Btrfs: fixup reserved trace points
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "compat.h"
29 #include "hash.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "transaction.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "math.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 struct extent_buffer *leaf,
87 struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, u64 owner, u64 offset,
92 struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root,
95 u64 parent, u64 root_objectid,
96 u64 flags, struct btrfs_disk_key *key,
97 int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 struct btrfs_root *extent_root, u64 flags,
100 int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 u64 bytenr, u64 num_bytes, int reserved);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138 }
139
140 /*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146 {
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178 }
179
180 /*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187 {
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
228 {
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE, GFP_NOFS);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250
251 static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
253 {
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 cache->key.objectid, bytenr,
272 0, &logical, &nr, &stripe_len);
273 if (ret)
274 return ret;
275
276 while (nr--) {
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
297 ret = add_excluded_extent(root, start, len);
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
302 }
303
304 kfree(logical);
305 }
306 return 0;
307 }
308
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
315 if (cache->cached != BTRFS_CACHE_STARTED) {
316 spin_unlock(&cache->lock);
317 return NULL;
318 }
319
320 /* We're loading it the fast way, so we don't have a caching_ctl. */
321 if (!cache->caching_ctl) {
322 spin_unlock(&cache->lock);
323 return NULL;
324 }
325
326 ctl = cache->caching_ctl;
327 atomic_inc(&ctl->count);
328 spin_unlock(&cache->lock);
329 return ctl;
330 }
331
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 if (atomic_dec_and_test(&ctl->count))
335 kfree(ctl);
336 }
337
338 /*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 u64 extent_start, extent_end, size, total_added = 0;
347 int ret;
348
349 while (start < end) {
350 ret = find_first_extent_bit(info->pinned_extents, start,
351 &extent_start, &extent_end,
352 EXTENT_DIRTY | EXTENT_UPTODATE,
353 NULL);
354 if (ret)
355 break;
356
357 if (extent_start <= start) {
358 start = extent_end + 1;
359 } else if (extent_start > start && extent_start < end) {
360 size = extent_start - start;
361 total_added += size;
362 ret = btrfs_add_free_space(block_group, start,
363 size);
364 BUG_ON(ret); /* -ENOMEM or logic error */
365 start = extent_end + 1;
366 } else {
367 break;
368 }
369 }
370
371 if (start < end) {
372 size = end - start;
373 total_added += size;
374 ret = btrfs_add_free_space(block_group, start, size);
375 BUG_ON(ret); /* -ENOMEM or logic error */
376 }
377
378 return total_added;
379 }
380
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 struct btrfs_block_group_cache *block_group;
384 struct btrfs_fs_info *fs_info;
385 struct btrfs_caching_control *caching_ctl;
386 struct btrfs_root *extent_root;
387 struct btrfs_path *path;
388 struct extent_buffer *leaf;
389 struct btrfs_key key;
390 u64 total_found = 0;
391 u64 last = 0;
392 u32 nritems;
393 int ret = -ENOMEM;
394
395 caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 block_group = caching_ctl->block_group;
397 fs_info = block_group->fs_info;
398 extent_root = fs_info->extent_root;
399
400 path = btrfs_alloc_path();
401 if (!path)
402 goto out;
403
404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405
406 /*
407 * We don't want to deadlock with somebody trying to allocate a new
408 * extent for the extent root while also trying to search the extent
409 * root to add free space. So we skip locking and search the commit
410 * root, since its read-only
411 */
412 path->skip_locking = 1;
413 path->search_commit_root = 1;
414 path->reada = 1;
415
416 key.objectid = last;
417 key.offset = 0;
418 key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 mutex_lock(&caching_ctl->mutex);
421 /* need to make sure the commit_root doesn't disappear */
422 down_read(&fs_info->extent_commit_sem);
423
424 next:
425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 if (ret < 0)
427 goto err;
428
429 leaf = path->nodes[0];
430 nritems = btrfs_header_nritems(leaf);
431
432 while (1) {
433 if (btrfs_fs_closing(fs_info) > 1) {
434 last = (u64)-1;
435 break;
436 }
437
438 if (path->slots[0] < nritems) {
439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 } else {
441 ret = find_next_key(path, 0, &key);
442 if (ret)
443 break;
444
445 if (need_resched()) {
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->extent_commit_sem);
449 mutex_unlock(&caching_ctl->mutex);
450 cond_resched();
451 goto again;
452 }
453
454 ret = btrfs_next_leaf(extent_root, path);
455 if (ret < 0)
456 goto err;
457 if (ret)
458 break;
459 leaf = path->nodes[0];
460 nritems = btrfs_header_nritems(leaf);
461 continue;
462 }
463
464 if (key.objectid < last) {
465 key.objectid = last;
466 key.offset = 0;
467 key.type = BTRFS_EXTENT_ITEM_KEY;
468
469 caching_ctl->progress = last;
470 btrfs_release_path(path);
471 goto next;
472 }
473
474 if (key.objectid < block_group->key.objectid) {
475 path->slots[0]++;
476 continue;
477 }
478
479 if (key.objectid >= block_group->key.objectid +
480 block_group->key.offset)
481 break;
482
483 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
484 key.type == BTRFS_METADATA_ITEM_KEY) {
485 total_found += add_new_free_space(block_group,
486 fs_info, last,
487 key.objectid);
488 if (key.type == BTRFS_METADATA_ITEM_KEY)
489 last = key.objectid +
490 fs_info->tree_root->leafsize;
491 else
492 last = key.objectid + key.offset;
493
494 if (total_found > (1024 * 1024 * 2)) {
495 total_found = 0;
496 wake_up(&caching_ctl->wait);
497 }
498 }
499 path->slots[0]++;
500 }
501 ret = 0;
502
503 total_found += add_new_free_space(block_group, fs_info, last,
504 block_group->key.objectid +
505 block_group->key.offset);
506 caching_ctl->progress = (u64)-1;
507
508 spin_lock(&block_group->lock);
509 block_group->caching_ctl = NULL;
510 block_group->cached = BTRFS_CACHE_FINISHED;
511 spin_unlock(&block_group->lock);
512
513 err:
514 btrfs_free_path(path);
515 up_read(&fs_info->extent_commit_sem);
516
517 free_excluded_extents(extent_root, block_group);
518
519 mutex_unlock(&caching_ctl->mutex);
520 out:
521 if (ret) {
522 spin_lock(&block_group->lock);
523 block_group->caching_ctl = NULL;
524 block_group->cached = BTRFS_CACHE_ERROR;
525 spin_unlock(&block_group->lock);
526 }
527 wake_up(&caching_ctl->wait);
528
529 put_caching_control(caching_ctl);
530 btrfs_put_block_group(block_group);
531 }
532
533 static int cache_block_group(struct btrfs_block_group_cache *cache,
534 int load_cache_only)
535 {
536 DEFINE_WAIT(wait);
537 struct btrfs_fs_info *fs_info = cache->fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret = 0;
540
541 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
542 if (!caching_ctl)
543 return -ENOMEM;
544
545 INIT_LIST_HEAD(&caching_ctl->list);
546 mutex_init(&caching_ctl->mutex);
547 init_waitqueue_head(&caching_ctl->wait);
548 caching_ctl->block_group = cache;
549 caching_ctl->progress = cache->key.objectid;
550 atomic_set(&caching_ctl->count, 1);
551 caching_ctl->work.func = caching_thread;
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 } else {
600 if (load_cache_only) {
601 cache->caching_ctl = NULL;
602 cache->cached = BTRFS_CACHE_NO;
603 } else {
604 cache->cached = BTRFS_CACHE_STARTED;
605 }
606 }
607 spin_unlock(&cache->lock);
608 wake_up(&caching_ctl->wait);
609 if (ret == 1) {
610 put_caching_control(caching_ctl);
611 free_excluded_extents(fs_info->extent_root, cache);
612 return 0;
613 }
614 } else {
615 /*
616 * We are not going to do the fast caching, set cached to the
617 * appropriate value and wakeup any waiters.
618 */
619 spin_lock(&cache->lock);
620 if (load_cache_only) {
621 cache->caching_ctl = NULL;
622 cache->cached = BTRFS_CACHE_NO;
623 } else {
624 cache->cached = BTRFS_CACHE_STARTED;
625 }
626 spin_unlock(&cache->lock);
627 wake_up(&caching_ctl->wait);
628 }
629
630 if (load_cache_only) {
631 put_caching_control(caching_ctl);
632 return 0;
633 }
634
635 down_write(&fs_info->extent_commit_sem);
636 atomic_inc(&caching_ctl->count);
637 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
638 up_write(&fs_info->extent_commit_sem);
639
640 btrfs_get_block_group(cache);
641
642 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
643
644 return ret;
645 }
646
647 /*
648 * return the block group that starts at or after bytenr
649 */
650 static struct btrfs_block_group_cache *
651 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
652 {
653 struct btrfs_block_group_cache *cache;
654
655 cache = block_group_cache_tree_search(info, bytenr, 0);
656
657 return cache;
658 }
659
660 /*
661 * return the block group that contains the given bytenr
662 */
663 struct btrfs_block_group_cache *btrfs_lookup_block_group(
664 struct btrfs_fs_info *info,
665 u64 bytenr)
666 {
667 struct btrfs_block_group_cache *cache;
668
669 cache = block_group_cache_tree_search(info, bytenr, 1);
670
671 return cache;
672 }
673
674 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
675 u64 flags)
676 {
677 struct list_head *head = &info->space_info;
678 struct btrfs_space_info *found;
679
680 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
681
682 rcu_read_lock();
683 list_for_each_entry_rcu(found, head, list) {
684 if (found->flags & flags) {
685 rcu_read_unlock();
686 return found;
687 }
688 }
689 rcu_read_unlock();
690 return NULL;
691 }
692
693 /*
694 * after adding space to the filesystem, we need to clear the full flags
695 * on all the space infos.
696 */
697 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
698 {
699 struct list_head *head = &info->space_info;
700 struct btrfs_space_info *found;
701
702 rcu_read_lock();
703 list_for_each_entry_rcu(found, head, list)
704 found->full = 0;
705 rcu_read_unlock();
706 }
707
708 /* simple helper to search for an existing extent at a given offset */
709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
710 {
711 int ret;
712 struct btrfs_key key;
713 struct btrfs_path *path;
714
715 path = btrfs_alloc_path();
716 if (!path)
717 return -ENOMEM;
718
719 key.objectid = start;
720 key.offset = len;
721 key.type = BTRFS_EXTENT_ITEM_KEY;
722 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
723 0, 0);
724 if (ret > 0) {
725 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
726 if (key.objectid == start &&
727 key.type == BTRFS_METADATA_ITEM_KEY)
728 ret = 0;
729 }
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->leafsize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (metadata) {
772 key.objectid = bytenr;
773 key.type = BTRFS_METADATA_ITEM_KEY;
774 key.offset = offset;
775 } else {
776 key.objectid = bytenr;
777 key.type = BTRFS_EXTENT_ITEM_KEY;
778 key.offset = offset;
779 }
780
781 if (!trans) {
782 path->skip_locking = 1;
783 path->search_commit_root = 1;
784 }
785 again:
786 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 &key, path, 0, 0);
788 if (ret < 0)
789 goto out_free;
790
791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 metadata = 0;
793 if (path->slots[0]) {
794 path->slots[0]--;
795 btrfs_item_key_to_cpu(path->nodes[0], &key,
796 path->slots[0]);
797 if (key.objectid == bytenr &&
798 key.type == BTRFS_EXTENT_ITEM_KEY &&
799 key.offset == root->leafsize)
800 ret = 0;
801 }
802 if (ret) {
803 key.objectid = bytenr;
804 key.type = BTRFS_EXTENT_ITEM_KEY;
805 key.offset = root->leafsize;
806 btrfs_release_path(path);
807 goto again;
808 }
809 }
810
811 if (ret == 0) {
812 leaf = path->nodes[0];
813 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
814 if (item_size >= sizeof(*ei)) {
815 ei = btrfs_item_ptr(leaf, path->slots[0],
816 struct btrfs_extent_item);
817 num_refs = btrfs_extent_refs(leaf, ei);
818 extent_flags = btrfs_extent_flags(leaf, ei);
819 } else {
820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
821 struct btrfs_extent_item_v0 *ei0;
822 BUG_ON(item_size != sizeof(*ei0));
823 ei0 = btrfs_item_ptr(leaf, path->slots[0],
824 struct btrfs_extent_item_v0);
825 num_refs = btrfs_extent_refs_v0(leaf, ei0);
826 /* FIXME: this isn't correct for data */
827 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
828 #else
829 BUG();
830 #endif
831 }
832 BUG_ON(num_refs == 0);
833 } else {
834 num_refs = 0;
835 extent_flags = 0;
836 ret = 0;
837 }
838
839 if (!trans)
840 goto out;
841
842 delayed_refs = &trans->transaction->delayed_refs;
843 spin_lock(&delayed_refs->lock);
844 head = btrfs_find_delayed_ref_head(trans, bytenr);
845 if (head) {
846 if (!mutex_trylock(&head->mutex)) {
847 atomic_inc(&head->node.refs);
848 spin_unlock(&delayed_refs->lock);
849
850 btrfs_release_path(path);
851
852 /*
853 * Mutex was contended, block until it's released and try
854 * again
855 */
856 mutex_lock(&head->mutex);
857 mutex_unlock(&head->mutex);
858 btrfs_put_delayed_ref(&head->node);
859 goto again;
860 }
861 if (head->extent_op && head->extent_op->update_flags)
862 extent_flags |= head->extent_op->flags_to_set;
863 else
864 BUG_ON(num_refs == 0);
865
866 num_refs += head->node.ref_mod;
867 mutex_unlock(&head->mutex);
868 }
869 spin_unlock(&delayed_refs->lock);
870 out:
871 WARN_ON(num_refs == 0);
872 if (refs)
873 *refs = num_refs;
874 if (flags)
875 *flags = extent_flags;
876 out_free:
877 btrfs_free_path(path);
878 return ret;
879 }
880
881 /*
882 * Back reference rules. Back refs have three main goals:
883 *
884 * 1) differentiate between all holders of references to an extent so that
885 * when a reference is dropped we can make sure it was a valid reference
886 * before freeing the extent.
887 *
888 * 2) Provide enough information to quickly find the holders of an extent
889 * if we notice a given block is corrupted or bad.
890 *
891 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
892 * maintenance. This is actually the same as #2, but with a slightly
893 * different use case.
894 *
895 * There are two kinds of back refs. The implicit back refs is optimized
896 * for pointers in non-shared tree blocks. For a given pointer in a block,
897 * back refs of this kind provide information about the block's owner tree
898 * and the pointer's key. These information allow us to find the block by
899 * b-tree searching. The full back refs is for pointers in tree blocks not
900 * referenced by their owner trees. The location of tree block is recorded
901 * in the back refs. Actually the full back refs is generic, and can be
902 * used in all cases the implicit back refs is used. The major shortcoming
903 * of the full back refs is its overhead. Every time a tree block gets
904 * COWed, we have to update back refs entry for all pointers in it.
905 *
906 * For a newly allocated tree block, we use implicit back refs for
907 * pointers in it. This means most tree related operations only involve
908 * implicit back refs. For a tree block created in old transaction, the
909 * only way to drop a reference to it is COW it. So we can detect the
910 * event that tree block loses its owner tree's reference and do the
911 * back refs conversion.
912 *
913 * When a tree block is COW'd through a tree, there are four cases:
914 *
915 * The reference count of the block is one and the tree is the block's
916 * owner tree. Nothing to do in this case.
917 *
918 * The reference count of the block is one and the tree is not the
919 * block's owner tree. In this case, full back refs is used for pointers
920 * in the block. Remove these full back refs, add implicit back refs for
921 * every pointers in the new block.
922 *
923 * The reference count of the block is greater than one and the tree is
924 * the block's owner tree. In this case, implicit back refs is used for
925 * pointers in the block. Add full back refs for every pointers in the
926 * block, increase lower level extents' reference counts. The original
927 * implicit back refs are entailed to the new block.
928 *
929 * The reference count of the block is greater than one and the tree is
930 * not the block's owner tree. Add implicit back refs for every pointer in
931 * the new block, increase lower level extents' reference count.
932 *
933 * Back Reference Key composing:
934 *
935 * The key objectid corresponds to the first byte in the extent,
936 * The key type is used to differentiate between types of back refs.
937 * There are different meanings of the key offset for different types
938 * of back refs.
939 *
940 * File extents can be referenced by:
941 *
942 * - multiple snapshots, subvolumes, or different generations in one subvol
943 * - different files inside a single subvolume
944 * - different offsets inside a file (bookend extents in file.c)
945 *
946 * The extent ref structure for the implicit back refs has fields for:
947 *
948 * - Objectid of the subvolume root
949 * - objectid of the file holding the reference
950 * - original offset in the file
951 * - how many bookend extents
952 *
953 * The key offset for the implicit back refs is hash of the first
954 * three fields.
955 *
956 * The extent ref structure for the full back refs has field for:
957 *
958 * - number of pointers in the tree leaf
959 *
960 * The key offset for the implicit back refs is the first byte of
961 * the tree leaf
962 *
963 * When a file extent is allocated, The implicit back refs is used.
964 * the fields are filled in:
965 *
966 * (root_key.objectid, inode objectid, offset in file, 1)
967 *
968 * When a file extent is removed file truncation, we find the
969 * corresponding implicit back refs and check the following fields:
970 *
971 * (btrfs_header_owner(leaf), inode objectid, offset in file)
972 *
973 * Btree extents can be referenced by:
974 *
975 * - Different subvolumes
976 *
977 * Both the implicit back refs and the full back refs for tree blocks
978 * only consist of key. The key offset for the implicit back refs is
979 * objectid of block's owner tree. The key offset for the full back refs
980 * is the first byte of parent block.
981 *
982 * When implicit back refs is used, information about the lowest key and
983 * level of the tree block are required. These information are stored in
984 * tree block info structure.
985 */
986
987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
988 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
989 struct btrfs_root *root,
990 struct btrfs_path *path,
991 u64 owner, u32 extra_size)
992 {
993 struct btrfs_extent_item *item;
994 struct btrfs_extent_item_v0 *ei0;
995 struct btrfs_extent_ref_v0 *ref0;
996 struct btrfs_tree_block_info *bi;
997 struct extent_buffer *leaf;
998 struct btrfs_key key;
999 struct btrfs_key found_key;
1000 u32 new_size = sizeof(*item);
1001 u64 refs;
1002 int ret;
1003
1004 leaf = path->nodes[0];
1005 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1006
1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1009 struct btrfs_extent_item_v0);
1010 refs = btrfs_extent_refs_v0(leaf, ei0);
1011
1012 if (owner == (u64)-1) {
1013 while (1) {
1014 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1015 ret = btrfs_next_leaf(root, path);
1016 if (ret < 0)
1017 return ret;
1018 BUG_ON(ret > 0); /* Corruption */
1019 leaf = path->nodes[0];
1020 }
1021 btrfs_item_key_to_cpu(leaf, &found_key,
1022 path->slots[0]);
1023 BUG_ON(key.objectid != found_key.objectid);
1024 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1025 path->slots[0]++;
1026 continue;
1027 }
1028 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1029 struct btrfs_extent_ref_v0);
1030 owner = btrfs_ref_objectid_v0(leaf, ref0);
1031 break;
1032 }
1033 }
1034 btrfs_release_path(path);
1035
1036 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1037 new_size += sizeof(*bi);
1038
1039 new_size -= sizeof(*ei0);
1040 ret = btrfs_search_slot(trans, root, &key, path,
1041 new_size + extra_size, 1);
1042 if (ret < 0)
1043 return ret;
1044 BUG_ON(ret); /* Corruption */
1045
1046 btrfs_extend_item(root, path, new_size);
1047
1048 leaf = path->nodes[0];
1049 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1050 btrfs_set_extent_refs(leaf, item, refs);
1051 /* FIXME: get real generation */
1052 btrfs_set_extent_generation(leaf, item, 0);
1053 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1054 btrfs_set_extent_flags(leaf, item,
1055 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1056 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1057 bi = (struct btrfs_tree_block_info *)(item + 1);
1058 /* FIXME: get first key of the block */
1059 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1060 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1061 } else {
1062 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1063 }
1064 btrfs_mark_buffer_dirty(leaf);
1065 return 0;
1066 }
1067 #endif
1068
1069 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1070 {
1071 u32 high_crc = ~(u32)0;
1072 u32 low_crc = ~(u32)0;
1073 __le64 lenum;
1074
1075 lenum = cpu_to_le64(root_objectid);
1076 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1077 lenum = cpu_to_le64(owner);
1078 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1079 lenum = cpu_to_le64(offset);
1080 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1081
1082 return ((u64)high_crc << 31) ^ (u64)low_crc;
1083 }
1084
1085 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref)
1087 {
1088 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1089 btrfs_extent_data_ref_objectid(leaf, ref),
1090 btrfs_extent_data_ref_offset(leaf, ref));
1091 }
1092
1093 static int match_extent_data_ref(struct extent_buffer *leaf,
1094 struct btrfs_extent_data_ref *ref,
1095 u64 root_objectid, u64 owner, u64 offset)
1096 {
1097 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1098 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1099 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1100 return 0;
1101 return 1;
1102 }
1103
1104 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1105 struct btrfs_root *root,
1106 struct btrfs_path *path,
1107 u64 bytenr, u64 parent,
1108 u64 root_objectid,
1109 u64 owner, u64 offset)
1110 {
1111 struct btrfs_key key;
1112 struct btrfs_extent_data_ref *ref;
1113 struct extent_buffer *leaf;
1114 u32 nritems;
1115 int ret;
1116 int recow;
1117 int err = -ENOENT;
1118
1119 key.objectid = bytenr;
1120 if (parent) {
1121 key.type = BTRFS_SHARED_DATA_REF_KEY;
1122 key.offset = parent;
1123 } else {
1124 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1125 key.offset = hash_extent_data_ref(root_objectid,
1126 owner, offset);
1127 }
1128 again:
1129 recow = 0;
1130 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1131 if (ret < 0) {
1132 err = ret;
1133 goto fail;
1134 }
1135
1136 if (parent) {
1137 if (!ret)
1138 return 0;
1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1140 key.type = BTRFS_EXTENT_REF_V0_KEY;
1141 btrfs_release_path(path);
1142 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1143 if (ret < 0) {
1144 err = ret;
1145 goto fail;
1146 }
1147 if (!ret)
1148 return 0;
1149 #endif
1150 goto fail;
1151 }
1152
1153 leaf = path->nodes[0];
1154 nritems = btrfs_header_nritems(leaf);
1155 while (1) {
1156 if (path->slots[0] >= nritems) {
1157 ret = btrfs_next_leaf(root, path);
1158 if (ret < 0)
1159 err = ret;
1160 if (ret)
1161 goto fail;
1162
1163 leaf = path->nodes[0];
1164 nritems = btrfs_header_nritems(leaf);
1165 recow = 1;
1166 }
1167
1168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 if (key.objectid != bytenr ||
1170 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1171 goto fail;
1172
1173 ref = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_extent_data_ref);
1175
1176 if (match_extent_data_ref(leaf, ref, root_objectid,
1177 owner, offset)) {
1178 if (recow) {
1179 btrfs_release_path(path);
1180 goto again;
1181 }
1182 err = 0;
1183 break;
1184 }
1185 path->slots[0]++;
1186 }
1187 fail:
1188 return err;
1189 }
1190
1191 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1192 struct btrfs_root *root,
1193 struct btrfs_path *path,
1194 u64 bytenr, u64 parent,
1195 u64 root_objectid, u64 owner,
1196 u64 offset, int refs_to_add)
1197 {
1198 struct btrfs_key key;
1199 struct extent_buffer *leaf;
1200 u32 size;
1201 u32 num_refs;
1202 int ret;
1203
1204 key.objectid = bytenr;
1205 if (parent) {
1206 key.type = BTRFS_SHARED_DATA_REF_KEY;
1207 key.offset = parent;
1208 size = sizeof(struct btrfs_shared_data_ref);
1209 } else {
1210 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1211 key.offset = hash_extent_data_ref(root_objectid,
1212 owner, offset);
1213 size = sizeof(struct btrfs_extent_data_ref);
1214 }
1215
1216 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1217 if (ret && ret != -EEXIST)
1218 goto fail;
1219
1220 leaf = path->nodes[0];
1221 if (parent) {
1222 struct btrfs_shared_data_ref *ref;
1223 ref = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_shared_data_ref);
1225 if (ret == 0) {
1226 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1227 } else {
1228 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1229 num_refs += refs_to_add;
1230 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1231 }
1232 } else {
1233 struct btrfs_extent_data_ref *ref;
1234 while (ret == -EEXIST) {
1235 ref = btrfs_item_ptr(leaf, path->slots[0],
1236 struct btrfs_extent_data_ref);
1237 if (match_extent_data_ref(leaf, ref, root_objectid,
1238 owner, offset))
1239 break;
1240 btrfs_release_path(path);
1241 key.offset++;
1242 ret = btrfs_insert_empty_item(trans, root, path, &key,
1243 size);
1244 if (ret && ret != -EEXIST)
1245 goto fail;
1246
1247 leaf = path->nodes[0];
1248 }
1249 ref = btrfs_item_ptr(leaf, path->slots[0],
1250 struct btrfs_extent_data_ref);
1251 if (ret == 0) {
1252 btrfs_set_extent_data_ref_root(leaf, ref,
1253 root_objectid);
1254 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1255 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1256 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1257 } else {
1258 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1259 num_refs += refs_to_add;
1260 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1261 }
1262 }
1263 btrfs_mark_buffer_dirty(leaf);
1264 ret = 0;
1265 fail:
1266 btrfs_release_path(path);
1267 return ret;
1268 }
1269
1270 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1271 struct btrfs_root *root,
1272 struct btrfs_path *path,
1273 int refs_to_drop)
1274 {
1275 struct btrfs_key key;
1276 struct btrfs_extent_data_ref *ref1 = NULL;
1277 struct btrfs_shared_data_ref *ref2 = NULL;
1278 struct extent_buffer *leaf;
1279 u32 num_refs = 0;
1280 int ret = 0;
1281
1282 leaf = path->nodes[0];
1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284
1285 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1286 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1287 struct btrfs_extent_data_ref);
1288 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1289 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1290 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_shared_data_ref);
1292 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1294 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1295 struct btrfs_extent_ref_v0 *ref0;
1296 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1297 struct btrfs_extent_ref_v0);
1298 num_refs = btrfs_ref_count_v0(leaf, ref0);
1299 #endif
1300 } else {
1301 BUG();
1302 }
1303
1304 BUG_ON(num_refs < refs_to_drop);
1305 num_refs -= refs_to_drop;
1306
1307 if (num_refs == 0) {
1308 ret = btrfs_del_item(trans, root, path);
1309 } else {
1310 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1311 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1312 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1313 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315 else {
1316 struct btrfs_extent_ref_v0 *ref0;
1317 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_ref_v0);
1319 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1320 }
1321 #endif
1322 btrfs_mark_buffer_dirty(leaf);
1323 }
1324 return ret;
1325 }
1326
1327 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1328 struct btrfs_path *path,
1329 struct btrfs_extent_inline_ref *iref)
1330 {
1331 struct btrfs_key key;
1332 struct extent_buffer *leaf;
1333 struct btrfs_extent_data_ref *ref1;
1334 struct btrfs_shared_data_ref *ref2;
1335 u32 num_refs = 0;
1336
1337 leaf = path->nodes[0];
1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339 if (iref) {
1340 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1341 BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else {
1345 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 }
1348 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_data_ref);
1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_shared_data_ref);
1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 struct btrfs_extent_ref_v0 *ref0;
1359 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_extent_ref_v0);
1361 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363 } else {
1364 WARN_ON(1);
1365 }
1366 return num_refs;
1367 }
1368
1369 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *root,
1371 struct btrfs_path *path,
1372 u64 bytenr, u64 parent,
1373 u64 root_objectid)
1374 {
1375 struct btrfs_key key;
1376 int ret;
1377
1378 key.objectid = bytenr;
1379 if (parent) {
1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 key.offset = parent;
1382 } else {
1383 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 key.offset = root_objectid;
1385 }
1386
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1391 if (ret == -ENOENT && parent) {
1392 btrfs_release_path(path);
1393 key.type = BTRFS_EXTENT_REF_V0_KEY;
1394 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1395 if (ret > 0)
1396 ret = -ENOENT;
1397 }
1398 #endif
1399 return ret;
1400 }
1401
1402 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root,
1404 struct btrfs_path *path,
1405 u64 bytenr, u64 parent,
1406 u64 root_objectid)
1407 {
1408 struct btrfs_key key;
1409 int ret;
1410
1411 key.objectid = bytenr;
1412 if (parent) {
1413 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1414 key.offset = parent;
1415 } else {
1416 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1417 key.offset = root_objectid;
1418 }
1419
1420 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1421 btrfs_release_path(path);
1422 return ret;
1423 }
1424
1425 static inline int extent_ref_type(u64 parent, u64 owner)
1426 {
1427 int type;
1428 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1429 if (parent > 0)
1430 type = BTRFS_SHARED_BLOCK_REF_KEY;
1431 else
1432 type = BTRFS_TREE_BLOCK_REF_KEY;
1433 } else {
1434 if (parent > 0)
1435 type = BTRFS_SHARED_DATA_REF_KEY;
1436 else
1437 type = BTRFS_EXTENT_DATA_REF_KEY;
1438 }
1439 return type;
1440 }
1441
1442 static int find_next_key(struct btrfs_path *path, int level,
1443 struct btrfs_key *key)
1444
1445 {
1446 for (; level < BTRFS_MAX_LEVEL; level++) {
1447 if (!path->nodes[level])
1448 break;
1449 if (path->slots[level] + 1 >=
1450 btrfs_header_nritems(path->nodes[level]))
1451 continue;
1452 if (level == 0)
1453 btrfs_item_key_to_cpu(path->nodes[level], key,
1454 path->slots[level] + 1);
1455 else
1456 btrfs_node_key_to_cpu(path->nodes[level], key,
1457 path->slots[level] + 1);
1458 return 0;
1459 }
1460 return 1;
1461 }
1462
1463 /*
1464 * look for inline back ref. if back ref is found, *ref_ret is set
1465 * to the address of inline back ref, and 0 is returned.
1466 *
1467 * if back ref isn't found, *ref_ret is set to the address where it
1468 * should be inserted, and -ENOENT is returned.
1469 *
1470 * if insert is true and there are too many inline back refs, the path
1471 * points to the extent item, and -EAGAIN is returned.
1472 *
1473 * NOTE: inline back refs are ordered in the same way that back ref
1474 * items in the tree are ordered.
1475 */
1476 static noinline_for_stack
1477 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1478 struct btrfs_root *root,
1479 struct btrfs_path *path,
1480 struct btrfs_extent_inline_ref **ref_ret,
1481 u64 bytenr, u64 num_bytes,
1482 u64 parent, u64 root_objectid,
1483 u64 owner, u64 offset, int insert)
1484 {
1485 struct btrfs_key key;
1486 struct extent_buffer *leaf;
1487 struct btrfs_extent_item *ei;
1488 struct btrfs_extent_inline_ref *iref;
1489 u64 flags;
1490 u64 item_size;
1491 unsigned long ptr;
1492 unsigned long end;
1493 int extra_size;
1494 int type;
1495 int want;
1496 int ret;
1497 int err = 0;
1498 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1499 SKINNY_METADATA);
1500
1501 key.objectid = bytenr;
1502 key.type = BTRFS_EXTENT_ITEM_KEY;
1503 key.offset = num_bytes;
1504
1505 want = extent_ref_type(parent, owner);
1506 if (insert) {
1507 extra_size = btrfs_extent_inline_ref_size(want);
1508 path->keep_locks = 1;
1509 } else
1510 extra_size = -1;
1511
1512 /*
1513 * Owner is our parent level, so we can just add one to get the level
1514 * for the block we are interested in.
1515 */
1516 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1517 key.type = BTRFS_METADATA_ITEM_KEY;
1518 key.offset = owner;
1519 }
1520
1521 again:
1522 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1523 if (ret < 0) {
1524 err = ret;
1525 goto out;
1526 }
1527
1528 /*
1529 * We may be a newly converted file system which still has the old fat
1530 * extent entries for metadata, so try and see if we have one of those.
1531 */
1532 if (ret > 0 && skinny_metadata) {
1533 skinny_metadata = false;
1534 if (path->slots[0]) {
1535 path->slots[0]--;
1536 btrfs_item_key_to_cpu(path->nodes[0], &key,
1537 path->slots[0]);
1538 if (key.objectid == bytenr &&
1539 key.type == BTRFS_EXTENT_ITEM_KEY &&
1540 key.offset == num_bytes)
1541 ret = 0;
1542 }
1543 if (ret) {
1544 key.type = BTRFS_EXTENT_ITEM_KEY;
1545 key.offset = num_bytes;
1546 btrfs_release_path(path);
1547 goto again;
1548 }
1549 }
1550
1551 if (ret && !insert) {
1552 err = -ENOENT;
1553 goto out;
1554 } else if (ret) {
1555 err = -EIO;
1556 WARN_ON(1);
1557 goto out;
1558 }
1559
1560 leaf = path->nodes[0];
1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 if (item_size < sizeof(*ei)) {
1564 if (!insert) {
1565 err = -ENOENT;
1566 goto out;
1567 }
1568 ret = convert_extent_item_v0(trans, root, path, owner,
1569 extra_size);
1570 if (ret < 0) {
1571 err = ret;
1572 goto out;
1573 }
1574 leaf = path->nodes[0];
1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 }
1577 #endif
1578 BUG_ON(item_size < sizeof(*ei));
1579
1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 flags = btrfs_extent_flags(leaf, ei);
1582
1583 ptr = (unsigned long)(ei + 1);
1584 end = (unsigned long)ei + item_size;
1585
1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 ptr += sizeof(struct btrfs_tree_block_info);
1588 BUG_ON(ptr > end);
1589 }
1590
1591 err = -ENOENT;
1592 while (1) {
1593 if (ptr >= end) {
1594 WARN_ON(ptr > end);
1595 break;
1596 }
1597 iref = (struct btrfs_extent_inline_ref *)ptr;
1598 type = btrfs_extent_inline_ref_type(leaf, iref);
1599 if (want < type)
1600 break;
1601 if (want > type) {
1602 ptr += btrfs_extent_inline_ref_size(type);
1603 continue;
1604 }
1605
1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 struct btrfs_extent_data_ref *dref;
1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 if (match_extent_data_ref(leaf, dref, root_objectid,
1610 owner, offset)) {
1611 err = 0;
1612 break;
1613 }
1614 if (hash_extent_data_ref_item(leaf, dref) <
1615 hash_extent_data_ref(root_objectid, owner, offset))
1616 break;
1617 } else {
1618 u64 ref_offset;
1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 if (parent > 0) {
1621 if (parent == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < parent)
1626 break;
1627 } else {
1628 if (root_objectid == ref_offset) {
1629 err = 0;
1630 break;
1631 }
1632 if (ref_offset < root_objectid)
1633 break;
1634 }
1635 }
1636 ptr += btrfs_extent_inline_ref_size(type);
1637 }
1638 if (err == -ENOENT && insert) {
1639 if (item_size + extra_size >=
1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 err = -EAGAIN;
1642 goto out;
1643 }
1644 /*
1645 * To add new inline back ref, we have to make sure
1646 * there is no corresponding back ref item.
1647 * For simplicity, we just do not add new inline back
1648 * ref if there is any kind of item for this block
1649 */
1650 if (find_next_key(path, 0, &key) == 0 &&
1651 key.objectid == bytenr &&
1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 err = -EAGAIN;
1654 goto out;
1655 }
1656 }
1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 if (insert) {
1660 path->keep_locks = 0;
1661 btrfs_unlock_up_safe(path, 1);
1662 }
1663 return err;
1664 }
1665
1666 /*
1667 * helper to add new inline back ref
1668 */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 struct btrfs_path *path,
1672 struct btrfs_extent_inline_ref *iref,
1673 u64 parent, u64 root_objectid,
1674 u64 owner, u64 offset, int refs_to_add,
1675 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 struct extent_buffer *leaf;
1678 struct btrfs_extent_item *ei;
1679 unsigned long ptr;
1680 unsigned long end;
1681 unsigned long item_offset;
1682 u64 refs;
1683 int size;
1684 int type;
1685
1686 leaf = path->nodes[0];
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 item_offset = (unsigned long)iref - (unsigned long)ei;
1689
1690 type = extent_ref_type(parent, owner);
1691 size = btrfs_extent_inline_ref_size(type);
1692
1693 btrfs_extend_item(root, path, size);
1694
1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 refs = btrfs_extent_refs(leaf, ei);
1697 refs += refs_to_add;
1698 btrfs_set_extent_refs(leaf, ei, refs);
1699 if (extent_op)
1700 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702 ptr = (unsigned long)ei + item_offset;
1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 if (ptr < end - size)
1705 memmove_extent_buffer(leaf, ptr + size, ptr,
1706 end - size - ptr);
1707
1708 iref = (struct btrfs_extent_inline_ref *)ptr;
1709 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 struct btrfs_extent_data_ref *dref;
1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 struct btrfs_shared_data_ref *sref;
1719 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 } else {
1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 }
1727 btrfs_mark_buffer_dirty(leaf);
1728 }
1729
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 struct btrfs_root *root,
1732 struct btrfs_path *path,
1733 struct btrfs_extent_inline_ref **ref_ret,
1734 u64 bytenr, u64 num_bytes, u64 parent,
1735 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 int ret;
1738
1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 bytenr, num_bytes, parent,
1741 root_objectid, owner, offset, 0);
1742 if (ret != -ENOENT)
1743 return ret;
1744
1745 btrfs_release_path(path);
1746 *ref_ret = NULL;
1747
1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 root_objectid);
1751 } else {
1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 root_objectid, owner, offset);
1754 }
1755 return ret;
1756 }
1757
1758 /*
1759 * helper to update/remove inline back ref
1760 */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 struct btrfs_path *path,
1764 struct btrfs_extent_inline_ref *iref,
1765 int refs_to_mod,
1766 struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 struct extent_buffer *leaf;
1769 struct btrfs_extent_item *ei;
1770 struct btrfs_extent_data_ref *dref = NULL;
1771 struct btrfs_shared_data_ref *sref = NULL;
1772 unsigned long ptr;
1773 unsigned long end;
1774 u32 item_size;
1775 int size;
1776 int type;
1777 u64 refs;
1778
1779 leaf = path->nodes[0];
1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 refs = btrfs_extent_refs(leaf, ei);
1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 refs += refs_to_mod;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 type = btrfs_extent_inline_ref_type(leaf, iref);
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
1799 }
1800
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
1810 size = btrfs_extent_inline_ref_size(type);
1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 ptr = (unsigned long)iref;
1813 end = (unsigned long)ei + item_size;
1814 if (ptr + size < end)
1815 memmove_extent_buffer(leaf, ptr, ptr + size,
1816 end - ptr - size);
1817 item_size -= size;
1818 btrfs_truncate_item(root, path, item_size, 1);
1819 }
1820 btrfs_mark_buffer_dirty(leaf);
1821 }
1822
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 bytenr, num_bytes, parent,
1837 root_objectid, owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(root, path, iref,
1841 refs_to_add, extent_op);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(root, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849 }
1850
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 struct btrfs_path *path,
1854 u64 bytenr, u64 parent, u64 root_objectid,
1855 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 int ret;
1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 BUG_ON(refs_to_add != 1);
1860 ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 parent, root_objectid);
1862 } else {
1863 ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 parent, root_objectid,
1865 owner, offset, refs_to_add);
1866 }
1867 return ret;
1868 }
1869
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root,
1872 struct btrfs_path *path,
1873 struct btrfs_extent_inline_ref *iref,
1874 int refs_to_drop, int is_data)
1875 {
1876 int ret = 0;
1877
1878 BUG_ON(!is_data && refs_to_drop != 1);
1879 if (iref) {
1880 update_inline_extent_backref(root, path, iref,
1881 -refs_to_drop, NULL);
1882 } else if (is_data) {
1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 } else {
1885 ret = btrfs_del_item(trans, root, path);
1886 }
1887 return ret;
1888 }
1889
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 u64 start, u64 len)
1892 {
1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 u64 num_bytes, u64 *actual_bytes)
1898 {
1899 int ret;
1900 u64 discarded_bytes = 0;
1901 struct btrfs_bio *bbio = NULL;
1902
1903
1904 /* Tell the block device(s) that the sectors can be discarded */
1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 bytenr, &num_bytes, &bbio, 0);
1907 /* Error condition is -ENOMEM */
1908 if (!ret) {
1909 struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 int i;
1911
1912
1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 if (!stripe->dev->can_discard)
1915 continue;
1916
1917 ret = btrfs_issue_discard(stripe->dev->bdev,
1918 stripe->physical,
1919 stripe->length);
1920 if (!ret)
1921 discarded_bytes += stripe->length;
1922 else if (ret != -EOPNOTSUPP)
1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924
1925 /*
1926 * Just in case we get back EOPNOTSUPP for some reason,
1927 * just ignore the return value so we don't screw up
1928 * people calling discard_extent.
1929 */
1930 ret = 0;
1931 }
1932 kfree(bbio);
1933 }
1934
1935 if (actual_bytes)
1936 *actual_bytes = discarded_bytes;
1937
1938
1939 if (ret == -EOPNOTSUPP)
1940 ret = 0;
1941 return ret;
1942 }
1943
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 struct btrfs_root *root,
1947 u64 bytenr, u64 num_bytes, u64 parent,
1948 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 int ret;
1951 struct btrfs_fs_info *fs_info = root->fs_info;
1952
1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955
1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 num_bytes,
1959 parent, root_objectid, (int)owner,
1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 } else {
1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 num_bytes,
1964 parent, root_objectid, owner, offset,
1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 }
1967 return ret;
1968 }
1969
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 struct btrfs_root *root,
1972 u64 bytenr, u64 num_bytes,
1973 u64 parent, u64 root_objectid,
1974 u64 owner, u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 u64 refs;
1981 int ret;
1982 int err = 0;
1983
1984 path = btrfs_alloc_path();
1985 if (!path)
1986 return -ENOMEM;
1987
1988 path->reada = 1;
1989 path->leave_spinning = 1;
1990 /* this will setup the path even if it fails to insert the back ref */
1991 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992 path, bytenr, num_bytes, parent,
1993 root_objectid, owner, offset,
1994 refs_to_add, extent_op);
1995 if (ret == 0)
1996 goto out;
1997
1998 if (ret != -EAGAIN) {
1999 err = ret;
2000 goto out;
2001 }
2002
2003 leaf = path->nodes[0];
2004 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2005 refs = btrfs_extent_refs(leaf, item);
2006 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2007 if (extent_op)
2008 __run_delayed_extent_op(extent_op, leaf, item);
2009
2010 btrfs_mark_buffer_dirty(leaf);
2011 btrfs_release_path(path);
2012
2013 path->reada = 1;
2014 path->leave_spinning = 1;
2015
2016 /* now insert the actual backref */
2017 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2018 path, bytenr, parent, root_objectid,
2019 owner, offset, refs_to_add);
2020 if (ret)
2021 btrfs_abort_transaction(trans, root, ret);
2022 out:
2023 btrfs_free_path(path);
2024 return err;
2025 }
2026
2027 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 struct btrfs_delayed_ref_node *node,
2030 struct btrfs_delayed_extent_op *extent_op,
2031 int insert_reserved)
2032 {
2033 int ret = 0;
2034 struct btrfs_delayed_data_ref *ref;
2035 struct btrfs_key ins;
2036 u64 parent = 0;
2037 u64 ref_root = 0;
2038 u64 flags = 0;
2039
2040 ins.objectid = node->bytenr;
2041 ins.offset = node->num_bytes;
2042 ins.type = BTRFS_EXTENT_ITEM_KEY;
2043
2044 ref = btrfs_delayed_node_to_data_ref(node);
2045 trace_run_delayed_data_ref(node, ref, node->action);
2046
2047 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2048 parent = ref->parent;
2049 else
2050 ref_root = ref->root;
2051
2052 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2053 if (extent_op)
2054 flags |= extent_op->flags_to_set;
2055 ret = alloc_reserved_file_extent(trans, root,
2056 parent, ref_root, flags,
2057 ref->objectid, ref->offset,
2058 &ins, node->ref_mod);
2059 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2060 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2061 node->num_bytes, parent,
2062 ref_root, ref->objectid,
2063 ref->offset, node->ref_mod,
2064 extent_op);
2065 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2066 ret = __btrfs_free_extent(trans, root, node->bytenr,
2067 node->num_bytes, parent,
2068 ref_root, ref->objectid,
2069 ref->offset, node->ref_mod,
2070 extent_op);
2071 } else {
2072 BUG();
2073 }
2074 return ret;
2075 }
2076
2077 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2078 struct extent_buffer *leaf,
2079 struct btrfs_extent_item *ei)
2080 {
2081 u64 flags = btrfs_extent_flags(leaf, ei);
2082 if (extent_op->update_flags) {
2083 flags |= extent_op->flags_to_set;
2084 btrfs_set_extent_flags(leaf, ei, flags);
2085 }
2086
2087 if (extent_op->update_key) {
2088 struct btrfs_tree_block_info *bi;
2089 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2090 bi = (struct btrfs_tree_block_info *)(ei + 1);
2091 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2092 }
2093 }
2094
2095 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2096 struct btrfs_root *root,
2097 struct btrfs_delayed_ref_node *node,
2098 struct btrfs_delayed_extent_op *extent_op)
2099 {
2100 struct btrfs_key key;
2101 struct btrfs_path *path;
2102 struct btrfs_extent_item *ei;
2103 struct extent_buffer *leaf;
2104 u32 item_size;
2105 int ret;
2106 int err = 0;
2107 int metadata = !extent_op->is_data;
2108
2109 if (trans->aborted)
2110 return 0;
2111
2112 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2113 metadata = 0;
2114
2115 path = btrfs_alloc_path();
2116 if (!path)
2117 return -ENOMEM;
2118
2119 key.objectid = node->bytenr;
2120
2121 if (metadata) {
2122 key.type = BTRFS_METADATA_ITEM_KEY;
2123 key.offset = extent_op->level;
2124 } else {
2125 key.type = BTRFS_EXTENT_ITEM_KEY;
2126 key.offset = node->num_bytes;
2127 }
2128
2129 again:
2130 path->reada = 1;
2131 path->leave_spinning = 1;
2132 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2133 path, 0, 1);
2134 if (ret < 0) {
2135 err = ret;
2136 goto out;
2137 }
2138 if (ret > 0) {
2139 if (metadata) {
2140 btrfs_release_path(path);
2141 metadata = 0;
2142
2143 key.offset = node->num_bytes;
2144 key.type = BTRFS_EXTENT_ITEM_KEY;
2145 goto again;
2146 }
2147 err = -EIO;
2148 goto out;
2149 }
2150
2151 leaf = path->nodes[0];
2152 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2154 if (item_size < sizeof(*ei)) {
2155 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2156 path, (u64)-1, 0);
2157 if (ret < 0) {
2158 err = ret;
2159 goto out;
2160 }
2161 leaf = path->nodes[0];
2162 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2163 }
2164 #endif
2165 BUG_ON(item_size < sizeof(*ei));
2166 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2167 __run_delayed_extent_op(extent_op, leaf, ei);
2168
2169 btrfs_mark_buffer_dirty(leaf);
2170 out:
2171 btrfs_free_path(path);
2172 return err;
2173 }
2174
2175 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 struct btrfs_delayed_ref_node *node,
2178 struct btrfs_delayed_extent_op *extent_op,
2179 int insert_reserved)
2180 {
2181 int ret = 0;
2182 struct btrfs_delayed_tree_ref *ref;
2183 struct btrfs_key ins;
2184 u64 parent = 0;
2185 u64 ref_root = 0;
2186 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2187 SKINNY_METADATA);
2188
2189 ref = btrfs_delayed_node_to_tree_ref(node);
2190 trace_run_delayed_tree_ref(node, ref, node->action);
2191
2192 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2193 parent = ref->parent;
2194 else
2195 ref_root = ref->root;
2196
2197 ins.objectid = node->bytenr;
2198 if (skinny_metadata) {
2199 ins.offset = ref->level;
2200 ins.type = BTRFS_METADATA_ITEM_KEY;
2201 } else {
2202 ins.offset = node->num_bytes;
2203 ins.type = BTRFS_EXTENT_ITEM_KEY;
2204 }
2205
2206 BUG_ON(node->ref_mod != 1);
2207 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2208 BUG_ON(!extent_op || !extent_op->update_flags);
2209 ret = alloc_reserved_tree_block(trans, root,
2210 parent, ref_root,
2211 extent_op->flags_to_set,
2212 &extent_op->key,
2213 ref->level, &ins);
2214 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2215 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2216 node->num_bytes, parent, ref_root,
2217 ref->level, 0, 1, extent_op);
2218 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2219 ret = __btrfs_free_extent(trans, root, node->bytenr,
2220 node->num_bytes, parent, ref_root,
2221 ref->level, 0, 1, extent_op);
2222 } else {
2223 BUG();
2224 }
2225 return ret;
2226 }
2227
2228 /* helper function to actually process a single delayed ref entry */
2229 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2230 struct btrfs_root *root,
2231 struct btrfs_delayed_ref_node *node,
2232 struct btrfs_delayed_extent_op *extent_op,
2233 int insert_reserved)
2234 {
2235 int ret = 0;
2236
2237 if (trans->aborted)
2238 return 0;
2239
2240 if (btrfs_delayed_ref_is_head(node)) {
2241 struct btrfs_delayed_ref_head *head;
2242 /*
2243 * we've hit the end of the chain and we were supposed
2244 * to insert this extent into the tree. But, it got
2245 * deleted before we ever needed to insert it, so all
2246 * we have to do is clean up the accounting
2247 */
2248 BUG_ON(extent_op);
2249 head = btrfs_delayed_node_to_head(node);
2250 trace_run_delayed_ref_head(node, head, node->action);
2251
2252 if (insert_reserved) {
2253 btrfs_pin_extent(root, node->bytenr,
2254 node->num_bytes, 1);
2255 if (head->is_data) {
2256 ret = btrfs_del_csums(trans, root,
2257 node->bytenr,
2258 node->num_bytes);
2259 }
2260 }
2261 return ret;
2262 }
2263
2264 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2265 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2266 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2267 insert_reserved);
2268 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2269 node->type == BTRFS_SHARED_DATA_REF_KEY)
2270 ret = run_delayed_data_ref(trans, root, node, extent_op,
2271 insert_reserved);
2272 else
2273 BUG();
2274 return ret;
2275 }
2276
2277 static noinline struct btrfs_delayed_ref_node *
2278 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2279 {
2280 struct rb_node *node;
2281 struct btrfs_delayed_ref_node *ref;
2282 int action = BTRFS_ADD_DELAYED_REF;
2283 again:
2284 /*
2285 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2286 * this prevents ref count from going down to zero when
2287 * there still are pending delayed ref.
2288 */
2289 node = rb_prev(&head->node.rb_node);
2290 while (1) {
2291 if (!node)
2292 break;
2293 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2294 rb_node);
2295 if (ref->bytenr != head->node.bytenr)
2296 break;
2297 if (ref->action == action)
2298 return ref;
2299 node = rb_prev(node);
2300 }
2301 if (action == BTRFS_ADD_DELAYED_REF) {
2302 action = BTRFS_DROP_DELAYED_REF;
2303 goto again;
2304 }
2305 return NULL;
2306 }
2307
2308 /*
2309 * Returns 0 on success or if called with an already aborted transaction.
2310 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2311 */
2312 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct list_head *cluster)
2315 {
2316 struct btrfs_delayed_ref_root *delayed_refs;
2317 struct btrfs_delayed_ref_node *ref;
2318 struct btrfs_delayed_ref_head *locked_ref = NULL;
2319 struct btrfs_delayed_extent_op *extent_op;
2320 struct btrfs_fs_info *fs_info = root->fs_info;
2321 int ret;
2322 int count = 0;
2323 int must_insert_reserved = 0;
2324
2325 delayed_refs = &trans->transaction->delayed_refs;
2326 while (1) {
2327 if (!locked_ref) {
2328 /* pick a new head ref from the cluster list */
2329 if (list_empty(cluster))
2330 break;
2331
2332 locked_ref = list_entry(cluster->next,
2333 struct btrfs_delayed_ref_head, cluster);
2334
2335 /* grab the lock that says we are going to process
2336 * all the refs for this head */
2337 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2338
2339 /*
2340 * we may have dropped the spin lock to get the head
2341 * mutex lock, and that might have given someone else
2342 * time to free the head. If that's true, it has been
2343 * removed from our list and we can move on.
2344 */
2345 if (ret == -EAGAIN) {
2346 locked_ref = NULL;
2347 count++;
2348 continue;
2349 }
2350 }
2351
2352 /*
2353 * We need to try and merge add/drops of the same ref since we
2354 * can run into issues with relocate dropping the implicit ref
2355 * and then it being added back again before the drop can
2356 * finish. If we merged anything we need to re-loop so we can
2357 * get a good ref.
2358 */
2359 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2360 locked_ref);
2361
2362 /*
2363 * locked_ref is the head node, so we have to go one
2364 * node back for any delayed ref updates
2365 */
2366 ref = select_delayed_ref(locked_ref);
2367
2368 if (ref && ref->seq &&
2369 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2370 /*
2371 * there are still refs with lower seq numbers in the
2372 * process of being added. Don't run this ref yet.
2373 */
2374 list_del_init(&locked_ref->cluster);
2375 btrfs_delayed_ref_unlock(locked_ref);
2376 locked_ref = NULL;
2377 delayed_refs->num_heads_ready++;
2378 spin_unlock(&delayed_refs->lock);
2379 cond_resched();
2380 spin_lock(&delayed_refs->lock);
2381 continue;
2382 }
2383
2384 /*
2385 * record the must insert reserved flag before we
2386 * drop the spin lock.
2387 */
2388 must_insert_reserved = locked_ref->must_insert_reserved;
2389 locked_ref->must_insert_reserved = 0;
2390
2391 extent_op = locked_ref->extent_op;
2392 locked_ref->extent_op = NULL;
2393
2394 if (!ref) {
2395 /* All delayed refs have been processed, Go ahead
2396 * and send the head node to run_one_delayed_ref,
2397 * so that any accounting fixes can happen
2398 */
2399 ref = &locked_ref->node;
2400
2401 if (extent_op && must_insert_reserved) {
2402 btrfs_free_delayed_extent_op(extent_op);
2403 extent_op = NULL;
2404 }
2405
2406 if (extent_op) {
2407 spin_unlock(&delayed_refs->lock);
2408
2409 ret = run_delayed_extent_op(trans, root,
2410 ref, extent_op);
2411 btrfs_free_delayed_extent_op(extent_op);
2412
2413 if (ret) {
2414 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2415 spin_lock(&delayed_refs->lock);
2416 btrfs_delayed_ref_unlock(locked_ref);
2417 return ret;
2418 }
2419
2420 goto next;
2421 }
2422 }
2423
2424 ref->in_tree = 0;
2425 rb_erase(&ref->rb_node, &delayed_refs->root);
2426 delayed_refs->num_entries--;
2427 if (!btrfs_delayed_ref_is_head(ref)) {
2428 /*
2429 * when we play the delayed ref, also correct the
2430 * ref_mod on head
2431 */
2432 switch (ref->action) {
2433 case BTRFS_ADD_DELAYED_REF:
2434 case BTRFS_ADD_DELAYED_EXTENT:
2435 locked_ref->node.ref_mod -= ref->ref_mod;
2436 break;
2437 case BTRFS_DROP_DELAYED_REF:
2438 locked_ref->node.ref_mod += ref->ref_mod;
2439 break;
2440 default:
2441 WARN_ON(1);
2442 }
2443 } else {
2444 list_del_init(&locked_ref->cluster);
2445 }
2446 spin_unlock(&delayed_refs->lock);
2447
2448 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2449 must_insert_reserved);
2450
2451 btrfs_free_delayed_extent_op(extent_op);
2452 if (ret) {
2453 btrfs_delayed_ref_unlock(locked_ref);
2454 btrfs_put_delayed_ref(ref);
2455 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2456 spin_lock(&delayed_refs->lock);
2457 return ret;
2458 }
2459
2460 /*
2461 * If this node is a head, that means all the refs in this head
2462 * have been dealt with, and we will pick the next head to deal
2463 * with, so we must unlock the head and drop it from the cluster
2464 * list before we release it.
2465 */
2466 if (btrfs_delayed_ref_is_head(ref)) {
2467 btrfs_delayed_ref_unlock(locked_ref);
2468 locked_ref = NULL;
2469 }
2470 btrfs_put_delayed_ref(ref);
2471 count++;
2472 next:
2473 cond_resched();
2474 spin_lock(&delayed_refs->lock);
2475 }
2476 return count;
2477 }
2478
2479 #ifdef SCRAMBLE_DELAYED_REFS
2480 /*
2481 * Normally delayed refs get processed in ascending bytenr order. This
2482 * correlates in most cases to the order added. To expose dependencies on this
2483 * order, we start to process the tree in the middle instead of the beginning
2484 */
2485 static u64 find_middle(struct rb_root *root)
2486 {
2487 struct rb_node *n = root->rb_node;
2488 struct btrfs_delayed_ref_node *entry;
2489 int alt = 1;
2490 u64 middle;
2491 u64 first = 0, last = 0;
2492
2493 n = rb_first(root);
2494 if (n) {
2495 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2496 first = entry->bytenr;
2497 }
2498 n = rb_last(root);
2499 if (n) {
2500 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2501 last = entry->bytenr;
2502 }
2503 n = root->rb_node;
2504
2505 while (n) {
2506 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2507 WARN_ON(!entry->in_tree);
2508
2509 middle = entry->bytenr;
2510
2511 if (alt)
2512 n = n->rb_left;
2513 else
2514 n = n->rb_right;
2515
2516 alt = 1 - alt;
2517 }
2518 return middle;
2519 }
2520 #endif
2521
2522 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2523 struct btrfs_fs_info *fs_info)
2524 {
2525 struct qgroup_update *qgroup_update;
2526 int ret = 0;
2527
2528 if (list_empty(&trans->qgroup_ref_list) !=
2529 !trans->delayed_ref_elem.seq) {
2530 /* list without seq or seq without list */
2531 btrfs_err(fs_info,
2532 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2533 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2534 (u32)(trans->delayed_ref_elem.seq >> 32),
2535 (u32)trans->delayed_ref_elem.seq);
2536 BUG();
2537 }
2538
2539 if (!trans->delayed_ref_elem.seq)
2540 return 0;
2541
2542 while (!list_empty(&trans->qgroup_ref_list)) {
2543 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2544 struct qgroup_update, list);
2545 list_del(&qgroup_update->list);
2546 if (!ret)
2547 ret = btrfs_qgroup_account_ref(
2548 trans, fs_info, qgroup_update->node,
2549 qgroup_update->extent_op);
2550 kfree(qgroup_update);
2551 }
2552
2553 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2554
2555 return ret;
2556 }
2557
2558 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2559 int count)
2560 {
2561 int val = atomic_read(&delayed_refs->ref_seq);
2562
2563 if (val < seq || val >= seq + count)
2564 return 1;
2565 return 0;
2566 }
2567
2568 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2569 {
2570 u64 num_bytes;
2571
2572 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2573 sizeof(struct btrfs_extent_inline_ref));
2574 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2575 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2576
2577 /*
2578 * We don't ever fill up leaves all the way so multiply by 2 just to be
2579 * closer to what we're really going to want to ouse.
2580 */
2581 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2582 }
2583
2584 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2585 struct btrfs_root *root)
2586 {
2587 struct btrfs_block_rsv *global_rsv;
2588 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2589 u64 num_bytes;
2590 int ret = 0;
2591
2592 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2593 num_heads = heads_to_leaves(root, num_heads);
2594 if (num_heads > 1)
2595 num_bytes += (num_heads - 1) * root->leafsize;
2596 num_bytes <<= 1;
2597 global_rsv = &root->fs_info->global_block_rsv;
2598
2599 /*
2600 * If we can't allocate any more chunks lets make sure we have _lots_ of
2601 * wiggle room since running delayed refs can create more delayed refs.
2602 */
2603 if (global_rsv->space_info->full)
2604 num_bytes <<= 1;
2605
2606 spin_lock(&global_rsv->lock);
2607 if (global_rsv->reserved <= num_bytes)
2608 ret = 1;
2609 spin_unlock(&global_rsv->lock);
2610 return ret;
2611 }
2612
2613 /*
2614 * this starts processing the delayed reference count updates and
2615 * extent insertions we have queued up so far. count can be
2616 * 0, which means to process everything in the tree at the start
2617 * of the run (but not newly added entries), or it can be some target
2618 * number you'd like to process.
2619 *
2620 * Returns 0 on success or if called with an aborted transaction
2621 * Returns <0 on error and aborts the transaction
2622 */
2623 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2624 struct btrfs_root *root, unsigned long count)
2625 {
2626 struct rb_node *node;
2627 struct btrfs_delayed_ref_root *delayed_refs;
2628 struct btrfs_delayed_ref_node *ref;
2629 struct list_head cluster;
2630 int ret;
2631 u64 delayed_start;
2632 int run_all = count == (unsigned long)-1;
2633 int run_most = 0;
2634 int loops;
2635
2636 /* We'll clean this up in btrfs_cleanup_transaction */
2637 if (trans->aborted)
2638 return 0;
2639
2640 if (root == root->fs_info->extent_root)
2641 root = root->fs_info->tree_root;
2642
2643 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2644
2645 delayed_refs = &trans->transaction->delayed_refs;
2646 INIT_LIST_HEAD(&cluster);
2647 if (count == 0) {
2648 count = delayed_refs->num_entries * 2;
2649 run_most = 1;
2650 }
2651
2652 if (!run_all && !run_most) {
2653 int old;
2654 int seq = atomic_read(&delayed_refs->ref_seq);
2655
2656 progress:
2657 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2658 if (old) {
2659 DEFINE_WAIT(__wait);
2660 if (delayed_refs->flushing ||
2661 !btrfs_should_throttle_delayed_refs(trans, root))
2662 return 0;
2663
2664 prepare_to_wait(&delayed_refs->wait, &__wait,
2665 TASK_UNINTERRUPTIBLE);
2666
2667 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2668 if (old) {
2669 schedule();
2670 finish_wait(&delayed_refs->wait, &__wait);
2671
2672 if (!refs_newer(delayed_refs, seq, 256))
2673 goto progress;
2674 else
2675 return 0;
2676 } else {
2677 finish_wait(&delayed_refs->wait, &__wait);
2678 goto again;
2679 }
2680 }
2681
2682 } else {
2683 atomic_inc(&delayed_refs->procs_running_refs);
2684 }
2685
2686 again:
2687 loops = 0;
2688 spin_lock(&delayed_refs->lock);
2689
2690 #ifdef SCRAMBLE_DELAYED_REFS
2691 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2692 #endif
2693
2694 while (1) {
2695 if (!(run_all || run_most) &&
2696 !btrfs_should_throttle_delayed_refs(trans, root))
2697 break;
2698
2699 /*
2700 * go find something we can process in the rbtree. We start at
2701 * the beginning of the tree, and then build a cluster
2702 * of refs to process starting at the first one we are able to
2703 * lock
2704 */
2705 delayed_start = delayed_refs->run_delayed_start;
2706 ret = btrfs_find_ref_cluster(trans, &cluster,
2707 delayed_refs->run_delayed_start);
2708 if (ret)
2709 break;
2710
2711 ret = run_clustered_refs(trans, root, &cluster);
2712 if (ret < 0) {
2713 btrfs_release_ref_cluster(&cluster);
2714 spin_unlock(&delayed_refs->lock);
2715 btrfs_abort_transaction(trans, root, ret);
2716 atomic_dec(&delayed_refs->procs_running_refs);
2717 wake_up(&delayed_refs->wait);
2718 return ret;
2719 }
2720
2721 atomic_add(ret, &delayed_refs->ref_seq);
2722
2723 count -= min_t(unsigned long, ret, count);
2724
2725 if (count == 0)
2726 break;
2727
2728 if (delayed_start >= delayed_refs->run_delayed_start) {
2729 if (loops == 0) {
2730 /*
2731 * btrfs_find_ref_cluster looped. let's do one
2732 * more cycle. if we don't run any delayed ref
2733 * during that cycle (because we can't because
2734 * all of them are blocked), bail out.
2735 */
2736 loops = 1;
2737 } else {
2738 /*
2739 * no runnable refs left, stop trying
2740 */
2741 BUG_ON(run_all);
2742 break;
2743 }
2744 }
2745 if (ret) {
2746 /* refs were run, let's reset staleness detection */
2747 loops = 0;
2748 }
2749 }
2750
2751 if (run_all) {
2752 if (!list_empty(&trans->new_bgs)) {
2753 spin_unlock(&delayed_refs->lock);
2754 btrfs_create_pending_block_groups(trans, root);
2755 spin_lock(&delayed_refs->lock);
2756 }
2757
2758 node = rb_first(&delayed_refs->root);
2759 if (!node)
2760 goto out;
2761 count = (unsigned long)-1;
2762
2763 while (node) {
2764 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2765 rb_node);
2766 if (btrfs_delayed_ref_is_head(ref)) {
2767 struct btrfs_delayed_ref_head *head;
2768
2769 head = btrfs_delayed_node_to_head(ref);
2770 atomic_inc(&ref->refs);
2771
2772 spin_unlock(&delayed_refs->lock);
2773 /*
2774 * Mutex was contended, block until it's
2775 * released and try again
2776 */
2777 mutex_lock(&head->mutex);
2778 mutex_unlock(&head->mutex);
2779
2780 btrfs_put_delayed_ref(ref);
2781 cond_resched();
2782 goto again;
2783 }
2784 node = rb_next(node);
2785 }
2786 spin_unlock(&delayed_refs->lock);
2787 schedule_timeout(1);
2788 goto again;
2789 }
2790 out:
2791 atomic_dec(&delayed_refs->procs_running_refs);
2792 smp_mb();
2793 if (waitqueue_active(&delayed_refs->wait))
2794 wake_up(&delayed_refs->wait);
2795
2796 spin_unlock(&delayed_refs->lock);
2797 assert_qgroups_uptodate(trans);
2798 return 0;
2799 }
2800
2801 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2802 struct btrfs_root *root,
2803 u64 bytenr, u64 num_bytes, u64 flags,
2804 int level, int is_data)
2805 {
2806 struct btrfs_delayed_extent_op *extent_op;
2807 int ret;
2808
2809 extent_op = btrfs_alloc_delayed_extent_op();
2810 if (!extent_op)
2811 return -ENOMEM;
2812
2813 extent_op->flags_to_set = flags;
2814 extent_op->update_flags = 1;
2815 extent_op->update_key = 0;
2816 extent_op->is_data = is_data ? 1 : 0;
2817 extent_op->level = level;
2818
2819 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2820 num_bytes, extent_op);
2821 if (ret)
2822 btrfs_free_delayed_extent_op(extent_op);
2823 return ret;
2824 }
2825
2826 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2827 struct btrfs_root *root,
2828 struct btrfs_path *path,
2829 u64 objectid, u64 offset, u64 bytenr)
2830 {
2831 struct btrfs_delayed_ref_head *head;
2832 struct btrfs_delayed_ref_node *ref;
2833 struct btrfs_delayed_data_ref *data_ref;
2834 struct btrfs_delayed_ref_root *delayed_refs;
2835 struct rb_node *node;
2836 int ret = 0;
2837
2838 ret = -ENOENT;
2839 delayed_refs = &trans->transaction->delayed_refs;
2840 spin_lock(&delayed_refs->lock);
2841 head = btrfs_find_delayed_ref_head(trans, bytenr);
2842 if (!head)
2843 goto out;
2844
2845 if (!mutex_trylock(&head->mutex)) {
2846 atomic_inc(&head->node.refs);
2847 spin_unlock(&delayed_refs->lock);
2848
2849 btrfs_release_path(path);
2850
2851 /*
2852 * Mutex was contended, block until it's released and let
2853 * caller try again
2854 */
2855 mutex_lock(&head->mutex);
2856 mutex_unlock(&head->mutex);
2857 btrfs_put_delayed_ref(&head->node);
2858 return -EAGAIN;
2859 }
2860
2861 node = rb_prev(&head->node.rb_node);
2862 if (!node)
2863 goto out_unlock;
2864
2865 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2866
2867 if (ref->bytenr != bytenr)
2868 goto out_unlock;
2869
2870 ret = 1;
2871 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2872 goto out_unlock;
2873
2874 data_ref = btrfs_delayed_node_to_data_ref(ref);
2875
2876 node = rb_prev(node);
2877 if (node) {
2878 int seq = ref->seq;
2879
2880 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2881 if (ref->bytenr == bytenr && ref->seq == seq)
2882 goto out_unlock;
2883 }
2884
2885 if (data_ref->root != root->root_key.objectid ||
2886 data_ref->objectid != objectid || data_ref->offset != offset)
2887 goto out_unlock;
2888
2889 ret = 0;
2890 out_unlock:
2891 mutex_unlock(&head->mutex);
2892 out:
2893 spin_unlock(&delayed_refs->lock);
2894 return ret;
2895 }
2896
2897 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2898 struct btrfs_root *root,
2899 struct btrfs_path *path,
2900 u64 objectid, u64 offset, u64 bytenr)
2901 {
2902 struct btrfs_root *extent_root = root->fs_info->extent_root;
2903 struct extent_buffer *leaf;
2904 struct btrfs_extent_data_ref *ref;
2905 struct btrfs_extent_inline_ref *iref;
2906 struct btrfs_extent_item *ei;
2907 struct btrfs_key key;
2908 u32 item_size;
2909 int ret;
2910
2911 key.objectid = bytenr;
2912 key.offset = (u64)-1;
2913 key.type = BTRFS_EXTENT_ITEM_KEY;
2914
2915 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2916 if (ret < 0)
2917 goto out;
2918 BUG_ON(ret == 0); /* Corruption */
2919
2920 ret = -ENOENT;
2921 if (path->slots[0] == 0)
2922 goto out;
2923
2924 path->slots[0]--;
2925 leaf = path->nodes[0];
2926 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2927
2928 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2929 goto out;
2930
2931 ret = 1;
2932 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2934 if (item_size < sizeof(*ei)) {
2935 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2936 goto out;
2937 }
2938 #endif
2939 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2940
2941 if (item_size != sizeof(*ei) +
2942 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2943 goto out;
2944
2945 if (btrfs_extent_generation(leaf, ei) <=
2946 btrfs_root_last_snapshot(&root->root_item))
2947 goto out;
2948
2949 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2950 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2951 BTRFS_EXTENT_DATA_REF_KEY)
2952 goto out;
2953
2954 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2955 if (btrfs_extent_refs(leaf, ei) !=
2956 btrfs_extent_data_ref_count(leaf, ref) ||
2957 btrfs_extent_data_ref_root(leaf, ref) !=
2958 root->root_key.objectid ||
2959 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2960 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2961 goto out;
2962
2963 ret = 0;
2964 out:
2965 return ret;
2966 }
2967
2968 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2969 struct btrfs_root *root,
2970 u64 objectid, u64 offset, u64 bytenr)
2971 {
2972 struct btrfs_path *path;
2973 int ret;
2974 int ret2;
2975
2976 path = btrfs_alloc_path();
2977 if (!path)
2978 return -ENOENT;
2979
2980 do {
2981 ret = check_committed_ref(trans, root, path, objectid,
2982 offset, bytenr);
2983 if (ret && ret != -ENOENT)
2984 goto out;
2985
2986 ret2 = check_delayed_ref(trans, root, path, objectid,
2987 offset, bytenr);
2988 } while (ret2 == -EAGAIN);
2989
2990 if (ret2 && ret2 != -ENOENT) {
2991 ret = ret2;
2992 goto out;
2993 }
2994
2995 if (ret != -ENOENT || ret2 != -ENOENT)
2996 ret = 0;
2997 out:
2998 btrfs_free_path(path);
2999 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3000 WARN_ON(ret > 0);
3001 return ret;
3002 }
3003
3004 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3005 struct btrfs_root *root,
3006 struct extent_buffer *buf,
3007 int full_backref, int inc, int for_cow)
3008 {
3009 u64 bytenr;
3010 u64 num_bytes;
3011 u64 parent;
3012 u64 ref_root;
3013 u32 nritems;
3014 struct btrfs_key key;
3015 struct btrfs_file_extent_item *fi;
3016 int i;
3017 int level;
3018 int ret = 0;
3019 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3020 u64, u64, u64, u64, u64, u64, int);
3021
3022 ref_root = btrfs_header_owner(buf);
3023 nritems = btrfs_header_nritems(buf);
3024 level = btrfs_header_level(buf);
3025
3026 if (!root->ref_cows && level == 0)
3027 return 0;
3028
3029 if (inc)
3030 process_func = btrfs_inc_extent_ref;
3031 else
3032 process_func = btrfs_free_extent;
3033
3034 if (full_backref)
3035 parent = buf->start;
3036 else
3037 parent = 0;
3038
3039 for (i = 0; i < nritems; i++) {
3040 if (level == 0) {
3041 btrfs_item_key_to_cpu(buf, &key, i);
3042 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3043 continue;
3044 fi = btrfs_item_ptr(buf, i,
3045 struct btrfs_file_extent_item);
3046 if (btrfs_file_extent_type(buf, fi) ==
3047 BTRFS_FILE_EXTENT_INLINE)
3048 continue;
3049 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3050 if (bytenr == 0)
3051 continue;
3052
3053 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3054 key.offset -= btrfs_file_extent_offset(buf, fi);
3055 ret = process_func(trans, root, bytenr, num_bytes,
3056 parent, ref_root, key.objectid,
3057 key.offset, for_cow);
3058 if (ret)
3059 goto fail;
3060 } else {
3061 bytenr = btrfs_node_blockptr(buf, i);
3062 num_bytes = btrfs_level_size(root, level - 1);
3063 ret = process_func(trans, root, bytenr, num_bytes,
3064 parent, ref_root, level - 1, 0,
3065 for_cow);
3066 if (ret)
3067 goto fail;
3068 }
3069 }
3070 return 0;
3071 fail:
3072 return ret;
3073 }
3074
3075 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3076 struct extent_buffer *buf, int full_backref, int for_cow)
3077 {
3078 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3079 }
3080
3081 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3082 struct extent_buffer *buf, int full_backref, int for_cow)
3083 {
3084 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3085 }
3086
3087 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3088 struct btrfs_root *root,
3089 struct btrfs_path *path,
3090 struct btrfs_block_group_cache *cache)
3091 {
3092 int ret;
3093 struct btrfs_root *extent_root = root->fs_info->extent_root;
3094 unsigned long bi;
3095 struct extent_buffer *leaf;
3096
3097 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3098 if (ret < 0)
3099 goto fail;
3100 BUG_ON(ret); /* Corruption */
3101
3102 leaf = path->nodes[0];
3103 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3104 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3105 btrfs_mark_buffer_dirty(leaf);
3106 btrfs_release_path(path);
3107 fail:
3108 if (ret) {
3109 btrfs_abort_transaction(trans, root, ret);
3110 return ret;
3111 }
3112 return 0;
3113
3114 }
3115
3116 static struct btrfs_block_group_cache *
3117 next_block_group(struct btrfs_root *root,
3118 struct btrfs_block_group_cache *cache)
3119 {
3120 struct rb_node *node;
3121 spin_lock(&root->fs_info->block_group_cache_lock);
3122 node = rb_next(&cache->cache_node);
3123 btrfs_put_block_group(cache);
3124 if (node) {
3125 cache = rb_entry(node, struct btrfs_block_group_cache,
3126 cache_node);
3127 btrfs_get_block_group(cache);
3128 } else
3129 cache = NULL;
3130 spin_unlock(&root->fs_info->block_group_cache_lock);
3131 return cache;
3132 }
3133
3134 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3135 struct btrfs_trans_handle *trans,
3136 struct btrfs_path *path)
3137 {
3138 struct btrfs_root *root = block_group->fs_info->tree_root;
3139 struct inode *inode = NULL;
3140 u64 alloc_hint = 0;
3141 int dcs = BTRFS_DC_ERROR;
3142 int num_pages = 0;
3143 int retries = 0;
3144 int ret = 0;
3145
3146 /*
3147 * If this block group is smaller than 100 megs don't bother caching the
3148 * block group.
3149 */
3150 if (block_group->key.offset < (100 * 1024 * 1024)) {
3151 spin_lock(&block_group->lock);
3152 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3153 spin_unlock(&block_group->lock);
3154 return 0;
3155 }
3156
3157 again:
3158 inode = lookup_free_space_inode(root, block_group, path);
3159 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3160 ret = PTR_ERR(inode);
3161 btrfs_release_path(path);
3162 goto out;
3163 }
3164
3165 if (IS_ERR(inode)) {
3166 BUG_ON(retries);
3167 retries++;
3168
3169 if (block_group->ro)
3170 goto out_free;
3171
3172 ret = create_free_space_inode(root, trans, block_group, path);
3173 if (ret)
3174 goto out_free;
3175 goto again;
3176 }
3177
3178 /* We've already setup this transaction, go ahead and exit */
3179 if (block_group->cache_generation == trans->transid &&
3180 i_size_read(inode)) {
3181 dcs = BTRFS_DC_SETUP;
3182 goto out_put;
3183 }
3184
3185 /*
3186 * We want to set the generation to 0, that way if anything goes wrong
3187 * from here on out we know not to trust this cache when we load up next
3188 * time.
3189 */
3190 BTRFS_I(inode)->generation = 0;
3191 ret = btrfs_update_inode(trans, root, inode);
3192 WARN_ON(ret);
3193
3194 if (i_size_read(inode) > 0) {
3195 ret = btrfs_check_trunc_cache_free_space(root,
3196 &root->fs_info->global_block_rsv);
3197 if (ret)
3198 goto out_put;
3199
3200 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3201 if (ret)
3202 goto out_put;
3203 }
3204
3205 spin_lock(&block_group->lock);
3206 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3207 !btrfs_test_opt(root, SPACE_CACHE)) {
3208 /*
3209 * don't bother trying to write stuff out _if_
3210 * a) we're not cached,
3211 * b) we're with nospace_cache mount option.
3212 */
3213 dcs = BTRFS_DC_WRITTEN;
3214 spin_unlock(&block_group->lock);
3215 goto out_put;
3216 }
3217 spin_unlock(&block_group->lock);
3218
3219 /*
3220 * Try to preallocate enough space based on how big the block group is.
3221 * Keep in mind this has to include any pinned space which could end up
3222 * taking up quite a bit since it's not folded into the other space
3223 * cache.
3224 */
3225 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3226 if (!num_pages)
3227 num_pages = 1;
3228
3229 num_pages *= 16;
3230 num_pages *= PAGE_CACHE_SIZE;
3231
3232 ret = btrfs_check_data_free_space(inode, num_pages);
3233 if (ret)
3234 goto out_put;
3235
3236 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3237 num_pages, num_pages,
3238 &alloc_hint);
3239 if (!ret)
3240 dcs = BTRFS_DC_SETUP;
3241 btrfs_free_reserved_data_space(inode, num_pages);
3242
3243 out_put:
3244 iput(inode);
3245 out_free:
3246 btrfs_release_path(path);
3247 out:
3248 spin_lock(&block_group->lock);
3249 if (!ret && dcs == BTRFS_DC_SETUP)
3250 block_group->cache_generation = trans->transid;
3251 block_group->disk_cache_state = dcs;
3252 spin_unlock(&block_group->lock);
3253
3254 return ret;
3255 }
3256
3257 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3258 struct btrfs_root *root)
3259 {
3260 struct btrfs_block_group_cache *cache;
3261 int err = 0;
3262 struct btrfs_path *path;
3263 u64 last = 0;
3264
3265 path = btrfs_alloc_path();
3266 if (!path)
3267 return -ENOMEM;
3268
3269 again:
3270 while (1) {
3271 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3272 while (cache) {
3273 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3274 break;
3275 cache = next_block_group(root, cache);
3276 }
3277 if (!cache) {
3278 if (last == 0)
3279 break;
3280 last = 0;
3281 continue;
3282 }
3283 err = cache_save_setup(cache, trans, path);
3284 last = cache->key.objectid + cache->key.offset;
3285 btrfs_put_block_group(cache);
3286 }
3287
3288 while (1) {
3289 if (last == 0) {
3290 err = btrfs_run_delayed_refs(trans, root,
3291 (unsigned long)-1);
3292 if (err) /* File system offline */
3293 goto out;
3294 }
3295
3296 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3297 while (cache) {
3298 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3299 btrfs_put_block_group(cache);
3300 goto again;
3301 }
3302
3303 if (cache->dirty)
3304 break;
3305 cache = next_block_group(root, cache);
3306 }
3307 if (!cache) {
3308 if (last == 0)
3309 break;
3310 last = 0;
3311 continue;
3312 }
3313
3314 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3315 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3316 cache->dirty = 0;
3317 last = cache->key.objectid + cache->key.offset;
3318
3319 err = write_one_cache_group(trans, root, path, cache);
3320 btrfs_put_block_group(cache);
3321 if (err) /* File system offline */
3322 goto out;
3323 }
3324
3325 while (1) {
3326 /*
3327 * I don't think this is needed since we're just marking our
3328 * preallocated extent as written, but just in case it can't
3329 * hurt.
3330 */
3331 if (last == 0) {
3332 err = btrfs_run_delayed_refs(trans, root,
3333 (unsigned long)-1);
3334 if (err) /* File system offline */
3335 goto out;
3336 }
3337
3338 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3339 while (cache) {
3340 /*
3341 * Really this shouldn't happen, but it could if we
3342 * couldn't write the entire preallocated extent and
3343 * splitting the extent resulted in a new block.
3344 */
3345 if (cache->dirty) {
3346 btrfs_put_block_group(cache);
3347 goto again;
3348 }
3349 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3350 break;
3351 cache = next_block_group(root, cache);
3352 }
3353 if (!cache) {
3354 if (last == 0)
3355 break;
3356 last = 0;
3357 continue;
3358 }
3359
3360 err = btrfs_write_out_cache(root, trans, cache, path);
3361
3362 /*
3363 * If we didn't have an error then the cache state is still
3364 * NEED_WRITE, so we can set it to WRITTEN.
3365 */
3366 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3367 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3368 last = cache->key.objectid + cache->key.offset;
3369 btrfs_put_block_group(cache);
3370 }
3371 out:
3372
3373 btrfs_free_path(path);
3374 return err;
3375 }
3376
3377 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3378 {
3379 struct btrfs_block_group_cache *block_group;
3380 int readonly = 0;
3381
3382 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3383 if (!block_group || block_group->ro)
3384 readonly = 1;
3385 if (block_group)
3386 btrfs_put_block_group(block_group);
3387 return readonly;
3388 }
3389
3390 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3391 u64 total_bytes, u64 bytes_used,
3392 struct btrfs_space_info **space_info)
3393 {
3394 struct btrfs_space_info *found;
3395 int i;
3396 int factor;
3397 int ret;
3398
3399 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3400 BTRFS_BLOCK_GROUP_RAID10))
3401 factor = 2;
3402 else
3403 factor = 1;
3404
3405 found = __find_space_info(info, flags);
3406 if (found) {
3407 spin_lock(&found->lock);
3408 found->total_bytes += total_bytes;
3409 found->disk_total += total_bytes * factor;
3410 found->bytes_used += bytes_used;
3411 found->disk_used += bytes_used * factor;
3412 found->full = 0;
3413 spin_unlock(&found->lock);
3414 *space_info = found;
3415 return 0;
3416 }
3417 found = kzalloc(sizeof(*found), GFP_NOFS);
3418 if (!found)
3419 return -ENOMEM;
3420
3421 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3422 if (ret) {
3423 kfree(found);
3424 return ret;
3425 }
3426
3427 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3428 INIT_LIST_HEAD(&found->block_groups[i]);
3429 init_rwsem(&found->groups_sem);
3430 spin_lock_init(&found->lock);
3431 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3432 found->total_bytes = total_bytes;
3433 found->disk_total = total_bytes * factor;
3434 found->bytes_used = bytes_used;
3435 found->disk_used = bytes_used * factor;
3436 found->bytes_pinned = 0;
3437 found->bytes_reserved = 0;
3438 found->bytes_readonly = 0;
3439 found->bytes_may_use = 0;
3440 found->full = 0;
3441 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3442 found->chunk_alloc = 0;
3443 found->flush = 0;
3444 init_waitqueue_head(&found->wait);
3445 *space_info = found;
3446 list_add_rcu(&found->list, &info->space_info);
3447 if (flags & BTRFS_BLOCK_GROUP_DATA)
3448 info->data_sinfo = found;
3449 return 0;
3450 }
3451
3452 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3453 {
3454 u64 extra_flags = chunk_to_extended(flags) &
3455 BTRFS_EXTENDED_PROFILE_MASK;
3456
3457 write_seqlock(&fs_info->profiles_lock);
3458 if (flags & BTRFS_BLOCK_GROUP_DATA)
3459 fs_info->avail_data_alloc_bits |= extra_flags;
3460 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3461 fs_info->avail_metadata_alloc_bits |= extra_flags;
3462 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3463 fs_info->avail_system_alloc_bits |= extra_flags;
3464 write_sequnlock(&fs_info->profiles_lock);
3465 }
3466
3467 /*
3468 * returns target flags in extended format or 0 if restripe for this
3469 * chunk_type is not in progress
3470 *
3471 * should be called with either volume_mutex or balance_lock held
3472 */
3473 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3474 {
3475 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3476 u64 target = 0;
3477
3478 if (!bctl)
3479 return 0;
3480
3481 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3482 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3483 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3484 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3485 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3486 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3487 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3488 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3489 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3490 }
3491
3492 return target;
3493 }
3494
3495 /*
3496 * @flags: available profiles in extended format (see ctree.h)
3497 *
3498 * Returns reduced profile in chunk format. If profile changing is in
3499 * progress (either running or paused) picks the target profile (if it's
3500 * already available), otherwise falls back to plain reducing.
3501 */
3502 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3503 {
3504 /*
3505 * we add in the count of missing devices because we want
3506 * to make sure that any RAID levels on a degraded FS
3507 * continue to be honored.
3508 */
3509 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3510 root->fs_info->fs_devices->missing_devices;
3511 u64 target;
3512 u64 tmp;
3513
3514 /*
3515 * see if restripe for this chunk_type is in progress, if so
3516 * try to reduce to the target profile
3517 */
3518 spin_lock(&root->fs_info->balance_lock);
3519 target = get_restripe_target(root->fs_info, flags);
3520 if (target) {
3521 /* pick target profile only if it's already available */
3522 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3523 spin_unlock(&root->fs_info->balance_lock);
3524 return extended_to_chunk(target);
3525 }
3526 }
3527 spin_unlock(&root->fs_info->balance_lock);
3528
3529 /* First, mask out the RAID levels which aren't possible */
3530 if (num_devices == 1)
3531 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3532 BTRFS_BLOCK_GROUP_RAID5);
3533 if (num_devices < 3)
3534 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3535 if (num_devices < 4)
3536 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3537
3538 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3539 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3540 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3541 flags &= ~tmp;
3542
3543 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3544 tmp = BTRFS_BLOCK_GROUP_RAID6;
3545 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3546 tmp = BTRFS_BLOCK_GROUP_RAID5;
3547 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3548 tmp = BTRFS_BLOCK_GROUP_RAID10;
3549 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3550 tmp = BTRFS_BLOCK_GROUP_RAID1;
3551 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3552 tmp = BTRFS_BLOCK_GROUP_RAID0;
3553
3554 return extended_to_chunk(flags | tmp);
3555 }
3556
3557 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3558 {
3559 unsigned seq;
3560
3561 do {
3562 seq = read_seqbegin(&root->fs_info->profiles_lock);
3563
3564 if (flags & BTRFS_BLOCK_GROUP_DATA)
3565 flags |= root->fs_info->avail_data_alloc_bits;
3566 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3567 flags |= root->fs_info->avail_system_alloc_bits;
3568 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3569 flags |= root->fs_info->avail_metadata_alloc_bits;
3570 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3571
3572 return btrfs_reduce_alloc_profile(root, flags);
3573 }
3574
3575 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3576 {
3577 u64 flags;
3578 u64 ret;
3579
3580 if (data)
3581 flags = BTRFS_BLOCK_GROUP_DATA;
3582 else if (root == root->fs_info->chunk_root)
3583 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3584 else
3585 flags = BTRFS_BLOCK_GROUP_METADATA;
3586
3587 ret = get_alloc_profile(root, flags);
3588 return ret;
3589 }
3590
3591 /*
3592 * This will check the space that the inode allocates from to make sure we have
3593 * enough space for bytes.
3594 */
3595 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3596 {
3597 struct btrfs_space_info *data_sinfo;
3598 struct btrfs_root *root = BTRFS_I(inode)->root;
3599 struct btrfs_fs_info *fs_info = root->fs_info;
3600 u64 used;
3601 int ret = 0, committed = 0, alloc_chunk = 1;
3602
3603 /* make sure bytes are sectorsize aligned */
3604 bytes = ALIGN(bytes, root->sectorsize);
3605
3606 if (root == root->fs_info->tree_root ||
3607 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3608 alloc_chunk = 0;
3609 committed = 1;
3610 }
3611
3612 data_sinfo = fs_info->data_sinfo;
3613 if (!data_sinfo)
3614 goto alloc;
3615
3616 again:
3617 /* make sure we have enough space to handle the data first */
3618 spin_lock(&data_sinfo->lock);
3619 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3620 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3621 data_sinfo->bytes_may_use;
3622
3623 if (used + bytes > data_sinfo->total_bytes) {
3624 struct btrfs_trans_handle *trans;
3625
3626 /*
3627 * if we don't have enough free bytes in this space then we need
3628 * to alloc a new chunk.
3629 */
3630 if (!data_sinfo->full && alloc_chunk) {
3631 u64 alloc_target;
3632
3633 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3634 spin_unlock(&data_sinfo->lock);
3635 alloc:
3636 alloc_target = btrfs_get_alloc_profile(root, 1);
3637 trans = btrfs_join_transaction(root);
3638 if (IS_ERR(trans))
3639 return PTR_ERR(trans);
3640
3641 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3642 alloc_target,
3643 CHUNK_ALLOC_NO_FORCE);
3644 btrfs_end_transaction(trans, root);
3645 if (ret < 0) {
3646 if (ret != -ENOSPC)
3647 return ret;
3648 else
3649 goto commit_trans;
3650 }
3651
3652 if (!data_sinfo)
3653 data_sinfo = fs_info->data_sinfo;
3654
3655 goto again;
3656 }
3657
3658 /*
3659 * If we don't have enough pinned space to deal with this
3660 * allocation don't bother committing the transaction.
3661 */
3662 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3663 bytes) < 0)
3664 committed = 1;
3665 spin_unlock(&data_sinfo->lock);
3666
3667 /* commit the current transaction and try again */
3668 commit_trans:
3669 if (!committed &&
3670 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3671 committed = 1;
3672
3673 trans = btrfs_join_transaction(root);
3674 if (IS_ERR(trans))
3675 return PTR_ERR(trans);
3676 ret = btrfs_commit_transaction(trans, root);
3677 if (ret)
3678 return ret;
3679 goto again;
3680 }
3681
3682 return -ENOSPC;
3683 }
3684 data_sinfo->bytes_may_use += bytes;
3685 trace_btrfs_space_reservation(root->fs_info, "space_info",
3686 data_sinfo->flags, bytes, 1);
3687 spin_unlock(&data_sinfo->lock);
3688
3689 return 0;
3690 }
3691
3692 /*
3693 * Called if we need to clear a data reservation for this inode.
3694 */
3695 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3696 {
3697 struct btrfs_root *root = BTRFS_I(inode)->root;
3698 struct btrfs_space_info *data_sinfo;
3699
3700 /* make sure bytes are sectorsize aligned */
3701 bytes = ALIGN(bytes, root->sectorsize);
3702
3703 data_sinfo = root->fs_info->data_sinfo;
3704 spin_lock(&data_sinfo->lock);
3705 WARN_ON(data_sinfo->bytes_may_use < bytes);
3706 data_sinfo->bytes_may_use -= bytes;
3707 trace_btrfs_space_reservation(root->fs_info, "space_info",
3708 data_sinfo->flags, bytes, 0);
3709 spin_unlock(&data_sinfo->lock);
3710 }
3711
3712 static void force_metadata_allocation(struct btrfs_fs_info *info)
3713 {
3714 struct list_head *head = &info->space_info;
3715 struct btrfs_space_info *found;
3716
3717 rcu_read_lock();
3718 list_for_each_entry_rcu(found, head, list) {
3719 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3720 found->force_alloc = CHUNK_ALLOC_FORCE;
3721 }
3722 rcu_read_unlock();
3723 }
3724
3725 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3726 {
3727 return (global->size << 1);
3728 }
3729
3730 static int should_alloc_chunk(struct btrfs_root *root,
3731 struct btrfs_space_info *sinfo, int force)
3732 {
3733 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3734 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3735 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3736 u64 thresh;
3737
3738 if (force == CHUNK_ALLOC_FORCE)
3739 return 1;
3740
3741 /*
3742 * We need to take into account the global rsv because for all intents
3743 * and purposes it's used space. Don't worry about locking the
3744 * global_rsv, it doesn't change except when the transaction commits.
3745 */
3746 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3747 num_allocated += calc_global_rsv_need_space(global_rsv);
3748
3749 /*
3750 * in limited mode, we want to have some free space up to
3751 * about 1% of the FS size.
3752 */
3753 if (force == CHUNK_ALLOC_LIMITED) {
3754 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3755 thresh = max_t(u64, 64 * 1024 * 1024,
3756 div_factor_fine(thresh, 1));
3757
3758 if (num_bytes - num_allocated < thresh)
3759 return 1;
3760 }
3761
3762 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3763 return 0;
3764 return 1;
3765 }
3766
3767 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3768 {
3769 u64 num_dev;
3770
3771 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3772 BTRFS_BLOCK_GROUP_RAID0 |
3773 BTRFS_BLOCK_GROUP_RAID5 |
3774 BTRFS_BLOCK_GROUP_RAID6))
3775 num_dev = root->fs_info->fs_devices->rw_devices;
3776 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3777 num_dev = 2;
3778 else
3779 num_dev = 1; /* DUP or single */
3780
3781 /* metadata for updaing devices and chunk tree */
3782 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3783 }
3784
3785 static void check_system_chunk(struct btrfs_trans_handle *trans,
3786 struct btrfs_root *root, u64 type)
3787 {
3788 struct btrfs_space_info *info;
3789 u64 left;
3790 u64 thresh;
3791
3792 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3793 spin_lock(&info->lock);
3794 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3795 info->bytes_reserved - info->bytes_readonly;
3796 spin_unlock(&info->lock);
3797
3798 thresh = get_system_chunk_thresh(root, type);
3799 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3800 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3801 left, thresh, type);
3802 dump_space_info(info, 0, 0);
3803 }
3804
3805 if (left < thresh) {
3806 u64 flags;
3807
3808 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3809 btrfs_alloc_chunk(trans, root, flags);
3810 }
3811 }
3812
3813 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3814 struct btrfs_root *extent_root, u64 flags, int force)
3815 {
3816 struct btrfs_space_info *space_info;
3817 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3818 int wait_for_alloc = 0;
3819 int ret = 0;
3820
3821 /* Don't re-enter if we're already allocating a chunk */
3822 if (trans->allocating_chunk)
3823 return -ENOSPC;
3824
3825 space_info = __find_space_info(extent_root->fs_info, flags);
3826 if (!space_info) {
3827 ret = update_space_info(extent_root->fs_info, flags,
3828 0, 0, &space_info);
3829 BUG_ON(ret); /* -ENOMEM */
3830 }
3831 BUG_ON(!space_info); /* Logic error */
3832
3833 again:
3834 spin_lock(&space_info->lock);
3835 if (force < space_info->force_alloc)
3836 force = space_info->force_alloc;
3837 if (space_info->full) {
3838 if (should_alloc_chunk(extent_root, space_info, force))
3839 ret = -ENOSPC;
3840 else
3841 ret = 0;
3842 spin_unlock(&space_info->lock);
3843 return ret;
3844 }
3845
3846 if (!should_alloc_chunk(extent_root, space_info, force)) {
3847 spin_unlock(&space_info->lock);
3848 return 0;
3849 } else if (space_info->chunk_alloc) {
3850 wait_for_alloc = 1;
3851 } else {
3852 space_info->chunk_alloc = 1;
3853 }
3854
3855 spin_unlock(&space_info->lock);
3856
3857 mutex_lock(&fs_info->chunk_mutex);
3858
3859 /*
3860 * The chunk_mutex is held throughout the entirety of a chunk
3861 * allocation, so once we've acquired the chunk_mutex we know that the
3862 * other guy is done and we need to recheck and see if we should
3863 * allocate.
3864 */
3865 if (wait_for_alloc) {
3866 mutex_unlock(&fs_info->chunk_mutex);
3867 wait_for_alloc = 0;
3868 goto again;
3869 }
3870
3871 trans->allocating_chunk = true;
3872
3873 /*
3874 * If we have mixed data/metadata chunks we want to make sure we keep
3875 * allocating mixed chunks instead of individual chunks.
3876 */
3877 if (btrfs_mixed_space_info(space_info))
3878 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3879
3880 /*
3881 * if we're doing a data chunk, go ahead and make sure that
3882 * we keep a reasonable number of metadata chunks allocated in the
3883 * FS as well.
3884 */
3885 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3886 fs_info->data_chunk_allocations++;
3887 if (!(fs_info->data_chunk_allocations %
3888 fs_info->metadata_ratio))
3889 force_metadata_allocation(fs_info);
3890 }
3891
3892 /*
3893 * Check if we have enough space in SYSTEM chunk because we may need
3894 * to update devices.
3895 */
3896 check_system_chunk(trans, extent_root, flags);
3897
3898 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3899 trans->allocating_chunk = false;
3900
3901 spin_lock(&space_info->lock);
3902 if (ret < 0 && ret != -ENOSPC)
3903 goto out;
3904 if (ret)
3905 space_info->full = 1;
3906 else
3907 ret = 1;
3908
3909 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3910 out:
3911 space_info->chunk_alloc = 0;
3912 spin_unlock(&space_info->lock);
3913 mutex_unlock(&fs_info->chunk_mutex);
3914 return ret;
3915 }
3916
3917 static int can_overcommit(struct btrfs_root *root,
3918 struct btrfs_space_info *space_info, u64 bytes,
3919 enum btrfs_reserve_flush_enum flush)
3920 {
3921 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3922 u64 profile = btrfs_get_alloc_profile(root, 0);
3923 u64 space_size;
3924 u64 avail;
3925 u64 used;
3926
3927 used = space_info->bytes_used + space_info->bytes_reserved +
3928 space_info->bytes_pinned + space_info->bytes_readonly;
3929
3930 /*
3931 * We only want to allow over committing if we have lots of actual space
3932 * free, but if we don't have enough space to handle the global reserve
3933 * space then we could end up having a real enospc problem when trying
3934 * to allocate a chunk or some other such important allocation.
3935 */
3936 spin_lock(&global_rsv->lock);
3937 space_size = calc_global_rsv_need_space(global_rsv);
3938 spin_unlock(&global_rsv->lock);
3939 if (used + space_size >= space_info->total_bytes)
3940 return 0;
3941
3942 used += space_info->bytes_may_use;
3943
3944 spin_lock(&root->fs_info->free_chunk_lock);
3945 avail = root->fs_info->free_chunk_space;
3946 spin_unlock(&root->fs_info->free_chunk_lock);
3947
3948 /*
3949 * If we have dup, raid1 or raid10 then only half of the free
3950 * space is actually useable. For raid56, the space info used
3951 * doesn't include the parity drive, so we don't have to
3952 * change the math
3953 */
3954 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3955 BTRFS_BLOCK_GROUP_RAID1 |
3956 BTRFS_BLOCK_GROUP_RAID10))
3957 avail >>= 1;
3958
3959 /*
3960 * If we aren't flushing all things, let us overcommit up to
3961 * 1/2th of the space. If we can flush, don't let us overcommit
3962 * too much, let it overcommit up to 1/8 of the space.
3963 */
3964 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3965 avail >>= 3;
3966 else
3967 avail >>= 1;
3968
3969 if (used + bytes < space_info->total_bytes + avail)
3970 return 1;
3971 return 0;
3972 }
3973
3974 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3975 unsigned long nr_pages)
3976 {
3977 struct super_block *sb = root->fs_info->sb;
3978
3979 if (down_read_trylock(&sb->s_umount)) {
3980 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3981 up_read(&sb->s_umount);
3982 } else {
3983 /*
3984 * We needn't worry the filesystem going from r/w to r/o though
3985 * we don't acquire ->s_umount mutex, because the filesystem
3986 * should guarantee the delalloc inodes list be empty after
3987 * the filesystem is readonly(all dirty pages are written to
3988 * the disk).
3989 */
3990 btrfs_start_all_delalloc_inodes(root->fs_info, 0);
3991 if (!current->journal_info)
3992 btrfs_wait_all_ordered_extents(root->fs_info);
3993 }
3994 }
3995
3996 /*
3997 * shrink metadata reservation for delalloc
3998 */
3999 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4000 bool wait_ordered)
4001 {
4002 struct btrfs_block_rsv *block_rsv;
4003 struct btrfs_space_info *space_info;
4004 struct btrfs_trans_handle *trans;
4005 u64 delalloc_bytes;
4006 u64 max_reclaim;
4007 long time_left;
4008 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
4009 int loops = 0;
4010 enum btrfs_reserve_flush_enum flush;
4011
4012 trans = (struct btrfs_trans_handle *)current->journal_info;
4013 block_rsv = &root->fs_info->delalloc_block_rsv;
4014 space_info = block_rsv->space_info;
4015
4016 smp_mb();
4017 delalloc_bytes = percpu_counter_sum_positive(
4018 &root->fs_info->delalloc_bytes);
4019 if (delalloc_bytes == 0) {
4020 if (trans)
4021 return;
4022 btrfs_wait_all_ordered_extents(root->fs_info);
4023 return;
4024 }
4025
4026 while (delalloc_bytes && loops < 3) {
4027 max_reclaim = min(delalloc_bytes, to_reclaim);
4028 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4029 btrfs_writeback_inodes_sb_nr(root, nr_pages);
4030 /*
4031 * We need to wait for the async pages to actually start before
4032 * we do anything.
4033 */
4034 wait_event(root->fs_info->async_submit_wait,
4035 !atomic_read(&root->fs_info->async_delalloc_pages));
4036
4037 if (!trans)
4038 flush = BTRFS_RESERVE_FLUSH_ALL;
4039 else
4040 flush = BTRFS_RESERVE_NO_FLUSH;
4041 spin_lock(&space_info->lock);
4042 if (can_overcommit(root, space_info, orig, flush)) {
4043 spin_unlock(&space_info->lock);
4044 break;
4045 }
4046 spin_unlock(&space_info->lock);
4047
4048 loops++;
4049 if (wait_ordered && !trans) {
4050 btrfs_wait_all_ordered_extents(root->fs_info);
4051 } else {
4052 time_left = schedule_timeout_killable(1);
4053 if (time_left)
4054 break;
4055 }
4056 smp_mb();
4057 delalloc_bytes = percpu_counter_sum_positive(
4058 &root->fs_info->delalloc_bytes);
4059 }
4060 }
4061
4062 /**
4063 * maybe_commit_transaction - possibly commit the transaction if its ok to
4064 * @root - the root we're allocating for
4065 * @bytes - the number of bytes we want to reserve
4066 * @force - force the commit
4067 *
4068 * This will check to make sure that committing the transaction will actually
4069 * get us somewhere and then commit the transaction if it does. Otherwise it
4070 * will return -ENOSPC.
4071 */
4072 static int may_commit_transaction(struct btrfs_root *root,
4073 struct btrfs_space_info *space_info,
4074 u64 bytes, int force)
4075 {
4076 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4077 struct btrfs_trans_handle *trans;
4078
4079 trans = (struct btrfs_trans_handle *)current->journal_info;
4080 if (trans)
4081 return -EAGAIN;
4082
4083 if (force)
4084 goto commit;
4085
4086 /* See if there is enough pinned space to make this reservation */
4087 spin_lock(&space_info->lock);
4088 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4089 bytes) >= 0) {
4090 spin_unlock(&space_info->lock);
4091 goto commit;
4092 }
4093 spin_unlock(&space_info->lock);
4094
4095 /*
4096 * See if there is some space in the delayed insertion reservation for
4097 * this reservation.
4098 */
4099 if (space_info != delayed_rsv->space_info)
4100 return -ENOSPC;
4101
4102 spin_lock(&space_info->lock);
4103 spin_lock(&delayed_rsv->lock);
4104 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4105 bytes - delayed_rsv->size) >= 0) {
4106 spin_unlock(&delayed_rsv->lock);
4107 spin_unlock(&space_info->lock);
4108 return -ENOSPC;
4109 }
4110 spin_unlock(&delayed_rsv->lock);
4111 spin_unlock(&space_info->lock);
4112
4113 commit:
4114 trans = btrfs_join_transaction(root);
4115 if (IS_ERR(trans))
4116 return -ENOSPC;
4117
4118 return btrfs_commit_transaction(trans, root);
4119 }
4120
4121 enum flush_state {
4122 FLUSH_DELAYED_ITEMS_NR = 1,
4123 FLUSH_DELAYED_ITEMS = 2,
4124 FLUSH_DELALLOC = 3,
4125 FLUSH_DELALLOC_WAIT = 4,
4126 ALLOC_CHUNK = 5,
4127 COMMIT_TRANS = 6,
4128 };
4129
4130 static int flush_space(struct btrfs_root *root,
4131 struct btrfs_space_info *space_info, u64 num_bytes,
4132 u64 orig_bytes, int state)
4133 {
4134 struct btrfs_trans_handle *trans;
4135 int nr;
4136 int ret = 0;
4137
4138 switch (state) {
4139 case FLUSH_DELAYED_ITEMS_NR:
4140 case FLUSH_DELAYED_ITEMS:
4141 if (state == FLUSH_DELAYED_ITEMS_NR) {
4142 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4143
4144 nr = (int)div64_u64(num_bytes, bytes);
4145 if (!nr)
4146 nr = 1;
4147 nr *= 2;
4148 } else {
4149 nr = -1;
4150 }
4151 trans = btrfs_join_transaction(root);
4152 if (IS_ERR(trans)) {
4153 ret = PTR_ERR(trans);
4154 break;
4155 }
4156 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4157 btrfs_end_transaction(trans, root);
4158 break;
4159 case FLUSH_DELALLOC:
4160 case FLUSH_DELALLOC_WAIT:
4161 shrink_delalloc(root, num_bytes, orig_bytes,
4162 state == FLUSH_DELALLOC_WAIT);
4163 break;
4164 case ALLOC_CHUNK:
4165 trans = btrfs_join_transaction(root);
4166 if (IS_ERR(trans)) {
4167 ret = PTR_ERR(trans);
4168 break;
4169 }
4170 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4171 btrfs_get_alloc_profile(root, 0),
4172 CHUNK_ALLOC_NO_FORCE);
4173 btrfs_end_transaction(trans, root);
4174 if (ret == -ENOSPC)
4175 ret = 0;
4176 break;
4177 case COMMIT_TRANS:
4178 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4179 break;
4180 default:
4181 ret = -ENOSPC;
4182 break;
4183 }
4184
4185 return ret;
4186 }
4187 /**
4188 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4189 * @root - the root we're allocating for
4190 * @block_rsv - the block_rsv we're allocating for
4191 * @orig_bytes - the number of bytes we want
4192 * @flush - whether or not we can flush to make our reservation
4193 *
4194 * This will reserve orgi_bytes number of bytes from the space info associated
4195 * with the block_rsv. If there is not enough space it will make an attempt to
4196 * flush out space to make room. It will do this by flushing delalloc if
4197 * possible or committing the transaction. If flush is 0 then no attempts to
4198 * regain reservations will be made and this will fail if there is not enough
4199 * space already.
4200 */
4201 static int reserve_metadata_bytes(struct btrfs_root *root,
4202 struct btrfs_block_rsv *block_rsv,
4203 u64 orig_bytes,
4204 enum btrfs_reserve_flush_enum flush)
4205 {
4206 struct btrfs_space_info *space_info = block_rsv->space_info;
4207 u64 used;
4208 u64 num_bytes = orig_bytes;
4209 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4210 int ret = 0;
4211 bool flushing = false;
4212
4213 again:
4214 ret = 0;
4215 spin_lock(&space_info->lock);
4216 /*
4217 * We only want to wait if somebody other than us is flushing and we
4218 * are actually allowed to flush all things.
4219 */
4220 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4221 space_info->flush) {
4222 spin_unlock(&space_info->lock);
4223 /*
4224 * If we have a trans handle we can't wait because the flusher
4225 * may have to commit the transaction, which would mean we would
4226 * deadlock since we are waiting for the flusher to finish, but
4227 * hold the current transaction open.
4228 */
4229 if (current->journal_info)
4230 return -EAGAIN;
4231 ret = wait_event_killable(space_info->wait, !space_info->flush);
4232 /* Must have been killed, return */
4233 if (ret)
4234 return -EINTR;
4235
4236 spin_lock(&space_info->lock);
4237 }
4238
4239 ret = -ENOSPC;
4240 used = space_info->bytes_used + space_info->bytes_reserved +
4241 space_info->bytes_pinned + space_info->bytes_readonly +
4242 space_info->bytes_may_use;
4243
4244 /*
4245 * The idea here is that we've not already over-reserved the block group
4246 * then we can go ahead and save our reservation first and then start
4247 * flushing if we need to. Otherwise if we've already overcommitted
4248 * lets start flushing stuff first and then come back and try to make
4249 * our reservation.
4250 */
4251 if (used <= space_info->total_bytes) {
4252 if (used + orig_bytes <= space_info->total_bytes) {
4253 space_info->bytes_may_use += orig_bytes;
4254 trace_btrfs_space_reservation(root->fs_info,
4255 "space_info", space_info->flags, orig_bytes, 1);
4256 ret = 0;
4257 } else {
4258 /*
4259 * Ok set num_bytes to orig_bytes since we aren't
4260 * overocmmitted, this way we only try and reclaim what
4261 * we need.
4262 */
4263 num_bytes = orig_bytes;
4264 }
4265 } else {
4266 /*
4267 * Ok we're over committed, set num_bytes to the overcommitted
4268 * amount plus the amount of bytes that we need for this
4269 * reservation.
4270 */
4271 num_bytes = used - space_info->total_bytes +
4272 (orig_bytes * 2);
4273 }
4274
4275 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4276 space_info->bytes_may_use += orig_bytes;
4277 trace_btrfs_space_reservation(root->fs_info, "space_info",
4278 space_info->flags, orig_bytes,
4279 1);
4280 ret = 0;
4281 }
4282
4283 /*
4284 * Couldn't make our reservation, save our place so while we're trying
4285 * to reclaim space we can actually use it instead of somebody else
4286 * stealing it from us.
4287 *
4288 * We make the other tasks wait for the flush only when we can flush
4289 * all things.
4290 */
4291 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4292 flushing = true;
4293 space_info->flush = 1;
4294 }
4295
4296 spin_unlock(&space_info->lock);
4297
4298 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4299 goto out;
4300
4301 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4302 flush_state);
4303 flush_state++;
4304
4305 /*
4306 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4307 * would happen. So skip delalloc flush.
4308 */
4309 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4310 (flush_state == FLUSH_DELALLOC ||
4311 flush_state == FLUSH_DELALLOC_WAIT))
4312 flush_state = ALLOC_CHUNK;
4313
4314 if (!ret)
4315 goto again;
4316 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4317 flush_state < COMMIT_TRANS)
4318 goto again;
4319 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4320 flush_state <= COMMIT_TRANS)
4321 goto again;
4322
4323 out:
4324 if (ret == -ENOSPC &&
4325 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4326 struct btrfs_block_rsv *global_rsv =
4327 &root->fs_info->global_block_rsv;
4328
4329 if (block_rsv != global_rsv &&
4330 !block_rsv_use_bytes(global_rsv, orig_bytes))
4331 ret = 0;
4332 }
4333 if (flushing) {
4334 spin_lock(&space_info->lock);
4335 space_info->flush = 0;
4336 wake_up_all(&space_info->wait);
4337 spin_unlock(&space_info->lock);
4338 }
4339 return ret;
4340 }
4341
4342 static struct btrfs_block_rsv *get_block_rsv(
4343 const struct btrfs_trans_handle *trans,
4344 const struct btrfs_root *root)
4345 {
4346 struct btrfs_block_rsv *block_rsv = NULL;
4347
4348 if (root->ref_cows)
4349 block_rsv = trans->block_rsv;
4350
4351 if (root == root->fs_info->csum_root && trans->adding_csums)
4352 block_rsv = trans->block_rsv;
4353
4354 if (root == root->fs_info->uuid_root)
4355 block_rsv = trans->block_rsv;
4356
4357 if (!block_rsv)
4358 block_rsv = root->block_rsv;
4359
4360 if (!block_rsv)
4361 block_rsv = &root->fs_info->empty_block_rsv;
4362
4363 return block_rsv;
4364 }
4365
4366 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4367 u64 num_bytes)
4368 {
4369 int ret = -ENOSPC;
4370 spin_lock(&block_rsv->lock);
4371 if (block_rsv->reserved >= num_bytes) {
4372 block_rsv->reserved -= num_bytes;
4373 if (block_rsv->reserved < block_rsv->size)
4374 block_rsv->full = 0;
4375 ret = 0;
4376 }
4377 spin_unlock(&block_rsv->lock);
4378 return ret;
4379 }
4380
4381 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4382 u64 num_bytes, int update_size)
4383 {
4384 spin_lock(&block_rsv->lock);
4385 block_rsv->reserved += num_bytes;
4386 if (update_size)
4387 block_rsv->size += num_bytes;
4388 else if (block_rsv->reserved >= block_rsv->size)
4389 block_rsv->full = 1;
4390 spin_unlock(&block_rsv->lock);
4391 }
4392
4393 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4394 struct btrfs_block_rsv *dest, u64 num_bytes,
4395 int min_factor)
4396 {
4397 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4398 u64 min_bytes;
4399
4400 if (global_rsv->space_info != dest->space_info)
4401 return -ENOSPC;
4402
4403 spin_lock(&global_rsv->lock);
4404 min_bytes = div_factor(global_rsv->size, min_factor);
4405 if (global_rsv->reserved < min_bytes + num_bytes) {
4406 spin_unlock(&global_rsv->lock);
4407 return -ENOSPC;
4408 }
4409 global_rsv->reserved -= num_bytes;
4410 if (global_rsv->reserved < global_rsv->size)
4411 global_rsv->full = 0;
4412 spin_unlock(&global_rsv->lock);
4413
4414 block_rsv_add_bytes(dest, num_bytes, 1);
4415 return 0;
4416 }
4417
4418 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4419 struct btrfs_block_rsv *block_rsv,
4420 struct btrfs_block_rsv *dest, u64 num_bytes)
4421 {
4422 struct btrfs_space_info *space_info = block_rsv->space_info;
4423
4424 spin_lock(&block_rsv->lock);
4425 if (num_bytes == (u64)-1)
4426 num_bytes = block_rsv->size;
4427 block_rsv->size -= num_bytes;
4428 if (block_rsv->reserved >= block_rsv->size) {
4429 num_bytes = block_rsv->reserved - block_rsv->size;
4430 block_rsv->reserved = block_rsv->size;
4431 block_rsv->full = 1;
4432 } else {
4433 num_bytes = 0;
4434 }
4435 spin_unlock(&block_rsv->lock);
4436
4437 if (num_bytes > 0) {
4438 if (dest) {
4439 spin_lock(&dest->lock);
4440 if (!dest->full) {
4441 u64 bytes_to_add;
4442
4443 bytes_to_add = dest->size - dest->reserved;
4444 bytes_to_add = min(num_bytes, bytes_to_add);
4445 dest->reserved += bytes_to_add;
4446 if (dest->reserved >= dest->size)
4447 dest->full = 1;
4448 num_bytes -= bytes_to_add;
4449 }
4450 spin_unlock(&dest->lock);
4451 }
4452 if (num_bytes) {
4453 spin_lock(&space_info->lock);
4454 space_info->bytes_may_use -= num_bytes;
4455 trace_btrfs_space_reservation(fs_info, "space_info",
4456 space_info->flags, num_bytes, 0);
4457 spin_unlock(&space_info->lock);
4458 }
4459 }
4460 }
4461
4462 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4463 struct btrfs_block_rsv *dst, u64 num_bytes)
4464 {
4465 int ret;
4466
4467 ret = block_rsv_use_bytes(src, num_bytes);
4468 if (ret)
4469 return ret;
4470
4471 block_rsv_add_bytes(dst, num_bytes, 1);
4472 return 0;
4473 }
4474
4475 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4476 {
4477 memset(rsv, 0, sizeof(*rsv));
4478 spin_lock_init(&rsv->lock);
4479 rsv->type = type;
4480 }
4481
4482 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4483 unsigned short type)
4484 {
4485 struct btrfs_block_rsv *block_rsv;
4486 struct btrfs_fs_info *fs_info = root->fs_info;
4487
4488 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4489 if (!block_rsv)
4490 return NULL;
4491
4492 btrfs_init_block_rsv(block_rsv, type);
4493 block_rsv->space_info = __find_space_info(fs_info,
4494 BTRFS_BLOCK_GROUP_METADATA);
4495 return block_rsv;
4496 }
4497
4498 void btrfs_free_block_rsv(struct btrfs_root *root,
4499 struct btrfs_block_rsv *rsv)
4500 {
4501 if (!rsv)
4502 return;
4503 btrfs_block_rsv_release(root, rsv, (u64)-1);
4504 kfree(rsv);
4505 }
4506
4507 int btrfs_block_rsv_add(struct btrfs_root *root,
4508 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4509 enum btrfs_reserve_flush_enum flush)
4510 {
4511 int ret;
4512
4513 if (num_bytes == 0)
4514 return 0;
4515
4516 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4517 if (!ret) {
4518 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4519 return 0;
4520 }
4521
4522 return ret;
4523 }
4524
4525 int btrfs_block_rsv_check(struct btrfs_root *root,
4526 struct btrfs_block_rsv *block_rsv, int min_factor)
4527 {
4528 u64 num_bytes = 0;
4529 int ret = -ENOSPC;
4530
4531 if (!block_rsv)
4532 return 0;
4533
4534 spin_lock(&block_rsv->lock);
4535 num_bytes = div_factor(block_rsv->size, min_factor);
4536 if (block_rsv->reserved >= num_bytes)
4537 ret = 0;
4538 spin_unlock(&block_rsv->lock);
4539
4540 return ret;
4541 }
4542
4543 int btrfs_block_rsv_refill(struct btrfs_root *root,
4544 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4545 enum btrfs_reserve_flush_enum flush)
4546 {
4547 u64 num_bytes = 0;
4548 int ret = -ENOSPC;
4549
4550 if (!block_rsv)
4551 return 0;
4552
4553 spin_lock(&block_rsv->lock);
4554 num_bytes = min_reserved;
4555 if (block_rsv->reserved >= num_bytes)
4556 ret = 0;
4557 else
4558 num_bytes -= block_rsv->reserved;
4559 spin_unlock(&block_rsv->lock);
4560
4561 if (!ret)
4562 return 0;
4563
4564 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4565 if (!ret) {
4566 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4567 return 0;
4568 }
4569
4570 return ret;
4571 }
4572
4573 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4574 struct btrfs_block_rsv *dst_rsv,
4575 u64 num_bytes)
4576 {
4577 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4578 }
4579
4580 void btrfs_block_rsv_release(struct btrfs_root *root,
4581 struct btrfs_block_rsv *block_rsv,
4582 u64 num_bytes)
4583 {
4584 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4585 if (global_rsv->full || global_rsv == block_rsv ||
4586 block_rsv->space_info != global_rsv->space_info)
4587 global_rsv = NULL;
4588 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4589 num_bytes);
4590 }
4591
4592 /*
4593 * helper to calculate size of global block reservation.
4594 * the desired value is sum of space used by extent tree,
4595 * checksum tree and root tree
4596 */
4597 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4598 {
4599 struct btrfs_space_info *sinfo;
4600 u64 num_bytes;
4601 u64 meta_used;
4602 u64 data_used;
4603 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4604
4605 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4606 spin_lock(&sinfo->lock);
4607 data_used = sinfo->bytes_used;
4608 spin_unlock(&sinfo->lock);
4609
4610 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4611 spin_lock(&sinfo->lock);
4612 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4613 data_used = 0;
4614 meta_used = sinfo->bytes_used;
4615 spin_unlock(&sinfo->lock);
4616
4617 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4618 csum_size * 2;
4619 num_bytes += div64_u64(data_used + meta_used, 50);
4620
4621 if (num_bytes * 3 > meta_used)
4622 num_bytes = div64_u64(meta_used, 3);
4623
4624 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4625 }
4626
4627 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4628 {
4629 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4630 struct btrfs_space_info *sinfo = block_rsv->space_info;
4631 u64 num_bytes;
4632
4633 num_bytes = calc_global_metadata_size(fs_info);
4634
4635 spin_lock(&sinfo->lock);
4636 spin_lock(&block_rsv->lock);
4637
4638 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4639
4640 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4641 sinfo->bytes_reserved + sinfo->bytes_readonly +
4642 sinfo->bytes_may_use;
4643
4644 if (sinfo->total_bytes > num_bytes) {
4645 num_bytes = sinfo->total_bytes - num_bytes;
4646 block_rsv->reserved += num_bytes;
4647 sinfo->bytes_may_use += num_bytes;
4648 trace_btrfs_space_reservation(fs_info, "space_info",
4649 sinfo->flags, num_bytes, 1);
4650 }
4651
4652 if (block_rsv->reserved >= block_rsv->size) {
4653 num_bytes = block_rsv->reserved - block_rsv->size;
4654 sinfo->bytes_may_use -= num_bytes;
4655 trace_btrfs_space_reservation(fs_info, "space_info",
4656 sinfo->flags, num_bytes, 0);
4657 block_rsv->reserved = block_rsv->size;
4658 block_rsv->full = 1;
4659 }
4660
4661 spin_unlock(&block_rsv->lock);
4662 spin_unlock(&sinfo->lock);
4663 }
4664
4665 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4666 {
4667 struct btrfs_space_info *space_info;
4668
4669 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4670 fs_info->chunk_block_rsv.space_info = space_info;
4671
4672 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4673 fs_info->global_block_rsv.space_info = space_info;
4674 fs_info->delalloc_block_rsv.space_info = space_info;
4675 fs_info->trans_block_rsv.space_info = space_info;
4676 fs_info->empty_block_rsv.space_info = space_info;
4677 fs_info->delayed_block_rsv.space_info = space_info;
4678
4679 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4680 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4681 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4682 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4683 if (fs_info->quota_root)
4684 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4685 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4686
4687 update_global_block_rsv(fs_info);
4688 }
4689
4690 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4691 {
4692 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4693 (u64)-1);
4694 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4695 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4696 WARN_ON(fs_info->trans_block_rsv.size > 0);
4697 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4698 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4699 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4700 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4701 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4702 }
4703
4704 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4705 struct btrfs_root *root)
4706 {
4707 if (!trans->block_rsv)
4708 return;
4709
4710 if (!trans->bytes_reserved)
4711 return;
4712
4713 trace_btrfs_space_reservation(root->fs_info, "transaction",
4714 trans->transid, trans->bytes_reserved, 0);
4715 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4716 trans->bytes_reserved = 0;
4717 }
4718
4719 /* Can only return 0 or -ENOSPC */
4720 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4721 struct inode *inode)
4722 {
4723 struct btrfs_root *root = BTRFS_I(inode)->root;
4724 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4725 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4726
4727 /*
4728 * We need to hold space in order to delete our orphan item once we've
4729 * added it, so this takes the reservation so we can release it later
4730 * when we are truly done with the orphan item.
4731 */
4732 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4733 trace_btrfs_space_reservation(root->fs_info, "orphan",
4734 btrfs_ino(inode), num_bytes, 1);
4735 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4736 }
4737
4738 void btrfs_orphan_release_metadata(struct inode *inode)
4739 {
4740 struct btrfs_root *root = BTRFS_I(inode)->root;
4741 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4742 trace_btrfs_space_reservation(root->fs_info, "orphan",
4743 btrfs_ino(inode), num_bytes, 0);
4744 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4745 }
4746
4747 /*
4748 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4749 * root: the root of the parent directory
4750 * rsv: block reservation
4751 * items: the number of items that we need do reservation
4752 * qgroup_reserved: used to return the reserved size in qgroup
4753 *
4754 * This function is used to reserve the space for snapshot/subvolume
4755 * creation and deletion. Those operations are different with the
4756 * common file/directory operations, they change two fs/file trees
4757 * and root tree, the number of items that the qgroup reserves is
4758 * different with the free space reservation. So we can not use
4759 * the space reseravtion mechanism in start_transaction().
4760 */
4761 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4762 struct btrfs_block_rsv *rsv,
4763 int items,
4764 u64 *qgroup_reserved,
4765 bool use_global_rsv)
4766 {
4767 u64 num_bytes;
4768 int ret;
4769 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4770
4771 if (root->fs_info->quota_enabled) {
4772 /* One for parent inode, two for dir entries */
4773 num_bytes = 3 * root->leafsize;
4774 ret = btrfs_qgroup_reserve(root, num_bytes);
4775 if (ret)
4776 return ret;
4777 } else {
4778 num_bytes = 0;
4779 }
4780
4781 *qgroup_reserved = num_bytes;
4782
4783 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4784 rsv->space_info = __find_space_info(root->fs_info,
4785 BTRFS_BLOCK_GROUP_METADATA);
4786 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4787 BTRFS_RESERVE_FLUSH_ALL);
4788
4789 if (ret == -ENOSPC && use_global_rsv)
4790 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4791
4792 if (ret) {
4793 if (*qgroup_reserved)
4794 btrfs_qgroup_free(root, *qgroup_reserved);
4795 }
4796
4797 return ret;
4798 }
4799
4800 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4801 struct btrfs_block_rsv *rsv,
4802 u64 qgroup_reserved)
4803 {
4804 btrfs_block_rsv_release(root, rsv, (u64)-1);
4805 if (qgroup_reserved)
4806 btrfs_qgroup_free(root, qgroup_reserved);
4807 }
4808
4809 /**
4810 * drop_outstanding_extent - drop an outstanding extent
4811 * @inode: the inode we're dropping the extent for
4812 *
4813 * This is called when we are freeing up an outstanding extent, either called
4814 * after an error or after an extent is written. This will return the number of
4815 * reserved extents that need to be freed. This must be called with
4816 * BTRFS_I(inode)->lock held.
4817 */
4818 static unsigned drop_outstanding_extent(struct inode *inode)
4819 {
4820 unsigned drop_inode_space = 0;
4821 unsigned dropped_extents = 0;
4822
4823 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4824 BTRFS_I(inode)->outstanding_extents--;
4825
4826 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4827 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4828 &BTRFS_I(inode)->runtime_flags))
4829 drop_inode_space = 1;
4830
4831 /*
4832 * If we have more or the same amount of outsanding extents than we have
4833 * reserved then we need to leave the reserved extents count alone.
4834 */
4835 if (BTRFS_I(inode)->outstanding_extents >=
4836 BTRFS_I(inode)->reserved_extents)
4837 return drop_inode_space;
4838
4839 dropped_extents = BTRFS_I(inode)->reserved_extents -
4840 BTRFS_I(inode)->outstanding_extents;
4841 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4842 return dropped_extents + drop_inode_space;
4843 }
4844
4845 /**
4846 * calc_csum_metadata_size - return the amount of metada space that must be
4847 * reserved/free'd for the given bytes.
4848 * @inode: the inode we're manipulating
4849 * @num_bytes: the number of bytes in question
4850 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4851 *
4852 * This adjusts the number of csum_bytes in the inode and then returns the
4853 * correct amount of metadata that must either be reserved or freed. We
4854 * calculate how many checksums we can fit into one leaf and then divide the
4855 * number of bytes that will need to be checksumed by this value to figure out
4856 * how many checksums will be required. If we are adding bytes then the number
4857 * may go up and we will return the number of additional bytes that must be
4858 * reserved. If it is going down we will return the number of bytes that must
4859 * be freed.
4860 *
4861 * This must be called with BTRFS_I(inode)->lock held.
4862 */
4863 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4864 int reserve)
4865 {
4866 struct btrfs_root *root = BTRFS_I(inode)->root;
4867 u64 csum_size;
4868 int num_csums_per_leaf;
4869 int num_csums;
4870 int old_csums;
4871
4872 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4873 BTRFS_I(inode)->csum_bytes == 0)
4874 return 0;
4875
4876 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4877 if (reserve)
4878 BTRFS_I(inode)->csum_bytes += num_bytes;
4879 else
4880 BTRFS_I(inode)->csum_bytes -= num_bytes;
4881 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4882 num_csums_per_leaf = (int)div64_u64(csum_size,
4883 sizeof(struct btrfs_csum_item) +
4884 sizeof(struct btrfs_disk_key));
4885 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4886 num_csums = num_csums + num_csums_per_leaf - 1;
4887 num_csums = num_csums / num_csums_per_leaf;
4888
4889 old_csums = old_csums + num_csums_per_leaf - 1;
4890 old_csums = old_csums / num_csums_per_leaf;
4891
4892 /* No change, no need to reserve more */
4893 if (old_csums == num_csums)
4894 return 0;
4895
4896 if (reserve)
4897 return btrfs_calc_trans_metadata_size(root,
4898 num_csums - old_csums);
4899
4900 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4901 }
4902
4903 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4904 {
4905 struct btrfs_root *root = BTRFS_I(inode)->root;
4906 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4907 u64 to_reserve = 0;
4908 u64 csum_bytes;
4909 unsigned nr_extents = 0;
4910 int extra_reserve = 0;
4911 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4912 int ret = 0;
4913 bool delalloc_lock = true;
4914 u64 to_free = 0;
4915 unsigned dropped;
4916
4917 /* If we are a free space inode we need to not flush since we will be in
4918 * the middle of a transaction commit. We also don't need the delalloc
4919 * mutex since we won't race with anybody. We need this mostly to make
4920 * lockdep shut its filthy mouth.
4921 */
4922 if (btrfs_is_free_space_inode(inode)) {
4923 flush = BTRFS_RESERVE_NO_FLUSH;
4924 delalloc_lock = false;
4925 }
4926
4927 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4928 btrfs_transaction_in_commit(root->fs_info))
4929 schedule_timeout(1);
4930
4931 if (delalloc_lock)
4932 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4933
4934 num_bytes = ALIGN(num_bytes, root->sectorsize);
4935
4936 spin_lock(&BTRFS_I(inode)->lock);
4937 BTRFS_I(inode)->outstanding_extents++;
4938
4939 if (BTRFS_I(inode)->outstanding_extents >
4940 BTRFS_I(inode)->reserved_extents)
4941 nr_extents = BTRFS_I(inode)->outstanding_extents -
4942 BTRFS_I(inode)->reserved_extents;
4943
4944 /*
4945 * Add an item to reserve for updating the inode when we complete the
4946 * delalloc io.
4947 */
4948 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4949 &BTRFS_I(inode)->runtime_flags)) {
4950 nr_extents++;
4951 extra_reserve = 1;
4952 }
4953
4954 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4955 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4956 csum_bytes = BTRFS_I(inode)->csum_bytes;
4957 spin_unlock(&BTRFS_I(inode)->lock);
4958
4959 if (root->fs_info->quota_enabled) {
4960 ret = btrfs_qgroup_reserve(root, num_bytes +
4961 nr_extents * root->leafsize);
4962 if (ret)
4963 goto out_fail;
4964 }
4965
4966 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4967 if (unlikely(ret)) {
4968 if (root->fs_info->quota_enabled)
4969 btrfs_qgroup_free(root, num_bytes +
4970 nr_extents * root->leafsize);
4971 goto out_fail;
4972 }
4973
4974 spin_lock(&BTRFS_I(inode)->lock);
4975 if (extra_reserve) {
4976 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4977 &BTRFS_I(inode)->runtime_flags);
4978 nr_extents--;
4979 }
4980 BTRFS_I(inode)->reserved_extents += nr_extents;
4981 spin_unlock(&BTRFS_I(inode)->lock);
4982
4983 if (delalloc_lock)
4984 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4985
4986 if (to_reserve)
4987 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4988 btrfs_ino(inode), to_reserve, 1);
4989 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4990
4991 return 0;
4992
4993 out_fail:
4994 spin_lock(&BTRFS_I(inode)->lock);
4995 dropped = drop_outstanding_extent(inode);
4996 /*
4997 * If the inodes csum_bytes is the same as the original
4998 * csum_bytes then we know we haven't raced with any free()ers
4999 * so we can just reduce our inodes csum bytes and carry on.
5000 */
5001 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5002 calc_csum_metadata_size(inode, num_bytes, 0);
5003 } else {
5004 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5005 u64 bytes;
5006
5007 /*
5008 * This is tricky, but first we need to figure out how much we
5009 * free'd from any free-ers that occured during this
5010 * reservation, so we reset ->csum_bytes to the csum_bytes
5011 * before we dropped our lock, and then call the free for the
5012 * number of bytes that were freed while we were trying our
5013 * reservation.
5014 */
5015 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5016 BTRFS_I(inode)->csum_bytes = csum_bytes;
5017 to_free = calc_csum_metadata_size(inode, bytes, 0);
5018
5019
5020 /*
5021 * Now we need to see how much we would have freed had we not
5022 * been making this reservation and our ->csum_bytes were not
5023 * artificially inflated.
5024 */
5025 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5026 bytes = csum_bytes - orig_csum_bytes;
5027 bytes = calc_csum_metadata_size(inode, bytes, 0);
5028
5029 /*
5030 * Now reset ->csum_bytes to what it should be. If bytes is
5031 * more than to_free then we would have free'd more space had we
5032 * not had an artificially high ->csum_bytes, so we need to free
5033 * the remainder. If bytes is the same or less then we don't
5034 * need to do anything, the other free-ers did the correct
5035 * thing.
5036 */
5037 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5038 if (bytes > to_free)
5039 to_free = bytes - to_free;
5040 else
5041 to_free = 0;
5042 }
5043 spin_unlock(&BTRFS_I(inode)->lock);
5044 if (dropped)
5045 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5046
5047 if (to_free) {
5048 btrfs_block_rsv_release(root, block_rsv, to_free);
5049 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5050 btrfs_ino(inode), to_free, 0);
5051 }
5052 if (delalloc_lock)
5053 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5054 return ret;
5055 }
5056
5057 /**
5058 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5059 * @inode: the inode to release the reservation for
5060 * @num_bytes: the number of bytes we're releasing
5061 *
5062 * This will release the metadata reservation for an inode. This can be called
5063 * once we complete IO for a given set of bytes to release their metadata
5064 * reservations.
5065 */
5066 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5067 {
5068 struct btrfs_root *root = BTRFS_I(inode)->root;
5069 u64 to_free = 0;
5070 unsigned dropped;
5071
5072 num_bytes = ALIGN(num_bytes, root->sectorsize);
5073 spin_lock(&BTRFS_I(inode)->lock);
5074 dropped = drop_outstanding_extent(inode);
5075
5076 if (num_bytes)
5077 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5078 spin_unlock(&BTRFS_I(inode)->lock);
5079 if (dropped > 0)
5080 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5081
5082 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5083 btrfs_ino(inode), to_free, 0);
5084 if (root->fs_info->quota_enabled) {
5085 btrfs_qgroup_free(root, num_bytes +
5086 dropped * root->leafsize);
5087 }
5088
5089 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5090 to_free);
5091 }
5092
5093 /**
5094 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5095 * @inode: inode we're writing to
5096 * @num_bytes: the number of bytes we want to allocate
5097 *
5098 * This will do the following things
5099 *
5100 * o reserve space in the data space info for num_bytes
5101 * o reserve space in the metadata space info based on number of outstanding
5102 * extents and how much csums will be needed
5103 * o add to the inodes ->delalloc_bytes
5104 * o add it to the fs_info's delalloc inodes list.
5105 *
5106 * This will return 0 for success and -ENOSPC if there is no space left.
5107 */
5108 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5109 {
5110 int ret;
5111
5112 ret = btrfs_check_data_free_space(inode, num_bytes);
5113 if (ret)
5114 return ret;
5115
5116 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5117 if (ret) {
5118 btrfs_free_reserved_data_space(inode, num_bytes);
5119 return ret;
5120 }
5121
5122 return 0;
5123 }
5124
5125 /**
5126 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5127 * @inode: inode we're releasing space for
5128 * @num_bytes: the number of bytes we want to free up
5129 *
5130 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5131 * called in the case that we don't need the metadata AND data reservations
5132 * anymore. So if there is an error or we insert an inline extent.
5133 *
5134 * This function will release the metadata space that was not used and will
5135 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5136 * list if there are no delalloc bytes left.
5137 */
5138 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5139 {
5140 btrfs_delalloc_release_metadata(inode, num_bytes);
5141 btrfs_free_reserved_data_space(inode, num_bytes);
5142 }
5143
5144 static int update_block_group(struct btrfs_root *root,
5145 u64 bytenr, u64 num_bytes, int alloc)
5146 {
5147 struct btrfs_block_group_cache *cache = NULL;
5148 struct btrfs_fs_info *info = root->fs_info;
5149 u64 total = num_bytes;
5150 u64 old_val;
5151 u64 byte_in_group;
5152 int factor;
5153
5154 /* block accounting for super block */
5155 spin_lock(&info->delalloc_root_lock);
5156 old_val = btrfs_super_bytes_used(info->super_copy);
5157 if (alloc)
5158 old_val += num_bytes;
5159 else
5160 old_val -= num_bytes;
5161 btrfs_set_super_bytes_used(info->super_copy, old_val);
5162 spin_unlock(&info->delalloc_root_lock);
5163
5164 while (total) {
5165 cache = btrfs_lookup_block_group(info, bytenr);
5166 if (!cache)
5167 return -ENOENT;
5168 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5169 BTRFS_BLOCK_GROUP_RAID1 |
5170 BTRFS_BLOCK_GROUP_RAID10))
5171 factor = 2;
5172 else
5173 factor = 1;
5174 /*
5175 * If this block group has free space cache written out, we
5176 * need to make sure to load it if we are removing space. This
5177 * is because we need the unpinning stage to actually add the
5178 * space back to the block group, otherwise we will leak space.
5179 */
5180 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5181 cache_block_group(cache, 1);
5182
5183 byte_in_group = bytenr - cache->key.objectid;
5184 WARN_ON(byte_in_group > cache->key.offset);
5185
5186 spin_lock(&cache->space_info->lock);
5187 spin_lock(&cache->lock);
5188
5189 if (btrfs_test_opt(root, SPACE_CACHE) &&
5190 cache->disk_cache_state < BTRFS_DC_CLEAR)
5191 cache->disk_cache_state = BTRFS_DC_CLEAR;
5192
5193 cache->dirty = 1;
5194 old_val = btrfs_block_group_used(&cache->item);
5195 num_bytes = min(total, cache->key.offset - byte_in_group);
5196 if (alloc) {
5197 old_val += num_bytes;
5198 btrfs_set_block_group_used(&cache->item, old_val);
5199 cache->reserved -= num_bytes;
5200 cache->space_info->bytes_reserved -= num_bytes;
5201 cache->space_info->bytes_used += num_bytes;
5202 cache->space_info->disk_used += num_bytes * factor;
5203 spin_unlock(&cache->lock);
5204 spin_unlock(&cache->space_info->lock);
5205 } else {
5206 old_val -= num_bytes;
5207 btrfs_set_block_group_used(&cache->item, old_val);
5208 cache->pinned += num_bytes;
5209 cache->space_info->bytes_pinned += num_bytes;
5210 cache->space_info->bytes_used -= num_bytes;
5211 cache->space_info->disk_used -= num_bytes * factor;
5212 spin_unlock(&cache->lock);
5213 spin_unlock(&cache->space_info->lock);
5214
5215 set_extent_dirty(info->pinned_extents,
5216 bytenr, bytenr + num_bytes - 1,
5217 GFP_NOFS | __GFP_NOFAIL);
5218 }
5219 btrfs_put_block_group(cache);
5220 total -= num_bytes;
5221 bytenr += num_bytes;
5222 }
5223 return 0;
5224 }
5225
5226 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5227 {
5228 struct btrfs_block_group_cache *cache;
5229 u64 bytenr;
5230
5231 spin_lock(&root->fs_info->block_group_cache_lock);
5232 bytenr = root->fs_info->first_logical_byte;
5233 spin_unlock(&root->fs_info->block_group_cache_lock);
5234
5235 if (bytenr < (u64)-1)
5236 return bytenr;
5237
5238 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5239 if (!cache)
5240 return 0;
5241
5242 bytenr = cache->key.objectid;
5243 btrfs_put_block_group(cache);
5244
5245 return bytenr;
5246 }
5247
5248 static int pin_down_extent(struct btrfs_root *root,
5249 struct btrfs_block_group_cache *cache,
5250 u64 bytenr, u64 num_bytes, int reserved)
5251 {
5252 spin_lock(&cache->space_info->lock);
5253 spin_lock(&cache->lock);
5254 cache->pinned += num_bytes;
5255 cache->space_info->bytes_pinned += num_bytes;
5256 if (reserved) {
5257 cache->reserved -= num_bytes;
5258 cache->space_info->bytes_reserved -= num_bytes;
5259 }
5260 spin_unlock(&cache->lock);
5261 spin_unlock(&cache->space_info->lock);
5262
5263 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5264 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5265 if (reserved)
5266 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5267 return 0;
5268 }
5269
5270 /*
5271 * this function must be called within transaction
5272 */
5273 int btrfs_pin_extent(struct btrfs_root *root,
5274 u64 bytenr, u64 num_bytes, int reserved)
5275 {
5276 struct btrfs_block_group_cache *cache;
5277
5278 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5279 BUG_ON(!cache); /* Logic error */
5280
5281 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5282
5283 btrfs_put_block_group(cache);
5284 return 0;
5285 }
5286
5287 /*
5288 * this function must be called within transaction
5289 */
5290 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5291 u64 bytenr, u64 num_bytes)
5292 {
5293 struct btrfs_block_group_cache *cache;
5294 int ret;
5295
5296 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5297 if (!cache)
5298 return -EINVAL;
5299
5300 /*
5301 * pull in the free space cache (if any) so that our pin
5302 * removes the free space from the cache. We have load_only set
5303 * to one because the slow code to read in the free extents does check
5304 * the pinned extents.
5305 */
5306 cache_block_group(cache, 1);
5307
5308 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5309
5310 /* remove us from the free space cache (if we're there at all) */
5311 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5312 btrfs_put_block_group(cache);
5313 return ret;
5314 }
5315
5316 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5317 {
5318 int ret;
5319 struct btrfs_block_group_cache *block_group;
5320 struct btrfs_caching_control *caching_ctl;
5321
5322 block_group = btrfs_lookup_block_group(root->fs_info, start);
5323 if (!block_group)
5324 return -EINVAL;
5325
5326 cache_block_group(block_group, 0);
5327 caching_ctl = get_caching_control(block_group);
5328
5329 if (!caching_ctl) {
5330 /* Logic error */
5331 BUG_ON(!block_group_cache_done(block_group));
5332 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5333 } else {
5334 mutex_lock(&caching_ctl->mutex);
5335
5336 if (start >= caching_ctl->progress) {
5337 ret = add_excluded_extent(root, start, num_bytes);
5338 } else if (start + num_bytes <= caching_ctl->progress) {
5339 ret = btrfs_remove_free_space(block_group,
5340 start, num_bytes);
5341 } else {
5342 num_bytes = caching_ctl->progress - start;
5343 ret = btrfs_remove_free_space(block_group,
5344 start, num_bytes);
5345 if (ret)
5346 goto out_lock;
5347
5348 num_bytes = (start + num_bytes) -
5349 caching_ctl->progress;
5350 start = caching_ctl->progress;
5351 ret = add_excluded_extent(root, start, num_bytes);
5352 }
5353 out_lock:
5354 mutex_unlock(&caching_ctl->mutex);
5355 put_caching_control(caching_ctl);
5356 }
5357 btrfs_put_block_group(block_group);
5358 return ret;
5359 }
5360
5361 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5362 struct extent_buffer *eb)
5363 {
5364 struct btrfs_file_extent_item *item;
5365 struct btrfs_key key;
5366 int found_type;
5367 int i;
5368
5369 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5370 return 0;
5371
5372 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5373 btrfs_item_key_to_cpu(eb, &key, i);
5374 if (key.type != BTRFS_EXTENT_DATA_KEY)
5375 continue;
5376 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5377 found_type = btrfs_file_extent_type(eb, item);
5378 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5379 continue;
5380 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5381 continue;
5382 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5383 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5384 __exclude_logged_extent(log, key.objectid, key.offset);
5385 }
5386
5387 return 0;
5388 }
5389
5390 /**
5391 * btrfs_update_reserved_bytes - update the block_group and space info counters
5392 * @cache: The cache we are manipulating
5393 * @num_bytes: The number of bytes in question
5394 * @reserve: One of the reservation enums
5395 *
5396 * This is called by the allocator when it reserves space, or by somebody who is
5397 * freeing space that was never actually used on disk. For example if you
5398 * reserve some space for a new leaf in transaction A and before transaction A
5399 * commits you free that leaf, you call this with reserve set to 0 in order to
5400 * clear the reservation.
5401 *
5402 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5403 * ENOSPC accounting. For data we handle the reservation through clearing the
5404 * delalloc bits in the io_tree. We have to do this since we could end up
5405 * allocating less disk space for the amount of data we have reserved in the
5406 * case of compression.
5407 *
5408 * If this is a reservation and the block group has become read only we cannot
5409 * make the reservation and return -EAGAIN, otherwise this function always
5410 * succeeds.
5411 */
5412 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5413 u64 num_bytes, int reserve)
5414 {
5415 struct btrfs_space_info *space_info = cache->space_info;
5416 int ret = 0;
5417
5418 spin_lock(&space_info->lock);
5419 spin_lock(&cache->lock);
5420 if (reserve != RESERVE_FREE) {
5421 if (cache->ro) {
5422 ret = -EAGAIN;
5423 } else {
5424 cache->reserved += num_bytes;
5425 space_info->bytes_reserved += num_bytes;
5426 if (reserve == RESERVE_ALLOC) {
5427 trace_btrfs_space_reservation(cache->fs_info,
5428 "space_info", space_info->flags,
5429 num_bytes, 0);
5430 space_info->bytes_may_use -= num_bytes;
5431 }
5432 }
5433 } else {
5434 if (cache->ro)
5435 space_info->bytes_readonly += num_bytes;
5436 cache->reserved -= num_bytes;
5437 space_info->bytes_reserved -= num_bytes;
5438 }
5439 spin_unlock(&cache->lock);
5440 spin_unlock(&space_info->lock);
5441 return ret;
5442 }
5443
5444 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5445 struct btrfs_root *root)
5446 {
5447 struct btrfs_fs_info *fs_info = root->fs_info;
5448 struct btrfs_caching_control *next;
5449 struct btrfs_caching_control *caching_ctl;
5450 struct btrfs_block_group_cache *cache;
5451 struct btrfs_space_info *space_info;
5452
5453 down_write(&fs_info->extent_commit_sem);
5454
5455 list_for_each_entry_safe(caching_ctl, next,
5456 &fs_info->caching_block_groups, list) {
5457 cache = caching_ctl->block_group;
5458 if (block_group_cache_done(cache)) {
5459 cache->last_byte_to_unpin = (u64)-1;
5460 list_del_init(&caching_ctl->list);
5461 put_caching_control(caching_ctl);
5462 } else {
5463 cache->last_byte_to_unpin = caching_ctl->progress;
5464 }
5465 }
5466
5467 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5468 fs_info->pinned_extents = &fs_info->freed_extents[1];
5469 else
5470 fs_info->pinned_extents = &fs_info->freed_extents[0];
5471
5472 up_write(&fs_info->extent_commit_sem);
5473
5474 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5475 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5476
5477 update_global_block_rsv(fs_info);
5478 }
5479
5480 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5481 {
5482 struct btrfs_fs_info *fs_info = root->fs_info;
5483 struct btrfs_block_group_cache *cache = NULL;
5484 struct btrfs_space_info *space_info;
5485 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5486 u64 len;
5487 bool readonly;
5488
5489 while (start <= end) {
5490 readonly = false;
5491 if (!cache ||
5492 start >= cache->key.objectid + cache->key.offset) {
5493 if (cache)
5494 btrfs_put_block_group(cache);
5495 cache = btrfs_lookup_block_group(fs_info, start);
5496 BUG_ON(!cache); /* Logic error */
5497 }
5498
5499 len = cache->key.objectid + cache->key.offset - start;
5500 len = min(len, end + 1 - start);
5501
5502 if (start < cache->last_byte_to_unpin) {
5503 len = min(len, cache->last_byte_to_unpin - start);
5504 btrfs_add_free_space(cache, start, len);
5505 }
5506
5507 start += len;
5508 space_info = cache->space_info;
5509
5510 spin_lock(&space_info->lock);
5511 spin_lock(&cache->lock);
5512 cache->pinned -= len;
5513 space_info->bytes_pinned -= len;
5514 if (cache->ro) {
5515 space_info->bytes_readonly += len;
5516 readonly = true;
5517 }
5518 spin_unlock(&cache->lock);
5519 if (!readonly && global_rsv->space_info == space_info) {
5520 spin_lock(&global_rsv->lock);
5521 if (!global_rsv->full) {
5522 len = min(len, global_rsv->size -
5523 global_rsv->reserved);
5524 global_rsv->reserved += len;
5525 space_info->bytes_may_use += len;
5526 if (global_rsv->reserved >= global_rsv->size)
5527 global_rsv->full = 1;
5528 }
5529 spin_unlock(&global_rsv->lock);
5530 }
5531 spin_unlock(&space_info->lock);
5532 }
5533
5534 if (cache)
5535 btrfs_put_block_group(cache);
5536 return 0;
5537 }
5538
5539 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5540 struct btrfs_root *root)
5541 {
5542 struct btrfs_fs_info *fs_info = root->fs_info;
5543 struct extent_io_tree *unpin;
5544 u64 start;
5545 u64 end;
5546 int ret;
5547
5548 if (trans->aborted)
5549 return 0;
5550
5551 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5552 unpin = &fs_info->freed_extents[1];
5553 else
5554 unpin = &fs_info->freed_extents[0];
5555
5556 while (1) {
5557 ret = find_first_extent_bit(unpin, 0, &start, &end,
5558 EXTENT_DIRTY, NULL);
5559 if (ret)
5560 break;
5561
5562 if (btrfs_test_opt(root, DISCARD))
5563 ret = btrfs_discard_extent(root, start,
5564 end + 1 - start, NULL);
5565
5566 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5567 unpin_extent_range(root, start, end);
5568 cond_resched();
5569 }
5570
5571 return 0;
5572 }
5573
5574 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5575 u64 owner, u64 root_objectid)
5576 {
5577 struct btrfs_space_info *space_info;
5578 u64 flags;
5579
5580 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5581 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5582 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5583 else
5584 flags = BTRFS_BLOCK_GROUP_METADATA;
5585 } else {
5586 flags = BTRFS_BLOCK_GROUP_DATA;
5587 }
5588
5589 space_info = __find_space_info(fs_info, flags);
5590 BUG_ON(!space_info); /* Logic bug */
5591 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5592 }
5593
5594
5595 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5596 struct btrfs_root *root,
5597 u64 bytenr, u64 num_bytes, u64 parent,
5598 u64 root_objectid, u64 owner_objectid,
5599 u64 owner_offset, int refs_to_drop,
5600 struct btrfs_delayed_extent_op *extent_op)
5601 {
5602 struct btrfs_key key;
5603 struct btrfs_path *path;
5604 struct btrfs_fs_info *info = root->fs_info;
5605 struct btrfs_root *extent_root = info->extent_root;
5606 struct extent_buffer *leaf;
5607 struct btrfs_extent_item *ei;
5608 struct btrfs_extent_inline_ref *iref;
5609 int ret;
5610 int is_data;
5611 int extent_slot = 0;
5612 int found_extent = 0;
5613 int num_to_del = 1;
5614 u32 item_size;
5615 u64 refs;
5616 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5617 SKINNY_METADATA);
5618
5619 path = btrfs_alloc_path();
5620 if (!path)
5621 return -ENOMEM;
5622
5623 path->reada = 1;
5624 path->leave_spinning = 1;
5625
5626 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5627 BUG_ON(!is_data && refs_to_drop != 1);
5628
5629 if (is_data)
5630 skinny_metadata = 0;
5631
5632 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5633 bytenr, num_bytes, parent,
5634 root_objectid, owner_objectid,
5635 owner_offset);
5636 if (ret == 0) {
5637 extent_slot = path->slots[0];
5638 while (extent_slot >= 0) {
5639 btrfs_item_key_to_cpu(path->nodes[0], &key,
5640 extent_slot);
5641 if (key.objectid != bytenr)
5642 break;
5643 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5644 key.offset == num_bytes) {
5645 found_extent = 1;
5646 break;
5647 }
5648 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5649 key.offset == owner_objectid) {
5650 found_extent = 1;
5651 break;
5652 }
5653 if (path->slots[0] - extent_slot > 5)
5654 break;
5655 extent_slot--;
5656 }
5657 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5658 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5659 if (found_extent && item_size < sizeof(*ei))
5660 found_extent = 0;
5661 #endif
5662 if (!found_extent) {
5663 BUG_ON(iref);
5664 ret = remove_extent_backref(trans, extent_root, path,
5665 NULL, refs_to_drop,
5666 is_data);
5667 if (ret) {
5668 btrfs_abort_transaction(trans, extent_root, ret);
5669 goto out;
5670 }
5671 btrfs_release_path(path);
5672 path->leave_spinning = 1;
5673
5674 key.objectid = bytenr;
5675 key.type = BTRFS_EXTENT_ITEM_KEY;
5676 key.offset = num_bytes;
5677
5678 if (!is_data && skinny_metadata) {
5679 key.type = BTRFS_METADATA_ITEM_KEY;
5680 key.offset = owner_objectid;
5681 }
5682
5683 ret = btrfs_search_slot(trans, extent_root,
5684 &key, path, -1, 1);
5685 if (ret > 0 && skinny_metadata && path->slots[0]) {
5686 /*
5687 * Couldn't find our skinny metadata item,
5688 * see if we have ye olde extent item.
5689 */
5690 path->slots[0]--;
5691 btrfs_item_key_to_cpu(path->nodes[0], &key,
5692 path->slots[0]);
5693 if (key.objectid == bytenr &&
5694 key.type == BTRFS_EXTENT_ITEM_KEY &&
5695 key.offset == num_bytes)
5696 ret = 0;
5697 }
5698
5699 if (ret > 0 && skinny_metadata) {
5700 skinny_metadata = false;
5701 key.type = BTRFS_EXTENT_ITEM_KEY;
5702 key.offset = num_bytes;
5703 btrfs_release_path(path);
5704 ret = btrfs_search_slot(trans, extent_root,
5705 &key, path, -1, 1);
5706 }
5707
5708 if (ret) {
5709 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5710 ret, bytenr);
5711 if (ret > 0)
5712 btrfs_print_leaf(extent_root,
5713 path->nodes[0]);
5714 }
5715 if (ret < 0) {
5716 btrfs_abort_transaction(trans, extent_root, ret);
5717 goto out;
5718 }
5719 extent_slot = path->slots[0];
5720 }
5721 } else if (ret == -ENOENT) {
5722 btrfs_print_leaf(extent_root, path->nodes[0]);
5723 WARN_ON(1);
5724 btrfs_err(info,
5725 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5726 bytenr, parent, root_objectid, owner_objectid,
5727 owner_offset);
5728 } else {
5729 btrfs_abort_transaction(trans, extent_root, ret);
5730 goto out;
5731 }
5732
5733 leaf = path->nodes[0];
5734 item_size = btrfs_item_size_nr(leaf, extent_slot);
5735 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5736 if (item_size < sizeof(*ei)) {
5737 BUG_ON(found_extent || extent_slot != path->slots[0]);
5738 ret = convert_extent_item_v0(trans, extent_root, path,
5739 owner_objectid, 0);
5740 if (ret < 0) {
5741 btrfs_abort_transaction(trans, extent_root, ret);
5742 goto out;
5743 }
5744
5745 btrfs_release_path(path);
5746 path->leave_spinning = 1;
5747
5748 key.objectid = bytenr;
5749 key.type = BTRFS_EXTENT_ITEM_KEY;
5750 key.offset = num_bytes;
5751
5752 ret = btrfs_search_slot(trans, extent_root, &key, path,
5753 -1, 1);
5754 if (ret) {
5755 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5756 ret, bytenr);
5757 btrfs_print_leaf(extent_root, path->nodes[0]);
5758 }
5759 if (ret < 0) {
5760 btrfs_abort_transaction(trans, extent_root, ret);
5761 goto out;
5762 }
5763
5764 extent_slot = path->slots[0];
5765 leaf = path->nodes[0];
5766 item_size = btrfs_item_size_nr(leaf, extent_slot);
5767 }
5768 #endif
5769 BUG_ON(item_size < sizeof(*ei));
5770 ei = btrfs_item_ptr(leaf, extent_slot,
5771 struct btrfs_extent_item);
5772 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5773 key.type == BTRFS_EXTENT_ITEM_KEY) {
5774 struct btrfs_tree_block_info *bi;
5775 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5776 bi = (struct btrfs_tree_block_info *)(ei + 1);
5777 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5778 }
5779
5780 refs = btrfs_extent_refs(leaf, ei);
5781 if (refs < refs_to_drop) {
5782 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5783 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5784 ret = -EINVAL;
5785 btrfs_abort_transaction(trans, extent_root, ret);
5786 goto out;
5787 }
5788 refs -= refs_to_drop;
5789
5790 if (refs > 0) {
5791 if (extent_op)
5792 __run_delayed_extent_op(extent_op, leaf, ei);
5793 /*
5794 * In the case of inline back ref, reference count will
5795 * be updated by remove_extent_backref
5796 */
5797 if (iref) {
5798 BUG_ON(!found_extent);
5799 } else {
5800 btrfs_set_extent_refs(leaf, ei, refs);
5801 btrfs_mark_buffer_dirty(leaf);
5802 }
5803 if (found_extent) {
5804 ret = remove_extent_backref(trans, extent_root, path,
5805 iref, refs_to_drop,
5806 is_data);
5807 if (ret) {
5808 btrfs_abort_transaction(trans, extent_root, ret);
5809 goto out;
5810 }
5811 }
5812 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5813 root_objectid);
5814 } else {
5815 if (found_extent) {
5816 BUG_ON(is_data && refs_to_drop !=
5817 extent_data_ref_count(root, path, iref));
5818 if (iref) {
5819 BUG_ON(path->slots[0] != extent_slot);
5820 } else {
5821 BUG_ON(path->slots[0] != extent_slot + 1);
5822 path->slots[0] = extent_slot;
5823 num_to_del = 2;
5824 }
5825 }
5826
5827 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5828 num_to_del);
5829 if (ret) {
5830 btrfs_abort_transaction(trans, extent_root, ret);
5831 goto out;
5832 }
5833 btrfs_release_path(path);
5834
5835 if (is_data) {
5836 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5837 if (ret) {
5838 btrfs_abort_transaction(trans, extent_root, ret);
5839 goto out;
5840 }
5841 }
5842
5843 ret = update_block_group(root, bytenr, num_bytes, 0);
5844 if (ret) {
5845 btrfs_abort_transaction(trans, extent_root, ret);
5846 goto out;
5847 }
5848 }
5849 out:
5850 btrfs_free_path(path);
5851 return ret;
5852 }
5853
5854 /*
5855 * when we free an block, it is possible (and likely) that we free the last
5856 * delayed ref for that extent as well. This searches the delayed ref tree for
5857 * a given extent, and if there are no other delayed refs to be processed, it
5858 * removes it from the tree.
5859 */
5860 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5861 struct btrfs_root *root, u64 bytenr)
5862 {
5863 struct btrfs_delayed_ref_head *head;
5864 struct btrfs_delayed_ref_root *delayed_refs;
5865 struct btrfs_delayed_ref_node *ref;
5866 struct rb_node *node;
5867 int ret = 0;
5868
5869 delayed_refs = &trans->transaction->delayed_refs;
5870 spin_lock(&delayed_refs->lock);
5871 head = btrfs_find_delayed_ref_head(trans, bytenr);
5872 if (!head)
5873 goto out;
5874
5875 node = rb_prev(&head->node.rb_node);
5876 if (!node)
5877 goto out;
5878
5879 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5880
5881 /* there are still entries for this ref, we can't drop it */
5882 if (ref->bytenr == bytenr)
5883 goto out;
5884
5885 if (head->extent_op) {
5886 if (!head->must_insert_reserved)
5887 goto out;
5888 btrfs_free_delayed_extent_op(head->extent_op);
5889 head->extent_op = NULL;
5890 }
5891
5892 /*
5893 * waiting for the lock here would deadlock. If someone else has it
5894 * locked they are already in the process of dropping it anyway
5895 */
5896 if (!mutex_trylock(&head->mutex))
5897 goto out;
5898
5899 /*
5900 * at this point we have a head with no other entries. Go
5901 * ahead and process it.
5902 */
5903 head->node.in_tree = 0;
5904 rb_erase(&head->node.rb_node, &delayed_refs->root);
5905
5906 delayed_refs->num_entries--;
5907
5908 /*
5909 * we don't take a ref on the node because we're removing it from the
5910 * tree, so we just steal the ref the tree was holding.
5911 */
5912 delayed_refs->num_heads--;
5913 if (list_empty(&head->cluster))
5914 delayed_refs->num_heads_ready--;
5915
5916 list_del_init(&head->cluster);
5917 spin_unlock(&delayed_refs->lock);
5918
5919 BUG_ON(head->extent_op);
5920 if (head->must_insert_reserved)
5921 ret = 1;
5922
5923 mutex_unlock(&head->mutex);
5924 btrfs_put_delayed_ref(&head->node);
5925 return ret;
5926 out:
5927 spin_unlock(&delayed_refs->lock);
5928 return 0;
5929 }
5930
5931 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5932 struct btrfs_root *root,
5933 struct extent_buffer *buf,
5934 u64 parent, int last_ref)
5935 {
5936 struct btrfs_block_group_cache *cache = NULL;
5937 int pin = 1;
5938 int ret;
5939
5940 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5941 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5942 buf->start, buf->len,
5943 parent, root->root_key.objectid,
5944 btrfs_header_level(buf),
5945 BTRFS_DROP_DELAYED_REF, NULL, 0);
5946 BUG_ON(ret); /* -ENOMEM */
5947 }
5948
5949 if (!last_ref)
5950 return;
5951
5952 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5953
5954 if (btrfs_header_generation(buf) == trans->transid) {
5955 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5956 ret = check_ref_cleanup(trans, root, buf->start);
5957 if (!ret)
5958 goto out;
5959 }
5960
5961 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5962 pin_down_extent(root, cache, buf->start, buf->len, 1);
5963 goto out;
5964 }
5965
5966 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5967
5968 btrfs_add_free_space(cache, buf->start, buf->len);
5969 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5970 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
5971 pin = 0;
5972 }
5973 out:
5974 if (pin)
5975 add_pinned_bytes(root->fs_info, buf->len,
5976 btrfs_header_level(buf),
5977 root->root_key.objectid);
5978
5979 /*
5980 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5981 * anymore.
5982 */
5983 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5984 btrfs_put_block_group(cache);
5985 }
5986
5987 /* Can return -ENOMEM */
5988 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5989 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5990 u64 owner, u64 offset, int for_cow)
5991 {
5992 int ret;
5993 struct btrfs_fs_info *fs_info = root->fs_info;
5994
5995 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
5996
5997 /*
5998 * tree log blocks never actually go into the extent allocation
5999 * tree, just update pinning info and exit early.
6000 */
6001 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6002 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6003 /* unlocks the pinned mutex */
6004 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6005 ret = 0;
6006 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6007 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6008 num_bytes,
6009 parent, root_objectid, (int)owner,
6010 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6011 } else {
6012 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6013 num_bytes,
6014 parent, root_objectid, owner,
6015 offset, BTRFS_DROP_DELAYED_REF,
6016 NULL, for_cow);
6017 }
6018 return ret;
6019 }
6020
6021 static u64 stripe_align(struct btrfs_root *root,
6022 struct btrfs_block_group_cache *cache,
6023 u64 val, u64 num_bytes)
6024 {
6025 u64 ret = ALIGN(val, root->stripesize);
6026 return ret;
6027 }
6028
6029 /*
6030 * when we wait for progress in the block group caching, its because
6031 * our allocation attempt failed at least once. So, we must sleep
6032 * and let some progress happen before we try again.
6033 *
6034 * This function will sleep at least once waiting for new free space to
6035 * show up, and then it will check the block group free space numbers
6036 * for our min num_bytes. Another option is to have it go ahead
6037 * and look in the rbtree for a free extent of a given size, but this
6038 * is a good start.
6039 *
6040 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6041 * any of the information in this block group.
6042 */
6043 static noinline void
6044 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6045 u64 num_bytes)
6046 {
6047 struct btrfs_caching_control *caching_ctl;
6048
6049 caching_ctl = get_caching_control(cache);
6050 if (!caching_ctl)
6051 return;
6052
6053 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6054 (cache->free_space_ctl->free_space >= num_bytes));
6055
6056 put_caching_control(caching_ctl);
6057 }
6058
6059 static noinline int
6060 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6061 {
6062 struct btrfs_caching_control *caching_ctl;
6063 int ret = 0;
6064
6065 caching_ctl = get_caching_control(cache);
6066 if (!caching_ctl)
6067 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6068
6069 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6070 if (cache->cached == BTRFS_CACHE_ERROR)
6071 ret = -EIO;
6072 put_caching_control(caching_ctl);
6073 return ret;
6074 }
6075
6076 int __get_raid_index(u64 flags)
6077 {
6078 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6079 return BTRFS_RAID_RAID10;
6080 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6081 return BTRFS_RAID_RAID1;
6082 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6083 return BTRFS_RAID_DUP;
6084 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6085 return BTRFS_RAID_RAID0;
6086 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6087 return BTRFS_RAID_RAID5;
6088 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6089 return BTRFS_RAID_RAID6;
6090
6091 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6092 }
6093
6094 static int get_block_group_index(struct btrfs_block_group_cache *cache)
6095 {
6096 return __get_raid_index(cache->flags);
6097 }
6098
6099 enum btrfs_loop_type {
6100 LOOP_CACHING_NOWAIT = 0,
6101 LOOP_CACHING_WAIT = 1,
6102 LOOP_ALLOC_CHUNK = 2,
6103 LOOP_NO_EMPTY_SIZE = 3,
6104 };
6105
6106 /*
6107 * walks the btree of allocated extents and find a hole of a given size.
6108 * The key ins is changed to record the hole:
6109 * ins->objectid == start position
6110 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6111 * ins->offset == the size of the hole.
6112 * Any available blocks before search_start are skipped.
6113 *
6114 * If there is no suitable free space, we will record the max size of
6115 * the free space extent currently.
6116 */
6117 static noinline int find_free_extent(struct btrfs_root *orig_root,
6118 u64 num_bytes, u64 empty_size,
6119 u64 hint_byte, struct btrfs_key *ins,
6120 u64 flags)
6121 {
6122 int ret = 0;
6123 struct btrfs_root *root = orig_root->fs_info->extent_root;
6124 struct btrfs_free_cluster *last_ptr = NULL;
6125 struct btrfs_block_group_cache *block_group = NULL;
6126 struct btrfs_block_group_cache *used_block_group;
6127 u64 search_start = 0;
6128 u64 max_extent_size = 0;
6129 int empty_cluster = 2 * 1024 * 1024;
6130 struct btrfs_space_info *space_info;
6131 int loop = 0;
6132 int index = __get_raid_index(flags);
6133 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6134 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6135 bool found_uncached_bg = false;
6136 bool failed_cluster_refill = false;
6137 bool failed_alloc = false;
6138 bool use_cluster = true;
6139 bool have_caching_bg = false;
6140
6141 WARN_ON(num_bytes < root->sectorsize);
6142 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6143 ins->objectid = 0;
6144 ins->offset = 0;
6145
6146 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6147
6148 space_info = __find_space_info(root->fs_info, flags);
6149 if (!space_info) {
6150 btrfs_err(root->fs_info, "No space info for %llu", flags);
6151 return -ENOSPC;
6152 }
6153
6154 /*
6155 * If the space info is for both data and metadata it means we have a
6156 * small filesystem and we can't use the clustering stuff.
6157 */
6158 if (btrfs_mixed_space_info(space_info))
6159 use_cluster = false;
6160
6161 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6162 last_ptr = &root->fs_info->meta_alloc_cluster;
6163 if (!btrfs_test_opt(root, SSD))
6164 empty_cluster = 64 * 1024;
6165 }
6166
6167 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6168 btrfs_test_opt(root, SSD)) {
6169 last_ptr = &root->fs_info->data_alloc_cluster;
6170 }
6171
6172 if (last_ptr) {
6173 spin_lock(&last_ptr->lock);
6174 if (last_ptr->block_group)
6175 hint_byte = last_ptr->window_start;
6176 spin_unlock(&last_ptr->lock);
6177 }
6178
6179 search_start = max(search_start, first_logical_byte(root, 0));
6180 search_start = max(search_start, hint_byte);
6181
6182 if (!last_ptr)
6183 empty_cluster = 0;
6184
6185 if (search_start == hint_byte) {
6186 block_group = btrfs_lookup_block_group(root->fs_info,
6187 search_start);
6188 used_block_group = block_group;
6189 /*
6190 * we don't want to use the block group if it doesn't match our
6191 * allocation bits, or if its not cached.
6192 *
6193 * However if we are re-searching with an ideal block group
6194 * picked out then we don't care that the block group is cached.
6195 */
6196 if (block_group && block_group_bits(block_group, flags) &&
6197 block_group->cached != BTRFS_CACHE_NO) {
6198 down_read(&space_info->groups_sem);
6199 if (list_empty(&block_group->list) ||
6200 block_group->ro) {
6201 /*
6202 * someone is removing this block group,
6203 * we can't jump into the have_block_group
6204 * target because our list pointers are not
6205 * valid
6206 */
6207 btrfs_put_block_group(block_group);
6208 up_read(&space_info->groups_sem);
6209 } else {
6210 index = get_block_group_index(block_group);
6211 goto have_block_group;
6212 }
6213 } else if (block_group) {
6214 btrfs_put_block_group(block_group);
6215 }
6216 }
6217 search:
6218 have_caching_bg = false;
6219 down_read(&space_info->groups_sem);
6220 list_for_each_entry(block_group, &space_info->block_groups[index],
6221 list) {
6222 u64 offset;
6223 int cached;
6224
6225 used_block_group = block_group;
6226 btrfs_get_block_group(block_group);
6227 search_start = block_group->key.objectid;
6228
6229 /*
6230 * this can happen if we end up cycling through all the
6231 * raid types, but we want to make sure we only allocate
6232 * for the proper type.
6233 */
6234 if (!block_group_bits(block_group, flags)) {
6235 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6236 BTRFS_BLOCK_GROUP_RAID1 |
6237 BTRFS_BLOCK_GROUP_RAID5 |
6238 BTRFS_BLOCK_GROUP_RAID6 |
6239 BTRFS_BLOCK_GROUP_RAID10;
6240
6241 /*
6242 * if they asked for extra copies and this block group
6243 * doesn't provide them, bail. This does allow us to
6244 * fill raid0 from raid1.
6245 */
6246 if ((flags & extra) && !(block_group->flags & extra))
6247 goto loop;
6248 }
6249
6250 have_block_group:
6251 cached = block_group_cache_done(block_group);
6252 if (unlikely(!cached)) {
6253 found_uncached_bg = true;
6254 ret = cache_block_group(block_group, 0);
6255 BUG_ON(ret < 0);
6256 ret = 0;
6257 }
6258
6259 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6260 goto loop;
6261 if (unlikely(block_group->ro))
6262 goto loop;
6263
6264 /*
6265 * Ok we want to try and use the cluster allocator, so
6266 * lets look there
6267 */
6268 if (last_ptr) {
6269 unsigned long aligned_cluster;
6270 /*
6271 * the refill lock keeps out other
6272 * people trying to start a new cluster
6273 */
6274 spin_lock(&last_ptr->refill_lock);
6275 used_block_group = last_ptr->block_group;
6276 if (used_block_group != block_group &&
6277 (!used_block_group ||
6278 used_block_group->ro ||
6279 !block_group_bits(used_block_group, flags))) {
6280 used_block_group = block_group;
6281 goto refill_cluster;
6282 }
6283
6284 if (used_block_group != block_group)
6285 btrfs_get_block_group(used_block_group);
6286
6287 offset = btrfs_alloc_from_cluster(used_block_group,
6288 last_ptr,
6289 num_bytes,
6290 used_block_group->key.objectid,
6291 &max_extent_size);
6292 if (offset) {
6293 /* we have a block, we're done */
6294 spin_unlock(&last_ptr->refill_lock);
6295 trace_btrfs_reserve_extent_cluster(root,
6296 block_group, search_start, num_bytes);
6297 goto checks;
6298 }
6299
6300 WARN_ON(last_ptr->block_group != used_block_group);
6301 if (used_block_group != block_group) {
6302 btrfs_put_block_group(used_block_group);
6303 used_block_group = block_group;
6304 }
6305 refill_cluster:
6306 BUG_ON(used_block_group != block_group);
6307 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6308 * set up a new clusters, so lets just skip it
6309 * and let the allocator find whatever block
6310 * it can find. If we reach this point, we
6311 * will have tried the cluster allocator
6312 * plenty of times and not have found
6313 * anything, so we are likely way too
6314 * fragmented for the clustering stuff to find
6315 * anything.
6316 *
6317 * However, if the cluster is taken from the
6318 * current block group, release the cluster
6319 * first, so that we stand a better chance of
6320 * succeeding in the unclustered
6321 * allocation. */
6322 if (loop >= LOOP_NO_EMPTY_SIZE &&
6323 last_ptr->block_group != block_group) {
6324 spin_unlock(&last_ptr->refill_lock);
6325 goto unclustered_alloc;
6326 }
6327
6328 /*
6329 * this cluster didn't work out, free it and
6330 * start over
6331 */
6332 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6333
6334 if (loop >= LOOP_NO_EMPTY_SIZE) {
6335 spin_unlock(&last_ptr->refill_lock);
6336 goto unclustered_alloc;
6337 }
6338
6339 aligned_cluster = max_t(unsigned long,
6340 empty_cluster + empty_size,
6341 block_group->full_stripe_len);
6342
6343 /* allocate a cluster in this block group */
6344 ret = btrfs_find_space_cluster(root, block_group,
6345 last_ptr, search_start,
6346 num_bytes,
6347 aligned_cluster);
6348 if (ret == 0) {
6349 /*
6350 * now pull our allocation out of this
6351 * cluster
6352 */
6353 offset = btrfs_alloc_from_cluster(block_group,
6354 last_ptr,
6355 num_bytes,
6356 search_start,
6357 &max_extent_size);
6358 if (offset) {
6359 /* we found one, proceed */
6360 spin_unlock(&last_ptr->refill_lock);
6361 trace_btrfs_reserve_extent_cluster(root,
6362 block_group, search_start,
6363 num_bytes);
6364 goto checks;
6365 }
6366 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6367 && !failed_cluster_refill) {
6368 spin_unlock(&last_ptr->refill_lock);
6369
6370 failed_cluster_refill = true;
6371 wait_block_group_cache_progress(block_group,
6372 num_bytes + empty_cluster + empty_size);
6373 goto have_block_group;
6374 }
6375
6376 /*
6377 * at this point we either didn't find a cluster
6378 * or we weren't able to allocate a block from our
6379 * cluster. Free the cluster we've been trying
6380 * to use, and go to the next block group
6381 */
6382 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6383 spin_unlock(&last_ptr->refill_lock);
6384 goto loop;
6385 }
6386
6387 unclustered_alloc:
6388 spin_lock(&block_group->free_space_ctl->tree_lock);
6389 if (cached &&
6390 block_group->free_space_ctl->free_space <
6391 num_bytes + empty_cluster + empty_size) {
6392 if (block_group->free_space_ctl->free_space >
6393 max_extent_size)
6394 max_extent_size =
6395 block_group->free_space_ctl->free_space;
6396 spin_unlock(&block_group->free_space_ctl->tree_lock);
6397 goto loop;
6398 }
6399 spin_unlock(&block_group->free_space_ctl->tree_lock);
6400
6401 offset = btrfs_find_space_for_alloc(block_group, search_start,
6402 num_bytes, empty_size,
6403 &max_extent_size);
6404 /*
6405 * If we didn't find a chunk, and we haven't failed on this
6406 * block group before, and this block group is in the middle of
6407 * caching and we are ok with waiting, then go ahead and wait
6408 * for progress to be made, and set failed_alloc to true.
6409 *
6410 * If failed_alloc is true then we've already waited on this
6411 * block group once and should move on to the next block group.
6412 */
6413 if (!offset && !failed_alloc && !cached &&
6414 loop > LOOP_CACHING_NOWAIT) {
6415 wait_block_group_cache_progress(block_group,
6416 num_bytes + empty_size);
6417 failed_alloc = true;
6418 goto have_block_group;
6419 } else if (!offset) {
6420 if (!cached)
6421 have_caching_bg = true;
6422 goto loop;
6423 }
6424 checks:
6425 search_start = stripe_align(root, used_block_group,
6426 offset, num_bytes);
6427
6428 /* move on to the next group */
6429 if (search_start + num_bytes >
6430 used_block_group->key.objectid + used_block_group->key.offset) {
6431 btrfs_add_free_space(used_block_group, offset, num_bytes);
6432 goto loop;
6433 }
6434
6435 if (offset < search_start)
6436 btrfs_add_free_space(used_block_group, offset,
6437 search_start - offset);
6438 BUG_ON(offset > search_start);
6439
6440 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6441 alloc_type);
6442 if (ret == -EAGAIN) {
6443 btrfs_add_free_space(used_block_group, offset, num_bytes);
6444 goto loop;
6445 }
6446
6447 /* we are all good, lets return */
6448 ins->objectid = search_start;
6449 ins->offset = num_bytes;
6450
6451 trace_btrfs_reserve_extent(orig_root, block_group,
6452 search_start, num_bytes);
6453 if (used_block_group != block_group)
6454 btrfs_put_block_group(used_block_group);
6455 btrfs_put_block_group(block_group);
6456 break;
6457 loop:
6458 failed_cluster_refill = false;
6459 failed_alloc = false;
6460 BUG_ON(index != get_block_group_index(block_group));
6461 if (used_block_group != block_group)
6462 btrfs_put_block_group(used_block_group);
6463 btrfs_put_block_group(block_group);
6464 }
6465 up_read(&space_info->groups_sem);
6466
6467 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6468 goto search;
6469
6470 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6471 goto search;
6472
6473 /*
6474 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6475 * caching kthreads as we move along
6476 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6477 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6478 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6479 * again
6480 */
6481 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6482 index = 0;
6483 loop++;
6484 if (loop == LOOP_ALLOC_CHUNK) {
6485 struct btrfs_trans_handle *trans;
6486
6487 trans = btrfs_join_transaction(root);
6488 if (IS_ERR(trans)) {
6489 ret = PTR_ERR(trans);
6490 goto out;
6491 }
6492
6493 ret = do_chunk_alloc(trans, root, flags,
6494 CHUNK_ALLOC_FORCE);
6495 /*
6496 * Do not bail out on ENOSPC since we
6497 * can do more things.
6498 */
6499 if (ret < 0 && ret != -ENOSPC)
6500 btrfs_abort_transaction(trans,
6501 root, ret);
6502 else
6503 ret = 0;
6504 btrfs_end_transaction(trans, root);
6505 if (ret)
6506 goto out;
6507 }
6508
6509 if (loop == LOOP_NO_EMPTY_SIZE) {
6510 empty_size = 0;
6511 empty_cluster = 0;
6512 }
6513
6514 goto search;
6515 } else if (!ins->objectid) {
6516 ret = -ENOSPC;
6517 } else if (ins->objectid) {
6518 ret = 0;
6519 }
6520 out:
6521 if (ret == -ENOSPC)
6522 ins->offset = max_extent_size;
6523 return ret;
6524 }
6525
6526 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6527 int dump_block_groups)
6528 {
6529 struct btrfs_block_group_cache *cache;
6530 int index = 0;
6531
6532 spin_lock(&info->lock);
6533 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6534 info->flags,
6535 info->total_bytes - info->bytes_used - info->bytes_pinned -
6536 info->bytes_reserved - info->bytes_readonly,
6537 (info->full) ? "" : "not ");
6538 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6539 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6540 info->total_bytes, info->bytes_used, info->bytes_pinned,
6541 info->bytes_reserved, info->bytes_may_use,
6542 info->bytes_readonly);
6543 spin_unlock(&info->lock);
6544
6545 if (!dump_block_groups)
6546 return;
6547
6548 down_read(&info->groups_sem);
6549 again:
6550 list_for_each_entry(cache, &info->block_groups[index], list) {
6551 spin_lock(&cache->lock);
6552 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6553 cache->key.objectid, cache->key.offset,
6554 btrfs_block_group_used(&cache->item), cache->pinned,
6555 cache->reserved, cache->ro ? "[readonly]" : "");
6556 btrfs_dump_free_space(cache, bytes);
6557 spin_unlock(&cache->lock);
6558 }
6559 if (++index < BTRFS_NR_RAID_TYPES)
6560 goto again;
6561 up_read(&info->groups_sem);
6562 }
6563
6564 int btrfs_reserve_extent(struct btrfs_root *root,
6565 u64 num_bytes, u64 min_alloc_size,
6566 u64 empty_size, u64 hint_byte,
6567 struct btrfs_key *ins, int is_data)
6568 {
6569 bool final_tried = false;
6570 u64 flags;
6571 int ret;
6572
6573 flags = btrfs_get_alloc_profile(root, is_data);
6574 again:
6575 WARN_ON(num_bytes < root->sectorsize);
6576 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6577 flags);
6578
6579 if (ret == -ENOSPC) {
6580 if (!final_tried && ins->offset) {
6581 num_bytes = min(num_bytes >> 1, ins->offset);
6582 num_bytes = round_down(num_bytes, root->sectorsize);
6583 num_bytes = max(num_bytes, min_alloc_size);
6584 if (num_bytes == min_alloc_size)
6585 final_tried = true;
6586 goto again;
6587 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6588 struct btrfs_space_info *sinfo;
6589
6590 sinfo = __find_space_info(root->fs_info, flags);
6591 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6592 flags, num_bytes);
6593 if (sinfo)
6594 dump_space_info(sinfo, num_bytes, 1);
6595 }
6596 }
6597
6598 return ret;
6599 }
6600
6601 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6602 u64 start, u64 len, int pin)
6603 {
6604 struct btrfs_block_group_cache *cache;
6605 int ret = 0;
6606
6607 cache = btrfs_lookup_block_group(root->fs_info, start);
6608 if (!cache) {
6609 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6610 start);
6611 return -ENOSPC;
6612 }
6613
6614 if (btrfs_test_opt(root, DISCARD))
6615 ret = btrfs_discard_extent(root, start, len, NULL);
6616
6617 if (pin)
6618 pin_down_extent(root, cache, start, len, 1);
6619 else {
6620 btrfs_add_free_space(cache, start, len);
6621 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6622 }
6623 btrfs_put_block_group(cache);
6624
6625 trace_btrfs_reserved_extent_free(root, start, len);
6626
6627 return ret;
6628 }
6629
6630 int btrfs_free_reserved_extent(struct btrfs_root *root,
6631 u64 start, u64 len)
6632 {
6633 return __btrfs_free_reserved_extent(root, start, len, 0);
6634 }
6635
6636 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6637 u64 start, u64 len)
6638 {
6639 return __btrfs_free_reserved_extent(root, start, len, 1);
6640 }
6641
6642 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6643 struct btrfs_root *root,
6644 u64 parent, u64 root_objectid,
6645 u64 flags, u64 owner, u64 offset,
6646 struct btrfs_key *ins, int ref_mod)
6647 {
6648 int ret;
6649 struct btrfs_fs_info *fs_info = root->fs_info;
6650 struct btrfs_extent_item *extent_item;
6651 struct btrfs_extent_inline_ref *iref;
6652 struct btrfs_path *path;
6653 struct extent_buffer *leaf;
6654 int type;
6655 u32 size;
6656
6657 if (parent > 0)
6658 type = BTRFS_SHARED_DATA_REF_KEY;
6659 else
6660 type = BTRFS_EXTENT_DATA_REF_KEY;
6661
6662 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6663
6664 path = btrfs_alloc_path();
6665 if (!path)
6666 return -ENOMEM;
6667
6668 path->leave_spinning = 1;
6669 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6670 ins, size);
6671 if (ret) {
6672 btrfs_free_path(path);
6673 return ret;
6674 }
6675
6676 leaf = path->nodes[0];
6677 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6678 struct btrfs_extent_item);
6679 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6680 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6681 btrfs_set_extent_flags(leaf, extent_item,
6682 flags | BTRFS_EXTENT_FLAG_DATA);
6683
6684 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6685 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6686 if (parent > 0) {
6687 struct btrfs_shared_data_ref *ref;
6688 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6689 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6690 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6691 } else {
6692 struct btrfs_extent_data_ref *ref;
6693 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6694 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6695 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6696 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6697 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6698 }
6699
6700 btrfs_mark_buffer_dirty(path->nodes[0]);
6701 btrfs_free_path(path);
6702
6703 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6704 if (ret) { /* -ENOENT, logic error */
6705 btrfs_err(fs_info, "update block group failed for %llu %llu",
6706 ins->objectid, ins->offset);
6707 BUG();
6708 }
6709 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6710 return ret;
6711 }
6712
6713 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6714 struct btrfs_root *root,
6715 u64 parent, u64 root_objectid,
6716 u64 flags, struct btrfs_disk_key *key,
6717 int level, struct btrfs_key *ins)
6718 {
6719 int ret;
6720 struct btrfs_fs_info *fs_info = root->fs_info;
6721 struct btrfs_extent_item *extent_item;
6722 struct btrfs_tree_block_info *block_info;
6723 struct btrfs_extent_inline_ref *iref;
6724 struct btrfs_path *path;
6725 struct extent_buffer *leaf;
6726 u32 size = sizeof(*extent_item) + sizeof(*iref);
6727 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6728 SKINNY_METADATA);
6729
6730 if (!skinny_metadata)
6731 size += sizeof(*block_info);
6732
6733 path = btrfs_alloc_path();
6734 if (!path)
6735 return -ENOMEM;
6736
6737 path->leave_spinning = 1;
6738 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6739 ins, size);
6740 if (ret) {
6741 btrfs_free_path(path);
6742 return ret;
6743 }
6744
6745 leaf = path->nodes[0];
6746 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6747 struct btrfs_extent_item);
6748 btrfs_set_extent_refs(leaf, extent_item, 1);
6749 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6750 btrfs_set_extent_flags(leaf, extent_item,
6751 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6752
6753 if (skinny_metadata) {
6754 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6755 } else {
6756 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6757 btrfs_set_tree_block_key(leaf, block_info, key);
6758 btrfs_set_tree_block_level(leaf, block_info, level);
6759 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6760 }
6761
6762 if (parent > 0) {
6763 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6764 btrfs_set_extent_inline_ref_type(leaf, iref,
6765 BTRFS_SHARED_BLOCK_REF_KEY);
6766 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6767 } else {
6768 btrfs_set_extent_inline_ref_type(leaf, iref,
6769 BTRFS_TREE_BLOCK_REF_KEY);
6770 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6771 }
6772
6773 btrfs_mark_buffer_dirty(leaf);
6774 btrfs_free_path(path);
6775
6776 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6777 if (ret) { /* -ENOENT, logic error */
6778 btrfs_err(fs_info, "update block group failed for %llu %llu",
6779 ins->objectid, ins->offset);
6780 BUG();
6781 }
6782
6783 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6784 return ret;
6785 }
6786
6787 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6788 struct btrfs_root *root,
6789 u64 root_objectid, u64 owner,
6790 u64 offset, struct btrfs_key *ins)
6791 {
6792 int ret;
6793
6794 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6795
6796 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6797 ins->offset, 0,
6798 root_objectid, owner, offset,
6799 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6800 return ret;
6801 }
6802
6803 /*
6804 * this is used by the tree logging recovery code. It records that
6805 * an extent has been allocated and makes sure to clear the free
6806 * space cache bits as well
6807 */
6808 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6809 struct btrfs_root *root,
6810 u64 root_objectid, u64 owner, u64 offset,
6811 struct btrfs_key *ins)
6812 {
6813 int ret;
6814 struct btrfs_block_group_cache *block_group;
6815
6816 /*
6817 * Mixed block groups will exclude before processing the log so we only
6818 * need to do the exlude dance if this fs isn't mixed.
6819 */
6820 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6821 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6822 if (ret)
6823 return ret;
6824 }
6825
6826 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6827 if (!block_group)
6828 return -EINVAL;
6829
6830 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6831 RESERVE_ALLOC_NO_ACCOUNT);
6832 BUG_ON(ret); /* logic error */
6833 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6834 0, owner, offset, ins, 1);
6835 btrfs_put_block_group(block_group);
6836 return ret;
6837 }
6838
6839 static struct extent_buffer *
6840 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6841 u64 bytenr, u32 blocksize, int level)
6842 {
6843 struct extent_buffer *buf;
6844
6845 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6846 if (!buf)
6847 return ERR_PTR(-ENOMEM);
6848 btrfs_set_header_generation(buf, trans->transid);
6849 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6850 btrfs_tree_lock(buf);
6851 clean_tree_block(trans, root, buf);
6852 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6853
6854 btrfs_set_lock_blocking(buf);
6855 btrfs_set_buffer_uptodate(buf);
6856
6857 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6858 /*
6859 * we allow two log transactions at a time, use different
6860 * EXENT bit to differentiate dirty pages.
6861 */
6862 if (root->log_transid % 2 == 0)
6863 set_extent_dirty(&root->dirty_log_pages, buf->start,
6864 buf->start + buf->len - 1, GFP_NOFS);
6865 else
6866 set_extent_new(&root->dirty_log_pages, buf->start,
6867 buf->start + buf->len - 1, GFP_NOFS);
6868 } else {
6869 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6870 buf->start + buf->len - 1, GFP_NOFS);
6871 }
6872 trans->blocks_used++;
6873 /* this returns a buffer locked for blocking */
6874 return buf;
6875 }
6876
6877 static struct btrfs_block_rsv *
6878 use_block_rsv(struct btrfs_trans_handle *trans,
6879 struct btrfs_root *root, u32 blocksize)
6880 {
6881 struct btrfs_block_rsv *block_rsv;
6882 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6883 int ret;
6884 bool global_updated = false;
6885
6886 block_rsv = get_block_rsv(trans, root);
6887
6888 if (unlikely(block_rsv->size == 0))
6889 goto try_reserve;
6890 again:
6891 ret = block_rsv_use_bytes(block_rsv, blocksize);
6892 if (!ret)
6893 return block_rsv;
6894
6895 if (block_rsv->failfast)
6896 return ERR_PTR(ret);
6897
6898 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6899 global_updated = true;
6900 update_global_block_rsv(root->fs_info);
6901 goto again;
6902 }
6903
6904 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6905 static DEFINE_RATELIMIT_STATE(_rs,
6906 DEFAULT_RATELIMIT_INTERVAL * 10,
6907 /*DEFAULT_RATELIMIT_BURST*/ 1);
6908 if (__ratelimit(&_rs))
6909 WARN(1, KERN_DEBUG
6910 "btrfs: block rsv returned %d\n", ret);
6911 }
6912 try_reserve:
6913 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6914 BTRFS_RESERVE_NO_FLUSH);
6915 if (!ret)
6916 return block_rsv;
6917 /*
6918 * If we couldn't reserve metadata bytes try and use some from
6919 * the global reserve if its space type is the same as the global
6920 * reservation.
6921 */
6922 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6923 block_rsv->space_info == global_rsv->space_info) {
6924 ret = block_rsv_use_bytes(global_rsv, blocksize);
6925 if (!ret)
6926 return global_rsv;
6927 }
6928 return ERR_PTR(ret);
6929 }
6930
6931 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6932 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6933 {
6934 block_rsv_add_bytes(block_rsv, blocksize, 0);
6935 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6936 }
6937
6938 /*
6939 * finds a free extent and does all the dirty work required for allocation
6940 * returns the key for the extent through ins, and a tree buffer for
6941 * the first block of the extent through buf.
6942 *
6943 * returns the tree buffer or NULL.
6944 */
6945 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6946 struct btrfs_root *root, u32 blocksize,
6947 u64 parent, u64 root_objectid,
6948 struct btrfs_disk_key *key, int level,
6949 u64 hint, u64 empty_size)
6950 {
6951 struct btrfs_key ins;
6952 struct btrfs_block_rsv *block_rsv;
6953 struct extent_buffer *buf;
6954 u64 flags = 0;
6955 int ret;
6956 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6957 SKINNY_METADATA);
6958
6959 block_rsv = use_block_rsv(trans, root, blocksize);
6960 if (IS_ERR(block_rsv))
6961 return ERR_CAST(block_rsv);
6962
6963 ret = btrfs_reserve_extent(root, blocksize, blocksize,
6964 empty_size, hint, &ins, 0);
6965 if (ret) {
6966 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6967 return ERR_PTR(ret);
6968 }
6969
6970 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6971 blocksize, level);
6972 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6973
6974 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6975 if (parent == 0)
6976 parent = ins.objectid;
6977 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6978 } else
6979 BUG_ON(parent > 0);
6980
6981 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6982 struct btrfs_delayed_extent_op *extent_op;
6983 extent_op = btrfs_alloc_delayed_extent_op();
6984 BUG_ON(!extent_op); /* -ENOMEM */
6985 if (key)
6986 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6987 else
6988 memset(&extent_op->key, 0, sizeof(extent_op->key));
6989 extent_op->flags_to_set = flags;
6990 if (skinny_metadata)
6991 extent_op->update_key = 0;
6992 else
6993 extent_op->update_key = 1;
6994 extent_op->update_flags = 1;
6995 extent_op->is_data = 0;
6996 extent_op->level = level;
6997
6998 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6999 ins.objectid,
7000 ins.offset, parent, root_objectid,
7001 level, BTRFS_ADD_DELAYED_EXTENT,
7002 extent_op, 0);
7003 BUG_ON(ret); /* -ENOMEM */
7004 }
7005 return buf;
7006 }
7007
7008 struct walk_control {
7009 u64 refs[BTRFS_MAX_LEVEL];
7010 u64 flags[BTRFS_MAX_LEVEL];
7011 struct btrfs_key update_progress;
7012 int stage;
7013 int level;
7014 int shared_level;
7015 int update_ref;
7016 int keep_locks;
7017 int reada_slot;
7018 int reada_count;
7019 int for_reloc;
7020 };
7021
7022 #define DROP_REFERENCE 1
7023 #define UPDATE_BACKREF 2
7024
7025 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7026 struct btrfs_root *root,
7027 struct walk_control *wc,
7028 struct btrfs_path *path)
7029 {
7030 u64 bytenr;
7031 u64 generation;
7032 u64 refs;
7033 u64 flags;
7034 u32 nritems;
7035 u32 blocksize;
7036 struct btrfs_key key;
7037 struct extent_buffer *eb;
7038 int ret;
7039 int slot;
7040 int nread = 0;
7041
7042 if (path->slots[wc->level] < wc->reada_slot) {
7043 wc->reada_count = wc->reada_count * 2 / 3;
7044 wc->reada_count = max(wc->reada_count, 2);
7045 } else {
7046 wc->reada_count = wc->reada_count * 3 / 2;
7047 wc->reada_count = min_t(int, wc->reada_count,
7048 BTRFS_NODEPTRS_PER_BLOCK(root));
7049 }
7050
7051 eb = path->nodes[wc->level];
7052 nritems = btrfs_header_nritems(eb);
7053 blocksize = btrfs_level_size(root, wc->level - 1);
7054
7055 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7056 if (nread >= wc->reada_count)
7057 break;
7058
7059 cond_resched();
7060 bytenr = btrfs_node_blockptr(eb, slot);
7061 generation = btrfs_node_ptr_generation(eb, slot);
7062
7063 if (slot == path->slots[wc->level])
7064 goto reada;
7065
7066 if (wc->stage == UPDATE_BACKREF &&
7067 generation <= root->root_key.offset)
7068 continue;
7069
7070 /* We don't lock the tree block, it's OK to be racy here */
7071 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7072 wc->level - 1, 1, &refs,
7073 &flags);
7074 /* We don't care about errors in readahead. */
7075 if (ret < 0)
7076 continue;
7077 BUG_ON(refs == 0);
7078
7079 if (wc->stage == DROP_REFERENCE) {
7080 if (refs == 1)
7081 goto reada;
7082
7083 if (wc->level == 1 &&
7084 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7085 continue;
7086 if (!wc->update_ref ||
7087 generation <= root->root_key.offset)
7088 continue;
7089 btrfs_node_key_to_cpu(eb, &key, slot);
7090 ret = btrfs_comp_cpu_keys(&key,
7091 &wc->update_progress);
7092 if (ret < 0)
7093 continue;
7094 } else {
7095 if (wc->level == 1 &&
7096 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7097 continue;
7098 }
7099 reada:
7100 ret = readahead_tree_block(root, bytenr, blocksize,
7101 generation);
7102 if (ret)
7103 break;
7104 nread++;
7105 }
7106 wc->reada_slot = slot;
7107 }
7108
7109 /*
7110 * helper to process tree block while walking down the tree.
7111 *
7112 * when wc->stage == UPDATE_BACKREF, this function updates
7113 * back refs for pointers in the block.
7114 *
7115 * NOTE: return value 1 means we should stop walking down.
7116 */
7117 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7118 struct btrfs_root *root,
7119 struct btrfs_path *path,
7120 struct walk_control *wc, int lookup_info)
7121 {
7122 int level = wc->level;
7123 struct extent_buffer *eb = path->nodes[level];
7124 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7125 int ret;
7126
7127 if (wc->stage == UPDATE_BACKREF &&
7128 btrfs_header_owner(eb) != root->root_key.objectid)
7129 return 1;
7130
7131 /*
7132 * when reference count of tree block is 1, it won't increase
7133 * again. once full backref flag is set, we never clear it.
7134 */
7135 if (lookup_info &&
7136 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7137 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7138 BUG_ON(!path->locks[level]);
7139 ret = btrfs_lookup_extent_info(trans, root,
7140 eb->start, level, 1,
7141 &wc->refs[level],
7142 &wc->flags[level]);
7143 BUG_ON(ret == -ENOMEM);
7144 if (ret)
7145 return ret;
7146 BUG_ON(wc->refs[level] == 0);
7147 }
7148
7149 if (wc->stage == DROP_REFERENCE) {
7150 if (wc->refs[level] > 1)
7151 return 1;
7152
7153 if (path->locks[level] && !wc->keep_locks) {
7154 btrfs_tree_unlock_rw(eb, path->locks[level]);
7155 path->locks[level] = 0;
7156 }
7157 return 0;
7158 }
7159
7160 /* wc->stage == UPDATE_BACKREF */
7161 if (!(wc->flags[level] & flag)) {
7162 BUG_ON(!path->locks[level]);
7163 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7164 BUG_ON(ret); /* -ENOMEM */
7165 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7166 BUG_ON(ret); /* -ENOMEM */
7167 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7168 eb->len, flag,
7169 btrfs_header_level(eb), 0);
7170 BUG_ON(ret); /* -ENOMEM */
7171 wc->flags[level] |= flag;
7172 }
7173
7174 /*
7175 * the block is shared by multiple trees, so it's not good to
7176 * keep the tree lock
7177 */
7178 if (path->locks[level] && level > 0) {
7179 btrfs_tree_unlock_rw(eb, path->locks[level]);
7180 path->locks[level] = 0;
7181 }
7182 return 0;
7183 }
7184
7185 /*
7186 * helper to process tree block pointer.
7187 *
7188 * when wc->stage == DROP_REFERENCE, this function checks
7189 * reference count of the block pointed to. if the block
7190 * is shared and we need update back refs for the subtree
7191 * rooted at the block, this function changes wc->stage to
7192 * UPDATE_BACKREF. if the block is shared and there is no
7193 * need to update back, this function drops the reference
7194 * to the block.
7195 *
7196 * NOTE: return value 1 means we should stop walking down.
7197 */
7198 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7199 struct btrfs_root *root,
7200 struct btrfs_path *path,
7201 struct walk_control *wc, int *lookup_info)
7202 {
7203 u64 bytenr;
7204 u64 generation;
7205 u64 parent;
7206 u32 blocksize;
7207 struct btrfs_key key;
7208 struct extent_buffer *next;
7209 int level = wc->level;
7210 int reada = 0;
7211 int ret = 0;
7212
7213 generation = btrfs_node_ptr_generation(path->nodes[level],
7214 path->slots[level]);
7215 /*
7216 * if the lower level block was created before the snapshot
7217 * was created, we know there is no need to update back refs
7218 * for the subtree
7219 */
7220 if (wc->stage == UPDATE_BACKREF &&
7221 generation <= root->root_key.offset) {
7222 *lookup_info = 1;
7223 return 1;
7224 }
7225
7226 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7227 blocksize = btrfs_level_size(root, level - 1);
7228
7229 next = btrfs_find_tree_block(root, bytenr, blocksize);
7230 if (!next) {
7231 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7232 if (!next)
7233 return -ENOMEM;
7234 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7235 level - 1);
7236 reada = 1;
7237 }
7238 btrfs_tree_lock(next);
7239 btrfs_set_lock_blocking(next);
7240
7241 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7242 &wc->refs[level - 1],
7243 &wc->flags[level - 1]);
7244 if (ret < 0) {
7245 btrfs_tree_unlock(next);
7246 return ret;
7247 }
7248
7249 if (unlikely(wc->refs[level - 1] == 0)) {
7250 btrfs_err(root->fs_info, "Missing references.");
7251 BUG();
7252 }
7253 *lookup_info = 0;
7254
7255 if (wc->stage == DROP_REFERENCE) {
7256 if (wc->refs[level - 1] > 1) {
7257 if (level == 1 &&
7258 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7259 goto skip;
7260
7261 if (!wc->update_ref ||
7262 generation <= root->root_key.offset)
7263 goto skip;
7264
7265 btrfs_node_key_to_cpu(path->nodes[level], &key,
7266 path->slots[level]);
7267 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7268 if (ret < 0)
7269 goto skip;
7270
7271 wc->stage = UPDATE_BACKREF;
7272 wc->shared_level = level - 1;
7273 }
7274 } else {
7275 if (level == 1 &&
7276 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7277 goto skip;
7278 }
7279
7280 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7281 btrfs_tree_unlock(next);
7282 free_extent_buffer(next);
7283 next = NULL;
7284 *lookup_info = 1;
7285 }
7286
7287 if (!next) {
7288 if (reada && level == 1)
7289 reada_walk_down(trans, root, wc, path);
7290 next = read_tree_block(root, bytenr, blocksize, generation);
7291 if (!next || !extent_buffer_uptodate(next)) {
7292 free_extent_buffer(next);
7293 return -EIO;
7294 }
7295 btrfs_tree_lock(next);
7296 btrfs_set_lock_blocking(next);
7297 }
7298
7299 level--;
7300 BUG_ON(level != btrfs_header_level(next));
7301 path->nodes[level] = next;
7302 path->slots[level] = 0;
7303 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7304 wc->level = level;
7305 if (wc->level == 1)
7306 wc->reada_slot = 0;
7307 return 0;
7308 skip:
7309 wc->refs[level - 1] = 0;
7310 wc->flags[level - 1] = 0;
7311 if (wc->stage == DROP_REFERENCE) {
7312 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7313 parent = path->nodes[level]->start;
7314 } else {
7315 BUG_ON(root->root_key.objectid !=
7316 btrfs_header_owner(path->nodes[level]));
7317 parent = 0;
7318 }
7319
7320 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7321 root->root_key.objectid, level - 1, 0, 0);
7322 BUG_ON(ret); /* -ENOMEM */
7323 }
7324 btrfs_tree_unlock(next);
7325 free_extent_buffer(next);
7326 *lookup_info = 1;
7327 return 1;
7328 }
7329
7330 /*
7331 * helper to process tree block while walking up the tree.
7332 *
7333 * when wc->stage == DROP_REFERENCE, this function drops
7334 * reference count on the block.
7335 *
7336 * when wc->stage == UPDATE_BACKREF, this function changes
7337 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7338 * to UPDATE_BACKREF previously while processing the block.
7339 *
7340 * NOTE: return value 1 means we should stop walking up.
7341 */
7342 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7343 struct btrfs_root *root,
7344 struct btrfs_path *path,
7345 struct walk_control *wc)
7346 {
7347 int ret;
7348 int level = wc->level;
7349 struct extent_buffer *eb = path->nodes[level];
7350 u64 parent = 0;
7351
7352 if (wc->stage == UPDATE_BACKREF) {
7353 BUG_ON(wc->shared_level < level);
7354 if (level < wc->shared_level)
7355 goto out;
7356
7357 ret = find_next_key(path, level + 1, &wc->update_progress);
7358 if (ret > 0)
7359 wc->update_ref = 0;
7360
7361 wc->stage = DROP_REFERENCE;
7362 wc->shared_level = -1;
7363 path->slots[level] = 0;
7364
7365 /*
7366 * check reference count again if the block isn't locked.
7367 * we should start walking down the tree again if reference
7368 * count is one.
7369 */
7370 if (!path->locks[level]) {
7371 BUG_ON(level == 0);
7372 btrfs_tree_lock(eb);
7373 btrfs_set_lock_blocking(eb);
7374 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7375
7376 ret = btrfs_lookup_extent_info(trans, root,
7377 eb->start, level, 1,
7378 &wc->refs[level],
7379 &wc->flags[level]);
7380 if (ret < 0) {
7381 btrfs_tree_unlock_rw(eb, path->locks[level]);
7382 path->locks[level] = 0;
7383 return ret;
7384 }
7385 BUG_ON(wc->refs[level] == 0);
7386 if (wc->refs[level] == 1) {
7387 btrfs_tree_unlock_rw(eb, path->locks[level]);
7388 path->locks[level] = 0;
7389 return 1;
7390 }
7391 }
7392 }
7393
7394 /* wc->stage == DROP_REFERENCE */
7395 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7396
7397 if (wc->refs[level] == 1) {
7398 if (level == 0) {
7399 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7400 ret = btrfs_dec_ref(trans, root, eb, 1,
7401 wc->for_reloc);
7402 else
7403 ret = btrfs_dec_ref(trans, root, eb, 0,
7404 wc->for_reloc);
7405 BUG_ON(ret); /* -ENOMEM */
7406 }
7407 /* make block locked assertion in clean_tree_block happy */
7408 if (!path->locks[level] &&
7409 btrfs_header_generation(eb) == trans->transid) {
7410 btrfs_tree_lock(eb);
7411 btrfs_set_lock_blocking(eb);
7412 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7413 }
7414 clean_tree_block(trans, root, eb);
7415 }
7416
7417 if (eb == root->node) {
7418 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7419 parent = eb->start;
7420 else
7421 BUG_ON(root->root_key.objectid !=
7422 btrfs_header_owner(eb));
7423 } else {
7424 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7425 parent = path->nodes[level + 1]->start;
7426 else
7427 BUG_ON(root->root_key.objectid !=
7428 btrfs_header_owner(path->nodes[level + 1]));
7429 }
7430
7431 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7432 out:
7433 wc->refs[level] = 0;
7434 wc->flags[level] = 0;
7435 return 0;
7436 }
7437
7438 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7439 struct btrfs_root *root,
7440 struct btrfs_path *path,
7441 struct walk_control *wc)
7442 {
7443 int level = wc->level;
7444 int lookup_info = 1;
7445 int ret;
7446
7447 while (level >= 0) {
7448 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7449 if (ret > 0)
7450 break;
7451
7452 if (level == 0)
7453 break;
7454
7455 if (path->slots[level] >=
7456 btrfs_header_nritems(path->nodes[level]))
7457 break;
7458
7459 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7460 if (ret > 0) {
7461 path->slots[level]++;
7462 continue;
7463 } else if (ret < 0)
7464 return ret;
7465 level = wc->level;
7466 }
7467 return 0;
7468 }
7469
7470 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7471 struct btrfs_root *root,
7472 struct btrfs_path *path,
7473 struct walk_control *wc, int max_level)
7474 {
7475 int level = wc->level;
7476 int ret;
7477
7478 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7479 while (level < max_level && path->nodes[level]) {
7480 wc->level = level;
7481 if (path->slots[level] + 1 <
7482 btrfs_header_nritems(path->nodes[level])) {
7483 path->slots[level]++;
7484 return 0;
7485 } else {
7486 ret = walk_up_proc(trans, root, path, wc);
7487 if (ret > 0)
7488 return 0;
7489
7490 if (path->locks[level]) {
7491 btrfs_tree_unlock_rw(path->nodes[level],
7492 path->locks[level]);
7493 path->locks[level] = 0;
7494 }
7495 free_extent_buffer(path->nodes[level]);
7496 path->nodes[level] = NULL;
7497 level++;
7498 }
7499 }
7500 return 1;
7501 }
7502
7503 /*
7504 * drop a subvolume tree.
7505 *
7506 * this function traverses the tree freeing any blocks that only
7507 * referenced by the tree.
7508 *
7509 * when a shared tree block is found. this function decreases its
7510 * reference count by one. if update_ref is true, this function
7511 * also make sure backrefs for the shared block and all lower level
7512 * blocks are properly updated.
7513 *
7514 * If called with for_reloc == 0, may exit early with -EAGAIN
7515 */
7516 int btrfs_drop_snapshot(struct btrfs_root *root,
7517 struct btrfs_block_rsv *block_rsv, int update_ref,
7518 int for_reloc)
7519 {
7520 struct btrfs_path *path;
7521 struct btrfs_trans_handle *trans;
7522 struct btrfs_root *tree_root = root->fs_info->tree_root;
7523 struct btrfs_root_item *root_item = &root->root_item;
7524 struct walk_control *wc;
7525 struct btrfs_key key;
7526 int err = 0;
7527 int ret;
7528 int level;
7529 bool root_dropped = false;
7530
7531 path = btrfs_alloc_path();
7532 if (!path) {
7533 err = -ENOMEM;
7534 goto out;
7535 }
7536
7537 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7538 if (!wc) {
7539 btrfs_free_path(path);
7540 err = -ENOMEM;
7541 goto out;
7542 }
7543
7544 trans = btrfs_start_transaction(tree_root, 0);
7545 if (IS_ERR(trans)) {
7546 err = PTR_ERR(trans);
7547 goto out_free;
7548 }
7549
7550 if (block_rsv)
7551 trans->block_rsv = block_rsv;
7552
7553 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7554 level = btrfs_header_level(root->node);
7555 path->nodes[level] = btrfs_lock_root_node(root);
7556 btrfs_set_lock_blocking(path->nodes[level]);
7557 path->slots[level] = 0;
7558 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7559 memset(&wc->update_progress, 0,
7560 sizeof(wc->update_progress));
7561 } else {
7562 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7563 memcpy(&wc->update_progress, &key,
7564 sizeof(wc->update_progress));
7565
7566 level = root_item->drop_level;
7567 BUG_ON(level == 0);
7568 path->lowest_level = level;
7569 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7570 path->lowest_level = 0;
7571 if (ret < 0) {
7572 err = ret;
7573 goto out_end_trans;
7574 }
7575 WARN_ON(ret > 0);
7576
7577 /*
7578 * unlock our path, this is safe because only this
7579 * function is allowed to delete this snapshot
7580 */
7581 btrfs_unlock_up_safe(path, 0);
7582
7583 level = btrfs_header_level(root->node);
7584 while (1) {
7585 btrfs_tree_lock(path->nodes[level]);
7586 btrfs_set_lock_blocking(path->nodes[level]);
7587 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7588
7589 ret = btrfs_lookup_extent_info(trans, root,
7590 path->nodes[level]->start,
7591 level, 1, &wc->refs[level],
7592 &wc->flags[level]);
7593 if (ret < 0) {
7594 err = ret;
7595 goto out_end_trans;
7596 }
7597 BUG_ON(wc->refs[level] == 0);
7598
7599 if (level == root_item->drop_level)
7600 break;
7601
7602 btrfs_tree_unlock(path->nodes[level]);
7603 path->locks[level] = 0;
7604 WARN_ON(wc->refs[level] != 1);
7605 level--;
7606 }
7607 }
7608
7609 wc->level = level;
7610 wc->shared_level = -1;
7611 wc->stage = DROP_REFERENCE;
7612 wc->update_ref = update_ref;
7613 wc->keep_locks = 0;
7614 wc->for_reloc = for_reloc;
7615 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7616
7617 while (1) {
7618
7619 ret = walk_down_tree(trans, root, path, wc);
7620 if (ret < 0) {
7621 err = ret;
7622 break;
7623 }
7624
7625 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7626 if (ret < 0) {
7627 err = ret;
7628 break;
7629 }
7630
7631 if (ret > 0) {
7632 BUG_ON(wc->stage != DROP_REFERENCE);
7633 break;
7634 }
7635
7636 if (wc->stage == DROP_REFERENCE) {
7637 level = wc->level;
7638 btrfs_node_key(path->nodes[level],
7639 &root_item->drop_progress,
7640 path->slots[level]);
7641 root_item->drop_level = level;
7642 }
7643
7644 BUG_ON(wc->level == 0);
7645 if (btrfs_should_end_transaction(trans, tree_root) ||
7646 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7647 ret = btrfs_update_root(trans, tree_root,
7648 &root->root_key,
7649 root_item);
7650 if (ret) {
7651 btrfs_abort_transaction(trans, tree_root, ret);
7652 err = ret;
7653 goto out_end_trans;
7654 }
7655
7656 btrfs_end_transaction_throttle(trans, tree_root);
7657 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7658 pr_debug("btrfs: drop snapshot early exit\n");
7659 err = -EAGAIN;
7660 goto out_free;
7661 }
7662
7663 trans = btrfs_start_transaction(tree_root, 0);
7664 if (IS_ERR(trans)) {
7665 err = PTR_ERR(trans);
7666 goto out_free;
7667 }
7668 if (block_rsv)
7669 trans->block_rsv = block_rsv;
7670 }
7671 }
7672 btrfs_release_path(path);
7673 if (err)
7674 goto out_end_trans;
7675
7676 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7677 if (ret) {
7678 btrfs_abort_transaction(trans, tree_root, ret);
7679 goto out_end_trans;
7680 }
7681
7682 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7683 ret = btrfs_find_root(tree_root, &root->root_key, path,
7684 NULL, NULL);
7685 if (ret < 0) {
7686 btrfs_abort_transaction(trans, tree_root, ret);
7687 err = ret;
7688 goto out_end_trans;
7689 } else if (ret > 0) {
7690 /* if we fail to delete the orphan item this time
7691 * around, it'll get picked up the next time.
7692 *
7693 * The most common failure here is just -ENOENT.
7694 */
7695 btrfs_del_orphan_item(trans, tree_root,
7696 root->root_key.objectid);
7697 }
7698 }
7699
7700 if (root->in_radix) {
7701 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7702 } else {
7703 free_extent_buffer(root->node);
7704 free_extent_buffer(root->commit_root);
7705 btrfs_put_fs_root(root);
7706 }
7707 root_dropped = true;
7708 out_end_trans:
7709 btrfs_end_transaction_throttle(trans, tree_root);
7710 out_free:
7711 kfree(wc);
7712 btrfs_free_path(path);
7713 out:
7714 /*
7715 * So if we need to stop dropping the snapshot for whatever reason we
7716 * need to make sure to add it back to the dead root list so that we
7717 * keep trying to do the work later. This also cleans up roots if we
7718 * don't have it in the radix (like when we recover after a power fail
7719 * or unmount) so we don't leak memory.
7720 */
7721 if (!for_reloc && root_dropped == false)
7722 btrfs_add_dead_root(root);
7723 if (err)
7724 btrfs_std_error(root->fs_info, err);
7725 return err;
7726 }
7727
7728 /*
7729 * drop subtree rooted at tree block 'node'.
7730 *
7731 * NOTE: this function will unlock and release tree block 'node'
7732 * only used by relocation code
7733 */
7734 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7735 struct btrfs_root *root,
7736 struct extent_buffer *node,
7737 struct extent_buffer *parent)
7738 {
7739 struct btrfs_path *path;
7740 struct walk_control *wc;
7741 int level;
7742 int parent_level;
7743 int ret = 0;
7744 int wret;
7745
7746 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7747
7748 path = btrfs_alloc_path();
7749 if (!path)
7750 return -ENOMEM;
7751
7752 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7753 if (!wc) {
7754 btrfs_free_path(path);
7755 return -ENOMEM;
7756 }
7757
7758 btrfs_assert_tree_locked(parent);
7759 parent_level = btrfs_header_level(parent);
7760 extent_buffer_get(parent);
7761 path->nodes[parent_level] = parent;
7762 path->slots[parent_level] = btrfs_header_nritems(parent);
7763
7764 btrfs_assert_tree_locked(node);
7765 level = btrfs_header_level(node);
7766 path->nodes[level] = node;
7767 path->slots[level] = 0;
7768 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7769
7770 wc->refs[parent_level] = 1;
7771 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7772 wc->level = level;
7773 wc->shared_level = -1;
7774 wc->stage = DROP_REFERENCE;
7775 wc->update_ref = 0;
7776 wc->keep_locks = 1;
7777 wc->for_reloc = 1;
7778 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7779
7780 while (1) {
7781 wret = walk_down_tree(trans, root, path, wc);
7782 if (wret < 0) {
7783 ret = wret;
7784 break;
7785 }
7786
7787 wret = walk_up_tree(trans, root, path, wc, parent_level);
7788 if (wret < 0)
7789 ret = wret;
7790 if (wret != 0)
7791 break;
7792 }
7793
7794 kfree(wc);
7795 btrfs_free_path(path);
7796 return ret;
7797 }
7798
7799 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7800 {
7801 u64 num_devices;
7802 u64 stripped;
7803
7804 /*
7805 * if restripe for this chunk_type is on pick target profile and
7806 * return, otherwise do the usual balance
7807 */
7808 stripped = get_restripe_target(root->fs_info, flags);
7809 if (stripped)
7810 return extended_to_chunk(stripped);
7811
7812 /*
7813 * we add in the count of missing devices because we want
7814 * to make sure that any RAID levels on a degraded FS
7815 * continue to be honored.
7816 */
7817 num_devices = root->fs_info->fs_devices->rw_devices +
7818 root->fs_info->fs_devices->missing_devices;
7819
7820 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7821 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7822 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7823
7824 if (num_devices == 1) {
7825 stripped |= BTRFS_BLOCK_GROUP_DUP;
7826 stripped = flags & ~stripped;
7827
7828 /* turn raid0 into single device chunks */
7829 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7830 return stripped;
7831
7832 /* turn mirroring into duplication */
7833 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7834 BTRFS_BLOCK_GROUP_RAID10))
7835 return stripped | BTRFS_BLOCK_GROUP_DUP;
7836 } else {
7837 /* they already had raid on here, just return */
7838 if (flags & stripped)
7839 return flags;
7840
7841 stripped |= BTRFS_BLOCK_GROUP_DUP;
7842 stripped = flags & ~stripped;
7843
7844 /* switch duplicated blocks with raid1 */
7845 if (flags & BTRFS_BLOCK_GROUP_DUP)
7846 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7847
7848 /* this is drive concat, leave it alone */
7849 }
7850
7851 return flags;
7852 }
7853
7854 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7855 {
7856 struct btrfs_space_info *sinfo = cache->space_info;
7857 u64 num_bytes;
7858 u64 min_allocable_bytes;
7859 int ret = -ENOSPC;
7860
7861
7862 /*
7863 * We need some metadata space and system metadata space for
7864 * allocating chunks in some corner cases until we force to set
7865 * it to be readonly.
7866 */
7867 if ((sinfo->flags &
7868 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7869 !force)
7870 min_allocable_bytes = 1 * 1024 * 1024;
7871 else
7872 min_allocable_bytes = 0;
7873
7874 spin_lock(&sinfo->lock);
7875 spin_lock(&cache->lock);
7876
7877 if (cache->ro) {
7878 ret = 0;
7879 goto out;
7880 }
7881
7882 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7883 cache->bytes_super - btrfs_block_group_used(&cache->item);
7884
7885 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7886 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7887 min_allocable_bytes <= sinfo->total_bytes) {
7888 sinfo->bytes_readonly += num_bytes;
7889 cache->ro = 1;
7890 ret = 0;
7891 }
7892 out:
7893 spin_unlock(&cache->lock);
7894 spin_unlock(&sinfo->lock);
7895 return ret;
7896 }
7897
7898 int btrfs_set_block_group_ro(struct btrfs_root *root,
7899 struct btrfs_block_group_cache *cache)
7900
7901 {
7902 struct btrfs_trans_handle *trans;
7903 u64 alloc_flags;
7904 int ret;
7905
7906 BUG_ON(cache->ro);
7907
7908 trans = btrfs_join_transaction(root);
7909 if (IS_ERR(trans))
7910 return PTR_ERR(trans);
7911
7912 alloc_flags = update_block_group_flags(root, cache->flags);
7913 if (alloc_flags != cache->flags) {
7914 ret = do_chunk_alloc(trans, root, alloc_flags,
7915 CHUNK_ALLOC_FORCE);
7916 if (ret < 0)
7917 goto out;
7918 }
7919
7920 ret = set_block_group_ro(cache, 0);
7921 if (!ret)
7922 goto out;
7923 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7924 ret = do_chunk_alloc(trans, root, alloc_flags,
7925 CHUNK_ALLOC_FORCE);
7926 if (ret < 0)
7927 goto out;
7928 ret = set_block_group_ro(cache, 0);
7929 out:
7930 btrfs_end_transaction(trans, root);
7931 return ret;
7932 }
7933
7934 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7935 struct btrfs_root *root, u64 type)
7936 {
7937 u64 alloc_flags = get_alloc_profile(root, type);
7938 return do_chunk_alloc(trans, root, alloc_flags,
7939 CHUNK_ALLOC_FORCE);
7940 }
7941
7942 /*
7943 * helper to account the unused space of all the readonly block group in the
7944 * list. takes mirrors into account.
7945 */
7946 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7947 {
7948 struct btrfs_block_group_cache *block_group;
7949 u64 free_bytes = 0;
7950 int factor;
7951
7952 list_for_each_entry(block_group, groups_list, list) {
7953 spin_lock(&block_group->lock);
7954
7955 if (!block_group->ro) {
7956 spin_unlock(&block_group->lock);
7957 continue;
7958 }
7959
7960 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7961 BTRFS_BLOCK_GROUP_RAID10 |
7962 BTRFS_BLOCK_GROUP_DUP))
7963 factor = 2;
7964 else
7965 factor = 1;
7966
7967 free_bytes += (block_group->key.offset -
7968 btrfs_block_group_used(&block_group->item)) *
7969 factor;
7970
7971 spin_unlock(&block_group->lock);
7972 }
7973
7974 return free_bytes;
7975 }
7976
7977 /*
7978 * helper to account the unused space of all the readonly block group in the
7979 * space_info. takes mirrors into account.
7980 */
7981 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7982 {
7983 int i;
7984 u64 free_bytes = 0;
7985
7986 spin_lock(&sinfo->lock);
7987
7988 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7989 if (!list_empty(&sinfo->block_groups[i]))
7990 free_bytes += __btrfs_get_ro_block_group_free_space(
7991 &sinfo->block_groups[i]);
7992
7993 spin_unlock(&sinfo->lock);
7994
7995 return free_bytes;
7996 }
7997
7998 void btrfs_set_block_group_rw(struct btrfs_root *root,
7999 struct btrfs_block_group_cache *cache)
8000 {
8001 struct btrfs_space_info *sinfo = cache->space_info;
8002 u64 num_bytes;
8003
8004 BUG_ON(!cache->ro);
8005
8006 spin_lock(&sinfo->lock);
8007 spin_lock(&cache->lock);
8008 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8009 cache->bytes_super - btrfs_block_group_used(&cache->item);
8010 sinfo->bytes_readonly -= num_bytes;
8011 cache->ro = 0;
8012 spin_unlock(&cache->lock);
8013 spin_unlock(&sinfo->lock);
8014 }
8015
8016 /*
8017 * checks to see if its even possible to relocate this block group.
8018 *
8019 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8020 * ok to go ahead and try.
8021 */
8022 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8023 {
8024 struct btrfs_block_group_cache *block_group;
8025 struct btrfs_space_info *space_info;
8026 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8027 struct btrfs_device *device;
8028 struct btrfs_trans_handle *trans;
8029 u64 min_free;
8030 u64 dev_min = 1;
8031 u64 dev_nr = 0;
8032 u64 target;
8033 int index;
8034 int full = 0;
8035 int ret = 0;
8036
8037 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8038
8039 /* odd, couldn't find the block group, leave it alone */
8040 if (!block_group)
8041 return -1;
8042
8043 min_free = btrfs_block_group_used(&block_group->item);
8044
8045 /* no bytes used, we're good */
8046 if (!min_free)
8047 goto out;
8048
8049 space_info = block_group->space_info;
8050 spin_lock(&space_info->lock);
8051
8052 full = space_info->full;
8053
8054 /*
8055 * if this is the last block group we have in this space, we can't
8056 * relocate it unless we're able to allocate a new chunk below.
8057 *
8058 * Otherwise, we need to make sure we have room in the space to handle
8059 * all of the extents from this block group. If we can, we're good
8060 */
8061 if ((space_info->total_bytes != block_group->key.offset) &&
8062 (space_info->bytes_used + space_info->bytes_reserved +
8063 space_info->bytes_pinned + space_info->bytes_readonly +
8064 min_free < space_info->total_bytes)) {
8065 spin_unlock(&space_info->lock);
8066 goto out;
8067 }
8068 spin_unlock(&space_info->lock);
8069
8070 /*
8071 * ok we don't have enough space, but maybe we have free space on our
8072 * devices to allocate new chunks for relocation, so loop through our
8073 * alloc devices and guess if we have enough space. if this block
8074 * group is going to be restriped, run checks against the target
8075 * profile instead of the current one.
8076 */
8077 ret = -1;
8078
8079 /*
8080 * index:
8081 * 0: raid10
8082 * 1: raid1
8083 * 2: dup
8084 * 3: raid0
8085 * 4: single
8086 */
8087 target = get_restripe_target(root->fs_info, block_group->flags);
8088 if (target) {
8089 index = __get_raid_index(extended_to_chunk(target));
8090 } else {
8091 /*
8092 * this is just a balance, so if we were marked as full
8093 * we know there is no space for a new chunk
8094 */
8095 if (full)
8096 goto out;
8097
8098 index = get_block_group_index(block_group);
8099 }
8100
8101 if (index == BTRFS_RAID_RAID10) {
8102 dev_min = 4;
8103 /* Divide by 2 */
8104 min_free >>= 1;
8105 } else if (index == BTRFS_RAID_RAID1) {
8106 dev_min = 2;
8107 } else if (index == BTRFS_RAID_DUP) {
8108 /* Multiply by 2 */
8109 min_free <<= 1;
8110 } else if (index == BTRFS_RAID_RAID0) {
8111 dev_min = fs_devices->rw_devices;
8112 do_div(min_free, dev_min);
8113 }
8114
8115 /* We need to do this so that we can look at pending chunks */
8116 trans = btrfs_join_transaction(root);
8117 if (IS_ERR(trans)) {
8118 ret = PTR_ERR(trans);
8119 goto out;
8120 }
8121
8122 mutex_lock(&root->fs_info->chunk_mutex);
8123 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8124 u64 dev_offset;
8125
8126 /*
8127 * check to make sure we can actually find a chunk with enough
8128 * space to fit our block group in.
8129 */
8130 if (device->total_bytes > device->bytes_used + min_free &&
8131 !device->is_tgtdev_for_dev_replace) {
8132 ret = find_free_dev_extent(trans, device, min_free,
8133 &dev_offset, NULL);
8134 if (!ret)
8135 dev_nr++;
8136
8137 if (dev_nr >= dev_min)
8138 break;
8139
8140 ret = -1;
8141 }
8142 }
8143 mutex_unlock(&root->fs_info->chunk_mutex);
8144 btrfs_end_transaction(trans, root);
8145 out:
8146 btrfs_put_block_group(block_group);
8147 return ret;
8148 }
8149
8150 static int find_first_block_group(struct btrfs_root *root,
8151 struct btrfs_path *path, struct btrfs_key *key)
8152 {
8153 int ret = 0;
8154 struct btrfs_key found_key;
8155 struct extent_buffer *leaf;
8156 int slot;
8157
8158 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8159 if (ret < 0)
8160 goto out;
8161
8162 while (1) {
8163 slot = path->slots[0];
8164 leaf = path->nodes[0];
8165 if (slot >= btrfs_header_nritems(leaf)) {
8166 ret = btrfs_next_leaf(root, path);
8167 if (ret == 0)
8168 continue;
8169 if (ret < 0)
8170 goto out;
8171 break;
8172 }
8173 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8174
8175 if (found_key.objectid >= key->objectid &&
8176 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8177 ret = 0;
8178 goto out;
8179 }
8180 path->slots[0]++;
8181 }
8182 out:
8183 return ret;
8184 }
8185
8186 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8187 {
8188 struct btrfs_block_group_cache *block_group;
8189 u64 last = 0;
8190
8191 while (1) {
8192 struct inode *inode;
8193
8194 block_group = btrfs_lookup_first_block_group(info, last);
8195 while (block_group) {
8196 spin_lock(&block_group->lock);
8197 if (block_group->iref)
8198 break;
8199 spin_unlock(&block_group->lock);
8200 block_group = next_block_group(info->tree_root,
8201 block_group);
8202 }
8203 if (!block_group) {
8204 if (last == 0)
8205 break;
8206 last = 0;
8207 continue;
8208 }
8209
8210 inode = block_group->inode;
8211 block_group->iref = 0;
8212 block_group->inode = NULL;
8213 spin_unlock(&block_group->lock);
8214 iput(inode);
8215 last = block_group->key.objectid + block_group->key.offset;
8216 btrfs_put_block_group(block_group);
8217 }
8218 }
8219
8220 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8221 {
8222 struct btrfs_block_group_cache *block_group;
8223 struct btrfs_space_info *space_info;
8224 struct btrfs_caching_control *caching_ctl;
8225 struct rb_node *n;
8226
8227 down_write(&info->extent_commit_sem);
8228 while (!list_empty(&info->caching_block_groups)) {
8229 caching_ctl = list_entry(info->caching_block_groups.next,
8230 struct btrfs_caching_control, list);
8231 list_del(&caching_ctl->list);
8232 put_caching_control(caching_ctl);
8233 }
8234 up_write(&info->extent_commit_sem);
8235
8236 spin_lock(&info->block_group_cache_lock);
8237 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8238 block_group = rb_entry(n, struct btrfs_block_group_cache,
8239 cache_node);
8240 rb_erase(&block_group->cache_node,
8241 &info->block_group_cache_tree);
8242 spin_unlock(&info->block_group_cache_lock);
8243
8244 down_write(&block_group->space_info->groups_sem);
8245 list_del(&block_group->list);
8246 up_write(&block_group->space_info->groups_sem);
8247
8248 if (block_group->cached == BTRFS_CACHE_STARTED)
8249 wait_block_group_cache_done(block_group);
8250
8251 /*
8252 * We haven't cached this block group, which means we could
8253 * possibly have excluded extents on this block group.
8254 */
8255 if (block_group->cached == BTRFS_CACHE_NO ||
8256 block_group->cached == BTRFS_CACHE_ERROR)
8257 free_excluded_extents(info->extent_root, block_group);
8258
8259 btrfs_remove_free_space_cache(block_group);
8260 btrfs_put_block_group(block_group);
8261
8262 spin_lock(&info->block_group_cache_lock);
8263 }
8264 spin_unlock(&info->block_group_cache_lock);
8265
8266 /* now that all the block groups are freed, go through and
8267 * free all the space_info structs. This is only called during
8268 * the final stages of unmount, and so we know nobody is
8269 * using them. We call synchronize_rcu() once before we start,
8270 * just to be on the safe side.
8271 */
8272 synchronize_rcu();
8273
8274 release_global_block_rsv(info);
8275
8276 while(!list_empty(&info->space_info)) {
8277 space_info = list_entry(info->space_info.next,
8278 struct btrfs_space_info,
8279 list);
8280 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8281 if (space_info->bytes_pinned > 0 ||
8282 space_info->bytes_reserved > 0 ||
8283 space_info->bytes_may_use > 0) {
8284 WARN_ON(1);
8285 dump_space_info(space_info, 0, 0);
8286 }
8287 }
8288 percpu_counter_destroy(&space_info->total_bytes_pinned);
8289 list_del(&space_info->list);
8290 kfree(space_info);
8291 }
8292 return 0;
8293 }
8294
8295 static void __link_block_group(struct btrfs_space_info *space_info,
8296 struct btrfs_block_group_cache *cache)
8297 {
8298 int index = get_block_group_index(cache);
8299
8300 down_write(&space_info->groups_sem);
8301 list_add_tail(&cache->list, &space_info->block_groups[index]);
8302 up_write(&space_info->groups_sem);
8303 }
8304
8305 int btrfs_read_block_groups(struct btrfs_root *root)
8306 {
8307 struct btrfs_path *path;
8308 int ret;
8309 struct btrfs_block_group_cache *cache;
8310 struct btrfs_fs_info *info = root->fs_info;
8311 struct btrfs_space_info *space_info;
8312 struct btrfs_key key;
8313 struct btrfs_key found_key;
8314 struct extent_buffer *leaf;
8315 int need_clear = 0;
8316 u64 cache_gen;
8317
8318 root = info->extent_root;
8319 key.objectid = 0;
8320 key.offset = 0;
8321 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8322 path = btrfs_alloc_path();
8323 if (!path)
8324 return -ENOMEM;
8325 path->reada = 1;
8326
8327 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8328 if (btrfs_test_opt(root, SPACE_CACHE) &&
8329 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8330 need_clear = 1;
8331 if (btrfs_test_opt(root, CLEAR_CACHE))
8332 need_clear = 1;
8333
8334 while (1) {
8335 ret = find_first_block_group(root, path, &key);
8336 if (ret > 0)
8337 break;
8338 if (ret != 0)
8339 goto error;
8340 leaf = path->nodes[0];
8341 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8342 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8343 if (!cache) {
8344 ret = -ENOMEM;
8345 goto error;
8346 }
8347 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8348 GFP_NOFS);
8349 if (!cache->free_space_ctl) {
8350 kfree(cache);
8351 ret = -ENOMEM;
8352 goto error;
8353 }
8354
8355 atomic_set(&cache->count, 1);
8356 spin_lock_init(&cache->lock);
8357 cache->fs_info = info;
8358 INIT_LIST_HEAD(&cache->list);
8359 INIT_LIST_HEAD(&cache->cluster_list);
8360
8361 if (need_clear) {
8362 /*
8363 * When we mount with old space cache, we need to
8364 * set BTRFS_DC_CLEAR and set dirty flag.
8365 *
8366 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8367 * truncate the old free space cache inode and
8368 * setup a new one.
8369 * b) Setting 'dirty flag' makes sure that we flush
8370 * the new space cache info onto disk.
8371 */
8372 cache->disk_cache_state = BTRFS_DC_CLEAR;
8373 if (btrfs_test_opt(root, SPACE_CACHE))
8374 cache->dirty = 1;
8375 }
8376
8377 read_extent_buffer(leaf, &cache->item,
8378 btrfs_item_ptr_offset(leaf, path->slots[0]),
8379 sizeof(cache->item));
8380 memcpy(&cache->key, &found_key, sizeof(found_key));
8381
8382 key.objectid = found_key.objectid + found_key.offset;
8383 btrfs_release_path(path);
8384 cache->flags = btrfs_block_group_flags(&cache->item);
8385 cache->sectorsize = root->sectorsize;
8386 cache->full_stripe_len = btrfs_full_stripe_len(root,
8387 &root->fs_info->mapping_tree,
8388 found_key.objectid);
8389 btrfs_init_free_space_ctl(cache);
8390
8391 /*
8392 * We need to exclude the super stripes now so that the space
8393 * info has super bytes accounted for, otherwise we'll think
8394 * we have more space than we actually do.
8395 */
8396 ret = exclude_super_stripes(root, cache);
8397 if (ret) {
8398 /*
8399 * We may have excluded something, so call this just in
8400 * case.
8401 */
8402 free_excluded_extents(root, cache);
8403 kfree(cache->free_space_ctl);
8404 kfree(cache);
8405 goto error;
8406 }
8407
8408 /*
8409 * check for two cases, either we are full, and therefore
8410 * don't need to bother with the caching work since we won't
8411 * find any space, or we are empty, and we can just add all
8412 * the space in and be done with it. This saves us _alot_ of
8413 * time, particularly in the full case.
8414 */
8415 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8416 cache->last_byte_to_unpin = (u64)-1;
8417 cache->cached = BTRFS_CACHE_FINISHED;
8418 free_excluded_extents(root, cache);
8419 } else if (btrfs_block_group_used(&cache->item) == 0) {
8420 cache->last_byte_to_unpin = (u64)-1;
8421 cache->cached = BTRFS_CACHE_FINISHED;
8422 add_new_free_space(cache, root->fs_info,
8423 found_key.objectid,
8424 found_key.objectid +
8425 found_key.offset);
8426 free_excluded_extents(root, cache);
8427 }
8428
8429 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8430 if (ret) {
8431 btrfs_remove_free_space_cache(cache);
8432 btrfs_put_block_group(cache);
8433 goto error;
8434 }
8435
8436 ret = update_space_info(info, cache->flags, found_key.offset,
8437 btrfs_block_group_used(&cache->item),
8438 &space_info);
8439 if (ret) {
8440 btrfs_remove_free_space_cache(cache);
8441 spin_lock(&info->block_group_cache_lock);
8442 rb_erase(&cache->cache_node,
8443 &info->block_group_cache_tree);
8444 spin_unlock(&info->block_group_cache_lock);
8445 btrfs_put_block_group(cache);
8446 goto error;
8447 }
8448
8449 cache->space_info = space_info;
8450 spin_lock(&cache->space_info->lock);
8451 cache->space_info->bytes_readonly += cache->bytes_super;
8452 spin_unlock(&cache->space_info->lock);
8453
8454 __link_block_group(space_info, cache);
8455
8456 set_avail_alloc_bits(root->fs_info, cache->flags);
8457 if (btrfs_chunk_readonly(root, cache->key.objectid))
8458 set_block_group_ro(cache, 1);
8459 }
8460
8461 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8462 if (!(get_alloc_profile(root, space_info->flags) &
8463 (BTRFS_BLOCK_GROUP_RAID10 |
8464 BTRFS_BLOCK_GROUP_RAID1 |
8465 BTRFS_BLOCK_GROUP_RAID5 |
8466 BTRFS_BLOCK_GROUP_RAID6 |
8467 BTRFS_BLOCK_GROUP_DUP)))
8468 continue;
8469 /*
8470 * avoid allocating from un-mirrored block group if there are
8471 * mirrored block groups.
8472 */
8473 list_for_each_entry(cache,
8474 &space_info->block_groups[BTRFS_RAID_RAID0],
8475 list)
8476 set_block_group_ro(cache, 1);
8477 list_for_each_entry(cache,
8478 &space_info->block_groups[BTRFS_RAID_SINGLE],
8479 list)
8480 set_block_group_ro(cache, 1);
8481 }
8482
8483 init_global_block_rsv(info);
8484 ret = 0;
8485 error:
8486 btrfs_free_path(path);
8487 return ret;
8488 }
8489
8490 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8491 struct btrfs_root *root)
8492 {
8493 struct btrfs_block_group_cache *block_group, *tmp;
8494 struct btrfs_root *extent_root = root->fs_info->extent_root;
8495 struct btrfs_block_group_item item;
8496 struct btrfs_key key;
8497 int ret = 0;
8498
8499 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8500 new_bg_list) {
8501 list_del_init(&block_group->new_bg_list);
8502
8503 if (ret)
8504 continue;
8505
8506 spin_lock(&block_group->lock);
8507 memcpy(&item, &block_group->item, sizeof(item));
8508 memcpy(&key, &block_group->key, sizeof(key));
8509 spin_unlock(&block_group->lock);
8510
8511 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8512 sizeof(item));
8513 if (ret)
8514 btrfs_abort_transaction(trans, extent_root, ret);
8515 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8516 key.objectid, key.offset);
8517 if (ret)
8518 btrfs_abort_transaction(trans, extent_root, ret);
8519 }
8520 }
8521
8522 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8523 struct btrfs_root *root, u64 bytes_used,
8524 u64 type, u64 chunk_objectid, u64 chunk_offset,
8525 u64 size)
8526 {
8527 int ret;
8528 struct btrfs_root *extent_root;
8529 struct btrfs_block_group_cache *cache;
8530
8531 extent_root = root->fs_info->extent_root;
8532
8533 root->fs_info->last_trans_log_full_commit = trans->transid;
8534
8535 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8536 if (!cache)
8537 return -ENOMEM;
8538 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8539 GFP_NOFS);
8540 if (!cache->free_space_ctl) {
8541 kfree(cache);
8542 return -ENOMEM;
8543 }
8544
8545 cache->key.objectid = chunk_offset;
8546 cache->key.offset = size;
8547 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8548 cache->sectorsize = root->sectorsize;
8549 cache->fs_info = root->fs_info;
8550 cache->full_stripe_len = btrfs_full_stripe_len(root,
8551 &root->fs_info->mapping_tree,
8552 chunk_offset);
8553
8554 atomic_set(&cache->count, 1);
8555 spin_lock_init(&cache->lock);
8556 INIT_LIST_HEAD(&cache->list);
8557 INIT_LIST_HEAD(&cache->cluster_list);
8558 INIT_LIST_HEAD(&cache->new_bg_list);
8559
8560 btrfs_init_free_space_ctl(cache);
8561
8562 btrfs_set_block_group_used(&cache->item, bytes_used);
8563 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8564 cache->flags = type;
8565 btrfs_set_block_group_flags(&cache->item, type);
8566
8567 cache->last_byte_to_unpin = (u64)-1;
8568 cache->cached = BTRFS_CACHE_FINISHED;
8569 ret = exclude_super_stripes(root, cache);
8570 if (ret) {
8571 /*
8572 * We may have excluded something, so call this just in
8573 * case.
8574 */
8575 free_excluded_extents(root, cache);
8576 kfree(cache->free_space_ctl);
8577 kfree(cache);
8578 return ret;
8579 }
8580
8581 add_new_free_space(cache, root->fs_info, chunk_offset,
8582 chunk_offset + size);
8583
8584 free_excluded_extents(root, cache);
8585
8586 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8587 if (ret) {
8588 btrfs_remove_free_space_cache(cache);
8589 btrfs_put_block_group(cache);
8590 return ret;
8591 }
8592
8593 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8594 &cache->space_info);
8595 if (ret) {
8596 btrfs_remove_free_space_cache(cache);
8597 spin_lock(&root->fs_info->block_group_cache_lock);
8598 rb_erase(&cache->cache_node,
8599 &root->fs_info->block_group_cache_tree);
8600 spin_unlock(&root->fs_info->block_group_cache_lock);
8601 btrfs_put_block_group(cache);
8602 return ret;
8603 }
8604 update_global_block_rsv(root->fs_info);
8605
8606 spin_lock(&cache->space_info->lock);
8607 cache->space_info->bytes_readonly += cache->bytes_super;
8608 spin_unlock(&cache->space_info->lock);
8609
8610 __link_block_group(cache->space_info, cache);
8611
8612 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8613
8614 set_avail_alloc_bits(extent_root->fs_info, type);
8615
8616 return 0;
8617 }
8618
8619 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8620 {
8621 u64 extra_flags = chunk_to_extended(flags) &
8622 BTRFS_EXTENDED_PROFILE_MASK;
8623
8624 write_seqlock(&fs_info->profiles_lock);
8625 if (flags & BTRFS_BLOCK_GROUP_DATA)
8626 fs_info->avail_data_alloc_bits &= ~extra_flags;
8627 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8628 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8629 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8630 fs_info->avail_system_alloc_bits &= ~extra_flags;
8631 write_sequnlock(&fs_info->profiles_lock);
8632 }
8633
8634 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8635 struct btrfs_root *root, u64 group_start)
8636 {
8637 struct btrfs_path *path;
8638 struct btrfs_block_group_cache *block_group;
8639 struct btrfs_free_cluster *cluster;
8640 struct btrfs_root *tree_root = root->fs_info->tree_root;
8641 struct btrfs_key key;
8642 struct inode *inode;
8643 int ret;
8644 int index;
8645 int factor;
8646
8647 root = root->fs_info->extent_root;
8648
8649 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8650 BUG_ON(!block_group);
8651 BUG_ON(!block_group->ro);
8652
8653 /*
8654 * Free the reserved super bytes from this block group before
8655 * remove it.
8656 */
8657 free_excluded_extents(root, block_group);
8658
8659 memcpy(&key, &block_group->key, sizeof(key));
8660 index = get_block_group_index(block_group);
8661 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8662 BTRFS_BLOCK_GROUP_RAID1 |
8663 BTRFS_BLOCK_GROUP_RAID10))
8664 factor = 2;
8665 else
8666 factor = 1;
8667
8668 /* make sure this block group isn't part of an allocation cluster */
8669 cluster = &root->fs_info->data_alloc_cluster;
8670 spin_lock(&cluster->refill_lock);
8671 btrfs_return_cluster_to_free_space(block_group, cluster);
8672 spin_unlock(&cluster->refill_lock);
8673
8674 /*
8675 * make sure this block group isn't part of a metadata
8676 * allocation cluster
8677 */
8678 cluster = &root->fs_info->meta_alloc_cluster;
8679 spin_lock(&cluster->refill_lock);
8680 btrfs_return_cluster_to_free_space(block_group, cluster);
8681 spin_unlock(&cluster->refill_lock);
8682
8683 path = btrfs_alloc_path();
8684 if (!path) {
8685 ret = -ENOMEM;
8686 goto out;
8687 }
8688
8689 inode = lookup_free_space_inode(tree_root, block_group, path);
8690 if (!IS_ERR(inode)) {
8691 ret = btrfs_orphan_add(trans, inode);
8692 if (ret) {
8693 btrfs_add_delayed_iput(inode);
8694 goto out;
8695 }
8696 clear_nlink(inode);
8697 /* One for the block groups ref */
8698 spin_lock(&block_group->lock);
8699 if (block_group->iref) {
8700 block_group->iref = 0;
8701 block_group->inode = NULL;
8702 spin_unlock(&block_group->lock);
8703 iput(inode);
8704 } else {
8705 spin_unlock(&block_group->lock);
8706 }
8707 /* One for our lookup ref */
8708 btrfs_add_delayed_iput(inode);
8709 }
8710
8711 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8712 key.offset = block_group->key.objectid;
8713 key.type = 0;
8714
8715 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8716 if (ret < 0)
8717 goto out;
8718 if (ret > 0)
8719 btrfs_release_path(path);
8720 if (ret == 0) {
8721 ret = btrfs_del_item(trans, tree_root, path);
8722 if (ret)
8723 goto out;
8724 btrfs_release_path(path);
8725 }
8726
8727 spin_lock(&root->fs_info->block_group_cache_lock);
8728 rb_erase(&block_group->cache_node,
8729 &root->fs_info->block_group_cache_tree);
8730
8731 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8732 root->fs_info->first_logical_byte = (u64)-1;
8733 spin_unlock(&root->fs_info->block_group_cache_lock);
8734
8735 down_write(&block_group->space_info->groups_sem);
8736 /*
8737 * we must use list_del_init so people can check to see if they
8738 * are still on the list after taking the semaphore
8739 */
8740 list_del_init(&block_group->list);
8741 if (list_empty(&block_group->space_info->block_groups[index]))
8742 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8743 up_write(&block_group->space_info->groups_sem);
8744
8745 if (block_group->cached == BTRFS_CACHE_STARTED)
8746 wait_block_group_cache_done(block_group);
8747
8748 btrfs_remove_free_space_cache(block_group);
8749
8750 spin_lock(&block_group->space_info->lock);
8751 block_group->space_info->total_bytes -= block_group->key.offset;
8752 block_group->space_info->bytes_readonly -= block_group->key.offset;
8753 block_group->space_info->disk_total -= block_group->key.offset * factor;
8754 spin_unlock(&block_group->space_info->lock);
8755
8756 memcpy(&key, &block_group->key, sizeof(key));
8757
8758 btrfs_clear_space_info_full(root->fs_info);
8759
8760 btrfs_put_block_group(block_group);
8761 btrfs_put_block_group(block_group);
8762
8763 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8764 if (ret > 0)
8765 ret = -EIO;
8766 if (ret < 0)
8767 goto out;
8768
8769 ret = btrfs_del_item(trans, root, path);
8770 out:
8771 btrfs_free_path(path);
8772 return ret;
8773 }
8774
8775 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8776 {
8777 struct btrfs_space_info *space_info;
8778 struct btrfs_super_block *disk_super;
8779 u64 features;
8780 u64 flags;
8781 int mixed = 0;
8782 int ret;
8783
8784 disk_super = fs_info->super_copy;
8785 if (!btrfs_super_root(disk_super))
8786 return 1;
8787
8788 features = btrfs_super_incompat_flags(disk_super);
8789 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8790 mixed = 1;
8791
8792 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8793 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8794 if (ret)
8795 goto out;
8796
8797 if (mixed) {
8798 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8799 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8800 } else {
8801 flags = BTRFS_BLOCK_GROUP_METADATA;
8802 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8803 if (ret)
8804 goto out;
8805
8806 flags = BTRFS_BLOCK_GROUP_DATA;
8807 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8808 }
8809 out:
8810 return ret;
8811 }
8812
8813 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8814 {
8815 return unpin_extent_range(root, start, end);
8816 }
8817
8818 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8819 u64 num_bytes, u64 *actual_bytes)
8820 {
8821 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8822 }
8823
8824 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8825 {
8826 struct btrfs_fs_info *fs_info = root->fs_info;
8827 struct btrfs_block_group_cache *cache = NULL;
8828 u64 group_trimmed;
8829 u64 start;
8830 u64 end;
8831 u64 trimmed = 0;
8832 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8833 int ret = 0;
8834
8835 /*
8836 * try to trim all FS space, our block group may start from non-zero.
8837 */
8838 if (range->len == total_bytes)
8839 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8840 else
8841 cache = btrfs_lookup_block_group(fs_info, range->start);
8842
8843 while (cache) {
8844 if (cache->key.objectid >= (range->start + range->len)) {
8845 btrfs_put_block_group(cache);
8846 break;
8847 }
8848
8849 start = max(range->start, cache->key.objectid);
8850 end = min(range->start + range->len,
8851 cache->key.objectid + cache->key.offset);
8852
8853 if (end - start >= range->minlen) {
8854 if (!block_group_cache_done(cache)) {
8855 ret = cache_block_group(cache, 0);
8856 if (ret) {
8857 btrfs_put_block_group(cache);
8858 break;
8859 }
8860 ret = wait_block_group_cache_done(cache);
8861 if (ret) {
8862 btrfs_put_block_group(cache);
8863 break;
8864 }
8865 }
8866 ret = btrfs_trim_block_group(cache,
8867 &group_trimmed,
8868 start,
8869 end,
8870 range->minlen);
8871
8872 trimmed += group_trimmed;
8873 if (ret) {
8874 btrfs_put_block_group(cache);
8875 break;
8876 }
8877 }
8878
8879 cache = next_block_group(fs_info->tree_root, cache);
8880 }
8881
8882 range->len = trimmed;
8883 return ret;
8884 }
This page took 0.366733 seconds and 6 git commands to generate.