Btrfs: make sure btrfs_remove_free_space doesn't leak EAGAIN
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 /* control flags for do_chunk_alloc's force field
38 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
39 * if we really need one.
40 *
41 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 *
43 * CHUNK_ALLOC_LIMITED means to only try and allocate one
44 * if we have very few chunks already allocated. This is
45 * used as part of the clustering code to help make sure
46 * we have a good pool of storage to cluster in, without
47 * filling the FS with empty chunks
48 *
49 */
50 enum {
51 CHUNK_ALLOC_NO_FORCE = 0,
52 CHUNK_ALLOC_FORCE = 1,
53 CHUNK_ALLOC_LIMITED = 2,
54 };
55
56 /*
57 * Control how reservations are dealt with.
58 *
59 * RESERVE_FREE - freeing a reservation.
60 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
61 * ENOSPC accounting
62 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
63 * bytes_may_use as the ENOSPC accounting is done elsewhere
64 */
65 enum {
66 RESERVE_FREE = 0,
67 RESERVE_ALLOC = 1,
68 RESERVE_ALLOC_NO_ACCOUNT = 2,
69 };
70
71 static int update_block_group(struct btrfs_trans_handle *trans,
72 struct btrfs_root *root,
73 u64 bytenr, u64 num_bytes, int alloc);
74 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
75 struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, u64 parent,
77 u64 root_objectid, u64 owner_objectid,
78 u64 owner_offset, int refs_to_drop,
79 struct btrfs_delayed_extent_op *extra_op);
80 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
81 struct extent_buffer *leaf,
82 struct btrfs_extent_item *ei);
83 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84 struct btrfs_root *root,
85 u64 parent, u64 root_objectid,
86 u64 flags, u64 owner, u64 offset,
87 struct btrfs_key *ins, int ref_mod);
88 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, struct btrfs_disk_key *key,
92 int level, struct btrfs_key *ins);
93 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
94 struct btrfs_root *extent_root, u64 alloc_bytes,
95 u64 flags, int force);
96 static int find_next_key(struct btrfs_path *path, int level,
97 struct btrfs_key *key);
98 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
99 int dump_block_groups);
100 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
101 u64 num_bytes, int reserve);
102
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 {
106 smp_mb();
107 return cache->cached == BTRFS_CACHE_FINISHED;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 return (cache->flags & bits) == bits;
113 }
114
115 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
125 kfree(cache->free_space_ctl);
126 kfree(cache);
127 }
128 }
129
130 /*
131 * this adds the block group to the fs_info rb tree for the block group
132 * cache
133 */
134 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
135 struct btrfs_block_group_cache *block_group)
136 {
137 struct rb_node **p;
138 struct rb_node *parent = NULL;
139 struct btrfs_block_group_cache *cache;
140
141 spin_lock(&info->block_group_cache_lock);
142 p = &info->block_group_cache_tree.rb_node;
143
144 while (*p) {
145 parent = *p;
146 cache = rb_entry(parent, struct btrfs_block_group_cache,
147 cache_node);
148 if (block_group->key.objectid < cache->key.objectid) {
149 p = &(*p)->rb_left;
150 } else if (block_group->key.objectid > cache->key.objectid) {
151 p = &(*p)->rb_right;
152 } else {
153 spin_unlock(&info->block_group_cache_lock);
154 return -EEXIST;
155 }
156 }
157
158 rb_link_node(&block_group->cache_node, parent, p);
159 rb_insert_color(&block_group->cache_node,
160 &info->block_group_cache_tree);
161 spin_unlock(&info->block_group_cache_lock);
162
163 return 0;
164 }
165
166 /*
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
169 */
170 static struct btrfs_block_group_cache *
171 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
172 int contains)
173 {
174 struct btrfs_block_group_cache *cache, *ret = NULL;
175 struct rb_node *n;
176 u64 end, start;
177
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
180
181 while (n) {
182 cache = rb_entry(n, struct btrfs_block_group_cache,
183 cache_node);
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
186
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
189 ret = cache;
190 n = n->rb_left;
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
193 ret = cache;
194 break;
195 }
196 n = n->rb_right;
197 } else {
198 ret = cache;
199 break;
200 }
201 }
202 if (ret)
203 btrfs_get_block_group(ret);
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207 }
208
209 static int add_excluded_extent(struct btrfs_root *root,
210 u64 start, u64 num_bytes)
211 {
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&root->fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 set_extent_bits(&root->fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE, GFP_NOFS);
217 return 0;
218 }
219
220 static void free_excluded_extents(struct btrfs_root *root,
221 struct btrfs_block_group_cache *cache)
222 {
223 u64 start, end;
224
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
228 clear_extent_bits(&root->fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 clear_extent_bits(&root->fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 }
233
234 static int exclude_super_stripes(struct btrfs_root *root,
235 struct btrfs_block_group_cache *cache)
236 {
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(root, cache->key.objectid,
246 stripe_len);
247 BUG_ON(ret);
248 }
249
250 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
251 bytenr = btrfs_sb_offset(i);
252 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
253 cache->key.objectid, bytenr,
254 0, &logical, &nr, &stripe_len);
255 BUG_ON(ret);
256
257 while (nr--) {
258 cache->bytes_super += stripe_len;
259 ret = add_excluded_extent(root, logical[nr],
260 stripe_len);
261 BUG_ON(ret);
262 }
263
264 kfree(logical);
265 }
266 return 0;
267 }
268
269 static struct btrfs_caching_control *
270 get_caching_control(struct btrfs_block_group_cache *cache)
271 {
272 struct btrfs_caching_control *ctl;
273
274 spin_lock(&cache->lock);
275 if (cache->cached != BTRFS_CACHE_STARTED) {
276 spin_unlock(&cache->lock);
277 return NULL;
278 }
279
280 /* We're loading it the fast way, so we don't have a caching_ctl. */
281 if (!cache->caching_ctl) {
282 spin_unlock(&cache->lock);
283 return NULL;
284 }
285
286 ctl = cache->caching_ctl;
287 atomic_inc(&ctl->count);
288 spin_unlock(&cache->lock);
289 return ctl;
290 }
291
292 static void put_caching_control(struct btrfs_caching_control *ctl)
293 {
294 if (atomic_dec_and_test(&ctl->count))
295 kfree(ctl);
296 }
297
298 /*
299 * this is only called by cache_block_group, since we could have freed extents
300 * we need to check the pinned_extents for any extents that can't be used yet
301 * since their free space will be released as soon as the transaction commits.
302 */
303 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
304 struct btrfs_fs_info *info, u64 start, u64 end)
305 {
306 u64 extent_start, extent_end, size, total_added = 0;
307 int ret;
308
309 while (start < end) {
310 ret = find_first_extent_bit(info->pinned_extents, start,
311 &extent_start, &extent_end,
312 EXTENT_DIRTY | EXTENT_UPTODATE);
313 if (ret)
314 break;
315
316 if (extent_start <= start) {
317 start = extent_end + 1;
318 } else if (extent_start > start && extent_start < end) {
319 size = extent_start - start;
320 total_added += size;
321 ret = btrfs_add_free_space(block_group, start,
322 size);
323 BUG_ON(ret);
324 start = extent_end + 1;
325 } else {
326 break;
327 }
328 }
329
330 if (start < end) {
331 size = end - start;
332 total_added += size;
333 ret = btrfs_add_free_space(block_group, start, size);
334 BUG_ON(ret);
335 }
336
337 return total_added;
338 }
339
340 static noinline void caching_thread(struct btrfs_work *work)
341 {
342 struct btrfs_block_group_cache *block_group;
343 struct btrfs_fs_info *fs_info;
344 struct btrfs_caching_control *caching_ctl;
345 struct btrfs_root *extent_root;
346 struct btrfs_path *path;
347 struct extent_buffer *leaf;
348 struct btrfs_key key;
349 u64 total_found = 0;
350 u64 last = 0;
351 u32 nritems;
352 int ret = 0;
353
354 caching_ctl = container_of(work, struct btrfs_caching_control, work);
355 block_group = caching_ctl->block_group;
356 fs_info = block_group->fs_info;
357 extent_root = fs_info->extent_root;
358
359 path = btrfs_alloc_path();
360 if (!path)
361 goto out;
362
363 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
364
365 /*
366 * We don't want to deadlock with somebody trying to allocate a new
367 * extent for the extent root while also trying to search the extent
368 * root to add free space. So we skip locking and search the commit
369 * root, since its read-only
370 */
371 path->skip_locking = 1;
372 path->search_commit_root = 1;
373 path->reada = 1;
374
375 key.objectid = last;
376 key.offset = 0;
377 key.type = BTRFS_EXTENT_ITEM_KEY;
378 again:
379 mutex_lock(&caching_ctl->mutex);
380 /* need to make sure the commit_root doesn't disappear */
381 down_read(&fs_info->extent_commit_sem);
382
383 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
384 if (ret < 0)
385 goto err;
386
387 leaf = path->nodes[0];
388 nritems = btrfs_header_nritems(leaf);
389
390 while (1) {
391 if (btrfs_fs_closing(fs_info) > 1) {
392 last = (u64)-1;
393 break;
394 }
395
396 if (path->slots[0] < nritems) {
397 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
398 } else {
399 ret = find_next_key(path, 0, &key);
400 if (ret)
401 break;
402
403 if (need_resched() ||
404 btrfs_next_leaf(extent_root, path)) {
405 caching_ctl->progress = last;
406 btrfs_release_path(path);
407 up_read(&fs_info->extent_commit_sem);
408 mutex_unlock(&caching_ctl->mutex);
409 cond_resched();
410 goto again;
411 }
412 leaf = path->nodes[0];
413 nritems = btrfs_header_nritems(leaf);
414 continue;
415 }
416
417 if (key.objectid < block_group->key.objectid) {
418 path->slots[0]++;
419 continue;
420 }
421
422 if (key.objectid >= block_group->key.objectid +
423 block_group->key.offset)
424 break;
425
426 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
427 total_found += add_new_free_space(block_group,
428 fs_info, last,
429 key.objectid);
430 last = key.objectid + key.offset;
431
432 if (total_found > (1024 * 1024 * 2)) {
433 total_found = 0;
434 wake_up(&caching_ctl->wait);
435 }
436 }
437 path->slots[0]++;
438 }
439 ret = 0;
440
441 total_found += add_new_free_space(block_group, fs_info, last,
442 block_group->key.objectid +
443 block_group->key.offset);
444 caching_ctl->progress = (u64)-1;
445
446 spin_lock(&block_group->lock);
447 block_group->caching_ctl = NULL;
448 block_group->cached = BTRFS_CACHE_FINISHED;
449 spin_unlock(&block_group->lock);
450
451 err:
452 btrfs_free_path(path);
453 up_read(&fs_info->extent_commit_sem);
454
455 free_excluded_extents(extent_root, block_group);
456
457 mutex_unlock(&caching_ctl->mutex);
458 out:
459 wake_up(&caching_ctl->wait);
460
461 put_caching_control(caching_ctl);
462 btrfs_put_block_group(block_group);
463 }
464
465 static int cache_block_group(struct btrfs_block_group_cache *cache,
466 struct btrfs_trans_handle *trans,
467 struct btrfs_root *root,
468 int load_cache_only)
469 {
470 struct btrfs_fs_info *fs_info = cache->fs_info;
471 struct btrfs_caching_control *caching_ctl;
472 int ret = 0;
473
474 smp_mb();
475 if (cache->cached != BTRFS_CACHE_NO)
476 return 0;
477
478 /*
479 * We can't do the read from on-disk cache during a commit since we need
480 * to have the normal tree locking. Also if we are currently trying to
481 * allocate blocks for the tree root we can't do the fast caching since
482 * we likely hold important locks.
483 */
484 if (trans && (!trans->transaction->in_commit) &&
485 (root && root != root->fs_info->tree_root) &&
486 btrfs_test_opt(root, SPACE_CACHE)) {
487 spin_lock(&cache->lock);
488 if (cache->cached != BTRFS_CACHE_NO) {
489 spin_unlock(&cache->lock);
490 return 0;
491 }
492 cache->cached = BTRFS_CACHE_STARTED;
493 spin_unlock(&cache->lock);
494
495 ret = load_free_space_cache(fs_info, cache);
496
497 spin_lock(&cache->lock);
498 if (ret == 1) {
499 cache->cached = BTRFS_CACHE_FINISHED;
500 cache->last_byte_to_unpin = (u64)-1;
501 } else {
502 cache->cached = BTRFS_CACHE_NO;
503 }
504 spin_unlock(&cache->lock);
505 if (ret == 1) {
506 free_excluded_extents(fs_info->extent_root, cache);
507 return 0;
508 }
509 }
510
511 if (load_cache_only)
512 return 0;
513
514 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
515 BUG_ON(!caching_ctl);
516
517 INIT_LIST_HEAD(&caching_ctl->list);
518 mutex_init(&caching_ctl->mutex);
519 init_waitqueue_head(&caching_ctl->wait);
520 caching_ctl->block_group = cache;
521 caching_ctl->progress = cache->key.objectid;
522 /* one for caching kthread, one for caching block group list */
523 atomic_set(&caching_ctl->count, 2);
524 caching_ctl->work.func = caching_thread;
525
526 spin_lock(&cache->lock);
527 if (cache->cached != BTRFS_CACHE_NO) {
528 spin_unlock(&cache->lock);
529 kfree(caching_ctl);
530 return 0;
531 }
532 cache->caching_ctl = caching_ctl;
533 cache->cached = BTRFS_CACHE_STARTED;
534 spin_unlock(&cache->lock);
535
536 down_write(&fs_info->extent_commit_sem);
537 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
538 up_write(&fs_info->extent_commit_sem);
539
540 btrfs_get_block_group(cache);
541
542 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
543
544 return ret;
545 }
546
547 /*
548 * return the block group that starts at or after bytenr
549 */
550 static struct btrfs_block_group_cache *
551 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
552 {
553 struct btrfs_block_group_cache *cache;
554
555 cache = block_group_cache_tree_search(info, bytenr, 0);
556
557 return cache;
558 }
559
560 /*
561 * return the block group that contains the given bytenr
562 */
563 struct btrfs_block_group_cache *btrfs_lookup_block_group(
564 struct btrfs_fs_info *info,
565 u64 bytenr)
566 {
567 struct btrfs_block_group_cache *cache;
568
569 cache = block_group_cache_tree_search(info, bytenr, 1);
570
571 return cache;
572 }
573
574 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
575 u64 flags)
576 {
577 struct list_head *head = &info->space_info;
578 struct btrfs_space_info *found;
579
580 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
581 BTRFS_BLOCK_GROUP_METADATA;
582
583 rcu_read_lock();
584 list_for_each_entry_rcu(found, head, list) {
585 if (found->flags & flags) {
586 rcu_read_unlock();
587 return found;
588 }
589 }
590 rcu_read_unlock();
591 return NULL;
592 }
593
594 /*
595 * after adding space to the filesystem, we need to clear the full flags
596 * on all the space infos.
597 */
598 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
599 {
600 struct list_head *head = &info->space_info;
601 struct btrfs_space_info *found;
602
603 rcu_read_lock();
604 list_for_each_entry_rcu(found, head, list)
605 found->full = 0;
606 rcu_read_unlock();
607 }
608
609 static u64 div_factor(u64 num, int factor)
610 {
611 if (factor == 10)
612 return num;
613 num *= factor;
614 do_div(num, 10);
615 return num;
616 }
617
618 static u64 div_factor_fine(u64 num, int factor)
619 {
620 if (factor == 100)
621 return num;
622 num *= factor;
623 do_div(num, 100);
624 return num;
625 }
626
627 u64 btrfs_find_block_group(struct btrfs_root *root,
628 u64 search_start, u64 search_hint, int owner)
629 {
630 struct btrfs_block_group_cache *cache;
631 u64 used;
632 u64 last = max(search_hint, search_start);
633 u64 group_start = 0;
634 int full_search = 0;
635 int factor = 9;
636 int wrapped = 0;
637 again:
638 while (1) {
639 cache = btrfs_lookup_first_block_group(root->fs_info, last);
640 if (!cache)
641 break;
642
643 spin_lock(&cache->lock);
644 last = cache->key.objectid + cache->key.offset;
645 used = btrfs_block_group_used(&cache->item);
646
647 if ((full_search || !cache->ro) &&
648 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
649 if (used + cache->pinned + cache->reserved <
650 div_factor(cache->key.offset, factor)) {
651 group_start = cache->key.objectid;
652 spin_unlock(&cache->lock);
653 btrfs_put_block_group(cache);
654 goto found;
655 }
656 }
657 spin_unlock(&cache->lock);
658 btrfs_put_block_group(cache);
659 cond_resched();
660 }
661 if (!wrapped) {
662 last = search_start;
663 wrapped = 1;
664 goto again;
665 }
666 if (!full_search && factor < 10) {
667 last = search_start;
668 full_search = 1;
669 factor = 10;
670 goto again;
671 }
672 found:
673 return group_start;
674 }
675
676 /* simple helper to search for an existing extent at a given offset */
677 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
678 {
679 int ret;
680 struct btrfs_key key;
681 struct btrfs_path *path;
682
683 path = btrfs_alloc_path();
684 if (!path)
685 return -ENOMEM;
686
687 key.objectid = start;
688 key.offset = len;
689 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
690 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
691 0, 0);
692 btrfs_free_path(path);
693 return ret;
694 }
695
696 /*
697 * helper function to lookup reference count and flags of extent.
698 *
699 * the head node for delayed ref is used to store the sum of all the
700 * reference count modifications queued up in the rbtree. the head
701 * node may also store the extent flags to set. This way you can check
702 * to see what the reference count and extent flags would be if all of
703 * the delayed refs are not processed.
704 */
705 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
706 struct btrfs_root *root, u64 bytenr,
707 u64 num_bytes, u64 *refs, u64 *flags)
708 {
709 struct btrfs_delayed_ref_head *head;
710 struct btrfs_delayed_ref_root *delayed_refs;
711 struct btrfs_path *path;
712 struct btrfs_extent_item *ei;
713 struct extent_buffer *leaf;
714 struct btrfs_key key;
715 u32 item_size;
716 u64 num_refs;
717 u64 extent_flags;
718 int ret;
719
720 path = btrfs_alloc_path();
721 if (!path)
722 return -ENOMEM;
723
724 key.objectid = bytenr;
725 key.type = BTRFS_EXTENT_ITEM_KEY;
726 key.offset = num_bytes;
727 if (!trans) {
728 path->skip_locking = 1;
729 path->search_commit_root = 1;
730 }
731 again:
732 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
733 &key, path, 0, 0);
734 if (ret < 0)
735 goto out_free;
736
737 if (ret == 0) {
738 leaf = path->nodes[0];
739 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
740 if (item_size >= sizeof(*ei)) {
741 ei = btrfs_item_ptr(leaf, path->slots[0],
742 struct btrfs_extent_item);
743 num_refs = btrfs_extent_refs(leaf, ei);
744 extent_flags = btrfs_extent_flags(leaf, ei);
745 } else {
746 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
747 struct btrfs_extent_item_v0 *ei0;
748 BUG_ON(item_size != sizeof(*ei0));
749 ei0 = btrfs_item_ptr(leaf, path->slots[0],
750 struct btrfs_extent_item_v0);
751 num_refs = btrfs_extent_refs_v0(leaf, ei0);
752 /* FIXME: this isn't correct for data */
753 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
754 #else
755 BUG();
756 #endif
757 }
758 BUG_ON(num_refs == 0);
759 } else {
760 num_refs = 0;
761 extent_flags = 0;
762 ret = 0;
763 }
764
765 if (!trans)
766 goto out;
767
768 delayed_refs = &trans->transaction->delayed_refs;
769 spin_lock(&delayed_refs->lock);
770 head = btrfs_find_delayed_ref_head(trans, bytenr);
771 if (head) {
772 if (!mutex_trylock(&head->mutex)) {
773 atomic_inc(&head->node.refs);
774 spin_unlock(&delayed_refs->lock);
775
776 btrfs_release_path(path);
777
778 /*
779 * Mutex was contended, block until it's released and try
780 * again
781 */
782 mutex_lock(&head->mutex);
783 mutex_unlock(&head->mutex);
784 btrfs_put_delayed_ref(&head->node);
785 goto again;
786 }
787 if (head->extent_op && head->extent_op->update_flags)
788 extent_flags |= head->extent_op->flags_to_set;
789 else
790 BUG_ON(num_refs == 0);
791
792 num_refs += head->node.ref_mod;
793 mutex_unlock(&head->mutex);
794 }
795 spin_unlock(&delayed_refs->lock);
796 out:
797 WARN_ON(num_refs == 0);
798 if (refs)
799 *refs = num_refs;
800 if (flags)
801 *flags = extent_flags;
802 out_free:
803 btrfs_free_path(path);
804 return ret;
805 }
806
807 /*
808 * Back reference rules. Back refs have three main goals:
809 *
810 * 1) differentiate between all holders of references to an extent so that
811 * when a reference is dropped we can make sure it was a valid reference
812 * before freeing the extent.
813 *
814 * 2) Provide enough information to quickly find the holders of an extent
815 * if we notice a given block is corrupted or bad.
816 *
817 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
818 * maintenance. This is actually the same as #2, but with a slightly
819 * different use case.
820 *
821 * There are two kinds of back refs. The implicit back refs is optimized
822 * for pointers in non-shared tree blocks. For a given pointer in a block,
823 * back refs of this kind provide information about the block's owner tree
824 * and the pointer's key. These information allow us to find the block by
825 * b-tree searching. The full back refs is for pointers in tree blocks not
826 * referenced by their owner trees. The location of tree block is recorded
827 * in the back refs. Actually the full back refs is generic, and can be
828 * used in all cases the implicit back refs is used. The major shortcoming
829 * of the full back refs is its overhead. Every time a tree block gets
830 * COWed, we have to update back refs entry for all pointers in it.
831 *
832 * For a newly allocated tree block, we use implicit back refs for
833 * pointers in it. This means most tree related operations only involve
834 * implicit back refs. For a tree block created in old transaction, the
835 * only way to drop a reference to it is COW it. So we can detect the
836 * event that tree block loses its owner tree's reference and do the
837 * back refs conversion.
838 *
839 * When a tree block is COW'd through a tree, there are four cases:
840 *
841 * The reference count of the block is one and the tree is the block's
842 * owner tree. Nothing to do in this case.
843 *
844 * The reference count of the block is one and the tree is not the
845 * block's owner tree. In this case, full back refs is used for pointers
846 * in the block. Remove these full back refs, add implicit back refs for
847 * every pointers in the new block.
848 *
849 * The reference count of the block is greater than one and the tree is
850 * the block's owner tree. In this case, implicit back refs is used for
851 * pointers in the block. Add full back refs for every pointers in the
852 * block, increase lower level extents' reference counts. The original
853 * implicit back refs are entailed to the new block.
854 *
855 * The reference count of the block is greater than one and the tree is
856 * not the block's owner tree. Add implicit back refs for every pointer in
857 * the new block, increase lower level extents' reference count.
858 *
859 * Back Reference Key composing:
860 *
861 * The key objectid corresponds to the first byte in the extent,
862 * The key type is used to differentiate between types of back refs.
863 * There are different meanings of the key offset for different types
864 * of back refs.
865 *
866 * File extents can be referenced by:
867 *
868 * - multiple snapshots, subvolumes, or different generations in one subvol
869 * - different files inside a single subvolume
870 * - different offsets inside a file (bookend extents in file.c)
871 *
872 * The extent ref structure for the implicit back refs has fields for:
873 *
874 * - Objectid of the subvolume root
875 * - objectid of the file holding the reference
876 * - original offset in the file
877 * - how many bookend extents
878 *
879 * The key offset for the implicit back refs is hash of the first
880 * three fields.
881 *
882 * The extent ref structure for the full back refs has field for:
883 *
884 * - number of pointers in the tree leaf
885 *
886 * The key offset for the implicit back refs is the first byte of
887 * the tree leaf
888 *
889 * When a file extent is allocated, The implicit back refs is used.
890 * the fields are filled in:
891 *
892 * (root_key.objectid, inode objectid, offset in file, 1)
893 *
894 * When a file extent is removed file truncation, we find the
895 * corresponding implicit back refs and check the following fields:
896 *
897 * (btrfs_header_owner(leaf), inode objectid, offset in file)
898 *
899 * Btree extents can be referenced by:
900 *
901 * - Different subvolumes
902 *
903 * Both the implicit back refs and the full back refs for tree blocks
904 * only consist of key. The key offset for the implicit back refs is
905 * objectid of block's owner tree. The key offset for the full back refs
906 * is the first byte of parent block.
907 *
908 * When implicit back refs is used, information about the lowest key and
909 * level of the tree block are required. These information are stored in
910 * tree block info structure.
911 */
912
913 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
914 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
915 struct btrfs_root *root,
916 struct btrfs_path *path,
917 u64 owner, u32 extra_size)
918 {
919 struct btrfs_extent_item *item;
920 struct btrfs_extent_item_v0 *ei0;
921 struct btrfs_extent_ref_v0 *ref0;
922 struct btrfs_tree_block_info *bi;
923 struct extent_buffer *leaf;
924 struct btrfs_key key;
925 struct btrfs_key found_key;
926 u32 new_size = sizeof(*item);
927 u64 refs;
928 int ret;
929
930 leaf = path->nodes[0];
931 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
932
933 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
934 ei0 = btrfs_item_ptr(leaf, path->slots[0],
935 struct btrfs_extent_item_v0);
936 refs = btrfs_extent_refs_v0(leaf, ei0);
937
938 if (owner == (u64)-1) {
939 while (1) {
940 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
941 ret = btrfs_next_leaf(root, path);
942 if (ret < 0)
943 return ret;
944 BUG_ON(ret > 0);
945 leaf = path->nodes[0];
946 }
947 btrfs_item_key_to_cpu(leaf, &found_key,
948 path->slots[0]);
949 BUG_ON(key.objectid != found_key.objectid);
950 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
951 path->slots[0]++;
952 continue;
953 }
954 ref0 = btrfs_item_ptr(leaf, path->slots[0],
955 struct btrfs_extent_ref_v0);
956 owner = btrfs_ref_objectid_v0(leaf, ref0);
957 break;
958 }
959 }
960 btrfs_release_path(path);
961
962 if (owner < BTRFS_FIRST_FREE_OBJECTID)
963 new_size += sizeof(*bi);
964
965 new_size -= sizeof(*ei0);
966 ret = btrfs_search_slot(trans, root, &key, path,
967 new_size + extra_size, 1);
968 if (ret < 0)
969 return ret;
970 BUG_ON(ret);
971
972 ret = btrfs_extend_item(trans, root, path, new_size);
973
974 leaf = path->nodes[0];
975 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
976 btrfs_set_extent_refs(leaf, item, refs);
977 /* FIXME: get real generation */
978 btrfs_set_extent_generation(leaf, item, 0);
979 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
980 btrfs_set_extent_flags(leaf, item,
981 BTRFS_EXTENT_FLAG_TREE_BLOCK |
982 BTRFS_BLOCK_FLAG_FULL_BACKREF);
983 bi = (struct btrfs_tree_block_info *)(item + 1);
984 /* FIXME: get first key of the block */
985 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
986 btrfs_set_tree_block_level(leaf, bi, (int)owner);
987 } else {
988 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
989 }
990 btrfs_mark_buffer_dirty(leaf);
991 return 0;
992 }
993 #endif
994
995 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
996 {
997 u32 high_crc = ~(u32)0;
998 u32 low_crc = ~(u32)0;
999 __le64 lenum;
1000
1001 lenum = cpu_to_le64(root_objectid);
1002 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1003 lenum = cpu_to_le64(owner);
1004 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1005 lenum = cpu_to_le64(offset);
1006 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1007
1008 return ((u64)high_crc << 31) ^ (u64)low_crc;
1009 }
1010
1011 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1012 struct btrfs_extent_data_ref *ref)
1013 {
1014 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1015 btrfs_extent_data_ref_objectid(leaf, ref),
1016 btrfs_extent_data_ref_offset(leaf, ref));
1017 }
1018
1019 static int match_extent_data_ref(struct extent_buffer *leaf,
1020 struct btrfs_extent_data_ref *ref,
1021 u64 root_objectid, u64 owner, u64 offset)
1022 {
1023 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1024 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1025 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1026 return 0;
1027 return 1;
1028 }
1029
1030 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path,
1033 u64 bytenr, u64 parent,
1034 u64 root_objectid,
1035 u64 owner, u64 offset)
1036 {
1037 struct btrfs_key key;
1038 struct btrfs_extent_data_ref *ref;
1039 struct extent_buffer *leaf;
1040 u32 nritems;
1041 int ret;
1042 int recow;
1043 int err = -ENOENT;
1044
1045 key.objectid = bytenr;
1046 if (parent) {
1047 key.type = BTRFS_SHARED_DATA_REF_KEY;
1048 key.offset = parent;
1049 } else {
1050 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1051 key.offset = hash_extent_data_ref(root_objectid,
1052 owner, offset);
1053 }
1054 again:
1055 recow = 0;
1056 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1057 if (ret < 0) {
1058 err = ret;
1059 goto fail;
1060 }
1061
1062 if (parent) {
1063 if (!ret)
1064 return 0;
1065 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1066 key.type = BTRFS_EXTENT_REF_V0_KEY;
1067 btrfs_release_path(path);
1068 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1069 if (ret < 0) {
1070 err = ret;
1071 goto fail;
1072 }
1073 if (!ret)
1074 return 0;
1075 #endif
1076 goto fail;
1077 }
1078
1079 leaf = path->nodes[0];
1080 nritems = btrfs_header_nritems(leaf);
1081 while (1) {
1082 if (path->slots[0] >= nritems) {
1083 ret = btrfs_next_leaf(root, path);
1084 if (ret < 0)
1085 err = ret;
1086 if (ret)
1087 goto fail;
1088
1089 leaf = path->nodes[0];
1090 nritems = btrfs_header_nritems(leaf);
1091 recow = 1;
1092 }
1093
1094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1095 if (key.objectid != bytenr ||
1096 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1097 goto fail;
1098
1099 ref = btrfs_item_ptr(leaf, path->slots[0],
1100 struct btrfs_extent_data_ref);
1101
1102 if (match_extent_data_ref(leaf, ref, root_objectid,
1103 owner, offset)) {
1104 if (recow) {
1105 btrfs_release_path(path);
1106 goto again;
1107 }
1108 err = 0;
1109 break;
1110 }
1111 path->slots[0]++;
1112 }
1113 fail:
1114 return err;
1115 }
1116
1117 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1118 struct btrfs_root *root,
1119 struct btrfs_path *path,
1120 u64 bytenr, u64 parent,
1121 u64 root_objectid, u64 owner,
1122 u64 offset, int refs_to_add)
1123 {
1124 struct btrfs_key key;
1125 struct extent_buffer *leaf;
1126 u32 size;
1127 u32 num_refs;
1128 int ret;
1129
1130 key.objectid = bytenr;
1131 if (parent) {
1132 key.type = BTRFS_SHARED_DATA_REF_KEY;
1133 key.offset = parent;
1134 size = sizeof(struct btrfs_shared_data_ref);
1135 } else {
1136 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1137 key.offset = hash_extent_data_ref(root_objectid,
1138 owner, offset);
1139 size = sizeof(struct btrfs_extent_data_ref);
1140 }
1141
1142 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1143 if (ret && ret != -EEXIST)
1144 goto fail;
1145
1146 leaf = path->nodes[0];
1147 if (parent) {
1148 struct btrfs_shared_data_ref *ref;
1149 ref = btrfs_item_ptr(leaf, path->slots[0],
1150 struct btrfs_shared_data_ref);
1151 if (ret == 0) {
1152 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1153 } else {
1154 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1155 num_refs += refs_to_add;
1156 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1157 }
1158 } else {
1159 struct btrfs_extent_data_ref *ref;
1160 while (ret == -EEXIST) {
1161 ref = btrfs_item_ptr(leaf, path->slots[0],
1162 struct btrfs_extent_data_ref);
1163 if (match_extent_data_ref(leaf, ref, root_objectid,
1164 owner, offset))
1165 break;
1166 btrfs_release_path(path);
1167 key.offset++;
1168 ret = btrfs_insert_empty_item(trans, root, path, &key,
1169 size);
1170 if (ret && ret != -EEXIST)
1171 goto fail;
1172
1173 leaf = path->nodes[0];
1174 }
1175 ref = btrfs_item_ptr(leaf, path->slots[0],
1176 struct btrfs_extent_data_ref);
1177 if (ret == 0) {
1178 btrfs_set_extent_data_ref_root(leaf, ref,
1179 root_objectid);
1180 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1181 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1182 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1183 } else {
1184 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1185 num_refs += refs_to_add;
1186 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1187 }
1188 }
1189 btrfs_mark_buffer_dirty(leaf);
1190 ret = 0;
1191 fail:
1192 btrfs_release_path(path);
1193 return ret;
1194 }
1195
1196 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1197 struct btrfs_root *root,
1198 struct btrfs_path *path,
1199 int refs_to_drop)
1200 {
1201 struct btrfs_key key;
1202 struct btrfs_extent_data_ref *ref1 = NULL;
1203 struct btrfs_shared_data_ref *ref2 = NULL;
1204 struct extent_buffer *leaf;
1205 u32 num_refs = 0;
1206 int ret = 0;
1207
1208 leaf = path->nodes[0];
1209 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1210
1211 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1212 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1213 struct btrfs_extent_data_ref);
1214 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1215 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1216 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1217 struct btrfs_shared_data_ref);
1218 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1219 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1220 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1221 struct btrfs_extent_ref_v0 *ref0;
1222 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1223 struct btrfs_extent_ref_v0);
1224 num_refs = btrfs_ref_count_v0(leaf, ref0);
1225 #endif
1226 } else {
1227 BUG();
1228 }
1229
1230 BUG_ON(num_refs < refs_to_drop);
1231 num_refs -= refs_to_drop;
1232
1233 if (num_refs == 0) {
1234 ret = btrfs_del_item(trans, root, path);
1235 } else {
1236 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1237 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1238 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1239 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1240 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1241 else {
1242 struct btrfs_extent_ref_v0 *ref0;
1243 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_extent_ref_v0);
1245 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1246 }
1247 #endif
1248 btrfs_mark_buffer_dirty(leaf);
1249 }
1250 return ret;
1251 }
1252
1253 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1254 struct btrfs_path *path,
1255 struct btrfs_extent_inline_ref *iref)
1256 {
1257 struct btrfs_key key;
1258 struct extent_buffer *leaf;
1259 struct btrfs_extent_data_ref *ref1;
1260 struct btrfs_shared_data_ref *ref2;
1261 u32 num_refs = 0;
1262
1263 leaf = path->nodes[0];
1264 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1265 if (iref) {
1266 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1267 BTRFS_EXTENT_DATA_REF_KEY) {
1268 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1269 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1270 } else {
1271 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1272 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1273 }
1274 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1275 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1276 struct btrfs_extent_data_ref);
1277 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1278 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1279 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1280 struct btrfs_shared_data_ref);
1281 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1284 struct btrfs_extent_ref_v0 *ref0;
1285 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_ref_v0);
1287 num_refs = btrfs_ref_count_v0(leaf, ref0);
1288 #endif
1289 } else {
1290 WARN_ON(1);
1291 }
1292 return num_refs;
1293 }
1294
1295 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1296 struct btrfs_root *root,
1297 struct btrfs_path *path,
1298 u64 bytenr, u64 parent,
1299 u64 root_objectid)
1300 {
1301 struct btrfs_key key;
1302 int ret;
1303
1304 key.objectid = bytenr;
1305 if (parent) {
1306 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1307 key.offset = parent;
1308 } else {
1309 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1310 key.offset = root_objectid;
1311 }
1312
1313 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1314 if (ret > 0)
1315 ret = -ENOENT;
1316 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1317 if (ret == -ENOENT && parent) {
1318 btrfs_release_path(path);
1319 key.type = BTRFS_EXTENT_REF_V0_KEY;
1320 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1321 if (ret > 0)
1322 ret = -ENOENT;
1323 }
1324 #endif
1325 return ret;
1326 }
1327
1328 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1329 struct btrfs_root *root,
1330 struct btrfs_path *path,
1331 u64 bytenr, u64 parent,
1332 u64 root_objectid)
1333 {
1334 struct btrfs_key key;
1335 int ret;
1336
1337 key.objectid = bytenr;
1338 if (parent) {
1339 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1340 key.offset = parent;
1341 } else {
1342 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1343 key.offset = root_objectid;
1344 }
1345
1346 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1347 btrfs_release_path(path);
1348 return ret;
1349 }
1350
1351 static inline int extent_ref_type(u64 parent, u64 owner)
1352 {
1353 int type;
1354 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1355 if (parent > 0)
1356 type = BTRFS_SHARED_BLOCK_REF_KEY;
1357 else
1358 type = BTRFS_TREE_BLOCK_REF_KEY;
1359 } else {
1360 if (parent > 0)
1361 type = BTRFS_SHARED_DATA_REF_KEY;
1362 else
1363 type = BTRFS_EXTENT_DATA_REF_KEY;
1364 }
1365 return type;
1366 }
1367
1368 static int find_next_key(struct btrfs_path *path, int level,
1369 struct btrfs_key *key)
1370
1371 {
1372 for (; level < BTRFS_MAX_LEVEL; level++) {
1373 if (!path->nodes[level])
1374 break;
1375 if (path->slots[level] + 1 >=
1376 btrfs_header_nritems(path->nodes[level]))
1377 continue;
1378 if (level == 0)
1379 btrfs_item_key_to_cpu(path->nodes[level], key,
1380 path->slots[level] + 1);
1381 else
1382 btrfs_node_key_to_cpu(path->nodes[level], key,
1383 path->slots[level] + 1);
1384 return 0;
1385 }
1386 return 1;
1387 }
1388
1389 /*
1390 * look for inline back ref. if back ref is found, *ref_ret is set
1391 * to the address of inline back ref, and 0 is returned.
1392 *
1393 * if back ref isn't found, *ref_ret is set to the address where it
1394 * should be inserted, and -ENOENT is returned.
1395 *
1396 * if insert is true and there are too many inline back refs, the path
1397 * points to the extent item, and -EAGAIN is returned.
1398 *
1399 * NOTE: inline back refs are ordered in the same way that back ref
1400 * items in the tree are ordered.
1401 */
1402 static noinline_for_stack
1403 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1404 struct btrfs_root *root,
1405 struct btrfs_path *path,
1406 struct btrfs_extent_inline_ref **ref_ret,
1407 u64 bytenr, u64 num_bytes,
1408 u64 parent, u64 root_objectid,
1409 u64 owner, u64 offset, int insert)
1410 {
1411 struct btrfs_key key;
1412 struct extent_buffer *leaf;
1413 struct btrfs_extent_item *ei;
1414 struct btrfs_extent_inline_ref *iref;
1415 u64 flags;
1416 u64 item_size;
1417 unsigned long ptr;
1418 unsigned long end;
1419 int extra_size;
1420 int type;
1421 int want;
1422 int ret;
1423 int err = 0;
1424
1425 key.objectid = bytenr;
1426 key.type = BTRFS_EXTENT_ITEM_KEY;
1427 key.offset = num_bytes;
1428
1429 want = extent_ref_type(parent, owner);
1430 if (insert) {
1431 extra_size = btrfs_extent_inline_ref_size(want);
1432 path->keep_locks = 1;
1433 } else
1434 extra_size = -1;
1435 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1436 if (ret < 0) {
1437 err = ret;
1438 goto out;
1439 }
1440 BUG_ON(ret);
1441
1442 leaf = path->nodes[0];
1443 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445 if (item_size < sizeof(*ei)) {
1446 if (!insert) {
1447 err = -ENOENT;
1448 goto out;
1449 }
1450 ret = convert_extent_item_v0(trans, root, path, owner,
1451 extra_size);
1452 if (ret < 0) {
1453 err = ret;
1454 goto out;
1455 }
1456 leaf = path->nodes[0];
1457 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1458 }
1459 #endif
1460 BUG_ON(item_size < sizeof(*ei));
1461
1462 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1463 flags = btrfs_extent_flags(leaf, ei);
1464
1465 ptr = (unsigned long)(ei + 1);
1466 end = (unsigned long)ei + item_size;
1467
1468 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1469 ptr += sizeof(struct btrfs_tree_block_info);
1470 BUG_ON(ptr > end);
1471 } else {
1472 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1473 }
1474
1475 err = -ENOENT;
1476 while (1) {
1477 if (ptr >= end) {
1478 WARN_ON(ptr > end);
1479 break;
1480 }
1481 iref = (struct btrfs_extent_inline_ref *)ptr;
1482 type = btrfs_extent_inline_ref_type(leaf, iref);
1483 if (want < type)
1484 break;
1485 if (want > type) {
1486 ptr += btrfs_extent_inline_ref_size(type);
1487 continue;
1488 }
1489
1490 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1491 struct btrfs_extent_data_ref *dref;
1492 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1493 if (match_extent_data_ref(leaf, dref, root_objectid,
1494 owner, offset)) {
1495 err = 0;
1496 break;
1497 }
1498 if (hash_extent_data_ref_item(leaf, dref) <
1499 hash_extent_data_ref(root_objectid, owner, offset))
1500 break;
1501 } else {
1502 u64 ref_offset;
1503 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1504 if (parent > 0) {
1505 if (parent == ref_offset) {
1506 err = 0;
1507 break;
1508 }
1509 if (ref_offset < parent)
1510 break;
1511 } else {
1512 if (root_objectid == ref_offset) {
1513 err = 0;
1514 break;
1515 }
1516 if (ref_offset < root_objectid)
1517 break;
1518 }
1519 }
1520 ptr += btrfs_extent_inline_ref_size(type);
1521 }
1522 if (err == -ENOENT && insert) {
1523 if (item_size + extra_size >=
1524 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1525 err = -EAGAIN;
1526 goto out;
1527 }
1528 /*
1529 * To add new inline back ref, we have to make sure
1530 * there is no corresponding back ref item.
1531 * For simplicity, we just do not add new inline back
1532 * ref if there is any kind of item for this block
1533 */
1534 if (find_next_key(path, 0, &key) == 0 &&
1535 key.objectid == bytenr &&
1536 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1537 err = -EAGAIN;
1538 goto out;
1539 }
1540 }
1541 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1542 out:
1543 if (insert) {
1544 path->keep_locks = 0;
1545 btrfs_unlock_up_safe(path, 1);
1546 }
1547 return err;
1548 }
1549
1550 /*
1551 * helper to add new inline back ref
1552 */
1553 static noinline_for_stack
1554 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1555 struct btrfs_root *root,
1556 struct btrfs_path *path,
1557 struct btrfs_extent_inline_ref *iref,
1558 u64 parent, u64 root_objectid,
1559 u64 owner, u64 offset, int refs_to_add,
1560 struct btrfs_delayed_extent_op *extent_op)
1561 {
1562 struct extent_buffer *leaf;
1563 struct btrfs_extent_item *ei;
1564 unsigned long ptr;
1565 unsigned long end;
1566 unsigned long item_offset;
1567 u64 refs;
1568 int size;
1569 int type;
1570 int ret;
1571
1572 leaf = path->nodes[0];
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 item_offset = (unsigned long)iref - (unsigned long)ei;
1575
1576 type = extent_ref_type(parent, owner);
1577 size = btrfs_extent_inline_ref_size(type);
1578
1579 ret = btrfs_extend_item(trans, root, path, size);
1580
1581 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1582 refs = btrfs_extent_refs(leaf, ei);
1583 refs += refs_to_add;
1584 btrfs_set_extent_refs(leaf, ei, refs);
1585 if (extent_op)
1586 __run_delayed_extent_op(extent_op, leaf, ei);
1587
1588 ptr = (unsigned long)ei + item_offset;
1589 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1590 if (ptr < end - size)
1591 memmove_extent_buffer(leaf, ptr + size, ptr,
1592 end - size - ptr);
1593
1594 iref = (struct btrfs_extent_inline_ref *)ptr;
1595 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1596 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1597 struct btrfs_extent_data_ref *dref;
1598 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1599 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1600 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1601 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1602 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1603 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1604 struct btrfs_shared_data_ref *sref;
1605 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1606 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1607 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1608 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1609 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1610 } else {
1611 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1612 }
1613 btrfs_mark_buffer_dirty(leaf);
1614 return 0;
1615 }
1616
1617 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1618 struct btrfs_root *root,
1619 struct btrfs_path *path,
1620 struct btrfs_extent_inline_ref **ref_ret,
1621 u64 bytenr, u64 num_bytes, u64 parent,
1622 u64 root_objectid, u64 owner, u64 offset)
1623 {
1624 int ret;
1625
1626 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1627 bytenr, num_bytes, parent,
1628 root_objectid, owner, offset, 0);
1629 if (ret != -ENOENT)
1630 return ret;
1631
1632 btrfs_release_path(path);
1633 *ref_ret = NULL;
1634
1635 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1636 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1637 root_objectid);
1638 } else {
1639 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1640 root_objectid, owner, offset);
1641 }
1642 return ret;
1643 }
1644
1645 /*
1646 * helper to update/remove inline back ref
1647 */
1648 static noinline_for_stack
1649 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1650 struct btrfs_root *root,
1651 struct btrfs_path *path,
1652 struct btrfs_extent_inline_ref *iref,
1653 int refs_to_mod,
1654 struct btrfs_delayed_extent_op *extent_op)
1655 {
1656 struct extent_buffer *leaf;
1657 struct btrfs_extent_item *ei;
1658 struct btrfs_extent_data_ref *dref = NULL;
1659 struct btrfs_shared_data_ref *sref = NULL;
1660 unsigned long ptr;
1661 unsigned long end;
1662 u32 item_size;
1663 int size;
1664 int type;
1665 int ret;
1666 u64 refs;
1667
1668 leaf = path->nodes[0];
1669 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1670 refs = btrfs_extent_refs(leaf, ei);
1671 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1672 refs += refs_to_mod;
1673 btrfs_set_extent_refs(leaf, ei, refs);
1674 if (extent_op)
1675 __run_delayed_extent_op(extent_op, leaf, ei);
1676
1677 type = btrfs_extent_inline_ref_type(leaf, iref);
1678
1679 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1680 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1681 refs = btrfs_extent_data_ref_count(leaf, dref);
1682 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1683 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1684 refs = btrfs_shared_data_ref_count(leaf, sref);
1685 } else {
1686 refs = 1;
1687 BUG_ON(refs_to_mod != -1);
1688 }
1689
1690 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1691 refs += refs_to_mod;
1692
1693 if (refs > 0) {
1694 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1695 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1696 else
1697 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1698 } else {
1699 size = btrfs_extent_inline_ref_size(type);
1700 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1701 ptr = (unsigned long)iref;
1702 end = (unsigned long)ei + item_size;
1703 if (ptr + size < end)
1704 memmove_extent_buffer(leaf, ptr, ptr + size,
1705 end - ptr - size);
1706 item_size -= size;
1707 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1708 }
1709 btrfs_mark_buffer_dirty(leaf);
1710 return 0;
1711 }
1712
1713 static noinline_for_stack
1714 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1715 struct btrfs_root *root,
1716 struct btrfs_path *path,
1717 u64 bytenr, u64 num_bytes, u64 parent,
1718 u64 root_objectid, u64 owner,
1719 u64 offset, int refs_to_add,
1720 struct btrfs_delayed_extent_op *extent_op)
1721 {
1722 struct btrfs_extent_inline_ref *iref;
1723 int ret;
1724
1725 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1726 bytenr, num_bytes, parent,
1727 root_objectid, owner, offset, 1);
1728 if (ret == 0) {
1729 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1730 ret = update_inline_extent_backref(trans, root, path, iref,
1731 refs_to_add, extent_op);
1732 } else if (ret == -ENOENT) {
1733 ret = setup_inline_extent_backref(trans, root, path, iref,
1734 parent, root_objectid,
1735 owner, offset, refs_to_add,
1736 extent_op);
1737 }
1738 return ret;
1739 }
1740
1741 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1742 struct btrfs_root *root,
1743 struct btrfs_path *path,
1744 u64 bytenr, u64 parent, u64 root_objectid,
1745 u64 owner, u64 offset, int refs_to_add)
1746 {
1747 int ret;
1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 BUG_ON(refs_to_add != 1);
1750 ret = insert_tree_block_ref(trans, root, path, bytenr,
1751 parent, root_objectid);
1752 } else {
1753 ret = insert_extent_data_ref(trans, root, path, bytenr,
1754 parent, root_objectid,
1755 owner, offset, refs_to_add);
1756 }
1757 return ret;
1758 }
1759
1760 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1761 struct btrfs_root *root,
1762 struct btrfs_path *path,
1763 struct btrfs_extent_inline_ref *iref,
1764 int refs_to_drop, int is_data)
1765 {
1766 int ret;
1767
1768 BUG_ON(!is_data && refs_to_drop != 1);
1769 if (iref) {
1770 ret = update_inline_extent_backref(trans, root, path, iref,
1771 -refs_to_drop, NULL);
1772 } else if (is_data) {
1773 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1774 } else {
1775 ret = btrfs_del_item(trans, root, path);
1776 }
1777 return ret;
1778 }
1779
1780 static int btrfs_issue_discard(struct block_device *bdev,
1781 u64 start, u64 len)
1782 {
1783 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1784 }
1785
1786 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1787 u64 num_bytes, u64 *actual_bytes)
1788 {
1789 int ret;
1790 u64 discarded_bytes = 0;
1791 struct btrfs_multi_bio *multi = NULL;
1792
1793
1794 /* Tell the block device(s) that the sectors can be discarded */
1795 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1796 bytenr, &num_bytes, &multi, 0);
1797 if (!ret) {
1798 struct btrfs_bio_stripe *stripe = multi->stripes;
1799 int i;
1800
1801
1802 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1803 if (!stripe->dev->can_discard)
1804 continue;
1805
1806 ret = btrfs_issue_discard(stripe->dev->bdev,
1807 stripe->physical,
1808 stripe->length);
1809 if (!ret)
1810 discarded_bytes += stripe->length;
1811 else if (ret != -EOPNOTSUPP)
1812 break;
1813
1814 /*
1815 * Just in case we get back EOPNOTSUPP for some reason,
1816 * just ignore the return value so we don't screw up
1817 * people calling discard_extent.
1818 */
1819 ret = 0;
1820 }
1821 kfree(multi);
1822 }
1823
1824 if (actual_bytes)
1825 *actual_bytes = discarded_bytes;
1826
1827
1828 return ret;
1829 }
1830
1831 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1832 struct btrfs_root *root,
1833 u64 bytenr, u64 num_bytes, u64 parent,
1834 u64 root_objectid, u64 owner, u64 offset)
1835 {
1836 int ret;
1837 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1838 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1839
1840 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1841 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1842 parent, root_objectid, (int)owner,
1843 BTRFS_ADD_DELAYED_REF, NULL);
1844 } else {
1845 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1846 parent, root_objectid, owner, offset,
1847 BTRFS_ADD_DELAYED_REF, NULL);
1848 }
1849 return ret;
1850 }
1851
1852 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1853 struct btrfs_root *root,
1854 u64 bytenr, u64 num_bytes,
1855 u64 parent, u64 root_objectid,
1856 u64 owner, u64 offset, int refs_to_add,
1857 struct btrfs_delayed_extent_op *extent_op)
1858 {
1859 struct btrfs_path *path;
1860 struct extent_buffer *leaf;
1861 struct btrfs_extent_item *item;
1862 u64 refs;
1863 int ret;
1864 int err = 0;
1865
1866 path = btrfs_alloc_path();
1867 if (!path)
1868 return -ENOMEM;
1869
1870 path->reada = 1;
1871 path->leave_spinning = 1;
1872 /* this will setup the path even if it fails to insert the back ref */
1873 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1874 path, bytenr, num_bytes, parent,
1875 root_objectid, owner, offset,
1876 refs_to_add, extent_op);
1877 if (ret == 0)
1878 goto out;
1879
1880 if (ret != -EAGAIN) {
1881 err = ret;
1882 goto out;
1883 }
1884
1885 leaf = path->nodes[0];
1886 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1887 refs = btrfs_extent_refs(leaf, item);
1888 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1889 if (extent_op)
1890 __run_delayed_extent_op(extent_op, leaf, item);
1891
1892 btrfs_mark_buffer_dirty(leaf);
1893 btrfs_release_path(path);
1894
1895 path->reada = 1;
1896 path->leave_spinning = 1;
1897
1898 /* now insert the actual backref */
1899 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1900 path, bytenr, parent, root_objectid,
1901 owner, offset, refs_to_add);
1902 BUG_ON(ret);
1903 out:
1904 btrfs_free_path(path);
1905 return err;
1906 }
1907
1908 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1909 struct btrfs_root *root,
1910 struct btrfs_delayed_ref_node *node,
1911 struct btrfs_delayed_extent_op *extent_op,
1912 int insert_reserved)
1913 {
1914 int ret = 0;
1915 struct btrfs_delayed_data_ref *ref;
1916 struct btrfs_key ins;
1917 u64 parent = 0;
1918 u64 ref_root = 0;
1919 u64 flags = 0;
1920
1921 ins.objectid = node->bytenr;
1922 ins.offset = node->num_bytes;
1923 ins.type = BTRFS_EXTENT_ITEM_KEY;
1924
1925 ref = btrfs_delayed_node_to_data_ref(node);
1926 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1927 parent = ref->parent;
1928 else
1929 ref_root = ref->root;
1930
1931 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1932 if (extent_op) {
1933 BUG_ON(extent_op->update_key);
1934 flags |= extent_op->flags_to_set;
1935 }
1936 ret = alloc_reserved_file_extent(trans, root,
1937 parent, ref_root, flags,
1938 ref->objectid, ref->offset,
1939 &ins, node->ref_mod);
1940 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1941 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1942 node->num_bytes, parent,
1943 ref_root, ref->objectid,
1944 ref->offset, node->ref_mod,
1945 extent_op);
1946 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1947 ret = __btrfs_free_extent(trans, root, node->bytenr,
1948 node->num_bytes, parent,
1949 ref_root, ref->objectid,
1950 ref->offset, node->ref_mod,
1951 extent_op);
1952 } else {
1953 BUG();
1954 }
1955 return ret;
1956 }
1957
1958 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1959 struct extent_buffer *leaf,
1960 struct btrfs_extent_item *ei)
1961 {
1962 u64 flags = btrfs_extent_flags(leaf, ei);
1963 if (extent_op->update_flags) {
1964 flags |= extent_op->flags_to_set;
1965 btrfs_set_extent_flags(leaf, ei, flags);
1966 }
1967
1968 if (extent_op->update_key) {
1969 struct btrfs_tree_block_info *bi;
1970 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1971 bi = (struct btrfs_tree_block_info *)(ei + 1);
1972 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1973 }
1974 }
1975
1976 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1977 struct btrfs_root *root,
1978 struct btrfs_delayed_ref_node *node,
1979 struct btrfs_delayed_extent_op *extent_op)
1980 {
1981 struct btrfs_key key;
1982 struct btrfs_path *path;
1983 struct btrfs_extent_item *ei;
1984 struct extent_buffer *leaf;
1985 u32 item_size;
1986 int ret;
1987 int err = 0;
1988
1989 path = btrfs_alloc_path();
1990 if (!path)
1991 return -ENOMEM;
1992
1993 key.objectid = node->bytenr;
1994 key.type = BTRFS_EXTENT_ITEM_KEY;
1995 key.offset = node->num_bytes;
1996
1997 path->reada = 1;
1998 path->leave_spinning = 1;
1999 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2000 path, 0, 1);
2001 if (ret < 0) {
2002 err = ret;
2003 goto out;
2004 }
2005 if (ret > 0) {
2006 err = -EIO;
2007 goto out;
2008 }
2009
2010 leaf = path->nodes[0];
2011 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2012 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2013 if (item_size < sizeof(*ei)) {
2014 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2015 path, (u64)-1, 0);
2016 if (ret < 0) {
2017 err = ret;
2018 goto out;
2019 }
2020 leaf = path->nodes[0];
2021 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2022 }
2023 #endif
2024 BUG_ON(item_size < sizeof(*ei));
2025 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2026 __run_delayed_extent_op(extent_op, leaf, ei);
2027
2028 btrfs_mark_buffer_dirty(leaf);
2029 out:
2030 btrfs_free_path(path);
2031 return err;
2032 }
2033
2034 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2035 struct btrfs_root *root,
2036 struct btrfs_delayed_ref_node *node,
2037 struct btrfs_delayed_extent_op *extent_op,
2038 int insert_reserved)
2039 {
2040 int ret = 0;
2041 struct btrfs_delayed_tree_ref *ref;
2042 struct btrfs_key ins;
2043 u64 parent = 0;
2044 u64 ref_root = 0;
2045
2046 ins.objectid = node->bytenr;
2047 ins.offset = node->num_bytes;
2048 ins.type = BTRFS_EXTENT_ITEM_KEY;
2049
2050 ref = btrfs_delayed_node_to_tree_ref(node);
2051 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2052 parent = ref->parent;
2053 else
2054 ref_root = ref->root;
2055
2056 BUG_ON(node->ref_mod != 1);
2057 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2058 BUG_ON(!extent_op || !extent_op->update_flags ||
2059 !extent_op->update_key);
2060 ret = alloc_reserved_tree_block(trans, root,
2061 parent, ref_root,
2062 extent_op->flags_to_set,
2063 &extent_op->key,
2064 ref->level, &ins);
2065 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2066 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2067 node->num_bytes, parent, ref_root,
2068 ref->level, 0, 1, extent_op);
2069 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2070 ret = __btrfs_free_extent(trans, root, node->bytenr,
2071 node->num_bytes, parent, ref_root,
2072 ref->level, 0, 1, extent_op);
2073 } else {
2074 BUG();
2075 }
2076 return ret;
2077 }
2078
2079 /* helper function to actually process a single delayed ref entry */
2080 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2081 struct btrfs_root *root,
2082 struct btrfs_delayed_ref_node *node,
2083 struct btrfs_delayed_extent_op *extent_op,
2084 int insert_reserved)
2085 {
2086 int ret;
2087 if (btrfs_delayed_ref_is_head(node)) {
2088 struct btrfs_delayed_ref_head *head;
2089 /*
2090 * we've hit the end of the chain and we were supposed
2091 * to insert this extent into the tree. But, it got
2092 * deleted before we ever needed to insert it, so all
2093 * we have to do is clean up the accounting
2094 */
2095 BUG_ON(extent_op);
2096 head = btrfs_delayed_node_to_head(node);
2097 if (insert_reserved) {
2098 btrfs_pin_extent(root, node->bytenr,
2099 node->num_bytes, 1);
2100 if (head->is_data) {
2101 ret = btrfs_del_csums(trans, root,
2102 node->bytenr,
2103 node->num_bytes);
2104 BUG_ON(ret);
2105 }
2106 }
2107 mutex_unlock(&head->mutex);
2108 return 0;
2109 }
2110
2111 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2112 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2113 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2114 insert_reserved);
2115 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2116 node->type == BTRFS_SHARED_DATA_REF_KEY)
2117 ret = run_delayed_data_ref(trans, root, node, extent_op,
2118 insert_reserved);
2119 else
2120 BUG();
2121 return ret;
2122 }
2123
2124 static noinline struct btrfs_delayed_ref_node *
2125 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2126 {
2127 struct rb_node *node;
2128 struct btrfs_delayed_ref_node *ref;
2129 int action = BTRFS_ADD_DELAYED_REF;
2130 again:
2131 /*
2132 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2133 * this prevents ref count from going down to zero when
2134 * there still are pending delayed ref.
2135 */
2136 node = rb_prev(&head->node.rb_node);
2137 while (1) {
2138 if (!node)
2139 break;
2140 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2141 rb_node);
2142 if (ref->bytenr != head->node.bytenr)
2143 break;
2144 if (ref->action == action)
2145 return ref;
2146 node = rb_prev(node);
2147 }
2148 if (action == BTRFS_ADD_DELAYED_REF) {
2149 action = BTRFS_DROP_DELAYED_REF;
2150 goto again;
2151 }
2152 return NULL;
2153 }
2154
2155 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2156 struct btrfs_root *root,
2157 struct list_head *cluster)
2158 {
2159 struct btrfs_delayed_ref_root *delayed_refs;
2160 struct btrfs_delayed_ref_node *ref;
2161 struct btrfs_delayed_ref_head *locked_ref = NULL;
2162 struct btrfs_delayed_extent_op *extent_op;
2163 int ret;
2164 int count = 0;
2165 int must_insert_reserved = 0;
2166
2167 delayed_refs = &trans->transaction->delayed_refs;
2168 while (1) {
2169 if (!locked_ref) {
2170 /* pick a new head ref from the cluster list */
2171 if (list_empty(cluster))
2172 break;
2173
2174 locked_ref = list_entry(cluster->next,
2175 struct btrfs_delayed_ref_head, cluster);
2176
2177 /* grab the lock that says we are going to process
2178 * all the refs for this head */
2179 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2180
2181 /*
2182 * we may have dropped the spin lock to get the head
2183 * mutex lock, and that might have given someone else
2184 * time to free the head. If that's true, it has been
2185 * removed from our list and we can move on.
2186 */
2187 if (ret == -EAGAIN) {
2188 locked_ref = NULL;
2189 count++;
2190 continue;
2191 }
2192 }
2193
2194 /*
2195 * record the must insert reserved flag before we
2196 * drop the spin lock.
2197 */
2198 must_insert_reserved = locked_ref->must_insert_reserved;
2199 locked_ref->must_insert_reserved = 0;
2200
2201 extent_op = locked_ref->extent_op;
2202 locked_ref->extent_op = NULL;
2203
2204 /*
2205 * locked_ref is the head node, so we have to go one
2206 * node back for any delayed ref updates
2207 */
2208 ref = select_delayed_ref(locked_ref);
2209 if (!ref) {
2210 /* All delayed refs have been processed, Go ahead
2211 * and send the head node to run_one_delayed_ref,
2212 * so that any accounting fixes can happen
2213 */
2214 ref = &locked_ref->node;
2215
2216 if (extent_op && must_insert_reserved) {
2217 kfree(extent_op);
2218 extent_op = NULL;
2219 }
2220
2221 if (extent_op) {
2222 spin_unlock(&delayed_refs->lock);
2223
2224 ret = run_delayed_extent_op(trans, root,
2225 ref, extent_op);
2226 BUG_ON(ret);
2227 kfree(extent_op);
2228
2229 cond_resched();
2230 spin_lock(&delayed_refs->lock);
2231 continue;
2232 }
2233
2234 list_del_init(&locked_ref->cluster);
2235 locked_ref = NULL;
2236 }
2237
2238 ref->in_tree = 0;
2239 rb_erase(&ref->rb_node, &delayed_refs->root);
2240 delayed_refs->num_entries--;
2241
2242 spin_unlock(&delayed_refs->lock);
2243
2244 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2245 must_insert_reserved);
2246 BUG_ON(ret);
2247
2248 btrfs_put_delayed_ref(ref);
2249 kfree(extent_op);
2250 count++;
2251
2252 cond_resched();
2253 spin_lock(&delayed_refs->lock);
2254 }
2255 return count;
2256 }
2257
2258 /*
2259 * this starts processing the delayed reference count updates and
2260 * extent insertions we have queued up so far. count can be
2261 * 0, which means to process everything in the tree at the start
2262 * of the run (but not newly added entries), or it can be some target
2263 * number you'd like to process.
2264 */
2265 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2266 struct btrfs_root *root, unsigned long count)
2267 {
2268 struct rb_node *node;
2269 struct btrfs_delayed_ref_root *delayed_refs;
2270 struct btrfs_delayed_ref_node *ref;
2271 struct list_head cluster;
2272 int ret;
2273 int run_all = count == (unsigned long)-1;
2274 int run_most = 0;
2275
2276 if (root == root->fs_info->extent_root)
2277 root = root->fs_info->tree_root;
2278
2279 delayed_refs = &trans->transaction->delayed_refs;
2280 INIT_LIST_HEAD(&cluster);
2281 again:
2282 spin_lock(&delayed_refs->lock);
2283 if (count == 0) {
2284 count = delayed_refs->num_entries * 2;
2285 run_most = 1;
2286 }
2287 while (1) {
2288 if (!(run_all || run_most) &&
2289 delayed_refs->num_heads_ready < 64)
2290 break;
2291
2292 /*
2293 * go find something we can process in the rbtree. We start at
2294 * the beginning of the tree, and then build a cluster
2295 * of refs to process starting at the first one we are able to
2296 * lock
2297 */
2298 ret = btrfs_find_ref_cluster(trans, &cluster,
2299 delayed_refs->run_delayed_start);
2300 if (ret)
2301 break;
2302
2303 ret = run_clustered_refs(trans, root, &cluster);
2304 BUG_ON(ret < 0);
2305
2306 count -= min_t(unsigned long, ret, count);
2307
2308 if (count == 0)
2309 break;
2310 }
2311
2312 if (run_all) {
2313 node = rb_first(&delayed_refs->root);
2314 if (!node)
2315 goto out;
2316 count = (unsigned long)-1;
2317
2318 while (node) {
2319 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2320 rb_node);
2321 if (btrfs_delayed_ref_is_head(ref)) {
2322 struct btrfs_delayed_ref_head *head;
2323
2324 head = btrfs_delayed_node_to_head(ref);
2325 atomic_inc(&ref->refs);
2326
2327 spin_unlock(&delayed_refs->lock);
2328 /*
2329 * Mutex was contended, block until it's
2330 * released and try again
2331 */
2332 mutex_lock(&head->mutex);
2333 mutex_unlock(&head->mutex);
2334
2335 btrfs_put_delayed_ref(ref);
2336 cond_resched();
2337 goto again;
2338 }
2339 node = rb_next(node);
2340 }
2341 spin_unlock(&delayed_refs->lock);
2342 schedule_timeout(1);
2343 goto again;
2344 }
2345 out:
2346 spin_unlock(&delayed_refs->lock);
2347 return 0;
2348 }
2349
2350 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2351 struct btrfs_root *root,
2352 u64 bytenr, u64 num_bytes, u64 flags,
2353 int is_data)
2354 {
2355 struct btrfs_delayed_extent_op *extent_op;
2356 int ret;
2357
2358 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2359 if (!extent_op)
2360 return -ENOMEM;
2361
2362 extent_op->flags_to_set = flags;
2363 extent_op->update_flags = 1;
2364 extent_op->update_key = 0;
2365 extent_op->is_data = is_data ? 1 : 0;
2366
2367 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2368 if (ret)
2369 kfree(extent_op);
2370 return ret;
2371 }
2372
2373 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2374 struct btrfs_root *root,
2375 struct btrfs_path *path,
2376 u64 objectid, u64 offset, u64 bytenr)
2377 {
2378 struct btrfs_delayed_ref_head *head;
2379 struct btrfs_delayed_ref_node *ref;
2380 struct btrfs_delayed_data_ref *data_ref;
2381 struct btrfs_delayed_ref_root *delayed_refs;
2382 struct rb_node *node;
2383 int ret = 0;
2384
2385 ret = -ENOENT;
2386 delayed_refs = &trans->transaction->delayed_refs;
2387 spin_lock(&delayed_refs->lock);
2388 head = btrfs_find_delayed_ref_head(trans, bytenr);
2389 if (!head)
2390 goto out;
2391
2392 if (!mutex_trylock(&head->mutex)) {
2393 atomic_inc(&head->node.refs);
2394 spin_unlock(&delayed_refs->lock);
2395
2396 btrfs_release_path(path);
2397
2398 /*
2399 * Mutex was contended, block until it's released and let
2400 * caller try again
2401 */
2402 mutex_lock(&head->mutex);
2403 mutex_unlock(&head->mutex);
2404 btrfs_put_delayed_ref(&head->node);
2405 return -EAGAIN;
2406 }
2407
2408 node = rb_prev(&head->node.rb_node);
2409 if (!node)
2410 goto out_unlock;
2411
2412 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2413
2414 if (ref->bytenr != bytenr)
2415 goto out_unlock;
2416
2417 ret = 1;
2418 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2419 goto out_unlock;
2420
2421 data_ref = btrfs_delayed_node_to_data_ref(ref);
2422
2423 node = rb_prev(node);
2424 if (node) {
2425 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2426 if (ref->bytenr == bytenr)
2427 goto out_unlock;
2428 }
2429
2430 if (data_ref->root != root->root_key.objectid ||
2431 data_ref->objectid != objectid || data_ref->offset != offset)
2432 goto out_unlock;
2433
2434 ret = 0;
2435 out_unlock:
2436 mutex_unlock(&head->mutex);
2437 out:
2438 spin_unlock(&delayed_refs->lock);
2439 return ret;
2440 }
2441
2442 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2443 struct btrfs_root *root,
2444 struct btrfs_path *path,
2445 u64 objectid, u64 offset, u64 bytenr)
2446 {
2447 struct btrfs_root *extent_root = root->fs_info->extent_root;
2448 struct extent_buffer *leaf;
2449 struct btrfs_extent_data_ref *ref;
2450 struct btrfs_extent_inline_ref *iref;
2451 struct btrfs_extent_item *ei;
2452 struct btrfs_key key;
2453 u32 item_size;
2454 int ret;
2455
2456 key.objectid = bytenr;
2457 key.offset = (u64)-1;
2458 key.type = BTRFS_EXTENT_ITEM_KEY;
2459
2460 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2461 if (ret < 0)
2462 goto out;
2463 BUG_ON(ret == 0);
2464
2465 ret = -ENOENT;
2466 if (path->slots[0] == 0)
2467 goto out;
2468
2469 path->slots[0]--;
2470 leaf = path->nodes[0];
2471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2472
2473 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2474 goto out;
2475
2476 ret = 1;
2477 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2478 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2479 if (item_size < sizeof(*ei)) {
2480 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2481 goto out;
2482 }
2483 #endif
2484 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2485
2486 if (item_size != sizeof(*ei) +
2487 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2488 goto out;
2489
2490 if (btrfs_extent_generation(leaf, ei) <=
2491 btrfs_root_last_snapshot(&root->root_item))
2492 goto out;
2493
2494 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2495 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2496 BTRFS_EXTENT_DATA_REF_KEY)
2497 goto out;
2498
2499 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2500 if (btrfs_extent_refs(leaf, ei) !=
2501 btrfs_extent_data_ref_count(leaf, ref) ||
2502 btrfs_extent_data_ref_root(leaf, ref) !=
2503 root->root_key.objectid ||
2504 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2505 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2506 goto out;
2507
2508 ret = 0;
2509 out:
2510 return ret;
2511 }
2512
2513 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2514 struct btrfs_root *root,
2515 u64 objectid, u64 offset, u64 bytenr)
2516 {
2517 struct btrfs_path *path;
2518 int ret;
2519 int ret2;
2520
2521 path = btrfs_alloc_path();
2522 if (!path)
2523 return -ENOENT;
2524
2525 do {
2526 ret = check_committed_ref(trans, root, path, objectid,
2527 offset, bytenr);
2528 if (ret && ret != -ENOENT)
2529 goto out;
2530
2531 ret2 = check_delayed_ref(trans, root, path, objectid,
2532 offset, bytenr);
2533 } while (ret2 == -EAGAIN);
2534
2535 if (ret2 && ret2 != -ENOENT) {
2536 ret = ret2;
2537 goto out;
2538 }
2539
2540 if (ret != -ENOENT || ret2 != -ENOENT)
2541 ret = 0;
2542 out:
2543 btrfs_free_path(path);
2544 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2545 WARN_ON(ret > 0);
2546 return ret;
2547 }
2548
2549 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2550 struct btrfs_root *root,
2551 struct extent_buffer *buf,
2552 int full_backref, int inc)
2553 {
2554 u64 bytenr;
2555 u64 num_bytes;
2556 u64 parent;
2557 u64 ref_root;
2558 u32 nritems;
2559 struct btrfs_key key;
2560 struct btrfs_file_extent_item *fi;
2561 int i;
2562 int level;
2563 int ret = 0;
2564 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2565 u64, u64, u64, u64, u64, u64);
2566
2567 ref_root = btrfs_header_owner(buf);
2568 nritems = btrfs_header_nritems(buf);
2569 level = btrfs_header_level(buf);
2570
2571 if (!root->ref_cows && level == 0)
2572 return 0;
2573
2574 if (inc)
2575 process_func = btrfs_inc_extent_ref;
2576 else
2577 process_func = btrfs_free_extent;
2578
2579 if (full_backref)
2580 parent = buf->start;
2581 else
2582 parent = 0;
2583
2584 for (i = 0; i < nritems; i++) {
2585 if (level == 0) {
2586 btrfs_item_key_to_cpu(buf, &key, i);
2587 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2588 continue;
2589 fi = btrfs_item_ptr(buf, i,
2590 struct btrfs_file_extent_item);
2591 if (btrfs_file_extent_type(buf, fi) ==
2592 BTRFS_FILE_EXTENT_INLINE)
2593 continue;
2594 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2595 if (bytenr == 0)
2596 continue;
2597
2598 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2599 key.offset -= btrfs_file_extent_offset(buf, fi);
2600 ret = process_func(trans, root, bytenr, num_bytes,
2601 parent, ref_root, key.objectid,
2602 key.offset);
2603 if (ret)
2604 goto fail;
2605 } else {
2606 bytenr = btrfs_node_blockptr(buf, i);
2607 num_bytes = btrfs_level_size(root, level - 1);
2608 ret = process_func(trans, root, bytenr, num_bytes,
2609 parent, ref_root, level - 1, 0);
2610 if (ret)
2611 goto fail;
2612 }
2613 }
2614 return 0;
2615 fail:
2616 BUG();
2617 return ret;
2618 }
2619
2620 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2621 struct extent_buffer *buf, int full_backref)
2622 {
2623 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2624 }
2625
2626 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2627 struct extent_buffer *buf, int full_backref)
2628 {
2629 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2630 }
2631
2632 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2633 struct btrfs_root *root,
2634 struct btrfs_path *path,
2635 struct btrfs_block_group_cache *cache)
2636 {
2637 int ret;
2638 struct btrfs_root *extent_root = root->fs_info->extent_root;
2639 unsigned long bi;
2640 struct extent_buffer *leaf;
2641
2642 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2643 if (ret < 0)
2644 goto fail;
2645 BUG_ON(ret);
2646
2647 leaf = path->nodes[0];
2648 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2649 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2650 btrfs_mark_buffer_dirty(leaf);
2651 btrfs_release_path(path);
2652 fail:
2653 if (ret)
2654 return ret;
2655 return 0;
2656
2657 }
2658
2659 static struct btrfs_block_group_cache *
2660 next_block_group(struct btrfs_root *root,
2661 struct btrfs_block_group_cache *cache)
2662 {
2663 struct rb_node *node;
2664 spin_lock(&root->fs_info->block_group_cache_lock);
2665 node = rb_next(&cache->cache_node);
2666 btrfs_put_block_group(cache);
2667 if (node) {
2668 cache = rb_entry(node, struct btrfs_block_group_cache,
2669 cache_node);
2670 btrfs_get_block_group(cache);
2671 } else
2672 cache = NULL;
2673 spin_unlock(&root->fs_info->block_group_cache_lock);
2674 return cache;
2675 }
2676
2677 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2678 struct btrfs_trans_handle *trans,
2679 struct btrfs_path *path)
2680 {
2681 struct btrfs_root *root = block_group->fs_info->tree_root;
2682 struct inode *inode = NULL;
2683 u64 alloc_hint = 0;
2684 int dcs = BTRFS_DC_ERROR;
2685 int num_pages = 0;
2686 int retries = 0;
2687 int ret = 0;
2688
2689 /*
2690 * If this block group is smaller than 100 megs don't bother caching the
2691 * block group.
2692 */
2693 if (block_group->key.offset < (100 * 1024 * 1024)) {
2694 spin_lock(&block_group->lock);
2695 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2696 spin_unlock(&block_group->lock);
2697 return 0;
2698 }
2699
2700 again:
2701 inode = lookup_free_space_inode(root, block_group, path);
2702 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2703 ret = PTR_ERR(inode);
2704 btrfs_release_path(path);
2705 goto out;
2706 }
2707
2708 if (IS_ERR(inode)) {
2709 BUG_ON(retries);
2710 retries++;
2711
2712 if (block_group->ro)
2713 goto out_free;
2714
2715 ret = create_free_space_inode(root, trans, block_group, path);
2716 if (ret)
2717 goto out_free;
2718 goto again;
2719 }
2720
2721 /* We've already setup this transaction, go ahead and exit */
2722 if (block_group->cache_generation == trans->transid &&
2723 i_size_read(inode)) {
2724 dcs = BTRFS_DC_SETUP;
2725 goto out_put;
2726 }
2727
2728 /*
2729 * We want to set the generation to 0, that way if anything goes wrong
2730 * from here on out we know not to trust this cache when we load up next
2731 * time.
2732 */
2733 BTRFS_I(inode)->generation = 0;
2734 ret = btrfs_update_inode(trans, root, inode);
2735 WARN_ON(ret);
2736
2737 if (i_size_read(inode) > 0) {
2738 ret = btrfs_truncate_free_space_cache(root, trans, path,
2739 inode);
2740 if (ret)
2741 goto out_put;
2742 }
2743
2744 spin_lock(&block_group->lock);
2745 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2746 /* We're not cached, don't bother trying to write stuff out */
2747 dcs = BTRFS_DC_WRITTEN;
2748 spin_unlock(&block_group->lock);
2749 goto out_put;
2750 }
2751 spin_unlock(&block_group->lock);
2752
2753 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2754 if (!num_pages)
2755 num_pages = 1;
2756
2757 /*
2758 * Just to make absolutely sure we have enough space, we're going to
2759 * preallocate 12 pages worth of space for each block group. In
2760 * practice we ought to use at most 8, but we need extra space so we can
2761 * add our header and have a terminator between the extents and the
2762 * bitmaps.
2763 */
2764 num_pages *= 16;
2765 num_pages *= PAGE_CACHE_SIZE;
2766
2767 ret = btrfs_check_data_free_space(inode, num_pages);
2768 if (ret)
2769 goto out_put;
2770
2771 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2772 num_pages, num_pages,
2773 &alloc_hint);
2774 if (!ret)
2775 dcs = BTRFS_DC_SETUP;
2776 btrfs_free_reserved_data_space(inode, num_pages);
2777
2778 out_put:
2779 iput(inode);
2780 out_free:
2781 btrfs_release_path(path);
2782 out:
2783 spin_lock(&block_group->lock);
2784 if (!ret)
2785 block_group->cache_generation = trans->transid;
2786 block_group->disk_cache_state = dcs;
2787 spin_unlock(&block_group->lock);
2788
2789 return ret;
2790 }
2791
2792 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2793 struct btrfs_root *root)
2794 {
2795 struct btrfs_block_group_cache *cache;
2796 int err = 0;
2797 struct btrfs_path *path;
2798 u64 last = 0;
2799
2800 path = btrfs_alloc_path();
2801 if (!path)
2802 return -ENOMEM;
2803
2804 again:
2805 while (1) {
2806 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2807 while (cache) {
2808 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2809 break;
2810 cache = next_block_group(root, cache);
2811 }
2812 if (!cache) {
2813 if (last == 0)
2814 break;
2815 last = 0;
2816 continue;
2817 }
2818 err = cache_save_setup(cache, trans, path);
2819 last = cache->key.objectid + cache->key.offset;
2820 btrfs_put_block_group(cache);
2821 }
2822
2823 while (1) {
2824 if (last == 0) {
2825 err = btrfs_run_delayed_refs(trans, root,
2826 (unsigned long)-1);
2827 BUG_ON(err);
2828 }
2829
2830 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2831 while (cache) {
2832 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2833 btrfs_put_block_group(cache);
2834 goto again;
2835 }
2836
2837 if (cache->dirty)
2838 break;
2839 cache = next_block_group(root, cache);
2840 }
2841 if (!cache) {
2842 if (last == 0)
2843 break;
2844 last = 0;
2845 continue;
2846 }
2847
2848 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2849 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2850 cache->dirty = 0;
2851 last = cache->key.objectid + cache->key.offset;
2852
2853 err = write_one_cache_group(trans, root, path, cache);
2854 BUG_ON(err);
2855 btrfs_put_block_group(cache);
2856 }
2857
2858 while (1) {
2859 /*
2860 * I don't think this is needed since we're just marking our
2861 * preallocated extent as written, but just in case it can't
2862 * hurt.
2863 */
2864 if (last == 0) {
2865 err = btrfs_run_delayed_refs(trans, root,
2866 (unsigned long)-1);
2867 BUG_ON(err);
2868 }
2869
2870 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2871 while (cache) {
2872 /*
2873 * Really this shouldn't happen, but it could if we
2874 * couldn't write the entire preallocated extent and
2875 * splitting the extent resulted in a new block.
2876 */
2877 if (cache->dirty) {
2878 btrfs_put_block_group(cache);
2879 goto again;
2880 }
2881 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2882 break;
2883 cache = next_block_group(root, cache);
2884 }
2885 if (!cache) {
2886 if (last == 0)
2887 break;
2888 last = 0;
2889 continue;
2890 }
2891
2892 btrfs_write_out_cache(root, trans, cache, path);
2893
2894 /*
2895 * If we didn't have an error then the cache state is still
2896 * NEED_WRITE, so we can set it to WRITTEN.
2897 */
2898 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2899 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2900 last = cache->key.objectid + cache->key.offset;
2901 btrfs_put_block_group(cache);
2902 }
2903
2904 btrfs_free_path(path);
2905 return 0;
2906 }
2907
2908 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2909 {
2910 struct btrfs_block_group_cache *block_group;
2911 int readonly = 0;
2912
2913 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2914 if (!block_group || block_group->ro)
2915 readonly = 1;
2916 if (block_group)
2917 btrfs_put_block_group(block_group);
2918 return readonly;
2919 }
2920
2921 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2922 u64 total_bytes, u64 bytes_used,
2923 struct btrfs_space_info **space_info)
2924 {
2925 struct btrfs_space_info *found;
2926 int i;
2927 int factor;
2928
2929 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2930 BTRFS_BLOCK_GROUP_RAID10))
2931 factor = 2;
2932 else
2933 factor = 1;
2934
2935 found = __find_space_info(info, flags);
2936 if (found) {
2937 spin_lock(&found->lock);
2938 found->total_bytes += total_bytes;
2939 found->disk_total += total_bytes * factor;
2940 found->bytes_used += bytes_used;
2941 found->disk_used += bytes_used * factor;
2942 found->full = 0;
2943 spin_unlock(&found->lock);
2944 *space_info = found;
2945 return 0;
2946 }
2947 found = kzalloc(sizeof(*found), GFP_NOFS);
2948 if (!found)
2949 return -ENOMEM;
2950
2951 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2952 INIT_LIST_HEAD(&found->block_groups[i]);
2953 init_rwsem(&found->groups_sem);
2954 spin_lock_init(&found->lock);
2955 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2956 BTRFS_BLOCK_GROUP_SYSTEM |
2957 BTRFS_BLOCK_GROUP_METADATA);
2958 found->total_bytes = total_bytes;
2959 found->disk_total = total_bytes * factor;
2960 found->bytes_used = bytes_used;
2961 found->disk_used = bytes_used * factor;
2962 found->bytes_pinned = 0;
2963 found->bytes_reserved = 0;
2964 found->bytes_readonly = 0;
2965 found->bytes_may_use = 0;
2966 found->full = 0;
2967 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2968 found->chunk_alloc = 0;
2969 found->flush = 0;
2970 init_waitqueue_head(&found->wait);
2971 *space_info = found;
2972 list_add_rcu(&found->list, &info->space_info);
2973 return 0;
2974 }
2975
2976 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2977 {
2978 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2979 BTRFS_BLOCK_GROUP_RAID1 |
2980 BTRFS_BLOCK_GROUP_RAID10 |
2981 BTRFS_BLOCK_GROUP_DUP);
2982 if (extra_flags) {
2983 if (flags & BTRFS_BLOCK_GROUP_DATA)
2984 fs_info->avail_data_alloc_bits |= extra_flags;
2985 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2986 fs_info->avail_metadata_alloc_bits |= extra_flags;
2987 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2988 fs_info->avail_system_alloc_bits |= extra_flags;
2989 }
2990 }
2991
2992 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2993 {
2994 /*
2995 * we add in the count of missing devices because we want
2996 * to make sure that any RAID levels on a degraded FS
2997 * continue to be honored.
2998 */
2999 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3000 root->fs_info->fs_devices->missing_devices;
3001
3002 if (num_devices == 1)
3003 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3004 if (num_devices < 4)
3005 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3006
3007 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3008 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3009 BTRFS_BLOCK_GROUP_RAID10))) {
3010 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3011 }
3012
3013 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3014 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3015 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3016 }
3017
3018 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3019 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3020 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3021 (flags & BTRFS_BLOCK_GROUP_DUP)))
3022 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3023 return flags;
3024 }
3025
3026 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3027 {
3028 if (flags & BTRFS_BLOCK_GROUP_DATA)
3029 flags |= root->fs_info->avail_data_alloc_bits &
3030 root->fs_info->data_alloc_profile;
3031 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3032 flags |= root->fs_info->avail_system_alloc_bits &
3033 root->fs_info->system_alloc_profile;
3034 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3035 flags |= root->fs_info->avail_metadata_alloc_bits &
3036 root->fs_info->metadata_alloc_profile;
3037 return btrfs_reduce_alloc_profile(root, flags);
3038 }
3039
3040 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3041 {
3042 u64 flags;
3043
3044 if (data)
3045 flags = BTRFS_BLOCK_GROUP_DATA;
3046 else if (root == root->fs_info->chunk_root)
3047 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3048 else
3049 flags = BTRFS_BLOCK_GROUP_METADATA;
3050
3051 return get_alloc_profile(root, flags);
3052 }
3053
3054 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3055 {
3056 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3057 BTRFS_BLOCK_GROUP_DATA);
3058 }
3059
3060 /*
3061 * This will check the space that the inode allocates from to make sure we have
3062 * enough space for bytes.
3063 */
3064 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3065 {
3066 struct btrfs_space_info *data_sinfo;
3067 struct btrfs_root *root = BTRFS_I(inode)->root;
3068 u64 used;
3069 int ret = 0, committed = 0, alloc_chunk = 1;
3070
3071 /* make sure bytes are sectorsize aligned */
3072 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3073
3074 if (root == root->fs_info->tree_root ||
3075 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3076 alloc_chunk = 0;
3077 committed = 1;
3078 }
3079
3080 data_sinfo = BTRFS_I(inode)->space_info;
3081 if (!data_sinfo)
3082 goto alloc;
3083
3084 again:
3085 /* make sure we have enough space to handle the data first */
3086 spin_lock(&data_sinfo->lock);
3087 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3088 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3089 data_sinfo->bytes_may_use;
3090
3091 if (used + bytes > data_sinfo->total_bytes) {
3092 struct btrfs_trans_handle *trans;
3093
3094 /*
3095 * if we don't have enough free bytes in this space then we need
3096 * to alloc a new chunk.
3097 */
3098 if (!data_sinfo->full && alloc_chunk) {
3099 u64 alloc_target;
3100
3101 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3102 spin_unlock(&data_sinfo->lock);
3103 alloc:
3104 alloc_target = btrfs_get_alloc_profile(root, 1);
3105 trans = btrfs_join_transaction(root);
3106 if (IS_ERR(trans))
3107 return PTR_ERR(trans);
3108
3109 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3110 bytes + 2 * 1024 * 1024,
3111 alloc_target,
3112 CHUNK_ALLOC_NO_FORCE);
3113 btrfs_end_transaction(trans, root);
3114 if (ret < 0) {
3115 if (ret != -ENOSPC)
3116 return ret;
3117 else
3118 goto commit_trans;
3119 }
3120
3121 if (!data_sinfo) {
3122 btrfs_set_inode_space_info(root, inode);
3123 data_sinfo = BTRFS_I(inode)->space_info;
3124 }
3125 goto again;
3126 }
3127
3128 /*
3129 * If we have less pinned bytes than we want to allocate then
3130 * don't bother committing the transaction, it won't help us.
3131 */
3132 if (data_sinfo->bytes_pinned < bytes)
3133 committed = 1;
3134 spin_unlock(&data_sinfo->lock);
3135
3136 /* commit the current transaction and try again */
3137 commit_trans:
3138 if (!committed &&
3139 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3140 committed = 1;
3141 trans = btrfs_join_transaction(root);
3142 if (IS_ERR(trans))
3143 return PTR_ERR(trans);
3144 ret = btrfs_commit_transaction(trans, root);
3145 if (ret)
3146 return ret;
3147 goto again;
3148 }
3149
3150 return -ENOSPC;
3151 }
3152 data_sinfo->bytes_may_use += bytes;
3153 spin_unlock(&data_sinfo->lock);
3154
3155 return 0;
3156 }
3157
3158 /*
3159 * Called if we need to clear a data reservation for this inode.
3160 */
3161 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3162 {
3163 struct btrfs_root *root = BTRFS_I(inode)->root;
3164 struct btrfs_space_info *data_sinfo;
3165
3166 /* make sure bytes are sectorsize aligned */
3167 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3168
3169 data_sinfo = BTRFS_I(inode)->space_info;
3170 spin_lock(&data_sinfo->lock);
3171 data_sinfo->bytes_may_use -= bytes;
3172 spin_unlock(&data_sinfo->lock);
3173 }
3174
3175 static void force_metadata_allocation(struct btrfs_fs_info *info)
3176 {
3177 struct list_head *head = &info->space_info;
3178 struct btrfs_space_info *found;
3179
3180 rcu_read_lock();
3181 list_for_each_entry_rcu(found, head, list) {
3182 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3183 found->force_alloc = CHUNK_ALLOC_FORCE;
3184 }
3185 rcu_read_unlock();
3186 }
3187
3188 static int should_alloc_chunk(struct btrfs_root *root,
3189 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3190 int force)
3191 {
3192 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3193 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3194 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3195 u64 thresh;
3196
3197 if (force == CHUNK_ALLOC_FORCE)
3198 return 1;
3199
3200 /*
3201 * We need to take into account the global rsv because for all intents
3202 * and purposes it's used space. Don't worry about locking the
3203 * global_rsv, it doesn't change except when the transaction commits.
3204 */
3205 num_allocated += global_rsv->size;
3206
3207 /*
3208 * in limited mode, we want to have some free space up to
3209 * about 1% of the FS size.
3210 */
3211 if (force == CHUNK_ALLOC_LIMITED) {
3212 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3213 thresh = max_t(u64, 64 * 1024 * 1024,
3214 div_factor_fine(thresh, 1));
3215
3216 if (num_bytes - num_allocated < thresh)
3217 return 1;
3218 }
3219
3220 /*
3221 * we have two similar checks here, one based on percentage
3222 * and once based on a hard number of 256MB. The idea
3223 * is that if we have a good amount of free
3224 * room, don't allocate a chunk. A good mount is
3225 * less than 80% utilized of the chunks we have allocated,
3226 * or more than 256MB free
3227 */
3228 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3229 return 0;
3230
3231 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3232 return 0;
3233
3234 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3235
3236 /* 256MB or 5% of the FS */
3237 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3238
3239 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3240 return 0;
3241 return 1;
3242 }
3243
3244 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3245 struct btrfs_root *extent_root, u64 alloc_bytes,
3246 u64 flags, int force)
3247 {
3248 struct btrfs_space_info *space_info;
3249 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3250 int wait_for_alloc = 0;
3251 int ret = 0;
3252
3253 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3254
3255 space_info = __find_space_info(extent_root->fs_info, flags);
3256 if (!space_info) {
3257 ret = update_space_info(extent_root->fs_info, flags,
3258 0, 0, &space_info);
3259 BUG_ON(ret);
3260 }
3261 BUG_ON(!space_info);
3262
3263 again:
3264 spin_lock(&space_info->lock);
3265 if (space_info->force_alloc)
3266 force = space_info->force_alloc;
3267 if (space_info->full) {
3268 spin_unlock(&space_info->lock);
3269 return 0;
3270 }
3271
3272 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3273 spin_unlock(&space_info->lock);
3274 return 0;
3275 } else if (space_info->chunk_alloc) {
3276 wait_for_alloc = 1;
3277 } else {
3278 space_info->chunk_alloc = 1;
3279 }
3280
3281 spin_unlock(&space_info->lock);
3282
3283 mutex_lock(&fs_info->chunk_mutex);
3284
3285 /*
3286 * The chunk_mutex is held throughout the entirety of a chunk
3287 * allocation, so once we've acquired the chunk_mutex we know that the
3288 * other guy is done and we need to recheck and see if we should
3289 * allocate.
3290 */
3291 if (wait_for_alloc) {
3292 mutex_unlock(&fs_info->chunk_mutex);
3293 wait_for_alloc = 0;
3294 goto again;
3295 }
3296
3297 /*
3298 * If we have mixed data/metadata chunks we want to make sure we keep
3299 * allocating mixed chunks instead of individual chunks.
3300 */
3301 if (btrfs_mixed_space_info(space_info))
3302 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3303
3304 /*
3305 * if we're doing a data chunk, go ahead and make sure that
3306 * we keep a reasonable number of metadata chunks allocated in the
3307 * FS as well.
3308 */
3309 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3310 fs_info->data_chunk_allocations++;
3311 if (!(fs_info->data_chunk_allocations %
3312 fs_info->metadata_ratio))
3313 force_metadata_allocation(fs_info);
3314 }
3315
3316 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3317 if (ret < 0 && ret != -ENOSPC)
3318 goto out;
3319
3320 spin_lock(&space_info->lock);
3321 if (ret)
3322 space_info->full = 1;
3323 else
3324 ret = 1;
3325
3326 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3327 space_info->chunk_alloc = 0;
3328 spin_unlock(&space_info->lock);
3329 out:
3330 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3331 return ret;
3332 }
3333
3334 /*
3335 * shrink metadata reservation for delalloc
3336 */
3337 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3338 struct btrfs_root *root, u64 to_reclaim,
3339 bool wait_ordered)
3340 {
3341 struct btrfs_block_rsv *block_rsv;
3342 struct btrfs_space_info *space_info;
3343 u64 reserved;
3344 u64 max_reclaim;
3345 u64 reclaimed = 0;
3346 long time_left;
3347 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3348 int loops = 0;
3349 unsigned long progress;
3350
3351 block_rsv = &root->fs_info->delalloc_block_rsv;
3352 space_info = block_rsv->space_info;
3353
3354 smp_mb();
3355 reserved = space_info->bytes_may_use;
3356 progress = space_info->reservation_progress;
3357
3358 if (reserved == 0)
3359 return 0;
3360
3361 smp_mb();
3362 if (root->fs_info->delalloc_bytes == 0) {
3363 if (trans)
3364 return 0;
3365 btrfs_wait_ordered_extents(root, 0, 0);
3366 return 0;
3367 }
3368
3369 max_reclaim = min(reserved, to_reclaim);
3370 nr_pages = max_t(unsigned long, nr_pages,
3371 max_reclaim >> PAGE_CACHE_SHIFT);
3372 while (loops < 1024) {
3373 /* have the flusher threads jump in and do some IO */
3374 smp_mb();
3375 nr_pages = min_t(unsigned long, nr_pages,
3376 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3377 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3378
3379 spin_lock(&space_info->lock);
3380 if (reserved > space_info->bytes_may_use)
3381 reclaimed += reserved - space_info->bytes_may_use;
3382 reserved = space_info->bytes_may_use;
3383 spin_unlock(&space_info->lock);
3384
3385 loops++;
3386
3387 if (reserved == 0 || reclaimed >= max_reclaim)
3388 break;
3389
3390 if (trans && trans->transaction->blocked)
3391 return -EAGAIN;
3392
3393 if (wait_ordered && !trans) {
3394 btrfs_wait_ordered_extents(root, 0, 0);
3395 } else {
3396 time_left = schedule_timeout_interruptible(1);
3397
3398 /* We were interrupted, exit */
3399 if (time_left)
3400 break;
3401 }
3402
3403 /* we've kicked the IO a few times, if anything has been freed,
3404 * exit. There is no sense in looping here for a long time
3405 * when we really need to commit the transaction, or there are
3406 * just too many writers without enough free space
3407 */
3408
3409 if (loops > 3) {
3410 smp_mb();
3411 if (progress != space_info->reservation_progress)
3412 break;
3413 }
3414
3415 }
3416
3417 return reclaimed >= to_reclaim;
3418 }
3419
3420 /**
3421 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3422 * @root - the root we're allocating for
3423 * @block_rsv - the block_rsv we're allocating for
3424 * @orig_bytes - the number of bytes we want
3425 * @flush - wether or not we can flush to make our reservation
3426 *
3427 * This will reserve orgi_bytes number of bytes from the space info associated
3428 * with the block_rsv. If there is not enough space it will make an attempt to
3429 * flush out space to make room. It will do this by flushing delalloc if
3430 * possible or committing the transaction. If flush is 0 then no attempts to
3431 * regain reservations will be made and this will fail if there is not enough
3432 * space already.
3433 */
3434 static int reserve_metadata_bytes(struct btrfs_root *root,
3435 struct btrfs_block_rsv *block_rsv,
3436 u64 orig_bytes, int flush)
3437 {
3438 struct btrfs_space_info *space_info = block_rsv->space_info;
3439 struct btrfs_trans_handle *trans;
3440 u64 used;
3441 u64 num_bytes = orig_bytes;
3442 int retries = 0;
3443 int ret = 0;
3444 bool committed = false;
3445 bool flushing = false;
3446 bool wait_ordered = false;
3447
3448 trans = (struct btrfs_trans_handle *)current->journal_info;
3449 again:
3450 ret = 0;
3451 spin_lock(&space_info->lock);
3452 /*
3453 * We only want to wait if somebody other than us is flushing and we are
3454 * actually alloed to flush.
3455 */
3456 while (flush && !flushing && space_info->flush) {
3457 spin_unlock(&space_info->lock);
3458 /*
3459 * If we have a trans handle we can't wait because the flusher
3460 * may have to commit the transaction, which would mean we would
3461 * deadlock since we are waiting for the flusher to finish, but
3462 * hold the current transaction open.
3463 */
3464 if (trans)
3465 return -EAGAIN;
3466 ret = wait_event_interruptible(space_info->wait,
3467 !space_info->flush);
3468 /* Must have been interrupted, return */
3469 if (ret)
3470 return -EINTR;
3471
3472 spin_lock(&space_info->lock);
3473 }
3474
3475 ret = -ENOSPC;
3476 used = space_info->bytes_used + space_info->bytes_reserved +
3477 space_info->bytes_pinned + space_info->bytes_readonly +
3478 space_info->bytes_may_use;
3479
3480 /*
3481 * The idea here is that we've not already over-reserved the block group
3482 * then we can go ahead and save our reservation first and then start
3483 * flushing if we need to. Otherwise if we've already overcommitted
3484 * lets start flushing stuff first and then come back and try to make
3485 * our reservation.
3486 */
3487 if (used <= space_info->total_bytes) {
3488 if (used + orig_bytes <= space_info->total_bytes) {
3489 space_info->bytes_may_use += orig_bytes;
3490 ret = 0;
3491 } else {
3492 /*
3493 * Ok set num_bytes to orig_bytes since we aren't
3494 * overocmmitted, this way we only try and reclaim what
3495 * we need.
3496 */
3497 num_bytes = orig_bytes;
3498 }
3499 } else {
3500 /*
3501 * Ok we're over committed, set num_bytes to the overcommitted
3502 * amount plus the amount of bytes that we need for this
3503 * reservation.
3504 */
3505 wait_ordered = true;
3506 num_bytes = used - space_info->total_bytes +
3507 (orig_bytes * (retries + 1));
3508 }
3509
3510 if (ret) {
3511 u64 profile = btrfs_get_alloc_profile(root, 0);
3512 u64 avail;
3513
3514 /*
3515 * If we have a lot of space that's pinned, don't bother doing
3516 * the overcommit dance yet and just commit the transaction.
3517 */
3518 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3519 do_div(avail, 10);
3520 if (space_info->bytes_pinned >= avail && flush && !trans &&
3521 !committed) {
3522 space_info->flush = 1;
3523 flushing = true;
3524 spin_unlock(&space_info->lock);
3525 goto commit;
3526 }
3527
3528 spin_lock(&root->fs_info->free_chunk_lock);
3529 avail = root->fs_info->free_chunk_space;
3530
3531 /*
3532 * If we have dup, raid1 or raid10 then only half of the free
3533 * space is actually useable.
3534 */
3535 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3536 BTRFS_BLOCK_GROUP_RAID1 |
3537 BTRFS_BLOCK_GROUP_RAID10))
3538 avail >>= 1;
3539
3540 /*
3541 * If we aren't flushing don't let us overcommit too much, say
3542 * 1/8th of the space. If we can flush, let it overcommit up to
3543 * 1/2 of the space.
3544 */
3545 if (flush)
3546 avail >>= 3;
3547 else
3548 avail >>= 1;
3549 spin_unlock(&root->fs_info->free_chunk_lock);
3550
3551 if (used + num_bytes < space_info->total_bytes + avail) {
3552 space_info->bytes_may_use += orig_bytes;
3553 ret = 0;
3554 } else {
3555 wait_ordered = true;
3556 }
3557 }
3558
3559 /*
3560 * Couldn't make our reservation, save our place so while we're trying
3561 * to reclaim space we can actually use it instead of somebody else
3562 * stealing it from us.
3563 */
3564 if (ret && flush) {
3565 flushing = true;
3566 space_info->flush = 1;
3567 }
3568
3569 spin_unlock(&space_info->lock);
3570
3571 if (!ret || !flush)
3572 goto out;
3573
3574 /*
3575 * We do synchronous shrinking since we don't actually unreserve
3576 * metadata until after the IO is completed.
3577 */
3578 ret = shrink_delalloc(trans, root, num_bytes, wait_ordered);
3579 if (ret < 0)
3580 goto out;
3581
3582 ret = 0;
3583
3584 /*
3585 * So if we were overcommitted it's possible that somebody else flushed
3586 * out enough space and we simply didn't have enough space to reclaim,
3587 * so go back around and try again.
3588 */
3589 if (retries < 2) {
3590 wait_ordered = true;
3591 retries++;
3592 goto again;
3593 }
3594
3595 ret = -EAGAIN;
3596 if (trans)
3597 goto out;
3598
3599 commit:
3600 ret = -ENOSPC;
3601 if (committed)
3602 goto out;
3603
3604 trans = btrfs_join_transaction(root);
3605 if (IS_ERR(trans))
3606 goto out;
3607 ret = btrfs_commit_transaction(trans, root);
3608 if (!ret) {
3609 trans = NULL;
3610 committed = true;
3611 goto again;
3612 }
3613
3614 out:
3615 if (flushing) {
3616 spin_lock(&space_info->lock);
3617 space_info->flush = 0;
3618 wake_up_all(&space_info->wait);
3619 spin_unlock(&space_info->lock);
3620 }
3621 return ret;
3622 }
3623
3624 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3625 struct btrfs_root *root)
3626 {
3627 struct btrfs_block_rsv *block_rsv = NULL;
3628
3629 if (root->ref_cows || root == root->fs_info->csum_root)
3630 block_rsv = trans->block_rsv;
3631
3632 if (!block_rsv)
3633 block_rsv = root->block_rsv;
3634
3635 if (!block_rsv)
3636 block_rsv = &root->fs_info->empty_block_rsv;
3637
3638 return block_rsv;
3639 }
3640
3641 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3642 u64 num_bytes)
3643 {
3644 int ret = -ENOSPC;
3645 spin_lock(&block_rsv->lock);
3646 if (block_rsv->reserved >= num_bytes) {
3647 block_rsv->reserved -= num_bytes;
3648 if (block_rsv->reserved < block_rsv->size)
3649 block_rsv->full = 0;
3650 ret = 0;
3651 }
3652 spin_unlock(&block_rsv->lock);
3653 return ret;
3654 }
3655
3656 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3657 u64 num_bytes, int update_size)
3658 {
3659 spin_lock(&block_rsv->lock);
3660 block_rsv->reserved += num_bytes;
3661 if (update_size)
3662 block_rsv->size += num_bytes;
3663 else if (block_rsv->reserved >= block_rsv->size)
3664 block_rsv->full = 1;
3665 spin_unlock(&block_rsv->lock);
3666 }
3667
3668 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3669 struct btrfs_block_rsv *dest, u64 num_bytes)
3670 {
3671 struct btrfs_space_info *space_info = block_rsv->space_info;
3672
3673 spin_lock(&block_rsv->lock);
3674 if (num_bytes == (u64)-1)
3675 num_bytes = block_rsv->size;
3676 block_rsv->size -= num_bytes;
3677 if (block_rsv->reserved >= block_rsv->size) {
3678 num_bytes = block_rsv->reserved - block_rsv->size;
3679 block_rsv->reserved = block_rsv->size;
3680 block_rsv->full = 1;
3681 } else {
3682 num_bytes = 0;
3683 }
3684 spin_unlock(&block_rsv->lock);
3685
3686 if (num_bytes > 0) {
3687 if (dest) {
3688 spin_lock(&dest->lock);
3689 if (!dest->full) {
3690 u64 bytes_to_add;
3691
3692 bytes_to_add = dest->size - dest->reserved;
3693 bytes_to_add = min(num_bytes, bytes_to_add);
3694 dest->reserved += bytes_to_add;
3695 if (dest->reserved >= dest->size)
3696 dest->full = 1;
3697 num_bytes -= bytes_to_add;
3698 }
3699 spin_unlock(&dest->lock);
3700 }
3701 if (num_bytes) {
3702 spin_lock(&space_info->lock);
3703 space_info->bytes_may_use -= num_bytes;
3704 space_info->reservation_progress++;
3705 spin_unlock(&space_info->lock);
3706 }
3707 }
3708 }
3709
3710 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3711 struct btrfs_block_rsv *dst, u64 num_bytes)
3712 {
3713 int ret;
3714
3715 ret = block_rsv_use_bytes(src, num_bytes);
3716 if (ret)
3717 return ret;
3718
3719 block_rsv_add_bytes(dst, num_bytes, 1);
3720 return 0;
3721 }
3722
3723 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3724 {
3725 memset(rsv, 0, sizeof(*rsv));
3726 spin_lock_init(&rsv->lock);
3727 }
3728
3729 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3730 {
3731 struct btrfs_block_rsv *block_rsv;
3732 struct btrfs_fs_info *fs_info = root->fs_info;
3733
3734 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3735 if (!block_rsv)
3736 return NULL;
3737
3738 btrfs_init_block_rsv(block_rsv);
3739 block_rsv->space_info = __find_space_info(fs_info,
3740 BTRFS_BLOCK_GROUP_METADATA);
3741 return block_rsv;
3742 }
3743
3744 void btrfs_free_block_rsv(struct btrfs_root *root,
3745 struct btrfs_block_rsv *rsv)
3746 {
3747 btrfs_block_rsv_release(root, rsv, (u64)-1);
3748 kfree(rsv);
3749 }
3750
3751 int btrfs_block_rsv_add(struct btrfs_root *root,
3752 struct btrfs_block_rsv *block_rsv,
3753 u64 num_bytes)
3754 {
3755 int ret;
3756
3757 if (num_bytes == 0)
3758 return 0;
3759
3760 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, 1);
3761 if (!ret) {
3762 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3763 return 0;
3764 }
3765
3766 return ret;
3767 }
3768
3769 int btrfs_block_rsv_check(struct btrfs_root *root,
3770 struct btrfs_block_rsv *block_rsv, int min_factor)
3771 {
3772 u64 num_bytes = 0;
3773 int ret = -ENOSPC;
3774
3775 if (!block_rsv)
3776 return 0;
3777
3778 spin_lock(&block_rsv->lock);
3779 num_bytes = div_factor(block_rsv->size, min_factor);
3780 if (block_rsv->reserved >= num_bytes)
3781 ret = 0;
3782 spin_unlock(&block_rsv->lock);
3783
3784 return ret;
3785 }
3786
3787 int btrfs_block_rsv_refill(struct btrfs_root *root,
3788 struct btrfs_block_rsv *block_rsv,
3789 u64 min_reserved)
3790 {
3791 u64 num_bytes = 0;
3792 int ret = -ENOSPC;
3793
3794 if (!block_rsv)
3795 return 0;
3796
3797 spin_lock(&block_rsv->lock);
3798 num_bytes = min_reserved;
3799 if (block_rsv->reserved >= num_bytes)
3800 ret = 0;
3801 else
3802 num_bytes -= block_rsv->reserved;
3803 spin_unlock(&block_rsv->lock);
3804
3805 if (!ret)
3806 return 0;
3807
3808 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, 1);
3809 if (!ret) {
3810 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3811 return 0;
3812 }
3813
3814 return ret;
3815 }
3816
3817 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3818 struct btrfs_block_rsv *dst_rsv,
3819 u64 num_bytes)
3820 {
3821 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3822 }
3823
3824 void btrfs_block_rsv_release(struct btrfs_root *root,
3825 struct btrfs_block_rsv *block_rsv,
3826 u64 num_bytes)
3827 {
3828 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3829 if (global_rsv->full || global_rsv == block_rsv ||
3830 block_rsv->space_info != global_rsv->space_info)
3831 global_rsv = NULL;
3832 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3833 }
3834
3835 /*
3836 * helper to calculate size of global block reservation.
3837 * the desired value is sum of space used by extent tree,
3838 * checksum tree and root tree
3839 */
3840 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3841 {
3842 struct btrfs_space_info *sinfo;
3843 u64 num_bytes;
3844 u64 meta_used;
3845 u64 data_used;
3846 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3847
3848 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3849 spin_lock(&sinfo->lock);
3850 data_used = sinfo->bytes_used;
3851 spin_unlock(&sinfo->lock);
3852
3853 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3854 spin_lock(&sinfo->lock);
3855 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3856 data_used = 0;
3857 meta_used = sinfo->bytes_used;
3858 spin_unlock(&sinfo->lock);
3859
3860 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3861 csum_size * 2;
3862 num_bytes += div64_u64(data_used + meta_used, 50);
3863
3864 if (num_bytes * 3 > meta_used)
3865 num_bytes = div64_u64(meta_used, 3);
3866
3867 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3868 }
3869
3870 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3871 {
3872 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3873 struct btrfs_space_info *sinfo = block_rsv->space_info;
3874 u64 num_bytes;
3875
3876 num_bytes = calc_global_metadata_size(fs_info);
3877
3878 spin_lock(&block_rsv->lock);
3879 spin_lock(&sinfo->lock);
3880
3881 block_rsv->size = num_bytes;
3882
3883 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3884 sinfo->bytes_reserved + sinfo->bytes_readonly +
3885 sinfo->bytes_may_use;
3886
3887 if (sinfo->total_bytes > num_bytes) {
3888 num_bytes = sinfo->total_bytes - num_bytes;
3889 block_rsv->reserved += num_bytes;
3890 sinfo->bytes_may_use += num_bytes;
3891 }
3892
3893 if (block_rsv->reserved >= block_rsv->size) {
3894 num_bytes = block_rsv->reserved - block_rsv->size;
3895 sinfo->bytes_may_use -= num_bytes;
3896 sinfo->reservation_progress++;
3897 block_rsv->reserved = block_rsv->size;
3898 block_rsv->full = 1;
3899 }
3900
3901 spin_unlock(&sinfo->lock);
3902 spin_unlock(&block_rsv->lock);
3903 }
3904
3905 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3906 {
3907 struct btrfs_space_info *space_info;
3908
3909 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3910 fs_info->chunk_block_rsv.space_info = space_info;
3911
3912 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3913 fs_info->global_block_rsv.space_info = space_info;
3914 fs_info->delalloc_block_rsv.space_info = space_info;
3915 fs_info->trans_block_rsv.space_info = space_info;
3916 fs_info->empty_block_rsv.space_info = space_info;
3917
3918 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3919 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3920 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3921 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3922 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3923
3924 update_global_block_rsv(fs_info);
3925 }
3926
3927 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3928 {
3929 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3930 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3931 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3932 WARN_ON(fs_info->trans_block_rsv.size > 0);
3933 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3934 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3935 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3936 }
3937
3938 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3939 struct btrfs_root *root)
3940 {
3941 if (!trans->bytes_reserved)
3942 return;
3943
3944 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
3945 trans->bytes_reserved = 0;
3946 }
3947
3948 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3949 struct inode *inode)
3950 {
3951 struct btrfs_root *root = BTRFS_I(inode)->root;
3952 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3953 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3954
3955 /*
3956 * We need to hold space in order to delete our orphan item once we've
3957 * added it, so this takes the reservation so we can release it later
3958 * when we are truly done with the orphan item.
3959 */
3960 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3961 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3962 }
3963
3964 void btrfs_orphan_release_metadata(struct inode *inode)
3965 {
3966 struct btrfs_root *root = BTRFS_I(inode)->root;
3967 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3968 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3969 }
3970
3971 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3972 struct btrfs_pending_snapshot *pending)
3973 {
3974 struct btrfs_root *root = pending->root;
3975 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3976 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3977 /*
3978 * two for root back/forward refs, two for directory entries
3979 * and one for root of the snapshot.
3980 */
3981 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3982 dst_rsv->space_info = src_rsv->space_info;
3983 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3984 }
3985
3986 /**
3987 * drop_outstanding_extent - drop an outstanding extent
3988 * @inode: the inode we're dropping the extent for
3989 *
3990 * This is called when we are freeing up an outstanding extent, either called
3991 * after an error or after an extent is written. This will return the number of
3992 * reserved extents that need to be freed. This must be called with
3993 * BTRFS_I(inode)->lock held.
3994 */
3995 static unsigned drop_outstanding_extent(struct inode *inode)
3996 {
3997 unsigned dropped_extents = 0;
3998
3999 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4000 BTRFS_I(inode)->outstanding_extents--;
4001
4002 /*
4003 * If we have more or the same amount of outsanding extents than we have
4004 * reserved then we need to leave the reserved extents count alone.
4005 */
4006 if (BTRFS_I(inode)->outstanding_extents >=
4007 BTRFS_I(inode)->reserved_extents)
4008 return 0;
4009
4010 dropped_extents = BTRFS_I(inode)->reserved_extents -
4011 BTRFS_I(inode)->outstanding_extents;
4012 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4013 return dropped_extents;
4014 }
4015
4016 /**
4017 * calc_csum_metadata_size - return the amount of metada space that must be
4018 * reserved/free'd for the given bytes.
4019 * @inode: the inode we're manipulating
4020 * @num_bytes: the number of bytes in question
4021 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4022 *
4023 * This adjusts the number of csum_bytes in the inode and then returns the
4024 * correct amount of metadata that must either be reserved or freed. We
4025 * calculate how many checksums we can fit into one leaf and then divide the
4026 * number of bytes that will need to be checksumed by this value to figure out
4027 * how many checksums will be required. If we are adding bytes then the number
4028 * may go up and we will return the number of additional bytes that must be
4029 * reserved. If it is going down we will return the number of bytes that must
4030 * be freed.
4031 *
4032 * This must be called with BTRFS_I(inode)->lock held.
4033 */
4034 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4035 int reserve)
4036 {
4037 struct btrfs_root *root = BTRFS_I(inode)->root;
4038 u64 csum_size;
4039 int num_csums_per_leaf;
4040 int num_csums;
4041 int old_csums;
4042
4043 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4044 BTRFS_I(inode)->csum_bytes == 0)
4045 return 0;
4046
4047 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4048 if (reserve)
4049 BTRFS_I(inode)->csum_bytes += num_bytes;
4050 else
4051 BTRFS_I(inode)->csum_bytes -= num_bytes;
4052 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4053 num_csums_per_leaf = (int)div64_u64(csum_size,
4054 sizeof(struct btrfs_csum_item) +
4055 sizeof(struct btrfs_disk_key));
4056 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4057 num_csums = num_csums + num_csums_per_leaf - 1;
4058 num_csums = num_csums / num_csums_per_leaf;
4059
4060 old_csums = old_csums + num_csums_per_leaf - 1;
4061 old_csums = old_csums / num_csums_per_leaf;
4062
4063 /* No change, no need to reserve more */
4064 if (old_csums == num_csums)
4065 return 0;
4066
4067 if (reserve)
4068 return btrfs_calc_trans_metadata_size(root,
4069 num_csums - old_csums);
4070
4071 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4072 }
4073
4074 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4075 {
4076 struct btrfs_root *root = BTRFS_I(inode)->root;
4077 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4078 u64 to_reserve = 0;
4079 unsigned nr_extents = 0;
4080 int flush = 1;
4081 int ret;
4082
4083 if (btrfs_is_free_space_inode(root, inode))
4084 flush = 0;
4085
4086 if (flush && btrfs_transaction_in_commit(root->fs_info))
4087 schedule_timeout(1);
4088
4089 num_bytes = ALIGN(num_bytes, root->sectorsize);
4090
4091 spin_lock(&BTRFS_I(inode)->lock);
4092 BTRFS_I(inode)->outstanding_extents++;
4093
4094 if (BTRFS_I(inode)->outstanding_extents >
4095 BTRFS_I(inode)->reserved_extents) {
4096 nr_extents = BTRFS_I(inode)->outstanding_extents -
4097 BTRFS_I(inode)->reserved_extents;
4098 BTRFS_I(inode)->reserved_extents += nr_extents;
4099
4100 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4101 }
4102 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4103 spin_unlock(&BTRFS_I(inode)->lock);
4104
4105 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4106 if (ret) {
4107 u64 to_free = 0;
4108 unsigned dropped;
4109
4110 spin_lock(&BTRFS_I(inode)->lock);
4111 dropped = drop_outstanding_extent(inode);
4112 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4113 spin_unlock(&BTRFS_I(inode)->lock);
4114 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4115
4116 /*
4117 * Somebody could have come in and twiddled with the
4118 * reservation, so if we have to free more than we would have
4119 * reserved from this reservation go ahead and release those
4120 * bytes.
4121 */
4122 to_free -= to_reserve;
4123 if (to_free)
4124 btrfs_block_rsv_release(root, block_rsv, to_free);
4125 return ret;
4126 }
4127
4128 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4129
4130 return 0;
4131 }
4132
4133 /**
4134 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4135 * @inode: the inode to release the reservation for
4136 * @num_bytes: the number of bytes we're releasing
4137 *
4138 * This will release the metadata reservation for an inode. This can be called
4139 * once we complete IO for a given set of bytes to release their metadata
4140 * reservations.
4141 */
4142 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4143 {
4144 struct btrfs_root *root = BTRFS_I(inode)->root;
4145 u64 to_free = 0;
4146 unsigned dropped;
4147
4148 num_bytes = ALIGN(num_bytes, root->sectorsize);
4149 spin_lock(&BTRFS_I(inode)->lock);
4150 dropped = drop_outstanding_extent(inode);
4151
4152 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4153 spin_unlock(&BTRFS_I(inode)->lock);
4154 if (dropped > 0)
4155 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4156
4157 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4158 to_free);
4159 }
4160
4161 /**
4162 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4163 * @inode: inode we're writing to
4164 * @num_bytes: the number of bytes we want to allocate
4165 *
4166 * This will do the following things
4167 *
4168 * o reserve space in the data space info for num_bytes
4169 * o reserve space in the metadata space info based on number of outstanding
4170 * extents and how much csums will be needed
4171 * o add to the inodes ->delalloc_bytes
4172 * o add it to the fs_info's delalloc inodes list.
4173 *
4174 * This will return 0 for success and -ENOSPC if there is no space left.
4175 */
4176 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4177 {
4178 int ret;
4179
4180 ret = btrfs_check_data_free_space(inode, num_bytes);
4181 if (ret)
4182 return ret;
4183
4184 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4185 if (ret) {
4186 btrfs_free_reserved_data_space(inode, num_bytes);
4187 return ret;
4188 }
4189
4190 return 0;
4191 }
4192
4193 /**
4194 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4195 * @inode: inode we're releasing space for
4196 * @num_bytes: the number of bytes we want to free up
4197 *
4198 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4199 * called in the case that we don't need the metadata AND data reservations
4200 * anymore. So if there is an error or we insert an inline extent.
4201 *
4202 * This function will release the metadata space that was not used and will
4203 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4204 * list if there are no delalloc bytes left.
4205 */
4206 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4207 {
4208 btrfs_delalloc_release_metadata(inode, num_bytes);
4209 btrfs_free_reserved_data_space(inode, num_bytes);
4210 }
4211
4212 static int update_block_group(struct btrfs_trans_handle *trans,
4213 struct btrfs_root *root,
4214 u64 bytenr, u64 num_bytes, int alloc)
4215 {
4216 struct btrfs_block_group_cache *cache = NULL;
4217 struct btrfs_fs_info *info = root->fs_info;
4218 u64 total = num_bytes;
4219 u64 old_val;
4220 u64 byte_in_group;
4221 int factor;
4222
4223 /* block accounting for super block */
4224 spin_lock(&info->delalloc_lock);
4225 old_val = btrfs_super_bytes_used(&info->super_copy);
4226 if (alloc)
4227 old_val += num_bytes;
4228 else
4229 old_val -= num_bytes;
4230 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4231 spin_unlock(&info->delalloc_lock);
4232
4233 while (total) {
4234 cache = btrfs_lookup_block_group(info, bytenr);
4235 if (!cache)
4236 return -1;
4237 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4238 BTRFS_BLOCK_GROUP_RAID1 |
4239 BTRFS_BLOCK_GROUP_RAID10))
4240 factor = 2;
4241 else
4242 factor = 1;
4243 /*
4244 * If this block group has free space cache written out, we
4245 * need to make sure to load it if we are removing space. This
4246 * is because we need the unpinning stage to actually add the
4247 * space back to the block group, otherwise we will leak space.
4248 */
4249 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4250 cache_block_group(cache, trans, NULL, 1);
4251
4252 byte_in_group = bytenr - cache->key.objectid;
4253 WARN_ON(byte_in_group > cache->key.offset);
4254
4255 spin_lock(&cache->space_info->lock);
4256 spin_lock(&cache->lock);
4257
4258 if (btrfs_test_opt(root, SPACE_CACHE) &&
4259 cache->disk_cache_state < BTRFS_DC_CLEAR)
4260 cache->disk_cache_state = BTRFS_DC_CLEAR;
4261
4262 cache->dirty = 1;
4263 old_val = btrfs_block_group_used(&cache->item);
4264 num_bytes = min(total, cache->key.offset - byte_in_group);
4265 if (alloc) {
4266 old_val += num_bytes;
4267 btrfs_set_block_group_used(&cache->item, old_val);
4268 cache->reserved -= num_bytes;
4269 cache->space_info->bytes_reserved -= num_bytes;
4270 cache->space_info->bytes_used += num_bytes;
4271 cache->space_info->disk_used += num_bytes * factor;
4272 spin_unlock(&cache->lock);
4273 spin_unlock(&cache->space_info->lock);
4274 } else {
4275 old_val -= num_bytes;
4276 btrfs_set_block_group_used(&cache->item, old_val);
4277 cache->pinned += num_bytes;
4278 cache->space_info->bytes_pinned += num_bytes;
4279 cache->space_info->bytes_used -= num_bytes;
4280 cache->space_info->disk_used -= num_bytes * factor;
4281 spin_unlock(&cache->lock);
4282 spin_unlock(&cache->space_info->lock);
4283
4284 set_extent_dirty(info->pinned_extents,
4285 bytenr, bytenr + num_bytes - 1,
4286 GFP_NOFS | __GFP_NOFAIL);
4287 }
4288 btrfs_put_block_group(cache);
4289 total -= num_bytes;
4290 bytenr += num_bytes;
4291 }
4292 return 0;
4293 }
4294
4295 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4296 {
4297 struct btrfs_block_group_cache *cache;
4298 u64 bytenr;
4299
4300 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4301 if (!cache)
4302 return 0;
4303
4304 bytenr = cache->key.objectid;
4305 btrfs_put_block_group(cache);
4306
4307 return bytenr;
4308 }
4309
4310 static int pin_down_extent(struct btrfs_root *root,
4311 struct btrfs_block_group_cache *cache,
4312 u64 bytenr, u64 num_bytes, int reserved)
4313 {
4314 spin_lock(&cache->space_info->lock);
4315 spin_lock(&cache->lock);
4316 cache->pinned += num_bytes;
4317 cache->space_info->bytes_pinned += num_bytes;
4318 if (reserved) {
4319 cache->reserved -= num_bytes;
4320 cache->space_info->bytes_reserved -= num_bytes;
4321 }
4322 spin_unlock(&cache->lock);
4323 spin_unlock(&cache->space_info->lock);
4324
4325 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4326 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4327 return 0;
4328 }
4329
4330 /*
4331 * this function must be called within transaction
4332 */
4333 int btrfs_pin_extent(struct btrfs_root *root,
4334 u64 bytenr, u64 num_bytes, int reserved)
4335 {
4336 struct btrfs_block_group_cache *cache;
4337
4338 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4339 BUG_ON(!cache);
4340
4341 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4342
4343 btrfs_put_block_group(cache);
4344 return 0;
4345 }
4346
4347 /**
4348 * btrfs_update_reserved_bytes - update the block_group and space info counters
4349 * @cache: The cache we are manipulating
4350 * @num_bytes: The number of bytes in question
4351 * @reserve: One of the reservation enums
4352 *
4353 * This is called by the allocator when it reserves space, or by somebody who is
4354 * freeing space that was never actually used on disk. For example if you
4355 * reserve some space for a new leaf in transaction A and before transaction A
4356 * commits you free that leaf, you call this with reserve set to 0 in order to
4357 * clear the reservation.
4358 *
4359 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4360 * ENOSPC accounting. For data we handle the reservation through clearing the
4361 * delalloc bits in the io_tree. We have to do this since we could end up
4362 * allocating less disk space for the amount of data we have reserved in the
4363 * case of compression.
4364 *
4365 * If this is a reservation and the block group has become read only we cannot
4366 * make the reservation and return -EAGAIN, otherwise this function always
4367 * succeeds.
4368 */
4369 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4370 u64 num_bytes, int reserve)
4371 {
4372 struct btrfs_space_info *space_info = cache->space_info;
4373 int ret = 0;
4374 spin_lock(&space_info->lock);
4375 spin_lock(&cache->lock);
4376 if (reserve != RESERVE_FREE) {
4377 if (cache->ro) {
4378 ret = -EAGAIN;
4379 } else {
4380 cache->reserved += num_bytes;
4381 space_info->bytes_reserved += num_bytes;
4382 if (reserve == RESERVE_ALLOC) {
4383 BUG_ON(space_info->bytes_may_use < num_bytes);
4384 space_info->bytes_may_use -= num_bytes;
4385 }
4386 }
4387 } else {
4388 if (cache->ro)
4389 space_info->bytes_readonly += num_bytes;
4390 cache->reserved -= num_bytes;
4391 space_info->bytes_reserved -= num_bytes;
4392 space_info->reservation_progress++;
4393 }
4394 spin_unlock(&cache->lock);
4395 spin_unlock(&space_info->lock);
4396 return ret;
4397 }
4398
4399 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4400 struct btrfs_root *root)
4401 {
4402 struct btrfs_fs_info *fs_info = root->fs_info;
4403 struct btrfs_caching_control *next;
4404 struct btrfs_caching_control *caching_ctl;
4405 struct btrfs_block_group_cache *cache;
4406
4407 down_write(&fs_info->extent_commit_sem);
4408
4409 list_for_each_entry_safe(caching_ctl, next,
4410 &fs_info->caching_block_groups, list) {
4411 cache = caching_ctl->block_group;
4412 if (block_group_cache_done(cache)) {
4413 cache->last_byte_to_unpin = (u64)-1;
4414 list_del_init(&caching_ctl->list);
4415 put_caching_control(caching_ctl);
4416 } else {
4417 cache->last_byte_to_unpin = caching_ctl->progress;
4418 }
4419 }
4420
4421 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4422 fs_info->pinned_extents = &fs_info->freed_extents[1];
4423 else
4424 fs_info->pinned_extents = &fs_info->freed_extents[0];
4425
4426 up_write(&fs_info->extent_commit_sem);
4427
4428 update_global_block_rsv(fs_info);
4429 return 0;
4430 }
4431
4432 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4433 {
4434 struct btrfs_fs_info *fs_info = root->fs_info;
4435 struct btrfs_block_group_cache *cache = NULL;
4436 u64 len;
4437
4438 while (start <= end) {
4439 if (!cache ||
4440 start >= cache->key.objectid + cache->key.offset) {
4441 if (cache)
4442 btrfs_put_block_group(cache);
4443 cache = btrfs_lookup_block_group(fs_info, start);
4444 BUG_ON(!cache);
4445 }
4446
4447 len = cache->key.objectid + cache->key.offset - start;
4448 len = min(len, end + 1 - start);
4449
4450 if (start < cache->last_byte_to_unpin) {
4451 len = min(len, cache->last_byte_to_unpin - start);
4452 btrfs_add_free_space(cache, start, len);
4453 }
4454
4455 start += len;
4456
4457 spin_lock(&cache->space_info->lock);
4458 spin_lock(&cache->lock);
4459 cache->pinned -= len;
4460 cache->space_info->bytes_pinned -= len;
4461 if (cache->ro)
4462 cache->space_info->bytes_readonly += len;
4463 spin_unlock(&cache->lock);
4464 spin_unlock(&cache->space_info->lock);
4465 }
4466
4467 if (cache)
4468 btrfs_put_block_group(cache);
4469 return 0;
4470 }
4471
4472 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4473 struct btrfs_root *root)
4474 {
4475 struct btrfs_fs_info *fs_info = root->fs_info;
4476 struct extent_io_tree *unpin;
4477 u64 start;
4478 u64 end;
4479 int ret;
4480
4481 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4482 unpin = &fs_info->freed_extents[1];
4483 else
4484 unpin = &fs_info->freed_extents[0];
4485
4486 while (1) {
4487 ret = find_first_extent_bit(unpin, 0, &start, &end,
4488 EXTENT_DIRTY);
4489 if (ret)
4490 break;
4491
4492 if (btrfs_test_opt(root, DISCARD))
4493 ret = btrfs_discard_extent(root, start,
4494 end + 1 - start, NULL);
4495
4496 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4497 unpin_extent_range(root, start, end);
4498 cond_resched();
4499 }
4500
4501 return 0;
4502 }
4503
4504 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4505 struct btrfs_root *root,
4506 u64 bytenr, u64 num_bytes, u64 parent,
4507 u64 root_objectid, u64 owner_objectid,
4508 u64 owner_offset, int refs_to_drop,
4509 struct btrfs_delayed_extent_op *extent_op)
4510 {
4511 struct btrfs_key key;
4512 struct btrfs_path *path;
4513 struct btrfs_fs_info *info = root->fs_info;
4514 struct btrfs_root *extent_root = info->extent_root;
4515 struct extent_buffer *leaf;
4516 struct btrfs_extent_item *ei;
4517 struct btrfs_extent_inline_ref *iref;
4518 int ret;
4519 int is_data;
4520 int extent_slot = 0;
4521 int found_extent = 0;
4522 int num_to_del = 1;
4523 u32 item_size;
4524 u64 refs;
4525
4526 path = btrfs_alloc_path();
4527 if (!path)
4528 return -ENOMEM;
4529
4530 path->reada = 1;
4531 path->leave_spinning = 1;
4532
4533 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4534 BUG_ON(!is_data && refs_to_drop != 1);
4535
4536 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4537 bytenr, num_bytes, parent,
4538 root_objectid, owner_objectid,
4539 owner_offset);
4540 if (ret == 0) {
4541 extent_slot = path->slots[0];
4542 while (extent_slot >= 0) {
4543 btrfs_item_key_to_cpu(path->nodes[0], &key,
4544 extent_slot);
4545 if (key.objectid != bytenr)
4546 break;
4547 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4548 key.offset == num_bytes) {
4549 found_extent = 1;
4550 break;
4551 }
4552 if (path->slots[0] - extent_slot > 5)
4553 break;
4554 extent_slot--;
4555 }
4556 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4557 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4558 if (found_extent && item_size < sizeof(*ei))
4559 found_extent = 0;
4560 #endif
4561 if (!found_extent) {
4562 BUG_ON(iref);
4563 ret = remove_extent_backref(trans, extent_root, path,
4564 NULL, refs_to_drop,
4565 is_data);
4566 BUG_ON(ret);
4567 btrfs_release_path(path);
4568 path->leave_spinning = 1;
4569
4570 key.objectid = bytenr;
4571 key.type = BTRFS_EXTENT_ITEM_KEY;
4572 key.offset = num_bytes;
4573
4574 ret = btrfs_search_slot(trans, extent_root,
4575 &key, path, -1, 1);
4576 if (ret) {
4577 printk(KERN_ERR "umm, got %d back from search"
4578 ", was looking for %llu\n", ret,
4579 (unsigned long long)bytenr);
4580 if (ret > 0)
4581 btrfs_print_leaf(extent_root,
4582 path->nodes[0]);
4583 }
4584 BUG_ON(ret);
4585 extent_slot = path->slots[0];
4586 }
4587 } else {
4588 btrfs_print_leaf(extent_root, path->nodes[0]);
4589 WARN_ON(1);
4590 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4591 "parent %llu root %llu owner %llu offset %llu\n",
4592 (unsigned long long)bytenr,
4593 (unsigned long long)parent,
4594 (unsigned long long)root_objectid,
4595 (unsigned long long)owner_objectid,
4596 (unsigned long long)owner_offset);
4597 }
4598
4599 leaf = path->nodes[0];
4600 item_size = btrfs_item_size_nr(leaf, extent_slot);
4601 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4602 if (item_size < sizeof(*ei)) {
4603 BUG_ON(found_extent || extent_slot != path->slots[0]);
4604 ret = convert_extent_item_v0(trans, extent_root, path,
4605 owner_objectid, 0);
4606 BUG_ON(ret < 0);
4607
4608 btrfs_release_path(path);
4609 path->leave_spinning = 1;
4610
4611 key.objectid = bytenr;
4612 key.type = BTRFS_EXTENT_ITEM_KEY;
4613 key.offset = num_bytes;
4614
4615 ret = btrfs_search_slot(trans, extent_root, &key, path,
4616 -1, 1);
4617 if (ret) {
4618 printk(KERN_ERR "umm, got %d back from search"
4619 ", was looking for %llu\n", ret,
4620 (unsigned long long)bytenr);
4621 btrfs_print_leaf(extent_root, path->nodes[0]);
4622 }
4623 BUG_ON(ret);
4624 extent_slot = path->slots[0];
4625 leaf = path->nodes[0];
4626 item_size = btrfs_item_size_nr(leaf, extent_slot);
4627 }
4628 #endif
4629 BUG_ON(item_size < sizeof(*ei));
4630 ei = btrfs_item_ptr(leaf, extent_slot,
4631 struct btrfs_extent_item);
4632 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4633 struct btrfs_tree_block_info *bi;
4634 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4635 bi = (struct btrfs_tree_block_info *)(ei + 1);
4636 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4637 }
4638
4639 refs = btrfs_extent_refs(leaf, ei);
4640 BUG_ON(refs < refs_to_drop);
4641 refs -= refs_to_drop;
4642
4643 if (refs > 0) {
4644 if (extent_op)
4645 __run_delayed_extent_op(extent_op, leaf, ei);
4646 /*
4647 * In the case of inline back ref, reference count will
4648 * be updated by remove_extent_backref
4649 */
4650 if (iref) {
4651 BUG_ON(!found_extent);
4652 } else {
4653 btrfs_set_extent_refs(leaf, ei, refs);
4654 btrfs_mark_buffer_dirty(leaf);
4655 }
4656 if (found_extent) {
4657 ret = remove_extent_backref(trans, extent_root, path,
4658 iref, refs_to_drop,
4659 is_data);
4660 BUG_ON(ret);
4661 }
4662 } else {
4663 if (found_extent) {
4664 BUG_ON(is_data && refs_to_drop !=
4665 extent_data_ref_count(root, path, iref));
4666 if (iref) {
4667 BUG_ON(path->slots[0] != extent_slot);
4668 } else {
4669 BUG_ON(path->slots[0] != extent_slot + 1);
4670 path->slots[0] = extent_slot;
4671 num_to_del = 2;
4672 }
4673 }
4674
4675 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4676 num_to_del);
4677 BUG_ON(ret);
4678 btrfs_release_path(path);
4679
4680 if (is_data) {
4681 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4682 BUG_ON(ret);
4683 } else {
4684 invalidate_mapping_pages(info->btree_inode->i_mapping,
4685 bytenr >> PAGE_CACHE_SHIFT,
4686 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4687 }
4688
4689 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4690 BUG_ON(ret);
4691 }
4692 btrfs_free_path(path);
4693 return ret;
4694 }
4695
4696 /*
4697 * when we free an block, it is possible (and likely) that we free the last
4698 * delayed ref for that extent as well. This searches the delayed ref tree for
4699 * a given extent, and if there are no other delayed refs to be processed, it
4700 * removes it from the tree.
4701 */
4702 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4703 struct btrfs_root *root, u64 bytenr)
4704 {
4705 struct btrfs_delayed_ref_head *head;
4706 struct btrfs_delayed_ref_root *delayed_refs;
4707 struct btrfs_delayed_ref_node *ref;
4708 struct rb_node *node;
4709 int ret = 0;
4710
4711 delayed_refs = &trans->transaction->delayed_refs;
4712 spin_lock(&delayed_refs->lock);
4713 head = btrfs_find_delayed_ref_head(trans, bytenr);
4714 if (!head)
4715 goto out;
4716
4717 node = rb_prev(&head->node.rb_node);
4718 if (!node)
4719 goto out;
4720
4721 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4722
4723 /* there are still entries for this ref, we can't drop it */
4724 if (ref->bytenr == bytenr)
4725 goto out;
4726
4727 if (head->extent_op) {
4728 if (!head->must_insert_reserved)
4729 goto out;
4730 kfree(head->extent_op);
4731 head->extent_op = NULL;
4732 }
4733
4734 /*
4735 * waiting for the lock here would deadlock. If someone else has it
4736 * locked they are already in the process of dropping it anyway
4737 */
4738 if (!mutex_trylock(&head->mutex))
4739 goto out;
4740
4741 /*
4742 * at this point we have a head with no other entries. Go
4743 * ahead and process it.
4744 */
4745 head->node.in_tree = 0;
4746 rb_erase(&head->node.rb_node, &delayed_refs->root);
4747
4748 delayed_refs->num_entries--;
4749
4750 /*
4751 * we don't take a ref on the node because we're removing it from the
4752 * tree, so we just steal the ref the tree was holding.
4753 */
4754 delayed_refs->num_heads--;
4755 if (list_empty(&head->cluster))
4756 delayed_refs->num_heads_ready--;
4757
4758 list_del_init(&head->cluster);
4759 spin_unlock(&delayed_refs->lock);
4760
4761 BUG_ON(head->extent_op);
4762 if (head->must_insert_reserved)
4763 ret = 1;
4764
4765 mutex_unlock(&head->mutex);
4766 btrfs_put_delayed_ref(&head->node);
4767 return ret;
4768 out:
4769 spin_unlock(&delayed_refs->lock);
4770 return 0;
4771 }
4772
4773 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4774 struct btrfs_root *root,
4775 struct extent_buffer *buf,
4776 u64 parent, int last_ref)
4777 {
4778 struct btrfs_block_group_cache *cache = NULL;
4779 int ret;
4780
4781 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4782 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4783 parent, root->root_key.objectid,
4784 btrfs_header_level(buf),
4785 BTRFS_DROP_DELAYED_REF, NULL);
4786 BUG_ON(ret);
4787 }
4788
4789 if (!last_ref)
4790 return;
4791
4792 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4793
4794 if (btrfs_header_generation(buf) == trans->transid) {
4795 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4796 ret = check_ref_cleanup(trans, root, buf->start);
4797 if (!ret)
4798 goto out;
4799 }
4800
4801 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4802 pin_down_extent(root, cache, buf->start, buf->len, 1);
4803 goto out;
4804 }
4805
4806 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4807
4808 btrfs_add_free_space(cache, buf->start, buf->len);
4809 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
4810 }
4811 out:
4812 /*
4813 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4814 * anymore.
4815 */
4816 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4817 btrfs_put_block_group(cache);
4818 }
4819
4820 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4821 struct btrfs_root *root,
4822 u64 bytenr, u64 num_bytes, u64 parent,
4823 u64 root_objectid, u64 owner, u64 offset)
4824 {
4825 int ret;
4826
4827 /*
4828 * tree log blocks never actually go into the extent allocation
4829 * tree, just update pinning info and exit early.
4830 */
4831 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4832 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4833 /* unlocks the pinned mutex */
4834 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4835 ret = 0;
4836 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4837 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4838 parent, root_objectid, (int)owner,
4839 BTRFS_DROP_DELAYED_REF, NULL);
4840 BUG_ON(ret);
4841 } else {
4842 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4843 parent, root_objectid, owner,
4844 offset, BTRFS_DROP_DELAYED_REF, NULL);
4845 BUG_ON(ret);
4846 }
4847 return ret;
4848 }
4849
4850 static u64 stripe_align(struct btrfs_root *root, u64 val)
4851 {
4852 u64 mask = ((u64)root->stripesize - 1);
4853 u64 ret = (val + mask) & ~mask;
4854 return ret;
4855 }
4856
4857 /*
4858 * when we wait for progress in the block group caching, its because
4859 * our allocation attempt failed at least once. So, we must sleep
4860 * and let some progress happen before we try again.
4861 *
4862 * This function will sleep at least once waiting for new free space to
4863 * show up, and then it will check the block group free space numbers
4864 * for our min num_bytes. Another option is to have it go ahead
4865 * and look in the rbtree for a free extent of a given size, but this
4866 * is a good start.
4867 */
4868 static noinline int
4869 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4870 u64 num_bytes)
4871 {
4872 struct btrfs_caching_control *caching_ctl;
4873 DEFINE_WAIT(wait);
4874
4875 caching_ctl = get_caching_control(cache);
4876 if (!caching_ctl)
4877 return 0;
4878
4879 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4880 (cache->free_space_ctl->free_space >= num_bytes));
4881
4882 put_caching_control(caching_ctl);
4883 return 0;
4884 }
4885
4886 static noinline int
4887 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4888 {
4889 struct btrfs_caching_control *caching_ctl;
4890 DEFINE_WAIT(wait);
4891
4892 caching_ctl = get_caching_control(cache);
4893 if (!caching_ctl)
4894 return 0;
4895
4896 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4897
4898 put_caching_control(caching_ctl);
4899 return 0;
4900 }
4901
4902 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4903 {
4904 int index;
4905 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4906 index = 0;
4907 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4908 index = 1;
4909 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4910 index = 2;
4911 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4912 index = 3;
4913 else
4914 index = 4;
4915 return index;
4916 }
4917
4918 enum btrfs_loop_type {
4919 LOOP_FIND_IDEAL = 0,
4920 LOOP_CACHING_NOWAIT = 1,
4921 LOOP_CACHING_WAIT = 2,
4922 LOOP_ALLOC_CHUNK = 3,
4923 LOOP_NO_EMPTY_SIZE = 4,
4924 };
4925
4926 /*
4927 * walks the btree of allocated extents and find a hole of a given size.
4928 * The key ins is changed to record the hole:
4929 * ins->objectid == block start
4930 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4931 * ins->offset == number of blocks
4932 * Any available blocks before search_start are skipped.
4933 */
4934 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4935 struct btrfs_root *orig_root,
4936 u64 num_bytes, u64 empty_size,
4937 u64 search_start, u64 search_end,
4938 u64 hint_byte, struct btrfs_key *ins,
4939 u64 data)
4940 {
4941 int ret = 0;
4942 struct btrfs_root *root = orig_root->fs_info->extent_root;
4943 struct btrfs_free_cluster *last_ptr = NULL;
4944 struct btrfs_block_group_cache *block_group = NULL;
4945 int empty_cluster = 2 * 1024 * 1024;
4946 int allowed_chunk_alloc = 0;
4947 int done_chunk_alloc = 0;
4948 struct btrfs_space_info *space_info;
4949 int last_ptr_loop = 0;
4950 int loop = 0;
4951 int index = 0;
4952 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
4953 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
4954 bool found_uncached_bg = false;
4955 bool failed_cluster_refill = false;
4956 bool failed_alloc = false;
4957 bool use_cluster = true;
4958 bool have_caching_bg = false;
4959 u64 ideal_cache_percent = 0;
4960 u64 ideal_cache_offset = 0;
4961
4962 WARN_ON(num_bytes < root->sectorsize);
4963 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4964 ins->objectid = 0;
4965 ins->offset = 0;
4966
4967 space_info = __find_space_info(root->fs_info, data);
4968 if (!space_info) {
4969 printk(KERN_ERR "No space info for %llu\n", data);
4970 return -ENOSPC;
4971 }
4972
4973 /*
4974 * If the space info is for both data and metadata it means we have a
4975 * small filesystem and we can't use the clustering stuff.
4976 */
4977 if (btrfs_mixed_space_info(space_info))
4978 use_cluster = false;
4979
4980 if (orig_root->ref_cows || empty_size)
4981 allowed_chunk_alloc = 1;
4982
4983 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4984 last_ptr = &root->fs_info->meta_alloc_cluster;
4985 if (!btrfs_test_opt(root, SSD))
4986 empty_cluster = 64 * 1024;
4987 }
4988
4989 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4990 btrfs_test_opt(root, SSD)) {
4991 last_ptr = &root->fs_info->data_alloc_cluster;
4992 }
4993
4994 if (last_ptr) {
4995 spin_lock(&last_ptr->lock);
4996 if (last_ptr->block_group)
4997 hint_byte = last_ptr->window_start;
4998 spin_unlock(&last_ptr->lock);
4999 }
5000
5001 search_start = max(search_start, first_logical_byte(root, 0));
5002 search_start = max(search_start, hint_byte);
5003
5004 if (!last_ptr)
5005 empty_cluster = 0;
5006
5007 if (search_start == hint_byte) {
5008 ideal_cache:
5009 block_group = btrfs_lookup_block_group(root->fs_info,
5010 search_start);
5011 /*
5012 * we don't want to use the block group if it doesn't match our
5013 * allocation bits, or if its not cached.
5014 *
5015 * However if we are re-searching with an ideal block group
5016 * picked out then we don't care that the block group is cached.
5017 */
5018 if (block_group && block_group_bits(block_group, data) &&
5019 (block_group->cached != BTRFS_CACHE_NO ||
5020 search_start == ideal_cache_offset)) {
5021 down_read(&space_info->groups_sem);
5022 if (list_empty(&block_group->list) ||
5023 block_group->ro) {
5024 /*
5025 * someone is removing this block group,
5026 * we can't jump into the have_block_group
5027 * target because our list pointers are not
5028 * valid
5029 */
5030 btrfs_put_block_group(block_group);
5031 up_read(&space_info->groups_sem);
5032 } else {
5033 index = get_block_group_index(block_group);
5034 goto have_block_group;
5035 }
5036 } else if (block_group) {
5037 btrfs_put_block_group(block_group);
5038 }
5039 }
5040 search:
5041 have_caching_bg = false;
5042 down_read(&space_info->groups_sem);
5043 list_for_each_entry(block_group, &space_info->block_groups[index],
5044 list) {
5045 u64 offset;
5046 int cached;
5047
5048 btrfs_get_block_group(block_group);
5049 search_start = block_group->key.objectid;
5050
5051 /*
5052 * this can happen if we end up cycling through all the
5053 * raid types, but we want to make sure we only allocate
5054 * for the proper type.
5055 */
5056 if (!block_group_bits(block_group, data)) {
5057 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5058 BTRFS_BLOCK_GROUP_RAID1 |
5059 BTRFS_BLOCK_GROUP_RAID10;
5060
5061 /*
5062 * if they asked for extra copies and this block group
5063 * doesn't provide them, bail. This does allow us to
5064 * fill raid0 from raid1.
5065 */
5066 if ((data & extra) && !(block_group->flags & extra))
5067 goto loop;
5068 }
5069
5070 have_block_group:
5071 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
5072 u64 free_percent;
5073
5074 ret = cache_block_group(block_group, trans,
5075 orig_root, 1);
5076 if (block_group->cached == BTRFS_CACHE_FINISHED)
5077 goto have_block_group;
5078
5079 free_percent = btrfs_block_group_used(&block_group->item);
5080 free_percent *= 100;
5081 free_percent = div64_u64(free_percent,
5082 block_group->key.offset);
5083 free_percent = 100 - free_percent;
5084 if (free_percent > ideal_cache_percent &&
5085 likely(!block_group->ro)) {
5086 ideal_cache_offset = block_group->key.objectid;
5087 ideal_cache_percent = free_percent;
5088 }
5089
5090 /*
5091 * The caching workers are limited to 2 threads, so we
5092 * can queue as much work as we care to.
5093 */
5094 if (loop > LOOP_FIND_IDEAL) {
5095 ret = cache_block_group(block_group, trans,
5096 orig_root, 0);
5097 BUG_ON(ret);
5098 }
5099 found_uncached_bg = true;
5100
5101 /*
5102 * If loop is set for cached only, try the next block
5103 * group.
5104 */
5105 if (loop == LOOP_FIND_IDEAL)
5106 goto loop;
5107 }
5108
5109 cached = block_group_cache_done(block_group);
5110 if (unlikely(!cached))
5111 found_uncached_bg = true;
5112
5113 if (unlikely(block_group->ro))
5114 goto loop;
5115
5116 spin_lock(&block_group->free_space_ctl->tree_lock);
5117 if (cached &&
5118 block_group->free_space_ctl->free_space <
5119 num_bytes + empty_size) {
5120 spin_unlock(&block_group->free_space_ctl->tree_lock);
5121 goto loop;
5122 }
5123 spin_unlock(&block_group->free_space_ctl->tree_lock);
5124
5125 /*
5126 * Ok we want to try and use the cluster allocator, so lets look
5127 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5128 * have tried the cluster allocator plenty of times at this
5129 * point and not have found anything, so we are likely way too
5130 * fragmented for the clustering stuff to find anything, so lets
5131 * just skip it and let the allocator find whatever block it can
5132 * find
5133 */
5134 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5135 /*
5136 * the refill lock keeps out other
5137 * people trying to start a new cluster
5138 */
5139 spin_lock(&last_ptr->refill_lock);
5140 if (last_ptr->block_group &&
5141 (last_ptr->block_group->ro ||
5142 !block_group_bits(last_ptr->block_group, data))) {
5143 offset = 0;
5144 goto refill_cluster;
5145 }
5146
5147 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5148 num_bytes, search_start);
5149 if (offset) {
5150 /* we have a block, we're done */
5151 spin_unlock(&last_ptr->refill_lock);
5152 goto checks;
5153 }
5154
5155 spin_lock(&last_ptr->lock);
5156 /*
5157 * whoops, this cluster doesn't actually point to
5158 * this block group. Get a ref on the block
5159 * group is does point to and try again
5160 */
5161 if (!last_ptr_loop && last_ptr->block_group &&
5162 last_ptr->block_group != block_group &&
5163 index <=
5164 get_block_group_index(last_ptr->block_group)) {
5165
5166 btrfs_put_block_group(block_group);
5167 block_group = last_ptr->block_group;
5168 btrfs_get_block_group(block_group);
5169 spin_unlock(&last_ptr->lock);
5170 spin_unlock(&last_ptr->refill_lock);
5171
5172 last_ptr_loop = 1;
5173 search_start = block_group->key.objectid;
5174 /*
5175 * we know this block group is properly
5176 * in the list because
5177 * btrfs_remove_block_group, drops the
5178 * cluster before it removes the block
5179 * group from the list
5180 */
5181 goto have_block_group;
5182 }
5183 spin_unlock(&last_ptr->lock);
5184 refill_cluster:
5185 /*
5186 * this cluster didn't work out, free it and
5187 * start over
5188 */
5189 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5190
5191 last_ptr_loop = 0;
5192
5193 /* allocate a cluster in this block group */
5194 ret = btrfs_find_space_cluster(trans, root,
5195 block_group, last_ptr,
5196 offset, num_bytes,
5197 empty_cluster + empty_size);
5198 if (ret == 0) {
5199 /*
5200 * now pull our allocation out of this
5201 * cluster
5202 */
5203 offset = btrfs_alloc_from_cluster(block_group,
5204 last_ptr, num_bytes,
5205 search_start);
5206 if (offset) {
5207 /* we found one, proceed */
5208 spin_unlock(&last_ptr->refill_lock);
5209 goto checks;
5210 }
5211 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5212 && !failed_cluster_refill) {
5213 spin_unlock(&last_ptr->refill_lock);
5214
5215 failed_cluster_refill = true;
5216 wait_block_group_cache_progress(block_group,
5217 num_bytes + empty_cluster + empty_size);
5218 goto have_block_group;
5219 }
5220
5221 /*
5222 * at this point we either didn't find a cluster
5223 * or we weren't able to allocate a block from our
5224 * cluster. Free the cluster we've been trying
5225 * to use, and go to the next block group
5226 */
5227 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5228 spin_unlock(&last_ptr->refill_lock);
5229 goto loop;
5230 }
5231
5232 offset = btrfs_find_space_for_alloc(block_group, search_start,
5233 num_bytes, empty_size);
5234 /*
5235 * If we didn't find a chunk, and we haven't failed on this
5236 * block group before, and this block group is in the middle of
5237 * caching and we are ok with waiting, then go ahead and wait
5238 * for progress to be made, and set failed_alloc to true.
5239 *
5240 * If failed_alloc is true then we've already waited on this
5241 * block group once and should move on to the next block group.
5242 */
5243 if (!offset && !failed_alloc && !cached &&
5244 loop > LOOP_CACHING_NOWAIT) {
5245 wait_block_group_cache_progress(block_group,
5246 num_bytes + empty_size);
5247 failed_alloc = true;
5248 goto have_block_group;
5249 } else if (!offset) {
5250 if (!cached)
5251 have_caching_bg = true;
5252 goto loop;
5253 }
5254 checks:
5255 search_start = stripe_align(root, offset);
5256 /* move on to the next group */
5257 if (search_start + num_bytes >= search_end) {
5258 btrfs_add_free_space(block_group, offset, num_bytes);
5259 goto loop;
5260 }
5261
5262 /* move on to the next group */
5263 if (search_start + num_bytes >
5264 block_group->key.objectid + block_group->key.offset) {
5265 btrfs_add_free_space(block_group, offset, num_bytes);
5266 goto loop;
5267 }
5268
5269 ins->objectid = search_start;
5270 ins->offset = num_bytes;
5271
5272 if (offset < search_start)
5273 btrfs_add_free_space(block_group, offset,
5274 search_start - offset);
5275 BUG_ON(offset > search_start);
5276
5277 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
5278 alloc_type);
5279 if (ret == -EAGAIN) {
5280 btrfs_add_free_space(block_group, offset, num_bytes);
5281 goto loop;
5282 }
5283
5284 /* we are all good, lets return */
5285 ins->objectid = search_start;
5286 ins->offset = num_bytes;
5287
5288 if (offset < search_start)
5289 btrfs_add_free_space(block_group, offset,
5290 search_start - offset);
5291 BUG_ON(offset > search_start);
5292 btrfs_put_block_group(block_group);
5293 break;
5294 loop:
5295 failed_cluster_refill = false;
5296 failed_alloc = false;
5297 BUG_ON(index != get_block_group_index(block_group));
5298 btrfs_put_block_group(block_group);
5299 }
5300 up_read(&space_info->groups_sem);
5301
5302 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5303 goto search;
5304
5305 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5306 goto search;
5307
5308 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5309 * for them to make caching progress. Also
5310 * determine the best possible bg to cache
5311 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5312 * caching kthreads as we move along
5313 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5314 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5315 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5316 * again
5317 */
5318 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5319 index = 0;
5320 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5321 found_uncached_bg = false;
5322 loop++;
5323 if (!ideal_cache_percent)
5324 goto search;
5325
5326 /*
5327 * 1 of the following 2 things have happened so far
5328 *
5329 * 1) We found an ideal block group for caching that
5330 * is mostly full and will cache quickly, so we might
5331 * as well wait for it.
5332 *
5333 * 2) We searched for cached only and we didn't find
5334 * anything, and we didn't start any caching kthreads
5335 * either, so chances are we will loop through and
5336 * start a couple caching kthreads, and then come back
5337 * around and just wait for them. This will be slower
5338 * because we will have 2 caching kthreads reading at
5339 * the same time when we could have just started one
5340 * and waited for it to get far enough to give us an
5341 * allocation, so go ahead and go to the wait caching
5342 * loop.
5343 */
5344 loop = LOOP_CACHING_WAIT;
5345 search_start = ideal_cache_offset;
5346 ideal_cache_percent = 0;
5347 goto ideal_cache;
5348 } else if (loop == LOOP_FIND_IDEAL) {
5349 /*
5350 * Didn't find a uncached bg, wait on anything we find
5351 * next.
5352 */
5353 loop = LOOP_CACHING_WAIT;
5354 goto search;
5355 }
5356
5357 loop++;
5358
5359 if (loop == LOOP_ALLOC_CHUNK) {
5360 if (allowed_chunk_alloc) {
5361 ret = do_chunk_alloc(trans, root, num_bytes +
5362 2 * 1024 * 1024, data,
5363 CHUNK_ALLOC_LIMITED);
5364 allowed_chunk_alloc = 0;
5365 if (ret == 1)
5366 done_chunk_alloc = 1;
5367 } else if (!done_chunk_alloc &&
5368 space_info->force_alloc ==
5369 CHUNK_ALLOC_NO_FORCE) {
5370 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5371 }
5372
5373 /*
5374 * We didn't allocate a chunk, go ahead and drop the
5375 * empty size and loop again.
5376 */
5377 if (!done_chunk_alloc)
5378 loop = LOOP_NO_EMPTY_SIZE;
5379 }
5380
5381 if (loop == LOOP_NO_EMPTY_SIZE) {
5382 empty_size = 0;
5383 empty_cluster = 0;
5384 }
5385
5386 goto search;
5387 } else if (!ins->objectid) {
5388 ret = -ENOSPC;
5389 } else if (ins->objectid) {
5390 ret = 0;
5391 }
5392
5393 return ret;
5394 }
5395
5396 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5397 int dump_block_groups)
5398 {
5399 struct btrfs_block_group_cache *cache;
5400 int index = 0;
5401
5402 spin_lock(&info->lock);
5403 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5404 (unsigned long long)info->flags,
5405 (unsigned long long)(info->total_bytes - info->bytes_used -
5406 info->bytes_pinned - info->bytes_reserved -
5407 info->bytes_readonly),
5408 (info->full) ? "" : "not ");
5409 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5410 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5411 (unsigned long long)info->total_bytes,
5412 (unsigned long long)info->bytes_used,
5413 (unsigned long long)info->bytes_pinned,
5414 (unsigned long long)info->bytes_reserved,
5415 (unsigned long long)info->bytes_may_use,
5416 (unsigned long long)info->bytes_readonly);
5417 spin_unlock(&info->lock);
5418
5419 if (!dump_block_groups)
5420 return;
5421
5422 down_read(&info->groups_sem);
5423 again:
5424 list_for_each_entry(cache, &info->block_groups[index], list) {
5425 spin_lock(&cache->lock);
5426 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5427 "%llu pinned %llu reserved\n",
5428 (unsigned long long)cache->key.objectid,
5429 (unsigned long long)cache->key.offset,
5430 (unsigned long long)btrfs_block_group_used(&cache->item),
5431 (unsigned long long)cache->pinned,
5432 (unsigned long long)cache->reserved);
5433 btrfs_dump_free_space(cache, bytes);
5434 spin_unlock(&cache->lock);
5435 }
5436 if (++index < BTRFS_NR_RAID_TYPES)
5437 goto again;
5438 up_read(&info->groups_sem);
5439 }
5440
5441 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5442 struct btrfs_root *root,
5443 u64 num_bytes, u64 min_alloc_size,
5444 u64 empty_size, u64 hint_byte,
5445 u64 search_end, struct btrfs_key *ins,
5446 u64 data)
5447 {
5448 int ret;
5449 u64 search_start = 0;
5450
5451 data = btrfs_get_alloc_profile(root, data);
5452 again:
5453 /*
5454 * the only place that sets empty_size is btrfs_realloc_node, which
5455 * is not called recursively on allocations
5456 */
5457 if (empty_size || root->ref_cows)
5458 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5459 num_bytes + 2 * 1024 * 1024, data,
5460 CHUNK_ALLOC_NO_FORCE);
5461
5462 WARN_ON(num_bytes < root->sectorsize);
5463 ret = find_free_extent(trans, root, num_bytes, empty_size,
5464 search_start, search_end, hint_byte,
5465 ins, data);
5466
5467 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5468 num_bytes = num_bytes >> 1;
5469 num_bytes = num_bytes & ~(root->sectorsize - 1);
5470 num_bytes = max(num_bytes, min_alloc_size);
5471 do_chunk_alloc(trans, root->fs_info->extent_root,
5472 num_bytes, data, CHUNK_ALLOC_FORCE);
5473 goto again;
5474 }
5475 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5476 struct btrfs_space_info *sinfo;
5477
5478 sinfo = __find_space_info(root->fs_info, data);
5479 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5480 "wanted %llu\n", (unsigned long long)data,
5481 (unsigned long long)num_bytes);
5482 dump_space_info(sinfo, num_bytes, 1);
5483 }
5484
5485 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5486
5487 return ret;
5488 }
5489
5490 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5491 {
5492 struct btrfs_block_group_cache *cache;
5493 int ret = 0;
5494
5495 cache = btrfs_lookup_block_group(root->fs_info, start);
5496 if (!cache) {
5497 printk(KERN_ERR "Unable to find block group for %llu\n",
5498 (unsigned long long)start);
5499 return -ENOSPC;
5500 }
5501
5502 if (btrfs_test_opt(root, DISCARD))
5503 ret = btrfs_discard_extent(root, start, len, NULL);
5504
5505 btrfs_add_free_space(cache, start, len);
5506 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5507 btrfs_put_block_group(cache);
5508
5509 trace_btrfs_reserved_extent_free(root, start, len);
5510
5511 return ret;
5512 }
5513
5514 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5515 struct btrfs_root *root,
5516 u64 parent, u64 root_objectid,
5517 u64 flags, u64 owner, u64 offset,
5518 struct btrfs_key *ins, int ref_mod)
5519 {
5520 int ret;
5521 struct btrfs_fs_info *fs_info = root->fs_info;
5522 struct btrfs_extent_item *extent_item;
5523 struct btrfs_extent_inline_ref *iref;
5524 struct btrfs_path *path;
5525 struct extent_buffer *leaf;
5526 int type;
5527 u32 size;
5528
5529 if (parent > 0)
5530 type = BTRFS_SHARED_DATA_REF_KEY;
5531 else
5532 type = BTRFS_EXTENT_DATA_REF_KEY;
5533
5534 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5535
5536 path = btrfs_alloc_path();
5537 if (!path)
5538 return -ENOMEM;
5539
5540 path->leave_spinning = 1;
5541 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5542 ins, size);
5543 BUG_ON(ret);
5544
5545 leaf = path->nodes[0];
5546 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5547 struct btrfs_extent_item);
5548 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5549 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5550 btrfs_set_extent_flags(leaf, extent_item,
5551 flags | BTRFS_EXTENT_FLAG_DATA);
5552
5553 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5554 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5555 if (parent > 0) {
5556 struct btrfs_shared_data_ref *ref;
5557 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5558 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5559 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5560 } else {
5561 struct btrfs_extent_data_ref *ref;
5562 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5563 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5564 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5565 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5566 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5567 }
5568
5569 btrfs_mark_buffer_dirty(path->nodes[0]);
5570 btrfs_free_path(path);
5571
5572 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5573 if (ret) {
5574 printk(KERN_ERR "btrfs update block group failed for %llu "
5575 "%llu\n", (unsigned long long)ins->objectid,
5576 (unsigned long long)ins->offset);
5577 BUG();
5578 }
5579 return ret;
5580 }
5581
5582 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5583 struct btrfs_root *root,
5584 u64 parent, u64 root_objectid,
5585 u64 flags, struct btrfs_disk_key *key,
5586 int level, struct btrfs_key *ins)
5587 {
5588 int ret;
5589 struct btrfs_fs_info *fs_info = root->fs_info;
5590 struct btrfs_extent_item *extent_item;
5591 struct btrfs_tree_block_info *block_info;
5592 struct btrfs_extent_inline_ref *iref;
5593 struct btrfs_path *path;
5594 struct extent_buffer *leaf;
5595 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5596
5597 path = btrfs_alloc_path();
5598 if (!path)
5599 return -ENOMEM;
5600
5601 path->leave_spinning = 1;
5602 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5603 ins, size);
5604 BUG_ON(ret);
5605
5606 leaf = path->nodes[0];
5607 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5608 struct btrfs_extent_item);
5609 btrfs_set_extent_refs(leaf, extent_item, 1);
5610 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5611 btrfs_set_extent_flags(leaf, extent_item,
5612 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5613 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5614
5615 btrfs_set_tree_block_key(leaf, block_info, key);
5616 btrfs_set_tree_block_level(leaf, block_info, level);
5617
5618 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5619 if (parent > 0) {
5620 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5621 btrfs_set_extent_inline_ref_type(leaf, iref,
5622 BTRFS_SHARED_BLOCK_REF_KEY);
5623 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5624 } else {
5625 btrfs_set_extent_inline_ref_type(leaf, iref,
5626 BTRFS_TREE_BLOCK_REF_KEY);
5627 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5628 }
5629
5630 btrfs_mark_buffer_dirty(leaf);
5631 btrfs_free_path(path);
5632
5633 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5634 if (ret) {
5635 printk(KERN_ERR "btrfs update block group failed for %llu "
5636 "%llu\n", (unsigned long long)ins->objectid,
5637 (unsigned long long)ins->offset);
5638 BUG();
5639 }
5640 return ret;
5641 }
5642
5643 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5644 struct btrfs_root *root,
5645 u64 root_objectid, u64 owner,
5646 u64 offset, struct btrfs_key *ins)
5647 {
5648 int ret;
5649
5650 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5651
5652 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5653 0, root_objectid, owner, offset,
5654 BTRFS_ADD_DELAYED_EXTENT, NULL);
5655 return ret;
5656 }
5657
5658 /*
5659 * this is used by the tree logging recovery code. It records that
5660 * an extent has been allocated and makes sure to clear the free
5661 * space cache bits as well
5662 */
5663 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5664 struct btrfs_root *root,
5665 u64 root_objectid, u64 owner, u64 offset,
5666 struct btrfs_key *ins)
5667 {
5668 int ret;
5669 struct btrfs_block_group_cache *block_group;
5670 struct btrfs_caching_control *caching_ctl;
5671 u64 start = ins->objectid;
5672 u64 num_bytes = ins->offset;
5673
5674 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5675 cache_block_group(block_group, trans, NULL, 0);
5676 caching_ctl = get_caching_control(block_group);
5677
5678 if (!caching_ctl) {
5679 BUG_ON(!block_group_cache_done(block_group));
5680 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5681 BUG_ON(ret);
5682 } else {
5683 mutex_lock(&caching_ctl->mutex);
5684
5685 if (start >= caching_ctl->progress) {
5686 ret = add_excluded_extent(root, start, num_bytes);
5687 BUG_ON(ret);
5688 } else if (start + num_bytes <= caching_ctl->progress) {
5689 ret = btrfs_remove_free_space(block_group,
5690 start, num_bytes);
5691 BUG_ON(ret);
5692 } else {
5693 num_bytes = caching_ctl->progress - start;
5694 ret = btrfs_remove_free_space(block_group,
5695 start, num_bytes);
5696 BUG_ON(ret);
5697
5698 start = caching_ctl->progress;
5699 num_bytes = ins->objectid + ins->offset -
5700 caching_ctl->progress;
5701 ret = add_excluded_extent(root, start, num_bytes);
5702 BUG_ON(ret);
5703 }
5704
5705 mutex_unlock(&caching_ctl->mutex);
5706 put_caching_control(caching_ctl);
5707 }
5708
5709 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5710 RESERVE_ALLOC_NO_ACCOUNT);
5711 BUG_ON(ret);
5712 btrfs_put_block_group(block_group);
5713 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5714 0, owner, offset, ins, 1);
5715 return ret;
5716 }
5717
5718 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5719 struct btrfs_root *root,
5720 u64 bytenr, u32 blocksize,
5721 int level)
5722 {
5723 struct extent_buffer *buf;
5724
5725 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5726 if (!buf)
5727 return ERR_PTR(-ENOMEM);
5728 btrfs_set_header_generation(buf, trans->transid);
5729 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5730 btrfs_tree_lock(buf);
5731 clean_tree_block(trans, root, buf);
5732
5733 btrfs_set_lock_blocking(buf);
5734 btrfs_set_buffer_uptodate(buf);
5735
5736 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5737 /*
5738 * we allow two log transactions at a time, use different
5739 * EXENT bit to differentiate dirty pages.
5740 */
5741 if (root->log_transid % 2 == 0)
5742 set_extent_dirty(&root->dirty_log_pages, buf->start,
5743 buf->start + buf->len - 1, GFP_NOFS);
5744 else
5745 set_extent_new(&root->dirty_log_pages, buf->start,
5746 buf->start + buf->len - 1, GFP_NOFS);
5747 } else {
5748 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5749 buf->start + buf->len - 1, GFP_NOFS);
5750 }
5751 trans->blocks_used++;
5752 /* this returns a buffer locked for blocking */
5753 return buf;
5754 }
5755
5756 static struct btrfs_block_rsv *
5757 use_block_rsv(struct btrfs_trans_handle *trans,
5758 struct btrfs_root *root, u32 blocksize)
5759 {
5760 struct btrfs_block_rsv *block_rsv;
5761 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5762 int ret;
5763
5764 block_rsv = get_block_rsv(trans, root);
5765
5766 if (block_rsv->size == 0) {
5767 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5768 /*
5769 * If we couldn't reserve metadata bytes try and use some from
5770 * the global reserve.
5771 */
5772 if (ret && block_rsv != global_rsv) {
5773 ret = block_rsv_use_bytes(global_rsv, blocksize);
5774 if (!ret)
5775 return global_rsv;
5776 return ERR_PTR(ret);
5777 } else if (ret) {
5778 return ERR_PTR(ret);
5779 }
5780 return block_rsv;
5781 }
5782
5783 ret = block_rsv_use_bytes(block_rsv, blocksize);
5784 if (!ret)
5785 return block_rsv;
5786 if (ret) {
5787 static DEFINE_RATELIMIT_STATE(_rs,
5788 DEFAULT_RATELIMIT_INTERVAL,
5789 /*DEFAULT_RATELIMIT_BURST*/ 2);
5790 if (__ratelimit(&_rs)) {
5791 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
5792 WARN_ON(1);
5793 }
5794 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
5795 if (!ret) {
5796 return block_rsv;
5797 } else if (ret && block_rsv != global_rsv) {
5798 ret = block_rsv_use_bytes(global_rsv, blocksize);
5799 if (!ret)
5800 return global_rsv;
5801 }
5802 }
5803
5804 return ERR_PTR(-ENOSPC);
5805 }
5806
5807 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5808 {
5809 block_rsv_add_bytes(block_rsv, blocksize, 0);
5810 block_rsv_release_bytes(block_rsv, NULL, 0);
5811 }
5812
5813 /*
5814 * finds a free extent and does all the dirty work required for allocation
5815 * returns the key for the extent through ins, and a tree buffer for
5816 * the first block of the extent through buf.
5817 *
5818 * returns the tree buffer or NULL.
5819 */
5820 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5821 struct btrfs_root *root, u32 blocksize,
5822 u64 parent, u64 root_objectid,
5823 struct btrfs_disk_key *key, int level,
5824 u64 hint, u64 empty_size)
5825 {
5826 struct btrfs_key ins;
5827 struct btrfs_block_rsv *block_rsv;
5828 struct extent_buffer *buf;
5829 u64 flags = 0;
5830 int ret;
5831
5832
5833 block_rsv = use_block_rsv(trans, root, blocksize);
5834 if (IS_ERR(block_rsv))
5835 return ERR_CAST(block_rsv);
5836
5837 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5838 empty_size, hint, (u64)-1, &ins, 0);
5839 if (ret) {
5840 unuse_block_rsv(block_rsv, blocksize);
5841 return ERR_PTR(ret);
5842 }
5843
5844 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5845 blocksize, level);
5846 BUG_ON(IS_ERR(buf));
5847
5848 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5849 if (parent == 0)
5850 parent = ins.objectid;
5851 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5852 } else
5853 BUG_ON(parent > 0);
5854
5855 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5856 struct btrfs_delayed_extent_op *extent_op;
5857 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5858 BUG_ON(!extent_op);
5859 if (key)
5860 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5861 else
5862 memset(&extent_op->key, 0, sizeof(extent_op->key));
5863 extent_op->flags_to_set = flags;
5864 extent_op->update_key = 1;
5865 extent_op->update_flags = 1;
5866 extent_op->is_data = 0;
5867
5868 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5869 ins.offset, parent, root_objectid,
5870 level, BTRFS_ADD_DELAYED_EXTENT,
5871 extent_op);
5872 BUG_ON(ret);
5873 }
5874 return buf;
5875 }
5876
5877 struct walk_control {
5878 u64 refs[BTRFS_MAX_LEVEL];
5879 u64 flags[BTRFS_MAX_LEVEL];
5880 struct btrfs_key update_progress;
5881 int stage;
5882 int level;
5883 int shared_level;
5884 int update_ref;
5885 int keep_locks;
5886 int reada_slot;
5887 int reada_count;
5888 };
5889
5890 #define DROP_REFERENCE 1
5891 #define UPDATE_BACKREF 2
5892
5893 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5894 struct btrfs_root *root,
5895 struct walk_control *wc,
5896 struct btrfs_path *path)
5897 {
5898 u64 bytenr;
5899 u64 generation;
5900 u64 refs;
5901 u64 flags;
5902 u32 nritems;
5903 u32 blocksize;
5904 struct btrfs_key key;
5905 struct extent_buffer *eb;
5906 int ret;
5907 int slot;
5908 int nread = 0;
5909
5910 if (path->slots[wc->level] < wc->reada_slot) {
5911 wc->reada_count = wc->reada_count * 2 / 3;
5912 wc->reada_count = max(wc->reada_count, 2);
5913 } else {
5914 wc->reada_count = wc->reada_count * 3 / 2;
5915 wc->reada_count = min_t(int, wc->reada_count,
5916 BTRFS_NODEPTRS_PER_BLOCK(root));
5917 }
5918
5919 eb = path->nodes[wc->level];
5920 nritems = btrfs_header_nritems(eb);
5921 blocksize = btrfs_level_size(root, wc->level - 1);
5922
5923 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5924 if (nread >= wc->reada_count)
5925 break;
5926
5927 cond_resched();
5928 bytenr = btrfs_node_blockptr(eb, slot);
5929 generation = btrfs_node_ptr_generation(eb, slot);
5930
5931 if (slot == path->slots[wc->level])
5932 goto reada;
5933
5934 if (wc->stage == UPDATE_BACKREF &&
5935 generation <= root->root_key.offset)
5936 continue;
5937
5938 /* We don't lock the tree block, it's OK to be racy here */
5939 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5940 &refs, &flags);
5941 BUG_ON(ret);
5942 BUG_ON(refs == 0);
5943
5944 if (wc->stage == DROP_REFERENCE) {
5945 if (refs == 1)
5946 goto reada;
5947
5948 if (wc->level == 1 &&
5949 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5950 continue;
5951 if (!wc->update_ref ||
5952 generation <= root->root_key.offset)
5953 continue;
5954 btrfs_node_key_to_cpu(eb, &key, slot);
5955 ret = btrfs_comp_cpu_keys(&key,
5956 &wc->update_progress);
5957 if (ret < 0)
5958 continue;
5959 } else {
5960 if (wc->level == 1 &&
5961 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5962 continue;
5963 }
5964 reada:
5965 ret = readahead_tree_block(root, bytenr, blocksize,
5966 generation);
5967 if (ret)
5968 break;
5969 nread++;
5970 }
5971 wc->reada_slot = slot;
5972 }
5973
5974 /*
5975 * hepler to process tree block while walking down the tree.
5976 *
5977 * when wc->stage == UPDATE_BACKREF, this function updates
5978 * back refs for pointers in the block.
5979 *
5980 * NOTE: return value 1 means we should stop walking down.
5981 */
5982 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5983 struct btrfs_root *root,
5984 struct btrfs_path *path,
5985 struct walk_control *wc, int lookup_info)
5986 {
5987 int level = wc->level;
5988 struct extent_buffer *eb = path->nodes[level];
5989 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5990 int ret;
5991
5992 if (wc->stage == UPDATE_BACKREF &&
5993 btrfs_header_owner(eb) != root->root_key.objectid)
5994 return 1;
5995
5996 /*
5997 * when reference count of tree block is 1, it won't increase
5998 * again. once full backref flag is set, we never clear it.
5999 */
6000 if (lookup_info &&
6001 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6002 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6003 BUG_ON(!path->locks[level]);
6004 ret = btrfs_lookup_extent_info(trans, root,
6005 eb->start, eb->len,
6006 &wc->refs[level],
6007 &wc->flags[level]);
6008 BUG_ON(ret);
6009 BUG_ON(wc->refs[level] == 0);
6010 }
6011
6012 if (wc->stage == DROP_REFERENCE) {
6013 if (wc->refs[level] > 1)
6014 return 1;
6015
6016 if (path->locks[level] && !wc->keep_locks) {
6017 btrfs_tree_unlock_rw(eb, path->locks[level]);
6018 path->locks[level] = 0;
6019 }
6020 return 0;
6021 }
6022
6023 /* wc->stage == UPDATE_BACKREF */
6024 if (!(wc->flags[level] & flag)) {
6025 BUG_ON(!path->locks[level]);
6026 ret = btrfs_inc_ref(trans, root, eb, 1);
6027 BUG_ON(ret);
6028 ret = btrfs_dec_ref(trans, root, eb, 0);
6029 BUG_ON(ret);
6030 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6031 eb->len, flag, 0);
6032 BUG_ON(ret);
6033 wc->flags[level] |= flag;
6034 }
6035
6036 /*
6037 * the block is shared by multiple trees, so it's not good to
6038 * keep the tree lock
6039 */
6040 if (path->locks[level] && level > 0) {
6041 btrfs_tree_unlock_rw(eb, path->locks[level]);
6042 path->locks[level] = 0;
6043 }
6044 return 0;
6045 }
6046
6047 /*
6048 * hepler to process tree block pointer.
6049 *
6050 * when wc->stage == DROP_REFERENCE, this function checks
6051 * reference count of the block pointed to. if the block
6052 * is shared and we need update back refs for the subtree
6053 * rooted at the block, this function changes wc->stage to
6054 * UPDATE_BACKREF. if the block is shared and there is no
6055 * need to update back, this function drops the reference
6056 * to the block.
6057 *
6058 * NOTE: return value 1 means we should stop walking down.
6059 */
6060 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6061 struct btrfs_root *root,
6062 struct btrfs_path *path,
6063 struct walk_control *wc, int *lookup_info)
6064 {
6065 u64 bytenr;
6066 u64 generation;
6067 u64 parent;
6068 u32 blocksize;
6069 struct btrfs_key key;
6070 struct extent_buffer *next;
6071 int level = wc->level;
6072 int reada = 0;
6073 int ret = 0;
6074
6075 generation = btrfs_node_ptr_generation(path->nodes[level],
6076 path->slots[level]);
6077 /*
6078 * if the lower level block was created before the snapshot
6079 * was created, we know there is no need to update back refs
6080 * for the subtree
6081 */
6082 if (wc->stage == UPDATE_BACKREF &&
6083 generation <= root->root_key.offset) {
6084 *lookup_info = 1;
6085 return 1;
6086 }
6087
6088 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6089 blocksize = btrfs_level_size(root, level - 1);
6090
6091 next = btrfs_find_tree_block(root, bytenr, blocksize);
6092 if (!next) {
6093 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6094 if (!next)
6095 return -ENOMEM;
6096 reada = 1;
6097 }
6098 btrfs_tree_lock(next);
6099 btrfs_set_lock_blocking(next);
6100
6101 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6102 &wc->refs[level - 1],
6103 &wc->flags[level - 1]);
6104 BUG_ON(ret);
6105 BUG_ON(wc->refs[level - 1] == 0);
6106 *lookup_info = 0;
6107
6108 if (wc->stage == DROP_REFERENCE) {
6109 if (wc->refs[level - 1] > 1) {
6110 if (level == 1 &&
6111 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6112 goto skip;
6113
6114 if (!wc->update_ref ||
6115 generation <= root->root_key.offset)
6116 goto skip;
6117
6118 btrfs_node_key_to_cpu(path->nodes[level], &key,
6119 path->slots[level]);
6120 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6121 if (ret < 0)
6122 goto skip;
6123
6124 wc->stage = UPDATE_BACKREF;
6125 wc->shared_level = level - 1;
6126 }
6127 } else {
6128 if (level == 1 &&
6129 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6130 goto skip;
6131 }
6132
6133 if (!btrfs_buffer_uptodate(next, generation)) {
6134 btrfs_tree_unlock(next);
6135 free_extent_buffer(next);
6136 next = NULL;
6137 *lookup_info = 1;
6138 }
6139
6140 if (!next) {
6141 if (reada && level == 1)
6142 reada_walk_down(trans, root, wc, path);
6143 next = read_tree_block(root, bytenr, blocksize, generation);
6144 if (!next)
6145 return -EIO;
6146 btrfs_tree_lock(next);
6147 btrfs_set_lock_blocking(next);
6148 }
6149
6150 level--;
6151 BUG_ON(level != btrfs_header_level(next));
6152 path->nodes[level] = next;
6153 path->slots[level] = 0;
6154 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6155 wc->level = level;
6156 if (wc->level == 1)
6157 wc->reada_slot = 0;
6158 return 0;
6159 skip:
6160 wc->refs[level - 1] = 0;
6161 wc->flags[level - 1] = 0;
6162 if (wc->stage == DROP_REFERENCE) {
6163 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6164 parent = path->nodes[level]->start;
6165 } else {
6166 BUG_ON(root->root_key.objectid !=
6167 btrfs_header_owner(path->nodes[level]));
6168 parent = 0;
6169 }
6170
6171 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6172 root->root_key.objectid, level - 1, 0);
6173 BUG_ON(ret);
6174 }
6175 btrfs_tree_unlock(next);
6176 free_extent_buffer(next);
6177 *lookup_info = 1;
6178 return 1;
6179 }
6180
6181 /*
6182 * hepler to process tree block while walking up the tree.
6183 *
6184 * when wc->stage == DROP_REFERENCE, this function drops
6185 * reference count on the block.
6186 *
6187 * when wc->stage == UPDATE_BACKREF, this function changes
6188 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6189 * to UPDATE_BACKREF previously while processing the block.
6190 *
6191 * NOTE: return value 1 means we should stop walking up.
6192 */
6193 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6194 struct btrfs_root *root,
6195 struct btrfs_path *path,
6196 struct walk_control *wc)
6197 {
6198 int ret;
6199 int level = wc->level;
6200 struct extent_buffer *eb = path->nodes[level];
6201 u64 parent = 0;
6202
6203 if (wc->stage == UPDATE_BACKREF) {
6204 BUG_ON(wc->shared_level < level);
6205 if (level < wc->shared_level)
6206 goto out;
6207
6208 ret = find_next_key(path, level + 1, &wc->update_progress);
6209 if (ret > 0)
6210 wc->update_ref = 0;
6211
6212 wc->stage = DROP_REFERENCE;
6213 wc->shared_level = -1;
6214 path->slots[level] = 0;
6215
6216 /*
6217 * check reference count again if the block isn't locked.
6218 * we should start walking down the tree again if reference
6219 * count is one.
6220 */
6221 if (!path->locks[level]) {
6222 BUG_ON(level == 0);
6223 btrfs_tree_lock(eb);
6224 btrfs_set_lock_blocking(eb);
6225 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6226
6227 ret = btrfs_lookup_extent_info(trans, root,
6228 eb->start, eb->len,
6229 &wc->refs[level],
6230 &wc->flags[level]);
6231 BUG_ON(ret);
6232 BUG_ON(wc->refs[level] == 0);
6233 if (wc->refs[level] == 1) {
6234 btrfs_tree_unlock_rw(eb, path->locks[level]);
6235 return 1;
6236 }
6237 }
6238 }
6239
6240 /* wc->stage == DROP_REFERENCE */
6241 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6242
6243 if (wc->refs[level] == 1) {
6244 if (level == 0) {
6245 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6246 ret = btrfs_dec_ref(trans, root, eb, 1);
6247 else
6248 ret = btrfs_dec_ref(trans, root, eb, 0);
6249 BUG_ON(ret);
6250 }
6251 /* make block locked assertion in clean_tree_block happy */
6252 if (!path->locks[level] &&
6253 btrfs_header_generation(eb) == trans->transid) {
6254 btrfs_tree_lock(eb);
6255 btrfs_set_lock_blocking(eb);
6256 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6257 }
6258 clean_tree_block(trans, root, eb);
6259 }
6260
6261 if (eb == root->node) {
6262 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6263 parent = eb->start;
6264 else
6265 BUG_ON(root->root_key.objectid !=
6266 btrfs_header_owner(eb));
6267 } else {
6268 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6269 parent = path->nodes[level + 1]->start;
6270 else
6271 BUG_ON(root->root_key.objectid !=
6272 btrfs_header_owner(path->nodes[level + 1]));
6273 }
6274
6275 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6276 out:
6277 wc->refs[level] = 0;
6278 wc->flags[level] = 0;
6279 return 0;
6280 }
6281
6282 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6283 struct btrfs_root *root,
6284 struct btrfs_path *path,
6285 struct walk_control *wc)
6286 {
6287 int level = wc->level;
6288 int lookup_info = 1;
6289 int ret;
6290
6291 while (level >= 0) {
6292 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6293 if (ret > 0)
6294 break;
6295
6296 if (level == 0)
6297 break;
6298
6299 if (path->slots[level] >=
6300 btrfs_header_nritems(path->nodes[level]))
6301 break;
6302
6303 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6304 if (ret > 0) {
6305 path->slots[level]++;
6306 continue;
6307 } else if (ret < 0)
6308 return ret;
6309 level = wc->level;
6310 }
6311 return 0;
6312 }
6313
6314 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6315 struct btrfs_root *root,
6316 struct btrfs_path *path,
6317 struct walk_control *wc, int max_level)
6318 {
6319 int level = wc->level;
6320 int ret;
6321
6322 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6323 while (level < max_level && path->nodes[level]) {
6324 wc->level = level;
6325 if (path->slots[level] + 1 <
6326 btrfs_header_nritems(path->nodes[level])) {
6327 path->slots[level]++;
6328 return 0;
6329 } else {
6330 ret = walk_up_proc(trans, root, path, wc);
6331 if (ret > 0)
6332 return 0;
6333
6334 if (path->locks[level]) {
6335 btrfs_tree_unlock_rw(path->nodes[level],
6336 path->locks[level]);
6337 path->locks[level] = 0;
6338 }
6339 free_extent_buffer(path->nodes[level]);
6340 path->nodes[level] = NULL;
6341 level++;
6342 }
6343 }
6344 return 1;
6345 }
6346
6347 /*
6348 * drop a subvolume tree.
6349 *
6350 * this function traverses the tree freeing any blocks that only
6351 * referenced by the tree.
6352 *
6353 * when a shared tree block is found. this function decreases its
6354 * reference count by one. if update_ref is true, this function
6355 * also make sure backrefs for the shared block and all lower level
6356 * blocks are properly updated.
6357 */
6358 void btrfs_drop_snapshot(struct btrfs_root *root,
6359 struct btrfs_block_rsv *block_rsv, int update_ref)
6360 {
6361 struct btrfs_path *path;
6362 struct btrfs_trans_handle *trans;
6363 struct btrfs_root *tree_root = root->fs_info->tree_root;
6364 struct btrfs_root_item *root_item = &root->root_item;
6365 struct walk_control *wc;
6366 struct btrfs_key key;
6367 int err = 0;
6368 int ret;
6369 int level;
6370
6371 path = btrfs_alloc_path();
6372 if (!path) {
6373 err = -ENOMEM;
6374 goto out;
6375 }
6376
6377 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6378 if (!wc) {
6379 btrfs_free_path(path);
6380 err = -ENOMEM;
6381 goto out;
6382 }
6383
6384 trans = btrfs_start_transaction(tree_root, 0);
6385 BUG_ON(IS_ERR(trans));
6386
6387 if (block_rsv)
6388 trans->block_rsv = block_rsv;
6389
6390 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6391 level = btrfs_header_level(root->node);
6392 path->nodes[level] = btrfs_lock_root_node(root);
6393 btrfs_set_lock_blocking(path->nodes[level]);
6394 path->slots[level] = 0;
6395 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6396 memset(&wc->update_progress, 0,
6397 sizeof(wc->update_progress));
6398 } else {
6399 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6400 memcpy(&wc->update_progress, &key,
6401 sizeof(wc->update_progress));
6402
6403 level = root_item->drop_level;
6404 BUG_ON(level == 0);
6405 path->lowest_level = level;
6406 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6407 path->lowest_level = 0;
6408 if (ret < 0) {
6409 err = ret;
6410 goto out_free;
6411 }
6412 WARN_ON(ret > 0);
6413
6414 /*
6415 * unlock our path, this is safe because only this
6416 * function is allowed to delete this snapshot
6417 */
6418 btrfs_unlock_up_safe(path, 0);
6419
6420 level = btrfs_header_level(root->node);
6421 while (1) {
6422 btrfs_tree_lock(path->nodes[level]);
6423 btrfs_set_lock_blocking(path->nodes[level]);
6424
6425 ret = btrfs_lookup_extent_info(trans, root,
6426 path->nodes[level]->start,
6427 path->nodes[level]->len,
6428 &wc->refs[level],
6429 &wc->flags[level]);
6430 BUG_ON(ret);
6431 BUG_ON(wc->refs[level] == 0);
6432
6433 if (level == root_item->drop_level)
6434 break;
6435
6436 btrfs_tree_unlock(path->nodes[level]);
6437 WARN_ON(wc->refs[level] != 1);
6438 level--;
6439 }
6440 }
6441
6442 wc->level = level;
6443 wc->shared_level = -1;
6444 wc->stage = DROP_REFERENCE;
6445 wc->update_ref = update_ref;
6446 wc->keep_locks = 0;
6447 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6448
6449 while (1) {
6450 ret = walk_down_tree(trans, root, path, wc);
6451 if (ret < 0) {
6452 err = ret;
6453 break;
6454 }
6455
6456 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6457 if (ret < 0) {
6458 err = ret;
6459 break;
6460 }
6461
6462 if (ret > 0) {
6463 BUG_ON(wc->stage != DROP_REFERENCE);
6464 break;
6465 }
6466
6467 if (wc->stage == DROP_REFERENCE) {
6468 level = wc->level;
6469 btrfs_node_key(path->nodes[level],
6470 &root_item->drop_progress,
6471 path->slots[level]);
6472 root_item->drop_level = level;
6473 }
6474
6475 BUG_ON(wc->level == 0);
6476 if (btrfs_should_end_transaction(trans, tree_root)) {
6477 ret = btrfs_update_root(trans, tree_root,
6478 &root->root_key,
6479 root_item);
6480 BUG_ON(ret);
6481
6482 btrfs_end_transaction_throttle(trans, tree_root);
6483 trans = btrfs_start_transaction(tree_root, 0);
6484 BUG_ON(IS_ERR(trans));
6485 if (block_rsv)
6486 trans->block_rsv = block_rsv;
6487 }
6488 }
6489 btrfs_release_path(path);
6490 BUG_ON(err);
6491
6492 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6493 BUG_ON(ret);
6494
6495 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6496 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6497 NULL, NULL);
6498 BUG_ON(ret < 0);
6499 if (ret > 0) {
6500 /* if we fail to delete the orphan item this time
6501 * around, it'll get picked up the next time.
6502 *
6503 * The most common failure here is just -ENOENT.
6504 */
6505 btrfs_del_orphan_item(trans, tree_root,
6506 root->root_key.objectid);
6507 }
6508 }
6509
6510 if (root->in_radix) {
6511 btrfs_free_fs_root(tree_root->fs_info, root);
6512 } else {
6513 free_extent_buffer(root->node);
6514 free_extent_buffer(root->commit_root);
6515 kfree(root);
6516 }
6517 out_free:
6518 btrfs_end_transaction_throttle(trans, tree_root);
6519 kfree(wc);
6520 btrfs_free_path(path);
6521 out:
6522 if (err)
6523 btrfs_std_error(root->fs_info, err);
6524 return;
6525 }
6526
6527 /*
6528 * drop subtree rooted at tree block 'node'.
6529 *
6530 * NOTE: this function will unlock and release tree block 'node'
6531 */
6532 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6533 struct btrfs_root *root,
6534 struct extent_buffer *node,
6535 struct extent_buffer *parent)
6536 {
6537 struct btrfs_path *path;
6538 struct walk_control *wc;
6539 int level;
6540 int parent_level;
6541 int ret = 0;
6542 int wret;
6543
6544 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6545
6546 path = btrfs_alloc_path();
6547 if (!path)
6548 return -ENOMEM;
6549
6550 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6551 if (!wc) {
6552 btrfs_free_path(path);
6553 return -ENOMEM;
6554 }
6555
6556 btrfs_assert_tree_locked(parent);
6557 parent_level = btrfs_header_level(parent);
6558 extent_buffer_get(parent);
6559 path->nodes[parent_level] = parent;
6560 path->slots[parent_level] = btrfs_header_nritems(parent);
6561
6562 btrfs_assert_tree_locked(node);
6563 level = btrfs_header_level(node);
6564 path->nodes[level] = node;
6565 path->slots[level] = 0;
6566 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6567
6568 wc->refs[parent_level] = 1;
6569 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6570 wc->level = level;
6571 wc->shared_level = -1;
6572 wc->stage = DROP_REFERENCE;
6573 wc->update_ref = 0;
6574 wc->keep_locks = 1;
6575 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6576
6577 while (1) {
6578 wret = walk_down_tree(trans, root, path, wc);
6579 if (wret < 0) {
6580 ret = wret;
6581 break;
6582 }
6583
6584 wret = walk_up_tree(trans, root, path, wc, parent_level);
6585 if (wret < 0)
6586 ret = wret;
6587 if (wret != 0)
6588 break;
6589 }
6590
6591 kfree(wc);
6592 btrfs_free_path(path);
6593 return ret;
6594 }
6595
6596 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6597 {
6598 u64 num_devices;
6599 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6600 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6601
6602 /*
6603 * we add in the count of missing devices because we want
6604 * to make sure that any RAID levels on a degraded FS
6605 * continue to be honored.
6606 */
6607 num_devices = root->fs_info->fs_devices->rw_devices +
6608 root->fs_info->fs_devices->missing_devices;
6609
6610 if (num_devices == 1) {
6611 stripped |= BTRFS_BLOCK_GROUP_DUP;
6612 stripped = flags & ~stripped;
6613
6614 /* turn raid0 into single device chunks */
6615 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6616 return stripped;
6617
6618 /* turn mirroring into duplication */
6619 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6620 BTRFS_BLOCK_GROUP_RAID10))
6621 return stripped | BTRFS_BLOCK_GROUP_DUP;
6622 return flags;
6623 } else {
6624 /* they already had raid on here, just return */
6625 if (flags & stripped)
6626 return flags;
6627
6628 stripped |= BTRFS_BLOCK_GROUP_DUP;
6629 stripped = flags & ~stripped;
6630
6631 /* switch duplicated blocks with raid1 */
6632 if (flags & BTRFS_BLOCK_GROUP_DUP)
6633 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6634
6635 /* turn single device chunks into raid0 */
6636 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6637 }
6638 return flags;
6639 }
6640
6641 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6642 {
6643 struct btrfs_space_info *sinfo = cache->space_info;
6644 u64 num_bytes;
6645 u64 min_allocable_bytes;
6646 int ret = -ENOSPC;
6647
6648
6649 /*
6650 * We need some metadata space and system metadata space for
6651 * allocating chunks in some corner cases until we force to set
6652 * it to be readonly.
6653 */
6654 if ((sinfo->flags &
6655 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6656 !force)
6657 min_allocable_bytes = 1 * 1024 * 1024;
6658 else
6659 min_allocable_bytes = 0;
6660
6661 spin_lock(&sinfo->lock);
6662 spin_lock(&cache->lock);
6663
6664 if (cache->ro) {
6665 ret = 0;
6666 goto out;
6667 }
6668
6669 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6670 cache->bytes_super - btrfs_block_group_used(&cache->item);
6671
6672 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6673 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6674 min_allocable_bytes <= sinfo->total_bytes) {
6675 sinfo->bytes_readonly += num_bytes;
6676 cache->ro = 1;
6677 ret = 0;
6678 }
6679 out:
6680 spin_unlock(&cache->lock);
6681 spin_unlock(&sinfo->lock);
6682 return ret;
6683 }
6684
6685 int btrfs_set_block_group_ro(struct btrfs_root *root,
6686 struct btrfs_block_group_cache *cache)
6687
6688 {
6689 struct btrfs_trans_handle *trans;
6690 u64 alloc_flags;
6691 int ret;
6692
6693 BUG_ON(cache->ro);
6694
6695 trans = btrfs_join_transaction(root);
6696 BUG_ON(IS_ERR(trans));
6697
6698 alloc_flags = update_block_group_flags(root, cache->flags);
6699 if (alloc_flags != cache->flags)
6700 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6701 CHUNK_ALLOC_FORCE);
6702
6703 ret = set_block_group_ro(cache, 0);
6704 if (!ret)
6705 goto out;
6706 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6707 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6708 CHUNK_ALLOC_FORCE);
6709 if (ret < 0)
6710 goto out;
6711 ret = set_block_group_ro(cache, 0);
6712 out:
6713 btrfs_end_transaction(trans, root);
6714 return ret;
6715 }
6716
6717 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6718 struct btrfs_root *root, u64 type)
6719 {
6720 u64 alloc_flags = get_alloc_profile(root, type);
6721 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6722 CHUNK_ALLOC_FORCE);
6723 }
6724
6725 /*
6726 * helper to account the unused space of all the readonly block group in the
6727 * list. takes mirrors into account.
6728 */
6729 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6730 {
6731 struct btrfs_block_group_cache *block_group;
6732 u64 free_bytes = 0;
6733 int factor;
6734
6735 list_for_each_entry(block_group, groups_list, list) {
6736 spin_lock(&block_group->lock);
6737
6738 if (!block_group->ro) {
6739 spin_unlock(&block_group->lock);
6740 continue;
6741 }
6742
6743 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6744 BTRFS_BLOCK_GROUP_RAID10 |
6745 BTRFS_BLOCK_GROUP_DUP))
6746 factor = 2;
6747 else
6748 factor = 1;
6749
6750 free_bytes += (block_group->key.offset -
6751 btrfs_block_group_used(&block_group->item)) *
6752 factor;
6753
6754 spin_unlock(&block_group->lock);
6755 }
6756
6757 return free_bytes;
6758 }
6759
6760 /*
6761 * helper to account the unused space of all the readonly block group in the
6762 * space_info. takes mirrors into account.
6763 */
6764 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6765 {
6766 int i;
6767 u64 free_bytes = 0;
6768
6769 spin_lock(&sinfo->lock);
6770
6771 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6772 if (!list_empty(&sinfo->block_groups[i]))
6773 free_bytes += __btrfs_get_ro_block_group_free_space(
6774 &sinfo->block_groups[i]);
6775
6776 spin_unlock(&sinfo->lock);
6777
6778 return free_bytes;
6779 }
6780
6781 int btrfs_set_block_group_rw(struct btrfs_root *root,
6782 struct btrfs_block_group_cache *cache)
6783 {
6784 struct btrfs_space_info *sinfo = cache->space_info;
6785 u64 num_bytes;
6786
6787 BUG_ON(!cache->ro);
6788
6789 spin_lock(&sinfo->lock);
6790 spin_lock(&cache->lock);
6791 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6792 cache->bytes_super - btrfs_block_group_used(&cache->item);
6793 sinfo->bytes_readonly -= num_bytes;
6794 cache->ro = 0;
6795 spin_unlock(&cache->lock);
6796 spin_unlock(&sinfo->lock);
6797 return 0;
6798 }
6799
6800 /*
6801 * checks to see if its even possible to relocate this block group.
6802 *
6803 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6804 * ok to go ahead and try.
6805 */
6806 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6807 {
6808 struct btrfs_block_group_cache *block_group;
6809 struct btrfs_space_info *space_info;
6810 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6811 struct btrfs_device *device;
6812 u64 min_free;
6813 u64 dev_min = 1;
6814 u64 dev_nr = 0;
6815 int index;
6816 int full = 0;
6817 int ret = 0;
6818
6819 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6820
6821 /* odd, couldn't find the block group, leave it alone */
6822 if (!block_group)
6823 return -1;
6824
6825 min_free = btrfs_block_group_used(&block_group->item);
6826
6827 /* no bytes used, we're good */
6828 if (!min_free)
6829 goto out;
6830
6831 space_info = block_group->space_info;
6832 spin_lock(&space_info->lock);
6833
6834 full = space_info->full;
6835
6836 /*
6837 * if this is the last block group we have in this space, we can't
6838 * relocate it unless we're able to allocate a new chunk below.
6839 *
6840 * Otherwise, we need to make sure we have room in the space to handle
6841 * all of the extents from this block group. If we can, we're good
6842 */
6843 if ((space_info->total_bytes != block_group->key.offset) &&
6844 (space_info->bytes_used + space_info->bytes_reserved +
6845 space_info->bytes_pinned + space_info->bytes_readonly +
6846 min_free < space_info->total_bytes)) {
6847 spin_unlock(&space_info->lock);
6848 goto out;
6849 }
6850 spin_unlock(&space_info->lock);
6851
6852 /*
6853 * ok we don't have enough space, but maybe we have free space on our
6854 * devices to allocate new chunks for relocation, so loop through our
6855 * alloc devices and guess if we have enough space. However, if we
6856 * were marked as full, then we know there aren't enough chunks, and we
6857 * can just return.
6858 */
6859 ret = -1;
6860 if (full)
6861 goto out;
6862
6863 /*
6864 * index:
6865 * 0: raid10
6866 * 1: raid1
6867 * 2: dup
6868 * 3: raid0
6869 * 4: single
6870 */
6871 index = get_block_group_index(block_group);
6872 if (index == 0) {
6873 dev_min = 4;
6874 /* Divide by 2 */
6875 min_free >>= 1;
6876 } else if (index == 1) {
6877 dev_min = 2;
6878 } else if (index == 2) {
6879 /* Multiply by 2 */
6880 min_free <<= 1;
6881 } else if (index == 3) {
6882 dev_min = fs_devices->rw_devices;
6883 do_div(min_free, dev_min);
6884 }
6885
6886 mutex_lock(&root->fs_info->chunk_mutex);
6887 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6888 u64 dev_offset;
6889
6890 /*
6891 * check to make sure we can actually find a chunk with enough
6892 * space to fit our block group in.
6893 */
6894 if (device->total_bytes > device->bytes_used + min_free) {
6895 ret = find_free_dev_extent(NULL, device, min_free,
6896 &dev_offset, NULL);
6897 if (!ret)
6898 dev_nr++;
6899
6900 if (dev_nr >= dev_min)
6901 break;
6902
6903 ret = -1;
6904 }
6905 }
6906 mutex_unlock(&root->fs_info->chunk_mutex);
6907 out:
6908 btrfs_put_block_group(block_group);
6909 return ret;
6910 }
6911
6912 static int find_first_block_group(struct btrfs_root *root,
6913 struct btrfs_path *path, struct btrfs_key *key)
6914 {
6915 int ret = 0;
6916 struct btrfs_key found_key;
6917 struct extent_buffer *leaf;
6918 int slot;
6919
6920 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6921 if (ret < 0)
6922 goto out;
6923
6924 while (1) {
6925 slot = path->slots[0];
6926 leaf = path->nodes[0];
6927 if (slot >= btrfs_header_nritems(leaf)) {
6928 ret = btrfs_next_leaf(root, path);
6929 if (ret == 0)
6930 continue;
6931 if (ret < 0)
6932 goto out;
6933 break;
6934 }
6935 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6936
6937 if (found_key.objectid >= key->objectid &&
6938 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6939 ret = 0;
6940 goto out;
6941 }
6942 path->slots[0]++;
6943 }
6944 out:
6945 return ret;
6946 }
6947
6948 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6949 {
6950 struct btrfs_block_group_cache *block_group;
6951 u64 last = 0;
6952
6953 while (1) {
6954 struct inode *inode;
6955
6956 block_group = btrfs_lookup_first_block_group(info, last);
6957 while (block_group) {
6958 spin_lock(&block_group->lock);
6959 if (block_group->iref)
6960 break;
6961 spin_unlock(&block_group->lock);
6962 block_group = next_block_group(info->tree_root,
6963 block_group);
6964 }
6965 if (!block_group) {
6966 if (last == 0)
6967 break;
6968 last = 0;
6969 continue;
6970 }
6971
6972 inode = block_group->inode;
6973 block_group->iref = 0;
6974 block_group->inode = NULL;
6975 spin_unlock(&block_group->lock);
6976 iput(inode);
6977 last = block_group->key.objectid + block_group->key.offset;
6978 btrfs_put_block_group(block_group);
6979 }
6980 }
6981
6982 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6983 {
6984 struct btrfs_block_group_cache *block_group;
6985 struct btrfs_space_info *space_info;
6986 struct btrfs_caching_control *caching_ctl;
6987 struct rb_node *n;
6988
6989 down_write(&info->extent_commit_sem);
6990 while (!list_empty(&info->caching_block_groups)) {
6991 caching_ctl = list_entry(info->caching_block_groups.next,
6992 struct btrfs_caching_control, list);
6993 list_del(&caching_ctl->list);
6994 put_caching_control(caching_ctl);
6995 }
6996 up_write(&info->extent_commit_sem);
6997
6998 spin_lock(&info->block_group_cache_lock);
6999 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7000 block_group = rb_entry(n, struct btrfs_block_group_cache,
7001 cache_node);
7002 rb_erase(&block_group->cache_node,
7003 &info->block_group_cache_tree);
7004 spin_unlock(&info->block_group_cache_lock);
7005
7006 down_write(&block_group->space_info->groups_sem);
7007 list_del(&block_group->list);
7008 up_write(&block_group->space_info->groups_sem);
7009
7010 if (block_group->cached == BTRFS_CACHE_STARTED)
7011 wait_block_group_cache_done(block_group);
7012
7013 /*
7014 * We haven't cached this block group, which means we could
7015 * possibly have excluded extents on this block group.
7016 */
7017 if (block_group->cached == BTRFS_CACHE_NO)
7018 free_excluded_extents(info->extent_root, block_group);
7019
7020 btrfs_remove_free_space_cache(block_group);
7021 btrfs_put_block_group(block_group);
7022
7023 spin_lock(&info->block_group_cache_lock);
7024 }
7025 spin_unlock(&info->block_group_cache_lock);
7026
7027 /* now that all the block groups are freed, go through and
7028 * free all the space_info structs. This is only called during
7029 * the final stages of unmount, and so we know nobody is
7030 * using them. We call synchronize_rcu() once before we start,
7031 * just to be on the safe side.
7032 */
7033 synchronize_rcu();
7034
7035 release_global_block_rsv(info);
7036
7037 while(!list_empty(&info->space_info)) {
7038 space_info = list_entry(info->space_info.next,
7039 struct btrfs_space_info,
7040 list);
7041 if (space_info->bytes_pinned > 0 ||
7042 space_info->bytes_reserved > 0 ||
7043 space_info->bytes_may_use > 0) {
7044 WARN_ON(1);
7045 dump_space_info(space_info, 0, 0);
7046 }
7047 list_del(&space_info->list);
7048 kfree(space_info);
7049 }
7050 return 0;
7051 }
7052
7053 static void __link_block_group(struct btrfs_space_info *space_info,
7054 struct btrfs_block_group_cache *cache)
7055 {
7056 int index = get_block_group_index(cache);
7057
7058 down_write(&space_info->groups_sem);
7059 list_add_tail(&cache->list, &space_info->block_groups[index]);
7060 up_write(&space_info->groups_sem);
7061 }
7062
7063 int btrfs_read_block_groups(struct btrfs_root *root)
7064 {
7065 struct btrfs_path *path;
7066 int ret;
7067 struct btrfs_block_group_cache *cache;
7068 struct btrfs_fs_info *info = root->fs_info;
7069 struct btrfs_space_info *space_info;
7070 struct btrfs_key key;
7071 struct btrfs_key found_key;
7072 struct extent_buffer *leaf;
7073 int need_clear = 0;
7074 u64 cache_gen;
7075
7076 root = info->extent_root;
7077 key.objectid = 0;
7078 key.offset = 0;
7079 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7080 path = btrfs_alloc_path();
7081 if (!path)
7082 return -ENOMEM;
7083 path->reada = 1;
7084
7085 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
7086 if (btrfs_test_opt(root, SPACE_CACHE) &&
7087 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
7088 need_clear = 1;
7089 if (btrfs_test_opt(root, CLEAR_CACHE))
7090 need_clear = 1;
7091
7092 while (1) {
7093 ret = find_first_block_group(root, path, &key);
7094 if (ret > 0)
7095 break;
7096 if (ret != 0)
7097 goto error;
7098 leaf = path->nodes[0];
7099 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7100 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7101 if (!cache) {
7102 ret = -ENOMEM;
7103 goto error;
7104 }
7105 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7106 GFP_NOFS);
7107 if (!cache->free_space_ctl) {
7108 kfree(cache);
7109 ret = -ENOMEM;
7110 goto error;
7111 }
7112
7113 atomic_set(&cache->count, 1);
7114 spin_lock_init(&cache->lock);
7115 cache->fs_info = info;
7116 INIT_LIST_HEAD(&cache->list);
7117 INIT_LIST_HEAD(&cache->cluster_list);
7118
7119 if (need_clear)
7120 cache->disk_cache_state = BTRFS_DC_CLEAR;
7121
7122 read_extent_buffer(leaf, &cache->item,
7123 btrfs_item_ptr_offset(leaf, path->slots[0]),
7124 sizeof(cache->item));
7125 memcpy(&cache->key, &found_key, sizeof(found_key));
7126
7127 key.objectid = found_key.objectid + found_key.offset;
7128 btrfs_release_path(path);
7129 cache->flags = btrfs_block_group_flags(&cache->item);
7130 cache->sectorsize = root->sectorsize;
7131
7132 btrfs_init_free_space_ctl(cache);
7133
7134 /*
7135 * We need to exclude the super stripes now so that the space
7136 * info has super bytes accounted for, otherwise we'll think
7137 * we have more space than we actually do.
7138 */
7139 exclude_super_stripes(root, cache);
7140
7141 /*
7142 * check for two cases, either we are full, and therefore
7143 * don't need to bother with the caching work since we won't
7144 * find any space, or we are empty, and we can just add all
7145 * the space in and be done with it. This saves us _alot_ of
7146 * time, particularly in the full case.
7147 */
7148 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7149 cache->last_byte_to_unpin = (u64)-1;
7150 cache->cached = BTRFS_CACHE_FINISHED;
7151 free_excluded_extents(root, cache);
7152 } else if (btrfs_block_group_used(&cache->item) == 0) {
7153 cache->last_byte_to_unpin = (u64)-1;
7154 cache->cached = BTRFS_CACHE_FINISHED;
7155 add_new_free_space(cache, root->fs_info,
7156 found_key.objectid,
7157 found_key.objectid +
7158 found_key.offset);
7159 free_excluded_extents(root, cache);
7160 }
7161
7162 ret = update_space_info(info, cache->flags, found_key.offset,
7163 btrfs_block_group_used(&cache->item),
7164 &space_info);
7165 BUG_ON(ret);
7166 cache->space_info = space_info;
7167 spin_lock(&cache->space_info->lock);
7168 cache->space_info->bytes_readonly += cache->bytes_super;
7169 spin_unlock(&cache->space_info->lock);
7170
7171 __link_block_group(space_info, cache);
7172
7173 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7174 BUG_ON(ret);
7175
7176 set_avail_alloc_bits(root->fs_info, cache->flags);
7177 if (btrfs_chunk_readonly(root, cache->key.objectid))
7178 set_block_group_ro(cache, 1);
7179 }
7180
7181 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7182 if (!(get_alloc_profile(root, space_info->flags) &
7183 (BTRFS_BLOCK_GROUP_RAID10 |
7184 BTRFS_BLOCK_GROUP_RAID1 |
7185 BTRFS_BLOCK_GROUP_DUP)))
7186 continue;
7187 /*
7188 * avoid allocating from un-mirrored block group if there are
7189 * mirrored block groups.
7190 */
7191 list_for_each_entry(cache, &space_info->block_groups[3], list)
7192 set_block_group_ro(cache, 1);
7193 list_for_each_entry(cache, &space_info->block_groups[4], list)
7194 set_block_group_ro(cache, 1);
7195 }
7196
7197 init_global_block_rsv(info);
7198 ret = 0;
7199 error:
7200 btrfs_free_path(path);
7201 return ret;
7202 }
7203
7204 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7205 struct btrfs_root *root, u64 bytes_used,
7206 u64 type, u64 chunk_objectid, u64 chunk_offset,
7207 u64 size)
7208 {
7209 int ret;
7210 struct btrfs_root *extent_root;
7211 struct btrfs_block_group_cache *cache;
7212
7213 extent_root = root->fs_info->extent_root;
7214
7215 root->fs_info->last_trans_log_full_commit = trans->transid;
7216
7217 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7218 if (!cache)
7219 return -ENOMEM;
7220 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7221 GFP_NOFS);
7222 if (!cache->free_space_ctl) {
7223 kfree(cache);
7224 return -ENOMEM;
7225 }
7226
7227 cache->key.objectid = chunk_offset;
7228 cache->key.offset = size;
7229 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7230 cache->sectorsize = root->sectorsize;
7231 cache->fs_info = root->fs_info;
7232
7233 atomic_set(&cache->count, 1);
7234 spin_lock_init(&cache->lock);
7235 INIT_LIST_HEAD(&cache->list);
7236 INIT_LIST_HEAD(&cache->cluster_list);
7237
7238 btrfs_init_free_space_ctl(cache);
7239
7240 btrfs_set_block_group_used(&cache->item, bytes_used);
7241 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7242 cache->flags = type;
7243 btrfs_set_block_group_flags(&cache->item, type);
7244
7245 cache->last_byte_to_unpin = (u64)-1;
7246 cache->cached = BTRFS_CACHE_FINISHED;
7247 exclude_super_stripes(root, cache);
7248
7249 add_new_free_space(cache, root->fs_info, chunk_offset,
7250 chunk_offset + size);
7251
7252 free_excluded_extents(root, cache);
7253
7254 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7255 &cache->space_info);
7256 BUG_ON(ret);
7257
7258 spin_lock(&cache->space_info->lock);
7259 cache->space_info->bytes_readonly += cache->bytes_super;
7260 spin_unlock(&cache->space_info->lock);
7261
7262 __link_block_group(cache->space_info, cache);
7263
7264 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7265 BUG_ON(ret);
7266
7267 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7268 sizeof(cache->item));
7269 BUG_ON(ret);
7270
7271 set_avail_alloc_bits(extent_root->fs_info, type);
7272
7273 return 0;
7274 }
7275
7276 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7277 struct btrfs_root *root, u64 group_start)
7278 {
7279 struct btrfs_path *path;
7280 struct btrfs_block_group_cache *block_group;
7281 struct btrfs_free_cluster *cluster;
7282 struct btrfs_root *tree_root = root->fs_info->tree_root;
7283 struct btrfs_key key;
7284 struct inode *inode;
7285 int ret;
7286 int factor;
7287
7288 root = root->fs_info->extent_root;
7289
7290 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7291 BUG_ON(!block_group);
7292 BUG_ON(!block_group->ro);
7293
7294 /*
7295 * Free the reserved super bytes from this block group before
7296 * remove it.
7297 */
7298 free_excluded_extents(root, block_group);
7299
7300 memcpy(&key, &block_group->key, sizeof(key));
7301 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7302 BTRFS_BLOCK_GROUP_RAID1 |
7303 BTRFS_BLOCK_GROUP_RAID10))
7304 factor = 2;
7305 else
7306 factor = 1;
7307
7308 /* make sure this block group isn't part of an allocation cluster */
7309 cluster = &root->fs_info->data_alloc_cluster;
7310 spin_lock(&cluster->refill_lock);
7311 btrfs_return_cluster_to_free_space(block_group, cluster);
7312 spin_unlock(&cluster->refill_lock);
7313
7314 /*
7315 * make sure this block group isn't part of a metadata
7316 * allocation cluster
7317 */
7318 cluster = &root->fs_info->meta_alloc_cluster;
7319 spin_lock(&cluster->refill_lock);
7320 btrfs_return_cluster_to_free_space(block_group, cluster);
7321 spin_unlock(&cluster->refill_lock);
7322
7323 path = btrfs_alloc_path();
7324 if (!path) {
7325 ret = -ENOMEM;
7326 goto out;
7327 }
7328
7329 inode = lookup_free_space_inode(tree_root, block_group, path);
7330 if (!IS_ERR(inode)) {
7331 ret = btrfs_orphan_add(trans, inode);
7332 BUG_ON(ret);
7333 clear_nlink(inode);
7334 /* One for the block groups ref */
7335 spin_lock(&block_group->lock);
7336 if (block_group->iref) {
7337 block_group->iref = 0;
7338 block_group->inode = NULL;
7339 spin_unlock(&block_group->lock);
7340 iput(inode);
7341 } else {
7342 spin_unlock(&block_group->lock);
7343 }
7344 /* One for our lookup ref */
7345 btrfs_add_delayed_iput(inode);
7346 }
7347
7348 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7349 key.offset = block_group->key.objectid;
7350 key.type = 0;
7351
7352 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7353 if (ret < 0)
7354 goto out;
7355 if (ret > 0)
7356 btrfs_release_path(path);
7357 if (ret == 0) {
7358 ret = btrfs_del_item(trans, tree_root, path);
7359 if (ret)
7360 goto out;
7361 btrfs_release_path(path);
7362 }
7363
7364 spin_lock(&root->fs_info->block_group_cache_lock);
7365 rb_erase(&block_group->cache_node,
7366 &root->fs_info->block_group_cache_tree);
7367 spin_unlock(&root->fs_info->block_group_cache_lock);
7368
7369 down_write(&block_group->space_info->groups_sem);
7370 /*
7371 * we must use list_del_init so people can check to see if they
7372 * are still on the list after taking the semaphore
7373 */
7374 list_del_init(&block_group->list);
7375 up_write(&block_group->space_info->groups_sem);
7376
7377 if (block_group->cached == BTRFS_CACHE_STARTED)
7378 wait_block_group_cache_done(block_group);
7379
7380 btrfs_remove_free_space_cache(block_group);
7381
7382 spin_lock(&block_group->space_info->lock);
7383 block_group->space_info->total_bytes -= block_group->key.offset;
7384 block_group->space_info->bytes_readonly -= block_group->key.offset;
7385 block_group->space_info->disk_total -= block_group->key.offset * factor;
7386 spin_unlock(&block_group->space_info->lock);
7387
7388 memcpy(&key, &block_group->key, sizeof(key));
7389
7390 btrfs_clear_space_info_full(root->fs_info);
7391
7392 btrfs_put_block_group(block_group);
7393 btrfs_put_block_group(block_group);
7394
7395 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7396 if (ret > 0)
7397 ret = -EIO;
7398 if (ret < 0)
7399 goto out;
7400
7401 ret = btrfs_del_item(trans, root, path);
7402 out:
7403 btrfs_free_path(path);
7404 return ret;
7405 }
7406
7407 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7408 {
7409 struct btrfs_space_info *space_info;
7410 struct btrfs_super_block *disk_super;
7411 u64 features;
7412 u64 flags;
7413 int mixed = 0;
7414 int ret;
7415
7416 disk_super = &fs_info->super_copy;
7417 if (!btrfs_super_root(disk_super))
7418 return 1;
7419
7420 features = btrfs_super_incompat_flags(disk_super);
7421 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7422 mixed = 1;
7423
7424 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7425 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7426 if (ret)
7427 goto out;
7428
7429 if (mixed) {
7430 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7431 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7432 } else {
7433 flags = BTRFS_BLOCK_GROUP_METADATA;
7434 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7435 if (ret)
7436 goto out;
7437
7438 flags = BTRFS_BLOCK_GROUP_DATA;
7439 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7440 }
7441 out:
7442 return ret;
7443 }
7444
7445 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7446 {
7447 return unpin_extent_range(root, start, end);
7448 }
7449
7450 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7451 u64 num_bytes, u64 *actual_bytes)
7452 {
7453 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7454 }
7455
7456 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7457 {
7458 struct btrfs_fs_info *fs_info = root->fs_info;
7459 struct btrfs_block_group_cache *cache = NULL;
7460 u64 group_trimmed;
7461 u64 start;
7462 u64 end;
7463 u64 trimmed = 0;
7464 int ret = 0;
7465
7466 cache = btrfs_lookup_block_group(fs_info, range->start);
7467
7468 while (cache) {
7469 if (cache->key.objectid >= (range->start + range->len)) {
7470 btrfs_put_block_group(cache);
7471 break;
7472 }
7473
7474 start = max(range->start, cache->key.objectid);
7475 end = min(range->start + range->len,
7476 cache->key.objectid + cache->key.offset);
7477
7478 if (end - start >= range->minlen) {
7479 if (!block_group_cache_done(cache)) {
7480 ret = cache_block_group(cache, NULL, root, 0);
7481 if (!ret)
7482 wait_block_group_cache_done(cache);
7483 }
7484 ret = btrfs_trim_block_group(cache,
7485 &group_trimmed,
7486 start,
7487 end,
7488 range->minlen);
7489
7490 trimmed += group_trimmed;
7491 if (ret) {
7492 btrfs_put_block_group(cache);
7493 break;
7494 }
7495 }
7496
7497 cache = next_block_group(fs_info->tree_root, cache);
7498 }
7499
7500 range->len = trimmed;
7501 return ret;
7502 }
This page took 0.400762 seconds and 6 git commands to generate.