BTRFS_MAX_EXTENT_SIZE - 1,
5401 BTRFS_MAX_EXTENT_SIZE);
5402 ASSERT(num_extents);
5403 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5404 BTRFS_I(inode)->outstanding_extents -= num_extents;
5405
5406 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5407 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5408 &BTRFS_I(inode)->runtime_flags))
5409 drop_inode_space = 1;
5410
5411 /*
5412 * If we have more or the same amount of outsanding extents than we have
5413 * reserved then we need to leave the reserved extents count alone.
5414 */
5415 if (BTRFS_I(inode)->outstanding_extents >=
5416 BTRFS_I(inode)->reserved_extents)
5417 return drop_inode_space;
5418
5419 dropped_extents = BTRFS_I(inode)->reserved_extents -
5420 BTRFS_I(inode)->outstanding_extents;
5421 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5422 return dropped_extents + drop_inode_space;
5423 }
5424
5425 /**
5426 * calc_csum_metadata_size - return the amount of metada space that must be
5427 * reserved/free'd for the given bytes.
5428 * @inode: the inode we're manipulating
5429 * @num_bytes: the number of bytes in question
5430 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5431 *
5432 * This adjusts the number of csum_bytes in the inode and then returns the
5433 * correct amount of metadata that must either be reserved or freed. We
5434 * calculate how many checksums we can fit into one leaf and then divide the
5435 * number of bytes that will need to be checksumed by this value to figure out
5436 * how many checksums will be required. If we are adding bytes then the number
5437 * may go up and we will return the number of additional bytes that must be
5438 * reserved. If it is going down we will return the number of bytes that must
5439 * be freed.
5440 *
5441 * This must be called with BTRFS_I(inode)->lock held.
5442 */
5443 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5444 int reserve)
5445 {
5446 struct btrfs_root *root = BTRFS_I(inode)->root;
5447 u64 old_csums, num_csums;
5448
5449 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5450 BTRFS_I(inode)->csum_bytes == 0)
5451 return 0;
5452
5453 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5454 if (reserve)
5455 BTRFS_I(inode)->csum_bytes += num_bytes;
5456 else
5457 BTRFS_I(inode)->csum_bytes -= num_bytes;
5458 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5459
5460 /* No change, no need to reserve more */
5461 if (old_csums == num_csums)
5462 return 0;
5463
5464 if (reserve)
5465 return btrfs_calc_trans_metadata_size(root,
5466 num_csums - old_csums);
5467
5468 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5469 }
5470
5471 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5472 {
5473 struct btrfs_root *root = BTRFS_I(inode)->root;
5474 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5475 u64 to_reserve = 0;
5476 u64 csum_bytes;
5477 unsigned nr_extents = 0;
5478 int extra_reserve = 0;
5479 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5480 int ret = 0;
5481 bool delalloc_lock = true;
5482 u64 to_free = 0;
5483 unsigned dropped;
5484
5485 /* If we are a free space inode we need to not flush since we will be in
5486 * the middle of a transaction commit. We also don't need the delalloc
5487 * mutex since we won't race with anybody. We need this mostly to make
5488 * lockdep shut its filthy mouth.
5489 */
5490 if (btrfs_is_free_space_inode(inode)) {
5491 flush = BTRFS_RESERVE_NO_FLUSH;
5492 delalloc_lock = false;
5493 }
5494
5495 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5496 btrfs_transaction_in_commit(root->fs_info))
5497 schedule_timeout(1);
5498
5499 if (delalloc_lock)
5500 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5501
5502 num_bytes = ALIGN(num_bytes, root->sectorsize);
5503
5504 spin_lock(&BTRFS_I(inode)->lock);
5505 nr_extents = (unsigned)div64_u64(num_bytes +
5506 BTRFS_MAX_EXTENT_SIZE - 1,
5507 BTRFS_MAX_EXTENT_SIZE);
5508 BTRFS_I(inode)->outstanding_extents += nr_extents;
5509 nr_extents = 0;
5510
5511 if (BTRFS_I(inode)->outstanding_extents >
5512 BTRFS_I(inode)->reserved_extents)
5513 nr_extents = BTRFS_I(inode)->outstanding_extents -
5514 BTRFS_I(inode)->reserved_extents;
5515
5516 /*
5517 * Add an item to reserve for updating the inode when we complete the
5518 * delalloc io.
5519 */
5520 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5521 &BTRFS_I(inode)->runtime_flags)) {
5522 nr_extents++;
5523 extra_reserve = 1;
5524 }
5525
5526 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5527 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5528 csum_bytes = BTRFS_I(inode)->csum_bytes;
5529 spin_unlock(&BTRFS_I(inode)->lock);
5530
5531 if (root->fs_info->quota_enabled) {
5532 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5533 if (ret)
5534 goto out_fail;
5535 }
5536
5537 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5538 if (unlikely(ret)) {
5539 if (root->fs_info->quota_enabled)
5540 btrfs_qgroup_free(root, nr_extents * root->nodesize);
5541 goto out_fail;
5542 }
5543
5544 spin_lock(&BTRFS_I(inode)->lock);
5545 if (extra_reserve) {
5546 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5547 &BTRFS_I(inode)->runtime_flags);
5548 nr_extents--;
5549 }
5550 BTRFS_I(inode)->reserved_extents += nr_extents;
5551 spin_unlock(&BTRFS_I(inode)->lock);
5552
5553 if (delalloc_lock)
5554 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5555
5556 if (to_reserve)
5557 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5558 btrfs_ino(inode), to_reserve, 1);
5559 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5560
5561 return 0;
5562
5563 out_fail:
5564 spin_lock(&BTRFS_I(inode)->lock);
5565 dropped = drop_outstanding_extent(inode, num_bytes);
5566 /*
5567 * If the inodes csum_bytes is the same as the original
5568 * csum_bytes then we know we haven't raced with any free()ers
5569 * so we can just reduce our inodes csum bytes and carry on.
5570 */
5571 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5572 calc_csum_metadata_size(inode, num_bytes, 0);
5573 } else {
5574 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5575 u64 bytes;
5576
5577 /*
5578 * This is tricky, but first we need to figure out how much we
5579 * free'd from any free-ers that occured during this
5580 * reservation, so we reset ->csum_bytes to the csum_bytes
5581 * before we dropped our lock, and then call the free for the
5582 * number of bytes that were freed while we were trying our
5583 * reservation.
5584 */
5585 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5586 BTRFS_I(inode)->csum_bytes = csum_bytes;
5587 to_free = calc_csum_metadata_size(inode, bytes, 0);
5588
5589
5590 /*
5591 * Now we need to see how much we would have freed had we not
5592 * been making this reservation and our ->csum_bytes were not
5593 * artificially inflated.
5594 */
5595 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5596 bytes = csum_bytes - orig_csum_bytes;
5597 bytes = calc_csum_metadata_size(inode, bytes, 0);
5598
5599 /*
5600 * Now reset ->csum_bytes to what it should be. If bytes is
5601 * more than to_free then we would have free'd more space had we
5602 * not had an artificially high ->csum_bytes, so we need to free
5603 * the remainder. If bytes is the same or less then we don't
5604 * need to do anything, the other free-ers did the correct
5605 * thing.
5606 */
5607 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5608 if (bytes > to_free)
5609 to_free = bytes - to_free;
5610 else
5611 to_free = 0;
5612 }
5613 spin_unlock(&BTRFS_I(inode)->lock);
5614 if (dropped)
5615 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5616
5617 if (to_free) {
5618 btrfs_block_rsv_release(root, block_rsv, to_free);
5619 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5620 btrfs_ino(inode), to_free, 0);
5621 }
5622 if (delalloc_lock)
5623 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5624 return ret;
5625 }
5626
5627 /**
5628 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5629 * @inode: the inode to release the reservation for
5630 * @num_bytes: the number of bytes we're releasing
5631 *
5632 * This will release the metadata reservation for an inode. This can be called
5633 * once we complete IO for a given set of bytes to release their metadata
5634 * reservations.
5635 */
5636 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5637 {
5638 struct btrfs_root *root = BTRFS_I(inode)->root;
5639 u64 to_free = 0;
5640 unsigned dropped;
5641
5642 num_bytes = ALIGN(num_bytes, root->sectorsize);
5643 spin_lock(&BTRFS_I(inode)->lock);
5644 dropped = drop_outstanding_extent(inode, num_bytes);
5645
5646 if (num_bytes)
5647 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5648 spin_unlock(&BTRFS_I(inode)->lock);
5649 if (dropped > 0)
5650 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5651
5652 if (btrfs_test_is_dummy_root(root))
5653 return;
5654
5655 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5656 btrfs_ino(inode), to_free, 0);
5657
5658 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5659 to_free);
5660 }
5661
5662 /**
5663 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5664 * @inode: inode we're writing to
5665 * @num_bytes: the number of bytes we want to allocate
5666 *
5667 * This will do the following things
5668 *
5669 * o reserve space in the data space info for num_bytes
5670 * o reserve space in the metadata space info based on number of outstanding
5671 * extents and how much csums will be needed
5672 * o add to the inodes ->delalloc_bytes
5673 * o add it to the fs_info's delalloc inodes list.
5674 *
5675 * This will return 0 for success and -ENOSPC if there is no space left.
5676 */
5677 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5678 {
5679 int ret;
5680
5681 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5682 if (ret)
5683 return ret;
5684
5685 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5686 if (ret) {
5687 btrfs_free_reserved_data_space(inode, num_bytes);
5688 return ret;
5689 }
5690
5691 return 0;
5692 }
5693
5694 /**
5695 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5696 * @inode: inode we're releasing space for
5697 * @num_bytes: the number of bytes we want to free up
5698 *
5699 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5700 * called in the case that we don't need the metadata AND data reservations
5701 * anymore. So if there is an error or we insert an inline extent.
5702 *
5703 * This function will release the metadata space that was not used and will
5704 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5705 * list if there are no delalloc bytes left.
5706 */
5707 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5708 {
5709 btrfs_delalloc_release_metadata(inode, num_bytes);
5710 btrfs_free_reserved_data_space(inode, num_bytes);
5711 }
5712
5713 static int update_block_group(struct btrfs_trans_handle *trans,
5714 struct btrfs_root *root, u64 bytenr,
5715 u64 num_bytes, int alloc)
5716 {
5717 struct btrfs_block_group_cache *cache = NULL;
5718 struct btrfs_fs_info *info = root->fs_info;
5719 u64 total = num_bytes;
5720 u64 old_val;
5721 u64 byte_in_group;
5722 int factor;
5723
5724 /* block accounting for super block */
5725 spin_lock(&info->delalloc_root_lock);
5726 old_val = btrfs_super_bytes_used(info->super_copy);
5727 if (alloc)
5728 old_val += num_bytes;
5729 else
5730 old_val -= num_bytes;
5731 btrfs_set_super_bytes_used(info->super_copy, old_val);
5732 spin_unlock(&info->delalloc_root_lock);
5733
5734 while (total) {
5735 cache = btrfs_lookup_block_group(info, bytenr);
5736 if (!cache)
5737 return -ENOENT;
5738 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5739 BTRFS_BLOCK_GROUP_RAID1 |
5740 BTRFS_BLOCK_GROUP_RAID10))
5741 factor = 2;
5742 else
5743 factor = 1;
5744 /*
5745 * If this block group has free space cache written out, we
5746 * need to make sure to load it if we are removing space. This
5747 * is because we need the unpinning stage to actually add the
5748 * space back to the block group, otherwise we will leak space.
5749 */
5750 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5751 cache_block_group(cache, 1);
5752
5753 byte_in_group = bytenr - cache->key.objectid;
5754 WARN_ON(byte_in_group > cache->key.offset);
5755
5756 spin_lock(&cache->space_info->lock);
5757 spin_lock(&cache->lock);
5758
5759 if (btrfs_test_opt(root, SPACE_CACHE) &&
5760 cache->disk_cache_state < BTRFS_DC_CLEAR)
5761 cache->disk_cache_state = BTRFS_DC_CLEAR;
5762
5763 old_val = btrfs_block_group_used(&cache->item);
5764 num_bytes = min(total, cache->key.offset - byte_in_group);
5765 if (alloc) {
5766 old_val += num_bytes;
5767 btrfs_set_block_group_used(&cache->item, old_val);
5768 cache->reserved -= num_bytes;
5769 cache->space_info->bytes_reserved -= num_bytes;
5770 cache->space_info->bytes_used += num_bytes;
5771 cache->space_info->disk_used += num_bytes * factor;
5772 spin_unlock(&cache->lock);
5773 spin_unlock(&cache->space_info->lock);
5774 } else {
5775 old_val -= num_bytes;
5776 btrfs_set_block_group_used(&cache->item, old_val);
5777 cache->pinned += num_bytes;
5778 cache->space_info->bytes_pinned += num_bytes;
5779 cache->space_info->bytes_used -= num_bytes;
5780 cache->space_info->disk_used -= num_bytes * factor;
5781 spin_unlock(&cache->lock);
5782 spin_unlock(&cache->space_info->lock);
5783
5784 set_extent_dirty(info->pinned_extents,
5785 bytenr, bytenr + num_bytes - 1,
5786 GFP_NOFS | __GFP_NOFAIL);
5787 /*
5788 * No longer have used bytes in this block group, queue
5789 * it for deletion.
5790 */
5791 if (old_val == 0) {
5792 spin_lock(&info->unused_bgs_lock);
5793 if (list_empty(&cache->bg_list)) {
5794 btrfs_get_block_group(cache);
5795 list_add_tail(&cache->bg_list,
5796 &info->unused_bgs);
5797 }
5798 spin_unlock(&info->unused_bgs_lock);
5799 }
5800 }
5801
5802 spin_lock(&trans->transaction->dirty_bgs_lock);
5803 if (list_empty(&cache->dirty_list)) {
5804 list_add_tail(&cache->dirty_list,
5805 &trans->transaction->dirty_bgs);
5806 trans->transaction->num_dirty_bgs++;
5807 btrfs_get_block_group(cache);
5808 }
5809 spin_unlock(&trans->transaction->dirty_bgs_lock);
5810
5811 btrfs_put_block_group(cache);
5812 total -= num_bytes;
5813 bytenr += num_bytes;
5814 }
5815 return 0;
5816 }
5817
5818 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5819 {
5820 struct btrfs_block_group_cache *cache;
5821 u64 bytenr;
5822
5823 spin_lock(&root->fs_info->block_group_cache_lock);
5824 bytenr = root->fs_info->first_logical_byte;
5825 spin_unlock(&root->fs_info->block_group_cache_lock);
5826
5827 if (bytenr < (u64)-1)
5828 return bytenr;
5829
5830 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5831 if (!cache)
5832 return 0;
5833
5834 bytenr = cache->key.objectid;
5835 btrfs_put_block_group(cache);
5836
5837 return bytenr;
5838 }
5839
5840 static int pin_down_extent(struct btrfs_root *root,
5841 struct btrfs_block_group_cache *cache,
5842 u64 bytenr, u64 num_bytes, int reserved)
5843 {
5844 spin_lock(&cache->space_info->lock);
5845 spin_lock(&cache->lock);
5846 cache->pinned += num_bytes;
5847 cache->space_info->bytes_pinned += num_bytes;
5848 if (reserved) {
5849 cache->reserved -= num_bytes;
5850 cache->space_info->bytes_reserved -= num_bytes;
5851 }
5852 spin_unlock(&cache->lock);
5853 spin_unlock(&cache->space_info->lock);
5854
5855 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5856 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5857 if (reserved)
5858 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5859 return 0;
5860 }
5861
5862 /*
5863 * this function must be called within transaction
5864 */
5865 int btrfs_pin_extent(struct btrfs_root *root,
5866 u64 bytenr, u64 num_bytes, int reserved)
5867 {
5868 struct btrfs_block_group_cache *cache;
5869
5870 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5871 BUG_ON(!cache); /* Logic error */
5872
5873 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5874
5875 btrfs_put_block_group(cache);
5876 return 0;
5877 }
5878
5879 /*
5880 * this function must be called within transaction
5881 */
5882 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5883 u64 bytenr, u64 num_bytes)
5884 {
5885 struct btrfs_block_group_cache *cache;
5886 int ret;
5887
5888 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5889 if (!cache)
5890 return -EINVAL;
5891
5892 /*
5893 * pull in the free space cache (if any) so that our pin
5894 * removes the free space from the cache. We have load_only set
5895 * to one because the slow code to read in the free extents does check
5896 * the pinned extents.
5897 */
5898 cache_block_group(cache, 1);
5899
5900 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5901
5902 /* remove us from the free space cache (if we're there at all) */
5903 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5904 btrfs_put_block_group(cache);
5905 return ret;
5906 }
5907
5908 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5909 {
5910 int ret;
5911 struct btrfs_block_group_cache *block_group;
5912 struct btrfs_caching_control *caching_ctl;
5913
5914 block_group = btrfs_lookup_block_group(root->fs_info, start);
5915 if (!block_group)
5916 return -EINVAL;
5917
5918 cache_block_group(block_group, 0);
5919 caching_ctl = get_caching_control(block_group);
5920
5921 if (!caching_ctl) {
5922 /* Logic error */
5923 BUG_ON(!block_group_cache_done(block_group));
5924 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5925 } else {
5926 mutex_lock(&caching_ctl->mutex);
5927
5928 if (start >= caching_ctl->progress) {
5929 ret = add_excluded_extent(root, start, num_bytes);
5930 } else if (start + num_bytes <= caching_ctl->progress) {
5931 ret = btrfs_remove_free_space(block_group,
5932 start, num_bytes);
5933 } else {
5934 num_bytes = caching_ctl->progress - start;
5935 ret = btrfs_remove_free_space(block_group,
5936 start, num_bytes);
5937 if (ret)
5938 goto out_lock;
5939
5940 num_bytes = (start + num_bytes) -
5941 caching_ctl->progress;
5942 start = caching_ctl->progress;
5943 ret = add_excluded_extent(root, start, num_bytes);
5944 }
5945 out_lock:
5946 mutex_unlock(&caching_ctl->mutex);
5947 put_caching_control(caching_ctl);
5948 }
5949 btrfs_put_block_group(block_group);
5950 return ret;
5951 }
5952
5953 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5954 struct extent_buffer *eb)
5955 {
5956 struct btrfs_file_extent_item *item;
5957 struct btrfs_key key;
5958 int found_type;
5959 int i;
5960
5961 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5962 return 0;
5963
5964 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5965 btrfs_item_key_to_cpu(eb, &key, i);
5966 if (key.type != BTRFS_EXTENT_DATA_KEY)
5967 continue;
5968 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5969 found_type = btrfs_file_extent_type(eb, item);
5970 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5971 continue;
5972 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5973 continue;
5974 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5975 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5976 __exclude_logged_extent(log, key.objectid, key.offset);
5977 }
5978
5979 return 0;
5980 }
5981
5982 /**
5983 * btrfs_update_reserved_bytes - update the block_group and space info counters
5984 * @cache: The cache we are manipulating
5985 * @num_bytes: The number of bytes in question
5986 * @reserve: One of the reservation enums
5987 * @delalloc: The blocks are allocated for the delalloc write
5988 *
5989 * This is called by the allocator when it reserves space, or by somebody who is
5990 * freeing space that was never actually used on disk. For example if you
5991 * reserve some space for a new leaf in transaction A and before transaction A
5992 * commits you free that leaf, you call this with reserve set to 0 in order to
5993 * clear the reservation.
5994 *
5995 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5996 * ENOSPC accounting. For data we handle the reservation through clearing the
5997 * delalloc bits in the io_tree. We have to do this since we could end up
5998 * allocating less disk space for the amount of data we have reserved in the
5999 * case of compression.
6000 *
6001 * If this is a reservation and the block group has become read only we cannot
6002 * make the reservation and return -EAGAIN, otherwise this function always
6003 * succeeds.
6004 */
6005 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6006 u64 num_bytes, int reserve, int delalloc)
6007 {
6008 struct btrfs_space_info *space_info = cache->space_info;
6009 int ret = 0;
6010
6011 spin_lock(&space_info->lock);
6012 spin_lock(&cache->lock);
6013 if (reserve != RESERVE_FREE) {
6014 if (cache->ro) {
6015 ret = -EAGAIN;
6016 } else {
6017 cache->reserved += num_bytes;
6018 space_info->bytes_reserved += num_bytes;
6019 if (reserve == RESERVE_ALLOC) {
6020 trace_btrfs_space_reservation(cache->fs_info,
6021 "space_info", space_info->flags,
6022 num_bytes, 0);
6023 space_info->bytes_may_use -= num_bytes;
6024 }
6025
6026 if (delalloc)
6027 cache->delalloc_bytes += num_bytes;
6028 }
6029 } else {
6030 if (cache->ro)
6031 space_info->bytes_readonly += num_bytes;
6032 cache->reserved -= num_bytes;
6033 space_info->bytes_reserved -= num_bytes;
6034
6035 if (delalloc)
6036 cache->delalloc_bytes -= num_bytes;
6037 }
6038 spin_unlock(&cache->lock);
6039 spin_unlock(&space_info->lock);
6040 return ret;
6041 }
6042
6043 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6044 struct btrfs_root *root)
6045 {
6046 struct btrfs_fs_info *fs_info = root->fs_info;
6047 struct btrfs_caching_control *next;
6048 struct btrfs_caching_control *caching_ctl;
6049 struct btrfs_block_group_cache *cache;
6050
6051 down_write(&fs_info->commit_root_sem);
6052
6053 list_for_each_entry_safe(caching_ctl, next,
6054 &fs_info->caching_block_groups, list) {
6055 cache = caching_ctl->block_group;
6056 if (block_group_cache_done(cache)) {
6057 cache->last_byte_to_unpin = (u64)-1;
6058 list_del_init(&caching_ctl->list);
6059 put_caching_control(caching_ctl);
6060 } else {
6061 cache->last_byte_to_unpin = caching_ctl->progress;
6062 }
6063 }
6064
6065 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6066 fs_info->pinned_extents = &fs_info->freed_extents[1];
6067 else
6068 fs_info->pinned_extents = &fs_info->freed_extents[0];
6069
6070 up_write(&fs_info->commit_root_sem);
6071
6072 update_global_block_rsv(fs_info);
6073 }
6074
6075 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6076 const bool return_free_space)
6077 {
6078 struct btrfs_fs_info *fs_info = root->fs_info;
6079 struct btrfs_block_group_cache *cache = NULL;
6080 struct btrfs_space_info *space_info;
6081 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6082 u64 len;
6083 bool readonly;
6084
6085 while (start <= end) {
6086 readonly = false;
6087 if (!cache ||
6088 start >= cache->key.objectid + cache->key.offset) {
6089 if (cache)
6090 btrfs_put_block_group(cache);
6091 cache = btrfs_lookup_block_group(fs_info, start);
6092 BUG_ON(!cache); /* Logic error */
6093 }
6094
6095 len = cache->key.objectid + cache->key.offset - start;
6096 len = min(len, end + 1 - start);
6097
6098 if (start < cache->last_byte_to_unpin) {
6099 len = min(len, cache->last_byte_to_unpin - start);
6100 if (return_free_space)
6101 btrfs_add_free_space(cache, start, len);
6102 }
6103
6104 start += len;
6105 space_info = cache->space_info;
6106
6107 spin_lock(&space_info->lock);
6108 spin_lock(&cache->lock);
6109 cache->pinned -= len;
6110 space_info->bytes_pinned -= len;
6111 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6112 if (cache->ro) {
6113 space_info->bytes_readonly += len;
6114 readonly = true;
6115 }
6116 spin_unlock(&cache->lock);
6117 if (!readonly && global_rsv->space_info == space_info) {
6118 spin_lock(&global_rsv->lock);
6119 if (!global_rsv->full) {
6120 len = min(len, global_rsv->size -
6121 global_rsv->reserved);
6122 global_rsv->reserved += len;
6123 space_info->bytes_may_use += len;
6124 if (global_rsv->reserved >= global_rsv->size)
6125 global_rsv->full = 1;
6126 }
6127 spin_unlock(&global_rsv->lock);
6128 }
6129 spin_unlock(&space_info->lock);
6130 }
6131
6132 if (cache)
6133 btrfs_put_block_group(cache);
6134 return 0;
6135 }
6136
6137 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6138 struct btrfs_root *root)
6139 {
6140 struct btrfs_fs_info *fs_info = root->fs_info;
6141 struct btrfs_block_group_cache *block_group, *tmp;
6142 struct list_head *deleted_bgs;
6143 struct extent_io_tree *unpin;
6144 u64 start;
6145 u64 end;
6146 int ret;
6147
6148 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6149 unpin = &fs_info->freed_extents[1];
6150 else
6151 unpin = &fs_info->freed_extents[0];
6152
6153 while (!trans->aborted) {
6154 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6155 ret = find_first_extent_bit(unpin, 0, &start, &end,
6156 EXTENT_DIRTY, NULL);
6157 if (ret) {
6158 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6159 break;
6160 }
6161
6162 if (btrfs_test_opt(root, DISCARD))
6163 ret = btrfs_discard_extent(root, start,
6164 end + 1 - start, NULL);
6165
6166 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6167 unpin_extent_range(root, start, end, true);
6168 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6169 cond_resched();
6170 }
6171
6172 /*
6173 * Transaction is finished. We don't need the lock anymore. We
6174 * do need to clean up the block groups in case of a transaction
6175 * abort.
6176 */
6177 deleted_bgs = &trans->transaction->deleted_bgs;
6178 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6179 u64 trimmed = 0;
6180
6181 ret = -EROFS;
6182 if (!trans->aborted)
6183 ret = btrfs_discard_extent(root,
6184 block_group->key.objectid,
6185 block_group->key.offset,
6186 &trimmed);
6187
6188 list_del_init(&block_group->bg_list);
6189 btrfs_put_block_group_trimming(block_group);
6190 btrfs_put_block_group(block_group);
6191
6192 if (ret) {
6193 const char *errstr = btrfs_decode_error(ret);
6194 btrfs_warn(fs_info,
6195 "Discard failed while removing blockgroup: errno=%d %s\n",
6196 ret, errstr);
6197 }
6198 }
6199
6200 return 0;
6201 }
6202
6203 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6204 u64 owner, u64 root_objectid)
6205 {
6206 struct btrfs_space_info *space_info;
6207 u64 flags;
6208
6209 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6210 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6211 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6212 else
6213 flags = BTRFS_BLOCK_GROUP_METADATA;
6214 } else {
6215 flags = BTRFS_BLOCK_GROUP_DATA;
6216 }
6217
6218 space_info = __find_space_info(fs_info, flags);
6219 BUG_ON(!space_info); /* Logic bug */
6220 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6221 }
6222
6223
6224 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6225 struct btrfs_root *root,
6226 struct btrfs_delayed_ref_node *node, u64 parent,
6227 u64 root_objectid, u64 owner_objectid,
6228 u64 owner_offset, int refs_to_drop,
6229 struct btrfs_delayed_extent_op *extent_op)
6230 {
6231 struct btrfs_key key;
6232 struct btrfs_path *path;
6233 struct btrfs_fs_info *info = root->fs_info;
6234 struct btrfs_root *extent_root = info->extent_root;
6235 struct extent_buffer *leaf;
6236 struct btrfs_extent_item *ei;
6237 struct btrfs_extent_inline_ref *iref;
6238 int ret;
6239 int is_data;
6240 int extent_slot = 0;
6241 int found_extent = 0;
6242 int num_to_del = 1;
6243 int no_quota = node->no_quota;
6244 u32 item_size;
6245 u64 refs;
6246 u64 bytenr = node->bytenr;
6247 u64 num_bytes = node->num_bytes;
6248 int last_ref = 0;
6249 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6250 SKINNY_METADATA);
6251
6252 if (!info->quota_enabled || !is_fstree(root_objectid))
6253 no_quota = 1;
6254
6255 path = btrfs_alloc_path();
6256 if (!path)
6257 return -ENOMEM;
6258
6259 path->reada = 1;
6260 path->leave_spinning = 1;
6261
6262 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6263 BUG_ON(!is_data && refs_to_drop != 1);
6264
6265 if (is_data)
6266 skinny_metadata = 0;
6267
6268 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6269 bytenr, num_bytes, parent,
6270 root_objectid, owner_objectid,
6271 owner_offset);
6272 if (ret == 0) {
6273 extent_slot = path->slots[0];
6274 while (extent_slot >= 0) {
6275 btrfs_item_key_to_cpu(path->nodes[0], &key,
6276 extent_slot);
6277 if (key.objectid != bytenr)
6278 break;
6279 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6280 key.offset == num_bytes) {
6281 found_extent = 1;
6282 break;
6283 }
6284 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6285 key.offset == owner_objectid) {
6286 found_extent = 1;
6287 break;
6288 }
6289 if (path->slots[0] - extent_slot > 5)
6290 break;
6291 extent_slot--;
6292 }
6293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6294 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6295 if (found_extent && item_size < sizeof(*ei))
6296 found_extent = 0;
6297 #endif
6298 if (!found_extent) {
6299 BUG_ON(iref);
6300 ret = remove_extent_backref(trans, extent_root, path,
6301 NULL, refs_to_drop,
6302 is_data, &last_ref);
6303 if (ret) {
6304 btrfs_abort_transaction(trans, extent_root, ret);
6305 goto out;
6306 }
6307 btrfs_release_path(path);
6308 path->leave_spinning = 1;
6309
6310 key.objectid = bytenr;
6311 key.type = BTRFS_EXTENT_ITEM_KEY;
6312 key.offset = num_bytes;
6313
6314 if (!is_data && skinny_metadata) {
6315 key.type = BTRFS_METADATA_ITEM_KEY;
6316 key.offset = owner_objectid;
6317 }
6318
6319 ret = btrfs_search_slot(trans, extent_root,
6320 &key, path, -1, 1);
6321 if (ret > 0 && skinny_metadata && path->slots[0]) {
6322 /*
6323 * Couldn't find our skinny metadata item,
6324 * see if we have ye olde extent item.
6325 */
6326 path->slots[0]--;
6327 btrfs_item_key_to_cpu(path->nodes[0], &key,
6328 path->slots[0]);
6329 if (key.objectid == bytenr &&
6330 key.type == BTRFS_EXTENT_ITEM_KEY &&
6331 key.offset == num_bytes)
6332 ret = 0;
6333 }
6334
6335 if (ret > 0 && skinny_metadata) {
6336 skinny_metadata = false;
6337 key.objectid = bytenr;
6338 key.type = BTRFS_EXTENT_ITEM_KEY;
6339 key.offset = num_bytes;
6340 btrfs_release_path(path);
6341 ret = btrfs_search_slot(trans, extent_root,
6342 &key, path, -1, 1);
6343 }
6344
6345 if (ret) {
6346 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6347 ret, bytenr);
6348 if (ret > 0)
6349 btrfs_print_leaf(extent_root,
6350 path->nodes[0]);
6351 }
6352 if (ret < 0) {
6353 btrfs_abort_transaction(trans, extent_root, ret);
6354 goto out;
6355 }
6356 extent_slot = path->slots[0];
6357 }
6358 } else if (WARN_ON(ret == -ENOENT)) {
6359 btrfs_print_leaf(extent_root, path->nodes[0]);
6360 btrfs_err(info,
6361 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6362 bytenr, parent, root_objectid, owner_objectid,
6363 owner_offset);
6364 btrfs_abort_transaction(trans, extent_root, ret);
6365 goto out;
6366 } else {
6367 btrfs_abort_transaction(trans, extent_root, ret);
6368 goto out;
6369 }
6370
6371 leaf = path->nodes[0];
6372 item_size = btrfs_item_size_nr(leaf, extent_slot);
6373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6374 if (item_size < sizeof(*ei)) {
6375 BUG_ON(found_extent || extent_slot != path->slots[0]);
6376 ret = convert_extent_item_v0(trans, extent_root, path,
6377 owner_objectid, 0);
6378 if (ret < 0) {
6379 btrfs_abort_transaction(trans, extent_root, ret);
6380 goto out;
6381 }
6382
6383 btrfs_release_path(path);
6384 path->leave_spinning = 1;
6385
6386 key.objectid = bytenr;
6387 key.type = BTRFS_EXTENT_ITEM_KEY;
6388 key.offset = num_bytes;
6389
6390 ret = btrfs_search_slot(trans, extent_root, &key, path,
6391 -1, 1);
6392 if (ret) {
6393 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6394 ret, bytenr);
6395 btrfs_print_leaf(extent_root, path->nodes[0]);
6396 }
6397 if (ret < 0) {
6398 btrfs_abort_transaction(trans, extent_root, ret);
6399 goto out;
6400 }
6401
6402 extent_slot = path->slots[0];
6403 leaf = path->nodes[0];
6404 item_size = btrfs_item_size_nr(leaf, extent_slot);
6405 }
6406 #endif
6407 BUG_ON(item_size < sizeof(*ei));
6408 ei = btrfs_item_ptr(leaf, extent_slot,
6409 struct btrfs_extent_item);
6410 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6411 key.type == BTRFS_EXTENT_ITEM_KEY) {
6412 struct btrfs_tree_block_info *bi;
6413 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6414 bi = (struct btrfs_tree_block_info *)(ei + 1);
6415 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6416 }
6417
6418 refs = btrfs_extent_refs(leaf, ei);
6419 if (refs < refs_to_drop) {
6420 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6421 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6422 ret = -EINVAL;
6423 btrfs_abort_transaction(trans, extent_root, ret);
6424 goto out;
6425 }
6426 refs -= refs_to_drop;
6427
6428 if (refs > 0) {
6429 if (extent_op)
6430 __run_delayed_extent_op(extent_op, leaf, ei);
6431 /*
6432 * In the case of inline back ref, reference count will
6433 * be updated by remove_extent_backref
6434 */
6435 if (iref) {
6436 BUG_ON(!found_extent);
6437 } else {
6438 btrfs_set_extent_refs(leaf, ei, refs);
6439 btrfs_mark_buffer_dirty(leaf);
6440 }
6441 if (found_extent) {
6442 ret = remove_extent_backref(trans, extent_root, path,
6443 iref, refs_to_drop,
6444 is_data, &last_ref);
6445 if (ret) {
6446 btrfs_abort_transaction(trans, extent_root, ret);
6447 goto out;
6448 }
6449 }
6450 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6451 root_objectid);
6452 } else {
6453 if (found_extent) {
6454 BUG_ON(is_data && refs_to_drop !=
6455 extent_data_ref_count(path, iref));
6456 if (iref) {
6457 BUG_ON(path->slots[0] != extent_slot);
6458 } else {
6459 BUG_ON(path->slots[0] != extent_slot + 1);
6460 path->slots[0] = extent_slot;
6461 num_to_del = 2;
6462 }
6463 }
6464
6465 last_ref = 1;
6466 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6467 num_to_del);
6468 if (ret) {
6469 btrfs_abort_transaction(trans, extent_root, ret);
6470 goto out;
6471 }
6472 btrfs_release_path(path);
6473
6474 if (is_data) {
6475 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6476 if (ret) {
6477 btrfs_abort_transaction(trans, extent_root, ret);
6478 goto out;
6479 }
6480 }
6481
6482 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6483 if (ret) {
6484 btrfs_abort_transaction(trans, extent_root, ret);
6485 goto out;
6486 }
6487 }
6488 btrfs_release_path(path);
6489
6490 out:
6491 btrfs_free_path(path);
6492 return ret;
6493 }
6494
6495 /*
6496 * when we free an block, it is possible (and likely) that we free the last
6497 * delayed ref for that extent as well. This searches the delayed ref tree for
6498 * a given extent, and if there are no other delayed refs to be processed, it
6499 * removes it from the tree.
6500 */
6501 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6502 struct btrfs_root *root, u64 bytenr)
6503 {
6504 struct btrfs_delayed_ref_head *head;
6505 struct btrfs_delayed_ref_root *delayed_refs;
6506 int ret = 0;
6507
6508 delayed_refs = &trans->transaction->delayed_refs;
6509 spin_lock(&delayed_refs->lock);
6510 head = btrfs_find_delayed_ref_head(trans, bytenr);
6511 if (!head)
6512 goto out_delayed_unlock;
6513
6514 spin_lock(&head->lock);
6515 if (!list_empty(&head->ref_list))
6516 goto out;
6517
6518 if (head->extent_op) {
6519 if (!head->must_insert_reserved)
6520 goto out;
6521 btrfs_free_delayed_extent_op(head->extent_op);
6522 head->extent_op = NULL;
6523 }
6524
6525 /*
6526 * waiting for the lock here would deadlock. If someone else has it
6527 * locked they are already in the process of dropping it anyway
6528 */
6529 if (!mutex_trylock(&head->mutex))
6530 goto out;
6531
6532 /*
6533 * at this point we have a head with no other entries. Go
6534 * ahead and process it.
6535 */
6536 head->node.in_tree = 0;
6537 rb_erase(&head->href_node, &delayed_refs->href_root);
6538
6539 atomic_dec(&delayed_refs->num_entries);
6540
6541 /*
6542 * we don't take a ref on the node because we're removing it from the
6543 * tree, so we just steal the ref the tree was holding.
6544 */
6545 delayed_refs->num_heads--;
6546 if (head->processing == 0)
6547 delayed_refs->num_heads_ready--;
6548 head->processing = 0;
6549 spin_unlock(&head->lock);
6550 spin_unlock(&delayed_refs->lock);
6551
6552 BUG_ON(head->extent_op);
6553 if (head->must_insert_reserved)
6554 ret = 1;
6555
6556 mutex_unlock(&head->mutex);
6557 btrfs_put_delayed_ref(&head->node);
6558 return ret;
6559 out:
6560 spin_unlock(&head->lock);
6561
6562 out_delayed_unlock:
6563 spin_unlock(&delayed_refs->lock);
6564 return 0;
6565 }
6566
6567 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6568 struct btrfs_root *root,
6569 struct extent_buffer *buf,
6570 u64 parent, int last_ref)
6571 {
6572 int pin = 1;
6573 int ret;
6574
6575 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6576 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6577 buf->start, buf->len,
6578 parent, root->root_key.objectid,
6579 btrfs_header_level(buf),
6580 BTRFS_DROP_DELAYED_REF, NULL, 0);
6581 BUG_ON(ret); /* -ENOMEM */
6582 }
6583
6584 if (!last_ref)
6585 return;
6586
6587 if (btrfs_header_generation(buf) == trans->transid) {
6588 struct btrfs_block_group_cache *cache;
6589
6590 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6591 ret = check_ref_cleanup(trans, root, buf->start);
6592 if (!ret)
6593 goto out;
6594 }
6595
6596 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6597
6598 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6599 pin_down_extent(root, cache, buf->start, buf->len, 1);
6600 btrfs_put_block_group(cache);
6601 goto out;
6602 }
6603
6604 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6605
6606 btrfs_add_free_space(cache, buf->start, buf->len);
6607 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6608 btrfs_put_block_group(cache);
6609 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6610 pin = 0;
6611 }
6612 out:
6613 if (pin)
6614 add_pinned_bytes(root->fs_info, buf->len,
6615 btrfs_header_level(buf),
6616 root->root_key.objectid);
6617
6618 /*
6619 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6620 * anymore.
6621 */
6622 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6623 }
6624
6625 /* Can return -ENOMEM */
6626 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6627 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6628 u64 owner, u64 offset, int no_quota)
6629 {
6630 int ret;
6631 struct btrfs_fs_info *fs_info = root->fs_info;
6632
6633 if (btrfs_test_is_dummy_root(root))
6634 return 0;
6635
6636 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6637
6638 /*
6639 * tree log blocks never actually go into the extent allocation
6640 * tree, just update pinning info and exit early.
6641 */
6642 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6643 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6644 /* unlocks the pinned mutex */
6645 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6646 ret = 0;
6647 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6648 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6649 num_bytes,
6650 parent, root_objectid, (int)owner,
6651 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6652 } else {
6653 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6654 num_bytes,
6655 parent, root_objectid, owner,
6656 offset, BTRFS_DROP_DELAYED_REF,
6657 NULL, no_quota);
6658 }
6659 return ret;
6660 }
6661
6662 /*
6663 * when we wait for progress in the block group caching, its because
6664 * our allocation attempt failed at least once. So, we must sleep
6665 * and let some progress happen before we try again.
6666 *
6667 * This function will sleep at least once waiting for new free space to
6668 * show up, and then it will check the block group free space numbers
6669 * for our min num_bytes. Another option is to have it go ahead
6670 * and look in the rbtree for a free extent of a given size, but this
6671 * is a good start.
6672 *
6673 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6674 * any of the information in this block group.
6675 */
6676 static noinline void
6677 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6678 u64 num_bytes)
6679 {
6680 struct btrfs_caching_control *caching_ctl;
6681
6682 caching_ctl = get_caching_control(cache);
6683 if (!caching_ctl)
6684 return;
6685
6686 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6687 (cache->free_space_ctl->free_space >= num_bytes));
6688
6689 put_caching_control(caching_ctl);
6690 }
6691
6692 static noinline int
6693 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6694 {
6695 struct btrfs_caching_control *caching_ctl;
6696 int ret = 0;
6697
6698 caching_ctl = get_caching_control(cache);
6699 if (!caching_ctl)
6700 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6701
6702 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6703 if (cache->cached == BTRFS_CACHE_ERROR)
6704 ret = -EIO;
6705 put_caching_control(caching_ctl);
6706 return ret;
6707 }
6708
6709 int __get_raid_index(u64 flags)
6710 {
6711 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6712 return BTRFS_RAID_RAID10;
6713 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6714 return BTRFS_RAID_RAID1;
6715 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6716 return BTRFS_RAID_DUP;
6717 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6718 return BTRFS_RAID_RAID0;
6719 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6720 return BTRFS_RAID_RAID5;
6721 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6722 return BTRFS_RAID_RAID6;
6723
6724 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6725 }
6726
6727 int get_block_group_index(struct btrfs_block_group_cache *cache)
6728 {
6729 return __get_raid_index(cache->flags);
6730 }
6731
6732 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6733 [BTRFS_RAID_RAID10] = "raid10",
6734 [BTRFS_RAID_RAID1] = "raid1",
6735 [BTRFS_RAID_DUP] = "dup",
6736 [BTRFS_RAID_RAID0] = "raid0",
6737 [BTRFS_RAID_SINGLE] = "single",
6738 [BTRFS_RAID_RAID5] = "raid5",
6739 [BTRFS_RAID_RAID6] = "raid6",
6740 };
6741
6742 static const char *get_raid_name(enum btrfs_raid_types type)
6743 {
6744 if (type >= BTRFS_NR_RAID_TYPES)
6745 return NULL;
6746
6747 return btrfs_raid_type_names[type];
6748 }
6749
6750 enum btrfs_loop_type {
6751 LOOP_CACHING_NOWAIT = 0,
6752 LOOP_CACHING_WAIT = 1,
6753 LOOP_ALLOC_CHUNK = 2,
6754 LOOP_NO_EMPTY_SIZE = 3,
6755 };
6756
6757 static inline void
6758 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6759 int delalloc)
6760 {
6761 if (delalloc)
6762 down_read(&cache->data_rwsem);
6763 }
6764
6765 static inline void
6766 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6767 int delalloc)
6768 {
6769 btrfs_get_block_group(cache);
6770 if (delalloc)
6771 down_read(&cache->data_rwsem);
6772 }
6773
6774 static struct btrfs_block_group_cache *
6775 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6776 struct btrfs_free_cluster *cluster,
6777 int delalloc)
6778 {
6779 struct btrfs_block_group_cache *used_bg;
6780 bool locked = false;
6781 again:
6782 spin_lock(&cluster->refill_lock);
6783 if (locked) {
6784 if (used_bg == cluster->block_group)
6785 return used_bg;
6786
6787 up_read(&used_bg->data_rwsem);
6788 btrfs_put_block_group(used_bg);
6789 }
6790
6791 used_bg = cluster->block_group;
6792 if (!used_bg)
6793 return NULL;
6794
6795 if (used_bg == block_group)
6796 return used_bg;
6797
6798 btrfs_get_block_group(used_bg);
6799
6800 if (!delalloc)
6801 return used_bg;
6802
6803 if (down_read_trylock(&used_bg->data_rwsem))
6804 return used_bg;
6805
6806 spin_unlock(&cluster->refill_lock);
6807 down_read(&used_bg->data_rwsem);
6808 locked = true;
6809 goto again;
6810 }
6811
6812 static inline void
6813 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6814 int delalloc)
6815 {
6816 if (delalloc)
6817 up_read(&cache->data_rwsem);
6818 btrfs_put_block_group(cache);
6819 }
6820
6821 /*
6822 * walks the btree of allocated extents and find a hole of a given size.
6823 * The key ins is changed to record the hole:
6824 * ins->objectid == start position
6825 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6826 * ins->offset == the size of the hole.
6827 * Any available blocks before search_start are skipped.
6828 *
6829 * If there is no suitable free space, we will record the max size of
6830 * the free space extent currently.
6831 */
6832 static noinline int find_free_extent(struct btrfs_root *orig_root,
6833 u64 num_bytes, u64 empty_size,
6834 u64 hint_byte, struct btrfs_key *ins,
6835 u64 flags, int delalloc)
6836 {
6837 int ret = 0;
6838 struct btrfs_root *root = orig_root->fs_info->extent_root;
6839 struct btrfs_free_cluster *last_ptr = NULL;
6840 struct btrfs_block_group_cache *block_group = NULL;
6841 u64 search_start = 0;
6842 u64 max_extent_size = 0;
6843 int empty_cluster = 2 * 1024 * 1024;
6844 struct btrfs_space_info *space_info;
6845 int loop = 0;
6846 int index = __get_raid_index(flags);
6847 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6848 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6849 bool failed_cluster_refill = false;
6850 bool failed_alloc = false;
6851 bool use_cluster = true;
6852 bool have_caching_bg = false;
6853
6854 WARN_ON(num_bytes < root->sectorsize);
6855 ins->type = BTRFS_EXTENT_ITEM_KEY;
6856 ins->objectid = 0;
6857 ins->offset = 0;
6858
6859 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6860
6861 space_info = __find_space_info(root->fs_info, flags);
6862 if (!space_info) {
6863 btrfs_err(root->fs_info, "No space info for %llu", flags);
6864 return -ENOSPC;
6865 }
6866
6867 /*
6868 * If the space info is for both data and metadata it means we have a
6869 * small filesystem and we can't use the clustering stuff.
6870 */
6871 if (btrfs_mixed_space_info(space_info))
6872 use_cluster = false;
6873
6874 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6875 last_ptr = &root->fs_info->meta_alloc_cluster;
6876 if (!btrfs_test_opt(root, SSD))
6877 empty_cluster = 64 * 1024;
6878 }
6879
6880 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6881 btrfs_test_opt(root, SSD)) {
6882 last_ptr = &root->fs_info->data_alloc_cluster;
6883 }
6884
6885 if (last_ptr) {
6886 spin_lock(&last_ptr->lock);
6887 if (last_ptr->block_group)
6888 hint_byte = last_ptr->window_start;
6889 spin_unlock(&last_ptr->lock);
6890 }
6891
6892 search_start = max(search_start, first_logical_byte(root, 0));
6893 search_start = max(search_start, hint_byte);
6894
6895 if (!last_ptr)
6896 empty_cluster = 0;
6897
6898 if (search_start == hint_byte) {
6899 block_group = btrfs_lookup_block_group(root->fs_info,
6900 search_start);
6901 /*
6902 * we don't want to use the block group if it doesn't match our
6903 * allocation bits, or if its not cached.
6904 *
6905 * However if we are re-searching with an ideal block group
6906 * picked out then we don't care that the block group is cached.
6907 */
6908 if (block_group && block_group_bits(block_group, flags) &&
6909 block_group->cached != BTRFS_CACHE_NO) {
6910 down_read(&space_info->groups_sem);
6911 if (list_empty(&block_group->list) ||
6912 block_group->ro) {
6913 /*
6914 * someone is removing this block group,
6915 * we can't jump into the have_block_group
6916 * target because our list pointers are not
6917 * valid
6918 */
6919 btrfs_put_block_group(block_group);
6920 up_read(&space_info->groups_sem);
6921 } else {
6922 index = get_block_group_index(block_group);
6923 btrfs_lock_block_group(block_group, delalloc);
6924 goto have_block_group;
6925 }
6926 } else if (block_group) {
6927 btrfs_put_block_group(block_group);
6928 }
6929 }
6930 search:
6931 have_caching_bg = false;
6932 down_read(&space_info->groups_sem);
6933 list_for_each_entry(block_group, &space_info->block_groups[index],
6934 list) {
6935 u64 offset;
6936 int cached;
6937
6938 btrfs_grab_block_group(block_group, delalloc);
6939 search_start = block_group->key.objectid;
6940
6941 /*
6942 * this can happen if we end up cycling through all the
6943 * raid types, but we want to make sure we only allocate
6944 * for the proper type.
6945 */
6946 if (!block_group_bits(block_group, flags)) {
6947 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6948 BTRFS_BLOCK_GROUP_RAID1 |
6949 BTRFS_BLOCK_GROUP_RAID5 |
6950 BTRFS_BLOCK_GROUP_RAID6 |
6951 BTRFS_BLOCK_GROUP_RAID10;
6952
6953 /*
6954 * if they asked for extra copies and this block group
6955 * doesn't provide them, bail. This does allow us to
6956 * fill raid0 from raid1.
6957 */
6958 if ((flags & extra) && !(block_group->flags & extra))
6959 goto loop;
6960 }
6961
6962 have_block_group:
6963 cached = block_group_cache_done(block_group);
6964 if (unlikely(!cached)) {
6965 ret = cache_block_group(block_group, 0);
6966 BUG_ON(ret < 0);
6967 ret = 0;
6968 }
6969
6970 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6971 goto loop;
6972 if (unlikely(block_group->ro))
6973 goto loop;
6974
6975 /*
6976 * Ok we want to try and use the cluster allocator, so
6977 * lets look there
6978 */
6979 if (last_ptr) {
6980 struct btrfs_block_group_cache *used_block_group;
6981 unsigned long aligned_cluster;
6982 /*
6983 * the refill lock keeps out other
6984 * people trying to start a new cluster
6985 */
6986 used_block_group = btrfs_lock_cluster(block_group,
6987 last_ptr,
6988 delalloc);
6989 if (!used_block_group)
6990 goto refill_cluster;
6991
6992 if (used_block_group != block_group &&
6993 (used_block_group->ro ||
6994 !block_group_bits(used_block_group, flags)))
6995 goto release_cluster;
6996
6997 offset = btrfs_alloc_from_cluster(used_block_group,
6998 last_ptr,
6999 num_bytes,
7000 used_block_group->key.objectid,
7001 &max_extent_size);
7002 if (offset) {
7003 /* we have a block, we're done */
7004 spin_unlock(&last_ptr->refill_lock);
7005 trace_btrfs_reserve_extent_cluster(root,
7006 used_block_group,
7007 search_start, num_bytes);
7008 if (used_block_group != block_group) {
7009 btrfs_release_block_group(block_group,
7010 delalloc);
7011 block_group = used_block_group;
7012 }
7013 goto checks;
7014 }
7015
7016 WARN_ON(last_ptr->block_group != used_block_group);
7017 release_cluster:
7018 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7019 * set up a new clusters, so lets just skip it
7020 * and let the allocator find whatever block
7021 * it can find. If we reach this point, we
7022 * will have tried the cluster allocator
7023 * plenty of times and not have found
7024 * anything, so we are likely way too
7025 * fragmented for the clustering stuff to find
7026 * anything.
7027 *
7028 * However, if the cluster is taken from the
7029 * current block group, release the cluster
7030 * first, so that we stand a better chance of
7031 * succeeding in the unclustered
7032 * allocation. */
7033 if (loop >= LOOP_NO_EMPTY_SIZE &&
7034 used_block_group != block_group) {
7035 spin_unlock(&last_ptr->refill_lock);
7036 btrfs_release_block_group(used_block_group,
7037 delalloc);
7038 goto unclustered_alloc;
7039 }
7040
7041 /*
7042 * this cluster didn't work out, free it and
7043 * start over
7044 */
7045 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7046
7047 if (used_block_group != block_group)
7048 btrfs_release_block_group(used_block_group,
7049 delalloc);
7050 refill_cluster:
7051 if (loop >= LOOP_NO_EMPTY_SIZE) {
7052 spin_unlock(&last_ptr->refill_lock);
7053 goto unclustered_alloc;
7054 }
7055
7056 aligned_cluster = max_t(unsigned long,
7057 empty_cluster + empty_size,
7058 block_group->full_stripe_len);
7059
7060 /* allocate a cluster in this block group */
7061 ret = btrfs_find_space_cluster(root, block_group,
7062 last_ptr, search_start,
7063 num_bytes,
7064 aligned_cluster);
7065 if (ret == 0) {
7066 /*
7067 * now pull our allocation out of this
7068 * cluster
7069 */
7070 offset = btrfs_alloc_from_cluster(block_group,
7071 last_ptr,
7072 num_bytes,
7073 search_start,
7074 &max_extent_size);
7075 if (offset) {
7076 /* we found one, proceed */
7077 spin_unlock(&last_ptr->refill_lock);
7078 trace_btrfs_reserve_extent_cluster(root,
7079 block_group, search_start,
7080 num_bytes);
7081 goto checks;
7082 }
7083 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7084 && !failed_cluster_refill) {
7085 spin_unlock(&last_ptr->refill_lock);
7086
7087 failed_cluster_refill = true;
7088 wait_block_group_cache_progress(block_group,
7089 num_bytes + empty_cluster + empty_size);
7090 goto have_block_group;
7091 }
7092
7093 /*
7094 * at this point we either didn't find a cluster
7095 * or we weren't able to allocate a block from our
7096 * cluster. Free the cluster we've been trying
7097 * to use, and go to the next block group
7098 */
7099 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7100 spin_unlock(&last_ptr->refill_lock);
7101 goto loop;
7102 }
7103
7104 unclustered_alloc:
7105 spin_lock(&block_group->free_space_ctl->tree_lock);
7106 if (cached &&
7107 block_group->free_space_ctl->free_space <
7108 num_bytes + empty_cluster + empty_size) {
7109 if (block_group->free_space_ctl->free_space >
7110 max_extent_size)
7111 max_extent_size =
7112 block_group->free_space_ctl->free_space;
7113 spin_unlock(&block_group->free_space_ctl->tree_lock);
7114 goto loop;
7115 }
7116 spin_unlock(&block_group->free_space_ctl->tree_lock);
7117
7118 offset = btrfs_find_space_for_alloc(block_group, search_start,
7119 num_bytes, empty_size,
7120 &max_extent_size);
7121 /*
7122 * If we didn't find a chunk, and we haven't failed on this
7123 * block group before, and this block group is in the middle of
7124 * caching and we are ok with waiting, then go ahead and wait
7125 * for progress to be made, and set failed_alloc to true.
7126 *
7127 * If failed_alloc is true then we've already waited on this
7128 * block group once and should move on to the next block group.
7129 */
7130 if (!offset && !failed_alloc && !cached &&
7131 loop > LOOP_CACHING_NOWAIT) {
7132 wait_block_group_cache_progress(block_group,
7133 num_bytes + empty_size);
7134 failed_alloc = true;
7135 goto have_block_group;
7136 } else if (!offset) {
7137 if (!cached)
7138 have_caching_bg = true;
7139 goto loop;
7140 }
7141 checks:
7142 search_start = ALIGN(offset, root->stripesize);
7143
7144 /* move on to the next group */
7145 if (search_start + num_bytes >
7146 block_group->key.objectid + block_group->key.offset) {
7147 btrfs_add_free_space(block_group, offset, num_bytes);
7148 goto loop;
7149 }
7150
7151 if (offset < search_start)
7152 btrfs_add_free_space(block_group, offset,
7153 search_start - offset);
7154 BUG_ON(offset > search_start);
7155
7156 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7157 alloc_type, delalloc);
7158 if (ret == -EAGAIN) {
7159 btrfs_add_free_space(block_group, offset, num_bytes);
7160 goto loop;
7161 }
7162
7163 /* we are all good, lets return */
7164 ins->objectid = search_start;
7165 ins->offset = num_bytes;
7166
7167 trace_btrfs_reserve_extent(orig_root, block_group,
7168 search_start, num_bytes);
7169 btrfs_release_block_group(block_group, delalloc);
7170 break;
7171 loop:
7172 failed_cluster_refill = false;
7173 failed_alloc = false;
7174 BUG_ON(index != get_block_group_index(block_group));
7175 btrfs_release_block_group(block_group, delalloc);
7176 }
7177 up_read(&space_info->groups_sem);
7178
7179 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7180 goto search;
7181
7182 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7183 goto search;
7184
7185 /*
7186 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7187 * caching kthreads as we move along
7188 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7189 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7190 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7191 * again
7192 */
7193 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7194 index = 0;
7195 loop++;
7196 if (loop == LOOP_ALLOC_CHUNK) {
7197 struct btrfs_trans_handle *trans;
7198 int exist = 0;
7199
7200 trans = current->journal_info;
7201 if (trans)
7202 exist = 1;
7203 else
7204 trans = btrfs_join_transaction(root);
7205
7206 if (IS_ERR(trans)) {
7207 ret = PTR_ERR(trans);
7208 goto out;
7209 }
7210
7211 ret = do_chunk_alloc(trans, root, flags,
7212 CHUNK_ALLOC_FORCE);
7213 /*
7214 * Do not bail out on ENOSPC since we
7215 * can do more things.
7216 */
7217 if (ret < 0 && ret != -ENOSPC)
7218 btrfs_abort_transaction(trans,
7219 root, ret);
7220 else
7221 ret = 0;
7222 if (!exist)
7223 btrfs_end_transaction(trans, root);
7224 if (ret)
7225 goto out;
7226 }
7227
7228 if (loop == LOOP_NO_EMPTY_SIZE) {
7229 empty_size = 0;
7230 empty_cluster = 0;
7231 }
7232
7233 goto search;
7234 } else if (!ins->objectid) {
7235 ret = -ENOSPC;
7236 } else if (ins->objectid) {
7237 ret = 0;
7238 }
7239 out:
7240 if (ret == -ENOSPC)
7241 ins->offset = max_extent_size;
7242 return ret;
7243 }
7244
7245 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7246 int dump_block_groups)
7247 {
7248 struct btrfs_block_group_cache *cache;
7249 int index = 0;
7250
7251 spin_lock(&info->lock);
7252 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7253 info->flags,
7254 info->total_bytes - info->bytes_used - info->bytes_pinned -
7255 info->bytes_reserved - info->bytes_readonly,
7256 (info->full) ? "" : "not ");
7257 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7258 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7259 info->total_bytes, info->bytes_used, info->bytes_pinned,
7260 info->bytes_reserved, info->bytes_may_use,
7261 info->bytes_readonly);
7262 spin_unlock(&info->lock);
7263
7264 if (!dump_block_groups)
7265 return;
7266
7267 down_read(&info->groups_sem);
7268 again:
7269 list_for_each_entry(cache, &info->block_groups[index], list) {
7270 spin_lock(&cache->lock);
7271 printk(KERN_INFO "BTRFS: "
7272 "block group %llu has %llu bytes, "
7273 "%llu used %llu pinned %llu reserved %s\n",
7274 cache->key.objectid, cache->key.offset,
7275 btrfs_block_group_used(&cache->item), cache->pinned,
7276 cache->reserved, cache->ro ? "[readonly]" : "");
7277 btrfs_dump_free_space(cache, bytes);
7278 spin_unlock(&cache->lock);
7279 }
7280 if (++index < BTRFS_NR_RAID_TYPES)
7281 goto again;
7282 up_read(&info->groups_sem);
7283 }
7284
7285 int btrfs_reserve_extent(struct btrfs_root *root,
7286 u64 num_bytes, u64 min_alloc_size,
7287 u64 empty_size, u64 hint_byte,
7288 struct btrfs_key *ins, int is_data, int delalloc)
7289 {
7290 bool final_tried = false;
7291 u64 flags;
7292 int ret;
7293
7294 flags = btrfs_get_alloc_profile(root, is_data);
7295 again:
7296 WARN_ON(num_bytes < root->sectorsize);
7297 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7298 flags, delalloc);
7299
7300 if (ret == -ENOSPC) {
7301 if (!final_tried && ins->offset) {
7302 num_bytes = min(num_bytes >> 1, ins->offset);
7303 num_bytes = round_down(num_bytes, root->sectorsize);
7304 num_bytes = max(num_bytes, min_alloc_size);
7305 if (num_bytes == min_alloc_size)
7306 final_tried = true;
7307 goto again;
7308 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7309 struct btrfs_space_info *sinfo;
7310
7311 sinfo = __find_space_info(root->fs_info, flags);
7312 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7313 flags, num_bytes);
7314 if (sinfo)
7315 dump_space_info(sinfo, num_bytes, 1);
7316 }
7317 }
7318
7319 return ret;
7320 }
7321
7322 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7323 u64 start, u64 len,
7324 int pin, int delalloc)
7325 {
7326 struct btrfs_block_group_cache *cache;
7327 int ret = 0;
7328
7329 cache = btrfs_lookup_block_group(root->fs_info, start);
7330 if (!cache) {
7331 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7332 start);
7333 return -ENOSPC;
7334 }
7335
7336 if (pin)
7337 pin_down_extent(root, cache, start, len, 1);
7338 else {
7339 if (btrfs_test_opt(root, DISCARD))
7340 ret = btrfs_discard_extent(root, start, len, NULL);
7341 btrfs_add_free_space(cache, start, len);
7342 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7343 }
7344
7345 btrfs_put_block_group(cache);
7346
7347 trace_btrfs_reserved_extent_free(root, start, len);
7348
7349 return ret;
7350 }
7351
7352 int btrfs_free_reserved_extent(struct btrfs_root *root,
7353 u64 start, u64 len, int delalloc)
7354 {
7355 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7356 }
7357
7358 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7359 u64 start, u64 len)
7360 {
7361 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7362 }
7363
7364 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7365 struct btrfs_root *root,
7366 u64 parent, u64 root_objectid,
7367 u64 flags, u64 owner, u64 offset,
7368 struct btrfs_key *ins, int ref_mod)
7369 {
7370 int ret;
7371 struct btrfs_fs_info *fs_info = root->fs_info;
7372 struct btrfs_extent_item *extent_item;
7373 struct btrfs_extent_inline_ref *iref;
7374 struct btrfs_path *path;
7375 struct extent_buffer *leaf;
7376 int type;
7377 u32 size;
7378
7379 if (parent > 0)
7380 type = BTRFS_SHARED_DATA_REF_KEY;
7381 else
7382 type = BTRFS_EXTENT_DATA_REF_KEY;
7383
7384 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7385
7386 path = btrfs_alloc_path();
7387 if (!path)
7388 return -ENOMEM;
7389
7390 path->leave_spinning = 1;
7391 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7392 ins, size);
7393 if (ret) {
7394 btrfs_free_path(path);
7395 return ret;
7396 }
7397
7398 leaf = path->nodes[0];
7399 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7400 struct btrfs_extent_item);
7401 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7402 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7403 btrfs_set_extent_flags(leaf, extent_item,
7404 flags | BTRFS_EXTENT_FLAG_DATA);
7405
7406 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7407 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7408 if (parent > 0) {
7409 struct btrfs_shared_data_ref *ref;
7410 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7411 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7412 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7413 } else {
7414 struct btrfs_extent_data_ref *ref;
7415 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7416 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7417 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7418 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7419 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7420 }
7421
7422 btrfs_mark_buffer_dirty(path->nodes[0]);
7423 btrfs_free_path(path);
7424
7425 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7426 if (ret) { /* -ENOENT, logic error */
7427 btrfs_err(fs_info, "update block group failed for %llu %llu",
7428 ins->objectid, ins->offset);
7429 BUG();
7430 }
7431 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7432 return ret;
7433 }
7434
7435 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7436 struct btrfs_root *root,
7437 u64 parent, u64 root_objectid,
7438 u64 flags, struct btrfs_disk_key *key,
7439 int level, struct btrfs_key *ins,
7440 int no_quota)
7441 {
7442 int ret;
7443 struct btrfs_fs_info *fs_info = root->fs_info;
7444 struct btrfs_extent_item *extent_item;
7445 struct btrfs_tree_block_info *block_info;
7446 struct btrfs_extent_inline_ref *iref;
7447 struct btrfs_path *path;
7448 struct extent_buffer *leaf;
7449 u32 size = sizeof(*extent_item) + sizeof(*iref);
7450 u64 num_bytes = ins->offset;
7451 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7452 SKINNY_METADATA);
7453
7454 if (!skinny_metadata)
7455 size += sizeof(*block_info);
7456
7457 path = btrfs_alloc_path();
7458 if (!path) {
7459 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7460 root->nodesize);
7461 return -ENOMEM;
7462 }
7463
7464 path->leave_spinning = 1;
7465 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7466 ins, size);
7467 if (ret) {
7468 btrfs_free_path(path);
7469 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7470 root->nodesize);
7471 return ret;
7472 }
7473
7474 leaf = path->nodes[0];
7475 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7476 struct btrfs_extent_item);
7477 btrfs_set_extent_refs(leaf, extent_item, 1);
7478 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7479 btrfs_set_extent_flags(leaf, extent_item,
7480 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7481
7482 if (skinny_metadata) {
7483 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7484 num_bytes = root->nodesize;
7485 } else {
7486 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7487 btrfs_set_tree_block_key(leaf, block_info, key);
7488 btrfs_set_tree_block_level(leaf, block_info, level);
7489 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7490 }
7491
7492 if (parent > 0) {
7493 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7494 btrfs_set_extent_inline_ref_type(leaf, iref,
7495 BTRFS_SHARED_BLOCK_REF_KEY);
7496 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7497 } else {
7498 btrfs_set_extent_inline_ref_type(leaf, iref,
7499 BTRFS_TREE_BLOCK_REF_KEY);
7500 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7501 }
7502
7503 btrfs_mark_buffer_dirty(leaf);
7504 btrfs_free_path(path);
7505
7506 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7507 1);
7508 if (ret) { /* -ENOENT, logic error */
7509 btrfs_err(fs_info, "update block group failed for %llu %llu",
7510 ins->objectid, ins->offset);
7511 BUG();
7512 }
7513
7514 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7515 return ret;
7516 }
7517
7518 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7519 struct btrfs_root *root,
7520 u64 root_objectid, u64 owner,
7521 u64 offset, struct btrfs_key *ins)
7522 {
7523 int ret;
7524
7525 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7526
7527 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7528 ins->offset, 0,
7529 root_objectid, owner, offset,
7530 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7531 return ret;
7532 }
7533
7534 /*
7535 * this is used by the tree logging recovery code. It records that
7536 * an extent has been allocated and makes sure to clear the free
7537 * space cache bits as well
7538 */
7539 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7540 struct btrfs_root *root,
7541 u64 root_objectid, u64 owner, u64 offset,
7542 struct btrfs_key *ins)
7543 {
7544 int ret;
7545 struct btrfs_block_group_cache *block_group;
7546
7547 /*
7548 * Mixed block groups will exclude before processing the log so we only
7549 * need to do the exlude dance if this fs isn't mixed.
7550 */
7551 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7552 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7553 if (ret)
7554 return ret;
7555 }
7556
7557 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7558 if (!block_group)
7559 return -EINVAL;
7560
7561 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7562 RESERVE_ALLOC_NO_ACCOUNT, 0);
7563 BUG_ON(ret); /* logic error */
7564 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7565 0, owner, offset, ins, 1);
7566 btrfs_put_block_group(block_group);
7567 return ret;
7568 }
7569
7570 static struct extent_buffer *
7571 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7572 u64 bytenr, int level)
7573 {
7574 struct extent_buffer *buf;
7575
7576 buf = btrfs_find_create_tree_block(root, bytenr);
7577 if (!buf)
7578 return ERR_PTR(-ENOMEM);
7579 btrfs_set_header_generation(buf, trans->transid);
7580 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7581 btrfs_tree_lock(buf);
7582 clean_tree_block(trans, root->fs_info, buf);
7583 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7584
7585 btrfs_set_lock_blocking(buf);
7586 btrfs_set_buffer_uptodate(buf);
7587
7588 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7589 buf->log_index = root->log_transid % 2;
7590 /*
7591 * we allow two log transactions at a time, use different
7592 * EXENT bit to differentiate dirty pages.
7593 */
7594 if (buf->log_index == 0)
7595 set_extent_dirty(&root->dirty_log_pages, buf->start,
7596 buf->start + buf->len - 1, GFP_NOFS);
7597 else
7598 set_extent_new(&root->dirty_log_pages, buf->start,
7599 buf->start + buf->len - 1, GFP_NOFS);
7600 } else {
7601 buf->log_index = -1;
7602 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7603 buf->start + buf->len - 1, GFP_NOFS);
7604 }
7605 trans->blocks_used++;
7606 /* this returns a buffer locked for blocking */
7607 return buf;
7608 }
7609
7610 static struct btrfs_block_rsv *
7611 use_block_rsv(struct btrfs_trans_handle *trans,
7612 struct btrfs_root *root, u32 blocksize)
7613 {
7614 struct btrfs_block_rsv *block_rsv;
7615 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7616 int ret;
7617 bool global_updated = false;
7618
7619 block_rsv = get_block_rsv(trans, root);
7620
7621 if (unlikely(block_rsv->size == 0))
7622 goto try_reserve;
7623 again:
7624 ret = block_rsv_use_bytes(block_rsv, blocksize);
7625 if (!ret)
7626 return block_rsv;
7627
7628 if (block_rsv->failfast)
7629 return ERR_PTR(ret);
7630
7631 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7632 global_updated = true;
7633 update_global_block_rsv(root->fs_info);
7634 goto again;
7635 }
7636
7637 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7638 static DEFINE_RATELIMIT_STATE(_rs,
7639 DEFAULT_RATELIMIT_INTERVAL * 10,
7640 /*DEFAULT_RATELIMIT_BURST*/ 1);
7641 if (__ratelimit(&_rs))
7642 WARN(1, KERN_DEBUG
7643 "BTRFS: block rsv returned %d\n", ret);
7644 }
7645 try_reserve:
7646 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7647 BTRFS_RESERVE_NO_FLUSH);
7648 if (!ret)
7649 return block_rsv;
7650 /*
7651 * If we couldn't reserve metadata bytes try and use some from
7652 * the global reserve if its space type is the same as the global
7653 * reservation.
7654 */
7655 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7656 block_rsv->space_info == global_rsv->space_info) {
7657 ret = block_rsv_use_bytes(global_rsv, blocksize);
7658 if (!ret)
7659 return global_rsv;
7660 }
7661 return ERR_PTR(ret);
7662 }
7663
7664 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7665 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7666 {
7667 block_rsv_add_bytes(block_rsv, blocksize, 0);
7668 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7669 }
7670
7671 /*
7672 * finds a free extent and does all the dirty work required for allocation
7673 * returns the tree buffer or an ERR_PTR on error.
7674 */
7675 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7676 struct btrfs_root *root,
7677 u64 parent, u64 root_objectid,
7678 struct btrfs_disk_key *key, int level,
7679 u64 hint, u64 empty_size)
7680 {
7681 struct btrfs_key ins;
7682 struct btrfs_block_rsv *block_rsv;
7683 struct extent_buffer *buf;
7684 struct btrfs_delayed_extent_op *extent_op;
7685 u64 flags = 0;
7686 int ret;
7687 u32 blocksize = root->nodesize;
7688 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7689 SKINNY_METADATA);
7690
7691 if (btrfs_test_is_dummy_root(root)) {
7692 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7693 level);
7694 if (!IS_ERR(buf))
7695 root->alloc_bytenr += blocksize;
7696 return buf;
7697 }
7698
7699 block_rsv = use_block_rsv(trans, root, blocksize);
7700 if (IS_ERR(block_rsv))
7701 return ERR_CAST(block_rsv);
7702
7703 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7704 empty_size, hint, &ins, 0, 0);
7705 if (ret)
7706 goto out_unuse;
7707
7708 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7709 if (IS_ERR(buf)) {
7710 ret = PTR_ERR(buf);
7711 goto out_free_reserved;
7712 }
7713
7714 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7715 if (parent == 0)
7716 parent = ins.objectid;
7717 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7718 } else
7719 BUG_ON(parent > 0);
7720
7721 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7722 extent_op = btrfs_alloc_delayed_extent_op();
7723 if (!extent_op) {
7724 ret = -ENOMEM;
7725 goto out_free_buf;
7726 }
7727 if (key)
7728 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7729 else
7730 memset(&extent_op->key, 0, sizeof(extent_op->key));
7731 extent_op->flags_to_set = flags;
7732 if (skinny_metadata)
7733 extent_op->update_key = 0;
7734 else
7735 extent_op->update_key = 1;
7736 extent_op->update_flags = 1;
7737 extent_op->is_data = 0;
7738 extent_op->level = level;
7739
7740 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7741 ins.objectid, ins.offset,
7742 parent, root_objectid, level,
7743 BTRFS_ADD_DELAYED_EXTENT,
7744 extent_op, 0);
7745 if (ret)
7746 goto out_free_delayed;
7747 }
7748 return buf;
7749
7750 out_free_delayed:
7751 btrfs_free_delayed_extent_op(extent_op);
7752 out_free_buf:
7753 free_extent_buffer(buf);
7754 out_free_reserved:
7755 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7756 out_unuse:
7757 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7758 return ERR_PTR(ret);
7759 }
7760
7761 struct walk_control {
7762 u64 refs[BTRFS_MAX_LEVEL];
7763 u64 flags[BTRFS_MAX_LEVEL];
7764 struct btrfs_key update_progress;
7765 int stage;
7766 int level;
7767 int shared_level;
7768 int update_ref;
7769 int keep_locks;
7770 int reada_slot;
7771 int reada_count;
7772 int for_reloc;
7773 };
7774
7775 #define DROP_REFERENCE 1
7776 #define UPDATE_BACKREF 2
7777
7778 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7779 struct btrfs_root *root,
7780 struct walk_control *wc,
7781 struct btrfs_path *path)
7782 {
7783 u64 bytenr;
7784 u64 generation;
7785 u64 refs;
7786 u64 flags;
7787 u32 nritems;
7788 u32 blocksize;
7789 struct btrfs_key key;
7790 struct extent_buffer *eb;
7791 int ret;
7792 int slot;
7793 int nread = 0;
7794
7795 if (path->slots[wc->level] < wc->reada_slot) {
7796 wc->reada_count = wc->reada_count * 2 / 3;
7797 wc->reada_count = max(wc->reada_count, 2);
7798 } else {
7799 wc->reada_count = wc->reada_count * 3 / 2;
7800 wc->reada_count = min_t(int, wc->reada_count,
7801 BTRFS_NODEPTRS_PER_BLOCK(root));
7802 }
7803
7804 eb = path->nodes[wc->level];
7805 nritems = btrfs_header_nritems(eb);
7806 blocksize = root->nodesize;
7807
7808 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7809 if (nread >= wc->reada_count)
7810 break;
7811
7812 cond_resched();
7813 bytenr = btrfs_node_blockptr(eb, slot);
7814 generation = btrfs_node_ptr_generation(eb, slot);
7815
7816 if (slot == path->slots[wc->level])
7817 goto reada;
7818
7819 if (wc->stage == UPDATE_BACKREF &&
7820 generation <= root->root_key.offset)
7821 continue;
7822
7823 /* We don't lock the tree block, it's OK to be racy here */
7824 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7825 wc->level - 1, 1, &refs,
7826 &flags);
7827 /* We don't care about errors in readahead. */
7828 if (ret < 0)
7829 continue;
7830 BUG_ON(refs == 0);
7831
7832 if (wc->stage == DROP_REFERENCE) {
7833 if (refs == 1)
7834 goto reada;
7835
7836 if (wc->level == 1 &&
7837 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7838 continue;
7839 if (!wc->update_ref ||
7840 generation <= root->root_key.offset)
7841 continue;
7842 btrfs_node_key_to_cpu(eb, &key, slot);
7843 ret = btrfs_comp_cpu_keys(&key,
7844 &wc->update_progress);
7845 if (ret < 0)
7846 continue;
7847 } else {
7848 if (wc->level == 1 &&
7849 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7850 continue;
7851 }
7852 reada:
7853 readahead_tree_block(root, bytenr);
7854 nread++;
7855 }
7856 wc->reada_slot = slot;
7857 }
7858
7859 /*
7860 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7861 * for later qgroup accounting.
7862 *
7863 * Current, this function does nothing.
7864 */
7865 static int account_leaf_items(struct btrfs_trans_handle *trans,
7866 struct btrfs_root *root,
7867 struct extent_buffer *eb)
7868 {
7869 int nr = btrfs_header_nritems(eb);
7870 int i, extent_type;
7871 struct btrfs_key key;
7872 struct btrfs_file_extent_item *fi;
7873 u64 bytenr, num_bytes;
7874
7875 for (i = 0; i < nr; i++) {
7876 btrfs_item_key_to_cpu(eb, &key, i);
7877
7878 if (key.type != BTRFS_EXTENT_DATA_KEY)
7879 continue;
7880
7881 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7882 /* filter out non qgroup-accountable extents */
7883 extent_type = btrfs_file_extent_type(eb, fi);
7884
7885 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7886 continue;
7887
7888 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7889 if (!bytenr)
7890 continue;
7891
7892 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7893 }
7894 return 0;
7895 }
7896
7897 /*
7898 * Walk up the tree from the bottom, freeing leaves and any interior
7899 * nodes which have had all slots visited. If a node (leaf or
7900 * interior) is freed, the node above it will have it's slot
7901 * incremented. The root node will never be freed.
7902 *
7903 * At the end of this function, we should have a path which has all
7904 * slots incremented to the next position for a search. If we need to
7905 * read a new node it will be NULL and the node above it will have the
7906 * correct slot selected for a later read.
7907 *
7908 * If we increment the root nodes slot counter past the number of
7909 * elements, 1 is returned to signal completion of the search.
7910 */
7911 static int adjust_slots_upwards(struct btrfs_root *root,
7912 struct btrfs_path *path, int root_level)
7913 {
7914 int level = 0;
7915 int nr, slot;
7916 struct extent_buffer *eb;
7917
7918 if (root_level == 0)
7919 return 1;
7920
7921 while (level <= root_level) {
7922 eb = path->nodes[level];
7923 nr = btrfs_header_nritems(eb);
7924 path->slots[level]++;
7925 slot = path->slots[level];
7926 if (slot >= nr || level == 0) {
7927 /*
7928 * Don't free the root - we will detect this
7929 * condition after our loop and return a
7930 * positive value for caller to stop walking the tree.
7931 */
7932 if (level != root_level) {
7933 btrfs_tree_unlock_rw(eb, path->locks[level]);
7934 path->locks[level] = 0;
7935
7936 free_extent_buffer(eb);
7937 path->nodes[level] = NULL;
7938 path->slots[level] = 0;
7939 }
7940 } else {
7941 /*
7942 * We have a valid slot to walk back down
7943 * from. Stop here so caller can process these
7944 * new nodes.
7945 */
7946 break;
7947 }
7948
7949 level++;
7950 }
7951
7952 eb = path->nodes[root_level];
7953 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7954 return 1;
7955
7956 return 0;
7957 }
7958
7959 /*
7960 * root_eb is the subtree root and is locked before this function is called.
7961 * TODO: Modify this function to mark all (including complete shared node)
7962 * to dirty_extent_root to allow it get accounted in qgroup.
7963 */
7964 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7965 struct btrfs_root *root,
7966 struct extent_buffer *root_eb,
7967 u64 root_gen,
7968 int root_level)
7969 {
7970 int ret = 0;
7971 int level;
7972 struct extent_buffer *eb = root_eb;
7973 struct btrfs_path *path = NULL;
7974
7975 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7976 BUG_ON(root_eb == NULL);
7977
7978 if (!root->fs_info->quota_enabled)
7979 return 0;
7980
7981 if (!extent_buffer_uptodate(root_eb)) {
7982 ret = btrfs_read_buffer(root_eb, root_gen);
7983 if (ret)
7984 goto out;
7985 }
7986
7987 if (root_level == 0) {
7988 ret = account_leaf_items(trans, root, root_eb);
7989 goto out;
7990 }
7991
7992 path = btrfs_alloc_path();
7993 if (!path)
7994 return -ENOMEM;
7995
7996 /*
7997 * Walk down the tree. Missing extent blocks are filled in as
7998 * we go. Metadata is accounted every time we read a new
7999 * extent block.
8000 *
8001 * When we reach a leaf, we account for file extent items in it,
8002 * walk back up the tree (adjusting slot pointers as we go)
8003 * and restart the search process.
8004 */
8005 extent_buffer_get(root_eb); /* For path */
8006 path->nodes[root_level] = root_eb;
8007 path->slots[root_level] = 0;
8008 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8009 walk_down:
8010 level = root_level;
8011 while (level >= 0) {
8012 if (path->nodes[level] == NULL) {
8013 int parent_slot;
8014 u64 child_gen;
8015 u64 child_bytenr;
8016
8017 /* We need to get child blockptr/gen from
8018 * parent before we can read it. */
8019 eb = path->nodes[level + 1];
8020 parent_slot = path->slots[level + 1];
8021 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8022 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8023
8024 eb = read_tree_block(root, child_bytenr, child_gen);
8025 if (IS_ERR(eb)) {
8026 ret = PTR_ERR(eb);
8027 goto out;
8028 } else if (!extent_buffer_uptodate(eb)) {
8029 free_extent_buffer(eb);
8030 ret = -EIO;
8031 goto out;
8032 }
8033
8034 path->nodes[level] = eb;
8035 path->slots[level] = 0;
8036
8037 btrfs_tree_read_lock(eb);
8038 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8039 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8040 }
8041
8042 if (level == 0) {
8043 ret = account_leaf_items(trans, root, path->nodes[level]);
8044 if (ret)
8045 goto out;
8046
8047 /* Nonzero return here means we completed our search */
8048 ret = adjust_slots_upwards(root, path, root_level);
8049 if (ret)
8050 break;
8051
8052 /* Restart search with new slots */
8053 goto walk_down;
8054 }
8055
8056 level--;
8057 }
8058
8059 ret = 0;
8060 out:
8061 btrfs_free_path(path);
8062
8063 return ret;
8064 }
8065
8066 /*
8067 * helper to process tree block while walking down the tree.
8068 *
8069 * when wc->stage == UPDATE_BACKREF, this function updates
8070 * back refs for pointers in the block.
8071 *
8072 * NOTE: return value 1 means we should stop walking down.
8073 */
8074 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8075 struct btrfs_root *root,
8076 struct btrfs_path *path,
8077 struct walk_control *wc, int lookup_info)
8078 {
8079 int level = wc->level;
8080 struct extent_buffer *eb = path->nodes[level];
8081 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8082 int ret;
8083
8084 if (wc->stage == UPDATE_BACKREF &&
8085 btrfs_header_owner(eb) != root->root_key.objectid)
8086 return 1;
8087
8088 /*
8089 * when reference count of tree block is 1, it won't increase
8090 * again. once full backref flag is set, we never clear it.
8091 */
8092 if (lookup_info &&
8093 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8094 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8095 BUG_ON(!path->locks[level]);
8096 ret = btrfs_lookup_extent_info(trans, root,
8097 eb->start, level, 1,
8098 &wc->refs[level],
8099 &wc->flags[level]);
8100 BUG_ON(ret == -ENOMEM);
8101 if (ret)
8102 return ret;
8103 BUG_ON(wc->refs[level] == 0);
8104 }
8105
8106 if (wc->stage == DROP_REFERENCE) {
8107 if (wc->refs[level] > 1)
8108 return 1;
8109
8110 if (path->locks[level] && !wc->keep_locks) {
8111 btrfs_tree_unlock_rw(eb, path->locks[level]);
8112 path->locks[level] = 0;
8113 }
8114 return 0;
8115 }
8116
8117 /* wc->stage == UPDATE_BACKREF */
8118 if (!(wc->flags[level] & flag)) {
8119 BUG_ON(!path->locks[level]);
8120 ret = btrfs_inc_ref(trans, root, eb, 1);
8121 BUG_ON(ret); /* -ENOMEM */
8122 ret = btrfs_dec_ref(trans, root, eb, 0);
8123 BUG_ON(ret); /* -ENOMEM */
8124 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8125 eb->len, flag,
8126 btrfs_header_level(eb), 0);
8127 BUG_ON(ret); /* -ENOMEM */
8128 wc->flags[level] |= flag;
8129 }
8130
8131 /*
8132 * the block is shared by multiple trees, so it's not good to
8133 * keep the tree lock
8134 */
8135 if (path->locks[level] && level > 0) {
8136 btrfs_tree_unlock_rw(eb, path->locks[level]);
8137 path->locks[level] = 0;
8138 }
8139 return 0;
8140 }
8141
8142 /*
8143 * helper to process tree block pointer.
8144 *
8145 * when wc->stage == DROP_REFERENCE, this function checks
8146 * reference count of the block pointed to. if the block
8147 * is shared and we need update back refs for the subtree
8148 * rooted at the block, this function changes wc->stage to
8149 * UPDATE_BACKREF. if the block is shared and there is no
8150 * need to update back, this function drops the reference
8151 * to the block.
8152 *
8153 * NOTE: return value 1 means we should stop walking down.
8154 */
8155 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8156 struct btrfs_root *root,
8157 struct btrfs_path *path,
8158 struct walk_control *wc, int *lookup_info)
8159 {
8160 u64 bytenr;
8161 u64 generation;
8162 u64 parent;
8163 u32 blocksize;
8164 struct btrfs_key key;
8165 struct extent_buffer *next;
8166 int level = wc->level;
8167 int reada = 0;
8168 int ret = 0;
8169 bool need_account = false;
8170
8171 generation = btrfs_node_ptr_generation(path->nodes[level],
8172 path->slots[level]);
8173 /*
8174 * if the lower level block was created before the snapshot
8175 * was created, we know there is no need to update back refs
8176 * for the subtree
8177 */
8178 if (wc->stage == UPDATE_BACKREF &&
8179 generation <= root->root_key.offset) {
8180 *lookup_info = 1;
8181 return 1;
8182 }
8183
8184 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8185 blocksize = root->nodesize;
8186
8187 next = btrfs_find_tree_block(root->fs_info, bytenr);
8188 if (!next) {
8189 next = btrfs_find_create_tree_block(root, bytenr);
8190 if (!next)
8191 return -ENOMEM;
8192 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8193 level - 1);
8194 reada = 1;
8195 }
8196 btrfs_tree_lock(next);
8197 btrfs_set_lock_blocking(next);
8198
8199 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8200 &wc->refs[level - 1],
8201 &wc->flags[level - 1]);
8202 if (ret < 0) {
8203 btrfs_tree_unlock(next);
8204 return ret;
8205 }
8206
8207 if (unlikely(wc->refs[level - 1] == 0)) {
8208 btrfs_err(root->fs_info, "Missing references.");
8209 BUG();
8210 }
8211 *lookup_info = 0;
8212
8213 if (wc->stage == DROP_REFERENCE) {
8214 if (wc->refs[level - 1] > 1) {
8215 need_account = true;
8216 if (level == 1 &&
8217 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8218 goto skip;
8219
8220 if (!wc->update_ref ||
8221 generation <= root->root_key.offset)
8222 goto skip;
8223
8224 btrfs_node_key_to_cpu(path->nodes[level], &key,
8225 path->slots[level]);
8226 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8227 if (ret < 0)
8228 goto skip;
8229
8230 wc->stage = UPDATE_BACKREF;
8231 wc->shared_level = level - 1;
8232 }
8233 } else {
8234 if (level == 1 &&
8235 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8236 goto skip;
8237 }
8238
8239 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8240 btrfs_tree_unlock(next);
8241 free_extent_buffer(next);
8242 next = NULL;
8243 *lookup_info = 1;
8244 }
8245
8246 if (!next) {
8247 if (reada && level == 1)
8248 reada_walk_down(trans, root, wc, path);
8249 next = read_tree_block(root, bytenr, generation);
8250 if (IS_ERR(next)) {
8251 return PTR_ERR(next);
8252 } else if (!extent_buffer_uptodate(next)) {
8253 free_extent_buffer(next);
8254 return -EIO;
8255 }
8256 btrfs_tree_lock(next);
8257 btrfs_set_lock_blocking(next);
8258 }
8259
8260 level--;
8261 BUG_ON(level != btrfs_header_level(next));
8262 path->nodes[level] = next;
8263 path->slots[level] = 0;
8264 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8265 wc->level = level;
8266 if (wc->level == 1)
8267 wc->reada_slot = 0;
8268 return 0;
8269 skip:
8270 wc->refs[level - 1] = 0;
8271 wc->flags[level - 1] = 0;
8272 if (wc->stage == DROP_REFERENCE) {
8273 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8274 parent = path->nodes[level]->start;
8275 } else {
8276 BUG_ON(root->root_key.objectid !=
8277 btrfs_header_owner(path->nodes[level]));
8278 parent = 0;
8279 }
8280
8281 if (need_account) {
8282 ret = account_shared_subtree(trans, root, next,
8283 generation, level - 1);
8284 if (ret) {
8285 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8286 "%d accounting shared subtree. Quota "
8287 "is out of sync, rescan required.\n",
8288 root->fs_info->sb->s_id, ret);
8289 }
8290 }
8291 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8292 root->root_key.objectid, level - 1, 0, 0);
8293 BUG_ON(ret); /* -ENOMEM */
8294 }
8295 btrfs_tree_unlock(next);
8296 free_extent_buffer(next);
8297 *lookup_info = 1;
8298 return 1;
8299 }
8300
8301 /*
8302 * helper to process tree block while walking up the tree.
8303 *
8304 * when wc->stage == DROP_REFERENCE, this function drops
8305 * reference count on the block.
8306 *
8307 * when wc->stage == UPDATE_BACKREF, this function changes
8308 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8309 * to UPDATE_BACKREF previously while processing the block.
8310 *
8311 * NOTE: return value 1 means we should stop walking up.
8312 */
8313 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8314 struct btrfs_root *root,
8315 struct btrfs_path *path,
8316 struct walk_control *wc)
8317 {
8318 int ret;
8319 int level = wc->level;
8320 struct extent_buffer *eb = path->nodes[level];
8321 u64 parent = 0;
8322
8323 if (wc->stage == UPDATE_BACKREF) {
8324 BUG_ON(wc->shared_level < level);
8325 if (level < wc->shared_level)
8326 goto out;
8327
8328 ret = find_next_key(path, level + 1, &wc->update_progress);
8329 if (ret > 0)
8330 wc->update_ref = 0;
8331
8332 wc->stage = DROP_REFERENCE;
8333 wc->shared_level = -1;
8334 path->slots[level] = 0;
8335
8336 /*
8337 * check reference count again if the block isn't locked.
8338 * we should start walking down the tree again if reference
8339 * count is one.
8340 */
8341 if (!path->locks[level]) {
8342 BUG_ON(level == 0);
8343 btrfs_tree_lock(eb);
8344 btrfs_set_lock_blocking(eb);
8345 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8346
8347 ret = btrfs_lookup_extent_info(trans, root,
8348 eb->start, level, 1,
8349 &wc->refs[level],
8350 &wc->flags[level]);
8351 if (ret < 0) {
8352 btrfs_tree_unlock_rw(eb, path->locks[level]);
8353 path->locks[level] = 0;
8354 return ret;
8355 }
8356 BUG_ON(wc->refs[level] == 0);
8357 if (wc->refs[level] == 1) {
8358 btrfs_tree_unlock_rw(eb, path->locks[level]);
8359 path->locks[level] = 0;
8360 return 1;
8361 }
8362 }
8363 }
8364
8365 /* wc->stage == DROP_REFERENCE */
8366 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8367
8368 if (wc->refs[level] == 1) {
8369 if (level == 0) {
8370 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8371 ret = btrfs_dec_ref(trans, root, eb, 1);
8372 else
8373 ret = btrfs_dec_ref(trans, root, eb, 0);
8374 BUG_ON(ret); /* -ENOMEM */
8375 ret = account_leaf_items(trans, root, eb);
8376 if (ret) {
8377 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8378 "%d accounting leaf items. Quota "
8379 "is out of sync, rescan required.\n",
8380 root->fs_info->sb->s_id, ret);
8381 }
8382 }
8383 /* make block locked assertion in clean_tree_block happy */
8384 if (!path->locks[level] &&
8385 btrfs_header_generation(eb) == trans->transid) {
8386 btrfs_tree_lock(eb);
8387 btrfs_set_lock_blocking(eb);
8388 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8389 }
8390 clean_tree_block(trans, root->fs_info, eb);
8391 }
8392
8393 if (eb == root->node) {
8394 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8395 parent = eb->start;
8396 else
8397 BUG_ON(root->root_key.objectid !=
8398 btrfs_header_owner(eb));
8399 } else {
8400 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8401 parent = path->nodes[level + 1]->start;
8402 else
8403 BUG_ON(root->root_key.objectid !=
8404 btrfs_header_owner(path->nodes[level + 1]));
8405 }
8406
8407 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8408 out:
8409 wc->refs[level] = 0;
8410 wc->flags[level] = 0;
8411 return 0;
8412 }
8413
8414 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8415 struct btrfs_root *root,
8416 struct btrfs_path *path,
8417 struct walk_control *wc)
8418 {
8419 int level = wc->level;
8420 int lookup_info = 1;
8421 int ret;
8422
8423 while (level >= 0) {
8424 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8425 if (ret > 0)
8426 break;
8427
8428 if (level == 0)
8429 break;
8430
8431 if (path->slots[level] >=
8432 btrfs_header_nritems(path->nodes[level]))
8433 break;
8434
8435 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8436 if (ret > 0) {
8437 path->slots[level]++;
8438 continue;
8439 } else if (ret < 0)
8440 return ret;
8441 level = wc->level;
8442 }
8443 return 0;
8444 }
8445
8446 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8447 struct btrfs_root *root,
8448 struct btrfs_path *path,
8449 struct walk_control *wc, int max_level)
8450 {
8451 int level = wc->level;
8452 int ret;
8453
8454 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8455 while (level < max_level && path->nodes[level]) {
8456 wc->level = level;
8457 if (path->slots[level] + 1 <
8458 btrfs_header_nritems(path->nodes[level])) {
8459 path->slots[level]++;
8460 return 0;
8461 } else {
8462 ret = walk_up_proc(trans, root, path, wc);
8463 if (ret > 0)
8464 return 0;
8465
8466 if (path->locks[level]) {
8467 btrfs_tree_unlock_rw(path->nodes[level],
8468 path->locks[level]);
8469 path->locks[level] = 0;
8470 }
8471 free_extent_buffer(path->nodes[level]);
8472 path->nodes[level] = NULL;
8473 level++;
8474 }
8475 }
8476 return 1;
8477 }
8478
8479 /*
8480 * drop a subvolume tree.
8481 *
8482 * this function traverses the tree freeing any blocks that only
8483 * referenced by the tree.
8484 *
8485 * when a shared tree block is found. this function decreases its
8486 * reference count by one. if update_ref is true, this function
8487 * also make sure backrefs for the shared block and all lower level
8488 * blocks are properly updated.
8489 *
8490 * If called with for_reloc == 0, may exit early with -EAGAIN
8491 */
8492 int btrfs_drop_snapshot(struct btrfs_root *root,
8493 struct btrfs_block_rsv *block_rsv, int update_ref,
8494 int for_reloc)
8495 {
8496 struct btrfs_path *path;
8497 struct btrfs_trans_handle *trans;
8498 struct btrfs_root *tree_root = root->fs_info->tree_root;
8499 struct btrfs_root_item *root_item = &root->root_item;
8500 struct walk_control *wc;
8501 struct btrfs_key key;
8502 int err = 0;
8503 int ret;
8504 int level;
8505 bool root_dropped = false;
8506
8507 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8508
8509 path = btrfs_alloc_path();
8510 if (!path) {
8511 err = -ENOMEM;
8512 goto out;
8513 }
8514
8515 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8516 if (!wc) {
8517 btrfs_free_path(path);
8518 err = -ENOMEM;
8519 goto out;
8520 }
8521
8522 trans = btrfs_start_transaction(tree_root, 0);
8523 if (IS_ERR(trans)) {
8524 err = PTR_ERR(trans);
8525 goto out_free;
8526 }
8527
8528 if (block_rsv)
8529 trans->block_rsv = block_rsv;
8530
8531 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8532 level = btrfs_header_level(root->node);
8533 path->nodes[level] = btrfs_lock_root_node(root);
8534 btrfs_set_lock_blocking(path->nodes[level]);
8535 path->slots[level] = 0;
8536 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8537 memset(&wc->update_progress, 0,
8538 sizeof(wc->update_progress));
8539 } else {
8540 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8541 memcpy(&wc->update_progress, &key,
8542 sizeof(wc->update_progress));
8543
8544 level = root_item->drop_level;
8545 BUG_ON(level == 0);
8546 path->lowest_level = level;
8547 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8548 path->lowest_level = 0;
8549 if (ret < 0) {
8550 err = ret;
8551 goto out_end_trans;
8552 }
8553 WARN_ON(ret > 0);
8554
8555 /*
8556 * unlock our path, this is safe because only this
8557 * function is allowed to delete this snapshot
8558 */
8559 btrfs_unlock_up_safe(path, 0);
8560
8561 level = btrfs_header_level(root->node);
8562 while (1) {
8563 btrfs_tree_lock(path->nodes[level]);
8564 btrfs_set_lock_blocking(path->nodes[level]);
8565 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8566
8567 ret = btrfs_lookup_extent_info(trans, root,
8568 path->nodes[level]->start,
8569 level, 1, &wc->refs[level],
8570 &wc->flags[level]);
8571 if (ret < 0) {
8572 err = ret;
8573 goto out_end_trans;
8574 }
8575 BUG_ON(wc->refs[level] == 0);
8576
8577 if (level == root_item->drop_level)
8578 break;
8579
8580 btrfs_tree_unlock(path->nodes[level]);
8581 path->locks[level] = 0;
8582 WARN_ON(wc->refs[level] != 1);
8583 level--;
8584 }
8585 }
8586
8587 wc->level = level;
8588 wc->shared_level = -1;
8589 wc->stage = DROP_REFERENCE;
8590 wc->update_ref = update_ref;
8591 wc->keep_locks = 0;
8592 wc->for_reloc = for_reloc;
8593 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8594
8595 while (1) {
8596
8597 ret = walk_down_tree(trans, root, path, wc);
8598 if (ret < 0) {
8599 err = ret;
8600 break;
8601 }
8602
8603 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8604 if (ret < 0) {
8605 err = ret;
8606 break;
8607 }
8608
8609 if (ret > 0) {
8610 BUG_ON(wc->stage != DROP_REFERENCE);
8611 break;
8612 }
8613
8614 if (wc->stage == DROP_REFERENCE) {
8615 level = wc->level;
8616 btrfs_node_key(path->nodes[level],
8617 &root_item->drop_progress,
8618 path->slots[level]);
8619 root_item->drop_level = level;
8620 }
8621
8622 BUG_ON(wc->level == 0);
8623 if (btrfs_should_end_transaction(trans, tree_root) ||
8624 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8625 ret = btrfs_update_root(trans, tree_root,
8626 &root->root_key,
8627 root_item);
8628 if (ret) {
8629 btrfs_abort_transaction(trans, tree_root, ret);
8630 err = ret;
8631 goto out_end_trans;
8632 }
8633
8634 btrfs_end_transaction_throttle(trans, tree_root);
8635 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8636 pr_debug("BTRFS: drop snapshot early exit\n");
8637 err = -EAGAIN;
8638 goto out_free;
8639 }
8640
8641 trans = btrfs_start_transaction(tree_root, 0);
8642 if (IS_ERR(trans)) {
8643 err = PTR_ERR(trans);
8644 goto out_free;
8645 }
8646 if (block_rsv)
8647 trans->block_rsv = block_rsv;
8648 }
8649 }
8650 btrfs_release_path(path);
8651 if (err)
8652 goto out_end_trans;
8653
8654 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8655 if (ret) {
8656 btrfs_abort_transaction(trans, tree_root, ret);
8657 goto out_end_trans;
8658 }
8659
8660 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8661 ret = btrfs_find_root(tree_root, &root->root_key, path,
8662 NULL, NULL);
8663 if (ret < 0) {
8664 btrfs_abort_transaction(trans, tree_root, ret);
8665 err = ret;
8666 goto out_end_trans;
8667 } else if (ret > 0) {
8668 /* if we fail to delete the orphan item this time
8669 * around, it'll get picked up the next time.
8670 *
8671 * The most common failure here is just -ENOENT.
8672 */
8673 btrfs_del_orphan_item(trans, tree_root,
8674 root->root_key.objectid);
8675 }
8676 }
8677
8678 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8679 btrfs_add_dropped_root(trans, root);
8680 } else {
8681 free_extent_buffer(root->node);
8682 free_extent_buffer(root->commit_root);
8683 btrfs_put_fs_root(root);
8684 }
8685 root_dropped = true;
8686 out_end_trans:
8687 btrfs_end_transaction_throttle(trans, tree_root);
8688 out_free:
8689 kfree(wc);
8690 btrfs_free_path(path);
8691 out:
8692 /*
8693 * So if we need to stop dropping the snapshot for whatever reason we
8694 * need to make sure to add it back to the dead root list so that we
8695 * keep trying to do the work later. This also cleans up roots if we
8696 * don't have it in the radix (like when we recover after a power fail
8697 * or unmount) so we don't leak memory.
8698 */
8699 if (!for_reloc && root_dropped == false)
8700 btrfs_add_dead_root(root);
8701 if (err && err != -EAGAIN)
8702 btrfs_std_error(root->fs_info, err);
8703 return err;
8704 }
8705
8706 /*
8707 * drop subtree rooted at tree block 'node'.
8708 *
8709 * NOTE: this function will unlock and release tree block 'node'
8710 * only used by relocation code
8711 */
8712 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8713 struct btrfs_root *root,
8714 struct extent_buffer *node,
8715 struct extent_buffer *parent)
8716 {
8717 struct btrfs_path *path;
8718 struct walk_control *wc;
8719 int level;
8720 int parent_level;
8721 int ret = 0;
8722 int wret;
8723
8724 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8725
8726 path = btrfs_alloc_path();
8727 if (!path)
8728 return -ENOMEM;
8729
8730 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8731 if (!wc) {
8732 btrfs_free_path(path);
8733 return -ENOMEM;
8734 }
8735
8736 btrfs_assert_tree_locked(parent);
8737 parent_level = btrfs_header_level(parent);
8738 extent_buffer_get(parent);
8739 path->nodes[parent_level] = parent;
8740 path->slots[parent_level] = btrfs_header_nritems(parent);
8741
8742 btrfs_assert_tree_locked(node);
8743 level = btrfs_header_level(node);
8744 path->nodes[level] = node;
8745 path->slots[level] = 0;
8746 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8747
8748 wc->refs[parent_level] = 1;
8749 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8750 wc->level = level;
8751 wc->shared_level = -1;
8752 wc->stage = DROP_REFERENCE;
8753 wc->update_ref = 0;
8754 wc->keep_locks = 1;
8755 wc->for_reloc = 1;
8756 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8757
8758 while (1) {
8759 wret = walk_down_tree(trans, root, path, wc);
8760 if (wret < 0) {
8761 ret = wret;
8762 break;
8763 }
8764
8765 wret = walk_up_tree(trans, root, path, wc, parent_level);
8766 if (wret < 0)
8767 ret = wret;
8768 if (wret != 0)
8769 break;
8770 }
8771
8772 kfree(wc);
8773 btrfs_free_path(path);
8774 return ret;
8775 }
8776
8777 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8778 {
8779 u64 num_devices;
8780 u64 stripped;
8781
8782 /*
8783 * if restripe for this chunk_type is on pick target profile and
8784 * return, otherwise do the usual balance
8785 */
8786 stripped = get_restripe_target(root->fs_info, flags);
8787 if (stripped)
8788 return extended_to_chunk(stripped);
8789
8790 num_devices = root->fs_info->fs_devices->rw_devices;
8791
8792 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8793 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8794 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8795
8796 if (num_devices == 1) {
8797 stripped |= BTRFS_BLOCK_GROUP_DUP;
8798 stripped = flags & ~stripped;
8799
8800 /* turn raid0 into single device chunks */
8801 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8802 return stripped;
8803
8804 /* turn mirroring into duplication */
8805 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8806 BTRFS_BLOCK_GROUP_RAID10))
8807 return stripped | BTRFS_BLOCK_GROUP_DUP;
8808 } else {
8809 /* they already had raid on here, just return */
8810 if (flags & stripped)
8811 return flags;
8812
8813 stripped |= BTRFS_BLOCK_GROUP_DUP;
8814 stripped = flags & ~stripped;
8815
8816 /* switch duplicated blocks with raid1 */
8817 if (flags & BTRFS_BLOCK_GROUP_DUP)
8818 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8819
8820 /* this is drive concat, leave it alone */
8821 }
8822
8823 return flags;
8824 }
8825
8826 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8827 {
8828 struct btrfs_space_info *sinfo = cache->space_info;
8829 u64 num_bytes;
8830 u64 min_allocable_bytes;
8831 int ret = -ENOSPC;
8832
8833 /*
8834 * We need some metadata space and system metadata space for
8835 * allocating chunks in some corner cases until we force to set
8836 * it to be readonly.
8837 */
8838 if ((sinfo->flags &
8839 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8840 !force)
8841 min_allocable_bytes = 1 * 1024 * 1024;
8842 else
8843 min_allocable_bytes = 0;
8844
8845 spin_lock(&sinfo->lock);
8846 spin_lock(&cache->lock);
8847
8848 if (cache->ro) {
8849 cache->ro++;
8850 ret = 0;
8851 goto out;
8852 }
8853
8854 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8855 cache->bytes_super - btrfs_block_group_used(&cache->item);
8856
8857 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8858 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8859 min_allocable_bytes <= sinfo->total_bytes) {
8860 sinfo->bytes_readonly += num_bytes;
8861 cache->ro++;
8862 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8863 ret = 0;
8864 }
8865 out:
8866 spin_unlock(&cache->lock);
8867 spin_unlock(&sinfo->lock);
8868 return ret;
8869 }
8870
8871 int btrfs_inc_block_group_ro(struct btrfs_root *root,
8872 struct btrfs_block_group_cache *cache)
8873
8874 {
8875 struct btrfs_trans_handle *trans;
8876 u64 alloc_flags;
8877 int ret;
8878
8879 again:
8880 trans = btrfs_join_transaction(root);
8881 if (IS_ERR(trans))
8882 return PTR_ERR(trans);
8883
8884 /*
8885 * we're not allowed to set block groups readonly after the dirty
8886 * block groups cache has started writing. If it already started,
8887 * back off and let this transaction commit
8888 */
8889 mutex_lock(&root->fs_info->ro_block_group_mutex);
8890 if (trans->transaction->dirty_bg_run) {
8891 u64 transid = trans->transid;
8892
8893 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8894 btrfs_end_transaction(trans, root);
8895
8896 ret = btrfs_wait_for_commit(root, transid);
8897 if (ret)
8898 return ret;
8899 goto again;
8900 }
8901
8902 /*
8903 * if we are changing raid levels, try to allocate a corresponding
8904 * block group with the new raid level.
8905 */
8906 alloc_flags = update_block_group_flags(root, cache->flags);
8907 if (alloc_flags != cache->flags) {
8908 ret = do_chunk_alloc(trans, root, alloc_flags,
8909 CHUNK_ALLOC_FORCE);
8910 /*
8911 * ENOSPC is allowed here, we may have enough space
8912 * already allocated at the new raid level to
8913 * carry on
8914 */
8915 if (ret == -ENOSPC)
8916 ret = 0;
8917 if (ret < 0)
8918 goto out;
8919 }
8920
8921 ret = inc_block_group_ro(cache, 0);
8922 if (!ret)
8923 goto out;
8924 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8925 ret = do_chunk_alloc(trans, root, alloc_flags,
8926 CHUNK_ALLOC_FORCE);
8927 if (ret < 0)
8928 goto out;
8929 ret = inc_block_group_ro(cache, 0);
8930 out:
8931 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8932 alloc_flags = update_block_group_flags(root, cache->flags);
8933 lock_chunks(root->fs_info->chunk_root);
8934 check_system_chunk(trans, root, alloc_flags);
8935 unlock_chunks(root->fs_info->chunk_root);
8936 }
8937 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8938
8939 btrfs_end_transaction(trans, root);
8940 return ret;
8941 }
8942
8943 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8944 struct btrfs_root *root, u64 type)
8945 {
8946 u64 alloc_flags = get_alloc_profile(root, type);
8947 return do_chunk_alloc(trans, root, alloc_flags,
8948 CHUNK_ALLOC_FORCE);
8949 }
8950
8951 /*
8952 * helper to account the unused space of all the readonly block group in the
8953 * space_info. takes mirrors into account.
8954 */
8955 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8956 {
8957 struct btrfs_block_group_cache *block_group;
8958 u64 free_bytes = 0;
8959 int factor;
8960
8961 /* It's df, we don't care if it's racey */
8962 if (list_empty(&sinfo->ro_bgs))
8963 return 0;
8964
8965 spin_lock(&sinfo->lock);
8966 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8967 spin_lock(&block_group->lock);
8968
8969 if (!block_group->ro) {
8970 spin_unlock(&block_group->lock);
8971 continue;
8972 }
8973
8974 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8975 BTRFS_BLOCK_GROUP_RAID10 |
8976 BTRFS_BLOCK_GROUP_DUP))
8977 factor = 2;
8978 else
8979 factor = 1;
8980
8981 free_bytes += (block_group->key.offset -
8982 btrfs_block_group_used(&block_group->item)) *
8983 factor;
8984
8985 spin_unlock(&block_group->lock);
8986 }
8987 spin_unlock(&sinfo->lock);
8988
8989 return free_bytes;
8990 }
8991
8992 void btrfs_dec_block_group_ro(struct btrfs_root *root,
8993 struct btrfs_block_group_cache *cache)
8994 {
8995 struct btrfs_space_info *sinfo = cache->space_info;
8996 u64 num_bytes;
8997
8998 BUG_ON(!cache->ro);
8999
9000 spin_lock(&sinfo->lock);
9001 spin_lock(&cache->lock);
9002 if (!--cache->ro) {
9003 num_bytes = cache->key.offset - cache->reserved -
9004 cache->pinned - cache->bytes_super -
9005 btrfs_block_group_used(&cache->item);
9006 sinfo->bytes_readonly -= num_bytes;
9007 list_del_init(&cache->ro_list);
9008 }
9009 spin_unlock(&cache->lock);
9010 spin_unlock(&sinfo->lock);
9011 }
9012
9013 /*
9014 * checks to see if its even possible to relocate this block group.
9015 *
9016 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9017 * ok to go ahead and try.
9018 */
9019 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9020 {
9021 struct btrfs_block_group_cache *block_group;
9022 struct btrfs_space_info *space_info;
9023 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9024 struct btrfs_device *device;
9025 struct btrfs_trans_handle *trans;
9026 u64 min_free;
9027 u64 dev_min = 1;
9028 u64 dev_nr = 0;
9029 u64 target;
9030 int index;
9031 int full = 0;
9032 int ret = 0;
9033
9034 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9035
9036 /* odd, couldn't find the block group, leave it alone */
9037 if (!block_group)
9038 return -1;
9039
9040 min_free = btrfs_block_group_used(&block_group->item);
9041
9042 /* no bytes used, we're good */
9043 if (!min_free)
9044 goto out;
9045
9046 space_info = block_group->space_info;
9047 spin_lock(&space_info->lock);
9048
9049 full = space_info->full;
9050
9051 /*
9052 * if this is the last block group we have in this space, we can't
9053 * relocate it unless we're able to allocate a new chunk below.
9054 *
9055 * Otherwise, we need to make sure we have room in the space to handle
9056 * all of the extents from this block group. If we can, we're good
9057 */
9058 if ((space_info->total_bytes != block_group->key.offset) &&
9059 (space_info->bytes_used + space_info->bytes_reserved +
9060 space_info->bytes_pinned + space_info->bytes_readonly +
9061 min_free < space_info->total_bytes)) {
9062 spin_unlock(&space_info->lock);
9063 goto out;
9064 }
9065 spin_unlock(&space_info->lock);
9066
9067 /*
9068 * ok we don't have enough space, but maybe we have free space on our
9069 * devices to allocate new chunks for relocation, so loop through our
9070 * alloc devices and guess if we have enough space. if this block
9071 * group is going to be restriped, run checks against the target
9072 * profile instead of the current one.
9073 */
9074 ret = -1;
9075
9076 /*
9077 * index:
9078 * 0: raid10
9079 * 1: raid1
9080 * 2: dup
9081 * 3: raid0
9082 * 4: single
9083 */
9084 target = get_restripe_target(root->fs_info, block_group->flags);
9085 if (target) {
9086 index = __get_raid_index(extended_to_chunk(target));
9087 } else {
9088 /*
9089 * this is just a balance, so if we were marked as full
9090 * we know there is no space for a new chunk
9091 */
9092 if (full)
9093 goto out;
9094
9095 index = get_block_group_index(block_group);
9096 }
9097
9098 if (index == BTRFS_RAID_RAID10) {
9099 dev_min = 4;
9100 /* Divide by 2 */
9101 min_free >>= 1;
9102 } else if (index == BTRFS_RAID_RAID1) {
9103 dev_min = 2;
9104 } else if (index == BTRFS_RAID_DUP) {
9105 /* Multiply by 2 */
9106 min_free <<= 1;
9107 } else if (index == BTRFS_RAID_RAID0) {
9108 dev_min = fs_devices->rw_devices;
9109 min_free = div64_u64(min_free, dev_min);
9110 }
9111
9112 /* We need to do this so that we can look at pending chunks */
9113 trans = btrfs_join_transaction(root);
9114 if (IS_ERR(trans)) {
9115 ret = PTR_ERR(trans);
9116 goto out;
9117 }
9118
9119 mutex_lock(&root->fs_info->chunk_mutex);
9120 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9121 u64 dev_offset;
9122
9123 /*
9124 * check to make sure we can actually find a chunk with enough
9125 * space to fit our block group in.
9126 */
9127 if (device->total_bytes > device->bytes_used + min_free &&
9128 !device->is_tgtdev_for_dev_replace) {
9129 ret = find_free_dev_extent(trans, device, min_free,
9130 &dev_offset, NULL);
9131 if (!ret)
9132 dev_nr++;
9133
9134 if (dev_nr >= dev_min)
9135 break;
9136
9137 ret = -1;
9138 }
9139 }
9140 mutex_unlock(&root->fs_info->chunk_mutex);
9141 btrfs_end_transaction(trans, root);
9142 out:
9143 btrfs_put_block_group(block_group);
9144 return ret;
9145 }
9146
9147 static int find_first_block_group(struct btrfs_root *root,
9148 struct btrfs_path *path, struct btrfs_key *key)
9149 {
9150 int ret = 0;
9151 struct btrfs_key found_key;
9152 struct extent_buffer *leaf;
9153 int slot;
9154
9155 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9156 if (ret < 0)
9157 goto out;
9158
9159 while (1) {
9160 slot = path->slots[0];
9161 leaf = path->nodes[0];
9162 if (slot >= btrfs_header_nritems(leaf)) {
9163 ret = btrfs_next_leaf(root, path);
9164 if (ret == 0)
9165 continue;
9166 if (ret < 0)
9167 goto out;
9168 break;
9169 }
9170 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9171
9172 if (found_key.objectid >= key->objectid &&
9173 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9174 ret = 0;
9175 goto out;
9176 }
9177 path->slots[0]++;
9178 }
9179 out:
9180 return ret;
9181 }
9182
9183 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9184 {
9185 struct btrfs_block_group_cache *block_group;
9186 u64 last = 0;
9187
9188 while (1) {
9189 struct inode *inode;
9190
9191 block_group = btrfs_lookup_first_block_group(info, last);
9192 while (block_group) {
9193 spin_lock(&block_group->lock);
9194 if (block_group->iref)
9195 break;
9196 spin_unlock(&block_group->lock);
9197 block_group = next_block_group(info->tree_root,
9198 block_group);
9199 }
9200 if (!block_group) {
9201 if (last == 0)
9202 break;
9203 last = 0;
9204 continue;
9205 }
9206
9207 inode = block_group->inode;
9208 block_group->iref = 0;
9209 block_group->inode = NULL;
9210 spin_unlock(&block_group->lock);
9211 iput(inode);
9212 last = block_group->key.objectid + block_group->key.offset;
9213 btrfs_put_block_group(block_group);
9214 }
9215 }
9216
9217 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9218 {
9219 struct btrfs_block_group_cache *block_group;
9220 struct btrfs_space_info *space_info;
9221 struct btrfs_caching_control *caching_ctl;
9222 struct rb_node *n;
9223
9224 down_write(&info->commit_root_sem);
9225 while (!list_empty(&info->caching_block_groups)) {
9226 caching_ctl = list_entry(info->caching_block_groups.next,
9227 struct btrfs_caching_control, list);
9228 list_del(&caching_ctl->list);
9229 put_caching_control(caching_ctl);
9230 }
9231 up_write(&info->commit_root_sem);
9232
9233 spin_lock(&info->unused_bgs_lock);
9234 while (!list_empty(&info->unused_bgs)) {
9235 block_group = list_first_entry(&info->unused_bgs,
9236 struct btrfs_block_group_cache,
9237 bg_list);
9238 list_del_init(&block_group->bg_list);
9239 btrfs_put_block_group(block_group);
9240 }
9241 spin_unlock(&info->unused_bgs_lock);
9242
9243 spin_lock(&info->block_group_cache_lock);
9244 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9245 block_group = rb_entry(n, struct btrfs_block_group_cache,
9246 cache_node);
9247 rb_erase(&block_group->cache_node,
9248 &info->block_group_cache_tree);
9249 RB_CLEAR_NODE(&block_group->cache_node);
9250 spin_unlock(&info->block_group_cache_lock);
9251
9252 down_write(&block_group->space_info->groups_sem);
9253 list_del(&block_group->list);
9254 up_write(&block_group->space_info->groups_sem);
9255
9256 if (block_group->cached == BTRFS_CACHE_STARTED)
9257 wait_block_group_cache_done(block_group);
9258
9259 /*
9260 * We haven't cached this block group, which means we could
9261 * possibly have excluded extents on this block group.
9262 */
9263 if (block_group->cached == BTRFS_CACHE_NO ||
9264 block_group->cached == BTRFS_CACHE_ERROR)
9265 free_excluded_extents(info->extent_root, block_group);
9266
9267 btrfs_remove_free_space_cache(block_group);
9268 btrfs_put_block_group(block_group);
9269
9270 spin_lock(&info->block_group_cache_lock);
9271 }
9272 spin_unlock(&info->block_group_cache_lock);
9273
9274 /* now that all the block groups are freed, go through and
9275 * free all the space_info structs. This is only called during
9276 * the final stages of unmount, and so we know nobody is
9277 * using them. We call synchronize_rcu() once before we start,
9278 * just to be on the safe side.
9279 */
9280 synchronize_rcu();
9281
9282 release_global_block_rsv(info);
9283
9284 while (!list_empty(&info->space_info)) {
9285 int i;
9286
9287 space_info = list_entry(info->space_info.next,
9288 struct btrfs_space_info,
9289 list);
9290 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9291 if (WARN_ON(space_info->bytes_pinned > 0 ||
9292 space_info->bytes_reserved > 0 ||
9293 space_info->bytes_may_use > 0)) {
9294 dump_space_info(space_info, 0, 0);
9295 }
9296 }
9297 list_del(&space_info->list);
9298 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9299 struct kobject *kobj;
9300 kobj = space_info->block_group_kobjs[i];
9301 space_info->block_group_kobjs[i] = NULL;
9302 if (kobj) {
9303 kobject_del(kobj);
9304 kobject_put(kobj);
9305 }
9306 }
9307 kobject_del(&space_info->kobj);
9308 kobject_put(&space_info->kobj);
9309 }
9310 return 0;
9311 }
9312
9313 static void __link_block_group(struct btrfs_space_info *space_info,
9314 struct btrfs_block_group_cache *cache)
9315 {
9316 int index = get_block_group_index(cache);
9317 bool first = false;
9318
9319 down_write(&space_info->groups_sem);
9320 if (list_empty(&space_info->block_groups[index]))
9321 first = true;
9322 list_add_tail(&cache->list, &space_info->block_groups[index]);
9323 up_write(&space_info->groups_sem);
9324
9325 if (first) {
9326 struct raid_kobject *rkobj;
9327 int ret;
9328
9329 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9330 if (!rkobj)
9331 goto out_err;
9332 rkobj->raid_type = index;
9333 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9334 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9335 "%s", get_raid_name(index));
9336 if (ret) {
9337 kobject_put(&rkobj->kobj);
9338 goto out_err;
9339 }
9340 space_info->block_group_kobjs[index] = &rkobj->kobj;
9341 }
9342
9343 return;
9344 out_err:
9345 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9346 }
9347
9348 static struct btrfs_block_group_cache *
9349 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9350 {
9351 struct btrfs_block_group_cache *cache;
9352
9353 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9354 if (!cache)
9355 return NULL;
9356
9357 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9358 GFP_NOFS);
9359 if (!cache->free_space_ctl) {
9360 kfree(cache);
9361 return NULL;
9362 }
9363
9364 cache->key.objectid = start;
9365 cache->key.offset = size;
9366 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9367
9368 cache->sectorsize = root->sectorsize;
9369 cache->fs_info = root->fs_info;
9370 cache->full_stripe_len = btrfs_full_stripe_len(root,
9371 &root->fs_info->mapping_tree,
9372 start);
9373 atomic_set(&cache->count, 1);
9374 spin_lock_init(&cache->lock);
9375 init_rwsem(&cache->data_rwsem);
9376 INIT_LIST_HEAD(&cache->list);
9377 INIT_LIST_HEAD(&cache->cluster_list);
9378 INIT_LIST_HEAD(&cache->bg_list);
9379 INIT_LIST_HEAD(&cache->ro_list);
9380 INIT_LIST_HEAD(&cache->dirty_list);
9381 INIT_LIST_HEAD(&cache->io_list);
9382 btrfs_init_free_space_ctl(cache);
9383 atomic_set(&cache->trimming, 0);
9384 mutex_init(&cache->free_space_lock);
9385
9386 return cache;
9387 }
9388
9389 int btrfs_read_block_groups(struct btrfs_root *root)
9390 {
9391 struct btrfs_path *path;
9392 int ret;
9393 struct btrfs_block_group_cache *cache;
9394 struct btrfs_fs_info *info = root->fs_info;
9395 struct btrfs_space_info *space_info;
9396 struct btrfs_key key;
9397 struct btrfs_key found_key;
9398 struct extent_buffer *leaf;
9399 int need_clear = 0;
9400 u64 cache_gen;
9401
9402 root = info->extent_root;
9403 key.objectid = 0;
9404 key.offset = 0;
9405 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9406 path = btrfs_alloc_path();
9407 if (!path)
9408 return -ENOMEM;
9409 path->reada = 1;
9410
9411 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9412 if (btrfs_test_opt(root, SPACE_CACHE) &&
9413 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9414 need_clear = 1;
9415 if (btrfs_test_opt(root, CLEAR_CACHE))
9416 need_clear = 1;
9417
9418 while (1) {
9419 ret = find_first_block_group(root, path, &key);
9420 if (ret > 0)
9421 break;
9422 if (ret != 0)
9423 goto error;
9424
9425 leaf = path->nodes[0];
9426 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9427
9428 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9429 found_key.offset);
9430 if (!cache) {
9431 ret = -ENOMEM;
9432 goto error;
9433 }
9434
9435 if (need_clear) {
9436 /*
9437 * When we mount with old space cache, we need to
9438 * set BTRFS_DC_CLEAR and set dirty flag.
9439 *
9440 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9441 * truncate the old free space cache inode and
9442 * setup a new one.
9443 * b) Setting 'dirty flag' makes sure that we flush
9444 * the new space cache info onto disk.
9445 */
9446 if (btrfs_test_opt(root, SPACE_CACHE))
9447 cache->disk_cache_state = BTRFS_DC_CLEAR;
9448 }
9449
9450 read_extent_buffer(leaf, &cache->item,
9451 btrfs_item_ptr_offset(leaf, path->slots[0]),
9452 sizeof(cache->item));
9453 cache->flags = btrfs_block_group_flags(&cache->item);
9454
9455 key.objectid = found_key.objectid + found_key.offset;
9456 btrfs_release_path(path);
9457
9458 /*
9459 * We need to exclude the super stripes now so that the space
9460 * info has super bytes accounted for, otherwise we'll think
9461 * we have more space than we actually do.
9462 */
9463 ret = exclude_super_stripes(root, cache);
9464 if (ret) {
9465 /*
9466 * We may have excluded something, so call this just in
9467 * case.
9468 */
9469 free_excluded_extents(root, cache);
9470 btrfs_put_block_group(cache);
9471 goto error;
9472 }
9473
9474 /*
9475 * check for two cases, either we are full, and therefore
9476 * don't need to bother with the caching work since we won't
9477 * find any space, or we are empty, and we can just add all
9478 * the space in and be done with it. This saves us _alot_ of
9479 * time, particularly in the full case.
9480 */
9481 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9482 cache->last_byte_to_unpin = (u64)-1;
9483 cache->cached = BTRFS_CACHE_FINISHED;
9484 free_excluded_extents(root, cache);
9485 } else if (btrfs_block_group_used(&cache->item) == 0) {
9486 cache->last_byte_to_unpin = (u64)-1;
9487 cache->cached = BTRFS_CACHE_FINISHED;
9488 add_new_free_space(cache, root->fs_info,
9489 found_key.objectid,
9490 found_key.objectid +
9491 found_key.offset);
9492 free_excluded_extents(root, cache);
9493 }
9494
9495 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9496 if (ret) {
9497 btrfs_remove_free_space_cache(cache);
9498 btrfs_put_block_group(cache);
9499 goto error;
9500 }
9501
9502 ret = update_space_info(info, cache->flags, found_key.offset,
9503 btrfs_block_group_used(&cache->item),
9504 &space_info);
9505 if (ret) {
9506 btrfs_remove_free_space_cache(cache);
9507 spin_lock(&info->block_group_cache_lock);
9508 rb_erase(&cache->cache_node,
9509 &info->block_group_cache_tree);
9510 RB_CLEAR_NODE(&cache->cache_node);
9511 spin_unlock(&info->block_group_cache_lock);
9512 btrfs_put_block_group(cache);
9513 goto error;
9514 }
9515
9516 cache->space_info = space_info;
9517 spin_lock(&cache->space_info->lock);
9518 cache->space_info->bytes_readonly += cache->bytes_super;
9519 spin_unlock(&cache->space_info->lock);
9520
9521 __link_block_group(space_info, cache);
9522
9523 set_avail_alloc_bits(root->fs_info, cache->flags);
9524 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9525 inc_block_group_ro(cache, 1);
9526 } else if (btrfs_block_group_used(&cache->item) == 0) {
9527 spin_lock(&info->unused_bgs_lock);
9528 /* Should always be true but just in case. */
9529 if (list_empty(&cache->bg_list)) {
9530 btrfs_get_block_group(cache);
9531 list_add_tail(&cache->bg_list,
9532 &info->unused_bgs);
9533 }
9534 spin_unlock(&info->unused_bgs_lock);
9535 }
9536 }
9537
9538 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9539 if (!(get_alloc_profile(root, space_info->flags) &
9540 (BTRFS_BLOCK_GROUP_RAID10 |
9541 BTRFS_BLOCK_GROUP_RAID1 |
9542 BTRFS_BLOCK_GROUP_RAID5 |
9543 BTRFS_BLOCK_GROUP_RAID6 |
9544 BTRFS_BLOCK_GROUP_DUP)))
9545 continue;
9546 /*
9547 * avoid allocating from un-mirrored block group if there are
9548 * mirrored block groups.
9549 */
9550 list_for_each_entry(cache,
9551 &space_info->block_groups[BTRFS_RAID_RAID0],
9552 list)
9553 inc_block_group_ro(cache, 1);
9554 list_for_each_entry(cache,
9555 &space_info->block_groups[BTRFS_RAID_SINGLE],
9556 list)
9557 inc_block_group_ro(cache, 1);
9558 }
9559
9560 init_global_block_rsv(info);
9561 ret = 0;
9562 error:
9563 btrfs_free_path(path);
9564 return ret;
9565 }
9566
9567 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9568 struct btrfs_root *root)
9569 {
9570 struct btrfs_block_group_cache *block_group, *tmp;
9571 struct btrfs_root *extent_root = root->fs_info->extent_root;
9572 struct btrfs_block_group_item item;
9573 struct btrfs_key key;
9574 int ret = 0;
9575 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
9576
9577 trans->can_flush_pending_bgs = false;
9578 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9579 if (ret)
9580 goto next;
9581
9582 spin_lock(&block_group->lock);
9583 memcpy(&item, &block_group->item, sizeof(item));
9584 memcpy(&key, &block_group->key, sizeof(key));
9585 spin_unlock(&block_group->lock);
9586
9587 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9588 sizeof(item));
9589 if (ret)
9590 btrfs_abort_transaction(trans, extent_root, ret);
9591 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9592 key.objectid, key.offset);
9593 if (ret)
9594 btrfs_abort_transaction(trans, extent_root, ret);
9595 next:
9596 list_del_init(&block_group->bg_list);
9597 }
9598 trans->can_flush_pending_bgs = can_flush_pending_bgs;
9599 }
9600
9601 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9602 struct btrfs_root *root, u64 bytes_used,
9603 u64 type, u64 chunk_objectid, u64 chunk_offset,
9604 u64 size)
9605 {
9606 int ret;
9607 struct btrfs_root *extent_root;
9608 struct btrfs_block_group_cache *cache;
9609
9610 extent_root = root->fs_info->extent_root;
9611
9612 btrfs_set_log_full_commit(root->fs_info, trans);
9613
9614 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9615 if (!cache)
9616 return -ENOMEM;
9617
9618 btrfs_set_block_group_used(&cache->item, bytes_used);
9619 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9620 btrfs_set_block_group_flags(&cache->item, type);
9621
9622 cache->flags = type;
9623 cache->last_byte_to_unpin = (u64)-1;
9624 cache->cached = BTRFS_CACHE_FINISHED;
9625 ret = exclude_super_stripes(root, cache);
9626 if (ret) {
9627 /*
9628 * We may have excluded something, so call this just in
9629 * case.
9630 */
9631 free_excluded_extents(root, cache);
9632 btrfs_put_block_group(cache);
9633 return ret;
9634 }
9635
9636 add_new_free_space(cache, root->fs_info, chunk_offset,
9637 chunk_offset + size);
9638
9639 free_excluded_extents(root, cache);
9640
9641 /*
9642 * Call to ensure the corresponding space_info object is created and
9643 * assigned to our block group, but don't update its counters just yet.
9644 * We want our bg to be added to the rbtree with its ->space_info set.
9645 */
9646 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9647 &cache->space_info);
9648 if (ret) {
9649 btrfs_remove_free_space_cache(cache);
9650 btrfs_put_block_group(cache);
9651 return ret;
9652 }
9653
9654 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9655 if (ret) {
9656 btrfs_remove_free_space_cache(cache);
9657 btrfs_put_block_group(cache);
9658 return ret;
9659 }
9660
9661 /*
9662 * Now that our block group has its ->space_info set and is inserted in
9663 * the rbtree, update the space info's counters.
9664 */
9665 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9666 &cache->space_info);
9667 if (ret) {
9668 btrfs_remove_free_space_cache(cache);
9669 spin_lock(&root->fs_info->block_group_cache_lock);
9670 rb_erase(&cache->cache_node,
9671 &root->fs_info->block_group_cache_tree);
9672 RB_CLEAR_NODE(&cache->cache_node);
9673 spin_unlock(&root->fs_info->block_group_cache_lock);
9674 btrfs_put_block_group(cache);
9675 return ret;
9676 }
9677 update_global_block_rsv(root->fs_info);
9678
9679 spin_lock(&cache->space_info->lock);
9680 cache->space_info->bytes_readonly += cache->bytes_super;
9681 spin_unlock(&cache->space_info->lock);
9682
9683 __link_block_group(cache->space_info, cache);
9684
9685 list_add_tail(&cache->bg_list, &trans->new_bgs);
9686
9687 set_avail_alloc_bits(extent_root->fs_info, type);
9688
9689 return 0;
9690 }
9691
9692 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9693 {
9694 u64 extra_flags = chunk_to_extended(flags) &
9695 BTRFS_EXTENDED_PROFILE_MASK;
9696
9697 write_seqlock(&fs_info->profiles_lock);
9698 if (flags & BTRFS_BLOCK_GROUP_DATA)
9699 fs_info->avail_data_alloc_bits &= ~extra_flags;
9700 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9701 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9702 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9703 fs_info->avail_system_alloc_bits &= ~extra_flags;
9704 write_sequnlock(&fs_info->profiles_lock);
9705 }
9706
9707 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9708 struct btrfs_root *root, u64 group_start,
9709 struct extent_map *em)
9710 {
9711 struct btrfs_path *path;
9712 struct btrfs_block_group_cache *block_group;
9713 struct btrfs_free_cluster *cluster;
9714 struct btrfs_root *tree_root = root->fs_info->tree_root;
9715 struct btrfs_key key;
9716 struct inode *inode;
9717 struct kobject *kobj = NULL;
9718 int ret;
9719 int index;
9720 int factor;
9721 struct btrfs_caching_control *caching_ctl = NULL;
9722 bool remove_em;
9723
9724 root = root->fs_info->extent_root;
9725
9726 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9727 BUG_ON(!block_group);
9728 BUG_ON(!block_group->ro);
9729
9730 /*
9731 * Free the reserved super bytes from this block group before
9732 * remove it.
9733 */
9734 free_excluded_extents(root, block_group);
9735
9736 memcpy(&key, &block_group->key, sizeof(key));
9737 index = get_block_group_index(block_group);
9738 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9739 BTRFS_BLOCK_GROUP_RAID1 |
9740 BTRFS_BLOCK_GROUP_RAID10))
9741 factor = 2;
9742 else
9743 factor = 1;
9744
9745 /* make sure this block group isn't part of an allocation cluster */
9746 cluster = &root->fs_info->data_alloc_cluster;
9747 spin_lock(&cluster->refill_lock);
9748 btrfs_return_cluster_to_free_space(block_group, cluster);
9749 spin_unlock(&cluster->refill_lock);
9750
9751 /*
9752 * make sure this block group isn't part of a metadata
9753 * allocation cluster
9754 */
9755 cluster = &root->fs_info->meta_alloc_cluster;
9756 spin_lock(&cluster->refill_lock);
9757 btrfs_return_cluster_to_free_space(block_group, cluster);
9758 spin_unlock(&cluster->refill_lock);
9759
9760 path = btrfs_alloc_path();
9761 if (!path) {
9762 ret = -ENOMEM;
9763 goto out;
9764 }
9765
9766 /*
9767 * get the inode first so any iput calls done for the io_list
9768 * aren't the final iput (no unlinks allowed now)
9769 */
9770 inode = lookup_free_space_inode(tree_root, block_group, path);
9771
9772 mutex_lock(&trans->transaction->cache_write_mutex);
9773 /*
9774 * make sure our free spache cache IO is done before remove the
9775 * free space inode
9776 */
9777 spin_lock(&trans->transaction->dirty_bgs_lock);
9778 if (!list_empty(&block_group->io_list)) {
9779 list_del_init(&block_group->io_list);
9780
9781 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9782
9783 spin_unlock(&trans->transaction->dirty_bgs_lock);
9784 btrfs_wait_cache_io(root, trans, block_group,
9785 &block_group->io_ctl, path,
9786 block_group->key.objectid);
9787 btrfs_put_block_group(block_group);
9788 spin_lock(&trans->transaction->dirty_bgs_lock);
9789 }
9790
9791 if (!list_empty(&block_group->dirty_list)) {
9792 list_del_init(&block_group->dirty_list);
9793 btrfs_put_block_group(block_group);
9794 }
9795 spin_unlock(&trans->transaction->dirty_bgs_lock);
9796 mutex_unlock(&trans->transaction->cache_write_mutex);
9797
9798 if (!IS_ERR(inode)) {
9799 ret = btrfs_orphan_add(trans, inode);
9800 if (ret) {
9801 btrfs_add_delayed_iput(inode);
9802 goto out;
9803 }
9804 clear_nlink(inode);
9805 /* One for the block groups ref */
9806 spin_lock(&block_group->lock);
9807 if (block_group->iref) {
9808 block_group->iref = 0;
9809 block_group->inode = NULL;
9810 spin_unlock(&block_group->lock);
9811 iput(inode);
9812 } else {
9813 spin_unlock(&block_group->lock);
9814 }
9815 /* One for our lookup ref */
9816 btrfs_add_delayed_iput(inode);
9817 }
9818
9819 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9820 key.offset = block_group->key.objectid;
9821 key.type = 0;
9822
9823 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9824 if (ret < 0)
9825 goto out;
9826 if (ret > 0)
9827 btrfs_release_path(path);
9828 if (ret == 0) {
9829 ret = btrfs_del_item(trans, tree_root, path);
9830 if (ret)
9831 goto out;
9832 btrfs_release_path(path);
9833 }
9834
9835 spin_lock(&root->fs_info->block_group_cache_lock);
9836 rb_erase(&block_group->cache_node,
9837 &root->fs_info->block_group_cache_tree);
9838 RB_CLEAR_NODE(&block_group->cache_node);
9839
9840 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9841 root->fs_info->first_logical_byte = (u64)-1;
9842 spin_unlock(&root->fs_info->block_group_cache_lock);
9843
9844 down_write(&block_group->space_info->groups_sem);
9845 /*
9846 * we must use list_del_init so people can check to see if they
9847 * are still on the list after taking the semaphore
9848 */
9849 list_del_init(&block_group->list);
9850 if (list_empty(&block_group->space_info->block_groups[index])) {
9851 kobj = block_group->space_info->block_group_kobjs[index];
9852 block_group->space_info->block_group_kobjs[index] = NULL;
9853 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9854 }
9855 up_write(&block_group->space_info->groups_sem);
9856 if (kobj) {
9857 kobject_del(kobj);
9858 kobject_put(kobj);
9859 }
9860
9861 if (block_group->has_caching_ctl)
9862 caching_ctl = get_caching_control(block_group);
9863 if (block_group->cached == BTRFS_CACHE_STARTED)
9864 wait_block_group_cache_done(block_group);
9865 if (block_group->has_caching_ctl) {
9866 down_write(&root->fs_info->commit_root_sem);
9867 if (!caching_ctl) {
9868 struct btrfs_caching_control *ctl;
9869
9870 list_for_each_entry(ctl,
9871 &root->fs_info->caching_block_groups, list)
9872 if (ctl->block_group == block_group) {
9873 caching_ctl = ctl;
9874 atomic_inc(&caching_ctl->count);
9875 break;
9876 }
9877 }
9878 if (caching_ctl)
9879 list_del_init(&caching_ctl->list);
9880 up_write(&root->fs_info->commit_root_sem);
9881 if (caching_ctl) {
9882 /* Once for the caching bgs list and once for us. */
9883 put_caching_control(caching_ctl);
9884 put_caching_control(caching_ctl);
9885 }
9886 }
9887
9888 spin_lock(&trans->transaction->dirty_bgs_lock);
9889 if (!list_empty(&block_group->dirty_list)) {
9890 WARN_ON(1);
9891 }
9892 if (!list_empty(&block_group->io_list)) {
9893 WARN_ON(1);
9894 }
9895 spin_unlock(&trans->transaction->dirty_bgs_lock);
9896 btrfs_remove_free_space_cache(block_group);
9897
9898 spin_lock(&block_group->space_info->lock);
9899 list_del_init(&block_group->ro_list);
9900
9901 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9902 WARN_ON(block_group->space_info->total_bytes
9903 < block_group->key.offset);
9904 WARN_ON(block_group->space_info->bytes_readonly
9905 < block_group->key.offset);
9906 WARN_ON(block_group->space_info->disk_total
9907 < block_group->key.offset * factor);
9908 }
9909 block_group->space_info->total_bytes -= block_group->key.offset;
9910 block_group->space_info->bytes_readonly -= block_group->key.offset;
9911 block_group->space_info->disk_total -= block_group->key.offset * factor;
9912
9913 spin_unlock(&block_group->space_info->lock);
9914
9915 memcpy(&key, &block_group->key, sizeof(key));
9916
9917 lock_chunks(root);
9918 if (!list_empty(&em->list)) {
9919 /* We're in the transaction->pending_chunks list. */
9920 free_extent_map(em);
9921 }
9922 spin_lock(&block_group->lock);
9923 block_group->removed = 1;
9924 /*
9925 * At this point trimming can't start on this block group, because we
9926 * removed the block group from the tree fs_info->block_group_cache_tree
9927 * so no one can't find it anymore and even if someone already got this
9928 * block group before we removed it from the rbtree, they have already
9929 * incremented block_group->trimming - if they didn't, they won't find
9930 * any free space entries because we already removed them all when we
9931 * called btrfs_remove_free_space_cache().
9932 *
9933 * And we must not remove the extent map from the fs_info->mapping_tree
9934 * to prevent the same logical address range and physical device space
9935 * ranges from being reused for a new block group. This is because our
9936 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9937 * completely transactionless, so while it is trimming a range the
9938 * currently running transaction might finish and a new one start,
9939 * allowing for new block groups to be created that can reuse the same
9940 * physical device locations unless we take this special care.
9941 *
9942 * There may also be an implicit trim operation if the file system
9943 * is mounted with -odiscard. The same protections must remain
9944 * in place until the extents have been discarded completely when
9945 * the transaction commit has completed.
9946 */
9947 remove_em = (atomic_read(&block_group->trimming) == 0);
9948 /*
9949 * Make sure a trimmer task always sees the em in the pinned_chunks list
9950 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9951 * before checking block_group->removed).
9952 */
9953 if (!remove_em) {
9954 /*
9955 * Our em might be in trans->transaction->pending_chunks which
9956 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9957 * and so is the fs_info->pinned_chunks list.
9958 *
9959 * So at this point we must be holding the chunk_mutex to avoid
9960 * any races with chunk allocation (more specifically at
9961 * volumes.c:contains_pending_extent()), to ensure it always
9962 * sees the em, either in the pending_chunks list or in the
9963 * pinned_chunks list.
9964 */
9965 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9966 }
9967 spin_unlock(&block_group->lock);
9968
9969 if (remove_em) {
9970 struct extent_map_tree *em_tree;
9971
9972 em_tree = &root->fs_info->mapping_tree.map_tree;
9973 write_lock(&em_tree->lock);
9974 /*
9975 * The em might be in the pending_chunks list, so make sure the
9976 * chunk mutex is locked, since remove_extent_mapping() will
9977 * delete us from that list.
9978 */
9979 remove_extent_mapping(em_tree, em);
9980 write_unlock(&em_tree->lock);
9981 /* once for the tree */
9982 free_extent_map(em);
9983 }
9984
9985 unlock_chunks(root);
9986
9987 btrfs_put_block_group(block_group);
9988 btrfs_put_block_group(block_group);
9989
9990 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9991 if (ret > 0)
9992 ret = -EIO;
9993 if (ret < 0)
9994 goto out;
9995
9996 ret = btrfs_del_item(trans, root, path);
9997 out:
9998 btrfs_free_path(path);
9999 return ret;
10000 }
10001
10002 /*
10003 * Process the unused_bgs list and remove any that don't have any allocated
10004 * space inside of them.
10005 */
10006 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10007 {
10008 struct btrfs_block_group_cache *block_group;
10009 struct btrfs_space_info *space_info;
10010 struct btrfs_root *root = fs_info->extent_root;
10011 struct btrfs_trans_handle *trans;
10012 int ret = 0;
10013
10014 if (!fs_info->open)
10015 return;
10016
10017 spin_lock(&fs_info->unused_bgs_lock);
10018 while (!list_empty(&fs_info->unused_bgs)) {
10019 u64 start, end;
10020 int trimming;
10021
10022 block_group = list_first_entry(&fs_info->unused_bgs,
10023 struct btrfs_block_group_cache,
10024 bg_list);
10025 space_info = block_group->space_info;
10026 list_del_init(&block_group->bg_list);
10027 if (ret || btrfs_mixed_space_info(space_info)) {
10028 btrfs_put_block_group(block_group);
10029 continue;
10030 }
10031 spin_unlock(&fs_info->unused_bgs_lock);
10032
10033 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10034
10035 /* Don't want to race with allocators so take the groups_sem */
10036 down_write(&space_info->groups_sem);
10037 spin_lock(&block_group->lock);
10038 if (block_group->reserved ||
10039 btrfs_block_group_used(&block_group->item) ||
10040 block_group->ro) {
10041 /*
10042 * We want to bail if we made new allocations or have
10043 * outstanding allocations in this block group. We do
10044 * the ro check in case balance is currently acting on
10045 * this block group.
10046 */
10047 spin_unlock(&block_group->lock);
10048 up_write(&space_info->groups_sem);
10049 goto next;
10050 }
10051 spin_unlock(&block_group->lock);
10052
10053 /* We don't want to force the issue, only flip if it's ok. */
10054 ret = inc_block_group_ro(block_group, 0);
10055 up_write(&space_info->groups_sem);
10056 if (ret < 0) {
10057 ret = 0;
10058 goto next;
10059 }
10060
10061 /*
10062 * Want to do this before we do anything else so we can recover
10063 * properly if we fail to join the transaction.
10064 */
10065 /* 1 for btrfs_orphan_reserve_metadata() */
10066 trans = btrfs_start_transaction(root, 1);
10067 if (IS_ERR(trans)) {
10068 btrfs_dec_block_group_ro(root, block_group);
10069 ret = PTR_ERR(trans);
10070 goto next;
10071 }
10072
10073 /*
10074 * We could have pending pinned extents for this block group,
10075 * just delete them, we don't care about them anymore.
10076 */
10077 start = block_group->key.objectid;
10078 end = start + block_group->key.offset - 1;
10079 /*
10080 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10081 * btrfs_finish_extent_commit(). If we are at transaction N,
10082 * another task might be running finish_extent_commit() for the
10083 * previous transaction N - 1, and have seen a range belonging
10084 * to the block group in freed_extents[] before we were able to
10085 * clear the whole block group range from freed_extents[]. This
10086 * means that task can lookup for the block group after we
10087 * unpinned it from freed_extents[] and removed it, leading to
10088 * a BUG_ON() at btrfs_unpin_extent_range().
10089 */
10090 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10091 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10092 EXTENT_DIRTY, GFP_NOFS);
10093 if (ret) {
10094 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10095 btrfs_dec_block_group_ro(root, block_group);
10096 goto end_trans;
10097 }
10098 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10099 EXTENT_DIRTY, GFP_NOFS);
10100 if (ret) {
10101 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10102 btrfs_dec_block_group_ro(root, block_group);
10103 goto end_trans;
10104 }
10105 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10106
10107 /* Reset pinned so btrfs_put_block_group doesn't complain */
10108 spin_lock(&space_info->lock);
10109 spin_lock(&block_group->lock);
10110
10111 space_info->bytes_pinned -= block_group->pinned;
10112 space_info->bytes_readonly += block_group->pinned;
10113 percpu_counter_add(&space_info->total_bytes_pinned,
10114 -block_group->pinned);
10115 block_group->pinned = 0;
10116
10117 spin_unlock(&block_group->lock);
10118 spin_unlock(&space_info->lock);
10119
10120 /* DISCARD can flip during remount */
10121 trimming = btrfs_test_opt(root, DISCARD);
10122
10123 /* Implicit trim during transaction commit. */
10124 if (trimming)
10125 btrfs_get_block_group_trimming(block_group);
10126
10127 /*
10128 * Btrfs_remove_chunk will abort the transaction if things go
10129 * horribly wrong.
10130 */
10131 ret = btrfs_remove_chunk(trans, root,
10132 block_group->key.objectid);
10133
10134 if (ret) {
10135 if (trimming)
10136 btrfs_put_block_group_trimming(block_group);
10137 goto end_trans;
10138 }
10139
10140 /*
10141 * If we're not mounted with -odiscard, we can just forget
10142 * about this block group. Otherwise we'll need to wait
10143 * until transaction commit to do the actual discard.
10144 */
10145 if (trimming) {
10146 WARN_ON(!list_empty(&block_group->bg_list));
10147 spin_lock(&trans->transaction->deleted_bgs_lock);
10148 list_move(&block_group->bg_list,
10149 &trans->transaction->deleted_bgs);
10150 spin_unlock(&trans->transaction->deleted_bgs_lock);
10151 btrfs_get_block_group(block_group);
10152 }
10153 end_trans:
10154 btrfs_end_transaction(trans, root);
10155 next:
10156 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
10157 btrfs_put_block_group(block_group);
10158 spin_lock(&fs_info->unused_bgs_lock);
10159 }
10160 spin_unlock(&fs_info->unused_bgs_lock);
10161 }
10162
10163 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10164 {
10165 struct btrfs_space_info *space_info;
10166 struct btrfs_super_block *disk_super;
10167 u64 features;
10168 u64 flags;
10169 int mixed = 0;
10170 int ret;
10171
10172 disk_super = fs_info->super_copy;
10173 if (!btrfs_super_root(disk_super))
10174 return 1;
10175
10176 features = btrfs_super_incompat_flags(disk_super);
10177 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10178 mixed = 1;
10179
10180 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10181 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10182 if (ret)
10183 goto out;
10184
10185 if (mixed) {
10186 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10187 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10188 } else {
10189 flags = BTRFS_BLOCK_GROUP_METADATA;
10190 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10191 if (ret)
10192 goto out;
10193
10194 flags = BTRFS_BLOCK_GROUP_DATA;
10195 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10196 }
10197 out:
10198 return ret;
10199 }
10200
10201 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10202 {
10203 return unpin_extent_range(root, start, end, false);
10204 }
10205
10206 /*
10207 * It used to be that old block groups would be left around forever.
10208 * Iterating over them would be enough to trim unused space. Since we
10209 * now automatically remove them, we also need to iterate over unallocated
10210 * space.
10211 *
10212 * We don't want a transaction for this since the discard may take a
10213 * substantial amount of time. We don't require that a transaction be
10214 * running, but we do need to take a running transaction into account
10215 * to ensure that we're not discarding chunks that were released in
10216 * the current transaction.
10217 *
10218 * Holding the chunks lock will prevent other threads from allocating
10219 * or releasing chunks, but it won't prevent a running transaction
10220 * from committing and releasing the memory that the pending chunks
10221 * list head uses. For that, we need to take a reference to the
10222 * transaction.
10223 */
10224 static int btrfs_trim_free_extents(struct btrfs_device *device,
10225 u64 minlen, u64 *trimmed)
10226 {
10227 u64 start = 0, len = 0;
10228 int ret;
10229
10230 *trimmed = 0;
10231
10232 /* Not writeable = nothing to do. */
10233 if (!device->writeable)
10234 return 0;
10235
10236 /* No free space = nothing to do. */
10237 if (device->total_bytes <= device->bytes_used)
10238 return 0;
10239
10240 ret = 0;
10241
10242 while (1) {
10243 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10244 struct btrfs_transaction *trans;
10245 u64 bytes;
10246
10247 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10248 if (ret)
10249 return ret;
10250
10251 down_read(&fs_info->commit_root_sem);
10252
10253 spin_lock(&fs_info->trans_lock);
10254 trans = fs_info->running_transaction;
10255 if (trans)
10256 atomic_inc(&trans->use_count);
10257 spin_unlock(&fs_info->trans_lock);
10258
10259 ret = find_free_dev_extent_start(trans, device, minlen, start,
10260 &start, &len);
10261 if (trans)
10262 btrfs_put_transaction(trans);
10263
10264 if (ret) {
10265 up_read(&fs_info->commit_root_sem);
10266 mutex_unlock(&fs_info->chunk_mutex);
10267 if (ret == -ENOSPC)
10268 ret = 0;
10269 break;
10270 }
10271
10272 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10273 up_read(&fs_info->commit_root_sem);
10274 mutex_unlock(&fs_info->chunk_mutex);
10275
10276 if (ret)
10277 break;
10278
10279 start += len;
10280 *trimmed += bytes;
10281
10282 if (fatal_signal_pending(current)) {
10283 ret = -ERESTARTSYS;
10284 break;
10285 }
10286
10287 cond_resched();
10288 }
10289
10290 return ret;
10291 }
10292
10293 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10294 {
10295 struct btrfs_fs_info *fs_info = root->fs_info;
10296 struct btrfs_block_group_cache *cache = NULL;
10297 struct btrfs_device *device;
10298 struct list_head *devices;
10299 u64 group_trimmed;
10300 u64 start;
10301 u64 end;
10302 u64 trimmed = 0;
10303 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10304 int ret = 0;
10305
10306 /*
10307 * try to trim all FS space, our block group may start from non-zero.
10308 */
10309 if (range->len == total_bytes)
10310 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10311 else
10312 cache = btrfs_lookup_block_group(fs_info, range->start);
10313
10314 while (cache) {
10315 if (cache->key.objectid >= (range->start + range->len)) {
10316 btrfs_put_block_group(cache);
10317 break;
10318 }
10319
10320 start = max(range->start, cache->key.objectid);
10321 end = min(range->start + range->len,
10322 cache->key.objectid + cache->key.offset);
10323
10324 if (end - start >= range->minlen) {
10325 if (!block_group_cache_done(cache)) {
10326 ret = cache_block_group(cache, 0);
10327 if (ret) {
10328 btrfs_put_block_group(cache);
10329 break;
10330 }
10331 ret = wait_block_group_cache_done(cache);
10332 if (ret) {
10333 btrfs_put_block_group(cache);
10334 break;
10335 }
10336 }
10337 ret = btrfs_trim_block_group(cache,
10338 &group_trimmed,
10339 start,
10340 end,
10341 range->minlen);
10342
10343 trimmed += group_trimmed;
10344 if (ret) {
10345 btrfs_put_block_group(cache);
10346 break;
10347 }
10348 }
10349
10350 cache = next_block_group(fs_info->tree_root, cache);
10351 }
10352
10353 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10354 devices = &root->fs_info->fs_devices->alloc_list;
10355 list_for_each_entry(device, devices, dev_alloc_list) {
10356 ret = btrfs_trim_free_extents(device, range->minlen,
10357 &group_trimmed);
10358 if (ret)
10359 break;
10360
10361 trimmed += group_trimmed;
10362 }
10363 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10364
10365 range->len = trimmed;
10366 return ret;
10367 }
10368
10369 /*
10370 * btrfs_{start,end}_write_no_snapshoting() are similar to
10371 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10372 * data into the page cache through nocow before the subvolume is snapshoted,
10373 * but flush the data into disk after the snapshot creation, or to prevent
10374 * operations while snapshoting is ongoing and that cause the snapshot to be
10375 * inconsistent (writes followed by expanding truncates for example).
10376 */
10377 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10378 {
10379 percpu_counter_dec(&root->subv_writers->counter);
10380 /*
10381 * Make sure counter is updated before we wake up
10382 * waiters.
10383 */
10384 smp_mb();
10385 if (waitqueue_active(&root->subv_writers->wait))
10386 wake_up(&root->subv_writers->wait);
10387 }
10388
10389 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10390 {
10391 if (atomic_read(&root->will_be_snapshoted))
10392 return 0;
10393
10394 percpu_counter_inc(&root->subv_writers->counter);
10395 /*
10396 * Make sure counter is updated before we check for snapshot creation.
10397 */
10398 smp_mb();
10399 if (atomic_read(&root->will_be_snapshoted)) {
10400 btrfs_end_write_no_snapshoting(root);
10401 return 0;
10402 }
10403 return 1;
10404 }
This page took 0.52772 seconds and 5 git commands to generate.