Merge tag 'dm-3.17-fix2' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op,
85 int no_quota);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
98 int level, struct btrfs_key *ins,
99 int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 u64 num_bytes, int reserve,
109 int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
114
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 smp_mb();
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
121 }
122
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 return (cache->flags & bits) == bits;
126 }
127
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 atomic_inc(&cache->count);
131 }
132
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
138 kfree(cache->free_space_ctl);
139 kfree(cache);
140 }
141 }
142
143 /*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 struct btrfs_block_group_cache *block_group)
149 {
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181 }
182
183 /*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190 {
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
219 if (ret) {
220 btrfs_get_block_group(ret);
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227 }
228
229 static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
231 {
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238 }
239
240 static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242 {
243 u64 start, end;
244
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253
254 static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
256 {
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
267 if (ret)
268 return ret;
269 }
270
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
276 if (ret)
277 return ret;
278
279 while (nr--) {
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
305 }
306
307 kfree(logical);
308 }
309 return 0;
310 }
311
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
318 if (cache->cached != BTRFS_CACHE_STARTED) {
319 spin_unlock(&cache->lock);
320 return NULL;
321 }
322
323 /* We're loading it the fast way, so we don't have a caching_ctl. */
324 if (!cache->caching_ctl) {
325 spin_unlock(&cache->lock);
326 return NULL;
327 }
328
329 ctl = cache->caching_ctl;
330 atomic_inc(&ctl->count);
331 spin_unlock(&cache->lock);
332 return ctl;
333 }
334
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337 if (atomic_dec_and_test(&ctl->count))
338 kfree(ctl);
339 }
340
341 /*
342 * this is only called by cache_block_group, since we could have freed extents
343 * we need to check the pinned_extents for any extents that can't be used yet
344 * since their free space will be released as soon as the transaction commits.
345 */
346 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
347 struct btrfs_fs_info *info, u64 start, u64 end)
348 {
349 u64 extent_start, extent_end, size, total_added = 0;
350 int ret;
351
352 while (start < end) {
353 ret = find_first_extent_bit(info->pinned_extents, start,
354 &extent_start, &extent_end,
355 EXTENT_DIRTY | EXTENT_UPTODATE,
356 NULL);
357 if (ret)
358 break;
359
360 if (extent_start <= start) {
361 start = extent_end + 1;
362 } else if (extent_start > start && extent_start < end) {
363 size = extent_start - start;
364 total_added += size;
365 ret = btrfs_add_free_space(block_group, start,
366 size);
367 BUG_ON(ret); /* -ENOMEM or logic error */
368 start = extent_end + 1;
369 } else {
370 break;
371 }
372 }
373
374 if (start < end) {
375 size = end - start;
376 total_added += size;
377 ret = btrfs_add_free_space(block_group, start, size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 }
380
381 return total_added;
382 }
383
384 static noinline void caching_thread(struct btrfs_work *work)
385 {
386 struct btrfs_block_group_cache *block_group;
387 struct btrfs_fs_info *fs_info;
388 struct btrfs_caching_control *caching_ctl;
389 struct btrfs_root *extent_root;
390 struct btrfs_path *path;
391 struct extent_buffer *leaf;
392 struct btrfs_key key;
393 u64 total_found = 0;
394 u64 last = 0;
395 u32 nritems;
396 int ret = -ENOMEM;
397
398 caching_ctl = container_of(work, struct btrfs_caching_control, work);
399 block_group = caching_ctl->block_group;
400 fs_info = block_group->fs_info;
401 extent_root = fs_info->extent_root;
402
403 path = btrfs_alloc_path();
404 if (!path)
405 goto out;
406
407 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
408
409 /*
410 * We don't want to deadlock with somebody trying to allocate a new
411 * extent for the extent root while also trying to search the extent
412 * root to add free space. So we skip locking and search the commit
413 * root, since its read-only
414 */
415 path->skip_locking = 1;
416 path->search_commit_root = 1;
417 path->reada = 1;
418
419 key.objectid = last;
420 key.offset = 0;
421 key.type = BTRFS_EXTENT_ITEM_KEY;
422 again:
423 mutex_lock(&caching_ctl->mutex);
424 /* need to make sure the commit_root doesn't disappear */
425 down_read(&fs_info->commit_root_sem);
426
427 next:
428 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
429 if (ret < 0)
430 goto err;
431
432 leaf = path->nodes[0];
433 nritems = btrfs_header_nritems(leaf);
434
435 while (1) {
436 if (btrfs_fs_closing(fs_info) > 1) {
437 last = (u64)-1;
438 break;
439 }
440
441 if (path->slots[0] < nritems) {
442 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
443 } else {
444 ret = find_next_key(path, 0, &key);
445 if (ret)
446 break;
447
448 if (need_resched() ||
449 rwsem_is_contended(&fs_info->commit_root_sem)) {
450 caching_ctl->progress = last;
451 btrfs_release_path(path);
452 up_read(&fs_info->commit_root_sem);
453 mutex_unlock(&caching_ctl->mutex);
454 cond_resched();
455 goto again;
456 }
457
458 ret = btrfs_next_leaf(extent_root, path);
459 if (ret < 0)
460 goto err;
461 if (ret)
462 break;
463 leaf = path->nodes[0];
464 nritems = btrfs_header_nritems(leaf);
465 continue;
466 }
467
468 if (key.objectid < last) {
469 key.objectid = last;
470 key.offset = 0;
471 key.type = BTRFS_EXTENT_ITEM_KEY;
472
473 caching_ctl->progress = last;
474 btrfs_release_path(path);
475 goto next;
476 }
477
478 if (key.objectid < block_group->key.objectid) {
479 path->slots[0]++;
480 continue;
481 }
482
483 if (key.objectid >= block_group->key.objectid +
484 block_group->key.offset)
485 break;
486
487 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
488 key.type == BTRFS_METADATA_ITEM_KEY) {
489 total_found += add_new_free_space(block_group,
490 fs_info, last,
491 key.objectid);
492 if (key.type == BTRFS_METADATA_ITEM_KEY)
493 last = key.objectid +
494 fs_info->tree_root->leafsize;
495 else
496 last = key.objectid + key.offset;
497
498 if (total_found > (1024 * 1024 * 2)) {
499 total_found = 0;
500 wake_up(&caching_ctl->wait);
501 }
502 }
503 path->slots[0]++;
504 }
505 ret = 0;
506
507 total_found += add_new_free_space(block_group, fs_info, last,
508 block_group->key.objectid +
509 block_group->key.offset);
510 caching_ctl->progress = (u64)-1;
511
512 spin_lock(&block_group->lock);
513 block_group->caching_ctl = NULL;
514 block_group->cached = BTRFS_CACHE_FINISHED;
515 spin_unlock(&block_group->lock);
516
517 err:
518 btrfs_free_path(path);
519 up_read(&fs_info->commit_root_sem);
520
521 free_excluded_extents(extent_root, block_group);
522
523 mutex_unlock(&caching_ctl->mutex);
524 out:
525 if (ret) {
526 spin_lock(&block_group->lock);
527 block_group->caching_ctl = NULL;
528 block_group->cached = BTRFS_CACHE_ERROR;
529 spin_unlock(&block_group->lock);
530 }
531 wake_up(&caching_ctl->wait);
532
533 put_caching_control(caching_ctl);
534 btrfs_put_block_group(block_group);
535 }
536
537 static int cache_block_group(struct btrfs_block_group_cache *cache,
538 int load_cache_only)
539 {
540 DEFINE_WAIT(wait);
541 struct btrfs_fs_info *fs_info = cache->fs_info;
542 struct btrfs_caching_control *caching_ctl;
543 int ret = 0;
544
545 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
546 if (!caching_ctl)
547 return -ENOMEM;
548
549 INIT_LIST_HEAD(&caching_ctl->list);
550 mutex_init(&caching_ctl->mutex);
551 init_waitqueue_head(&caching_ctl->wait);
552 caching_ctl->block_group = cache;
553 caching_ctl->progress = cache->key.objectid;
554 atomic_set(&caching_ctl->count, 1);
555 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
556 caching_thread, NULL, NULL);
557
558 spin_lock(&cache->lock);
559 /*
560 * This should be a rare occasion, but this could happen I think in the
561 * case where one thread starts to load the space cache info, and then
562 * some other thread starts a transaction commit which tries to do an
563 * allocation while the other thread is still loading the space cache
564 * info. The previous loop should have kept us from choosing this block
565 * group, but if we've moved to the state where we will wait on caching
566 * block groups we need to first check if we're doing a fast load here,
567 * so we can wait for it to finish, otherwise we could end up allocating
568 * from a block group who's cache gets evicted for one reason or
569 * another.
570 */
571 while (cache->cached == BTRFS_CACHE_FAST) {
572 struct btrfs_caching_control *ctl;
573
574 ctl = cache->caching_ctl;
575 atomic_inc(&ctl->count);
576 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
577 spin_unlock(&cache->lock);
578
579 schedule();
580
581 finish_wait(&ctl->wait, &wait);
582 put_caching_control(ctl);
583 spin_lock(&cache->lock);
584 }
585
586 if (cache->cached != BTRFS_CACHE_NO) {
587 spin_unlock(&cache->lock);
588 kfree(caching_ctl);
589 return 0;
590 }
591 WARN_ON(cache->caching_ctl);
592 cache->caching_ctl = caching_ctl;
593 cache->cached = BTRFS_CACHE_FAST;
594 spin_unlock(&cache->lock);
595
596 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
597 ret = load_free_space_cache(fs_info, cache);
598
599 spin_lock(&cache->lock);
600 if (ret == 1) {
601 cache->caching_ctl = NULL;
602 cache->cached = BTRFS_CACHE_FINISHED;
603 cache->last_byte_to_unpin = (u64)-1;
604 } else {
605 if (load_cache_only) {
606 cache->caching_ctl = NULL;
607 cache->cached = BTRFS_CACHE_NO;
608 } else {
609 cache->cached = BTRFS_CACHE_STARTED;
610 }
611 }
612 spin_unlock(&cache->lock);
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
633 }
634
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
637 return 0;
638 }
639
640 down_write(&fs_info->commit_root_sem);
641 atomic_inc(&caching_ctl->count);
642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 up_write(&fs_info->commit_root_sem);
644
645 btrfs_get_block_group(cache);
646
647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648
649 return ret;
650 }
651
652 /*
653 * return the block group that starts at or after bytenr
654 */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 struct btrfs_block_group_cache *cache;
659
660 cache = block_group_cache_tree_search(info, bytenr, 0);
661
662 return cache;
663 }
664
665 /*
666 * return the block group that contains the given bytenr
667 */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
671 {
672 struct btrfs_block_group_cache *cache;
673
674 cache = block_group_cache_tree_search(info, bytenr, 1);
675
676 return cache;
677 }
678
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
681 {
682 struct list_head *head = &info->space_info;
683 struct btrfs_space_info *found;
684
685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
689 if (found->flags & flags) {
690 rcu_read_unlock();
691 return found;
692 }
693 }
694 rcu_read_unlock();
695 return NULL;
696 }
697
698 /*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711 }
712
713 /* simple helper to search for an existing extent at a given offset */
714 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 int ret;
717 struct btrfs_key key;
718 struct btrfs_path *path;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = start;
725 key.offset = len;
726 key.type = BTRFS_EXTENT_ITEM_KEY;
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
729 if (ret > 0) {
730 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
731 if (key.objectid == start &&
732 key.type == BTRFS_METADATA_ITEM_KEY)
733 ret = 0;
734 }
735 btrfs_free_path(path);
736 return ret;
737 }
738
739 /*
740 * helper function to lookup reference count and flags of a tree block.
741 *
742 * the head node for delayed ref is used to store the sum of all the
743 * reference count modifications queued up in the rbtree. the head
744 * node may also store the extent flags to set. This way you can check
745 * to see what the reference count and extent flags would be if all of
746 * the delayed refs are not processed.
747 */
748 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
749 struct btrfs_root *root, u64 bytenr,
750 u64 offset, int metadata, u64 *refs, u64 *flags)
751 {
752 struct btrfs_delayed_ref_head *head;
753 struct btrfs_delayed_ref_root *delayed_refs;
754 struct btrfs_path *path;
755 struct btrfs_extent_item *ei;
756 struct extent_buffer *leaf;
757 struct btrfs_key key;
758 u32 item_size;
759 u64 num_refs;
760 u64 extent_flags;
761 int ret;
762
763 /*
764 * If we don't have skinny metadata, don't bother doing anything
765 * different
766 */
767 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
768 offset = root->leafsize;
769 metadata = 0;
770 }
771
772 path = btrfs_alloc_path();
773 if (!path)
774 return -ENOMEM;
775
776 if (!trans) {
777 path->skip_locking = 1;
778 path->search_commit_root = 1;
779 }
780
781 search_again:
782 key.objectid = bytenr;
783 key.offset = offset;
784 if (metadata)
785 key.type = BTRFS_METADATA_ITEM_KEY;
786 else
787 key.type = BTRFS_EXTENT_ITEM_KEY;
788
789 again:
790 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
791 &key, path, 0, 0);
792 if (ret < 0)
793 goto out_free;
794
795 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
796 if (path->slots[0]) {
797 path->slots[0]--;
798 btrfs_item_key_to_cpu(path->nodes[0], &key,
799 path->slots[0]);
800 if (key.objectid == bytenr &&
801 key.type == BTRFS_EXTENT_ITEM_KEY &&
802 key.offset == root->leafsize)
803 ret = 0;
804 }
805 if (ret) {
806 key.objectid = bytenr;
807 key.type = BTRFS_EXTENT_ITEM_KEY;
808 key.offset = root->leafsize;
809 btrfs_release_path(path);
810 goto again;
811 }
812 }
813
814 if (ret == 0) {
815 leaf = path->nodes[0];
816 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
817 if (item_size >= sizeof(*ei)) {
818 ei = btrfs_item_ptr(leaf, path->slots[0],
819 struct btrfs_extent_item);
820 num_refs = btrfs_extent_refs(leaf, ei);
821 extent_flags = btrfs_extent_flags(leaf, ei);
822 } else {
823 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
824 struct btrfs_extent_item_v0 *ei0;
825 BUG_ON(item_size != sizeof(*ei0));
826 ei0 = btrfs_item_ptr(leaf, path->slots[0],
827 struct btrfs_extent_item_v0);
828 num_refs = btrfs_extent_refs_v0(leaf, ei0);
829 /* FIXME: this isn't correct for data */
830 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
831 #else
832 BUG();
833 #endif
834 }
835 BUG_ON(num_refs == 0);
836 } else {
837 num_refs = 0;
838 extent_flags = 0;
839 ret = 0;
840 }
841
842 if (!trans)
843 goto out;
844
845 delayed_refs = &trans->transaction->delayed_refs;
846 spin_lock(&delayed_refs->lock);
847 head = btrfs_find_delayed_ref_head(trans, bytenr);
848 if (head) {
849 if (!mutex_trylock(&head->mutex)) {
850 atomic_inc(&head->node.refs);
851 spin_unlock(&delayed_refs->lock);
852
853 btrfs_release_path(path);
854
855 /*
856 * Mutex was contended, block until it's released and try
857 * again
858 */
859 mutex_lock(&head->mutex);
860 mutex_unlock(&head->mutex);
861 btrfs_put_delayed_ref(&head->node);
862 goto search_again;
863 }
864 spin_lock(&head->lock);
865 if (head->extent_op && head->extent_op->update_flags)
866 extent_flags |= head->extent_op->flags_to_set;
867 else
868 BUG_ON(num_refs == 0);
869
870 num_refs += head->node.ref_mod;
871 spin_unlock(&head->lock);
872 mutex_unlock(&head->mutex);
873 }
874 spin_unlock(&delayed_refs->lock);
875 out:
876 WARN_ON(num_refs == 0);
877 if (refs)
878 *refs = num_refs;
879 if (flags)
880 *flags = extent_flags;
881 out_free:
882 btrfs_free_path(path);
883 return ret;
884 }
885
886 /*
887 * Back reference rules. Back refs have three main goals:
888 *
889 * 1) differentiate between all holders of references to an extent so that
890 * when a reference is dropped we can make sure it was a valid reference
891 * before freeing the extent.
892 *
893 * 2) Provide enough information to quickly find the holders of an extent
894 * if we notice a given block is corrupted or bad.
895 *
896 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
897 * maintenance. This is actually the same as #2, but with a slightly
898 * different use case.
899 *
900 * There are two kinds of back refs. The implicit back refs is optimized
901 * for pointers in non-shared tree blocks. For a given pointer in a block,
902 * back refs of this kind provide information about the block's owner tree
903 * and the pointer's key. These information allow us to find the block by
904 * b-tree searching. The full back refs is for pointers in tree blocks not
905 * referenced by their owner trees. The location of tree block is recorded
906 * in the back refs. Actually the full back refs is generic, and can be
907 * used in all cases the implicit back refs is used. The major shortcoming
908 * of the full back refs is its overhead. Every time a tree block gets
909 * COWed, we have to update back refs entry for all pointers in it.
910 *
911 * For a newly allocated tree block, we use implicit back refs for
912 * pointers in it. This means most tree related operations only involve
913 * implicit back refs. For a tree block created in old transaction, the
914 * only way to drop a reference to it is COW it. So we can detect the
915 * event that tree block loses its owner tree's reference and do the
916 * back refs conversion.
917 *
918 * When a tree block is COW'd through a tree, there are four cases:
919 *
920 * The reference count of the block is one and the tree is the block's
921 * owner tree. Nothing to do in this case.
922 *
923 * The reference count of the block is one and the tree is not the
924 * block's owner tree. In this case, full back refs is used for pointers
925 * in the block. Remove these full back refs, add implicit back refs for
926 * every pointers in the new block.
927 *
928 * The reference count of the block is greater than one and the tree is
929 * the block's owner tree. In this case, implicit back refs is used for
930 * pointers in the block. Add full back refs for every pointers in the
931 * block, increase lower level extents' reference counts. The original
932 * implicit back refs are entailed to the new block.
933 *
934 * The reference count of the block is greater than one and the tree is
935 * not the block's owner tree. Add implicit back refs for every pointer in
936 * the new block, increase lower level extents' reference count.
937 *
938 * Back Reference Key composing:
939 *
940 * The key objectid corresponds to the first byte in the extent,
941 * The key type is used to differentiate between types of back refs.
942 * There are different meanings of the key offset for different types
943 * of back refs.
944 *
945 * File extents can be referenced by:
946 *
947 * - multiple snapshots, subvolumes, or different generations in one subvol
948 * - different files inside a single subvolume
949 * - different offsets inside a file (bookend extents in file.c)
950 *
951 * The extent ref structure for the implicit back refs has fields for:
952 *
953 * - Objectid of the subvolume root
954 * - objectid of the file holding the reference
955 * - original offset in the file
956 * - how many bookend extents
957 *
958 * The key offset for the implicit back refs is hash of the first
959 * three fields.
960 *
961 * The extent ref structure for the full back refs has field for:
962 *
963 * - number of pointers in the tree leaf
964 *
965 * The key offset for the implicit back refs is the first byte of
966 * the tree leaf
967 *
968 * When a file extent is allocated, The implicit back refs is used.
969 * the fields are filled in:
970 *
971 * (root_key.objectid, inode objectid, offset in file, 1)
972 *
973 * When a file extent is removed file truncation, we find the
974 * corresponding implicit back refs and check the following fields:
975 *
976 * (btrfs_header_owner(leaf), inode objectid, offset in file)
977 *
978 * Btree extents can be referenced by:
979 *
980 * - Different subvolumes
981 *
982 * Both the implicit back refs and the full back refs for tree blocks
983 * only consist of key. The key offset for the implicit back refs is
984 * objectid of block's owner tree. The key offset for the full back refs
985 * is the first byte of parent block.
986 *
987 * When implicit back refs is used, information about the lowest key and
988 * level of the tree block are required. These information are stored in
989 * tree block info structure.
990 */
991
992 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
993 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
994 struct btrfs_root *root,
995 struct btrfs_path *path,
996 u64 owner, u32 extra_size)
997 {
998 struct btrfs_extent_item *item;
999 struct btrfs_extent_item_v0 *ei0;
1000 struct btrfs_extent_ref_v0 *ref0;
1001 struct btrfs_tree_block_info *bi;
1002 struct extent_buffer *leaf;
1003 struct btrfs_key key;
1004 struct btrfs_key found_key;
1005 u32 new_size = sizeof(*item);
1006 u64 refs;
1007 int ret;
1008
1009 leaf = path->nodes[0];
1010 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1011
1012 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1013 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1014 struct btrfs_extent_item_v0);
1015 refs = btrfs_extent_refs_v0(leaf, ei0);
1016
1017 if (owner == (u64)-1) {
1018 while (1) {
1019 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1020 ret = btrfs_next_leaf(root, path);
1021 if (ret < 0)
1022 return ret;
1023 BUG_ON(ret > 0); /* Corruption */
1024 leaf = path->nodes[0];
1025 }
1026 btrfs_item_key_to_cpu(leaf, &found_key,
1027 path->slots[0]);
1028 BUG_ON(key.objectid != found_key.objectid);
1029 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1030 path->slots[0]++;
1031 continue;
1032 }
1033 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1034 struct btrfs_extent_ref_v0);
1035 owner = btrfs_ref_objectid_v0(leaf, ref0);
1036 break;
1037 }
1038 }
1039 btrfs_release_path(path);
1040
1041 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1042 new_size += sizeof(*bi);
1043
1044 new_size -= sizeof(*ei0);
1045 ret = btrfs_search_slot(trans, root, &key, path,
1046 new_size + extra_size, 1);
1047 if (ret < 0)
1048 return ret;
1049 BUG_ON(ret); /* Corruption */
1050
1051 btrfs_extend_item(root, path, new_size);
1052
1053 leaf = path->nodes[0];
1054 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1055 btrfs_set_extent_refs(leaf, item, refs);
1056 /* FIXME: get real generation */
1057 btrfs_set_extent_generation(leaf, item, 0);
1058 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1059 btrfs_set_extent_flags(leaf, item,
1060 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1061 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1062 bi = (struct btrfs_tree_block_info *)(item + 1);
1063 /* FIXME: get first key of the block */
1064 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1065 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1066 } else {
1067 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1068 }
1069 btrfs_mark_buffer_dirty(leaf);
1070 return 0;
1071 }
1072 #endif
1073
1074 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1075 {
1076 u32 high_crc = ~(u32)0;
1077 u32 low_crc = ~(u32)0;
1078 __le64 lenum;
1079
1080 lenum = cpu_to_le64(root_objectid);
1081 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1082 lenum = cpu_to_le64(owner);
1083 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1084 lenum = cpu_to_le64(offset);
1085 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1086
1087 return ((u64)high_crc << 31) ^ (u64)low_crc;
1088 }
1089
1090 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1091 struct btrfs_extent_data_ref *ref)
1092 {
1093 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1094 btrfs_extent_data_ref_objectid(leaf, ref),
1095 btrfs_extent_data_ref_offset(leaf, ref));
1096 }
1097
1098 static int match_extent_data_ref(struct extent_buffer *leaf,
1099 struct btrfs_extent_data_ref *ref,
1100 u64 root_objectid, u64 owner, u64 offset)
1101 {
1102 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1103 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1104 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1105 return 0;
1106 return 1;
1107 }
1108
1109 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1110 struct btrfs_root *root,
1111 struct btrfs_path *path,
1112 u64 bytenr, u64 parent,
1113 u64 root_objectid,
1114 u64 owner, u64 offset)
1115 {
1116 struct btrfs_key key;
1117 struct btrfs_extent_data_ref *ref;
1118 struct extent_buffer *leaf;
1119 u32 nritems;
1120 int ret;
1121 int recow;
1122 int err = -ENOENT;
1123
1124 key.objectid = bytenr;
1125 if (parent) {
1126 key.type = BTRFS_SHARED_DATA_REF_KEY;
1127 key.offset = parent;
1128 } else {
1129 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1130 key.offset = hash_extent_data_ref(root_objectid,
1131 owner, offset);
1132 }
1133 again:
1134 recow = 0;
1135 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1136 if (ret < 0) {
1137 err = ret;
1138 goto fail;
1139 }
1140
1141 if (parent) {
1142 if (!ret)
1143 return 0;
1144 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1145 key.type = BTRFS_EXTENT_REF_V0_KEY;
1146 btrfs_release_path(path);
1147 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1148 if (ret < 0) {
1149 err = ret;
1150 goto fail;
1151 }
1152 if (!ret)
1153 return 0;
1154 #endif
1155 goto fail;
1156 }
1157
1158 leaf = path->nodes[0];
1159 nritems = btrfs_header_nritems(leaf);
1160 while (1) {
1161 if (path->slots[0] >= nritems) {
1162 ret = btrfs_next_leaf(root, path);
1163 if (ret < 0)
1164 err = ret;
1165 if (ret)
1166 goto fail;
1167
1168 leaf = path->nodes[0];
1169 nritems = btrfs_header_nritems(leaf);
1170 recow = 1;
1171 }
1172
1173 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1174 if (key.objectid != bytenr ||
1175 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1176 goto fail;
1177
1178 ref = btrfs_item_ptr(leaf, path->slots[0],
1179 struct btrfs_extent_data_ref);
1180
1181 if (match_extent_data_ref(leaf, ref, root_objectid,
1182 owner, offset)) {
1183 if (recow) {
1184 btrfs_release_path(path);
1185 goto again;
1186 }
1187 err = 0;
1188 break;
1189 }
1190 path->slots[0]++;
1191 }
1192 fail:
1193 return err;
1194 }
1195
1196 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1197 struct btrfs_root *root,
1198 struct btrfs_path *path,
1199 u64 bytenr, u64 parent,
1200 u64 root_objectid, u64 owner,
1201 u64 offset, int refs_to_add)
1202 {
1203 struct btrfs_key key;
1204 struct extent_buffer *leaf;
1205 u32 size;
1206 u32 num_refs;
1207 int ret;
1208
1209 key.objectid = bytenr;
1210 if (parent) {
1211 key.type = BTRFS_SHARED_DATA_REF_KEY;
1212 key.offset = parent;
1213 size = sizeof(struct btrfs_shared_data_ref);
1214 } else {
1215 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1216 key.offset = hash_extent_data_ref(root_objectid,
1217 owner, offset);
1218 size = sizeof(struct btrfs_extent_data_ref);
1219 }
1220
1221 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1222 if (ret && ret != -EEXIST)
1223 goto fail;
1224
1225 leaf = path->nodes[0];
1226 if (parent) {
1227 struct btrfs_shared_data_ref *ref;
1228 ref = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_shared_data_ref);
1230 if (ret == 0) {
1231 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1232 } else {
1233 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1234 num_refs += refs_to_add;
1235 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1236 }
1237 } else {
1238 struct btrfs_extent_data_ref *ref;
1239 while (ret == -EEXIST) {
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (match_extent_data_ref(leaf, ref, root_objectid,
1243 owner, offset))
1244 break;
1245 btrfs_release_path(path);
1246 key.offset++;
1247 ret = btrfs_insert_empty_item(trans, root, path, &key,
1248 size);
1249 if (ret && ret != -EEXIST)
1250 goto fail;
1251
1252 leaf = path->nodes[0];
1253 }
1254 ref = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_extent_data_ref);
1256 if (ret == 0) {
1257 btrfs_set_extent_data_ref_root(leaf, ref,
1258 root_objectid);
1259 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1260 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1261 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1262 } else {
1263 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1264 num_refs += refs_to_add;
1265 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1266 }
1267 }
1268 btrfs_mark_buffer_dirty(leaf);
1269 ret = 0;
1270 fail:
1271 btrfs_release_path(path);
1272 return ret;
1273 }
1274
1275 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1276 struct btrfs_root *root,
1277 struct btrfs_path *path,
1278 int refs_to_drop, int *last_ref)
1279 {
1280 struct btrfs_key key;
1281 struct btrfs_extent_data_ref *ref1 = NULL;
1282 struct btrfs_shared_data_ref *ref2 = NULL;
1283 struct extent_buffer *leaf;
1284 u32 num_refs = 0;
1285 int ret = 0;
1286
1287 leaf = path->nodes[0];
1288 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1289
1290 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1291 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1292 struct btrfs_extent_data_ref);
1293 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1294 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1295 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1296 struct btrfs_shared_data_ref);
1297 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1298 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1299 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1300 struct btrfs_extent_ref_v0 *ref0;
1301 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_ref_v0);
1303 num_refs = btrfs_ref_count_v0(leaf, ref0);
1304 #endif
1305 } else {
1306 BUG();
1307 }
1308
1309 BUG_ON(num_refs < refs_to_drop);
1310 num_refs -= refs_to_drop;
1311
1312 if (num_refs == 0) {
1313 ret = btrfs_del_item(trans, root, path);
1314 *last_ref = 1;
1315 } else {
1316 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1317 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1318 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1319 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1320 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1321 else {
1322 struct btrfs_extent_ref_v0 *ref0;
1323 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1324 struct btrfs_extent_ref_v0);
1325 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1326 }
1327 #endif
1328 btrfs_mark_buffer_dirty(leaf);
1329 }
1330 return ret;
1331 }
1332
1333 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1334 struct btrfs_path *path,
1335 struct btrfs_extent_inline_ref *iref)
1336 {
1337 struct btrfs_key key;
1338 struct extent_buffer *leaf;
1339 struct btrfs_extent_data_ref *ref1;
1340 struct btrfs_shared_data_ref *ref2;
1341 u32 num_refs = 0;
1342
1343 leaf = path->nodes[0];
1344 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1345 if (iref) {
1346 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1347 BTRFS_EXTENT_DATA_REF_KEY) {
1348 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1349 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1350 } else {
1351 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1352 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1353 }
1354 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1355 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1356 struct btrfs_extent_data_ref);
1357 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1358 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1359 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_shared_data_ref);
1361 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1362 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1363 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1364 struct btrfs_extent_ref_v0 *ref0;
1365 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_extent_ref_v0);
1367 num_refs = btrfs_ref_count_v0(leaf, ref0);
1368 #endif
1369 } else {
1370 WARN_ON(1);
1371 }
1372 return num_refs;
1373 }
1374
1375 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1376 struct btrfs_root *root,
1377 struct btrfs_path *path,
1378 u64 bytenr, u64 parent,
1379 u64 root_objectid)
1380 {
1381 struct btrfs_key key;
1382 int ret;
1383
1384 key.objectid = bytenr;
1385 if (parent) {
1386 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1387 key.offset = parent;
1388 } else {
1389 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1390 key.offset = root_objectid;
1391 }
1392
1393 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1394 if (ret > 0)
1395 ret = -ENOENT;
1396 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1397 if (ret == -ENOENT && parent) {
1398 btrfs_release_path(path);
1399 key.type = BTRFS_EXTENT_REF_V0_KEY;
1400 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1401 if (ret > 0)
1402 ret = -ENOENT;
1403 }
1404 #endif
1405 return ret;
1406 }
1407
1408 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1409 struct btrfs_root *root,
1410 struct btrfs_path *path,
1411 u64 bytenr, u64 parent,
1412 u64 root_objectid)
1413 {
1414 struct btrfs_key key;
1415 int ret;
1416
1417 key.objectid = bytenr;
1418 if (parent) {
1419 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1420 key.offset = parent;
1421 } else {
1422 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1423 key.offset = root_objectid;
1424 }
1425
1426 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1427 btrfs_release_path(path);
1428 return ret;
1429 }
1430
1431 static inline int extent_ref_type(u64 parent, u64 owner)
1432 {
1433 int type;
1434 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1435 if (parent > 0)
1436 type = BTRFS_SHARED_BLOCK_REF_KEY;
1437 else
1438 type = BTRFS_TREE_BLOCK_REF_KEY;
1439 } else {
1440 if (parent > 0)
1441 type = BTRFS_SHARED_DATA_REF_KEY;
1442 else
1443 type = BTRFS_EXTENT_DATA_REF_KEY;
1444 }
1445 return type;
1446 }
1447
1448 static int find_next_key(struct btrfs_path *path, int level,
1449 struct btrfs_key *key)
1450
1451 {
1452 for (; level < BTRFS_MAX_LEVEL; level++) {
1453 if (!path->nodes[level])
1454 break;
1455 if (path->slots[level] + 1 >=
1456 btrfs_header_nritems(path->nodes[level]))
1457 continue;
1458 if (level == 0)
1459 btrfs_item_key_to_cpu(path->nodes[level], key,
1460 path->slots[level] + 1);
1461 else
1462 btrfs_node_key_to_cpu(path->nodes[level], key,
1463 path->slots[level] + 1);
1464 return 0;
1465 }
1466 return 1;
1467 }
1468
1469 /*
1470 * look for inline back ref. if back ref is found, *ref_ret is set
1471 * to the address of inline back ref, and 0 is returned.
1472 *
1473 * if back ref isn't found, *ref_ret is set to the address where it
1474 * should be inserted, and -ENOENT is returned.
1475 *
1476 * if insert is true and there are too many inline back refs, the path
1477 * points to the extent item, and -EAGAIN is returned.
1478 *
1479 * NOTE: inline back refs are ordered in the same way that back ref
1480 * items in the tree are ordered.
1481 */
1482 static noinline_for_stack
1483 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1484 struct btrfs_root *root,
1485 struct btrfs_path *path,
1486 struct btrfs_extent_inline_ref **ref_ret,
1487 u64 bytenr, u64 num_bytes,
1488 u64 parent, u64 root_objectid,
1489 u64 owner, u64 offset, int insert)
1490 {
1491 struct btrfs_key key;
1492 struct extent_buffer *leaf;
1493 struct btrfs_extent_item *ei;
1494 struct btrfs_extent_inline_ref *iref;
1495 u64 flags;
1496 u64 item_size;
1497 unsigned long ptr;
1498 unsigned long end;
1499 int extra_size;
1500 int type;
1501 int want;
1502 int ret;
1503 int err = 0;
1504 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1505 SKINNY_METADATA);
1506
1507 key.objectid = bytenr;
1508 key.type = BTRFS_EXTENT_ITEM_KEY;
1509 key.offset = num_bytes;
1510
1511 want = extent_ref_type(parent, owner);
1512 if (insert) {
1513 extra_size = btrfs_extent_inline_ref_size(want);
1514 path->keep_locks = 1;
1515 } else
1516 extra_size = -1;
1517
1518 /*
1519 * Owner is our parent level, so we can just add one to get the level
1520 * for the block we are interested in.
1521 */
1522 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1523 key.type = BTRFS_METADATA_ITEM_KEY;
1524 key.offset = owner;
1525 }
1526
1527 again:
1528 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1529 if (ret < 0) {
1530 err = ret;
1531 goto out;
1532 }
1533
1534 /*
1535 * We may be a newly converted file system which still has the old fat
1536 * extent entries for metadata, so try and see if we have one of those.
1537 */
1538 if (ret > 0 && skinny_metadata) {
1539 skinny_metadata = false;
1540 if (path->slots[0]) {
1541 path->slots[0]--;
1542 btrfs_item_key_to_cpu(path->nodes[0], &key,
1543 path->slots[0]);
1544 if (key.objectid == bytenr &&
1545 key.type == BTRFS_EXTENT_ITEM_KEY &&
1546 key.offset == num_bytes)
1547 ret = 0;
1548 }
1549 if (ret) {
1550 key.objectid = bytenr;
1551 key.type = BTRFS_EXTENT_ITEM_KEY;
1552 key.offset = num_bytes;
1553 btrfs_release_path(path);
1554 goto again;
1555 }
1556 }
1557
1558 if (ret && !insert) {
1559 err = -ENOENT;
1560 goto out;
1561 } else if (WARN_ON(ret)) {
1562 err = -EIO;
1563 goto out;
1564 }
1565
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1569 if (item_size < sizeof(*ei)) {
1570 if (!insert) {
1571 err = -ENOENT;
1572 goto out;
1573 }
1574 ret = convert_extent_item_v0(trans, root, path, owner,
1575 extra_size);
1576 if (ret < 0) {
1577 err = ret;
1578 goto out;
1579 }
1580 leaf = path->nodes[0];
1581 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1582 }
1583 #endif
1584 BUG_ON(item_size < sizeof(*ei));
1585
1586 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1587 flags = btrfs_extent_flags(leaf, ei);
1588
1589 ptr = (unsigned long)(ei + 1);
1590 end = (unsigned long)ei + item_size;
1591
1592 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1593 ptr += sizeof(struct btrfs_tree_block_info);
1594 BUG_ON(ptr > end);
1595 }
1596
1597 err = -ENOENT;
1598 while (1) {
1599 if (ptr >= end) {
1600 WARN_ON(ptr > end);
1601 break;
1602 }
1603 iref = (struct btrfs_extent_inline_ref *)ptr;
1604 type = btrfs_extent_inline_ref_type(leaf, iref);
1605 if (want < type)
1606 break;
1607 if (want > type) {
1608 ptr += btrfs_extent_inline_ref_size(type);
1609 continue;
1610 }
1611
1612 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1613 struct btrfs_extent_data_ref *dref;
1614 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1615 if (match_extent_data_ref(leaf, dref, root_objectid,
1616 owner, offset)) {
1617 err = 0;
1618 break;
1619 }
1620 if (hash_extent_data_ref_item(leaf, dref) <
1621 hash_extent_data_ref(root_objectid, owner, offset))
1622 break;
1623 } else {
1624 u64 ref_offset;
1625 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1626 if (parent > 0) {
1627 if (parent == ref_offset) {
1628 err = 0;
1629 break;
1630 }
1631 if (ref_offset < parent)
1632 break;
1633 } else {
1634 if (root_objectid == ref_offset) {
1635 err = 0;
1636 break;
1637 }
1638 if (ref_offset < root_objectid)
1639 break;
1640 }
1641 }
1642 ptr += btrfs_extent_inline_ref_size(type);
1643 }
1644 if (err == -ENOENT && insert) {
1645 if (item_size + extra_size >=
1646 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1647 err = -EAGAIN;
1648 goto out;
1649 }
1650 /*
1651 * To add new inline back ref, we have to make sure
1652 * there is no corresponding back ref item.
1653 * For simplicity, we just do not add new inline back
1654 * ref if there is any kind of item for this block
1655 */
1656 if (find_next_key(path, 0, &key) == 0 &&
1657 key.objectid == bytenr &&
1658 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1659 err = -EAGAIN;
1660 goto out;
1661 }
1662 }
1663 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1664 out:
1665 if (insert) {
1666 path->keep_locks = 0;
1667 btrfs_unlock_up_safe(path, 1);
1668 }
1669 return err;
1670 }
1671
1672 /*
1673 * helper to add new inline back ref
1674 */
1675 static noinline_for_stack
1676 void setup_inline_extent_backref(struct btrfs_root *root,
1677 struct btrfs_path *path,
1678 struct btrfs_extent_inline_ref *iref,
1679 u64 parent, u64 root_objectid,
1680 u64 owner, u64 offset, int refs_to_add,
1681 struct btrfs_delayed_extent_op *extent_op)
1682 {
1683 struct extent_buffer *leaf;
1684 struct btrfs_extent_item *ei;
1685 unsigned long ptr;
1686 unsigned long end;
1687 unsigned long item_offset;
1688 u64 refs;
1689 int size;
1690 int type;
1691
1692 leaf = path->nodes[0];
1693 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1694 item_offset = (unsigned long)iref - (unsigned long)ei;
1695
1696 type = extent_ref_type(parent, owner);
1697 size = btrfs_extent_inline_ref_size(type);
1698
1699 btrfs_extend_item(root, path, size);
1700
1701 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 refs = btrfs_extent_refs(leaf, ei);
1703 refs += refs_to_add;
1704 btrfs_set_extent_refs(leaf, ei, refs);
1705 if (extent_op)
1706 __run_delayed_extent_op(extent_op, leaf, ei);
1707
1708 ptr = (unsigned long)ei + item_offset;
1709 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1710 if (ptr < end - size)
1711 memmove_extent_buffer(leaf, ptr + size, ptr,
1712 end - size - ptr);
1713
1714 iref = (struct btrfs_extent_inline_ref *)ptr;
1715 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1716 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1717 struct btrfs_extent_data_ref *dref;
1718 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1719 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1720 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1721 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1722 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 struct btrfs_shared_data_ref *sref;
1725 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1726 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1727 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1728 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1729 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1730 } else {
1731 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1732 }
1733 btrfs_mark_buffer_dirty(leaf);
1734 }
1735
1736 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1737 struct btrfs_root *root,
1738 struct btrfs_path *path,
1739 struct btrfs_extent_inline_ref **ref_ret,
1740 u64 bytenr, u64 num_bytes, u64 parent,
1741 u64 root_objectid, u64 owner, u64 offset)
1742 {
1743 int ret;
1744
1745 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1746 bytenr, num_bytes, parent,
1747 root_objectid, owner, offset, 0);
1748 if (ret != -ENOENT)
1749 return ret;
1750
1751 btrfs_release_path(path);
1752 *ref_ret = NULL;
1753
1754 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1755 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1756 root_objectid);
1757 } else {
1758 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1759 root_objectid, owner, offset);
1760 }
1761 return ret;
1762 }
1763
1764 /*
1765 * helper to update/remove inline back ref
1766 */
1767 static noinline_for_stack
1768 void update_inline_extent_backref(struct btrfs_root *root,
1769 struct btrfs_path *path,
1770 struct btrfs_extent_inline_ref *iref,
1771 int refs_to_mod,
1772 struct btrfs_delayed_extent_op *extent_op,
1773 int *last_ref)
1774 {
1775 struct extent_buffer *leaf;
1776 struct btrfs_extent_item *ei;
1777 struct btrfs_extent_data_ref *dref = NULL;
1778 struct btrfs_shared_data_ref *sref = NULL;
1779 unsigned long ptr;
1780 unsigned long end;
1781 u32 item_size;
1782 int size;
1783 int type;
1784 u64 refs;
1785
1786 leaf = path->nodes[0];
1787 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1788 refs = btrfs_extent_refs(leaf, ei);
1789 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1790 refs += refs_to_mod;
1791 btrfs_set_extent_refs(leaf, ei, refs);
1792 if (extent_op)
1793 __run_delayed_extent_op(extent_op, leaf, ei);
1794
1795 type = btrfs_extent_inline_ref_type(leaf, iref);
1796
1797 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1798 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799 refs = btrfs_extent_data_ref_count(leaf, dref);
1800 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1801 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1802 refs = btrfs_shared_data_ref_count(leaf, sref);
1803 } else {
1804 refs = 1;
1805 BUG_ON(refs_to_mod != -1);
1806 }
1807
1808 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1809 refs += refs_to_mod;
1810
1811 if (refs > 0) {
1812 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1813 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1814 else
1815 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1816 } else {
1817 *last_ref = 1;
1818 size = btrfs_extent_inline_ref_size(type);
1819 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1820 ptr = (unsigned long)iref;
1821 end = (unsigned long)ei + item_size;
1822 if (ptr + size < end)
1823 memmove_extent_buffer(leaf, ptr, ptr + size,
1824 end - ptr - size);
1825 item_size -= size;
1826 btrfs_truncate_item(root, path, item_size, 1);
1827 }
1828 btrfs_mark_buffer_dirty(leaf);
1829 }
1830
1831 static noinline_for_stack
1832 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1833 struct btrfs_root *root,
1834 struct btrfs_path *path,
1835 u64 bytenr, u64 num_bytes, u64 parent,
1836 u64 root_objectid, u64 owner,
1837 u64 offset, int refs_to_add,
1838 struct btrfs_delayed_extent_op *extent_op)
1839 {
1840 struct btrfs_extent_inline_ref *iref;
1841 int ret;
1842
1843 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1844 bytenr, num_bytes, parent,
1845 root_objectid, owner, offset, 1);
1846 if (ret == 0) {
1847 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1848 update_inline_extent_backref(root, path, iref,
1849 refs_to_add, extent_op, NULL);
1850 } else if (ret == -ENOENT) {
1851 setup_inline_extent_backref(root, path, iref, parent,
1852 root_objectid, owner, offset,
1853 refs_to_add, extent_op);
1854 ret = 0;
1855 }
1856 return ret;
1857 }
1858
1859 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1860 struct btrfs_root *root,
1861 struct btrfs_path *path,
1862 u64 bytenr, u64 parent, u64 root_objectid,
1863 u64 owner, u64 offset, int refs_to_add)
1864 {
1865 int ret;
1866 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1867 BUG_ON(refs_to_add != 1);
1868 ret = insert_tree_block_ref(trans, root, path, bytenr,
1869 parent, root_objectid);
1870 } else {
1871 ret = insert_extent_data_ref(trans, root, path, bytenr,
1872 parent, root_objectid,
1873 owner, offset, refs_to_add);
1874 }
1875 return ret;
1876 }
1877
1878 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1879 struct btrfs_root *root,
1880 struct btrfs_path *path,
1881 struct btrfs_extent_inline_ref *iref,
1882 int refs_to_drop, int is_data, int *last_ref)
1883 {
1884 int ret = 0;
1885
1886 BUG_ON(!is_data && refs_to_drop != 1);
1887 if (iref) {
1888 update_inline_extent_backref(root, path, iref,
1889 -refs_to_drop, NULL, last_ref);
1890 } else if (is_data) {
1891 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1892 last_ref);
1893 } else {
1894 *last_ref = 1;
1895 ret = btrfs_del_item(trans, root, path);
1896 }
1897 return ret;
1898 }
1899
1900 static int btrfs_issue_discard(struct block_device *bdev,
1901 u64 start, u64 len)
1902 {
1903 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1904 }
1905
1906 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1907 u64 num_bytes, u64 *actual_bytes)
1908 {
1909 int ret;
1910 u64 discarded_bytes = 0;
1911 struct btrfs_bio *bbio = NULL;
1912
1913
1914 /* Tell the block device(s) that the sectors can be discarded */
1915 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1916 bytenr, &num_bytes, &bbio, 0);
1917 /* Error condition is -ENOMEM */
1918 if (!ret) {
1919 struct btrfs_bio_stripe *stripe = bbio->stripes;
1920 int i;
1921
1922
1923 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1924 if (!stripe->dev->can_discard)
1925 continue;
1926
1927 ret = btrfs_issue_discard(stripe->dev->bdev,
1928 stripe->physical,
1929 stripe->length);
1930 if (!ret)
1931 discarded_bytes += stripe->length;
1932 else if (ret != -EOPNOTSUPP)
1933 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1934
1935 /*
1936 * Just in case we get back EOPNOTSUPP for some reason,
1937 * just ignore the return value so we don't screw up
1938 * people calling discard_extent.
1939 */
1940 ret = 0;
1941 }
1942 kfree(bbio);
1943 }
1944
1945 if (actual_bytes)
1946 *actual_bytes = discarded_bytes;
1947
1948
1949 if (ret == -EOPNOTSUPP)
1950 ret = 0;
1951 return ret;
1952 }
1953
1954 /* Can return -ENOMEM */
1955 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1956 struct btrfs_root *root,
1957 u64 bytenr, u64 num_bytes, u64 parent,
1958 u64 root_objectid, u64 owner, u64 offset,
1959 int no_quota)
1960 {
1961 int ret;
1962 struct btrfs_fs_info *fs_info = root->fs_info;
1963
1964 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1965 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1966
1967 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1968 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1969 num_bytes,
1970 parent, root_objectid, (int)owner,
1971 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1972 } else {
1973 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1974 num_bytes,
1975 parent, root_objectid, owner, offset,
1976 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1977 }
1978 return ret;
1979 }
1980
1981 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1982 struct btrfs_root *root,
1983 u64 bytenr, u64 num_bytes,
1984 u64 parent, u64 root_objectid,
1985 u64 owner, u64 offset, int refs_to_add,
1986 int no_quota,
1987 struct btrfs_delayed_extent_op *extent_op)
1988 {
1989 struct btrfs_fs_info *fs_info = root->fs_info;
1990 struct btrfs_path *path;
1991 struct extent_buffer *leaf;
1992 struct btrfs_extent_item *item;
1993 struct btrfs_key key;
1994 u64 refs;
1995 int ret;
1996 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1997
1998 path = btrfs_alloc_path();
1999 if (!path)
2000 return -ENOMEM;
2001
2002 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2003 no_quota = 1;
2004
2005 path->reada = 1;
2006 path->leave_spinning = 1;
2007 /* this will setup the path even if it fails to insert the back ref */
2008 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2009 bytenr, num_bytes, parent,
2010 root_objectid, owner, offset,
2011 refs_to_add, extent_op);
2012 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2013 goto out;
2014 /*
2015 * Ok we were able to insert an inline extent and it appears to be a new
2016 * reference, deal with the qgroup accounting.
2017 */
2018 if (!ret && !no_quota) {
2019 ASSERT(root->fs_info->quota_enabled);
2020 leaf = path->nodes[0];
2021 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2022 item = btrfs_item_ptr(leaf, path->slots[0],
2023 struct btrfs_extent_item);
2024 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2025 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2026 btrfs_release_path(path);
2027
2028 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2029 bytenr, num_bytes, type, 0);
2030 goto out;
2031 }
2032
2033 /*
2034 * Ok we had -EAGAIN which means we didn't have space to insert and
2035 * inline extent ref, so just update the reference count and add a
2036 * normal backref.
2037 */
2038 leaf = path->nodes[0];
2039 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2041 refs = btrfs_extent_refs(leaf, item);
2042 if (refs)
2043 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2044 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2045 if (extent_op)
2046 __run_delayed_extent_op(extent_op, leaf, item);
2047
2048 btrfs_mark_buffer_dirty(leaf);
2049 btrfs_release_path(path);
2050
2051 if (!no_quota) {
2052 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2053 bytenr, num_bytes, type, 0);
2054 if (ret)
2055 goto out;
2056 }
2057
2058 path->reada = 1;
2059 path->leave_spinning = 1;
2060 /* now insert the actual backref */
2061 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2062 path, bytenr, parent, root_objectid,
2063 owner, offset, refs_to_add);
2064 if (ret)
2065 btrfs_abort_transaction(trans, root, ret);
2066 out:
2067 btrfs_free_path(path);
2068 return ret;
2069 }
2070
2071 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2072 struct btrfs_root *root,
2073 struct btrfs_delayed_ref_node *node,
2074 struct btrfs_delayed_extent_op *extent_op,
2075 int insert_reserved)
2076 {
2077 int ret = 0;
2078 struct btrfs_delayed_data_ref *ref;
2079 struct btrfs_key ins;
2080 u64 parent = 0;
2081 u64 ref_root = 0;
2082 u64 flags = 0;
2083
2084 ins.objectid = node->bytenr;
2085 ins.offset = node->num_bytes;
2086 ins.type = BTRFS_EXTENT_ITEM_KEY;
2087
2088 ref = btrfs_delayed_node_to_data_ref(node);
2089 trace_run_delayed_data_ref(node, ref, node->action);
2090
2091 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2092 parent = ref->parent;
2093 ref_root = ref->root;
2094
2095 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2096 if (extent_op)
2097 flags |= extent_op->flags_to_set;
2098 ret = alloc_reserved_file_extent(trans, root,
2099 parent, ref_root, flags,
2100 ref->objectid, ref->offset,
2101 &ins, node->ref_mod);
2102 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2103 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2104 node->num_bytes, parent,
2105 ref_root, ref->objectid,
2106 ref->offset, node->ref_mod,
2107 node->no_quota, extent_op);
2108 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2109 ret = __btrfs_free_extent(trans, root, node->bytenr,
2110 node->num_bytes, parent,
2111 ref_root, ref->objectid,
2112 ref->offset, node->ref_mod,
2113 extent_op, node->no_quota);
2114 } else {
2115 BUG();
2116 }
2117 return ret;
2118 }
2119
2120 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2121 struct extent_buffer *leaf,
2122 struct btrfs_extent_item *ei)
2123 {
2124 u64 flags = btrfs_extent_flags(leaf, ei);
2125 if (extent_op->update_flags) {
2126 flags |= extent_op->flags_to_set;
2127 btrfs_set_extent_flags(leaf, ei, flags);
2128 }
2129
2130 if (extent_op->update_key) {
2131 struct btrfs_tree_block_info *bi;
2132 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2133 bi = (struct btrfs_tree_block_info *)(ei + 1);
2134 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2135 }
2136 }
2137
2138 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2139 struct btrfs_root *root,
2140 struct btrfs_delayed_ref_node *node,
2141 struct btrfs_delayed_extent_op *extent_op)
2142 {
2143 struct btrfs_key key;
2144 struct btrfs_path *path;
2145 struct btrfs_extent_item *ei;
2146 struct extent_buffer *leaf;
2147 u32 item_size;
2148 int ret;
2149 int err = 0;
2150 int metadata = !extent_op->is_data;
2151
2152 if (trans->aborted)
2153 return 0;
2154
2155 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2156 metadata = 0;
2157
2158 path = btrfs_alloc_path();
2159 if (!path)
2160 return -ENOMEM;
2161
2162 key.objectid = node->bytenr;
2163
2164 if (metadata) {
2165 key.type = BTRFS_METADATA_ITEM_KEY;
2166 key.offset = extent_op->level;
2167 } else {
2168 key.type = BTRFS_EXTENT_ITEM_KEY;
2169 key.offset = node->num_bytes;
2170 }
2171
2172 again:
2173 path->reada = 1;
2174 path->leave_spinning = 1;
2175 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2176 path, 0, 1);
2177 if (ret < 0) {
2178 err = ret;
2179 goto out;
2180 }
2181 if (ret > 0) {
2182 if (metadata) {
2183 if (path->slots[0] > 0) {
2184 path->slots[0]--;
2185 btrfs_item_key_to_cpu(path->nodes[0], &key,
2186 path->slots[0]);
2187 if (key.objectid == node->bytenr &&
2188 key.type == BTRFS_EXTENT_ITEM_KEY &&
2189 key.offset == node->num_bytes)
2190 ret = 0;
2191 }
2192 if (ret > 0) {
2193 btrfs_release_path(path);
2194 metadata = 0;
2195
2196 key.objectid = node->bytenr;
2197 key.offset = node->num_bytes;
2198 key.type = BTRFS_EXTENT_ITEM_KEY;
2199 goto again;
2200 }
2201 } else {
2202 err = -EIO;
2203 goto out;
2204 }
2205 }
2206
2207 leaf = path->nodes[0];
2208 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2210 if (item_size < sizeof(*ei)) {
2211 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2212 path, (u64)-1, 0);
2213 if (ret < 0) {
2214 err = ret;
2215 goto out;
2216 }
2217 leaf = path->nodes[0];
2218 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2219 }
2220 #endif
2221 BUG_ON(item_size < sizeof(*ei));
2222 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2223 __run_delayed_extent_op(extent_op, leaf, ei);
2224
2225 btrfs_mark_buffer_dirty(leaf);
2226 out:
2227 btrfs_free_path(path);
2228 return err;
2229 }
2230
2231 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2232 struct btrfs_root *root,
2233 struct btrfs_delayed_ref_node *node,
2234 struct btrfs_delayed_extent_op *extent_op,
2235 int insert_reserved)
2236 {
2237 int ret = 0;
2238 struct btrfs_delayed_tree_ref *ref;
2239 struct btrfs_key ins;
2240 u64 parent = 0;
2241 u64 ref_root = 0;
2242 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2243 SKINNY_METADATA);
2244
2245 ref = btrfs_delayed_node_to_tree_ref(node);
2246 trace_run_delayed_tree_ref(node, ref, node->action);
2247
2248 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2249 parent = ref->parent;
2250 ref_root = ref->root;
2251
2252 ins.objectid = node->bytenr;
2253 if (skinny_metadata) {
2254 ins.offset = ref->level;
2255 ins.type = BTRFS_METADATA_ITEM_KEY;
2256 } else {
2257 ins.offset = node->num_bytes;
2258 ins.type = BTRFS_EXTENT_ITEM_KEY;
2259 }
2260
2261 BUG_ON(node->ref_mod != 1);
2262 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2263 BUG_ON(!extent_op || !extent_op->update_flags);
2264 ret = alloc_reserved_tree_block(trans, root,
2265 parent, ref_root,
2266 extent_op->flags_to_set,
2267 &extent_op->key,
2268 ref->level, &ins,
2269 node->no_quota);
2270 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2271 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2272 node->num_bytes, parent, ref_root,
2273 ref->level, 0, 1, node->no_quota,
2274 extent_op);
2275 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2276 ret = __btrfs_free_extent(trans, root, node->bytenr,
2277 node->num_bytes, parent, ref_root,
2278 ref->level, 0, 1, extent_op,
2279 node->no_quota);
2280 } else {
2281 BUG();
2282 }
2283 return ret;
2284 }
2285
2286 /* helper function to actually process a single delayed ref entry */
2287 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2288 struct btrfs_root *root,
2289 struct btrfs_delayed_ref_node *node,
2290 struct btrfs_delayed_extent_op *extent_op,
2291 int insert_reserved)
2292 {
2293 int ret = 0;
2294
2295 if (trans->aborted) {
2296 if (insert_reserved)
2297 btrfs_pin_extent(root, node->bytenr,
2298 node->num_bytes, 1);
2299 return 0;
2300 }
2301
2302 if (btrfs_delayed_ref_is_head(node)) {
2303 struct btrfs_delayed_ref_head *head;
2304 /*
2305 * we've hit the end of the chain and we were supposed
2306 * to insert this extent into the tree. But, it got
2307 * deleted before we ever needed to insert it, so all
2308 * we have to do is clean up the accounting
2309 */
2310 BUG_ON(extent_op);
2311 head = btrfs_delayed_node_to_head(node);
2312 trace_run_delayed_ref_head(node, head, node->action);
2313
2314 if (insert_reserved) {
2315 btrfs_pin_extent(root, node->bytenr,
2316 node->num_bytes, 1);
2317 if (head->is_data) {
2318 ret = btrfs_del_csums(trans, root,
2319 node->bytenr,
2320 node->num_bytes);
2321 }
2322 }
2323 return ret;
2324 }
2325
2326 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2327 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2328 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2329 insert_reserved);
2330 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2331 node->type == BTRFS_SHARED_DATA_REF_KEY)
2332 ret = run_delayed_data_ref(trans, root, node, extent_op,
2333 insert_reserved);
2334 else
2335 BUG();
2336 return ret;
2337 }
2338
2339 static noinline struct btrfs_delayed_ref_node *
2340 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2341 {
2342 struct rb_node *node;
2343 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2344
2345 /*
2346 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2347 * this prevents ref count from going down to zero when
2348 * there still are pending delayed ref.
2349 */
2350 node = rb_first(&head->ref_root);
2351 while (node) {
2352 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2353 rb_node);
2354 if (ref->action == BTRFS_ADD_DELAYED_REF)
2355 return ref;
2356 else if (last == NULL)
2357 last = ref;
2358 node = rb_next(node);
2359 }
2360 return last;
2361 }
2362
2363 /*
2364 * Returns 0 on success or if called with an already aborted transaction.
2365 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2366 */
2367 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2368 struct btrfs_root *root,
2369 unsigned long nr)
2370 {
2371 struct btrfs_delayed_ref_root *delayed_refs;
2372 struct btrfs_delayed_ref_node *ref;
2373 struct btrfs_delayed_ref_head *locked_ref = NULL;
2374 struct btrfs_delayed_extent_op *extent_op;
2375 struct btrfs_fs_info *fs_info = root->fs_info;
2376 ktime_t start = ktime_get();
2377 int ret;
2378 unsigned long count = 0;
2379 unsigned long actual_count = 0;
2380 int must_insert_reserved = 0;
2381
2382 delayed_refs = &trans->transaction->delayed_refs;
2383 while (1) {
2384 if (!locked_ref) {
2385 if (count >= nr)
2386 break;
2387
2388 spin_lock(&delayed_refs->lock);
2389 locked_ref = btrfs_select_ref_head(trans);
2390 if (!locked_ref) {
2391 spin_unlock(&delayed_refs->lock);
2392 break;
2393 }
2394
2395 /* grab the lock that says we are going to process
2396 * all the refs for this head */
2397 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2398 spin_unlock(&delayed_refs->lock);
2399 /*
2400 * we may have dropped the spin lock to get the head
2401 * mutex lock, and that might have given someone else
2402 * time to free the head. If that's true, it has been
2403 * removed from our list and we can move on.
2404 */
2405 if (ret == -EAGAIN) {
2406 locked_ref = NULL;
2407 count++;
2408 continue;
2409 }
2410 }
2411
2412 /*
2413 * We need to try and merge add/drops of the same ref since we
2414 * can run into issues with relocate dropping the implicit ref
2415 * and then it being added back again before the drop can
2416 * finish. If we merged anything we need to re-loop so we can
2417 * get a good ref.
2418 */
2419 spin_lock(&locked_ref->lock);
2420 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2421 locked_ref);
2422
2423 /*
2424 * locked_ref is the head node, so we have to go one
2425 * node back for any delayed ref updates
2426 */
2427 ref = select_delayed_ref(locked_ref);
2428
2429 if (ref && ref->seq &&
2430 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2431 spin_unlock(&locked_ref->lock);
2432 btrfs_delayed_ref_unlock(locked_ref);
2433 spin_lock(&delayed_refs->lock);
2434 locked_ref->processing = 0;
2435 delayed_refs->num_heads_ready++;
2436 spin_unlock(&delayed_refs->lock);
2437 locked_ref = NULL;
2438 cond_resched();
2439 count++;
2440 continue;
2441 }
2442
2443 /*
2444 * record the must insert reserved flag before we
2445 * drop the spin lock.
2446 */
2447 must_insert_reserved = locked_ref->must_insert_reserved;
2448 locked_ref->must_insert_reserved = 0;
2449
2450 extent_op = locked_ref->extent_op;
2451 locked_ref->extent_op = NULL;
2452
2453 if (!ref) {
2454
2455
2456 /* All delayed refs have been processed, Go ahead
2457 * and send the head node to run_one_delayed_ref,
2458 * so that any accounting fixes can happen
2459 */
2460 ref = &locked_ref->node;
2461
2462 if (extent_op && must_insert_reserved) {
2463 btrfs_free_delayed_extent_op(extent_op);
2464 extent_op = NULL;
2465 }
2466
2467 if (extent_op) {
2468 spin_unlock(&locked_ref->lock);
2469 ret = run_delayed_extent_op(trans, root,
2470 ref, extent_op);
2471 btrfs_free_delayed_extent_op(extent_op);
2472
2473 if (ret) {
2474 /*
2475 * Need to reset must_insert_reserved if
2476 * there was an error so the abort stuff
2477 * can cleanup the reserved space
2478 * properly.
2479 */
2480 if (must_insert_reserved)
2481 locked_ref->must_insert_reserved = 1;
2482 locked_ref->processing = 0;
2483 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2484 btrfs_delayed_ref_unlock(locked_ref);
2485 return ret;
2486 }
2487 continue;
2488 }
2489
2490 /*
2491 * Need to drop our head ref lock and re-aqcuire the
2492 * delayed ref lock and then re-check to make sure
2493 * nobody got added.
2494 */
2495 spin_unlock(&locked_ref->lock);
2496 spin_lock(&delayed_refs->lock);
2497 spin_lock(&locked_ref->lock);
2498 if (rb_first(&locked_ref->ref_root) ||
2499 locked_ref->extent_op) {
2500 spin_unlock(&locked_ref->lock);
2501 spin_unlock(&delayed_refs->lock);
2502 continue;
2503 }
2504 ref->in_tree = 0;
2505 delayed_refs->num_heads--;
2506 rb_erase(&locked_ref->href_node,
2507 &delayed_refs->href_root);
2508 spin_unlock(&delayed_refs->lock);
2509 } else {
2510 actual_count++;
2511 ref->in_tree = 0;
2512 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2513 }
2514 atomic_dec(&delayed_refs->num_entries);
2515
2516 if (!btrfs_delayed_ref_is_head(ref)) {
2517 /*
2518 * when we play the delayed ref, also correct the
2519 * ref_mod on head
2520 */
2521 switch (ref->action) {
2522 case BTRFS_ADD_DELAYED_REF:
2523 case BTRFS_ADD_DELAYED_EXTENT:
2524 locked_ref->node.ref_mod -= ref->ref_mod;
2525 break;
2526 case BTRFS_DROP_DELAYED_REF:
2527 locked_ref->node.ref_mod += ref->ref_mod;
2528 break;
2529 default:
2530 WARN_ON(1);
2531 }
2532 }
2533 spin_unlock(&locked_ref->lock);
2534
2535 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2536 must_insert_reserved);
2537
2538 btrfs_free_delayed_extent_op(extent_op);
2539 if (ret) {
2540 locked_ref->processing = 0;
2541 btrfs_delayed_ref_unlock(locked_ref);
2542 btrfs_put_delayed_ref(ref);
2543 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2544 return ret;
2545 }
2546
2547 /*
2548 * If this node is a head, that means all the refs in this head
2549 * have been dealt with, and we will pick the next head to deal
2550 * with, so we must unlock the head and drop it from the cluster
2551 * list before we release it.
2552 */
2553 if (btrfs_delayed_ref_is_head(ref)) {
2554 btrfs_delayed_ref_unlock(locked_ref);
2555 locked_ref = NULL;
2556 }
2557 btrfs_put_delayed_ref(ref);
2558 count++;
2559 cond_resched();
2560 }
2561
2562 /*
2563 * We don't want to include ref heads since we can have empty ref heads
2564 * and those will drastically skew our runtime down since we just do
2565 * accounting, no actual extent tree updates.
2566 */
2567 if (actual_count > 0) {
2568 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2569 u64 avg;
2570
2571 /*
2572 * We weigh the current average higher than our current runtime
2573 * to avoid large swings in the average.
2574 */
2575 spin_lock(&delayed_refs->lock);
2576 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2577 avg = div64_u64(avg, 4);
2578 fs_info->avg_delayed_ref_runtime = avg;
2579 spin_unlock(&delayed_refs->lock);
2580 }
2581 return 0;
2582 }
2583
2584 #ifdef SCRAMBLE_DELAYED_REFS
2585 /*
2586 * Normally delayed refs get processed in ascending bytenr order. This
2587 * correlates in most cases to the order added. To expose dependencies on this
2588 * order, we start to process the tree in the middle instead of the beginning
2589 */
2590 static u64 find_middle(struct rb_root *root)
2591 {
2592 struct rb_node *n = root->rb_node;
2593 struct btrfs_delayed_ref_node *entry;
2594 int alt = 1;
2595 u64 middle;
2596 u64 first = 0, last = 0;
2597
2598 n = rb_first(root);
2599 if (n) {
2600 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2601 first = entry->bytenr;
2602 }
2603 n = rb_last(root);
2604 if (n) {
2605 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2606 last = entry->bytenr;
2607 }
2608 n = root->rb_node;
2609
2610 while (n) {
2611 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2612 WARN_ON(!entry->in_tree);
2613
2614 middle = entry->bytenr;
2615
2616 if (alt)
2617 n = n->rb_left;
2618 else
2619 n = n->rb_right;
2620
2621 alt = 1 - alt;
2622 }
2623 return middle;
2624 }
2625 #endif
2626
2627 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2628 {
2629 u64 num_bytes;
2630
2631 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2632 sizeof(struct btrfs_extent_inline_ref));
2633 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2634 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2635
2636 /*
2637 * We don't ever fill up leaves all the way so multiply by 2 just to be
2638 * closer to what we're really going to want to ouse.
2639 */
2640 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2641 }
2642
2643 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2644 struct btrfs_root *root)
2645 {
2646 struct btrfs_block_rsv *global_rsv;
2647 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2648 u64 num_bytes;
2649 int ret = 0;
2650
2651 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2652 num_heads = heads_to_leaves(root, num_heads);
2653 if (num_heads > 1)
2654 num_bytes += (num_heads - 1) * root->leafsize;
2655 num_bytes <<= 1;
2656 global_rsv = &root->fs_info->global_block_rsv;
2657
2658 /*
2659 * If we can't allocate any more chunks lets make sure we have _lots_ of
2660 * wiggle room since running delayed refs can create more delayed refs.
2661 */
2662 if (global_rsv->space_info->full)
2663 num_bytes <<= 1;
2664
2665 spin_lock(&global_rsv->lock);
2666 if (global_rsv->reserved <= num_bytes)
2667 ret = 1;
2668 spin_unlock(&global_rsv->lock);
2669 return ret;
2670 }
2671
2672 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2673 struct btrfs_root *root)
2674 {
2675 struct btrfs_fs_info *fs_info = root->fs_info;
2676 u64 num_entries =
2677 atomic_read(&trans->transaction->delayed_refs.num_entries);
2678 u64 avg_runtime;
2679 u64 val;
2680
2681 smp_mb();
2682 avg_runtime = fs_info->avg_delayed_ref_runtime;
2683 val = num_entries * avg_runtime;
2684 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2685 return 1;
2686 if (val >= NSEC_PER_SEC / 2)
2687 return 2;
2688
2689 return btrfs_check_space_for_delayed_refs(trans, root);
2690 }
2691
2692 struct async_delayed_refs {
2693 struct btrfs_root *root;
2694 int count;
2695 int error;
2696 int sync;
2697 struct completion wait;
2698 struct btrfs_work work;
2699 };
2700
2701 static void delayed_ref_async_start(struct btrfs_work *work)
2702 {
2703 struct async_delayed_refs *async;
2704 struct btrfs_trans_handle *trans;
2705 int ret;
2706
2707 async = container_of(work, struct async_delayed_refs, work);
2708
2709 trans = btrfs_join_transaction(async->root);
2710 if (IS_ERR(trans)) {
2711 async->error = PTR_ERR(trans);
2712 goto done;
2713 }
2714
2715 /*
2716 * trans->sync means that when we call end_transaciton, we won't
2717 * wait on delayed refs
2718 */
2719 trans->sync = true;
2720 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2721 if (ret)
2722 async->error = ret;
2723
2724 ret = btrfs_end_transaction(trans, async->root);
2725 if (ret && !async->error)
2726 async->error = ret;
2727 done:
2728 if (async->sync)
2729 complete(&async->wait);
2730 else
2731 kfree(async);
2732 }
2733
2734 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2735 unsigned long count, int wait)
2736 {
2737 struct async_delayed_refs *async;
2738 int ret;
2739
2740 async = kmalloc(sizeof(*async), GFP_NOFS);
2741 if (!async)
2742 return -ENOMEM;
2743
2744 async->root = root->fs_info->tree_root;
2745 async->count = count;
2746 async->error = 0;
2747 if (wait)
2748 async->sync = 1;
2749 else
2750 async->sync = 0;
2751 init_completion(&async->wait);
2752
2753 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2754 delayed_ref_async_start, NULL, NULL);
2755
2756 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2757
2758 if (wait) {
2759 wait_for_completion(&async->wait);
2760 ret = async->error;
2761 kfree(async);
2762 return ret;
2763 }
2764 return 0;
2765 }
2766
2767 /*
2768 * this starts processing the delayed reference count updates and
2769 * extent insertions we have queued up so far. count can be
2770 * 0, which means to process everything in the tree at the start
2771 * of the run (but not newly added entries), or it can be some target
2772 * number you'd like to process.
2773 *
2774 * Returns 0 on success or if called with an aborted transaction
2775 * Returns <0 on error and aborts the transaction
2776 */
2777 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2778 struct btrfs_root *root, unsigned long count)
2779 {
2780 struct rb_node *node;
2781 struct btrfs_delayed_ref_root *delayed_refs;
2782 struct btrfs_delayed_ref_head *head;
2783 int ret;
2784 int run_all = count == (unsigned long)-1;
2785 int run_most = 0;
2786
2787 /* We'll clean this up in btrfs_cleanup_transaction */
2788 if (trans->aborted)
2789 return 0;
2790
2791 if (root == root->fs_info->extent_root)
2792 root = root->fs_info->tree_root;
2793
2794 delayed_refs = &trans->transaction->delayed_refs;
2795 if (count == 0) {
2796 count = atomic_read(&delayed_refs->num_entries) * 2;
2797 run_most = 1;
2798 }
2799
2800 again:
2801 #ifdef SCRAMBLE_DELAYED_REFS
2802 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2803 #endif
2804 ret = __btrfs_run_delayed_refs(trans, root, count);
2805 if (ret < 0) {
2806 btrfs_abort_transaction(trans, root, ret);
2807 return ret;
2808 }
2809
2810 if (run_all) {
2811 if (!list_empty(&trans->new_bgs))
2812 btrfs_create_pending_block_groups(trans, root);
2813
2814 spin_lock(&delayed_refs->lock);
2815 node = rb_first(&delayed_refs->href_root);
2816 if (!node) {
2817 spin_unlock(&delayed_refs->lock);
2818 goto out;
2819 }
2820 count = (unsigned long)-1;
2821
2822 while (node) {
2823 head = rb_entry(node, struct btrfs_delayed_ref_head,
2824 href_node);
2825 if (btrfs_delayed_ref_is_head(&head->node)) {
2826 struct btrfs_delayed_ref_node *ref;
2827
2828 ref = &head->node;
2829 atomic_inc(&ref->refs);
2830
2831 spin_unlock(&delayed_refs->lock);
2832 /*
2833 * Mutex was contended, block until it's
2834 * released and try again
2835 */
2836 mutex_lock(&head->mutex);
2837 mutex_unlock(&head->mutex);
2838
2839 btrfs_put_delayed_ref(ref);
2840 cond_resched();
2841 goto again;
2842 } else {
2843 WARN_ON(1);
2844 }
2845 node = rb_next(node);
2846 }
2847 spin_unlock(&delayed_refs->lock);
2848 cond_resched();
2849 goto again;
2850 }
2851 out:
2852 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2853 if (ret)
2854 return ret;
2855 assert_qgroups_uptodate(trans);
2856 return 0;
2857 }
2858
2859 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2860 struct btrfs_root *root,
2861 u64 bytenr, u64 num_bytes, u64 flags,
2862 int level, int is_data)
2863 {
2864 struct btrfs_delayed_extent_op *extent_op;
2865 int ret;
2866
2867 extent_op = btrfs_alloc_delayed_extent_op();
2868 if (!extent_op)
2869 return -ENOMEM;
2870
2871 extent_op->flags_to_set = flags;
2872 extent_op->update_flags = 1;
2873 extent_op->update_key = 0;
2874 extent_op->is_data = is_data ? 1 : 0;
2875 extent_op->level = level;
2876
2877 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2878 num_bytes, extent_op);
2879 if (ret)
2880 btrfs_free_delayed_extent_op(extent_op);
2881 return ret;
2882 }
2883
2884 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2885 struct btrfs_root *root,
2886 struct btrfs_path *path,
2887 u64 objectid, u64 offset, u64 bytenr)
2888 {
2889 struct btrfs_delayed_ref_head *head;
2890 struct btrfs_delayed_ref_node *ref;
2891 struct btrfs_delayed_data_ref *data_ref;
2892 struct btrfs_delayed_ref_root *delayed_refs;
2893 struct rb_node *node;
2894 int ret = 0;
2895
2896 delayed_refs = &trans->transaction->delayed_refs;
2897 spin_lock(&delayed_refs->lock);
2898 head = btrfs_find_delayed_ref_head(trans, bytenr);
2899 if (!head) {
2900 spin_unlock(&delayed_refs->lock);
2901 return 0;
2902 }
2903
2904 if (!mutex_trylock(&head->mutex)) {
2905 atomic_inc(&head->node.refs);
2906 spin_unlock(&delayed_refs->lock);
2907
2908 btrfs_release_path(path);
2909
2910 /*
2911 * Mutex was contended, block until it's released and let
2912 * caller try again
2913 */
2914 mutex_lock(&head->mutex);
2915 mutex_unlock(&head->mutex);
2916 btrfs_put_delayed_ref(&head->node);
2917 return -EAGAIN;
2918 }
2919 spin_unlock(&delayed_refs->lock);
2920
2921 spin_lock(&head->lock);
2922 node = rb_first(&head->ref_root);
2923 while (node) {
2924 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2925 node = rb_next(node);
2926
2927 /* If it's a shared ref we know a cross reference exists */
2928 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2929 ret = 1;
2930 break;
2931 }
2932
2933 data_ref = btrfs_delayed_node_to_data_ref(ref);
2934
2935 /*
2936 * If our ref doesn't match the one we're currently looking at
2937 * then we have a cross reference.
2938 */
2939 if (data_ref->root != root->root_key.objectid ||
2940 data_ref->objectid != objectid ||
2941 data_ref->offset != offset) {
2942 ret = 1;
2943 break;
2944 }
2945 }
2946 spin_unlock(&head->lock);
2947 mutex_unlock(&head->mutex);
2948 return ret;
2949 }
2950
2951 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2952 struct btrfs_root *root,
2953 struct btrfs_path *path,
2954 u64 objectid, u64 offset, u64 bytenr)
2955 {
2956 struct btrfs_root *extent_root = root->fs_info->extent_root;
2957 struct extent_buffer *leaf;
2958 struct btrfs_extent_data_ref *ref;
2959 struct btrfs_extent_inline_ref *iref;
2960 struct btrfs_extent_item *ei;
2961 struct btrfs_key key;
2962 u32 item_size;
2963 int ret;
2964
2965 key.objectid = bytenr;
2966 key.offset = (u64)-1;
2967 key.type = BTRFS_EXTENT_ITEM_KEY;
2968
2969 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2970 if (ret < 0)
2971 goto out;
2972 BUG_ON(ret == 0); /* Corruption */
2973
2974 ret = -ENOENT;
2975 if (path->slots[0] == 0)
2976 goto out;
2977
2978 path->slots[0]--;
2979 leaf = path->nodes[0];
2980 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2981
2982 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2983 goto out;
2984
2985 ret = 1;
2986 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2988 if (item_size < sizeof(*ei)) {
2989 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2990 goto out;
2991 }
2992 #endif
2993 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2994
2995 if (item_size != sizeof(*ei) +
2996 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2997 goto out;
2998
2999 if (btrfs_extent_generation(leaf, ei) <=
3000 btrfs_root_last_snapshot(&root->root_item))
3001 goto out;
3002
3003 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3004 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3005 BTRFS_EXTENT_DATA_REF_KEY)
3006 goto out;
3007
3008 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3009 if (btrfs_extent_refs(leaf, ei) !=
3010 btrfs_extent_data_ref_count(leaf, ref) ||
3011 btrfs_extent_data_ref_root(leaf, ref) !=
3012 root->root_key.objectid ||
3013 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3014 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3015 goto out;
3016
3017 ret = 0;
3018 out:
3019 return ret;
3020 }
3021
3022 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3023 struct btrfs_root *root,
3024 u64 objectid, u64 offset, u64 bytenr)
3025 {
3026 struct btrfs_path *path;
3027 int ret;
3028 int ret2;
3029
3030 path = btrfs_alloc_path();
3031 if (!path)
3032 return -ENOENT;
3033
3034 do {
3035 ret = check_committed_ref(trans, root, path, objectid,
3036 offset, bytenr);
3037 if (ret && ret != -ENOENT)
3038 goto out;
3039
3040 ret2 = check_delayed_ref(trans, root, path, objectid,
3041 offset, bytenr);
3042 } while (ret2 == -EAGAIN);
3043
3044 if (ret2 && ret2 != -ENOENT) {
3045 ret = ret2;
3046 goto out;
3047 }
3048
3049 if (ret != -ENOENT || ret2 != -ENOENT)
3050 ret = 0;
3051 out:
3052 btrfs_free_path(path);
3053 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3054 WARN_ON(ret > 0);
3055 return ret;
3056 }
3057
3058 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3059 struct btrfs_root *root,
3060 struct extent_buffer *buf,
3061 int full_backref, int inc)
3062 {
3063 u64 bytenr;
3064 u64 num_bytes;
3065 u64 parent;
3066 u64 ref_root;
3067 u32 nritems;
3068 struct btrfs_key key;
3069 struct btrfs_file_extent_item *fi;
3070 int i;
3071 int level;
3072 int ret = 0;
3073 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3074 u64, u64, u64, u64, u64, u64, int);
3075
3076 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3077 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
3078 return 0;
3079 #endif
3080 ref_root = btrfs_header_owner(buf);
3081 nritems = btrfs_header_nritems(buf);
3082 level = btrfs_header_level(buf);
3083
3084 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3085 return 0;
3086
3087 if (inc)
3088 process_func = btrfs_inc_extent_ref;
3089 else
3090 process_func = btrfs_free_extent;
3091
3092 if (full_backref)
3093 parent = buf->start;
3094 else
3095 parent = 0;
3096
3097 for (i = 0; i < nritems; i++) {
3098 if (level == 0) {
3099 btrfs_item_key_to_cpu(buf, &key, i);
3100 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3101 continue;
3102 fi = btrfs_item_ptr(buf, i,
3103 struct btrfs_file_extent_item);
3104 if (btrfs_file_extent_type(buf, fi) ==
3105 BTRFS_FILE_EXTENT_INLINE)
3106 continue;
3107 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3108 if (bytenr == 0)
3109 continue;
3110
3111 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3112 key.offset -= btrfs_file_extent_offset(buf, fi);
3113 ret = process_func(trans, root, bytenr, num_bytes,
3114 parent, ref_root, key.objectid,
3115 key.offset, 1);
3116 if (ret)
3117 goto fail;
3118 } else {
3119 bytenr = btrfs_node_blockptr(buf, i);
3120 num_bytes = btrfs_level_size(root, level - 1);
3121 ret = process_func(trans, root, bytenr, num_bytes,
3122 parent, ref_root, level - 1, 0,
3123 1);
3124 if (ret)
3125 goto fail;
3126 }
3127 }
3128 return 0;
3129 fail:
3130 return ret;
3131 }
3132
3133 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3134 struct extent_buffer *buf, int full_backref)
3135 {
3136 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3137 }
3138
3139 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3140 struct extent_buffer *buf, int full_backref)
3141 {
3142 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3143 }
3144
3145 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3146 struct btrfs_root *root,
3147 struct btrfs_path *path,
3148 struct btrfs_block_group_cache *cache)
3149 {
3150 int ret;
3151 struct btrfs_root *extent_root = root->fs_info->extent_root;
3152 unsigned long bi;
3153 struct extent_buffer *leaf;
3154
3155 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3156 if (ret < 0)
3157 goto fail;
3158 BUG_ON(ret); /* Corruption */
3159
3160 leaf = path->nodes[0];
3161 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3162 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3163 btrfs_mark_buffer_dirty(leaf);
3164 btrfs_release_path(path);
3165 fail:
3166 if (ret) {
3167 btrfs_abort_transaction(trans, root, ret);
3168 return ret;
3169 }
3170 return 0;
3171
3172 }
3173
3174 static struct btrfs_block_group_cache *
3175 next_block_group(struct btrfs_root *root,
3176 struct btrfs_block_group_cache *cache)
3177 {
3178 struct rb_node *node;
3179 spin_lock(&root->fs_info->block_group_cache_lock);
3180 node = rb_next(&cache->cache_node);
3181 btrfs_put_block_group(cache);
3182 if (node) {
3183 cache = rb_entry(node, struct btrfs_block_group_cache,
3184 cache_node);
3185 btrfs_get_block_group(cache);
3186 } else
3187 cache = NULL;
3188 spin_unlock(&root->fs_info->block_group_cache_lock);
3189 return cache;
3190 }
3191
3192 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3193 struct btrfs_trans_handle *trans,
3194 struct btrfs_path *path)
3195 {
3196 struct btrfs_root *root = block_group->fs_info->tree_root;
3197 struct inode *inode = NULL;
3198 u64 alloc_hint = 0;
3199 int dcs = BTRFS_DC_ERROR;
3200 int num_pages = 0;
3201 int retries = 0;
3202 int ret = 0;
3203
3204 /*
3205 * If this block group is smaller than 100 megs don't bother caching the
3206 * block group.
3207 */
3208 if (block_group->key.offset < (100 * 1024 * 1024)) {
3209 spin_lock(&block_group->lock);
3210 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3211 spin_unlock(&block_group->lock);
3212 return 0;
3213 }
3214
3215 again:
3216 inode = lookup_free_space_inode(root, block_group, path);
3217 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3218 ret = PTR_ERR(inode);
3219 btrfs_release_path(path);
3220 goto out;
3221 }
3222
3223 if (IS_ERR(inode)) {
3224 BUG_ON(retries);
3225 retries++;
3226
3227 if (block_group->ro)
3228 goto out_free;
3229
3230 ret = create_free_space_inode(root, trans, block_group, path);
3231 if (ret)
3232 goto out_free;
3233 goto again;
3234 }
3235
3236 /* We've already setup this transaction, go ahead and exit */
3237 if (block_group->cache_generation == trans->transid &&
3238 i_size_read(inode)) {
3239 dcs = BTRFS_DC_SETUP;
3240 goto out_put;
3241 }
3242
3243 /*
3244 * We want to set the generation to 0, that way if anything goes wrong
3245 * from here on out we know not to trust this cache when we load up next
3246 * time.
3247 */
3248 BTRFS_I(inode)->generation = 0;
3249 ret = btrfs_update_inode(trans, root, inode);
3250 WARN_ON(ret);
3251
3252 if (i_size_read(inode) > 0) {
3253 ret = btrfs_check_trunc_cache_free_space(root,
3254 &root->fs_info->global_block_rsv);
3255 if (ret)
3256 goto out_put;
3257
3258 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3259 if (ret)
3260 goto out_put;
3261 }
3262
3263 spin_lock(&block_group->lock);
3264 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3265 !btrfs_test_opt(root, SPACE_CACHE) ||
3266 block_group->delalloc_bytes) {
3267 /*
3268 * don't bother trying to write stuff out _if_
3269 * a) we're not cached,
3270 * b) we're with nospace_cache mount option.
3271 */
3272 dcs = BTRFS_DC_WRITTEN;
3273 spin_unlock(&block_group->lock);
3274 goto out_put;
3275 }
3276 spin_unlock(&block_group->lock);
3277
3278 /*
3279 * Try to preallocate enough space based on how big the block group is.
3280 * Keep in mind this has to include any pinned space which could end up
3281 * taking up quite a bit since it's not folded into the other space
3282 * cache.
3283 */
3284 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3285 if (!num_pages)
3286 num_pages = 1;
3287
3288 num_pages *= 16;
3289 num_pages *= PAGE_CACHE_SIZE;
3290
3291 ret = btrfs_check_data_free_space(inode, num_pages);
3292 if (ret)
3293 goto out_put;
3294
3295 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3296 num_pages, num_pages,
3297 &alloc_hint);
3298 if (!ret)
3299 dcs = BTRFS_DC_SETUP;
3300 btrfs_free_reserved_data_space(inode, num_pages);
3301
3302 out_put:
3303 iput(inode);
3304 out_free:
3305 btrfs_release_path(path);
3306 out:
3307 spin_lock(&block_group->lock);
3308 if (!ret && dcs == BTRFS_DC_SETUP)
3309 block_group->cache_generation = trans->transid;
3310 block_group->disk_cache_state = dcs;
3311 spin_unlock(&block_group->lock);
3312
3313 return ret;
3314 }
3315
3316 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3317 struct btrfs_root *root)
3318 {
3319 struct btrfs_block_group_cache *cache;
3320 int err = 0;
3321 struct btrfs_path *path;
3322 u64 last = 0;
3323
3324 path = btrfs_alloc_path();
3325 if (!path)
3326 return -ENOMEM;
3327
3328 again:
3329 while (1) {
3330 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3331 while (cache) {
3332 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3333 break;
3334 cache = next_block_group(root, cache);
3335 }
3336 if (!cache) {
3337 if (last == 0)
3338 break;
3339 last = 0;
3340 continue;
3341 }
3342 err = cache_save_setup(cache, trans, path);
3343 last = cache->key.objectid + cache->key.offset;
3344 btrfs_put_block_group(cache);
3345 }
3346
3347 while (1) {
3348 if (last == 0) {
3349 err = btrfs_run_delayed_refs(trans, root,
3350 (unsigned long)-1);
3351 if (err) /* File system offline */
3352 goto out;
3353 }
3354
3355 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3356 while (cache) {
3357 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3358 btrfs_put_block_group(cache);
3359 goto again;
3360 }
3361
3362 if (cache->dirty)
3363 break;
3364 cache = next_block_group(root, cache);
3365 }
3366 if (!cache) {
3367 if (last == 0)
3368 break;
3369 last = 0;
3370 continue;
3371 }
3372
3373 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3374 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3375 cache->dirty = 0;
3376 last = cache->key.objectid + cache->key.offset;
3377
3378 err = write_one_cache_group(trans, root, path, cache);
3379 btrfs_put_block_group(cache);
3380 if (err) /* File system offline */
3381 goto out;
3382 }
3383
3384 while (1) {
3385 /*
3386 * I don't think this is needed since we're just marking our
3387 * preallocated extent as written, but just in case it can't
3388 * hurt.
3389 */
3390 if (last == 0) {
3391 err = btrfs_run_delayed_refs(trans, root,
3392 (unsigned long)-1);
3393 if (err) /* File system offline */
3394 goto out;
3395 }
3396
3397 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3398 while (cache) {
3399 /*
3400 * Really this shouldn't happen, but it could if we
3401 * couldn't write the entire preallocated extent and
3402 * splitting the extent resulted in a new block.
3403 */
3404 if (cache->dirty) {
3405 btrfs_put_block_group(cache);
3406 goto again;
3407 }
3408 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3409 break;
3410 cache = next_block_group(root, cache);
3411 }
3412 if (!cache) {
3413 if (last == 0)
3414 break;
3415 last = 0;
3416 continue;
3417 }
3418
3419 err = btrfs_write_out_cache(root, trans, cache, path);
3420
3421 /*
3422 * If we didn't have an error then the cache state is still
3423 * NEED_WRITE, so we can set it to WRITTEN.
3424 */
3425 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3426 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3427 last = cache->key.objectid + cache->key.offset;
3428 btrfs_put_block_group(cache);
3429 }
3430 out:
3431
3432 btrfs_free_path(path);
3433 return err;
3434 }
3435
3436 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3437 {
3438 struct btrfs_block_group_cache *block_group;
3439 int readonly = 0;
3440
3441 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3442 if (!block_group || block_group->ro)
3443 readonly = 1;
3444 if (block_group)
3445 btrfs_put_block_group(block_group);
3446 return readonly;
3447 }
3448
3449 static const char *alloc_name(u64 flags)
3450 {
3451 switch (flags) {
3452 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3453 return "mixed";
3454 case BTRFS_BLOCK_GROUP_METADATA:
3455 return "metadata";
3456 case BTRFS_BLOCK_GROUP_DATA:
3457 return "data";
3458 case BTRFS_BLOCK_GROUP_SYSTEM:
3459 return "system";
3460 default:
3461 WARN_ON(1);
3462 return "invalid-combination";
3463 };
3464 }
3465
3466 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3467 u64 total_bytes, u64 bytes_used,
3468 struct btrfs_space_info **space_info)
3469 {
3470 struct btrfs_space_info *found;
3471 int i;
3472 int factor;
3473 int ret;
3474
3475 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3476 BTRFS_BLOCK_GROUP_RAID10))
3477 factor = 2;
3478 else
3479 factor = 1;
3480
3481 found = __find_space_info(info, flags);
3482 if (found) {
3483 spin_lock(&found->lock);
3484 found->total_bytes += total_bytes;
3485 found->disk_total += total_bytes * factor;
3486 found->bytes_used += bytes_used;
3487 found->disk_used += bytes_used * factor;
3488 found->full = 0;
3489 spin_unlock(&found->lock);
3490 *space_info = found;
3491 return 0;
3492 }
3493 found = kzalloc(sizeof(*found), GFP_NOFS);
3494 if (!found)
3495 return -ENOMEM;
3496
3497 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3498 if (ret) {
3499 kfree(found);
3500 return ret;
3501 }
3502
3503 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3504 INIT_LIST_HEAD(&found->block_groups[i]);
3505 init_rwsem(&found->groups_sem);
3506 spin_lock_init(&found->lock);
3507 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3508 found->total_bytes = total_bytes;
3509 found->disk_total = total_bytes * factor;
3510 found->bytes_used = bytes_used;
3511 found->disk_used = bytes_used * factor;
3512 found->bytes_pinned = 0;
3513 found->bytes_reserved = 0;
3514 found->bytes_readonly = 0;
3515 found->bytes_may_use = 0;
3516 found->full = 0;
3517 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3518 found->chunk_alloc = 0;
3519 found->flush = 0;
3520 init_waitqueue_head(&found->wait);
3521
3522 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3523 info->space_info_kobj, "%s",
3524 alloc_name(found->flags));
3525 if (ret) {
3526 kfree(found);
3527 return ret;
3528 }
3529
3530 *space_info = found;
3531 list_add_rcu(&found->list, &info->space_info);
3532 if (flags & BTRFS_BLOCK_GROUP_DATA)
3533 info->data_sinfo = found;
3534
3535 return ret;
3536 }
3537
3538 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3539 {
3540 u64 extra_flags = chunk_to_extended(flags) &
3541 BTRFS_EXTENDED_PROFILE_MASK;
3542
3543 write_seqlock(&fs_info->profiles_lock);
3544 if (flags & BTRFS_BLOCK_GROUP_DATA)
3545 fs_info->avail_data_alloc_bits |= extra_flags;
3546 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3547 fs_info->avail_metadata_alloc_bits |= extra_flags;
3548 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3549 fs_info->avail_system_alloc_bits |= extra_flags;
3550 write_sequnlock(&fs_info->profiles_lock);
3551 }
3552
3553 /*
3554 * returns target flags in extended format or 0 if restripe for this
3555 * chunk_type is not in progress
3556 *
3557 * should be called with either volume_mutex or balance_lock held
3558 */
3559 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3560 {
3561 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3562 u64 target = 0;
3563
3564 if (!bctl)
3565 return 0;
3566
3567 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3568 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3569 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3570 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3571 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3572 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3573 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3574 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3575 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3576 }
3577
3578 return target;
3579 }
3580
3581 /*
3582 * @flags: available profiles in extended format (see ctree.h)
3583 *
3584 * Returns reduced profile in chunk format. If profile changing is in
3585 * progress (either running or paused) picks the target profile (if it's
3586 * already available), otherwise falls back to plain reducing.
3587 */
3588 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3589 {
3590 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3591 u64 target;
3592 u64 tmp;
3593
3594 /*
3595 * see if restripe for this chunk_type is in progress, if so
3596 * try to reduce to the target profile
3597 */
3598 spin_lock(&root->fs_info->balance_lock);
3599 target = get_restripe_target(root->fs_info, flags);
3600 if (target) {
3601 /* pick target profile only if it's already available */
3602 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3603 spin_unlock(&root->fs_info->balance_lock);
3604 return extended_to_chunk(target);
3605 }
3606 }
3607 spin_unlock(&root->fs_info->balance_lock);
3608
3609 /* First, mask out the RAID levels which aren't possible */
3610 if (num_devices == 1)
3611 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3612 BTRFS_BLOCK_GROUP_RAID5);
3613 if (num_devices < 3)
3614 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3615 if (num_devices < 4)
3616 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3617
3618 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3619 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3620 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3621 flags &= ~tmp;
3622
3623 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3624 tmp = BTRFS_BLOCK_GROUP_RAID6;
3625 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3626 tmp = BTRFS_BLOCK_GROUP_RAID5;
3627 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3628 tmp = BTRFS_BLOCK_GROUP_RAID10;
3629 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3630 tmp = BTRFS_BLOCK_GROUP_RAID1;
3631 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3632 tmp = BTRFS_BLOCK_GROUP_RAID0;
3633
3634 return extended_to_chunk(flags | tmp);
3635 }
3636
3637 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3638 {
3639 unsigned seq;
3640 u64 flags;
3641
3642 do {
3643 flags = orig_flags;
3644 seq = read_seqbegin(&root->fs_info->profiles_lock);
3645
3646 if (flags & BTRFS_BLOCK_GROUP_DATA)
3647 flags |= root->fs_info->avail_data_alloc_bits;
3648 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3649 flags |= root->fs_info->avail_system_alloc_bits;
3650 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3651 flags |= root->fs_info->avail_metadata_alloc_bits;
3652 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3653
3654 return btrfs_reduce_alloc_profile(root, flags);
3655 }
3656
3657 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3658 {
3659 u64 flags;
3660 u64 ret;
3661
3662 if (data)
3663 flags = BTRFS_BLOCK_GROUP_DATA;
3664 else if (root == root->fs_info->chunk_root)
3665 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3666 else
3667 flags = BTRFS_BLOCK_GROUP_METADATA;
3668
3669 ret = get_alloc_profile(root, flags);
3670 return ret;
3671 }
3672
3673 /*
3674 * This will check the space that the inode allocates from to make sure we have
3675 * enough space for bytes.
3676 */
3677 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3678 {
3679 struct btrfs_space_info *data_sinfo;
3680 struct btrfs_root *root = BTRFS_I(inode)->root;
3681 struct btrfs_fs_info *fs_info = root->fs_info;
3682 u64 used;
3683 int ret = 0, committed = 0, alloc_chunk = 1;
3684
3685 /* make sure bytes are sectorsize aligned */
3686 bytes = ALIGN(bytes, root->sectorsize);
3687
3688 if (btrfs_is_free_space_inode(inode)) {
3689 committed = 1;
3690 ASSERT(current->journal_info);
3691 }
3692
3693 data_sinfo = fs_info->data_sinfo;
3694 if (!data_sinfo)
3695 goto alloc;
3696
3697 again:
3698 /* make sure we have enough space to handle the data first */
3699 spin_lock(&data_sinfo->lock);
3700 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3701 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3702 data_sinfo->bytes_may_use;
3703
3704 if (used + bytes > data_sinfo->total_bytes) {
3705 struct btrfs_trans_handle *trans;
3706
3707 /*
3708 * if we don't have enough free bytes in this space then we need
3709 * to alloc a new chunk.
3710 */
3711 if (!data_sinfo->full && alloc_chunk) {
3712 u64 alloc_target;
3713
3714 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3715 spin_unlock(&data_sinfo->lock);
3716 alloc:
3717 alloc_target = btrfs_get_alloc_profile(root, 1);
3718 /*
3719 * It is ugly that we don't call nolock join
3720 * transaction for the free space inode case here.
3721 * But it is safe because we only do the data space
3722 * reservation for the free space cache in the
3723 * transaction context, the common join transaction
3724 * just increase the counter of the current transaction
3725 * handler, doesn't try to acquire the trans_lock of
3726 * the fs.
3727 */
3728 trans = btrfs_join_transaction(root);
3729 if (IS_ERR(trans))
3730 return PTR_ERR(trans);
3731
3732 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3733 alloc_target,
3734 CHUNK_ALLOC_NO_FORCE);
3735 btrfs_end_transaction(trans, root);
3736 if (ret < 0) {
3737 if (ret != -ENOSPC)
3738 return ret;
3739 else
3740 goto commit_trans;
3741 }
3742
3743 if (!data_sinfo)
3744 data_sinfo = fs_info->data_sinfo;
3745
3746 goto again;
3747 }
3748
3749 /*
3750 * If we don't have enough pinned space to deal with this
3751 * allocation don't bother committing the transaction.
3752 */
3753 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3754 bytes) < 0)
3755 committed = 1;
3756 spin_unlock(&data_sinfo->lock);
3757
3758 /* commit the current transaction and try again */
3759 commit_trans:
3760 if (!committed &&
3761 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3762 committed = 1;
3763
3764 trans = btrfs_join_transaction(root);
3765 if (IS_ERR(trans))
3766 return PTR_ERR(trans);
3767 ret = btrfs_commit_transaction(trans, root);
3768 if (ret)
3769 return ret;
3770 goto again;
3771 }
3772
3773 trace_btrfs_space_reservation(root->fs_info,
3774 "space_info:enospc",
3775 data_sinfo->flags, bytes, 1);
3776 return -ENOSPC;
3777 }
3778 data_sinfo->bytes_may_use += bytes;
3779 trace_btrfs_space_reservation(root->fs_info, "space_info",
3780 data_sinfo->flags, bytes, 1);
3781 spin_unlock(&data_sinfo->lock);
3782
3783 return 0;
3784 }
3785
3786 /*
3787 * Called if we need to clear a data reservation for this inode.
3788 */
3789 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3790 {
3791 struct btrfs_root *root = BTRFS_I(inode)->root;
3792 struct btrfs_space_info *data_sinfo;
3793
3794 /* make sure bytes are sectorsize aligned */
3795 bytes = ALIGN(bytes, root->sectorsize);
3796
3797 data_sinfo = root->fs_info->data_sinfo;
3798 spin_lock(&data_sinfo->lock);
3799 WARN_ON(data_sinfo->bytes_may_use < bytes);
3800 data_sinfo->bytes_may_use -= bytes;
3801 trace_btrfs_space_reservation(root->fs_info, "space_info",
3802 data_sinfo->flags, bytes, 0);
3803 spin_unlock(&data_sinfo->lock);
3804 }
3805
3806 static void force_metadata_allocation(struct btrfs_fs_info *info)
3807 {
3808 struct list_head *head = &info->space_info;
3809 struct btrfs_space_info *found;
3810
3811 rcu_read_lock();
3812 list_for_each_entry_rcu(found, head, list) {
3813 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3814 found->force_alloc = CHUNK_ALLOC_FORCE;
3815 }
3816 rcu_read_unlock();
3817 }
3818
3819 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3820 {
3821 return (global->size << 1);
3822 }
3823
3824 static int should_alloc_chunk(struct btrfs_root *root,
3825 struct btrfs_space_info *sinfo, int force)
3826 {
3827 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3828 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3829 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3830 u64 thresh;
3831
3832 if (force == CHUNK_ALLOC_FORCE)
3833 return 1;
3834
3835 /*
3836 * We need to take into account the global rsv because for all intents
3837 * and purposes it's used space. Don't worry about locking the
3838 * global_rsv, it doesn't change except when the transaction commits.
3839 */
3840 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3841 num_allocated += calc_global_rsv_need_space(global_rsv);
3842
3843 /*
3844 * in limited mode, we want to have some free space up to
3845 * about 1% of the FS size.
3846 */
3847 if (force == CHUNK_ALLOC_LIMITED) {
3848 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3849 thresh = max_t(u64, 64 * 1024 * 1024,
3850 div_factor_fine(thresh, 1));
3851
3852 if (num_bytes - num_allocated < thresh)
3853 return 1;
3854 }
3855
3856 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3857 return 0;
3858 return 1;
3859 }
3860
3861 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3862 {
3863 u64 num_dev;
3864
3865 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3866 BTRFS_BLOCK_GROUP_RAID0 |
3867 BTRFS_BLOCK_GROUP_RAID5 |
3868 BTRFS_BLOCK_GROUP_RAID6))
3869 num_dev = root->fs_info->fs_devices->rw_devices;
3870 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3871 num_dev = 2;
3872 else
3873 num_dev = 1; /* DUP or single */
3874
3875 /* metadata for updaing devices and chunk tree */
3876 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3877 }
3878
3879 static void check_system_chunk(struct btrfs_trans_handle *trans,
3880 struct btrfs_root *root, u64 type)
3881 {
3882 struct btrfs_space_info *info;
3883 u64 left;
3884 u64 thresh;
3885
3886 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3887 spin_lock(&info->lock);
3888 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3889 info->bytes_reserved - info->bytes_readonly;
3890 spin_unlock(&info->lock);
3891
3892 thresh = get_system_chunk_thresh(root, type);
3893 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3894 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3895 left, thresh, type);
3896 dump_space_info(info, 0, 0);
3897 }
3898
3899 if (left < thresh) {
3900 u64 flags;
3901
3902 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3903 btrfs_alloc_chunk(trans, root, flags);
3904 }
3905 }
3906
3907 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3908 struct btrfs_root *extent_root, u64 flags, int force)
3909 {
3910 struct btrfs_space_info *space_info;
3911 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3912 int wait_for_alloc = 0;
3913 int ret = 0;
3914
3915 /* Don't re-enter if we're already allocating a chunk */
3916 if (trans->allocating_chunk)
3917 return -ENOSPC;
3918
3919 space_info = __find_space_info(extent_root->fs_info, flags);
3920 if (!space_info) {
3921 ret = update_space_info(extent_root->fs_info, flags,
3922 0, 0, &space_info);
3923 BUG_ON(ret); /* -ENOMEM */
3924 }
3925 BUG_ON(!space_info); /* Logic error */
3926
3927 again:
3928 spin_lock(&space_info->lock);
3929 if (force < space_info->force_alloc)
3930 force = space_info->force_alloc;
3931 if (space_info->full) {
3932 if (should_alloc_chunk(extent_root, space_info, force))
3933 ret = -ENOSPC;
3934 else
3935 ret = 0;
3936 spin_unlock(&space_info->lock);
3937 return ret;
3938 }
3939
3940 if (!should_alloc_chunk(extent_root, space_info, force)) {
3941 spin_unlock(&space_info->lock);
3942 return 0;
3943 } else if (space_info->chunk_alloc) {
3944 wait_for_alloc = 1;
3945 } else {
3946 space_info->chunk_alloc = 1;
3947 }
3948
3949 spin_unlock(&space_info->lock);
3950
3951 mutex_lock(&fs_info->chunk_mutex);
3952
3953 /*
3954 * The chunk_mutex is held throughout the entirety of a chunk
3955 * allocation, so once we've acquired the chunk_mutex we know that the
3956 * other guy is done and we need to recheck and see if we should
3957 * allocate.
3958 */
3959 if (wait_for_alloc) {
3960 mutex_unlock(&fs_info->chunk_mutex);
3961 wait_for_alloc = 0;
3962 goto again;
3963 }
3964
3965 trans->allocating_chunk = true;
3966
3967 /*
3968 * If we have mixed data/metadata chunks we want to make sure we keep
3969 * allocating mixed chunks instead of individual chunks.
3970 */
3971 if (btrfs_mixed_space_info(space_info))
3972 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3973
3974 /*
3975 * if we're doing a data chunk, go ahead and make sure that
3976 * we keep a reasonable number of metadata chunks allocated in the
3977 * FS as well.
3978 */
3979 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3980 fs_info->data_chunk_allocations++;
3981 if (!(fs_info->data_chunk_allocations %
3982 fs_info->metadata_ratio))
3983 force_metadata_allocation(fs_info);
3984 }
3985
3986 /*
3987 * Check if we have enough space in SYSTEM chunk because we may need
3988 * to update devices.
3989 */
3990 check_system_chunk(trans, extent_root, flags);
3991
3992 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3993 trans->allocating_chunk = false;
3994
3995 spin_lock(&space_info->lock);
3996 if (ret < 0 && ret != -ENOSPC)
3997 goto out;
3998 if (ret)
3999 space_info->full = 1;
4000 else
4001 ret = 1;
4002
4003 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4004 out:
4005 space_info->chunk_alloc = 0;
4006 spin_unlock(&space_info->lock);
4007 mutex_unlock(&fs_info->chunk_mutex);
4008 return ret;
4009 }
4010
4011 static int can_overcommit(struct btrfs_root *root,
4012 struct btrfs_space_info *space_info, u64 bytes,
4013 enum btrfs_reserve_flush_enum flush)
4014 {
4015 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4016 u64 profile = btrfs_get_alloc_profile(root, 0);
4017 u64 space_size;
4018 u64 avail;
4019 u64 used;
4020
4021 used = space_info->bytes_used + space_info->bytes_reserved +
4022 space_info->bytes_pinned + space_info->bytes_readonly;
4023
4024 /*
4025 * We only want to allow over committing if we have lots of actual space
4026 * free, but if we don't have enough space to handle the global reserve
4027 * space then we could end up having a real enospc problem when trying
4028 * to allocate a chunk or some other such important allocation.
4029 */
4030 spin_lock(&global_rsv->lock);
4031 space_size = calc_global_rsv_need_space(global_rsv);
4032 spin_unlock(&global_rsv->lock);
4033 if (used + space_size >= space_info->total_bytes)
4034 return 0;
4035
4036 used += space_info->bytes_may_use;
4037
4038 spin_lock(&root->fs_info->free_chunk_lock);
4039 avail = root->fs_info->free_chunk_space;
4040 spin_unlock(&root->fs_info->free_chunk_lock);
4041
4042 /*
4043 * If we have dup, raid1 or raid10 then only half of the free
4044 * space is actually useable. For raid56, the space info used
4045 * doesn't include the parity drive, so we don't have to
4046 * change the math
4047 */
4048 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4049 BTRFS_BLOCK_GROUP_RAID1 |
4050 BTRFS_BLOCK_GROUP_RAID10))
4051 avail >>= 1;
4052
4053 /*
4054 * If we aren't flushing all things, let us overcommit up to
4055 * 1/2th of the space. If we can flush, don't let us overcommit
4056 * too much, let it overcommit up to 1/8 of the space.
4057 */
4058 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4059 avail >>= 3;
4060 else
4061 avail >>= 1;
4062
4063 if (used + bytes < space_info->total_bytes + avail)
4064 return 1;
4065 return 0;
4066 }
4067
4068 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4069 unsigned long nr_pages, int nr_items)
4070 {
4071 struct super_block *sb = root->fs_info->sb;
4072
4073 if (down_read_trylock(&sb->s_umount)) {
4074 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4075 up_read(&sb->s_umount);
4076 } else {
4077 /*
4078 * We needn't worry the filesystem going from r/w to r/o though
4079 * we don't acquire ->s_umount mutex, because the filesystem
4080 * should guarantee the delalloc inodes list be empty after
4081 * the filesystem is readonly(all dirty pages are written to
4082 * the disk).
4083 */
4084 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4085 if (!current->journal_info)
4086 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4087 }
4088 }
4089
4090 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4091 {
4092 u64 bytes;
4093 int nr;
4094
4095 bytes = btrfs_calc_trans_metadata_size(root, 1);
4096 nr = (int)div64_u64(to_reclaim, bytes);
4097 if (!nr)
4098 nr = 1;
4099 return nr;
4100 }
4101
4102 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4103
4104 /*
4105 * shrink metadata reservation for delalloc
4106 */
4107 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4108 bool wait_ordered)
4109 {
4110 struct btrfs_block_rsv *block_rsv;
4111 struct btrfs_space_info *space_info;
4112 struct btrfs_trans_handle *trans;
4113 u64 delalloc_bytes;
4114 u64 max_reclaim;
4115 long time_left;
4116 unsigned long nr_pages;
4117 int loops;
4118 int items;
4119 enum btrfs_reserve_flush_enum flush;
4120
4121 /* Calc the number of the pages we need flush for space reservation */
4122 items = calc_reclaim_items_nr(root, to_reclaim);
4123 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4124
4125 trans = (struct btrfs_trans_handle *)current->journal_info;
4126 block_rsv = &root->fs_info->delalloc_block_rsv;
4127 space_info = block_rsv->space_info;
4128
4129 delalloc_bytes = percpu_counter_sum_positive(
4130 &root->fs_info->delalloc_bytes);
4131 if (delalloc_bytes == 0) {
4132 if (trans)
4133 return;
4134 if (wait_ordered)
4135 btrfs_wait_ordered_roots(root->fs_info, items);
4136 return;
4137 }
4138
4139 loops = 0;
4140 while (delalloc_bytes && loops < 3) {
4141 max_reclaim = min(delalloc_bytes, to_reclaim);
4142 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4143 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4144 /*
4145 * We need to wait for the async pages to actually start before
4146 * we do anything.
4147 */
4148 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4149 if (!max_reclaim)
4150 goto skip_async;
4151
4152 if (max_reclaim <= nr_pages)
4153 max_reclaim = 0;
4154 else
4155 max_reclaim -= nr_pages;
4156
4157 wait_event(root->fs_info->async_submit_wait,
4158 atomic_read(&root->fs_info->async_delalloc_pages) <=
4159 (int)max_reclaim);
4160 skip_async:
4161 if (!trans)
4162 flush = BTRFS_RESERVE_FLUSH_ALL;
4163 else
4164 flush = BTRFS_RESERVE_NO_FLUSH;
4165 spin_lock(&space_info->lock);
4166 if (can_overcommit(root, space_info, orig, flush)) {
4167 spin_unlock(&space_info->lock);
4168 break;
4169 }
4170 spin_unlock(&space_info->lock);
4171
4172 loops++;
4173 if (wait_ordered && !trans) {
4174 btrfs_wait_ordered_roots(root->fs_info, items);
4175 } else {
4176 time_left = schedule_timeout_killable(1);
4177 if (time_left)
4178 break;
4179 }
4180 delalloc_bytes = percpu_counter_sum_positive(
4181 &root->fs_info->delalloc_bytes);
4182 }
4183 }
4184
4185 /**
4186 * maybe_commit_transaction - possibly commit the transaction if its ok to
4187 * @root - the root we're allocating for
4188 * @bytes - the number of bytes we want to reserve
4189 * @force - force the commit
4190 *
4191 * This will check to make sure that committing the transaction will actually
4192 * get us somewhere and then commit the transaction if it does. Otherwise it
4193 * will return -ENOSPC.
4194 */
4195 static int may_commit_transaction(struct btrfs_root *root,
4196 struct btrfs_space_info *space_info,
4197 u64 bytes, int force)
4198 {
4199 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4200 struct btrfs_trans_handle *trans;
4201
4202 trans = (struct btrfs_trans_handle *)current->journal_info;
4203 if (trans)
4204 return -EAGAIN;
4205
4206 if (force)
4207 goto commit;
4208
4209 /* See if there is enough pinned space to make this reservation */
4210 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4211 bytes) >= 0)
4212 goto commit;
4213
4214 /*
4215 * See if there is some space in the delayed insertion reservation for
4216 * this reservation.
4217 */
4218 if (space_info != delayed_rsv->space_info)
4219 return -ENOSPC;
4220
4221 spin_lock(&delayed_rsv->lock);
4222 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4223 bytes - delayed_rsv->size) >= 0) {
4224 spin_unlock(&delayed_rsv->lock);
4225 return -ENOSPC;
4226 }
4227 spin_unlock(&delayed_rsv->lock);
4228
4229 commit:
4230 trans = btrfs_join_transaction(root);
4231 if (IS_ERR(trans))
4232 return -ENOSPC;
4233
4234 return btrfs_commit_transaction(trans, root);
4235 }
4236
4237 enum flush_state {
4238 FLUSH_DELAYED_ITEMS_NR = 1,
4239 FLUSH_DELAYED_ITEMS = 2,
4240 FLUSH_DELALLOC = 3,
4241 FLUSH_DELALLOC_WAIT = 4,
4242 ALLOC_CHUNK = 5,
4243 COMMIT_TRANS = 6,
4244 };
4245
4246 static int flush_space(struct btrfs_root *root,
4247 struct btrfs_space_info *space_info, u64 num_bytes,
4248 u64 orig_bytes, int state)
4249 {
4250 struct btrfs_trans_handle *trans;
4251 int nr;
4252 int ret = 0;
4253
4254 switch (state) {
4255 case FLUSH_DELAYED_ITEMS_NR:
4256 case FLUSH_DELAYED_ITEMS:
4257 if (state == FLUSH_DELAYED_ITEMS_NR)
4258 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4259 else
4260 nr = -1;
4261
4262 trans = btrfs_join_transaction(root);
4263 if (IS_ERR(trans)) {
4264 ret = PTR_ERR(trans);
4265 break;
4266 }
4267 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4268 btrfs_end_transaction(trans, root);
4269 break;
4270 case FLUSH_DELALLOC:
4271 case FLUSH_DELALLOC_WAIT:
4272 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4273 state == FLUSH_DELALLOC_WAIT);
4274 break;
4275 case ALLOC_CHUNK:
4276 trans = btrfs_join_transaction(root);
4277 if (IS_ERR(trans)) {
4278 ret = PTR_ERR(trans);
4279 break;
4280 }
4281 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4282 btrfs_get_alloc_profile(root, 0),
4283 CHUNK_ALLOC_NO_FORCE);
4284 btrfs_end_transaction(trans, root);
4285 if (ret == -ENOSPC)
4286 ret = 0;
4287 break;
4288 case COMMIT_TRANS:
4289 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4290 break;
4291 default:
4292 ret = -ENOSPC;
4293 break;
4294 }
4295
4296 return ret;
4297 }
4298
4299 static inline u64
4300 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4301 struct btrfs_space_info *space_info)
4302 {
4303 u64 used;
4304 u64 expected;
4305 u64 to_reclaim;
4306
4307 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4308 16 * 1024 * 1024);
4309 spin_lock(&space_info->lock);
4310 if (can_overcommit(root, space_info, to_reclaim,
4311 BTRFS_RESERVE_FLUSH_ALL)) {
4312 to_reclaim = 0;
4313 goto out;
4314 }
4315
4316 used = space_info->bytes_used + space_info->bytes_reserved +
4317 space_info->bytes_pinned + space_info->bytes_readonly +
4318 space_info->bytes_may_use;
4319 if (can_overcommit(root, space_info, 1024 * 1024,
4320 BTRFS_RESERVE_FLUSH_ALL))
4321 expected = div_factor_fine(space_info->total_bytes, 95);
4322 else
4323 expected = div_factor_fine(space_info->total_bytes, 90);
4324
4325 if (used > expected)
4326 to_reclaim = used - expected;
4327 else
4328 to_reclaim = 0;
4329 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4330 space_info->bytes_reserved);
4331 out:
4332 spin_unlock(&space_info->lock);
4333
4334 return to_reclaim;
4335 }
4336
4337 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4338 struct btrfs_fs_info *fs_info, u64 used)
4339 {
4340 return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4341 !btrfs_fs_closing(fs_info) &&
4342 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4343 }
4344
4345 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4346 struct btrfs_fs_info *fs_info)
4347 {
4348 u64 used;
4349
4350 spin_lock(&space_info->lock);
4351 used = space_info->bytes_used + space_info->bytes_reserved +
4352 space_info->bytes_pinned + space_info->bytes_readonly +
4353 space_info->bytes_may_use;
4354 if (need_do_async_reclaim(space_info, fs_info, used)) {
4355 spin_unlock(&space_info->lock);
4356 return 1;
4357 }
4358 spin_unlock(&space_info->lock);
4359
4360 return 0;
4361 }
4362
4363 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4364 {
4365 struct btrfs_fs_info *fs_info;
4366 struct btrfs_space_info *space_info;
4367 u64 to_reclaim;
4368 int flush_state;
4369
4370 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4371 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4372
4373 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4374 space_info);
4375 if (!to_reclaim)
4376 return;
4377
4378 flush_state = FLUSH_DELAYED_ITEMS_NR;
4379 do {
4380 flush_space(fs_info->fs_root, space_info, to_reclaim,
4381 to_reclaim, flush_state);
4382 flush_state++;
4383 if (!btrfs_need_do_async_reclaim(space_info, fs_info))
4384 return;
4385 } while (flush_state <= COMMIT_TRANS);
4386
4387 if (btrfs_need_do_async_reclaim(space_info, fs_info))
4388 queue_work(system_unbound_wq, work);
4389 }
4390
4391 void btrfs_init_async_reclaim_work(struct work_struct *work)
4392 {
4393 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4394 }
4395
4396 /**
4397 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4398 * @root - the root we're allocating for
4399 * @block_rsv - the block_rsv we're allocating for
4400 * @orig_bytes - the number of bytes we want
4401 * @flush - whether or not we can flush to make our reservation
4402 *
4403 * This will reserve orgi_bytes number of bytes from the space info associated
4404 * with the block_rsv. If there is not enough space it will make an attempt to
4405 * flush out space to make room. It will do this by flushing delalloc if
4406 * possible or committing the transaction. If flush is 0 then no attempts to
4407 * regain reservations will be made and this will fail if there is not enough
4408 * space already.
4409 */
4410 static int reserve_metadata_bytes(struct btrfs_root *root,
4411 struct btrfs_block_rsv *block_rsv,
4412 u64 orig_bytes,
4413 enum btrfs_reserve_flush_enum flush)
4414 {
4415 struct btrfs_space_info *space_info = block_rsv->space_info;
4416 u64 used;
4417 u64 num_bytes = orig_bytes;
4418 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4419 int ret = 0;
4420 bool flushing = false;
4421
4422 again:
4423 ret = 0;
4424 spin_lock(&space_info->lock);
4425 /*
4426 * We only want to wait if somebody other than us is flushing and we
4427 * are actually allowed to flush all things.
4428 */
4429 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4430 space_info->flush) {
4431 spin_unlock(&space_info->lock);
4432 /*
4433 * If we have a trans handle we can't wait because the flusher
4434 * may have to commit the transaction, which would mean we would
4435 * deadlock since we are waiting for the flusher to finish, but
4436 * hold the current transaction open.
4437 */
4438 if (current->journal_info)
4439 return -EAGAIN;
4440 ret = wait_event_killable(space_info->wait, !space_info->flush);
4441 /* Must have been killed, return */
4442 if (ret)
4443 return -EINTR;
4444
4445 spin_lock(&space_info->lock);
4446 }
4447
4448 ret = -ENOSPC;
4449 used = space_info->bytes_used + space_info->bytes_reserved +
4450 space_info->bytes_pinned + space_info->bytes_readonly +
4451 space_info->bytes_may_use;
4452
4453 /*
4454 * The idea here is that we've not already over-reserved the block group
4455 * then we can go ahead and save our reservation first and then start
4456 * flushing if we need to. Otherwise if we've already overcommitted
4457 * lets start flushing stuff first and then come back and try to make
4458 * our reservation.
4459 */
4460 if (used <= space_info->total_bytes) {
4461 if (used + orig_bytes <= space_info->total_bytes) {
4462 space_info->bytes_may_use += orig_bytes;
4463 trace_btrfs_space_reservation(root->fs_info,
4464 "space_info", space_info->flags, orig_bytes, 1);
4465 ret = 0;
4466 } else {
4467 /*
4468 * Ok set num_bytes to orig_bytes since we aren't
4469 * overocmmitted, this way we only try and reclaim what
4470 * we need.
4471 */
4472 num_bytes = orig_bytes;
4473 }
4474 } else {
4475 /*
4476 * Ok we're over committed, set num_bytes to the overcommitted
4477 * amount plus the amount of bytes that we need for this
4478 * reservation.
4479 */
4480 num_bytes = used - space_info->total_bytes +
4481 (orig_bytes * 2);
4482 }
4483
4484 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4485 space_info->bytes_may_use += orig_bytes;
4486 trace_btrfs_space_reservation(root->fs_info, "space_info",
4487 space_info->flags, orig_bytes,
4488 1);
4489 ret = 0;
4490 }
4491
4492 /*
4493 * Couldn't make our reservation, save our place so while we're trying
4494 * to reclaim space we can actually use it instead of somebody else
4495 * stealing it from us.
4496 *
4497 * We make the other tasks wait for the flush only when we can flush
4498 * all things.
4499 */
4500 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4501 flushing = true;
4502 space_info->flush = 1;
4503 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4504 used += orig_bytes;
4505 if (need_do_async_reclaim(space_info, root->fs_info, used) &&
4506 !work_busy(&root->fs_info->async_reclaim_work))
4507 queue_work(system_unbound_wq,
4508 &root->fs_info->async_reclaim_work);
4509 }
4510 spin_unlock(&space_info->lock);
4511
4512 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4513 goto out;
4514
4515 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4516 flush_state);
4517 flush_state++;
4518
4519 /*
4520 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4521 * would happen. So skip delalloc flush.
4522 */
4523 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4524 (flush_state == FLUSH_DELALLOC ||
4525 flush_state == FLUSH_DELALLOC_WAIT))
4526 flush_state = ALLOC_CHUNK;
4527
4528 if (!ret)
4529 goto again;
4530 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4531 flush_state < COMMIT_TRANS)
4532 goto again;
4533 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4534 flush_state <= COMMIT_TRANS)
4535 goto again;
4536
4537 out:
4538 if (ret == -ENOSPC &&
4539 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4540 struct btrfs_block_rsv *global_rsv =
4541 &root->fs_info->global_block_rsv;
4542
4543 if (block_rsv != global_rsv &&
4544 !block_rsv_use_bytes(global_rsv, orig_bytes))
4545 ret = 0;
4546 }
4547 if (ret == -ENOSPC)
4548 trace_btrfs_space_reservation(root->fs_info,
4549 "space_info:enospc",
4550 space_info->flags, orig_bytes, 1);
4551 if (flushing) {
4552 spin_lock(&space_info->lock);
4553 space_info->flush = 0;
4554 wake_up_all(&space_info->wait);
4555 spin_unlock(&space_info->lock);
4556 }
4557 return ret;
4558 }
4559
4560 static struct btrfs_block_rsv *get_block_rsv(
4561 const struct btrfs_trans_handle *trans,
4562 const struct btrfs_root *root)
4563 {
4564 struct btrfs_block_rsv *block_rsv = NULL;
4565
4566 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4567 block_rsv = trans->block_rsv;
4568
4569 if (root == root->fs_info->csum_root && trans->adding_csums)
4570 block_rsv = trans->block_rsv;
4571
4572 if (root == root->fs_info->uuid_root)
4573 block_rsv = trans->block_rsv;
4574
4575 if (!block_rsv)
4576 block_rsv = root->block_rsv;
4577
4578 if (!block_rsv)
4579 block_rsv = &root->fs_info->empty_block_rsv;
4580
4581 return block_rsv;
4582 }
4583
4584 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4585 u64 num_bytes)
4586 {
4587 int ret = -ENOSPC;
4588 spin_lock(&block_rsv->lock);
4589 if (block_rsv->reserved >= num_bytes) {
4590 block_rsv->reserved -= num_bytes;
4591 if (block_rsv->reserved < block_rsv->size)
4592 block_rsv->full = 0;
4593 ret = 0;
4594 }
4595 spin_unlock(&block_rsv->lock);
4596 return ret;
4597 }
4598
4599 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4600 u64 num_bytes, int update_size)
4601 {
4602 spin_lock(&block_rsv->lock);
4603 block_rsv->reserved += num_bytes;
4604 if (update_size)
4605 block_rsv->size += num_bytes;
4606 else if (block_rsv->reserved >= block_rsv->size)
4607 block_rsv->full = 1;
4608 spin_unlock(&block_rsv->lock);
4609 }
4610
4611 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4612 struct btrfs_block_rsv *dest, u64 num_bytes,
4613 int min_factor)
4614 {
4615 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4616 u64 min_bytes;
4617
4618 if (global_rsv->space_info != dest->space_info)
4619 return -ENOSPC;
4620
4621 spin_lock(&global_rsv->lock);
4622 min_bytes = div_factor(global_rsv->size, min_factor);
4623 if (global_rsv->reserved < min_bytes + num_bytes) {
4624 spin_unlock(&global_rsv->lock);
4625 return -ENOSPC;
4626 }
4627 global_rsv->reserved -= num_bytes;
4628 if (global_rsv->reserved < global_rsv->size)
4629 global_rsv->full = 0;
4630 spin_unlock(&global_rsv->lock);
4631
4632 block_rsv_add_bytes(dest, num_bytes, 1);
4633 return 0;
4634 }
4635
4636 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4637 struct btrfs_block_rsv *block_rsv,
4638 struct btrfs_block_rsv *dest, u64 num_bytes)
4639 {
4640 struct btrfs_space_info *space_info = block_rsv->space_info;
4641
4642 spin_lock(&block_rsv->lock);
4643 if (num_bytes == (u64)-1)
4644 num_bytes = block_rsv->size;
4645 block_rsv->size -= num_bytes;
4646 if (block_rsv->reserved >= block_rsv->size) {
4647 num_bytes = block_rsv->reserved - block_rsv->size;
4648 block_rsv->reserved = block_rsv->size;
4649 block_rsv->full = 1;
4650 } else {
4651 num_bytes = 0;
4652 }
4653 spin_unlock(&block_rsv->lock);
4654
4655 if (num_bytes > 0) {
4656 if (dest) {
4657 spin_lock(&dest->lock);
4658 if (!dest->full) {
4659 u64 bytes_to_add;
4660
4661 bytes_to_add = dest->size - dest->reserved;
4662 bytes_to_add = min(num_bytes, bytes_to_add);
4663 dest->reserved += bytes_to_add;
4664 if (dest->reserved >= dest->size)
4665 dest->full = 1;
4666 num_bytes -= bytes_to_add;
4667 }
4668 spin_unlock(&dest->lock);
4669 }
4670 if (num_bytes) {
4671 spin_lock(&space_info->lock);
4672 space_info->bytes_may_use -= num_bytes;
4673 trace_btrfs_space_reservation(fs_info, "space_info",
4674 space_info->flags, num_bytes, 0);
4675 spin_unlock(&space_info->lock);
4676 }
4677 }
4678 }
4679
4680 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4681 struct btrfs_block_rsv *dst, u64 num_bytes)
4682 {
4683 int ret;
4684
4685 ret = block_rsv_use_bytes(src, num_bytes);
4686 if (ret)
4687 return ret;
4688
4689 block_rsv_add_bytes(dst, num_bytes, 1);
4690 return 0;
4691 }
4692
4693 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4694 {
4695 memset(rsv, 0, sizeof(*rsv));
4696 spin_lock_init(&rsv->lock);
4697 rsv->type = type;
4698 }
4699
4700 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4701 unsigned short type)
4702 {
4703 struct btrfs_block_rsv *block_rsv;
4704 struct btrfs_fs_info *fs_info = root->fs_info;
4705
4706 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4707 if (!block_rsv)
4708 return NULL;
4709
4710 btrfs_init_block_rsv(block_rsv, type);
4711 block_rsv->space_info = __find_space_info(fs_info,
4712 BTRFS_BLOCK_GROUP_METADATA);
4713 return block_rsv;
4714 }
4715
4716 void btrfs_free_block_rsv(struct btrfs_root *root,
4717 struct btrfs_block_rsv *rsv)
4718 {
4719 if (!rsv)
4720 return;
4721 btrfs_block_rsv_release(root, rsv, (u64)-1);
4722 kfree(rsv);
4723 }
4724
4725 int btrfs_block_rsv_add(struct btrfs_root *root,
4726 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4727 enum btrfs_reserve_flush_enum flush)
4728 {
4729 int ret;
4730
4731 if (num_bytes == 0)
4732 return 0;
4733
4734 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4735 if (!ret) {
4736 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4737 return 0;
4738 }
4739
4740 return ret;
4741 }
4742
4743 int btrfs_block_rsv_check(struct btrfs_root *root,
4744 struct btrfs_block_rsv *block_rsv, int min_factor)
4745 {
4746 u64 num_bytes = 0;
4747 int ret = -ENOSPC;
4748
4749 if (!block_rsv)
4750 return 0;
4751
4752 spin_lock(&block_rsv->lock);
4753 num_bytes = div_factor(block_rsv->size, min_factor);
4754 if (block_rsv->reserved >= num_bytes)
4755 ret = 0;
4756 spin_unlock(&block_rsv->lock);
4757
4758 return ret;
4759 }
4760
4761 int btrfs_block_rsv_refill(struct btrfs_root *root,
4762 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4763 enum btrfs_reserve_flush_enum flush)
4764 {
4765 u64 num_bytes = 0;
4766 int ret = -ENOSPC;
4767
4768 if (!block_rsv)
4769 return 0;
4770
4771 spin_lock(&block_rsv->lock);
4772 num_bytes = min_reserved;
4773 if (block_rsv->reserved >= num_bytes)
4774 ret = 0;
4775 else
4776 num_bytes -= block_rsv->reserved;
4777 spin_unlock(&block_rsv->lock);
4778
4779 if (!ret)
4780 return 0;
4781
4782 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4783 if (!ret) {
4784 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4785 return 0;
4786 }
4787
4788 return ret;
4789 }
4790
4791 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4792 struct btrfs_block_rsv *dst_rsv,
4793 u64 num_bytes)
4794 {
4795 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4796 }
4797
4798 void btrfs_block_rsv_release(struct btrfs_root *root,
4799 struct btrfs_block_rsv *block_rsv,
4800 u64 num_bytes)
4801 {
4802 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4803 if (global_rsv == block_rsv ||
4804 block_rsv->space_info != global_rsv->space_info)
4805 global_rsv = NULL;
4806 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4807 num_bytes);
4808 }
4809
4810 /*
4811 * helper to calculate size of global block reservation.
4812 * the desired value is sum of space used by extent tree,
4813 * checksum tree and root tree
4814 */
4815 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4816 {
4817 struct btrfs_space_info *sinfo;
4818 u64 num_bytes;
4819 u64 meta_used;
4820 u64 data_used;
4821 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4822
4823 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4824 spin_lock(&sinfo->lock);
4825 data_used = sinfo->bytes_used;
4826 spin_unlock(&sinfo->lock);
4827
4828 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4829 spin_lock(&sinfo->lock);
4830 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4831 data_used = 0;
4832 meta_used = sinfo->bytes_used;
4833 spin_unlock(&sinfo->lock);
4834
4835 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4836 csum_size * 2;
4837 num_bytes += div64_u64(data_used + meta_used, 50);
4838
4839 if (num_bytes * 3 > meta_used)
4840 num_bytes = div64_u64(meta_used, 3);
4841
4842 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4843 }
4844
4845 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4846 {
4847 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4848 struct btrfs_space_info *sinfo = block_rsv->space_info;
4849 u64 num_bytes;
4850
4851 num_bytes = calc_global_metadata_size(fs_info);
4852
4853 spin_lock(&sinfo->lock);
4854 spin_lock(&block_rsv->lock);
4855
4856 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4857
4858 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4859 sinfo->bytes_reserved + sinfo->bytes_readonly +
4860 sinfo->bytes_may_use;
4861
4862 if (sinfo->total_bytes > num_bytes) {
4863 num_bytes = sinfo->total_bytes - num_bytes;
4864 block_rsv->reserved += num_bytes;
4865 sinfo->bytes_may_use += num_bytes;
4866 trace_btrfs_space_reservation(fs_info, "space_info",
4867 sinfo->flags, num_bytes, 1);
4868 }
4869
4870 if (block_rsv->reserved >= block_rsv->size) {
4871 num_bytes = block_rsv->reserved - block_rsv->size;
4872 sinfo->bytes_may_use -= num_bytes;
4873 trace_btrfs_space_reservation(fs_info, "space_info",
4874 sinfo->flags, num_bytes, 0);
4875 block_rsv->reserved = block_rsv->size;
4876 block_rsv->full = 1;
4877 }
4878
4879 spin_unlock(&block_rsv->lock);
4880 spin_unlock(&sinfo->lock);
4881 }
4882
4883 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4884 {
4885 struct btrfs_space_info *space_info;
4886
4887 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4888 fs_info->chunk_block_rsv.space_info = space_info;
4889
4890 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4891 fs_info->global_block_rsv.space_info = space_info;
4892 fs_info->delalloc_block_rsv.space_info = space_info;
4893 fs_info->trans_block_rsv.space_info = space_info;
4894 fs_info->empty_block_rsv.space_info = space_info;
4895 fs_info->delayed_block_rsv.space_info = space_info;
4896
4897 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4898 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4899 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4900 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4901 if (fs_info->quota_root)
4902 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4903 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4904
4905 update_global_block_rsv(fs_info);
4906 }
4907
4908 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4909 {
4910 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4911 (u64)-1);
4912 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4913 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4914 WARN_ON(fs_info->trans_block_rsv.size > 0);
4915 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4916 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4917 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4918 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4919 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4920 }
4921
4922 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4923 struct btrfs_root *root)
4924 {
4925 if (!trans->block_rsv)
4926 return;
4927
4928 if (!trans->bytes_reserved)
4929 return;
4930
4931 trace_btrfs_space_reservation(root->fs_info, "transaction",
4932 trans->transid, trans->bytes_reserved, 0);
4933 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4934 trans->bytes_reserved = 0;
4935 }
4936
4937 /* Can only return 0 or -ENOSPC */
4938 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4939 struct inode *inode)
4940 {
4941 struct btrfs_root *root = BTRFS_I(inode)->root;
4942 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4943 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4944
4945 /*
4946 * We need to hold space in order to delete our orphan item once we've
4947 * added it, so this takes the reservation so we can release it later
4948 * when we are truly done with the orphan item.
4949 */
4950 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4951 trace_btrfs_space_reservation(root->fs_info, "orphan",
4952 btrfs_ino(inode), num_bytes, 1);
4953 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4954 }
4955
4956 void btrfs_orphan_release_metadata(struct inode *inode)
4957 {
4958 struct btrfs_root *root = BTRFS_I(inode)->root;
4959 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4960 trace_btrfs_space_reservation(root->fs_info, "orphan",
4961 btrfs_ino(inode), num_bytes, 0);
4962 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4963 }
4964
4965 /*
4966 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4967 * root: the root of the parent directory
4968 * rsv: block reservation
4969 * items: the number of items that we need do reservation
4970 * qgroup_reserved: used to return the reserved size in qgroup
4971 *
4972 * This function is used to reserve the space for snapshot/subvolume
4973 * creation and deletion. Those operations are different with the
4974 * common file/directory operations, they change two fs/file trees
4975 * and root tree, the number of items that the qgroup reserves is
4976 * different with the free space reservation. So we can not use
4977 * the space reseravtion mechanism in start_transaction().
4978 */
4979 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4980 struct btrfs_block_rsv *rsv,
4981 int items,
4982 u64 *qgroup_reserved,
4983 bool use_global_rsv)
4984 {
4985 u64 num_bytes;
4986 int ret;
4987 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4988
4989 if (root->fs_info->quota_enabled) {
4990 /* One for parent inode, two for dir entries */
4991 num_bytes = 3 * root->leafsize;
4992 ret = btrfs_qgroup_reserve(root, num_bytes);
4993 if (ret)
4994 return ret;
4995 } else {
4996 num_bytes = 0;
4997 }
4998
4999 *qgroup_reserved = num_bytes;
5000
5001 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5002 rsv->space_info = __find_space_info(root->fs_info,
5003 BTRFS_BLOCK_GROUP_METADATA);
5004 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5005 BTRFS_RESERVE_FLUSH_ALL);
5006
5007 if (ret == -ENOSPC && use_global_rsv)
5008 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5009
5010 if (ret) {
5011 if (*qgroup_reserved)
5012 btrfs_qgroup_free(root, *qgroup_reserved);
5013 }
5014
5015 return ret;
5016 }
5017
5018 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5019 struct btrfs_block_rsv *rsv,
5020 u64 qgroup_reserved)
5021 {
5022 btrfs_block_rsv_release(root, rsv, (u64)-1);
5023 if (qgroup_reserved)
5024 btrfs_qgroup_free(root, qgroup_reserved);
5025 }
5026
5027 /**
5028 * drop_outstanding_extent - drop an outstanding extent
5029 * @inode: the inode we're dropping the extent for
5030 *
5031 * This is called when we are freeing up an outstanding extent, either called
5032 * after an error or after an extent is written. This will return the number of
5033 * reserved extents that need to be freed. This must be called with
5034 * BTRFS_I(inode)->lock held.
5035 */
5036 static unsigned drop_outstanding_extent(struct inode *inode)
5037 {
5038 unsigned drop_inode_space = 0;
5039 unsigned dropped_extents = 0;
5040
5041 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
5042 BTRFS_I(inode)->outstanding_extents--;
5043
5044 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5045 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5046 &BTRFS_I(inode)->runtime_flags))
5047 drop_inode_space = 1;
5048
5049 /*
5050 * If we have more or the same amount of outsanding extents than we have
5051 * reserved then we need to leave the reserved extents count alone.
5052 */
5053 if (BTRFS_I(inode)->outstanding_extents >=
5054 BTRFS_I(inode)->reserved_extents)
5055 return drop_inode_space;
5056
5057 dropped_extents = BTRFS_I(inode)->reserved_extents -
5058 BTRFS_I(inode)->outstanding_extents;
5059 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5060 return dropped_extents + drop_inode_space;
5061 }
5062
5063 /**
5064 * calc_csum_metadata_size - return the amount of metada space that must be
5065 * reserved/free'd for the given bytes.
5066 * @inode: the inode we're manipulating
5067 * @num_bytes: the number of bytes in question
5068 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5069 *
5070 * This adjusts the number of csum_bytes in the inode and then returns the
5071 * correct amount of metadata that must either be reserved or freed. We
5072 * calculate how many checksums we can fit into one leaf and then divide the
5073 * number of bytes that will need to be checksumed by this value to figure out
5074 * how many checksums will be required. If we are adding bytes then the number
5075 * may go up and we will return the number of additional bytes that must be
5076 * reserved. If it is going down we will return the number of bytes that must
5077 * be freed.
5078 *
5079 * This must be called with BTRFS_I(inode)->lock held.
5080 */
5081 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5082 int reserve)
5083 {
5084 struct btrfs_root *root = BTRFS_I(inode)->root;
5085 u64 csum_size;
5086 int num_csums_per_leaf;
5087 int num_csums;
5088 int old_csums;
5089
5090 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5091 BTRFS_I(inode)->csum_bytes == 0)
5092 return 0;
5093
5094 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5095 if (reserve)
5096 BTRFS_I(inode)->csum_bytes += num_bytes;
5097 else
5098 BTRFS_I(inode)->csum_bytes -= num_bytes;
5099 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5100 num_csums_per_leaf = (int)div64_u64(csum_size,
5101 sizeof(struct btrfs_csum_item) +
5102 sizeof(struct btrfs_disk_key));
5103 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5104 num_csums = num_csums + num_csums_per_leaf - 1;
5105 num_csums = num_csums / num_csums_per_leaf;
5106
5107 old_csums = old_csums + num_csums_per_leaf - 1;
5108 old_csums = old_csums / num_csums_per_leaf;
5109
5110 /* No change, no need to reserve more */
5111 if (old_csums == num_csums)
5112 return 0;
5113
5114 if (reserve)
5115 return btrfs_calc_trans_metadata_size(root,
5116 num_csums - old_csums);
5117
5118 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5119 }
5120
5121 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5122 {
5123 struct btrfs_root *root = BTRFS_I(inode)->root;
5124 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5125 u64 to_reserve = 0;
5126 u64 csum_bytes;
5127 unsigned nr_extents = 0;
5128 int extra_reserve = 0;
5129 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5130 int ret = 0;
5131 bool delalloc_lock = true;
5132 u64 to_free = 0;
5133 unsigned dropped;
5134
5135 /* If we are a free space inode we need to not flush since we will be in
5136 * the middle of a transaction commit. We also don't need the delalloc
5137 * mutex since we won't race with anybody. We need this mostly to make
5138 * lockdep shut its filthy mouth.
5139 */
5140 if (btrfs_is_free_space_inode(inode)) {
5141 flush = BTRFS_RESERVE_NO_FLUSH;
5142 delalloc_lock = false;
5143 }
5144
5145 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5146 btrfs_transaction_in_commit(root->fs_info))
5147 schedule_timeout(1);
5148
5149 if (delalloc_lock)
5150 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5151
5152 num_bytes = ALIGN(num_bytes, root->sectorsize);
5153
5154 spin_lock(&BTRFS_I(inode)->lock);
5155 BTRFS_I(inode)->outstanding_extents++;
5156
5157 if (BTRFS_I(inode)->outstanding_extents >
5158 BTRFS_I(inode)->reserved_extents)
5159 nr_extents = BTRFS_I(inode)->outstanding_extents -
5160 BTRFS_I(inode)->reserved_extents;
5161
5162 /*
5163 * Add an item to reserve for updating the inode when we complete the
5164 * delalloc io.
5165 */
5166 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5167 &BTRFS_I(inode)->runtime_flags)) {
5168 nr_extents++;
5169 extra_reserve = 1;
5170 }
5171
5172 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5173 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5174 csum_bytes = BTRFS_I(inode)->csum_bytes;
5175 spin_unlock(&BTRFS_I(inode)->lock);
5176
5177 if (root->fs_info->quota_enabled) {
5178 ret = btrfs_qgroup_reserve(root, num_bytes +
5179 nr_extents * root->leafsize);
5180 if (ret)
5181 goto out_fail;
5182 }
5183
5184 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5185 if (unlikely(ret)) {
5186 if (root->fs_info->quota_enabled)
5187 btrfs_qgroup_free(root, num_bytes +
5188 nr_extents * root->leafsize);
5189 goto out_fail;
5190 }
5191
5192 spin_lock(&BTRFS_I(inode)->lock);
5193 if (extra_reserve) {
5194 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5195 &BTRFS_I(inode)->runtime_flags);
5196 nr_extents--;
5197 }
5198 BTRFS_I(inode)->reserved_extents += nr_extents;
5199 spin_unlock(&BTRFS_I(inode)->lock);
5200
5201 if (delalloc_lock)
5202 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5203
5204 if (to_reserve)
5205 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5206 btrfs_ino(inode), to_reserve, 1);
5207 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5208
5209 return 0;
5210
5211 out_fail:
5212 spin_lock(&BTRFS_I(inode)->lock);
5213 dropped = drop_outstanding_extent(inode);
5214 /*
5215 * If the inodes csum_bytes is the same as the original
5216 * csum_bytes then we know we haven't raced with any free()ers
5217 * so we can just reduce our inodes csum bytes and carry on.
5218 */
5219 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5220 calc_csum_metadata_size(inode, num_bytes, 0);
5221 } else {
5222 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5223 u64 bytes;
5224
5225 /*
5226 * This is tricky, but first we need to figure out how much we
5227 * free'd from any free-ers that occured during this
5228 * reservation, so we reset ->csum_bytes to the csum_bytes
5229 * before we dropped our lock, and then call the free for the
5230 * number of bytes that were freed while we were trying our
5231 * reservation.
5232 */
5233 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5234 BTRFS_I(inode)->csum_bytes = csum_bytes;
5235 to_free = calc_csum_metadata_size(inode, bytes, 0);
5236
5237
5238 /*
5239 * Now we need to see how much we would have freed had we not
5240 * been making this reservation and our ->csum_bytes were not
5241 * artificially inflated.
5242 */
5243 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5244 bytes = csum_bytes - orig_csum_bytes;
5245 bytes = calc_csum_metadata_size(inode, bytes, 0);
5246
5247 /*
5248 * Now reset ->csum_bytes to what it should be. If bytes is
5249 * more than to_free then we would have free'd more space had we
5250 * not had an artificially high ->csum_bytes, so we need to free
5251 * the remainder. If bytes is the same or less then we don't
5252 * need to do anything, the other free-ers did the correct
5253 * thing.
5254 */
5255 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5256 if (bytes > to_free)
5257 to_free = bytes - to_free;
5258 else
5259 to_free = 0;
5260 }
5261 spin_unlock(&BTRFS_I(inode)->lock);
5262 if (dropped)
5263 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5264
5265 if (to_free) {
5266 btrfs_block_rsv_release(root, block_rsv, to_free);
5267 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5268 btrfs_ino(inode), to_free, 0);
5269 }
5270 if (delalloc_lock)
5271 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5272 return ret;
5273 }
5274
5275 /**
5276 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5277 * @inode: the inode to release the reservation for
5278 * @num_bytes: the number of bytes we're releasing
5279 *
5280 * This will release the metadata reservation for an inode. This can be called
5281 * once we complete IO for a given set of bytes to release their metadata
5282 * reservations.
5283 */
5284 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5285 {
5286 struct btrfs_root *root = BTRFS_I(inode)->root;
5287 u64 to_free = 0;
5288 unsigned dropped;
5289
5290 num_bytes = ALIGN(num_bytes, root->sectorsize);
5291 spin_lock(&BTRFS_I(inode)->lock);
5292 dropped = drop_outstanding_extent(inode);
5293
5294 if (num_bytes)
5295 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5296 spin_unlock(&BTRFS_I(inode)->lock);
5297 if (dropped > 0)
5298 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5299
5300 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5301 btrfs_ino(inode), to_free, 0);
5302 if (root->fs_info->quota_enabled) {
5303 btrfs_qgroup_free(root, num_bytes +
5304 dropped * root->leafsize);
5305 }
5306
5307 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5308 to_free);
5309 }
5310
5311 /**
5312 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5313 * @inode: inode we're writing to
5314 * @num_bytes: the number of bytes we want to allocate
5315 *
5316 * This will do the following things
5317 *
5318 * o reserve space in the data space info for num_bytes
5319 * o reserve space in the metadata space info based on number of outstanding
5320 * extents and how much csums will be needed
5321 * o add to the inodes ->delalloc_bytes
5322 * o add it to the fs_info's delalloc inodes list.
5323 *
5324 * This will return 0 for success and -ENOSPC if there is no space left.
5325 */
5326 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5327 {
5328 int ret;
5329
5330 ret = btrfs_check_data_free_space(inode, num_bytes);
5331 if (ret)
5332 return ret;
5333
5334 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5335 if (ret) {
5336 btrfs_free_reserved_data_space(inode, num_bytes);
5337 return ret;
5338 }
5339
5340 return 0;
5341 }
5342
5343 /**
5344 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5345 * @inode: inode we're releasing space for
5346 * @num_bytes: the number of bytes we want to free up
5347 *
5348 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5349 * called in the case that we don't need the metadata AND data reservations
5350 * anymore. So if there is an error or we insert an inline extent.
5351 *
5352 * This function will release the metadata space that was not used and will
5353 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5354 * list if there are no delalloc bytes left.
5355 */
5356 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5357 {
5358 btrfs_delalloc_release_metadata(inode, num_bytes);
5359 btrfs_free_reserved_data_space(inode, num_bytes);
5360 }
5361
5362 static int update_block_group(struct btrfs_root *root,
5363 u64 bytenr, u64 num_bytes, int alloc)
5364 {
5365 struct btrfs_block_group_cache *cache = NULL;
5366 struct btrfs_fs_info *info = root->fs_info;
5367 u64 total = num_bytes;
5368 u64 old_val;
5369 u64 byte_in_group;
5370 int factor;
5371
5372 /* block accounting for super block */
5373 spin_lock(&info->delalloc_root_lock);
5374 old_val = btrfs_super_bytes_used(info->super_copy);
5375 if (alloc)
5376 old_val += num_bytes;
5377 else
5378 old_val -= num_bytes;
5379 btrfs_set_super_bytes_used(info->super_copy, old_val);
5380 spin_unlock(&info->delalloc_root_lock);
5381
5382 while (total) {
5383 cache = btrfs_lookup_block_group(info, bytenr);
5384 if (!cache)
5385 return -ENOENT;
5386 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5387 BTRFS_BLOCK_GROUP_RAID1 |
5388 BTRFS_BLOCK_GROUP_RAID10))
5389 factor = 2;
5390 else
5391 factor = 1;
5392 /*
5393 * If this block group has free space cache written out, we
5394 * need to make sure to load it if we are removing space. This
5395 * is because we need the unpinning stage to actually add the
5396 * space back to the block group, otherwise we will leak space.
5397 */
5398 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5399 cache_block_group(cache, 1);
5400
5401 byte_in_group = bytenr - cache->key.objectid;
5402 WARN_ON(byte_in_group > cache->key.offset);
5403
5404 spin_lock(&cache->space_info->lock);
5405 spin_lock(&cache->lock);
5406
5407 if (btrfs_test_opt(root, SPACE_CACHE) &&
5408 cache->disk_cache_state < BTRFS_DC_CLEAR)
5409 cache->disk_cache_state = BTRFS_DC_CLEAR;
5410
5411 cache->dirty = 1;
5412 old_val = btrfs_block_group_used(&cache->item);
5413 num_bytes = min(total, cache->key.offset - byte_in_group);
5414 if (alloc) {
5415 old_val += num_bytes;
5416 btrfs_set_block_group_used(&cache->item, old_val);
5417 cache->reserved -= num_bytes;
5418 cache->space_info->bytes_reserved -= num_bytes;
5419 cache->space_info->bytes_used += num_bytes;
5420 cache->space_info->disk_used += num_bytes * factor;
5421 spin_unlock(&cache->lock);
5422 spin_unlock(&cache->space_info->lock);
5423 } else {
5424 old_val -= num_bytes;
5425 btrfs_set_block_group_used(&cache->item, old_val);
5426 cache->pinned += num_bytes;
5427 cache->space_info->bytes_pinned += num_bytes;
5428 cache->space_info->bytes_used -= num_bytes;
5429 cache->space_info->disk_used -= num_bytes * factor;
5430 spin_unlock(&cache->lock);
5431 spin_unlock(&cache->space_info->lock);
5432
5433 set_extent_dirty(info->pinned_extents,
5434 bytenr, bytenr + num_bytes - 1,
5435 GFP_NOFS | __GFP_NOFAIL);
5436 }
5437 btrfs_put_block_group(cache);
5438 total -= num_bytes;
5439 bytenr += num_bytes;
5440 }
5441 return 0;
5442 }
5443
5444 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5445 {
5446 struct btrfs_block_group_cache *cache;
5447 u64 bytenr;
5448
5449 spin_lock(&root->fs_info->block_group_cache_lock);
5450 bytenr = root->fs_info->first_logical_byte;
5451 spin_unlock(&root->fs_info->block_group_cache_lock);
5452
5453 if (bytenr < (u64)-1)
5454 return bytenr;
5455
5456 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5457 if (!cache)
5458 return 0;
5459
5460 bytenr = cache->key.objectid;
5461 btrfs_put_block_group(cache);
5462
5463 return bytenr;
5464 }
5465
5466 static int pin_down_extent(struct btrfs_root *root,
5467 struct btrfs_block_group_cache *cache,
5468 u64 bytenr, u64 num_bytes, int reserved)
5469 {
5470 spin_lock(&cache->space_info->lock);
5471 spin_lock(&cache->lock);
5472 cache->pinned += num_bytes;
5473 cache->space_info->bytes_pinned += num_bytes;
5474 if (reserved) {
5475 cache->reserved -= num_bytes;
5476 cache->space_info->bytes_reserved -= num_bytes;
5477 }
5478 spin_unlock(&cache->lock);
5479 spin_unlock(&cache->space_info->lock);
5480
5481 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5482 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5483 if (reserved)
5484 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5485 return 0;
5486 }
5487
5488 /*
5489 * this function must be called within transaction
5490 */
5491 int btrfs_pin_extent(struct btrfs_root *root,
5492 u64 bytenr, u64 num_bytes, int reserved)
5493 {
5494 struct btrfs_block_group_cache *cache;
5495
5496 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5497 BUG_ON(!cache); /* Logic error */
5498
5499 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5500
5501 btrfs_put_block_group(cache);
5502 return 0;
5503 }
5504
5505 /*
5506 * this function must be called within transaction
5507 */
5508 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5509 u64 bytenr, u64 num_bytes)
5510 {
5511 struct btrfs_block_group_cache *cache;
5512 int ret;
5513
5514 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5515 if (!cache)
5516 return -EINVAL;
5517
5518 /*
5519 * pull in the free space cache (if any) so that our pin
5520 * removes the free space from the cache. We have load_only set
5521 * to one because the slow code to read in the free extents does check
5522 * the pinned extents.
5523 */
5524 cache_block_group(cache, 1);
5525
5526 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5527
5528 /* remove us from the free space cache (if we're there at all) */
5529 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5530 btrfs_put_block_group(cache);
5531 return ret;
5532 }
5533
5534 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5535 {
5536 int ret;
5537 struct btrfs_block_group_cache *block_group;
5538 struct btrfs_caching_control *caching_ctl;
5539
5540 block_group = btrfs_lookup_block_group(root->fs_info, start);
5541 if (!block_group)
5542 return -EINVAL;
5543
5544 cache_block_group(block_group, 0);
5545 caching_ctl = get_caching_control(block_group);
5546
5547 if (!caching_ctl) {
5548 /* Logic error */
5549 BUG_ON(!block_group_cache_done(block_group));
5550 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5551 } else {
5552 mutex_lock(&caching_ctl->mutex);
5553
5554 if (start >= caching_ctl->progress) {
5555 ret = add_excluded_extent(root, start, num_bytes);
5556 } else if (start + num_bytes <= caching_ctl->progress) {
5557 ret = btrfs_remove_free_space(block_group,
5558 start, num_bytes);
5559 } else {
5560 num_bytes = caching_ctl->progress - start;
5561 ret = btrfs_remove_free_space(block_group,
5562 start, num_bytes);
5563 if (ret)
5564 goto out_lock;
5565
5566 num_bytes = (start + num_bytes) -
5567 caching_ctl->progress;
5568 start = caching_ctl->progress;
5569 ret = add_excluded_extent(root, start, num_bytes);
5570 }
5571 out_lock:
5572 mutex_unlock(&caching_ctl->mutex);
5573 put_caching_control(caching_ctl);
5574 }
5575 btrfs_put_block_group(block_group);
5576 return ret;
5577 }
5578
5579 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5580 struct extent_buffer *eb)
5581 {
5582 struct btrfs_file_extent_item *item;
5583 struct btrfs_key key;
5584 int found_type;
5585 int i;
5586
5587 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5588 return 0;
5589
5590 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5591 btrfs_item_key_to_cpu(eb, &key, i);
5592 if (key.type != BTRFS_EXTENT_DATA_KEY)
5593 continue;
5594 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5595 found_type = btrfs_file_extent_type(eb, item);
5596 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5597 continue;
5598 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5599 continue;
5600 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5601 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5602 __exclude_logged_extent(log, key.objectid, key.offset);
5603 }
5604
5605 return 0;
5606 }
5607
5608 /**
5609 * btrfs_update_reserved_bytes - update the block_group and space info counters
5610 * @cache: The cache we are manipulating
5611 * @num_bytes: The number of bytes in question
5612 * @reserve: One of the reservation enums
5613 * @delalloc: The blocks are allocated for the delalloc write
5614 *
5615 * This is called by the allocator when it reserves space, or by somebody who is
5616 * freeing space that was never actually used on disk. For example if you
5617 * reserve some space for a new leaf in transaction A and before transaction A
5618 * commits you free that leaf, you call this with reserve set to 0 in order to
5619 * clear the reservation.
5620 *
5621 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5622 * ENOSPC accounting. For data we handle the reservation through clearing the
5623 * delalloc bits in the io_tree. We have to do this since we could end up
5624 * allocating less disk space for the amount of data we have reserved in the
5625 * case of compression.
5626 *
5627 * If this is a reservation and the block group has become read only we cannot
5628 * make the reservation and return -EAGAIN, otherwise this function always
5629 * succeeds.
5630 */
5631 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5632 u64 num_bytes, int reserve, int delalloc)
5633 {
5634 struct btrfs_space_info *space_info = cache->space_info;
5635 int ret = 0;
5636
5637 spin_lock(&space_info->lock);
5638 spin_lock(&cache->lock);
5639 if (reserve != RESERVE_FREE) {
5640 if (cache->ro) {
5641 ret = -EAGAIN;
5642 } else {
5643 cache->reserved += num_bytes;
5644 space_info->bytes_reserved += num_bytes;
5645 if (reserve == RESERVE_ALLOC) {
5646 trace_btrfs_space_reservation(cache->fs_info,
5647 "space_info", space_info->flags,
5648 num_bytes, 0);
5649 space_info->bytes_may_use -= num_bytes;
5650 }
5651
5652 if (delalloc)
5653 cache->delalloc_bytes += num_bytes;
5654 }
5655 } else {
5656 if (cache->ro)
5657 space_info->bytes_readonly += num_bytes;
5658 cache->reserved -= num_bytes;
5659 space_info->bytes_reserved -= num_bytes;
5660
5661 if (delalloc)
5662 cache->delalloc_bytes -= num_bytes;
5663 }
5664 spin_unlock(&cache->lock);
5665 spin_unlock(&space_info->lock);
5666 return ret;
5667 }
5668
5669 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5670 struct btrfs_root *root)
5671 {
5672 struct btrfs_fs_info *fs_info = root->fs_info;
5673 struct btrfs_caching_control *next;
5674 struct btrfs_caching_control *caching_ctl;
5675 struct btrfs_block_group_cache *cache;
5676
5677 down_write(&fs_info->commit_root_sem);
5678
5679 list_for_each_entry_safe(caching_ctl, next,
5680 &fs_info->caching_block_groups, list) {
5681 cache = caching_ctl->block_group;
5682 if (block_group_cache_done(cache)) {
5683 cache->last_byte_to_unpin = (u64)-1;
5684 list_del_init(&caching_ctl->list);
5685 put_caching_control(caching_ctl);
5686 } else {
5687 cache->last_byte_to_unpin = caching_ctl->progress;
5688 }
5689 }
5690
5691 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5692 fs_info->pinned_extents = &fs_info->freed_extents[1];
5693 else
5694 fs_info->pinned_extents = &fs_info->freed_extents[0];
5695
5696 up_write(&fs_info->commit_root_sem);
5697
5698 update_global_block_rsv(fs_info);
5699 }
5700
5701 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5702 {
5703 struct btrfs_fs_info *fs_info = root->fs_info;
5704 struct btrfs_block_group_cache *cache = NULL;
5705 struct btrfs_space_info *space_info;
5706 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5707 u64 len;
5708 bool readonly;
5709
5710 while (start <= end) {
5711 readonly = false;
5712 if (!cache ||
5713 start >= cache->key.objectid + cache->key.offset) {
5714 if (cache)
5715 btrfs_put_block_group(cache);
5716 cache = btrfs_lookup_block_group(fs_info, start);
5717 BUG_ON(!cache); /* Logic error */
5718 }
5719
5720 len = cache->key.objectid + cache->key.offset - start;
5721 len = min(len, end + 1 - start);
5722
5723 if (start < cache->last_byte_to_unpin) {
5724 len = min(len, cache->last_byte_to_unpin - start);
5725 btrfs_add_free_space(cache, start, len);
5726 }
5727
5728 start += len;
5729 space_info = cache->space_info;
5730
5731 spin_lock(&space_info->lock);
5732 spin_lock(&cache->lock);
5733 cache->pinned -= len;
5734 space_info->bytes_pinned -= len;
5735 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5736 if (cache->ro) {
5737 space_info->bytes_readonly += len;
5738 readonly = true;
5739 }
5740 spin_unlock(&cache->lock);
5741 if (!readonly && global_rsv->space_info == space_info) {
5742 spin_lock(&global_rsv->lock);
5743 if (!global_rsv->full) {
5744 len = min(len, global_rsv->size -
5745 global_rsv->reserved);
5746 global_rsv->reserved += len;
5747 space_info->bytes_may_use += len;
5748 if (global_rsv->reserved >= global_rsv->size)
5749 global_rsv->full = 1;
5750 }
5751 spin_unlock(&global_rsv->lock);
5752 }
5753 spin_unlock(&space_info->lock);
5754 }
5755
5756 if (cache)
5757 btrfs_put_block_group(cache);
5758 return 0;
5759 }
5760
5761 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5762 struct btrfs_root *root)
5763 {
5764 struct btrfs_fs_info *fs_info = root->fs_info;
5765 struct extent_io_tree *unpin;
5766 u64 start;
5767 u64 end;
5768 int ret;
5769
5770 if (trans->aborted)
5771 return 0;
5772
5773 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5774 unpin = &fs_info->freed_extents[1];
5775 else
5776 unpin = &fs_info->freed_extents[0];
5777
5778 while (1) {
5779 ret = find_first_extent_bit(unpin, 0, &start, &end,
5780 EXTENT_DIRTY, NULL);
5781 if (ret)
5782 break;
5783
5784 if (btrfs_test_opt(root, DISCARD))
5785 ret = btrfs_discard_extent(root, start,
5786 end + 1 - start, NULL);
5787
5788 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5789 unpin_extent_range(root, start, end);
5790 cond_resched();
5791 }
5792
5793 return 0;
5794 }
5795
5796 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5797 u64 owner, u64 root_objectid)
5798 {
5799 struct btrfs_space_info *space_info;
5800 u64 flags;
5801
5802 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5803 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5804 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5805 else
5806 flags = BTRFS_BLOCK_GROUP_METADATA;
5807 } else {
5808 flags = BTRFS_BLOCK_GROUP_DATA;
5809 }
5810
5811 space_info = __find_space_info(fs_info, flags);
5812 BUG_ON(!space_info); /* Logic bug */
5813 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5814 }
5815
5816
5817 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5818 struct btrfs_root *root,
5819 u64 bytenr, u64 num_bytes, u64 parent,
5820 u64 root_objectid, u64 owner_objectid,
5821 u64 owner_offset, int refs_to_drop,
5822 struct btrfs_delayed_extent_op *extent_op,
5823 int no_quota)
5824 {
5825 struct btrfs_key key;
5826 struct btrfs_path *path;
5827 struct btrfs_fs_info *info = root->fs_info;
5828 struct btrfs_root *extent_root = info->extent_root;
5829 struct extent_buffer *leaf;
5830 struct btrfs_extent_item *ei;
5831 struct btrfs_extent_inline_ref *iref;
5832 int ret;
5833 int is_data;
5834 int extent_slot = 0;
5835 int found_extent = 0;
5836 int num_to_del = 1;
5837 u32 item_size;
5838 u64 refs;
5839 int last_ref = 0;
5840 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5841 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5842 SKINNY_METADATA);
5843
5844 if (!info->quota_enabled || !is_fstree(root_objectid))
5845 no_quota = 1;
5846
5847 path = btrfs_alloc_path();
5848 if (!path)
5849 return -ENOMEM;
5850
5851 path->reada = 1;
5852 path->leave_spinning = 1;
5853
5854 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5855 BUG_ON(!is_data && refs_to_drop != 1);
5856
5857 if (is_data)
5858 skinny_metadata = 0;
5859
5860 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5861 bytenr, num_bytes, parent,
5862 root_objectid, owner_objectid,
5863 owner_offset);
5864 if (ret == 0) {
5865 extent_slot = path->slots[0];
5866 while (extent_slot >= 0) {
5867 btrfs_item_key_to_cpu(path->nodes[0], &key,
5868 extent_slot);
5869 if (key.objectid != bytenr)
5870 break;
5871 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5872 key.offset == num_bytes) {
5873 found_extent = 1;
5874 break;
5875 }
5876 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5877 key.offset == owner_objectid) {
5878 found_extent = 1;
5879 break;
5880 }
5881 if (path->slots[0] - extent_slot > 5)
5882 break;
5883 extent_slot--;
5884 }
5885 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5886 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5887 if (found_extent && item_size < sizeof(*ei))
5888 found_extent = 0;
5889 #endif
5890 if (!found_extent) {
5891 BUG_ON(iref);
5892 ret = remove_extent_backref(trans, extent_root, path,
5893 NULL, refs_to_drop,
5894 is_data, &last_ref);
5895 if (ret) {
5896 btrfs_abort_transaction(trans, extent_root, ret);
5897 goto out;
5898 }
5899 btrfs_release_path(path);
5900 path->leave_spinning = 1;
5901
5902 key.objectid = bytenr;
5903 key.type = BTRFS_EXTENT_ITEM_KEY;
5904 key.offset = num_bytes;
5905
5906 if (!is_data && skinny_metadata) {
5907 key.type = BTRFS_METADATA_ITEM_KEY;
5908 key.offset = owner_objectid;
5909 }
5910
5911 ret = btrfs_search_slot(trans, extent_root,
5912 &key, path, -1, 1);
5913 if (ret > 0 && skinny_metadata && path->slots[0]) {
5914 /*
5915 * Couldn't find our skinny metadata item,
5916 * see if we have ye olde extent item.
5917 */
5918 path->slots[0]--;
5919 btrfs_item_key_to_cpu(path->nodes[0], &key,
5920 path->slots[0]);
5921 if (key.objectid == bytenr &&
5922 key.type == BTRFS_EXTENT_ITEM_KEY &&
5923 key.offset == num_bytes)
5924 ret = 0;
5925 }
5926
5927 if (ret > 0 && skinny_metadata) {
5928 skinny_metadata = false;
5929 key.objectid = bytenr;
5930 key.type = BTRFS_EXTENT_ITEM_KEY;
5931 key.offset = num_bytes;
5932 btrfs_release_path(path);
5933 ret = btrfs_search_slot(trans, extent_root,
5934 &key, path, -1, 1);
5935 }
5936
5937 if (ret) {
5938 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5939 ret, bytenr);
5940 if (ret > 0)
5941 btrfs_print_leaf(extent_root,
5942 path->nodes[0]);
5943 }
5944 if (ret < 0) {
5945 btrfs_abort_transaction(trans, extent_root, ret);
5946 goto out;
5947 }
5948 extent_slot = path->slots[0];
5949 }
5950 } else if (WARN_ON(ret == -ENOENT)) {
5951 btrfs_print_leaf(extent_root, path->nodes[0]);
5952 btrfs_err(info,
5953 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5954 bytenr, parent, root_objectid, owner_objectid,
5955 owner_offset);
5956 btrfs_abort_transaction(trans, extent_root, ret);
5957 goto out;
5958 } else {
5959 btrfs_abort_transaction(trans, extent_root, ret);
5960 goto out;
5961 }
5962
5963 leaf = path->nodes[0];
5964 item_size = btrfs_item_size_nr(leaf, extent_slot);
5965 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5966 if (item_size < sizeof(*ei)) {
5967 BUG_ON(found_extent || extent_slot != path->slots[0]);
5968 ret = convert_extent_item_v0(trans, extent_root, path,
5969 owner_objectid, 0);
5970 if (ret < 0) {
5971 btrfs_abort_transaction(trans, extent_root, ret);
5972 goto out;
5973 }
5974
5975 btrfs_release_path(path);
5976 path->leave_spinning = 1;
5977
5978 key.objectid = bytenr;
5979 key.type = BTRFS_EXTENT_ITEM_KEY;
5980 key.offset = num_bytes;
5981
5982 ret = btrfs_search_slot(trans, extent_root, &key, path,
5983 -1, 1);
5984 if (ret) {
5985 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5986 ret, bytenr);
5987 btrfs_print_leaf(extent_root, path->nodes[0]);
5988 }
5989 if (ret < 0) {
5990 btrfs_abort_transaction(trans, extent_root, ret);
5991 goto out;
5992 }
5993
5994 extent_slot = path->slots[0];
5995 leaf = path->nodes[0];
5996 item_size = btrfs_item_size_nr(leaf, extent_slot);
5997 }
5998 #endif
5999 BUG_ON(item_size < sizeof(*ei));
6000 ei = btrfs_item_ptr(leaf, extent_slot,
6001 struct btrfs_extent_item);
6002 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6003 key.type == BTRFS_EXTENT_ITEM_KEY) {
6004 struct btrfs_tree_block_info *bi;
6005 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6006 bi = (struct btrfs_tree_block_info *)(ei + 1);
6007 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6008 }
6009
6010 refs = btrfs_extent_refs(leaf, ei);
6011 if (refs < refs_to_drop) {
6012 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6013 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6014 ret = -EINVAL;
6015 btrfs_abort_transaction(trans, extent_root, ret);
6016 goto out;
6017 }
6018 refs -= refs_to_drop;
6019
6020 if (refs > 0) {
6021 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6022 if (extent_op)
6023 __run_delayed_extent_op(extent_op, leaf, ei);
6024 /*
6025 * In the case of inline back ref, reference count will
6026 * be updated by remove_extent_backref
6027 */
6028 if (iref) {
6029 BUG_ON(!found_extent);
6030 } else {
6031 btrfs_set_extent_refs(leaf, ei, refs);
6032 btrfs_mark_buffer_dirty(leaf);
6033 }
6034 if (found_extent) {
6035 ret = remove_extent_backref(trans, extent_root, path,
6036 iref, refs_to_drop,
6037 is_data, &last_ref);
6038 if (ret) {
6039 btrfs_abort_transaction(trans, extent_root, ret);
6040 goto out;
6041 }
6042 }
6043 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6044 root_objectid);
6045 } else {
6046 if (found_extent) {
6047 BUG_ON(is_data && refs_to_drop !=
6048 extent_data_ref_count(root, path, iref));
6049 if (iref) {
6050 BUG_ON(path->slots[0] != extent_slot);
6051 } else {
6052 BUG_ON(path->slots[0] != extent_slot + 1);
6053 path->slots[0] = extent_slot;
6054 num_to_del = 2;
6055 }
6056 }
6057
6058 last_ref = 1;
6059 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6060 num_to_del);
6061 if (ret) {
6062 btrfs_abort_transaction(trans, extent_root, ret);
6063 goto out;
6064 }
6065 btrfs_release_path(path);
6066
6067 if (is_data) {
6068 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6069 if (ret) {
6070 btrfs_abort_transaction(trans, extent_root, ret);
6071 goto out;
6072 }
6073 }
6074
6075 ret = update_block_group(root, bytenr, num_bytes, 0);
6076 if (ret) {
6077 btrfs_abort_transaction(trans, extent_root, ret);
6078 goto out;
6079 }
6080 }
6081 btrfs_release_path(path);
6082
6083 /* Deal with the quota accounting */
6084 if (!ret && last_ref && !no_quota) {
6085 int mod_seq = 0;
6086
6087 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6088 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6089 mod_seq = 1;
6090
6091 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6092 bytenr, num_bytes, type,
6093 mod_seq);
6094 }
6095 out:
6096 btrfs_free_path(path);
6097 return ret;
6098 }
6099
6100 /*
6101 * when we free an block, it is possible (and likely) that we free the last
6102 * delayed ref for that extent as well. This searches the delayed ref tree for
6103 * a given extent, and if there are no other delayed refs to be processed, it
6104 * removes it from the tree.
6105 */
6106 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6107 struct btrfs_root *root, u64 bytenr)
6108 {
6109 struct btrfs_delayed_ref_head *head;
6110 struct btrfs_delayed_ref_root *delayed_refs;
6111 int ret = 0;
6112
6113 delayed_refs = &trans->transaction->delayed_refs;
6114 spin_lock(&delayed_refs->lock);
6115 head = btrfs_find_delayed_ref_head(trans, bytenr);
6116 if (!head)
6117 goto out_delayed_unlock;
6118
6119 spin_lock(&head->lock);
6120 if (rb_first(&head->ref_root))
6121 goto out;
6122
6123 if (head->extent_op) {
6124 if (!head->must_insert_reserved)
6125 goto out;
6126 btrfs_free_delayed_extent_op(head->extent_op);
6127 head->extent_op = NULL;
6128 }
6129
6130 /*
6131 * waiting for the lock here would deadlock. If someone else has it
6132 * locked they are already in the process of dropping it anyway
6133 */
6134 if (!mutex_trylock(&head->mutex))
6135 goto out;
6136
6137 /*
6138 * at this point we have a head with no other entries. Go
6139 * ahead and process it.
6140 */
6141 head->node.in_tree = 0;
6142 rb_erase(&head->href_node, &delayed_refs->href_root);
6143
6144 atomic_dec(&delayed_refs->num_entries);
6145
6146 /*
6147 * we don't take a ref on the node because we're removing it from the
6148 * tree, so we just steal the ref the tree was holding.
6149 */
6150 delayed_refs->num_heads--;
6151 if (head->processing == 0)
6152 delayed_refs->num_heads_ready--;
6153 head->processing = 0;
6154 spin_unlock(&head->lock);
6155 spin_unlock(&delayed_refs->lock);
6156
6157 BUG_ON(head->extent_op);
6158 if (head->must_insert_reserved)
6159 ret = 1;
6160
6161 mutex_unlock(&head->mutex);
6162 btrfs_put_delayed_ref(&head->node);
6163 return ret;
6164 out:
6165 spin_unlock(&head->lock);
6166
6167 out_delayed_unlock:
6168 spin_unlock(&delayed_refs->lock);
6169 return 0;
6170 }
6171
6172 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6173 struct btrfs_root *root,
6174 struct extent_buffer *buf,
6175 u64 parent, int last_ref)
6176 {
6177 struct btrfs_block_group_cache *cache = NULL;
6178 int pin = 1;
6179 int ret;
6180
6181 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6182 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6183 buf->start, buf->len,
6184 parent, root->root_key.objectid,
6185 btrfs_header_level(buf),
6186 BTRFS_DROP_DELAYED_REF, NULL, 0);
6187 BUG_ON(ret); /* -ENOMEM */
6188 }
6189
6190 if (!last_ref)
6191 return;
6192
6193 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6194
6195 if (btrfs_header_generation(buf) == trans->transid) {
6196 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6197 ret = check_ref_cleanup(trans, root, buf->start);
6198 if (!ret)
6199 goto out;
6200 }
6201
6202 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6203 pin_down_extent(root, cache, buf->start, buf->len, 1);
6204 goto out;
6205 }
6206
6207 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6208
6209 btrfs_add_free_space(cache, buf->start, buf->len);
6210 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6211 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6212 pin = 0;
6213 }
6214 out:
6215 if (pin)
6216 add_pinned_bytes(root->fs_info, buf->len,
6217 btrfs_header_level(buf),
6218 root->root_key.objectid);
6219
6220 /*
6221 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6222 * anymore.
6223 */
6224 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6225 btrfs_put_block_group(cache);
6226 }
6227
6228 /* Can return -ENOMEM */
6229 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6230 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6231 u64 owner, u64 offset, int no_quota)
6232 {
6233 int ret;
6234 struct btrfs_fs_info *fs_info = root->fs_info;
6235
6236 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6237 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
6238 return 0;
6239 #endif
6240 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6241
6242 /*
6243 * tree log blocks never actually go into the extent allocation
6244 * tree, just update pinning info and exit early.
6245 */
6246 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6247 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6248 /* unlocks the pinned mutex */
6249 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6250 ret = 0;
6251 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6252 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6253 num_bytes,
6254 parent, root_objectid, (int)owner,
6255 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6256 } else {
6257 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6258 num_bytes,
6259 parent, root_objectid, owner,
6260 offset, BTRFS_DROP_DELAYED_REF,
6261 NULL, no_quota);
6262 }
6263 return ret;
6264 }
6265
6266 static u64 stripe_align(struct btrfs_root *root,
6267 struct btrfs_block_group_cache *cache,
6268 u64 val, u64 num_bytes)
6269 {
6270 u64 ret = ALIGN(val, root->stripesize);
6271 return ret;
6272 }
6273
6274 /*
6275 * when we wait for progress in the block group caching, its because
6276 * our allocation attempt failed at least once. So, we must sleep
6277 * and let some progress happen before we try again.
6278 *
6279 * This function will sleep at least once waiting for new free space to
6280 * show up, and then it will check the block group free space numbers
6281 * for our min num_bytes. Another option is to have it go ahead
6282 * and look in the rbtree for a free extent of a given size, but this
6283 * is a good start.
6284 *
6285 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6286 * any of the information in this block group.
6287 */
6288 static noinline void
6289 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6290 u64 num_bytes)
6291 {
6292 struct btrfs_caching_control *caching_ctl;
6293
6294 caching_ctl = get_caching_control(cache);
6295 if (!caching_ctl)
6296 return;
6297
6298 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6299 (cache->free_space_ctl->free_space >= num_bytes));
6300
6301 put_caching_control(caching_ctl);
6302 }
6303
6304 static noinline int
6305 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6306 {
6307 struct btrfs_caching_control *caching_ctl;
6308 int ret = 0;
6309
6310 caching_ctl = get_caching_control(cache);
6311 if (!caching_ctl)
6312 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6313
6314 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6315 if (cache->cached == BTRFS_CACHE_ERROR)
6316 ret = -EIO;
6317 put_caching_control(caching_ctl);
6318 return ret;
6319 }
6320
6321 int __get_raid_index(u64 flags)
6322 {
6323 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6324 return BTRFS_RAID_RAID10;
6325 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6326 return BTRFS_RAID_RAID1;
6327 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6328 return BTRFS_RAID_DUP;
6329 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6330 return BTRFS_RAID_RAID0;
6331 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6332 return BTRFS_RAID_RAID5;
6333 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6334 return BTRFS_RAID_RAID6;
6335
6336 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6337 }
6338
6339 int get_block_group_index(struct btrfs_block_group_cache *cache)
6340 {
6341 return __get_raid_index(cache->flags);
6342 }
6343
6344 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6345 [BTRFS_RAID_RAID10] = "raid10",
6346 [BTRFS_RAID_RAID1] = "raid1",
6347 [BTRFS_RAID_DUP] = "dup",
6348 [BTRFS_RAID_RAID0] = "raid0",
6349 [BTRFS_RAID_SINGLE] = "single",
6350 [BTRFS_RAID_RAID5] = "raid5",
6351 [BTRFS_RAID_RAID6] = "raid6",
6352 };
6353
6354 static const char *get_raid_name(enum btrfs_raid_types type)
6355 {
6356 if (type >= BTRFS_NR_RAID_TYPES)
6357 return NULL;
6358
6359 return btrfs_raid_type_names[type];
6360 }
6361
6362 enum btrfs_loop_type {
6363 LOOP_CACHING_NOWAIT = 0,
6364 LOOP_CACHING_WAIT = 1,
6365 LOOP_ALLOC_CHUNK = 2,
6366 LOOP_NO_EMPTY_SIZE = 3,
6367 };
6368
6369 static inline void
6370 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6371 int delalloc)
6372 {
6373 if (delalloc)
6374 down_read(&cache->data_rwsem);
6375 }
6376
6377 static inline void
6378 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6379 int delalloc)
6380 {
6381 btrfs_get_block_group(cache);
6382 if (delalloc)
6383 down_read(&cache->data_rwsem);
6384 }
6385
6386 static struct btrfs_block_group_cache *
6387 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6388 struct btrfs_free_cluster *cluster,
6389 int delalloc)
6390 {
6391 struct btrfs_block_group_cache *used_bg;
6392 bool locked = false;
6393 again:
6394 spin_lock(&cluster->refill_lock);
6395 if (locked) {
6396 if (used_bg == cluster->block_group)
6397 return used_bg;
6398
6399 up_read(&used_bg->data_rwsem);
6400 btrfs_put_block_group(used_bg);
6401 }
6402
6403 used_bg = cluster->block_group;
6404 if (!used_bg)
6405 return NULL;
6406
6407 if (used_bg == block_group)
6408 return used_bg;
6409
6410 btrfs_get_block_group(used_bg);
6411
6412 if (!delalloc)
6413 return used_bg;
6414
6415 if (down_read_trylock(&used_bg->data_rwsem))
6416 return used_bg;
6417
6418 spin_unlock(&cluster->refill_lock);
6419 down_read(&used_bg->data_rwsem);
6420 locked = true;
6421 goto again;
6422 }
6423
6424 static inline void
6425 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6426 int delalloc)
6427 {
6428 if (delalloc)
6429 up_read(&cache->data_rwsem);
6430 btrfs_put_block_group(cache);
6431 }
6432
6433 /*
6434 * walks the btree of allocated extents and find a hole of a given size.
6435 * The key ins is changed to record the hole:
6436 * ins->objectid == start position
6437 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6438 * ins->offset == the size of the hole.
6439 * Any available blocks before search_start are skipped.
6440 *
6441 * If there is no suitable free space, we will record the max size of
6442 * the free space extent currently.
6443 */
6444 static noinline int find_free_extent(struct btrfs_root *orig_root,
6445 u64 num_bytes, u64 empty_size,
6446 u64 hint_byte, struct btrfs_key *ins,
6447 u64 flags, int delalloc)
6448 {
6449 int ret = 0;
6450 struct btrfs_root *root = orig_root->fs_info->extent_root;
6451 struct btrfs_free_cluster *last_ptr = NULL;
6452 struct btrfs_block_group_cache *block_group = NULL;
6453 u64 search_start = 0;
6454 u64 max_extent_size = 0;
6455 int empty_cluster = 2 * 1024 * 1024;
6456 struct btrfs_space_info *space_info;
6457 int loop = 0;
6458 int index = __get_raid_index(flags);
6459 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6460 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6461 bool failed_cluster_refill = false;
6462 bool failed_alloc = false;
6463 bool use_cluster = true;
6464 bool have_caching_bg = false;
6465
6466 WARN_ON(num_bytes < root->sectorsize);
6467 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6468 ins->objectid = 0;
6469 ins->offset = 0;
6470
6471 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6472
6473 space_info = __find_space_info(root->fs_info, flags);
6474 if (!space_info) {
6475 btrfs_err(root->fs_info, "No space info for %llu", flags);
6476 return -ENOSPC;
6477 }
6478
6479 /*
6480 * If the space info is for both data and metadata it means we have a
6481 * small filesystem and we can't use the clustering stuff.
6482 */
6483 if (btrfs_mixed_space_info(space_info))
6484 use_cluster = false;
6485
6486 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6487 last_ptr = &root->fs_info->meta_alloc_cluster;
6488 if (!btrfs_test_opt(root, SSD))
6489 empty_cluster = 64 * 1024;
6490 }
6491
6492 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6493 btrfs_test_opt(root, SSD)) {
6494 last_ptr = &root->fs_info->data_alloc_cluster;
6495 }
6496
6497 if (last_ptr) {
6498 spin_lock(&last_ptr->lock);
6499 if (last_ptr->block_group)
6500 hint_byte = last_ptr->window_start;
6501 spin_unlock(&last_ptr->lock);
6502 }
6503
6504 search_start = max(search_start, first_logical_byte(root, 0));
6505 search_start = max(search_start, hint_byte);
6506
6507 if (!last_ptr)
6508 empty_cluster = 0;
6509
6510 if (search_start == hint_byte) {
6511 block_group = btrfs_lookup_block_group(root->fs_info,
6512 search_start);
6513 /*
6514 * we don't want to use the block group if it doesn't match our
6515 * allocation bits, or if its not cached.
6516 *
6517 * However if we are re-searching with an ideal block group
6518 * picked out then we don't care that the block group is cached.
6519 */
6520 if (block_group && block_group_bits(block_group, flags) &&
6521 block_group->cached != BTRFS_CACHE_NO) {
6522 down_read(&space_info->groups_sem);
6523 if (list_empty(&block_group->list) ||
6524 block_group->ro) {
6525 /*
6526 * someone is removing this block group,
6527 * we can't jump into the have_block_group
6528 * target because our list pointers are not
6529 * valid
6530 */
6531 btrfs_put_block_group(block_group);
6532 up_read(&space_info->groups_sem);
6533 } else {
6534 index = get_block_group_index(block_group);
6535 btrfs_lock_block_group(block_group, delalloc);
6536 goto have_block_group;
6537 }
6538 } else if (block_group) {
6539 btrfs_put_block_group(block_group);
6540 }
6541 }
6542 search:
6543 have_caching_bg = false;
6544 down_read(&space_info->groups_sem);
6545 list_for_each_entry(block_group, &space_info->block_groups[index],
6546 list) {
6547 u64 offset;
6548 int cached;
6549
6550 btrfs_grab_block_group(block_group, delalloc);
6551 search_start = block_group->key.objectid;
6552
6553 /*
6554 * this can happen if we end up cycling through all the
6555 * raid types, but we want to make sure we only allocate
6556 * for the proper type.
6557 */
6558 if (!block_group_bits(block_group, flags)) {
6559 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6560 BTRFS_BLOCK_GROUP_RAID1 |
6561 BTRFS_BLOCK_GROUP_RAID5 |
6562 BTRFS_BLOCK_GROUP_RAID6 |
6563 BTRFS_BLOCK_GROUP_RAID10;
6564
6565 /*
6566 * if they asked for extra copies and this block group
6567 * doesn't provide them, bail. This does allow us to
6568 * fill raid0 from raid1.
6569 */
6570 if ((flags & extra) && !(block_group->flags & extra))
6571 goto loop;
6572 }
6573
6574 have_block_group:
6575 cached = block_group_cache_done(block_group);
6576 if (unlikely(!cached)) {
6577 ret = cache_block_group(block_group, 0);
6578 BUG_ON(ret < 0);
6579 ret = 0;
6580 }
6581
6582 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6583 goto loop;
6584 if (unlikely(block_group->ro))
6585 goto loop;
6586
6587 /*
6588 * Ok we want to try and use the cluster allocator, so
6589 * lets look there
6590 */
6591 if (last_ptr) {
6592 struct btrfs_block_group_cache *used_block_group;
6593 unsigned long aligned_cluster;
6594 /*
6595 * the refill lock keeps out other
6596 * people trying to start a new cluster
6597 */
6598 used_block_group = btrfs_lock_cluster(block_group,
6599 last_ptr,
6600 delalloc);
6601 if (!used_block_group)
6602 goto refill_cluster;
6603
6604 if (used_block_group != block_group &&
6605 (used_block_group->ro ||
6606 !block_group_bits(used_block_group, flags)))
6607 goto release_cluster;
6608
6609 offset = btrfs_alloc_from_cluster(used_block_group,
6610 last_ptr,
6611 num_bytes,
6612 used_block_group->key.objectid,
6613 &max_extent_size);
6614 if (offset) {
6615 /* we have a block, we're done */
6616 spin_unlock(&last_ptr->refill_lock);
6617 trace_btrfs_reserve_extent_cluster(root,
6618 used_block_group,
6619 search_start, num_bytes);
6620 if (used_block_group != block_group) {
6621 btrfs_release_block_group(block_group,
6622 delalloc);
6623 block_group = used_block_group;
6624 }
6625 goto checks;
6626 }
6627
6628 WARN_ON(last_ptr->block_group != used_block_group);
6629 release_cluster:
6630 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6631 * set up a new clusters, so lets just skip it
6632 * and let the allocator find whatever block
6633 * it can find. If we reach this point, we
6634 * will have tried the cluster allocator
6635 * plenty of times and not have found
6636 * anything, so we are likely way too
6637 * fragmented for the clustering stuff to find
6638 * anything.
6639 *
6640 * However, if the cluster is taken from the
6641 * current block group, release the cluster
6642 * first, so that we stand a better chance of
6643 * succeeding in the unclustered
6644 * allocation. */
6645 if (loop >= LOOP_NO_EMPTY_SIZE &&
6646 used_block_group != block_group) {
6647 spin_unlock(&last_ptr->refill_lock);
6648 btrfs_release_block_group(used_block_group,
6649 delalloc);
6650 goto unclustered_alloc;
6651 }
6652
6653 /*
6654 * this cluster didn't work out, free it and
6655 * start over
6656 */
6657 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6658
6659 if (used_block_group != block_group)
6660 btrfs_release_block_group(used_block_group,
6661 delalloc);
6662 refill_cluster:
6663 if (loop >= LOOP_NO_EMPTY_SIZE) {
6664 spin_unlock(&last_ptr->refill_lock);
6665 goto unclustered_alloc;
6666 }
6667
6668 aligned_cluster = max_t(unsigned long,
6669 empty_cluster + empty_size,
6670 block_group->full_stripe_len);
6671
6672 /* allocate a cluster in this block group */
6673 ret = btrfs_find_space_cluster(root, block_group,
6674 last_ptr, search_start,
6675 num_bytes,
6676 aligned_cluster);
6677 if (ret == 0) {
6678 /*
6679 * now pull our allocation out of this
6680 * cluster
6681 */
6682 offset = btrfs_alloc_from_cluster(block_group,
6683 last_ptr,
6684 num_bytes,
6685 search_start,
6686 &max_extent_size);
6687 if (offset) {
6688 /* we found one, proceed */
6689 spin_unlock(&last_ptr->refill_lock);
6690 trace_btrfs_reserve_extent_cluster(root,
6691 block_group, search_start,
6692 num_bytes);
6693 goto checks;
6694 }
6695 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6696 && !failed_cluster_refill) {
6697 spin_unlock(&last_ptr->refill_lock);
6698
6699 failed_cluster_refill = true;
6700 wait_block_group_cache_progress(block_group,
6701 num_bytes + empty_cluster + empty_size);
6702 goto have_block_group;
6703 }
6704
6705 /*
6706 * at this point we either didn't find a cluster
6707 * or we weren't able to allocate a block from our
6708 * cluster. Free the cluster we've been trying
6709 * to use, and go to the next block group
6710 */
6711 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6712 spin_unlock(&last_ptr->refill_lock);
6713 goto loop;
6714 }
6715
6716 unclustered_alloc:
6717 spin_lock(&block_group->free_space_ctl->tree_lock);
6718 if (cached &&
6719 block_group->free_space_ctl->free_space <
6720 num_bytes + empty_cluster + empty_size) {
6721 if (block_group->free_space_ctl->free_space >
6722 max_extent_size)
6723 max_extent_size =
6724 block_group->free_space_ctl->free_space;
6725 spin_unlock(&block_group->free_space_ctl->tree_lock);
6726 goto loop;
6727 }
6728 spin_unlock(&block_group->free_space_ctl->tree_lock);
6729
6730 offset = btrfs_find_space_for_alloc(block_group, search_start,
6731 num_bytes, empty_size,
6732 &max_extent_size);
6733 /*
6734 * If we didn't find a chunk, and we haven't failed on this
6735 * block group before, and this block group is in the middle of
6736 * caching and we are ok with waiting, then go ahead and wait
6737 * for progress to be made, and set failed_alloc to true.
6738 *
6739 * If failed_alloc is true then we've already waited on this
6740 * block group once and should move on to the next block group.
6741 */
6742 if (!offset && !failed_alloc && !cached &&
6743 loop > LOOP_CACHING_NOWAIT) {
6744 wait_block_group_cache_progress(block_group,
6745 num_bytes + empty_size);
6746 failed_alloc = true;
6747 goto have_block_group;
6748 } else if (!offset) {
6749 if (!cached)
6750 have_caching_bg = true;
6751 goto loop;
6752 }
6753 checks:
6754 search_start = stripe_align(root, block_group,
6755 offset, num_bytes);
6756
6757 /* move on to the next group */
6758 if (search_start + num_bytes >
6759 block_group->key.objectid + block_group->key.offset) {
6760 btrfs_add_free_space(block_group, offset, num_bytes);
6761 goto loop;
6762 }
6763
6764 if (offset < search_start)
6765 btrfs_add_free_space(block_group, offset,
6766 search_start - offset);
6767 BUG_ON(offset > search_start);
6768
6769 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6770 alloc_type, delalloc);
6771 if (ret == -EAGAIN) {
6772 btrfs_add_free_space(block_group, offset, num_bytes);
6773 goto loop;
6774 }
6775
6776 /* we are all good, lets return */
6777 ins->objectid = search_start;
6778 ins->offset = num_bytes;
6779
6780 trace_btrfs_reserve_extent(orig_root, block_group,
6781 search_start, num_bytes);
6782 btrfs_release_block_group(block_group, delalloc);
6783 break;
6784 loop:
6785 failed_cluster_refill = false;
6786 failed_alloc = false;
6787 BUG_ON(index != get_block_group_index(block_group));
6788 btrfs_release_block_group(block_group, delalloc);
6789 }
6790 up_read(&space_info->groups_sem);
6791
6792 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6793 goto search;
6794
6795 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6796 goto search;
6797
6798 /*
6799 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6800 * caching kthreads as we move along
6801 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6802 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6803 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6804 * again
6805 */
6806 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6807 index = 0;
6808 loop++;
6809 if (loop == LOOP_ALLOC_CHUNK) {
6810 struct btrfs_trans_handle *trans;
6811 int exist = 0;
6812
6813 trans = current->journal_info;
6814 if (trans)
6815 exist = 1;
6816 else
6817 trans = btrfs_join_transaction(root);
6818
6819 if (IS_ERR(trans)) {
6820 ret = PTR_ERR(trans);
6821 goto out;
6822 }
6823
6824 ret = do_chunk_alloc(trans, root, flags,
6825 CHUNK_ALLOC_FORCE);
6826 /*
6827 * Do not bail out on ENOSPC since we
6828 * can do more things.
6829 */
6830 if (ret < 0 && ret != -ENOSPC)
6831 btrfs_abort_transaction(trans,
6832 root, ret);
6833 else
6834 ret = 0;
6835 if (!exist)
6836 btrfs_end_transaction(trans, root);
6837 if (ret)
6838 goto out;
6839 }
6840
6841 if (loop == LOOP_NO_EMPTY_SIZE) {
6842 empty_size = 0;
6843 empty_cluster = 0;
6844 }
6845
6846 goto search;
6847 } else if (!ins->objectid) {
6848 ret = -ENOSPC;
6849 } else if (ins->objectid) {
6850 ret = 0;
6851 }
6852 out:
6853 if (ret == -ENOSPC)
6854 ins->offset = max_extent_size;
6855 return ret;
6856 }
6857
6858 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6859 int dump_block_groups)
6860 {
6861 struct btrfs_block_group_cache *cache;
6862 int index = 0;
6863
6864 spin_lock(&info->lock);
6865 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6866 info->flags,
6867 info->total_bytes - info->bytes_used - info->bytes_pinned -
6868 info->bytes_reserved - info->bytes_readonly,
6869 (info->full) ? "" : "not ");
6870 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6871 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6872 info->total_bytes, info->bytes_used, info->bytes_pinned,
6873 info->bytes_reserved, info->bytes_may_use,
6874 info->bytes_readonly);
6875 spin_unlock(&info->lock);
6876
6877 if (!dump_block_groups)
6878 return;
6879
6880 down_read(&info->groups_sem);
6881 again:
6882 list_for_each_entry(cache, &info->block_groups[index], list) {
6883 spin_lock(&cache->lock);
6884 printk(KERN_INFO "BTRFS: "
6885 "block group %llu has %llu bytes, "
6886 "%llu used %llu pinned %llu reserved %s\n",
6887 cache->key.objectid, cache->key.offset,
6888 btrfs_block_group_used(&cache->item), cache->pinned,
6889 cache->reserved, cache->ro ? "[readonly]" : "");
6890 btrfs_dump_free_space(cache, bytes);
6891 spin_unlock(&cache->lock);
6892 }
6893 if (++index < BTRFS_NR_RAID_TYPES)
6894 goto again;
6895 up_read(&info->groups_sem);
6896 }
6897
6898 int btrfs_reserve_extent(struct btrfs_root *root,
6899 u64 num_bytes, u64 min_alloc_size,
6900 u64 empty_size, u64 hint_byte,
6901 struct btrfs_key *ins, int is_data, int delalloc)
6902 {
6903 bool final_tried = false;
6904 u64 flags;
6905 int ret;
6906
6907 flags = btrfs_get_alloc_profile(root, is_data);
6908 again:
6909 WARN_ON(num_bytes < root->sectorsize);
6910 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6911 flags, delalloc);
6912
6913 if (ret == -ENOSPC) {
6914 if (!final_tried && ins->offset) {
6915 num_bytes = min(num_bytes >> 1, ins->offset);
6916 num_bytes = round_down(num_bytes, root->sectorsize);
6917 num_bytes = max(num_bytes, min_alloc_size);
6918 if (num_bytes == min_alloc_size)
6919 final_tried = true;
6920 goto again;
6921 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6922 struct btrfs_space_info *sinfo;
6923
6924 sinfo = __find_space_info(root->fs_info, flags);
6925 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6926 flags, num_bytes);
6927 if (sinfo)
6928 dump_space_info(sinfo, num_bytes, 1);
6929 }
6930 }
6931
6932 return ret;
6933 }
6934
6935 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6936 u64 start, u64 len,
6937 int pin, int delalloc)
6938 {
6939 struct btrfs_block_group_cache *cache;
6940 int ret = 0;
6941
6942 cache = btrfs_lookup_block_group(root->fs_info, start);
6943 if (!cache) {
6944 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6945 start);
6946 return -ENOSPC;
6947 }
6948
6949 if (btrfs_test_opt(root, DISCARD))
6950 ret = btrfs_discard_extent(root, start, len, NULL);
6951
6952 if (pin)
6953 pin_down_extent(root, cache, start, len, 1);
6954 else {
6955 btrfs_add_free_space(cache, start, len);
6956 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6957 }
6958 btrfs_put_block_group(cache);
6959
6960 trace_btrfs_reserved_extent_free(root, start, len);
6961
6962 return ret;
6963 }
6964
6965 int btrfs_free_reserved_extent(struct btrfs_root *root,
6966 u64 start, u64 len, int delalloc)
6967 {
6968 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6969 }
6970
6971 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6972 u64 start, u64 len)
6973 {
6974 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6975 }
6976
6977 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6978 struct btrfs_root *root,
6979 u64 parent, u64 root_objectid,
6980 u64 flags, u64 owner, u64 offset,
6981 struct btrfs_key *ins, int ref_mod)
6982 {
6983 int ret;
6984 struct btrfs_fs_info *fs_info = root->fs_info;
6985 struct btrfs_extent_item *extent_item;
6986 struct btrfs_extent_inline_ref *iref;
6987 struct btrfs_path *path;
6988 struct extent_buffer *leaf;
6989 int type;
6990 u32 size;
6991
6992 if (parent > 0)
6993 type = BTRFS_SHARED_DATA_REF_KEY;
6994 else
6995 type = BTRFS_EXTENT_DATA_REF_KEY;
6996
6997 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6998
6999 path = btrfs_alloc_path();
7000 if (!path)
7001 return -ENOMEM;
7002
7003 path->leave_spinning = 1;
7004 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7005 ins, size);
7006 if (ret) {
7007 btrfs_free_path(path);
7008 return ret;
7009 }
7010
7011 leaf = path->nodes[0];
7012 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7013 struct btrfs_extent_item);
7014 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7015 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7016 btrfs_set_extent_flags(leaf, extent_item,
7017 flags | BTRFS_EXTENT_FLAG_DATA);
7018
7019 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7020 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7021 if (parent > 0) {
7022 struct btrfs_shared_data_ref *ref;
7023 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7024 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7025 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7026 } else {
7027 struct btrfs_extent_data_ref *ref;
7028 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7029 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7030 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7031 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7032 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7033 }
7034
7035 btrfs_mark_buffer_dirty(path->nodes[0]);
7036 btrfs_free_path(path);
7037
7038 /* Always set parent to 0 here since its exclusive anyway. */
7039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7040 ins->objectid, ins->offset,
7041 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7042 if (ret)
7043 return ret;
7044
7045 ret = update_block_group(root, ins->objectid, ins->offset, 1);
7046 if (ret) { /* -ENOENT, logic error */
7047 btrfs_err(fs_info, "update block group failed for %llu %llu",
7048 ins->objectid, ins->offset);
7049 BUG();
7050 }
7051 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7052 return ret;
7053 }
7054
7055 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7056 struct btrfs_root *root,
7057 u64 parent, u64 root_objectid,
7058 u64 flags, struct btrfs_disk_key *key,
7059 int level, struct btrfs_key *ins,
7060 int no_quota)
7061 {
7062 int ret;
7063 struct btrfs_fs_info *fs_info = root->fs_info;
7064 struct btrfs_extent_item *extent_item;
7065 struct btrfs_tree_block_info *block_info;
7066 struct btrfs_extent_inline_ref *iref;
7067 struct btrfs_path *path;
7068 struct extent_buffer *leaf;
7069 u32 size = sizeof(*extent_item) + sizeof(*iref);
7070 u64 num_bytes = ins->offset;
7071 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7072 SKINNY_METADATA);
7073
7074 if (!skinny_metadata)
7075 size += sizeof(*block_info);
7076
7077 path = btrfs_alloc_path();
7078 if (!path) {
7079 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7080 root->leafsize);
7081 return -ENOMEM;
7082 }
7083
7084 path->leave_spinning = 1;
7085 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7086 ins, size);
7087 if (ret) {
7088 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7089 root->leafsize);
7090 btrfs_free_path(path);
7091 return ret;
7092 }
7093
7094 leaf = path->nodes[0];
7095 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7096 struct btrfs_extent_item);
7097 btrfs_set_extent_refs(leaf, extent_item, 1);
7098 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7099 btrfs_set_extent_flags(leaf, extent_item,
7100 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7101
7102 if (skinny_metadata) {
7103 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7104 num_bytes = root->leafsize;
7105 } else {
7106 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7107 btrfs_set_tree_block_key(leaf, block_info, key);
7108 btrfs_set_tree_block_level(leaf, block_info, level);
7109 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7110 }
7111
7112 if (parent > 0) {
7113 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7114 btrfs_set_extent_inline_ref_type(leaf, iref,
7115 BTRFS_SHARED_BLOCK_REF_KEY);
7116 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7117 } else {
7118 btrfs_set_extent_inline_ref_type(leaf, iref,
7119 BTRFS_TREE_BLOCK_REF_KEY);
7120 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7121 }
7122
7123 btrfs_mark_buffer_dirty(leaf);
7124 btrfs_free_path(path);
7125
7126 if (!no_quota) {
7127 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7128 ins->objectid, num_bytes,
7129 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7130 if (ret)
7131 return ret;
7132 }
7133
7134 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
7135 if (ret) { /* -ENOENT, logic error */
7136 btrfs_err(fs_info, "update block group failed for %llu %llu",
7137 ins->objectid, ins->offset);
7138 BUG();
7139 }
7140
7141 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
7142 return ret;
7143 }
7144
7145 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7146 struct btrfs_root *root,
7147 u64 root_objectid, u64 owner,
7148 u64 offset, struct btrfs_key *ins)
7149 {
7150 int ret;
7151
7152 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7153
7154 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7155 ins->offset, 0,
7156 root_objectid, owner, offset,
7157 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7158 return ret;
7159 }
7160
7161 /*
7162 * this is used by the tree logging recovery code. It records that
7163 * an extent has been allocated and makes sure to clear the free
7164 * space cache bits as well
7165 */
7166 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7167 struct btrfs_root *root,
7168 u64 root_objectid, u64 owner, u64 offset,
7169 struct btrfs_key *ins)
7170 {
7171 int ret;
7172 struct btrfs_block_group_cache *block_group;
7173
7174 /*
7175 * Mixed block groups will exclude before processing the log so we only
7176 * need to do the exlude dance if this fs isn't mixed.
7177 */
7178 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7179 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7180 if (ret)
7181 return ret;
7182 }
7183
7184 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7185 if (!block_group)
7186 return -EINVAL;
7187
7188 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7189 RESERVE_ALLOC_NO_ACCOUNT, 0);
7190 BUG_ON(ret); /* logic error */
7191 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7192 0, owner, offset, ins, 1);
7193 btrfs_put_block_group(block_group);
7194 return ret;
7195 }
7196
7197 static struct extent_buffer *
7198 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7199 u64 bytenr, u32 blocksize, int level)
7200 {
7201 struct extent_buffer *buf;
7202
7203 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
7204 if (!buf)
7205 return ERR_PTR(-ENOMEM);
7206 btrfs_set_header_generation(buf, trans->transid);
7207 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7208 btrfs_tree_lock(buf);
7209 clean_tree_block(trans, root, buf);
7210 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7211
7212 btrfs_set_lock_blocking(buf);
7213 btrfs_set_buffer_uptodate(buf);
7214
7215 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7216 /*
7217 * we allow two log transactions at a time, use different
7218 * EXENT bit to differentiate dirty pages.
7219 */
7220 if (root->log_transid % 2 == 0)
7221 set_extent_dirty(&root->dirty_log_pages, buf->start,
7222 buf->start + buf->len - 1, GFP_NOFS);
7223 else
7224 set_extent_new(&root->dirty_log_pages, buf->start,
7225 buf->start + buf->len - 1, GFP_NOFS);
7226 } else {
7227 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7228 buf->start + buf->len - 1, GFP_NOFS);
7229 }
7230 trans->blocks_used++;
7231 /* this returns a buffer locked for blocking */
7232 return buf;
7233 }
7234
7235 static struct btrfs_block_rsv *
7236 use_block_rsv(struct btrfs_trans_handle *trans,
7237 struct btrfs_root *root, u32 blocksize)
7238 {
7239 struct btrfs_block_rsv *block_rsv;
7240 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7241 int ret;
7242 bool global_updated = false;
7243
7244 block_rsv = get_block_rsv(trans, root);
7245
7246 if (unlikely(block_rsv->size == 0))
7247 goto try_reserve;
7248 again:
7249 ret = block_rsv_use_bytes(block_rsv, blocksize);
7250 if (!ret)
7251 return block_rsv;
7252
7253 if (block_rsv->failfast)
7254 return ERR_PTR(ret);
7255
7256 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7257 global_updated = true;
7258 update_global_block_rsv(root->fs_info);
7259 goto again;
7260 }
7261
7262 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7263 static DEFINE_RATELIMIT_STATE(_rs,
7264 DEFAULT_RATELIMIT_INTERVAL * 10,
7265 /*DEFAULT_RATELIMIT_BURST*/ 1);
7266 if (__ratelimit(&_rs))
7267 WARN(1, KERN_DEBUG
7268 "BTRFS: block rsv returned %d\n", ret);
7269 }
7270 try_reserve:
7271 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7272 BTRFS_RESERVE_NO_FLUSH);
7273 if (!ret)
7274 return block_rsv;
7275 /*
7276 * If we couldn't reserve metadata bytes try and use some from
7277 * the global reserve if its space type is the same as the global
7278 * reservation.
7279 */
7280 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7281 block_rsv->space_info == global_rsv->space_info) {
7282 ret = block_rsv_use_bytes(global_rsv, blocksize);
7283 if (!ret)
7284 return global_rsv;
7285 }
7286 return ERR_PTR(ret);
7287 }
7288
7289 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7290 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7291 {
7292 block_rsv_add_bytes(block_rsv, blocksize, 0);
7293 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7294 }
7295
7296 /*
7297 * finds a free extent and does all the dirty work required for allocation
7298 * returns the key for the extent through ins, and a tree buffer for
7299 * the first block of the extent through buf.
7300 *
7301 * returns the tree buffer or NULL.
7302 */
7303 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
7304 struct btrfs_root *root, u32 blocksize,
7305 u64 parent, u64 root_objectid,
7306 struct btrfs_disk_key *key, int level,
7307 u64 hint, u64 empty_size)
7308 {
7309 struct btrfs_key ins;
7310 struct btrfs_block_rsv *block_rsv;
7311 struct extent_buffer *buf;
7312 u64 flags = 0;
7313 int ret;
7314 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7315 SKINNY_METADATA);
7316
7317 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7318 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state))) {
7319 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7320 blocksize, level);
7321 if (!IS_ERR(buf))
7322 root->alloc_bytenr += blocksize;
7323 return buf;
7324 }
7325 #endif
7326 block_rsv = use_block_rsv(trans, root, blocksize);
7327 if (IS_ERR(block_rsv))
7328 return ERR_CAST(block_rsv);
7329
7330 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7331 empty_size, hint, &ins, 0, 0);
7332 if (ret) {
7333 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7334 return ERR_PTR(ret);
7335 }
7336
7337 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7338 blocksize, level);
7339 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7340
7341 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7342 if (parent == 0)
7343 parent = ins.objectid;
7344 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7345 } else
7346 BUG_ON(parent > 0);
7347
7348 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7349 struct btrfs_delayed_extent_op *extent_op;
7350 extent_op = btrfs_alloc_delayed_extent_op();
7351 BUG_ON(!extent_op); /* -ENOMEM */
7352 if (key)
7353 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7354 else
7355 memset(&extent_op->key, 0, sizeof(extent_op->key));
7356 extent_op->flags_to_set = flags;
7357 if (skinny_metadata)
7358 extent_op->update_key = 0;
7359 else
7360 extent_op->update_key = 1;
7361 extent_op->update_flags = 1;
7362 extent_op->is_data = 0;
7363 extent_op->level = level;
7364
7365 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7366 ins.objectid,
7367 ins.offset, parent, root_objectid,
7368 level, BTRFS_ADD_DELAYED_EXTENT,
7369 extent_op, 0);
7370 BUG_ON(ret); /* -ENOMEM */
7371 }
7372 return buf;
7373 }
7374
7375 struct walk_control {
7376 u64 refs[BTRFS_MAX_LEVEL];
7377 u64 flags[BTRFS_MAX_LEVEL];
7378 struct btrfs_key update_progress;
7379 int stage;
7380 int level;
7381 int shared_level;
7382 int update_ref;
7383 int keep_locks;
7384 int reada_slot;
7385 int reada_count;
7386 int for_reloc;
7387 };
7388
7389 #define DROP_REFERENCE 1
7390 #define UPDATE_BACKREF 2
7391
7392 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7393 struct btrfs_root *root,
7394 struct walk_control *wc,
7395 struct btrfs_path *path)
7396 {
7397 u64 bytenr;
7398 u64 generation;
7399 u64 refs;
7400 u64 flags;
7401 u32 nritems;
7402 u32 blocksize;
7403 struct btrfs_key key;
7404 struct extent_buffer *eb;
7405 int ret;
7406 int slot;
7407 int nread = 0;
7408
7409 if (path->slots[wc->level] < wc->reada_slot) {
7410 wc->reada_count = wc->reada_count * 2 / 3;
7411 wc->reada_count = max(wc->reada_count, 2);
7412 } else {
7413 wc->reada_count = wc->reada_count * 3 / 2;
7414 wc->reada_count = min_t(int, wc->reada_count,
7415 BTRFS_NODEPTRS_PER_BLOCK(root));
7416 }
7417
7418 eb = path->nodes[wc->level];
7419 nritems = btrfs_header_nritems(eb);
7420 blocksize = btrfs_level_size(root, wc->level - 1);
7421
7422 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7423 if (nread >= wc->reada_count)
7424 break;
7425
7426 cond_resched();
7427 bytenr = btrfs_node_blockptr(eb, slot);
7428 generation = btrfs_node_ptr_generation(eb, slot);
7429
7430 if (slot == path->slots[wc->level])
7431 goto reada;
7432
7433 if (wc->stage == UPDATE_BACKREF &&
7434 generation <= root->root_key.offset)
7435 continue;
7436
7437 /* We don't lock the tree block, it's OK to be racy here */
7438 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7439 wc->level - 1, 1, &refs,
7440 &flags);
7441 /* We don't care about errors in readahead. */
7442 if (ret < 0)
7443 continue;
7444 BUG_ON(refs == 0);
7445
7446 if (wc->stage == DROP_REFERENCE) {
7447 if (refs == 1)
7448 goto reada;
7449
7450 if (wc->level == 1 &&
7451 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7452 continue;
7453 if (!wc->update_ref ||
7454 generation <= root->root_key.offset)
7455 continue;
7456 btrfs_node_key_to_cpu(eb, &key, slot);
7457 ret = btrfs_comp_cpu_keys(&key,
7458 &wc->update_progress);
7459 if (ret < 0)
7460 continue;
7461 } else {
7462 if (wc->level == 1 &&
7463 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7464 continue;
7465 }
7466 reada:
7467 ret = readahead_tree_block(root, bytenr, blocksize,
7468 generation);
7469 if (ret)
7470 break;
7471 nread++;
7472 }
7473 wc->reada_slot = slot;
7474 }
7475
7476 static int account_leaf_items(struct btrfs_trans_handle *trans,
7477 struct btrfs_root *root,
7478 struct extent_buffer *eb)
7479 {
7480 int nr = btrfs_header_nritems(eb);
7481 int i, extent_type, ret;
7482 struct btrfs_key key;
7483 struct btrfs_file_extent_item *fi;
7484 u64 bytenr, num_bytes;
7485
7486 for (i = 0; i < nr; i++) {
7487 btrfs_item_key_to_cpu(eb, &key, i);
7488
7489 if (key.type != BTRFS_EXTENT_DATA_KEY)
7490 continue;
7491
7492 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7493 /* filter out non qgroup-accountable extents */
7494 extent_type = btrfs_file_extent_type(eb, fi);
7495
7496 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7497 continue;
7498
7499 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7500 if (!bytenr)
7501 continue;
7502
7503 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7504
7505 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7506 root->objectid,
7507 bytenr, num_bytes,
7508 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7509 if (ret)
7510 return ret;
7511 }
7512 return 0;
7513 }
7514
7515 /*
7516 * Walk up the tree from the bottom, freeing leaves and any interior
7517 * nodes which have had all slots visited. If a node (leaf or
7518 * interior) is freed, the node above it will have it's slot
7519 * incremented. The root node will never be freed.
7520 *
7521 * At the end of this function, we should have a path which has all
7522 * slots incremented to the next position for a search. If we need to
7523 * read a new node it will be NULL and the node above it will have the
7524 * correct slot selected for a later read.
7525 *
7526 * If we increment the root nodes slot counter past the number of
7527 * elements, 1 is returned to signal completion of the search.
7528 */
7529 static int adjust_slots_upwards(struct btrfs_root *root,
7530 struct btrfs_path *path, int root_level)
7531 {
7532 int level = 0;
7533 int nr, slot;
7534 struct extent_buffer *eb;
7535
7536 if (root_level == 0)
7537 return 1;
7538
7539 while (level <= root_level) {
7540 eb = path->nodes[level];
7541 nr = btrfs_header_nritems(eb);
7542 path->slots[level]++;
7543 slot = path->slots[level];
7544 if (slot >= nr || level == 0) {
7545 /*
7546 * Don't free the root - we will detect this
7547 * condition after our loop and return a
7548 * positive value for caller to stop walking the tree.
7549 */
7550 if (level != root_level) {
7551 btrfs_tree_unlock_rw(eb, path->locks[level]);
7552 path->locks[level] = 0;
7553
7554 free_extent_buffer(eb);
7555 path->nodes[level] = NULL;
7556 path->slots[level] = 0;
7557 }
7558 } else {
7559 /*
7560 * We have a valid slot to walk back down
7561 * from. Stop here so caller can process these
7562 * new nodes.
7563 */
7564 break;
7565 }
7566
7567 level++;
7568 }
7569
7570 eb = path->nodes[root_level];
7571 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7572 return 1;
7573
7574 return 0;
7575 }
7576
7577 /*
7578 * root_eb is the subtree root and is locked before this function is called.
7579 */
7580 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7581 struct btrfs_root *root,
7582 struct extent_buffer *root_eb,
7583 u64 root_gen,
7584 int root_level)
7585 {
7586 int ret = 0;
7587 int level;
7588 struct extent_buffer *eb = root_eb;
7589 struct btrfs_path *path = NULL;
7590
7591 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7592 BUG_ON(root_eb == NULL);
7593
7594 if (!root->fs_info->quota_enabled)
7595 return 0;
7596
7597 if (!extent_buffer_uptodate(root_eb)) {
7598 ret = btrfs_read_buffer(root_eb, root_gen);
7599 if (ret)
7600 goto out;
7601 }
7602
7603 if (root_level == 0) {
7604 ret = account_leaf_items(trans, root, root_eb);
7605 goto out;
7606 }
7607
7608 path = btrfs_alloc_path();
7609 if (!path)
7610 return -ENOMEM;
7611
7612 /*
7613 * Walk down the tree. Missing extent blocks are filled in as
7614 * we go. Metadata is accounted every time we read a new
7615 * extent block.
7616 *
7617 * When we reach a leaf, we account for file extent items in it,
7618 * walk back up the tree (adjusting slot pointers as we go)
7619 * and restart the search process.
7620 */
7621 extent_buffer_get(root_eb); /* For path */
7622 path->nodes[root_level] = root_eb;
7623 path->slots[root_level] = 0;
7624 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7625 walk_down:
7626 level = root_level;
7627 while (level >= 0) {
7628 if (path->nodes[level] == NULL) {
7629 int child_bsize = root->nodesize;
7630 int parent_slot;
7631 u64 child_gen;
7632 u64 child_bytenr;
7633
7634 /* We need to get child blockptr/gen from
7635 * parent before we can read it. */
7636 eb = path->nodes[level + 1];
7637 parent_slot = path->slots[level + 1];
7638 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7639 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7640
7641 eb = read_tree_block(root, child_bytenr, child_bsize,
7642 child_gen);
7643 if (!eb || !extent_buffer_uptodate(eb)) {
7644 ret = -EIO;
7645 goto out;
7646 }
7647
7648 path->nodes[level] = eb;
7649 path->slots[level] = 0;
7650
7651 btrfs_tree_read_lock(eb);
7652 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7653 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7654
7655 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7656 root->objectid,
7657 child_bytenr,
7658 child_bsize,
7659 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7660 0);
7661 if (ret)
7662 goto out;
7663
7664 }
7665
7666 if (level == 0) {
7667 ret = account_leaf_items(trans, root, path->nodes[level]);
7668 if (ret)
7669 goto out;
7670
7671 /* Nonzero return here means we completed our search */
7672 ret = adjust_slots_upwards(root, path, root_level);
7673 if (ret)
7674 break;
7675
7676 /* Restart search with new slots */
7677 goto walk_down;
7678 }
7679
7680 level--;
7681 }
7682
7683 ret = 0;
7684 out:
7685 btrfs_free_path(path);
7686
7687 return ret;
7688 }
7689
7690 /*
7691 * helper to process tree block while walking down the tree.
7692 *
7693 * when wc->stage == UPDATE_BACKREF, this function updates
7694 * back refs for pointers in the block.
7695 *
7696 * NOTE: return value 1 means we should stop walking down.
7697 */
7698 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7699 struct btrfs_root *root,
7700 struct btrfs_path *path,
7701 struct walk_control *wc, int lookup_info)
7702 {
7703 int level = wc->level;
7704 struct extent_buffer *eb = path->nodes[level];
7705 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7706 int ret;
7707
7708 if (wc->stage == UPDATE_BACKREF &&
7709 btrfs_header_owner(eb) != root->root_key.objectid)
7710 return 1;
7711
7712 /*
7713 * when reference count of tree block is 1, it won't increase
7714 * again. once full backref flag is set, we never clear it.
7715 */
7716 if (lookup_info &&
7717 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7718 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7719 BUG_ON(!path->locks[level]);
7720 ret = btrfs_lookup_extent_info(trans, root,
7721 eb->start, level, 1,
7722 &wc->refs[level],
7723 &wc->flags[level]);
7724 BUG_ON(ret == -ENOMEM);
7725 if (ret)
7726 return ret;
7727 BUG_ON(wc->refs[level] == 0);
7728 }
7729
7730 if (wc->stage == DROP_REFERENCE) {
7731 if (wc->refs[level] > 1)
7732 return 1;
7733
7734 if (path->locks[level] && !wc->keep_locks) {
7735 btrfs_tree_unlock_rw(eb, path->locks[level]);
7736 path->locks[level] = 0;
7737 }
7738 return 0;
7739 }
7740
7741 /* wc->stage == UPDATE_BACKREF */
7742 if (!(wc->flags[level] & flag)) {
7743 BUG_ON(!path->locks[level]);
7744 ret = btrfs_inc_ref(trans, root, eb, 1);
7745 BUG_ON(ret); /* -ENOMEM */
7746 ret = btrfs_dec_ref(trans, root, eb, 0);
7747 BUG_ON(ret); /* -ENOMEM */
7748 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7749 eb->len, flag,
7750 btrfs_header_level(eb), 0);
7751 BUG_ON(ret); /* -ENOMEM */
7752 wc->flags[level] |= flag;
7753 }
7754
7755 /*
7756 * the block is shared by multiple trees, so it's not good to
7757 * keep the tree lock
7758 */
7759 if (path->locks[level] && level > 0) {
7760 btrfs_tree_unlock_rw(eb, path->locks[level]);
7761 path->locks[level] = 0;
7762 }
7763 return 0;
7764 }
7765
7766 /*
7767 * helper to process tree block pointer.
7768 *
7769 * when wc->stage == DROP_REFERENCE, this function checks
7770 * reference count of the block pointed to. if the block
7771 * is shared and we need update back refs for the subtree
7772 * rooted at the block, this function changes wc->stage to
7773 * UPDATE_BACKREF. if the block is shared and there is no
7774 * need to update back, this function drops the reference
7775 * to the block.
7776 *
7777 * NOTE: return value 1 means we should stop walking down.
7778 */
7779 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7780 struct btrfs_root *root,
7781 struct btrfs_path *path,
7782 struct walk_control *wc, int *lookup_info)
7783 {
7784 u64 bytenr;
7785 u64 generation;
7786 u64 parent;
7787 u32 blocksize;
7788 struct btrfs_key key;
7789 struct extent_buffer *next;
7790 int level = wc->level;
7791 int reada = 0;
7792 int ret = 0;
7793 bool need_account = false;
7794
7795 generation = btrfs_node_ptr_generation(path->nodes[level],
7796 path->slots[level]);
7797 /*
7798 * if the lower level block was created before the snapshot
7799 * was created, we know there is no need to update back refs
7800 * for the subtree
7801 */
7802 if (wc->stage == UPDATE_BACKREF &&
7803 generation <= root->root_key.offset) {
7804 *lookup_info = 1;
7805 return 1;
7806 }
7807
7808 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7809 blocksize = btrfs_level_size(root, level - 1);
7810
7811 next = btrfs_find_tree_block(root, bytenr, blocksize);
7812 if (!next) {
7813 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7814 if (!next)
7815 return -ENOMEM;
7816 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7817 level - 1);
7818 reada = 1;
7819 }
7820 btrfs_tree_lock(next);
7821 btrfs_set_lock_blocking(next);
7822
7823 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7824 &wc->refs[level - 1],
7825 &wc->flags[level - 1]);
7826 if (ret < 0) {
7827 btrfs_tree_unlock(next);
7828 return ret;
7829 }
7830
7831 if (unlikely(wc->refs[level - 1] == 0)) {
7832 btrfs_err(root->fs_info, "Missing references.");
7833 BUG();
7834 }
7835 *lookup_info = 0;
7836
7837 if (wc->stage == DROP_REFERENCE) {
7838 if (wc->refs[level - 1] > 1) {
7839 need_account = true;
7840 if (level == 1 &&
7841 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7842 goto skip;
7843
7844 if (!wc->update_ref ||
7845 generation <= root->root_key.offset)
7846 goto skip;
7847
7848 btrfs_node_key_to_cpu(path->nodes[level], &key,
7849 path->slots[level]);
7850 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7851 if (ret < 0)
7852 goto skip;
7853
7854 wc->stage = UPDATE_BACKREF;
7855 wc->shared_level = level - 1;
7856 }
7857 } else {
7858 if (level == 1 &&
7859 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7860 goto skip;
7861 }
7862
7863 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7864 btrfs_tree_unlock(next);
7865 free_extent_buffer(next);
7866 next = NULL;
7867 *lookup_info = 1;
7868 }
7869
7870 if (!next) {
7871 if (reada && level == 1)
7872 reada_walk_down(trans, root, wc, path);
7873 next = read_tree_block(root, bytenr, blocksize, generation);
7874 if (!next || !extent_buffer_uptodate(next)) {
7875 free_extent_buffer(next);
7876 return -EIO;
7877 }
7878 btrfs_tree_lock(next);
7879 btrfs_set_lock_blocking(next);
7880 }
7881
7882 level--;
7883 BUG_ON(level != btrfs_header_level(next));
7884 path->nodes[level] = next;
7885 path->slots[level] = 0;
7886 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7887 wc->level = level;
7888 if (wc->level == 1)
7889 wc->reada_slot = 0;
7890 return 0;
7891 skip:
7892 wc->refs[level - 1] = 0;
7893 wc->flags[level - 1] = 0;
7894 if (wc->stage == DROP_REFERENCE) {
7895 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7896 parent = path->nodes[level]->start;
7897 } else {
7898 BUG_ON(root->root_key.objectid !=
7899 btrfs_header_owner(path->nodes[level]));
7900 parent = 0;
7901 }
7902
7903 if (need_account) {
7904 ret = account_shared_subtree(trans, root, next,
7905 generation, level - 1);
7906 if (ret) {
7907 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7908 "%d accounting shared subtree. Quota "
7909 "is out of sync, rescan required.\n",
7910 root->fs_info->sb->s_id, ret);
7911 }
7912 }
7913 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7914 root->root_key.objectid, level - 1, 0, 0);
7915 BUG_ON(ret); /* -ENOMEM */
7916 }
7917 btrfs_tree_unlock(next);
7918 free_extent_buffer(next);
7919 *lookup_info = 1;
7920 return 1;
7921 }
7922
7923 /*
7924 * helper to process tree block while walking up the tree.
7925 *
7926 * when wc->stage == DROP_REFERENCE, this function drops
7927 * reference count on the block.
7928 *
7929 * when wc->stage == UPDATE_BACKREF, this function changes
7930 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7931 * to UPDATE_BACKREF previously while processing the block.
7932 *
7933 * NOTE: return value 1 means we should stop walking up.
7934 */
7935 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7936 struct btrfs_root *root,
7937 struct btrfs_path *path,
7938 struct walk_control *wc)
7939 {
7940 int ret;
7941 int level = wc->level;
7942 struct extent_buffer *eb = path->nodes[level];
7943 u64 parent = 0;
7944
7945 if (wc->stage == UPDATE_BACKREF) {
7946 BUG_ON(wc->shared_level < level);
7947 if (level < wc->shared_level)
7948 goto out;
7949
7950 ret = find_next_key(path, level + 1, &wc->update_progress);
7951 if (ret > 0)
7952 wc->update_ref = 0;
7953
7954 wc->stage = DROP_REFERENCE;
7955 wc->shared_level = -1;
7956 path->slots[level] = 0;
7957
7958 /*
7959 * check reference count again if the block isn't locked.
7960 * we should start walking down the tree again if reference
7961 * count is one.
7962 */
7963 if (!path->locks[level]) {
7964 BUG_ON(level == 0);
7965 btrfs_tree_lock(eb);
7966 btrfs_set_lock_blocking(eb);
7967 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7968
7969 ret = btrfs_lookup_extent_info(trans, root,
7970 eb->start, level, 1,
7971 &wc->refs[level],
7972 &wc->flags[level]);
7973 if (ret < 0) {
7974 btrfs_tree_unlock_rw(eb, path->locks[level]);
7975 path->locks[level] = 0;
7976 return ret;
7977 }
7978 BUG_ON(wc->refs[level] == 0);
7979 if (wc->refs[level] == 1) {
7980 btrfs_tree_unlock_rw(eb, path->locks[level]);
7981 path->locks[level] = 0;
7982 return 1;
7983 }
7984 }
7985 }
7986
7987 /* wc->stage == DROP_REFERENCE */
7988 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7989
7990 if (wc->refs[level] == 1) {
7991 if (level == 0) {
7992 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7993 ret = btrfs_dec_ref(trans, root, eb, 1);
7994 else
7995 ret = btrfs_dec_ref(trans, root, eb, 0);
7996 BUG_ON(ret); /* -ENOMEM */
7997 ret = account_leaf_items(trans, root, eb);
7998 if (ret) {
7999 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8000 "%d accounting leaf items. Quota "
8001 "is out of sync, rescan required.\n",
8002 root->fs_info->sb->s_id, ret);
8003 }
8004 }
8005 /* make block locked assertion in clean_tree_block happy */
8006 if (!path->locks[level] &&
8007 btrfs_header_generation(eb) == trans->transid) {
8008 btrfs_tree_lock(eb);
8009 btrfs_set_lock_blocking(eb);
8010 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8011 }
8012 clean_tree_block(trans, root, eb);
8013 }
8014
8015 if (eb == root->node) {
8016 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8017 parent = eb->start;
8018 else
8019 BUG_ON(root->root_key.objectid !=
8020 btrfs_header_owner(eb));
8021 } else {
8022 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8023 parent = path->nodes[level + 1]->start;
8024 else
8025 BUG_ON(root->root_key.objectid !=
8026 btrfs_header_owner(path->nodes[level + 1]));
8027 }
8028
8029 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8030 out:
8031 wc->refs[level] = 0;
8032 wc->flags[level] = 0;
8033 return 0;
8034 }
8035
8036 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8037 struct btrfs_root *root,
8038 struct btrfs_path *path,
8039 struct walk_control *wc)
8040 {
8041 int level = wc->level;
8042 int lookup_info = 1;
8043 int ret;
8044
8045 while (level >= 0) {
8046 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8047 if (ret > 0)
8048 break;
8049
8050 if (level == 0)
8051 break;
8052
8053 if (path->slots[level] >=
8054 btrfs_header_nritems(path->nodes[level]))
8055 break;
8056
8057 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8058 if (ret > 0) {
8059 path->slots[level]++;
8060 continue;
8061 } else if (ret < 0)
8062 return ret;
8063 level = wc->level;
8064 }
8065 return 0;
8066 }
8067
8068 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8069 struct btrfs_root *root,
8070 struct btrfs_path *path,
8071 struct walk_control *wc, int max_level)
8072 {
8073 int level = wc->level;
8074 int ret;
8075
8076 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8077 while (level < max_level && path->nodes[level]) {
8078 wc->level = level;
8079 if (path->slots[level] + 1 <
8080 btrfs_header_nritems(path->nodes[level])) {
8081 path->slots[level]++;
8082 return 0;
8083 } else {
8084 ret = walk_up_proc(trans, root, path, wc);
8085 if (ret > 0)
8086 return 0;
8087
8088 if (path->locks[level]) {
8089 btrfs_tree_unlock_rw(path->nodes[level],
8090 path->locks[level]);
8091 path->locks[level] = 0;
8092 }
8093 free_extent_buffer(path->nodes[level]);
8094 path->nodes[level] = NULL;
8095 level++;
8096 }
8097 }
8098 return 1;
8099 }
8100
8101 /*
8102 * drop a subvolume tree.
8103 *
8104 * this function traverses the tree freeing any blocks that only
8105 * referenced by the tree.
8106 *
8107 * when a shared tree block is found. this function decreases its
8108 * reference count by one. if update_ref is true, this function
8109 * also make sure backrefs for the shared block and all lower level
8110 * blocks are properly updated.
8111 *
8112 * If called with for_reloc == 0, may exit early with -EAGAIN
8113 */
8114 int btrfs_drop_snapshot(struct btrfs_root *root,
8115 struct btrfs_block_rsv *block_rsv, int update_ref,
8116 int for_reloc)
8117 {
8118 struct btrfs_path *path;
8119 struct btrfs_trans_handle *trans;
8120 struct btrfs_root *tree_root = root->fs_info->tree_root;
8121 struct btrfs_root_item *root_item = &root->root_item;
8122 struct walk_control *wc;
8123 struct btrfs_key key;
8124 int err = 0;
8125 int ret;
8126 int level;
8127 bool root_dropped = false;
8128
8129 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8130
8131 path = btrfs_alloc_path();
8132 if (!path) {
8133 err = -ENOMEM;
8134 goto out;
8135 }
8136
8137 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8138 if (!wc) {
8139 btrfs_free_path(path);
8140 err = -ENOMEM;
8141 goto out;
8142 }
8143
8144 trans = btrfs_start_transaction(tree_root, 0);
8145 if (IS_ERR(trans)) {
8146 err = PTR_ERR(trans);
8147 goto out_free;
8148 }
8149
8150 if (block_rsv)
8151 trans->block_rsv = block_rsv;
8152
8153 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8154 level = btrfs_header_level(root->node);
8155 path->nodes[level] = btrfs_lock_root_node(root);
8156 btrfs_set_lock_blocking(path->nodes[level]);
8157 path->slots[level] = 0;
8158 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8159 memset(&wc->update_progress, 0,
8160 sizeof(wc->update_progress));
8161 } else {
8162 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8163 memcpy(&wc->update_progress, &key,
8164 sizeof(wc->update_progress));
8165
8166 level = root_item->drop_level;
8167 BUG_ON(level == 0);
8168 path->lowest_level = level;
8169 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8170 path->lowest_level = 0;
8171 if (ret < 0) {
8172 err = ret;
8173 goto out_end_trans;
8174 }
8175 WARN_ON(ret > 0);
8176
8177 /*
8178 * unlock our path, this is safe because only this
8179 * function is allowed to delete this snapshot
8180 */
8181 btrfs_unlock_up_safe(path, 0);
8182
8183 level = btrfs_header_level(root->node);
8184 while (1) {
8185 btrfs_tree_lock(path->nodes[level]);
8186 btrfs_set_lock_blocking(path->nodes[level]);
8187 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8188
8189 ret = btrfs_lookup_extent_info(trans, root,
8190 path->nodes[level]->start,
8191 level, 1, &wc->refs[level],
8192 &wc->flags[level]);
8193 if (ret < 0) {
8194 err = ret;
8195 goto out_end_trans;
8196 }
8197 BUG_ON(wc->refs[level] == 0);
8198
8199 if (level == root_item->drop_level)
8200 break;
8201
8202 btrfs_tree_unlock(path->nodes[level]);
8203 path->locks[level] = 0;
8204 WARN_ON(wc->refs[level] != 1);
8205 level--;
8206 }
8207 }
8208
8209 wc->level = level;
8210 wc->shared_level = -1;
8211 wc->stage = DROP_REFERENCE;
8212 wc->update_ref = update_ref;
8213 wc->keep_locks = 0;
8214 wc->for_reloc = for_reloc;
8215 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8216
8217 while (1) {
8218
8219 ret = walk_down_tree(trans, root, path, wc);
8220 if (ret < 0) {
8221 err = ret;
8222 break;
8223 }
8224
8225 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8226 if (ret < 0) {
8227 err = ret;
8228 break;
8229 }
8230
8231 if (ret > 0) {
8232 BUG_ON(wc->stage != DROP_REFERENCE);
8233 break;
8234 }
8235
8236 if (wc->stage == DROP_REFERENCE) {
8237 level = wc->level;
8238 btrfs_node_key(path->nodes[level],
8239 &root_item->drop_progress,
8240 path->slots[level]);
8241 root_item->drop_level = level;
8242 }
8243
8244 BUG_ON(wc->level == 0);
8245 if (btrfs_should_end_transaction(trans, tree_root) ||
8246 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8247 ret = btrfs_update_root(trans, tree_root,
8248 &root->root_key,
8249 root_item);
8250 if (ret) {
8251 btrfs_abort_transaction(trans, tree_root, ret);
8252 err = ret;
8253 goto out_end_trans;
8254 }
8255
8256 /*
8257 * Qgroup update accounting is run from
8258 * delayed ref handling. This usually works
8259 * out because delayed refs are normally the
8260 * only way qgroup updates are added. However,
8261 * we may have added updates during our tree
8262 * walk so run qgroups here to make sure we
8263 * don't lose any updates.
8264 */
8265 ret = btrfs_delayed_qgroup_accounting(trans,
8266 root->fs_info);
8267 if (ret)
8268 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8269 "running qgroup updates "
8270 "during snapshot delete. "
8271 "Quota is out of sync, "
8272 "rescan required.\n", ret);
8273
8274 btrfs_end_transaction_throttle(trans, tree_root);
8275 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8276 pr_debug("BTRFS: drop snapshot early exit\n");
8277 err = -EAGAIN;
8278 goto out_free;
8279 }
8280
8281 trans = btrfs_start_transaction(tree_root, 0);
8282 if (IS_ERR(trans)) {
8283 err = PTR_ERR(trans);
8284 goto out_free;
8285 }
8286 if (block_rsv)
8287 trans->block_rsv = block_rsv;
8288 }
8289 }
8290 btrfs_release_path(path);
8291 if (err)
8292 goto out_end_trans;
8293
8294 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8295 if (ret) {
8296 btrfs_abort_transaction(trans, tree_root, ret);
8297 goto out_end_trans;
8298 }
8299
8300 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8301 ret = btrfs_find_root(tree_root, &root->root_key, path,
8302 NULL, NULL);
8303 if (ret < 0) {
8304 btrfs_abort_transaction(trans, tree_root, ret);
8305 err = ret;
8306 goto out_end_trans;
8307 } else if (ret > 0) {
8308 /* if we fail to delete the orphan item this time
8309 * around, it'll get picked up the next time.
8310 *
8311 * The most common failure here is just -ENOENT.
8312 */
8313 btrfs_del_orphan_item(trans, tree_root,
8314 root->root_key.objectid);
8315 }
8316 }
8317
8318 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8319 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8320 } else {
8321 free_extent_buffer(root->node);
8322 free_extent_buffer(root->commit_root);
8323 btrfs_put_fs_root(root);
8324 }
8325 root_dropped = true;
8326 out_end_trans:
8327 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8328 if (ret)
8329 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8330 "running qgroup updates "
8331 "during snapshot delete. "
8332 "Quota is out of sync, "
8333 "rescan required.\n", ret);
8334
8335 btrfs_end_transaction_throttle(trans, tree_root);
8336 out_free:
8337 kfree(wc);
8338 btrfs_free_path(path);
8339 out:
8340 /*
8341 * So if we need to stop dropping the snapshot for whatever reason we
8342 * need to make sure to add it back to the dead root list so that we
8343 * keep trying to do the work later. This also cleans up roots if we
8344 * don't have it in the radix (like when we recover after a power fail
8345 * or unmount) so we don't leak memory.
8346 */
8347 if (!for_reloc && root_dropped == false)
8348 btrfs_add_dead_root(root);
8349 if (err && err != -EAGAIN)
8350 btrfs_std_error(root->fs_info, err);
8351 return err;
8352 }
8353
8354 /*
8355 * drop subtree rooted at tree block 'node'.
8356 *
8357 * NOTE: this function will unlock and release tree block 'node'
8358 * only used by relocation code
8359 */
8360 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8361 struct btrfs_root *root,
8362 struct extent_buffer *node,
8363 struct extent_buffer *parent)
8364 {
8365 struct btrfs_path *path;
8366 struct walk_control *wc;
8367 int level;
8368 int parent_level;
8369 int ret = 0;
8370 int wret;
8371
8372 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8373
8374 path = btrfs_alloc_path();
8375 if (!path)
8376 return -ENOMEM;
8377
8378 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8379 if (!wc) {
8380 btrfs_free_path(path);
8381 return -ENOMEM;
8382 }
8383
8384 btrfs_assert_tree_locked(parent);
8385 parent_level = btrfs_header_level(parent);
8386 extent_buffer_get(parent);
8387 path->nodes[parent_level] = parent;
8388 path->slots[parent_level] = btrfs_header_nritems(parent);
8389
8390 btrfs_assert_tree_locked(node);
8391 level = btrfs_header_level(node);
8392 path->nodes[level] = node;
8393 path->slots[level] = 0;
8394 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8395
8396 wc->refs[parent_level] = 1;
8397 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8398 wc->level = level;
8399 wc->shared_level = -1;
8400 wc->stage = DROP_REFERENCE;
8401 wc->update_ref = 0;
8402 wc->keep_locks = 1;
8403 wc->for_reloc = 1;
8404 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8405
8406 while (1) {
8407 wret = walk_down_tree(trans, root, path, wc);
8408 if (wret < 0) {
8409 ret = wret;
8410 break;
8411 }
8412
8413 wret = walk_up_tree(trans, root, path, wc, parent_level);
8414 if (wret < 0)
8415 ret = wret;
8416 if (wret != 0)
8417 break;
8418 }
8419
8420 kfree(wc);
8421 btrfs_free_path(path);
8422 return ret;
8423 }
8424
8425 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8426 {
8427 u64 num_devices;
8428 u64 stripped;
8429
8430 /*
8431 * if restripe for this chunk_type is on pick target profile and
8432 * return, otherwise do the usual balance
8433 */
8434 stripped = get_restripe_target(root->fs_info, flags);
8435 if (stripped)
8436 return extended_to_chunk(stripped);
8437
8438 num_devices = root->fs_info->fs_devices->rw_devices;
8439
8440 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8441 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8442 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8443
8444 if (num_devices == 1) {
8445 stripped |= BTRFS_BLOCK_GROUP_DUP;
8446 stripped = flags & ~stripped;
8447
8448 /* turn raid0 into single device chunks */
8449 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8450 return stripped;
8451
8452 /* turn mirroring into duplication */
8453 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8454 BTRFS_BLOCK_GROUP_RAID10))
8455 return stripped | BTRFS_BLOCK_GROUP_DUP;
8456 } else {
8457 /* they already had raid on here, just return */
8458 if (flags & stripped)
8459 return flags;
8460
8461 stripped |= BTRFS_BLOCK_GROUP_DUP;
8462 stripped = flags & ~stripped;
8463
8464 /* switch duplicated blocks with raid1 */
8465 if (flags & BTRFS_BLOCK_GROUP_DUP)
8466 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8467
8468 /* this is drive concat, leave it alone */
8469 }
8470
8471 return flags;
8472 }
8473
8474 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8475 {
8476 struct btrfs_space_info *sinfo = cache->space_info;
8477 u64 num_bytes;
8478 u64 min_allocable_bytes;
8479 int ret = -ENOSPC;
8480
8481
8482 /*
8483 * We need some metadata space and system metadata space for
8484 * allocating chunks in some corner cases until we force to set
8485 * it to be readonly.
8486 */
8487 if ((sinfo->flags &
8488 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8489 !force)
8490 min_allocable_bytes = 1 * 1024 * 1024;
8491 else
8492 min_allocable_bytes = 0;
8493
8494 spin_lock(&sinfo->lock);
8495 spin_lock(&cache->lock);
8496
8497 if (cache->ro) {
8498 ret = 0;
8499 goto out;
8500 }
8501
8502 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8503 cache->bytes_super - btrfs_block_group_used(&cache->item);
8504
8505 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8506 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8507 min_allocable_bytes <= sinfo->total_bytes) {
8508 sinfo->bytes_readonly += num_bytes;
8509 cache->ro = 1;
8510 ret = 0;
8511 }
8512 out:
8513 spin_unlock(&cache->lock);
8514 spin_unlock(&sinfo->lock);
8515 return ret;
8516 }
8517
8518 int btrfs_set_block_group_ro(struct btrfs_root *root,
8519 struct btrfs_block_group_cache *cache)
8520
8521 {
8522 struct btrfs_trans_handle *trans;
8523 u64 alloc_flags;
8524 int ret;
8525
8526 BUG_ON(cache->ro);
8527
8528 trans = btrfs_join_transaction(root);
8529 if (IS_ERR(trans))
8530 return PTR_ERR(trans);
8531
8532 alloc_flags = update_block_group_flags(root, cache->flags);
8533 if (alloc_flags != cache->flags) {
8534 ret = do_chunk_alloc(trans, root, alloc_flags,
8535 CHUNK_ALLOC_FORCE);
8536 if (ret < 0)
8537 goto out;
8538 }
8539
8540 ret = set_block_group_ro(cache, 0);
8541 if (!ret)
8542 goto out;
8543 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8544 ret = do_chunk_alloc(trans, root, alloc_flags,
8545 CHUNK_ALLOC_FORCE);
8546 if (ret < 0)
8547 goto out;
8548 ret = set_block_group_ro(cache, 0);
8549 out:
8550 btrfs_end_transaction(trans, root);
8551 return ret;
8552 }
8553
8554 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8555 struct btrfs_root *root, u64 type)
8556 {
8557 u64 alloc_flags = get_alloc_profile(root, type);
8558 return do_chunk_alloc(trans, root, alloc_flags,
8559 CHUNK_ALLOC_FORCE);
8560 }
8561
8562 /*
8563 * helper to account the unused space of all the readonly block group in the
8564 * list. takes mirrors into account.
8565 */
8566 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8567 {
8568 struct btrfs_block_group_cache *block_group;
8569 u64 free_bytes = 0;
8570 int factor;
8571
8572 list_for_each_entry(block_group, groups_list, list) {
8573 spin_lock(&block_group->lock);
8574
8575 if (!block_group->ro) {
8576 spin_unlock(&block_group->lock);
8577 continue;
8578 }
8579
8580 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8581 BTRFS_BLOCK_GROUP_RAID10 |
8582 BTRFS_BLOCK_GROUP_DUP))
8583 factor = 2;
8584 else
8585 factor = 1;
8586
8587 free_bytes += (block_group->key.offset -
8588 btrfs_block_group_used(&block_group->item)) *
8589 factor;
8590
8591 spin_unlock(&block_group->lock);
8592 }
8593
8594 return free_bytes;
8595 }
8596
8597 /*
8598 * helper to account the unused space of all the readonly block group in the
8599 * space_info. takes mirrors into account.
8600 */
8601 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8602 {
8603 int i;
8604 u64 free_bytes = 0;
8605
8606 spin_lock(&sinfo->lock);
8607
8608 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8609 if (!list_empty(&sinfo->block_groups[i]))
8610 free_bytes += __btrfs_get_ro_block_group_free_space(
8611 &sinfo->block_groups[i]);
8612
8613 spin_unlock(&sinfo->lock);
8614
8615 return free_bytes;
8616 }
8617
8618 void btrfs_set_block_group_rw(struct btrfs_root *root,
8619 struct btrfs_block_group_cache *cache)
8620 {
8621 struct btrfs_space_info *sinfo = cache->space_info;
8622 u64 num_bytes;
8623
8624 BUG_ON(!cache->ro);
8625
8626 spin_lock(&sinfo->lock);
8627 spin_lock(&cache->lock);
8628 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8629 cache->bytes_super - btrfs_block_group_used(&cache->item);
8630 sinfo->bytes_readonly -= num_bytes;
8631 cache->ro = 0;
8632 spin_unlock(&cache->lock);
8633 spin_unlock(&sinfo->lock);
8634 }
8635
8636 /*
8637 * checks to see if its even possible to relocate this block group.
8638 *
8639 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8640 * ok to go ahead and try.
8641 */
8642 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8643 {
8644 struct btrfs_block_group_cache *block_group;
8645 struct btrfs_space_info *space_info;
8646 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8647 struct btrfs_device *device;
8648 struct btrfs_trans_handle *trans;
8649 u64 min_free;
8650 u64 dev_min = 1;
8651 u64 dev_nr = 0;
8652 u64 target;
8653 int index;
8654 int full = 0;
8655 int ret = 0;
8656
8657 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8658
8659 /* odd, couldn't find the block group, leave it alone */
8660 if (!block_group)
8661 return -1;
8662
8663 min_free = btrfs_block_group_used(&block_group->item);
8664
8665 /* no bytes used, we're good */
8666 if (!min_free)
8667 goto out;
8668
8669 space_info = block_group->space_info;
8670 spin_lock(&space_info->lock);
8671
8672 full = space_info->full;
8673
8674 /*
8675 * if this is the last block group we have in this space, we can't
8676 * relocate it unless we're able to allocate a new chunk below.
8677 *
8678 * Otherwise, we need to make sure we have room in the space to handle
8679 * all of the extents from this block group. If we can, we're good
8680 */
8681 if ((space_info->total_bytes != block_group->key.offset) &&
8682 (space_info->bytes_used + space_info->bytes_reserved +
8683 space_info->bytes_pinned + space_info->bytes_readonly +
8684 min_free < space_info->total_bytes)) {
8685 spin_unlock(&space_info->lock);
8686 goto out;
8687 }
8688 spin_unlock(&space_info->lock);
8689
8690 /*
8691 * ok we don't have enough space, but maybe we have free space on our
8692 * devices to allocate new chunks for relocation, so loop through our
8693 * alloc devices and guess if we have enough space. if this block
8694 * group is going to be restriped, run checks against the target
8695 * profile instead of the current one.
8696 */
8697 ret = -1;
8698
8699 /*
8700 * index:
8701 * 0: raid10
8702 * 1: raid1
8703 * 2: dup
8704 * 3: raid0
8705 * 4: single
8706 */
8707 target = get_restripe_target(root->fs_info, block_group->flags);
8708 if (target) {
8709 index = __get_raid_index(extended_to_chunk(target));
8710 } else {
8711 /*
8712 * this is just a balance, so if we were marked as full
8713 * we know there is no space for a new chunk
8714 */
8715 if (full)
8716 goto out;
8717
8718 index = get_block_group_index(block_group);
8719 }
8720
8721 if (index == BTRFS_RAID_RAID10) {
8722 dev_min = 4;
8723 /* Divide by 2 */
8724 min_free >>= 1;
8725 } else if (index == BTRFS_RAID_RAID1) {
8726 dev_min = 2;
8727 } else if (index == BTRFS_RAID_DUP) {
8728 /* Multiply by 2 */
8729 min_free <<= 1;
8730 } else if (index == BTRFS_RAID_RAID0) {
8731 dev_min = fs_devices->rw_devices;
8732 do_div(min_free, dev_min);
8733 }
8734
8735 /* We need to do this so that we can look at pending chunks */
8736 trans = btrfs_join_transaction(root);
8737 if (IS_ERR(trans)) {
8738 ret = PTR_ERR(trans);
8739 goto out;
8740 }
8741
8742 mutex_lock(&root->fs_info->chunk_mutex);
8743 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8744 u64 dev_offset;
8745
8746 /*
8747 * check to make sure we can actually find a chunk with enough
8748 * space to fit our block group in.
8749 */
8750 if (device->total_bytes > device->bytes_used + min_free &&
8751 !device->is_tgtdev_for_dev_replace) {
8752 ret = find_free_dev_extent(trans, device, min_free,
8753 &dev_offset, NULL);
8754 if (!ret)
8755 dev_nr++;
8756
8757 if (dev_nr >= dev_min)
8758 break;
8759
8760 ret = -1;
8761 }
8762 }
8763 mutex_unlock(&root->fs_info->chunk_mutex);
8764 btrfs_end_transaction(trans, root);
8765 out:
8766 btrfs_put_block_group(block_group);
8767 return ret;
8768 }
8769
8770 static int find_first_block_group(struct btrfs_root *root,
8771 struct btrfs_path *path, struct btrfs_key *key)
8772 {
8773 int ret = 0;
8774 struct btrfs_key found_key;
8775 struct extent_buffer *leaf;
8776 int slot;
8777
8778 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8779 if (ret < 0)
8780 goto out;
8781
8782 while (1) {
8783 slot = path->slots[0];
8784 leaf = path->nodes[0];
8785 if (slot >= btrfs_header_nritems(leaf)) {
8786 ret = btrfs_next_leaf(root, path);
8787 if (ret == 0)
8788 continue;
8789 if (ret < 0)
8790 goto out;
8791 break;
8792 }
8793 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8794
8795 if (found_key.objectid >= key->objectid &&
8796 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8797 ret = 0;
8798 goto out;
8799 }
8800 path->slots[0]++;
8801 }
8802 out:
8803 return ret;
8804 }
8805
8806 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8807 {
8808 struct btrfs_block_group_cache *block_group;
8809 u64 last = 0;
8810
8811 while (1) {
8812 struct inode *inode;
8813
8814 block_group = btrfs_lookup_first_block_group(info, last);
8815 while (block_group) {
8816 spin_lock(&block_group->lock);
8817 if (block_group->iref)
8818 break;
8819 spin_unlock(&block_group->lock);
8820 block_group = next_block_group(info->tree_root,
8821 block_group);
8822 }
8823 if (!block_group) {
8824 if (last == 0)
8825 break;
8826 last = 0;
8827 continue;
8828 }
8829
8830 inode = block_group->inode;
8831 block_group->iref = 0;
8832 block_group->inode = NULL;
8833 spin_unlock(&block_group->lock);
8834 iput(inode);
8835 last = block_group->key.objectid + block_group->key.offset;
8836 btrfs_put_block_group(block_group);
8837 }
8838 }
8839
8840 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8841 {
8842 struct btrfs_block_group_cache *block_group;
8843 struct btrfs_space_info *space_info;
8844 struct btrfs_caching_control *caching_ctl;
8845 struct rb_node *n;
8846
8847 down_write(&info->commit_root_sem);
8848 while (!list_empty(&info->caching_block_groups)) {
8849 caching_ctl = list_entry(info->caching_block_groups.next,
8850 struct btrfs_caching_control, list);
8851 list_del(&caching_ctl->list);
8852 put_caching_control(caching_ctl);
8853 }
8854 up_write(&info->commit_root_sem);
8855
8856 spin_lock(&info->block_group_cache_lock);
8857 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8858 block_group = rb_entry(n, struct btrfs_block_group_cache,
8859 cache_node);
8860 rb_erase(&block_group->cache_node,
8861 &info->block_group_cache_tree);
8862 spin_unlock(&info->block_group_cache_lock);
8863
8864 down_write(&block_group->space_info->groups_sem);
8865 list_del(&block_group->list);
8866 up_write(&block_group->space_info->groups_sem);
8867
8868 if (block_group->cached == BTRFS_CACHE_STARTED)
8869 wait_block_group_cache_done(block_group);
8870
8871 /*
8872 * We haven't cached this block group, which means we could
8873 * possibly have excluded extents on this block group.
8874 */
8875 if (block_group->cached == BTRFS_CACHE_NO ||
8876 block_group->cached == BTRFS_CACHE_ERROR)
8877 free_excluded_extents(info->extent_root, block_group);
8878
8879 btrfs_remove_free_space_cache(block_group);
8880 btrfs_put_block_group(block_group);
8881
8882 spin_lock(&info->block_group_cache_lock);
8883 }
8884 spin_unlock(&info->block_group_cache_lock);
8885
8886 /* now that all the block groups are freed, go through and
8887 * free all the space_info structs. This is only called during
8888 * the final stages of unmount, and so we know nobody is
8889 * using them. We call synchronize_rcu() once before we start,
8890 * just to be on the safe side.
8891 */
8892 synchronize_rcu();
8893
8894 release_global_block_rsv(info);
8895
8896 while (!list_empty(&info->space_info)) {
8897 int i;
8898
8899 space_info = list_entry(info->space_info.next,
8900 struct btrfs_space_info,
8901 list);
8902 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8903 if (WARN_ON(space_info->bytes_pinned > 0 ||
8904 space_info->bytes_reserved > 0 ||
8905 space_info->bytes_may_use > 0)) {
8906 dump_space_info(space_info, 0, 0);
8907 }
8908 }
8909 list_del(&space_info->list);
8910 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8911 struct kobject *kobj;
8912 kobj = space_info->block_group_kobjs[i];
8913 space_info->block_group_kobjs[i] = NULL;
8914 if (kobj) {
8915 kobject_del(kobj);
8916 kobject_put(kobj);
8917 }
8918 }
8919 kobject_del(&space_info->kobj);
8920 kobject_put(&space_info->kobj);
8921 }
8922 return 0;
8923 }
8924
8925 static void __link_block_group(struct btrfs_space_info *space_info,
8926 struct btrfs_block_group_cache *cache)
8927 {
8928 int index = get_block_group_index(cache);
8929 bool first = false;
8930
8931 down_write(&space_info->groups_sem);
8932 if (list_empty(&space_info->block_groups[index]))
8933 first = true;
8934 list_add_tail(&cache->list, &space_info->block_groups[index]);
8935 up_write(&space_info->groups_sem);
8936
8937 if (first) {
8938 struct raid_kobject *rkobj;
8939 int ret;
8940
8941 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8942 if (!rkobj)
8943 goto out_err;
8944 rkobj->raid_type = index;
8945 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8946 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8947 "%s", get_raid_name(index));
8948 if (ret) {
8949 kobject_put(&rkobj->kobj);
8950 goto out_err;
8951 }
8952 space_info->block_group_kobjs[index] = &rkobj->kobj;
8953 }
8954
8955 return;
8956 out_err:
8957 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8958 }
8959
8960 static struct btrfs_block_group_cache *
8961 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8962 {
8963 struct btrfs_block_group_cache *cache;
8964
8965 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8966 if (!cache)
8967 return NULL;
8968
8969 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8970 GFP_NOFS);
8971 if (!cache->free_space_ctl) {
8972 kfree(cache);
8973 return NULL;
8974 }
8975
8976 cache->key.objectid = start;
8977 cache->key.offset = size;
8978 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8979
8980 cache->sectorsize = root->sectorsize;
8981 cache->fs_info = root->fs_info;
8982 cache->full_stripe_len = btrfs_full_stripe_len(root,
8983 &root->fs_info->mapping_tree,
8984 start);
8985 atomic_set(&cache->count, 1);
8986 spin_lock_init(&cache->lock);
8987 init_rwsem(&cache->data_rwsem);
8988 INIT_LIST_HEAD(&cache->list);
8989 INIT_LIST_HEAD(&cache->cluster_list);
8990 INIT_LIST_HEAD(&cache->new_bg_list);
8991 btrfs_init_free_space_ctl(cache);
8992
8993 return cache;
8994 }
8995
8996 int btrfs_read_block_groups(struct btrfs_root *root)
8997 {
8998 struct btrfs_path *path;
8999 int ret;
9000 struct btrfs_block_group_cache *cache;
9001 struct btrfs_fs_info *info = root->fs_info;
9002 struct btrfs_space_info *space_info;
9003 struct btrfs_key key;
9004 struct btrfs_key found_key;
9005 struct extent_buffer *leaf;
9006 int need_clear = 0;
9007 u64 cache_gen;
9008
9009 root = info->extent_root;
9010 key.objectid = 0;
9011 key.offset = 0;
9012 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
9013 path = btrfs_alloc_path();
9014 if (!path)
9015 return -ENOMEM;
9016 path->reada = 1;
9017
9018 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9019 if (btrfs_test_opt(root, SPACE_CACHE) &&
9020 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9021 need_clear = 1;
9022 if (btrfs_test_opt(root, CLEAR_CACHE))
9023 need_clear = 1;
9024
9025 while (1) {
9026 ret = find_first_block_group(root, path, &key);
9027 if (ret > 0)
9028 break;
9029 if (ret != 0)
9030 goto error;
9031
9032 leaf = path->nodes[0];
9033 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9034
9035 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9036 found_key.offset);
9037 if (!cache) {
9038 ret = -ENOMEM;
9039 goto error;
9040 }
9041
9042 if (need_clear) {
9043 /*
9044 * When we mount with old space cache, we need to
9045 * set BTRFS_DC_CLEAR and set dirty flag.
9046 *
9047 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9048 * truncate the old free space cache inode and
9049 * setup a new one.
9050 * b) Setting 'dirty flag' makes sure that we flush
9051 * the new space cache info onto disk.
9052 */
9053 cache->disk_cache_state = BTRFS_DC_CLEAR;
9054 if (btrfs_test_opt(root, SPACE_CACHE))
9055 cache->dirty = 1;
9056 }
9057
9058 read_extent_buffer(leaf, &cache->item,
9059 btrfs_item_ptr_offset(leaf, path->slots[0]),
9060 sizeof(cache->item));
9061 cache->flags = btrfs_block_group_flags(&cache->item);
9062
9063 key.objectid = found_key.objectid + found_key.offset;
9064 btrfs_release_path(path);
9065
9066 /*
9067 * We need to exclude the super stripes now so that the space
9068 * info has super bytes accounted for, otherwise we'll think
9069 * we have more space than we actually do.
9070 */
9071 ret = exclude_super_stripes(root, cache);
9072 if (ret) {
9073 /*
9074 * We may have excluded something, so call this just in
9075 * case.
9076 */
9077 free_excluded_extents(root, cache);
9078 btrfs_put_block_group(cache);
9079 goto error;
9080 }
9081
9082 /*
9083 * check for two cases, either we are full, and therefore
9084 * don't need to bother with the caching work since we won't
9085 * find any space, or we are empty, and we can just add all
9086 * the space in and be done with it. This saves us _alot_ of
9087 * time, particularly in the full case.
9088 */
9089 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9090 cache->last_byte_to_unpin = (u64)-1;
9091 cache->cached = BTRFS_CACHE_FINISHED;
9092 free_excluded_extents(root, cache);
9093 } else if (btrfs_block_group_used(&cache->item) == 0) {
9094 cache->last_byte_to_unpin = (u64)-1;
9095 cache->cached = BTRFS_CACHE_FINISHED;
9096 add_new_free_space(cache, root->fs_info,
9097 found_key.objectid,
9098 found_key.objectid +
9099 found_key.offset);
9100 free_excluded_extents(root, cache);
9101 }
9102
9103 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9104 if (ret) {
9105 btrfs_remove_free_space_cache(cache);
9106 btrfs_put_block_group(cache);
9107 goto error;
9108 }
9109
9110 ret = update_space_info(info, cache->flags, found_key.offset,
9111 btrfs_block_group_used(&cache->item),
9112 &space_info);
9113 if (ret) {
9114 btrfs_remove_free_space_cache(cache);
9115 spin_lock(&info->block_group_cache_lock);
9116 rb_erase(&cache->cache_node,
9117 &info->block_group_cache_tree);
9118 spin_unlock(&info->block_group_cache_lock);
9119 btrfs_put_block_group(cache);
9120 goto error;
9121 }
9122
9123 cache->space_info = space_info;
9124 spin_lock(&cache->space_info->lock);
9125 cache->space_info->bytes_readonly += cache->bytes_super;
9126 spin_unlock(&cache->space_info->lock);
9127
9128 __link_block_group(space_info, cache);
9129
9130 set_avail_alloc_bits(root->fs_info, cache->flags);
9131 if (btrfs_chunk_readonly(root, cache->key.objectid))
9132 set_block_group_ro(cache, 1);
9133 }
9134
9135 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9136 if (!(get_alloc_profile(root, space_info->flags) &
9137 (BTRFS_BLOCK_GROUP_RAID10 |
9138 BTRFS_BLOCK_GROUP_RAID1 |
9139 BTRFS_BLOCK_GROUP_RAID5 |
9140 BTRFS_BLOCK_GROUP_RAID6 |
9141 BTRFS_BLOCK_GROUP_DUP)))
9142 continue;
9143 /*
9144 * avoid allocating from un-mirrored block group if there are
9145 * mirrored block groups.
9146 */
9147 list_for_each_entry(cache,
9148 &space_info->block_groups[BTRFS_RAID_RAID0],
9149 list)
9150 set_block_group_ro(cache, 1);
9151 list_for_each_entry(cache,
9152 &space_info->block_groups[BTRFS_RAID_SINGLE],
9153 list)
9154 set_block_group_ro(cache, 1);
9155 }
9156
9157 init_global_block_rsv(info);
9158 ret = 0;
9159 error:
9160 btrfs_free_path(path);
9161 return ret;
9162 }
9163
9164 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9165 struct btrfs_root *root)
9166 {
9167 struct btrfs_block_group_cache *block_group, *tmp;
9168 struct btrfs_root *extent_root = root->fs_info->extent_root;
9169 struct btrfs_block_group_item item;
9170 struct btrfs_key key;
9171 int ret = 0;
9172
9173 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
9174 new_bg_list) {
9175 list_del_init(&block_group->new_bg_list);
9176
9177 if (ret)
9178 continue;
9179
9180 spin_lock(&block_group->lock);
9181 memcpy(&item, &block_group->item, sizeof(item));
9182 memcpy(&key, &block_group->key, sizeof(key));
9183 spin_unlock(&block_group->lock);
9184
9185 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9186 sizeof(item));
9187 if (ret)
9188 btrfs_abort_transaction(trans, extent_root, ret);
9189 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9190 key.objectid, key.offset);
9191 if (ret)
9192 btrfs_abort_transaction(trans, extent_root, ret);
9193 }
9194 }
9195
9196 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9197 struct btrfs_root *root, u64 bytes_used,
9198 u64 type, u64 chunk_objectid, u64 chunk_offset,
9199 u64 size)
9200 {
9201 int ret;
9202 struct btrfs_root *extent_root;
9203 struct btrfs_block_group_cache *cache;
9204
9205 extent_root = root->fs_info->extent_root;
9206
9207 btrfs_set_log_full_commit(root->fs_info, trans);
9208
9209 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9210 if (!cache)
9211 return -ENOMEM;
9212
9213 btrfs_set_block_group_used(&cache->item, bytes_used);
9214 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9215 btrfs_set_block_group_flags(&cache->item, type);
9216
9217 cache->flags = type;
9218 cache->last_byte_to_unpin = (u64)-1;
9219 cache->cached = BTRFS_CACHE_FINISHED;
9220 ret = exclude_super_stripes(root, cache);
9221 if (ret) {
9222 /*
9223 * We may have excluded something, so call this just in
9224 * case.
9225 */
9226 free_excluded_extents(root, cache);
9227 btrfs_put_block_group(cache);
9228 return ret;
9229 }
9230
9231 add_new_free_space(cache, root->fs_info, chunk_offset,
9232 chunk_offset + size);
9233
9234 free_excluded_extents(root, cache);
9235
9236 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9237 if (ret) {
9238 btrfs_remove_free_space_cache(cache);
9239 btrfs_put_block_group(cache);
9240 return ret;
9241 }
9242
9243 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9244 &cache->space_info);
9245 if (ret) {
9246 btrfs_remove_free_space_cache(cache);
9247 spin_lock(&root->fs_info->block_group_cache_lock);
9248 rb_erase(&cache->cache_node,
9249 &root->fs_info->block_group_cache_tree);
9250 spin_unlock(&root->fs_info->block_group_cache_lock);
9251 btrfs_put_block_group(cache);
9252 return ret;
9253 }
9254 update_global_block_rsv(root->fs_info);
9255
9256 spin_lock(&cache->space_info->lock);
9257 cache->space_info->bytes_readonly += cache->bytes_super;
9258 spin_unlock(&cache->space_info->lock);
9259
9260 __link_block_group(cache->space_info, cache);
9261
9262 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
9263
9264 set_avail_alloc_bits(extent_root->fs_info, type);
9265
9266 return 0;
9267 }
9268
9269 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9270 {
9271 u64 extra_flags = chunk_to_extended(flags) &
9272 BTRFS_EXTENDED_PROFILE_MASK;
9273
9274 write_seqlock(&fs_info->profiles_lock);
9275 if (flags & BTRFS_BLOCK_GROUP_DATA)
9276 fs_info->avail_data_alloc_bits &= ~extra_flags;
9277 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9278 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9279 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9280 fs_info->avail_system_alloc_bits &= ~extra_flags;
9281 write_sequnlock(&fs_info->profiles_lock);
9282 }
9283
9284 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9285 struct btrfs_root *root, u64 group_start)
9286 {
9287 struct btrfs_path *path;
9288 struct btrfs_block_group_cache *block_group;
9289 struct btrfs_free_cluster *cluster;
9290 struct btrfs_root *tree_root = root->fs_info->tree_root;
9291 struct btrfs_key key;
9292 struct inode *inode;
9293 struct kobject *kobj = NULL;
9294 int ret;
9295 int index;
9296 int factor;
9297
9298 root = root->fs_info->extent_root;
9299
9300 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9301 BUG_ON(!block_group);
9302 BUG_ON(!block_group->ro);
9303
9304 /*
9305 * Free the reserved super bytes from this block group before
9306 * remove it.
9307 */
9308 free_excluded_extents(root, block_group);
9309
9310 memcpy(&key, &block_group->key, sizeof(key));
9311 index = get_block_group_index(block_group);
9312 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9313 BTRFS_BLOCK_GROUP_RAID1 |
9314 BTRFS_BLOCK_GROUP_RAID10))
9315 factor = 2;
9316 else
9317 factor = 1;
9318
9319 /* make sure this block group isn't part of an allocation cluster */
9320 cluster = &root->fs_info->data_alloc_cluster;
9321 spin_lock(&cluster->refill_lock);
9322 btrfs_return_cluster_to_free_space(block_group, cluster);
9323 spin_unlock(&cluster->refill_lock);
9324
9325 /*
9326 * make sure this block group isn't part of a metadata
9327 * allocation cluster
9328 */
9329 cluster = &root->fs_info->meta_alloc_cluster;
9330 spin_lock(&cluster->refill_lock);
9331 btrfs_return_cluster_to_free_space(block_group, cluster);
9332 spin_unlock(&cluster->refill_lock);
9333
9334 path = btrfs_alloc_path();
9335 if (!path) {
9336 ret = -ENOMEM;
9337 goto out;
9338 }
9339
9340 inode = lookup_free_space_inode(tree_root, block_group, path);
9341 if (!IS_ERR(inode)) {
9342 ret = btrfs_orphan_add(trans, inode);
9343 if (ret) {
9344 btrfs_add_delayed_iput(inode);
9345 goto out;
9346 }
9347 clear_nlink(inode);
9348 /* One for the block groups ref */
9349 spin_lock(&block_group->lock);
9350 if (block_group->iref) {
9351 block_group->iref = 0;
9352 block_group->inode = NULL;
9353 spin_unlock(&block_group->lock);
9354 iput(inode);
9355 } else {
9356 spin_unlock(&block_group->lock);
9357 }
9358 /* One for our lookup ref */
9359 btrfs_add_delayed_iput(inode);
9360 }
9361
9362 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9363 key.offset = block_group->key.objectid;
9364 key.type = 0;
9365
9366 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9367 if (ret < 0)
9368 goto out;
9369 if (ret > 0)
9370 btrfs_release_path(path);
9371 if (ret == 0) {
9372 ret = btrfs_del_item(trans, tree_root, path);
9373 if (ret)
9374 goto out;
9375 btrfs_release_path(path);
9376 }
9377
9378 spin_lock(&root->fs_info->block_group_cache_lock);
9379 rb_erase(&block_group->cache_node,
9380 &root->fs_info->block_group_cache_tree);
9381
9382 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9383 root->fs_info->first_logical_byte = (u64)-1;
9384 spin_unlock(&root->fs_info->block_group_cache_lock);
9385
9386 down_write(&block_group->space_info->groups_sem);
9387 /*
9388 * we must use list_del_init so people can check to see if they
9389 * are still on the list after taking the semaphore
9390 */
9391 list_del_init(&block_group->list);
9392 if (list_empty(&block_group->space_info->block_groups[index])) {
9393 kobj = block_group->space_info->block_group_kobjs[index];
9394 block_group->space_info->block_group_kobjs[index] = NULL;
9395 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9396 }
9397 up_write(&block_group->space_info->groups_sem);
9398 if (kobj) {
9399 kobject_del(kobj);
9400 kobject_put(kobj);
9401 }
9402
9403 if (block_group->cached == BTRFS_CACHE_STARTED)
9404 wait_block_group_cache_done(block_group);
9405
9406 btrfs_remove_free_space_cache(block_group);
9407
9408 spin_lock(&block_group->space_info->lock);
9409 block_group->space_info->total_bytes -= block_group->key.offset;
9410 block_group->space_info->bytes_readonly -= block_group->key.offset;
9411 block_group->space_info->disk_total -= block_group->key.offset * factor;
9412 spin_unlock(&block_group->space_info->lock);
9413
9414 memcpy(&key, &block_group->key, sizeof(key));
9415
9416 btrfs_clear_space_info_full(root->fs_info);
9417
9418 btrfs_put_block_group(block_group);
9419 btrfs_put_block_group(block_group);
9420
9421 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9422 if (ret > 0)
9423 ret = -EIO;
9424 if (ret < 0)
9425 goto out;
9426
9427 ret = btrfs_del_item(trans, root, path);
9428 out:
9429 btrfs_free_path(path);
9430 return ret;
9431 }
9432
9433 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9434 {
9435 struct btrfs_space_info *space_info;
9436 struct btrfs_super_block *disk_super;
9437 u64 features;
9438 u64 flags;
9439 int mixed = 0;
9440 int ret;
9441
9442 disk_super = fs_info->super_copy;
9443 if (!btrfs_super_root(disk_super))
9444 return 1;
9445
9446 features = btrfs_super_incompat_flags(disk_super);
9447 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9448 mixed = 1;
9449
9450 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9451 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9452 if (ret)
9453 goto out;
9454
9455 if (mixed) {
9456 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9457 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9458 } else {
9459 flags = BTRFS_BLOCK_GROUP_METADATA;
9460 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9461 if (ret)
9462 goto out;
9463
9464 flags = BTRFS_BLOCK_GROUP_DATA;
9465 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9466 }
9467 out:
9468 return ret;
9469 }
9470
9471 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9472 {
9473 return unpin_extent_range(root, start, end);
9474 }
9475
9476 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
9477 u64 num_bytes, u64 *actual_bytes)
9478 {
9479 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
9480 }
9481
9482 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9483 {
9484 struct btrfs_fs_info *fs_info = root->fs_info;
9485 struct btrfs_block_group_cache *cache = NULL;
9486 u64 group_trimmed;
9487 u64 start;
9488 u64 end;
9489 u64 trimmed = 0;
9490 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9491 int ret = 0;
9492
9493 /*
9494 * try to trim all FS space, our block group may start from non-zero.
9495 */
9496 if (range->len == total_bytes)
9497 cache = btrfs_lookup_first_block_group(fs_info, range->start);
9498 else
9499 cache = btrfs_lookup_block_group(fs_info, range->start);
9500
9501 while (cache) {
9502 if (cache->key.objectid >= (range->start + range->len)) {
9503 btrfs_put_block_group(cache);
9504 break;
9505 }
9506
9507 start = max(range->start, cache->key.objectid);
9508 end = min(range->start + range->len,
9509 cache->key.objectid + cache->key.offset);
9510
9511 if (end - start >= range->minlen) {
9512 if (!block_group_cache_done(cache)) {
9513 ret = cache_block_group(cache, 0);
9514 if (ret) {
9515 btrfs_put_block_group(cache);
9516 break;
9517 }
9518 ret = wait_block_group_cache_done(cache);
9519 if (ret) {
9520 btrfs_put_block_group(cache);
9521 break;
9522 }
9523 }
9524 ret = btrfs_trim_block_group(cache,
9525 &group_trimmed,
9526 start,
9527 end,
9528 range->minlen);
9529
9530 trimmed += group_trimmed;
9531 if (ret) {
9532 btrfs_put_block_group(cache);
9533 break;
9534 }
9535 }
9536
9537 cache = next_block_group(fs_info->tree_root, cache);
9538 }
9539
9540 range->len = trimmed;
9541 return ret;
9542 }
9543
9544 /*
9545 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
9546 * they are used to prevent the some tasks writing data into the page cache
9547 * by nocow before the subvolume is snapshoted, but flush the data into
9548 * the disk after the snapshot creation.
9549 */
9550 void btrfs_end_nocow_write(struct btrfs_root *root)
9551 {
9552 percpu_counter_dec(&root->subv_writers->counter);
9553 /*
9554 * Make sure counter is updated before we wake up
9555 * waiters.
9556 */
9557 smp_mb();
9558 if (waitqueue_active(&root->subv_writers->wait))
9559 wake_up(&root->subv_writers->wait);
9560 }
9561
9562 int btrfs_start_nocow_write(struct btrfs_root *root)
9563 {
9564 if (unlikely(atomic_read(&root->will_be_snapshoted)))
9565 return 0;
9566
9567 percpu_counter_inc(&root->subv_writers->counter);
9568 /*
9569 * Make sure counter is updated before we check for snapshot creation.
9570 */
9571 smp_mb();
9572 if (unlikely(atomic_read(&root->will_be_snapshoted))) {
9573 btrfs_end_nocow_write(root);
9574 return 0;
9575 }
9576 return 1;
9577 }
This page took 0.212972 seconds and 6 git commands to generate.