btrfs: don't BUG_ON allocation errors in btrfs_drop_snapshot
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
39 *
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 */
49 enum {
50 CHUNK_ALLOC_NO_FORCE = 0,
51 CHUNK_ALLOC_FORCE = 1,
52 CHUNK_ALLOC_LIMITED = 2,
53 };
54
55 static int update_block_group(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 bytenr, u64 num_bytes, int alloc);
58 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
59 struct btrfs_root *root,
60 u64 bytenr, u64 num_bytes, u64 parent,
61 u64 root_objectid, u64 owner_objectid,
62 u64 owner_offset, int refs_to_drop,
63 struct btrfs_delayed_extent_op *extra_op);
64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
65 struct extent_buffer *leaf,
66 struct btrfs_extent_item *ei);
67 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_root *root,
69 u64 parent, u64 root_objectid,
70 u64 flags, u64 owner, u64 offset,
71 struct btrfs_key *ins, int ref_mod);
72 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 parent, u64 root_objectid,
75 u64 flags, struct btrfs_disk_key *key,
76 int level, struct btrfs_key *ins);
77 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
78 struct btrfs_root *extent_root, u64 alloc_bytes,
79 u64 flags, int force);
80 static int find_next_key(struct btrfs_path *path, int level,
81 struct btrfs_key *key);
82 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
83 int dump_block_groups);
84
85 static noinline int
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED;
90 }
91
92 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
93 {
94 return (cache->flags & bits) == bits;
95 }
96
97 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
98 {
99 atomic_inc(&cache->count);
100 }
101
102 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
103 {
104 if (atomic_dec_and_test(&cache->count)) {
105 WARN_ON(cache->pinned > 0);
106 WARN_ON(cache->reserved > 0);
107 WARN_ON(cache->reserved_pinned > 0);
108 kfree(cache->free_space_ctl);
109 kfree(cache);
110 }
111 }
112
113 /*
114 * this adds the block group to the fs_info rb tree for the block group
115 * cache
116 */
117 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
118 struct btrfs_block_group_cache *block_group)
119 {
120 struct rb_node **p;
121 struct rb_node *parent = NULL;
122 struct btrfs_block_group_cache *cache;
123
124 spin_lock(&info->block_group_cache_lock);
125 p = &info->block_group_cache_tree.rb_node;
126
127 while (*p) {
128 parent = *p;
129 cache = rb_entry(parent, struct btrfs_block_group_cache,
130 cache_node);
131 if (block_group->key.objectid < cache->key.objectid) {
132 p = &(*p)->rb_left;
133 } else if (block_group->key.objectid > cache->key.objectid) {
134 p = &(*p)->rb_right;
135 } else {
136 spin_unlock(&info->block_group_cache_lock);
137 return -EEXIST;
138 }
139 }
140
141 rb_link_node(&block_group->cache_node, parent, p);
142 rb_insert_color(&block_group->cache_node,
143 &info->block_group_cache_tree);
144 spin_unlock(&info->block_group_cache_lock);
145
146 return 0;
147 }
148
149 /*
150 * This will return the block group at or after bytenr if contains is 0, else
151 * it will return the block group that contains the bytenr
152 */
153 static struct btrfs_block_group_cache *
154 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
155 int contains)
156 {
157 struct btrfs_block_group_cache *cache, *ret = NULL;
158 struct rb_node *n;
159 u64 end, start;
160
161 spin_lock(&info->block_group_cache_lock);
162 n = info->block_group_cache_tree.rb_node;
163
164 while (n) {
165 cache = rb_entry(n, struct btrfs_block_group_cache,
166 cache_node);
167 end = cache->key.objectid + cache->key.offset - 1;
168 start = cache->key.objectid;
169
170 if (bytenr < start) {
171 if (!contains && (!ret || start < ret->key.objectid))
172 ret = cache;
173 n = n->rb_left;
174 } else if (bytenr > start) {
175 if (contains && bytenr <= end) {
176 ret = cache;
177 break;
178 }
179 n = n->rb_right;
180 } else {
181 ret = cache;
182 break;
183 }
184 }
185 if (ret)
186 btrfs_get_block_group(ret);
187 spin_unlock(&info->block_group_cache_lock);
188
189 return ret;
190 }
191
192 static int add_excluded_extent(struct btrfs_root *root,
193 u64 start, u64 num_bytes)
194 {
195 u64 end = start + num_bytes - 1;
196 set_extent_bits(&root->fs_info->freed_extents[0],
197 start, end, EXTENT_UPTODATE, GFP_NOFS);
198 set_extent_bits(&root->fs_info->freed_extents[1],
199 start, end, EXTENT_UPTODATE, GFP_NOFS);
200 return 0;
201 }
202
203 static void free_excluded_extents(struct btrfs_root *root,
204 struct btrfs_block_group_cache *cache)
205 {
206 u64 start, end;
207
208 start = cache->key.objectid;
209 end = start + cache->key.offset - 1;
210
211 clear_extent_bits(&root->fs_info->freed_extents[0],
212 start, end, EXTENT_UPTODATE, GFP_NOFS);
213 clear_extent_bits(&root->fs_info->freed_extents[1],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
215 }
216
217 static int exclude_super_stripes(struct btrfs_root *root,
218 struct btrfs_block_group_cache *cache)
219 {
220 u64 bytenr;
221 u64 *logical;
222 int stripe_len;
223 int i, nr, ret;
224
225 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
226 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
227 cache->bytes_super += stripe_len;
228 ret = add_excluded_extent(root, cache->key.objectid,
229 stripe_len);
230 BUG_ON(ret);
231 }
232
233 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
234 bytenr = btrfs_sb_offset(i);
235 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
236 cache->key.objectid, bytenr,
237 0, &logical, &nr, &stripe_len);
238 BUG_ON(ret);
239
240 while (nr--) {
241 cache->bytes_super += stripe_len;
242 ret = add_excluded_extent(root, logical[nr],
243 stripe_len);
244 BUG_ON(ret);
245 }
246
247 kfree(logical);
248 }
249 return 0;
250 }
251
252 static struct btrfs_caching_control *
253 get_caching_control(struct btrfs_block_group_cache *cache)
254 {
255 struct btrfs_caching_control *ctl;
256
257 spin_lock(&cache->lock);
258 if (cache->cached != BTRFS_CACHE_STARTED) {
259 spin_unlock(&cache->lock);
260 return NULL;
261 }
262
263 /* We're loading it the fast way, so we don't have a caching_ctl. */
264 if (!cache->caching_ctl) {
265 spin_unlock(&cache->lock);
266 return NULL;
267 }
268
269 ctl = cache->caching_ctl;
270 atomic_inc(&ctl->count);
271 spin_unlock(&cache->lock);
272 return ctl;
273 }
274
275 static void put_caching_control(struct btrfs_caching_control *ctl)
276 {
277 if (atomic_dec_and_test(&ctl->count))
278 kfree(ctl);
279 }
280
281 /*
282 * this is only called by cache_block_group, since we could have freed extents
283 * we need to check the pinned_extents for any extents that can't be used yet
284 * since their free space will be released as soon as the transaction commits.
285 */
286 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
287 struct btrfs_fs_info *info, u64 start, u64 end)
288 {
289 u64 extent_start, extent_end, size, total_added = 0;
290 int ret;
291
292 while (start < end) {
293 ret = find_first_extent_bit(info->pinned_extents, start,
294 &extent_start, &extent_end,
295 EXTENT_DIRTY | EXTENT_UPTODATE);
296 if (ret)
297 break;
298
299 if (extent_start <= start) {
300 start = extent_end + 1;
301 } else if (extent_start > start && extent_start < end) {
302 size = extent_start - start;
303 total_added += size;
304 ret = btrfs_add_free_space(block_group, start,
305 size);
306 BUG_ON(ret);
307 start = extent_end + 1;
308 } else {
309 break;
310 }
311 }
312
313 if (start < end) {
314 size = end - start;
315 total_added += size;
316 ret = btrfs_add_free_space(block_group, start, size);
317 BUG_ON(ret);
318 }
319
320 return total_added;
321 }
322
323 static int caching_kthread(void *data)
324 {
325 struct btrfs_block_group_cache *block_group = data;
326 struct btrfs_fs_info *fs_info = block_group->fs_info;
327 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
328 struct btrfs_root *extent_root = fs_info->extent_root;
329 struct btrfs_path *path;
330 struct extent_buffer *leaf;
331 struct btrfs_key key;
332 u64 total_found = 0;
333 u64 last = 0;
334 u32 nritems;
335 int ret = 0;
336
337 path = btrfs_alloc_path();
338 if (!path)
339 return -ENOMEM;
340
341 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
342
343 /*
344 * We don't want to deadlock with somebody trying to allocate a new
345 * extent for the extent root while also trying to search the extent
346 * root to add free space. So we skip locking and search the commit
347 * root, since its read-only
348 */
349 path->skip_locking = 1;
350 path->search_commit_root = 1;
351 path->reada = 1;
352
353 key.objectid = last;
354 key.offset = 0;
355 key.type = BTRFS_EXTENT_ITEM_KEY;
356 again:
357 mutex_lock(&caching_ctl->mutex);
358 /* need to make sure the commit_root doesn't disappear */
359 down_read(&fs_info->extent_commit_sem);
360
361 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
362 if (ret < 0)
363 goto err;
364
365 leaf = path->nodes[0];
366 nritems = btrfs_header_nritems(leaf);
367
368 while (1) {
369 if (btrfs_fs_closing(fs_info) > 1) {
370 last = (u64)-1;
371 break;
372 }
373
374 if (path->slots[0] < nritems) {
375 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
376 } else {
377 ret = find_next_key(path, 0, &key);
378 if (ret)
379 break;
380
381 if (need_resched() ||
382 btrfs_next_leaf(extent_root, path)) {
383 caching_ctl->progress = last;
384 btrfs_release_path(path);
385 up_read(&fs_info->extent_commit_sem);
386 mutex_unlock(&caching_ctl->mutex);
387 cond_resched();
388 goto again;
389 }
390 leaf = path->nodes[0];
391 nritems = btrfs_header_nritems(leaf);
392 continue;
393 }
394
395 if (key.objectid < block_group->key.objectid) {
396 path->slots[0]++;
397 continue;
398 }
399
400 if (key.objectid >= block_group->key.objectid +
401 block_group->key.offset)
402 break;
403
404 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
405 total_found += add_new_free_space(block_group,
406 fs_info, last,
407 key.objectid);
408 last = key.objectid + key.offset;
409
410 if (total_found > (1024 * 1024 * 2)) {
411 total_found = 0;
412 wake_up(&caching_ctl->wait);
413 }
414 }
415 path->slots[0]++;
416 }
417 ret = 0;
418
419 total_found += add_new_free_space(block_group, fs_info, last,
420 block_group->key.objectid +
421 block_group->key.offset);
422 caching_ctl->progress = (u64)-1;
423
424 spin_lock(&block_group->lock);
425 block_group->caching_ctl = NULL;
426 block_group->cached = BTRFS_CACHE_FINISHED;
427 spin_unlock(&block_group->lock);
428
429 err:
430 btrfs_free_path(path);
431 up_read(&fs_info->extent_commit_sem);
432
433 free_excluded_extents(extent_root, block_group);
434
435 mutex_unlock(&caching_ctl->mutex);
436 wake_up(&caching_ctl->wait);
437
438 put_caching_control(caching_ctl);
439 atomic_dec(&block_group->space_info->caching_threads);
440 btrfs_put_block_group(block_group);
441
442 return 0;
443 }
444
445 static int cache_block_group(struct btrfs_block_group_cache *cache,
446 struct btrfs_trans_handle *trans,
447 struct btrfs_root *root,
448 int load_cache_only)
449 {
450 struct btrfs_fs_info *fs_info = cache->fs_info;
451 struct btrfs_caching_control *caching_ctl;
452 struct task_struct *tsk;
453 int ret = 0;
454
455 smp_mb();
456 if (cache->cached != BTRFS_CACHE_NO)
457 return 0;
458
459 /*
460 * We can't do the read from on-disk cache during a commit since we need
461 * to have the normal tree locking. Also if we are currently trying to
462 * allocate blocks for the tree root we can't do the fast caching since
463 * we likely hold important locks.
464 */
465 if (trans && (!trans->transaction->in_commit) &&
466 (root && root != root->fs_info->tree_root)) {
467 spin_lock(&cache->lock);
468 if (cache->cached != BTRFS_CACHE_NO) {
469 spin_unlock(&cache->lock);
470 return 0;
471 }
472 cache->cached = BTRFS_CACHE_STARTED;
473 spin_unlock(&cache->lock);
474
475 ret = load_free_space_cache(fs_info, cache);
476
477 spin_lock(&cache->lock);
478 if (ret == 1) {
479 cache->cached = BTRFS_CACHE_FINISHED;
480 cache->last_byte_to_unpin = (u64)-1;
481 } else {
482 cache->cached = BTRFS_CACHE_NO;
483 }
484 spin_unlock(&cache->lock);
485 if (ret == 1) {
486 free_excluded_extents(fs_info->extent_root, cache);
487 return 0;
488 }
489 }
490
491 if (load_cache_only)
492 return 0;
493
494 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
495 BUG_ON(!caching_ctl);
496
497 INIT_LIST_HEAD(&caching_ctl->list);
498 mutex_init(&caching_ctl->mutex);
499 init_waitqueue_head(&caching_ctl->wait);
500 caching_ctl->block_group = cache;
501 caching_ctl->progress = cache->key.objectid;
502 /* one for caching kthread, one for caching block group list */
503 atomic_set(&caching_ctl->count, 2);
504
505 spin_lock(&cache->lock);
506 if (cache->cached != BTRFS_CACHE_NO) {
507 spin_unlock(&cache->lock);
508 kfree(caching_ctl);
509 return 0;
510 }
511 cache->caching_ctl = caching_ctl;
512 cache->cached = BTRFS_CACHE_STARTED;
513 spin_unlock(&cache->lock);
514
515 down_write(&fs_info->extent_commit_sem);
516 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
517 up_write(&fs_info->extent_commit_sem);
518
519 atomic_inc(&cache->space_info->caching_threads);
520 btrfs_get_block_group(cache);
521
522 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
523 cache->key.objectid);
524 if (IS_ERR(tsk)) {
525 ret = PTR_ERR(tsk);
526 printk(KERN_ERR "error running thread %d\n", ret);
527 BUG();
528 }
529
530 return ret;
531 }
532
533 /*
534 * return the block group that starts at or after bytenr
535 */
536 static struct btrfs_block_group_cache *
537 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
538 {
539 struct btrfs_block_group_cache *cache;
540
541 cache = block_group_cache_tree_search(info, bytenr, 0);
542
543 return cache;
544 }
545
546 /*
547 * return the block group that contains the given bytenr
548 */
549 struct btrfs_block_group_cache *btrfs_lookup_block_group(
550 struct btrfs_fs_info *info,
551 u64 bytenr)
552 {
553 struct btrfs_block_group_cache *cache;
554
555 cache = block_group_cache_tree_search(info, bytenr, 1);
556
557 return cache;
558 }
559
560 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
561 u64 flags)
562 {
563 struct list_head *head = &info->space_info;
564 struct btrfs_space_info *found;
565
566 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
567 BTRFS_BLOCK_GROUP_METADATA;
568
569 rcu_read_lock();
570 list_for_each_entry_rcu(found, head, list) {
571 if (found->flags & flags) {
572 rcu_read_unlock();
573 return found;
574 }
575 }
576 rcu_read_unlock();
577 return NULL;
578 }
579
580 /*
581 * after adding space to the filesystem, we need to clear the full flags
582 * on all the space infos.
583 */
584 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
585 {
586 struct list_head *head = &info->space_info;
587 struct btrfs_space_info *found;
588
589 rcu_read_lock();
590 list_for_each_entry_rcu(found, head, list)
591 found->full = 0;
592 rcu_read_unlock();
593 }
594
595 static u64 div_factor(u64 num, int factor)
596 {
597 if (factor == 10)
598 return num;
599 num *= factor;
600 do_div(num, 10);
601 return num;
602 }
603
604 static u64 div_factor_fine(u64 num, int factor)
605 {
606 if (factor == 100)
607 return num;
608 num *= factor;
609 do_div(num, 100);
610 return num;
611 }
612
613 u64 btrfs_find_block_group(struct btrfs_root *root,
614 u64 search_start, u64 search_hint, int owner)
615 {
616 struct btrfs_block_group_cache *cache;
617 u64 used;
618 u64 last = max(search_hint, search_start);
619 u64 group_start = 0;
620 int full_search = 0;
621 int factor = 9;
622 int wrapped = 0;
623 again:
624 while (1) {
625 cache = btrfs_lookup_first_block_group(root->fs_info, last);
626 if (!cache)
627 break;
628
629 spin_lock(&cache->lock);
630 last = cache->key.objectid + cache->key.offset;
631 used = btrfs_block_group_used(&cache->item);
632
633 if ((full_search || !cache->ro) &&
634 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
635 if (used + cache->pinned + cache->reserved <
636 div_factor(cache->key.offset, factor)) {
637 group_start = cache->key.objectid;
638 spin_unlock(&cache->lock);
639 btrfs_put_block_group(cache);
640 goto found;
641 }
642 }
643 spin_unlock(&cache->lock);
644 btrfs_put_block_group(cache);
645 cond_resched();
646 }
647 if (!wrapped) {
648 last = search_start;
649 wrapped = 1;
650 goto again;
651 }
652 if (!full_search && factor < 10) {
653 last = search_start;
654 full_search = 1;
655 factor = 10;
656 goto again;
657 }
658 found:
659 return group_start;
660 }
661
662 /* simple helper to search for an existing extent at a given offset */
663 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
664 {
665 int ret;
666 struct btrfs_key key;
667 struct btrfs_path *path;
668
669 path = btrfs_alloc_path();
670 if (!path)
671 return -ENOMEM;
672
673 key.objectid = start;
674 key.offset = len;
675 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
676 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
677 0, 0);
678 btrfs_free_path(path);
679 return ret;
680 }
681
682 /*
683 * helper function to lookup reference count and flags of extent.
684 *
685 * the head node for delayed ref is used to store the sum of all the
686 * reference count modifications queued up in the rbtree. the head
687 * node may also store the extent flags to set. This way you can check
688 * to see what the reference count and extent flags would be if all of
689 * the delayed refs are not processed.
690 */
691 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
692 struct btrfs_root *root, u64 bytenr,
693 u64 num_bytes, u64 *refs, u64 *flags)
694 {
695 struct btrfs_delayed_ref_head *head;
696 struct btrfs_delayed_ref_root *delayed_refs;
697 struct btrfs_path *path;
698 struct btrfs_extent_item *ei;
699 struct extent_buffer *leaf;
700 struct btrfs_key key;
701 u32 item_size;
702 u64 num_refs;
703 u64 extent_flags;
704 int ret;
705
706 path = btrfs_alloc_path();
707 if (!path)
708 return -ENOMEM;
709
710 key.objectid = bytenr;
711 key.type = BTRFS_EXTENT_ITEM_KEY;
712 key.offset = num_bytes;
713 if (!trans) {
714 path->skip_locking = 1;
715 path->search_commit_root = 1;
716 }
717 again:
718 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
719 &key, path, 0, 0);
720 if (ret < 0)
721 goto out_free;
722
723 if (ret == 0) {
724 leaf = path->nodes[0];
725 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
726 if (item_size >= sizeof(*ei)) {
727 ei = btrfs_item_ptr(leaf, path->slots[0],
728 struct btrfs_extent_item);
729 num_refs = btrfs_extent_refs(leaf, ei);
730 extent_flags = btrfs_extent_flags(leaf, ei);
731 } else {
732 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
733 struct btrfs_extent_item_v0 *ei0;
734 BUG_ON(item_size != sizeof(*ei0));
735 ei0 = btrfs_item_ptr(leaf, path->slots[0],
736 struct btrfs_extent_item_v0);
737 num_refs = btrfs_extent_refs_v0(leaf, ei0);
738 /* FIXME: this isn't correct for data */
739 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
740 #else
741 BUG();
742 #endif
743 }
744 BUG_ON(num_refs == 0);
745 } else {
746 num_refs = 0;
747 extent_flags = 0;
748 ret = 0;
749 }
750
751 if (!trans)
752 goto out;
753
754 delayed_refs = &trans->transaction->delayed_refs;
755 spin_lock(&delayed_refs->lock);
756 head = btrfs_find_delayed_ref_head(trans, bytenr);
757 if (head) {
758 if (!mutex_trylock(&head->mutex)) {
759 atomic_inc(&head->node.refs);
760 spin_unlock(&delayed_refs->lock);
761
762 btrfs_release_path(path);
763
764 /*
765 * Mutex was contended, block until it's released and try
766 * again
767 */
768 mutex_lock(&head->mutex);
769 mutex_unlock(&head->mutex);
770 btrfs_put_delayed_ref(&head->node);
771 goto again;
772 }
773 if (head->extent_op && head->extent_op->update_flags)
774 extent_flags |= head->extent_op->flags_to_set;
775 else
776 BUG_ON(num_refs == 0);
777
778 num_refs += head->node.ref_mod;
779 mutex_unlock(&head->mutex);
780 }
781 spin_unlock(&delayed_refs->lock);
782 out:
783 WARN_ON(num_refs == 0);
784 if (refs)
785 *refs = num_refs;
786 if (flags)
787 *flags = extent_flags;
788 out_free:
789 btrfs_free_path(path);
790 return ret;
791 }
792
793 /*
794 * Back reference rules. Back refs have three main goals:
795 *
796 * 1) differentiate between all holders of references to an extent so that
797 * when a reference is dropped we can make sure it was a valid reference
798 * before freeing the extent.
799 *
800 * 2) Provide enough information to quickly find the holders of an extent
801 * if we notice a given block is corrupted or bad.
802 *
803 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
804 * maintenance. This is actually the same as #2, but with a slightly
805 * different use case.
806 *
807 * There are two kinds of back refs. The implicit back refs is optimized
808 * for pointers in non-shared tree blocks. For a given pointer in a block,
809 * back refs of this kind provide information about the block's owner tree
810 * and the pointer's key. These information allow us to find the block by
811 * b-tree searching. The full back refs is for pointers in tree blocks not
812 * referenced by their owner trees. The location of tree block is recorded
813 * in the back refs. Actually the full back refs is generic, and can be
814 * used in all cases the implicit back refs is used. The major shortcoming
815 * of the full back refs is its overhead. Every time a tree block gets
816 * COWed, we have to update back refs entry for all pointers in it.
817 *
818 * For a newly allocated tree block, we use implicit back refs for
819 * pointers in it. This means most tree related operations only involve
820 * implicit back refs. For a tree block created in old transaction, the
821 * only way to drop a reference to it is COW it. So we can detect the
822 * event that tree block loses its owner tree's reference and do the
823 * back refs conversion.
824 *
825 * When a tree block is COW'd through a tree, there are four cases:
826 *
827 * The reference count of the block is one and the tree is the block's
828 * owner tree. Nothing to do in this case.
829 *
830 * The reference count of the block is one and the tree is not the
831 * block's owner tree. In this case, full back refs is used for pointers
832 * in the block. Remove these full back refs, add implicit back refs for
833 * every pointers in the new block.
834 *
835 * The reference count of the block is greater than one and the tree is
836 * the block's owner tree. In this case, implicit back refs is used for
837 * pointers in the block. Add full back refs for every pointers in the
838 * block, increase lower level extents' reference counts. The original
839 * implicit back refs are entailed to the new block.
840 *
841 * The reference count of the block is greater than one and the tree is
842 * not the block's owner tree. Add implicit back refs for every pointer in
843 * the new block, increase lower level extents' reference count.
844 *
845 * Back Reference Key composing:
846 *
847 * The key objectid corresponds to the first byte in the extent,
848 * The key type is used to differentiate between types of back refs.
849 * There are different meanings of the key offset for different types
850 * of back refs.
851 *
852 * File extents can be referenced by:
853 *
854 * - multiple snapshots, subvolumes, or different generations in one subvol
855 * - different files inside a single subvolume
856 * - different offsets inside a file (bookend extents in file.c)
857 *
858 * The extent ref structure for the implicit back refs has fields for:
859 *
860 * - Objectid of the subvolume root
861 * - objectid of the file holding the reference
862 * - original offset in the file
863 * - how many bookend extents
864 *
865 * The key offset for the implicit back refs is hash of the first
866 * three fields.
867 *
868 * The extent ref structure for the full back refs has field for:
869 *
870 * - number of pointers in the tree leaf
871 *
872 * The key offset for the implicit back refs is the first byte of
873 * the tree leaf
874 *
875 * When a file extent is allocated, The implicit back refs is used.
876 * the fields are filled in:
877 *
878 * (root_key.objectid, inode objectid, offset in file, 1)
879 *
880 * When a file extent is removed file truncation, we find the
881 * corresponding implicit back refs and check the following fields:
882 *
883 * (btrfs_header_owner(leaf), inode objectid, offset in file)
884 *
885 * Btree extents can be referenced by:
886 *
887 * - Different subvolumes
888 *
889 * Both the implicit back refs and the full back refs for tree blocks
890 * only consist of key. The key offset for the implicit back refs is
891 * objectid of block's owner tree. The key offset for the full back refs
892 * is the first byte of parent block.
893 *
894 * When implicit back refs is used, information about the lowest key and
895 * level of the tree block are required. These information are stored in
896 * tree block info structure.
897 */
898
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
901 struct btrfs_root *root,
902 struct btrfs_path *path,
903 u64 owner, u32 extra_size)
904 {
905 struct btrfs_extent_item *item;
906 struct btrfs_extent_item_v0 *ei0;
907 struct btrfs_extent_ref_v0 *ref0;
908 struct btrfs_tree_block_info *bi;
909 struct extent_buffer *leaf;
910 struct btrfs_key key;
911 struct btrfs_key found_key;
912 u32 new_size = sizeof(*item);
913 u64 refs;
914 int ret;
915
916 leaf = path->nodes[0];
917 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
918
919 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
920 ei0 = btrfs_item_ptr(leaf, path->slots[0],
921 struct btrfs_extent_item_v0);
922 refs = btrfs_extent_refs_v0(leaf, ei0);
923
924 if (owner == (u64)-1) {
925 while (1) {
926 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
927 ret = btrfs_next_leaf(root, path);
928 if (ret < 0)
929 return ret;
930 BUG_ON(ret > 0);
931 leaf = path->nodes[0];
932 }
933 btrfs_item_key_to_cpu(leaf, &found_key,
934 path->slots[0]);
935 BUG_ON(key.objectid != found_key.objectid);
936 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
937 path->slots[0]++;
938 continue;
939 }
940 ref0 = btrfs_item_ptr(leaf, path->slots[0],
941 struct btrfs_extent_ref_v0);
942 owner = btrfs_ref_objectid_v0(leaf, ref0);
943 break;
944 }
945 }
946 btrfs_release_path(path);
947
948 if (owner < BTRFS_FIRST_FREE_OBJECTID)
949 new_size += sizeof(*bi);
950
951 new_size -= sizeof(*ei0);
952 ret = btrfs_search_slot(trans, root, &key, path,
953 new_size + extra_size, 1);
954 if (ret < 0)
955 return ret;
956 BUG_ON(ret);
957
958 ret = btrfs_extend_item(trans, root, path, new_size);
959
960 leaf = path->nodes[0];
961 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
962 btrfs_set_extent_refs(leaf, item, refs);
963 /* FIXME: get real generation */
964 btrfs_set_extent_generation(leaf, item, 0);
965 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
966 btrfs_set_extent_flags(leaf, item,
967 BTRFS_EXTENT_FLAG_TREE_BLOCK |
968 BTRFS_BLOCK_FLAG_FULL_BACKREF);
969 bi = (struct btrfs_tree_block_info *)(item + 1);
970 /* FIXME: get first key of the block */
971 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
972 btrfs_set_tree_block_level(leaf, bi, (int)owner);
973 } else {
974 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
975 }
976 btrfs_mark_buffer_dirty(leaf);
977 return 0;
978 }
979 #endif
980
981 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
982 {
983 u32 high_crc = ~(u32)0;
984 u32 low_crc = ~(u32)0;
985 __le64 lenum;
986
987 lenum = cpu_to_le64(root_objectid);
988 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
989 lenum = cpu_to_le64(owner);
990 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
991 lenum = cpu_to_le64(offset);
992 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
993
994 return ((u64)high_crc << 31) ^ (u64)low_crc;
995 }
996
997 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
998 struct btrfs_extent_data_ref *ref)
999 {
1000 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1001 btrfs_extent_data_ref_objectid(leaf, ref),
1002 btrfs_extent_data_ref_offset(leaf, ref));
1003 }
1004
1005 static int match_extent_data_ref(struct extent_buffer *leaf,
1006 struct btrfs_extent_data_ref *ref,
1007 u64 root_objectid, u64 owner, u64 offset)
1008 {
1009 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1010 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1011 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1012 return 0;
1013 return 1;
1014 }
1015
1016 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1017 struct btrfs_root *root,
1018 struct btrfs_path *path,
1019 u64 bytenr, u64 parent,
1020 u64 root_objectid,
1021 u64 owner, u64 offset)
1022 {
1023 struct btrfs_key key;
1024 struct btrfs_extent_data_ref *ref;
1025 struct extent_buffer *leaf;
1026 u32 nritems;
1027 int ret;
1028 int recow;
1029 int err = -ENOENT;
1030
1031 key.objectid = bytenr;
1032 if (parent) {
1033 key.type = BTRFS_SHARED_DATA_REF_KEY;
1034 key.offset = parent;
1035 } else {
1036 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1037 key.offset = hash_extent_data_ref(root_objectid,
1038 owner, offset);
1039 }
1040 again:
1041 recow = 0;
1042 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1043 if (ret < 0) {
1044 err = ret;
1045 goto fail;
1046 }
1047
1048 if (parent) {
1049 if (!ret)
1050 return 0;
1051 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1052 key.type = BTRFS_EXTENT_REF_V0_KEY;
1053 btrfs_release_path(path);
1054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1055 if (ret < 0) {
1056 err = ret;
1057 goto fail;
1058 }
1059 if (!ret)
1060 return 0;
1061 #endif
1062 goto fail;
1063 }
1064
1065 leaf = path->nodes[0];
1066 nritems = btrfs_header_nritems(leaf);
1067 while (1) {
1068 if (path->slots[0] >= nritems) {
1069 ret = btrfs_next_leaf(root, path);
1070 if (ret < 0)
1071 err = ret;
1072 if (ret)
1073 goto fail;
1074
1075 leaf = path->nodes[0];
1076 nritems = btrfs_header_nritems(leaf);
1077 recow = 1;
1078 }
1079
1080 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1081 if (key.objectid != bytenr ||
1082 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1083 goto fail;
1084
1085 ref = btrfs_item_ptr(leaf, path->slots[0],
1086 struct btrfs_extent_data_ref);
1087
1088 if (match_extent_data_ref(leaf, ref, root_objectid,
1089 owner, offset)) {
1090 if (recow) {
1091 btrfs_release_path(path);
1092 goto again;
1093 }
1094 err = 0;
1095 break;
1096 }
1097 path->slots[0]++;
1098 }
1099 fail:
1100 return err;
1101 }
1102
1103 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1104 struct btrfs_root *root,
1105 struct btrfs_path *path,
1106 u64 bytenr, u64 parent,
1107 u64 root_objectid, u64 owner,
1108 u64 offset, int refs_to_add)
1109 {
1110 struct btrfs_key key;
1111 struct extent_buffer *leaf;
1112 u32 size;
1113 u32 num_refs;
1114 int ret;
1115
1116 key.objectid = bytenr;
1117 if (parent) {
1118 key.type = BTRFS_SHARED_DATA_REF_KEY;
1119 key.offset = parent;
1120 size = sizeof(struct btrfs_shared_data_ref);
1121 } else {
1122 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1123 key.offset = hash_extent_data_ref(root_objectid,
1124 owner, offset);
1125 size = sizeof(struct btrfs_extent_data_ref);
1126 }
1127
1128 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1129 if (ret && ret != -EEXIST)
1130 goto fail;
1131
1132 leaf = path->nodes[0];
1133 if (parent) {
1134 struct btrfs_shared_data_ref *ref;
1135 ref = btrfs_item_ptr(leaf, path->slots[0],
1136 struct btrfs_shared_data_ref);
1137 if (ret == 0) {
1138 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1139 } else {
1140 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1141 num_refs += refs_to_add;
1142 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1143 }
1144 } else {
1145 struct btrfs_extent_data_ref *ref;
1146 while (ret == -EEXIST) {
1147 ref = btrfs_item_ptr(leaf, path->slots[0],
1148 struct btrfs_extent_data_ref);
1149 if (match_extent_data_ref(leaf, ref, root_objectid,
1150 owner, offset))
1151 break;
1152 btrfs_release_path(path);
1153 key.offset++;
1154 ret = btrfs_insert_empty_item(trans, root, path, &key,
1155 size);
1156 if (ret && ret != -EEXIST)
1157 goto fail;
1158
1159 leaf = path->nodes[0];
1160 }
1161 ref = btrfs_item_ptr(leaf, path->slots[0],
1162 struct btrfs_extent_data_ref);
1163 if (ret == 0) {
1164 btrfs_set_extent_data_ref_root(leaf, ref,
1165 root_objectid);
1166 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1167 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1168 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1169 } else {
1170 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1171 num_refs += refs_to_add;
1172 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1173 }
1174 }
1175 btrfs_mark_buffer_dirty(leaf);
1176 ret = 0;
1177 fail:
1178 btrfs_release_path(path);
1179 return ret;
1180 }
1181
1182 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 int refs_to_drop)
1186 {
1187 struct btrfs_key key;
1188 struct btrfs_extent_data_ref *ref1 = NULL;
1189 struct btrfs_shared_data_ref *ref2 = NULL;
1190 struct extent_buffer *leaf;
1191 u32 num_refs = 0;
1192 int ret = 0;
1193
1194 leaf = path->nodes[0];
1195 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1196
1197 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1198 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1199 struct btrfs_extent_data_ref);
1200 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1201 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1202 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1203 struct btrfs_shared_data_ref);
1204 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1205 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1206 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1207 struct btrfs_extent_ref_v0 *ref0;
1208 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1209 struct btrfs_extent_ref_v0);
1210 num_refs = btrfs_ref_count_v0(leaf, ref0);
1211 #endif
1212 } else {
1213 BUG();
1214 }
1215
1216 BUG_ON(num_refs < refs_to_drop);
1217 num_refs -= refs_to_drop;
1218
1219 if (num_refs == 0) {
1220 ret = btrfs_del_item(trans, root, path);
1221 } else {
1222 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1223 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1224 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1225 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1226 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1227 else {
1228 struct btrfs_extent_ref_v0 *ref0;
1229 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1230 struct btrfs_extent_ref_v0);
1231 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1232 }
1233 #endif
1234 btrfs_mark_buffer_dirty(leaf);
1235 }
1236 return ret;
1237 }
1238
1239 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1240 struct btrfs_path *path,
1241 struct btrfs_extent_inline_ref *iref)
1242 {
1243 struct btrfs_key key;
1244 struct extent_buffer *leaf;
1245 struct btrfs_extent_data_ref *ref1;
1246 struct btrfs_shared_data_ref *ref2;
1247 u32 num_refs = 0;
1248
1249 leaf = path->nodes[0];
1250 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1251 if (iref) {
1252 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1253 BTRFS_EXTENT_DATA_REF_KEY) {
1254 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1255 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1256 } else {
1257 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1258 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259 }
1260 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1261 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1262 struct btrfs_extent_data_ref);
1263 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1264 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1265 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_shared_data_ref);
1267 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1268 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1269 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1270 struct btrfs_extent_ref_v0 *ref0;
1271 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1272 struct btrfs_extent_ref_v0);
1273 num_refs = btrfs_ref_count_v0(leaf, ref0);
1274 #endif
1275 } else {
1276 WARN_ON(1);
1277 }
1278 return num_refs;
1279 }
1280
1281 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1282 struct btrfs_root *root,
1283 struct btrfs_path *path,
1284 u64 bytenr, u64 parent,
1285 u64 root_objectid)
1286 {
1287 struct btrfs_key key;
1288 int ret;
1289
1290 key.objectid = bytenr;
1291 if (parent) {
1292 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1293 key.offset = parent;
1294 } else {
1295 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1296 key.offset = root_objectid;
1297 }
1298
1299 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1300 if (ret > 0)
1301 ret = -ENOENT;
1302 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1303 if (ret == -ENOENT && parent) {
1304 btrfs_release_path(path);
1305 key.type = BTRFS_EXTENT_REF_V0_KEY;
1306 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1307 if (ret > 0)
1308 ret = -ENOENT;
1309 }
1310 #endif
1311 return ret;
1312 }
1313
1314 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1315 struct btrfs_root *root,
1316 struct btrfs_path *path,
1317 u64 bytenr, u64 parent,
1318 u64 root_objectid)
1319 {
1320 struct btrfs_key key;
1321 int ret;
1322
1323 key.objectid = bytenr;
1324 if (parent) {
1325 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1326 key.offset = parent;
1327 } else {
1328 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1329 key.offset = root_objectid;
1330 }
1331
1332 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1333 btrfs_release_path(path);
1334 return ret;
1335 }
1336
1337 static inline int extent_ref_type(u64 parent, u64 owner)
1338 {
1339 int type;
1340 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1341 if (parent > 0)
1342 type = BTRFS_SHARED_BLOCK_REF_KEY;
1343 else
1344 type = BTRFS_TREE_BLOCK_REF_KEY;
1345 } else {
1346 if (parent > 0)
1347 type = BTRFS_SHARED_DATA_REF_KEY;
1348 else
1349 type = BTRFS_EXTENT_DATA_REF_KEY;
1350 }
1351 return type;
1352 }
1353
1354 static int find_next_key(struct btrfs_path *path, int level,
1355 struct btrfs_key *key)
1356
1357 {
1358 for (; level < BTRFS_MAX_LEVEL; level++) {
1359 if (!path->nodes[level])
1360 break;
1361 if (path->slots[level] + 1 >=
1362 btrfs_header_nritems(path->nodes[level]))
1363 continue;
1364 if (level == 0)
1365 btrfs_item_key_to_cpu(path->nodes[level], key,
1366 path->slots[level] + 1);
1367 else
1368 btrfs_node_key_to_cpu(path->nodes[level], key,
1369 path->slots[level] + 1);
1370 return 0;
1371 }
1372 return 1;
1373 }
1374
1375 /*
1376 * look for inline back ref. if back ref is found, *ref_ret is set
1377 * to the address of inline back ref, and 0 is returned.
1378 *
1379 * if back ref isn't found, *ref_ret is set to the address where it
1380 * should be inserted, and -ENOENT is returned.
1381 *
1382 * if insert is true and there are too many inline back refs, the path
1383 * points to the extent item, and -EAGAIN is returned.
1384 *
1385 * NOTE: inline back refs are ordered in the same way that back ref
1386 * items in the tree are ordered.
1387 */
1388 static noinline_for_stack
1389 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1390 struct btrfs_root *root,
1391 struct btrfs_path *path,
1392 struct btrfs_extent_inline_ref **ref_ret,
1393 u64 bytenr, u64 num_bytes,
1394 u64 parent, u64 root_objectid,
1395 u64 owner, u64 offset, int insert)
1396 {
1397 struct btrfs_key key;
1398 struct extent_buffer *leaf;
1399 struct btrfs_extent_item *ei;
1400 struct btrfs_extent_inline_ref *iref;
1401 u64 flags;
1402 u64 item_size;
1403 unsigned long ptr;
1404 unsigned long end;
1405 int extra_size;
1406 int type;
1407 int want;
1408 int ret;
1409 int err = 0;
1410
1411 key.objectid = bytenr;
1412 key.type = BTRFS_EXTENT_ITEM_KEY;
1413 key.offset = num_bytes;
1414
1415 want = extent_ref_type(parent, owner);
1416 if (insert) {
1417 extra_size = btrfs_extent_inline_ref_size(want);
1418 path->keep_locks = 1;
1419 } else
1420 extra_size = -1;
1421 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1422 if (ret < 0) {
1423 err = ret;
1424 goto out;
1425 }
1426 BUG_ON(ret);
1427
1428 leaf = path->nodes[0];
1429 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1430 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1431 if (item_size < sizeof(*ei)) {
1432 if (!insert) {
1433 err = -ENOENT;
1434 goto out;
1435 }
1436 ret = convert_extent_item_v0(trans, root, path, owner,
1437 extra_size);
1438 if (ret < 0) {
1439 err = ret;
1440 goto out;
1441 }
1442 leaf = path->nodes[0];
1443 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1444 }
1445 #endif
1446 BUG_ON(item_size < sizeof(*ei));
1447
1448 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1449 flags = btrfs_extent_flags(leaf, ei);
1450
1451 ptr = (unsigned long)(ei + 1);
1452 end = (unsigned long)ei + item_size;
1453
1454 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1455 ptr += sizeof(struct btrfs_tree_block_info);
1456 BUG_ON(ptr > end);
1457 } else {
1458 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1459 }
1460
1461 err = -ENOENT;
1462 while (1) {
1463 if (ptr >= end) {
1464 WARN_ON(ptr > end);
1465 break;
1466 }
1467 iref = (struct btrfs_extent_inline_ref *)ptr;
1468 type = btrfs_extent_inline_ref_type(leaf, iref);
1469 if (want < type)
1470 break;
1471 if (want > type) {
1472 ptr += btrfs_extent_inline_ref_size(type);
1473 continue;
1474 }
1475
1476 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1477 struct btrfs_extent_data_ref *dref;
1478 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1479 if (match_extent_data_ref(leaf, dref, root_objectid,
1480 owner, offset)) {
1481 err = 0;
1482 break;
1483 }
1484 if (hash_extent_data_ref_item(leaf, dref) <
1485 hash_extent_data_ref(root_objectid, owner, offset))
1486 break;
1487 } else {
1488 u64 ref_offset;
1489 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1490 if (parent > 0) {
1491 if (parent == ref_offset) {
1492 err = 0;
1493 break;
1494 }
1495 if (ref_offset < parent)
1496 break;
1497 } else {
1498 if (root_objectid == ref_offset) {
1499 err = 0;
1500 break;
1501 }
1502 if (ref_offset < root_objectid)
1503 break;
1504 }
1505 }
1506 ptr += btrfs_extent_inline_ref_size(type);
1507 }
1508 if (err == -ENOENT && insert) {
1509 if (item_size + extra_size >=
1510 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1511 err = -EAGAIN;
1512 goto out;
1513 }
1514 /*
1515 * To add new inline back ref, we have to make sure
1516 * there is no corresponding back ref item.
1517 * For simplicity, we just do not add new inline back
1518 * ref if there is any kind of item for this block
1519 */
1520 if (find_next_key(path, 0, &key) == 0 &&
1521 key.objectid == bytenr &&
1522 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1523 err = -EAGAIN;
1524 goto out;
1525 }
1526 }
1527 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1528 out:
1529 if (insert) {
1530 path->keep_locks = 0;
1531 btrfs_unlock_up_safe(path, 1);
1532 }
1533 return err;
1534 }
1535
1536 /*
1537 * helper to add new inline back ref
1538 */
1539 static noinline_for_stack
1540 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1541 struct btrfs_root *root,
1542 struct btrfs_path *path,
1543 struct btrfs_extent_inline_ref *iref,
1544 u64 parent, u64 root_objectid,
1545 u64 owner, u64 offset, int refs_to_add,
1546 struct btrfs_delayed_extent_op *extent_op)
1547 {
1548 struct extent_buffer *leaf;
1549 struct btrfs_extent_item *ei;
1550 unsigned long ptr;
1551 unsigned long end;
1552 unsigned long item_offset;
1553 u64 refs;
1554 int size;
1555 int type;
1556 int ret;
1557
1558 leaf = path->nodes[0];
1559 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1560 item_offset = (unsigned long)iref - (unsigned long)ei;
1561
1562 type = extent_ref_type(parent, owner);
1563 size = btrfs_extent_inline_ref_size(type);
1564
1565 ret = btrfs_extend_item(trans, root, path, size);
1566
1567 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1568 refs = btrfs_extent_refs(leaf, ei);
1569 refs += refs_to_add;
1570 btrfs_set_extent_refs(leaf, ei, refs);
1571 if (extent_op)
1572 __run_delayed_extent_op(extent_op, leaf, ei);
1573
1574 ptr = (unsigned long)ei + item_offset;
1575 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1576 if (ptr < end - size)
1577 memmove_extent_buffer(leaf, ptr + size, ptr,
1578 end - size - ptr);
1579
1580 iref = (struct btrfs_extent_inline_ref *)ptr;
1581 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1582 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1583 struct btrfs_extent_data_ref *dref;
1584 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1585 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1586 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1587 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1588 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1589 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1590 struct btrfs_shared_data_ref *sref;
1591 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1592 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1593 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1594 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1595 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1596 } else {
1597 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1598 }
1599 btrfs_mark_buffer_dirty(leaf);
1600 return 0;
1601 }
1602
1603 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1604 struct btrfs_root *root,
1605 struct btrfs_path *path,
1606 struct btrfs_extent_inline_ref **ref_ret,
1607 u64 bytenr, u64 num_bytes, u64 parent,
1608 u64 root_objectid, u64 owner, u64 offset)
1609 {
1610 int ret;
1611
1612 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1613 bytenr, num_bytes, parent,
1614 root_objectid, owner, offset, 0);
1615 if (ret != -ENOENT)
1616 return ret;
1617
1618 btrfs_release_path(path);
1619 *ref_ret = NULL;
1620
1621 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1622 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1623 root_objectid);
1624 } else {
1625 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1626 root_objectid, owner, offset);
1627 }
1628 return ret;
1629 }
1630
1631 /*
1632 * helper to update/remove inline back ref
1633 */
1634 static noinline_for_stack
1635 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1636 struct btrfs_root *root,
1637 struct btrfs_path *path,
1638 struct btrfs_extent_inline_ref *iref,
1639 int refs_to_mod,
1640 struct btrfs_delayed_extent_op *extent_op)
1641 {
1642 struct extent_buffer *leaf;
1643 struct btrfs_extent_item *ei;
1644 struct btrfs_extent_data_ref *dref = NULL;
1645 struct btrfs_shared_data_ref *sref = NULL;
1646 unsigned long ptr;
1647 unsigned long end;
1648 u32 item_size;
1649 int size;
1650 int type;
1651 int ret;
1652 u64 refs;
1653
1654 leaf = path->nodes[0];
1655 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1656 refs = btrfs_extent_refs(leaf, ei);
1657 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1658 refs += refs_to_mod;
1659 btrfs_set_extent_refs(leaf, ei, refs);
1660 if (extent_op)
1661 __run_delayed_extent_op(extent_op, leaf, ei);
1662
1663 type = btrfs_extent_inline_ref_type(leaf, iref);
1664
1665 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1666 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1667 refs = btrfs_extent_data_ref_count(leaf, dref);
1668 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1669 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1670 refs = btrfs_shared_data_ref_count(leaf, sref);
1671 } else {
1672 refs = 1;
1673 BUG_ON(refs_to_mod != -1);
1674 }
1675
1676 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1677 refs += refs_to_mod;
1678
1679 if (refs > 0) {
1680 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1681 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1682 else
1683 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1684 } else {
1685 size = btrfs_extent_inline_ref_size(type);
1686 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1687 ptr = (unsigned long)iref;
1688 end = (unsigned long)ei + item_size;
1689 if (ptr + size < end)
1690 memmove_extent_buffer(leaf, ptr, ptr + size,
1691 end - ptr - size);
1692 item_size -= size;
1693 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1694 }
1695 btrfs_mark_buffer_dirty(leaf);
1696 return 0;
1697 }
1698
1699 static noinline_for_stack
1700 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1701 struct btrfs_root *root,
1702 struct btrfs_path *path,
1703 u64 bytenr, u64 num_bytes, u64 parent,
1704 u64 root_objectid, u64 owner,
1705 u64 offset, int refs_to_add,
1706 struct btrfs_delayed_extent_op *extent_op)
1707 {
1708 struct btrfs_extent_inline_ref *iref;
1709 int ret;
1710
1711 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1712 bytenr, num_bytes, parent,
1713 root_objectid, owner, offset, 1);
1714 if (ret == 0) {
1715 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1716 ret = update_inline_extent_backref(trans, root, path, iref,
1717 refs_to_add, extent_op);
1718 } else if (ret == -ENOENT) {
1719 ret = setup_inline_extent_backref(trans, root, path, iref,
1720 parent, root_objectid,
1721 owner, offset, refs_to_add,
1722 extent_op);
1723 }
1724 return ret;
1725 }
1726
1727 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1728 struct btrfs_root *root,
1729 struct btrfs_path *path,
1730 u64 bytenr, u64 parent, u64 root_objectid,
1731 u64 owner, u64 offset, int refs_to_add)
1732 {
1733 int ret;
1734 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1735 BUG_ON(refs_to_add != 1);
1736 ret = insert_tree_block_ref(trans, root, path, bytenr,
1737 parent, root_objectid);
1738 } else {
1739 ret = insert_extent_data_ref(trans, root, path, bytenr,
1740 parent, root_objectid,
1741 owner, offset, refs_to_add);
1742 }
1743 return ret;
1744 }
1745
1746 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1747 struct btrfs_root *root,
1748 struct btrfs_path *path,
1749 struct btrfs_extent_inline_ref *iref,
1750 int refs_to_drop, int is_data)
1751 {
1752 int ret;
1753
1754 BUG_ON(!is_data && refs_to_drop != 1);
1755 if (iref) {
1756 ret = update_inline_extent_backref(trans, root, path, iref,
1757 -refs_to_drop, NULL);
1758 } else if (is_data) {
1759 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1760 } else {
1761 ret = btrfs_del_item(trans, root, path);
1762 }
1763 return ret;
1764 }
1765
1766 static int btrfs_issue_discard(struct block_device *bdev,
1767 u64 start, u64 len)
1768 {
1769 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1770 }
1771
1772 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1773 u64 num_bytes, u64 *actual_bytes)
1774 {
1775 int ret;
1776 u64 discarded_bytes = 0;
1777 struct btrfs_multi_bio *multi = NULL;
1778
1779
1780 /* Tell the block device(s) that the sectors can be discarded */
1781 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1782 bytenr, &num_bytes, &multi, 0);
1783 if (!ret) {
1784 struct btrfs_bio_stripe *stripe = multi->stripes;
1785 int i;
1786
1787
1788 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1789 ret = btrfs_issue_discard(stripe->dev->bdev,
1790 stripe->physical,
1791 stripe->length);
1792 if (!ret)
1793 discarded_bytes += stripe->length;
1794 else if (ret != -EOPNOTSUPP)
1795 break;
1796 }
1797 kfree(multi);
1798 }
1799 if (discarded_bytes && ret == -EOPNOTSUPP)
1800 ret = 0;
1801
1802 if (actual_bytes)
1803 *actual_bytes = discarded_bytes;
1804
1805
1806 return ret;
1807 }
1808
1809 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1810 struct btrfs_root *root,
1811 u64 bytenr, u64 num_bytes, u64 parent,
1812 u64 root_objectid, u64 owner, u64 offset)
1813 {
1814 int ret;
1815 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1816 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1817
1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1820 parent, root_objectid, (int)owner,
1821 BTRFS_ADD_DELAYED_REF, NULL);
1822 } else {
1823 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1824 parent, root_objectid, owner, offset,
1825 BTRFS_ADD_DELAYED_REF, NULL);
1826 }
1827 return ret;
1828 }
1829
1830 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1831 struct btrfs_root *root,
1832 u64 bytenr, u64 num_bytes,
1833 u64 parent, u64 root_objectid,
1834 u64 owner, u64 offset, int refs_to_add,
1835 struct btrfs_delayed_extent_op *extent_op)
1836 {
1837 struct btrfs_path *path;
1838 struct extent_buffer *leaf;
1839 struct btrfs_extent_item *item;
1840 u64 refs;
1841 int ret;
1842 int err = 0;
1843
1844 path = btrfs_alloc_path();
1845 if (!path)
1846 return -ENOMEM;
1847
1848 path->reada = 1;
1849 path->leave_spinning = 1;
1850 /* this will setup the path even if it fails to insert the back ref */
1851 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1852 path, bytenr, num_bytes, parent,
1853 root_objectid, owner, offset,
1854 refs_to_add, extent_op);
1855 if (ret == 0)
1856 goto out;
1857
1858 if (ret != -EAGAIN) {
1859 err = ret;
1860 goto out;
1861 }
1862
1863 leaf = path->nodes[0];
1864 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1865 refs = btrfs_extent_refs(leaf, item);
1866 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1867 if (extent_op)
1868 __run_delayed_extent_op(extent_op, leaf, item);
1869
1870 btrfs_mark_buffer_dirty(leaf);
1871 btrfs_release_path(path);
1872
1873 path->reada = 1;
1874 path->leave_spinning = 1;
1875
1876 /* now insert the actual backref */
1877 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1878 path, bytenr, parent, root_objectid,
1879 owner, offset, refs_to_add);
1880 BUG_ON(ret);
1881 out:
1882 btrfs_free_path(path);
1883 return err;
1884 }
1885
1886 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1887 struct btrfs_root *root,
1888 struct btrfs_delayed_ref_node *node,
1889 struct btrfs_delayed_extent_op *extent_op,
1890 int insert_reserved)
1891 {
1892 int ret = 0;
1893 struct btrfs_delayed_data_ref *ref;
1894 struct btrfs_key ins;
1895 u64 parent = 0;
1896 u64 ref_root = 0;
1897 u64 flags = 0;
1898
1899 ins.objectid = node->bytenr;
1900 ins.offset = node->num_bytes;
1901 ins.type = BTRFS_EXTENT_ITEM_KEY;
1902
1903 ref = btrfs_delayed_node_to_data_ref(node);
1904 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1905 parent = ref->parent;
1906 else
1907 ref_root = ref->root;
1908
1909 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1910 if (extent_op) {
1911 BUG_ON(extent_op->update_key);
1912 flags |= extent_op->flags_to_set;
1913 }
1914 ret = alloc_reserved_file_extent(trans, root,
1915 parent, ref_root, flags,
1916 ref->objectid, ref->offset,
1917 &ins, node->ref_mod);
1918 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1919 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1920 node->num_bytes, parent,
1921 ref_root, ref->objectid,
1922 ref->offset, node->ref_mod,
1923 extent_op);
1924 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1925 ret = __btrfs_free_extent(trans, root, node->bytenr,
1926 node->num_bytes, parent,
1927 ref_root, ref->objectid,
1928 ref->offset, node->ref_mod,
1929 extent_op);
1930 } else {
1931 BUG();
1932 }
1933 return ret;
1934 }
1935
1936 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1937 struct extent_buffer *leaf,
1938 struct btrfs_extent_item *ei)
1939 {
1940 u64 flags = btrfs_extent_flags(leaf, ei);
1941 if (extent_op->update_flags) {
1942 flags |= extent_op->flags_to_set;
1943 btrfs_set_extent_flags(leaf, ei, flags);
1944 }
1945
1946 if (extent_op->update_key) {
1947 struct btrfs_tree_block_info *bi;
1948 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1949 bi = (struct btrfs_tree_block_info *)(ei + 1);
1950 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1951 }
1952 }
1953
1954 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1955 struct btrfs_root *root,
1956 struct btrfs_delayed_ref_node *node,
1957 struct btrfs_delayed_extent_op *extent_op)
1958 {
1959 struct btrfs_key key;
1960 struct btrfs_path *path;
1961 struct btrfs_extent_item *ei;
1962 struct extent_buffer *leaf;
1963 u32 item_size;
1964 int ret;
1965 int err = 0;
1966
1967 path = btrfs_alloc_path();
1968 if (!path)
1969 return -ENOMEM;
1970
1971 key.objectid = node->bytenr;
1972 key.type = BTRFS_EXTENT_ITEM_KEY;
1973 key.offset = node->num_bytes;
1974
1975 path->reada = 1;
1976 path->leave_spinning = 1;
1977 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1978 path, 0, 1);
1979 if (ret < 0) {
1980 err = ret;
1981 goto out;
1982 }
1983 if (ret > 0) {
1984 err = -EIO;
1985 goto out;
1986 }
1987
1988 leaf = path->nodes[0];
1989 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1990 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1991 if (item_size < sizeof(*ei)) {
1992 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1993 path, (u64)-1, 0);
1994 if (ret < 0) {
1995 err = ret;
1996 goto out;
1997 }
1998 leaf = path->nodes[0];
1999 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2000 }
2001 #endif
2002 BUG_ON(item_size < sizeof(*ei));
2003 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2004 __run_delayed_extent_op(extent_op, leaf, ei);
2005
2006 btrfs_mark_buffer_dirty(leaf);
2007 out:
2008 btrfs_free_path(path);
2009 return err;
2010 }
2011
2012 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2013 struct btrfs_root *root,
2014 struct btrfs_delayed_ref_node *node,
2015 struct btrfs_delayed_extent_op *extent_op,
2016 int insert_reserved)
2017 {
2018 int ret = 0;
2019 struct btrfs_delayed_tree_ref *ref;
2020 struct btrfs_key ins;
2021 u64 parent = 0;
2022 u64 ref_root = 0;
2023
2024 ins.objectid = node->bytenr;
2025 ins.offset = node->num_bytes;
2026 ins.type = BTRFS_EXTENT_ITEM_KEY;
2027
2028 ref = btrfs_delayed_node_to_tree_ref(node);
2029 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2030 parent = ref->parent;
2031 else
2032 ref_root = ref->root;
2033
2034 BUG_ON(node->ref_mod != 1);
2035 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2036 BUG_ON(!extent_op || !extent_op->update_flags ||
2037 !extent_op->update_key);
2038 ret = alloc_reserved_tree_block(trans, root,
2039 parent, ref_root,
2040 extent_op->flags_to_set,
2041 &extent_op->key,
2042 ref->level, &ins);
2043 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2044 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2045 node->num_bytes, parent, ref_root,
2046 ref->level, 0, 1, extent_op);
2047 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2048 ret = __btrfs_free_extent(trans, root, node->bytenr,
2049 node->num_bytes, parent, ref_root,
2050 ref->level, 0, 1, extent_op);
2051 } else {
2052 BUG();
2053 }
2054 return ret;
2055 }
2056
2057 /* helper function to actually process a single delayed ref entry */
2058 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret;
2065 if (btrfs_delayed_ref_is_head(node)) {
2066 struct btrfs_delayed_ref_head *head;
2067 /*
2068 * we've hit the end of the chain and we were supposed
2069 * to insert this extent into the tree. But, it got
2070 * deleted before we ever needed to insert it, so all
2071 * we have to do is clean up the accounting
2072 */
2073 BUG_ON(extent_op);
2074 head = btrfs_delayed_node_to_head(node);
2075 if (insert_reserved) {
2076 btrfs_pin_extent(root, node->bytenr,
2077 node->num_bytes, 1);
2078 if (head->is_data) {
2079 ret = btrfs_del_csums(trans, root,
2080 node->bytenr,
2081 node->num_bytes);
2082 BUG_ON(ret);
2083 }
2084 }
2085 mutex_unlock(&head->mutex);
2086 return 0;
2087 }
2088
2089 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2090 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2091 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2092 insert_reserved);
2093 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2094 node->type == BTRFS_SHARED_DATA_REF_KEY)
2095 ret = run_delayed_data_ref(trans, root, node, extent_op,
2096 insert_reserved);
2097 else
2098 BUG();
2099 return ret;
2100 }
2101
2102 static noinline struct btrfs_delayed_ref_node *
2103 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2104 {
2105 struct rb_node *node;
2106 struct btrfs_delayed_ref_node *ref;
2107 int action = BTRFS_ADD_DELAYED_REF;
2108 again:
2109 /*
2110 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2111 * this prevents ref count from going down to zero when
2112 * there still are pending delayed ref.
2113 */
2114 node = rb_prev(&head->node.rb_node);
2115 while (1) {
2116 if (!node)
2117 break;
2118 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2119 rb_node);
2120 if (ref->bytenr != head->node.bytenr)
2121 break;
2122 if (ref->action == action)
2123 return ref;
2124 node = rb_prev(node);
2125 }
2126 if (action == BTRFS_ADD_DELAYED_REF) {
2127 action = BTRFS_DROP_DELAYED_REF;
2128 goto again;
2129 }
2130 return NULL;
2131 }
2132
2133 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2134 struct btrfs_root *root,
2135 struct list_head *cluster)
2136 {
2137 struct btrfs_delayed_ref_root *delayed_refs;
2138 struct btrfs_delayed_ref_node *ref;
2139 struct btrfs_delayed_ref_head *locked_ref = NULL;
2140 struct btrfs_delayed_extent_op *extent_op;
2141 int ret;
2142 int count = 0;
2143 int must_insert_reserved = 0;
2144
2145 delayed_refs = &trans->transaction->delayed_refs;
2146 while (1) {
2147 if (!locked_ref) {
2148 /* pick a new head ref from the cluster list */
2149 if (list_empty(cluster))
2150 break;
2151
2152 locked_ref = list_entry(cluster->next,
2153 struct btrfs_delayed_ref_head, cluster);
2154
2155 /* grab the lock that says we are going to process
2156 * all the refs for this head */
2157 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2158
2159 /*
2160 * we may have dropped the spin lock to get the head
2161 * mutex lock, and that might have given someone else
2162 * time to free the head. If that's true, it has been
2163 * removed from our list and we can move on.
2164 */
2165 if (ret == -EAGAIN) {
2166 locked_ref = NULL;
2167 count++;
2168 continue;
2169 }
2170 }
2171
2172 /*
2173 * record the must insert reserved flag before we
2174 * drop the spin lock.
2175 */
2176 must_insert_reserved = locked_ref->must_insert_reserved;
2177 locked_ref->must_insert_reserved = 0;
2178
2179 extent_op = locked_ref->extent_op;
2180 locked_ref->extent_op = NULL;
2181
2182 /*
2183 * locked_ref is the head node, so we have to go one
2184 * node back for any delayed ref updates
2185 */
2186 ref = select_delayed_ref(locked_ref);
2187 if (!ref) {
2188 /* All delayed refs have been processed, Go ahead
2189 * and send the head node to run_one_delayed_ref,
2190 * so that any accounting fixes can happen
2191 */
2192 ref = &locked_ref->node;
2193
2194 if (extent_op && must_insert_reserved) {
2195 kfree(extent_op);
2196 extent_op = NULL;
2197 }
2198
2199 if (extent_op) {
2200 spin_unlock(&delayed_refs->lock);
2201
2202 ret = run_delayed_extent_op(trans, root,
2203 ref, extent_op);
2204 BUG_ON(ret);
2205 kfree(extent_op);
2206
2207 cond_resched();
2208 spin_lock(&delayed_refs->lock);
2209 continue;
2210 }
2211
2212 list_del_init(&locked_ref->cluster);
2213 locked_ref = NULL;
2214 }
2215
2216 ref->in_tree = 0;
2217 rb_erase(&ref->rb_node, &delayed_refs->root);
2218 delayed_refs->num_entries--;
2219
2220 spin_unlock(&delayed_refs->lock);
2221
2222 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2223 must_insert_reserved);
2224 BUG_ON(ret);
2225
2226 btrfs_put_delayed_ref(ref);
2227 kfree(extent_op);
2228 count++;
2229
2230 cond_resched();
2231 spin_lock(&delayed_refs->lock);
2232 }
2233 return count;
2234 }
2235
2236 /*
2237 * this starts processing the delayed reference count updates and
2238 * extent insertions we have queued up so far. count can be
2239 * 0, which means to process everything in the tree at the start
2240 * of the run (but not newly added entries), or it can be some target
2241 * number you'd like to process.
2242 */
2243 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2244 struct btrfs_root *root, unsigned long count)
2245 {
2246 struct rb_node *node;
2247 struct btrfs_delayed_ref_root *delayed_refs;
2248 struct btrfs_delayed_ref_node *ref;
2249 struct list_head cluster;
2250 int ret;
2251 int run_all = count == (unsigned long)-1;
2252 int run_most = 0;
2253
2254 if (root == root->fs_info->extent_root)
2255 root = root->fs_info->tree_root;
2256
2257 delayed_refs = &trans->transaction->delayed_refs;
2258 INIT_LIST_HEAD(&cluster);
2259 again:
2260 spin_lock(&delayed_refs->lock);
2261 if (count == 0) {
2262 count = delayed_refs->num_entries * 2;
2263 run_most = 1;
2264 }
2265 while (1) {
2266 if (!(run_all || run_most) &&
2267 delayed_refs->num_heads_ready < 64)
2268 break;
2269
2270 /*
2271 * go find something we can process in the rbtree. We start at
2272 * the beginning of the tree, and then build a cluster
2273 * of refs to process starting at the first one we are able to
2274 * lock
2275 */
2276 ret = btrfs_find_ref_cluster(trans, &cluster,
2277 delayed_refs->run_delayed_start);
2278 if (ret)
2279 break;
2280
2281 ret = run_clustered_refs(trans, root, &cluster);
2282 BUG_ON(ret < 0);
2283
2284 count -= min_t(unsigned long, ret, count);
2285
2286 if (count == 0)
2287 break;
2288 }
2289
2290 if (run_all) {
2291 node = rb_first(&delayed_refs->root);
2292 if (!node)
2293 goto out;
2294 count = (unsigned long)-1;
2295
2296 while (node) {
2297 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2298 rb_node);
2299 if (btrfs_delayed_ref_is_head(ref)) {
2300 struct btrfs_delayed_ref_head *head;
2301
2302 head = btrfs_delayed_node_to_head(ref);
2303 atomic_inc(&ref->refs);
2304
2305 spin_unlock(&delayed_refs->lock);
2306 /*
2307 * Mutex was contended, block until it's
2308 * released and try again
2309 */
2310 mutex_lock(&head->mutex);
2311 mutex_unlock(&head->mutex);
2312
2313 btrfs_put_delayed_ref(ref);
2314 cond_resched();
2315 goto again;
2316 }
2317 node = rb_next(node);
2318 }
2319 spin_unlock(&delayed_refs->lock);
2320 schedule_timeout(1);
2321 goto again;
2322 }
2323 out:
2324 spin_unlock(&delayed_refs->lock);
2325 return 0;
2326 }
2327
2328 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2329 struct btrfs_root *root,
2330 u64 bytenr, u64 num_bytes, u64 flags,
2331 int is_data)
2332 {
2333 struct btrfs_delayed_extent_op *extent_op;
2334 int ret;
2335
2336 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2337 if (!extent_op)
2338 return -ENOMEM;
2339
2340 extent_op->flags_to_set = flags;
2341 extent_op->update_flags = 1;
2342 extent_op->update_key = 0;
2343 extent_op->is_data = is_data ? 1 : 0;
2344
2345 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2346 if (ret)
2347 kfree(extent_op);
2348 return ret;
2349 }
2350
2351 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2352 struct btrfs_root *root,
2353 struct btrfs_path *path,
2354 u64 objectid, u64 offset, u64 bytenr)
2355 {
2356 struct btrfs_delayed_ref_head *head;
2357 struct btrfs_delayed_ref_node *ref;
2358 struct btrfs_delayed_data_ref *data_ref;
2359 struct btrfs_delayed_ref_root *delayed_refs;
2360 struct rb_node *node;
2361 int ret = 0;
2362
2363 ret = -ENOENT;
2364 delayed_refs = &trans->transaction->delayed_refs;
2365 spin_lock(&delayed_refs->lock);
2366 head = btrfs_find_delayed_ref_head(trans, bytenr);
2367 if (!head)
2368 goto out;
2369
2370 if (!mutex_trylock(&head->mutex)) {
2371 atomic_inc(&head->node.refs);
2372 spin_unlock(&delayed_refs->lock);
2373
2374 btrfs_release_path(path);
2375
2376 /*
2377 * Mutex was contended, block until it's released and let
2378 * caller try again
2379 */
2380 mutex_lock(&head->mutex);
2381 mutex_unlock(&head->mutex);
2382 btrfs_put_delayed_ref(&head->node);
2383 return -EAGAIN;
2384 }
2385
2386 node = rb_prev(&head->node.rb_node);
2387 if (!node)
2388 goto out_unlock;
2389
2390 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2391
2392 if (ref->bytenr != bytenr)
2393 goto out_unlock;
2394
2395 ret = 1;
2396 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2397 goto out_unlock;
2398
2399 data_ref = btrfs_delayed_node_to_data_ref(ref);
2400
2401 node = rb_prev(node);
2402 if (node) {
2403 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2404 if (ref->bytenr == bytenr)
2405 goto out_unlock;
2406 }
2407
2408 if (data_ref->root != root->root_key.objectid ||
2409 data_ref->objectid != objectid || data_ref->offset != offset)
2410 goto out_unlock;
2411
2412 ret = 0;
2413 out_unlock:
2414 mutex_unlock(&head->mutex);
2415 out:
2416 spin_unlock(&delayed_refs->lock);
2417 return ret;
2418 }
2419
2420 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2421 struct btrfs_root *root,
2422 struct btrfs_path *path,
2423 u64 objectid, u64 offset, u64 bytenr)
2424 {
2425 struct btrfs_root *extent_root = root->fs_info->extent_root;
2426 struct extent_buffer *leaf;
2427 struct btrfs_extent_data_ref *ref;
2428 struct btrfs_extent_inline_ref *iref;
2429 struct btrfs_extent_item *ei;
2430 struct btrfs_key key;
2431 u32 item_size;
2432 int ret;
2433
2434 key.objectid = bytenr;
2435 key.offset = (u64)-1;
2436 key.type = BTRFS_EXTENT_ITEM_KEY;
2437
2438 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2439 if (ret < 0)
2440 goto out;
2441 BUG_ON(ret == 0);
2442
2443 ret = -ENOENT;
2444 if (path->slots[0] == 0)
2445 goto out;
2446
2447 path->slots[0]--;
2448 leaf = path->nodes[0];
2449 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2450
2451 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2452 goto out;
2453
2454 ret = 1;
2455 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2457 if (item_size < sizeof(*ei)) {
2458 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2459 goto out;
2460 }
2461 #endif
2462 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2463
2464 if (item_size != sizeof(*ei) +
2465 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2466 goto out;
2467
2468 if (btrfs_extent_generation(leaf, ei) <=
2469 btrfs_root_last_snapshot(&root->root_item))
2470 goto out;
2471
2472 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2473 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2474 BTRFS_EXTENT_DATA_REF_KEY)
2475 goto out;
2476
2477 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2478 if (btrfs_extent_refs(leaf, ei) !=
2479 btrfs_extent_data_ref_count(leaf, ref) ||
2480 btrfs_extent_data_ref_root(leaf, ref) !=
2481 root->root_key.objectid ||
2482 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2483 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2484 goto out;
2485
2486 ret = 0;
2487 out:
2488 return ret;
2489 }
2490
2491 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2492 struct btrfs_root *root,
2493 u64 objectid, u64 offset, u64 bytenr)
2494 {
2495 struct btrfs_path *path;
2496 int ret;
2497 int ret2;
2498
2499 path = btrfs_alloc_path();
2500 if (!path)
2501 return -ENOENT;
2502
2503 do {
2504 ret = check_committed_ref(trans, root, path, objectid,
2505 offset, bytenr);
2506 if (ret && ret != -ENOENT)
2507 goto out;
2508
2509 ret2 = check_delayed_ref(trans, root, path, objectid,
2510 offset, bytenr);
2511 } while (ret2 == -EAGAIN);
2512
2513 if (ret2 && ret2 != -ENOENT) {
2514 ret = ret2;
2515 goto out;
2516 }
2517
2518 if (ret != -ENOENT || ret2 != -ENOENT)
2519 ret = 0;
2520 out:
2521 btrfs_free_path(path);
2522 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2523 WARN_ON(ret > 0);
2524 return ret;
2525 }
2526
2527 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2528 struct btrfs_root *root,
2529 struct extent_buffer *buf,
2530 int full_backref, int inc)
2531 {
2532 u64 bytenr;
2533 u64 num_bytes;
2534 u64 parent;
2535 u64 ref_root;
2536 u32 nritems;
2537 struct btrfs_key key;
2538 struct btrfs_file_extent_item *fi;
2539 int i;
2540 int level;
2541 int ret = 0;
2542 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2543 u64, u64, u64, u64, u64, u64);
2544
2545 ref_root = btrfs_header_owner(buf);
2546 nritems = btrfs_header_nritems(buf);
2547 level = btrfs_header_level(buf);
2548
2549 if (!root->ref_cows && level == 0)
2550 return 0;
2551
2552 if (inc)
2553 process_func = btrfs_inc_extent_ref;
2554 else
2555 process_func = btrfs_free_extent;
2556
2557 if (full_backref)
2558 parent = buf->start;
2559 else
2560 parent = 0;
2561
2562 for (i = 0; i < nritems; i++) {
2563 if (level == 0) {
2564 btrfs_item_key_to_cpu(buf, &key, i);
2565 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2566 continue;
2567 fi = btrfs_item_ptr(buf, i,
2568 struct btrfs_file_extent_item);
2569 if (btrfs_file_extent_type(buf, fi) ==
2570 BTRFS_FILE_EXTENT_INLINE)
2571 continue;
2572 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2573 if (bytenr == 0)
2574 continue;
2575
2576 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2577 key.offset -= btrfs_file_extent_offset(buf, fi);
2578 ret = process_func(trans, root, bytenr, num_bytes,
2579 parent, ref_root, key.objectid,
2580 key.offset);
2581 if (ret)
2582 goto fail;
2583 } else {
2584 bytenr = btrfs_node_blockptr(buf, i);
2585 num_bytes = btrfs_level_size(root, level - 1);
2586 ret = process_func(trans, root, bytenr, num_bytes,
2587 parent, ref_root, level - 1, 0);
2588 if (ret)
2589 goto fail;
2590 }
2591 }
2592 return 0;
2593 fail:
2594 BUG();
2595 return ret;
2596 }
2597
2598 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2599 struct extent_buffer *buf, int full_backref)
2600 {
2601 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2602 }
2603
2604 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2605 struct extent_buffer *buf, int full_backref)
2606 {
2607 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2608 }
2609
2610 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2611 struct btrfs_root *root,
2612 struct btrfs_path *path,
2613 struct btrfs_block_group_cache *cache)
2614 {
2615 int ret;
2616 struct btrfs_root *extent_root = root->fs_info->extent_root;
2617 unsigned long bi;
2618 struct extent_buffer *leaf;
2619
2620 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2621 if (ret < 0)
2622 goto fail;
2623 BUG_ON(ret);
2624
2625 leaf = path->nodes[0];
2626 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2627 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2628 btrfs_mark_buffer_dirty(leaf);
2629 btrfs_release_path(path);
2630 fail:
2631 if (ret)
2632 return ret;
2633 return 0;
2634
2635 }
2636
2637 static struct btrfs_block_group_cache *
2638 next_block_group(struct btrfs_root *root,
2639 struct btrfs_block_group_cache *cache)
2640 {
2641 struct rb_node *node;
2642 spin_lock(&root->fs_info->block_group_cache_lock);
2643 node = rb_next(&cache->cache_node);
2644 btrfs_put_block_group(cache);
2645 if (node) {
2646 cache = rb_entry(node, struct btrfs_block_group_cache,
2647 cache_node);
2648 btrfs_get_block_group(cache);
2649 } else
2650 cache = NULL;
2651 spin_unlock(&root->fs_info->block_group_cache_lock);
2652 return cache;
2653 }
2654
2655 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2656 struct btrfs_trans_handle *trans,
2657 struct btrfs_path *path)
2658 {
2659 struct btrfs_root *root = block_group->fs_info->tree_root;
2660 struct inode *inode = NULL;
2661 u64 alloc_hint = 0;
2662 int dcs = BTRFS_DC_ERROR;
2663 int num_pages = 0;
2664 int retries = 0;
2665 int ret = 0;
2666
2667 /*
2668 * If this block group is smaller than 100 megs don't bother caching the
2669 * block group.
2670 */
2671 if (block_group->key.offset < (100 * 1024 * 1024)) {
2672 spin_lock(&block_group->lock);
2673 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2674 spin_unlock(&block_group->lock);
2675 return 0;
2676 }
2677
2678 again:
2679 inode = lookup_free_space_inode(root, block_group, path);
2680 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2681 ret = PTR_ERR(inode);
2682 btrfs_release_path(path);
2683 goto out;
2684 }
2685
2686 if (IS_ERR(inode)) {
2687 BUG_ON(retries);
2688 retries++;
2689
2690 if (block_group->ro)
2691 goto out_free;
2692
2693 ret = create_free_space_inode(root, trans, block_group, path);
2694 if (ret)
2695 goto out_free;
2696 goto again;
2697 }
2698
2699 /*
2700 * We want to set the generation to 0, that way if anything goes wrong
2701 * from here on out we know not to trust this cache when we load up next
2702 * time.
2703 */
2704 BTRFS_I(inode)->generation = 0;
2705 ret = btrfs_update_inode(trans, root, inode);
2706 WARN_ON(ret);
2707
2708 if (i_size_read(inode) > 0) {
2709 ret = btrfs_truncate_free_space_cache(root, trans, path,
2710 inode);
2711 if (ret)
2712 goto out_put;
2713 }
2714
2715 spin_lock(&block_group->lock);
2716 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2717 /* We're not cached, don't bother trying to write stuff out */
2718 dcs = BTRFS_DC_WRITTEN;
2719 spin_unlock(&block_group->lock);
2720 goto out_put;
2721 }
2722 spin_unlock(&block_group->lock);
2723
2724 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2725 if (!num_pages)
2726 num_pages = 1;
2727
2728 /*
2729 * Just to make absolutely sure we have enough space, we're going to
2730 * preallocate 12 pages worth of space for each block group. In
2731 * practice we ought to use at most 8, but we need extra space so we can
2732 * add our header and have a terminator between the extents and the
2733 * bitmaps.
2734 */
2735 num_pages *= 16;
2736 num_pages *= PAGE_CACHE_SIZE;
2737
2738 ret = btrfs_check_data_free_space(inode, num_pages);
2739 if (ret)
2740 goto out_put;
2741
2742 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2743 num_pages, num_pages,
2744 &alloc_hint);
2745 if (!ret)
2746 dcs = BTRFS_DC_SETUP;
2747 btrfs_free_reserved_data_space(inode, num_pages);
2748 out_put:
2749 iput(inode);
2750 out_free:
2751 btrfs_release_path(path);
2752 out:
2753 spin_lock(&block_group->lock);
2754 block_group->disk_cache_state = dcs;
2755 spin_unlock(&block_group->lock);
2756
2757 return ret;
2758 }
2759
2760 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2761 struct btrfs_root *root)
2762 {
2763 struct btrfs_block_group_cache *cache;
2764 int err = 0;
2765 struct btrfs_path *path;
2766 u64 last = 0;
2767
2768 path = btrfs_alloc_path();
2769 if (!path)
2770 return -ENOMEM;
2771
2772 again:
2773 while (1) {
2774 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2775 while (cache) {
2776 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2777 break;
2778 cache = next_block_group(root, cache);
2779 }
2780 if (!cache) {
2781 if (last == 0)
2782 break;
2783 last = 0;
2784 continue;
2785 }
2786 err = cache_save_setup(cache, trans, path);
2787 last = cache->key.objectid + cache->key.offset;
2788 btrfs_put_block_group(cache);
2789 }
2790
2791 while (1) {
2792 if (last == 0) {
2793 err = btrfs_run_delayed_refs(trans, root,
2794 (unsigned long)-1);
2795 BUG_ON(err);
2796 }
2797
2798 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2799 while (cache) {
2800 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2801 btrfs_put_block_group(cache);
2802 goto again;
2803 }
2804
2805 if (cache->dirty)
2806 break;
2807 cache = next_block_group(root, cache);
2808 }
2809 if (!cache) {
2810 if (last == 0)
2811 break;
2812 last = 0;
2813 continue;
2814 }
2815
2816 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2817 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2818 cache->dirty = 0;
2819 last = cache->key.objectid + cache->key.offset;
2820
2821 err = write_one_cache_group(trans, root, path, cache);
2822 BUG_ON(err);
2823 btrfs_put_block_group(cache);
2824 }
2825
2826 while (1) {
2827 /*
2828 * I don't think this is needed since we're just marking our
2829 * preallocated extent as written, but just in case it can't
2830 * hurt.
2831 */
2832 if (last == 0) {
2833 err = btrfs_run_delayed_refs(trans, root,
2834 (unsigned long)-1);
2835 BUG_ON(err);
2836 }
2837
2838 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2839 while (cache) {
2840 /*
2841 * Really this shouldn't happen, but it could if we
2842 * couldn't write the entire preallocated extent and
2843 * splitting the extent resulted in a new block.
2844 */
2845 if (cache->dirty) {
2846 btrfs_put_block_group(cache);
2847 goto again;
2848 }
2849 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2850 break;
2851 cache = next_block_group(root, cache);
2852 }
2853 if (!cache) {
2854 if (last == 0)
2855 break;
2856 last = 0;
2857 continue;
2858 }
2859
2860 btrfs_write_out_cache(root, trans, cache, path);
2861
2862 /*
2863 * If we didn't have an error then the cache state is still
2864 * NEED_WRITE, so we can set it to WRITTEN.
2865 */
2866 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2867 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2868 last = cache->key.objectid + cache->key.offset;
2869 btrfs_put_block_group(cache);
2870 }
2871
2872 btrfs_free_path(path);
2873 return 0;
2874 }
2875
2876 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2877 {
2878 struct btrfs_block_group_cache *block_group;
2879 int readonly = 0;
2880
2881 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2882 if (!block_group || block_group->ro)
2883 readonly = 1;
2884 if (block_group)
2885 btrfs_put_block_group(block_group);
2886 return readonly;
2887 }
2888
2889 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2890 u64 total_bytes, u64 bytes_used,
2891 struct btrfs_space_info **space_info)
2892 {
2893 struct btrfs_space_info *found;
2894 int i;
2895 int factor;
2896
2897 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2898 BTRFS_BLOCK_GROUP_RAID10))
2899 factor = 2;
2900 else
2901 factor = 1;
2902
2903 found = __find_space_info(info, flags);
2904 if (found) {
2905 spin_lock(&found->lock);
2906 found->total_bytes += total_bytes;
2907 found->disk_total += total_bytes * factor;
2908 found->bytes_used += bytes_used;
2909 found->disk_used += bytes_used * factor;
2910 found->full = 0;
2911 spin_unlock(&found->lock);
2912 *space_info = found;
2913 return 0;
2914 }
2915 found = kzalloc(sizeof(*found), GFP_NOFS);
2916 if (!found)
2917 return -ENOMEM;
2918
2919 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2920 INIT_LIST_HEAD(&found->block_groups[i]);
2921 init_rwsem(&found->groups_sem);
2922 spin_lock_init(&found->lock);
2923 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2924 BTRFS_BLOCK_GROUP_SYSTEM |
2925 BTRFS_BLOCK_GROUP_METADATA);
2926 found->total_bytes = total_bytes;
2927 found->disk_total = total_bytes * factor;
2928 found->bytes_used = bytes_used;
2929 found->disk_used = bytes_used * factor;
2930 found->bytes_pinned = 0;
2931 found->bytes_reserved = 0;
2932 found->bytes_readonly = 0;
2933 found->bytes_may_use = 0;
2934 found->full = 0;
2935 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2936 found->chunk_alloc = 0;
2937 *space_info = found;
2938 list_add_rcu(&found->list, &info->space_info);
2939 atomic_set(&found->caching_threads, 0);
2940 return 0;
2941 }
2942
2943 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2944 {
2945 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2946 BTRFS_BLOCK_GROUP_RAID1 |
2947 BTRFS_BLOCK_GROUP_RAID10 |
2948 BTRFS_BLOCK_GROUP_DUP);
2949 if (extra_flags) {
2950 if (flags & BTRFS_BLOCK_GROUP_DATA)
2951 fs_info->avail_data_alloc_bits |= extra_flags;
2952 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2953 fs_info->avail_metadata_alloc_bits |= extra_flags;
2954 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2955 fs_info->avail_system_alloc_bits |= extra_flags;
2956 }
2957 }
2958
2959 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2960 {
2961 /*
2962 * we add in the count of missing devices because we want
2963 * to make sure that any RAID levels on a degraded FS
2964 * continue to be honored.
2965 */
2966 u64 num_devices = root->fs_info->fs_devices->rw_devices +
2967 root->fs_info->fs_devices->missing_devices;
2968
2969 if (num_devices == 1)
2970 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2971 if (num_devices < 4)
2972 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2973
2974 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2975 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2976 BTRFS_BLOCK_GROUP_RAID10))) {
2977 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2978 }
2979
2980 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2981 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2982 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2983 }
2984
2985 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2986 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2987 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2988 (flags & BTRFS_BLOCK_GROUP_DUP)))
2989 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2990 return flags;
2991 }
2992
2993 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2994 {
2995 if (flags & BTRFS_BLOCK_GROUP_DATA)
2996 flags |= root->fs_info->avail_data_alloc_bits &
2997 root->fs_info->data_alloc_profile;
2998 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2999 flags |= root->fs_info->avail_system_alloc_bits &
3000 root->fs_info->system_alloc_profile;
3001 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3002 flags |= root->fs_info->avail_metadata_alloc_bits &
3003 root->fs_info->metadata_alloc_profile;
3004 return btrfs_reduce_alloc_profile(root, flags);
3005 }
3006
3007 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3008 {
3009 u64 flags;
3010
3011 if (data)
3012 flags = BTRFS_BLOCK_GROUP_DATA;
3013 else if (root == root->fs_info->chunk_root)
3014 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3015 else
3016 flags = BTRFS_BLOCK_GROUP_METADATA;
3017
3018 return get_alloc_profile(root, flags);
3019 }
3020
3021 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3022 {
3023 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3024 BTRFS_BLOCK_GROUP_DATA);
3025 }
3026
3027 /*
3028 * This will check the space that the inode allocates from to make sure we have
3029 * enough space for bytes.
3030 */
3031 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3032 {
3033 struct btrfs_space_info *data_sinfo;
3034 struct btrfs_root *root = BTRFS_I(inode)->root;
3035 u64 used;
3036 int ret = 0, committed = 0, alloc_chunk = 1;
3037
3038 /* make sure bytes are sectorsize aligned */
3039 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3040
3041 if (root == root->fs_info->tree_root ||
3042 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3043 alloc_chunk = 0;
3044 committed = 1;
3045 }
3046
3047 data_sinfo = BTRFS_I(inode)->space_info;
3048 if (!data_sinfo)
3049 goto alloc;
3050
3051 again:
3052 /* make sure we have enough space to handle the data first */
3053 spin_lock(&data_sinfo->lock);
3054 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3055 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3056 data_sinfo->bytes_may_use;
3057
3058 if (used + bytes > data_sinfo->total_bytes) {
3059 struct btrfs_trans_handle *trans;
3060
3061 /*
3062 * if we don't have enough free bytes in this space then we need
3063 * to alloc a new chunk.
3064 */
3065 if (!data_sinfo->full && alloc_chunk) {
3066 u64 alloc_target;
3067
3068 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3069 spin_unlock(&data_sinfo->lock);
3070 alloc:
3071 alloc_target = btrfs_get_alloc_profile(root, 1);
3072 trans = btrfs_join_transaction(root);
3073 if (IS_ERR(trans))
3074 return PTR_ERR(trans);
3075
3076 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3077 bytes + 2 * 1024 * 1024,
3078 alloc_target,
3079 CHUNK_ALLOC_NO_FORCE);
3080 btrfs_end_transaction(trans, root);
3081 if (ret < 0) {
3082 if (ret != -ENOSPC)
3083 return ret;
3084 else
3085 goto commit_trans;
3086 }
3087
3088 if (!data_sinfo) {
3089 btrfs_set_inode_space_info(root, inode);
3090 data_sinfo = BTRFS_I(inode)->space_info;
3091 }
3092 goto again;
3093 }
3094
3095 /*
3096 * If we have less pinned bytes than we want to allocate then
3097 * don't bother committing the transaction, it won't help us.
3098 */
3099 if (data_sinfo->bytes_pinned < bytes)
3100 committed = 1;
3101 spin_unlock(&data_sinfo->lock);
3102
3103 /* commit the current transaction and try again */
3104 commit_trans:
3105 if (!committed &&
3106 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3107 committed = 1;
3108 trans = btrfs_join_transaction(root);
3109 if (IS_ERR(trans))
3110 return PTR_ERR(trans);
3111 ret = btrfs_commit_transaction(trans, root);
3112 if (ret)
3113 return ret;
3114 goto again;
3115 }
3116
3117 return -ENOSPC;
3118 }
3119 data_sinfo->bytes_may_use += bytes;
3120 BTRFS_I(inode)->reserved_bytes += bytes;
3121 spin_unlock(&data_sinfo->lock);
3122
3123 return 0;
3124 }
3125
3126 /*
3127 * called when we are clearing an delalloc extent from the
3128 * inode's io_tree or there was an error for whatever reason
3129 * after calling btrfs_check_data_free_space
3130 */
3131 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3132 {
3133 struct btrfs_root *root = BTRFS_I(inode)->root;
3134 struct btrfs_space_info *data_sinfo;
3135
3136 /* make sure bytes are sectorsize aligned */
3137 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3138
3139 data_sinfo = BTRFS_I(inode)->space_info;
3140 spin_lock(&data_sinfo->lock);
3141 data_sinfo->bytes_may_use -= bytes;
3142 BTRFS_I(inode)->reserved_bytes -= bytes;
3143 spin_unlock(&data_sinfo->lock);
3144 }
3145
3146 static void force_metadata_allocation(struct btrfs_fs_info *info)
3147 {
3148 struct list_head *head = &info->space_info;
3149 struct btrfs_space_info *found;
3150
3151 rcu_read_lock();
3152 list_for_each_entry_rcu(found, head, list) {
3153 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3154 found->force_alloc = CHUNK_ALLOC_FORCE;
3155 }
3156 rcu_read_unlock();
3157 }
3158
3159 static int should_alloc_chunk(struct btrfs_root *root,
3160 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3161 int force)
3162 {
3163 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3164 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3165 u64 thresh;
3166
3167 if (force == CHUNK_ALLOC_FORCE)
3168 return 1;
3169
3170 /*
3171 * in limited mode, we want to have some free space up to
3172 * about 1% of the FS size.
3173 */
3174 if (force == CHUNK_ALLOC_LIMITED) {
3175 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3176 thresh = max_t(u64, 64 * 1024 * 1024,
3177 div_factor_fine(thresh, 1));
3178
3179 if (num_bytes - num_allocated < thresh)
3180 return 1;
3181 }
3182
3183 /*
3184 * we have two similar checks here, one based on percentage
3185 * and once based on a hard number of 256MB. The idea
3186 * is that if we have a good amount of free
3187 * room, don't allocate a chunk. A good mount is
3188 * less than 80% utilized of the chunks we have allocated,
3189 * or more than 256MB free
3190 */
3191 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3192 return 0;
3193
3194 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3195 return 0;
3196
3197 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3198
3199 /* 256MB or 5% of the FS */
3200 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3201
3202 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3203 return 0;
3204 return 1;
3205 }
3206
3207 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3208 struct btrfs_root *extent_root, u64 alloc_bytes,
3209 u64 flags, int force)
3210 {
3211 struct btrfs_space_info *space_info;
3212 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3213 int wait_for_alloc = 0;
3214 int ret = 0;
3215
3216 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3217
3218 space_info = __find_space_info(extent_root->fs_info, flags);
3219 if (!space_info) {
3220 ret = update_space_info(extent_root->fs_info, flags,
3221 0, 0, &space_info);
3222 BUG_ON(ret);
3223 }
3224 BUG_ON(!space_info);
3225
3226 again:
3227 spin_lock(&space_info->lock);
3228 if (space_info->force_alloc)
3229 force = space_info->force_alloc;
3230 if (space_info->full) {
3231 spin_unlock(&space_info->lock);
3232 return 0;
3233 }
3234
3235 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3236 spin_unlock(&space_info->lock);
3237 return 0;
3238 } else if (space_info->chunk_alloc) {
3239 wait_for_alloc = 1;
3240 } else {
3241 space_info->chunk_alloc = 1;
3242 }
3243
3244 spin_unlock(&space_info->lock);
3245
3246 mutex_lock(&fs_info->chunk_mutex);
3247
3248 /*
3249 * The chunk_mutex is held throughout the entirety of a chunk
3250 * allocation, so once we've acquired the chunk_mutex we know that the
3251 * other guy is done and we need to recheck and see if we should
3252 * allocate.
3253 */
3254 if (wait_for_alloc) {
3255 mutex_unlock(&fs_info->chunk_mutex);
3256 wait_for_alloc = 0;
3257 goto again;
3258 }
3259
3260 /*
3261 * If we have mixed data/metadata chunks we want to make sure we keep
3262 * allocating mixed chunks instead of individual chunks.
3263 */
3264 if (btrfs_mixed_space_info(space_info))
3265 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3266
3267 /*
3268 * if we're doing a data chunk, go ahead and make sure that
3269 * we keep a reasonable number of metadata chunks allocated in the
3270 * FS as well.
3271 */
3272 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3273 fs_info->data_chunk_allocations++;
3274 if (!(fs_info->data_chunk_allocations %
3275 fs_info->metadata_ratio))
3276 force_metadata_allocation(fs_info);
3277 }
3278
3279 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3280 if (ret < 0 && ret != -ENOSPC)
3281 goto out;
3282
3283 spin_lock(&space_info->lock);
3284 if (ret)
3285 space_info->full = 1;
3286 else
3287 ret = 1;
3288
3289 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3290 space_info->chunk_alloc = 0;
3291 spin_unlock(&space_info->lock);
3292 out:
3293 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3294 return ret;
3295 }
3296
3297 /*
3298 * shrink metadata reservation for delalloc
3299 */
3300 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3301 struct btrfs_root *root, u64 to_reclaim, int sync)
3302 {
3303 struct btrfs_block_rsv *block_rsv;
3304 struct btrfs_space_info *space_info;
3305 u64 reserved;
3306 u64 max_reclaim;
3307 u64 reclaimed = 0;
3308 long time_left;
3309 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3310 int loops = 0;
3311 unsigned long progress;
3312
3313 block_rsv = &root->fs_info->delalloc_block_rsv;
3314 space_info = block_rsv->space_info;
3315
3316 smp_mb();
3317 reserved = space_info->bytes_reserved;
3318 progress = space_info->reservation_progress;
3319
3320 if (reserved == 0)
3321 return 0;
3322
3323 max_reclaim = min(reserved, to_reclaim);
3324
3325 while (loops < 1024) {
3326 /* have the flusher threads jump in and do some IO */
3327 smp_mb();
3328 nr_pages = min_t(unsigned long, nr_pages,
3329 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3330 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3331
3332 spin_lock(&space_info->lock);
3333 if (reserved > space_info->bytes_reserved)
3334 reclaimed += reserved - space_info->bytes_reserved;
3335 reserved = space_info->bytes_reserved;
3336 spin_unlock(&space_info->lock);
3337
3338 loops++;
3339
3340 if (reserved == 0 || reclaimed >= max_reclaim)
3341 break;
3342
3343 if (trans && trans->transaction->blocked)
3344 return -EAGAIN;
3345
3346 time_left = schedule_timeout_interruptible(1);
3347
3348 /* We were interrupted, exit */
3349 if (time_left)
3350 break;
3351
3352 /* we've kicked the IO a few times, if anything has been freed,
3353 * exit. There is no sense in looping here for a long time
3354 * when we really need to commit the transaction, or there are
3355 * just too many writers without enough free space
3356 */
3357
3358 if (loops > 3) {
3359 smp_mb();
3360 if (progress != space_info->reservation_progress)
3361 break;
3362 }
3363
3364 }
3365 return reclaimed >= to_reclaim;
3366 }
3367
3368 /*
3369 * Retries tells us how many times we've called reserve_metadata_bytes. The
3370 * idea is if this is the first call (retries == 0) then we will add to our
3371 * reserved count if we can't make the allocation in order to hold our place
3372 * while we go and try and free up space. That way for retries > 1 we don't try
3373 * and add space, we just check to see if the amount of unused space is >= the
3374 * total space, meaning that our reservation is valid.
3375 *
3376 * However if we don't intend to retry this reservation, pass -1 as retries so
3377 * that it short circuits this logic.
3378 */
3379 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3380 struct btrfs_root *root,
3381 struct btrfs_block_rsv *block_rsv,
3382 u64 orig_bytes, int flush)
3383 {
3384 struct btrfs_space_info *space_info = block_rsv->space_info;
3385 u64 unused;
3386 u64 num_bytes = orig_bytes;
3387 int retries = 0;
3388 int ret = 0;
3389 bool reserved = false;
3390 bool committed = false;
3391
3392 again:
3393 ret = -ENOSPC;
3394 if (reserved)
3395 num_bytes = 0;
3396
3397 spin_lock(&space_info->lock);
3398 unused = space_info->bytes_used + space_info->bytes_reserved +
3399 space_info->bytes_pinned + space_info->bytes_readonly +
3400 space_info->bytes_may_use;
3401
3402 /*
3403 * The idea here is that we've not already over-reserved the block group
3404 * then we can go ahead and save our reservation first and then start
3405 * flushing if we need to. Otherwise if we've already overcommitted
3406 * lets start flushing stuff first and then come back and try to make
3407 * our reservation.
3408 */
3409 if (unused <= space_info->total_bytes) {
3410 unused = space_info->total_bytes - unused;
3411 if (unused >= num_bytes) {
3412 if (!reserved)
3413 space_info->bytes_reserved += orig_bytes;
3414 ret = 0;
3415 } else {
3416 /*
3417 * Ok set num_bytes to orig_bytes since we aren't
3418 * overocmmitted, this way we only try and reclaim what
3419 * we need.
3420 */
3421 num_bytes = orig_bytes;
3422 }
3423 } else {
3424 /*
3425 * Ok we're over committed, set num_bytes to the overcommitted
3426 * amount plus the amount of bytes that we need for this
3427 * reservation.
3428 */
3429 num_bytes = unused - space_info->total_bytes +
3430 (orig_bytes * (retries + 1));
3431 }
3432
3433 /*
3434 * Couldn't make our reservation, save our place so while we're trying
3435 * to reclaim space we can actually use it instead of somebody else
3436 * stealing it from us.
3437 */
3438 if (ret && !reserved) {
3439 space_info->bytes_reserved += orig_bytes;
3440 reserved = true;
3441 }
3442
3443 spin_unlock(&space_info->lock);
3444
3445 if (!ret)
3446 return 0;
3447
3448 if (!flush)
3449 goto out;
3450
3451 /*
3452 * We do synchronous shrinking since we don't actually unreserve
3453 * metadata until after the IO is completed.
3454 */
3455 ret = shrink_delalloc(trans, root, num_bytes, 1);
3456 if (ret > 0)
3457 return 0;
3458 else if (ret < 0)
3459 goto out;
3460
3461 /*
3462 * So if we were overcommitted it's possible that somebody else flushed
3463 * out enough space and we simply didn't have enough space to reclaim,
3464 * so go back around and try again.
3465 */
3466 if (retries < 2) {
3467 retries++;
3468 goto again;
3469 }
3470
3471 spin_lock(&space_info->lock);
3472 /*
3473 * Not enough space to be reclaimed, don't bother committing the
3474 * transaction.
3475 */
3476 if (space_info->bytes_pinned < orig_bytes)
3477 ret = -ENOSPC;
3478 spin_unlock(&space_info->lock);
3479 if (ret)
3480 goto out;
3481
3482 ret = -EAGAIN;
3483 if (trans || committed)
3484 goto out;
3485
3486 ret = -ENOSPC;
3487 trans = btrfs_join_transaction(root);
3488 if (IS_ERR(trans))
3489 goto out;
3490 ret = btrfs_commit_transaction(trans, root);
3491 if (!ret) {
3492 trans = NULL;
3493 committed = true;
3494 goto again;
3495 }
3496
3497 out:
3498 if (reserved) {
3499 spin_lock(&space_info->lock);
3500 space_info->bytes_reserved -= orig_bytes;
3501 spin_unlock(&space_info->lock);
3502 }
3503
3504 return ret;
3505 }
3506
3507 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3508 struct btrfs_root *root)
3509 {
3510 struct btrfs_block_rsv *block_rsv;
3511 if (root->ref_cows)
3512 block_rsv = trans->block_rsv;
3513 else
3514 block_rsv = root->block_rsv;
3515
3516 if (!block_rsv)
3517 block_rsv = &root->fs_info->empty_block_rsv;
3518
3519 return block_rsv;
3520 }
3521
3522 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3523 u64 num_bytes)
3524 {
3525 int ret = -ENOSPC;
3526 spin_lock(&block_rsv->lock);
3527 if (block_rsv->reserved >= num_bytes) {
3528 block_rsv->reserved -= num_bytes;
3529 if (block_rsv->reserved < block_rsv->size)
3530 block_rsv->full = 0;
3531 ret = 0;
3532 }
3533 spin_unlock(&block_rsv->lock);
3534 return ret;
3535 }
3536
3537 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3538 u64 num_bytes, int update_size)
3539 {
3540 spin_lock(&block_rsv->lock);
3541 block_rsv->reserved += num_bytes;
3542 if (update_size)
3543 block_rsv->size += num_bytes;
3544 else if (block_rsv->reserved >= block_rsv->size)
3545 block_rsv->full = 1;
3546 spin_unlock(&block_rsv->lock);
3547 }
3548
3549 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3550 struct btrfs_block_rsv *dest, u64 num_bytes)
3551 {
3552 struct btrfs_space_info *space_info = block_rsv->space_info;
3553
3554 spin_lock(&block_rsv->lock);
3555 if (num_bytes == (u64)-1)
3556 num_bytes = block_rsv->size;
3557 block_rsv->size -= num_bytes;
3558 if (block_rsv->reserved >= block_rsv->size) {
3559 num_bytes = block_rsv->reserved - block_rsv->size;
3560 block_rsv->reserved = block_rsv->size;
3561 block_rsv->full = 1;
3562 } else {
3563 num_bytes = 0;
3564 }
3565 spin_unlock(&block_rsv->lock);
3566
3567 if (num_bytes > 0) {
3568 if (dest) {
3569 spin_lock(&dest->lock);
3570 if (!dest->full) {
3571 u64 bytes_to_add;
3572
3573 bytes_to_add = dest->size - dest->reserved;
3574 bytes_to_add = min(num_bytes, bytes_to_add);
3575 dest->reserved += bytes_to_add;
3576 if (dest->reserved >= dest->size)
3577 dest->full = 1;
3578 num_bytes -= bytes_to_add;
3579 }
3580 spin_unlock(&dest->lock);
3581 }
3582 if (num_bytes) {
3583 spin_lock(&space_info->lock);
3584 space_info->bytes_reserved -= num_bytes;
3585 space_info->reservation_progress++;
3586 spin_unlock(&space_info->lock);
3587 }
3588 }
3589 }
3590
3591 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3592 struct btrfs_block_rsv *dst, u64 num_bytes)
3593 {
3594 int ret;
3595
3596 ret = block_rsv_use_bytes(src, num_bytes);
3597 if (ret)
3598 return ret;
3599
3600 block_rsv_add_bytes(dst, num_bytes, 1);
3601 return 0;
3602 }
3603
3604 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3605 {
3606 memset(rsv, 0, sizeof(*rsv));
3607 spin_lock_init(&rsv->lock);
3608 atomic_set(&rsv->usage, 1);
3609 rsv->priority = 6;
3610 INIT_LIST_HEAD(&rsv->list);
3611 }
3612
3613 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3614 {
3615 struct btrfs_block_rsv *block_rsv;
3616 struct btrfs_fs_info *fs_info = root->fs_info;
3617
3618 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3619 if (!block_rsv)
3620 return NULL;
3621
3622 btrfs_init_block_rsv(block_rsv);
3623 block_rsv->space_info = __find_space_info(fs_info,
3624 BTRFS_BLOCK_GROUP_METADATA);
3625 return block_rsv;
3626 }
3627
3628 void btrfs_free_block_rsv(struct btrfs_root *root,
3629 struct btrfs_block_rsv *rsv)
3630 {
3631 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3632 btrfs_block_rsv_release(root, rsv, (u64)-1);
3633 if (!rsv->durable)
3634 kfree(rsv);
3635 }
3636 }
3637
3638 /*
3639 * make the block_rsv struct be able to capture freed space.
3640 * the captured space will re-add to the the block_rsv struct
3641 * after transaction commit
3642 */
3643 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3644 struct btrfs_block_rsv *block_rsv)
3645 {
3646 block_rsv->durable = 1;
3647 mutex_lock(&fs_info->durable_block_rsv_mutex);
3648 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3649 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3650 }
3651
3652 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3653 struct btrfs_root *root,
3654 struct btrfs_block_rsv *block_rsv,
3655 u64 num_bytes)
3656 {
3657 int ret;
3658
3659 if (num_bytes == 0)
3660 return 0;
3661
3662 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3663 if (!ret) {
3664 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3665 return 0;
3666 }
3667
3668 return ret;
3669 }
3670
3671 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3672 struct btrfs_root *root,
3673 struct btrfs_block_rsv *block_rsv,
3674 u64 min_reserved, int min_factor)
3675 {
3676 u64 num_bytes = 0;
3677 int commit_trans = 0;
3678 int ret = -ENOSPC;
3679
3680 if (!block_rsv)
3681 return 0;
3682
3683 spin_lock(&block_rsv->lock);
3684 if (min_factor > 0)
3685 num_bytes = div_factor(block_rsv->size, min_factor);
3686 if (min_reserved > num_bytes)
3687 num_bytes = min_reserved;
3688
3689 if (block_rsv->reserved >= num_bytes) {
3690 ret = 0;
3691 } else {
3692 num_bytes -= block_rsv->reserved;
3693 if (block_rsv->durable &&
3694 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3695 commit_trans = 1;
3696 }
3697 spin_unlock(&block_rsv->lock);
3698 if (!ret)
3699 return 0;
3700
3701 if (block_rsv->refill_used) {
3702 ret = reserve_metadata_bytes(trans, root, block_rsv,
3703 num_bytes, 0);
3704 if (!ret) {
3705 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3706 return 0;
3707 }
3708 }
3709
3710 if (commit_trans) {
3711 if (trans)
3712 return -EAGAIN;
3713
3714 trans = btrfs_join_transaction(root);
3715 BUG_ON(IS_ERR(trans));
3716 ret = btrfs_commit_transaction(trans, root);
3717 return 0;
3718 }
3719
3720 return -ENOSPC;
3721 }
3722
3723 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3724 struct btrfs_block_rsv *dst_rsv,
3725 u64 num_bytes)
3726 {
3727 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3728 }
3729
3730 void btrfs_block_rsv_release(struct btrfs_root *root,
3731 struct btrfs_block_rsv *block_rsv,
3732 u64 num_bytes)
3733 {
3734 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3735 if (global_rsv->full || global_rsv == block_rsv ||
3736 block_rsv->space_info != global_rsv->space_info)
3737 global_rsv = NULL;
3738 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3739 }
3740
3741 /*
3742 * helper to calculate size of global block reservation.
3743 * the desired value is sum of space used by extent tree,
3744 * checksum tree and root tree
3745 */
3746 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3747 {
3748 struct btrfs_space_info *sinfo;
3749 u64 num_bytes;
3750 u64 meta_used;
3751 u64 data_used;
3752 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3753
3754 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3755 spin_lock(&sinfo->lock);
3756 data_used = sinfo->bytes_used;
3757 spin_unlock(&sinfo->lock);
3758
3759 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3760 spin_lock(&sinfo->lock);
3761 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3762 data_used = 0;
3763 meta_used = sinfo->bytes_used;
3764 spin_unlock(&sinfo->lock);
3765
3766 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3767 csum_size * 2;
3768 num_bytes += div64_u64(data_used + meta_used, 50);
3769
3770 if (num_bytes * 3 > meta_used)
3771 num_bytes = div64_u64(meta_used, 3);
3772
3773 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3774 }
3775
3776 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3777 {
3778 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3779 struct btrfs_space_info *sinfo = block_rsv->space_info;
3780 u64 num_bytes;
3781
3782 num_bytes = calc_global_metadata_size(fs_info);
3783
3784 spin_lock(&block_rsv->lock);
3785 spin_lock(&sinfo->lock);
3786
3787 block_rsv->size = num_bytes;
3788
3789 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3790 sinfo->bytes_reserved + sinfo->bytes_readonly +
3791 sinfo->bytes_may_use;
3792
3793 if (sinfo->total_bytes > num_bytes) {
3794 num_bytes = sinfo->total_bytes - num_bytes;
3795 block_rsv->reserved += num_bytes;
3796 sinfo->bytes_reserved += num_bytes;
3797 }
3798
3799 if (block_rsv->reserved >= block_rsv->size) {
3800 num_bytes = block_rsv->reserved - block_rsv->size;
3801 sinfo->bytes_reserved -= num_bytes;
3802 sinfo->reservation_progress++;
3803 block_rsv->reserved = block_rsv->size;
3804 block_rsv->full = 1;
3805 }
3806
3807 spin_unlock(&sinfo->lock);
3808 spin_unlock(&block_rsv->lock);
3809 }
3810
3811 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3812 {
3813 struct btrfs_space_info *space_info;
3814
3815 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3816 fs_info->chunk_block_rsv.space_info = space_info;
3817 fs_info->chunk_block_rsv.priority = 10;
3818
3819 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3820 fs_info->global_block_rsv.space_info = space_info;
3821 fs_info->global_block_rsv.priority = 10;
3822 fs_info->global_block_rsv.refill_used = 1;
3823 fs_info->delalloc_block_rsv.space_info = space_info;
3824 fs_info->trans_block_rsv.space_info = space_info;
3825 fs_info->empty_block_rsv.space_info = space_info;
3826 fs_info->empty_block_rsv.priority = 10;
3827
3828 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3829 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3830 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3831 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3832 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3833
3834 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3835
3836 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3837
3838 update_global_block_rsv(fs_info);
3839 }
3840
3841 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3842 {
3843 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3844 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3845 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3846 WARN_ON(fs_info->trans_block_rsv.size > 0);
3847 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3848 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3849 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3850 }
3851
3852 int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans,
3853 struct btrfs_root *root,
3854 struct btrfs_block_rsv *rsv)
3855 {
3856 struct btrfs_block_rsv *trans_rsv = &root->fs_info->trans_block_rsv;
3857 u64 num_bytes;
3858 int ret;
3859
3860 /*
3861 * Truncate should be freeing data, but give us 2 items just in case it
3862 * needs to use some space. We may want to be smarter about this in the
3863 * future.
3864 */
3865 num_bytes = btrfs_calc_trans_metadata_size(root, 2);
3866
3867 /* We already have enough bytes, just return */
3868 if (rsv->reserved >= num_bytes)
3869 return 0;
3870
3871 num_bytes -= rsv->reserved;
3872
3873 /*
3874 * You should have reserved enough space before hand to do this, so this
3875 * should not fail.
3876 */
3877 ret = block_rsv_migrate_bytes(trans_rsv, rsv, num_bytes);
3878 BUG_ON(ret);
3879
3880 return 0;
3881 }
3882
3883 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3884 struct btrfs_root *root,
3885 int num_items)
3886 {
3887 u64 num_bytes;
3888 int ret;
3889
3890 if (num_items == 0 || root->fs_info->chunk_root == root)
3891 return 0;
3892
3893 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
3894 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3895 num_bytes);
3896 if (!ret) {
3897 trans->bytes_reserved += num_bytes;
3898 trans->block_rsv = &root->fs_info->trans_block_rsv;
3899 }
3900 return ret;
3901 }
3902
3903 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3904 struct btrfs_root *root)
3905 {
3906 if (!trans->bytes_reserved)
3907 return;
3908
3909 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3910 btrfs_block_rsv_release(root, trans->block_rsv,
3911 trans->bytes_reserved);
3912 trans->bytes_reserved = 0;
3913 }
3914
3915 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3916 struct inode *inode)
3917 {
3918 struct btrfs_root *root = BTRFS_I(inode)->root;
3919 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3920 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3921
3922 /*
3923 * We need to hold space in order to delete our orphan item once we've
3924 * added it, so this takes the reservation so we can release it later
3925 * when we are truly done with the orphan item.
3926 */
3927 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3928 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3929 }
3930
3931 void btrfs_orphan_release_metadata(struct inode *inode)
3932 {
3933 struct btrfs_root *root = BTRFS_I(inode)->root;
3934 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3935 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3936 }
3937
3938 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3939 struct btrfs_pending_snapshot *pending)
3940 {
3941 struct btrfs_root *root = pending->root;
3942 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3943 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3944 /*
3945 * two for root back/forward refs, two for directory entries
3946 * and one for root of the snapshot.
3947 */
3948 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3949 dst_rsv->space_info = src_rsv->space_info;
3950 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3951 }
3952
3953 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3954 {
3955 return num_bytes >>= 3;
3956 }
3957
3958 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3959 {
3960 struct btrfs_root *root = BTRFS_I(inode)->root;
3961 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3962 u64 to_reserve;
3963 int nr_extents;
3964 int reserved_extents;
3965 int ret;
3966
3967 if (btrfs_transaction_in_commit(root->fs_info))
3968 schedule_timeout(1);
3969
3970 num_bytes = ALIGN(num_bytes, root->sectorsize);
3971
3972 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
3973 reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
3974
3975 if (nr_extents > reserved_extents) {
3976 nr_extents -= reserved_extents;
3977 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
3978 } else {
3979 nr_extents = 0;
3980 to_reserve = 0;
3981 }
3982
3983 to_reserve += calc_csum_metadata_size(inode, num_bytes);
3984 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
3985 if (ret)
3986 return ret;
3987
3988 atomic_add(nr_extents, &BTRFS_I(inode)->reserved_extents);
3989 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
3990
3991 block_rsv_add_bytes(block_rsv, to_reserve, 1);
3992
3993 if (block_rsv->size > 512 * 1024 * 1024)
3994 shrink_delalloc(NULL, root, to_reserve, 0);
3995
3996 return 0;
3997 }
3998
3999 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4000 {
4001 struct btrfs_root *root = BTRFS_I(inode)->root;
4002 u64 to_free;
4003 int nr_extents;
4004 int reserved_extents;
4005
4006 num_bytes = ALIGN(num_bytes, root->sectorsize);
4007 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
4008 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0);
4009
4010 reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
4011 do {
4012 int old, new;
4013
4014 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
4015 if (nr_extents >= reserved_extents) {
4016 nr_extents = 0;
4017 break;
4018 }
4019 old = reserved_extents;
4020 nr_extents = reserved_extents - nr_extents;
4021 new = reserved_extents - nr_extents;
4022 old = atomic_cmpxchg(&BTRFS_I(inode)->reserved_extents,
4023 reserved_extents, new);
4024 if (likely(old == reserved_extents))
4025 break;
4026 reserved_extents = old;
4027 } while (1);
4028
4029 to_free = calc_csum_metadata_size(inode, num_bytes);
4030 if (nr_extents > 0)
4031 to_free += btrfs_calc_trans_metadata_size(root, nr_extents);
4032
4033 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4034 to_free);
4035 }
4036
4037 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4038 {
4039 int ret;
4040
4041 ret = btrfs_check_data_free_space(inode, num_bytes);
4042 if (ret)
4043 return ret;
4044
4045 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4046 if (ret) {
4047 btrfs_free_reserved_data_space(inode, num_bytes);
4048 return ret;
4049 }
4050
4051 return 0;
4052 }
4053
4054 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4055 {
4056 btrfs_delalloc_release_metadata(inode, num_bytes);
4057 btrfs_free_reserved_data_space(inode, num_bytes);
4058 }
4059
4060 static int update_block_group(struct btrfs_trans_handle *trans,
4061 struct btrfs_root *root,
4062 u64 bytenr, u64 num_bytes, int alloc)
4063 {
4064 struct btrfs_block_group_cache *cache = NULL;
4065 struct btrfs_fs_info *info = root->fs_info;
4066 u64 total = num_bytes;
4067 u64 old_val;
4068 u64 byte_in_group;
4069 int factor;
4070
4071 /* block accounting for super block */
4072 spin_lock(&info->delalloc_lock);
4073 old_val = btrfs_super_bytes_used(&info->super_copy);
4074 if (alloc)
4075 old_val += num_bytes;
4076 else
4077 old_val -= num_bytes;
4078 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4079 spin_unlock(&info->delalloc_lock);
4080
4081 while (total) {
4082 cache = btrfs_lookup_block_group(info, bytenr);
4083 if (!cache)
4084 return -1;
4085 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4086 BTRFS_BLOCK_GROUP_RAID1 |
4087 BTRFS_BLOCK_GROUP_RAID10))
4088 factor = 2;
4089 else
4090 factor = 1;
4091 /*
4092 * If this block group has free space cache written out, we
4093 * need to make sure to load it if we are removing space. This
4094 * is because we need the unpinning stage to actually add the
4095 * space back to the block group, otherwise we will leak space.
4096 */
4097 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4098 cache_block_group(cache, trans, NULL, 1);
4099
4100 byte_in_group = bytenr - cache->key.objectid;
4101 WARN_ON(byte_in_group > cache->key.offset);
4102
4103 spin_lock(&cache->space_info->lock);
4104 spin_lock(&cache->lock);
4105
4106 if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4107 cache->disk_cache_state < BTRFS_DC_CLEAR)
4108 cache->disk_cache_state = BTRFS_DC_CLEAR;
4109
4110 cache->dirty = 1;
4111 old_val = btrfs_block_group_used(&cache->item);
4112 num_bytes = min(total, cache->key.offset - byte_in_group);
4113 if (alloc) {
4114 old_val += num_bytes;
4115 btrfs_set_block_group_used(&cache->item, old_val);
4116 cache->reserved -= num_bytes;
4117 cache->space_info->bytes_reserved -= num_bytes;
4118 cache->space_info->reservation_progress++;
4119 cache->space_info->bytes_used += num_bytes;
4120 cache->space_info->disk_used += num_bytes * factor;
4121 spin_unlock(&cache->lock);
4122 spin_unlock(&cache->space_info->lock);
4123 } else {
4124 old_val -= num_bytes;
4125 btrfs_set_block_group_used(&cache->item, old_val);
4126 cache->pinned += num_bytes;
4127 cache->space_info->bytes_pinned += num_bytes;
4128 cache->space_info->bytes_used -= num_bytes;
4129 cache->space_info->disk_used -= num_bytes * factor;
4130 spin_unlock(&cache->lock);
4131 spin_unlock(&cache->space_info->lock);
4132
4133 set_extent_dirty(info->pinned_extents,
4134 bytenr, bytenr + num_bytes - 1,
4135 GFP_NOFS | __GFP_NOFAIL);
4136 }
4137 btrfs_put_block_group(cache);
4138 total -= num_bytes;
4139 bytenr += num_bytes;
4140 }
4141 return 0;
4142 }
4143
4144 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4145 {
4146 struct btrfs_block_group_cache *cache;
4147 u64 bytenr;
4148
4149 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4150 if (!cache)
4151 return 0;
4152
4153 bytenr = cache->key.objectid;
4154 btrfs_put_block_group(cache);
4155
4156 return bytenr;
4157 }
4158
4159 static int pin_down_extent(struct btrfs_root *root,
4160 struct btrfs_block_group_cache *cache,
4161 u64 bytenr, u64 num_bytes, int reserved)
4162 {
4163 spin_lock(&cache->space_info->lock);
4164 spin_lock(&cache->lock);
4165 cache->pinned += num_bytes;
4166 cache->space_info->bytes_pinned += num_bytes;
4167 if (reserved) {
4168 cache->reserved -= num_bytes;
4169 cache->space_info->bytes_reserved -= num_bytes;
4170 cache->space_info->reservation_progress++;
4171 }
4172 spin_unlock(&cache->lock);
4173 spin_unlock(&cache->space_info->lock);
4174
4175 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4176 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4177 return 0;
4178 }
4179
4180 /*
4181 * this function must be called within transaction
4182 */
4183 int btrfs_pin_extent(struct btrfs_root *root,
4184 u64 bytenr, u64 num_bytes, int reserved)
4185 {
4186 struct btrfs_block_group_cache *cache;
4187
4188 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4189 BUG_ON(!cache);
4190
4191 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4192
4193 btrfs_put_block_group(cache);
4194 return 0;
4195 }
4196
4197 /*
4198 * update size of reserved extents. this function may return -EAGAIN
4199 * if 'reserve' is true or 'sinfo' is false.
4200 */
4201 int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4202 u64 num_bytes, int reserve, int sinfo)
4203 {
4204 int ret = 0;
4205 if (sinfo) {
4206 struct btrfs_space_info *space_info = cache->space_info;
4207 spin_lock(&space_info->lock);
4208 spin_lock(&cache->lock);
4209 if (reserve) {
4210 if (cache->ro) {
4211 ret = -EAGAIN;
4212 } else {
4213 cache->reserved += num_bytes;
4214 space_info->bytes_reserved += num_bytes;
4215 }
4216 } else {
4217 if (cache->ro)
4218 space_info->bytes_readonly += num_bytes;
4219 cache->reserved -= num_bytes;
4220 space_info->bytes_reserved -= num_bytes;
4221 space_info->reservation_progress++;
4222 }
4223 spin_unlock(&cache->lock);
4224 spin_unlock(&space_info->lock);
4225 } else {
4226 spin_lock(&cache->lock);
4227 if (cache->ro) {
4228 ret = -EAGAIN;
4229 } else {
4230 if (reserve)
4231 cache->reserved += num_bytes;
4232 else
4233 cache->reserved -= num_bytes;
4234 }
4235 spin_unlock(&cache->lock);
4236 }
4237 return ret;
4238 }
4239
4240 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4241 struct btrfs_root *root)
4242 {
4243 struct btrfs_fs_info *fs_info = root->fs_info;
4244 struct btrfs_caching_control *next;
4245 struct btrfs_caching_control *caching_ctl;
4246 struct btrfs_block_group_cache *cache;
4247
4248 down_write(&fs_info->extent_commit_sem);
4249
4250 list_for_each_entry_safe(caching_ctl, next,
4251 &fs_info->caching_block_groups, list) {
4252 cache = caching_ctl->block_group;
4253 if (block_group_cache_done(cache)) {
4254 cache->last_byte_to_unpin = (u64)-1;
4255 list_del_init(&caching_ctl->list);
4256 put_caching_control(caching_ctl);
4257 } else {
4258 cache->last_byte_to_unpin = caching_ctl->progress;
4259 }
4260 }
4261
4262 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4263 fs_info->pinned_extents = &fs_info->freed_extents[1];
4264 else
4265 fs_info->pinned_extents = &fs_info->freed_extents[0];
4266
4267 up_write(&fs_info->extent_commit_sem);
4268
4269 update_global_block_rsv(fs_info);
4270 return 0;
4271 }
4272
4273 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4274 {
4275 struct btrfs_fs_info *fs_info = root->fs_info;
4276 struct btrfs_block_group_cache *cache = NULL;
4277 u64 len;
4278
4279 while (start <= end) {
4280 if (!cache ||
4281 start >= cache->key.objectid + cache->key.offset) {
4282 if (cache)
4283 btrfs_put_block_group(cache);
4284 cache = btrfs_lookup_block_group(fs_info, start);
4285 BUG_ON(!cache);
4286 }
4287
4288 len = cache->key.objectid + cache->key.offset - start;
4289 len = min(len, end + 1 - start);
4290
4291 if (start < cache->last_byte_to_unpin) {
4292 len = min(len, cache->last_byte_to_unpin - start);
4293 btrfs_add_free_space(cache, start, len);
4294 }
4295
4296 start += len;
4297
4298 spin_lock(&cache->space_info->lock);
4299 spin_lock(&cache->lock);
4300 cache->pinned -= len;
4301 cache->space_info->bytes_pinned -= len;
4302 if (cache->ro) {
4303 cache->space_info->bytes_readonly += len;
4304 } else if (cache->reserved_pinned > 0) {
4305 len = min(len, cache->reserved_pinned);
4306 cache->reserved_pinned -= len;
4307 cache->space_info->bytes_reserved += len;
4308 }
4309 spin_unlock(&cache->lock);
4310 spin_unlock(&cache->space_info->lock);
4311 }
4312
4313 if (cache)
4314 btrfs_put_block_group(cache);
4315 return 0;
4316 }
4317
4318 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4319 struct btrfs_root *root)
4320 {
4321 struct btrfs_fs_info *fs_info = root->fs_info;
4322 struct extent_io_tree *unpin;
4323 struct btrfs_block_rsv *block_rsv;
4324 struct btrfs_block_rsv *next_rsv;
4325 u64 start;
4326 u64 end;
4327 int idx;
4328 int ret;
4329
4330 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4331 unpin = &fs_info->freed_extents[1];
4332 else
4333 unpin = &fs_info->freed_extents[0];
4334
4335 while (1) {
4336 ret = find_first_extent_bit(unpin, 0, &start, &end,
4337 EXTENT_DIRTY);
4338 if (ret)
4339 break;
4340
4341 if (btrfs_test_opt(root, DISCARD))
4342 ret = btrfs_discard_extent(root, start,
4343 end + 1 - start, NULL);
4344
4345 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4346 unpin_extent_range(root, start, end);
4347 cond_resched();
4348 }
4349
4350 mutex_lock(&fs_info->durable_block_rsv_mutex);
4351 list_for_each_entry_safe(block_rsv, next_rsv,
4352 &fs_info->durable_block_rsv_list, list) {
4353
4354 idx = trans->transid & 0x1;
4355 if (block_rsv->freed[idx] > 0) {
4356 block_rsv_add_bytes(block_rsv,
4357 block_rsv->freed[idx], 0);
4358 block_rsv->freed[idx] = 0;
4359 }
4360 if (atomic_read(&block_rsv->usage) == 0) {
4361 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4362
4363 if (block_rsv->freed[0] == 0 &&
4364 block_rsv->freed[1] == 0) {
4365 list_del_init(&block_rsv->list);
4366 kfree(block_rsv);
4367 }
4368 } else {
4369 btrfs_block_rsv_release(root, block_rsv, 0);
4370 }
4371 }
4372 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4373
4374 return 0;
4375 }
4376
4377 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4378 struct btrfs_root *root,
4379 u64 bytenr, u64 num_bytes, u64 parent,
4380 u64 root_objectid, u64 owner_objectid,
4381 u64 owner_offset, int refs_to_drop,
4382 struct btrfs_delayed_extent_op *extent_op)
4383 {
4384 struct btrfs_key key;
4385 struct btrfs_path *path;
4386 struct btrfs_fs_info *info = root->fs_info;
4387 struct btrfs_root *extent_root = info->extent_root;
4388 struct extent_buffer *leaf;
4389 struct btrfs_extent_item *ei;
4390 struct btrfs_extent_inline_ref *iref;
4391 int ret;
4392 int is_data;
4393 int extent_slot = 0;
4394 int found_extent = 0;
4395 int num_to_del = 1;
4396 u32 item_size;
4397 u64 refs;
4398
4399 path = btrfs_alloc_path();
4400 if (!path)
4401 return -ENOMEM;
4402
4403 path->reada = 1;
4404 path->leave_spinning = 1;
4405
4406 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4407 BUG_ON(!is_data && refs_to_drop != 1);
4408
4409 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4410 bytenr, num_bytes, parent,
4411 root_objectid, owner_objectid,
4412 owner_offset);
4413 if (ret == 0) {
4414 extent_slot = path->slots[0];
4415 while (extent_slot >= 0) {
4416 btrfs_item_key_to_cpu(path->nodes[0], &key,
4417 extent_slot);
4418 if (key.objectid != bytenr)
4419 break;
4420 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4421 key.offset == num_bytes) {
4422 found_extent = 1;
4423 break;
4424 }
4425 if (path->slots[0] - extent_slot > 5)
4426 break;
4427 extent_slot--;
4428 }
4429 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4430 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4431 if (found_extent && item_size < sizeof(*ei))
4432 found_extent = 0;
4433 #endif
4434 if (!found_extent) {
4435 BUG_ON(iref);
4436 ret = remove_extent_backref(trans, extent_root, path,
4437 NULL, refs_to_drop,
4438 is_data);
4439 BUG_ON(ret);
4440 btrfs_release_path(path);
4441 path->leave_spinning = 1;
4442
4443 key.objectid = bytenr;
4444 key.type = BTRFS_EXTENT_ITEM_KEY;
4445 key.offset = num_bytes;
4446
4447 ret = btrfs_search_slot(trans, extent_root,
4448 &key, path, -1, 1);
4449 if (ret) {
4450 printk(KERN_ERR "umm, got %d back from search"
4451 ", was looking for %llu\n", ret,
4452 (unsigned long long)bytenr);
4453 btrfs_print_leaf(extent_root, path->nodes[0]);
4454 }
4455 BUG_ON(ret);
4456 extent_slot = path->slots[0];
4457 }
4458 } else {
4459 btrfs_print_leaf(extent_root, path->nodes[0]);
4460 WARN_ON(1);
4461 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4462 "parent %llu root %llu owner %llu offset %llu\n",
4463 (unsigned long long)bytenr,
4464 (unsigned long long)parent,
4465 (unsigned long long)root_objectid,
4466 (unsigned long long)owner_objectid,
4467 (unsigned long long)owner_offset);
4468 }
4469
4470 leaf = path->nodes[0];
4471 item_size = btrfs_item_size_nr(leaf, extent_slot);
4472 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4473 if (item_size < sizeof(*ei)) {
4474 BUG_ON(found_extent || extent_slot != path->slots[0]);
4475 ret = convert_extent_item_v0(trans, extent_root, path,
4476 owner_objectid, 0);
4477 BUG_ON(ret < 0);
4478
4479 btrfs_release_path(path);
4480 path->leave_spinning = 1;
4481
4482 key.objectid = bytenr;
4483 key.type = BTRFS_EXTENT_ITEM_KEY;
4484 key.offset = num_bytes;
4485
4486 ret = btrfs_search_slot(trans, extent_root, &key, path,
4487 -1, 1);
4488 if (ret) {
4489 printk(KERN_ERR "umm, got %d back from search"
4490 ", was looking for %llu\n", ret,
4491 (unsigned long long)bytenr);
4492 btrfs_print_leaf(extent_root, path->nodes[0]);
4493 }
4494 BUG_ON(ret);
4495 extent_slot = path->slots[0];
4496 leaf = path->nodes[0];
4497 item_size = btrfs_item_size_nr(leaf, extent_slot);
4498 }
4499 #endif
4500 BUG_ON(item_size < sizeof(*ei));
4501 ei = btrfs_item_ptr(leaf, extent_slot,
4502 struct btrfs_extent_item);
4503 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4504 struct btrfs_tree_block_info *bi;
4505 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4506 bi = (struct btrfs_tree_block_info *)(ei + 1);
4507 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4508 }
4509
4510 refs = btrfs_extent_refs(leaf, ei);
4511 BUG_ON(refs < refs_to_drop);
4512 refs -= refs_to_drop;
4513
4514 if (refs > 0) {
4515 if (extent_op)
4516 __run_delayed_extent_op(extent_op, leaf, ei);
4517 /*
4518 * In the case of inline back ref, reference count will
4519 * be updated by remove_extent_backref
4520 */
4521 if (iref) {
4522 BUG_ON(!found_extent);
4523 } else {
4524 btrfs_set_extent_refs(leaf, ei, refs);
4525 btrfs_mark_buffer_dirty(leaf);
4526 }
4527 if (found_extent) {
4528 ret = remove_extent_backref(trans, extent_root, path,
4529 iref, refs_to_drop,
4530 is_data);
4531 BUG_ON(ret);
4532 }
4533 } else {
4534 if (found_extent) {
4535 BUG_ON(is_data && refs_to_drop !=
4536 extent_data_ref_count(root, path, iref));
4537 if (iref) {
4538 BUG_ON(path->slots[0] != extent_slot);
4539 } else {
4540 BUG_ON(path->slots[0] != extent_slot + 1);
4541 path->slots[0] = extent_slot;
4542 num_to_del = 2;
4543 }
4544 }
4545
4546 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4547 num_to_del);
4548 BUG_ON(ret);
4549 btrfs_release_path(path);
4550
4551 if (is_data) {
4552 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4553 BUG_ON(ret);
4554 } else {
4555 invalidate_mapping_pages(info->btree_inode->i_mapping,
4556 bytenr >> PAGE_CACHE_SHIFT,
4557 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4558 }
4559
4560 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4561 BUG_ON(ret);
4562 }
4563 btrfs_free_path(path);
4564 return ret;
4565 }
4566
4567 /*
4568 * when we free an block, it is possible (and likely) that we free the last
4569 * delayed ref for that extent as well. This searches the delayed ref tree for
4570 * a given extent, and if there are no other delayed refs to be processed, it
4571 * removes it from the tree.
4572 */
4573 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4574 struct btrfs_root *root, u64 bytenr)
4575 {
4576 struct btrfs_delayed_ref_head *head;
4577 struct btrfs_delayed_ref_root *delayed_refs;
4578 struct btrfs_delayed_ref_node *ref;
4579 struct rb_node *node;
4580 int ret = 0;
4581
4582 delayed_refs = &trans->transaction->delayed_refs;
4583 spin_lock(&delayed_refs->lock);
4584 head = btrfs_find_delayed_ref_head(trans, bytenr);
4585 if (!head)
4586 goto out;
4587
4588 node = rb_prev(&head->node.rb_node);
4589 if (!node)
4590 goto out;
4591
4592 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4593
4594 /* there are still entries for this ref, we can't drop it */
4595 if (ref->bytenr == bytenr)
4596 goto out;
4597
4598 if (head->extent_op) {
4599 if (!head->must_insert_reserved)
4600 goto out;
4601 kfree(head->extent_op);
4602 head->extent_op = NULL;
4603 }
4604
4605 /*
4606 * waiting for the lock here would deadlock. If someone else has it
4607 * locked they are already in the process of dropping it anyway
4608 */
4609 if (!mutex_trylock(&head->mutex))
4610 goto out;
4611
4612 /*
4613 * at this point we have a head with no other entries. Go
4614 * ahead and process it.
4615 */
4616 head->node.in_tree = 0;
4617 rb_erase(&head->node.rb_node, &delayed_refs->root);
4618
4619 delayed_refs->num_entries--;
4620
4621 /*
4622 * we don't take a ref on the node because we're removing it from the
4623 * tree, so we just steal the ref the tree was holding.
4624 */
4625 delayed_refs->num_heads--;
4626 if (list_empty(&head->cluster))
4627 delayed_refs->num_heads_ready--;
4628
4629 list_del_init(&head->cluster);
4630 spin_unlock(&delayed_refs->lock);
4631
4632 BUG_ON(head->extent_op);
4633 if (head->must_insert_reserved)
4634 ret = 1;
4635
4636 mutex_unlock(&head->mutex);
4637 btrfs_put_delayed_ref(&head->node);
4638 return ret;
4639 out:
4640 spin_unlock(&delayed_refs->lock);
4641 return 0;
4642 }
4643
4644 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4645 struct btrfs_root *root,
4646 struct extent_buffer *buf,
4647 u64 parent, int last_ref)
4648 {
4649 struct btrfs_block_rsv *block_rsv;
4650 struct btrfs_block_group_cache *cache = NULL;
4651 int ret;
4652
4653 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4654 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4655 parent, root->root_key.objectid,
4656 btrfs_header_level(buf),
4657 BTRFS_DROP_DELAYED_REF, NULL);
4658 BUG_ON(ret);
4659 }
4660
4661 if (!last_ref)
4662 return;
4663
4664 block_rsv = get_block_rsv(trans, root);
4665 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4666 if (block_rsv->space_info != cache->space_info)
4667 goto out;
4668
4669 if (btrfs_header_generation(buf) == trans->transid) {
4670 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4671 ret = check_ref_cleanup(trans, root, buf->start);
4672 if (!ret)
4673 goto pin;
4674 }
4675
4676 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4677 pin_down_extent(root, cache, buf->start, buf->len, 1);
4678 goto pin;
4679 }
4680
4681 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4682
4683 btrfs_add_free_space(cache, buf->start, buf->len);
4684 ret = btrfs_update_reserved_bytes(cache, buf->len, 0, 0);
4685 if (ret == -EAGAIN) {
4686 /* block group became read-only */
4687 btrfs_update_reserved_bytes(cache, buf->len, 0, 1);
4688 goto out;
4689 }
4690
4691 ret = 1;
4692 spin_lock(&block_rsv->lock);
4693 if (block_rsv->reserved < block_rsv->size) {
4694 block_rsv->reserved += buf->len;
4695 ret = 0;
4696 }
4697 spin_unlock(&block_rsv->lock);
4698
4699 if (ret) {
4700 spin_lock(&cache->space_info->lock);
4701 cache->space_info->bytes_reserved -= buf->len;
4702 cache->space_info->reservation_progress++;
4703 spin_unlock(&cache->space_info->lock);
4704 }
4705 goto out;
4706 }
4707 pin:
4708 if (block_rsv->durable && !cache->ro) {
4709 ret = 0;
4710 spin_lock(&cache->lock);
4711 if (!cache->ro) {
4712 cache->reserved_pinned += buf->len;
4713 ret = 1;
4714 }
4715 spin_unlock(&cache->lock);
4716
4717 if (ret) {
4718 spin_lock(&block_rsv->lock);
4719 block_rsv->freed[trans->transid & 0x1] += buf->len;
4720 spin_unlock(&block_rsv->lock);
4721 }
4722 }
4723 out:
4724 /*
4725 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4726 * anymore.
4727 */
4728 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4729 btrfs_put_block_group(cache);
4730 }
4731
4732 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4733 struct btrfs_root *root,
4734 u64 bytenr, u64 num_bytes, u64 parent,
4735 u64 root_objectid, u64 owner, u64 offset)
4736 {
4737 int ret;
4738
4739 /*
4740 * tree log blocks never actually go into the extent allocation
4741 * tree, just update pinning info and exit early.
4742 */
4743 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4744 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4745 /* unlocks the pinned mutex */
4746 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4747 ret = 0;
4748 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4749 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4750 parent, root_objectid, (int)owner,
4751 BTRFS_DROP_DELAYED_REF, NULL);
4752 BUG_ON(ret);
4753 } else {
4754 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4755 parent, root_objectid, owner,
4756 offset, BTRFS_DROP_DELAYED_REF, NULL);
4757 BUG_ON(ret);
4758 }
4759 return ret;
4760 }
4761
4762 static u64 stripe_align(struct btrfs_root *root, u64 val)
4763 {
4764 u64 mask = ((u64)root->stripesize - 1);
4765 u64 ret = (val + mask) & ~mask;
4766 return ret;
4767 }
4768
4769 /*
4770 * when we wait for progress in the block group caching, its because
4771 * our allocation attempt failed at least once. So, we must sleep
4772 * and let some progress happen before we try again.
4773 *
4774 * This function will sleep at least once waiting for new free space to
4775 * show up, and then it will check the block group free space numbers
4776 * for our min num_bytes. Another option is to have it go ahead
4777 * and look in the rbtree for a free extent of a given size, but this
4778 * is a good start.
4779 */
4780 static noinline int
4781 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4782 u64 num_bytes)
4783 {
4784 struct btrfs_caching_control *caching_ctl;
4785 DEFINE_WAIT(wait);
4786
4787 caching_ctl = get_caching_control(cache);
4788 if (!caching_ctl)
4789 return 0;
4790
4791 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4792 (cache->free_space_ctl->free_space >= num_bytes));
4793
4794 put_caching_control(caching_ctl);
4795 return 0;
4796 }
4797
4798 static noinline int
4799 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4800 {
4801 struct btrfs_caching_control *caching_ctl;
4802 DEFINE_WAIT(wait);
4803
4804 caching_ctl = get_caching_control(cache);
4805 if (!caching_ctl)
4806 return 0;
4807
4808 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4809
4810 put_caching_control(caching_ctl);
4811 return 0;
4812 }
4813
4814 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4815 {
4816 int index;
4817 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4818 index = 0;
4819 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4820 index = 1;
4821 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4822 index = 2;
4823 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4824 index = 3;
4825 else
4826 index = 4;
4827 return index;
4828 }
4829
4830 enum btrfs_loop_type {
4831 LOOP_FIND_IDEAL = 0,
4832 LOOP_CACHING_NOWAIT = 1,
4833 LOOP_CACHING_WAIT = 2,
4834 LOOP_ALLOC_CHUNK = 3,
4835 LOOP_NO_EMPTY_SIZE = 4,
4836 };
4837
4838 /*
4839 * walks the btree of allocated extents and find a hole of a given size.
4840 * The key ins is changed to record the hole:
4841 * ins->objectid == block start
4842 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4843 * ins->offset == number of blocks
4844 * Any available blocks before search_start are skipped.
4845 */
4846 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4847 struct btrfs_root *orig_root,
4848 u64 num_bytes, u64 empty_size,
4849 u64 search_start, u64 search_end,
4850 u64 hint_byte, struct btrfs_key *ins,
4851 u64 data)
4852 {
4853 int ret = 0;
4854 struct btrfs_root *root = orig_root->fs_info->extent_root;
4855 struct btrfs_free_cluster *last_ptr = NULL;
4856 struct btrfs_block_group_cache *block_group = NULL;
4857 int empty_cluster = 2 * 1024 * 1024;
4858 int allowed_chunk_alloc = 0;
4859 int done_chunk_alloc = 0;
4860 struct btrfs_space_info *space_info;
4861 int last_ptr_loop = 0;
4862 int loop = 0;
4863 int index = 0;
4864 bool found_uncached_bg = false;
4865 bool failed_cluster_refill = false;
4866 bool failed_alloc = false;
4867 bool use_cluster = true;
4868 u64 ideal_cache_percent = 0;
4869 u64 ideal_cache_offset = 0;
4870
4871 WARN_ON(num_bytes < root->sectorsize);
4872 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4873 ins->objectid = 0;
4874 ins->offset = 0;
4875
4876 space_info = __find_space_info(root->fs_info, data);
4877 if (!space_info) {
4878 printk(KERN_ERR "No space info for %llu\n", data);
4879 return -ENOSPC;
4880 }
4881
4882 /*
4883 * If the space info is for both data and metadata it means we have a
4884 * small filesystem and we can't use the clustering stuff.
4885 */
4886 if (btrfs_mixed_space_info(space_info))
4887 use_cluster = false;
4888
4889 if (orig_root->ref_cows || empty_size)
4890 allowed_chunk_alloc = 1;
4891
4892 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4893 last_ptr = &root->fs_info->meta_alloc_cluster;
4894 if (!btrfs_test_opt(root, SSD))
4895 empty_cluster = 64 * 1024;
4896 }
4897
4898 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4899 btrfs_test_opt(root, SSD)) {
4900 last_ptr = &root->fs_info->data_alloc_cluster;
4901 }
4902
4903 if (last_ptr) {
4904 spin_lock(&last_ptr->lock);
4905 if (last_ptr->block_group)
4906 hint_byte = last_ptr->window_start;
4907 spin_unlock(&last_ptr->lock);
4908 }
4909
4910 search_start = max(search_start, first_logical_byte(root, 0));
4911 search_start = max(search_start, hint_byte);
4912
4913 if (!last_ptr)
4914 empty_cluster = 0;
4915
4916 if (search_start == hint_byte) {
4917 ideal_cache:
4918 block_group = btrfs_lookup_block_group(root->fs_info,
4919 search_start);
4920 /*
4921 * we don't want to use the block group if it doesn't match our
4922 * allocation bits, or if its not cached.
4923 *
4924 * However if we are re-searching with an ideal block group
4925 * picked out then we don't care that the block group is cached.
4926 */
4927 if (block_group && block_group_bits(block_group, data) &&
4928 (block_group->cached != BTRFS_CACHE_NO ||
4929 search_start == ideal_cache_offset)) {
4930 down_read(&space_info->groups_sem);
4931 if (list_empty(&block_group->list) ||
4932 block_group->ro) {
4933 /*
4934 * someone is removing this block group,
4935 * we can't jump into the have_block_group
4936 * target because our list pointers are not
4937 * valid
4938 */
4939 btrfs_put_block_group(block_group);
4940 up_read(&space_info->groups_sem);
4941 } else {
4942 index = get_block_group_index(block_group);
4943 goto have_block_group;
4944 }
4945 } else if (block_group) {
4946 btrfs_put_block_group(block_group);
4947 }
4948 }
4949 search:
4950 down_read(&space_info->groups_sem);
4951 list_for_each_entry(block_group, &space_info->block_groups[index],
4952 list) {
4953 u64 offset;
4954 int cached;
4955
4956 btrfs_get_block_group(block_group);
4957 search_start = block_group->key.objectid;
4958
4959 /*
4960 * this can happen if we end up cycling through all the
4961 * raid types, but we want to make sure we only allocate
4962 * for the proper type.
4963 */
4964 if (!block_group_bits(block_group, data)) {
4965 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4966 BTRFS_BLOCK_GROUP_RAID1 |
4967 BTRFS_BLOCK_GROUP_RAID10;
4968
4969 /*
4970 * if they asked for extra copies and this block group
4971 * doesn't provide them, bail. This does allow us to
4972 * fill raid0 from raid1.
4973 */
4974 if ((data & extra) && !(block_group->flags & extra))
4975 goto loop;
4976 }
4977
4978 have_block_group:
4979 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4980 u64 free_percent;
4981
4982 ret = cache_block_group(block_group, trans,
4983 orig_root, 1);
4984 if (block_group->cached == BTRFS_CACHE_FINISHED)
4985 goto have_block_group;
4986
4987 free_percent = btrfs_block_group_used(&block_group->item);
4988 free_percent *= 100;
4989 free_percent = div64_u64(free_percent,
4990 block_group->key.offset);
4991 free_percent = 100 - free_percent;
4992 if (free_percent > ideal_cache_percent &&
4993 likely(!block_group->ro)) {
4994 ideal_cache_offset = block_group->key.objectid;
4995 ideal_cache_percent = free_percent;
4996 }
4997
4998 /*
4999 * We only want to start kthread caching if we are at
5000 * the point where we will wait for caching to make
5001 * progress, or if our ideal search is over and we've
5002 * found somebody to start caching.
5003 */
5004 if (loop > LOOP_CACHING_NOWAIT ||
5005 (loop > LOOP_FIND_IDEAL &&
5006 atomic_read(&space_info->caching_threads) < 2)) {
5007 ret = cache_block_group(block_group, trans,
5008 orig_root, 0);
5009 BUG_ON(ret);
5010 }
5011 found_uncached_bg = true;
5012
5013 /*
5014 * If loop is set for cached only, try the next block
5015 * group.
5016 */
5017 if (loop == LOOP_FIND_IDEAL)
5018 goto loop;
5019 }
5020
5021 cached = block_group_cache_done(block_group);
5022 if (unlikely(!cached))
5023 found_uncached_bg = true;
5024
5025 if (unlikely(block_group->ro))
5026 goto loop;
5027
5028 spin_lock(&block_group->free_space_ctl->tree_lock);
5029 if (cached &&
5030 block_group->free_space_ctl->free_space <
5031 num_bytes + empty_size) {
5032 spin_unlock(&block_group->free_space_ctl->tree_lock);
5033 goto loop;
5034 }
5035 spin_unlock(&block_group->free_space_ctl->tree_lock);
5036
5037 /*
5038 * Ok we want to try and use the cluster allocator, so lets look
5039 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5040 * have tried the cluster allocator plenty of times at this
5041 * point and not have found anything, so we are likely way too
5042 * fragmented for the clustering stuff to find anything, so lets
5043 * just skip it and let the allocator find whatever block it can
5044 * find
5045 */
5046 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5047 /*
5048 * the refill lock keeps out other
5049 * people trying to start a new cluster
5050 */
5051 spin_lock(&last_ptr->refill_lock);
5052 if (last_ptr->block_group &&
5053 (last_ptr->block_group->ro ||
5054 !block_group_bits(last_ptr->block_group, data))) {
5055 offset = 0;
5056 goto refill_cluster;
5057 }
5058
5059 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5060 num_bytes, search_start);
5061 if (offset) {
5062 /* we have a block, we're done */
5063 spin_unlock(&last_ptr->refill_lock);
5064 goto checks;
5065 }
5066
5067 spin_lock(&last_ptr->lock);
5068 /*
5069 * whoops, this cluster doesn't actually point to
5070 * this block group. Get a ref on the block
5071 * group is does point to and try again
5072 */
5073 if (!last_ptr_loop && last_ptr->block_group &&
5074 last_ptr->block_group != block_group) {
5075
5076 btrfs_put_block_group(block_group);
5077 block_group = last_ptr->block_group;
5078 btrfs_get_block_group(block_group);
5079 spin_unlock(&last_ptr->lock);
5080 spin_unlock(&last_ptr->refill_lock);
5081
5082 last_ptr_loop = 1;
5083 search_start = block_group->key.objectid;
5084 /*
5085 * we know this block group is properly
5086 * in the list because
5087 * btrfs_remove_block_group, drops the
5088 * cluster before it removes the block
5089 * group from the list
5090 */
5091 goto have_block_group;
5092 }
5093 spin_unlock(&last_ptr->lock);
5094 refill_cluster:
5095 /*
5096 * this cluster didn't work out, free it and
5097 * start over
5098 */
5099 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5100
5101 last_ptr_loop = 0;
5102
5103 /* allocate a cluster in this block group */
5104 ret = btrfs_find_space_cluster(trans, root,
5105 block_group, last_ptr,
5106 offset, num_bytes,
5107 empty_cluster + empty_size);
5108 if (ret == 0) {
5109 /*
5110 * now pull our allocation out of this
5111 * cluster
5112 */
5113 offset = btrfs_alloc_from_cluster(block_group,
5114 last_ptr, num_bytes,
5115 search_start);
5116 if (offset) {
5117 /* we found one, proceed */
5118 spin_unlock(&last_ptr->refill_lock);
5119 goto checks;
5120 }
5121 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5122 && !failed_cluster_refill) {
5123 spin_unlock(&last_ptr->refill_lock);
5124
5125 failed_cluster_refill = true;
5126 wait_block_group_cache_progress(block_group,
5127 num_bytes + empty_cluster + empty_size);
5128 goto have_block_group;
5129 }
5130
5131 /*
5132 * at this point we either didn't find a cluster
5133 * or we weren't able to allocate a block from our
5134 * cluster. Free the cluster we've been trying
5135 * to use, and go to the next block group
5136 */
5137 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5138 spin_unlock(&last_ptr->refill_lock);
5139 goto loop;
5140 }
5141
5142 offset = btrfs_find_space_for_alloc(block_group, search_start,
5143 num_bytes, empty_size);
5144 /*
5145 * If we didn't find a chunk, and we haven't failed on this
5146 * block group before, and this block group is in the middle of
5147 * caching and we are ok with waiting, then go ahead and wait
5148 * for progress to be made, and set failed_alloc to true.
5149 *
5150 * If failed_alloc is true then we've already waited on this
5151 * block group once and should move on to the next block group.
5152 */
5153 if (!offset && !failed_alloc && !cached &&
5154 loop > LOOP_CACHING_NOWAIT) {
5155 wait_block_group_cache_progress(block_group,
5156 num_bytes + empty_size);
5157 failed_alloc = true;
5158 goto have_block_group;
5159 } else if (!offset) {
5160 goto loop;
5161 }
5162 checks:
5163 search_start = stripe_align(root, offset);
5164 /* move on to the next group */
5165 if (search_start + num_bytes >= search_end) {
5166 btrfs_add_free_space(block_group, offset, num_bytes);
5167 goto loop;
5168 }
5169
5170 /* move on to the next group */
5171 if (search_start + num_bytes >
5172 block_group->key.objectid + block_group->key.offset) {
5173 btrfs_add_free_space(block_group, offset, num_bytes);
5174 goto loop;
5175 }
5176
5177 ins->objectid = search_start;
5178 ins->offset = num_bytes;
5179
5180 if (offset < search_start)
5181 btrfs_add_free_space(block_group, offset,
5182 search_start - offset);
5183 BUG_ON(offset > search_start);
5184
5185 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 1,
5186 (data & BTRFS_BLOCK_GROUP_DATA));
5187 if (ret == -EAGAIN) {
5188 btrfs_add_free_space(block_group, offset, num_bytes);
5189 goto loop;
5190 }
5191
5192 /* we are all good, lets return */
5193 ins->objectid = search_start;
5194 ins->offset = num_bytes;
5195
5196 if (offset < search_start)
5197 btrfs_add_free_space(block_group, offset,
5198 search_start - offset);
5199 BUG_ON(offset > search_start);
5200 btrfs_put_block_group(block_group);
5201 break;
5202 loop:
5203 failed_cluster_refill = false;
5204 failed_alloc = false;
5205 BUG_ON(index != get_block_group_index(block_group));
5206 btrfs_put_block_group(block_group);
5207 }
5208 up_read(&space_info->groups_sem);
5209
5210 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5211 goto search;
5212
5213 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5214 * for them to make caching progress. Also
5215 * determine the best possible bg to cache
5216 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5217 * caching kthreads as we move along
5218 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5219 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5220 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5221 * again
5222 */
5223 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5224 index = 0;
5225 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5226 found_uncached_bg = false;
5227 loop++;
5228 if (!ideal_cache_percent &&
5229 atomic_read(&space_info->caching_threads))
5230 goto search;
5231
5232 /*
5233 * 1 of the following 2 things have happened so far
5234 *
5235 * 1) We found an ideal block group for caching that
5236 * is mostly full and will cache quickly, so we might
5237 * as well wait for it.
5238 *
5239 * 2) We searched for cached only and we didn't find
5240 * anything, and we didn't start any caching kthreads
5241 * either, so chances are we will loop through and
5242 * start a couple caching kthreads, and then come back
5243 * around and just wait for them. This will be slower
5244 * because we will have 2 caching kthreads reading at
5245 * the same time when we could have just started one
5246 * and waited for it to get far enough to give us an
5247 * allocation, so go ahead and go to the wait caching
5248 * loop.
5249 */
5250 loop = LOOP_CACHING_WAIT;
5251 search_start = ideal_cache_offset;
5252 ideal_cache_percent = 0;
5253 goto ideal_cache;
5254 } else if (loop == LOOP_FIND_IDEAL) {
5255 /*
5256 * Didn't find a uncached bg, wait on anything we find
5257 * next.
5258 */
5259 loop = LOOP_CACHING_WAIT;
5260 goto search;
5261 }
5262
5263 loop++;
5264
5265 if (loop == LOOP_ALLOC_CHUNK) {
5266 if (allowed_chunk_alloc) {
5267 ret = do_chunk_alloc(trans, root, num_bytes +
5268 2 * 1024 * 1024, data,
5269 CHUNK_ALLOC_LIMITED);
5270 allowed_chunk_alloc = 0;
5271 if (ret == 1)
5272 done_chunk_alloc = 1;
5273 } else if (!done_chunk_alloc &&
5274 space_info->force_alloc ==
5275 CHUNK_ALLOC_NO_FORCE) {
5276 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5277 }
5278
5279 /*
5280 * We didn't allocate a chunk, go ahead and drop the
5281 * empty size and loop again.
5282 */
5283 if (!done_chunk_alloc)
5284 loop = LOOP_NO_EMPTY_SIZE;
5285 }
5286
5287 if (loop == LOOP_NO_EMPTY_SIZE) {
5288 empty_size = 0;
5289 empty_cluster = 0;
5290 }
5291
5292 goto search;
5293 } else if (!ins->objectid) {
5294 ret = -ENOSPC;
5295 } else if (ins->objectid) {
5296 ret = 0;
5297 }
5298
5299 return ret;
5300 }
5301
5302 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5303 int dump_block_groups)
5304 {
5305 struct btrfs_block_group_cache *cache;
5306 int index = 0;
5307
5308 spin_lock(&info->lock);
5309 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5310 (unsigned long long)(info->total_bytes - info->bytes_used -
5311 info->bytes_pinned - info->bytes_reserved -
5312 info->bytes_readonly),
5313 (info->full) ? "" : "not ");
5314 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5315 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5316 (unsigned long long)info->total_bytes,
5317 (unsigned long long)info->bytes_used,
5318 (unsigned long long)info->bytes_pinned,
5319 (unsigned long long)info->bytes_reserved,
5320 (unsigned long long)info->bytes_may_use,
5321 (unsigned long long)info->bytes_readonly);
5322 spin_unlock(&info->lock);
5323
5324 if (!dump_block_groups)
5325 return;
5326
5327 down_read(&info->groups_sem);
5328 again:
5329 list_for_each_entry(cache, &info->block_groups[index], list) {
5330 spin_lock(&cache->lock);
5331 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5332 "%llu pinned %llu reserved\n",
5333 (unsigned long long)cache->key.objectid,
5334 (unsigned long long)cache->key.offset,
5335 (unsigned long long)btrfs_block_group_used(&cache->item),
5336 (unsigned long long)cache->pinned,
5337 (unsigned long long)cache->reserved);
5338 btrfs_dump_free_space(cache, bytes);
5339 spin_unlock(&cache->lock);
5340 }
5341 if (++index < BTRFS_NR_RAID_TYPES)
5342 goto again;
5343 up_read(&info->groups_sem);
5344 }
5345
5346 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5347 struct btrfs_root *root,
5348 u64 num_bytes, u64 min_alloc_size,
5349 u64 empty_size, u64 hint_byte,
5350 u64 search_end, struct btrfs_key *ins,
5351 u64 data)
5352 {
5353 int ret;
5354 u64 search_start = 0;
5355
5356 data = btrfs_get_alloc_profile(root, data);
5357 again:
5358 /*
5359 * the only place that sets empty_size is btrfs_realloc_node, which
5360 * is not called recursively on allocations
5361 */
5362 if (empty_size || root->ref_cows)
5363 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5364 num_bytes + 2 * 1024 * 1024, data,
5365 CHUNK_ALLOC_NO_FORCE);
5366
5367 WARN_ON(num_bytes < root->sectorsize);
5368 ret = find_free_extent(trans, root, num_bytes, empty_size,
5369 search_start, search_end, hint_byte,
5370 ins, data);
5371
5372 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5373 num_bytes = num_bytes >> 1;
5374 num_bytes = num_bytes & ~(root->sectorsize - 1);
5375 num_bytes = max(num_bytes, min_alloc_size);
5376 do_chunk_alloc(trans, root->fs_info->extent_root,
5377 num_bytes, data, CHUNK_ALLOC_FORCE);
5378 goto again;
5379 }
5380 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5381 struct btrfs_space_info *sinfo;
5382
5383 sinfo = __find_space_info(root->fs_info, data);
5384 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5385 "wanted %llu\n", (unsigned long long)data,
5386 (unsigned long long)num_bytes);
5387 dump_space_info(sinfo, num_bytes, 1);
5388 }
5389
5390 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5391
5392 return ret;
5393 }
5394
5395 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5396 {
5397 struct btrfs_block_group_cache *cache;
5398 int ret = 0;
5399
5400 cache = btrfs_lookup_block_group(root->fs_info, start);
5401 if (!cache) {
5402 printk(KERN_ERR "Unable to find block group for %llu\n",
5403 (unsigned long long)start);
5404 return -ENOSPC;
5405 }
5406
5407 if (btrfs_test_opt(root, DISCARD))
5408 ret = btrfs_discard_extent(root, start, len, NULL);
5409
5410 btrfs_add_free_space(cache, start, len);
5411 btrfs_update_reserved_bytes(cache, len, 0, 1);
5412 btrfs_put_block_group(cache);
5413
5414 trace_btrfs_reserved_extent_free(root, start, len);
5415
5416 return ret;
5417 }
5418
5419 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5420 struct btrfs_root *root,
5421 u64 parent, u64 root_objectid,
5422 u64 flags, u64 owner, u64 offset,
5423 struct btrfs_key *ins, int ref_mod)
5424 {
5425 int ret;
5426 struct btrfs_fs_info *fs_info = root->fs_info;
5427 struct btrfs_extent_item *extent_item;
5428 struct btrfs_extent_inline_ref *iref;
5429 struct btrfs_path *path;
5430 struct extent_buffer *leaf;
5431 int type;
5432 u32 size;
5433
5434 if (parent > 0)
5435 type = BTRFS_SHARED_DATA_REF_KEY;
5436 else
5437 type = BTRFS_EXTENT_DATA_REF_KEY;
5438
5439 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5440
5441 path = btrfs_alloc_path();
5442 if (!path)
5443 return -ENOMEM;
5444
5445 path->leave_spinning = 1;
5446 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5447 ins, size);
5448 BUG_ON(ret);
5449
5450 leaf = path->nodes[0];
5451 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5452 struct btrfs_extent_item);
5453 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5454 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5455 btrfs_set_extent_flags(leaf, extent_item,
5456 flags | BTRFS_EXTENT_FLAG_DATA);
5457
5458 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5459 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5460 if (parent > 0) {
5461 struct btrfs_shared_data_ref *ref;
5462 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5463 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5464 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5465 } else {
5466 struct btrfs_extent_data_ref *ref;
5467 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5468 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5469 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5470 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5471 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5472 }
5473
5474 btrfs_mark_buffer_dirty(path->nodes[0]);
5475 btrfs_free_path(path);
5476
5477 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5478 if (ret) {
5479 printk(KERN_ERR "btrfs update block group failed for %llu "
5480 "%llu\n", (unsigned long long)ins->objectid,
5481 (unsigned long long)ins->offset);
5482 BUG();
5483 }
5484 return ret;
5485 }
5486
5487 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5488 struct btrfs_root *root,
5489 u64 parent, u64 root_objectid,
5490 u64 flags, struct btrfs_disk_key *key,
5491 int level, struct btrfs_key *ins)
5492 {
5493 int ret;
5494 struct btrfs_fs_info *fs_info = root->fs_info;
5495 struct btrfs_extent_item *extent_item;
5496 struct btrfs_tree_block_info *block_info;
5497 struct btrfs_extent_inline_ref *iref;
5498 struct btrfs_path *path;
5499 struct extent_buffer *leaf;
5500 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5501
5502 path = btrfs_alloc_path();
5503 if (!path)
5504 return -ENOMEM;
5505
5506 path->leave_spinning = 1;
5507 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5508 ins, size);
5509 BUG_ON(ret);
5510
5511 leaf = path->nodes[0];
5512 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5513 struct btrfs_extent_item);
5514 btrfs_set_extent_refs(leaf, extent_item, 1);
5515 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5516 btrfs_set_extent_flags(leaf, extent_item,
5517 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5518 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5519
5520 btrfs_set_tree_block_key(leaf, block_info, key);
5521 btrfs_set_tree_block_level(leaf, block_info, level);
5522
5523 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5524 if (parent > 0) {
5525 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5526 btrfs_set_extent_inline_ref_type(leaf, iref,
5527 BTRFS_SHARED_BLOCK_REF_KEY);
5528 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5529 } else {
5530 btrfs_set_extent_inline_ref_type(leaf, iref,
5531 BTRFS_TREE_BLOCK_REF_KEY);
5532 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5533 }
5534
5535 btrfs_mark_buffer_dirty(leaf);
5536 btrfs_free_path(path);
5537
5538 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5539 if (ret) {
5540 printk(KERN_ERR "btrfs update block group failed for %llu "
5541 "%llu\n", (unsigned long long)ins->objectid,
5542 (unsigned long long)ins->offset);
5543 BUG();
5544 }
5545 return ret;
5546 }
5547
5548 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5549 struct btrfs_root *root,
5550 u64 root_objectid, u64 owner,
5551 u64 offset, struct btrfs_key *ins)
5552 {
5553 int ret;
5554
5555 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5556
5557 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5558 0, root_objectid, owner, offset,
5559 BTRFS_ADD_DELAYED_EXTENT, NULL);
5560 return ret;
5561 }
5562
5563 /*
5564 * this is used by the tree logging recovery code. It records that
5565 * an extent has been allocated and makes sure to clear the free
5566 * space cache bits as well
5567 */
5568 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5569 struct btrfs_root *root,
5570 u64 root_objectid, u64 owner, u64 offset,
5571 struct btrfs_key *ins)
5572 {
5573 int ret;
5574 struct btrfs_block_group_cache *block_group;
5575 struct btrfs_caching_control *caching_ctl;
5576 u64 start = ins->objectid;
5577 u64 num_bytes = ins->offset;
5578
5579 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5580 cache_block_group(block_group, trans, NULL, 0);
5581 caching_ctl = get_caching_control(block_group);
5582
5583 if (!caching_ctl) {
5584 BUG_ON(!block_group_cache_done(block_group));
5585 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5586 BUG_ON(ret);
5587 } else {
5588 mutex_lock(&caching_ctl->mutex);
5589
5590 if (start >= caching_ctl->progress) {
5591 ret = add_excluded_extent(root, start, num_bytes);
5592 BUG_ON(ret);
5593 } else if (start + num_bytes <= caching_ctl->progress) {
5594 ret = btrfs_remove_free_space(block_group,
5595 start, num_bytes);
5596 BUG_ON(ret);
5597 } else {
5598 num_bytes = caching_ctl->progress - start;
5599 ret = btrfs_remove_free_space(block_group,
5600 start, num_bytes);
5601 BUG_ON(ret);
5602
5603 start = caching_ctl->progress;
5604 num_bytes = ins->objectid + ins->offset -
5605 caching_ctl->progress;
5606 ret = add_excluded_extent(root, start, num_bytes);
5607 BUG_ON(ret);
5608 }
5609
5610 mutex_unlock(&caching_ctl->mutex);
5611 put_caching_control(caching_ctl);
5612 }
5613
5614 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 1, 1);
5615 BUG_ON(ret);
5616 btrfs_put_block_group(block_group);
5617 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5618 0, owner, offset, ins, 1);
5619 return ret;
5620 }
5621
5622 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5623 struct btrfs_root *root,
5624 u64 bytenr, u32 blocksize,
5625 int level)
5626 {
5627 struct extent_buffer *buf;
5628
5629 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5630 if (!buf)
5631 return ERR_PTR(-ENOMEM);
5632 btrfs_set_header_generation(buf, trans->transid);
5633 btrfs_set_buffer_lockdep_class(buf, level);
5634 btrfs_tree_lock(buf);
5635 clean_tree_block(trans, root, buf);
5636
5637 btrfs_set_lock_blocking(buf);
5638 btrfs_set_buffer_uptodate(buf);
5639
5640 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5641 /*
5642 * we allow two log transactions at a time, use different
5643 * EXENT bit to differentiate dirty pages.
5644 */
5645 if (root->log_transid % 2 == 0)
5646 set_extent_dirty(&root->dirty_log_pages, buf->start,
5647 buf->start + buf->len - 1, GFP_NOFS);
5648 else
5649 set_extent_new(&root->dirty_log_pages, buf->start,
5650 buf->start + buf->len - 1, GFP_NOFS);
5651 } else {
5652 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5653 buf->start + buf->len - 1, GFP_NOFS);
5654 }
5655 trans->blocks_used++;
5656 /* this returns a buffer locked for blocking */
5657 return buf;
5658 }
5659
5660 static struct btrfs_block_rsv *
5661 use_block_rsv(struct btrfs_trans_handle *trans,
5662 struct btrfs_root *root, u32 blocksize)
5663 {
5664 struct btrfs_block_rsv *block_rsv;
5665 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5666 int ret;
5667
5668 block_rsv = get_block_rsv(trans, root);
5669
5670 if (block_rsv->size == 0) {
5671 ret = reserve_metadata_bytes(trans, root, block_rsv,
5672 blocksize, 0);
5673 /*
5674 * If we couldn't reserve metadata bytes try and use some from
5675 * the global reserve.
5676 */
5677 if (ret && block_rsv != global_rsv) {
5678 ret = block_rsv_use_bytes(global_rsv, blocksize);
5679 if (!ret)
5680 return global_rsv;
5681 return ERR_PTR(ret);
5682 } else if (ret) {
5683 return ERR_PTR(ret);
5684 }
5685 return block_rsv;
5686 }
5687
5688 ret = block_rsv_use_bytes(block_rsv, blocksize);
5689 if (!ret)
5690 return block_rsv;
5691 if (ret) {
5692 WARN_ON(1);
5693 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5694 0);
5695 if (!ret) {
5696 spin_lock(&block_rsv->lock);
5697 block_rsv->size += blocksize;
5698 spin_unlock(&block_rsv->lock);
5699 return block_rsv;
5700 } else if (ret && block_rsv != global_rsv) {
5701 ret = block_rsv_use_bytes(global_rsv, blocksize);
5702 if (!ret)
5703 return global_rsv;
5704 }
5705 }
5706
5707 return ERR_PTR(-ENOSPC);
5708 }
5709
5710 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5711 {
5712 block_rsv_add_bytes(block_rsv, blocksize, 0);
5713 block_rsv_release_bytes(block_rsv, NULL, 0);
5714 }
5715
5716 /*
5717 * finds a free extent and does all the dirty work required for allocation
5718 * returns the key for the extent through ins, and a tree buffer for
5719 * the first block of the extent through buf.
5720 *
5721 * returns the tree buffer or NULL.
5722 */
5723 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5724 struct btrfs_root *root, u32 blocksize,
5725 u64 parent, u64 root_objectid,
5726 struct btrfs_disk_key *key, int level,
5727 u64 hint, u64 empty_size)
5728 {
5729 struct btrfs_key ins;
5730 struct btrfs_block_rsv *block_rsv;
5731 struct extent_buffer *buf;
5732 u64 flags = 0;
5733 int ret;
5734
5735
5736 block_rsv = use_block_rsv(trans, root, blocksize);
5737 if (IS_ERR(block_rsv))
5738 return ERR_CAST(block_rsv);
5739
5740 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5741 empty_size, hint, (u64)-1, &ins, 0);
5742 if (ret) {
5743 unuse_block_rsv(block_rsv, blocksize);
5744 return ERR_PTR(ret);
5745 }
5746
5747 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5748 blocksize, level);
5749 BUG_ON(IS_ERR(buf));
5750
5751 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5752 if (parent == 0)
5753 parent = ins.objectid;
5754 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5755 } else
5756 BUG_ON(parent > 0);
5757
5758 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5759 struct btrfs_delayed_extent_op *extent_op;
5760 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5761 BUG_ON(!extent_op);
5762 if (key)
5763 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5764 else
5765 memset(&extent_op->key, 0, sizeof(extent_op->key));
5766 extent_op->flags_to_set = flags;
5767 extent_op->update_key = 1;
5768 extent_op->update_flags = 1;
5769 extent_op->is_data = 0;
5770
5771 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5772 ins.offset, parent, root_objectid,
5773 level, BTRFS_ADD_DELAYED_EXTENT,
5774 extent_op);
5775 BUG_ON(ret);
5776 }
5777 return buf;
5778 }
5779
5780 struct walk_control {
5781 u64 refs[BTRFS_MAX_LEVEL];
5782 u64 flags[BTRFS_MAX_LEVEL];
5783 struct btrfs_key update_progress;
5784 int stage;
5785 int level;
5786 int shared_level;
5787 int update_ref;
5788 int keep_locks;
5789 int reada_slot;
5790 int reada_count;
5791 };
5792
5793 #define DROP_REFERENCE 1
5794 #define UPDATE_BACKREF 2
5795
5796 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5797 struct btrfs_root *root,
5798 struct walk_control *wc,
5799 struct btrfs_path *path)
5800 {
5801 u64 bytenr;
5802 u64 generation;
5803 u64 refs;
5804 u64 flags;
5805 u32 nritems;
5806 u32 blocksize;
5807 struct btrfs_key key;
5808 struct extent_buffer *eb;
5809 int ret;
5810 int slot;
5811 int nread = 0;
5812
5813 if (path->slots[wc->level] < wc->reada_slot) {
5814 wc->reada_count = wc->reada_count * 2 / 3;
5815 wc->reada_count = max(wc->reada_count, 2);
5816 } else {
5817 wc->reada_count = wc->reada_count * 3 / 2;
5818 wc->reada_count = min_t(int, wc->reada_count,
5819 BTRFS_NODEPTRS_PER_BLOCK(root));
5820 }
5821
5822 eb = path->nodes[wc->level];
5823 nritems = btrfs_header_nritems(eb);
5824 blocksize = btrfs_level_size(root, wc->level - 1);
5825
5826 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5827 if (nread >= wc->reada_count)
5828 break;
5829
5830 cond_resched();
5831 bytenr = btrfs_node_blockptr(eb, slot);
5832 generation = btrfs_node_ptr_generation(eb, slot);
5833
5834 if (slot == path->slots[wc->level])
5835 goto reada;
5836
5837 if (wc->stage == UPDATE_BACKREF &&
5838 generation <= root->root_key.offset)
5839 continue;
5840
5841 /* We don't lock the tree block, it's OK to be racy here */
5842 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5843 &refs, &flags);
5844 BUG_ON(ret);
5845 BUG_ON(refs == 0);
5846
5847 if (wc->stage == DROP_REFERENCE) {
5848 if (refs == 1)
5849 goto reada;
5850
5851 if (wc->level == 1 &&
5852 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5853 continue;
5854 if (!wc->update_ref ||
5855 generation <= root->root_key.offset)
5856 continue;
5857 btrfs_node_key_to_cpu(eb, &key, slot);
5858 ret = btrfs_comp_cpu_keys(&key,
5859 &wc->update_progress);
5860 if (ret < 0)
5861 continue;
5862 } else {
5863 if (wc->level == 1 &&
5864 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5865 continue;
5866 }
5867 reada:
5868 ret = readahead_tree_block(root, bytenr, blocksize,
5869 generation);
5870 if (ret)
5871 break;
5872 nread++;
5873 }
5874 wc->reada_slot = slot;
5875 }
5876
5877 /*
5878 * hepler to process tree block while walking down the tree.
5879 *
5880 * when wc->stage == UPDATE_BACKREF, this function updates
5881 * back refs for pointers in the block.
5882 *
5883 * NOTE: return value 1 means we should stop walking down.
5884 */
5885 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5886 struct btrfs_root *root,
5887 struct btrfs_path *path,
5888 struct walk_control *wc, int lookup_info)
5889 {
5890 int level = wc->level;
5891 struct extent_buffer *eb = path->nodes[level];
5892 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5893 int ret;
5894
5895 if (wc->stage == UPDATE_BACKREF &&
5896 btrfs_header_owner(eb) != root->root_key.objectid)
5897 return 1;
5898
5899 /*
5900 * when reference count of tree block is 1, it won't increase
5901 * again. once full backref flag is set, we never clear it.
5902 */
5903 if (lookup_info &&
5904 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5905 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5906 BUG_ON(!path->locks[level]);
5907 ret = btrfs_lookup_extent_info(trans, root,
5908 eb->start, eb->len,
5909 &wc->refs[level],
5910 &wc->flags[level]);
5911 BUG_ON(ret);
5912 BUG_ON(wc->refs[level] == 0);
5913 }
5914
5915 if (wc->stage == DROP_REFERENCE) {
5916 if (wc->refs[level] > 1)
5917 return 1;
5918
5919 if (path->locks[level] && !wc->keep_locks) {
5920 btrfs_tree_unlock(eb);
5921 path->locks[level] = 0;
5922 }
5923 return 0;
5924 }
5925
5926 /* wc->stage == UPDATE_BACKREF */
5927 if (!(wc->flags[level] & flag)) {
5928 BUG_ON(!path->locks[level]);
5929 ret = btrfs_inc_ref(trans, root, eb, 1);
5930 BUG_ON(ret);
5931 ret = btrfs_dec_ref(trans, root, eb, 0);
5932 BUG_ON(ret);
5933 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5934 eb->len, flag, 0);
5935 BUG_ON(ret);
5936 wc->flags[level] |= flag;
5937 }
5938
5939 /*
5940 * the block is shared by multiple trees, so it's not good to
5941 * keep the tree lock
5942 */
5943 if (path->locks[level] && level > 0) {
5944 btrfs_tree_unlock(eb);
5945 path->locks[level] = 0;
5946 }
5947 return 0;
5948 }
5949
5950 /*
5951 * hepler to process tree block pointer.
5952 *
5953 * when wc->stage == DROP_REFERENCE, this function checks
5954 * reference count of the block pointed to. if the block
5955 * is shared and we need update back refs for the subtree
5956 * rooted at the block, this function changes wc->stage to
5957 * UPDATE_BACKREF. if the block is shared and there is no
5958 * need to update back, this function drops the reference
5959 * to the block.
5960 *
5961 * NOTE: return value 1 means we should stop walking down.
5962 */
5963 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5964 struct btrfs_root *root,
5965 struct btrfs_path *path,
5966 struct walk_control *wc, int *lookup_info)
5967 {
5968 u64 bytenr;
5969 u64 generation;
5970 u64 parent;
5971 u32 blocksize;
5972 struct btrfs_key key;
5973 struct extent_buffer *next;
5974 int level = wc->level;
5975 int reada = 0;
5976 int ret = 0;
5977
5978 generation = btrfs_node_ptr_generation(path->nodes[level],
5979 path->slots[level]);
5980 /*
5981 * if the lower level block was created before the snapshot
5982 * was created, we know there is no need to update back refs
5983 * for the subtree
5984 */
5985 if (wc->stage == UPDATE_BACKREF &&
5986 generation <= root->root_key.offset) {
5987 *lookup_info = 1;
5988 return 1;
5989 }
5990
5991 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5992 blocksize = btrfs_level_size(root, level - 1);
5993
5994 next = btrfs_find_tree_block(root, bytenr, blocksize);
5995 if (!next) {
5996 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5997 if (!next)
5998 return -ENOMEM;
5999 reada = 1;
6000 }
6001 btrfs_tree_lock(next);
6002 btrfs_set_lock_blocking(next);
6003
6004 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6005 &wc->refs[level - 1],
6006 &wc->flags[level - 1]);
6007 BUG_ON(ret);
6008 BUG_ON(wc->refs[level - 1] == 0);
6009 *lookup_info = 0;
6010
6011 if (wc->stage == DROP_REFERENCE) {
6012 if (wc->refs[level - 1] > 1) {
6013 if (level == 1 &&
6014 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6015 goto skip;
6016
6017 if (!wc->update_ref ||
6018 generation <= root->root_key.offset)
6019 goto skip;
6020
6021 btrfs_node_key_to_cpu(path->nodes[level], &key,
6022 path->slots[level]);
6023 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6024 if (ret < 0)
6025 goto skip;
6026
6027 wc->stage = UPDATE_BACKREF;
6028 wc->shared_level = level - 1;
6029 }
6030 } else {
6031 if (level == 1 &&
6032 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6033 goto skip;
6034 }
6035
6036 if (!btrfs_buffer_uptodate(next, generation)) {
6037 btrfs_tree_unlock(next);
6038 free_extent_buffer(next);
6039 next = NULL;
6040 *lookup_info = 1;
6041 }
6042
6043 if (!next) {
6044 if (reada && level == 1)
6045 reada_walk_down(trans, root, wc, path);
6046 next = read_tree_block(root, bytenr, blocksize, generation);
6047 if (!next)
6048 return -EIO;
6049 btrfs_tree_lock(next);
6050 btrfs_set_lock_blocking(next);
6051 }
6052
6053 level--;
6054 BUG_ON(level != btrfs_header_level(next));
6055 path->nodes[level] = next;
6056 path->slots[level] = 0;
6057 path->locks[level] = 1;
6058 wc->level = level;
6059 if (wc->level == 1)
6060 wc->reada_slot = 0;
6061 return 0;
6062 skip:
6063 wc->refs[level - 1] = 0;
6064 wc->flags[level - 1] = 0;
6065 if (wc->stage == DROP_REFERENCE) {
6066 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6067 parent = path->nodes[level]->start;
6068 } else {
6069 BUG_ON(root->root_key.objectid !=
6070 btrfs_header_owner(path->nodes[level]));
6071 parent = 0;
6072 }
6073
6074 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6075 root->root_key.objectid, level - 1, 0);
6076 BUG_ON(ret);
6077 }
6078 btrfs_tree_unlock(next);
6079 free_extent_buffer(next);
6080 *lookup_info = 1;
6081 return 1;
6082 }
6083
6084 /*
6085 * hepler to process tree block while walking up the tree.
6086 *
6087 * when wc->stage == DROP_REFERENCE, this function drops
6088 * reference count on the block.
6089 *
6090 * when wc->stage == UPDATE_BACKREF, this function changes
6091 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6092 * to UPDATE_BACKREF previously while processing the block.
6093 *
6094 * NOTE: return value 1 means we should stop walking up.
6095 */
6096 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6097 struct btrfs_root *root,
6098 struct btrfs_path *path,
6099 struct walk_control *wc)
6100 {
6101 int ret;
6102 int level = wc->level;
6103 struct extent_buffer *eb = path->nodes[level];
6104 u64 parent = 0;
6105
6106 if (wc->stage == UPDATE_BACKREF) {
6107 BUG_ON(wc->shared_level < level);
6108 if (level < wc->shared_level)
6109 goto out;
6110
6111 ret = find_next_key(path, level + 1, &wc->update_progress);
6112 if (ret > 0)
6113 wc->update_ref = 0;
6114
6115 wc->stage = DROP_REFERENCE;
6116 wc->shared_level = -1;
6117 path->slots[level] = 0;
6118
6119 /*
6120 * check reference count again if the block isn't locked.
6121 * we should start walking down the tree again if reference
6122 * count is one.
6123 */
6124 if (!path->locks[level]) {
6125 BUG_ON(level == 0);
6126 btrfs_tree_lock(eb);
6127 btrfs_set_lock_blocking(eb);
6128 path->locks[level] = 1;
6129
6130 ret = btrfs_lookup_extent_info(trans, root,
6131 eb->start, eb->len,
6132 &wc->refs[level],
6133 &wc->flags[level]);
6134 BUG_ON(ret);
6135 BUG_ON(wc->refs[level] == 0);
6136 if (wc->refs[level] == 1) {
6137 btrfs_tree_unlock(eb);
6138 path->locks[level] = 0;
6139 return 1;
6140 }
6141 }
6142 }
6143
6144 /* wc->stage == DROP_REFERENCE */
6145 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6146
6147 if (wc->refs[level] == 1) {
6148 if (level == 0) {
6149 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6150 ret = btrfs_dec_ref(trans, root, eb, 1);
6151 else
6152 ret = btrfs_dec_ref(trans, root, eb, 0);
6153 BUG_ON(ret);
6154 }
6155 /* make block locked assertion in clean_tree_block happy */
6156 if (!path->locks[level] &&
6157 btrfs_header_generation(eb) == trans->transid) {
6158 btrfs_tree_lock(eb);
6159 btrfs_set_lock_blocking(eb);
6160 path->locks[level] = 1;
6161 }
6162 clean_tree_block(trans, root, eb);
6163 }
6164
6165 if (eb == root->node) {
6166 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6167 parent = eb->start;
6168 else
6169 BUG_ON(root->root_key.objectid !=
6170 btrfs_header_owner(eb));
6171 } else {
6172 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6173 parent = path->nodes[level + 1]->start;
6174 else
6175 BUG_ON(root->root_key.objectid !=
6176 btrfs_header_owner(path->nodes[level + 1]));
6177 }
6178
6179 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6180 out:
6181 wc->refs[level] = 0;
6182 wc->flags[level] = 0;
6183 return 0;
6184 }
6185
6186 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6187 struct btrfs_root *root,
6188 struct btrfs_path *path,
6189 struct walk_control *wc)
6190 {
6191 int level = wc->level;
6192 int lookup_info = 1;
6193 int ret;
6194
6195 while (level >= 0) {
6196 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6197 if (ret > 0)
6198 break;
6199
6200 if (level == 0)
6201 break;
6202
6203 if (path->slots[level] >=
6204 btrfs_header_nritems(path->nodes[level]))
6205 break;
6206
6207 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6208 if (ret > 0) {
6209 path->slots[level]++;
6210 continue;
6211 } else if (ret < 0)
6212 return ret;
6213 level = wc->level;
6214 }
6215 return 0;
6216 }
6217
6218 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6219 struct btrfs_root *root,
6220 struct btrfs_path *path,
6221 struct walk_control *wc, int max_level)
6222 {
6223 int level = wc->level;
6224 int ret;
6225
6226 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6227 while (level < max_level && path->nodes[level]) {
6228 wc->level = level;
6229 if (path->slots[level] + 1 <
6230 btrfs_header_nritems(path->nodes[level])) {
6231 path->slots[level]++;
6232 return 0;
6233 } else {
6234 ret = walk_up_proc(trans, root, path, wc);
6235 if (ret > 0)
6236 return 0;
6237
6238 if (path->locks[level]) {
6239 btrfs_tree_unlock(path->nodes[level]);
6240 path->locks[level] = 0;
6241 }
6242 free_extent_buffer(path->nodes[level]);
6243 path->nodes[level] = NULL;
6244 level++;
6245 }
6246 }
6247 return 1;
6248 }
6249
6250 /*
6251 * drop a subvolume tree.
6252 *
6253 * this function traverses the tree freeing any blocks that only
6254 * referenced by the tree.
6255 *
6256 * when a shared tree block is found. this function decreases its
6257 * reference count by one. if update_ref is true, this function
6258 * also make sure backrefs for the shared block and all lower level
6259 * blocks are properly updated.
6260 */
6261 int btrfs_drop_snapshot(struct btrfs_root *root,
6262 struct btrfs_block_rsv *block_rsv, int update_ref)
6263 {
6264 struct btrfs_path *path;
6265 struct btrfs_trans_handle *trans;
6266 struct btrfs_root *tree_root = root->fs_info->tree_root;
6267 struct btrfs_root_item *root_item = &root->root_item;
6268 struct walk_control *wc;
6269 struct btrfs_key key;
6270 int err = 0;
6271 int ret;
6272 int level;
6273
6274 path = btrfs_alloc_path();
6275 if (!path)
6276 return -ENOMEM;
6277
6278 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6279 if (!wc) {
6280 btrfs_free_path(path);
6281 return -ENOMEM;
6282 }
6283
6284 trans = btrfs_start_transaction(tree_root, 0);
6285 BUG_ON(IS_ERR(trans));
6286
6287 if (block_rsv)
6288 trans->block_rsv = block_rsv;
6289
6290 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6291 level = btrfs_header_level(root->node);
6292 path->nodes[level] = btrfs_lock_root_node(root);
6293 btrfs_set_lock_blocking(path->nodes[level]);
6294 path->slots[level] = 0;
6295 path->locks[level] = 1;
6296 memset(&wc->update_progress, 0,
6297 sizeof(wc->update_progress));
6298 } else {
6299 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6300 memcpy(&wc->update_progress, &key,
6301 sizeof(wc->update_progress));
6302
6303 level = root_item->drop_level;
6304 BUG_ON(level == 0);
6305 path->lowest_level = level;
6306 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6307 path->lowest_level = 0;
6308 if (ret < 0) {
6309 err = ret;
6310 goto out;
6311 }
6312 WARN_ON(ret > 0);
6313
6314 /*
6315 * unlock our path, this is safe because only this
6316 * function is allowed to delete this snapshot
6317 */
6318 btrfs_unlock_up_safe(path, 0);
6319
6320 level = btrfs_header_level(root->node);
6321 while (1) {
6322 btrfs_tree_lock(path->nodes[level]);
6323 btrfs_set_lock_blocking(path->nodes[level]);
6324
6325 ret = btrfs_lookup_extent_info(trans, root,
6326 path->nodes[level]->start,
6327 path->nodes[level]->len,
6328 &wc->refs[level],
6329 &wc->flags[level]);
6330 BUG_ON(ret);
6331 BUG_ON(wc->refs[level] == 0);
6332
6333 if (level == root_item->drop_level)
6334 break;
6335
6336 btrfs_tree_unlock(path->nodes[level]);
6337 WARN_ON(wc->refs[level] != 1);
6338 level--;
6339 }
6340 }
6341
6342 wc->level = level;
6343 wc->shared_level = -1;
6344 wc->stage = DROP_REFERENCE;
6345 wc->update_ref = update_ref;
6346 wc->keep_locks = 0;
6347 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6348
6349 while (1) {
6350 ret = walk_down_tree(trans, root, path, wc);
6351 if (ret < 0) {
6352 err = ret;
6353 break;
6354 }
6355
6356 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6357 if (ret < 0) {
6358 err = ret;
6359 break;
6360 }
6361
6362 if (ret > 0) {
6363 BUG_ON(wc->stage != DROP_REFERENCE);
6364 break;
6365 }
6366
6367 if (wc->stage == DROP_REFERENCE) {
6368 level = wc->level;
6369 btrfs_node_key(path->nodes[level],
6370 &root_item->drop_progress,
6371 path->slots[level]);
6372 root_item->drop_level = level;
6373 }
6374
6375 BUG_ON(wc->level == 0);
6376 if (btrfs_should_end_transaction(trans, tree_root)) {
6377 ret = btrfs_update_root(trans, tree_root,
6378 &root->root_key,
6379 root_item);
6380 BUG_ON(ret);
6381
6382 btrfs_end_transaction_throttle(trans, tree_root);
6383 trans = btrfs_start_transaction(tree_root, 0);
6384 BUG_ON(IS_ERR(trans));
6385 if (block_rsv)
6386 trans->block_rsv = block_rsv;
6387 }
6388 }
6389 btrfs_release_path(path);
6390 BUG_ON(err);
6391
6392 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6393 BUG_ON(ret);
6394
6395 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6396 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6397 NULL, NULL);
6398 BUG_ON(ret < 0);
6399 if (ret > 0) {
6400 /* if we fail to delete the orphan item this time
6401 * around, it'll get picked up the next time.
6402 *
6403 * The most common failure here is just -ENOENT.
6404 */
6405 btrfs_del_orphan_item(trans, tree_root,
6406 root->root_key.objectid);
6407 }
6408 }
6409
6410 if (root->in_radix) {
6411 btrfs_free_fs_root(tree_root->fs_info, root);
6412 } else {
6413 free_extent_buffer(root->node);
6414 free_extent_buffer(root->commit_root);
6415 kfree(root);
6416 }
6417 out:
6418 btrfs_end_transaction_throttle(trans, tree_root);
6419 kfree(wc);
6420 btrfs_free_path(path);
6421 return err;
6422 }
6423
6424 /*
6425 * drop subtree rooted at tree block 'node'.
6426 *
6427 * NOTE: this function will unlock and release tree block 'node'
6428 */
6429 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6430 struct btrfs_root *root,
6431 struct extent_buffer *node,
6432 struct extent_buffer *parent)
6433 {
6434 struct btrfs_path *path;
6435 struct walk_control *wc;
6436 int level;
6437 int parent_level;
6438 int ret = 0;
6439 int wret;
6440
6441 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6442
6443 path = btrfs_alloc_path();
6444 if (!path)
6445 return -ENOMEM;
6446
6447 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6448 if (!wc) {
6449 btrfs_free_path(path);
6450 return -ENOMEM;
6451 }
6452
6453 btrfs_assert_tree_locked(parent);
6454 parent_level = btrfs_header_level(parent);
6455 extent_buffer_get(parent);
6456 path->nodes[parent_level] = parent;
6457 path->slots[parent_level] = btrfs_header_nritems(parent);
6458
6459 btrfs_assert_tree_locked(node);
6460 level = btrfs_header_level(node);
6461 path->nodes[level] = node;
6462 path->slots[level] = 0;
6463 path->locks[level] = 1;
6464
6465 wc->refs[parent_level] = 1;
6466 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6467 wc->level = level;
6468 wc->shared_level = -1;
6469 wc->stage = DROP_REFERENCE;
6470 wc->update_ref = 0;
6471 wc->keep_locks = 1;
6472 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6473
6474 while (1) {
6475 wret = walk_down_tree(trans, root, path, wc);
6476 if (wret < 0) {
6477 ret = wret;
6478 break;
6479 }
6480
6481 wret = walk_up_tree(trans, root, path, wc, parent_level);
6482 if (wret < 0)
6483 ret = wret;
6484 if (wret != 0)
6485 break;
6486 }
6487
6488 kfree(wc);
6489 btrfs_free_path(path);
6490 return ret;
6491 }
6492
6493 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6494 {
6495 u64 num_devices;
6496 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6497 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6498
6499 /*
6500 * we add in the count of missing devices because we want
6501 * to make sure that any RAID levels on a degraded FS
6502 * continue to be honored.
6503 */
6504 num_devices = root->fs_info->fs_devices->rw_devices +
6505 root->fs_info->fs_devices->missing_devices;
6506
6507 if (num_devices == 1) {
6508 stripped |= BTRFS_BLOCK_GROUP_DUP;
6509 stripped = flags & ~stripped;
6510
6511 /* turn raid0 into single device chunks */
6512 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6513 return stripped;
6514
6515 /* turn mirroring into duplication */
6516 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6517 BTRFS_BLOCK_GROUP_RAID10))
6518 return stripped | BTRFS_BLOCK_GROUP_DUP;
6519 return flags;
6520 } else {
6521 /* they already had raid on here, just return */
6522 if (flags & stripped)
6523 return flags;
6524
6525 stripped |= BTRFS_BLOCK_GROUP_DUP;
6526 stripped = flags & ~stripped;
6527
6528 /* switch duplicated blocks with raid1 */
6529 if (flags & BTRFS_BLOCK_GROUP_DUP)
6530 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6531
6532 /* turn single device chunks into raid0 */
6533 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6534 }
6535 return flags;
6536 }
6537
6538 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
6539 {
6540 struct btrfs_space_info *sinfo = cache->space_info;
6541 u64 num_bytes;
6542 int ret = -ENOSPC;
6543
6544 if (cache->ro)
6545 return 0;
6546
6547 spin_lock(&sinfo->lock);
6548 spin_lock(&cache->lock);
6549 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6550 cache->bytes_super - btrfs_block_group_used(&cache->item);
6551
6552 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6553 sinfo->bytes_may_use + sinfo->bytes_readonly +
6554 cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
6555 sinfo->bytes_readonly += num_bytes;
6556 sinfo->bytes_reserved += cache->reserved_pinned;
6557 cache->reserved_pinned = 0;
6558 cache->ro = 1;
6559 ret = 0;
6560 }
6561
6562 spin_unlock(&cache->lock);
6563 spin_unlock(&sinfo->lock);
6564 return ret;
6565 }
6566
6567 int btrfs_set_block_group_ro(struct btrfs_root *root,
6568 struct btrfs_block_group_cache *cache)
6569
6570 {
6571 struct btrfs_trans_handle *trans;
6572 u64 alloc_flags;
6573 int ret;
6574
6575 BUG_ON(cache->ro);
6576
6577 trans = btrfs_join_transaction(root);
6578 BUG_ON(IS_ERR(trans));
6579
6580 alloc_flags = update_block_group_flags(root, cache->flags);
6581 if (alloc_flags != cache->flags)
6582 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6583 CHUNK_ALLOC_FORCE);
6584
6585 ret = set_block_group_ro(cache);
6586 if (!ret)
6587 goto out;
6588 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6589 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6590 CHUNK_ALLOC_FORCE);
6591 if (ret < 0)
6592 goto out;
6593 ret = set_block_group_ro(cache);
6594 out:
6595 btrfs_end_transaction(trans, root);
6596 return ret;
6597 }
6598
6599 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6600 struct btrfs_root *root, u64 type)
6601 {
6602 u64 alloc_flags = get_alloc_profile(root, type);
6603 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6604 CHUNK_ALLOC_FORCE);
6605 }
6606
6607 /*
6608 * helper to account the unused space of all the readonly block group in the
6609 * list. takes mirrors into account.
6610 */
6611 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6612 {
6613 struct btrfs_block_group_cache *block_group;
6614 u64 free_bytes = 0;
6615 int factor;
6616
6617 list_for_each_entry(block_group, groups_list, list) {
6618 spin_lock(&block_group->lock);
6619
6620 if (!block_group->ro) {
6621 spin_unlock(&block_group->lock);
6622 continue;
6623 }
6624
6625 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6626 BTRFS_BLOCK_GROUP_RAID10 |
6627 BTRFS_BLOCK_GROUP_DUP))
6628 factor = 2;
6629 else
6630 factor = 1;
6631
6632 free_bytes += (block_group->key.offset -
6633 btrfs_block_group_used(&block_group->item)) *
6634 factor;
6635
6636 spin_unlock(&block_group->lock);
6637 }
6638
6639 return free_bytes;
6640 }
6641
6642 /*
6643 * helper to account the unused space of all the readonly block group in the
6644 * space_info. takes mirrors into account.
6645 */
6646 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6647 {
6648 int i;
6649 u64 free_bytes = 0;
6650
6651 spin_lock(&sinfo->lock);
6652
6653 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6654 if (!list_empty(&sinfo->block_groups[i]))
6655 free_bytes += __btrfs_get_ro_block_group_free_space(
6656 &sinfo->block_groups[i]);
6657
6658 spin_unlock(&sinfo->lock);
6659
6660 return free_bytes;
6661 }
6662
6663 int btrfs_set_block_group_rw(struct btrfs_root *root,
6664 struct btrfs_block_group_cache *cache)
6665 {
6666 struct btrfs_space_info *sinfo = cache->space_info;
6667 u64 num_bytes;
6668
6669 BUG_ON(!cache->ro);
6670
6671 spin_lock(&sinfo->lock);
6672 spin_lock(&cache->lock);
6673 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6674 cache->bytes_super - btrfs_block_group_used(&cache->item);
6675 sinfo->bytes_readonly -= num_bytes;
6676 cache->ro = 0;
6677 spin_unlock(&cache->lock);
6678 spin_unlock(&sinfo->lock);
6679 return 0;
6680 }
6681
6682 /*
6683 * checks to see if its even possible to relocate this block group.
6684 *
6685 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6686 * ok to go ahead and try.
6687 */
6688 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6689 {
6690 struct btrfs_block_group_cache *block_group;
6691 struct btrfs_space_info *space_info;
6692 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6693 struct btrfs_device *device;
6694 int full = 0;
6695 int ret = 0;
6696
6697 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6698
6699 /* odd, couldn't find the block group, leave it alone */
6700 if (!block_group)
6701 return -1;
6702
6703 /* no bytes used, we're good */
6704 if (!btrfs_block_group_used(&block_group->item))
6705 goto out;
6706
6707 space_info = block_group->space_info;
6708 spin_lock(&space_info->lock);
6709
6710 full = space_info->full;
6711
6712 /*
6713 * if this is the last block group we have in this space, we can't
6714 * relocate it unless we're able to allocate a new chunk below.
6715 *
6716 * Otherwise, we need to make sure we have room in the space to handle
6717 * all of the extents from this block group. If we can, we're good
6718 */
6719 if ((space_info->total_bytes != block_group->key.offset) &&
6720 (space_info->bytes_used + space_info->bytes_reserved +
6721 space_info->bytes_pinned + space_info->bytes_readonly +
6722 btrfs_block_group_used(&block_group->item) <
6723 space_info->total_bytes)) {
6724 spin_unlock(&space_info->lock);
6725 goto out;
6726 }
6727 spin_unlock(&space_info->lock);
6728
6729 /*
6730 * ok we don't have enough space, but maybe we have free space on our
6731 * devices to allocate new chunks for relocation, so loop through our
6732 * alloc devices and guess if we have enough space. However, if we
6733 * were marked as full, then we know there aren't enough chunks, and we
6734 * can just return.
6735 */
6736 ret = -1;
6737 if (full)
6738 goto out;
6739
6740 mutex_lock(&root->fs_info->chunk_mutex);
6741 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6742 u64 min_free = btrfs_block_group_used(&block_group->item);
6743 u64 dev_offset;
6744
6745 /*
6746 * check to make sure we can actually find a chunk with enough
6747 * space to fit our block group in.
6748 */
6749 if (device->total_bytes > device->bytes_used + min_free) {
6750 ret = find_free_dev_extent(NULL, device, min_free,
6751 &dev_offset, NULL);
6752 if (!ret)
6753 break;
6754 ret = -1;
6755 }
6756 }
6757 mutex_unlock(&root->fs_info->chunk_mutex);
6758 out:
6759 btrfs_put_block_group(block_group);
6760 return ret;
6761 }
6762
6763 static int find_first_block_group(struct btrfs_root *root,
6764 struct btrfs_path *path, struct btrfs_key *key)
6765 {
6766 int ret = 0;
6767 struct btrfs_key found_key;
6768 struct extent_buffer *leaf;
6769 int slot;
6770
6771 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6772 if (ret < 0)
6773 goto out;
6774
6775 while (1) {
6776 slot = path->slots[0];
6777 leaf = path->nodes[0];
6778 if (slot >= btrfs_header_nritems(leaf)) {
6779 ret = btrfs_next_leaf(root, path);
6780 if (ret == 0)
6781 continue;
6782 if (ret < 0)
6783 goto out;
6784 break;
6785 }
6786 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6787
6788 if (found_key.objectid >= key->objectid &&
6789 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6790 ret = 0;
6791 goto out;
6792 }
6793 path->slots[0]++;
6794 }
6795 out:
6796 return ret;
6797 }
6798
6799 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6800 {
6801 struct btrfs_block_group_cache *block_group;
6802 u64 last = 0;
6803
6804 while (1) {
6805 struct inode *inode;
6806
6807 block_group = btrfs_lookup_first_block_group(info, last);
6808 while (block_group) {
6809 spin_lock(&block_group->lock);
6810 if (block_group->iref)
6811 break;
6812 spin_unlock(&block_group->lock);
6813 block_group = next_block_group(info->tree_root,
6814 block_group);
6815 }
6816 if (!block_group) {
6817 if (last == 0)
6818 break;
6819 last = 0;
6820 continue;
6821 }
6822
6823 inode = block_group->inode;
6824 block_group->iref = 0;
6825 block_group->inode = NULL;
6826 spin_unlock(&block_group->lock);
6827 iput(inode);
6828 last = block_group->key.objectid + block_group->key.offset;
6829 btrfs_put_block_group(block_group);
6830 }
6831 }
6832
6833 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6834 {
6835 struct btrfs_block_group_cache *block_group;
6836 struct btrfs_space_info *space_info;
6837 struct btrfs_caching_control *caching_ctl;
6838 struct rb_node *n;
6839
6840 down_write(&info->extent_commit_sem);
6841 while (!list_empty(&info->caching_block_groups)) {
6842 caching_ctl = list_entry(info->caching_block_groups.next,
6843 struct btrfs_caching_control, list);
6844 list_del(&caching_ctl->list);
6845 put_caching_control(caching_ctl);
6846 }
6847 up_write(&info->extent_commit_sem);
6848
6849 spin_lock(&info->block_group_cache_lock);
6850 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6851 block_group = rb_entry(n, struct btrfs_block_group_cache,
6852 cache_node);
6853 rb_erase(&block_group->cache_node,
6854 &info->block_group_cache_tree);
6855 spin_unlock(&info->block_group_cache_lock);
6856
6857 down_write(&block_group->space_info->groups_sem);
6858 list_del(&block_group->list);
6859 up_write(&block_group->space_info->groups_sem);
6860
6861 if (block_group->cached == BTRFS_CACHE_STARTED)
6862 wait_block_group_cache_done(block_group);
6863
6864 /*
6865 * We haven't cached this block group, which means we could
6866 * possibly have excluded extents on this block group.
6867 */
6868 if (block_group->cached == BTRFS_CACHE_NO)
6869 free_excluded_extents(info->extent_root, block_group);
6870
6871 btrfs_remove_free_space_cache(block_group);
6872 btrfs_put_block_group(block_group);
6873
6874 spin_lock(&info->block_group_cache_lock);
6875 }
6876 spin_unlock(&info->block_group_cache_lock);
6877
6878 /* now that all the block groups are freed, go through and
6879 * free all the space_info structs. This is only called during
6880 * the final stages of unmount, and so we know nobody is
6881 * using them. We call synchronize_rcu() once before we start,
6882 * just to be on the safe side.
6883 */
6884 synchronize_rcu();
6885
6886 release_global_block_rsv(info);
6887
6888 while(!list_empty(&info->space_info)) {
6889 space_info = list_entry(info->space_info.next,
6890 struct btrfs_space_info,
6891 list);
6892 if (space_info->bytes_pinned > 0 ||
6893 space_info->bytes_reserved > 0) {
6894 WARN_ON(1);
6895 dump_space_info(space_info, 0, 0);
6896 }
6897 list_del(&space_info->list);
6898 kfree(space_info);
6899 }
6900 return 0;
6901 }
6902
6903 static void __link_block_group(struct btrfs_space_info *space_info,
6904 struct btrfs_block_group_cache *cache)
6905 {
6906 int index = get_block_group_index(cache);
6907
6908 down_write(&space_info->groups_sem);
6909 list_add_tail(&cache->list, &space_info->block_groups[index]);
6910 up_write(&space_info->groups_sem);
6911 }
6912
6913 int btrfs_read_block_groups(struct btrfs_root *root)
6914 {
6915 struct btrfs_path *path;
6916 int ret;
6917 struct btrfs_block_group_cache *cache;
6918 struct btrfs_fs_info *info = root->fs_info;
6919 struct btrfs_space_info *space_info;
6920 struct btrfs_key key;
6921 struct btrfs_key found_key;
6922 struct extent_buffer *leaf;
6923 int need_clear = 0;
6924 u64 cache_gen;
6925
6926 root = info->extent_root;
6927 key.objectid = 0;
6928 key.offset = 0;
6929 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
6930 path = btrfs_alloc_path();
6931 if (!path)
6932 return -ENOMEM;
6933 path->reada = 1;
6934
6935 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
6936 if (cache_gen != 0 &&
6937 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
6938 need_clear = 1;
6939 if (btrfs_test_opt(root, CLEAR_CACHE))
6940 need_clear = 1;
6941 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
6942 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
6943
6944 while (1) {
6945 ret = find_first_block_group(root, path, &key);
6946 if (ret > 0)
6947 break;
6948 if (ret != 0)
6949 goto error;
6950 leaf = path->nodes[0];
6951 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6952 cache = kzalloc(sizeof(*cache), GFP_NOFS);
6953 if (!cache) {
6954 ret = -ENOMEM;
6955 goto error;
6956 }
6957 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
6958 GFP_NOFS);
6959 if (!cache->free_space_ctl) {
6960 kfree(cache);
6961 ret = -ENOMEM;
6962 goto error;
6963 }
6964
6965 atomic_set(&cache->count, 1);
6966 spin_lock_init(&cache->lock);
6967 cache->fs_info = info;
6968 INIT_LIST_HEAD(&cache->list);
6969 INIT_LIST_HEAD(&cache->cluster_list);
6970
6971 if (need_clear)
6972 cache->disk_cache_state = BTRFS_DC_CLEAR;
6973
6974 read_extent_buffer(leaf, &cache->item,
6975 btrfs_item_ptr_offset(leaf, path->slots[0]),
6976 sizeof(cache->item));
6977 memcpy(&cache->key, &found_key, sizeof(found_key));
6978
6979 key.objectid = found_key.objectid + found_key.offset;
6980 btrfs_release_path(path);
6981 cache->flags = btrfs_block_group_flags(&cache->item);
6982 cache->sectorsize = root->sectorsize;
6983
6984 btrfs_init_free_space_ctl(cache);
6985
6986 /*
6987 * We need to exclude the super stripes now so that the space
6988 * info has super bytes accounted for, otherwise we'll think
6989 * we have more space than we actually do.
6990 */
6991 exclude_super_stripes(root, cache);
6992
6993 /*
6994 * check for two cases, either we are full, and therefore
6995 * don't need to bother with the caching work since we won't
6996 * find any space, or we are empty, and we can just add all
6997 * the space in and be done with it. This saves us _alot_ of
6998 * time, particularly in the full case.
6999 */
7000 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7001 cache->last_byte_to_unpin = (u64)-1;
7002 cache->cached = BTRFS_CACHE_FINISHED;
7003 free_excluded_extents(root, cache);
7004 } else if (btrfs_block_group_used(&cache->item) == 0) {
7005 cache->last_byte_to_unpin = (u64)-1;
7006 cache->cached = BTRFS_CACHE_FINISHED;
7007 add_new_free_space(cache, root->fs_info,
7008 found_key.objectid,
7009 found_key.objectid +
7010 found_key.offset);
7011 free_excluded_extents(root, cache);
7012 }
7013
7014 ret = update_space_info(info, cache->flags, found_key.offset,
7015 btrfs_block_group_used(&cache->item),
7016 &space_info);
7017 BUG_ON(ret);
7018 cache->space_info = space_info;
7019 spin_lock(&cache->space_info->lock);
7020 cache->space_info->bytes_readonly += cache->bytes_super;
7021 spin_unlock(&cache->space_info->lock);
7022
7023 __link_block_group(space_info, cache);
7024
7025 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7026 BUG_ON(ret);
7027
7028 set_avail_alloc_bits(root->fs_info, cache->flags);
7029 if (btrfs_chunk_readonly(root, cache->key.objectid))
7030 set_block_group_ro(cache);
7031 }
7032
7033 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7034 if (!(get_alloc_profile(root, space_info->flags) &
7035 (BTRFS_BLOCK_GROUP_RAID10 |
7036 BTRFS_BLOCK_GROUP_RAID1 |
7037 BTRFS_BLOCK_GROUP_DUP)))
7038 continue;
7039 /*
7040 * avoid allocating from un-mirrored block group if there are
7041 * mirrored block groups.
7042 */
7043 list_for_each_entry(cache, &space_info->block_groups[3], list)
7044 set_block_group_ro(cache);
7045 list_for_each_entry(cache, &space_info->block_groups[4], list)
7046 set_block_group_ro(cache);
7047 }
7048
7049 init_global_block_rsv(info);
7050 ret = 0;
7051 error:
7052 btrfs_free_path(path);
7053 return ret;
7054 }
7055
7056 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7057 struct btrfs_root *root, u64 bytes_used,
7058 u64 type, u64 chunk_objectid, u64 chunk_offset,
7059 u64 size)
7060 {
7061 int ret;
7062 struct btrfs_root *extent_root;
7063 struct btrfs_block_group_cache *cache;
7064
7065 extent_root = root->fs_info->extent_root;
7066
7067 root->fs_info->last_trans_log_full_commit = trans->transid;
7068
7069 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7070 if (!cache)
7071 return -ENOMEM;
7072 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7073 GFP_NOFS);
7074 if (!cache->free_space_ctl) {
7075 kfree(cache);
7076 return -ENOMEM;
7077 }
7078
7079 cache->key.objectid = chunk_offset;
7080 cache->key.offset = size;
7081 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7082 cache->sectorsize = root->sectorsize;
7083 cache->fs_info = root->fs_info;
7084
7085 atomic_set(&cache->count, 1);
7086 spin_lock_init(&cache->lock);
7087 INIT_LIST_HEAD(&cache->list);
7088 INIT_LIST_HEAD(&cache->cluster_list);
7089
7090 btrfs_init_free_space_ctl(cache);
7091
7092 btrfs_set_block_group_used(&cache->item, bytes_used);
7093 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7094 cache->flags = type;
7095 btrfs_set_block_group_flags(&cache->item, type);
7096
7097 cache->last_byte_to_unpin = (u64)-1;
7098 cache->cached = BTRFS_CACHE_FINISHED;
7099 exclude_super_stripes(root, cache);
7100
7101 add_new_free_space(cache, root->fs_info, chunk_offset,
7102 chunk_offset + size);
7103
7104 free_excluded_extents(root, cache);
7105
7106 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7107 &cache->space_info);
7108 BUG_ON(ret);
7109
7110 spin_lock(&cache->space_info->lock);
7111 cache->space_info->bytes_readonly += cache->bytes_super;
7112 spin_unlock(&cache->space_info->lock);
7113
7114 __link_block_group(cache->space_info, cache);
7115
7116 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7117 BUG_ON(ret);
7118
7119 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7120 sizeof(cache->item));
7121 BUG_ON(ret);
7122
7123 set_avail_alloc_bits(extent_root->fs_info, type);
7124
7125 return 0;
7126 }
7127
7128 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7129 struct btrfs_root *root, u64 group_start)
7130 {
7131 struct btrfs_path *path;
7132 struct btrfs_block_group_cache *block_group;
7133 struct btrfs_free_cluster *cluster;
7134 struct btrfs_root *tree_root = root->fs_info->tree_root;
7135 struct btrfs_key key;
7136 struct inode *inode;
7137 int ret;
7138 int factor;
7139
7140 root = root->fs_info->extent_root;
7141
7142 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7143 BUG_ON(!block_group);
7144 BUG_ON(!block_group->ro);
7145
7146 /*
7147 * Free the reserved super bytes from this block group before
7148 * remove it.
7149 */
7150 free_excluded_extents(root, block_group);
7151
7152 memcpy(&key, &block_group->key, sizeof(key));
7153 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7154 BTRFS_BLOCK_GROUP_RAID1 |
7155 BTRFS_BLOCK_GROUP_RAID10))
7156 factor = 2;
7157 else
7158 factor = 1;
7159
7160 /* make sure this block group isn't part of an allocation cluster */
7161 cluster = &root->fs_info->data_alloc_cluster;
7162 spin_lock(&cluster->refill_lock);
7163 btrfs_return_cluster_to_free_space(block_group, cluster);
7164 spin_unlock(&cluster->refill_lock);
7165
7166 /*
7167 * make sure this block group isn't part of a metadata
7168 * allocation cluster
7169 */
7170 cluster = &root->fs_info->meta_alloc_cluster;
7171 spin_lock(&cluster->refill_lock);
7172 btrfs_return_cluster_to_free_space(block_group, cluster);
7173 spin_unlock(&cluster->refill_lock);
7174
7175 path = btrfs_alloc_path();
7176 if (!path) {
7177 ret = -ENOMEM;
7178 goto out;
7179 }
7180
7181 inode = lookup_free_space_inode(root, block_group, path);
7182 if (!IS_ERR(inode)) {
7183 btrfs_orphan_add(trans, inode);
7184 clear_nlink(inode);
7185 /* One for the block groups ref */
7186 spin_lock(&block_group->lock);
7187 if (block_group->iref) {
7188 block_group->iref = 0;
7189 block_group->inode = NULL;
7190 spin_unlock(&block_group->lock);
7191 iput(inode);
7192 } else {
7193 spin_unlock(&block_group->lock);
7194 }
7195 /* One for our lookup ref */
7196 iput(inode);
7197 }
7198
7199 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7200 key.offset = block_group->key.objectid;
7201 key.type = 0;
7202
7203 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7204 if (ret < 0)
7205 goto out;
7206 if (ret > 0)
7207 btrfs_release_path(path);
7208 if (ret == 0) {
7209 ret = btrfs_del_item(trans, tree_root, path);
7210 if (ret)
7211 goto out;
7212 btrfs_release_path(path);
7213 }
7214
7215 spin_lock(&root->fs_info->block_group_cache_lock);
7216 rb_erase(&block_group->cache_node,
7217 &root->fs_info->block_group_cache_tree);
7218 spin_unlock(&root->fs_info->block_group_cache_lock);
7219
7220 down_write(&block_group->space_info->groups_sem);
7221 /*
7222 * we must use list_del_init so people can check to see if they
7223 * are still on the list after taking the semaphore
7224 */
7225 list_del_init(&block_group->list);
7226 up_write(&block_group->space_info->groups_sem);
7227
7228 if (block_group->cached == BTRFS_CACHE_STARTED)
7229 wait_block_group_cache_done(block_group);
7230
7231 btrfs_remove_free_space_cache(block_group);
7232
7233 spin_lock(&block_group->space_info->lock);
7234 block_group->space_info->total_bytes -= block_group->key.offset;
7235 block_group->space_info->bytes_readonly -= block_group->key.offset;
7236 block_group->space_info->disk_total -= block_group->key.offset * factor;
7237 spin_unlock(&block_group->space_info->lock);
7238
7239 memcpy(&key, &block_group->key, sizeof(key));
7240
7241 btrfs_clear_space_info_full(root->fs_info);
7242
7243 btrfs_put_block_group(block_group);
7244 btrfs_put_block_group(block_group);
7245
7246 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7247 if (ret > 0)
7248 ret = -EIO;
7249 if (ret < 0)
7250 goto out;
7251
7252 ret = btrfs_del_item(trans, root, path);
7253 out:
7254 btrfs_free_path(path);
7255 return ret;
7256 }
7257
7258 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7259 {
7260 struct btrfs_space_info *space_info;
7261 struct btrfs_super_block *disk_super;
7262 u64 features;
7263 u64 flags;
7264 int mixed = 0;
7265 int ret;
7266
7267 disk_super = &fs_info->super_copy;
7268 if (!btrfs_super_root(disk_super))
7269 return 1;
7270
7271 features = btrfs_super_incompat_flags(disk_super);
7272 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7273 mixed = 1;
7274
7275 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7276 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7277 if (ret)
7278 goto out;
7279
7280 if (mixed) {
7281 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7282 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7283 } else {
7284 flags = BTRFS_BLOCK_GROUP_METADATA;
7285 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7286 if (ret)
7287 goto out;
7288
7289 flags = BTRFS_BLOCK_GROUP_DATA;
7290 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7291 }
7292 out:
7293 return ret;
7294 }
7295
7296 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7297 {
7298 return unpin_extent_range(root, start, end);
7299 }
7300
7301 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7302 u64 num_bytes, u64 *actual_bytes)
7303 {
7304 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7305 }
7306
7307 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7308 {
7309 struct btrfs_fs_info *fs_info = root->fs_info;
7310 struct btrfs_block_group_cache *cache = NULL;
7311 u64 group_trimmed;
7312 u64 start;
7313 u64 end;
7314 u64 trimmed = 0;
7315 int ret = 0;
7316
7317 cache = btrfs_lookup_block_group(fs_info, range->start);
7318
7319 while (cache) {
7320 if (cache->key.objectid >= (range->start + range->len)) {
7321 btrfs_put_block_group(cache);
7322 break;
7323 }
7324
7325 start = max(range->start, cache->key.objectid);
7326 end = min(range->start + range->len,
7327 cache->key.objectid + cache->key.offset);
7328
7329 if (end - start >= range->minlen) {
7330 if (!block_group_cache_done(cache)) {
7331 ret = cache_block_group(cache, NULL, root, 0);
7332 if (!ret)
7333 wait_block_group_cache_done(cache);
7334 }
7335 ret = btrfs_trim_block_group(cache,
7336 &group_trimmed,
7337 start,
7338 end,
7339 range->minlen);
7340
7341 trimmed += group_trimmed;
7342 if (ret) {
7343 btrfs_put_block_group(cache);
7344 break;
7345 }
7346 }
7347
7348 cache = next_block_group(fs_info->tree_root, cache);
7349 }
7350
7351 range->len = trimmed;
7352 return ret;
7353 }
This page took 0.237055 seconds and 6 git commands to generate.