Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 #undef SCRAMBLE_DELAYED_REFS
38
39 /*
40 * control flags for do_chunk_alloc's force field
41 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
42 * if we really need one.
43 *
44 * CHUNK_ALLOC_LIMITED means to only try and allocate one
45 * if we have very few chunks already allocated. This is
46 * used as part of the clustering code to help make sure
47 * we have a good pool of storage to cluster in, without
48 * filling the FS with empty chunks
49 *
50 * CHUNK_ALLOC_FORCE means it must try to allocate one
51 *
52 */
53 enum {
54 CHUNK_ALLOC_NO_FORCE = 0,
55 CHUNK_ALLOC_LIMITED = 1,
56 CHUNK_ALLOC_FORCE = 2,
57 };
58
59 /*
60 * Control how reservations are dealt with.
61 *
62 * RESERVE_FREE - freeing a reservation.
63 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
64 * ENOSPC accounting
65 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
66 * bytes_may_use as the ENOSPC accounting is done elsewhere
67 */
68 enum {
69 RESERVE_FREE = 0,
70 RESERVE_ALLOC = 1,
71 RESERVE_ALLOC_NO_ACCOUNT = 2,
72 };
73
74 static int update_block_group(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, int alloc);
77 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root,
79 u64 bytenr, u64 num_bytes, u64 parent,
80 u64 root_objectid, u64 owner_objectid,
81 u64 owner_offset, int refs_to_drop,
82 struct btrfs_delayed_extent_op *extra_op);
83 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
84 struct extent_buffer *leaf,
85 struct btrfs_extent_item *ei);
86 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
87 struct btrfs_root *root,
88 u64 parent, u64 root_objectid,
89 u64 flags, u64 owner, u64 offset,
90 struct btrfs_key *ins, int ref_mod);
91 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
92 struct btrfs_root *root,
93 u64 parent, u64 root_objectid,
94 u64 flags, struct btrfs_disk_key *key,
95 int level, struct btrfs_key *ins);
96 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
97 struct btrfs_root *extent_root, u64 alloc_bytes,
98 u64 flags, int force);
99 static int find_next_key(struct btrfs_path *path, int level,
100 struct btrfs_key *key);
101 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
102 int dump_block_groups);
103 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
104 u64 num_bytes, int reserve);
105
106 static noinline int
107 block_group_cache_done(struct btrfs_block_group_cache *cache)
108 {
109 smp_mb();
110 return cache->cached == BTRFS_CACHE_FINISHED;
111 }
112
113 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
114 {
115 return (cache->flags & bits) == bits;
116 }
117
118 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
119 {
120 atomic_inc(&cache->count);
121 }
122
123 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
124 {
125 if (atomic_dec_and_test(&cache->count)) {
126 WARN_ON(cache->pinned > 0);
127 WARN_ON(cache->reserved > 0);
128 kfree(cache->free_space_ctl);
129 kfree(cache);
130 }
131 }
132
133 /*
134 * this adds the block group to the fs_info rb tree for the block group
135 * cache
136 */
137 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
138 struct btrfs_block_group_cache *block_group)
139 {
140 struct rb_node **p;
141 struct rb_node *parent = NULL;
142 struct btrfs_block_group_cache *cache;
143
144 spin_lock(&info->block_group_cache_lock);
145 p = &info->block_group_cache_tree.rb_node;
146
147 while (*p) {
148 parent = *p;
149 cache = rb_entry(parent, struct btrfs_block_group_cache,
150 cache_node);
151 if (block_group->key.objectid < cache->key.objectid) {
152 p = &(*p)->rb_left;
153 } else if (block_group->key.objectid > cache->key.objectid) {
154 p = &(*p)->rb_right;
155 } else {
156 spin_unlock(&info->block_group_cache_lock);
157 return -EEXIST;
158 }
159 }
160
161 rb_link_node(&block_group->cache_node, parent, p);
162 rb_insert_color(&block_group->cache_node,
163 &info->block_group_cache_tree);
164 spin_unlock(&info->block_group_cache_lock);
165
166 return 0;
167 }
168
169 /*
170 * This will return the block group at or after bytenr if contains is 0, else
171 * it will return the block group that contains the bytenr
172 */
173 static struct btrfs_block_group_cache *
174 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
175 int contains)
176 {
177 struct btrfs_block_group_cache *cache, *ret = NULL;
178 struct rb_node *n;
179 u64 end, start;
180
181 spin_lock(&info->block_group_cache_lock);
182 n = info->block_group_cache_tree.rb_node;
183
184 while (n) {
185 cache = rb_entry(n, struct btrfs_block_group_cache,
186 cache_node);
187 end = cache->key.objectid + cache->key.offset - 1;
188 start = cache->key.objectid;
189
190 if (bytenr < start) {
191 if (!contains && (!ret || start < ret->key.objectid))
192 ret = cache;
193 n = n->rb_left;
194 } else if (bytenr > start) {
195 if (contains && bytenr <= end) {
196 ret = cache;
197 break;
198 }
199 n = n->rb_right;
200 } else {
201 ret = cache;
202 break;
203 }
204 }
205 if (ret)
206 btrfs_get_block_group(ret);
207 spin_unlock(&info->block_group_cache_lock);
208
209 return ret;
210 }
211
212 static int add_excluded_extent(struct btrfs_root *root,
213 u64 start, u64 num_bytes)
214 {
215 u64 end = start + num_bytes - 1;
216 set_extent_bits(&root->fs_info->freed_extents[0],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 set_extent_bits(&root->fs_info->freed_extents[1],
219 start, end, EXTENT_UPTODATE, GFP_NOFS);
220 return 0;
221 }
222
223 static void free_excluded_extents(struct btrfs_root *root,
224 struct btrfs_block_group_cache *cache)
225 {
226 u64 start, end;
227
228 start = cache->key.objectid;
229 end = start + cache->key.offset - 1;
230
231 clear_extent_bits(&root->fs_info->freed_extents[0],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 clear_extent_bits(&root->fs_info->freed_extents[1],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 }
236
237 static int exclude_super_stripes(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 bytenr;
241 u64 *logical;
242 int stripe_len;
243 int i, nr, ret;
244
245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
247 cache->bytes_super += stripe_len;
248 ret = add_excluded_extent(root, cache->key.objectid,
249 stripe_len);
250 BUG_ON(ret); /* -ENOMEM */
251 }
252
253 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
254 bytenr = btrfs_sb_offset(i);
255 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
256 cache->key.objectid, bytenr,
257 0, &logical, &nr, &stripe_len);
258 BUG_ON(ret); /* -ENOMEM */
259
260 while (nr--) {
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, logical[nr],
263 stripe_len);
264 BUG_ON(ret); /* -ENOMEM */
265 }
266
267 kfree(logical);
268 }
269 return 0;
270 }
271
272 static struct btrfs_caching_control *
273 get_caching_control(struct btrfs_block_group_cache *cache)
274 {
275 struct btrfs_caching_control *ctl;
276
277 spin_lock(&cache->lock);
278 if (cache->cached != BTRFS_CACHE_STARTED) {
279 spin_unlock(&cache->lock);
280 return NULL;
281 }
282
283 /* We're loading it the fast way, so we don't have a caching_ctl. */
284 if (!cache->caching_ctl) {
285 spin_unlock(&cache->lock);
286 return NULL;
287 }
288
289 ctl = cache->caching_ctl;
290 atomic_inc(&ctl->count);
291 spin_unlock(&cache->lock);
292 return ctl;
293 }
294
295 static void put_caching_control(struct btrfs_caching_control *ctl)
296 {
297 if (atomic_dec_and_test(&ctl->count))
298 kfree(ctl);
299 }
300
301 /*
302 * this is only called by cache_block_group, since we could have freed extents
303 * we need to check the pinned_extents for any extents that can't be used yet
304 * since their free space will be released as soon as the transaction commits.
305 */
306 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
307 struct btrfs_fs_info *info, u64 start, u64 end)
308 {
309 u64 extent_start, extent_end, size, total_added = 0;
310 int ret;
311
312 while (start < end) {
313 ret = find_first_extent_bit(info->pinned_extents, start,
314 &extent_start, &extent_end,
315 EXTENT_DIRTY | EXTENT_UPTODATE);
316 if (ret)
317 break;
318
319 if (extent_start <= start) {
320 start = extent_end + 1;
321 } else if (extent_start > start && extent_start < end) {
322 size = extent_start - start;
323 total_added += size;
324 ret = btrfs_add_free_space(block_group, start,
325 size);
326 BUG_ON(ret); /* -ENOMEM or logic error */
327 start = extent_end + 1;
328 } else {
329 break;
330 }
331 }
332
333 if (start < end) {
334 size = end - start;
335 total_added += size;
336 ret = btrfs_add_free_space(block_group, start, size);
337 BUG_ON(ret); /* -ENOMEM or logic error */
338 }
339
340 return total_added;
341 }
342
343 static noinline void caching_thread(struct btrfs_work *work)
344 {
345 struct btrfs_block_group_cache *block_group;
346 struct btrfs_fs_info *fs_info;
347 struct btrfs_caching_control *caching_ctl;
348 struct btrfs_root *extent_root;
349 struct btrfs_path *path;
350 struct extent_buffer *leaf;
351 struct btrfs_key key;
352 u64 total_found = 0;
353 u64 last = 0;
354 u32 nritems;
355 int ret = 0;
356
357 caching_ctl = container_of(work, struct btrfs_caching_control, work);
358 block_group = caching_ctl->block_group;
359 fs_info = block_group->fs_info;
360 extent_root = fs_info->extent_root;
361
362 path = btrfs_alloc_path();
363 if (!path)
364 goto out;
365
366 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
367
368 /*
369 * We don't want to deadlock with somebody trying to allocate a new
370 * extent for the extent root while also trying to search the extent
371 * root to add free space. So we skip locking and search the commit
372 * root, since its read-only
373 */
374 path->skip_locking = 1;
375 path->search_commit_root = 1;
376 path->reada = 1;
377
378 key.objectid = last;
379 key.offset = 0;
380 key.type = BTRFS_EXTENT_ITEM_KEY;
381 again:
382 mutex_lock(&caching_ctl->mutex);
383 /* need to make sure the commit_root doesn't disappear */
384 down_read(&fs_info->extent_commit_sem);
385
386 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
387 if (ret < 0)
388 goto err;
389
390 leaf = path->nodes[0];
391 nritems = btrfs_header_nritems(leaf);
392
393 while (1) {
394 if (btrfs_fs_closing(fs_info) > 1) {
395 last = (u64)-1;
396 break;
397 }
398
399 if (path->slots[0] < nritems) {
400 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
401 } else {
402 ret = find_next_key(path, 0, &key);
403 if (ret)
404 break;
405
406 if (need_resched() ||
407 btrfs_next_leaf(extent_root, path)) {
408 caching_ctl->progress = last;
409 btrfs_release_path(path);
410 up_read(&fs_info->extent_commit_sem);
411 mutex_unlock(&caching_ctl->mutex);
412 cond_resched();
413 goto again;
414 }
415 leaf = path->nodes[0];
416 nritems = btrfs_header_nritems(leaf);
417 continue;
418 }
419
420 if (key.objectid < block_group->key.objectid) {
421 path->slots[0]++;
422 continue;
423 }
424
425 if (key.objectid >= block_group->key.objectid +
426 block_group->key.offset)
427 break;
428
429 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
430 total_found += add_new_free_space(block_group,
431 fs_info, last,
432 key.objectid);
433 last = key.objectid + key.offset;
434
435 if (total_found > (1024 * 1024 * 2)) {
436 total_found = 0;
437 wake_up(&caching_ctl->wait);
438 }
439 }
440 path->slots[0]++;
441 }
442 ret = 0;
443
444 total_found += add_new_free_space(block_group, fs_info, last,
445 block_group->key.objectid +
446 block_group->key.offset);
447 caching_ctl->progress = (u64)-1;
448
449 spin_lock(&block_group->lock);
450 block_group->caching_ctl = NULL;
451 block_group->cached = BTRFS_CACHE_FINISHED;
452 spin_unlock(&block_group->lock);
453
454 err:
455 btrfs_free_path(path);
456 up_read(&fs_info->extent_commit_sem);
457
458 free_excluded_extents(extent_root, block_group);
459
460 mutex_unlock(&caching_ctl->mutex);
461 out:
462 wake_up(&caching_ctl->wait);
463
464 put_caching_control(caching_ctl);
465 btrfs_put_block_group(block_group);
466 }
467
468 static int cache_block_group(struct btrfs_block_group_cache *cache,
469 struct btrfs_trans_handle *trans,
470 struct btrfs_root *root,
471 int load_cache_only)
472 {
473 DEFINE_WAIT(wait);
474 struct btrfs_fs_info *fs_info = cache->fs_info;
475 struct btrfs_caching_control *caching_ctl;
476 int ret = 0;
477
478 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
479 if (!caching_ctl)
480 return -ENOMEM;
481
482 INIT_LIST_HEAD(&caching_ctl->list);
483 mutex_init(&caching_ctl->mutex);
484 init_waitqueue_head(&caching_ctl->wait);
485 caching_ctl->block_group = cache;
486 caching_ctl->progress = cache->key.objectid;
487 atomic_set(&caching_ctl->count, 1);
488 caching_ctl->work.func = caching_thread;
489
490 spin_lock(&cache->lock);
491 /*
492 * This should be a rare occasion, but this could happen I think in the
493 * case where one thread starts to load the space cache info, and then
494 * some other thread starts a transaction commit which tries to do an
495 * allocation while the other thread is still loading the space cache
496 * info. The previous loop should have kept us from choosing this block
497 * group, but if we've moved to the state where we will wait on caching
498 * block groups we need to first check if we're doing a fast load here,
499 * so we can wait for it to finish, otherwise we could end up allocating
500 * from a block group who's cache gets evicted for one reason or
501 * another.
502 */
503 while (cache->cached == BTRFS_CACHE_FAST) {
504 struct btrfs_caching_control *ctl;
505
506 ctl = cache->caching_ctl;
507 atomic_inc(&ctl->count);
508 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
509 spin_unlock(&cache->lock);
510
511 schedule();
512
513 finish_wait(&ctl->wait, &wait);
514 put_caching_control(ctl);
515 spin_lock(&cache->lock);
516 }
517
518 if (cache->cached != BTRFS_CACHE_NO) {
519 spin_unlock(&cache->lock);
520 kfree(caching_ctl);
521 return 0;
522 }
523 WARN_ON(cache->caching_ctl);
524 cache->caching_ctl = caching_ctl;
525 cache->cached = BTRFS_CACHE_FAST;
526 spin_unlock(&cache->lock);
527
528 /*
529 * We can't do the read from on-disk cache during a commit since we need
530 * to have the normal tree locking. Also if we are currently trying to
531 * allocate blocks for the tree root we can't do the fast caching since
532 * we likely hold important locks.
533 */
534 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
535 ret = load_free_space_cache(fs_info, cache);
536
537 spin_lock(&cache->lock);
538 if (ret == 1) {
539 cache->caching_ctl = NULL;
540 cache->cached = BTRFS_CACHE_FINISHED;
541 cache->last_byte_to_unpin = (u64)-1;
542 } else {
543 if (load_cache_only) {
544 cache->caching_ctl = NULL;
545 cache->cached = BTRFS_CACHE_NO;
546 } else {
547 cache->cached = BTRFS_CACHE_STARTED;
548 }
549 }
550 spin_unlock(&cache->lock);
551 wake_up(&caching_ctl->wait);
552 if (ret == 1) {
553 put_caching_control(caching_ctl);
554 free_excluded_extents(fs_info->extent_root, cache);
555 return 0;
556 }
557 } else {
558 /*
559 * We are not going to do the fast caching, set cached to the
560 * appropriate value and wakeup any waiters.
561 */
562 spin_lock(&cache->lock);
563 if (load_cache_only) {
564 cache->caching_ctl = NULL;
565 cache->cached = BTRFS_CACHE_NO;
566 } else {
567 cache->cached = BTRFS_CACHE_STARTED;
568 }
569 spin_unlock(&cache->lock);
570 wake_up(&caching_ctl->wait);
571 }
572
573 if (load_cache_only) {
574 put_caching_control(caching_ctl);
575 return 0;
576 }
577
578 down_write(&fs_info->extent_commit_sem);
579 atomic_inc(&caching_ctl->count);
580 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
581 up_write(&fs_info->extent_commit_sem);
582
583 btrfs_get_block_group(cache);
584
585 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
586
587 return ret;
588 }
589
590 /*
591 * return the block group that starts at or after bytenr
592 */
593 static struct btrfs_block_group_cache *
594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
595 {
596 struct btrfs_block_group_cache *cache;
597
598 cache = block_group_cache_tree_search(info, bytenr, 0);
599
600 return cache;
601 }
602
603 /*
604 * return the block group that contains the given bytenr
605 */
606 struct btrfs_block_group_cache *btrfs_lookup_block_group(
607 struct btrfs_fs_info *info,
608 u64 bytenr)
609 {
610 struct btrfs_block_group_cache *cache;
611
612 cache = block_group_cache_tree_search(info, bytenr, 1);
613
614 return cache;
615 }
616
617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
618 u64 flags)
619 {
620 struct list_head *head = &info->space_info;
621 struct btrfs_space_info *found;
622
623 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
624
625 rcu_read_lock();
626 list_for_each_entry_rcu(found, head, list) {
627 if (found->flags & flags) {
628 rcu_read_unlock();
629 return found;
630 }
631 }
632 rcu_read_unlock();
633 return NULL;
634 }
635
636 /*
637 * after adding space to the filesystem, we need to clear the full flags
638 * on all the space infos.
639 */
640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
641 {
642 struct list_head *head = &info->space_info;
643 struct btrfs_space_info *found;
644
645 rcu_read_lock();
646 list_for_each_entry_rcu(found, head, list)
647 found->full = 0;
648 rcu_read_unlock();
649 }
650
651 static u64 div_factor(u64 num, int factor)
652 {
653 if (factor == 10)
654 return num;
655 num *= factor;
656 do_div(num, 10);
657 return num;
658 }
659
660 static u64 div_factor_fine(u64 num, int factor)
661 {
662 if (factor == 100)
663 return num;
664 num *= factor;
665 do_div(num, 100);
666 return num;
667 }
668
669 u64 btrfs_find_block_group(struct btrfs_root *root,
670 u64 search_start, u64 search_hint, int owner)
671 {
672 struct btrfs_block_group_cache *cache;
673 u64 used;
674 u64 last = max(search_hint, search_start);
675 u64 group_start = 0;
676 int full_search = 0;
677 int factor = 9;
678 int wrapped = 0;
679 again:
680 while (1) {
681 cache = btrfs_lookup_first_block_group(root->fs_info, last);
682 if (!cache)
683 break;
684
685 spin_lock(&cache->lock);
686 last = cache->key.objectid + cache->key.offset;
687 used = btrfs_block_group_used(&cache->item);
688
689 if ((full_search || !cache->ro) &&
690 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
691 if (used + cache->pinned + cache->reserved <
692 div_factor(cache->key.offset, factor)) {
693 group_start = cache->key.objectid;
694 spin_unlock(&cache->lock);
695 btrfs_put_block_group(cache);
696 goto found;
697 }
698 }
699 spin_unlock(&cache->lock);
700 btrfs_put_block_group(cache);
701 cond_resched();
702 }
703 if (!wrapped) {
704 last = search_start;
705 wrapped = 1;
706 goto again;
707 }
708 if (!full_search && factor < 10) {
709 last = search_start;
710 full_search = 1;
711 factor = 10;
712 goto again;
713 }
714 found:
715 return group_start;
716 }
717
718 /* simple helper to search for an existing extent at a given offset */
719 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
720 {
721 int ret;
722 struct btrfs_key key;
723 struct btrfs_path *path;
724
725 path = btrfs_alloc_path();
726 if (!path)
727 return -ENOMEM;
728
729 key.objectid = start;
730 key.offset = len;
731 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
732 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
733 0, 0);
734 btrfs_free_path(path);
735 return ret;
736 }
737
738 /*
739 * helper function to lookup reference count and flags of extent.
740 *
741 * the head node for delayed ref is used to store the sum of all the
742 * reference count modifications queued up in the rbtree. the head
743 * node may also store the extent flags to set. This way you can check
744 * to see what the reference count and extent flags would be if all of
745 * the delayed refs are not processed.
746 */
747 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root, u64 bytenr,
749 u64 num_bytes, u64 *refs, u64 *flags)
750 {
751 struct btrfs_delayed_ref_head *head;
752 struct btrfs_delayed_ref_root *delayed_refs;
753 struct btrfs_path *path;
754 struct btrfs_extent_item *ei;
755 struct extent_buffer *leaf;
756 struct btrfs_key key;
757 u32 item_size;
758 u64 num_refs;
759 u64 extent_flags;
760 int ret;
761
762 path = btrfs_alloc_path();
763 if (!path)
764 return -ENOMEM;
765
766 key.objectid = bytenr;
767 key.type = BTRFS_EXTENT_ITEM_KEY;
768 key.offset = num_bytes;
769 if (!trans) {
770 path->skip_locking = 1;
771 path->search_commit_root = 1;
772 }
773 again:
774 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
775 &key, path, 0, 0);
776 if (ret < 0)
777 goto out_free;
778
779 if (ret == 0) {
780 leaf = path->nodes[0];
781 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
782 if (item_size >= sizeof(*ei)) {
783 ei = btrfs_item_ptr(leaf, path->slots[0],
784 struct btrfs_extent_item);
785 num_refs = btrfs_extent_refs(leaf, ei);
786 extent_flags = btrfs_extent_flags(leaf, ei);
787 } else {
788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
789 struct btrfs_extent_item_v0 *ei0;
790 BUG_ON(item_size != sizeof(*ei0));
791 ei0 = btrfs_item_ptr(leaf, path->slots[0],
792 struct btrfs_extent_item_v0);
793 num_refs = btrfs_extent_refs_v0(leaf, ei0);
794 /* FIXME: this isn't correct for data */
795 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
796 #else
797 BUG();
798 #endif
799 }
800 BUG_ON(num_refs == 0);
801 } else {
802 num_refs = 0;
803 extent_flags = 0;
804 ret = 0;
805 }
806
807 if (!trans)
808 goto out;
809
810 delayed_refs = &trans->transaction->delayed_refs;
811 spin_lock(&delayed_refs->lock);
812 head = btrfs_find_delayed_ref_head(trans, bytenr);
813 if (head) {
814 if (!mutex_trylock(&head->mutex)) {
815 atomic_inc(&head->node.refs);
816 spin_unlock(&delayed_refs->lock);
817
818 btrfs_release_path(path);
819
820 /*
821 * Mutex was contended, block until it's released and try
822 * again
823 */
824 mutex_lock(&head->mutex);
825 mutex_unlock(&head->mutex);
826 btrfs_put_delayed_ref(&head->node);
827 goto again;
828 }
829 if (head->extent_op && head->extent_op->update_flags)
830 extent_flags |= head->extent_op->flags_to_set;
831 else
832 BUG_ON(num_refs == 0);
833
834 num_refs += head->node.ref_mod;
835 mutex_unlock(&head->mutex);
836 }
837 spin_unlock(&delayed_refs->lock);
838 out:
839 WARN_ON(num_refs == 0);
840 if (refs)
841 *refs = num_refs;
842 if (flags)
843 *flags = extent_flags;
844 out_free:
845 btrfs_free_path(path);
846 return ret;
847 }
848
849 /*
850 * Back reference rules. Back refs have three main goals:
851 *
852 * 1) differentiate between all holders of references to an extent so that
853 * when a reference is dropped we can make sure it was a valid reference
854 * before freeing the extent.
855 *
856 * 2) Provide enough information to quickly find the holders of an extent
857 * if we notice a given block is corrupted or bad.
858 *
859 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
860 * maintenance. This is actually the same as #2, but with a slightly
861 * different use case.
862 *
863 * There are two kinds of back refs. The implicit back refs is optimized
864 * for pointers in non-shared tree blocks. For a given pointer in a block,
865 * back refs of this kind provide information about the block's owner tree
866 * and the pointer's key. These information allow us to find the block by
867 * b-tree searching. The full back refs is for pointers in tree blocks not
868 * referenced by their owner trees. The location of tree block is recorded
869 * in the back refs. Actually the full back refs is generic, and can be
870 * used in all cases the implicit back refs is used. The major shortcoming
871 * of the full back refs is its overhead. Every time a tree block gets
872 * COWed, we have to update back refs entry for all pointers in it.
873 *
874 * For a newly allocated tree block, we use implicit back refs for
875 * pointers in it. This means most tree related operations only involve
876 * implicit back refs. For a tree block created in old transaction, the
877 * only way to drop a reference to it is COW it. So we can detect the
878 * event that tree block loses its owner tree's reference and do the
879 * back refs conversion.
880 *
881 * When a tree block is COW'd through a tree, there are four cases:
882 *
883 * The reference count of the block is one and the tree is the block's
884 * owner tree. Nothing to do in this case.
885 *
886 * The reference count of the block is one and the tree is not the
887 * block's owner tree. In this case, full back refs is used for pointers
888 * in the block. Remove these full back refs, add implicit back refs for
889 * every pointers in the new block.
890 *
891 * The reference count of the block is greater than one and the tree is
892 * the block's owner tree. In this case, implicit back refs is used for
893 * pointers in the block. Add full back refs for every pointers in the
894 * block, increase lower level extents' reference counts. The original
895 * implicit back refs are entailed to the new block.
896 *
897 * The reference count of the block is greater than one and the tree is
898 * not the block's owner tree. Add implicit back refs for every pointer in
899 * the new block, increase lower level extents' reference count.
900 *
901 * Back Reference Key composing:
902 *
903 * The key objectid corresponds to the first byte in the extent,
904 * The key type is used to differentiate between types of back refs.
905 * There are different meanings of the key offset for different types
906 * of back refs.
907 *
908 * File extents can be referenced by:
909 *
910 * - multiple snapshots, subvolumes, or different generations in one subvol
911 * - different files inside a single subvolume
912 * - different offsets inside a file (bookend extents in file.c)
913 *
914 * The extent ref structure for the implicit back refs has fields for:
915 *
916 * - Objectid of the subvolume root
917 * - objectid of the file holding the reference
918 * - original offset in the file
919 * - how many bookend extents
920 *
921 * The key offset for the implicit back refs is hash of the first
922 * three fields.
923 *
924 * The extent ref structure for the full back refs has field for:
925 *
926 * - number of pointers in the tree leaf
927 *
928 * The key offset for the implicit back refs is the first byte of
929 * the tree leaf
930 *
931 * When a file extent is allocated, The implicit back refs is used.
932 * the fields are filled in:
933 *
934 * (root_key.objectid, inode objectid, offset in file, 1)
935 *
936 * When a file extent is removed file truncation, we find the
937 * corresponding implicit back refs and check the following fields:
938 *
939 * (btrfs_header_owner(leaf), inode objectid, offset in file)
940 *
941 * Btree extents can be referenced by:
942 *
943 * - Different subvolumes
944 *
945 * Both the implicit back refs and the full back refs for tree blocks
946 * only consist of key. The key offset for the implicit back refs is
947 * objectid of block's owner tree. The key offset for the full back refs
948 * is the first byte of parent block.
949 *
950 * When implicit back refs is used, information about the lowest key and
951 * level of the tree block are required. These information are stored in
952 * tree block info structure.
953 */
954
955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
957 struct btrfs_root *root,
958 struct btrfs_path *path,
959 u64 owner, u32 extra_size)
960 {
961 struct btrfs_extent_item *item;
962 struct btrfs_extent_item_v0 *ei0;
963 struct btrfs_extent_ref_v0 *ref0;
964 struct btrfs_tree_block_info *bi;
965 struct extent_buffer *leaf;
966 struct btrfs_key key;
967 struct btrfs_key found_key;
968 u32 new_size = sizeof(*item);
969 u64 refs;
970 int ret;
971
972 leaf = path->nodes[0];
973 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
974
975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
976 ei0 = btrfs_item_ptr(leaf, path->slots[0],
977 struct btrfs_extent_item_v0);
978 refs = btrfs_extent_refs_v0(leaf, ei0);
979
980 if (owner == (u64)-1) {
981 while (1) {
982 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
983 ret = btrfs_next_leaf(root, path);
984 if (ret < 0)
985 return ret;
986 BUG_ON(ret > 0); /* Corruption */
987 leaf = path->nodes[0];
988 }
989 btrfs_item_key_to_cpu(leaf, &found_key,
990 path->slots[0]);
991 BUG_ON(key.objectid != found_key.objectid);
992 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
993 path->slots[0]++;
994 continue;
995 }
996 ref0 = btrfs_item_ptr(leaf, path->slots[0],
997 struct btrfs_extent_ref_v0);
998 owner = btrfs_ref_objectid_v0(leaf, ref0);
999 break;
1000 }
1001 }
1002 btrfs_release_path(path);
1003
1004 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1005 new_size += sizeof(*bi);
1006
1007 new_size -= sizeof(*ei0);
1008 ret = btrfs_search_slot(trans, root, &key, path,
1009 new_size + extra_size, 1);
1010 if (ret < 0)
1011 return ret;
1012 BUG_ON(ret); /* Corruption */
1013
1014 btrfs_extend_item(trans, root, path, new_size);
1015
1016 leaf = path->nodes[0];
1017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 btrfs_set_extent_refs(leaf, item, refs);
1019 /* FIXME: get real generation */
1020 btrfs_set_extent_generation(leaf, item, 0);
1021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1022 btrfs_set_extent_flags(leaf, item,
1023 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1024 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1025 bi = (struct btrfs_tree_block_info *)(item + 1);
1026 /* FIXME: get first key of the block */
1027 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1028 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1029 } else {
1030 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1031 }
1032 btrfs_mark_buffer_dirty(leaf);
1033 return 0;
1034 }
1035 #endif
1036
1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1038 {
1039 u32 high_crc = ~(u32)0;
1040 u32 low_crc = ~(u32)0;
1041 __le64 lenum;
1042
1043 lenum = cpu_to_le64(root_objectid);
1044 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(owner);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047 lenum = cpu_to_le64(offset);
1048 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1049
1050 return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 }
1052
1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1054 struct btrfs_extent_data_ref *ref)
1055 {
1056 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1057 btrfs_extent_data_ref_objectid(leaf, ref),
1058 btrfs_extent_data_ref_offset(leaf, ref));
1059 }
1060
1061 static int match_extent_data_ref(struct extent_buffer *leaf,
1062 struct btrfs_extent_data_ref *ref,
1063 u64 root_objectid, u64 owner, u64 offset)
1064 {
1065 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1066 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1067 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1068 return 0;
1069 return 1;
1070 }
1071
1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1073 struct btrfs_root *root,
1074 struct btrfs_path *path,
1075 u64 bytenr, u64 parent,
1076 u64 root_objectid,
1077 u64 owner, u64 offset)
1078 {
1079 struct btrfs_key key;
1080 struct btrfs_extent_data_ref *ref;
1081 struct extent_buffer *leaf;
1082 u32 nritems;
1083 int ret;
1084 int recow;
1085 int err = -ENOENT;
1086
1087 key.objectid = bytenr;
1088 if (parent) {
1089 key.type = BTRFS_SHARED_DATA_REF_KEY;
1090 key.offset = parent;
1091 } else {
1092 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1093 key.offset = hash_extent_data_ref(root_objectid,
1094 owner, offset);
1095 }
1096 again:
1097 recow = 0;
1098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1099 if (ret < 0) {
1100 err = ret;
1101 goto fail;
1102 }
1103
1104 if (parent) {
1105 if (!ret)
1106 return 0;
1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1108 key.type = BTRFS_EXTENT_REF_V0_KEY;
1109 btrfs_release_path(path);
1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 if (ret < 0) {
1112 err = ret;
1113 goto fail;
1114 }
1115 if (!ret)
1116 return 0;
1117 #endif
1118 goto fail;
1119 }
1120
1121 leaf = path->nodes[0];
1122 nritems = btrfs_header_nritems(leaf);
1123 while (1) {
1124 if (path->slots[0] >= nritems) {
1125 ret = btrfs_next_leaf(root, path);
1126 if (ret < 0)
1127 err = ret;
1128 if (ret)
1129 goto fail;
1130
1131 leaf = path->nodes[0];
1132 nritems = btrfs_header_nritems(leaf);
1133 recow = 1;
1134 }
1135
1136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1137 if (key.objectid != bytenr ||
1138 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139 goto fail;
1140
1141 ref = btrfs_item_ptr(leaf, path->slots[0],
1142 struct btrfs_extent_data_ref);
1143
1144 if (match_extent_data_ref(leaf, ref, root_objectid,
1145 owner, offset)) {
1146 if (recow) {
1147 btrfs_release_path(path);
1148 goto again;
1149 }
1150 err = 0;
1151 break;
1152 }
1153 path->slots[0]++;
1154 }
1155 fail:
1156 return err;
1157 }
1158
1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid, u64 owner,
1164 u64 offset, int refs_to_add)
1165 {
1166 struct btrfs_key key;
1167 struct extent_buffer *leaf;
1168 u32 size;
1169 u32 num_refs;
1170 int ret;
1171
1172 key.objectid = bytenr;
1173 if (parent) {
1174 key.type = BTRFS_SHARED_DATA_REF_KEY;
1175 key.offset = parent;
1176 size = sizeof(struct btrfs_shared_data_ref);
1177 } else {
1178 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 key.offset = hash_extent_data_ref(root_objectid,
1180 owner, offset);
1181 size = sizeof(struct btrfs_extent_data_ref);
1182 }
1183
1184 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1185 if (ret && ret != -EEXIST)
1186 goto fail;
1187
1188 leaf = path->nodes[0];
1189 if (parent) {
1190 struct btrfs_shared_data_ref *ref;
1191 ref = btrfs_item_ptr(leaf, path->slots[0],
1192 struct btrfs_shared_data_ref);
1193 if (ret == 0) {
1194 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1195 } else {
1196 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1197 num_refs += refs_to_add;
1198 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 }
1200 } else {
1201 struct btrfs_extent_data_ref *ref;
1202 while (ret == -EEXIST) {
1203 ref = btrfs_item_ptr(leaf, path->slots[0],
1204 struct btrfs_extent_data_ref);
1205 if (match_extent_data_ref(leaf, ref, root_objectid,
1206 owner, offset))
1207 break;
1208 btrfs_release_path(path);
1209 key.offset++;
1210 ret = btrfs_insert_empty_item(trans, root, path, &key,
1211 size);
1212 if (ret && ret != -EEXIST)
1213 goto fail;
1214
1215 leaf = path->nodes[0];
1216 }
1217 ref = btrfs_item_ptr(leaf, path->slots[0],
1218 struct btrfs_extent_data_ref);
1219 if (ret == 0) {
1220 btrfs_set_extent_data_ref_root(leaf, ref,
1221 root_objectid);
1222 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1223 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1224 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1225 } else {
1226 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1227 num_refs += refs_to_add;
1228 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 }
1230 }
1231 btrfs_mark_buffer_dirty(leaf);
1232 ret = 0;
1233 fail:
1234 btrfs_release_path(path);
1235 return ret;
1236 }
1237
1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1239 struct btrfs_root *root,
1240 struct btrfs_path *path,
1241 int refs_to_drop)
1242 {
1243 struct btrfs_key key;
1244 struct btrfs_extent_data_ref *ref1 = NULL;
1245 struct btrfs_shared_data_ref *ref2 = NULL;
1246 struct extent_buffer *leaf;
1247 u32 num_refs = 0;
1248 int ret = 0;
1249
1250 leaf = path->nodes[0];
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252
1253 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1254 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_extent_data_ref);
1256 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1257 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1258 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1259 struct btrfs_shared_data_ref);
1260 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1262 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1263 struct btrfs_extent_ref_v0 *ref0;
1264 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_extent_ref_v0);
1266 num_refs = btrfs_ref_count_v0(leaf, ref0);
1267 #endif
1268 } else {
1269 BUG();
1270 }
1271
1272 BUG_ON(num_refs < refs_to_drop);
1273 num_refs -= refs_to_drop;
1274
1275 if (num_refs == 0) {
1276 ret = btrfs_del_item(trans, root, path);
1277 } else {
1278 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1279 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1280 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1281 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 else {
1284 struct btrfs_extent_ref_v0 *ref0;
1285 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_ref_v0);
1287 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 }
1289 #endif
1290 btrfs_mark_buffer_dirty(leaf);
1291 }
1292 return ret;
1293 }
1294
1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1296 struct btrfs_path *path,
1297 struct btrfs_extent_inline_ref *iref)
1298 {
1299 struct btrfs_key key;
1300 struct extent_buffer *leaf;
1301 struct btrfs_extent_data_ref *ref1;
1302 struct btrfs_shared_data_ref *ref2;
1303 u32 num_refs = 0;
1304
1305 leaf = path->nodes[0];
1306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1307 if (iref) {
1308 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1309 BTRFS_EXTENT_DATA_REF_KEY) {
1310 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1311 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1312 } else {
1313 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1314 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1315 }
1316 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1317 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_data_ref);
1319 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1320 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1321 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1322 struct btrfs_shared_data_ref);
1323 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1325 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1326 struct btrfs_extent_ref_v0 *ref0;
1327 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1328 struct btrfs_extent_ref_v0);
1329 num_refs = btrfs_ref_count_v0(leaf, ref0);
1330 #endif
1331 } else {
1332 WARN_ON(1);
1333 }
1334 return num_refs;
1335 }
1336
1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1338 struct btrfs_root *root,
1339 struct btrfs_path *path,
1340 u64 bytenr, u64 parent,
1341 u64 root_objectid)
1342 {
1343 struct btrfs_key key;
1344 int ret;
1345
1346 key.objectid = bytenr;
1347 if (parent) {
1348 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1349 key.offset = parent;
1350 } else {
1351 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1352 key.offset = root_objectid;
1353 }
1354
1355 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1356 if (ret > 0)
1357 ret = -ENOENT;
1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1359 if (ret == -ENOENT && parent) {
1360 btrfs_release_path(path);
1361 key.type = BTRFS_EXTENT_REF_V0_KEY;
1362 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1363 if (ret > 0)
1364 ret = -ENOENT;
1365 }
1366 #endif
1367 return ret;
1368 }
1369
1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1375 {
1376 struct btrfs_key key;
1377 int ret;
1378
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1386 }
1387
1388 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1389 btrfs_release_path(path);
1390 return ret;
1391 }
1392
1393 static inline int extent_ref_type(u64 parent, u64 owner)
1394 {
1395 int type;
1396 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1397 if (parent > 0)
1398 type = BTRFS_SHARED_BLOCK_REF_KEY;
1399 else
1400 type = BTRFS_TREE_BLOCK_REF_KEY;
1401 } else {
1402 if (parent > 0)
1403 type = BTRFS_SHARED_DATA_REF_KEY;
1404 else
1405 type = BTRFS_EXTENT_DATA_REF_KEY;
1406 }
1407 return type;
1408 }
1409
1410 static int find_next_key(struct btrfs_path *path, int level,
1411 struct btrfs_key *key)
1412
1413 {
1414 for (; level < BTRFS_MAX_LEVEL; level++) {
1415 if (!path->nodes[level])
1416 break;
1417 if (path->slots[level] + 1 >=
1418 btrfs_header_nritems(path->nodes[level]))
1419 continue;
1420 if (level == 0)
1421 btrfs_item_key_to_cpu(path->nodes[level], key,
1422 path->slots[level] + 1);
1423 else
1424 btrfs_node_key_to_cpu(path->nodes[level], key,
1425 path->slots[level] + 1);
1426 return 0;
1427 }
1428 return 1;
1429 }
1430
1431 /*
1432 * look for inline back ref. if back ref is found, *ref_ret is set
1433 * to the address of inline back ref, and 0 is returned.
1434 *
1435 * if back ref isn't found, *ref_ret is set to the address where it
1436 * should be inserted, and -ENOENT is returned.
1437 *
1438 * if insert is true and there are too many inline back refs, the path
1439 * points to the extent item, and -EAGAIN is returned.
1440 *
1441 * NOTE: inline back refs are ordered in the same way that back ref
1442 * items in the tree are ordered.
1443 */
1444 static noinline_for_stack
1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1446 struct btrfs_root *root,
1447 struct btrfs_path *path,
1448 struct btrfs_extent_inline_ref **ref_ret,
1449 u64 bytenr, u64 num_bytes,
1450 u64 parent, u64 root_objectid,
1451 u64 owner, u64 offset, int insert)
1452 {
1453 struct btrfs_key key;
1454 struct extent_buffer *leaf;
1455 struct btrfs_extent_item *ei;
1456 struct btrfs_extent_inline_ref *iref;
1457 u64 flags;
1458 u64 item_size;
1459 unsigned long ptr;
1460 unsigned long end;
1461 int extra_size;
1462 int type;
1463 int want;
1464 int ret;
1465 int err = 0;
1466
1467 key.objectid = bytenr;
1468 key.type = BTRFS_EXTENT_ITEM_KEY;
1469 key.offset = num_bytes;
1470
1471 want = extent_ref_type(parent, owner);
1472 if (insert) {
1473 extra_size = btrfs_extent_inline_ref_size(want);
1474 path->keep_locks = 1;
1475 } else
1476 extra_size = -1;
1477 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1478 if (ret < 0) {
1479 err = ret;
1480 goto out;
1481 }
1482 if (ret && !insert) {
1483 err = -ENOENT;
1484 goto out;
1485 }
1486 BUG_ON(ret); /* Corruption */
1487
1488 leaf = path->nodes[0];
1489 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1490 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1491 if (item_size < sizeof(*ei)) {
1492 if (!insert) {
1493 err = -ENOENT;
1494 goto out;
1495 }
1496 ret = convert_extent_item_v0(trans, root, path, owner,
1497 extra_size);
1498 if (ret < 0) {
1499 err = ret;
1500 goto out;
1501 }
1502 leaf = path->nodes[0];
1503 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1504 }
1505 #endif
1506 BUG_ON(item_size < sizeof(*ei));
1507
1508 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1509 flags = btrfs_extent_flags(leaf, ei);
1510
1511 ptr = (unsigned long)(ei + 1);
1512 end = (unsigned long)ei + item_size;
1513
1514 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1515 ptr += sizeof(struct btrfs_tree_block_info);
1516 BUG_ON(ptr > end);
1517 } else {
1518 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1519 }
1520
1521 err = -ENOENT;
1522 while (1) {
1523 if (ptr >= end) {
1524 WARN_ON(ptr > end);
1525 break;
1526 }
1527 iref = (struct btrfs_extent_inline_ref *)ptr;
1528 type = btrfs_extent_inline_ref_type(leaf, iref);
1529 if (want < type)
1530 break;
1531 if (want > type) {
1532 ptr += btrfs_extent_inline_ref_size(type);
1533 continue;
1534 }
1535
1536 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1537 struct btrfs_extent_data_ref *dref;
1538 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1539 if (match_extent_data_ref(leaf, dref, root_objectid,
1540 owner, offset)) {
1541 err = 0;
1542 break;
1543 }
1544 if (hash_extent_data_ref_item(leaf, dref) <
1545 hash_extent_data_ref(root_objectid, owner, offset))
1546 break;
1547 } else {
1548 u64 ref_offset;
1549 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1550 if (parent > 0) {
1551 if (parent == ref_offset) {
1552 err = 0;
1553 break;
1554 }
1555 if (ref_offset < parent)
1556 break;
1557 } else {
1558 if (root_objectid == ref_offset) {
1559 err = 0;
1560 break;
1561 }
1562 if (ref_offset < root_objectid)
1563 break;
1564 }
1565 }
1566 ptr += btrfs_extent_inline_ref_size(type);
1567 }
1568 if (err == -ENOENT && insert) {
1569 if (item_size + extra_size >=
1570 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1571 err = -EAGAIN;
1572 goto out;
1573 }
1574 /*
1575 * To add new inline back ref, we have to make sure
1576 * there is no corresponding back ref item.
1577 * For simplicity, we just do not add new inline back
1578 * ref if there is any kind of item for this block
1579 */
1580 if (find_next_key(path, 0, &key) == 0 &&
1581 key.objectid == bytenr &&
1582 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1583 err = -EAGAIN;
1584 goto out;
1585 }
1586 }
1587 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1588 out:
1589 if (insert) {
1590 path->keep_locks = 0;
1591 btrfs_unlock_up_safe(path, 1);
1592 }
1593 return err;
1594 }
1595
1596 /*
1597 * helper to add new inline back ref
1598 */
1599 static noinline_for_stack
1600 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1601 struct btrfs_root *root,
1602 struct btrfs_path *path,
1603 struct btrfs_extent_inline_ref *iref,
1604 u64 parent, u64 root_objectid,
1605 u64 owner, u64 offset, int refs_to_add,
1606 struct btrfs_delayed_extent_op *extent_op)
1607 {
1608 struct extent_buffer *leaf;
1609 struct btrfs_extent_item *ei;
1610 unsigned long ptr;
1611 unsigned long end;
1612 unsigned long item_offset;
1613 u64 refs;
1614 int size;
1615 int type;
1616
1617 leaf = path->nodes[0];
1618 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1619 item_offset = (unsigned long)iref - (unsigned long)ei;
1620
1621 type = extent_ref_type(parent, owner);
1622 size = btrfs_extent_inline_ref_size(type);
1623
1624 btrfs_extend_item(trans, root, path, size);
1625
1626 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1627 refs = btrfs_extent_refs(leaf, ei);
1628 refs += refs_to_add;
1629 btrfs_set_extent_refs(leaf, ei, refs);
1630 if (extent_op)
1631 __run_delayed_extent_op(extent_op, leaf, ei);
1632
1633 ptr = (unsigned long)ei + item_offset;
1634 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1635 if (ptr < end - size)
1636 memmove_extent_buffer(leaf, ptr + size, ptr,
1637 end - size - ptr);
1638
1639 iref = (struct btrfs_extent_inline_ref *)ptr;
1640 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1642 struct btrfs_extent_data_ref *dref;
1643 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1644 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1645 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1646 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1647 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1648 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1649 struct btrfs_shared_data_ref *sref;
1650 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1651 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1653 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1654 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1655 } else {
1656 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1657 }
1658 btrfs_mark_buffer_dirty(leaf);
1659 }
1660
1661 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1662 struct btrfs_root *root,
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref **ref_ret,
1665 u64 bytenr, u64 num_bytes, u64 parent,
1666 u64 root_objectid, u64 owner, u64 offset)
1667 {
1668 int ret;
1669
1670 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1671 bytenr, num_bytes, parent,
1672 root_objectid, owner, offset, 0);
1673 if (ret != -ENOENT)
1674 return ret;
1675
1676 btrfs_release_path(path);
1677 *ref_ret = NULL;
1678
1679 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1680 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1681 root_objectid);
1682 } else {
1683 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1684 root_objectid, owner, offset);
1685 }
1686 return ret;
1687 }
1688
1689 /*
1690 * helper to update/remove inline back ref
1691 */
1692 static noinline_for_stack
1693 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1694 struct btrfs_root *root,
1695 struct btrfs_path *path,
1696 struct btrfs_extent_inline_ref *iref,
1697 int refs_to_mod,
1698 struct btrfs_delayed_extent_op *extent_op)
1699 {
1700 struct extent_buffer *leaf;
1701 struct btrfs_extent_item *ei;
1702 struct btrfs_extent_data_ref *dref = NULL;
1703 struct btrfs_shared_data_ref *sref = NULL;
1704 unsigned long ptr;
1705 unsigned long end;
1706 u32 item_size;
1707 int size;
1708 int type;
1709 u64 refs;
1710
1711 leaf = path->nodes[0];
1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 refs = btrfs_extent_refs(leaf, ei);
1714 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1715 refs += refs_to_mod;
1716 btrfs_set_extent_refs(leaf, ei, refs);
1717 if (extent_op)
1718 __run_delayed_extent_op(extent_op, leaf, ei);
1719
1720 type = btrfs_extent_inline_ref_type(leaf, iref);
1721
1722 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1723 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1724 refs = btrfs_extent_data_ref_count(leaf, dref);
1725 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1726 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1727 refs = btrfs_shared_data_ref_count(leaf, sref);
1728 } else {
1729 refs = 1;
1730 BUG_ON(refs_to_mod != -1);
1731 }
1732
1733 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1734 refs += refs_to_mod;
1735
1736 if (refs > 0) {
1737 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1738 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1739 else
1740 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1741 } else {
1742 size = btrfs_extent_inline_ref_size(type);
1743 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1744 ptr = (unsigned long)iref;
1745 end = (unsigned long)ei + item_size;
1746 if (ptr + size < end)
1747 memmove_extent_buffer(leaf, ptr, ptr + size,
1748 end - ptr - size);
1749 item_size -= size;
1750 btrfs_truncate_item(trans, root, path, item_size, 1);
1751 }
1752 btrfs_mark_buffer_dirty(leaf);
1753 }
1754
1755 static noinline_for_stack
1756 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root,
1758 struct btrfs_path *path,
1759 u64 bytenr, u64 num_bytes, u64 parent,
1760 u64 root_objectid, u64 owner,
1761 u64 offset, int refs_to_add,
1762 struct btrfs_delayed_extent_op *extent_op)
1763 {
1764 struct btrfs_extent_inline_ref *iref;
1765 int ret;
1766
1767 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1768 bytenr, num_bytes, parent,
1769 root_objectid, owner, offset, 1);
1770 if (ret == 0) {
1771 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1772 update_inline_extent_backref(trans, root, path, iref,
1773 refs_to_add, extent_op);
1774 } else if (ret == -ENOENT) {
1775 setup_inline_extent_backref(trans, root, path, iref, parent,
1776 root_objectid, owner, offset,
1777 refs_to_add, extent_op);
1778 ret = 0;
1779 }
1780 return ret;
1781 }
1782
1783 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1784 struct btrfs_root *root,
1785 struct btrfs_path *path,
1786 u64 bytenr, u64 parent, u64 root_objectid,
1787 u64 owner, u64 offset, int refs_to_add)
1788 {
1789 int ret;
1790 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1791 BUG_ON(refs_to_add != 1);
1792 ret = insert_tree_block_ref(trans, root, path, bytenr,
1793 parent, root_objectid);
1794 } else {
1795 ret = insert_extent_data_ref(trans, root, path, bytenr,
1796 parent, root_objectid,
1797 owner, offset, refs_to_add);
1798 }
1799 return ret;
1800 }
1801
1802 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 struct btrfs_extent_inline_ref *iref,
1806 int refs_to_drop, int is_data)
1807 {
1808 int ret = 0;
1809
1810 BUG_ON(!is_data && refs_to_drop != 1);
1811 if (iref) {
1812 update_inline_extent_backref(trans, root, path, iref,
1813 -refs_to_drop, NULL);
1814 } else if (is_data) {
1815 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1816 } else {
1817 ret = btrfs_del_item(trans, root, path);
1818 }
1819 return ret;
1820 }
1821
1822 static int btrfs_issue_discard(struct block_device *bdev,
1823 u64 start, u64 len)
1824 {
1825 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1826 }
1827
1828 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1829 u64 num_bytes, u64 *actual_bytes)
1830 {
1831 int ret;
1832 u64 discarded_bytes = 0;
1833 struct btrfs_bio *bbio = NULL;
1834
1835
1836 /* Tell the block device(s) that the sectors can be discarded */
1837 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1838 bytenr, &num_bytes, &bbio, 0);
1839 /* Error condition is -ENOMEM */
1840 if (!ret) {
1841 struct btrfs_bio_stripe *stripe = bbio->stripes;
1842 int i;
1843
1844
1845 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1846 if (!stripe->dev->can_discard)
1847 continue;
1848
1849 ret = btrfs_issue_discard(stripe->dev->bdev,
1850 stripe->physical,
1851 stripe->length);
1852 if (!ret)
1853 discarded_bytes += stripe->length;
1854 else if (ret != -EOPNOTSUPP)
1855 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1856
1857 /*
1858 * Just in case we get back EOPNOTSUPP for some reason,
1859 * just ignore the return value so we don't screw up
1860 * people calling discard_extent.
1861 */
1862 ret = 0;
1863 }
1864 kfree(bbio);
1865 }
1866
1867 if (actual_bytes)
1868 *actual_bytes = discarded_bytes;
1869
1870
1871 return ret;
1872 }
1873
1874 /* Can return -ENOMEM */
1875 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1876 struct btrfs_root *root,
1877 u64 bytenr, u64 num_bytes, u64 parent,
1878 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1879 {
1880 int ret;
1881 struct btrfs_fs_info *fs_info = root->fs_info;
1882
1883 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1884 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1885
1886 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1887 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1888 num_bytes,
1889 parent, root_objectid, (int)owner,
1890 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1891 } else {
1892 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1893 num_bytes,
1894 parent, root_objectid, owner, offset,
1895 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1896 }
1897 return ret;
1898 }
1899
1900 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1901 struct btrfs_root *root,
1902 u64 bytenr, u64 num_bytes,
1903 u64 parent, u64 root_objectid,
1904 u64 owner, u64 offset, int refs_to_add,
1905 struct btrfs_delayed_extent_op *extent_op)
1906 {
1907 struct btrfs_path *path;
1908 struct extent_buffer *leaf;
1909 struct btrfs_extent_item *item;
1910 u64 refs;
1911 int ret;
1912 int err = 0;
1913
1914 path = btrfs_alloc_path();
1915 if (!path)
1916 return -ENOMEM;
1917
1918 path->reada = 1;
1919 path->leave_spinning = 1;
1920 /* this will setup the path even if it fails to insert the back ref */
1921 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1922 path, bytenr, num_bytes, parent,
1923 root_objectid, owner, offset,
1924 refs_to_add, extent_op);
1925 if (ret == 0)
1926 goto out;
1927
1928 if (ret != -EAGAIN) {
1929 err = ret;
1930 goto out;
1931 }
1932
1933 leaf = path->nodes[0];
1934 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1935 refs = btrfs_extent_refs(leaf, item);
1936 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1937 if (extent_op)
1938 __run_delayed_extent_op(extent_op, leaf, item);
1939
1940 btrfs_mark_buffer_dirty(leaf);
1941 btrfs_release_path(path);
1942
1943 path->reada = 1;
1944 path->leave_spinning = 1;
1945
1946 /* now insert the actual backref */
1947 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1948 path, bytenr, parent, root_objectid,
1949 owner, offset, refs_to_add);
1950 if (ret)
1951 btrfs_abort_transaction(trans, root, ret);
1952 out:
1953 btrfs_free_path(path);
1954 return err;
1955 }
1956
1957 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1958 struct btrfs_root *root,
1959 struct btrfs_delayed_ref_node *node,
1960 struct btrfs_delayed_extent_op *extent_op,
1961 int insert_reserved)
1962 {
1963 int ret = 0;
1964 struct btrfs_delayed_data_ref *ref;
1965 struct btrfs_key ins;
1966 u64 parent = 0;
1967 u64 ref_root = 0;
1968 u64 flags = 0;
1969
1970 ins.objectid = node->bytenr;
1971 ins.offset = node->num_bytes;
1972 ins.type = BTRFS_EXTENT_ITEM_KEY;
1973
1974 ref = btrfs_delayed_node_to_data_ref(node);
1975 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1976 parent = ref->parent;
1977 else
1978 ref_root = ref->root;
1979
1980 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1981 if (extent_op) {
1982 BUG_ON(extent_op->update_key);
1983 flags |= extent_op->flags_to_set;
1984 }
1985 ret = alloc_reserved_file_extent(trans, root,
1986 parent, ref_root, flags,
1987 ref->objectid, ref->offset,
1988 &ins, node->ref_mod);
1989 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1990 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1991 node->num_bytes, parent,
1992 ref_root, ref->objectid,
1993 ref->offset, node->ref_mod,
1994 extent_op);
1995 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1996 ret = __btrfs_free_extent(trans, root, node->bytenr,
1997 node->num_bytes, parent,
1998 ref_root, ref->objectid,
1999 ref->offset, node->ref_mod,
2000 extent_op);
2001 } else {
2002 BUG();
2003 }
2004 return ret;
2005 }
2006
2007 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2008 struct extent_buffer *leaf,
2009 struct btrfs_extent_item *ei)
2010 {
2011 u64 flags = btrfs_extent_flags(leaf, ei);
2012 if (extent_op->update_flags) {
2013 flags |= extent_op->flags_to_set;
2014 btrfs_set_extent_flags(leaf, ei, flags);
2015 }
2016
2017 if (extent_op->update_key) {
2018 struct btrfs_tree_block_info *bi;
2019 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2020 bi = (struct btrfs_tree_block_info *)(ei + 1);
2021 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2022 }
2023 }
2024
2025 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2026 struct btrfs_root *root,
2027 struct btrfs_delayed_ref_node *node,
2028 struct btrfs_delayed_extent_op *extent_op)
2029 {
2030 struct btrfs_key key;
2031 struct btrfs_path *path;
2032 struct btrfs_extent_item *ei;
2033 struct extent_buffer *leaf;
2034 u32 item_size;
2035 int ret;
2036 int err = 0;
2037
2038 if (trans->aborted)
2039 return 0;
2040
2041 path = btrfs_alloc_path();
2042 if (!path)
2043 return -ENOMEM;
2044
2045 key.objectid = node->bytenr;
2046 key.type = BTRFS_EXTENT_ITEM_KEY;
2047 key.offset = node->num_bytes;
2048
2049 path->reada = 1;
2050 path->leave_spinning = 1;
2051 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2052 path, 0, 1);
2053 if (ret < 0) {
2054 err = ret;
2055 goto out;
2056 }
2057 if (ret > 0) {
2058 err = -EIO;
2059 goto out;
2060 }
2061
2062 leaf = path->nodes[0];
2063 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2064 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2065 if (item_size < sizeof(*ei)) {
2066 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2067 path, (u64)-1, 0);
2068 if (ret < 0) {
2069 err = ret;
2070 goto out;
2071 }
2072 leaf = path->nodes[0];
2073 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2074 }
2075 #endif
2076 BUG_ON(item_size < sizeof(*ei));
2077 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 __run_delayed_extent_op(extent_op, leaf, ei);
2079
2080 btrfs_mark_buffer_dirty(leaf);
2081 out:
2082 btrfs_free_path(path);
2083 return err;
2084 }
2085
2086 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2087 struct btrfs_root *root,
2088 struct btrfs_delayed_ref_node *node,
2089 struct btrfs_delayed_extent_op *extent_op,
2090 int insert_reserved)
2091 {
2092 int ret = 0;
2093 struct btrfs_delayed_tree_ref *ref;
2094 struct btrfs_key ins;
2095 u64 parent = 0;
2096 u64 ref_root = 0;
2097
2098 ins.objectid = node->bytenr;
2099 ins.offset = node->num_bytes;
2100 ins.type = BTRFS_EXTENT_ITEM_KEY;
2101
2102 ref = btrfs_delayed_node_to_tree_ref(node);
2103 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2104 parent = ref->parent;
2105 else
2106 ref_root = ref->root;
2107
2108 BUG_ON(node->ref_mod != 1);
2109 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2110 BUG_ON(!extent_op || !extent_op->update_flags ||
2111 !extent_op->update_key);
2112 ret = alloc_reserved_tree_block(trans, root,
2113 parent, ref_root,
2114 extent_op->flags_to_set,
2115 &extent_op->key,
2116 ref->level, &ins);
2117 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2118 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2119 node->num_bytes, parent, ref_root,
2120 ref->level, 0, 1, extent_op);
2121 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2122 ret = __btrfs_free_extent(trans, root, node->bytenr,
2123 node->num_bytes, parent, ref_root,
2124 ref->level, 0, 1, extent_op);
2125 } else {
2126 BUG();
2127 }
2128 return ret;
2129 }
2130
2131 /* helper function to actually process a single delayed ref entry */
2132 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2133 struct btrfs_root *root,
2134 struct btrfs_delayed_ref_node *node,
2135 struct btrfs_delayed_extent_op *extent_op,
2136 int insert_reserved)
2137 {
2138 int ret = 0;
2139
2140 if (trans->aborted)
2141 return 0;
2142
2143 if (btrfs_delayed_ref_is_head(node)) {
2144 struct btrfs_delayed_ref_head *head;
2145 /*
2146 * we've hit the end of the chain and we were supposed
2147 * to insert this extent into the tree. But, it got
2148 * deleted before we ever needed to insert it, so all
2149 * we have to do is clean up the accounting
2150 */
2151 BUG_ON(extent_op);
2152 head = btrfs_delayed_node_to_head(node);
2153 if (insert_reserved) {
2154 btrfs_pin_extent(root, node->bytenr,
2155 node->num_bytes, 1);
2156 if (head->is_data) {
2157 ret = btrfs_del_csums(trans, root,
2158 node->bytenr,
2159 node->num_bytes);
2160 }
2161 }
2162 mutex_unlock(&head->mutex);
2163 return ret;
2164 }
2165
2166 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2167 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2168 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2169 insert_reserved);
2170 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2171 node->type == BTRFS_SHARED_DATA_REF_KEY)
2172 ret = run_delayed_data_ref(trans, root, node, extent_op,
2173 insert_reserved);
2174 else
2175 BUG();
2176 return ret;
2177 }
2178
2179 static noinline struct btrfs_delayed_ref_node *
2180 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2181 {
2182 struct rb_node *node;
2183 struct btrfs_delayed_ref_node *ref;
2184 int action = BTRFS_ADD_DELAYED_REF;
2185 again:
2186 /*
2187 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2188 * this prevents ref count from going down to zero when
2189 * there still are pending delayed ref.
2190 */
2191 node = rb_prev(&head->node.rb_node);
2192 while (1) {
2193 if (!node)
2194 break;
2195 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2196 rb_node);
2197 if (ref->bytenr != head->node.bytenr)
2198 break;
2199 if (ref->action == action)
2200 return ref;
2201 node = rb_prev(node);
2202 }
2203 if (action == BTRFS_ADD_DELAYED_REF) {
2204 action = BTRFS_DROP_DELAYED_REF;
2205 goto again;
2206 }
2207 return NULL;
2208 }
2209
2210 /*
2211 * Returns 0 on success or if called with an already aborted transaction.
2212 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2213 */
2214 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root,
2216 struct list_head *cluster)
2217 {
2218 struct btrfs_delayed_ref_root *delayed_refs;
2219 struct btrfs_delayed_ref_node *ref;
2220 struct btrfs_delayed_ref_head *locked_ref = NULL;
2221 struct btrfs_delayed_extent_op *extent_op;
2222 struct btrfs_fs_info *fs_info = root->fs_info;
2223 int ret;
2224 int count = 0;
2225 int must_insert_reserved = 0;
2226
2227 delayed_refs = &trans->transaction->delayed_refs;
2228 while (1) {
2229 if (!locked_ref) {
2230 /* pick a new head ref from the cluster list */
2231 if (list_empty(cluster))
2232 break;
2233
2234 locked_ref = list_entry(cluster->next,
2235 struct btrfs_delayed_ref_head, cluster);
2236
2237 /* grab the lock that says we are going to process
2238 * all the refs for this head */
2239 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2240
2241 /*
2242 * we may have dropped the spin lock to get the head
2243 * mutex lock, and that might have given someone else
2244 * time to free the head. If that's true, it has been
2245 * removed from our list and we can move on.
2246 */
2247 if (ret == -EAGAIN) {
2248 locked_ref = NULL;
2249 count++;
2250 continue;
2251 }
2252 }
2253
2254 /*
2255 * We need to try and merge add/drops of the same ref since we
2256 * can run into issues with relocate dropping the implicit ref
2257 * and then it being added back again before the drop can
2258 * finish. If we merged anything we need to re-loop so we can
2259 * get a good ref.
2260 */
2261 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2262 locked_ref);
2263
2264 /*
2265 * locked_ref is the head node, so we have to go one
2266 * node back for any delayed ref updates
2267 */
2268 ref = select_delayed_ref(locked_ref);
2269
2270 if (ref && ref->seq &&
2271 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2272 /*
2273 * there are still refs with lower seq numbers in the
2274 * process of being added. Don't run this ref yet.
2275 */
2276 list_del_init(&locked_ref->cluster);
2277 mutex_unlock(&locked_ref->mutex);
2278 locked_ref = NULL;
2279 delayed_refs->num_heads_ready++;
2280 spin_unlock(&delayed_refs->lock);
2281 cond_resched();
2282 spin_lock(&delayed_refs->lock);
2283 continue;
2284 }
2285
2286 /*
2287 * record the must insert reserved flag before we
2288 * drop the spin lock.
2289 */
2290 must_insert_reserved = locked_ref->must_insert_reserved;
2291 locked_ref->must_insert_reserved = 0;
2292
2293 extent_op = locked_ref->extent_op;
2294 locked_ref->extent_op = NULL;
2295
2296 if (!ref) {
2297 /* All delayed refs have been processed, Go ahead
2298 * and send the head node to run_one_delayed_ref,
2299 * so that any accounting fixes can happen
2300 */
2301 ref = &locked_ref->node;
2302
2303 if (extent_op && must_insert_reserved) {
2304 kfree(extent_op);
2305 extent_op = NULL;
2306 }
2307
2308 if (extent_op) {
2309 spin_unlock(&delayed_refs->lock);
2310
2311 ret = run_delayed_extent_op(trans, root,
2312 ref, extent_op);
2313 kfree(extent_op);
2314
2315 if (ret) {
2316 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2317 spin_lock(&delayed_refs->lock);
2318 return ret;
2319 }
2320
2321 goto next;
2322 }
2323
2324 list_del_init(&locked_ref->cluster);
2325 locked_ref = NULL;
2326 }
2327
2328 ref->in_tree = 0;
2329 rb_erase(&ref->rb_node, &delayed_refs->root);
2330 delayed_refs->num_entries--;
2331 if (locked_ref) {
2332 /*
2333 * when we play the delayed ref, also correct the
2334 * ref_mod on head
2335 */
2336 switch (ref->action) {
2337 case BTRFS_ADD_DELAYED_REF:
2338 case BTRFS_ADD_DELAYED_EXTENT:
2339 locked_ref->node.ref_mod -= ref->ref_mod;
2340 break;
2341 case BTRFS_DROP_DELAYED_REF:
2342 locked_ref->node.ref_mod += ref->ref_mod;
2343 break;
2344 default:
2345 WARN_ON(1);
2346 }
2347 }
2348 spin_unlock(&delayed_refs->lock);
2349
2350 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2351 must_insert_reserved);
2352
2353 btrfs_put_delayed_ref(ref);
2354 kfree(extent_op);
2355 count++;
2356
2357 if (ret) {
2358 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2359 spin_lock(&delayed_refs->lock);
2360 return ret;
2361 }
2362
2363 next:
2364 do_chunk_alloc(trans, fs_info->extent_root,
2365 2 * 1024 * 1024,
2366 btrfs_get_alloc_profile(root, 0),
2367 CHUNK_ALLOC_NO_FORCE);
2368 cond_resched();
2369 spin_lock(&delayed_refs->lock);
2370 }
2371 return count;
2372 }
2373
2374 #ifdef SCRAMBLE_DELAYED_REFS
2375 /*
2376 * Normally delayed refs get processed in ascending bytenr order. This
2377 * correlates in most cases to the order added. To expose dependencies on this
2378 * order, we start to process the tree in the middle instead of the beginning
2379 */
2380 static u64 find_middle(struct rb_root *root)
2381 {
2382 struct rb_node *n = root->rb_node;
2383 struct btrfs_delayed_ref_node *entry;
2384 int alt = 1;
2385 u64 middle;
2386 u64 first = 0, last = 0;
2387
2388 n = rb_first(root);
2389 if (n) {
2390 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2391 first = entry->bytenr;
2392 }
2393 n = rb_last(root);
2394 if (n) {
2395 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2396 last = entry->bytenr;
2397 }
2398 n = root->rb_node;
2399
2400 while (n) {
2401 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2402 WARN_ON(!entry->in_tree);
2403
2404 middle = entry->bytenr;
2405
2406 if (alt)
2407 n = n->rb_left;
2408 else
2409 n = n->rb_right;
2410
2411 alt = 1 - alt;
2412 }
2413 return middle;
2414 }
2415 #endif
2416
2417 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2418 struct btrfs_fs_info *fs_info)
2419 {
2420 struct qgroup_update *qgroup_update;
2421 int ret = 0;
2422
2423 if (list_empty(&trans->qgroup_ref_list) !=
2424 !trans->delayed_ref_elem.seq) {
2425 /* list without seq or seq without list */
2426 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2427 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2428 trans->delayed_ref_elem.seq);
2429 BUG();
2430 }
2431
2432 if (!trans->delayed_ref_elem.seq)
2433 return 0;
2434
2435 while (!list_empty(&trans->qgroup_ref_list)) {
2436 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2437 struct qgroup_update, list);
2438 list_del(&qgroup_update->list);
2439 if (!ret)
2440 ret = btrfs_qgroup_account_ref(
2441 trans, fs_info, qgroup_update->node,
2442 qgroup_update->extent_op);
2443 kfree(qgroup_update);
2444 }
2445
2446 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2447
2448 return ret;
2449 }
2450
2451 /*
2452 * this starts processing the delayed reference count updates and
2453 * extent insertions we have queued up so far. count can be
2454 * 0, which means to process everything in the tree at the start
2455 * of the run (but not newly added entries), or it can be some target
2456 * number you'd like to process.
2457 *
2458 * Returns 0 on success or if called with an aborted transaction
2459 * Returns <0 on error and aborts the transaction
2460 */
2461 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2462 struct btrfs_root *root, unsigned long count)
2463 {
2464 struct rb_node *node;
2465 struct btrfs_delayed_ref_root *delayed_refs;
2466 struct btrfs_delayed_ref_node *ref;
2467 struct list_head cluster;
2468 int ret;
2469 u64 delayed_start;
2470 int run_all = count == (unsigned long)-1;
2471 int run_most = 0;
2472 int loops;
2473
2474 /* We'll clean this up in btrfs_cleanup_transaction */
2475 if (trans->aborted)
2476 return 0;
2477
2478 if (root == root->fs_info->extent_root)
2479 root = root->fs_info->tree_root;
2480
2481 do_chunk_alloc(trans, root->fs_info->extent_root,
2482 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2483 CHUNK_ALLOC_NO_FORCE);
2484
2485 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2486
2487 delayed_refs = &trans->transaction->delayed_refs;
2488 INIT_LIST_HEAD(&cluster);
2489 again:
2490 loops = 0;
2491 spin_lock(&delayed_refs->lock);
2492
2493 #ifdef SCRAMBLE_DELAYED_REFS
2494 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2495 #endif
2496
2497 if (count == 0) {
2498 count = delayed_refs->num_entries * 2;
2499 run_most = 1;
2500 }
2501 while (1) {
2502 if (!(run_all || run_most) &&
2503 delayed_refs->num_heads_ready < 64)
2504 break;
2505
2506 /*
2507 * go find something we can process in the rbtree. We start at
2508 * the beginning of the tree, and then build a cluster
2509 * of refs to process starting at the first one we are able to
2510 * lock
2511 */
2512 delayed_start = delayed_refs->run_delayed_start;
2513 ret = btrfs_find_ref_cluster(trans, &cluster,
2514 delayed_refs->run_delayed_start);
2515 if (ret)
2516 break;
2517
2518 ret = run_clustered_refs(trans, root, &cluster);
2519 if (ret < 0) {
2520 spin_unlock(&delayed_refs->lock);
2521 btrfs_abort_transaction(trans, root, ret);
2522 return ret;
2523 }
2524
2525 count -= min_t(unsigned long, ret, count);
2526
2527 if (count == 0)
2528 break;
2529
2530 if (delayed_start >= delayed_refs->run_delayed_start) {
2531 if (loops == 0) {
2532 /*
2533 * btrfs_find_ref_cluster looped. let's do one
2534 * more cycle. if we don't run any delayed ref
2535 * during that cycle (because we can't because
2536 * all of them are blocked), bail out.
2537 */
2538 loops = 1;
2539 } else {
2540 /*
2541 * no runnable refs left, stop trying
2542 */
2543 BUG_ON(run_all);
2544 break;
2545 }
2546 }
2547 if (ret) {
2548 /* refs were run, let's reset staleness detection */
2549 loops = 0;
2550 }
2551 }
2552
2553 if (run_all) {
2554 node = rb_first(&delayed_refs->root);
2555 if (!node)
2556 goto out;
2557 count = (unsigned long)-1;
2558
2559 while (node) {
2560 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2561 rb_node);
2562 if (btrfs_delayed_ref_is_head(ref)) {
2563 struct btrfs_delayed_ref_head *head;
2564
2565 head = btrfs_delayed_node_to_head(ref);
2566 atomic_inc(&ref->refs);
2567
2568 spin_unlock(&delayed_refs->lock);
2569 /*
2570 * Mutex was contended, block until it's
2571 * released and try again
2572 */
2573 mutex_lock(&head->mutex);
2574 mutex_unlock(&head->mutex);
2575
2576 btrfs_put_delayed_ref(ref);
2577 cond_resched();
2578 goto again;
2579 }
2580 node = rb_next(node);
2581 }
2582 spin_unlock(&delayed_refs->lock);
2583 schedule_timeout(1);
2584 goto again;
2585 }
2586 out:
2587 spin_unlock(&delayed_refs->lock);
2588 assert_qgroups_uptodate(trans);
2589 return 0;
2590 }
2591
2592 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2593 struct btrfs_root *root,
2594 u64 bytenr, u64 num_bytes, u64 flags,
2595 int is_data)
2596 {
2597 struct btrfs_delayed_extent_op *extent_op;
2598 int ret;
2599
2600 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2601 if (!extent_op)
2602 return -ENOMEM;
2603
2604 extent_op->flags_to_set = flags;
2605 extent_op->update_flags = 1;
2606 extent_op->update_key = 0;
2607 extent_op->is_data = is_data ? 1 : 0;
2608
2609 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2610 num_bytes, extent_op);
2611 if (ret)
2612 kfree(extent_op);
2613 return ret;
2614 }
2615
2616 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2617 struct btrfs_root *root,
2618 struct btrfs_path *path,
2619 u64 objectid, u64 offset, u64 bytenr)
2620 {
2621 struct btrfs_delayed_ref_head *head;
2622 struct btrfs_delayed_ref_node *ref;
2623 struct btrfs_delayed_data_ref *data_ref;
2624 struct btrfs_delayed_ref_root *delayed_refs;
2625 struct rb_node *node;
2626 int ret = 0;
2627
2628 ret = -ENOENT;
2629 delayed_refs = &trans->transaction->delayed_refs;
2630 spin_lock(&delayed_refs->lock);
2631 head = btrfs_find_delayed_ref_head(trans, bytenr);
2632 if (!head)
2633 goto out;
2634
2635 if (!mutex_trylock(&head->mutex)) {
2636 atomic_inc(&head->node.refs);
2637 spin_unlock(&delayed_refs->lock);
2638
2639 btrfs_release_path(path);
2640
2641 /*
2642 * Mutex was contended, block until it's released and let
2643 * caller try again
2644 */
2645 mutex_lock(&head->mutex);
2646 mutex_unlock(&head->mutex);
2647 btrfs_put_delayed_ref(&head->node);
2648 return -EAGAIN;
2649 }
2650
2651 node = rb_prev(&head->node.rb_node);
2652 if (!node)
2653 goto out_unlock;
2654
2655 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2656
2657 if (ref->bytenr != bytenr)
2658 goto out_unlock;
2659
2660 ret = 1;
2661 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2662 goto out_unlock;
2663
2664 data_ref = btrfs_delayed_node_to_data_ref(ref);
2665
2666 node = rb_prev(node);
2667 if (node) {
2668 int seq = ref->seq;
2669
2670 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2671 if (ref->bytenr == bytenr && ref->seq == seq)
2672 goto out_unlock;
2673 }
2674
2675 if (data_ref->root != root->root_key.objectid ||
2676 data_ref->objectid != objectid || data_ref->offset != offset)
2677 goto out_unlock;
2678
2679 ret = 0;
2680 out_unlock:
2681 mutex_unlock(&head->mutex);
2682 out:
2683 spin_unlock(&delayed_refs->lock);
2684 return ret;
2685 }
2686
2687 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2688 struct btrfs_root *root,
2689 struct btrfs_path *path,
2690 u64 objectid, u64 offset, u64 bytenr)
2691 {
2692 struct btrfs_root *extent_root = root->fs_info->extent_root;
2693 struct extent_buffer *leaf;
2694 struct btrfs_extent_data_ref *ref;
2695 struct btrfs_extent_inline_ref *iref;
2696 struct btrfs_extent_item *ei;
2697 struct btrfs_key key;
2698 u32 item_size;
2699 int ret;
2700
2701 key.objectid = bytenr;
2702 key.offset = (u64)-1;
2703 key.type = BTRFS_EXTENT_ITEM_KEY;
2704
2705 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2706 if (ret < 0)
2707 goto out;
2708 BUG_ON(ret == 0); /* Corruption */
2709
2710 ret = -ENOENT;
2711 if (path->slots[0] == 0)
2712 goto out;
2713
2714 path->slots[0]--;
2715 leaf = path->nodes[0];
2716 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2717
2718 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2719 goto out;
2720
2721 ret = 1;
2722 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2723 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2724 if (item_size < sizeof(*ei)) {
2725 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2726 goto out;
2727 }
2728 #endif
2729 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2730
2731 if (item_size != sizeof(*ei) +
2732 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2733 goto out;
2734
2735 if (btrfs_extent_generation(leaf, ei) <=
2736 btrfs_root_last_snapshot(&root->root_item))
2737 goto out;
2738
2739 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2740 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2741 BTRFS_EXTENT_DATA_REF_KEY)
2742 goto out;
2743
2744 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2745 if (btrfs_extent_refs(leaf, ei) !=
2746 btrfs_extent_data_ref_count(leaf, ref) ||
2747 btrfs_extent_data_ref_root(leaf, ref) !=
2748 root->root_key.objectid ||
2749 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2750 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2751 goto out;
2752
2753 ret = 0;
2754 out:
2755 return ret;
2756 }
2757
2758 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2759 struct btrfs_root *root,
2760 u64 objectid, u64 offset, u64 bytenr)
2761 {
2762 struct btrfs_path *path;
2763 int ret;
2764 int ret2;
2765
2766 path = btrfs_alloc_path();
2767 if (!path)
2768 return -ENOENT;
2769
2770 do {
2771 ret = check_committed_ref(trans, root, path, objectid,
2772 offset, bytenr);
2773 if (ret && ret != -ENOENT)
2774 goto out;
2775
2776 ret2 = check_delayed_ref(trans, root, path, objectid,
2777 offset, bytenr);
2778 } while (ret2 == -EAGAIN);
2779
2780 if (ret2 && ret2 != -ENOENT) {
2781 ret = ret2;
2782 goto out;
2783 }
2784
2785 if (ret != -ENOENT || ret2 != -ENOENT)
2786 ret = 0;
2787 out:
2788 btrfs_free_path(path);
2789 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2790 WARN_ON(ret > 0);
2791 return ret;
2792 }
2793
2794 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2795 struct btrfs_root *root,
2796 struct extent_buffer *buf,
2797 int full_backref, int inc, int for_cow)
2798 {
2799 u64 bytenr;
2800 u64 num_bytes;
2801 u64 parent;
2802 u64 ref_root;
2803 u32 nritems;
2804 struct btrfs_key key;
2805 struct btrfs_file_extent_item *fi;
2806 int i;
2807 int level;
2808 int ret = 0;
2809 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2810 u64, u64, u64, u64, u64, u64, int);
2811
2812 ref_root = btrfs_header_owner(buf);
2813 nritems = btrfs_header_nritems(buf);
2814 level = btrfs_header_level(buf);
2815
2816 if (!root->ref_cows && level == 0)
2817 return 0;
2818
2819 if (inc)
2820 process_func = btrfs_inc_extent_ref;
2821 else
2822 process_func = btrfs_free_extent;
2823
2824 if (full_backref)
2825 parent = buf->start;
2826 else
2827 parent = 0;
2828
2829 for (i = 0; i < nritems; i++) {
2830 if (level == 0) {
2831 btrfs_item_key_to_cpu(buf, &key, i);
2832 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2833 continue;
2834 fi = btrfs_item_ptr(buf, i,
2835 struct btrfs_file_extent_item);
2836 if (btrfs_file_extent_type(buf, fi) ==
2837 BTRFS_FILE_EXTENT_INLINE)
2838 continue;
2839 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2840 if (bytenr == 0)
2841 continue;
2842
2843 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2844 key.offset -= btrfs_file_extent_offset(buf, fi);
2845 ret = process_func(trans, root, bytenr, num_bytes,
2846 parent, ref_root, key.objectid,
2847 key.offset, for_cow);
2848 if (ret)
2849 goto fail;
2850 } else {
2851 bytenr = btrfs_node_blockptr(buf, i);
2852 num_bytes = btrfs_level_size(root, level - 1);
2853 ret = process_func(trans, root, bytenr, num_bytes,
2854 parent, ref_root, level - 1, 0,
2855 for_cow);
2856 if (ret)
2857 goto fail;
2858 }
2859 }
2860 return 0;
2861 fail:
2862 return ret;
2863 }
2864
2865 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2866 struct extent_buffer *buf, int full_backref, int for_cow)
2867 {
2868 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2869 }
2870
2871 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2872 struct extent_buffer *buf, int full_backref, int for_cow)
2873 {
2874 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2875 }
2876
2877 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2878 struct btrfs_root *root,
2879 struct btrfs_path *path,
2880 struct btrfs_block_group_cache *cache)
2881 {
2882 int ret;
2883 struct btrfs_root *extent_root = root->fs_info->extent_root;
2884 unsigned long bi;
2885 struct extent_buffer *leaf;
2886
2887 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2888 if (ret < 0)
2889 goto fail;
2890 BUG_ON(ret); /* Corruption */
2891
2892 leaf = path->nodes[0];
2893 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2894 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2895 btrfs_mark_buffer_dirty(leaf);
2896 btrfs_release_path(path);
2897 fail:
2898 if (ret) {
2899 btrfs_abort_transaction(trans, root, ret);
2900 return ret;
2901 }
2902 return 0;
2903
2904 }
2905
2906 static struct btrfs_block_group_cache *
2907 next_block_group(struct btrfs_root *root,
2908 struct btrfs_block_group_cache *cache)
2909 {
2910 struct rb_node *node;
2911 spin_lock(&root->fs_info->block_group_cache_lock);
2912 node = rb_next(&cache->cache_node);
2913 btrfs_put_block_group(cache);
2914 if (node) {
2915 cache = rb_entry(node, struct btrfs_block_group_cache,
2916 cache_node);
2917 btrfs_get_block_group(cache);
2918 } else
2919 cache = NULL;
2920 spin_unlock(&root->fs_info->block_group_cache_lock);
2921 return cache;
2922 }
2923
2924 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2925 struct btrfs_trans_handle *trans,
2926 struct btrfs_path *path)
2927 {
2928 struct btrfs_root *root = block_group->fs_info->tree_root;
2929 struct inode *inode = NULL;
2930 u64 alloc_hint = 0;
2931 int dcs = BTRFS_DC_ERROR;
2932 int num_pages = 0;
2933 int retries = 0;
2934 int ret = 0;
2935
2936 /*
2937 * If this block group is smaller than 100 megs don't bother caching the
2938 * block group.
2939 */
2940 if (block_group->key.offset < (100 * 1024 * 1024)) {
2941 spin_lock(&block_group->lock);
2942 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2943 spin_unlock(&block_group->lock);
2944 return 0;
2945 }
2946
2947 again:
2948 inode = lookup_free_space_inode(root, block_group, path);
2949 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2950 ret = PTR_ERR(inode);
2951 btrfs_release_path(path);
2952 goto out;
2953 }
2954
2955 if (IS_ERR(inode)) {
2956 BUG_ON(retries);
2957 retries++;
2958
2959 if (block_group->ro)
2960 goto out_free;
2961
2962 ret = create_free_space_inode(root, trans, block_group, path);
2963 if (ret)
2964 goto out_free;
2965 goto again;
2966 }
2967
2968 /* We've already setup this transaction, go ahead and exit */
2969 if (block_group->cache_generation == trans->transid &&
2970 i_size_read(inode)) {
2971 dcs = BTRFS_DC_SETUP;
2972 goto out_put;
2973 }
2974
2975 /*
2976 * We want to set the generation to 0, that way if anything goes wrong
2977 * from here on out we know not to trust this cache when we load up next
2978 * time.
2979 */
2980 BTRFS_I(inode)->generation = 0;
2981 ret = btrfs_update_inode(trans, root, inode);
2982 WARN_ON(ret);
2983
2984 if (i_size_read(inode) > 0) {
2985 ret = btrfs_truncate_free_space_cache(root, trans, path,
2986 inode);
2987 if (ret)
2988 goto out_put;
2989 }
2990
2991 spin_lock(&block_group->lock);
2992 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2993 !btrfs_test_opt(root, SPACE_CACHE)) {
2994 /*
2995 * don't bother trying to write stuff out _if_
2996 * a) we're not cached,
2997 * b) we're with nospace_cache mount option.
2998 */
2999 dcs = BTRFS_DC_WRITTEN;
3000 spin_unlock(&block_group->lock);
3001 goto out_put;
3002 }
3003 spin_unlock(&block_group->lock);
3004
3005 /*
3006 * Try to preallocate enough space based on how big the block group is.
3007 * Keep in mind this has to include any pinned space which could end up
3008 * taking up quite a bit since it's not folded into the other space
3009 * cache.
3010 */
3011 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3012 if (!num_pages)
3013 num_pages = 1;
3014
3015 num_pages *= 16;
3016 num_pages *= PAGE_CACHE_SIZE;
3017
3018 ret = btrfs_check_data_free_space(inode, num_pages);
3019 if (ret)
3020 goto out_put;
3021
3022 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3023 num_pages, num_pages,
3024 &alloc_hint);
3025 if (!ret)
3026 dcs = BTRFS_DC_SETUP;
3027 btrfs_free_reserved_data_space(inode, num_pages);
3028
3029 out_put:
3030 iput(inode);
3031 out_free:
3032 btrfs_release_path(path);
3033 out:
3034 spin_lock(&block_group->lock);
3035 if (!ret && dcs == BTRFS_DC_SETUP)
3036 block_group->cache_generation = trans->transid;
3037 block_group->disk_cache_state = dcs;
3038 spin_unlock(&block_group->lock);
3039
3040 return ret;
3041 }
3042
3043 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3044 struct btrfs_root *root)
3045 {
3046 struct btrfs_block_group_cache *cache;
3047 int err = 0;
3048 struct btrfs_path *path;
3049 u64 last = 0;
3050
3051 path = btrfs_alloc_path();
3052 if (!path)
3053 return -ENOMEM;
3054
3055 again:
3056 while (1) {
3057 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3058 while (cache) {
3059 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3060 break;
3061 cache = next_block_group(root, cache);
3062 }
3063 if (!cache) {
3064 if (last == 0)
3065 break;
3066 last = 0;
3067 continue;
3068 }
3069 err = cache_save_setup(cache, trans, path);
3070 last = cache->key.objectid + cache->key.offset;
3071 btrfs_put_block_group(cache);
3072 }
3073
3074 while (1) {
3075 if (last == 0) {
3076 err = btrfs_run_delayed_refs(trans, root,
3077 (unsigned long)-1);
3078 if (err) /* File system offline */
3079 goto out;
3080 }
3081
3082 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3083 while (cache) {
3084 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3085 btrfs_put_block_group(cache);
3086 goto again;
3087 }
3088
3089 if (cache->dirty)
3090 break;
3091 cache = next_block_group(root, cache);
3092 }
3093 if (!cache) {
3094 if (last == 0)
3095 break;
3096 last = 0;
3097 continue;
3098 }
3099
3100 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3101 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3102 cache->dirty = 0;
3103 last = cache->key.objectid + cache->key.offset;
3104
3105 err = write_one_cache_group(trans, root, path, cache);
3106 if (err) /* File system offline */
3107 goto out;
3108
3109 btrfs_put_block_group(cache);
3110 }
3111
3112 while (1) {
3113 /*
3114 * I don't think this is needed since we're just marking our
3115 * preallocated extent as written, but just in case it can't
3116 * hurt.
3117 */
3118 if (last == 0) {
3119 err = btrfs_run_delayed_refs(trans, root,
3120 (unsigned long)-1);
3121 if (err) /* File system offline */
3122 goto out;
3123 }
3124
3125 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3126 while (cache) {
3127 /*
3128 * Really this shouldn't happen, but it could if we
3129 * couldn't write the entire preallocated extent and
3130 * splitting the extent resulted in a new block.
3131 */
3132 if (cache->dirty) {
3133 btrfs_put_block_group(cache);
3134 goto again;
3135 }
3136 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3137 break;
3138 cache = next_block_group(root, cache);
3139 }
3140 if (!cache) {
3141 if (last == 0)
3142 break;
3143 last = 0;
3144 continue;
3145 }
3146
3147 err = btrfs_write_out_cache(root, trans, cache, path);
3148
3149 /*
3150 * If we didn't have an error then the cache state is still
3151 * NEED_WRITE, so we can set it to WRITTEN.
3152 */
3153 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3154 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3155 last = cache->key.objectid + cache->key.offset;
3156 btrfs_put_block_group(cache);
3157 }
3158 out:
3159
3160 btrfs_free_path(path);
3161 return err;
3162 }
3163
3164 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3165 {
3166 struct btrfs_block_group_cache *block_group;
3167 int readonly = 0;
3168
3169 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3170 if (!block_group || block_group->ro)
3171 readonly = 1;
3172 if (block_group)
3173 btrfs_put_block_group(block_group);
3174 return readonly;
3175 }
3176
3177 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3178 u64 total_bytes, u64 bytes_used,
3179 struct btrfs_space_info **space_info)
3180 {
3181 struct btrfs_space_info *found;
3182 int i;
3183 int factor;
3184
3185 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3186 BTRFS_BLOCK_GROUP_RAID10))
3187 factor = 2;
3188 else
3189 factor = 1;
3190
3191 found = __find_space_info(info, flags);
3192 if (found) {
3193 spin_lock(&found->lock);
3194 found->total_bytes += total_bytes;
3195 found->disk_total += total_bytes * factor;
3196 found->bytes_used += bytes_used;
3197 found->disk_used += bytes_used * factor;
3198 found->full = 0;
3199 spin_unlock(&found->lock);
3200 *space_info = found;
3201 return 0;
3202 }
3203 found = kzalloc(sizeof(*found), GFP_NOFS);
3204 if (!found)
3205 return -ENOMEM;
3206
3207 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3208 INIT_LIST_HEAD(&found->block_groups[i]);
3209 init_rwsem(&found->groups_sem);
3210 spin_lock_init(&found->lock);
3211 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3212 found->total_bytes = total_bytes;
3213 found->disk_total = total_bytes * factor;
3214 found->bytes_used = bytes_used;
3215 found->disk_used = bytes_used * factor;
3216 found->bytes_pinned = 0;
3217 found->bytes_reserved = 0;
3218 found->bytes_readonly = 0;
3219 found->bytes_may_use = 0;
3220 found->full = 0;
3221 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3222 found->chunk_alloc = 0;
3223 found->flush = 0;
3224 init_waitqueue_head(&found->wait);
3225 *space_info = found;
3226 list_add_rcu(&found->list, &info->space_info);
3227 if (flags & BTRFS_BLOCK_GROUP_DATA)
3228 info->data_sinfo = found;
3229 return 0;
3230 }
3231
3232 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3233 {
3234 u64 extra_flags = chunk_to_extended(flags) &
3235 BTRFS_EXTENDED_PROFILE_MASK;
3236
3237 if (flags & BTRFS_BLOCK_GROUP_DATA)
3238 fs_info->avail_data_alloc_bits |= extra_flags;
3239 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3240 fs_info->avail_metadata_alloc_bits |= extra_flags;
3241 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3242 fs_info->avail_system_alloc_bits |= extra_flags;
3243 }
3244
3245 /*
3246 * returns target flags in extended format or 0 if restripe for this
3247 * chunk_type is not in progress
3248 *
3249 * should be called with either volume_mutex or balance_lock held
3250 */
3251 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3252 {
3253 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3254 u64 target = 0;
3255
3256 if (!bctl)
3257 return 0;
3258
3259 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3260 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3261 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3262 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3263 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3264 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3265 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3266 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3267 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3268 }
3269
3270 return target;
3271 }
3272
3273 /*
3274 * @flags: available profiles in extended format (see ctree.h)
3275 *
3276 * Returns reduced profile in chunk format. If profile changing is in
3277 * progress (either running or paused) picks the target profile (if it's
3278 * already available), otherwise falls back to plain reducing.
3279 */
3280 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3281 {
3282 /*
3283 * we add in the count of missing devices because we want
3284 * to make sure that any RAID levels on a degraded FS
3285 * continue to be honored.
3286 */
3287 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3288 root->fs_info->fs_devices->missing_devices;
3289 u64 target;
3290
3291 /*
3292 * see if restripe for this chunk_type is in progress, if so
3293 * try to reduce to the target profile
3294 */
3295 spin_lock(&root->fs_info->balance_lock);
3296 target = get_restripe_target(root->fs_info, flags);
3297 if (target) {
3298 /* pick target profile only if it's already available */
3299 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3300 spin_unlock(&root->fs_info->balance_lock);
3301 return extended_to_chunk(target);
3302 }
3303 }
3304 spin_unlock(&root->fs_info->balance_lock);
3305
3306 if (num_devices == 1)
3307 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3308 if (num_devices < 4)
3309 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3310
3311 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3312 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3313 BTRFS_BLOCK_GROUP_RAID10))) {
3314 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3315 }
3316
3317 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3318 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3319 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3320 }
3321
3322 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3323 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3324 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3325 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3326 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3327 }
3328
3329 return extended_to_chunk(flags);
3330 }
3331
3332 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3333 {
3334 if (flags & BTRFS_BLOCK_GROUP_DATA)
3335 flags |= root->fs_info->avail_data_alloc_bits;
3336 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3337 flags |= root->fs_info->avail_system_alloc_bits;
3338 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3339 flags |= root->fs_info->avail_metadata_alloc_bits;
3340
3341 return btrfs_reduce_alloc_profile(root, flags);
3342 }
3343
3344 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3345 {
3346 u64 flags;
3347
3348 if (data)
3349 flags = BTRFS_BLOCK_GROUP_DATA;
3350 else if (root == root->fs_info->chunk_root)
3351 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3352 else
3353 flags = BTRFS_BLOCK_GROUP_METADATA;
3354
3355 return get_alloc_profile(root, flags);
3356 }
3357
3358 /*
3359 * This will check the space that the inode allocates from to make sure we have
3360 * enough space for bytes.
3361 */
3362 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3363 {
3364 struct btrfs_space_info *data_sinfo;
3365 struct btrfs_root *root = BTRFS_I(inode)->root;
3366 struct btrfs_fs_info *fs_info = root->fs_info;
3367 u64 used;
3368 int ret = 0, committed = 0, alloc_chunk = 1;
3369
3370 /* make sure bytes are sectorsize aligned */
3371 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3372
3373 if (root == root->fs_info->tree_root ||
3374 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3375 alloc_chunk = 0;
3376 committed = 1;
3377 }
3378
3379 data_sinfo = fs_info->data_sinfo;
3380 if (!data_sinfo)
3381 goto alloc;
3382
3383 again:
3384 /* make sure we have enough space to handle the data first */
3385 spin_lock(&data_sinfo->lock);
3386 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3387 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3388 data_sinfo->bytes_may_use;
3389
3390 if (used + bytes > data_sinfo->total_bytes) {
3391 struct btrfs_trans_handle *trans;
3392
3393 /*
3394 * if we don't have enough free bytes in this space then we need
3395 * to alloc a new chunk.
3396 */
3397 if (!data_sinfo->full && alloc_chunk) {
3398 u64 alloc_target;
3399
3400 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3401 spin_unlock(&data_sinfo->lock);
3402 alloc:
3403 alloc_target = btrfs_get_alloc_profile(root, 1);
3404 trans = btrfs_join_transaction(root);
3405 if (IS_ERR(trans))
3406 return PTR_ERR(trans);
3407
3408 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3409 bytes + 2 * 1024 * 1024,
3410 alloc_target,
3411 CHUNK_ALLOC_NO_FORCE);
3412 btrfs_end_transaction(trans, root);
3413 if (ret < 0) {
3414 if (ret != -ENOSPC)
3415 return ret;
3416 else
3417 goto commit_trans;
3418 }
3419
3420 if (!data_sinfo)
3421 data_sinfo = fs_info->data_sinfo;
3422
3423 goto again;
3424 }
3425
3426 /*
3427 * If we have less pinned bytes than we want to allocate then
3428 * don't bother committing the transaction, it won't help us.
3429 */
3430 if (data_sinfo->bytes_pinned < bytes)
3431 committed = 1;
3432 spin_unlock(&data_sinfo->lock);
3433
3434 /* commit the current transaction and try again */
3435 commit_trans:
3436 if (!committed &&
3437 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3438 committed = 1;
3439 trans = btrfs_join_transaction(root);
3440 if (IS_ERR(trans))
3441 return PTR_ERR(trans);
3442 ret = btrfs_commit_transaction(trans, root);
3443 if (ret)
3444 return ret;
3445 goto again;
3446 }
3447
3448 return -ENOSPC;
3449 }
3450 data_sinfo->bytes_may_use += bytes;
3451 trace_btrfs_space_reservation(root->fs_info, "space_info",
3452 data_sinfo->flags, bytes, 1);
3453 spin_unlock(&data_sinfo->lock);
3454
3455 return 0;
3456 }
3457
3458 /*
3459 * Called if we need to clear a data reservation for this inode.
3460 */
3461 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3462 {
3463 struct btrfs_root *root = BTRFS_I(inode)->root;
3464 struct btrfs_space_info *data_sinfo;
3465
3466 /* make sure bytes are sectorsize aligned */
3467 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3468
3469 data_sinfo = root->fs_info->data_sinfo;
3470 spin_lock(&data_sinfo->lock);
3471 data_sinfo->bytes_may_use -= bytes;
3472 trace_btrfs_space_reservation(root->fs_info, "space_info",
3473 data_sinfo->flags, bytes, 0);
3474 spin_unlock(&data_sinfo->lock);
3475 }
3476
3477 static void force_metadata_allocation(struct btrfs_fs_info *info)
3478 {
3479 struct list_head *head = &info->space_info;
3480 struct btrfs_space_info *found;
3481
3482 rcu_read_lock();
3483 list_for_each_entry_rcu(found, head, list) {
3484 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3485 found->force_alloc = CHUNK_ALLOC_FORCE;
3486 }
3487 rcu_read_unlock();
3488 }
3489
3490 static int should_alloc_chunk(struct btrfs_root *root,
3491 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3492 int force)
3493 {
3494 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3495 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3496 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3497 u64 thresh;
3498
3499 if (force == CHUNK_ALLOC_FORCE)
3500 return 1;
3501
3502 /*
3503 * We need to take into account the global rsv because for all intents
3504 * and purposes it's used space. Don't worry about locking the
3505 * global_rsv, it doesn't change except when the transaction commits.
3506 */
3507 num_allocated += global_rsv->size;
3508
3509 /*
3510 * in limited mode, we want to have some free space up to
3511 * about 1% of the FS size.
3512 */
3513 if (force == CHUNK_ALLOC_LIMITED) {
3514 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3515 thresh = max_t(u64, 64 * 1024 * 1024,
3516 div_factor_fine(thresh, 1));
3517
3518 if (num_bytes - num_allocated < thresh)
3519 return 1;
3520 }
3521 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3522
3523 /* 256MB or 2% of the FS */
3524 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3525 /* system chunks need a much small threshold */
3526 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3527 thresh = 32 * 1024 * 1024;
3528
3529 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3530 return 0;
3531 return 1;
3532 }
3533
3534 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3535 {
3536 u64 num_dev;
3537
3538 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3539 type & BTRFS_BLOCK_GROUP_RAID0)
3540 num_dev = root->fs_info->fs_devices->rw_devices;
3541 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3542 num_dev = 2;
3543 else
3544 num_dev = 1; /* DUP or single */
3545
3546 /* metadata for updaing devices and chunk tree */
3547 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3548 }
3549
3550 static void check_system_chunk(struct btrfs_trans_handle *trans,
3551 struct btrfs_root *root, u64 type)
3552 {
3553 struct btrfs_space_info *info;
3554 u64 left;
3555 u64 thresh;
3556
3557 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3558 spin_lock(&info->lock);
3559 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3560 info->bytes_reserved - info->bytes_readonly;
3561 spin_unlock(&info->lock);
3562
3563 thresh = get_system_chunk_thresh(root, type);
3564 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3565 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3566 left, thresh, type);
3567 dump_space_info(info, 0, 0);
3568 }
3569
3570 if (left < thresh) {
3571 u64 flags;
3572
3573 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3574 btrfs_alloc_chunk(trans, root, flags);
3575 }
3576 }
3577
3578 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3579 struct btrfs_root *extent_root, u64 alloc_bytes,
3580 u64 flags, int force)
3581 {
3582 struct btrfs_space_info *space_info;
3583 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3584 int wait_for_alloc = 0;
3585 int ret = 0;
3586
3587 space_info = __find_space_info(extent_root->fs_info, flags);
3588 if (!space_info) {
3589 ret = update_space_info(extent_root->fs_info, flags,
3590 0, 0, &space_info);
3591 BUG_ON(ret); /* -ENOMEM */
3592 }
3593 BUG_ON(!space_info); /* Logic error */
3594
3595 again:
3596 spin_lock(&space_info->lock);
3597 if (force < space_info->force_alloc)
3598 force = space_info->force_alloc;
3599 if (space_info->full) {
3600 spin_unlock(&space_info->lock);
3601 return 0;
3602 }
3603
3604 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3605 spin_unlock(&space_info->lock);
3606 return 0;
3607 } else if (space_info->chunk_alloc) {
3608 wait_for_alloc = 1;
3609 } else {
3610 space_info->chunk_alloc = 1;
3611 }
3612
3613 spin_unlock(&space_info->lock);
3614
3615 mutex_lock(&fs_info->chunk_mutex);
3616
3617 /*
3618 * The chunk_mutex is held throughout the entirety of a chunk
3619 * allocation, so once we've acquired the chunk_mutex we know that the
3620 * other guy is done and we need to recheck and see if we should
3621 * allocate.
3622 */
3623 if (wait_for_alloc) {
3624 mutex_unlock(&fs_info->chunk_mutex);
3625 wait_for_alloc = 0;
3626 goto again;
3627 }
3628
3629 /*
3630 * If we have mixed data/metadata chunks we want to make sure we keep
3631 * allocating mixed chunks instead of individual chunks.
3632 */
3633 if (btrfs_mixed_space_info(space_info))
3634 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3635
3636 /*
3637 * if we're doing a data chunk, go ahead and make sure that
3638 * we keep a reasonable number of metadata chunks allocated in the
3639 * FS as well.
3640 */
3641 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3642 fs_info->data_chunk_allocations++;
3643 if (!(fs_info->data_chunk_allocations %
3644 fs_info->metadata_ratio))
3645 force_metadata_allocation(fs_info);
3646 }
3647
3648 /*
3649 * Check if we have enough space in SYSTEM chunk because we may need
3650 * to update devices.
3651 */
3652 check_system_chunk(trans, extent_root, flags);
3653
3654 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3655 if (ret < 0 && ret != -ENOSPC)
3656 goto out;
3657
3658 spin_lock(&space_info->lock);
3659 if (ret)
3660 space_info->full = 1;
3661 else
3662 ret = 1;
3663
3664 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3665 space_info->chunk_alloc = 0;
3666 spin_unlock(&space_info->lock);
3667 out:
3668 mutex_unlock(&fs_info->chunk_mutex);
3669 return ret;
3670 }
3671
3672 /*
3673 * shrink metadata reservation for delalloc
3674 */
3675 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3676 bool wait_ordered)
3677 {
3678 struct btrfs_block_rsv *block_rsv;
3679 struct btrfs_space_info *space_info;
3680 struct btrfs_trans_handle *trans;
3681 u64 delalloc_bytes;
3682 u64 max_reclaim;
3683 long time_left;
3684 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3685 int loops = 0;
3686
3687 trans = (struct btrfs_trans_handle *)current->journal_info;
3688 block_rsv = &root->fs_info->delalloc_block_rsv;
3689 space_info = block_rsv->space_info;
3690
3691 smp_mb();
3692 delalloc_bytes = root->fs_info->delalloc_bytes;
3693 if (delalloc_bytes == 0) {
3694 if (trans)
3695 return;
3696 btrfs_wait_ordered_extents(root, 0, 0);
3697 return;
3698 }
3699
3700 while (delalloc_bytes && loops < 3) {
3701 max_reclaim = min(delalloc_bytes, to_reclaim);
3702 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3703 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3704 WB_REASON_FS_FREE_SPACE);
3705
3706 spin_lock(&space_info->lock);
3707 if (space_info->bytes_used + space_info->bytes_reserved +
3708 space_info->bytes_pinned + space_info->bytes_readonly +
3709 space_info->bytes_may_use + orig <=
3710 space_info->total_bytes) {
3711 spin_unlock(&space_info->lock);
3712 break;
3713 }
3714 spin_unlock(&space_info->lock);
3715
3716 loops++;
3717 if (wait_ordered && !trans) {
3718 btrfs_wait_ordered_extents(root, 0, 0);
3719 } else {
3720 time_left = schedule_timeout_killable(1);
3721 if (time_left)
3722 break;
3723 }
3724 smp_mb();
3725 delalloc_bytes = root->fs_info->delalloc_bytes;
3726 }
3727 }
3728
3729 /**
3730 * maybe_commit_transaction - possibly commit the transaction if its ok to
3731 * @root - the root we're allocating for
3732 * @bytes - the number of bytes we want to reserve
3733 * @force - force the commit
3734 *
3735 * This will check to make sure that committing the transaction will actually
3736 * get us somewhere and then commit the transaction if it does. Otherwise it
3737 * will return -ENOSPC.
3738 */
3739 static int may_commit_transaction(struct btrfs_root *root,
3740 struct btrfs_space_info *space_info,
3741 u64 bytes, int force)
3742 {
3743 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3744 struct btrfs_trans_handle *trans;
3745
3746 trans = (struct btrfs_trans_handle *)current->journal_info;
3747 if (trans)
3748 return -EAGAIN;
3749
3750 if (force)
3751 goto commit;
3752
3753 /* See if there is enough pinned space to make this reservation */
3754 spin_lock(&space_info->lock);
3755 if (space_info->bytes_pinned >= bytes) {
3756 spin_unlock(&space_info->lock);
3757 goto commit;
3758 }
3759 spin_unlock(&space_info->lock);
3760
3761 /*
3762 * See if there is some space in the delayed insertion reservation for
3763 * this reservation.
3764 */
3765 if (space_info != delayed_rsv->space_info)
3766 return -ENOSPC;
3767
3768 spin_lock(&space_info->lock);
3769 spin_lock(&delayed_rsv->lock);
3770 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3771 spin_unlock(&delayed_rsv->lock);
3772 spin_unlock(&space_info->lock);
3773 return -ENOSPC;
3774 }
3775 spin_unlock(&delayed_rsv->lock);
3776 spin_unlock(&space_info->lock);
3777
3778 commit:
3779 trans = btrfs_join_transaction(root);
3780 if (IS_ERR(trans))
3781 return -ENOSPC;
3782
3783 return btrfs_commit_transaction(trans, root);
3784 }
3785
3786 enum flush_state {
3787 FLUSH_DELALLOC = 1,
3788 FLUSH_DELALLOC_WAIT = 2,
3789 FLUSH_DELAYED_ITEMS_NR = 3,
3790 FLUSH_DELAYED_ITEMS = 4,
3791 COMMIT_TRANS = 5,
3792 };
3793
3794 static int flush_space(struct btrfs_root *root,
3795 struct btrfs_space_info *space_info, u64 num_bytes,
3796 u64 orig_bytes, int state)
3797 {
3798 struct btrfs_trans_handle *trans;
3799 int nr;
3800 int ret = 0;
3801
3802 switch (state) {
3803 case FLUSH_DELALLOC:
3804 case FLUSH_DELALLOC_WAIT:
3805 shrink_delalloc(root, num_bytes, orig_bytes,
3806 state == FLUSH_DELALLOC_WAIT);
3807 break;
3808 case FLUSH_DELAYED_ITEMS_NR:
3809 case FLUSH_DELAYED_ITEMS:
3810 if (state == FLUSH_DELAYED_ITEMS_NR) {
3811 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3812
3813 nr = (int)div64_u64(num_bytes, bytes);
3814 if (!nr)
3815 nr = 1;
3816 nr *= 2;
3817 } else {
3818 nr = -1;
3819 }
3820 trans = btrfs_join_transaction(root);
3821 if (IS_ERR(trans)) {
3822 ret = PTR_ERR(trans);
3823 break;
3824 }
3825 ret = btrfs_run_delayed_items_nr(trans, root, nr);
3826 btrfs_end_transaction(trans, root);
3827 break;
3828 case COMMIT_TRANS:
3829 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3830 break;
3831 default:
3832 ret = -ENOSPC;
3833 break;
3834 }
3835
3836 return ret;
3837 }
3838 /**
3839 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3840 * @root - the root we're allocating for
3841 * @block_rsv - the block_rsv we're allocating for
3842 * @orig_bytes - the number of bytes we want
3843 * @flush - wether or not we can flush to make our reservation
3844 *
3845 * This will reserve orgi_bytes number of bytes from the space info associated
3846 * with the block_rsv. If there is not enough space it will make an attempt to
3847 * flush out space to make room. It will do this by flushing delalloc if
3848 * possible or committing the transaction. If flush is 0 then no attempts to
3849 * regain reservations will be made and this will fail if there is not enough
3850 * space already.
3851 */
3852 static int reserve_metadata_bytes(struct btrfs_root *root,
3853 struct btrfs_block_rsv *block_rsv,
3854 u64 orig_bytes, int flush)
3855 {
3856 struct btrfs_space_info *space_info = block_rsv->space_info;
3857 u64 used;
3858 u64 num_bytes = orig_bytes;
3859 int flush_state = FLUSH_DELALLOC;
3860 int ret = 0;
3861 bool flushing = false;
3862 bool committed = false;
3863
3864 again:
3865 ret = 0;
3866 spin_lock(&space_info->lock);
3867 /*
3868 * We only want to wait if somebody other than us is flushing and we are
3869 * actually alloed to flush.
3870 */
3871 while (flush && !flushing && space_info->flush) {
3872 spin_unlock(&space_info->lock);
3873 /*
3874 * If we have a trans handle we can't wait because the flusher
3875 * may have to commit the transaction, which would mean we would
3876 * deadlock since we are waiting for the flusher to finish, but
3877 * hold the current transaction open.
3878 */
3879 if (current->journal_info)
3880 return -EAGAIN;
3881 ret = wait_event_killable(space_info->wait, !space_info->flush);
3882 /* Must have been killed, return */
3883 if (ret)
3884 return -EINTR;
3885
3886 spin_lock(&space_info->lock);
3887 }
3888
3889 ret = -ENOSPC;
3890 used = space_info->bytes_used + space_info->bytes_reserved +
3891 space_info->bytes_pinned + space_info->bytes_readonly +
3892 space_info->bytes_may_use;
3893
3894 /*
3895 * The idea here is that we've not already over-reserved the block group
3896 * then we can go ahead and save our reservation first and then start
3897 * flushing if we need to. Otherwise if we've already overcommitted
3898 * lets start flushing stuff first and then come back and try to make
3899 * our reservation.
3900 */
3901 if (used <= space_info->total_bytes) {
3902 if (used + orig_bytes <= space_info->total_bytes) {
3903 space_info->bytes_may_use += orig_bytes;
3904 trace_btrfs_space_reservation(root->fs_info,
3905 "space_info", space_info->flags, orig_bytes, 1);
3906 ret = 0;
3907 } else {
3908 /*
3909 * Ok set num_bytes to orig_bytes since we aren't
3910 * overocmmitted, this way we only try and reclaim what
3911 * we need.
3912 */
3913 num_bytes = orig_bytes;
3914 }
3915 } else {
3916 /*
3917 * Ok we're over committed, set num_bytes to the overcommitted
3918 * amount plus the amount of bytes that we need for this
3919 * reservation.
3920 */
3921 num_bytes = used - space_info->total_bytes +
3922 (orig_bytes * 2);
3923 }
3924
3925 if (ret) {
3926 u64 profile = btrfs_get_alloc_profile(root, 0);
3927 u64 avail;
3928
3929 /*
3930 * If we have a lot of space that's pinned, don't bother doing
3931 * the overcommit dance yet and just commit the transaction.
3932 */
3933 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3934 do_div(avail, 10);
3935 if (space_info->bytes_pinned >= avail && flush && !committed) {
3936 space_info->flush = 1;
3937 flushing = true;
3938 spin_unlock(&space_info->lock);
3939 ret = may_commit_transaction(root, space_info,
3940 orig_bytes, 1);
3941 if (ret)
3942 goto out;
3943 committed = true;
3944 goto again;
3945 }
3946
3947 spin_lock(&root->fs_info->free_chunk_lock);
3948 avail = root->fs_info->free_chunk_space;
3949
3950 /*
3951 * If we have dup, raid1 or raid10 then only half of the free
3952 * space is actually useable.
3953 */
3954 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3955 BTRFS_BLOCK_GROUP_RAID1 |
3956 BTRFS_BLOCK_GROUP_RAID10))
3957 avail >>= 1;
3958
3959 /*
3960 * If we aren't flushing don't let us overcommit too much, say
3961 * 1/8th of the space. If we can flush, let it overcommit up to
3962 * 1/2 of the space.
3963 */
3964 if (flush)
3965 avail >>= 3;
3966 else
3967 avail >>= 1;
3968 spin_unlock(&root->fs_info->free_chunk_lock);
3969
3970 if (used + num_bytes < space_info->total_bytes + avail) {
3971 space_info->bytes_may_use += orig_bytes;
3972 trace_btrfs_space_reservation(root->fs_info,
3973 "space_info", space_info->flags, orig_bytes, 1);
3974 ret = 0;
3975 }
3976 }
3977
3978 /*
3979 * Couldn't make our reservation, save our place so while we're trying
3980 * to reclaim space we can actually use it instead of somebody else
3981 * stealing it from us.
3982 */
3983 if (ret && flush) {
3984 flushing = true;
3985 space_info->flush = 1;
3986 }
3987
3988 spin_unlock(&space_info->lock);
3989
3990 if (!ret || !flush)
3991 goto out;
3992
3993 ret = flush_space(root, space_info, num_bytes, orig_bytes,
3994 flush_state);
3995 flush_state++;
3996 if (!ret)
3997 goto again;
3998 else if (flush_state <= COMMIT_TRANS)
3999 goto again;
4000
4001 out:
4002 if (flushing) {
4003 spin_lock(&space_info->lock);
4004 space_info->flush = 0;
4005 wake_up_all(&space_info->wait);
4006 spin_unlock(&space_info->lock);
4007 }
4008 return ret;
4009 }
4010
4011 static struct btrfs_block_rsv *get_block_rsv(
4012 const struct btrfs_trans_handle *trans,
4013 const struct btrfs_root *root)
4014 {
4015 struct btrfs_block_rsv *block_rsv = NULL;
4016
4017 if (root->ref_cows)
4018 block_rsv = trans->block_rsv;
4019
4020 if (root == root->fs_info->csum_root && trans->adding_csums)
4021 block_rsv = trans->block_rsv;
4022
4023 if (!block_rsv)
4024 block_rsv = root->block_rsv;
4025
4026 if (!block_rsv)
4027 block_rsv = &root->fs_info->empty_block_rsv;
4028
4029 return block_rsv;
4030 }
4031
4032 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4033 u64 num_bytes)
4034 {
4035 int ret = -ENOSPC;
4036 spin_lock(&block_rsv->lock);
4037 if (block_rsv->reserved >= num_bytes) {
4038 block_rsv->reserved -= num_bytes;
4039 if (block_rsv->reserved < block_rsv->size)
4040 block_rsv->full = 0;
4041 ret = 0;
4042 }
4043 spin_unlock(&block_rsv->lock);
4044 return ret;
4045 }
4046
4047 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4048 u64 num_bytes, int update_size)
4049 {
4050 spin_lock(&block_rsv->lock);
4051 block_rsv->reserved += num_bytes;
4052 if (update_size)
4053 block_rsv->size += num_bytes;
4054 else if (block_rsv->reserved >= block_rsv->size)
4055 block_rsv->full = 1;
4056 spin_unlock(&block_rsv->lock);
4057 }
4058
4059 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4060 struct btrfs_block_rsv *block_rsv,
4061 struct btrfs_block_rsv *dest, u64 num_bytes)
4062 {
4063 struct btrfs_space_info *space_info = block_rsv->space_info;
4064
4065 spin_lock(&block_rsv->lock);
4066 if (num_bytes == (u64)-1)
4067 num_bytes = block_rsv->size;
4068 block_rsv->size -= num_bytes;
4069 if (block_rsv->reserved >= block_rsv->size) {
4070 num_bytes = block_rsv->reserved - block_rsv->size;
4071 block_rsv->reserved = block_rsv->size;
4072 block_rsv->full = 1;
4073 } else {
4074 num_bytes = 0;
4075 }
4076 spin_unlock(&block_rsv->lock);
4077
4078 if (num_bytes > 0) {
4079 if (dest) {
4080 spin_lock(&dest->lock);
4081 if (!dest->full) {
4082 u64 bytes_to_add;
4083
4084 bytes_to_add = dest->size - dest->reserved;
4085 bytes_to_add = min(num_bytes, bytes_to_add);
4086 dest->reserved += bytes_to_add;
4087 if (dest->reserved >= dest->size)
4088 dest->full = 1;
4089 num_bytes -= bytes_to_add;
4090 }
4091 spin_unlock(&dest->lock);
4092 }
4093 if (num_bytes) {
4094 spin_lock(&space_info->lock);
4095 space_info->bytes_may_use -= num_bytes;
4096 trace_btrfs_space_reservation(fs_info, "space_info",
4097 space_info->flags, num_bytes, 0);
4098 space_info->reservation_progress++;
4099 spin_unlock(&space_info->lock);
4100 }
4101 }
4102 }
4103
4104 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4105 struct btrfs_block_rsv *dst, u64 num_bytes)
4106 {
4107 int ret;
4108
4109 ret = block_rsv_use_bytes(src, num_bytes);
4110 if (ret)
4111 return ret;
4112
4113 block_rsv_add_bytes(dst, num_bytes, 1);
4114 return 0;
4115 }
4116
4117 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
4118 {
4119 memset(rsv, 0, sizeof(*rsv));
4120 spin_lock_init(&rsv->lock);
4121 }
4122
4123 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
4124 {
4125 struct btrfs_block_rsv *block_rsv;
4126 struct btrfs_fs_info *fs_info = root->fs_info;
4127
4128 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4129 if (!block_rsv)
4130 return NULL;
4131
4132 btrfs_init_block_rsv(block_rsv);
4133 block_rsv->space_info = __find_space_info(fs_info,
4134 BTRFS_BLOCK_GROUP_METADATA);
4135 return block_rsv;
4136 }
4137
4138 void btrfs_free_block_rsv(struct btrfs_root *root,
4139 struct btrfs_block_rsv *rsv)
4140 {
4141 btrfs_block_rsv_release(root, rsv, (u64)-1);
4142 kfree(rsv);
4143 }
4144
4145 static inline int __block_rsv_add(struct btrfs_root *root,
4146 struct btrfs_block_rsv *block_rsv,
4147 u64 num_bytes, int flush)
4148 {
4149 int ret;
4150
4151 if (num_bytes == 0)
4152 return 0;
4153
4154 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4155 if (!ret) {
4156 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4157 return 0;
4158 }
4159
4160 return ret;
4161 }
4162
4163 int btrfs_block_rsv_add(struct btrfs_root *root,
4164 struct btrfs_block_rsv *block_rsv,
4165 u64 num_bytes)
4166 {
4167 return __block_rsv_add(root, block_rsv, num_bytes, 1);
4168 }
4169
4170 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4171 struct btrfs_block_rsv *block_rsv,
4172 u64 num_bytes)
4173 {
4174 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4175 }
4176
4177 int btrfs_block_rsv_check(struct btrfs_root *root,
4178 struct btrfs_block_rsv *block_rsv, int min_factor)
4179 {
4180 u64 num_bytes = 0;
4181 int ret = -ENOSPC;
4182
4183 if (!block_rsv)
4184 return 0;
4185
4186 spin_lock(&block_rsv->lock);
4187 num_bytes = div_factor(block_rsv->size, min_factor);
4188 if (block_rsv->reserved >= num_bytes)
4189 ret = 0;
4190 spin_unlock(&block_rsv->lock);
4191
4192 return ret;
4193 }
4194
4195 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4196 struct btrfs_block_rsv *block_rsv,
4197 u64 min_reserved, int flush)
4198 {
4199 u64 num_bytes = 0;
4200 int ret = -ENOSPC;
4201
4202 if (!block_rsv)
4203 return 0;
4204
4205 spin_lock(&block_rsv->lock);
4206 num_bytes = min_reserved;
4207 if (block_rsv->reserved >= num_bytes)
4208 ret = 0;
4209 else
4210 num_bytes -= block_rsv->reserved;
4211 spin_unlock(&block_rsv->lock);
4212
4213 if (!ret)
4214 return 0;
4215
4216 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4217 if (!ret) {
4218 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4219 return 0;
4220 }
4221
4222 return ret;
4223 }
4224
4225 int btrfs_block_rsv_refill(struct btrfs_root *root,
4226 struct btrfs_block_rsv *block_rsv,
4227 u64 min_reserved)
4228 {
4229 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4230 }
4231
4232 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4233 struct btrfs_block_rsv *block_rsv,
4234 u64 min_reserved)
4235 {
4236 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4237 }
4238
4239 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4240 struct btrfs_block_rsv *dst_rsv,
4241 u64 num_bytes)
4242 {
4243 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4244 }
4245
4246 void btrfs_block_rsv_release(struct btrfs_root *root,
4247 struct btrfs_block_rsv *block_rsv,
4248 u64 num_bytes)
4249 {
4250 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4251 if (global_rsv->full || global_rsv == block_rsv ||
4252 block_rsv->space_info != global_rsv->space_info)
4253 global_rsv = NULL;
4254 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4255 num_bytes);
4256 }
4257
4258 /*
4259 * helper to calculate size of global block reservation.
4260 * the desired value is sum of space used by extent tree,
4261 * checksum tree and root tree
4262 */
4263 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4264 {
4265 struct btrfs_space_info *sinfo;
4266 u64 num_bytes;
4267 u64 meta_used;
4268 u64 data_used;
4269 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4270
4271 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4272 spin_lock(&sinfo->lock);
4273 data_used = sinfo->bytes_used;
4274 spin_unlock(&sinfo->lock);
4275
4276 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4277 spin_lock(&sinfo->lock);
4278 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4279 data_used = 0;
4280 meta_used = sinfo->bytes_used;
4281 spin_unlock(&sinfo->lock);
4282
4283 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4284 csum_size * 2;
4285 num_bytes += div64_u64(data_used + meta_used, 50);
4286
4287 if (num_bytes * 3 > meta_used)
4288 num_bytes = div64_u64(meta_used, 3);
4289
4290 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4291 }
4292
4293 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4294 {
4295 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4296 struct btrfs_space_info *sinfo = block_rsv->space_info;
4297 u64 num_bytes;
4298
4299 num_bytes = calc_global_metadata_size(fs_info);
4300
4301 spin_lock(&sinfo->lock);
4302 spin_lock(&block_rsv->lock);
4303
4304 block_rsv->size = num_bytes;
4305
4306 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4307 sinfo->bytes_reserved + sinfo->bytes_readonly +
4308 sinfo->bytes_may_use;
4309
4310 if (sinfo->total_bytes > num_bytes) {
4311 num_bytes = sinfo->total_bytes - num_bytes;
4312 block_rsv->reserved += num_bytes;
4313 sinfo->bytes_may_use += num_bytes;
4314 trace_btrfs_space_reservation(fs_info, "space_info",
4315 sinfo->flags, num_bytes, 1);
4316 }
4317
4318 if (block_rsv->reserved >= block_rsv->size) {
4319 num_bytes = block_rsv->reserved - block_rsv->size;
4320 sinfo->bytes_may_use -= num_bytes;
4321 trace_btrfs_space_reservation(fs_info, "space_info",
4322 sinfo->flags, num_bytes, 0);
4323 sinfo->reservation_progress++;
4324 block_rsv->reserved = block_rsv->size;
4325 block_rsv->full = 1;
4326 }
4327
4328 spin_unlock(&block_rsv->lock);
4329 spin_unlock(&sinfo->lock);
4330 }
4331
4332 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4333 {
4334 struct btrfs_space_info *space_info;
4335
4336 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4337 fs_info->chunk_block_rsv.space_info = space_info;
4338
4339 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4340 fs_info->global_block_rsv.space_info = space_info;
4341 fs_info->delalloc_block_rsv.space_info = space_info;
4342 fs_info->trans_block_rsv.space_info = space_info;
4343 fs_info->empty_block_rsv.space_info = space_info;
4344 fs_info->delayed_block_rsv.space_info = space_info;
4345
4346 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4347 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4348 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4349 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4350 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4351
4352 update_global_block_rsv(fs_info);
4353 }
4354
4355 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4356 {
4357 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4358 (u64)-1);
4359 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4360 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4361 WARN_ON(fs_info->trans_block_rsv.size > 0);
4362 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4363 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4364 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4365 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4366 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4367 }
4368
4369 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4370 struct btrfs_root *root)
4371 {
4372 if (!trans->block_rsv)
4373 return;
4374
4375 if (!trans->bytes_reserved)
4376 return;
4377
4378 trace_btrfs_space_reservation(root->fs_info, "transaction",
4379 trans->transid, trans->bytes_reserved, 0);
4380 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4381 trans->bytes_reserved = 0;
4382 }
4383
4384 /* Can only return 0 or -ENOSPC */
4385 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4386 struct inode *inode)
4387 {
4388 struct btrfs_root *root = BTRFS_I(inode)->root;
4389 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4390 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4391
4392 /*
4393 * We need to hold space in order to delete our orphan item once we've
4394 * added it, so this takes the reservation so we can release it later
4395 * when we are truly done with the orphan item.
4396 */
4397 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4398 trace_btrfs_space_reservation(root->fs_info, "orphan",
4399 btrfs_ino(inode), num_bytes, 1);
4400 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4401 }
4402
4403 void btrfs_orphan_release_metadata(struct inode *inode)
4404 {
4405 struct btrfs_root *root = BTRFS_I(inode)->root;
4406 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4407 trace_btrfs_space_reservation(root->fs_info, "orphan",
4408 btrfs_ino(inode), num_bytes, 0);
4409 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4410 }
4411
4412 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4413 struct btrfs_pending_snapshot *pending)
4414 {
4415 struct btrfs_root *root = pending->root;
4416 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4417 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4418 /*
4419 * two for root back/forward refs, two for directory entries
4420 * and one for root of the snapshot.
4421 */
4422 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4423 dst_rsv->space_info = src_rsv->space_info;
4424 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4425 }
4426
4427 /**
4428 * drop_outstanding_extent - drop an outstanding extent
4429 * @inode: the inode we're dropping the extent for
4430 *
4431 * This is called when we are freeing up an outstanding extent, either called
4432 * after an error or after an extent is written. This will return the number of
4433 * reserved extents that need to be freed. This must be called with
4434 * BTRFS_I(inode)->lock held.
4435 */
4436 static unsigned drop_outstanding_extent(struct inode *inode)
4437 {
4438 unsigned drop_inode_space = 0;
4439 unsigned dropped_extents = 0;
4440
4441 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4442 BTRFS_I(inode)->outstanding_extents--;
4443
4444 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4445 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4446 &BTRFS_I(inode)->runtime_flags))
4447 drop_inode_space = 1;
4448
4449 /*
4450 * If we have more or the same amount of outsanding extents than we have
4451 * reserved then we need to leave the reserved extents count alone.
4452 */
4453 if (BTRFS_I(inode)->outstanding_extents >=
4454 BTRFS_I(inode)->reserved_extents)
4455 return drop_inode_space;
4456
4457 dropped_extents = BTRFS_I(inode)->reserved_extents -
4458 BTRFS_I(inode)->outstanding_extents;
4459 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4460 return dropped_extents + drop_inode_space;
4461 }
4462
4463 /**
4464 * calc_csum_metadata_size - return the amount of metada space that must be
4465 * reserved/free'd for the given bytes.
4466 * @inode: the inode we're manipulating
4467 * @num_bytes: the number of bytes in question
4468 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4469 *
4470 * This adjusts the number of csum_bytes in the inode and then returns the
4471 * correct amount of metadata that must either be reserved or freed. We
4472 * calculate how many checksums we can fit into one leaf and then divide the
4473 * number of bytes that will need to be checksumed by this value to figure out
4474 * how many checksums will be required. If we are adding bytes then the number
4475 * may go up and we will return the number of additional bytes that must be
4476 * reserved. If it is going down we will return the number of bytes that must
4477 * be freed.
4478 *
4479 * This must be called with BTRFS_I(inode)->lock held.
4480 */
4481 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4482 int reserve)
4483 {
4484 struct btrfs_root *root = BTRFS_I(inode)->root;
4485 u64 csum_size;
4486 int num_csums_per_leaf;
4487 int num_csums;
4488 int old_csums;
4489
4490 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4491 BTRFS_I(inode)->csum_bytes == 0)
4492 return 0;
4493
4494 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4495 if (reserve)
4496 BTRFS_I(inode)->csum_bytes += num_bytes;
4497 else
4498 BTRFS_I(inode)->csum_bytes -= num_bytes;
4499 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4500 num_csums_per_leaf = (int)div64_u64(csum_size,
4501 sizeof(struct btrfs_csum_item) +
4502 sizeof(struct btrfs_disk_key));
4503 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4504 num_csums = num_csums + num_csums_per_leaf - 1;
4505 num_csums = num_csums / num_csums_per_leaf;
4506
4507 old_csums = old_csums + num_csums_per_leaf - 1;
4508 old_csums = old_csums / num_csums_per_leaf;
4509
4510 /* No change, no need to reserve more */
4511 if (old_csums == num_csums)
4512 return 0;
4513
4514 if (reserve)
4515 return btrfs_calc_trans_metadata_size(root,
4516 num_csums - old_csums);
4517
4518 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4519 }
4520
4521 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4522 {
4523 struct btrfs_root *root = BTRFS_I(inode)->root;
4524 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4525 u64 to_reserve = 0;
4526 u64 csum_bytes;
4527 unsigned nr_extents = 0;
4528 int extra_reserve = 0;
4529 int flush = 1;
4530 int ret;
4531
4532 /* Need to be holding the i_mutex here if we aren't free space cache */
4533 if (btrfs_is_free_space_inode(inode))
4534 flush = 0;
4535
4536 if (flush && btrfs_transaction_in_commit(root->fs_info))
4537 schedule_timeout(1);
4538
4539 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4540 num_bytes = ALIGN(num_bytes, root->sectorsize);
4541
4542 spin_lock(&BTRFS_I(inode)->lock);
4543 BTRFS_I(inode)->outstanding_extents++;
4544
4545 if (BTRFS_I(inode)->outstanding_extents >
4546 BTRFS_I(inode)->reserved_extents)
4547 nr_extents = BTRFS_I(inode)->outstanding_extents -
4548 BTRFS_I(inode)->reserved_extents;
4549
4550 /*
4551 * Add an item to reserve for updating the inode when we complete the
4552 * delalloc io.
4553 */
4554 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4555 &BTRFS_I(inode)->runtime_flags)) {
4556 nr_extents++;
4557 extra_reserve = 1;
4558 }
4559
4560 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4561 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4562 csum_bytes = BTRFS_I(inode)->csum_bytes;
4563 spin_unlock(&BTRFS_I(inode)->lock);
4564
4565 if (root->fs_info->quota_enabled) {
4566 ret = btrfs_qgroup_reserve(root, num_bytes +
4567 nr_extents * root->leafsize);
4568 if (ret) {
4569 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4570 return ret;
4571 }
4572 }
4573
4574 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4575 if (ret) {
4576 u64 to_free = 0;
4577 unsigned dropped;
4578
4579 spin_lock(&BTRFS_I(inode)->lock);
4580 dropped = drop_outstanding_extent(inode);
4581 /*
4582 * If the inodes csum_bytes is the same as the original
4583 * csum_bytes then we know we haven't raced with any free()ers
4584 * so we can just reduce our inodes csum bytes and carry on.
4585 * Otherwise we have to do the normal free thing to account for
4586 * the case that the free side didn't free up its reserve
4587 * because of this outstanding reservation.
4588 */
4589 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4590 calc_csum_metadata_size(inode, num_bytes, 0);
4591 else
4592 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4593 spin_unlock(&BTRFS_I(inode)->lock);
4594 if (dropped)
4595 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4596
4597 if (to_free) {
4598 btrfs_block_rsv_release(root, block_rsv, to_free);
4599 trace_btrfs_space_reservation(root->fs_info,
4600 "delalloc",
4601 btrfs_ino(inode),
4602 to_free, 0);
4603 }
4604 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4605 return ret;
4606 }
4607
4608 spin_lock(&BTRFS_I(inode)->lock);
4609 if (extra_reserve) {
4610 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4611 &BTRFS_I(inode)->runtime_flags);
4612 nr_extents--;
4613 }
4614 BTRFS_I(inode)->reserved_extents += nr_extents;
4615 spin_unlock(&BTRFS_I(inode)->lock);
4616 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4617
4618 if (to_reserve)
4619 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4620 btrfs_ino(inode), to_reserve, 1);
4621 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4622
4623 return 0;
4624 }
4625
4626 /**
4627 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4628 * @inode: the inode to release the reservation for
4629 * @num_bytes: the number of bytes we're releasing
4630 *
4631 * This will release the metadata reservation for an inode. This can be called
4632 * once we complete IO for a given set of bytes to release their metadata
4633 * reservations.
4634 */
4635 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4636 {
4637 struct btrfs_root *root = BTRFS_I(inode)->root;
4638 u64 to_free = 0;
4639 unsigned dropped;
4640
4641 num_bytes = ALIGN(num_bytes, root->sectorsize);
4642 spin_lock(&BTRFS_I(inode)->lock);
4643 dropped = drop_outstanding_extent(inode);
4644
4645 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4646 spin_unlock(&BTRFS_I(inode)->lock);
4647 if (dropped > 0)
4648 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4649
4650 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4651 btrfs_ino(inode), to_free, 0);
4652 if (root->fs_info->quota_enabled) {
4653 btrfs_qgroup_free(root, num_bytes +
4654 dropped * root->leafsize);
4655 }
4656
4657 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4658 to_free);
4659 }
4660
4661 /**
4662 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4663 * @inode: inode we're writing to
4664 * @num_bytes: the number of bytes we want to allocate
4665 *
4666 * This will do the following things
4667 *
4668 * o reserve space in the data space info for num_bytes
4669 * o reserve space in the metadata space info based on number of outstanding
4670 * extents and how much csums will be needed
4671 * o add to the inodes ->delalloc_bytes
4672 * o add it to the fs_info's delalloc inodes list.
4673 *
4674 * This will return 0 for success and -ENOSPC if there is no space left.
4675 */
4676 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4677 {
4678 int ret;
4679
4680 ret = btrfs_check_data_free_space(inode, num_bytes);
4681 if (ret)
4682 return ret;
4683
4684 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4685 if (ret) {
4686 btrfs_free_reserved_data_space(inode, num_bytes);
4687 return ret;
4688 }
4689
4690 return 0;
4691 }
4692
4693 /**
4694 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4695 * @inode: inode we're releasing space for
4696 * @num_bytes: the number of bytes we want to free up
4697 *
4698 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4699 * called in the case that we don't need the metadata AND data reservations
4700 * anymore. So if there is an error or we insert an inline extent.
4701 *
4702 * This function will release the metadata space that was not used and will
4703 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4704 * list if there are no delalloc bytes left.
4705 */
4706 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4707 {
4708 btrfs_delalloc_release_metadata(inode, num_bytes);
4709 btrfs_free_reserved_data_space(inode, num_bytes);
4710 }
4711
4712 static int update_block_group(struct btrfs_trans_handle *trans,
4713 struct btrfs_root *root,
4714 u64 bytenr, u64 num_bytes, int alloc)
4715 {
4716 struct btrfs_block_group_cache *cache = NULL;
4717 struct btrfs_fs_info *info = root->fs_info;
4718 u64 total = num_bytes;
4719 u64 old_val;
4720 u64 byte_in_group;
4721 int factor;
4722
4723 /* block accounting for super block */
4724 spin_lock(&info->delalloc_lock);
4725 old_val = btrfs_super_bytes_used(info->super_copy);
4726 if (alloc)
4727 old_val += num_bytes;
4728 else
4729 old_val -= num_bytes;
4730 btrfs_set_super_bytes_used(info->super_copy, old_val);
4731 spin_unlock(&info->delalloc_lock);
4732
4733 while (total) {
4734 cache = btrfs_lookup_block_group(info, bytenr);
4735 if (!cache)
4736 return -ENOENT;
4737 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4738 BTRFS_BLOCK_GROUP_RAID1 |
4739 BTRFS_BLOCK_GROUP_RAID10))
4740 factor = 2;
4741 else
4742 factor = 1;
4743 /*
4744 * If this block group has free space cache written out, we
4745 * need to make sure to load it if we are removing space. This
4746 * is because we need the unpinning stage to actually add the
4747 * space back to the block group, otherwise we will leak space.
4748 */
4749 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4750 cache_block_group(cache, trans, NULL, 1);
4751
4752 byte_in_group = bytenr - cache->key.objectid;
4753 WARN_ON(byte_in_group > cache->key.offset);
4754
4755 spin_lock(&cache->space_info->lock);
4756 spin_lock(&cache->lock);
4757
4758 if (btrfs_test_opt(root, SPACE_CACHE) &&
4759 cache->disk_cache_state < BTRFS_DC_CLEAR)
4760 cache->disk_cache_state = BTRFS_DC_CLEAR;
4761
4762 cache->dirty = 1;
4763 old_val = btrfs_block_group_used(&cache->item);
4764 num_bytes = min(total, cache->key.offset - byte_in_group);
4765 if (alloc) {
4766 old_val += num_bytes;
4767 btrfs_set_block_group_used(&cache->item, old_val);
4768 cache->reserved -= num_bytes;
4769 cache->space_info->bytes_reserved -= num_bytes;
4770 cache->space_info->bytes_used += num_bytes;
4771 cache->space_info->disk_used += num_bytes * factor;
4772 spin_unlock(&cache->lock);
4773 spin_unlock(&cache->space_info->lock);
4774 } else {
4775 old_val -= num_bytes;
4776 btrfs_set_block_group_used(&cache->item, old_val);
4777 cache->pinned += num_bytes;
4778 cache->space_info->bytes_pinned += num_bytes;
4779 cache->space_info->bytes_used -= num_bytes;
4780 cache->space_info->disk_used -= num_bytes * factor;
4781 spin_unlock(&cache->lock);
4782 spin_unlock(&cache->space_info->lock);
4783
4784 set_extent_dirty(info->pinned_extents,
4785 bytenr, bytenr + num_bytes - 1,
4786 GFP_NOFS | __GFP_NOFAIL);
4787 }
4788 btrfs_put_block_group(cache);
4789 total -= num_bytes;
4790 bytenr += num_bytes;
4791 }
4792 return 0;
4793 }
4794
4795 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4796 {
4797 struct btrfs_block_group_cache *cache;
4798 u64 bytenr;
4799
4800 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4801 if (!cache)
4802 return 0;
4803
4804 bytenr = cache->key.objectid;
4805 btrfs_put_block_group(cache);
4806
4807 return bytenr;
4808 }
4809
4810 static int pin_down_extent(struct btrfs_root *root,
4811 struct btrfs_block_group_cache *cache,
4812 u64 bytenr, u64 num_bytes, int reserved)
4813 {
4814 spin_lock(&cache->space_info->lock);
4815 spin_lock(&cache->lock);
4816 cache->pinned += num_bytes;
4817 cache->space_info->bytes_pinned += num_bytes;
4818 if (reserved) {
4819 cache->reserved -= num_bytes;
4820 cache->space_info->bytes_reserved -= num_bytes;
4821 }
4822 spin_unlock(&cache->lock);
4823 spin_unlock(&cache->space_info->lock);
4824
4825 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4826 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4827 return 0;
4828 }
4829
4830 /*
4831 * this function must be called within transaction
4832 */
4833 int btrfs_pin_extent(struct btrfs_root *root,
4834 u64 bytenr, u64 num_bytes, int reserved)
4835 {
4836 struct btrfs_block_group_cache *cache;
4837
4838 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4839 BUG_ON(!cache); /* Logic error */
4840
4841 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4842
4843 btrfs_put_block_group(cache);
4844 return 0;
4845 }
4846
4847 /*
4848 * this function must be called within transaction
4849 */
4850 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4851 struct btrfs_root *root,
4852 u64 bytenr, u64 num_bytes)
4853 {
4854 struct btrfs_block_group_cache *cache;
4855
4856 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4857 BUG_ON(!cache); /* Logic error */
4858
4859 /*
4860 * pull in the free space cache (if any) so that our pin
4861 * removes the free space from the cache. We have load_only set
4862 * to one because the slow code to read in the free extents does check
4863 * the pinned extents.
4864 */
4865 cache_block_group(cache, trans, root, 1);
4866
4867 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4868
4869 /* remove us from the free space cache (if we're there at all) */
4870 btrfs_remove_free_space(cache, bytenr, num_bytes);
4871 btrfs_put_block_group(cache);
4872 return 0;
4873 }
4874
4875 /**
4876 * btrfs_update_reserved_bytes - update the block_group and space info counters
4877 * @cache: The cache we are manipulating
4878 * @num_bytes: The number of bytes in question
4879 * @reserve: One of the reservation enums
4880 *
4881 * This is called by the allocator when it reserves space, or by somebody who is
4882 * freeing space that was never actually used on disk. For example if you
4883 * reserve some space for a new leaf in transaction A and before transaction A
4884 * commits you free that leaf, you call this with reserve set to 0 in order to
4885 * clear the reservation.
4886 *
4887 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4888 * ENOSPC accounting. For data we handle the reservation through clearing the
4889 * delalloc bits in the io_tree. We have to do this since we could end up
4890 * allocating less disk space for the amount of data we have reserved in the
4891 * case of compression.
4892 *
4893 * If this is a reservation and the block group has become read only we cannot
4894 * make the reservation and return -EAGAIN, otherwise this function always
4895 * succeeds.
4896 */
4897 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4898 u64 num_bytes, int reserve)
4899 {
4900 struct btrfs_space_info *space_info = cache->space_info;
4901 int ret = 0;
4902
4903 spin_lock(&space_info->lock);
4904 spin_lock(&cache->lock);
4905 if (reserve != RESERVE_FREE) {
4906 if (cache->ro) {
4907 ret = -EAGAIN;
4908 } else {
4909 cache->reserved += num_bytes;
4910 space_info->bytes_reserved += num_bytes;
4911 if (reserve == RESERVE_ALLOC) {
4912 trace_btrfs_space_reservation(cache->fs_info,
4913 "space_info", space_info->flags,
4914 num_bytes, 0);
4915 space_info->bytes_may_use -= num_bytes;
4916 }
4917 }
4918 } else {
4919 if (cache->ro)
4920 space_info->bytes_readonly += num_bytes;
4921 cache->reserved -= num_bytes;
4922 space_info->bytes_reserved -= num_bytes;
4923 space_info->reservation_progress++;
4924 }
4925 spin_unlock(&cache->lock);
4926 spin_unlock(&space_info->lock);
4927 return ret;
4928 }
4929
4930 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4931 struct btrfs_root *root)
4932 {
4933 struct btrfs_fs_info *fs_info = root->fs_info;
4934 struct btrfs_caching_control *next;
4935 struct btrfs_caching_control *caching_ctl;
4936 struct btrfs_block_group_cache *cache;
4937
4938 down_write(&fs_info->extent_commit_sem);
4939
4940 list_for_each_entry_safe(caching_ctl, next,
4941 &fs_info->caching_block_groups, list) {
4942 cache = caching_ctl->block_group;
4943 if (block_group_cache_done(cache)) {
4944 cache->last_byte_to_unpin = (u64)-1;
4945 list_del_init(&caching_ctl->list);
4946 put_caching_control(caching_ctl);
4947 } else {
4948 cache->last_byte_to_unpin = caching_ctl->progress;
4949 }
4950 }
4951
4952 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4953 fs_info->pinned_extents = &fs_info->freed_extents[1];
4954 else
4955 fs_info->pinned_extents = &fs_info->freed_extents[0];
4956
4957 up_write(&fs_info->extent_commit_sem);
4958
4959 update_global_block_rsv(fs_info);
4960 }
4961
4962 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4963 {
4964 struct btrfs_fs_info *fs_info = root->fs_info;
4965 struct btrfs_block_group_cache *cache = NULL;
4966 u64 len;
4967
4968 while (start <= end) {
4969 if (!cache ||
4970 start >= cache->key.objectid + cache->key.offset) {
4971 if (cache)
4972 btrfs_put_block_group(cache);
4973 cache = btrfs_lookup_block_group(fs_info, start);
4974 BUG_ON(!cache); /* Logic error */
4975 }
4976
4977 len = cache->key.objectid + cache->key.offset - start;
4978 len = min(len, end + 1 - start);
4979
4980 if (start < cache->last_byte_to_unpin) {
4981 len = min(len, cache->last_byte_to_unpin - start);
4982 btrfs_add_free_space(cache, start, len);
4983 }
4984
4985 start += len;
4986
4987 spin_lock(&cache->space_info->lock);
4988 spin_lock(&cache->lock);
4989 cache->pinned -= len;
4990 cache->space_info->bytes_pinned -= len;
4991 if (cache->ro)
4992 cache->space_info->bytes_readonly += len;
4993 spin_unlock(&cache->lock);
4994 spin_unlock(&cache->space_info->lock);
4995 }
4996
4997 if (cache)
4998 btrfs_put_block_group(cache);
4999 return 0;
5000 }
5001
5002 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5003 struct btrfs_root *root)
5004 {
5005 struct btrfs_fs_info *fs_info = root->fs_info;
5006 struct extent_io_tree *unpin;
5007 u64 start;
5008 u64 end;
5009 int ret;
5010
5011 if (trans->aborted)
5012 return 0;
5013
5014 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5015 unpin = &fs_info->freed_extents[1];
5016 else
5017 unpin = &fs_info->freed_extents[0];
5018
5019 while (1) {
5020 ret = find_first_extent_bit(unpin, 0, &start, &end,
5021 EXTENT_DIRTY);
5022 if (ret)
5023 break;
5024
5025 if (btrfs_test_opt(root, DISCARD))
5026 ret = btrfs_discard_extent(root, start,
5027 end + 1 - start, NULL);
5028
5029 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5030 unpin_extent_range(root, start, end);
5031 cond_resched();
5032 }
5033
5034 return 0;
5035 }
5036
5037 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5038 struct btrfs_root *root,
5039 u64 bytenr, u64 num_bytes, u64 parent,
5040 u64 root_objectid, u64 owner_objectid,
5041 u64 owner_offset, int refs_to_drop,
5042 struct btrfs_delayed_extent_op *extent_op)
5043 {
5044 struct btrfs_key key;
5045 struct btrfs_path *path;
5046 struct btrfs_fs_info *info = root->fs_info;
5047 struct btrfs_root *extent_root = info->extent_root;
5048 struct extent_buffer *leaf;
5049 struct btrfs_extent_item *ei;
5050 struct btrfs_extent_inline_ref *iref;
5051 int ret;
5052 int is_data;
5053 int extent_slot = 0;
5054 int found_extent = 0;
5055 int num_to_del = 1;
5056 u32 item_size;
5057 u64 refs;
5058
5059 path = btrfs_alloc_path();
5060 if (!path)
5061 return -ENOMEM;
5062
5063 path->reada = 1;
5064 path->leave_spinning = 1;
5065
5066 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5067 BUG_ON(!is_data && refs_to_drop != 1);
5068
5069 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5070 bytenr, num_bytes, parent,
5071 root_objectid, owner_objectid,
5072 owner_offset);
5073 if (ret == 0) {
5074 extent_slot = path->slots[0];
5075 while (extent_slot >= 0) {
5076 btrfs_item_key_to_cpu(path->nodes[0], &key,
5077 extent_slot);
5078 if (key.objectid != bytenr)
5079 break;
5080 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5081 key.offset == num_bytes) {
5082 found_extent = 1;
5083 break;
5084 }
5085 if (path->slots[0] - extent_slot > 5)
5086 break;
5087 extent_slot--;
5088 }
5089 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5090 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5091 if (found_extent && item_size < sizeof(*ei))
5092 found_extent = 0;
5093 #endif
5094 if (!found_extent) {
5095 BUG_ON(iref);
5096 ret = remove_extent_backref(trans, extent_root, path,
5097 NULL, refs_to_drop,
5098 is_data);
5099 if (ret)
5100 goto abort;
5101 btrfs_release_path(path);
5102 path->leave_spinning = 1;
5103
5104 key.objectid = bytenr;
5105 key.type = BTRFS_EXTENT_ITEM_KEY;
5106 key.offset = num_bytes;
5107
5108 ret = btrfs_search_slot(trans, extent_root,
5109 &key, path, -1, 1);
5110 if (ret) {
5111 printk(KERN_ERR "umm, got %d back from search"
5112 ", was looking for %llu\n", ret,
5113 (unsigned long long)bytenr);
5114 if (ret > 0)
5115 btrfs_print_leaf(extent_root,
5116 path->nodes[0]);
5117 }
5118 if (ret < 0)
5119 goto abort;
5120 extent_slot = path->slots[0];
5121 }
5122 } else if (ret == -ENOENT) {
5123 btrfs_print_leaf(extent_root, path->nodes[0]);
5124 WARN_ON(1);
5125 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5126 "parent %llu root %llu owner %llu offset %llu\n",
5127 (unsigned long long)bytenr,
5128 (unsigned long long)parent,
5129 (unsigned long long)root_objectid,
5130 (unsigned long long)owner_objectid,
5131 (unsigned long long)owner_offset);
5132 } else {
5133 goto abort;
5134 }
5135
5136 leaf = path->nodes[0];
5137 item_size = btrfs_item_size_nr(leaf, extent_slot);
5138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5139 if (item_size < sizeof(*ei)) {
5140 BUG_ON(found_extent || extent_slot != path->slots[0]);
5141 ret = convert_extent_item_v0(trans, extent_root, path,
5142 owner_objectid, 0);
5143 if (ret < 0)
5144 goto abort;
5145
5146 btrfs_release_path(path);
5147 path->leave_spinning = 1;
5148
5149 key.objectid = bytenr;
5150 key.type = BTRFS_EXTENT_ITEM_KEY;
5151 key.offset = num_bytes;
5152
5153 ret = btrfs_search_slot(trans, extent_root, &key, path,
5154 -1, 1);
5155 if (ret) {
5156 printk(KERN_ERR "umm, got %d back from search"
5157 ", was looking for %llu\n", ret,
5158 (unsigned long long)bytenr);
5159 btrfs_print_leaf(extent_root, path->nodes[0]);
5160 }
5161 if (ret < 0)
5162 goto abort;
5163 extent_slot = path->slots[0];
5164 leaf = path->nodes[0];
5165 item_size = btrfs_item_size_nr(leaf, extent_slot);
5166 }
5167 #endif
5168 BUG_ON(item_size < sizeof(*ei));
5169 ei = btrfs_item_ptr(leaf, extent_slot,
5170 struct btrfs_extent_item);
5171 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5172 struct btrfs_tree_block_info *bi;
5173 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5174 bi = (struct btrfs_tree_block_info *)(ei + 1);
5175 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5176 }
5177
5178 refs = btrfs_extent_refs(leaf, ei);
5179 BUG_ON(refs < refs_to_drop);
5180 refs -= refs_to_drop;
5181
5182 if (refs > 0) {
5183 if (extent_op)
5184 __run_delayed_extent_op(extent_op, leaf, ei);
5185 /*
5186 * In the case of inline back ref, reference count will
5187 * be updated by remove_extent_backref
5188 */
5189 if (iref) {
5190 BUG_ON(!found_extent);
5191 } else {
5192 btrfs_set_extent_refs(leaf, ei, refs);
5193 btrfs_mark_buffer_dirty(leaf);
5194 }
5195 if (found_extent) {
5196 ret = remove_extent_backref(trans, extent_root, path,
5197 iref, refs_to_drop,
5198 is_data);
5199 if (ret)
5200 goto abort;
5201 }
5202 } else {
5203 if (found_extent) {
5204 BUG_ON(is_data && refs_to_drop !=
5205 extent_data_ref_count(root, path, iref));
5206 if (iref) {
5207 BUG_ON(path->slots[0] != extent_slot);
5208 } else {
5209 BUG_ON(path->slots[0] != extent_slot + 1);
5210 path->slots[0] = extent_slot;
5211 num_to_del = 2;
5212 }
5213 }
5214
5215 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5216 num_to_del);
5217 if (ret)
5218 goto abort;
5219 btrfs_release_path(path);
5220
5221 if (is_data) {
5222 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5223 if (ret)
5224 goto abort;
5225 }
5226
5227 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5228 if (ret)
5229 goto abort;
5230 }
5231 out:
5232 btrfs_free_path(path);
5233 return ret;
5234
5235 abort:
5236 btrfs_abort_transaction(trans, extent_root, ret);
5237 goto out;
5238 }
5239
5240 /*
5241 * when we free an block, it is possible (and likely) that we free the last
5242 * delayed ref for that extent as well. This searches the delayed ref tree for
5243 * a given extent, and if there are no other delayed refs to be processed, it
5244 * removes it from the tree.
5245 */
5246 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5247 struct btrfs_root *root, u64 bytenr)
5248 {
5249 struct btrfs_delayed_ref_head *head;
5250 struct btrfs_delayed_ref_root *delayed_refs;
5251 struct btrfs_delayed_ref_node *ref;
5252 struct rb_node *node;
5253 int ret = 0;
5254
5255 delayed_refs = &trans->transaction->delayed_refs;
5256 spin_lock(&delayed_refs->lock);
5257 head = btrfs_find_delayed_ref_head(trans, bytenr);
5258 if (!head)
5259 goto out;
5260
5261 node = rb_prev(&head->node.rb_node);
5262 if (!node)
5263 goto out;
5264
5265 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5266
5267 /* there are still entries for this ref, we can't drop it */
5268 if (ref->bytenr == bytenr)
5269 goto out;
5270
5271 if (head->extent_op) {
5272 if (!head->must_insert_reserved)
5273 goto out;
5274 kfree(head->extent_op);
5275 head->extent_op = NULL;
5276 }
5277
5278 /*
5279 * waiting for the lock here would deadlock. If someone else has it
5280 * locked they are already in the process of dropping it anyway
5281 */
5282 if (!mutex_trylock(&head->mutex))
5283 goto out;
5284
5285 /*
5286 * at this point we have a head with no other entries. Go
5287 * ahead and process it.
5288 */
5289 head->node.in_tree = 0;
5290 rb_erase(&head->node.rb_node, &delayed_refs->root);
5291
5292 delayed_refs->num_entries--;
5293
5294 /*
5295 * we don't take a ref on the node because we're removing it from the
5296 * tree, so we just steal the ref the tree was holding.
5297 */
5298 delayed_refs->num_heads--;
5299 if (list_empty(&head->cluster))
5300 delayed_refs->num_heads_ready--;
5301
5302 list_del_init(&head->cluster);
5303 spin_unlock(&delayed_refs->lock);
5304
5305 BUG_ON(head->extent_op);
5306 if (head->must_insert_reserved)
5307 ret = 1;
5308
5309 mutex_unlock(&head->mutex);
5310 btrfs_put_delayed_ref(&head->node);
5311 return ret;
5312 out:
5313 spin_unlock(&delayed_refs->lock);
5314 return 0;
5315 }
5316
5317 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5318 struct btrfs_root *root,
5319 struct extent_buffer *buf,
5320 u64 parent, int last_ref)
5321 {
5322 struct btrfs_block_group_cache *cache = NULL;
5323 int ret;
5324
5325 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5326 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5327 buf->start, buf->len,
5328 parent, root->root_key.objectid,
5329 btrfs_header_level(buf),
5330 BTRFS_DROP_DELAYED_REF, NULL, 0);
5331 BUG_ON(ret); /* -ENOMEM */
5332 }
5333
5334 if (!last_ref)
5335 return;
5336
5337 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5338
5339 if (btrfs_header_generation(buf) == trans->transid) {
5340 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5341 ret = check_ref_cleanup(trans, root, buf->start);
5342 if (!ret)
5343 goto out;
5344 }
5345
5346 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5347 pin_down_extent(root, cache, buf->start, buf->len, 1);
5348 goto out;
5349 }
5350
5351 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5352
5353 btrfs_add_free_space(cache, buf->start, buf->len);
5354 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5355 }
5356 out:
5357 /*
5358 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5359 * anymore.
5360 */
5361 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5362 btrfs_put_block_group(cache);
5363 }
5364
5365 /* Can return -ENOMEM */
5366 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5367 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5368 u64 owner, u64 offset, int for_cow)
5369 {
5370 int ret;
5371 struct btrfs_fs_info *fs_info = root->fs_info;
5372
5373 /*
5374 * tree log blocks never actually go into the extent allocation
5375 * tree, just update pinning info and exit early.
5376 */
5377 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5378 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5379 /* unlocks the pinned mutex */
5380 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5381 ret = 0;
5382 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5383 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5384 num_bytes,
5385 parent, root_objectid, (int)owner,
5386 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5387 } else {
5388 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5389 num_bytes,
5390 parent, root_objectid, owner,
5391 offset, BTRFS_DROP_DELAYED_REF,
5392 NULL, for_cow);
5393 }
5394 return ret;
5395 }
5396
5397 static u64 stripe_align(struct btrfs_root *root, u64 val)
5398 {
5399 u64 mask = ((u64)root->stripesize - 1);
5400 u64 ret = (val + mask) & ~mask;
5401 return ret;
5402 }
5403
5404 /*
5405 * when we wait for progress in the block group caching, its because
5406 * our allocation attempt failed at least once. So, we must sleep
5407 * and let some progress happen before we try again.
5408 *
5409 * This function will sleep at least once waiting for new free space to
5410 * show up, and then it will check the block group free space numbers
5411 * for our min num_bytes. Another option is to have it go ahead
5412 * and look in the rbtree for a free extent of a given size, but this
5413 * is a good start.
5414 */
5415 static noinline int
5416 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5417 u64 num_bytes)
5418 {
5419 struct btrfs_caching_control *caching_ctl;
5420 DEFINE_WAIT(wait);
5421
5422 caching_ctl = get_caching_control(cache);
5423 if (!caching_ctl)
5424 return 0;
5425
5426 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5427 (cache->free_space_ctl->free_space >= num_bytes));
5428
5429 put_caching_control(caching_ctl);
5430 return 0;
5431 }
5432
5433 static noinline int
5434 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5435 {
5436 struct btrfs_caching_control *caching_ctl;
5437 DEFINE_WAIT(wait);
5438
5439 caching_ctl = get_caching_control(cache);
5440 if (!caching_ctl)
5441 return 0;
5442
5443 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5444
5445 put_caching_control(caching_ctl);
5446 return 0;
5447 }
5448
5449 static int __get_block_group_index(u64 flags)
5450 {
5451 int index;
5452
5453 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5454 index = 0;
5455 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5456 index = 1;
5457 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5458 index = 2;
5459 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5460 index = 3;
5461 else
5462 index = 4;
5463
5464 return index;
5465 }
5466
5467 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5468 {
5469 return __get_block_group_index(cache->flags);
5470 }
5471
5472 enum btrfs_loop_type {
5473 LOOP_CACHING_NOWAIT = 0,
5474 LOOP_CACHING_WAIT = 1,
5475 LOOP_ALLOC_CHUNK = 2,
5476 LOOP_NO_EMPTY_SIZE = 3,
5477 };
5478
5479 /*
5480 * walks the btree of allocated extents and find a hole of a given size.
5481 * The key ins is changed to record the hole:
5482 * ins->objectid == block start
5483 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5484 * ins->offset == number of blocks
5485 * Any available blocks before search_start are skipped.
5486 */
5487 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5488 struct btrfs_root *orig_root,
5489 u64 num_bytes, u64 empty_size,
5490 u64 hint_byte, struct btrfs_key *ins,
5491 u64 data)
5492 {
5493 int ret = 0;
5494 struct btrfs_root *root = orig_root->fs_info->extent_root;
5495 struct btrfs_free_cluster *last_ptr = NULL;
5496 struct btrfs_block_group_cache *block_group = NULL;
5497 struct btrfs_block_group_cache *used_block_group;
5498 u64 search_start = 0;
5499 int empty_cluster = 2 * 1024 * 1024;
5500 int allowed_chunk_alloc = 0;
5501 int done_chunk_alloc = 0;
5502 struct btrfs_space_info *space_info;
5503 int loop = 0;
5504 int index = 0;
5505 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5506 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5507 bool found_uncached_bg = false;
5508 bool failed_cluster_refill = false;
5509 bool failed_alloc = false;
5510 bool use_cluster = true;
5511 bool have_caching_bg = false;
5512
5513 WARN_ON(num_bytes < root->sectorsize);
5514 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5515 ins->objectid = 0;
5516 ins->offset = 0;
5517
5518 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5519
5520 space_info = __find_space_info(root->fs_info, data);
5521 if (!space_info) {
5522 printk(KERN_ERR "No space info for %llu\n", data);
5523 return -ENOSPC;
5524 }
5525
5526 /*
5527 * If the space info is for both data and metadata it means we have a
5528 * small filesystem and we can't use the clustering stuff.
5529 */
5530 if (btrfs_mixed_space_info(space_info))
5531 use_cluster = false;
5532
5533 if (orig_root->ref_cows || empty_size)
5534 allowed_chunk_alloc = 1;
5535
5536 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5537 last_ptr = &root->fs_info->meta_alloc_cluster;
5538 if (!btrfs_test_opt(root, SSD))
5539 empty_cluster = 64 * 1024;
5540 }
5541
5542 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5543 btrfs_test_opt(root, SSD)) {
5544 last_ptr = &root->fs_info->data_alloc_cluster;
5545 }
5546
5547 if (last_ptr) {
5548 spin_lock(&last_ptr->lock);
5549 if (last_ptr->block_group)
5550 hint_byte = last_ptr->window_start;
5551 spin_unlock(&last_ptr->lock);
5552 }
5553
5554 search_start = max(search_start, first_logical_byte(root, 0));
5555 search_start = max(search_start, hint_byte);
5556
5557 if (!last_ptr)
5558 empty_cluster = 0;
5559
5560 if (search_start == hint_byte) {
5561 block_group = btrfs_lookup_block_group(root->fs_info,
5562 search_start);
5563 used_block_group = block_group;
5564 /*
5565 * we don't want to use the block group if it doesn't match our
5566 * allocation bits, or if its not cached.
5567 *
5568 * However if we are re-searching with an ideal block group
5569 * picked out then we don't care that the block group is cached.
5570 */
5571 if (block_group && block_group_bits(block_group, data) &&
5572 block_group->cached != BTRFS_CACHE_NO) {
5573 down_read(&space_info->groups_sem);
5574 if (list_empty(&block_group->list) ||
5575 block_group->ro) {
5576 /*
5577 * someone is removing this block group,
5578 * we can't jump into the have_block_group
5579 * target because our list pointers are not
5580 * valid
5581 */
5582 btrfs_put_block_group(block_group);
5583 up_read(&space_info->groups_sem);
5584 } else {
5585 index = get_block_group_index(block_group);
5586 goto have_block_group;
5587 }
5588 } else if (block_group) {
5589 btrfs_put_block_group(block_group);
5590 }
5591 }
5592 search:
5593 have_caching_bg = false;
5594 down_read(&space_info->groups_sem);
5595 list_for_each_entry(block_group, &space_info->block_groups[index],
5596 list) {
5597 u64 offset;
5598 int cached;
5599
5600 used_block_group = block_group;
5601 btrfs_get_block_group(block_group);
5602 search_start = block_group->key.objectid;
5603
5604 /*
5605 * this can happen if we end up cycling through all the
5606 * raid types, but we want to make sure we only allocate
5607 * for the proper type.
5608 */
5609 if (!block_group_bits(block_group, data)) {
5610 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5611 BTRFS_BLOCK_GROUP_RAID1 |
5612 BTRFS_BLOCK_GROUP_RAID10;
5613
5614 /*
5615 * if they asked for extra copies and this block group
5616 * doesn't provide them, bail. This does allow us to
5617 * fill raid0 from raid1.
5618 */
5619 if ((data & extra) && !(block_group->flags & extra))
5620 goto loop;
5621 }
5622
5623 have_block_group:
5624 cached = block_group_cache_done(block_group);
5625 if (unlikely(!cached)) {
5626 found_uncached_bg = true;
5627 ret = cache_block_group(block_group, trans,
5628 orig_root, 0);
5629 BUG_ON(ret < 0);
5630 ret = 0;
5631 }
5632
5633 if (unlikely(block_group->ro))
5634 goto loop;
5635
5636 /*
5637 * Ok we want to try and use the cluster allocator, so
5638 * lets look there
5639 */
5640 if (last_ptr) {
5641 /*
5642 * the refill lock keeps out other
5643 * people trying to start a new cluster
5644 */
5645 spin_lock(&last_ptr->refill_lock);
5646 used_block_group = last_ptr->block_group;
5647 if (used_block_group != block_group &&
5648 (!used_block_group ||
5649 used_block_group->ro ||
5650 !block_group_bits(used_block_group, data))) {
5651 used_block_group = block_group;
5652 goto refill_cluster;
5653 }
5654
5655 if (used_block_group != block_group)
5656 btrfs_get_block_group(used_block_group);
5657
5658 offset = btrfs_alloc_from_cluster(used_block_group,
5659 last_ptr, num_bytes, used_block_group->key.objectid);
5660 if (offset) {
5661 /* we have a block, we're done */
5662 spin_unlock(&last_ptr->refill_lock);
5663 trace_btrfs_reserve_extent_cluster(root,
5664 block_group, search_start, num_bytes);
5665 goto checks;
5666 }
5667
5668 WARN_ON(last_ptr->block_group != used_block_group);
5669 if (used_block_group != block_group) {
5670 btrfs_put_block_group(used_block_group);
5671 used_block_group = block_group;
5672 }
5673 refill_cluster:
5674 BUG_ON(used_block_group != block_group);
5675 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5676 * set up a new clusters, so lets just skip it
5677 * and let the allocator find whatever block
5678 * it can find. If we reach this point, we
5679 * will have tried the cluster allocator
5680 * plenty of times and not have found
5681 * anything, so we are likely way too
5682 * fragmented for the clustering stuff to find
5683 * anything.
5684 *
5685 * However, if the cluster is taken from the
5686 * current block group, release the cluster
5687 * first, so that we stand a better chance of
5688 * succeeding in the unclustered
5689 * allocation. */
5690 if (loop >= LOOP_NO_EMPTY_SIZE &&
5691 last_ptr->block_group != block_group) {
5692 spin_unlock(&last_ptr->refill_lock);
5693 goto unclustered_alloc;
5694 }
5695
5696 /*
5697 * this cluster didn't work out, free it and
5698 * start over
5699 */
5700 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5701
5702 if (loop >= LOOP_NO_EMPTY_SIZE) {
5703 spin_unlock(&last_ptr->refill_lock);
5704 goto unclustered_alloc;
5705 }
5706
5707 /* allocate a cluster in this block group */
5708 ret = btrfs_find_space_cluster(trans, root,
5709 block_group, last_ptr,
5710 search_start, num_bytes,
5711 empty_cluster + empty_size);
5712 if (ret == 0) {
5713 /*
5714 * now pull our allocation out of this
5715 * cluster
5716 */
5717 offset = btrfs_alloc_from_cluster(block_group,
5718 last_ptr, num_bytes,
5719 search_start);
5720 if (offset) {
5721 /* we found one, proceed */
5722 spin_unlock(&last_ptr->refill_lock);
5723 trace_btrfs_reserve_extent_cluster(root,
5724 block_group, search_start,
5725 num_bytes);
5726 goto checks;
5727 }
5728 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5729 && !failed_cluster_refill) {
5730 spin_unlock(&last_ptr->refill_lock);
5731
5732 failed_cluster_refill = true;
5733 wait_block_group_cache_progress(block_group,
5734 num_bytes + empty_cluster + empty_size);
5735 goto have_block_group;
5736 }
5737
5738 /*
5739 * at this point we either didn't find a cluster
5740 * or we weren't able to allocate a block from our
5741 * cluster. Free the cluster we've been trying
5742 * to use, and go to the next block group
5743 */
5744 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5745 spin_unlock(&last_ptr->refill_lock);
5746 goto loop;
5747 }
5748
5749 unclustered_alloc:
5750 spin_lock(&block_group->free_space_ctl->tree_lock);
5751 if (cached &&
5752 block_group->free_space_ctl->free_space <
5753 num_bytes + empty_cluster + empty_size) {
5754 spin_unlock(&block_group->free_space_ctl->tree_lock);
5755 goto loop;
5756 }
5757 spin_unlock(&block_group->free_space_ctl->tree_lock);
5758
5759 offset = btrfs_find_space_for_alloc(block_group, search_start,
5760 num_bytes, empty_size);
5761 /*
5762 * If we didn't find a chunk, and we haven't failed on this
5763 * block group before, and this block group is in the middle of
5764 * caching and we are ok with waiting, then go ahead and wait
5765 * for progress to be made, and set failed_alloc to true.
5766 *
5767 * If failed_alloc is true then we've already waited on this
5768 * block group once and should move on to the next block group.
5769 */
5770 if (!offset && !failed_alloc && !cached &&
5771 loop > LOOP_CACHING_NOWAIT) {
5772 wait_block_group_cache_progress(block_group,
5773 num_bytes + empty_size);
5774 failed_alloc = true;
5775 goto have_block_group;
5776 } else if (!offset) {
5777 if (!cached)
5778 have_caching_bg = true;
5779 goto loop;
5780 }
5781 checks:
5782 search_start = stripe_align(root, offset);
5783
5784 /* move on to the next group */
5785 if (search_start + num_bytes >
5786 used_block_group->key.objectid + used_block_group->key.offset) {
5787 btrfs_add_free_space(used_block_group, offset, num_bytes);
5788 goto loop;
5789 }
5790
5791 if (offset < search_start)
5792 btrfs_add_free_space(used_block_group, offset,
5793 search_start - offset);
5794 BUG_ON(offset > search_start);
5795
5796 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5797 alloc_type);
5798 if (ret == -EAGAIN) {
5799 btrfs_add_free_space(used_block_group, offset, num_bytes);
5800 goto loop;
5801 }
5802
5803 /* we are all good, lets return */
5804 ins->objectid = search_start;
5805 ins->offset = num_bytes;
5806
5807 trace_btrfs_reserve_extent(orig_root, block_group,
5808 search_start, num_bytes);
5809 if (offset < search_start)
5810 btrfs_add_free_space(used_block_group, offset,
5811 search_start - offset);
5812 BUG_ON(offset > search_start);
5813 if (used_block_group != block_group)
5814 btrfs_put_block_group(used_block_group);
5815 btrfs_put_block_group(block_group);
5816 break;
5817 loop:
5818 failed_cluster_refill = false;
5819 failed_alloc = false;
5820 BUG_ON(index != get_block_group_index(block_group));
5821 if (used_block_group != block_group)
5822 btrfs_put_block_group(used_block_group);
5823 btrfs_put_block_group(block_group);
5824 }
5825 up_read(&space_info->groups_sem);
5826
5827 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5828 goto search;
5829
5830 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5831 goto search;
5832
5833 /*
5834 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5835 * caching kthreads as we move along
5836 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5837 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5838 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5839 * again
5840 */
5841 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5842 index = 0;
5843 loop++;
5844 if (loop == LOOP_ALLOC_CHUNK) {
5845 if (allowed_chunk_alloc) {
5846 ret = do_chunk_alloc(trans, root, num_bytes +
5847 2 * 1024 * 1024, data,
5848 CHUNK_ALLOC_LIMITED);
5849 /*
5850 * Do not bail out on ENOSPC since we
5851 * can do more things.
5852 */
5853 if (ret < 0 && ret != -ENOSPC) {
5854 btrfs_abort_transaction(trans,
5855 root, ret);
5856 goto out;
5857 }
5858 allowed_chunk_alloc = 0;
5859 if (ret == 1)
5860 done_chunk_alloc = 1;
5861 } else if (!done_chunk_alloc &&
5862 space_info->force_alloc ==
5863 CHUNK_ALLOC_NO_FORCE) {
5864 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5865 }
5866
5867 /*
5868 * We didn't allocate a chunk, go ahead and drop the
5869 * empty size and loop again.
5870 */
5871 if (!done_chunk_alloc)
5872 loop = LOOP_NO_EMPTY_SIZE;
5873 }
5874
5875 if (loop == LOOP_NO_EMPTY_SIZE) {
5876 empty_size = 0;
5877 empty_cluster = 0;
5878 }
5879
5880 goto search;
5881 } else if (!ins->objectid) {
5882 ret = -ENOSPC;
5883 } else if (ins->objectid) {
5884 ret = 0;
5885 }
5886 out:
5887
5888 return ret;
5889 }
5890
5891 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5892 int dump_block_groups)
5893 {
5894 struct btrfs_block_group_cache *cache;
5895 int index = 0;
5896
5897 spin_lock(&info->lock);
5898 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5899 (unsigned long long)info->flags,
5900 (unsigned long long)(info->total_bytes - info->bytes_used -
5901 info->bytes_pinned - info->bytes_reserved -
5902 info->bytes_readonly),
5903 (info->full) ? "" : "not ");
5904 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5905 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5906 (unsigned long long)info->total_bytes,
5907 (unsigned long long)info->bytes_used,
5908 (unsigned long long)info->bytes_pinned,
5909 (unsigned long long)info->bytes_reserved,
5910 (unsigned long long)info->bytes_may_use,
5911 (unsigned long long)info->bytes_readonly);
5912 spin_unlock(&info->lock);
5913
5914 if (!dump_block_groups)
5915 return;
5916
5917 down_read(&info->groups_sem);
5918 again:
5919 list_for_each_entry(cache, &info->block_groups[index], list) {
5920 spin_lock(&cache->lock);
5921 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
5922 (unsigned long long)cache->key.objectid,
5923 (unsigned long long)cache->key.offset,
5924 (unsigned long long)btrfs_block_group_used(&cache->item),
5925 (unsigned long long)cache->pinned,
5926 (unsigned long long)cache->reserved,
5927 cache->ro ? "[readonly]" : "");
5928 btrfs_dump_free_space(cache, bytes);
5929 spin_unlock(&cache->lock);
5930 }
5931 if (++index < BTRFS_NR_RAID_TYPES)
5932 goto again;
5933 up_read(&info->groups_sem);
5934 }
5935
5936 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5937 struct btrfs_root *root,
5938 u64 num_bytes, u64 min_alloc_size,
5939 u64 empty_size, u64 hint_byte,
5940 struct btrfs_key *ins, u64 data)
5941 {
5942 bool final_tried = false;
5943 int ret;
5944
5945 data = btrfs_get_alloc_profile(root, data);
5946 again:
5947 /*
5948 * the only place that sets empty_size is btrfs_realloc_node, which
5949 * is not called recursively on allocations
5950 */
5951 if (empty_size || root->ref_cows) {
5952 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5953 num_bytes + 2 * 1024 * 1024, data,
5954 CHUNK_ALLOC_NO_FORCE);
5955 if (ret < 0 && ret != -ENOSPC) {
5956 btrfs_abort_transaction(trans, root, ret);
5957 return ret;
5958 }
5959 }
5960
5961 WARN_ON(num_bytes < root->sectorsize);
5962 ret = find_free_extent(trans, root, num_bytes, empty_size,
5963 hint_byte, ins, data);
5964
5965 if (ret == -ENOSPC) {
5966 if (!final_tried) {
5967 num_bytes = num_bytes >> 1;
5968 num_bytes = num_bytes & ~(root->sectorsize - 1);
5969 num_bytes = max(num_bytes, min_alloc_size);
5970 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5971 num_bytes, data, CHUNK_ALLOC_FORCE);
5972 if (ret < 0 && ret != -ENOSPC) {
5973 btrfs_abort_transaction(trans, root, ret);
5974 return ret;
5975 }
5976 if (num_bytes == min_alloc_size)
5977 final_tried = true;
5978 goto again;
5979 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5980 struct btrfs_space_info *sinfo;
5981
5982 sinfo = __find_space_info(root->fs_info, data);
5983 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5984 "wanted %llu\n", (unsigned long long)data,
5985 (unsigned long long)num_bytes);
5986 if (sinfo)
5987 dump_space_info(sinfo, num_bytes, 1);
5988 }
5989 }
5990
5991 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5992
5993 return ret;
5994 }
5995
5996 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5997 u64 start, u64 len, int pin)
5998 {
5999 struct btrfs_block_group_cache *cache;
6000 int ret = 0;
6001
6002 cache = btrfs_lookup_block_group(root->fs_info, start);
6003 if (!cache) {
6004 printk(KERN_ERR "Unable to find block group for %llu\n",
6005 (unsigned long long)start);
6006 return -ENOSPC;
6007 }
6008
6009 if (btrfs_test_opt(root, DISCARD))
6010 ret = btrfs_discard_extent(root, start, len, NULL);
6011
6012 if (pin)
6013 pin_down_extent(root, cache, start, len, 1);
6014 else {
6015 btrfs_add_free_space(cache, start, len);
6016 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6017 }
6018 btrfs_put_block_group(cache);
6019
6020 trace_btrfs_reserved_extent_free(root, start, len);
6021
6022 return ret;
6023 }
6024
6025 int btrfs_free_reserved_extent(struct btrfs_root *root,
6026 u64 start, u64 len)
6027 {
6028 return __btrfs_free_reserved_extent(root, start, len, 0);
6029 }
6030
6031 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6032 u64 start, u64 len)
6033 {
6034 return __btrfs_free_reserved_extent(root, start, len, 1);
6035 }
6036
6037 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6038 struct btrfs_root *root,
6039 u64 parent, u64 root_objectid,
6040 u64 flags, u64 owner, u64 offset,
6041 struct btrfs_key *ins, int ref_mod)
6042 {
6043 int ret;
6044 struct btrfs_fs_info *fs_info = root->fs_info;
6045 struct btrfs_extent_item *extent_item;
6046 struct btrfs_extent_inline_ref *iref;
6047 struct btrfs_path *path;
6048 struct extent_buffer *leaf;
6049 int type;
6050 u32 size;
6051
6052 if (parent > 0)
6053 type = BTRFS_SHARED_DATA_REF_KEY;
6054 else
6055 type = BTRFS_EXTENT_DATA_REF_KEY;
6056
6057 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6058
6059 path = btrfs_alloc_path();
6060 if (!path)
6061 return -ENOMEM;
6062
6063 path->leave_spinning = 1;
6064 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6065 ins, size);
6066 if (ret) {
6067 btrfs_free_path(path);
6068 return ret;
6069 }
6070
6071 leaf = path->nodes[0];
6072 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6073 struct btrfs_extent_item);
6074 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6075 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6076 btrfs_set_extent_flags(leaf, extent_item,
6077 flags | BTRFS_EXTENT_FLAG_DATA);
6078
6079 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6080 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6081 if (parent > 0) {
6082 struct btrfs_shared_data_ref *ref;
6083 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6084 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6085 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6086 } else {
6087 struct btrfs_extent_data_ref *ref;
6088 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6089 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6090 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6091 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6092 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6093 }
6094
6095 btrfs_mark_buffer_dirty(path->nodes[0]);
6096 btrfs_free_path(path);
6097
6098 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6099 if (ret) { /* -ENOENT, logic error */
6100 printk(KERN_ERR "btrfs update block group failed for %llu "
6101 "%llu\n", (unsigned long long)ins->objectid,
6102 (unsigned long long)ins->offset);
6103 BUG();
6104 }
6105 return ret;
6106 }
6107
6108 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6109 struct btrfs_root *root,
6110 u64 parent, u64 root_objectid,
6111 u64 flags, struct btrfs_disk_key *key,
6112 int level, struct btrfs_key *ins)
6113 {
6114 int ret;
6115 struct btrfs_fs_info *fs_info = root->fs_info;
6116 struct btrfs_extent_item *extent_item;
6117 struct btrfs_tree_block_info *block_info;
6118 struct btrfs_extent_inline_ref *iref;
6119 struct btrfs_path *path;
6120 struct extent_buffer *leaf;
6121 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6122
6123 path = btrfs_alloc_path();
6124 if (!path)
6125 return -ENOMEM;
6126
6127 path->leave_spinning = 1;
6128 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6129 ins, size);
6130 if (ret) {
6131 btrfs_free_path(path);
6132 return ret;
6133 }
6134
6135 leaf = path->nodes[0];
6136 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6137 struct btrfs_extent_item);
6138 btrfs_set_extent_refs(leaf, extent_item, 1);
6139 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6140 btrfs_set_extent_flags(leaf, extent_item,
6141 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6142 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6143
6144 btrfs_set_tree_block_key(leaf, block_info, key);
6145 btrfs_set_tree_block_level(leaf, block_info, level);
6146
6147 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6148 if (parent > 0) {
6149 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6150 btrfs_set_extent_inline_ref_type(leaf, iref,
6151 BTRFS_SHARED_BLOCK_REF_KEY);
6152 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6153 } else {
6154 btrfs_set_extent_inline_ref_type(leaf, iref,
6155 BTRFS_TREE_BLOCK_REF_KEY);
6156 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6157 }
6158
6159 btrfs_mark_buffer_dirty(leaf);
6160 btrfs_free_path(path);
6161
6162 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6163 if (ret) { /* -ENOENT, logic error */
6164 printk(KERN_ERR "btrfs update block group failed for %llu "
6165 "%llu\n", (unsigned long long)ins->objectid,
6166 (unsigned long long)ins->offset);
6167 BUG();
6168 }
6169 return ret;
6170 }
6171
6172 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6173 struct btrfs_root *root,
6174 u64 root_objectid, u64 owner,
6175 u64 offset, struct btrfs_key *ins)
6176 {
6177 int ret;
6178
6179 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6180
6181 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6182 ins->offset, 0,
6183 root_objectid, owner, offset,
6184 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6185 return ret;
6186 }
6187
6188 /*
6189 * this is used by the tree logging recovery code. It records that
6190 * an extent has been allocated and makes sure to clear the free
6191 * space cache bits as well
6192 */
6193 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6194 struct btrfs_root *root,
6195 u64 root_objectid, u64 owner, u64 offset,
6196 struct btrfs_key *ins)
6197 {
6198 int ret;
6199 struct btrfs_block_group_cache *block_group;
6200 struct btrfs_caching_control *caching_ctl;
6201 u64 start = ins->objectid;
6202 u64 num_bytes = ins->offset;
6203
6204 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6205 cache_block_group(block_group, trans, NULL, 0);
6206 caching_ctl = get_caching_control(block_group);
6207
6208 if (!caching_ctl) {
6209 BUG_ON(!block_group_cache_done(block_group));
6210 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6211 BUG_ON(ret); /* -ENOMEM */
6212 } else {
6213 mutex_lock(&caching_ctl->mutex);
6214
6215 if (start >= caching_ctl->progress) {
6216 ret = add_excluded_extent(root, start, num_bytes);
6217 BUG_ON(ret); /* -ENOMEM */
6218 } else if (start + num_bytes <= caching_ctl->progress) {
6219 ret = btrfs_remove_free_space(block_group,
6220 start, num_bytes);
6221 BUG_ON(ret); /* -ENOMEM */
6222 } else {
6223 num_bytes = caching_ctl->progress - start;
6224 ret = btrfs_remove_free_space(block_group,
6225 start, num_bytes);
6226 BUG_ON(ret); /* -ENOMEM */
6227
6228 start = caching_ctl->progress;
6229 num_bytes = ins->objectid + ins->offset -
6230 caching_ctl->progress;
6231 ret = add_excluded_extent(root, start, num_bytes);
6232 BUG_ON(ret); /* -ENOMEM */
6233 }
6234
6235 mutex_unlock(&caching_ctl->mutex);
6236 put_caching_control(caching_ctl);
6237 }
6238
6239 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6240 RESERVE_ALLOC_NO_ACCOUNT);
6241 BUG_ON(ret); /* logic error */
6242 btrfs_put_block_group(block_group);
6243 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6244 0, owner, offset, ins, 1);
6245 return ret;
6246 }
6247
6248 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6249 struct btrfs_root *root,
6250 u64 bytenr, u32 blocksize,
6251 int level)
6252 {
6253 struct extent_buffer *buf;
6254
6255 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6256 if (!buf)
6257 return ERR_PTR(-ENOMEM);
6258 btrfs_set_header_generation(buf, trans->transid);
6259 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6260 btrfs_tree_lock(buf);
6261 clean_tree_block(trans, root, buf);
6262 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6263
6264 btrfs_set_lock_blocking(buf);
6265 btrfs_set_buffer_uptodate(buf);
6266
6267 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6268 /*
6269 * we allow two log transactions at a time, use different
6270 * EXENT bit to differentiate dirty pages.
6271 */
6272 if (root->log_transid % 2 == 0)
6273 set_extent_dirty(&root->dirty_log_pages, buf->start,
6274 buf->start + buf->len - 1, GFP_NOFS);
6275 else
6276 set_extent_new(&root->dirty_log_pages, buf->start,
6277 buf->start + buf->len - 1, GFP_NOFS);
6278 } else {
6279 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6280 buf->start + buf->len - 1, GFP_NOFS);
6281 }
6282 trans->blocks_used++;
6283 /* this returns a buffer locked for blocking */
6284 return buf;
6285 }
6286
6287 static struct btrfs_block_rsv *
6288 use_block_rsv(struct btrfs_trans_handle *trans,
6289 struct btrfs_root *root, u32 blocksize)
6290 {
6291 struct btrfs_block_rsv *block_rsv;
6292 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6293 int ret;
6294
6295 block_rsv = get_block_rsv(trans, root);
6296
6297 if (block_rsv->size == 0) {
6298 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6299 /*
6300 * If we couldn't reserve metadata bytes try and use some from
6301 * the global reserve.
6302 */
6303 if (ret && block_rsv != global_rsv) {
6304 ret = block_rsv_use_bytes(global_rsv, blocksize);
6305 if (!ret)
6306 return global_rsv;
6307 return ERR_PTR(ret);
6308 } else if (ret) {
6309 return ERR_PTR(ret);
6310 }
6311 return block_rsv;
6312 }
6313
6314 ret = block_rsv_use_bytes(block_rsv, blocksize);
6315 if (!ret)
6316 return block_rsv;
6317 if (ret) {
6318 static DEFINE_RATELIMIT_STATE(_rs,
6319 DEFAULT_RATELIMIT_INTERVAL,
6320 /*DEFAULT_RATELIMIT_BURST*/ 2);
6321 if (__ratelimit(&_rs)) {
6322 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6323 WARN_ON(1);
6324 }
6325 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6326 if (!ret) {
6327 return block_rsv;
6328 } else if (ret && block_rsv != global_rsv) {
6329 ret = block_rsv_use_bytes(global_rsv, blocksize);
6330 if (!ret)
6331 return global_rsv;
6332 }
6333 }
6334
6335 return ERR_PTR(-ENOSPC);
6336 }
6337
6338 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6339 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6340 {
6341 block_rsv_add_bytes(block_rsv, blocksize, 0);
6342 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6343 }
6344
6345 /*
6346 * finds a free extent and does all the dirty work required for allocation
6347 * returns the key for the extent through ins, and a tree buffer for
6348 * the first block of the extent through buf.
6349 *
6350 * returns the tree buffer or NULL.
6351 */
6352 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6353 struct btrfs_root *root, u32 blocksize,
6354 u64 parent, u64 root_objectid,
6355 struct btrfs_disk_key *key, int level,
6356 u64 hint, u64 empty_size)
6357 {
6358 struct btrfs_key ins;
6359 struct btrfs_block_rsv *block_rsv;
6360 struct extent_buffer *buf;
6361 u64 flags = 0;
6362 int ret;
6363
6364
6365 block_rsv = use_block_rsv(trans, root, blocksize);
6366 if (IS_ERR(block_rsv))
6367 return ERR_CAST(block_rsv);
6368
6369 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6370 empty_size, hint, &ins, 0);
6371 if (ret) {
6372 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6373 return ERR_PTR(ret);
6374 }
6375
6376 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6377 blocksize, level);
6378 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6379
6380 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6381 if (parent == 0)
6382 parent = ins.objectid;
6383 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6384 } else
6385 BUG_ON(parent > 0);
6386
6387 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6388 struct btrfs_delayed_extent_op *extent_op;
6389 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6390 BUG_ON(!extent_op); /* -ENOMEM */
6391 if (key)
6392 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6393 else
6394 memset(&extent_op->key, 0, sizeof(extent_op->key));
6395 extent_op->flags_to_set = flags;
6396 extent_op->update_key = 1;
6397 extent_op->update_flags = 1;
6398 extent_op->is_data = 0;
6399
6400 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6401 ins.objectid,
6402 ins.offset, parent, root_objectid,
6403 level, BTRFS_ADD_DELAYED_EXTENT,
6404 extent_op, 0);
6405 BUG_ON(ret); /* -ENOMEM */
6406 }
6407 return buf;
6408 }
6409
6410 struct walk_control {
6411 u64 refs[BTRFS_MAX_LEVEL];
6412 u64 flags[BTRFS_MAX_LEVEL];
6413 struct btrfs_key update_progress;
6414 int stage;
6415 int level;
6416 int shared_level;
6417 int update_ref;
6418 int keep_locks;
6419 int reada_slot;
6420 int reada_count;
6421 int for_reloc;
6422 };
6423
6424 #define DROP_REFERENCE 1
6425 #define UPDATE_BACKREF 2
6426
6427 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6428 struct btrfs_root *root,
6429 struct walk_control *wc,
6430 struct btrfs_path *path)
6431 {
6432 u64 bytenr;
6433 u64 generation;
6434 u64 refs;
6435 u64 flags;
6436 u32 nritems;
6437 u32 blocksize;
6438 struct btrfs_key key;
6439 struct extent_buffer *eb;
6440 int ret;
6441 int slot;
6442 int nread = 0;
6443
6444 if (path->slots[wc->level] < wc->reada_slot) {
6445 wc->reada_count = wc->reada_count * 2 / 3;
6446 wc->reada_count = max(wc->reada_count, 2);
6447 } else {
6448 wc->reada_count = wc->reada_count * 3 / 2;
6449 wc->reada_count = min_t(int, wc->reada_count,
6450 BTRFS_NODEPTRS_PER_BLOCK(root));
6451 }
6452
6453 eb = path->nodes[wc->level];
6454 nritems = btrfs_header_nritems(eb);
6455 blocksize = btrfs_level_size(root, wc->level - 1);
6456
6457 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6458 if (nread >= wc->reada_count)
6459 break;
6460
6461 cond_resched();
6462 bytenr = btrfs_node_blockptr(eb, slot);
6463 generation = btrfs_node_ptr_generation(eb, slot);
6464
6465 if (slot == path->slots[wc->level])
6466 goto reada;
6467
6468 if (wc->stage == UPDATE_BACKREF &&
6469 generation <= root->root_key.offset)
6470 continue;
6471
6472 /* We don't lock the tree block, it's OK to be racy here */
6473 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6474 &refs, &flags);
6475 /* We don't care about errors in readahead. */
6476 if (ret < 0)
6477 continue;
6478 BUG_ON(refs == 0);
6479
6480 if (wc->stage == DROP_REFERENCE) {
6481 if (refs == 1)
6482 goto reada;
6483
6484 if (wc->level == 1 &&
6485 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6486 continue;
6487 if (!wc->update_ref ||
6488 generation <= root->root_key.offset)
6489 continue;
6490 btrfs_node_key_to_cpu(eb, &key, slot);
6491 ret = btrfs_comp_cpu_keys(&key,
6492 &wc->update_progress);
6493 if (ret < 0)
6494 continue;
6495 } else {
6496 if (wc->level == 1 &&
6497 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6498 continue;
6499 }
6500 reada:
6501 ret = readahead_tree_block(root, bytenr, blocksize,
6502 generation);
6503 if (ret)
6504 break;
6505 nread++;
6506 }
6507 wc->reada_slot = slot;
6508 }
6509
6510 /*
6511 * hepler to process tree block while walking down the tree.
6512 *
6513 * when wc->stage == UPDATE_BACKREF, this function updates
6514 * back refs for pointers in the block.
6515 *
6516 * NOTE: return value 1 means we should stop walking down.
6517 */
6518 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6519 struct btrfs_root *root,
6520 struct btrfs_path *path,
6521 struct walk_control *wc, int lookup_info)
6522 {
6523 int level = wc->level;
6524 struct extent_buffer *eb = path->nodes[level];
6525 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6526 int ret;
6527
6528 if (wc->stage == UPDATE_BACKREF &&
6529 btrfs_header_owner(eb) != root->root_key.objectid)
6530 return 1;
6531
6532 /*
6533 * when reference count of tree block is 1, it won't increase
6534 * again. once full backref flag is set, we never clear it.
6535 */
6536 if (lookup_info &&
6537 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6538 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6539 BUG_ON(!path->locks[level]);
6540 ret = btrfs_lookup_extent_info(trans, root,
6541 eb->start, eb->len,
6542 &wc->refs[level],
6543 &wc->flags[level]);
6544 BUG_ON(ret == -ENOMEM);
6545 if (ret)
6546 return ret;
6547 BUG_ON(wc->refs[level] == 0);
6548 }
6549
6550 if (wc->stage == DROP_REFERENCE) {
6551 if (wc->refs[level] > 1)
6552 return 1;
6553
6554 if (path->locks[level] && !wc->keep_locks) {
6555 btrfs_tree_unlock_rw(eb, path->locks[level]);
6556 path->locks[level] = 0;
6557 }
6558 return 0;
6559 }
6560
6561 /* wc->stage == UPDATE_BACKREF */
6562 if (!(wc->flags[level] & flag)) {
6563 BUG_ON(!path->locks[level]);
6564 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6565 BUG_ON(ret); /* -ENOMEM */
6566 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6567 BUG_ON(ret); /* -ENOMEM */
6568 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6569 eb->len, flag, 0);
6570 BUG_ON(ret); /* -ENOMEM */
6571 wc->flags[level] |= flag;
6572 }
6573
6574 /*
6575 * the block is shared by multiple trees, so it's not good to
6576 * keep the tree lock
6577 */
6578 if (path->locks[level] && level > 0) {
6579 btrfs_tree_unlock_rw(eb, path->locks[level]);
6580 path->locks[level] = 0;
6581 }
6582 return 0;
6583 }
6584
6585 /*
6586 * hepler to process tree block pointer.
6587 *
6588 * when wc->stage == DROP_REFERENCE, this function checks
6589 * reference count of the block pointed to. if the block
6590 * is shared and we need update back refs for the subtree
6591 * rooted at the block, this function changes wc->stage to
6592 * UPDATE_BACKREF. if the block is shared and there is no
6593 * need to update back, this function drops the reference
6594 * to the block.
6595 *
6596 * NOTE: return value 1 means we should stop walking down.
6597 */
6598 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6599 struct btrfs_root *root,
6600 struct btrfs_path *path,
6601 struct walk_control *wc, int *lookup_info)
6602 {
6603 u64 bytenr;
6604 u64 generation;
6605 u64 parent;
6606 u32 blocksize;
6607 struct btrfs_key key;
6608 struct extent_buffer *next;
6609 int level = wc->level;
6610 int reada = 0;
6611 int ret = 0;
6612
6613 generation = btrfs_node_ptr_generation(path->nodes[level],
6614 path->slots[level]);
6615 /*
6616 * if the lower level block was created before the snapshot
6617 * was created, we know there is no need to update back refs
6618 * for the subtree
6619 */
6620 if (wc->stage == UPDATE_BACKREF &&
6621 generation <= root->root_key.offset) {
6622 *lookup_info = 1;
6623 return 1;
6624 }
6625
6626 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6627 blocksize = btrfs_level_size(root, level - 1);
6628
6629 next = btrfs_find_tree_block(root, bytenr, blocksize);
6630 if (!next) {
6631 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6632 if (!next)
6633 return -ENOMEM;
6634 reada = 1;
6635 }
6636 btrfs_tree_lock(next);
6637 btrfs_set_lock_blocking(next);
6638
6639 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6640 &wc->refs[level - 1],
6641 &wc->flags[level - 1]);
6642 if (ret < 0) {
6643 btrfs_tree_unlock(next);
6644 return ret;
6645 }
6646
6647 BUG_ON(wc->refs[level - 1] == 0);
6648 *lookup_info = 0;
6649
6650 if (wc->stage == DROP_REFERENCE) {
6651 if (wc->refs[level - 1] > 1) {
6652 if (level == 1 &&
6653 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6654 goto skip;
6655
6656 if (!wc->update_ref ||
6657 generation <= root->root_key.offset)
6658 goto skip;
6659
6660 btrfs_node_key_to_cpu(path->nodes[level], &key,
6661 path->slots[level]);
6662 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6663 if (ret < 0)
6664 goto skip;
6665
6666 wc->stage = UPDATE_BACKREF;
6667 wc->shared_level = level - 1;
6668 }
6669 } else {
6670 if (level == 1 &&
6671 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6672 goto skip;
6673 }
6674
6675 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6676 btrfs_tree_unlock(next);
6677 free_extent_buffer(next);
6678 next = NULL;
6679 *lookup_info = 1;
6680 }
6681
6682 if (!next) {
6683 if (reada && level == 1)
6684 reada_walk_down(trans, root, wc, path);
6685 next = read_tree_block(root, bytenr, blocksize, generation);
6686 if (!next)
6687 return -EIO;
6688 btrfs_tree_lock(next);
6689 btrfs_set_lock_blocking(next);
6690 }
6691
6692 level--;
6693 BUG_ON(level != btrfs_header_level(next));
6694 path->nodes[level] = next;
6695 path->slots[level] = 0;
6696 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6697 wc->level = level;
6698 if (wc->level == 1)
6699 wc->reada_slot = 0;
6700 return 0;
6701 skip:
6702 wc->refs[level - 1] = 0;
6703 wc->flags[level - 1] = 0;
6704 if (wc->stage == DROP_REFERENCE) {
6705 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6706 parent = path->nodes[level]->start;
6707 } else {
6708 BUG_ON(root->root_key.objectid !=
6709 btrfs_header_owner(path->nodes[level]));
6710 parent = 0;
6711 }
6712
6713 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6714 root->root_key.objectid, level - 1, 0, 0);
6715 BUG_ON(ret); /* -ENOMEM */
6716 }
6717 btrfs_tree_unlock(next);
6718 free_extent_buffer(next);
6719 *lookup_info = 1;
6720 return 1;
6721 }
6722
6723 /*
6724 * hepler to process tree block while walking up the tree.
6725 *
6726 * when wc->stage == DROP_REFERENCE, this function drops
6727 * reference count on the block.
6728 *
6729 * when wc->stage == UPDATE_BACKREF, this function changes
6730 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6731 * to UPDATE_BACKREF previously while processing the block.
6732 *
6733 * NOTE: return value 1 means we should stop walking up.
6734 */
6735 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6736 struct btrfs_root *root,
6737 struct btrfs_path *path,
6738 struct walk_control *wc)
6739 {
6740 int ret;
6741 int level = wc->level;
6742 struct extent_buffer *eb = path->nodes[level];
6743 u64 parent = 0;
6744
6745 if (wc->stage == UPDATE_BACKREF) {
6746 BUG_ON(wc->shared_level < level);
6747 if (level < wc->shared_level)
6748 goto out;
6749
6750 ret = find_next_key(path, level + 1, &wc->update_progress);
6751 if (ret > 0)
6752 wc->update_ref = 0;
6753
6754 wc->stage = DROP_REFERENCE;
6755 wc->shared_level = -1;
6756 path->slots[level] = 0;
6757
6758 /*
6759 * check reference count again if the block isn't locked.
6760 * we should start walking down the tree again if reference
6761 * count is one.
6762 */
6763 if (!path->locks[level]) {
6764 BUG_ON(level == 0);
6765 btrfs_tree_lock(eb);
6766 btrfs_set_lock_blocking(eb);
6767 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6768
6769 ret = btrfs_lookup_extent_info(trans, root,
6770 eb->start, eb->len,
6771 &wc->refs[level],
6772 &wc->flags[level]);
6773 if (ret < 0) {
6774 btrfs_tree_unlock_rw(eb, path->locks[level]);
6775 return ret;
6776 }
6777 BUG_ON(wc->refs[level] == 0);
6778 if (wc->refs[level] == 1) {
6779 btrfs_tree_unlock_rw(eb, path->locks[level]);
6780 return 1;
6781 }
6782 }
6783 }
6784
6785 /* wc->stage == DROP_REFERENCE */
6786 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6787
6788 if (wc->refs[level] == 1) {
6789 if (level == 0) {
6790 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6791 ret = btrfs_dec_ref(trans, root, eb, 1,
6792 wc->for_reloc);
6793 else
6794 ret = btrfs_dec_ref(trans, root, eb, 0,
6795 wc->for_reloc);
6796 BUG_ON(ret); /* -ENOMEM */
6797 }
6798 /* make block locked assertion in clean_tree_block happy */
6799 if (!path->locks[level] &&
6800 btrfs_header_generation(eb) == trans->transid) {
6801 btrfs_tree_lock(eb);
6802 btrfs_set_lock_blocking(eb);
6803 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6804 }
6805 clean_tree_block(trans, root, eb);
6806 }
6807
6808 if (eb == root->node) {
6809 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6810 parent = eb->start;
6811 else
6812 BUG_ON(root->root_key.objectid !=
6813 btrfs_header_owner(eb));
6814 } else {
6815 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6816 parent = path->nodes[level + 1]->start;
6817 else
6818 BUG_ON(root->root_key.objectid !=
6819 btrfs_header_owner(path->nodes[level + 1]));
6820 }
6821
6822 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6823 out:
6824 wc->refs[level] = 0;
6825 wc->flags[level] = 0;
6826 return 0;
6827 }
6828
6829 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6830 struct btrfs_root *root,
6831 struct btrfs_path *path,
6832 struct walk_control *wc)
6833 {
6834 int level = wc->level;
6835 int lookup_info = 1;
6836 int ret;
6837
6838 while (level >= 0) {
6839 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6840 if (ret > 0)
6841 break;
6842
6843 if (level == 0)
6844 break;
6845
6846 if (path->slots[level] >=
6847 btrfs_header_nritems(path->nodes[level]))
6848 break;
6849
6850 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6851 if (ret > 0) {
6852 path->slots[level]++;
6853 continue;
6854 } else if (ret < 0)
6855 return ret;
6856 level = wc->level;
6857 }
6858 return 0;
6859 }
6860
6861 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6862 struct btrfs_root *root,
6863 struct btrfs_path *path,
6864 struct walk_control *wc, int max_level)
6865 {
6866 int level = wc->level;
6867 int ret;
6868
6869 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6870 while (level < max_level && path->nodes[level]) {
6871 wc->level = level;
6872 if (path->slots[level] + 1 <
6873 btrfs_header_nritems(path->nodes[level])) {
6874 path->slots[level]++;
6875 return 0;
6876 } else {
6877 ret = walk_up_proc(trans, root, path, wc);
6878 if (ret > 0)
6879 return 0;
6880
6881 if (path->locks[level]) {
6882 btrfs_tree_unlock_rw(path->nodes[level],
6883 path->locks[level]);
6884 path->locks[level] = 0;
6885 }
6886 free_extent_buffer(path->nodes[level]);
6887 path->nodes[level] = NULL;
6888 level++;
6889 }
6890 }
6891 return 1;
6892 }
6893
6894 /*
6895 * drop a subvolume tree.
6896 *
6897 * this function traverses the tree freeing any blocks that only
6898 * referenced by the tree.
6899 *
6900 * when a shared tree block is found. this function decreases its
6901 * reference count by one. if update_ref is true, this function
6902 * also make sure backrefs for the shared block and all lower level
6903 * blocks are properly updated.
6904 */
6905 int btrfs_drop_snapshot(struct btrfs_root *root,
6906 struct btrfs_block_rsv *block_rsv, int update_ref,
6907 int for_reloc)
6908 {
6909 struct btrfs_path *path;
6910 struct btrfs_trans_handle *trans;
6911 struct btrfs_root *tree_root = root->fs_info->tree_root;
6912 struct btrfs_root_item *root_item = &root->root_item;
6913 struct walk_control *wc;
6914 struct btrfs_key key;
6915 int err = 0;
6916 int ret;
6917 int level;
6918
6919 path = btrfs_alloc_path();
6920 if (!path) {
6921 err = -ENOMEM;
6922 goto out;
6923 }
6924
6925 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6926 if (!wc) {
6927 btrfs_free_path(path);
6928 err = -ENOMEM;
6929 goto out;
6930 }
6931
6932 trans = btrfs_start_transaction(tree_root, 0);
6933 if (IS_ERR(trans)) {
6934 err = PTR_ERR(trans);
6935 goto out_free;
6936 }
6937
6938 if (block_rsv)
6939 trans->block_rsv = block_rsv;
6940
6941 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6942 level = btrfs_header_level(root->node);
6943 path->nodes[level] = btrfs_lock_root_node(root);
6944 btrfs_set_lock_blocking(path->nodes[level]);
6945 path->slots[level] = 0;
6946 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6947 memset(&wc->update_progress, 0,
6948 sizeof(wc->update_progress));
6949 } else {
6950 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6951 memcpy(&wc->update_progress, &key,
6952 sizeof(wc->update_progress));
6953
6954 level = root_item->drop_level;
6955 BUG_ON(level == 0);
6956 path->lowest_level = level;
6957 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6958 path->lowest_level = 0;
6959 if (ret < 0) {
6960 err = ret;
6961 goto out_end_trans;
6962 }
6963 WARN_ON(ret > 0);
6964
6965 /*
6966 * unlock our path, this is safe because only this
6967 * function is allowed to delete this snapshot
6968 */
6969 btrfs_unlock_up_safe(path, 0);
6970
6971 level = btrfs_header_level(root->node);
6972 while (1) {
6973 btrfs_tree_lock(path->nodes[level]);
6974 btrfs_set_lock_blocking(path->nodes[level]);
6975
6976 ret = btrfs_lookup_extent_info(trans, root,
6977 path->nodes[level]->start,
6978 path->nodes[level]->len,
6979 &wc->refs[level],
6980 &wc->flags[level]);
6981 if (ret < 0) {
6982 err = ret;
6983 goto out_end_trans;
6984 }
6985 BUG_ON(wc->refs[level] == 0);
6986
6987 if (level == root_item->drop_level)
6988 break;
6989
6990 btrfs_tree_unlock(path->nodes[level]);
6991 WARN_ON(wc->refs[level] != 1);
6992 level--;
6993 }
6994 }
6995
6996 wc->level = level;
6997 wc->shared_level = -1;
6998 wc->stage = DROP_REFERENCE;
6999 wc->update_ref = update_ref;
7000 wc->keep_locks = 0;
7001 wc->for_reloc = for_reloc;
7002 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7003
7004 while (1) {
7005 ret = walk_down_tree(trans, root, path, wc);
7006 if (ret < 0) {
7007 err = ret;
7008 break;
7009 }
7010
7011 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7012 if (ret < 0) {
7013 err = ret;
7014 break;
7015 }
7016
7017 if (ret > 0) {
7018 BUG_ON(wc->stage != DROP_REFERENCE);
7019 break;
7020 }
7021
7022 if (wc->stage == DROP_REFERENCE) {
7023 level = wc->level;
7024 btrfs_node_key(path->nodes[level],
7025 &root_item->drop_progress,
7026 path->slots[level]);
7027 root_item->drop_level = level;
7028 }
7029
7030 BUG_ON(wc->level == 0);
7031 if (btrfs_should_end_transaction(trans, tree_root)) {
7032 ret = btrfs_update_root(trans, tree_root,
7033 &root->root_key,
7034 root_item);
7035 if (ret) {
7036 btrfs_abort_transaction(trans, tree_root, ret);
7037 err = ret;
7038 goto out_end_trans;
7039 }
7040
7041 btrfs_end_transaction_throttle(trans, tree_root);
7042 trans = btrfs_start_transaction(tree_root, 0);
7043 if (IS_ERR(trans)) {
7044 err = PTR_ERR(trans);
7045 goto out_free;
7046 }
7047 if (block_rsv)
7048 trans->block_rsv = block_rsv;
7049 }
7050 }
7051 btrfs_release_path(path);
7052 if (err)
7053 goto out_end_trans;
7054
7055 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7056 if (ret) {
7057 btrfs_abort_transaction(trans, tree_root, ret);
7058 goto out_end_trans;
7059 }
7060
7061 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7062 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7063 NULL, NULL);
7064 if (ret < 0) {
7065 btrfs_abort_transaction(trans, tree_root, ret);
7066 err = ret;
7067 goto out_end_trans;
7068 } else if (ret > 0) {
7069 /* if we fail to delete the orphan item this time
7070 * around, it'll get picked up the next time.
7071 *
7072 * The most common failure here is just -ENOENT.
7073 */
7074 btrfs_del_orphan_item(trans, tree_root,
7075 root->root_key.objectid);
7076 }
7077 }
7078
7079 if (root->in_radix) {
7080 btrfs_free_fs_root(tree_root->fs_info, root);
7081 } else {
7082 free_extent_buffer(root->node);
7083 free_extent_buffer(root->commit_root);
7084 kfree(root);
7085 }
7086 out_end_trans:
7087 btrfs_end_transaction_throttle(trans, tree_root);
7088 out_free:
7089 kfree(wc);
7090 btrfs_free_path(path);
7091 out:
7092 if (err)
7093 btrfs_std_error(root->fs_info, err);
7094 return err;
7095 }
7096
7097 /*
7098 * drop subtree rooted at tree block 'node'.
7099 *
7100 * NOTE: this function will unlock and release tree block 'node'
7101 * only used by relocation code
7102 */
7103 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7104 struct btrfs_root *root,
7105 struct extent_buffer *node,
7106 struct extent_buffer *parent)
7107 {
7108 struct btrfs_path *path;
7109 struct walk_control *wc;
7110 int level;
7111 int parent_level;
7112 int ret = 0;
7113 int wret;
7114
7115 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7116
7117 path = btrfs_alloc_path();
7118 if (!path)
7119 return -ENOMEM;
7120
7121 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7122 if (!wc) {
7123 btrfs_free_path(path);
7124 return -ENOMEM;
7125 }
7126
7127 btrfs_assert_tree_locked(parent);
7128 parent_level = btrfs_header_level(parent);
7129 extent_buffer_get(parent);
7130 path->nodes[parent_level] = parent;
7131 path->slots[parent_level] = btrfs_header_nritems(parent);
7132
7133 btrfs_assert_tree_locked(node);
7134 level = btrfs_header_level(node);
7135 path->nodes[level] = node;
7136 path->slots[level] = 0;
7137 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7138
7139 wc->refs[parent_level] = 1;
7140 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7141 wc->level = level;
7142 wc->shared_level = -1;
7143 wc->stage = DROP_REFERENCE;
7144 wc->update_ref = 0;
7145 wc->keep_locks = 1;
7146 wc->for_reloc = 1;
7147 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7148
7149 while (1) {
7150 wret = walk_down_tree(trans, root, path, wc);
7151 if (wret < 0) {
7152 ret = wret;
7153 break;
7154 }
7155
7156 wret = walk_up_tree(trans, root, path, wc, parent_level);
7157 if (wret < 0)
7158 ret = wret;
7159 if (wret != 0)
7160 break;
7161 }
7162
7163 kfree(wc);
7164 btrfs_free_path(path);
7165 return ret;
7166 }
7167
7168 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7169 {
7170 u64 num_devices;
7171 u64 stripped;
7172
7173 /*
7174 * if restripe for this chunk_type is on pick target profile and
7175 * return, otherwise do the usual balance
7176 */
7177 stripped = get_restripe_target(root->fs_info, flags);
7178 if (stripped)
7179 return extended_to_chunk(stripped);
7180
7181 /*
7182 * we add in the count of missing devices because we want
7183 * to make sure that any RAID levels on a degraded FS
7184 * continue to be honored.
7185 */
7186 num_devices = root->fs_info->fs_devices->rw_devices +
7187 root->fs_info->fs_devices->missing_devices;
7188
7189 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7190 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7191
7192 if (num_devices == 1) {
7193 stripped |= BTRFS_BLOCK_GROUP_DUP;
7194 stripped = flags & ~stripped;
7195
7196 /* turn raid0 into single device chunks */
7197 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7198 return stripped;
7199
7200 /* turn mirroring into duplication */
7201 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7202 BTRFS_BLOCK_GROUP_RAID10))
7203 return stripped | BTRFS_BLOCK_GROUP_DUP;
7204 } else {
7205 /* they already had raid on here, just return */
7206 if (flags & stripped)
7207 return flags;
7208
7209 stripped |= BTRFS_BLOCK_GROUP_DUP;
7210 stripped = flags & ~stripped;
7211
7212 /* switch duplicated blocks with raid1 */
7213 if (flags & BTRFS_BLOCK_GROUP_DUP)
7214 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7215
7216 /* this is drive concat, leave it alone */
7217 }
7218
7219 return flags;
7220 }
7221
7222 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7223 {
7224 struct btrfs_space_info *sinfo = cache->space_info;
7225 u64 num_bytes;
7226 u64 min_allocable_bytes;
7227 int ret = -ENOSPC;
7228
7229
7230 /*
7231 * We need some metadata space and system metadata space for
7232 * allocating chunks in some corner cases until we force to set
7233 * it to be readonly.
7234 */
7235 if ((sinfo->flags &
7236 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7237 !force)
7238 min_allocable_bytes = 1 * 1024 * 1024;
7239 else
7240 min_allocable_bytes = 0;
7241
7242 spin_lock(&sinfo->lock);
7243 spin_lock(&cache->lock);
7244
7245 if (cache->ro) {
7246 ret = 0;
7247 goto out;
7248 }
7249
7250 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7251 cache->bytes_super - btrfs_block_group_used(&cache->item);
7252
7253 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7254 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7255 min_allocable_bytes <= sinfo->total_bytes) {
7256 sinfo->bytes_readonly += num_bytes;
7257 cache->ro = 1;
7258 ret = 0;
7259 }
7260 out:
7261 spin_unlock(&cache->lock);
7262 spin_unlock(&sinfo->lock);
7263 return ret;
7264 }
7265
7266 int btrfs_set_block_group_ro(struct btrfs_root *root,
7267 struct btrfs_block_group_cache *cache)
7268
7269 {
7270 struct btrfs_trans_handle *trans;
7271 u64 alloc_flags;
7272 int ret;
7273
7274 BUG_ON(cache->ro);
7275
7276 trans = btrfs_join_transaction(root);
7277 if (IS_ERR(trans))
7278 return PTR_ERR(trans);
7279
7280 alloc_flags = update_block_group_flags(root, cache->flags);
7281 if (alloc_flags != cache->flags) {
7282 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7283 CHUNK_ALLOC_FORCE);
7284 if (ret < 0)
7285 goto out;
7286 }
7287
7288 ret = set_block_group_ro(cache, 0);
7289 if (!ret)
7290 goto out;
7291 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7292 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7293 CHUNK_ALLOC_FORCE);
7294 if (ret < 0)
7295 goto out;
7296 ret = set_block_group_ro(cache, 0);
7297 out:
7298 btrfs_end_transaction(trans, root);
7299 return ret;
7300 }
7301
7302 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7303 struct btrfs_root *root, u64 type)
7304 {
7305 u64 alloc_flags = get_alloc_profile(root, type);
7306 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7307 CHUNK_ALLOC_FORCE);
7308 }
7309
7310 /*
7311 * helper to account the unused space of all the readonly block group in the
7312 * list. takes mirrors into account.
7313 */
7314 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7315 {
7316 struct btrfs_block_group_cache *block_group;
7317 u64 free_bytes = 0;
7318 int factor;
7319
7320 list_for_each_entry(block_group, groups_list, list) {
7321 spin_lock(&block_group->lock);
7322
7323 if (!block_group->ro) {
7324 spin_unlock(&block_group->lock);
7325 continue;
7326 }
7327
7328 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7329 BTRFS_BLOCK_GROUP_RAID10 |
7330 BTRFS_BLOCK_GROUP_DUP))
7331 factor = 2;
7332 else
7333 factor = 1;
7334
7335 free_bytes += (block_group->key.offset -
7336 btrfs_block_group_used(&block_group->item)) *
7337 factor;
7338
7339 spin_unlock(&block_group->lock);
7340 }
7341
7342 return free_bytes;
7343 }
7344
7345 /*
7346 * helper to account the unused space of all the readonly block group in the
7347 * space_info. takes mirrors into account.
7348 */
7349 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7350 {
7351 int i;
7352 u64 free_bytes = 0;
7353
7354 spin_lock(&sinfo->lock);
7355
7356 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7357 if (!list_empty(&sinfo->block_groups[i]))
7358 free_bytes += __btrfs_get_ro_block_group_free_space(
7359 &sinfo->block_groups[i]);
7360
7361 spin_unlock(&sinfo->lock);
7362
7363 return free_bytes;
7364 }
7365
7366 void btrfs_set_block_group_rw(struct btrfs_root *root,
7367 struct btrfs_block_group_cache *cache)
7368 {
7369 struct btrfs_space_info *sinfo = cache->space_info;
7370 u64 num_bytes;
7371
7372 BUG_ON(!cache->ro);
7373
7374 spin_lock(&sinfo->lock);
7375 spin_lock(&cache->lock);
7376 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7377 cache->bytes_super - btrfs_block_group_used(&cache->item);
7378 sinfo->bytes_readonly -= num_bytes;
7379 cache->ro = 0;
7380 spin_unlock(&cache->lock);
7381 spin_unlock(&sinfo->lock);
7382 }
7383
7384 /*
7385 * checks to see if its even possible to relocate this block group.
7386 *
7387 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7388 * ok to go ahead and try.
7389 */
7390 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7391 {
7392 struct btrfs_block_group_cache *block_group;
7393 struct btrfs_space_info *space_info;
7394 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7395 struct btrfs_device *device;
7396 u64 min_free;
7397 u64 dev_min = 1;
7398 u64 dev_nr = 0;
7399 u64 target;
7400 int index;
7401 int full = 0;
7402 int ret = 0;
7403
7404 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7405
7406 /* odd, couldn't find the block group, leave it alone */
7407 if (!block_group)
7408 return -1;
7409
7410 min_free = btrfs_block_group_used(&block_group->item);
7411
7412 /* no bytes used, we're good */
7413 if (!min_free)
7414 goto out;
7415
7416 space_info = block_group->space_info;
7417 spin_lock(&space_info->lock);
7418
7419 full = space_info->full;
7420
7421 /*
7422 * if this is the last block group we have in this space, we can't
7423 * relocate it unless we're able to allocate a new chunk below.
7424 *
7425 * Otherwise, we need to make sure we have room in the space to handle
7426 * all of the extents from this block group. If we can, we're good
7427 */
7428 if ((space_info->total_bytes != block_group->key.offset) &&
7429 (space_info->bytes_used + space_info->bytes_reserved +
7430 space_info->bytes_pinned + space_info->bytes_readonly +
7431 min_free < space_info->total_bytes)) {
7432 spin_unlock(&space_info->lock);
7433 goto out;
7434 }
7435 spin_unlock(&space_info->lock);
7436
7437 /*
7438 * ok we don't have enough space, but maybe we have free space on our
7439 * devices to allocate new chunks for relocation, so loop through our
7440 * alloc devices and guess if we have enough space. if this block
7441 * group is going to be restriped, run checks against the target
7442 * profile instead of the current one.
7443 */
7444 ret = -1;
7445
7446 /*
7447 * index:
7448 * 0: raid10
7449 * 1: raid1
7450 * 2: dup
7451 * 3: raid0
7452 * 4: single
7453 */
7454 target = get_restripe_target(root->fs_info, block_group->flags);
7455 if (target) {
7456 index = __get_block_group_index(extended_to_chunk(target));
7457 } else {
7458 /*
7459 * this is just a balance, so if we were marked as full
7460 * we know there is no space for a new chunk
7461 */
7462 if (full)
7463 goto out;
7464
7465 index = get_block_group_index(block_group);
7466 }
7467
7468 if (index == 0) {
7469 dev_min = 4;
7470 /* Divide by 2 */
7471 min_free >>= 1;
7472 } else if (index == 1) {
7473 dev_min = 2;
7474 } else if (index == 2) {
7475 /* Multiply by 2 */
7476 min_free <<= 1;
7477 } else if (index == 3) {
7478 dev_min = fs_devices->rw_devices;
7479 do_div(min_free, dev_min);
7480 }
7481
7482 mutex_lock(&root->fs_info->chunk_mutex);
7483 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7484 u64 dev_offset;
7485
7486 /*
7487 * check to make sure we can actually find a chunk with enough
7488 * space to fit our block group in.
7489 */
7490 if (device->total_bytes > device->bytes_used + min_free) {
7491 ret = find_free_dev_extent(device, min_free,
7492 &dev_offset, NULL);
7493 if (!ret)
7494 dev_nr++;
7495
7496 if (dev_nr >= dev_min)
7497 break;
7498
7499 ret = -1;
7500 }
7501 }
7502 mutex_unlock(&root->fs_info->chunk_mutex);
7503 out:
7504 btrfs_put_block_group(block_group);
7505 return ret;
7506 }
7507
7508 static int find_first_block_group(struct btrfs_root *root,
7509 struct btrfs_path *path, struct btrfs_key *key)
7510 {
7511 int ret = 0;
7512 struct btrfs_key found_key;
7513 struct extent_buffer *leaf;
7514 int slot;
7515
7516 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7517 if (ret < 0)
7518 goto out;
7519
7520 while (1) {
7521 slot = path->slots[0];
7522 leaf = path->nodes[0];
7523 if (slot >= btrfs_header_nritems(leaf)) {
7524 ret = btrfs_next_leaf(root, path);
7525 if (ret == 0)
7526 continue;
7527 if (ret < 0)
7528 goto out;
7529 break;
7530 }
7531 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7532
7533 if (found_key.objectid >= key->objectid &&
7534 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7535 ret = 0;
7536 goto out;
7537 }
7538 path->slots[0]++;
7539 }
7540 out:
7541 return ret;
7542 }
7543
7544 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7545 {
7546 struct btrfs_block_group_cache *block_group;
7547 u64 last = 0;
7548
7549 while (1) {
7550 struct inode *inode;
7551
7552 block_group = btrfs_lookup_first_block_group(info, last);
7553 while (block_group) {
7554 spin_lock(&block_group->lock);
7555 if (block_group->iref)
7556 break;
7557 spin_unlock(&block_group->lock);
7558 block_group = next_block_group(info->tree_root,
7559 block_group);
7560 }
7561 if (!block_group) {
7562 if (last == 0)
7563 break;
7564 last = 0;
7565 continue;
7566 }
7567
7568 inode = block_group->inode;
7569 block_group->iref = 0;
7570 block_group->inode = NULL;
7571 spin_unlock(&block_group->lock);
7572 iput(inode);
7573 last = block_group->key.objectid + block_group->key.offset;
7574 btrfs_put_block_group(block_group);
7575 }
7576 }
7577
7578 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7579 {
7580 struct btrfs_block_group_cache *block_group;
7581 struct btrfs_space_info *space_info;
7582 struct btrfs_caching_control *caching_ctl;
7583 struct rb_node *n;
7584
7585 down_write(&info->extent_commit_sem);
7586 while (!list_empty(&info->caching_block_groups)) {
7587 caching_ctl = list_entry(info->caching_block_groups.next,
7588 struct btrfs_caching_control, list);
7589 list_del(&caching_ctl->list);
7590 put_caching_control(caching_ctl);
7591 }
7592 up_write(&info->extent_commit_sem);
7593
7594 spin_lock(&info->block_group_cache_lock);
7595 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7596 block_group = rb_entry(n, struct btrfs_block_group_cache,
7597 cache_node);
7598 rb_erase(&block_group->cache_node,
7599 &info->block_group_cache_tree);
7600 spin_unlock(&info->block_group_cache_lock);
7601
7602 down_write(&block_group->space_info->groups_sem);
7603 list_del(&block_group->list);
7604 up_write(&block_group->space_info->groups_sem);
7605
7606 if (block_group->cached == BTRFS_CACHE_STARTED)
7607 wait_block_group_cache_done(block_group);
7608
7609 /*
7610 * We haven't cached this block group, which means we could
7611 * possibly have excluded extents on this block group.
7612 */
7613 if (block_group->cached == BTRFS_CACHE_NO)
7614 free_excluded_extents(info->extent_root, block_group);
7615
7616 btrfs_remove_free_space_cache(block_group);
7617 btrfs_put_block_group(block_group);
7618
7619 spin_lock(&info->block_group_cache_lock);
7620 }
7621 spin_unlock(&info->block_group_cache_lock);
7622
7623 /* now that all the block groups are freed, go through and
7624 * free all the space_info structs. This is only called during
7625 * the final stages of unmount, and so we know nobody is
7626 * using them. We call synchronize_rcu() once before we start,
7627 * just to be on the safe side.
7628 */
7629 synchronize_rcu();
7630
7631 release_global_block_rsv(info);
7632
7633 while(!list_empty(&info->space_info)) {
7634 space_info = list_entry(info->space_info.next,
7635 struct btrfs_space_info,
7636 list);
7637 if (space_info->bytes_pinned > 0 ||
7638 space_info->bytes_reserved > 0 ||
7639 space_info->bytes_may_use > 0) {
7640 WARN_ON(1);
7641 dump_space_info(space_info, 0, 0);
7642 }
7643 list_del(&space_info->list);
7644 kfree(space_info);
7645 }
7646 return 0;
7647 }
7648
7649 static void __link_block_group(struct btrfs_space_info *space_info,
7650 struct btrfs_block_group_cache *cache)
7651 {
7652 int index = get_block_group_index(cache);
7653
7654 down_write(&space_info->groups_sem);
7655 list_add_tail(&cache->list, &space_info->block_groups[index]);
7656 up_write(&space_info->groups_sem);
7657 }
7658
7659 int btrfs_read_block_groups(struct btrfs_root *root)
7660 {
7661 struct btrfs_path *path;
7662 int ret;
7663 struct btrfs_block_group_cache *cache;
7664 struct btrfs_fs_info *info = root->fs_info;
7665 struct btrfs_space_info *space_info;
7666 struct btrfs_key key;
7667 struct btrfs_key found_key;
7668 struct extent_buffer *leaf;
7669 int need_clear = 0;
7670 u64 cache_gen;
7671
7672 root = info->extent_root;
7673 key.objectid = 0;
7674 key.offset = 0;
7675 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7676 path = btrfs_alloc_path();
7677 if (!path)
7678 return -ENOMEM;
7679 path->reada = 1;
7680
7681 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7682 if (btrfs_test_opt(root, SPACE_CACHE) &&
7683 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7684 need_clear = 1;
7685 if (btrfs_test_opt(root, CLEAR_CACHE))
7686 need_clear = 1;
7687
7688 while (1) {
7689 ret = find_first_block_group(root, path, &key);
7690 if (ret > 0)
7691 break;
7692 if (ret != 0)
7693 goto error;
7694 leaf = path->nodes[0];
7695 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7696 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7697 if (!cache) {
7698 ret = -ENOMEM;
7699 goto error;
7700 }
7701 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7702 GFP_NOFS);
7703 if (!cache->free_space_ctl) {
7704 kfree(cache);
7705 ret = -ENOMEM;
7706 goto error;
7707 }
7708
7709 atomic_set(&cache->count, 1);
7710 spin_lock_init(&cache->lock);
7711 cache->fs_info = info;
7712 INIT_LIST_HEAD(&cache->list);
7713 INIT_LIST_HEAD(&cache->cluster_list);
7714
7715 if (need_clear) {
7716 /*
7717 * When we mount with old space cache, we need to
7718 * set BTRFS_DC_CLEAR and set dirty flag.
7719 *
7720 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7721 * truncate the old free space cache inode and
7722 * setup a new one.
7723 * b) Setting 'dirty flag' makes sure that we flush
7724 * the new space cache info onto disk.
7725 */
7726 cache->disk_cache_state = BTRFS_DC_CLEAR;
7727 if (btrfs_test_opt(root, SPACE_CACHE))
7728 cache->dirty = 1;
7729 }
7730
7731 read_extent_buffer(leaf, &cache->item,
7732 btrfs_item_ptr_offset(leaf, path->slots[0]),
7733 sizeof(cache->item));
7734 memcpy(&cache->key, &found_key, sizeof(found_key));
7735
7736 key.objectid = found_key.objectid + found_key.offset;
7737 btrfs_release_path(path);
7738 cache->flags = btrfs_block_group_flags(&cache->item);
7739 cache->sectorsize = root->sectorsize;
7740
7741 btrfs_init_free_space_ctl(cache);
7742
7743 /*
7744 * We need to exclude the super stripes now so that the space
7745 * info has super bytes accounted for, otherwise we'll think
7746 * we have more space than we actually do.
7747 */
7748 exclude_super_stripes(root, cache);
7749
7750 /*
7751 * check for two cases, either we are full, and therefore
7752 * don't need to bother with the caching work since we won't
7753 * find any space, or we are empty, and we can just add all
7754 * the space in and be done with it. This saves us _alot_ of
7755 * time, particularly in the full case.
7756 */
7757 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7758 cache->last_byte_to_unpin = (u64)-1;
7759 cache->cached = BTRFS_CACHE_FINISHED;
7760 free_excluded_extents(root, cache);
7761 } else if (btrfs_block_group_used(&cache->item) == 0) {
7762 cache->last_byte_to_unpin = (u64)-1;
7763 cache->cached = BTRFS_CACHE_FINISHED;
7764 add_new_free_space(cache, root->fs_info,
7765 found_key.objectid,
7766 found_key.objectid +
7767 found_key.offset);
7768 free_excluded_extents(root, cache);
7769 }
7770
7771 ret = update_space_info(info, cache->flags, found_key.offset,
7772 btrfs_block_group_used(&cache->item),
7773 &space_info);
7774 BUG_ON(ret); /* -ENOMEM */
7775 cache->space_info = space_info;
7776 spin_lock(&cache->space_info->lock);
7777 cache->space_info->bytes_readonly += cache->bytes_super;
7778 spin_unlock(&cache->space_info->lock);
7779
7780 __link_block_group(space_info, cache);
7781
7782 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7783 BUG_ON(ret); /* Logic error */
7784
7785 set_avail_alloc_bits(root->fs_info, cache->flags);
7786 if (btrfs_chunk_readonly(root, cache->key.objectid))
7787 set_block_group_ro(cache, 1);
7788 }
7789
7790 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7791 if (!(get_alloc_profile(root, space_info->flags) &
7792 (BTRFS_BLOCK_GROUP_RAID10 |
7793 BTRFS_BLOCK_GROUP_RAID1 |
7794 BTRFS_BLOCK_GROUP_DUP)))
7795 continue;
7796 /*
7797 * avoid allocating from un-mirrored block group if there are
7798 * mirrored block groups.
7799 */
7800 list_for_each_entry(cache, &space_info->block_groups[3], list)
7801 set_block_group_ro(cache, 1);
7802 list_for_each_entry(cache, &space_info->block_groups[4], list)
7803 set_block_group_ro(cache, 1);
7804 }
7805
7806 init_global_block_rsv(info);
7807 ret = 0;
7808 error:
7809 btrfs_free_path(path);
7810 return ret;
7811 }
7812
7813 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7814 struct btrfs_root *root, u64 bytes_used,
7815 u64 type, u64 chunk_objectid, u64 chunk_offset,
7816 u64 size)
7817 {
7818 int ret;
7819 struct btrfs_root *extent_root;
7820 struct btrfs_block_group_cache *cache;
7821
7822 extent_root = root->fs_info->extent_root;
7823
7824 root->fs_info->last_trans_log_full_commit = trans->transid;
7825
7826 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7827 if (!cache)
7828 return -ENOMEM;
7829 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7830 GFP_NOFS);
7831 if (!cache->free_space_ctl) {
7832 kfree(cache);
7833 return -ENOMEM;
7834 }
7835
7836 cache->key.objectid = chunk_offset;
7837 cache->key.offset = size;
7838 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7839 cache->sectorsize = root->sectorsize;
7840 cache->fs_info = root->fs_info;
7841
7842 atomic_set(&cache->count, 1);
7843 spin_lock_init(&cache->lock);
7844 INIT_LIST_HEAD(&cache->list);
7845 INIT_LIST_HEAD(&cache->cluster_list);
7846
7847 btrfs_init_free_space_ctl(cache);
7848
7849 btrfs_set_block_group_used(&cache->item, bytes_used);
7850 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7851 cache->flags = type;
7852 btrfs_set_block_group_flags(&cache->item, type);
7853
7854 cache->last_byte_to_unpin = (u64)-1;
7855 cache->cached = BTRFS_CACHE_FINISHED;
7856 exclude_super_stripes(root, cache);
7857
7858 add_new_free_space(cache, root->fs_info, chunk_offset,
7859 chunk_offset + size);
7860
7861 free_excluded_extents(root, cache);
7862
7863 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7864 &cache->space_info);
7865 BUG_ON(ret); /* -ENOMEM */
7866 update_global_block_rsv(root->fs_info);
7867
7868 spin_lock(&cache->space_info->lock);
7869 cache->space_info->bytes_readonly += cache->bytes_super;
7870 spin_unlock(&cache->space_info->lock);
7871
7872 __link_block_group(cache->space_info, cache);
7873
7874 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7875 BUG_ON(ret); /* Logic error */
7876
7877 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7878 sizeof(cache->item));
7879 if (ret) {
7880 btrfs_abort_transaction(trans, extent_root, ret);
7881 return ret;
7882 }
7883
7884 set_avail_alloc_bits(extent_root->fs_info, type);
7885
7886 return 0;
7887 }
7888
7889 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7890 {
7891 u64 extra_flags = chunk_to_extended(flags) &
7892 BTRFS_EXTENDED_PROFILE_MASK;
7893
7894 if (flags & BTRFS_BLOCK_GROUP_DATA)
7895 fs_info->avail_data_alloc_bits &= ~extra_flags;
7896 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7897 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7898 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7899 fs_info->avail_system_alloc_bits &= ~extra_flags;
7900 }
7901
7902 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7903 struct btrfs_root *root, u64 group_start)
7904 {
7905 struct btrfs_path *path;
7906 struct btrfs_block_group_cache *block_group;
7907 struct btrfs_free_cluster *cluster;
7908 struct btrfs_root *tree_root = root->fs_info->tree_root;
7909 struct btrfs_key key;
7910 struct inode *inode;
7911 int ret;
7912 int index;
7913 int factor;
7914
7915 root = root->fs_info->extent_root;
7916
7917 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7918 BUG_ON(!block_group);
7919 BUG_ON(!block_group->ro);
7920
7921 /*
7922 * Free the reserved super bytes from this block group before
7923 * remove it.
7924 */
7925 free_excluded_extents(root, block_group);
7926
7927 memcpy(&key, &block_group->key, sizeof(key));
7928 index = get_block_group_index(block_group);
7929 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7930 BTRFS_BLOCK_GROUP_RAID1 |
7931 BTRFS_BLOCK_GROUP_RAID10))
7932 factor = 2;
7933 else
7934 factor = 1;
7935
7936 /* make sure this block group isn't part of an allocation cluster */
7937 cluster = &root->fs_info->data_alloc_cluster;
7938 spin_lock(&cluster->refill_lock);
7939 btrfs_return_cluster_to_free_space(block_group, cluster);
7940 spin_unlock(&cluster->refill_lock);
7941
7942 /*
7943 * make sure this block group isn't part of a metadata
7944 * allocation cluster
7945 */
7946 cluster = &root->fs_info->meta_alloc_cluster;
7947 spin_lock(&cluster->refill_lock);
7948 btrfs_return_cluster_to_free_space(block_group, cluster);
7949 spin_unlock(&cluster->refill_lock);
7950
7951 path = btrfs_alloc_path();
7952 if (!path) {
7953 ret = -ENOMEM;
7954 goto out;
7955 }
7956
7957 inode = lookup_free_space_inode(tree_root, block_group, path);
7958 if (!IS_ERR(inode)) {
7959 ret = btrfs_orphan_add(trans, inode);
7960 if (ret) {
7961 btrfs_add_delayed_iput(inode);
7962 goto out;
7963 }
7964 clear_nlink(inode);
7965 /* One for the block groups ref */
7966 spin_lock(&block_group->lock);
7967 if (block_group->iref) {
7968 block_group->iref = 0;
7969 block_group->inode = NULL;
7970 spin_unlock(&block_group->lock);
7971 iput(inode);
7972 } else {
7973 spin_unlock(&block_group->lock);
7974 }
7975 /* One for our lookup ref */
7976 btrfs_add_delayed_iput(inode);
7977 }
7978
7979 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7980 key.offset = block_group->key.objectid;
7981 key.type = 0;
7982
7983 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7984 if (ret < 0)
7985 goto out;
7986 if (ret > 0)
7987 btrfs_release_path(path);
7988 if (ret == 0) {
7989 ret = btrfs_del_item(trans, tree_root, path);
7990 if (ret)
7991 goto out;
7992 btrfs_release_path(path);
7993 }
7994
7995 spin_lock(&root->fs_info->block_group_cache_lock);
7996 rb_erase(&block_group->cache_node,
7997 &root->fs_info->block_group_cache_tree);
7998 spin_unlock(&root->fs_info->block_group_cache_lock);
7999
8000 down_write(&block_group->space_info->groups_sem);
8001 /*
8002 * we must use list_del_init so people can check to see if they
8003 * are still on the list after taking the semaphore
8004 */
8005 list_del_init(&block_group->list);
8006 if (list_empty(&block_group->space_info->block_groups[index]))
8007 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8008 up_write(&block_group->space_info->groups_sem);
8009
8010 if (block_group->cached == BTRFS_CACHE_STARTED)
8011 wait_block_group_cache_done(block_group);
8012
8013 btrfs_remove_free_space_cache(block_group);
8014
8015 spin_lock(&block_group->space_info->lock);
8016 block_group->space_info->total_bytes -= block_group->key.offset;
8017 block_group->space_info->bytes_readonly -= block_group->key.offset;
8018 block_group->space_info->disk_total -= block_group->key.offset * factor;
8019 spin_unlock(&block_group->space_info->lock);
8020
8021 memcpy(&key, &block_group->key, sizeof(key));
8022
8023 btrfs_clear_space_info_full(root->fs_info);
8024
8025 btrfs_put_block_group(block_group);
8026 btrfs_put_block_group(block_group);
8027
8028 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8029 if (ret > 0)
8030 ret = -EIO;
8031 if (ret < 0)
8032 goto out;
8033
8034 ret = btrfs_del_item(trans, root, path);
8035 out:
8036 btrfs_free_path(path);
8037 return ret;
8038 }
8039
8040 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8041 {
8042 struct btrfs_space_info *space_info;
8043 struct btrfs_super_block *disk_super;
8044 u64 features;
8045 u64 flags;
8046 int mixed = 0;
8047 int ret;
8048
8049 disk_super = fs_info->super_copy;
8050 if (!btrfs_super_root(disk_super))
8051 return 1;
8052
8053 features = btrfs_super_incompat_flags(disk_super);
8054 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8055 mixed = 1;
8056
8057 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8058 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8059 if (ret)
8060 goto out;
8061
8062 if (mixed) {
8063 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8064 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8065 } else {
8066 flags = BTRFS_BLOCK_GROUP_METADATA;
8067 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8068 if (ret)
8069 goto out;
8070
8071 flags = BTRFS_BLOCK_GROUP_DATA;
8072 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8073 }
8074 out:
8075 return ret;
8076 }
8077
8078 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8079 {
8080 return unpin_extent_range(root, start, end);
8081 }
8082
8083 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8084 u64 num_bytes, u64 *actual_bytes)
8085 {
8086 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8087 }
8088
8089 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8090 {
8091 struct btrfs_fs_info *fs_info = root->fs_info;
8092 struct btrfs_block_group_cache *cache = NULL;
8093 u64 group_trimmed;
8094 u64 start;
8095 u64 end;
8096 u64 trimmed = 0;
8097 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8098 int ret = 0;
8099
8100 /*
8101 * try to trim all FS space, our block group may start from non-zero.
8102 */
8103 if (range->len == total_bytes)
8104 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8105 else
8106 cache = btrfs_lookup_block_group(fs_info, range->start);
8107
8108 while (cache) {
8109 if (cache->key.objectid >= (range->start + range->len)) {
8110 btrfs_put_block_group(cache);
8111 break;
8112 }
8113
8114 start = max(range->start, cache->key.objectid);
8115 end = min(range->start + range->len,
8116 cache->key.objectid + cache->key.offset);
8117
8118 if (end - start >= range->minlen) {
8119 if (!block_group_cache_done(cache)) {
8120 ret = cache_block_group(cache, NULL, root, 0);
8121 if (!ret)
8122 wait_block_group_cache_done(cache);
8123 }
8124 ret = btrfs_trim_block_group(cache,
8125 &group_trimmed,
8126 start,
8127 end,
8128 range->minlen);
8129
8130 trimmed += group_trimmed;
8131 if (ret) {
8132 btrfs_put_block_group(cache);
8133 break;
8134 }
8135 }
8136
8137 cache = next_block_group(fs_info->tree_root, cache);
8138 }
8139
8140 range->len = trimmed;
8141 return ret;
8142 }
This page took 0.217253 seconds and 6 git commands to generate.