Btrfs: fix use-after-free in __btrfs_end_transaction
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36
37 /*
38 * control flags for do_chunk_alloc's force field
39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40 * if we really need one.
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 *
50 */
51 enum {
52 CHUNK_ALLOC_NO_FORCE = 0,
53 CHUNK_ALLOC_LIMITED = 1,
54 CHUNK_ALLOC_FORCE = 2,
55 };
56
57 /*
58 * Control how reservations are dealt with.
59 *
60 * RESERVE_FREE - freeing a reservation.
61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62 * ENOSPC accounting
63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64 * bytes_may_use as the ENOSPC accounting is done elsewhere
65 */
66 enum {
67 RESERVE_FREE = 0,
68 RESERVE_ALLOC = 1,
69 RESERVE_ALLOC_NO_ACCOUNT = 2,
70 };
71
72 static int update_block_group(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 bytenr, u64 num_bytes, int alloc);
75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, u64 parent,
78 u64 root_objectid, u64 owner_objectid,
79 u64 owner_offset, int refs_to_drop,
80 struct btrfs_delayed_extent_op *extra_op);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
82 struct extent_buffer *leaf,
83 struct btrfs_extent_item *ei);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
85 struct btrfs_root *root,
86 u64 parent, u64 root_objectid,
87 u64 flags, u64 owner, u64 offset,
88 struct btrfs_key *ins, int ref_mod);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, struct btrfs_disk_key *key,
93 int level, struct btrfs_key *ins);
94 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
95 struct btrfs_root *extent_root, u64 alloc_bytes,
96 u64 flags, int force);
97 static int find_next_key(struct btrfs_path *path, int level,
98 struct btrfs_key *key);
99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
100 int dump_block_groups);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
102 u64 num_bytes, int reserve);
103
104 static noinline int
105 block_group_cache_done(struct btrfs_block_group_cache *cache)
106 {
107 smp_mb();
108 return cache->cached == BTRFS_CACHE_FINISHED;
109 }
110
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113 return (cache->flags & bits) == bits;
114 }
115
116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118 atomic_inc(&cache->count);
119 }
120
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
126 kfree(cache->free_space_ctl);
127 kfree(cache);
128 }
129 }
130
131 /*
132 * this adds the block group to the fs_info rb tree for the block group
133 * cache
134 */
135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
136 struct btrfs_block_group_cache *block_group)
137 {
138 struct rb_node **p;
139 struct rb_node *parent = NULL;
140 struct btrfs_block_group_cache *cache;
141
142 spin_lock(&info->block_group_cache_lock);
143 p = &info->block_group_cache_tree.rb_node;
144
145 while (*p) {
146 parent = *p;
147 cache = rb_entry(parent, struct btrfs_block_group_cache,
148 cache_node);
149 if (block_group->key.objectid < cache->key.objectid) {
150 p = &(*p)->rb_left;
151 } else if (block_group->key.objectid > cache->key.objectid) {
152 p = &(*p)->rb_right;
153 } else {
154 spin_unlock(&info->block_group_cache_lock);
155 return -EEXIST;
156 }
157 }
158
159 rb_link_node(&block_group->cache_node, parent, p);
160 rb_insert_color(&block_group->cache_node,
161 &info->block_group_cache_tree);
162 spin_unlock(&info->block_group_cache_lock);
163
164 return 0;
165 }
166
167 /*
168 * This will return the block group at or after bytenr if contains is 0, else
169 * it will return the block group that contains the bytenr
170 */
171 static struct btrfs_block_group_cache *
172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
173 int contains)
174 {
175 struct btrfs_block_group_cache *cache, *ret = NULL;
176 struct rb_node *n;
177 u64 end, start;
178
179 spin_lock(&info->block_group_cache_lock);
180 n = info->block_group_cache_tree.rb_node;
181
182 while (n) {
183 cache = rb_entry(n, struct btrfs_block_group_cache,
184 cache_node);
185 end = cache->key.objectid + cache->key.offset - 1;
186 start = cache->key.objectid;
187
188 if (bytenr < start) {
189 if (!contains && (!ret || start < ret->key.objectid))
190 ret = cache;
191 n = n->rb_left;
192 } else if (bytenr > start) {
193 if (contains && bytenr <= end) {
194 ret = cache;
195 break;
196 }
197 n = n->rb_right;
198 } else {
199 ret = cache;
200 break;
201 }
202 }
203 if (ret)
204 btrfs_get_block_group(ret);
205 spin_unlock(&info->block_group_cache_lock);
206
207 return ret;
208 }
209
210 static int add_excluded_extent(struct btrfs_root *root,
211 u64 start, u64 num_bytes)
212 {
213 u64 end = start + num_bytes - 1;
214 set_extent_bits(&root->fs_info->freed_extents[0],
215 start, end, EXTENT_UPTODATE, GFP_NOFS);
216 set_extent_bits(&root->fs_info->freed_extents[1],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 return 0;
219 }
220
221 static void free_excluded_extents(struct btrfs_root *root,
222 struct btrfs_block_group_cache *cache)
223 {
224 u64 start, end;
225
226 start = cache->key.objectid;
227 end = start + cache->key.offset - 1;
228
229 clear_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 clear_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 }
234
235 static int exclude_super_stripes(struct btrfs_root *root,
236 struct btrfs_block_group_cache *cache)
237 {
238 u64 bytenr;
239 u64 *logical;
240 int stripe_len;
241 int i, nr, ret;
242
243 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 cache->bytes_super += stripe_len;
246 ret = add_excluded_extent(root, cache->key.objectid,
247 stripe_len);
248 BUG_ON(ret); /* -ENOMEM */
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
254 cache->key.objectid, bytenr,
255 0, &logical, &nr, &stripe_len);
256 BUG_ON(ret); /* -ENOMEM */
257
258 while (nr--) {
259 cache->bytes_super += stripe_len;
260 ret = add_excluded_extent(root, logical[nr],
261 stripe_len);
262 BUG_ON(ret); /* -ENOMEM */
263 }
264
265 kfree(logical);
266 }
267 return 0;
268 }
269
270 static struct btrfs_caching_control *
271 get_caching_control(struct btrfs_block_group_cache *cache)
272 {
273 struct btrfs_caching_control *ctl;
274
275 spin_lock(&cache->lock);
276 if (cache->cached != BTRFS_CACHE_STARTED) {
277 spin_unlock(&cache->lock);
278 return NULL;
279 }
280
281 /* We're loading it the fast way, so we don't have a caching_ctl. */
282 if (!cache->caching_ctl) {
283 spin_unlock(&cache->lock);
284 return NULL;
285 }
286
287 ctl = cache->caching_ctl;
288 atomic_inc(&ctl->count);
289 spin_unlock(&cache->lock);
290 return ctl;
291 }
292
293 static void put_caching_control(struct btrfs_caching_control *ctl)
294 {
295 if (atomic_dec_and_test(&ctl->count))
296 kfree(ctl);
297 }
298
299 /*
300 * this is only called by cache_block_group, since we could have freed extents
301 * we need to check the pinned_extents for any extents that can't be used yet
302 * since their free space will be released as soon as the transaction commits.
303 */
304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
305 struct btrfs_fs_info *info, u64 start, u64 end)
306 {
307 u64 extent_start, extent_end, size, total_added = 0;
308 int ret;
309
310 while (start < end) {
311 ret = find_first_extent_bit(info->pinned_extents, start,
312 &extent_start, &extent_end,
313 EXTENT_DIRTY | EXTENT_UPTODATE);
314 if (ret)
315 break;
316
317 if (extent_start <= start) {
318 start = extent_end + 1;
319 } else if (extent_start > start && extent_start < end) {
320 size = extent_start - start;
321 total_added += size;
322 ret = btrfs_add_free_space(block_group, start,
323 size);
324 BUG_ON(ret); /* -ENOMEM or logic error */
325 start = extent_end + 1;
326 } else {
327 break;
328 }
329 }
330
331 if (start < end) {
332 size = end - start;
333 total_added += size;
334 ret = btrfs_add_free_space(block_group, start, size);
335 BUG_ON(ret); /* -ENOMEM or logic error */
336 }
337
338 return total_added;
339 }
340
341 static noinline void caching_thread(struct btrfs_work *work)
342 {
343 struct btrfs_block_group_cache *block_group;
344 struct btrfs_fs_info *fs_info;
345 struct btrfs_caching_control *caching_ctl;
346 struct btrfs_root *extent_root;
347 struct btrfs_path *path;
348 struct extent_buffer *leaf;
349 struct btrfs_key key;
350 u64 total_found = 0;
351 u64 last = 0;
352 u32 nritems;
353 int ret = 0;
354
355 caching_ctl = container_of(work, struct btrfs_caching_control, work);
356 block_group = caching_ctl->block_group;
357 fs_info = block_group->fs_info;
358 extent_root = fs_info->extent_root;
359
360 path = btrfs_alloc_path();
361 if (!path)
362 goto out;
363
364 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
365
366 /*
367 * We don't want to deadlock with somebody trying to allocate a new
368 * extent for the extent root while also trying to search the extent
369 * root to add free space. So we skip locking and search the commit
370 * root, since its read-only
371 */
372 path->skip_locking = 1;
373 path->search_commit_root = 1;
374 path->reada = 1;
375
376 key.objectid = last;
377 key.offset = 0;
378 key.type = BTRFS_EXTENT_ITEM_KEY;
379 again:
380 mutex_lock(&caching_ctl->mutex);
381 /* need to make sure the commit_root doesn't disappear */
382 down_read(&fs_info->extent_commit_sem);
383
384 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
385 if (ret < 0)
386 goto err;
387
388 leaf = path->nodes[0];
389 nritems = btrfs_header_nritems(leaf);
390
391 while (1) {
392 if (btrfs_fs_closing(fs_info) > 1) {
393 last = (u64)-1;
394 break;
395 }
396
397 if (path->slots[0] < nritems) {
398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
399 } else {
400 ret = find_next_key(path, 0, &key);
401 if (ret)
402 break;
403
404 if (need_resched() ||
405 btrfs_next_leaf(extent_root, path)) {
406 caching_ctl->progress = last;
407 btrfs_release_path(path);
408 up_read(&fs_info->extent_commit_sem);
409 mutex_unlock(&caching_ctl->mutex);
410 cond_resched();
411 goto again;
412 }
413 leaf = path->nodes[0];
414 nritems = btrfs_header_nritems(leaf);
415 continue;
416 }
417
418 if (key.objectid < block_group->key.objectid) {
419 path->slots[0]++;
420 continue;
421 }
422
423 if (key.objectid >= block_group->key.objectid +
424 block_group->key.offset)
425 break;
426
427 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
428 total_found += add_new_free_space(block_group,
429 fs_info, last,
430 key.objectid);
431 last = key.objectid + key.offset;
432
433 if (total_found > (1024 * 1024 * 2)) {
434 total_found = 0;
435 wake_up(&caching_ctl->wait);
436 }
437 }
438 path->slots[0]++;
439 }
440 ret = 0;
441
442 total_found += add_new_free_space(block_group, fs_info, last,
443 block_group->key.objectid +
444 block_group->key.offset);
445 caching_ctl->progress = (u64)-1;
446
447 spin_lock(&block_group->lock);
448 block_group->caching_ctl = NULL;
449 block_group->cached = BTRFS_CACHE_FINISHED;
450 spin_unlock(&block_group->lock);
451
452 err:
453 btrfs_free_path(path);
454 up_read(&fs_info->extent_commit_sem);
455
456 free_excluded_extents(extent_root, block_group);
457
458 mutex_unlock(&caching_ctl->mutex);
459 out:
460 wake_up(&caching_ctl->wait);
461
462 put_caching_control(caching_ctl);
463 btrfs_put_block_group(block_group);
464 }
465
466 static int cache_block_group(struct btrfs_block_group_cache *cache,
467 struct btrfs_trans_handle *trans,
468 struct btrfs_root *root,
469 int load_cache_only)
470 {
471 DEFINE_WAIT(wait);
472 struct btrfs_fs_info *fs_info = cache->fs_info;
473 struct btrfs_caching_control *caching_ctl;
474 int ret = 0;
475
476 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
477 if (!caching_ctl)
478 return -ENOMEM;
479
480 INIT_LIST_HEAD(&caching_ctl->list);
481 mutex_init(&caching_ctl->mutex);
482 init_waitqueue_head(&caching_ctl->wait);
483 caching_ctl->block_group = cache;
484 caching_ctl->progress = cache->key.objectid;
485 atomic_set(&caching_ctl->count, 1);
486 caching_ctl->work.func = caching_thread;
487
488 spin_lock(&cache->lock);
489 /*
490 * This should be a rare occasion, but this could happen I think in the
491 * case where one thread starts to load the space cache info, and then
492 * some other thread starts a transaction commit which tries to do an
493 * allocation while the other thread is still loading the space cache
494 * info. The previous loop should have kept us from choosing this block
495 * group, but if we've moved to the state where we will wait on caching
496 * block groups we need to first check if we're doing a fast load here,
497 * so we can wait for it to finish, otherwise we could end up allocating
498 * from a block group who's cache gets evicted for one reason or
499 * another.
500 */
501 while (cache->cached == BTRFS_CACHE_FAST) {
502 struct btrfs_caching_control *ctl;
503
504 ctl = cache->caching_ctl;
505 atomic_inc(&ctl->count);
506 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
507 spin_unlock(&cache->lock);
508
509 schedule();
510
511 finish_wait(&ctl->wait, &wait);
512 put_caching_control(ctl);
513 spin_lock(&cache->lock);
514 }
515
516 if (cache->cached != BTRFS_CACHE_NO) {
517 spin_unlock(&cache->lock);
518 kfree(caching_ctl);
519 return 0;
520 }
521 WARN_ON(cache->caching_ctl);
522 cache->caching_ctl = caching_ctl;
523 cache->cached = BTRFS_CACHE_FAST;
524 spin_unlock(&cache->lock);
525
526 /*
527 * We can't do the read from on-disk cache during a commit since we need
528 * to have the normal tree locking. Also if we are currently trying to
529 * allocate blocks for the tree root we can't do the fast caching since
530 * we likely hold important locks.
531 */
532 if (trans && (!trans->transaction->in_commit) &&
533 (root && root != root->fs_info->tree_root) &&
534 btrfs_test_opt(root, SPACE_CACHE)) {
535 ret = load_free_space_cache(fs_info, cache);
536
537 spin_lock(&cache->lock);
538 if (ret == 1) {
539 cache->caching_ctl = NULL;
540 cache->cached = BTRFS_CACHE_FINISHED;
541 cache->last_byte_to_unpin = (u64)-1;
542 } else {
543 if (load_cache_only) {
544 cache->caching_ctl = NULL;
545 cache->cached = BTRFS_CACHE_NO;
546 } else {
547 cache->cached = BTRFS_CACHE_STARTED;
548 }
549 }
550 spin_unlock(&cache->lock);
551 wake_up(&caching_ctl->wait);
552 if (ret == 1) {
553 put_caching_control(caching_ctl);
554 free_excluded_extents(fs_info->extent_root, cache);
555 return 0;
556 }
557 } else {
558 /*
559 * We are not going to do the fast caching, set cached to the
560 * appropriate value and wakeup any waiters.
561 */
562 spin_lock(&cache->lock);
563 if (load_cache_only) {
564 cache->caching_ctl = NULL;
565 cache->cached = BTRFS_CACHE_NO;
566 } else {
567 cache->cached = BTRFS_CACHE_STARTED;
568 }
569 spin_unlock(&cache->lock);
570 wake_up(&caching_ctl->wait);
571 }
572
573 if (load_cache_only) {
574 put_caching_control(caching_ctl);
575 return 0;
576 }
577
578 down_write(&fs_info->extent_commit_sem);
579 atomic_inc(&caching_ctl->count);
580 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
581 up_write(&fs_info->extent_commit_sem);
582
583 btrfs_get_block_group(cache);
584
585 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
586
587 return ret;
588 }
589
590 /*
591 * return the block group that starts at or after bytenr
592 */
593 static struct btrfs_block_group_cache *
594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
595 {
596 struct btrfs_block_group_cache *cache;
597
598 cache = block_group_cache_tree_search(info, bytenr, 0);
599
600 return cache;
601 }
602
603 /*
604 * return the block group that contains the given bytenr
605 */
606 struct btrfs_block_group_cache *btrfs_lookup_block_group(
607 struct btrfs_fs_info *info,
608 u64 bytenr)
609 {
610 struct btrfs_block_group_cache *cache;
611
612 cache = block_group_cache_tree_search(info, bytenr, 1);
613
614 return cache;
615 }
616
617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
618 u64 flags)
619 {
620 struct list_head *head = &info->space_info;
621 struct btrfs_space_info *found;
622
623 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
624
625 rcu_read_lock();
626 list_for_each_entry_rcu(found, head, list) {
627 if (found->flags & flags) {
628 rcu_read_unlock();
629 return found;
630 }
631 }
632 rcu_read_unlock();
633 return NULL;
634 }
635
636 /*
637 * after adding space to the filesystem, we need to clear the full flags
638 * on all the space infos.
639 */
640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
641 {
642 struct list_head *head = &info->space_info;
643 struct btrfs_space_info *found;
644
645 rcu_read_lock();
646 list_for_each_entry_rcu(found, head, list)
647 found->full = 0;
648 rcu_read_unlock();
649 }
650
651 static u64 div_factor(u64 num, int factor)
652 {
653 if (factor == 10)
654 return num;
655 num *= factor;
656 do_div(num, 10);
657 return num;
658 }
659
660 static u64 div_factor_fine(u64 num, int factor)
661 {
662 if (factor == 100)
663 return num;
664 num *= factor;
665 do_div(num, 100);
666 return num;
667 }
668
669 u64 btrfs_find_block_group(struct btrfs_root *root,
670 u64 search_start, u64 search_hint, int owner)
671 {
672 struct btrfs_block_group_cache *cache;
673 u64 used;
674 u64 last = max(search_hint, search_start);
675 u64 group_start = 0;
676 int full_search = 0;
677 int factor = 9;
678 int wrapped = 0;
679 again:
680 while (1) {
681 cache = btrfs_lookup_first_block_group(root->fs_info, last);
682 if (!cache)
683 break;
684
685 spin_lock(&cache->lock);
686 last = cache->key.objectid + cache->key.offset;
687 used = btrfs_block_group_used(&cache->item);
688
689 if ((full_search || !cache->ro) &&
690 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
691 if (used + cache->pinned + cache->reserved <
692 div_factor(cache->key.offset, factor)) {
693 group_start = cache->key.objectid;
694 spin_unlock(&cache->lock);
695 btrfs_put_block_group(cache);
696 goto found;
697 }
698 }
699 spin_unlock(&cache->lock);
700 btrfs_put_block_group(cache);
701 cond_resched();
702 }
703 if (!wrapped) {
704 last = search_start;
705 wrapped = 1;
706 goto again;
707 }
708 if (!full_search && factor < 10) {
709 last = search_start;
710 full_search = 1;
711 factor = 10;
712 goto again;
713 }
714 found:
715 return group_start;
716 }
717
718 /* simple helper to search for an existing extent at a given offset */
719 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
720 {
721 int ret;
722 struct btrfs_key key;
723 struct btrfs_path *path;
724
725 path = btrfs_alloc_path();
726 if (!path)
727 return -ENOMEM;
728
729 key.objectid = start;
730 key.offset = len;
731 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
732 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
733 0, 0);
734 btrfs_free_path(path);
735 return ret;
736 }
737
738 /*
739 * helper function to lookup reference count and flags of extent.
740 *
741 * the head node for delayed ref is used to store the sum of all the
742 * reference count modifications queued up in the rbtree. the head
743 * node may also store the extent flags to set. This way you can check
744 * to see what the reference count and extent flags would be if all of
745 * the delayed refs are not processed.
746 */
747 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root, u64 bytenr,
749 u64 num_bytes, u64 *refs, u64 *flags)
750 {
751 struct btrfs_delayed_ref_head *head;
752 struct btrfs_delayed_ref_root *delayed_refs;
753 struct btrfs_path *path;
754 struct btrfs_extent_item *ei;
755 struct extent_buffer *leaf;
756 struct btrfs_key key;
757 u32 item_size;
758 u64 num_refs;
759 u64 extent_flags;
760 int ret;
761
762 path = btrfs_alloc_path();
763 if (!path)
764 return -ENOMEM;
765
766 key.objectid = bytenr;
767 key.type = BTRFS_EXTENT_ITEM_KEY;
768 key.offset = num_bytes;
769 if (!trans) {
770 path->skip_locking = 1;
771 path->search_commit_root = 1;
772 }
773 again:
774 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
775 &key, path, 0, 0);
776 if (ret < 0)
777 goto out_free;
778
779 if (ret == 0) {
780 leaf = path->nodes[0];
781 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
782 if (item_size >= sizeof(*ei)) {
783 ei = btrfs_item_ptr(leaf, path->slots[0],
784 struct btrfs_extent_item);
785 num_refs = btrfs_extent_refs(leaf, ei);
786 extent_flags = btrfs_extent_flags(leaf, ei);
787 } else {
788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
789 struct btrfs_extent_item_v0 *ei0;
790 BUG_ON(item_size != sizeof(*ei0));
791 ei0 = btrfs_item_ptr(leaf, path->slots[0],
792 struct btrfs_extent_item_v0);
793 num_refs = btrfs_extent_refs_v0(leaf, ei0);
794 /* FIXME: this isn't correct for data */
795 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
796 #else
797 BUG();
798 #endif
799 }
800 BUG_ON(num_refs == 0);
801 } else {
802 num_refs = 0;
803 extent_flags = 0;
804 ret = 0;
805 }
806
807 if (!trans)
808 goto out;
809
810 delayed_refs = &trans->transaction->delayed_refs;
811 spin_lock(&delayed_refs->lock);
812 head = btrfs_find_delayed_ref_head(trans, bytenr);
813 if (head) {
814 if (!mutex_trylock(&head->mutex)) {
815 atomic_inc(&head->node.refs);
816 spin_unlock(&delayed_refs->lock);
817
818 btrfs_release_path(path);
819
820 /*
821 * Mutex was contended, block until it's released and try
822 * again
823 */
824 mutex_lock(&head->mutex);
825 mutex_unlock(&head->mutex);
826 btrfs_put_delayed_ref(&head->node);
827 goto again;
828 }
829 if (head->extent_op && head->extent_op->update_flags)
830 extent_flags |= head->extent_op->flags_to_set;
831 else
832 BUG_ON(num_refs == 0);
833
834 num_refs += head->node.ref_mod;
835 mutex_unlock(&head->mutex);
836 }
837 spin_unlock(&delayed_refs->lock);
838 out:
839 WARN_ON(num_refs == 0);
840 if (refs)
841 *refs = num_refs;
842 if (flags)
843 *flags = extent_flags;
844 out_free:
845 btrfs_free_path(path);
846 return ret;
847 }
848
849 /*
850 * Back reference rules. Back refs have three main goals:
851 *
852 * 1) differentiate between all holders of references to an extent so that
853 * when a reference is dropped we can make sure it was a valid reference
854 * before freeing the extent.
855 *
856 * 2) Provide enough information to quickly find the holders of an extent
857 * if we notice a given block is corrupted or bad.
858 *
859 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
860 * maintenance. This is actually the same as #2, but with a slightly
861 * different use case.
862 *
863 * There are two kinds of back refs. The implicit back refs is optimized
864 * for pointers in non-shared tree blocks. For a given pointer in a block,
865 * back refs of this kind provide information about the block's owner tree
866 * and the pointer's key. These information allow us to find the block by
867 * b-tree searching. The full back refs is for pointers in tree blocks not
868 * referenced by their owner trees. The location of tree block is recorded
869 * in the back refs. Actually the full back refs is generic, and can be
870 * used in all cases the implicit back refs is used. The major shortcoming
871 * of the full back refs is its overhead. Every time a tree block gets
872 * COWed, we have to update back refs entry for all pointers in it.
873 *
874 * For a newly allocated tree block, we use implicit back refs for
875 * pointers in it. This means most tree related operations only involve
876 * implicit back refs. For a tree block created in old transaction, the
877 * only way to drop a reference to it is COW it. So we can detect the
878 * event that tree block loses its owner tree's reference and do the
879 * back refs conversion.
880 *
881 * When a tree block is COW'd through a tree, there are four cases:
882 *
883 * The reference count of the block is one and the tree is the block's
884 * owner tree. Nothing to do in this case.
885 *
886 * The reference count of the block is one and the tree is not the
887 * block's owner tree. In this case, full back refs is used for pointers
888 * in the block. Remove these full back refs, add implicit back refs for
889 * every pointers in the new block.
890 *
891 * The reference count of the block is greater than one and the tree is
892 * the block's owner tree. In this case, implicit back refs is used for
893 * pointers in the block. Add full back refs for every pointers in the
894 * block, increase lower level extents' reference counts. The original
895 * implicit back refs are entailed to the new block.
896 *
897 * The reference count of the block is greater than one and the tree is
898 * not the block's owner tree. Add implicit back refs for every pointer in
899 * the new block, increase lower level extents' reference count.
900 *
901 * Back Reference Key composing:
902 *
903 * The key objectid corresponds to the first byte in the extent,
904 * The key type is used to differentiate between types of back refs.
905 * There are different meanings of the key offset for different types
906 * of back refs.
907 *
908 * File extents can be referenced by:
909 *
910 * - multiple snapshots, subvolumes, or different generations in one subvol
911 * - different files inside a single subvolume
912 * - different offsets inside a file (bookend extents in file.c)
913 *
914 * The extent ref structure for the implicit back refs has fields for:
915 *
916 * - Objectid of the subvolume root
917 * - objectid of the file holding the reference
918 * - original offset in the file
919 * - how many bookend extents
920 *
921 * The key offset for the implicit back refs is hash of the first
922 * three fields.
923 *
924 * The extent ref structure for the full back refs has field for:
925 *
926 * - number of pointers in the tree leaf
927 *
928 * The key offset for the implicit back refs is the first byte of
929 * the tree leaf
930 *
931 * When a file extent is allocated, The implicit back refs is used.
932 * the fields are filled in:
933 *
934 * (root_key.objectid, inode objectid, offset in file, 1)
935 *
936 * When a file extent is removed file truncation, we find the
937 * corresponding implicit back refs and check the following fields:
938 *
939 * (btrfs_header_owner(leaf), inode objectid, offset in file)
940 *
941 * Btree extents can be referenced by:
942 *
943 * - Different subvolumes
944 *
945 * Both the implicit back refs and the full back refs for tree blocks
946 * only consist of key. The key offset for the implicit back refs is
947 * objectid of block's owner tree. The key offset for the full back refs
948 * is the first byte of parent block.
949 *
950 * When implicit back refs is used, information about the lowest key and
951 * level of the tree block are required. These information are stored in
952 * tree block info structure.
953 */
954
955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
957 struct btrfs_root *root,
958 struct btrfs_path *path,
959 u64 owner, u32 extra_size)
960 {
961 struct btrfs_extent_item *item;
962 struct btrfs_extent_item_v0 *ei0;
963 struct btrfs_extent_ref_v0 *ref0;
964 struct btrfs_tree_block_info *bi;
965 struct extent_buffer *leaf;
966 struct btrfs_key key;
967 struct btrfs_key found_key;
968 u32 new_size = sizeof(*item);
969 u64 refs;
970 int ret;
971
972 leaf = path->nodes[0];
973 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
974
975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
976 ei0 = btrfs_item_ptr(leaf, path->slots[0],
977 struct btrfs_extent_item_v0);
978 refs = btrfs_extent_refs_v0(leaf, ei0);
979
980 if (owner == (u64)-1) {
981 while (1) {
982 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
983 ret = btrfs_next_leaf(root, path);
984 if (ret < 0)
985 return ret;
986 BUG_ON(ret > 0); /* Corruption */
987 leaf = path->nodes[0];
988 }
989 btrfs_item_key_to_cpu(leaf, &found_key,
990 path->slots[0]);
991 BUG_ON(key.objectid != found_key.objectid);
992 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
993 path->slots[0]++;
994 continue;
995 }
996 ref0 = btrfs_item_ptr(leaf, path->slots[0],
997 struct btrfs_extent_ref_v0);
998 owner = btrfs_ref_objectid_v0(leaf, ref0);
999 break;
1000 }
1001 }
1002 btrfs_release_path(path);
1003
1004 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1005 new_size += sizeof(*bi);
1006
1007 new_size -= sizeof(*ei0);
1008 ret = btrfs_search_slot(trans, root, &key, path,
1009 new_size + extra_size, 1);
1010 if (ret < 0)
1011 return ret;
1012 BUG_ON(ret); /* Corruption */
1013
1014 btrfs_extend_item(trans, root, path, new_size);
1015
1016 leaf = path->nodes[0];
1017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 btrfs_set_extent_refs(leaf, item, refs);
1019 /* FIXME: get real generation */
1020 btrfs_set_extent_generation(leaf, item, 0);
1021 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1022 btrfs_set_extent_flags(leaf, item,
1023 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1024 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1025 bi = (struct btrfs_tree_block_info *)(item + 1);
1026 /* FIXME: get first key of the block */
1027 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1028 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1029 } else {
1030 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1031 }
1032 btrfs_mark_buffer_dirty(leaf);
1033 return 0;
1034 }
1035 #endif
1036
1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1038 {
1039 u32 high_crc = ~(u32)0;
1040 u32 low_crc = ~(u32)0;
1041 __le64 lenum;
1042
1043 lenum = cpu_to_le64(root_objectid);
1044 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(owner);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047 lenum = cpu_to_le64(offset);
1048 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1049
1050 return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 }
1052
1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1054 struct btrfs_extent_data_ref *ref)
1055 {
1056 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1057 btrfs_extent_data_ref_objectid(leaf, ref),
1058 btrfs_extent_data_ref_offset(leaf, ref));
1059 }
1060
1061 static int match_extent_data_ref(struct extent_buffer *leaf,
1062 struct btrfs_extent_data_ref *ref,
1063 u64 root_objectid, u64 owner, u64 offset)
1064 {
1065 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1066 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1067 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1068 return 0;
1069 return 1;
1070 }
1071
1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1073 struct btrfs_root *root,
1074 struct btrfs_path *path,
1075 u64 bytenr, u64 parent,
1076 u64 root_objectid,
1077 u64 owner, u64 offset)
1078 {
1079 struct btrfs_key key;
1080 struct btrfs_extent_data_ref *ref;
1081 struct extent_buffer *leaf;
1082 u32 nritems;
1083 int ret;
1084 int recow;
1085 int err = -ENOENT;
1086
1087 key.objectid = bytenr;
1088 if (parent) {
1089 key.type = BTRFS_SHARED_DATA_REF_KEY;
1090 key.offset = parent;
1091 } else {
1092 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1093 key.offset = hash_extent_data_ref(root_objectid,
1094 owner, offset);
1095 }
1096 again:
1097 recow = 0;
1098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1099 if (ret < 0) {
1100 err = ret;
1101 goto fail;
1102 }
1103
1104 if (parent) {
1105 if (!ret)
1106 return 0;
1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1108 key.type = BTRFS_EXTENT_REF_V0_KEY;
1109 btrfs_release_path(path);
1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 if (ret < 0) {
1112 err = ret;
1113 goto fail;
1114 }
1115 if (!ret)
1116 return 0;
1117 #endif
1118 goto fail;
1119 }
1120
1121 leaf = path->nodes[0];
1122 nritems = btrfs_header_nritems(leaf);
1123 while (1) {
1124 if (path->slots[0] >= nritems) {
1125 ret = btrfs_next_leaf(root, path);
1126 if (ret < 0)
1127 err = ret;
1128 if (ret)
1129 goto fail;
1130
1131 leaf = path->nodes[0];
1132 nritems = btrfs_header_nritems(leaf);
1133 recow = 1;
1134 }
1135
1136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1137 if (key.objectid != bytenr ||
1138 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139 goto fail;
1140
1141 ref = btrfs_item_ptr(leaf, path->slots[0],
1142 struct btrfs_extent_data_ref);
1143
1144 if (match_extent_data_ref(leaf, ref, root_objectid,
1145 owner, offset)) {
1146 if (recow) {
1147 btrfs_release_path(path);
1148 goto again;
1149 }
1150 err = 0;
1151 break;
1152 }
1153 path->slots[0]++;
1154 }
1155 fail:
1156 return err;
1157 }
1158
1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 u64 bytenr, u64 parent,
1163 u64 root_objectid, u64 owner,
1164 u64 offset, int refs_to_add)
1165 {
1166 struct btrfs_key key;
1167 struct extent_buffer *leaf;
1168 u32 size;
1169 u32 num_refs;
1170 int ret;
1171
1172 key.objectid = bytenr;
1173 if (parent) {
1174 key.type = BTRFS_SHARED_DATA_REF_KEY;
1175 key.offset = parent;
1176 size = sizeof(struct btrfs_shared_data_ref);
1177 } else {
1178 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 key.offset = hash_extent_data_ref(root_objectid,
1180 owner, offset);
1181 size = sizeof(struct btrfs_extent_data_ref);
1182 }
1183
1184 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1185 if (ret && ret != -EEXIST)
1186 goto fail;
1187
1188 leaf = path->nodes[0];
1189 if (parent) {
1190 struct btrfs_shared_data_ref *ref;
1191 ref = btrfs_item_ptr(leaf, path->slots[0],
1192 struct btrfs_shared_data_ref);
1193 if (ret == 0) {
1194 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1195 } else {
1196 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1197 num_refs += refs_to_add;
1198 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 }
1200 } else {
1201 struct btrfs_extent_data_ref *ref;
1202 while (ret == -EEXIST) {
1203 ref = btrfs_item_ptr(leaf, path->slots[0],
1204 struct btrfs_extent_data_ref);
1205 if (match_extent_data_ref(leaf, ref, root_objectid,
1206 owner, offset))
1207 break;
1208 btrfs_release_path(path);
1209 key.offset++;
1210 ret = btrfs_insert_empty_item(trans, root, path, &key,
1211 size);
1212 if (ret && ret != -EEXIST)
1213 goto fail;
1214
1215 leaf = path->nodes[0];
1216 }
1217 ref = btrfs_item_ptr(leaf, path->slots[0],
1218 struct btrfs_extent_data_ref);
1219 if (ret == 0) {
1220 btrfs_set_extent_data_ref_root(leaf, ref,
1221 root_objectid);
1222 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1223 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1224 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1225 } else {
1226 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1227 num_refs += refs_to_add;
1228 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 }
1230 }
1231 btrfs_mark_buffer_dirty(leaf);
1232 ret = 0;
1233 fail:
1234 btrfs_release_path(path);
1235 return ret;
1236 }
1237
1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1239 struct btrfs_root *root,
1240 struct btrfs_path *path,
1241 int refs_to_drop)
1242 {
1243 struct btrfs_key key;
1244 struct btrfs_extent_data_ref *ref1 = NULL;
1245 struct btrfs_shared_data_ref *ref2 = NULL;
1246 struct extent_buffer *leaf;
1247 u32 num_refs = 0;
1248 int ret = 0;
1249
1250 leaf = path->nodes[0];
1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252
1253 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1254 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_extent_data_ref);
1256 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1257 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1258 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1259 struct btrfs_shared_data_ref);
1260 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1262 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1263 struct btrfs_extent_ref_v0 *ref0;
1264 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_extent_ref_v0);
1266 num_refs = btrfs_ref_count_v0(leaf, ref0);
1267 #endif
1268 } else {
1269 BUG();
1270 }
1271
1272 BUG_ON(num_refs < refs_to_drop);
1273 num_refs -= refs_to_drop;
1274
1275 if (num_refs == 0) {
1276 ret = btrfs_del_item(trans, root, path);
1277 } else {
1278 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1279 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1280 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1281 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 else {
1284 struct btrfs_extent_ref_v0 *ref0;
1285 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_ref_v0);
1287 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 }
1289 #endif
1290 btrfs_mark_buffer_dirty(leaf);
1291 }
1292 return ret;
1293 }
1294
1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1296 struct btrfs_path *path,
1297 struct btrfs_extent_inline_ref *iref)
1298 {
1299 struct btrfs_key key;
1300 struct extent_buffer *leaf;
1301 struct btrfs_extent_data_ref *ref1;
1302 struct btrfs_shared_data_ref *ref2;
1303 u32 num_refs = 0;
1304
1305 leaf = path->nodes[0];
1306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1307 if (iref) {
1308 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1309 BTRFS_EXTENT_DATA_REF_KEY) {
1310 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1311 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1312 } else {
1313 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1314 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1315 }
1316 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1317 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_data_ref);
1319 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1320 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1321 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1322 struct btrfs_shared_data_ref);
1323 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1325 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1326 struct btrfs_extent_ref_v0 *ref0;
1327 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1328 struct btrfs_extent_ref_v0);
1329 num_refs = btrfs_ref_count_v0(leaf, ref0);
1330 #endif
1331 } else {
1332 WARN_ON(1);
1333 }
1334 return num_refs;
1335 }
1336
1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1338 struct btrfs_root *root,
1339 struct btrfs_path *path,
1340 u64 bytenr, u64 parent,
1341 u64 root_objectid)
1342 {
1343 struct btrfs_key key;
1344 int ret;
1345
1346 key.objectid = bytenr;
1347 if (parent) {
1348 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1349 key.offset = parent;
1350 } else {
1351 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1352 key.offset = root_objectid;
1353 }
1354
1355 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1356 if (ret > 0)
1357 ret = -ENOENT;
1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1359 if (ret == -ENOENT && parent) {
1360 btrfs_release_path(path);
1361 key.type = BTRFS_EXTENT_REF_V0_KEY;
1362 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1363 if (ret > 0)
1364 ret = -ENOENT;
1365 }
1366 #endif
1367 return ret;
1368 }
1369
1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root,
1372 struct btrfs_path *path,
1373 u64 bytenr, u64 parent,
1374 u64 root_objectid)
1375 {
1376 struct btrfs_key key;
1377 int ret;
1378
1379 key.objectid = bytenr;
1380 if (parent) {
1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 key.offset = parent;
1383 } else {
1384 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 key.offset = root_objectid;
1386 }
1387
1388 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1389 btrfs_release_path(path);
1390 return ret;
1391 }
1392
1393 static inline int extent_ref_type(u64 parent, u64 owner)
1394 {
1395 int type;
1396 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1397 if (parent > 0)
1398 type = BTRFS_SHARED_BLOCK_REF_KEY;
1399 else
1400 type = BTRFS_TREE_BLOCK_REF_KEY;
1401 } else {
1402 if (parent > 0)
1403 type = BTRFS_SHARED_DATA_REF_KEY;
1404 else
1405 type = BTRFS_EXTENT_DATA_REF_KEY;
1406 }
1407 return type;
1408 }
1409
1410 static int find_next_key(struct btrfs_path *path, int level,
1411 struct btrfs_key *key)
1412
1413 {
1414 for (; level < BTRFS_MAX_LEVEL; level++) {
1415 if (!path->nodes[level])
1416 break;
1417 if (path->slots[level] + 1 >=
1418 btrfs_header_nritems(path->nodes[level]))
1419 continue;
1420 if (level == 0)
1421 btrfs_item_key_to_cpu(path->nodes[level], key,
1422 path->slots[level] + 1);
1423 else
1424 btrfs_node_key_to_cpu(path->nodes[level], key,
1425 path->slots[level] + 1);
1426 return 0;
1427 }
1428 return 1;
1429 }
1430
1431 /*
1432 * look for inline back ref. if back ref is found, *ref_ret is set
1433 * to the address of inline back ref, and 0 is returned.
1434 *
1435 * if back ref isn't found, *ref_ret is set to the address where it
1436 * should be inserted, and -ENOENT is returned.
1437 *
1438 * if insert is true and there are too many inline back refs, the path
1439 * points to the extent item, and -EAGAIN is returned.
1440 *
1441 * NOTE: inline back refs are ordered in the same way that back ref
1442 * items in the tree are ordered.
1443 */
1444 static noinline_for_stack
1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1446 struct btrfs_root *root,
1447 struct btrfs_path *path,
1448 struct btrfs_extent_inline_ref **ref_ret,
1449 u64 bytenr, u64 num_bytes,
1450 u64 parent, u64 root_objectid,
1451 u64 owner, u64 offset, int insert)
1452 {
1453 struct btrfs_key key;
1454 struct extent_buffer *leaf;
1455 struct btrfs_extent_item *ei;
1456 struct btrfs_extent_inline_ref *iref;
1457 u64 flags;
1458 u64 item_size;
1459 unsigned long ptr;
1460 unsigned long end;
1461 int extra_size;
1462 int type;
1463 int want;
1464 int ret;
1465 int err = 0;
1466
1467 key.objectid = bytenr;
1468 key.type = BTRFS_EXTENT_ITEM_KEY;
1469 key.offset = num_bytes;
1470
1471 want = extent_ref_type(parent, owner);
1472 if (insert) {
1473 extra_size = btrfs_extent_inline_ref_size(want);
1474 path->keep_locks = 1;
1475 } else
1476 extra_size = -1;
1477 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1478 if (ret < 0) {
1479 err = ret;
1480 goto out;
1481 }
1482 if (ret && !insert) {
1483 err = -ENOENT;
1484 goto out;
1485 }
1486 BUG_ON(ret); /* Corruption */
1487
1488 leaf = path->nodes[0];
1489 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1490 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1491 if (item_size < sizeof(*ei)) {
1492 if (!insert) {
1493 err = -ENOENT;
1494 goto out;
1495 }
1496 ret = convert_extent_item_v0(trans, root, path, owner,
1497 extra_size);
1498 if (ret < 0) {
1499 err = ret;
1500 goto out;
1501 }
1502 leaf = path->nodes[0];
1503 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1504 }
1505 #endif
1506 BUG_ON(item_size < sizeof(*ei));
1507
1508 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1509 flags = btrfs_extent_flags(leaf, ei);
1510
1511 ptr = (unsigned long)(ei + 1);
1512 end = (unsigned long)ei + item_size;
1513
1514 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1515 ptr += sizeof(struct btrfs_tree_block_info);
1516 BUG_ON(ptr > end);
1517 } else {
1518 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1519 }
1520
1521 err = -ENOENT;
1522 while (1) {
1523 if (ptr >= end) {
1524 WARN_ON(ptr > end);
1525 break;
1526 }
1527 iref = (struct btrfs_extent_inline_ref *)ptr;
1528 type = btrfs_extent_inline_ref_type(leaf, iref);
1529 if (want < type)
1530 break;
1531 if (want > type) {
1532 ptr += btrfs_extent_inline_ref_size(type);
1533 continue;
1534 }
1535
1536 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1537 struct btrfs_extent_data_ref *dref;
1538 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1539 if (match_extent_data_ref(leaf, dref, root_objectid,
1540 owner, offset)) {
1541 err = 0;
1542 break;
1543 }
1544 if (hash_extent_data_ref_item(leaf, dref) <
1545 hash_extent_data_ref(root_objectid, owner, offset))
1546 break;
1547 } else {
1548 u64 ref_offset;
1549 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1550 if (parent > 0) {
1551 if (parent == ref_offset) {
1552 err = 0;
1553 break;
1554 }
1555 if (ref_offset < parent)
1556 break;
1557 } else {
1558 if (root_objectid == ref_offset) {
1559 err = 0;
1560 break;
1561 }
1562 if (ref_offset < root_objectid)
1563 break;
1564 }
1565 }
1566 ptr += btrfs_extent_inline_ref_size(type);
1567 }
1568 if (err == -ENOENT && insert) {
1569 if (item_size + extra_size >=
1570 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1571 err = -EAGAIN;
1572 goto out;
1573 }
1574 /*
1575 * To add new inline back ref, we have to make sure
1576 * there is no corresponding back ref item.
1577 * For simplicity, we just do not add new inline back
1578 * ref if there is any kind of item for this block
1579 */
1580 if (find_next_key(path, 0, &key) == 0 &&
1581 key.objectid == bytenr &&
1582 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1583 err = -EAGAIN;
1584 goto out;
1585 }
1586 }
1587 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1588 out:
1589 if (insert) {
1590 path->keep_locks = 0;
1591 btrfs_unlock_up_safe(path, 1);
1592 }
1593 return err;
1594 }
1595
1596 /*
1597 * helper to add new inline back ref
1598 */
1599 static noinline_for_stack
1600 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1601 struct btrfs_root *root,
1602 struct btrfs_path *path,
1603 struct btrfs_extent_inline_ref *iref,
1604 u64 parent, u64 root_objectid,
1605 u64 owner, u64 offset, int refs_to_add,
1606 struct btrfs_delayed_extent_op *extent_op)
1607 {
1608 struct extent_buffer *leaf;
1609 struct btrfs_extent_item *ei;
1610 unsigned long ptr;
1611 unsigned long end;
1612 unsigned long item_offset;
1613 u64 refs;
1614 int size;
1615 int type;
1616
1617 leaf = path->nodes[0];
1618 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1619 item_offset = (unsigned long)iref - (unsigned long)ei;
1620
1621 type = extent_ref_type(parent, owner);
1622 size = btrfs_extent_inline_ref_size(type);
1623
1624 btrfs_extend_item(trans, root, path, size);
1625
1626 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1627 refs = btrfs_extent_refs(leaf, ei);
1628 refs += refs_to_add;
1629 btrfs_set_extent_refs(leaf, ei, refs);
1630 if (extent_op)
1631 __run_delayed_extent_op(extent_op, leaf, ei);
1632
1633 ptr = (unsigned long)ei + item_offset;
1634 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1635 if (ptr < end - size)
1636 memmove_extent_buffer(leaf, ptr + size, ptr,
1637 end - size - ptr);
1638
1639 iref = (struct btrfs_extent_inline_ref *)ptr;
1640 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1642 struct btrfs_extent_data_ref *dref;
1643 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1644 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1645 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1646 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1647 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1648 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1649 struct btrfs_shared_data_ref *sref;
1650 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1651 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1653 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1654 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1655 } else {
1656 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1657 }
1658 btrfs_mark_buffer_dirty(leaf);
1659 }
1660
1661 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1662 struct btrfs_root *root,
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref **ref_ret,
1665 u64 bytenr, u64 num_bytes, u64 parent,
1666 u64 root_objectid, u64 owner, u64 offset)
1667 {
1668 int ret;
1669
1670 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1671 bytenr, num_bytes, parent,
1672 root_objectid, owner, offset, 0);
1673 if (ret != -ENOENT)
1674 return ret;
1675
1676 btrfs_release_path(path);
1677 *ref_ret = NULL;
1678
1679 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1680 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1681 root_objectid);
1682 } else {
1683 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1684 root_objectid, owner, offset);
1685 }
1686 return ret;
1687 }
1688
1689 /*
1690 * helper to update/remove inline back ref
1691 */
1692 static noinline_for_stack
1693 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1694 struct btrfs_root *root,
1695 struct btrfs_path *path,
1696 struct btrfs_extent_inline_ref *iref,
1697 int refs_to_mod,
1698 struct btrfs_delayed_extent_op *extent_op)
1699 {
1700 struct extent_buffer *leaf;
1701 struct btrfs_extent_item *ei;
1702 struct btrfs_extent_data_ref *dref = NULL;
1703 struct btrfs_shared_data_ref *sref = NULL;
1704 unsigned long ptr;
1705 unsigned long end;
1706 u32 item_size;
1707 int size;
1708 int type;
1709 u64 refs;
1710
1711 leaf = path->nodes[0];
1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 refs = btrfs_extent_refs(leaf, ei);
1714 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1715 refs += refs_to_mod;
1716 btrfs_set_extent_refs(leaf, ei, refs);
1717 if (extent_op)
1718 __run_delayed_extent_op(extent_op, leaf, ei);
1719
1720 type = btrfs_extent_inline_ref_type(leaf, iref);
1721
1722 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1723 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1724 refs = btrfs_extent_data_ref_count(leaf, dref);
1725 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1726 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1727 refs = btrfs_shared_data_ref_count(leaf, sref);
1728 } else {
1729 refs = 1;
1730 BUG_ON(refs_to_mod != -1);
1731 }
1732
1733 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1734 refs += refs_to_mod;
1735
1736 if (refs > 0) {
1737 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1738 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1739 else
1740 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1741 } else {
1742 size = btrfs_extent_inline_ref_size(type);
1743 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1744 ptr = (unsigned long)iref;
1745 end = (unsigned long)ei + item_size;
1746 if (ptr + size < end)
1747 memmove_extent_buffer(leaf, ptr, ptr + size,
1748 end - ptr - size);
1749 item_size -= size;
1750 btrfs_truncate_item(trans, root, path, item_size, 1);
1751 }
1752 btrfs_mark_buffer_dirty(leaf);
1753 }
1754
1755 static noinline_for_stack
1756 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root,
1758 struct btrfs_path *path,
1759 u64 bytenr, u64 num_bytes, u64 parent,
1760 u64 root_objectid, u64 owner,
1761 u64 offset, int refs_to_add,
1762 struct btrfs_delayed_extent_op *extent_op)
1763 {
1764 struct btrfs_extent_inline_ref *iref;
1765 int ret;
1766
1767 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1768 bytenr, num_bytes, parent,
1769 root_objectid, owner, offset, 1);
1770 if (ret == 0) {
1771 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1772 update_inline_extent_backref(trans, root, path, iref,
1773 refs_to_add, extent_op);
1774 } else if (ret == -ENOENT) {
1775 setup_inline_extent_backref(trans, root, path, iref, parent,
1776 root_objectid, owner, offset,
1777 refs_to_add, extent_op);
1778 ret = 0;
1779 }
1780 return ret;
1781 }
1782
1783 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1784 struct btrfs_root *root,
1785 struct btrfs_path *path,
1786 u64 bytenr, u64 parent, u64 root_objectid,
1787 u64 owner, u64 offset, int refs_to_add)
1788 {
1789 int ret;
1790 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1791 BUG_ON(refs_to_add != 1);
1792 ret = insert_tree_block_ref(trans, root, path, bytenr,
1793 parent, root_objectid);
1794 } else {
1795 ret = insert_extent_data_ref(trans, root, path, bytenr,
1796 parent, root_objectid,
1797 owner, offset, refs_to_add);
1798 }
1799 return ret;
1800 }
1801
1802 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 struct btrfs_extent_inline_ref *iref,
1806 int refs_to_drop, int is_data)
1807 {
1808 int ret = 0;
1809
1810 BUG_ON(!is_data && refs_to_drop != 1);
1811 if (iref) {
1812 update_inline_extent_backref(trans, root, path, iref,
1813 -refs_to_drop, NULL);
1814 } else if (is_data) {
1815 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1816 } else {
1817 ret = btrfs_del_item(trans, root, path);
1818 }
1819 return ret;
1820 }
1821
1822 static int btrfs_issue_discard(struct block_device *bdev,
1823 u64 start, u64 len)
1824 {
1825 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1826 }
1827
1828 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1829 u64 num_bytes, u64 *actual_bytes)
1830 {
1831 int ret;
1832 u64 discarded_bytes = 0;
1833 struct btrfs_bio *bbio = NULL;
1834
1835
1836 /* Tell the block device(s) that the sectors can be discarded */
1837 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1838 bytenr, &num_bytes, &bbio, 0);
1839 /* Error condition is -ENOMEM */
1840 if (!ret) {
1841 struct btrfs_bio_stripe *stripe = bbio->stripes;
1842 int i;
1843
1844
1845 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1846 if (!stripe->dev->can_discard)
1847 continue;
1848
1849 ret = btrfs_issue_discard(stripe->dev->bdev,
1850 stripe->physical,
1851 stripe->length);
1852 if (!ret)
1853 discarded_bytes += stripe->length;
1854 else if (ret != -EOPNOTSUPP)
1855 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1856
1857 /*
1858 * Just in case we get back EOPNOTSUPP for some reason,
1859 * just ignore the return value so we don't screw up
1860 * people calling discard_extent.
1861 */
1862 ret = 0;
1863 }
1864 kfree(bbio);
1865 }
1866
1867 if (actual_bytes)
1868 *actual_bytes = discarded_bytes;
1869
1870
1871 return ret;
1872 }
1873
1874 /* Can return -ENOMEM */
1875 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1876 struct btrfs_root *root,
1877 u64 bytenr, u64 num_bytes, u64 parent,
1878 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1879 {
1880 int ret;
1881 struct btrfs_fs_info *fs_info = root->fs_info;
1882
1883 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1884 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1885
1886 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1887 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1888 num_bytes,
1889 parent, root_objectid, (int)owner,
1890 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1891 } else {
1892 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1893 num_bytes,
1894 parent, root_objectid, owner, offset,
1895 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1896 }
1897 return ret;
1898 }
1899
1900 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1901 struct btrfs_root *root,
1902 u64 bytenr, u64 num_bytes,
1903 u64 parent, u64 root_objectid,
1904 u64 owner, u64 offset, int refs_to_add,
1905 struct btrfs_delayed_extent_op *extent_op)
1906 {
1907 struct btrfs_path *path;
1908 struct extent_buffer *leaf;
1909 struct btrfs_extent_item *item;
1910 u64 refs;
1911 int ret;
1912 int err = 0;
1913
1914 path = btrfs_alloc_path();
1915 if (!path)
1916 return -ENOMEM;
1917
1918 path->reada = 1;
1919 path->leave_spinning = 1;
1920 /* this will setup the path even if it fails to insert the back ref */
1921 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1922 path, bytenr, num_bytes, parent,
1923 root_objectid, owner, offset,
1924 refs_to_add, extent_op);
1925 if (ret == 0)
1926 goto out;
1927
1928 if (ret != -EAGAIN) {
1929 err = ret;
1930 goto out;
1931 }
1932
1933 leaf = path->nodes[0];
1934 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1935 refs = btrfs_extent_refs(leaf, item);
1936 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1937 if (extent_op)
1938 __run_delayed_extent_op(extent_op, leaf, item);
1939
1940 btrfs_mark_buffer_dirty(leaf);
1941 btrfs_release_path(path);
1942
1943 path->reada = 1;
1944 path->leave_spinning = 1;
1945
1946 /* now insert the actual backref */
1947 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1948 path, bytenr, parent, root_objectid,
1949 owner, offset, refs_to_add);
1950 if (ret)
1951 btrfs_abort_transaction(trans, root, ret);
1952 out:
1953 btrfs_free_path(path);
1954 return err;
1955 }
1956
1957 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1958 struct btrfs_root *root,
1959 struct btrfs_delayed_ref_node *node,
1960 struct btrfs_delayed_extent_op *extent_op,
1961 int insert_reserved)
1962 {
1963 int ret = 0;
1964 struct btrfs_delayed_data_ref *ref;
1965 struct btrfs_key ins;
1966 u64 parent = 0;
1967 u64 ref_root = 0;
1968 u64 flags = 0;
1969
1970 ins.objectid = node->bytenr;
1971 ins.offset = node->num_bytes;
1972 ins.type = BTRFS_EXTENT_ITEM_KEY;
1973
1974 ref = btrfs_delayed_node_to_data_ref(node);
1975 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1976 parent = ref->parent;
1977 else
1978 ref_root = ref->root;
1979
1980 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1981 if (extent_op) {
1982 BUG_ON(extent_op->update_key);
1983 flags |= extent_op->flags_to_set;
1984 }
1985 ret = alloc_reserved_file_extent(trans, root,
1986 parent, ref_root, flags,
1987 ref->objectid, ref->offset,
1988 &ins, node->ref_mod);
1989 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1990 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1991 node->num_bytes, parent,
1992 ref_root, ref->objectid,
1993 ref->offset, node->ref_mod,
1994 extent_op);
1995 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1996 ret = __btrfs_free_extent(trans, root, node->bytenr,
1997 node->num_bytes, parent,
1998 ref_root, ref->objectid,
1999 ref->offset, node->ref_mod,
2000 extent_op);
2001 } else {
2002 BUG();
2003 }
2004 return ret;
2005 }
2006
2007 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2008 struct extent_buffer *leaf,
2009 struct btrfs_extent_item *ei)
2010 {
2011 u64 flags = btrfs_extent_flags(leaf, ei);
2012 if (extent_op->update_flags) {
2013 flags |= extent_op->flags_to_set;
2014 btrfs_set_extent_flags(leaf, ei, flags);
2015 }
2016
2017 if (extent_op->update_key) {
2018 struct btrfs_tree_block_info *bi;
2019 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2020 bi = (struct btrfs_tree_block_info *)(ei + 1);
2021 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2022 }
2023 }
2024
2025 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2026 struct btrfs_root *root,
2027 struct btrfs_delayed_ref_node *node,
2028 struct btrfs_delayed_extent_op *extent_op)
2029 {
2030 struct btrfs_key key;
2031 struct btrfs_path *path;
2032 struct btrfs_extent_item *ei;
2033 struct extent_buffer *leaf;
2034 u32 item_size;
2035 int ret;
2036 int err = 0;
2037
2038 if (trans->aborted)
2039 return 0;
2040
2041 path = btrfs_alloc_path();
2042 if (!path)
2043 return -ENOMEM;
2044
2045 key.objectid = node->bytenr;
2046 key.type = BTRFS_EXTENT_ITEM_KEY;
2047 key.offset = node->num_bytes;
2048
2049 path->reada = 1;
2050 path->leave_spinning = 1;
2051 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2052 path, 0, 1);
2053 if (ret < 0) {
2054 err = ret;
2055 goto out;
2056 }
2057 if (ret > 0) {
2058 err = -EIO;
2059 goto out;
2060 }
2061
2062 leaf = path->nodes[0];
2063 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2064 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2065 if (item_size < sizeof(*ei)) {
2066 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2067 path, (u64)-1, 0);
2068 if (ret < 0) {
2069 err = ret;
2070 goto out;
2071 }
2072 leaf = path->nodes[0];
2073 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2074 }
2075 #endif
2076 BUG_ON(item_size < sizeof(*ei));
2077 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 __run_delayed_extent_op(extent_op, leaf, ei);
2079
2080 btrfs_mark_buffer_dirty(leaf);
2081 out:
2082 btrfs_free_path(path);
2083 return err;
2084 }
2085
2086 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2087 struct btrfs_root *root,
2088 struct btrfs_delayed_ref_node *node,
2089 struct btrfs_delayed_extent_op *extent_op,
2090 int insert_reserved)
2091 {
2092 int ret = 0;
2093 struct btrfs_delayed_tree_ref *ref;
2094 struct btrfs_key ins;
2095 u64 parent = 0;
2096 u64 ref_root = 0;
2097
2098 ins.objectid = node->bytenr;
2099 ins.offset = node->num_bytes;
2100 ins.type = BTRFS_EXTENT_ITEM_KEY;
2101
2102 ref = btrfs_delayed_node_to_tree_ref(node);
2103 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2104 parent = ref->parent;
2105 else
2106 ref_root = ref->root;
2107
2108 BUG_ON(node->ref_mod != 1);
2109 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2110 BUG_ON(!extent_op || !extent_op->update_flags ||
2111 !extent_op->update_key);
2112 ret = alloc_reserved_tree_block(trans, root,
2113 parent, ref_root,
2114 extent_op->flags_to_set,
2115 &extent_op->key,
2116 ref->level, &ins);
2117 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2118 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2119 node->num_bytes, parent, ref_root,
2120 ref->level, 0, 1, extent_op);
2121 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2122 ret = __btrfs_free_extent(trans, root, node->bytenr,
2123 node->num_bytes, parent, ref_root,
2124 ref->level, 0, 1, extent_op);
2125 } else {
2126 BUG();
2127 }
2128 return ret;
2129 }
2130
2131 /* helper function to actually process a single delayed ref entry */
2132 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2133 struct btrfs_root *root,
2134 struct btrfs_delayed_ref_node *node,
2135 struct btrfs_delayed_extent_op *extent_op,
2136 int insert_reserved)
2137 {
2138 int ret = 0;
2139
2140 if (trans->aborted)
2141 return 0;
2142
2143 if (btrfs_delayed_ref_is_head(node)) {
2144 struct btrfs_delayed_ref_head *head;
2145 /*
2146 * we've hit the end of the chain and we were supposed
2147 * to insert this extent into the tree. But, it got
2148 * deleted before we ever needed to insert it, so all
2149 * we have to do is clean up the accounting
2150 */
2151 BUG_ON(extent_op);
2152 head = btrfs_delayed_node_to_head(node);
2153 if (insert_reserved) {
2154 btrfs_pin_extent(root, node->bytenr,
2155 node->num_bytes, 1);
2156 if (head->is_data) {
2157 ret = btrfs_del_csums(trans, root,
2158 node->bytenr,
2159 node->num_bytes);
2160 }
2161 }
2162 mutex_unlock(&head->mutex);
2163 return ret;
2164 }
2165
2166 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2167 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2168 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2169 insert_reserved);
2170 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2171 node->type == BTRFS_SHARED_DATA_REF_KEY)
2172 ret = run_delayed_data_ref(trans, root, node, extent_op,
2173 insert_reserved);
2174 else
2175 BUG();
2176 return ret;
2177 }
2178
2179 static noinline struct btrfs_delayed_ref_node *
2180 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2181 {
2182 struct rb_node *node;
2183 struct btrfs_delayed_ref_node *ref;
2184 int action = BTRFS_ADD_DELAYED_REF;
2185 again:
2186 /*
2187 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2188 * this prevents ref count from going down to zero when
2189 * there still are pending delayed ref.
2190 */
2191 node = rb_prev(&head->node.rb_node);
2192 while (1) {
2193 if (!node)
2194 break;
2195 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2196 rb_node);
2197 if (ref->bytenr != head->node.bytenr)
2198 break;
2199 if (ref->action == action)
2200 return ref;
2201 node = rb_prev(node);
2202 }
2203 if (action == BTRFS_ADD_DELAYED_REF) {
2204 action = BTRFS_DROP_DELAYED_REF;
2205 goto again;
2206 }
2207 return NULL;
2208 }
2209
2210 /*
2211 * Returns 0 on success or if called with an already aborted transaction.
2212 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2213 */
2214 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root,
2216 struct list_head *cluster)
2217 {
2218 struct btrfs_delayed_ref_root *delayed_refs;
2219 struct btrfs_delayed_ref_node *ref;
2220 struct btrfs_delayed_ref_head *locked_ref = NULL;
2221 struct btrfs_delayed_extent_op *extent_op;
2222 int ret;
2223 int count = 0;
2224 int must_insert_reserved = 0;
2225
2226 delayed_refs = &trans->transaction->delayed_refs;
2227 while (1) {
2228 if (!locked_ref) {
2229 /* pick a new head ref from the cluster list */
2230 if (list_empty(cluster))
2231 break;
2232
2233 locked_ref = list_entry(cluster->next,
2234 struct btrfs_delayed_ref_head, cluster);
2235
2236 /* grab the lock that says we are going to process
2237 * all the refs for this head */
2238 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2239
2240 /*
2241 * we may have dropped the spin lock to get the head
2242 * mutex lock, and that might have given someone else
2243 * time to free the head. If that's true, it has been
2244 * removed from our list and we can move on.
2245 */
2246 if (ret == -EAGAIN) {
2247 locked_ref = NULL;
2248 count++;
2249 continue;
2250 }
2251 }
2252
2253 /*
2254 * locked_ref is the head node, so we have to go one
2255 * node back for any delayed ref updates
2256 */
2257 ref = select_delayed_ref(locked_ref);
2258
2259 if (ref && ref->seq &&
2260 btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2261 /*
2262 * there are still refs with lower seq numbers in the
2263 * process of being added. Don't run this ref yet.
2264 */
2265 list_del_init(&locked_ref->cluster);
2266 mutex_unlock(&locked_ref->mutex);
2267 locked_ref = NULL;
2268 delayed_refs->num_heads_ready++;
2269 spin_unlock(&delayed_refs->lock);
2270 cond_resched();
2271 spin_lock(&delayed_refs->lock);
2272 continue;
2273 }
2274
2275 /*
2276 * record the must insert reserved flag before we
2277 * drop the spin lock.
2278 */
2279 must_insert_reserved = locked_ref->must_insert_reserved;
2280 locked_ref->must_insert_reserved = 0;
2281
2282 extent_op = locked_ref->extent_op;
2283 locked_ref->extent_op = NULL;
2284
2285 if (!ref) {
2286 /* All delayed refs have been processed, Go ahead
2287 * and send the head node to run_one_delayed_ref,
2288 * so that any accounting fixes can happen
2289 */
2290 ref = &locked_ref->node;
2291
2292 if (extent_op && must_insert_reserved) {
2293 kfree(extent_op);
2294 extent_op = NULL;
2295 }
2296
2297 if (extent_op) {
2298 spin_unlock(&delayed_refs->lock);
2299
2300 ret = run_delayed_extent_op(trans, root,
2301 ref, extent_op);
2302 kfree(extent_op);
2303
2304 if (ret) {
2305 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2306 return ret;
2307 }
2308
2309 goto next;
2310 }
2311
2312 list_del_init(&locked_ref->cluster);
2313 locked_ref = NULL;
2314 }
2315
2316 ref->in_tree = 0;
2317 rb_erase(&ref->rb_node, &delayed_refs->root);
2318 delayed_refs->num_entries--;
2319 /*
2320 * we modified num_entries, but as we're currently running
2321 * delayed refs, skip
2322 * wake_up(&delayed_refs->seq_wait);
2323 * here.
2324 */
2325 spin_unlock(&delayed_refs->lock);
2326
2327 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2328 must_insert_reserved);
2329
2330 btrfs_put_delayed_ref(ref);
2331 kfree(extent_op);
2332 count++;
2333
2334 if (ret) {
2335 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2336 return ret;
2337 }
2338
2339 next:
2340 do_chunk_alloc(trans, root->fs_info->extent_root,
2341 2 * 1024 * 1024,
2342 btrfs_get_alloc_profile(root, 0),
2343 CHUNK_ALLOC_NO_FORCE);
2344 cond_resched();
2345 spin_lock(&delayed_refs->lock);
2346 }
2347 return count;
2348 }
2349
2350
2351 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2352 unsigned long num_refs)
2353 {
2354 struct list_head *first_seq = delayed_refs->seq_head.next;
2355
2356 spin_unlock(&delayed_refs->lock);
2357 pr_debug("waiting for more refs (num %ld, first %p)\n",
2358 num_refs, first_seq);
2359 wait_event(delayed_refs->seq_wait,
2360 num_refs != delayed_refs->num_entries ||
2361 delayed_refs->seq_head.next != first_seq);
2362 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2363 delayed_refs->num_entries, delayed_refs->seq_head.next);
2364 spin_lock(&delayed_refs->lock);
2365 }
2366
2367 /*
2368 * this starts processing the delayed reference count updates and
2369 * extent insertions we have queued up so far. count can be
2370 * 0, which means to process everything in the tree at the start
2371 * of the run (but not newly added entries), or it can be some target
2372 * number you'd like to process.
2373 *
2374 * Returns 0 on success or if called with an aborted transaction
2375 * Returns <0 on error and aborts the transaction
2376 */
2377 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2378 struct btrfs_root *root, unsigned long count)
2379 {
2380 struct rb_node *node;
2381 struct btrfs_delayed_ref_root *delayed_refs;
2382 struct btrfs_delayed_ref_node *ref;
2383 struct list_head cluster;
2384 int ret;
2385 u64 delayed_start;
2386 int run_all = count == (unsigned long)-1;
2387 int run_most = 0;
2388 unsigned long num_refs = 0;
2389 int consider_waiting;
2390
2391 /* We'll clean this up in btrfs_cleanup_transaction */
2392 if (trans->aborted)
2393 return 0;
2394
2395 if (root == root->fs_info->extent_root)
2396 root = root->fs_info->tree_root;
2397
2398 do_chunk_alloc(trans, root->fs_info->extent_root,
2399 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2400 CHUNK_ALLOC_NO_FORCE);
2401
2402 delayed_refs = &trans->transaction->delayed_refs;
2403 INIT_LIST_HEAD(&cluster);
2404 again:
2405 consider_waiting = 0;
2406 spin_lock(&delayed_refs->lock);
2407 if (count == 0) {
2408 count = delayed_refs->num_entries * 2;
2409 run_most = 1;
2410 }
2411 while (1) {
2412 if (!(run_all || run_most) &&
2413 delayed_refs->num_heads_ready < 64)
2414 break;
2415
2416 /*
2417 * go find something we can process in the rbtree. We start at
2418 * the beginning of the tree, and then build a cluster
2419 * of refs to process starting at the first one we are able to
2420 * lock
2421 */
2422 delayed_start = delayed_refs->run_delayed_start;
2423 ret = btrfs_find_ref_cluster(trans, &cluster,
2424 delayed_refs->run_delayed_start);
2425 if (ret)
2426 break;
2427
2428 if (delayed_start >= delayed_refs->run_delayed_start) {
2429 if (consider_waiting == 0) {
2430 /*
2431 * btrfs_find_ref_cluster looped. let's do one
2432 * more cycle. if we don't run any delayed ref
2433 * during that cycle (because we can't because
2434 * all of them are blocked) and if the number of
2435 * refs doesn't change, we avoid busy waiting.
2436 */
2437 consider_waiting = 1;
2438 num_refs = delayed_refs->num_entries;
2439 } else {
2440 wait_for_more_refs(delayed_refs, num_refs);
2441 /*
2442 * after waiting, things have changed. we
2443 * dropped the lock and someone else might have
2444 * run some refs, built new clusters and so on.
2445 * therefore, we restart staleness detection.
2446 */
2447 consider_waiting = 0;
2448 }
2449 }
2450
2451 ret = run_clustered_refs(trans, root, &cluster);
2452 if (ret < 0) {
2453 spin_unlock(&delayed_refs->lock);
2454 btrfs_abort_transaction(trans, root, ret);
2455 return ret;
2456 }
2457
2458 count -= min_t(unsigned long, ret, count);
2459
2460 if (count == 0)
2461 break;
2462
2463 if (ret || delayed_refs->run_delayed_start == 0) {
2464 /* refs were run, let's reset staleness detection */
2465 consider_waiting = 0;
2466 }
2467 }
2468
2469 if (run_all) {
2470 node = rb_first(&delayed_refs->root);
2471 if (!node)
2472 goto out;
2473 count = (unsigned long)-1;
2474
2475 while (node) {
2476 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2477 rb_node);
2478 if (btrfs_delayed_ref_is_head(ref)) {
2479 struct btrfs_delayed_ref_head *head;
2480
2481 head = btrfs_delayed_node_to_head(ref);
2482 atomic_inc(&ref->refs);
2483
2484 spin_unlock(&delayed_refs->lock);
2485 /*
2486 * Mutex was contended, block until it's
2487 * released and try again
2488 */
2489 mutex_lock(&head->mutex);
2490 mutex_unlock(&head->mutex);
2491
2492 btrfs_put_delayed_ref(ref);
2493 cond_resched();
2494 goto again;
2495 }
2496 node = rb_next(node);
2497 }
2498 spin_unlock(&delayed_refs->lock);
2499 schedule_timeout(1);
2500 goto again;
2501 }
2502 out:
2503 spin_unlock(&delayed_refs->lock);
2504 return 0;
2505 }
2506
2507 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2508 struct btrfs_root *root,
2509 u64 bytenr, u64 num_bytes, u64 flags,
2510 int is_data)
2511 {
2512 struct btrfs_delayed_extent_op *extent_op;
2513 int ret;
2514
2515 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2516 if (!extent_op)
2517 return -ENOMEM;
2518
2519 extent_op->flags_to_set = flags;
2520 extent_op->update_flags = 1;
2521 extent_op->update_key = 0;
2522 extent_op->is_data = is_data ? 1 : 0;
2523
2524 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2525 num_bytes, extent_op);
2526 if (ret)
2527 kfree(extent_op);
2528 return ret;
2529 }
2530
2531 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2532 struct btrfs_root *root,
2533 struct btrfs_path *path,
2534 u64 objectid, u64 offset, u64 bytenr)
2535 {
2536 struct btrfs_delayed_ref_head *head;
2537 struct btrfs_delayed_ref_node *ref;
2538 struct btrfs_delayed_data_ref *data_ref;
2539 struct btrfs_delayed_ref_root *delayed_refs;
2540 struct rb_node *node;
2541 int ret = 0;
2542
2543 ret = -ENOENT;
2544 delayed_refs = &trans->transaction->delayed_refs;
2545 spin_lock(&delayed_refs->lock);
2546 head = btrfs_find_delayed_ref_head(trans, bytenr);
2547 if (!head)
2548 goto out;
2549
2550 if (!mutex_trylock(&head->mutex)) {
2551 atomic_inc(&head->node.refs);
2552 spin_unlock(&delayed_refs->lock);
2553
2554 btrfs_release_path(path);
2555
2556 /*
2557 * Mutex was contended, block until it's released and let
2558 * caller try again
2559 */
2560 mutex_lock(&head->mutex);
2561 mutex_unlock(&head->mutex);
2562 btrfs_put_delayed_ref(&head->node);
2563 return -EAGAIN;
2564 }
2565
2566 node = rb_prev(&head->node.rb_node);
2567 if (!node)
2568 goto out_unlock;
2569
2570 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2571
2572 if (ref->bytenr != bytenr)
2573 goto out_unlock;
2574
2575 ret = 1;
2576 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2577 goto out_unlock;
2578
2579 data_ref = btrfs_delayed_node_to_data_ref(ref);
2580
2581 node = rb_prev(node);
2582 if (node) {
2583 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2584 if (ref->bytenr == bytenr)
2585 goto out_unlock;
2586 }
2587
2588 if (data_ref->root != root->root_key.objectid ||
2589 data_ref->objectid != objectid || data_ref->offset != offset)
2590 goto out_unlock;
2591
2592 ret = 0;
2593 out_unlock:
2594 mutex_unlock(&head->mutex);
2595 out:
2596 spin_unlock(&delayed_refs->lock);
2597 return ret;
2598 }
2599
2600 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2601 struct btrfs_root *root,
2602 struct btrfs_path *path,
2603 u64 objectid, u64 offset, u64 bytenr)
2604 {
2605 struct btrfs_root *extent_root = root->fs_info->extent_root;
2606 struct extent_buffer *leaf;
2607 struct btrfs_extent_data_ref *ref;
2608 struct btrfs_extent_inline_ref *iref;
2609 struct btrfs_extent_item *ei;
2610 struct btrfs_key key;
2611 u32 item_size;
2612 int ret;
2613
2614 key.objectid = bytenr;
2615 key.offset = (u64)-1;
2616 key.type = BTRFS_EXTENT_ITEM_KEY;
2617
2618 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2619 if (ret < 0)
2620 goto out;
2621 BUG_ON(ret == 0); /* Corruption */
2622
2623 ret = -ENOENT;
2624 if (path->slots[0] == 0)
2625 goto out;
2626
2627 path->slots[0]--;
2628 leaf = path->nodes[0];
2629 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2630
2631 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2632 goto out;
2633
2634 ret = 1;
2635 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2636 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2637 if (item_size < sizeof(*ei)) {
2638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2639 goto out;
2640 }
2641 #endif
2642 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2643
2644 if (item_size != sizeof(*ei) +
2645 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2646 goto out;
2647
2648 if (btrfs_extent_generation(leaf, ei) <=
2649 btrfs_root_last_snapshot(&root->root_item))
2650 goto out;
2651
2652 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2653 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2654 BTRFS_EXTENT_DATA_REF_KEY)
2655 goto out;
2656
2657 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2658 if (btrfs_extent_refs(leaf, ei) !=
2659 btrfs_extent_data_ref_count(leaf, ref) ||
2660 btrfs_extent_data_ref_root(leaf, ref) !=
2661 root->root_key.objectid ||
2662 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2663 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2664 goto out;
2665
2666 ret = 0;
2667 out:
2668 return ret;
2669 }
2670
2671 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2672 struct btrfs_root *root,
2673 u64 objectid, u64 offset, u64 bytenr)
2674 {
2675 struct btrfs_path *path;
2676 int ret;
2677 int ret2;
2678
2679 path = btrfs_alloc_path();
2680 if (!path)
2681 return -ENOENT;
2682
2683 do {
2684 ret = check_committed_ref(trans, root, path, objectid,
2685 offset, bytenr);
2686 if (ret && ret != -ENOENT)
2687 goto out;
2688
2689 ret2 = check_delayed_ref(trans, root, path, objectid,
2690 offset, bytenr);
2691 } while (ret2 == -EAGAIN);
2692
2693 if (ret2 && ret2 != -ENOENT) {
2694 ret = ret2;
2695 goto out;
2696 }
2697
2698 if (ret != -ENOENT || ret2 != -ENOENT)
2699 ret = 0;
2700 out:
2701 btrfs_free_path(path);
2702 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2703 WARN_ON(ret > 0);
2704 return ret;
2705 }
2706
2707 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2708 struct btrfs_root *root,
2709 struct extent_buffer *buf,
2710 int full_backref, int inc, int for_cow)
2711 {
2712 u64 bytenr;
2713 u64 num_bytes;
2714 u64 parent;
2715 u64 ref_root;
2716 u32 nritems;
2717 struct btrfs_key key;
2718 struct btrfs_file_extent_item *fi;
2719 int i;
2720 int level;
2721 int ret = 0;
2722 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2723 u64, u64, u64, u64, u64, u64, int);
2724
2725 ref_root = btrfs_header_owner(buf);
2726 nritems = btrfs_header_nritems(buf);
2727 level = btrfs_header_level(buf);
2728
2729 if (!root->ref_cows && level == 0)
2730 return 0;
2731
2732 if (inc)
2733 process_func = btrfs_inc_extent_ref;
2734 else
2735 process_func = btrfs_free_extent;
2736
2737 if (full_backref)
2738 parent = buf->start;
2739 else
2740 parent = 0;
2741
2742 for (i = 0; i < nritems; i++) {
2743 if (level == 0) {
2744 btrfs_item_key_to_cpu(buf, &key, i);
2745 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2746 continue;
2747 fi = btrfs_item_ptr(buf, i,
2748 struct btrfs_file_extent_item);
2749 if (btrfs_file_extent_type(buf, fi) ==
2750 BTRFS_FILE_EXTENT_INLINE)
2751 continue;
2752 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2753 if (bytenr == 0)
2754 continue;
2755
2756 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2757 key.offset -= btrfs_file_extent_offset(buf, fi);
2758 ret = process_func(trans, root, bytenr, num_bytes,
2759 parent, ref_root, key.objectid,
2760 key.offset, for_cow);
2761 if (ret)
2762 goto fail;
2763 } else {
2764 bytenr = btrfs_node_blockptr(buf, i);
2765 num_bytes = btrfs_level_size(root, level - 1);
2766 ret = process_func(trans, root, bytenr, num_bytes,
2767 parent, ref_root, level - 1, 0,
2768 for_cow);
2769 if (ret)
2770 goto fail;
2771 }
2772 }
2773 return 0;
2774 fail:
2775 return ret;
2776 }
2777
2778 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2779 struct extent_buffer *buf, int full_backref, int for_cow)
2780 {
2781 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2782 }
2783
2784 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2785 struct extent_buffer *buf, int full_backref, int for_cow)
2786 {
2787 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2788 }
2789
2790 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2791 struct btrfs_root *root,
2792 struct btrfs_path *path,
2793 struct btrfs_block_group_cache *cache)
2794 {
2795 int ret;
2796 struct btrfs_root *extent_root = root->fs_info->extent_root;
2797 unsigned long bi;
2798 struct extent_buffer *leaf;
2799
2800 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2801 if (ret < 0)
2802 goto fail;
2803 BUG_ON(ret); /* Corruption */
2804
2805 leaf = path->nodes[0];
2806 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2807 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2808 btrfs_mark_buffer_dirty(leaf);
2809 btrfs_release_path(path);
2810 fail:
2811 if (ret) {
2812 btrfs_abort_transaction(trans, root, ret);
2813 return ret;
2814 }
2815 return 0;
2816
2817 }
2818
2819 static struct btrfs_block_group_cache *
2820 next_block_group(struct btrfs_root *root,
2821 struct btrfs_block_group_cache *cache)
2822 {
2823 struct rb_node *node;
2824 spin_lock(&root->fs_info->block_group_cache_lock);
2825 node = rb_next(&cache->cache_node);
2826 btrfs_put_block_group(cache);
2827 if (node) {
2828 cache = rb_entry(node, struct btrfs_block_group_cache,
2829 cache_node);
2830 btrfs_get_block_group(cache);
2831 } else
2832 cache = NULL;
2833 spin_unlock(&root->fs_info->block_group_cache_lock);
2834 return cache;
2835 }
2836
2837 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2838 struct btrfs_trans_handle *trans,
2839 struct btrfs_path *path)
2840 {
2841 struct btrfs_root *root = block_group->fs_info->tree_root;
2842 struct inode *inode = NULL;
2843 u64 alloc_hint = 0;
2844 int dcs = BTRFS_DC_ERROR;
2845 int num_pages = 0;
2846 int retries = 0;
2847 int ret = 0;
2848
2849 /*
2850 * If this block group is smaller than 100 megs don't bother caching the
2851 * block group.
2852 */
2853 if (block_group->key.offset < (100 * 1024 * 1024)) {
2854 spin_lock(&block_group->lock);
2855 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2856 spin_unlock(&block_group->lock);
2857 return 0;
2858 }
2859
2860 again:
2861 inode = lookup_free_space_inode(root, block_group, path);
2862 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2863 ret = PTR_ERR(inode);
2864 btrfs_release_path(path);
2865 goto out;
2866 }
2867
2868 if (IS_ERR(inode)) {
2869 BUG_ON(retries);
2870 retries++;
2871
2872 if (block_group->ro)
2873 goto out_free;
2874
2875 ret = create_free_space_inode(root, trans, block_group, path);
2876 if (ret)
2877 goto out_free;
2878 goto again;
2879 }
2880
2881 /* We've already setup this transaction, go ahead and exit */
2882 if (block_group->cache_generation == trans->transid &&
2883 i_size_read(inode)) {
2884 dcs = BTRFS_DC_SETUP;
2885 goto out_put;
2886 }
2887
2888 /*
2889 * We want to set the generation to 0, that way if anything goes wrong
2890 * from here on out we know not to trust this cache when we load up next
2891 * time.
2892 */
2893 BTRFS_I(inode)->generation = 0;
2894 ret = btrfs_update_inode(trans, root, inode);
2895 WARN_ON(ret);
2896
2897 if (i_size_read(inode) > 0) {
2898 ret = btrfs_truncate_free_space_cache(root, trans, path,
2899 inode);
2900 if (ret)
2901 goto out_put;
2902 }
2903
2904 spin_lock(&block_group->lock);
2905 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2906 /* We're not cached, don't bother trying to write stuff out */
2907 dcs = BTRFS_DC_WRITTEN;
2908 spin_unlock(&block_group->lock);
2909 goto out_put;
2910 }
2911 spin_unlock(&block_group->lock);
2912
2913 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2914 if (!num_pages)
2915 num_pages = 1;
2916
2917 /*
2918 * Just to make absolutely sure we have enough space, we're going to
2919 * preallocate 12 pages worth of space for each block group. In
2920 * practice we ought to use at most 8, but we need extra space so we can
2921 * add our header and have a terminator between the extents and the
2922 * bitmaps.
2923 */
2924 num_pages *= 16;
2925 num_pages *= PAGE_CACHE_SIZE;
2926
2927 ret = btrfs_check_data_free_space(inode, num_pages);
2928 if (ret)
2929 goto out_put;
2930
2931 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2932 num_pages, num_pages,
2933 &alloc_hint);
2934 if (!ret)
2935 dcs = BTRFS_DC_SETUP;
2936 btrfs_free_reserved_data_space(inode, num_pages);
2937
2938 out_put:
2939 iput(inode);
2940 out_free:
2941 btrfs_release_path(path);
2942 out:
2943 spin_lock(&block_group->lock);
2944 if (!ret && dcs == BTRFS_DC_SETUP)
2945 block_group->cache_generation = trans->transid;
2946 block_group->disk_cache_state = dcs;
2947 spin_unlock(&block_group->lock);
2948
2949 return ret;
2950 }
2951
2952 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2953 struct btrfs_root *root)
2954 {
2955 struct btrfs_block_group_cache *cache;
2956 int err = 0;
2957 struct btrfs_path *path;
2958 u64 last = 0;
2959
2960 path = btrfs_alloc_path();
2961 if (!path)
2962 return -ENOMEM;
2963
2964 again:
2965 while (1) {
2966 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2967 while (cache) {
2968 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2969 break;
2970 cache = next_block_group(root, cache);
2971 }
2972 if (!cache) {
2973 if (last == 0)
2974 break;
2975 last = 0;
2976 continue;
2977 }
2978 err = cache_save_setup(cache, trans, path);
2979 last = cache->key.objectid + cache->key.offset;
2980 btrfs_put_block_group(cache);
2981 }
2982
2983 while (1) {
2984 if (last == 0) {
2985 err = btrfs_run_delayed_refs(trans, root,
2986 (unsigned long)-1);
2987 if (err) /* File system offline */
2988 goto out;
2989 }
2990
2991 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2992 while (cache) {
2993 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2994 btrfs_put_block_group(cache);
2995 goto again;
2996 }
2997
2998 if (cache->dirty)
2999 break;
3000 cache = next_block_group(root, cache);
3001 }
3002 if (!cache) {
3003 if (last == 0)
3004 break;
3005 last = 0;
3006 continue;
3007 }
3008
3009 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3010 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3011 cache->dirty = 0;
3012 last = cache->key.objectid + cache->key.offset;
3013
3014 err = write_one_cache_group(trans, root, path, cache);
3015 if (err) /* File system offline */
3016 goto out;
3017
3018 btrfs_put_block_group(cache);
3019 }
3020
3021 while (1) {
3022 /*
3023 * I don't think this is needed since we're just marking our
3024 * preallocated extent as written, but just in case it can't
3025 * hurt.
3026 */
3027 if (last == 0) {
3028 err = btrfs_run_delayed_refs(trans, root,
3029 (unsigned long)-1);
3030 if (err) /* File system offline */
3031 goto out;
3032 }
3033
3034 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3035 while (cache) {
3036 /*
3037 * Really this shouldn't happen, but it could if we
3038 * couldn't write the entire preallocated extent and
3039 * splitting the extent resulted in a new block.
3040 */
3041 if (cache->dirty) {
3042 btrfs_put_block_group(cache);
3043 goto again;
3044 }
3045 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3046 break;
3047 cache = next_block_group(root, cache);
3048 }
3049 if (!cache) {
3050 if (last == 0)
3051 break;
3052 last = 0;
3053 continue;
3054 }
3055
3056 err = btrfs_write_out_cache(root, trans, cache, path);
3057
3058 /*
3059 * If we didn't have an error then the cache state is still
3060 * NEED_WRITE, so we can set it to WRITTEN.
3061 */
3062 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3063 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3064 last = cache->key.objectid + cache->key.offset;
3065 btrfs_put_block_group(cache);
3066 }
3067 out:
3068
3069 btrfs_free_path(path);
3070 return err;
3071 }
3072
3073 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3074 {
3075 struct btrfs_block_group_cache *block_group;
3076 int readonly = 0;
3077
3078 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3079 if (!block_group || block_group->ro)
3080 readonly = 1;
3081 if (block_group)
3082 btrfs_put_block_group(block_group);
3083 return readonly;
3084 }
3085
3086 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3087 u64 total_bytes, u64 bytes_used,
3088 struct btrfs_space_info **space_info)
3089 {
3090 struct btrfs_space_info *found;
3091 int i;
3092 int factor;
3093
3094 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3095 BTRFS_BLOCK_GROUP_RAID10))
3096 factor = 2;
3097 else
3098 factor = 1;
3099
3100 found = __find_space_info(info, flags);
3101 if (found) {
3102 spin_lock(&found->lock);
3103 found->total_bytes += total_bytes;
3104 found->disk_total += total_bytes * factor;
3105 found->bytes_used += bytes_used;
3106 found->disk_used += bytes_used * factor;
3107 found->full = 0;
3108 spin_unlock(&found->lock);
3109 *space_info = found;
3110 return 0;
3111 }
3112 found = kzalloc(sizeof(*found), GFP_NOFS);
3113 if (!found)
3114 return -ENOMEM;
3115
3116 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3117 INIT_LIST_HEAD(&found->block_groups[i]);
3118 init_rwsem(&found->groups_sem);
3119 spin_lock_init(&found->lock);
3120 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3121 found->total_bytes = total_bytes;
3122 found->disk_total = total_bytes * factor;
3123 found->bytes_used = bytes_used;
3124 found->disk_used = bytes_used * factor;
3125 found->bytes_pinned = 0;
3126 found->bytes_reserved = 0;
3127 found->bytes_readonly = 0;
3128 found->bytes_may_use = 0;
3129 found->full = 0;
3130 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3131 found->chunk_alloc = 0;
3132 found->flush = 0;
3133 init_waitqueue_head(&found->wait);
3134 *space_info = found;
3135 list_add_rcu(&found->list, &info->space_info);
3136 return 0;
3137 }
3138
3139 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3140 {
3141 u64 extra_flags = chunk_to_extended(flags) &
3142 BTRFS_EXTENDED_PROFILE_MASK;
3143
3144 if (flags & BTRFS_BLOCK_GROUP_DATA)
3145 fs_info->avail_data_alloc_bits |= extra_flags;
3146 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3147 fs_info->avail_metadata_alloc_bits |= extra_flags;
3148 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3149 fs_info->avail_system_alloc_bits |= extra_flags;
3150 }
3151
3152 /*
3153 * returns target flags in extended format or 0 if restripe for this
3154 * chunk_type is not in progress
3155 *
3156 * should be called with either volume_mutex or balance_lock held
3157 */
3158 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3159 {
3160 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3161 u64 target = 0;
3162
3163 if (!bctl)
3164 return 0;
3165
3166 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3167 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3168 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3169 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3170 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3171 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3172 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3173 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3174 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3175 }
3176
3177 return target;
3178 }
3179
3180 /*
3181 * @flags: available profiles in extended format (see ctree.h)
3182 *
3183 * Returns reduced profile in chunk format. If profile changing is in
3184 * progress (either running or paused) picks the target profile (if it's
3185 * already available), otherwise falls back to plain reducing.
3186 */
3187 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3188 {
3189 /*
3190 * we add in the count of missing devices because we want
3191 * to make sure that any RAID levels on a degraded FS
3192 * continue to be honored.
3193 */
3194 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3195 root->fs_info->fs_devices->missing_devices;
3196 u64 target;
3197
3198 /*
3199 * see if restripe for this chunk_type is in progress, if so
3200 * try to reduce to the target profile
3201 */
3202 spin_lock(&root->fs_info->balance_lock);
3203 target = get_restripe_target(root->fs_info, flags);
3204 if (target) {
3205 /* pick target profile only if it's already available */
3206 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3207 spin_unlock(&root->fs_info->balance_lock);
3208 return extended_to_chunk(target);
3209 }
3210 }
3211 spin_unlock(&root->fs_info->balance_lock);
3212
3213 if (num_devices == 1)
3214 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3215 if (num_devices < 4)
3216 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3217
3218 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3219 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3220 BTRFS_BLOCK_GROUP_RAID10))) {
3221 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3222 }
3223
3224 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3225 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3226 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3227 }
3228
3229 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3230 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3231 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3232 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3233 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3234 }
3235
3236 return extended_to_chunk(flags);
3237 }
3238
3239 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3240 {
3241 if (flags & BTRFS_BLOCK_GROUP_DATA)
3242 flags |= root->fs_info->avail_data_alloc_bits;
3243 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3244 flags |= root->fs_info->avail_system_alloc_bits;
3245 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3246 flags |= root->fs_info->avail_metadata_alloc_bits;
3247
3248 return btrfs_reduce_alloc_profile(root, flags);
3249 }
3250
3251 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3252 {
3253 u64 flags;
3254
3255 if (data)
3256 flags = BTRFS_BLOCK_GROUP_DATA;
3257 else if (root == root->fs_info->chunk_root)
3258 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3259 else
3260 flags = BTRFS_BLOCK_GROUP_METADATA;
3261
3262 return get_alloc_profile(root, flags);
3263 }
3264
3265 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3266 {
3267 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3268 BTRFS_BLOCK_GROUP_DATA);
3269 }
3270
3271 /*
3272 * This will check the space that the inode allocates from to make sure we have
3273 * enough space for bytes.
3274 */
3275 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3276 {
3277 struct btrfs_space_info *data_sinfo;
3278 struct btrfs_root *root = BTRFS_I(inode)->root;
3279 u64 used;
3280 int ret = 0, committed = 0, alloc_chunk = 1;
3281
3282 /* make sure bytes are sectorsize aligned */
3283 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3284
3285 if (root == root->fs_info->tree_root ||
3286 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3287 alloc_chunk = 0;
3288 committed = 1;
3289 }
3290
3291 data_sinfo = BTRFS_I(inode)->space_info;
3292 if (!data_sinfo)
3293 goto alloc;
3294
3295 again:
3296 /* make sure we have enough space to handle the data first */
3297 spin_lock(&data_sinfo->lock);
3298 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3299 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3300 data_sinfo->bytes_may_use;
3301
3302 if (used + bytes > data_sinfo->total_bytes) {
3303 struct btrfs_trans_handle *trans;
3304
3305 /*
3306 * if we don't have enough free bytes in this space then we need
3307 * to alloc a new chunk.
3308 */
3309 if (!data_sinfo->full && alloc_chunk) {
3310 u64 alloc_target;
3311
3312 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3313 spin_unlock(&data_sinfo->lock);
3314 alloc:
3315 alloc_target = btrfs_get_alloc_profile(root, 1);
3316 trans = btrfs_join_transaction(root);
3317 if (IS_ERR(trans))
3318 return PTR_ERR(trans);
3319
3320 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3321 bytes + 2 * 1024 * 1024,
3322 alloc_target,
3323 CHUNK_ALLOC_NO_FORCE);
3324 btrfs_end_transaction(trans, root);
3325 if (ret < 0) {
3326 if (ret != -ENOSPC)
3327 return ret;
3328 else
3329 goto commit_trans;
3330 }
3331
3332 if (!data_sinfo) {
3333 btrfs_set_inode_space_info(root, inode);
3334 data_sinfo = BTRFS_I(inode)->space_info;
3335 }
3336 goto again;
3337 }
3338
3339 /*
3340 * If we have less pinned bytes than we want to allocate then
3341 * don't bother committing the transaction, it won't help us.
3342 */
3343 if (data_sinfo->bytes_pinned < bytes)
3344 committed = 1;
3345 spin_unlock(&data_sinfo->lock);
3346
3347 /* commit the current transaction and try again */
3348 commit_trans:
3349 if (!committed &&
3350 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3351 committed = 1;
3352 trans = btrfs_join_transaction(root);
3353 if (IS_ERR(trans))
3354 return PTR_ERR(trans);
3355 ret = btrfs_commit_transaction(trans, root);
3356 if (ret)
3357 return ret;
3358 goto again;
3359 }
3360
3361 return -ENOSPC;
3362 }
3363 data_sinfo->bytes_may_use += bytes;
3364 trace_btrfs_space_reservation(root->fs_info, "space_info",
3365 data_sinfo->flags, bytes, 1);
3366 spin_unlock(&data_sinfo->lock);
3367
3368 return 0;
3369 }
3370
3371 /*
3372 * Called if we need to clear a data reservation for this inode.
3373 */
3374 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3375 {
3376 struct btrfs_root *root = BTRFS_I(inode)->root;
3377 struct btrfs_space_info *data_sinfo;
3378
3379 /* make sure bytes are sectorsize aligned */
3380 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3381
3382 data_sinfo = BTRFS_I(inode)->space_info;
3383 spin_lock(&data_sinfo->lock);
3384 data_sinfo->bytes_may_use -= bytes;
3385 trace_btrfs_space_reservation(root->fs_info, "space_info",
3386 data_sinfo->flags, bytes, 0);
3387 spin_unlock(&data_sinfo->lock);
3388 }
3389
3390 static void force_metadata_allocation(struct btrfs_fs_info *info)
3391 {
3392 struct list_head *head = &info->space_info;
3393 struct btrfs_space_info *found;
3394
3395 rcu_read_lock();
3396 list_for_each_entry_rcu(found, head, list) {
3397 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3398 found->force_alloc = CHUNK_ALLOC_FORCE;
3399 }
3400 rcu_read_unlock();
3401 }
3402
3403 static int should_alloc_chunk(struct btrfs_root *root,
3404 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3405 int force)
3406 {
3407 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3408 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3409 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3410 u64 thresh;
3411
3412 if (force == CHUNK_ALLOC_FORCE)
3413 return 1;
3414
3415 /*
3416 * We need to take into account the global rsv because for all intents
3417 * and purposes it's used space. Don't worry about locking the
3418 * global_rsv, it doesn't change except when the transaction commits.
3419 */
3420 num_allocated += global_rsv->size;
3421
3422 /*
3423 * in limited mode, we want to have some free space up to
3424 * about 1% of the FS size.
3425 */
3426 if (force == CHUNK_ALLOC_LIMITED) {
3427 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3428 thresh = max_t(u64, 64 * 1024 * 1024,
3429 div_factor_fine(thresh, 1));
3430
3431 if (num_bytes - num_allocated < thresh)
3432 return 1;
3433 }
3434 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3435
3436 /* 256MB or 2% of the FS */
3437 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3438 /* system chunks need a much small threshold */
3439 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3440 thresh = 32 * 1024 * 1024;
3441
3442 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3443 return 0;
3444 return 1;
3445 }
3446
3447 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3448 {
3449 u64 num_dev;
3450
3451 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3452 type & BTRFS_BLOCK_GROUP_RAID0)
3453 num_dev = root->fs_info->fs_devices->rw_devices;
3454 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3455 num_dev = 2;
3456 else
3457 num_dev = 1; /* DUP or single */
3458
3459 /* metadata for updaing devices and chunk tree */
3460 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3461 }
3462
3463 static void check_system_chunk(struct btrfs_trans_handle *trans,
3464 struct btrfs_root *root, u64 type)
3465 {
3466 struct btrfs_space_info *info;
3467 u64 left;
3468 u64 thresh;
3469
3470 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3471 spin_lock(&info->lock);
3472 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3473 info->bytes_reserved - info->bytes_readonly;
3474 spin_unlock(&info->lock);
3475
3476 thresh = get_system_chunk_thresh(root, type);
3477 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3478 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3479 left, thresh, type);
3480 dump_space_info(info, 0, 0);
3481 }
3482
3483 if (left < thresh) {
3484 u64 flags;
3485
3486 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3487 btrfs_alloc_chunk(trans, root, flags);
3488 }
3489 }
3490
3491 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3492 struct btrfs_root *extent_root, u64 alloc_bytes,
3493 u64 flags, int force)
3494 {
3495 struct btrfs_space_info *space_info;
3496 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3497 int wait_for_alloc = 0;
3498 int ret = 0;
3499
3500 space_info = __find_space_info(extent_root->fs_info, flags);
3501 if (!space_info) {
3502 ret = update_space_info(extent_root->fs_info, flags,
3503 0, 0, &space_info);
3504 BUG_ON(ret); /* -ENOMEM */
3505 }
3506 BUG_ON(!space_info); /* Logic error */
3507
3508 again:
3509 spin_lock(&space_info->lock);
3510 if (force < space_info->force_alloc)
3511 force = space_info->force_alloc;
3512 if (space_info->full) {
3513 spin_unlock(&space_info->lock);
3514 return 0;
3515 }
3516
3517 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3518 spin_unlock(&space_info->lock);
3519 return 0;
3520 } else if (space_info->chunk_alloc) {
3521 wait_for_alloc = 1;
3522 } else {
3523 space_info->chunk_alloc = 1;
3524 }
3525
3526 spin_unlock(&space_info->lock);
3527
3528 mutex_lock(&fs_info->chunk_mutex);
3529
3530 /*
3531 * The chunk_mutex is held throughout the entirety of a chunk
3532 * allocation, so once we've acquired the chunk_mutex we know that the
3533 * other guy is done and we need to recheck and see if we should
3534 * allocate.
3535 */
3536 if (wait_for_alloc) {
3537 mutex_unlock(&fs_info->chunk_mutex);
3538 wait_for_alloc = 0;
3539 goto again;
3540 }
3541
3542 /*
3543 * If we have mixed data/metadata chunks we want to make sure we keep
3544 * allocating mixed chunks instead of individual chunks.
3545 */
3546 if (btrfs_mixed_space_info(space_info))
3547 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3548
3549 /*
3550 * if we're doing a data chunk, go ahead and make sure that
3551 * we keep a reasonable number of metadata chunks allocated in the
3552 * FS as well.
3553 */
3554 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3555 fs_info->data_chunk_allocations++;
3556 if (!(fs_info->data_chunk_allocations %
3557 fs_info->metadata_ratio))
3558 force_metadata_allocation(fs_info);
3559 }
3560
3561 /*
3562 * Check if we have enough space in SYSTEM chunk because we may need
3563 * to update devices.
3564 */
3565 check_system_chunk(trans, extent_root, flags);
3566
3567 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3568 if (ret < 0 && ret != -ENOSPC)
3569 goto out;
3570
3571 spin_lock(&space_info->lock);
3572 if (ret)
3573 space_info->full = 1;
3574 else
3575 ret = 1;
3576
3577 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3578 space_info->chunk_alloc = 0;
3579 spin_unlock(&space_info->lock);
3580 out:
3581 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3582 return ret;
3583 }
3584
3585 /*
3586 * shrink metadata reservation for delalloc
3587 */
3588 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3589 bool wait_ordered)
3590 {
3591 struct btrfs_block_rsv *block_rsv;
3592 struct btrfs_space_info *space_info;
3593 struct btrfs_trans_handle *trans;
3594 u64 reserved;
3595 u64 max_reclaim;
3596 u64 reclaimed = 0;
3597 long time_left;
3598 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3599 int loops = 0;
3600 unsigned long progress;
3601
3602 trans = (struct btrfs_trans_handle *)current->journal_info;
3603 block_rsv = &root->fs_info->delalloc_block_rsv;
3604 space_info = block_rsv->space_info;
3605
3606 smp_mb();
3607 reserved = space_info->bytes_may_use;
3608 progress = space_info->reservation_progress;
3609
3610 if (reserved == 0)
3611 return 0;
3612
3613 smp_mb();
3614 if (root->fs_info->delalloc_bytes == 0) {
3615 if (trans)
3616 return 0;
3617 btrfs_wait_ordered_extents(root, 0, 0);
3618 return 0;
3619 }
3620
3621 max_reclaim = min(reserved, to_reclaim);
3622 nr_pages = max_t(unsigned long, nr_pages,
3623 max_reclaim >> PAGE_CACHE_SHIFT);
3624 while (loops < 1024) {
3625 /* have the flusher threads jump in and do some IO */
3626 smp_mb();
3627 nr_pages = min_t(unsigned long, nr_pages,
3628 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3629 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3630 WB_REASON_FS_FREE_SPACE);
3631
3632 spin_lock(&space_info->lock);
3633 if (reserved > space_info->bytes_may_use)
3634 reclaimed += reserved - space_info->bytes_may_use;
3635 reserved = space_info->bytes_may_use;
3636 spin_unlock(&space_info->lock);
3637
3638 loops++;
3639
3640 if (reserved == 0 || reclaimed >= max_reclaim)
3641 break;
3642
3643 if (trans && trans->transaction->blocked)
3644 return -EAGAIN;
3645
3646 if (wait_ordered && !trans) {
3647 btrfs_wait_ordered_extents(root, 0, 0);
3648 } else {
3649 time_left = schedule_timeout_interruptible(1);
3650
3651 /* We were interrupted, exit */
3652 if (time_left)
3653 break;
3654 }
3655
3656 /* we've kicked the IO a few times, if anything has been freed,
3657 * exit. There is no sense in looping here for a long time
3658 * when we really need to commit the transaction, or there are
3659 * just too many writers without enough free space
3660 */
3661
3662 if (loops > 3) {
3663 smp_mb();
3664 if (progress != space_info->reservation_progress)
3665 break;
3666 }
3667
3668 }
3669
3670 return reclaimed >= to_reclaim;
3671 }
3672
3673 /**
3674 * maybe_commit_transaction - possibly commit the transaction if its ok to
3675 * @root - the root we're allocating for
3676 * @bytes - the number of bytes we want to reserve
3677 * @force - force the commit
3678 *
3679 * This will check to make sure that committing the transaction will actually
3680 * get us somewhere and then commit the transaction if it does. Otherwise it
3681 * will return -ENOSPC.
3682 */
3683 static int may_commit_transaction(struct btrfs_root *root,
3684 struct btrfs_space_info *space_info,
3685 u64 bytes, int force)
3686 {
3687 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3688 struct btrfs_trans_handle *trans;
3689
3690 trans = (struct btrfs_trans_handle *)current->journal_info;
3691 if (trans)
3692 return -EAGAIN;
3693
3694 if (force)
3695 goto commit;
3696
3697 /* See if there is enough pinned space to make this reservation */
3698 spin_lock(&space_info->lock);
3699 if (space_info->bytes_pinned >= bytes) {
3700 spin_unlock(&space_info->lock);
3701 goto commit;
3702 }
3703 spin_unlock(&space_info->lock);
3704
3705 /*
3706 * See if there is some space in the delayed insertion reservation for
3707 * this reservation.
3708 */
3709 if (space_info != delayed_rsv->space_info)
3710 return -ENOSPC;
3711
3712 spin_lock(&space_info->lock);
3713 spin_lock(&delayed_rsv->lock);
3714 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3715 spin_unlock(&delayed_rsv->lock);
3716 spin_unlock(&space_info->lock);
3717 return -ENOSPC;
3718 }
3719 spin_unlock(&delayed_rsv->lock);
3720 spin_unlock(&space_info->lock);
3721
3722 commit:
3723 trans = btrfs_join_transaction(root);
3724 if (IS_ERR(trans))
3725 return -ENOSPC;
3726
3727 return btrfs_commit_transaction(trans, root);
3728 }
3729
3730 /**
3731 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3732 * @root - the root we're allocating for
3733 * @block_rsv - the block_rsv we're allocating for
3734 * @orig_bytes - the number of bytes we want
3735 * @flush - wether or not we can flush to make our reservation
3736 *
3737 * This will reserve orgi_bytes number of bytes from the space info associated
3738 * with the block_rsv. If there is not enough space it will make an attempt to
3739 * flush out space to make room. It will do this by flushing delalloc if
3740 * possible or committing the transaction. If flush is 0 then no attempts to
3741 * regain reservations will be made and this will fail if there is not enough
3742 * space already.
3743 */
3744 static int reserve_metadata_bytes(struct btrfs_root *root,
3745 struct btrfs_block_rsv *block_rsv,
3746 u64 orig_bytes, int flush)
3747 {
3748 struct btrfs_space_info *space_info = block_rsv->space_info;
3749 u64 used;
3750 u64 num_bytes = orig_bytes;
3751 int retries = 0;
3752 int ret = 0;
3753 bool committed = false;
3754 bool flushing = false;
3755 bool wait_ordered = false;
3756
3757 again:
3758 ret = 0;
3759 spin_lock(&space_info->lock);
3760 /*
3761 * We only want to wait if somebody other than us is flushing and we are
3762 * actually alloed to flush.
3763 */
3764 while (flush && !flushing && space_info->flush) {
3765 spin_unlock(&space_info->lock);
3766 /*
3767 * If we have a trans handle we can't wait because the flusher
3768 * may have to commit the transaction, which would mean we would
3769 * deadlock since we are waiting for the flusher to finish, but
3770 * hold the current transaction open.
3771 */
3772 if (current->journal_info)
3773 return -EAGAIN;
3774 ret = wait_event_interruptible(space_info->wait,
3775 !space_info->flush);
3776 /* Must have been interrupted, return */
3777 if (ret) {
3778 printk(KERN_DEBUG "btrfs: %s returning -EINTR\n", __func__);
3779 return -EINTR;
3780 }
3781
3782 spin_lock(&space_info->lock);
3783 }
3784
3785 ret = -ENOSPC;
3786 used = space_info->bytes_used + space_info->bytes_reserved +
3787 space_info->bytes_pinned + space_info->bytes_readonly +
3788 space_info->bytes_may_use;
3789
3790 /*
3791 * The idea here is that we've not already over-reserved the block group
3792 * then we can go ahead and save our reservation first and then start
3793 * flushing if we need to. Otherwise if we've already overcommitted
3794 * lets start flushing stuff first and then come back and try to make
3795 * our reservation.
3796 */
3797 if (used <= space_info->total_bytes) {
3798 if (used + orig_bytes <= space_info->total_bytes) {
3799 space_info->bytes_may_use += orig_bytes;
3800 trace_btrfs_space_reservation(root->fs_info,
3801 "space_info", space_info->flags, orig_bytes, 1);
3802 ret = 0;
3803 } else {
3804 /*
3805 * Ok set num_bytes to orig_bytes since we aren't
3806 * overocmmitted, this way we only try and reclaim what
3807 * we need.
3808 */
3809 num_bytes = orig_bytes;
3810 }
3811 } else {
3812 /*
3813 * Ok we're over committed, set num_bytes to the overcommitted
3814 * amount plus the amount of bytes that we need for this
3815 * reservation.
3816 */
3817 wait_ordered = true;
3818 num_bytes = used - space_info->total_bytes +
3819 (orig_bytes * (retries + 1));
3820 }
3821
3822 if (ret) {
3823 u64 profile = btrfs_get_alloc_profile(root, 0);
3824 u64 avail;
3825
3826 /*
3827 * If we have a lot of space that's pinned, don't bother doing
3828 * the overcommit dance yet and just commit the transaction.
3829 */
3830 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3831 do_div(avail, 10);
3832 if (space_info->bytes_pinned >= avail && flush && !committed) {
3833 space_info->flush = 1;
3834 flushing = true;
3835 spin_unlock(&space_info->lock);
3836 ret = may_commit_transaction(root, space_info,
3837 orig_bytes, 1);
3838 if (ret)
3839 goto out;
3840 committed = true;
3841 goto again;
3842 }
3843
3844 spin_lock(&root->fs_info->free_chunk_lock);
3845 avail = root->fs_info->free_chunk_space;
3846
3847 /*
3848 * If we have dup, raid1 or raid10 then only half of the free
3849 * space is actually useable.
3850 */
3851 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3852 BTRFS_BLOCK_GROUP_RAID1 |
3853 BTRFS_BLOCK_GROUP_RAID10))
3854 avail >>= 1;
3855
3856 /*
3857 * If we aren't flushing don't let us overcommit too much, say
3858 * 1/8th of the space. If we can flush, let it overcommit up to
3859 * 1/2 of the space.
3860 */
3861 if (flush)
3862 avail >>= 3;
3863 else
3864 avail >>= 1;
3865 spin_unlock(&root->fs_info->free_chunk_lock);
3866
3867 if (used + num_bytes < space_info->total_bytes + avail) {
3868 space_info->bytes_may_use += orig_bytes;
3869 trace_btrfs_space_reservation(root->fs_info,
3870 "space_info", space_info->flags, orig_bytes, 1);
3871 ret = 0;
3872 } else {
3873 wait_ordered = true;
3874 }
3875 }
3876
3877 /*
3878 * Couldn't make our reservation, save our place so while we're trying
3879 * to reclaim space we can actually use it instead of somebody else
3880 * stealing it from us.
3881 */
3882 if (ret && flush) {
3883 flushing = true;
3884 space_info->flush = 1;
3885 }
3886
3887 spin_unlock(&space_info->lock);
3888
3889 if (!ret || !flush)
3890 goto out;
3891
3892 /*
3893 * We do synchronous shrinking since we don't actually unreserve
3894 * metadata until after the IO is completed.
3895 */
3896 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3897 if (ret < 0)
3898 goto out;
3899
3900 ret = 0;
3901
3902 /*
3903 * So if we were overcommitted it's possible that somebody else flushed
3904 * out enough space and we simply didn't have enough space to reclaim,
3905 * so go back around and try again.
3906 */
3907 if (retries < 2) {
3908 wait_ordered = true;
3909 retries++;
3910 goto again;
3911 }
3912
3913 ret = -ENOSPC;
3914 if (committed)
3915 goto out;
3916
3917 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3918 if (!ret) {
3919 committed = true;
3920 goto again;
3921 }
3922
3923 out:
3924 if (flushing) {
3925 spin_lock(&space_info->lock);
3926 space_info->flush = 0;
3927 wake_up_all(&space_info->wait);
3928 spin_unlock(&space_info->lock);
3929 }
3930 return ret;
3931 }
3932
3933 static struct btrfs_block_rsv *get_block_rsv(
3934 const struct btrfs_trans_handle *trans,
3935 const struct btrfs_root *root)
3936 {
3937 struct btrfs_block_rsv *block_rsv = NULL;
3938
3939 if (root->ref_cows || root == root->fs_info->csum_root)
3940 block_rsv = trans->block_rsv;
3941
3942 if (!block_rsv)
3943 block_rsv = root->block_rsv;
3944
3945 if (!block_rsv)
3946 block_rsv = &root->fs_info->empty_block_rsv;
3947
3948 return block_rsv;
3949 }
3950
3951 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3952 u64 num_bytes)
3953 {
3954 int ret = -ENOSPC;
3955 spin_lock(&block_rsv->lock);
3956 if (block_rsv->reserved >= num_bytes) {
3957 block_rsv->reserved -= num_bytes;
3958 if (block_rsv->reserved < block_rsv->size)
3959 block_rsv->full = 0;
3960 ret = 0;
3961 }
3962 spin_unlock(&block_rsv->lock);
3963 return ret;
3964 }
3965
3966 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3967 u64 num_bytes, int update_size)
3968 {
3969 spin_lock(&block_rsv->lock);
3970 block_rsv->reserved += num_bytes;
3971 if (update_size)
3972 block_rsv->size += num_bytes;
3973 else if (block_rsv->reserved >= block_rsv->size)
3974 block_rsv->full = 1;
3975 spin_unlock(&block_rsv->lock);
3976 }
3977
3978 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3979 struct btrfs_block_rsv *block_rsv,
3980 struct btrfs_block_rsv *dest, u64 num_bytes)
3981 {
3982 struct btrfs_space_info *space_info = block_rsv->space_info;
3983
3984 spin_lock(&block_rsv->lock);
3985 if (num_bytes == (u64)-1)
3986 num_bytes = block_rsv->size;
3987 block_rsv->size -= num_bytes;
3988 if (block_rsv->reserved >= block_rsv->size) {
3989 num_bytes = block_rsv->reserved - block_rsv->size;
3990 block_rsv->reserved = block_rsv->size;
3991 block_rsv->full = 1;
3992 } else {
3993 num_bytes = 0;
3994 }
3995 spin_unlock(&block_rsv->lock);
3996
3997 if (num_bytes > 0) {
3998 if (dest) {
3999 spin_lock(&dest->lock);
4000 if (!dest->full) {
4001 u64 bytes_to_add;
4002
4003 bytes_to_add = dest->size - dest->reserved;
4004 bytes_to_add = min(num_bytes, bytes_to_add);
4005 dest->reserved += bytes_to_add;
4006 if (dest->reserved >= dest->size)
4007 dest->full = 1;
4008 num_bytes -= bytes_to_add;
4009 }
4010 spin_unlock(&dest->lock);
4011 }
4012 if (num_bytes) {
4013 spin_lock(&space_info->lock);
4014 space_info->bytes_may_use -= num_bytes;
4015 trace_btrfs_space_reservation(fs_info, "space_info",
4016 space_info->flags, num_bytes, 0);
4017 space_info->reservation_progress++;
4018 spin_unlock(&space_info->lock);
4019 }
4020 }
4021 }
4022
4023 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4024 struct btrfs_block_rsv *dst, u64 num_bytes)
4025 {
4026 int ret;
4027
4028 ret = block_rsv_use_bytes(src, num_bytes);
4029 if (ret)
4030 return ret;
4031
4032 block_rsv_add_bytes(dst, num_bytes, 1);
4033 return 0;
4034 }
4035
4036 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
4037 {
4038 memset(rsv, 0, sizeof(*rsv));
4039 spin_lock_init(&rsv->lock);
4040 }
4041
4042 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
4043 {
4044 struct btrfs_block_rsv *block_rsv;
4045 struct btrfs_fs_info *fs_info = root->fs_info;
4046
4047 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4048 if (!block_rsv)
4049 return NULL;
4050
4051 btrfs_init_block_rsv(block_rsv);
4052 block_rsv->space_info = __find_space_info(fs_info,
4053 BTRFS_BLOCK_GROUP_METADATA);
4054 return block_rsv;
4055 }
4056
4057 void btrfs_free_block_rsv(struct btrfs_root *root,
4058 struct btrfs_block_rsv *rsv)
4059 {
4060 btrfs_block_rsv_release(root, rsv, (u64)-1);
4061 kfree(rsv);
4062 }
4063
4064 static inline int __block_rsv_add(struct btrfs_root *root,
4065 struct btrfs_block_rsv *block_rsv,
4066 u64 num_bytes, int flush)
4067 {
4068 int ret;
4069
4070 if (num_bytes == 0)
4071 return 0;
4072
4073 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4074 if (!ret) {
4075 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4076 return 0;
4077 }
4078
4079 return ret;
4080 }
4081
4082 int btrfs_block_rsv_add(struct btrfs_root *root,
4083 struct btrfs_block_rsv *block_rsv,
4084 u64 num_bytes)
4085 {
4086 return __block_rsv_add(root, block_rsv, num_bytes, 1);
4087 }
4088
4089 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4090 struct btrfs_block_rsv *block_rsv,
4091 u64 num_bytes)
4092 {
4093 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4094 }
4095
4096 int btrfs_block_rsv_check(struct btrfs_root *root,
4097 struct btrfs_block_rsv *block_rsv, int min_factor)
4098 {
4099 u64 num_bytes = 0;
4100 int ret = -ENOSPC;
4101
4102 if (!block_rsv)
4103 return 0;
4104
4105 spin_lock(&block_rsv->lock);
4106 num_bytes = div_factor(block_rsv->size, min_factor);
4107 if (block_rsv->reserved >= num_bytes)
4108 ret = 0;
4109 spin_unlock(&block_rsv->lock);
4110
4111 return ret;
4112 }
4113
4114 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4115 struct btrfs_block_rsv *block_rsv,
4116 u64 min_reserved, int flush)
4117 {
4118 u64 num_bytes = 0;
4119 int ret = -ENOSPC;
4120
4121 if (!block_rsv)
4122 return 0;
4123
4124 spin_lock(&block_rsv->lock);
4125 num_bytes = min_reserved;
4126 if (block_rsv->reserved >= num_bytes)
4127 ret = 0;
4128 else
4129 num_bytes -= block_rsv->reserved;
4130 spin_unlock(&block_rsv->lock);
4131
4132 if (!ret)
4133 return 0;
4134
4135 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4136 if (!ret) {
4137 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4138 return 0;
4139 }
4140
4141 return ret;
4142 }
4143
4144 int btrfs_block_rsv_refill(struct btrfs_root *root,
4145 struct btrfs_block_rsv *block_rsv,
4146 u64 min_reserved)
4147 {
4148 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4149 }
4150
4151 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4152 struct btrfs_block_rsv *block_rsv,
4153 u64 min_reserved)
4154 {
4155 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4156 }
4157
4158 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4159 struct btrfs_block_rsv *dst_rsv,
4160 u64 num_bytes)
4161 {
4162 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4163 }
4164
4165 void btrfs_block_rsv_release(struct btrfs_root *root,
4166 struct btrfs_block_rsv *block_rsv,
4167 u64 num_bytes)
4168 {
4169 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4170 if (global_rsv->full || global_rsv == block_rsv ||
4171 block_rsv->space_info != global_rsv->space_info)
4172 global_rsv = NULL;
4173 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4174 num_bytes);
4175 }
4176
4177 /*
4178 * helper to calculate size of global block reservation.
4179 * the desired value is sum of space used by extent tree,
4180 * checksum tree and root tree
4181 */
4182 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4183 {
4184 struct btrfs_space_info *sinfo;
4185 u64 num_bytes;
4186 u64 meta_used;
4187 u64 data_used;
4188 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4189
4190 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4191 spin_lock(&sinfo->lock);
4192 data_used = sinfo->bytes_used;
4193 spin_unlock(&sinfo->lock);
4194
4195 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4196 spin_lock(&sinfo->lock);
4197 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4198 data_used = 0;
4199 meta_used = sinfo->bytes_used;
4200 spin_unlock(&sinfo->lock);
4201
4202 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4203 csum_size * 2;
4204 num_bytes += div64_u64(data_used + meta_used, 50);
4205
4206 if (num_bytes * 3 > meta_used)
4207 num_bytes = div64_u64(meta_used, 3);
4208
4209 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4210 }
4211
4212 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4213 {
4214 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4215 struct btrfs_space_info *sinfo = block_rsv->space_info;
4216 u64 num_bytes;
4217
4218 num_bytes = calc_global_metadata_size(fs_info);
4219
4220 spin_lock(&block_rsv->lock);
4221 spin_lock(&sinfo->lock);
4222
4223 block_rsv->size = num_bytes;
4224
4225 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4226 sinfo->bytes_reserved + sinfo->bytes_readonly +
4227 sinfo->bytes_may_use;
4228
4229 if (sinfo->total_bytes > num_bytes) {
4230 num_bytes = sinfo->total_bytes - num_bytes;
4231 block_rsv->reserved += num_bytes;
4232 sinfo->bytes_may_use += num_bytes;
4233 trace_btrfs_space_reservation(fs_info, "space_info",
4234 sinfo->flags, num_bytes, 1);
4235 }
4236
4237 if (block_rsv->reserved >= block_rsv->size) {
4238 num_bytes = block_rsv->reserved - block_rsv->size;
4239 sinfo->bytes_may_use -= num_bytes;
4240 trace_btrfs_space_reservation(fs_info, "space_info",
4241 sinfo->flags, num_bytes, 0);
4242 sinfo->reservation_progress++;
4243 block_rsv->reserved = block_rsv->size;
4244 block_rsv->full = 1;
4245 }
4246
4247 spin_unlock(&sinfo->lock);
4248 spin_unlock(&block_rsv->lock);
4249 }
4250
4251 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4252 {
4253 struct btrfs_space_info *space_info;
4254
4255 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4256 fs_info->chunk_block_rsv.space_info = space_info;
4257
4258 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4259 fs_info->global_block_rsv.space_info = space_info;
4260 fs_info->delalloc_block_rsv.space_info = space_info;
4261 fs_info->trans_block_rsv.space_info = space_info;
4262 fs_info->empty_block_rsv.space_info = space_info;
4263 fs_info->delayed_block_rsv.space_info = space_info;
4264
4265 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4266 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4267 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4268 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4269 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4270
4271 update_global_block_rsv(fs_info);
4272 }
4273
4274 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4275 {
4276 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4277 (u64)-1);
4278 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4279 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4280 WARN_ON(fs_info->trans_block_rsv.size > 0);
4281 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4282 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4283 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4284 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4285 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4286 }
4287
4288 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4289 struct btrfs_root *root)
4290 {
4291 if (!trans->bytes_reserved)
4292 return;
4293
4294 trace_btrfs_space_reservation(root->fs_info, "transaction",
4295 trans->transid, trans->bytes_reserved, 0);
4296 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4297 trans->bytes_reserved = 0;
4298 }
4299
4300 /* Can only return 0 or -ENOSPC */
4301 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4302 struct inode *inode)
4303 {
4304 struct btrfs_root *root = BTRFS_I(inode)->root;
4305 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4306 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4307
4308 /*
4309 * We need to hold space in order to delete our orphan item once we've
4310 * added it, so this takes the reservation so we can release it later
4311 * when we are truly done with the orphan item.
4312 */
4313 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4314 trace_btrfs_space_reservation(root->fs_info, "orphan",
4315 btrfs_ino(inode), num_bytes, 1);
4316 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4317 }
4318
4319 void btrfs_orphan_release_metadata(struct inode *inode)
4320 {
4321 struct btrfs_root *root = BTRFS_I(inode)->root;
4322 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4323 trace_btrfs_space_reservation(root->fs_info, "orphan",
4324 btrfs_ino(inode), num_bytes, 0);
4325 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4326 }
4327
4328 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4329 struct btrfs_pending_snapshot *pending)
4330 {
4331 struct btrfs_root *root = pending->root;
4332 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4333 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4334 /*
4335 * two for root back/forward refs, two for directory entries
4336 * and one for root of the snapshot.
4337 */
4338 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4339 dst_rsv->space_info = src_rsv->space_info;
4340 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4341 }
4342
4343 /**
4344 * drop_outstanding_extent - drop an outstanding extent
4345 * @inode: the inode we're dropping the extent for
4346 *
4347 * This is called when we are freeing up an outstanding extent, either called
4348 * after an error or after an extent is written. This will return the number of
4349 * reserved extents that need to be freed. This must be called with
4350 * BTRFS_I(inode)->lock held.
4351 */
4352 static unsigned drop_outstanding_extent(struct inode *inode)
4353 {
4354 unsigned drop_inode_space = 0;
4355 unsigned dropped_extents = 0;
4356
4357 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4358 BTRFS_I(inode)->outstanding_extents--;
4359
4360 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4361 BTRFS_I(inode)->delalloc_meta_reserved) {
4362 drop_inode_space = 1;
4363 BTRFS_I(inode)->delalloc_meta_reserved = 0;
4364 }
4365
4366 /*
4367 * If we have more or the same amount of outsanding extents than we have
4368 * reserved then we need to leave the reserved extents count alone.
4369 */
4370 if (BTRFS_I(inode)->outstanding_extents >=
4371 BTRFS_I(inode)->reserved_extents)
4372 return drop_inode_space;
4373
4374 dropped_extents = BTRFS_I(inode)->reserved_extents -
4375 BTRFS_I(inode)->outstanding_extents;
4376 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4377 return dropped_extents + drop_inode_space;
4378 }
4379
4380 /**
4381 * calc_csum_metadata_size - return the amount of metada space that must be
4382 * reserved/free'd for the given bytes.
4383 * @inode: the inode we're manipulating
4384 * @num_bytes: the number of bytes in question
4385 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4386 *
4387 * This adjusts the number of csum_bytes in the inode and then returns the
4388 * correct amount of metadata that must either be reserved or freed. We
4389 * calculate how many checksums we can fit into one leaf and then divide the
4390 * number of bytes that will need to be checksumed by this value to figure out
4391 * how many checksums will be required. If we are adding bytes then the number
4392 * may go up and we will return the number of additional bytes that must be
4393 * reserved. If it is going down we will return the number of bytes that must
4394 * be freed.
4395 *
4396 * This must be called with BTRFS_I(inode)->lock held.
4397 */
4398 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4399 int reserve)
4400 {
4401 struct btrfs_root *root = BTRFS_I(inode)->root;
4402 u64 csum_size;
4403 int num_csums_per_leaf;
4404 int num_csums;
4405 int old_csums;
4406
4407 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4408 BTRFS_I(inode)->csum_bytes == 0)
4409 return 0;
4410
4411 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4412 if (reserve)
4413 BTRFS_I(inode)->csum_bytes += num_bytes;
4414 else
4415 BTRFS_I(inode)->csum_bytes -= num_bytes;
4416 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4417 num_csums_per_leaf = (int)div64_u64(csum_size,
4418 sizeof(struct btrfs_csum_item) +
4419 sizeof(struct btrfs_disk_key));
4420 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4421 num_csums = num_csums + num_csums_per_leaf - 1;
4422 num_csums = num_csums / num_csums_per_leaf;
4423
4424 old_csums = old_csums + num_csums_per_leaf - 1;
4425 old_csums = old_csums / num_csums_per_leaf;
4426
4427 /* No change, no need to reserve more */
4428 if (old_csums == num_csums)
4429 return 0;
4430
4431 if (reserve)
4432 return btrfs_calc_trans_metadata_size(root,
4433 num_csums - old_csums);
4434
4435 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4436 }
4437
4438 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4439 {
4440 struct btrfs_root *root = BTRFS_I(inode)->root;
4441 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4442 u64 to_reserve = 0;
4443 u64 csum_bytes;
4444 unsigned nr_extents = 0;
4445 int extra_reserve = 0;
4446 int flush = 1;
4447 int ret;
4448
4449 /* Need to be holding the i_mutex here if we aren't free space cache */
4450 if (btrfs_is_free_space_inode(root, inode))
4451 flush = 0;
4452
4453 if (flush && btrfs_transaction_in_commit(root->fs_info))
4454 schedule_timeout(1);
4455
4456 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4457 num_bytes = ALIGN(num_bytes, root->sectorsize);
4458
4459 spin_lock(&BTRFS_I(inode)->lock);
4460 BTRFS_I(inode)->outstanding_extents++;
4461
4462 if (BTRFS_I(inode)->outstanding_extents >
4463 BTRFS_I(inode)->reserved_extents)
4464 nr_extents = BTRFS_I(inode)->outstanding_extents -
4465 BTRFS_I(inode)->reserved_extents;
4466
4467 /*
4468 * Add an item to reserve for updating the inode when we complete the
4469 * delalloc io.
4470 */
4471 if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4472 nr_extents++;
4473 extra_reserve = 1;
4474 }
4475
4476 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4477 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4478 csum_bytes = BTRFS_I(inode)->csum_bytes;
4479 spin_unlock(&BTRFS_I(inode)->lock);
4480
4481 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4482 if (ret) {
4483 u64 to_free = 0;
4484 unsigned dropped;
4485
4486 spin_lock(&BTRFS_I(inode)->lock);
4487 dropped = drop_outstanding_extent(inode);
4488 /*
4489 * If the inodes csum_bytes is the same as the original
4490 * csum_bytes then we know we haven't raced with any free()ers
4491 * so we can just reduce our inodes csum bytes and carry on.
4492 * Otherwise we have to do the normal free thing to account for
4493 * the case that the free side didn't free up its reserve
4494 * because of this outstanding reservation.
4495 */
4496 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4497 calc_csum_metadata_size(inode, num_bytes, 0);
4498 else
4499 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4500 spin_unlock(&BTRFS_I(inode)->lock);
4501 if (dropped)
4502 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4503
4504 if (to_free) {
4505 btrfs_block_rsv_release(root, block_rsv, to_free);
4506 trace_btrfs_space_reservation(root->fs_info,
4507 "delalloc",
4508 btrfs_ino(inode),
4509 to_free, 0);
4510 }
4511 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4512 return ret;
4513 }
4514
4515 spin_lock(&BTRFS_I(inode)->lock);
4516 if (extra_reserve) {
4517 BTRFS_I(inode)->delalloc_meta_reserved = 1;
4518 nr_extents--;
4519 }
4520 BTRFS_I(inode)->reserved_extents += nr_extents;
4521 spin_unlock(&BTRFS_I(inode)->lock);
4522 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4523
4524 if (to_reserve)
4525 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4526 btrfs_ino(inode), to_reserve, 1);
4527 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4528
4529 return 0;
4530 }
4531
4532 /**
4533 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4534 * @inode: the inode to release the reservation for
4535 * @num_bytes: the number of bytes we're releasing
4536 *
4537 * This will release the metadata reservation for an inode. This can be called
4538 * once we complete IO for a given set of bytes to release their metadata
4539 * reservations.
4540 */
4541 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4542 {
4543 struct btrfs_root *root = BTRFS_I(inode)->root;
4544 u64 to_free = 0;
4545 unsigned dropped;
4546
4547 num_bytes = ALIGN(num_bytes, root->sectorsize);
4548 spin_lock(&BTRFS_I(inode)->lock);
4549 dropped = drop_outstanding_extent(inode);
4550
4551 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4552 spin_unlock(&BTRFS_I(inode)->lock);
4553 if (dropped > 0)
4554 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4555
4556 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4557 btrfs_ino(inode), to_free, 0);
4558 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4559 to_free);
4560 }
4561
4562 /**
4563 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4564 * @inode: inode we're writing to
4565 * @num_bytes: the number of bytes we want to allocate
4566 *
4567 * This will do the following things
4568 *
4569 * o reserve space in the data space info for num_bytes
4570 * o reserve space in the metadata space info based on number of outstanding
4571 * extents and how much csums will be needed
4572 * o add to the inodes ->delalloc_bytes
4573 * o add it to the fs_info's delalloc inodes list.
4574 *
4575 * This will return 0 for success and -ENOSPC if there is no space left.
4576 */
4577 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4578 {
4579 int ret;
4580
4581 ret = btrfs_check_data_free_space(inode, num_bytes);
4582 if (ret)
4583 return ret;
4584
4585 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4586 if (ret) {
4587 btrfs_free_reserved_data_space(inode, num_bytes);
4588 return ret;
4589 }
4590
4591 return 0;
4592 }
4593
4594 /**
4595 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4596 * @inode: inode we're releasing space for
4597 * @num_bytes: the number of bytes we want to free up
4598 *
4599 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4600 * called in the case that we don't need the metadata AND data reservations
4601 * anymore. So if there is an error or we insert an inline extent.
4602 *
4603 * This function will release the metadata space that was not used and will
4604 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4605 * list if there are no delalloc bytes left.
4606 */
4607 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4608 {
4609 btrfs_delalloc_release_metadata(inode, num_bytes);
4610 btrfs_free_reserved_data_space(inode, num_bytes);
4611 }
4612
4613 static int update_block_group(struct btrfs_trans_handle *trans,
4614 struct btrfs_root *root,
4615 u64 bytenr, u64 num_bytes, int alloc)
4616 {
4617 struct btrfs_block_group_cache *cache = NULL;
4618 struct btrfs_fs_info *info = root->fs_info;
4619 u64 total = num_bytes;
4620 u64 old_val;
4621 u64 byte_in_group;
4622 int factor;
4623
4624 /* block accounting for super block */
4625 spin_lock(&info->delalloc_lock);
4626 old_val = btrfs_super_bytes_used(info->super_copy);
4627 if (alloc)
4628 old_val += num_bytes;
4629 else
4630 old_val -= num_bytes;
4631 btrfs_set_super_bytes_used(info->super_copy, old_val);
4632 spin_unlock(&info->delalloc_lock);
4633
4634 while (total) {
4635 cache = btrfs_lookup_block_group(info, bytenr);
4636 if (!cache)
4637 return -ENOENT;
4638 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4639 BTRFS_BLOCK_GROUP_RAID1 |
4640 BTRFS_BLOCK_GROUP_RAID10))
4641 factor = 2;
4642 else
4643 factor = 1;
4644 /*
4645 * If this block group has free space cache written out, we
4646 * need to make sure to load it if we are removing space. This
4647 * is because we need the unpinning stage to actually add the
4648 * space back to the block group, otherwise we will leak space.
4649 */
4650 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4651 cache_block_group(cache, trans, NULL, 1);
4652
4653 byte_in_group = bytenr - cache->key.objectid;
4654 WARN_ON(byte_in_group > cache->key.offset);
4655
4656 spin_lock(&cache->space_info->lock);
4657 spin_lock(&cache->lock);
4658
4659 if (btrfs_test_opt(root, SPACE_CACHE) &&
4660 cache->disk_cache_state < BTRFS_DC_CLEAR)
4661 cache->disk_cache_state = BTRFS_DC_CLEAR;
4662
4663 cache->dirty = 1;
4664 old_val = btrfs_block_group_used(&cache->item);
4665 num_bytes = min(total, cache->key.offset - byte_in_group);
4666 if (alloc) {
4667 old_val += num_bytes;
4668 btrfs_set_block_group_used(&cache->item, old_val);
4669 cache->reserved -= num_bytes;
4670 cache->space_info->bytes_reserved -= num_bytes;
4671 cache->space_info->bytes_used += num_bytes;
4672 cache->space_info->disk_used += num_bytes * factor;
4673 spin_unlock(&cache->lock);
4674 spin_unlock(&cache->space_info->lock);
4675 } else {
4676 old_val -= num_bytes;
4677 btrfs_set_block_group_used(&cache->item, old_val);
4678 cache->pinned += num_bytes;
4679 cache->space_info->bytes_pinned += num_bytes;
4680 cache->space_info->bytes_used -= num_bytes;
4681 cache->space_info->disk_used -= num_bytes * factor;
4682 spin_unlock(&cache->lock);
4683 spin_unlock(&cache->space_info->lock);
4684
4685 set_extent_dirty(info->pinned_extents,
4686 bytenr, bytenr + num_bytes - 1,
4687 GFP_NOFS | __GFP_NOFAIL);
4688 }
4689 btrfs_put_block_group(cache);
4690 total -= num_bytes;
4691 bytenr += num_bytes;
4692 }
4693 return 0;
4694 }
4695
4696 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4697 {
4698 struct btrfs_block_group_cache *cache;
4699 u64 bytenr;
4700
4701 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4702 if (!cache)
4703 return 0;
4704
4705 bytenr = cache->key.objectid;
4706 btrfs_put_block_group(cache);
4707
4708 return bytenr;
4709 }
4710
4711 static int pin_down_extent(struct btrfs_root *root,
4712 struct btrfs_block_group_cache *cache,
4713 u64 bytenr, u64 num_bytes, int reserved)
4714 {
4715 spin_lock(&cache->space_info->lock);
4716 spin_lock(&cache->lock);
4717 cache->pinned += num_bytes;
4718 cache->space_info->bytes_pinned += num_bytes;
4719 if (reserved) {
4720 cache->reserved -= num_bytes;
4721 cache->space_info->bytes_reserved -= num_bytes;
4722 }
4723 spin_unlock(&cache->lock);
4724 spin_unlock(&cache->space_info->lock);
4725
4726 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4727 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4728 return 0;
4729 }
4730
4731 /*
4732 * this function must be called within transaction
4733 */
4734 int btrfs_pin_extent(struct btrfs_root *root,
4735 u64 bytenr, u64 num_bytes, int reserved)
4736 {
4737 struct btrfs_block_group_cache *cache;
4738
4739 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4740 BUG_ON(!cache); /* Logic error */
4741
4742 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4743
4744 btrfs_put_block_group(cache);
4745 return 0;
4746 }
4747
4748 /*
4749 * this function must be called within transaction
4750 */
4751 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4752 struct btrfs_root *root,
4753 u64 bytenr, u64 num_bytes)
4754 {
4755 struct btrfs_block_group_cache *cache;
4756
4757 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4758 BUG_ON(!cache); /* Logic error */
4759
4760 /*
4761 * pull in the free space cache (if any) so that our pin
4762 * removes the free space from the cache. We have load_only set
4763 * to one because the slow code to read in the free extents does check
4764 * the pinned extents.
4765 */
4766 cache_block_group(cache, trans, root, 1);
4767
4768 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4769
4770 /* remove us from the free space cache (if we're there at all) */
4771 btrfs_remove_free_space(cache, bytenr, num_bytes);
4772 btrfs_put_block_group(cache);
4773 return 0;
4774 }
4775
4776 /**
4777 * btrfs_update_reserved_bytes - update the block_group and space info counters
4778 * @cache: The cache we are manipulating
4779 * @num_bytes: The number of bytes in question
4780 * @reserve: One of the reservation enums
4781 *
4782 * This is called by the allocator when it reserves space, or by somebody who is
4783 * freeing space that was never actually used on disk. For example if you
4784 * reserve some space for a new leaf in transaction A and before transaction A
4785 * commits you free that leaf, you call this with reserve set to 0 in order to
4786 * clear the reservation.
4787 *
4788 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4789 * ENOSPC accounting. For data we handle the reservation through clearing the
4790 * delalloc bits in the io_tree. We have to do this since we could end up
4791 * allocating less disk space for the amount of data we have reserved in the
4792 * case of compression.
4793 *
4794 * If this is a reservation and the block group has become read only we cannot
4795 * make the reservation and return -EAGAIN, otherwise this function always
4796 * succeeds.
4797 */
4798 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4799 u64 num_bytes, int reserve)
4800 {
4801 struct btrfs_space_info *space_info = cache->space_info;
4802 int ret = 0;
4803
4804 spin_lock(&space_info->lock);
4805 spin_lock(&cache->lock);
4806 if (reserve != RESERVE_FREE) {
4807 if (cache->ro) {
4808 ret = -EAGAIN;
4809 } else {
4810 cache->reserved += num_bytes;
4811 space_info->bytes_reserved += num_bytes;
4812 if (reserve == RESERVE_ALLOC) {
4813 trace_btrfs_space_reservation(cache->fs_info,
4814 "space_info", space_info->flags,
4815 num_bytes, 0);
4816 space_info->bytes_may_use -= num_bytes;
4817 }
4818 }
4819 } else {
4820 if (cache->ro)
4821 space_info->bytes_readonly += num_bytes;
4822 cache->reserved -= num_bytes;
4823 space_info->bytes_reserved -= num_bytes;
4824 space_info->reservation_progress++;
4825 }
4826 spin_unlock(&cache->lock);
4827 spin_unlock(&space_info->lock);
4828 return ret;
4829 }
4830
4831 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4832 struct btrfs_root *root)
4833 {
4834 struct btrfs_fs_info *fs_info = root->fs_info;
4835 struct btrfs_caching_control *next;
4836 struct btrfs_caching_control *caching_ctl;
4837 struct btrfs_block_group_cache *cache;
4838
4839 down_write(&fs_info->extent_commit_sem);
4840
4841 list_for_each_entry_safe(caching_ctl, next,
4842 &fs_info->caching_block_groups, list) {
4843 cache = caching_ctl->block_group;
4844 if (block_group_cache_done(cache)) {
4845 cache->last_byte_to_unpin = (u64)-1;
4846 list_del_init(&caching_ctl->list);
4847 put_caching_control(caching_ctl);
4848 } else {
4849 cache->last_byte_to_unpin = caching_ctl->progress;
4850 }
4851 }
4852
4853 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4854 fs_info->pinned_extents = &fs_info->freed_extents[1];
4855 else
4856 fs_info->pinned_extents = &fs_info->freed_extents[0];
4857
4858 up_write(&fs_info->extent_commit_sem);
4859
4860 update_global_block_rsv(fs_info);
4861 }
4862
4863 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4864 {
4865 struct btrfs_fs_info *fs_info = root->fs_info;
4866 struct btrfs_block_group_cache *cache = NULL;
4867 u64 len;
4868
4869 while (start <= end) {
4870 if (!cache ||
4871 start >= cache->key.objectid + cache->key.offset) {
4872 if (cache)
4873 btrfs_put_block_group(cache);
4874 cache = btrfs_lookup_block_group(fs_info, start);
4875 BUG_ON(!cache); /* Logic error */
4876 }
4877
4878 len = cache->key.objectid + cache->key.offset - start;
4879 len = min(len, end + 1 - start);
4880
4881 if (start < cache->last_byte_to_unpin) {
4882 len = min(len, cache->last_byte_to_unpin - start);
4883 btrfs_add_free_space(cache, start, len);
4884 }
4885
4886 start += len;
4887
4888 spin_lock(&cache->space_info->lock);
4889 spin_lock(&cache->lock);
4890 cache->pinned -= len;
4891 cache->space_info->bytes_pinned -= len;
4892 if (cache->ro)
4893 cache->space_info->bytes_readonly += len;
4894 spin_unlock(&cache->lock);
4895 spin_unlock(&cache->space_info->lock);
4896 }
4897
4898 if (cache)
4899 btrfs_put_block_group(cache);
4900 return 0;
4901 }
4902
4903 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4904 struct btrfs_root *root)
4905 {
4906 struct btrfs_fs_info *fs_info = root->fs_info;
4907 struct extent_io_tree *unpin;
4908 u64 start;
4909 u64 end;
4910 int ret;
4911
4912 if (trans->aborted)
4913 return 0;
4914
4915 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4916 unpin = &fs_info->freed_extents[1];
4917 else
4918 unpin = &fs_info->freed_extents[0];
4919
4920 while (1) {
4921 ret = find_first_extent_bit(unpin, 0, &start, &end,
4922 EXTENT_DIRTY);
4923 if (ret)
4924 break;
4925
4926 if (btrfs_test_opt(root, DISCARD))
4927 ret = btrfs_discard_extent(root, start,
4928 end + 1 - start, NULL);
4929
4930 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4931 unpin_extent_range(root, start, end);
4932 cond_resched();
4933 }
4934
4935 return 0;
4936 }
4937
4938 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4939 struct btrfs_root *root,
4940 u64 bytenr, u64 num_bytes, u64 parent,
4941 u64 root_objectid, u64 owner_objectid,
4942 u64 owner_offset, int refs_to_drop,
4943 struct btrfs_delayed_extent_op *extent_op)
4944 {
4945 struct btrfs_key key;
4946 struct btrfs_path *path;
4947 struct btrfs_fs_info *info = root->fs_info;
4948 struct btrfs_root *extent_root = info->extent_root;
4949 struct extent_buffer *leaf;
4950 struct btrfs_extent_item *ei;
4951 struct btrfs_extent_inline_ref *iref;
4952 int ret;
4953 int is_data;
4954 int extent_slot = 0;
4955 int found_extent = 0;
4956 int num_to_del = 1;
4957 u32 item_size;
4958 u64 refs;
4959
4960 path = btrfs_alloc_path();
4961 if (!path)
4962 return -ENOMEM;
4963
4964 path->reada = 1;
4965 path->leave_spinning = 1;
4966
4967 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4968 BUG_ON(!is_data && refs_to_drop != 1);
4969
4970 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4971 bytenr, num_bytes, parent,
4972 root_objectid, owner_objectid,
4973 owner_offset);
4974 if (ret == 0) {
4975 extent_slot = path->slots[0];
4976 while (extent_slot >= 0) {
4977 btrfs_item_key_to_cpu(path->nodes[0], &key,
4978 extent_slot);
4979 if (key.objectid != bytenr)
4980 break;
4981 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4982 key.offset == num_bytes) {
4983 found_extent = 1;
4984 break;
4985 }
4986 if (path->slots[0] - extent_slot > 5)
4987 break;
4988 extent_slot--;
4989 }
4990 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4991 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4992 if (found_extent && item_size < sizeof(*ei))
4993 found_extent = 0;
4994 #endif
4995 if (!found_extent) {
4996 BUG_ON(iref);
4997 ret = remove_extent_backref(trans, extent_root, path,
4998 NULL, refs_to_drop,
4999 is_data);
5000 if (ret)
5001 goto abort;
5002 btrfs_release_path(path);
5003 path->leave_spinning = 1;
5004
5005 key.objectid = bytenr;
5006 key.type = BTRFS_EXTENT_ITEM_KEY;
5007 key.offset = num_bytes;
5008
5009 ret = btrfs_search_slot(trans, extent_root,
5010 &key, path, -1, 1);
5011 if (ret) {
5012 printk(KERN_ERR "umm, got %d back from search"
5013 ", was looking for %llu\n", ret,
5014 (unsigned long long)bytenr);
5015 if (ret > 0)
5016 btrfs_print_leaf(extent_root,
5017 path->nodes[0]);
5018 }
5019 if (ret < 0)
5020 goto abort;
5021 extent_slot = path->slots[0];
5022 }
5023 } else if (ret == -ENOENT) {
5024 btrfs_print_leaf(extent_root, path->nodes[0]);
5025 WARN_ON(1);
5026 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5027 "parent %llu root %llu owner %llu offset %llu\n",
5028 (unsigned long long)bytenr,
5029 (unsigned long long)parent,
5030 (unsigned long long)root_objectid,
5031 (unsigned long long)owner_objectid,
5032 (unsigned long long)owner_offset);
5033 } else {
5034 goto abort;
5035 }
5036
5037 leaf = path->nodes[0];
5038 item_size = btrfs_item_size_nr(leaf, extent_slot);
5039 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5040 if (item_size < sizeof(*ei)) {
5041 BUG_ON(found_extent || extent_slot != path->slots[0]);
5042 ret = convert_extent_item_v0(trans, extent_root, path,
5043 owner_objectid, 0);
5044 if (ret < 0)
5045 goto abort;
5046
5047 btrfs_release_path(path);
5048 path->leave_spinning = 1;
5049
5050 key.objectid = bytenr;
5051 key.type = BTRFS_EXTENT_ITEM_KEY;
5052 key.offset = num_bytes;
5053
5054 ret = btrfs_search_slot(trans, extent_root, &key, path,
5055 -1, 1);
5056 if (ret) {
5057 printk(KERN_ERR "umm, got %d back from search"
5058 ", was looking for %llu\n", ret,
5059 (unsigned long long)bytenr);
5060 btrfs_print_leaf(extent_root, path->nodes[0]);
5061 }
5062 if (ret < 0)
5063 goto abort;
5064 extent_slot = path->slots[0];
5065 leaf = path->nodes[0];
5066 item_size = btrfs_item_size_nr(leaf, extent_slot);
5067 }
5068 #endif
5069 BUG_ON(item_size < sizeof(*ei));
5070 ei = btrfs_item_ptr(leaf, extent_slot,
5071 struct btrfs_extent_item);
5072 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5073 struct btrfs_tree_block_info *bi;
5074 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5075 bi = (struct btrfs_tree_block_info *)(ei + 1);
5076 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5077 }
5078
5079 refs = btrfs_extent_refs(leaf, ei);
5080 BUG_ON(refs < refs_to_drop);
5081 refs -= refs_to_drop;
5082
5083 if (refs > 0) {
5084 if (extent_op)
5085 __run_delayed_extent_op(extent_op, leaf, ei);
5086 /*
5087 * In the case of inline back ref, reference count will
5088 * be updated by remove_extent_backref
5089 */
5090 if (iref) {
5091 BUG_ON(!found_extent);
5092 } else {
5093 btrfs_set_extent_refs(leaf, ei, refs);
5094 btrfs_mark_buffer_dirty(leaf);
5095 }
5096 if (found_extent) {
5097 ret = remove_extent_backref(trans, extent_root, path,
5098 iref, refs_to_drop,
5099 is_data);
5100 if (ret)
5101 goto abort;
5102 }
5103 } else {
5104 if (found_extent) {
5105 BUG_ON(is_data && refs_to_drop !=
5106 extent_data_ref_count(root, path, iref));
5107 if (iref) {
5108 BUG_ON(path->slots[0] != extent_slot);
5109 } else {
5110 BUG_ON(path->slots[0] != extent_slot + 1);
5111 path->slots[0] = extent_slot;
5112 num_to_del = 2;
5113 }
5114 }
5115
5116 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5117 num_to_del);
5118 if (ret)
5119 goto abort;
5120 btrfs_release_path(path);
5121
5122 if (is_data) {
5123 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5124 if (ret)
5125 goto abort;
5126 }
5127
5128 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5129 if (ret)
5130 goto abort;
5131 }
5132 out:
5133 btrfs_free_path(path);
5134 return ret;
5135
5136 abort:
5137 btrfs_abort_transaction(trans, extent_root, ret);
5138 goto out;
5139 }
5140
5141 /*
5142 * when we free an block, it is possible (and likely) that we free the last
5143 * delayed ref for that extent as well. This searches the delayed ref tree for
5144 * a given extent, and if there are no other delayed refs to be processed, it
5145 * removes it from the tree.
5146 */
5147 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5148 struct btrfs_root *root, u64 bytenr)
5149 {
5150 struct btrfs_delayed_ref_head *head;
5151 struct btrfs_delayed_ref_root *delayed_refs;
5152 struct btrfs_delayed_ref_node *ref;
5153 struct rb_node *node;
5154 int ret = 0;
5155
5156 delayed_refs = &trans->transaction->delayed_refs;
5157 spin_lock(&delayed_refs->lock);
5158 head = btrfs_find_delayed_ref_head(trans, bytenr);
5159 if (!head)
5160 goto out;
5161
5162 node = rb_prev(&head->node.rb_node);
5163 if (!node)
5164 goto out;
5165
5166 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5167
5168 /* there are still entries for this ref, we can't drop it */
5169 if (ref->bytenr == bytenr)
5170 goto out;
5171
5172 if (head->extent_op) {
5173 if (!head->must_insert_reserved)
5174 goto out;
5175 kfree(head->extent_op);
5176 head->extent_op = NULL;
5177 }
5178
5179 /*
5180 * waiting for the lock here would deadlock. If someone else has it
5181 * locked they are already in the process of dropping it anyway
5182 */
5183 if (!mutex_trylock(&head->mutex))
5184 goto out;
5185
5186 /*
5187 * at this point we have a head with no other entries. Go
5188 * ahead and process it.
5189 */
5190 head->node.in_tree = 0;
5191 rb_erase(&head->node.rb_node, &delayed_refs->root);
5192
5193 delayed_refs->num_entries--;
5194 if (waitqueue_active(&delayed_refs->seq_wait))
5195 wake_up(&delayed_refs->seq_wait);
5196
5197 /*
5198 * we don't take a ref on the node because we're removing it from the
5199 * tree, so we just steal the ref the tree was holding.
5200 */
5201 delayed_refs->num_heads--;
5202 if (list_empty(&head->cluster))
5203 delayed_refs->num_heads_ready--;
5204
5205 list_del_init(&head->cluster);
5206 spin_unlock(&delayed_refs->lock);
5207
5208 BUG_ON(head->extent_op);
5209 if (head->must_insert_reserved)
5210 ret = 1;
5211
5212 mutex_unlock(&head->mutex);
5213 btrfs_put_delayed_ref(&head->node);
5214 return ret;
5215 out:
5216 spin_unlock(&delayed_refs->lock);
5217 return 0;
5218 }
5219
5220 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5221 struct btrfs_root *root,
5222 struct extent_buffer *buf,
5223 u64 parent, int last_ref, int for_cow)
5224 {
5225 struct btrfs_block_group_cache *cache = NULL;
5226 int ret;
5227
5228 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5229 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5230 buf->start, buf->len,
5231 parent, root->root_key.objectid,
5232 btrfs_header_level(buf),
5233 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5234 BUG_ON(ret); /* -ENOMEM */
5235 }
5236
5237 if (!last_ref)
5238 return;
5239
5240 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5241
5242 if (btrfs_header_generation(buf) == trans->transid) {
5243 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5244 ret = check_ref_cleanup(trans, root, buf->start);
5245 if (!ret)
5246 goto out;
5247 }
5248
5249 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5250 pin_down_extent(root, cache, buf->start, buf->len, 1);
5251 goto out;
5252 }
5253
5254 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5255
5256 btrfs_add_free_space(cache, buf->start, buf->len);
5257 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5258 }
5259 out:
5260 /*
5261 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5262 * anymore.
5263 */
5264 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5265 btrfs_put_block_group(cache);
5266 }
5267
5268 /* Can return -ENOMEM */
5269 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5270 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5271 u64 owner, u64 offset, int for_cow)
5272 {
5273 int ret;
5274 struct btrfs_fs_info *fs_info = root->fs_info;
5275
5276 /*
5277 * tree log blocks never actually go into the extent allocation
5278 * tree, just update pinning info and exit early.
5279 */
5280 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5281 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5282 /* unlocks the pinned mutex */
5283 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5284 ret = 0;
5285 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5286 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5287 num_bytes,
5288 parent, root_objectid, (int)owner,
5289 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5290 } else {
5291 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5292 num_bytes,
5293 parent, root_objectid, owner,
5294 offset, BTRFS_DROP_DELAYED_REF,
5295 NULL, for_cow);
5296 }
5297 return ret;
5298 }
5299
5300 static u64 stripe_align(struct btrfs_root *root, u64 val)
5301 {
5302 u64 mask = ((u64)root->stripesize - 1);
5303 u64 ret = (val + mask) & ~mask;
5304 return ret;
5305 }
5306
5307 /*
5308 * when we wait for progress in the block group caching, its because
5309 * our allocation attempt failed at least once. So, we must sleep
5310 * and let some progress happen before we try again.
5311 *
5312 * This function will sleep at least once waiting for new free space to
5313 * show up, and then it will check the block group free space numbers
5314 * for our min num_bytes. Another option is to have it go ahead
5315 * and look in the rbtree for a free extent of a given size, but this
5316 * is a good start.
5317 */
5318 static noinline int
5319 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5320 u64 num_bytes)
5321 {
5322 struct btrfs_caching_control *caching_ctl;
5323 DEFINE_WAIT(wait);
5324
5325 caching_ctl = get_caching_control(cache);
5326 if (!caching_ctl)
5327 return 0;
5328
5329 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5330 (cache->free_space_ctl->free_space >= num_bytes));
5331
5332 put_caching_control(caching_ctl);
5333 return 0;
5334 }
5335
5336 static noinline int
5337 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5338 {
5339 struct btrfs_caching_control *caching_ctl;
5340 DEFINE_WAIT(wait);
5341
5342 caching_ctl = get_caching_control(cache);
5343 if (!caching_ctl)
5344 return 0;
5345
5346 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5347
5348 put_caching_control(caching_ctl);
5349 return 0;
5350 }
5351
5352 static int __get_block_group_index(u64 flags)
5353 {
5354 int index;
5355
5356 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5357 index = 0;
5358 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5359 index = 1;
5360 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5361 index = 2;
5362 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5363 index = 3;
5364 else
5365 index = 4;
5366
5367 return index;
5368 }
5369
5370 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5371 {
5372 return __get_block_group_index(cache->flags);
5373 }
5374
5375 enum btrfs_loop_type {
5376 LOOP_CACHING_NOWAIT = 0,
5377 LOOP_CACHING_WAIT = 1,
5378 LOOP_ALLOC_CHUNK = 2,
5379 LOOP_NO_EMPTY_SIZE = 3,
5380 };
5381
5382 /*
5383 * walks the btree of allocated extents and find a hole of a given size.
5384 * The key ins is changed to record the hole:
5385 * ins->objectid == block start
5386 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5387 * ins->offset == number of blocks
5388 * Any available blocks before search_start are skipped.
5389 */
5390 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5391 struct btrfs_root *orig_root,
5392 u64 num_bytes, u64 empty_size,
5393 u64 hint_byte, struct btrfs_key *ins,
5394 u64 data)
5395 {
5396 int ret = 0;
5397 struct btrfs_root *root = orig_root->fs_info->extent_root;
5398 struct btrfs_free_cluster *last_ptr = NULL;
5399 struct btrfs_block_group_cache *block_group = NULL;
5400 struct btrfs_block_group_cache *used_block_group;
5401 u64 search_start = 0;
5402 int empty_cluster = 2 * 1024 * 1024;
5403 int allowed_chunk_alloc = 0;
5404 int done_chunk_alloc = 0;
5405 struct btrfs_space_info *space_info;
5406 int loop = 0;
5407 int index = 0;
5408 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5409 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5410 bool found_uncached_bg = false;
5411 bool failed_cluster_refill = false;
5412 bool failed_alloc = false;
5413 bool use_cluster = true;
5414 bool have_caching_bg = false;
5415
5416 WARN_ON(num_bytes < root->sectorsize);
5417 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5418 ins->objectid = 0;
5419 ins->offset = 0;
5420
5421 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5422
5423 space_info = __find_space_info(root->fs_info, data);
5424 if (!space_info) {
5425 printk(KERN_ERR "No space info for %llu\n", data);
5426 return -ENOSPC;
5427 }
5428
5429 /*
5430 * If the space info is for both data and metadata it means we have a
5431 * small filesystem and we can't use the clustering stuff.
5432 */
5433 if (btrfs_mixed_space_info(space_info))
5434 use_cluster = false;
5435
5436 if (orig_root->ref_cows || empty_size)
5437 allowed_chunk_alloc = 1;
5438
5439 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5440 last_ptr = &root->fs_info->meta_alloc_cluster;
5441 if (!btrfs_test_opt(root, SSD))
5442 empty_cluster = 64 * 1024;
5443 }
5444
5445 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5446 btrfs_test_opt(root, SSD)) {
5447 last_ptr = &root->fs_info->data_alloc_cluster;
5448 }
5449
5450 if (last_ptr) {
5451 spin_lock(&last_ptr->lock);
5452 if (last_ptr->block_group)
5453 hint_byte = last_ptr->window_start;
5454 spin_unlock(&last_ptr->lock);
5455 }
5456
5457 search_start = max(search_start, first_logical_byte(root, 0));
5458 search_start = max(search_start, hint_byte);
5459
5460 if (!last_ptr)
5461 empty_cluster = 0;
5462
5463 if (search_start == hint_byte) {
5464 block_group = btrfs_lookup_block_group(root->fs_info,
5465 search_start);
5466 used_block_group = block_group;
5467 /*
5468 * we don't want to use the block group if it doesn't match our
5469 * allocation bits, or if its not cached.
5470 *
5471 * However if we are re-searching with an ideal block group
5472 * picked out then we don't care that the block group is cached.
5473 */
5474 if (block_group && block_group_bits(block_group, data) &&
5475 block_group->cached != BTRFS_CACHE_NO) {
5476 down_read(&space_info->groups_sem);
5477 if (list_empty(&block_group->list) ||
5478 block_group->ro) {
5479 /*
5480 * someone is removing this block group,
5481 * we can't jump into the have_block_group
5482 * target because our list pointers are not
5483 * valid
5484 */
5485 btrfs_put_block_group(block_group);
5486 up_read(&space_info->groups_sem);
5487 } else {
5488 index = get_block_group_index(block_group);
5489 goto have_block_group;
5490 }
5491 } else if (block_group) {
5492 btrfs_put_block_group(block_group);
5493 }
5494 }
5495 search:
5496 have_caching_bg = false;
5497 down_read(&space_info->groups_sem);
5498 list_for_each_entry(block_group, &space_info->block_groups[index],
5499 list) {
5500 u64 offset;
5501 int cached;
5502
5503 used_block_group = block_group;
5504 btrfs_get_block_group(block_group);
5505 search_start = block_group->key.objectid;
5506
5507 /*
5508 * this can happen if we end up cycling through all the
5509 * raid types, but we want to make sure we only allocate
5510 * for the proper type.
5511 */
5512 if (!block_group_bits(block_group, data)) {
5513 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5514 BTRFS_BLOCK_GROUP_RAID1 |
5515 BTRFS_BLOCK_GROUP_RAID10;
5516
5517 /*
5518 * if they asked for extra copies and this block group
5519 * doesn't provide them, bail. This does allow us to
5520 * fill raid0 from raid1.
5521 */
5522 if ((data & extra) && !(block_group->flags & extra))
5523 goto loop;
5524 }
5525
5526 have_block_group:
5527 cached = block_group_cache_done(block_group);
5528 if (unlikely(!cached)) {
5529 found_uncached_bg = true;
5530 ret = cache_block_group(block_group, trans,
5531 orig_root, 0);
5532 BUG_ON(ret < 0);
5533 ret = 0;
5534 }
5535
5536 if (unlikely(block_group->ro))
5537 goto loop;
5538
5539 /*
5540 * Ok we want to try and use the cluster allocator, so
5541 * lets look there
5542 */
5543 if (last_ptr) {
5544 /*
5545 * the refill lock keeps out other
5546 * people trying to start a new cluster
5547 */
5548 spin_lock(&last_ptr->refill_lock);
5549 used_block_group = last_ptr->block_group;
5550 if (used_block_group != block_group &&
5551 (!used_block_group ||
5552 used_block_group->ro ||
5553 !block_group_bits(used_block_group, data))) {
5554 used_block_group = block_group;
5555 goto refill_cluster;
5556 }
5557
5558 if (used_block_group != block_group)
5559 btrfs_get_block_group(used_block_group);
5560
5561 offset = btrfs_alloc_from_cluster(used_block_group,
5562 last_ptr, num_bytes, used_block_group->key.objectid);
5563 if (offset) {
5564 /* we have a block, we're done */
5565 spin_unlock(&last_ptr->refill_lock);
5566 trace_btrfs_reserve_extent_cluster(root,
5567 block_group, search_start, num_bytes);
5568 goto checks;
5569 }
5570
5571 WARN_ON(last_ptr->block_group != used_block_group);
5572 if (used_block_group != block_group) {
5573 btrfs_put_block_group(used_block_group);
5574 used_block_group = block_group;
5575 }
5576 refill_cluster:
5577 BUG_ON(used_block_group != block_group);
5578 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5579 * set up a new clusters, so lets just skip it
5580 * and let the allocator find whatever block
5581 * it can find. If we reach this point, we
5582 * will have tried the cluster allocator
5583 * plenty of times and not have found
5584 * anything, so we are likely way too
5585 * fragmented for the clustering stuff to find
5586 * anything.
5587 *
5588 * However, if the cluster is taken from the
5589 * current block group, release the cluster
5590 * first, so that we stand a better chance of
5591 * succeeding in the unclustered
5592 * allocation. */
5593 if (loop >= LOOP_NO_EMPTY_SIZE &&
5594 last_ptr->block_group != block_group) {
5595 spin_unlock(&last_ptr->refill_lock);
5596 goto unclustered_alloc;
5597 }
5598
5599 /*
5600 * this cluster didn't work out, free it and
5601 * start over
5602 */
5603 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5604
5605 if (loop >= LOOP_NO_EMPTY_SIZE) {
5606 spin_unlock(&last_ptr->refill_lock);
5607 goto unclustered_alloc;
5608 }
5609
5610 /* allocate a cluster in this block group */
5611 ret = btrfs_find_space_cluster(trans, root,
5612 block_group, last_ptr,
5613 search_start, num_bytes,
5614 empty_cluster + empty_size);
5615 if (ret == 0) {
5616 /*
5617 * now pull our allocation out of this
5618 * cluster
5619 */
5620 offset = btrfs_alloc_from_cluster(block_group,
5621 last_ptr, num_bytes,
5622 search_start);
5623 if (offset) {
5624 /* we found one, proceed */
5625 spin_unlock(&last_ptr->refill_lock);
5626 trace_btrfs_reserve_extent_cluster(root,
5627 block_group, search_start,
5628 num_bytes);
5629 goto checks;
5630 }
5631 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5632 && !failed_cluster_refill) {
5633 spin_unlock(&last_ptr->refill_lock);
5634
5635 failed_cluster_refill = true;
5636 wait_block_group_cache_progress(block_group,
5637 num_bytes + empty_cluster + empty_size);
5638 goto have_block_group;
5639 }
5640
5641 /*
5642 * at this point we either didn't find a cluster
5643 * or we weren't able to allocate a block from our
5644 * cluster. Free the cluster we've been trying
5645 * to use, and go to the next block group
5646 */
5647 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5648 spin_unlock(&last_ptr->refill_lock);
5649 goto loop;
5650 }
5651
5652 unclustered_alloc:
5653 spin_lock(&block_group->free_space_ctl->tree_lock);
5654 if (cached &&
5655 block_group->free_space_ctl->free_space <
5656 num_bytes + empty_cluster + empty_size) {
5657 spin_unlock(&block_group->free_space_ctl->tree_lock);
5658 goto loop;
5659 }
5660 spin_unlock(&block_group->free_space_ctl->tree_lock);
5661
5662 offset = btrfs_find_space_for_alloc(block_group, search_start,
5663 num_bytes, empty_size);
5664 /*
5665 * If we didn't find a chunk, and we haven't failed on this
5666 * block group before, and this block group is in the middle of
5667 * caching and we are ok with waiting, then go ahead and wait
5668 * for progress to be made, and set failed_alloc to true.
5669 *
5670 * If failed_alloc is true then we've already waited on this
5671 * block group once and should move on to the next block group.
5672 */
5673 if (!offset && !failed_alloc && !cached &&
5674 loop > LOOP_CACHING_NOWAIT) {
5675 wait_block_group_cache_progress(block_group,
5676 num_bytes + empty_size);
5677 failed_alloc = true;
5678 goto have_block_group;
5679 } else if (!offset) {
5680 if (!cached)
5681 have_caching_bg = true;
5682 goto loop;
5683 }
5684 checks:
5685 search_start = stripe_align(root, offset);
5686
5687 /* move on to the next group */
5688 if (search_start + num_bytes >
5689 used_block_group->key.objectid + used_block_group->key.offset) {
5690 btrfs_add_free_space(used_block_group, offset, num_bytes);
5691 goto loop;
5692 }
5693
5694 if (offset < search_start)
5695 btrfs_add_free_space(used_block_group, offset,
5696 search_start - offset);
5697 BUG_ON(offset > search_start);
5698
5699 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5700 alloc_type);
5701 if (ret == -EAGAIN) {
5702 btrfs_add_free_space(used_block_group, offset, num_bytes);
5703 goto loop;
5704 }
5705
5706 /* we are all good, lets return */
5707 ins->objectid = search_start;
5708 ins->offset = num_bytes;
5709
5710 trace_btrfs_reserve_extent(orig_root, block_group,
5711 search_start, num_bytes);
5712 if (offset < search_start)
5713 btrfs_add_free_space(used_block_group, offset,
5714 search_start - offset);
5715 BUG_ON(offset > search_start);
5716 if (used_block_group != block_group)
5717 btrfs_put_block_group(used_block_group);
5718 btrfs_put_block_group(block_group);
5719 break;
5720 loop:
5721 failed_cluster_refill = false;
5722 failed_alloc = false;
5723 BUG_ON(index != get_block_group_index(block_group));
5724 if (used_block_group != block_group)
5725 btrfs_put_block_group(used_block_group);
5726 btrfs_put_block_group(block_group);
5727 }
5728 up_read(&space_info->groups_sem);
5729
5730 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5731 goto search;
5732
5733 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5734 goto search;
5735
5736 /*
5737 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5738 * caching kthreads as we move along
5739 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5740 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5741 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5742 * again
5743 */
5744 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5745 index = 0;
5746 loop++;
5747 if (loop == LOOP_ALLOC_CHUNK) {
5748 if (allowed_chunk_alloc) {
5749 ret = do_chunk_alloc(trans, root, num_bytes +
5750 2 * 1024 * 1024, data,
5751 CHUNK_ALLOC_LIMITED);
5752 if (ret < 0) {
5753 btrfs_abort_transaction(trans,
5754 root, ret);
5755 goto out;
5756 }
5757 allowed_chunk_alloc = 0;
5758 if (ret == 1)
5759 done_chunk_alloc = 1;
5760 } else if (!done_chunk_alloc &&
5761 space_info->force_alloc ==
5762 CHUNK_ALLOC_NO_FORCE) {
5763 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5764 }
5765
5766 /*
5767 * We didn't allocate a chunk, go ahead and drop the
5768 * empty size and loop again.
5769 */
5770 if (!done_chunk_alloc)
5771 loop = LOOP_NO_EMPTY_SIZE;
5772 }
5773
5774 if (loop == LOOP_NO_EMPTY_SIZE) {
5775 empty_size = 0;
5776 empty_cluster = 0;
5777 }
5778
5779 goto search;
5780 } else if (!ins->objectid) {
5781 ret = -ENOSPC;
5782 } else if (ins->objectid) {
5783 ret = 0;
5784 }
5785 out:
5786
5787 return ret;
5788 }
5789
5790 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5791 int dump_block_groups)
5792 {
5793 struct btrfs_block_group_cache *cache;
5794 int index = 0;
5795
5796 spin_lock(&info->lock);
5797 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5798 (unsigned long long)info->flags,
5799 (unsigned long long)(info->total_bytes - info->bytes_used -
5800 info->bytes_pinned - info->bytes_reserved -
5801 info->bytes_readonly),
5802 (info->full) ? "" : "not ");
5803 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5804 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5805 (unsigned long long)info->total_bytes,
5806 (unsigned long long)info->bytes_used,
5807 (unsigned long long)info->bytes_pinned,
5808 (unsigned long long)info->bytes_reserved,
5809 (unsigned long long)info->bytes_may_use,
5810 (unsigned long long)info->bytes_readonly);
5811 spin_unlock(&info->lock);
5812
5813 if (!dump_block_groups)
5814 return;
5815
5816 down_read(&info->groups_sem);
5817 again:
5818 list_for_each_entry(cache, &info->block_groups[index], list) {
5819 spin_lock(&cache->lock);
5820 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5821 "%llu pinned %llu reserved\n",
5822 (unsigned long long)cache->key.objectid,
5823 (unsigned long long)cache->key.offset,
5824 (unsigned long long)btrfs_block_group_used(&cache->item),
5825 (unsigned long long)cache->pinned,
5826 (unsigned long long)cache->reserved);
5827 btrfs_dump_free_space(cache, bytes);
5828 spin_unlock(&cache->lock);
5829 }
5830 if (++index < BTRFS_NR_RAID_TYPES)
5831 goto again;
5832 up_read(&info->groups_sem);
5833 }
5834
5835 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5836 struct btrfs_root *root,
5837 u64 num_bytes, u64 min_alloc_size,
5838 u64 empty_size, u64 hint_byte,
5839 struct btrfs_key *ins, u64 data)
5840 {
5841 bool final_tried = false;
5842 int ret;
5843
5844 data = btrfs_get_alloc_profile(root, data);
5845 again:
5846 /*
5847 * the only place that sets empty_size is btrfs_realloc_node, which
5848 * is not called recursively on allocations
5849 */
5850 if (empty_size || root->ref_cows) {
5851 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5852 num_bytes + 2 * 1024 * 1024, data,
5853 CHUNK_ALLOC_NO_FORCE);
5854 if (ret < 0 && ret != -ENOSPC) {
5855 btrfs_abort_transaction(trans, root, ret);
5856 return ret;
5857 }
5858 }
5859
5860 WARN_ON(num_bytes < root->sectorsize);
5861 ret = find_free_extent(trans, root, num_bytes, empty_size,
5862 hint_byte, ins, data);
5863
5864 if (ret == -ENOSPC) {
5865 if (!final_tried) {
5866 num_bytes = num_bytes >> 1;
5867 num_bytes = num_bytes & ~(root->sectorsize - 1);
5868 num_bytes = max(num_bytes, min_alloc_size);
5869 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5870 num_bytes, data, CHUNK_ALLOC_FORCE);
5871 if (ret < 0 && ret != -ENOSPC) {
5872 btrfs_abort_transaction(trans, root, ret);
5873 return ret;
5874 }
5875 if (num_bytes == min_alloc_size)
5876 final_tried = true;
5877 goto again;
5878 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5879 struct btrfs_space_info *sinfo;
5880
5881 sinfo = __find_space_info(root->fs_info, data);
5882 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5883 "wanted %llu\n", (unsigned long long)data,
5884 (unsigned long long)num_bytes);
5885 if (sinfo)
5886 dump_space_info(sinfo, num_bytes, 1);
5887 }
5888 }
5889
5890 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5891
5892 return ret;
5893 }
5894
5895 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5896 u64 start, u64 len, int pin)
5897 {
5898 struct btrfs_block_group_cache *cache;
5899 int ret = 0;
5900
5901 cache = btrfs_lookup_block_group(root->fs_info, start);
5902 if (!cache) {
5903 printk(KERN_ERR "Unable to find block group for %llu\n",
5904 (unsigned long long)start);
5905 return -ENOSPC;
5906 }
5907
5908 if (btrfs_test_opt(root, DISCARD))
5909 ret = btrfs_discard_extent(root, start, len, NULL);
5910
5911 if (pin)
5912 pin_down_extent(root, cache, start, len, 1);
5913 else {
5914 btrfs_add_free_space(cache, start, len);
5915 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5916 }
5917 btrfs_put_block_group(cache);
5918
5919 trace_btrfs_reserved_extent_free(root, start, len);
5920
5921 return ret;
5922 }
5923
5924 int btrfs_free_reserved_extent(struct btrfs_root *root,
5925 u64 start, u64 len)
5926 {
5927 return __btrfs_free_reserved_extent(root, start, len, 0);
5928 }
5929
5930 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5931 u64 start, u64 len)
5932 {
5933 return __btrfs_free_reserved_extent(root, start, len, 1);
5934 }
5935
5936 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5937 struct btrfs_root *root,
5938 u64 parent, u64 root_objectid,
5939 u64 flags, u64 owner, u64 offset,
5940 struct btrfs_key *ins, int ref_mod)
5941 {
5942 int ret;
5943 struct btrfs_fs_info *fs_info = root->fs_info;
5944 struct btrfs_extent_item *extent_item;
5945 struct btrfs_extent_inline_ref *iref;
5946 struct btrfs_path *path;
5947 struct extent_buffer *leaf;
5948 int type;
5949 u32 size;
5950
5951 if (parent > 0)
5952 type = BTRFS_SHARED_DATA_REF_KEY;
5953 else
5954 type = BTRFS_EXTENT_DATA_REF_KEY;
5955
5956 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5957
5958 path = btrfs_alloc_path();
5959 if (!path)
5960 return -ENOMEM;
5961
5962 path->leave_spinning = 1;
5963 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5964 ins, size);
5965 if (ret) {
5966 btrfs_free_path(path);
5967 return ret;
5968 }
5969
5970 leaf = path->nodes[0];
5971 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5972 struct btrfs_extent_item);
5973 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5974 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5975 btrfs_set_extent_flags(leaf, extent_item,
5976 flags | BTRFS_EXTENT_FLAG_DATA);
5977
5978 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5979 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5980 if (parent > 0) {
5981 struct btrfs_shared_data_ref *ref;
5982 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5983 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5984 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5985 } else {
5986 struct btrfs_extent_data_ref *ref;
5987 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5988 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5989 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5990 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5991 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5992 }
5993
5994 btrfs_mark_buffer_dirty(path->nodes[0]);
5995 btrfs_free_path(path);
5996
5997 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5998 if (ret) { /* -ENOENT, logic error */
5999 printk(KERN_ERR "btrfs update block group failed for %llu "
6000 "%llu\n", (unsigned long long)ins->objectid,
6001 (unsigned long long)ins->offset);
6002 BUG();
6003 }
6004 return ret;
6005 }
6006
6007 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6008 struct btrfs_root *root,
6009 u64 parent, u64 root_objectid,
6010 u64 flags, struct btrfs_disk_key *key,
6011 int level, struct btrfs_key *ins)
6012 {
6013 int ret;
6014 struct btrfs_fs_info *fs_info = root->fs_info;
6015 struct btrfs_extent_item *extent_item;
6016 struct btrfs_tree_block_info *block_info;
6017 struct btrfs_extent_inline_ref *iref;
6018 struct btrfs_path *path;
6019 struct extent_buffer *leaf;
6020 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6021
6022 path = btrfs_alloc_path();
6023 if (!path)
6024 return -ENOMEM;
6025
6026 path->leave_spinning = 1;
6027 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6028 ins, size);
6029 if (ret) {
6030 btrfs_free_path(path);
6031 return ret;
6032 }
6033
6034 leaf = path->nodes[0];
6035 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6036 struct btrfs_extent_item);
6037 btrfs_set_extent_refs(leaf, extent_item, 1);
6038 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6039 btrfs_set_extent_flags(leaf, extent_item,
6040 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6041 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6042
6043 btrfs_set_tree_block_key(leaf, block_info, key);
6044 btrfs_set_tree_block_level(leaf, block_info, level);
6045
6046 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6047 if (parent > 0) {
6048 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6049 btrfs_set_extent_inline_ref_type(leaf, iref,
6050 BTRFS_SHARED_BLOCK_REF_KEY);
6051 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6052 } else {
6053 btrfs_set_extent_inline_ref_type(leaf, iref,
6054 BTRFS_TREE_BLOCK_REF_KEY);
6055 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6056 }
6057
6058 btrfs_mark_buffer_dirty(leaf);
6059 btrfs_free_path(path);
6060
6061 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6062 if (ret) { /* -ENOENT, logic error */
6063 printk(KERN_ERR "btrfs update block group failed for %llu "
6064 "%llu\n", (unsigned long long)ins->objectid,
6065 (unsigned long long)ins->offset);
6066 BUG();
6067 }
6068 return ret;
6069 }
6070
6071 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6072 struct btrfs_root *root,
6073 u64 root_objectid, u64 owner,
6074 u64 offset, struct btrfs_key *ins)
6075 {
6076 int ret;
6077
6078 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6079
6080 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6081 ins->offset, 0,
6082 root_objectid, owner, offset,
6083 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6084 return ret;
6085 }
6086
6087 /*
6088 * this is used by the tree logging recovery code. It records that
6089 * an extent has been allocated and makes sure to clear the free
6090 * space cache bits as well
6091 */
6092 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6093 struct btrfs_root *root,
6094 u64 root_objectid, u64 owner, u64 offset,
6095 struct btrfs_key *ins)
6096 {
6097 int ret;
6098 struct btrfs_block_group_cache *block_group;
6099 struct btrfs_caching_control *caching_ctl;
6100 u64 start = ins->objectid;
6101 u64 num_bytes = ins->offset;
6102
6103 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6104 cache_block_group(block_group, trans, NULL, 0);
6105 caching_ctl = get_caching_control(block_group);
6106
6107 if (!caching_ctl) {
6108 BUG_ON(!block_group_cache_done(block_group));
6109 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6110 BUG_ON(ret); /* -ENOMEM */
6111 } else {
6112 mutex_lock(&caching_ctl->mutex);
6113
6114 if (start >= caching_ctl->progress) {
6115 ret = add_excluded_extent(root, start, num_bytes);
6116 BUG_ON(ret); /* -ENOMEM */
6117 } else if (start + num_bytes <= caching_ctl->progress) {
6118 ret = btrfs_remove_free_space(block_group,
6119 start, num_bytes);
6120 BUG_ON(ret); /* -ENOMEM */
6121 } else {
6122 num_bytes = caching_ctl->progress - start;
6123 ret = btrfs_remove_free_space(block_group,
6124 start, num_bytes);
6125 BUG_ON(ret); /* -ENOMEM */
6126
6127 start = caching_ctl->progress;
6128 num_bytes = ins->objectid + ins->offset -
6129 caching_ctl->progress;
6130 ret = add_excluded_extent(root, start, num_bytes);
6131 BUG_ON(ret); /* -ENOMEM */
6132 }
6133
6134 mutex_unlock(&caching_ctl->mutex);
6135 put_caching_control(caching_ctl);
6136 }
6137
6138 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6139 RESERVE_ALLOC_NO_ACCOUNT);
6140 BUG_ON(ret); /* logic error */
6141 btrfs_put_block_group(block_group);
6142 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6143 0, owner, offset, ins, 1);
6144 return ret;
6145 }
6146
6147 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6148 struct btrfs_root *root,
6149 u64 bytenr, u32 blocksize,
6150 int level)
6151 {
6152 struct extent_buffer *buf;
6153
6154 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6155 if (!buf)
6156 return ERR_PTR(-ENOMEM);
6157 btrfs_set_header_generation(buf, trans->transid);
6158 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6159 btrfs_tree_lock(buf);
6160 clean_tree_block(trans, root, buf);
6161 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6162
6163 btrfs_set_lock_blocking(buf);
6164 btrfs_set_buffer_uptodate(buf);
6165
6166 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6167 /*
6168 * we allow two log transactions at a time, use different
6169 * EXENT bit to differentiate dirty pages.
6170 */
6171 if (root->log_transid % 2 == 0)
6172 set_extent_dirty(&root->dirty_log_pages, buf->start,
6173 buf->start + buf->len - 1, GFP_NOFS);
6174 else
6175 set_extent_new(&root->dirty_log_pages, buf->start,
6176 buf->start + buf->len - 1, GFP_NOFS);
6177 } else {
6178 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6179 buf->start + buf->len - 1, GFP_NOFS);
6180 }
6181 trans->blocks_used++;
6182 /* this returns a buffer locked for blocking */
6183 return buf;
6184 }
6185
6186 static struct btrfs_block_rsv *
6187 use_block_rsv(struct btrfs_trans_handle *trans,
6188 struct btrfs_root *root, u32 blocksize)
6189 {
6190 struct btrfs_block_rsv *block_rsv;
6191 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6192 int ret;
6193
6194 block_rsv = get_block_rsv(trans, root);
6195
6196 if (block_rsv->size == 0) {
6197 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6198 /*
6199 * If we couldn't reserve metadata bytes try and use some from
6200 * the global reserve.
6201 */
6202 if (ret && block_rsv != global_rsv) {
6203 ret = block_rsv_use_bytes(global_rsv, blocksize);
6204 if (!ret)
6205 return global_rsv;
6206 return ERR_PTR(ret);
6207 } else if (ret) {
6208 return ERR_PTR(ret);
6209 }
6210 return block_rsv;
6211 }
6212
6213 ret = block_rsv_use_bytes(block_rsv, blocksize);
6214 if (!ret)
6215 return block_rsv;
6216 if (ret) {
6217 static DEFINE_RATELIMIT_STATE(_rs,
6218 DEFAULT_RATELIMIT_INTERVAL,
6219 /*DEFAULT_RATELIMIT_BURST*/ 2);
6220 if (__ratelimit(&_rs)) {
6221 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6222 WARN_ON(1);
6223 }
6224 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6225 if (!ret) {
6226 return block_rsv;
6227 } else if (ret && block_rsv != global_rsv) {
6228 ret = block_rsv_use_bytes(global_rsv, blocksize);
6229 if (!ret)
6230 return global_rsv;
6231 }
6232 }
6233
6234 return ERR_PTR(-ENOSPC);
6235 }
6236
6237 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6238 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6239 {
6240 block_rsv_add_bytes(block_rsv, blocksize, 0);
6241 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6242 }
6243
6244 /*
6245 * finds a free extent and does all the dirty work required for allocation
6246 * returns the key for the extent through ins, and a tree buffer for
6247 * the first block of the extent through buf.
6248 *
6249 * returns the tree buffer or NULL.
6250 */
6251 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6252 struct btrfs_root *root, u32 blocksize,
6253 u64 parent, u64 root_objectid,
6254 struct btrfs_disk_key *key, int level,
6255 u64 hint, u64 empty_size, int for_cow)
6256 {
6257 struct btrfs_key ins;
6258 struct btrfs_block_rsv *block_rsv;
6259 struct extent_buffer *buf;
6260 u64 flags = 0;
6261 int ret;
6262
6263
6264 block_rsv = use_block_rsv(trans, root, blocksize);
6265 if (IS_ERR(block_rsv))
6266 return ERR_CAST(block_rsv);
6267
6268 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6269 empty_size, hint, &ins, 0);
6270 if (ret) {
6271 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6272 return ERR_PTR(ret);
6273 }
6274
6275 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6276 blocksize, level);
6277 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6278
6279 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6280 if (parent == 0)
6281 parent = ins.objectid;
6282 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6283 } else
6284 BUG_ON(parent > 0);
6285
6286 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6287 struct btrfs_delayed_extent_op *extent_op;
6288 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6289 BUG_ON(!extent_op); /* -ENOMEM */
6290 if (key)
6291 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6292 else
6293 memset(&extent_op->key, 0, sizeof(extent_op->key));
6294 extent_op->flags_to_set = flags;
6295 extent_op->update_key = 1;
6296 extent_op->update_flags = 1;
6297 extent_op->is_data = 0;
6298
6299 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6300 ins.objectid,
6301 ins.offset, parent, root_objectid,
6302 level, BTRFS_ADD_DELAYED_EXTENT,
6303 extent_op, for_cow);
6304 BUG_ON(ret); /* -ENOMEM */
6305 }
6306 return buf;
6307 }
6308
6309 struct walk_control {
6310 u64 refs[BTRFS_MAX_LEVEL];
6311 u64 flags[BTRFS_MAX_LEVEL];
6312 struct btrfs_key update_progress;
6313 int stage;
6314 int level;
6315 int shared_level;
6316 int update_ref;
6317 int keep_locks;
6318 int reada_slot;
6319 int reada_count;
6320 int for_reloc;
6321 };
6322
6323 #define DROP_REFERENCE 1
6324 #define UPDATE_BACKREF 2
6325
6326 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6327 struct btrfs_root *root,
6328 struct walk_control *wc,
6329 struct btrfs_path *path)
6330 {
6331 u64 bytenr;
6332 u64 generation;
6333 u64 refs;
6334 u64 flags;
6335 u32 nritems;
6336 u32 blocksize;
6337 struct btrfs_key key;
6338 struct extent_buffer *eb;
6339 int ret;
6340 int slot;
6341 int nread = 0;
6342
6343 if (path->slots[wc->level] < wc->reada_slot) {
6344 wc->reada_count = wc->reada_count * 2 / 3;
6345 wc->reada_count = max(wc->reada_count, 2);
6346 } else {
6347 wc->reada_count = wc->reada_count * 3 / 2;
6348 wc->reada_count = min_t(int, wc->reada_count,
6349 BTRFS_NODEPTRS_PER_BLOCK(root));
6350 }
6351
6352 eb = path->nodes[wc->level];
6353 nritems = btrfs_header_nritems(eb);
6354 blocksize = btrfs_level_size(root, wc->level - 1);
6355
6356 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6357 if (nread >= wc->reada_count)
6358 break;
6359
6360 cond_resched();
6361 bytenr = btrfs_node_blockptr(eb, slot);
6362 generation = btrfs_node_ptr_generation(eb, slot);
6363
6364 if (slot == path->slots[wc->level])
6365 goto reada;
6366
6367 if (wc->stage == UPDATE_BACKREF &&
6368 generation <= root->root_key.offset)
6369 continue;
6370
6371 /* We don't lock the tree block, it's OK to be racy here */
6372 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6373 &refs, &flags);
6374 /* We don't care about errors in readahead. */
6375 if (ret < 0)
6376 continue;
6377 BUG_ON(refs == 0);
6378
6379 if (wc->stage == DROP_REFERENCE) {
6380 if (refs == 1)
6381 goto reada;
6382
6383 if (wc->level == 1 &&
6384 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6385 continue;
6386 if (!wc->update_ref ||
6387 generation <= root->root_key.offset)
6388 continue;
6389 btrfs_node_key_to_cpu(eb, &key, slot);
6390 ret = btrfs_comp_cpu_keys(&key,
6391 &wc->update_progress);
6392 if (ret < 0)
6393 continue;
6394 } else {
6395 if (wc->level == 1 &&
6396 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6397 continue;
6398 }
6399 reada:
6400 ret = readahead_tree_block(root, bytenr, blocksize,
6401 generation);
6402 if (ret)
6403 break;
6404 nread++;
6405 }
6406 wc->reada_slot = slot;
6407 }
6408
6409 /*
6410 * hepler to process tree block while walking down the tree.
6411 *
6412 * when wc->stage == UPDATE_BACKREF, this function updates
6413 * back refs for pointers in the block.
6414 *
6415 * NOTE: return value 1 means we should stop walking down.
6416 */
6417 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6418 struct btrfs_root *root,
6419 struct btrfs_path *path,
6420 struct walk_control *wc, int lookup_info)
6421 {
6422 int level = wc->level;
6423 struct extent_buffer *eb = path->nodes[level];
6424 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6425 int ret;
6426
6427 if (wc->stage == UPDATE_BACKREF &&
6428 btrfs_header_owner(eb) != root->root_key.objectid)
6429 return 1;
6430
6431 /*
6432 * when reference count of tree block is 1, it won't increase
6433 * again. once full backref flag is set, we never clear it.
6434 */
6435 if (lookup_info &&
6436 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6437 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6438 BUG_ON(!path->locks[level]);
6439 ret = btrfs_lookup_extent_info(trans, root,
6440 eb->start, eb->len,
6441 &wc->refs[level],
6442 &wc->flags[level]);
6443 BUG_ON(ret == -ENOMEM);
6444 if (ret)
6445 return ret;
6446 BUG_ON(wc->refs[level] == 0);
6447 }
6448
6449 if (wc->stage == DROP_REFERENCE) {
6450 if (wc->refs[level] > 1)
6451 return 1;
6452
6453 if (path->locks[level] && !wc->keep_locks) {
6454 btrfs_tree_unlock_rw(eb, path->locks[level]);
6455 path->locks[level] = 0;
6456 }
6457 return 0;
6458 }
6459
6460 /* wc->stage == UPDATE_BACKREF */
6461 if (!(wc->flags[level] & flag)) {
6462 BUG_ON(!path->locks[level]);
6463 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6464 BUG_ON(ret); /* -ENOMEM */
6465 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6466 BUG_ON(ret); /* -ENOMEM */
6467 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6468 eb->len, flag, 0);
6469 BUG_ON(ret); /* -ENOMEM */
6470 wc->flags[level] |= flag;
6471 }
6472
6473 /*
6474 * the block is shared by multiple trees, so it's not good to
6475 * keep the tree lock
6476 */
6477 if (path->locks[level] && level > 0) {
6478 btrfs_tree_unlock_rw(eb, path->locks[level]);
6479 path->locks[level] = 0;
6480 }
6481 return 0;
6482 }
6483
6484 /*
6485 * hepler to process tree block pointer.
6486 *
6487 * when wc->stage == DROP_REFERENCE, this function checks
6488 * reference count of the block pointed to. if the block
6489 * is shared and we need update back refs for the subtree
6490 * rooted at the block, this function changes wc->stage to
6491 * UPDATE_BACKREF. if the block is shared and there is no
6492 * need to update back, this function drops the reference
6493 * to the block.
6494 *
6495 * NOTE: return value 1 means we should stop walking down.
6496 */
6497 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6498 struct btrfs_root *root,
6499 struct btrfs_path *path,
6500 struct walk_control *wc, int *lookup_info)
6501 {
6502 u64 bytenr;
6503 u64 generation;
6504 u64 parent;
6505 u32 blocksize;
6506 struct btrfs_key key;
6507 struct extent_buffer *next;
6508 int level = wc->level;
6509 int reada = 0;
6510 int ret = 0;
6511
6512 generation = btrfs_node_ptr_generation(path->nodes[level],
6513 path->slots[level]);
6514 /*
6515 * if the lower level block was created before the snapshot
6516 * was created, we know there is no need to update back refs
6517 * for the subtree
6518 */
6519 if (wc->stage == UPDATE_BACKREF &&
6520 generation <= root->root_key.offset) {
6521 *lookup_info = 1;
6522 return 1;
6523 }
6524
6525 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6526 blocksize = btrfs_level_size(root, level - 1);
6527
6528 next = btrfs_find_tree_block(root, bytenr, blocksize);
6529 if (!next) {
6530 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6531 if (!next)
6532 return -ENOMEM;
6533 reada = 1;
6534 }
6535 btrfs_tree_lock(next);
6536 btrfs_set_lock_blocking(next);
6537
6538 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6539 &wc->refs[level - 1],
6540 &wc->flags[level - 1]);
6541 if (ret < 0) {
6542 btrfs_tree_unlock(next);
6543 return ret;
6544 }
6545
6546 BUG_ON(wc->refs[level - 1] == 0);
6547 *lookup_info = 0;
6548
6549 if (wc->stage == DROP_REFERENCE) {
6550 if (wc->refs[level - 1] > 1) {
6551 if (level == 1 &&
6552 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6553 goto skip;
6554
6555 if (!wc->update_ref ||
6556 generation <= root->root_key.offset)
6557 goto skip;
6558
6559 btrfs_node_key_to_cpu(path->nodes[level], &key,
6560 path->slots[level]);
6561 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6562 if (ret < 0)
6563 goto skip;
6564
6565 wc->stage = UPDATE_BACKREF;
6566 wc->shared_level = level - 1;
6567 }
6568 } else {
6569 if (level == 1 &&
6570 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6571 goto skip;
6572 }
6573
6574 if (!btrfs_buffer_uptodate(next, generation)) {
6575 btrfs_tree_unlock(next);
6576 free_extent_buffer(next);
6577 next = NULL;
6578 *lookup_info = 1;
6579 }
6580
6581 if (!next) {
6582 if (reada && level == 1)
6583 reada_walk_down(trans, root, wc, path);
6584 next = read_tree_block(root, bytenr, blocksize, generation);
6585 if (!next)
6586 return -EIO;
6587 btrfs_tree_lock(next);
6588 btrfs_set_lock_blocking(next);
6589 }
6590
6591 level--;
6592 BUG_ON(level != btrfs_header_level(next));
6593 path->nodes[level] = next;
6594 path->slots[level] = 0;
6595 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6596 wc->level = level;
6597 if (wc->level == 1)
6598 wc->reada_slot = 0;
6599 return 0;
6600 skip:
6601 wc->refs[level - 1] = 0;
6602 wc->flags[level - 1] = 0;
6603 if (wc->stage == DROP_REFERENCE) {
6604 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6605 parent = path->nodes[level]->start;
6606 } else {
6607 BUG_ON(root->root_key.objectid !=
6608 btrfs_header_owner(path->nodes[level]));
6609 parent = 0;
6610 }
6611
6612 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6613 root->root_key.objectid, level - 1, 0, 0);
6614 BUG_ON(ret); /* -ENOMEM */
6615 }
6616 btrfs_tree_unlock(next);
6617 free_extent_buffer(next);
6618 *lookup_info = 1;
6619 return 1;
6620 }
6621
6622 /*
6623 * hepler to process tree block while walking up the tree.
6624 *
6625 * when wc->stage == DROP_REFERENCE, this function drops
6626 * reference count on the block.
6627 *
6628 * when wc->stage == UPDATE_BACKREF, this function changes
6629 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6630 * to UPDATE_BACKREF previously while processing the block.
6631 *
6632 * NOTE: return value 1 means we should stop walking up.
6633 */
6634 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6635 struct btrfs_root *root,
6636 struct btrfs_path *path,
6637 struct walk_control *wc)
6638 {
6639 int ret;
6640 int level = wc->level;
6641 struct extent_buffer *eb = path->nodes[level];
6642 u64 parent = 0;
6643
6644 if (wc->stage == UPDATE_BACKREF) {
6645 BUG_ON(wc->shared_level < level);
6646 if (level < wc->shared_level)
6647 goto out;
6648
6649 ret = find_next_key(path, level + 1, &wc->update_progress);
6650 if (ret > 0)
6651 wc->update_ref = 0;
6652
6653 wc->stage = DROP_REFERENCE;
6654 wc->shared_level = -1;
6655 path->slots[level] = 0;
6656
6657 /*
6658 * check reference count again if the block isn't locked.
6659 * we should start walking down the tree again if reference
6660 * count is one.
6661 */
6662 if (!path->locks[level]) {
6663 BUG_ON(level == 0);
6664 btrfs_tree_lock(eb);
6665 btrfs_set_lock_blocking(eb);
6666 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6667
6668 ret = btrfs_lookup_extent_info(trans, root,
6669 eb->start, eb->len,
6670 &wc->refs[level],
6671 &wc->flags[level]);
6672 if (ret < 0) {
6673 btrfs_tree_unlock_rw(eb, path->locks[level]);
6674 return ret;
6675 }
6676 BUG_ON(wc->refs[level] == 0);
6677 if (wc->refs[level] == 1) {
6678 btrfs_tree_unlock_rw(eb, path->locks[level]);
6679 return 1;
6680 }
6681 }
6682 }
6683
6684 /* wc->stage == DROP_REFERENCE */
6685 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6686
6687 if (wc->refs[level] == 1) {
6688 if (level == 0) {
6689 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6690 ret = btrfs_dec_ref(trans, root, eb, 1,
6691 wc->for_reloc);
6692 else
6693 ret = btrfs_dec_ref(trans, root, eb, 0,
6694 wc->for_reloc);
6695 BUG_ON(ret); /* -ENOMEM */
6696 }
6697 /* make block locked assertion in clean_tree_block happy */
6698 if (!path->locks[level] &&
6699 btrfs_header_generation(eb) == trans->transid) {
6700 btrfs_tree_lock(eb);
6701 btrfs_set_lock_blocking(eb);
6702 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6703 }
6704 clean_tree_block(trans, root, eb);
6705 }
6706
6707 if (eb == root->node) {
6708 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6709 parent = eb->start;
6710 else
6711 BUG_ON(root->root_key.objectid !=
6712 btrfs_header_owner(eb));
6713 } else {
6714 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6715 parent = path->nodes[level + 1]->start;
6716 else
6717 BUG_ON(root->root_key.objectid !=
6718 btrfs_header_owner(path->nodes[level + 1]));
6719 }
6720
6721 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
6722 out:
6723 wc->refs[level] = 0;
6724 wc->flags[level] = 0;
6725 return 0;
6726 }
6727
6728 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6729 struct btrfs_root *root,
6730 struct btrfs_path *path,
6731 struct walk_control *wc)
6732 {
6733 int level = wc->level;
6734 int lookup_info = 1;
6735 int ret;
6736
6737 while (level >= 0) {
6738 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6739 if (ret > 0)
6740 break;
6741
6742 if (level == 0)
6743 break;
6744
6745 if (path->slots[level] >=
6746 btrfs_header_nritems(path->nodes[level]))
6747 break;
6748
6749 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6750 if (ret > 0) {
6751 path->slots[level]++;
6752 continue;
6753 } else if (ret < 0)
6754 return ret;
6755 level = wc->level;
6756 }
6757 return 0;
6758 }
6759
6760 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6761 struct btrfs_root *root,
6762 struct btrfs_path *path,
6763 struct walk_control *wc, int max_level)
6764 {
6765 int level = wc->level;
6766 int ret;
6767
6768 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6769 while (level < max_level && path->nodes[level]) {
6770 wc->level = level;
6771 if (path->slots[level] + 1 <
6772 btrfs_header_nritems(path->nodes[level])) {
6773 path->slots[level]++;
6774 return 0;
6775 } else {
6776 ret = walk_up_proc(trans, root, path, wc);
6777 if (ret > 0)
6778 return 0;
6779
6780 if (path->locks[level]) {
6781 btrfs_tree_unlock_rw(path->nodes[level],
6782 path->locks[level]);
6783 path->locks[level] = 0;
6784 }
6785 free_extent_buffer(path->nodes[level]);
6786 path->nodes[level] = NULL;
6787 level++;
6788 }
6789 }
6790 return 1;
6791 }
6792
6793 /*
6794 * drop a subvolume tree.
6795 *
6796 * this function traverses the tree freeing any blocks that only
6797 * referenced by the tree.
6798 *
6799 * when a shared tree block is found. this function decreases its
6800 * reference count by one. if update_ref is true, this function
6801 * also make sure backrefs for the shared block and all lower level
6802 * blocks are properly updated.
6803 */
6804 int btrfs_drop_snapshot(struct btrfs_root *root,
6805 struct btrfs_block_rsv *block_rsv, int update_ref,
6806 int for_reloc)
6807 {
6808 struct btrfs_path *path;
6809 struct btrfs_trans_handle *trans;
6810 struct btrfs_root *tree_root = root->fs_info->tree_root;
6811 struct btrfs_root_item *root_item = &root->root_item;
6812 struct walk_control *wc;
6813 struct btrfs_key key;
6814 int err = 0;
6815 int ret;
6816 int level;
6817
6818 path = btrfs_alloc_path();
6819 if (!path) {
6820 err = -ENOMEM;
6821 goto out;
6822 }
6823
6824 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6825 if (!wc) {
6826 btrfs_free_path(path);
6827 err = -ENOMEM;
6828 goto out;
6829 }
6830
6831 trans = btrfs_start_transaction(tree_root, 0);
6832 if (IS_ERR(trans)) {
6833 err = PTR_ERR(trans);
6834 goto out_free;
6835 }
6836
6837 if (block_rsv)
6838 trans->block_rsv = block_rsv;
6839
6840 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6841 level = btrfs_header_level(root->node);
6842 path->nodes[level] = btrfs_lock_root_node(root);
6843 btrfs_set_lock_blocking(path->nodes[level]);
6844 path->slots[level] = 0;
6845 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6846 memset(&wc->update_progress, 0,
6847 sizeof(wc->update_progress));
6848 } else {
6849 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6850 memcpy(&wc->update_progress, &key,
6851 sizeof(wc->update_progress));
6852
6853 level = root_item->drop_level;
6854 BUG_ON(level == 0);
6855 path->lowest_level = level;
6856 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6857 path->lowest_level = 0;
6858 if (ret < 0) {
6859 err = ret;
6860 goto out_end_trans;
6861 }
6862 WARN_ON(ret > 0);
6863
6864 /*
6865 * unlock our path, this is safe because only this
6866 * function is allowed to delete this snapshot
6867 */
6868 btrfs_unlock_up_safe(path, 0);
6869
6870 level = btrfs_header_level(root->node);
6871 while (1) {
6872 btrfs_tree_lock(path->nodes[level]);
6873 btrfs_set_lock_blocking(path->nodes[level]);
6874
6875 ret = btrfs_lookup_extent_info(trans, root,
6876 path->nodes[level]->start,
6877 path->nodes[level]->len,
6878 &wc->refs[level],
6879 &wc->flags[level]);
6880 if (ret < 0) {
6881 err = ret;
6882 goto out_end_trans;
6883 }
6884 BUG_ON(wc->refs[level] == 0);
6885
6886 if (level == root_item->drop_level)
6887 break;
6888
6889 btrfs_tree_unlock(path->nodes[level]);
6890 WARN_ON(wc->refs[level] != 1);
6891 level--;
6892 }
6893 }
6894
6895 wc->level = level;
6896 wc->shared_level = -1;
6897 wc->stage = DROP_REFERENCE;
6898 wc->update_ref = update_ref;
6899 wc->keep_locks = 0;
6900 wc->for_reloc = for_reloc;
6901 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6902
6903 while (1) {
6904 ret = walk_down_tree(trans, root, path, wc);
6905 if (ret < 0) {
6906 err = ret;
6907 break;
6908 }
6909
6910 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6911 if (ret < 0) {
6912 err = ret;
6913 break;
6914 }
6915
6916 if (ret > 0) {
6917 BUG_ON(wc->stage != DROP_REFERENCE);
6918 break;
6919 }
6920
6921 if (wc->stage == DROP_REFERENCE) {
6922 level = wc->level;
6923 btrfs_node_key(path->nodes[level],
6924 &root_item->drop_progress,
6925 path->slots[level]);
6926 root_item->drop_level = level;
6927 }
6928
6929 BUG_ON(wc->level == 0);
6930 if (btrfs_should_end_transaction(trans, tree_root)) {
6931 ret = btrfs_update_root(trans, tree_root,
6932 &root->root_key,
6933 root_item);
6934 if (ret) {
6935 btrfs_abort_transaction(trans, tree_root, ret);
6936 err = ret;
6937 goto out_end_trans;
6938 }
6939
6940 btrfs_end_transaction_throttle(trans, tree_root);
6941 trans = btrfs_start_transaction(tree_root, 0);
6942 if (IS_ERR(trans)) {
6943 err = PTR_ERR(trans);
6944 goto out_free;
6945 }
6946 if (block_rsv)
6947 trans->block_rsv = block_rsv;
6948 }
6949 }
6950 btrfs_release_path(path);
6951 if (err)
6952 goto out_end_trans;
6953
6954 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6955 if (ret) {
6956 btrfs_abort_transaction(trans, tree_root, ret);
6957 goto out_end_trans;
6958 }
6959
6960 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6961 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6962 NULL, NULL);
6963 if (ret < 0) {
6964 btrfs_abort_transaction(trans, tree_root, ret);
6965 err = ret;
6966 goto out_end_trans;
6967 } else if (ret > 0) {
6968 /* if we fail to delete the orphan item this time
6969 * around, it'll get picked up the next time.
6970 *
6971 * The most common failure here is just -ENOENT.
6972 */
6973 btrfs_del_orphan_item(trans, tree_root,
6974 root->root_key.objectid);
6975 }
6976 }
6977
6978 if (root->in_radix) {
6979 btrfs_free_fs_root(tree_root->fs_info, root);
6980 } else {
6981 free_extent_buffer(root->node);
6982 free_extent_buffer(root->commit_root);
6983 kfree(root);
6984 }
6985 out_end_trans:
6986 btrfs_end_transaction_throttle(trans, tree_root);
6987 out_free:
6988 kfree(wc);
6989 btrfs_free_path(path);
6990 out:
6991 if (err)
6992 btrfs_std_error(root->fs_info, err);
6993 return err;
6994 }
6995
6996 /*
6997 * drop subtree rooted at tree block 'node'.
6998 *
6999 * NOTE: this function will unlock and release tree block 'node'
7000 * only used by relocation code
7001 */
7002 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7003 struct btrfs_root *root,
7004 struct extent_buffer *node,
7005 struct extent_buffer *parent)
7006 {
7007 struct btrfs_path *path;
7008 struct walk_control *wc;
7009 int level;
7010 int parent_level;
7011 int ret = 0;
7012 int wret;
7013
7014 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7015
7016 path = btrfs_alloc_path();
7017 if (!path)
7018 return -ENOMEM;
7019
7020 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7021 if (!wc) {
7022 btrfs_free_path(path);
7023 return -ENOMEM;
7024 }
7025
7026 btrfs_assert_tree_locked(parent);
7027 parent_level = btrfs_header_level(parent);
7028 extent_buffer_get(parent);
7029 path->nodes[parent_level] = parent;
7030 path->slots[parent_level] = btrfs_header_nritems(parent);
7031
7032 btrfs_assert_tree_locked(node);
7033 level = btrfs_header_level(node);
7034 path->nodes[level] = node;
7035 path->slots[level] = 0;
7036 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7037
7038 wc->refs[parent_level] = 1;
7039 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7040 wc->level = level;
7041 wc->shared_level = -1;
7042 wc->stage = DROP_REFERENCE;
7043 wc->update_ref = 0;
7044 wc->keep_locks = 1;
7045 wc->for_reloc = 1;
7046 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7047
7048 while (1) {
7049 wret = walk_down_tree(trans, root, path, wc);
7050 if (wret < 0) {
7051 ret = wret;
7052 break;
7053 }
7054
7055 wret = walk_up_tree(trans, root, path, wc, parent_level);
7056 if (wret < 0)
7057 ret = wret;
7058 if (wret != 0)
7059 break;
7060 }
7061
7062 kfree(wc);
7063 btrfs_free_path(path);
7064 return ret;
7065 }
7066
7067 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7068 {
7069 u64 num_devices;
7070 u64 stripped;
7071
7072 /*
7073 * if restripe for this chunk_type is on pick target profile and
7074 * return, otherwise do the usual balance
7075 */
7076 stripped = get_restripe_target(root->fs_info, flags);
7077 if (stripped)
7078 return extended_to_chunk(stripped);
7079
7080 /*
7081 * we add in the count of missing devices because we want
7082 * to make sure that any RAID levels on a degraded FS
7083 * continue to be honored.
7084 */
7085 num_devices = root->fs_info->fs_devices->rw_devices +
7086 root->fs_info->fs_devices->missing_devices;
7087
7088 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7089 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7090
7091 if (num_devices == 1) {
7092 stripped |= BTRFS_BLOCK_GROUP_DUP;
7093 stripped = flags & ~stripped;
7094
7095 /* turn raid0 into single device chunks */
7096 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7097 return stripped;
7098
7099 /* turn mirroring into duplication */
7100 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7101 BTRFS_BLOCK_GROUP_RAID10))
7102 return stripped | BTRFS_BLOCK_GROUP_DUP;
7103 } else {
7104 /* they already had raid on here, just return */
7105 if (flags & stripped)
7106 return flags;
7107
7108 stripped |= BTRFS_BLOCK_GROUP_DUP;
7109 stripped = flags & ~stripped;
7110
7111 /* switch duplicated blocks with raid1 */
7112 if (flags & BTRFS_BLOCK_GROUP_DUP)
7113 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7114
7115 /* this is drive concat, leave it alone */
7116 }
7117
7118 return flags;
7119 }
7120
7121 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7122 {
7123 struct btrfs_space_info *sinfo = cache->space_info;
7124 u64 num_bytes;
7125 u64 min_allocable_bytes;
7126 int ret = -ENOSPC;
7127
7128
7129 /*
7130 * We need some metadata space and system metadata space for
7131 * allocating chunks in some corner cases until we force to set
7132 * it to be readonly.
7133 */
7134 if ((sinfo->flags &
7135 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7136 !force)
7137 min_allocable_bytes = 1 * 1024 * 1024;
7138 else
7139 min_allocable_bytes = 0;
7140
7141 spin_lock(&sinfo->lock);
7142 spin_lock(&cache->lock);
7143
7144 if (cache->ro) {
7145 ret = 0;
7146 goto out;
7147 }
7148
7149 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7150 cache->bytes_super - btrfs_block_group_used(&cache->item);
7151
7152 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7153 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7154 min_allocable_bytes <= sinfo->total_bytes) {
7155 sinfo->bytes_readonly += num_bytes;
7156 cache->ro = 1;
7157 ret = 0;
7158 }
7159 out:
7160 spin_unlock(&cache->lock);
7161 spin_unlock(&sinfo->lock);
7162 return ret;
7163 }
7164
7165 int btrfs_set_block_group_ro(struct btrfs_root *root,
7166 struct btrfs_block_group_cache *cache)
7167
7168 {
7169 struct btrfs_trans_handle *trans;
7170 u64 alloc_flags;
7171 int ret;
7172
7173 BUG_ON(cache->ro);
7174
7175 trans = btrfs_join_transaction(root);
7176 if (IS_ERR(trans))
7177 return PTR_ERR(trans);
7178
7179 alloc_flags = update_block_group_flags(root, cache->flags);
7180 if (alloc_flags != cache->flags) {
7181 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7182 CHUNK_ALLOC_FORCE);
7183 if (ret < 0)
7184 goto out;
7185 }
7186
7187 ret = set_block_group_ro(cache, 0);
7188 if (!ret)
7189 goto out;
7190 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7191 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7192 CHUNK_ALLOC_FORCE);
7193 if (ret < 0)
7194 goto out;
7195 ret = set_block_group_ro(cache, 0);
7196 out:
7197 btrfs_end_transaction(trans, root);
7198 return ret;
7199 }
7200
7201 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7202 struct btrfs_root *root, u64 type)
7203 {
7204 u64 alloc_flags = get_alloc_profile(root, type);
7205 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7206 CHUNK_ALLOC_FORCE);
7207 }
7208
7209 /*
7210 * helper to account the unused space of all the readonly block group in the
7211 * list. takes mirrors into account.
7212 */
7213 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7214 {
7215 struct btrfs_block_group_cache *block_group;
7216 u64 free_bytes = 0;
7217 int factor;
7218
7219 list_for_each_entry(block_group, groups_list, list) {
7220 spin_lock(&block_group->lock);
7221
7222 if (!block_group->ro) {
7223 spin_unlock(&block_group->lock);
7224 continue;
7225 }
7226
7227 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7228 BTRFS_BLOCK_GROUP_RAID10 |
7229 BTRFS_BLOCK_GROUP_DUP))
7230 factor = 2;
7231 else
7232 factor = 1;
7233
7234 free_bytes += (block_group->key.offset -
7235 btrfs_block_group_used(&block_group->item)) *
7236 factor;
7237
7238 spin_unlock(&block_group->lock);
7239 }
7240
7241 return free_bytes;
7242 }
7243
7244 /*
7245 * helper to account the unused space of all the readonly block group in the
7246 * space_info. takes mirrors into account.
7247 */
7248 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7249 {
7250 int i;
7251 u64 free_bytes = 0;
7252
7253 spin_lock(&sinfo->lock);
7254
7255 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7256 if (!list_empty(&sinfo->block_groups[i]))
7257 free_bytes += __btrfs_get_ro_block_group_free_space(
7258 &sinfo->block_groups[i]);
7259
7260 spin_unlock(&sinfo->lock);
7261
7262 return free_bytes;
7263 }
7264
7265 void btrfs_set_block_group_rw(struct btrfs_root *root,
7266 struct btrfs_block_group_cache *cache)
7267 {
7268 struct btrfs_space_info *sinfo = cache->space_info;
7269 u64 num_bytes;
7270
7271 BUG_ON(!cache->ro);
7272
7273 spin_lock(&sinfo->lock);
7274 spin_lock(&cache->lock);
7275 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7276 cache->bytes_super - btrfs_block_group_used(&cache->item);
7277 sinfo->bytes_readonly -= num_bytes;
7278 cache->ro = 0;
7279 spin_unlock(&cache->lock);
7280 spin_unlock(&sinfo->lock);
7281 }
7282
7283 /*
7284 * checks to see if its even possible to relocate this block group.
7285 *
7286 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7287 * ok to go ahead and try.
7288 */
7289 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7290 {
7291 struct btrfs_block_group_cache *block_group;
7292 struct btrfs_space_info *space_info;
7293 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7294 struct btrfs_device *device;
7295 u64 min_free;
7296 u64 dev_min = 1;
7297 u64 dev_nr = 0;
7298 u64 target;
7299 int index;
7300 int full = 0;
7301 int ret = 0;
7302
7303 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7304
7305 /* odd, couldn't find the block group, leave it alone */
7306 if (!block_group)
7307 return -1;
7308
7309 min_free = btrfs_block_group_used(&block_group->item);
7310
7311 /* no bytes used, we're good */
7312 if (!min_free)
7313 goto out;
7314
7315 space_info = block_group->space_info;
7316 spin_lock(&space_info->lock);
7317
7318 full = space_info->full;
7319
7320 /*
7321 * if this is the last block group we have in this space, we can't
7322 * relocate it unless we're able to allocate a new chunk below.
7323 *
7324 * Otherwise, we need to make sure we have room in the space to handle
7325 * all of the extents from this block group. If we can, we're good
7326 */
7327 if ((space_info->total_bytes != block_group->key.offset) &&
7328 (space_info->bytes_used + space_info->bytes_reserved +
7329 space_info->bytes_pinned + space_info->bytes_readonly +
7330 min_free < space_info->total_bytes)) {
7331 spin_unlock(&space_info->lock);
7332 goto out;
7333 }
7334 spin_unlock(&space_info->lock);
7335
7336 /*
7337 * ok we don't have enough space, but maybe we have free space on our
7338 * devices to allocate new chunks for relocation, so loop through our
7339 * alloc devices and guess if we have enough space. if this block
7340 * group is going to be restriped, run checks against the target
7341 * profile instead of the current one.
7342 */
7343 ret = -1;
7344
7345 /*
7346 * index:
7347 * 0: raid10
7348 * 1: raid1
7349 * 2: dup
7350 * 3: raid0
7351 * 4: single
7352 */
7353 target = get_restripe_target(root->fs_info, block_group->flags);
7354 if (target) {
7355 index = __get_block_group_index(extended_to_chunk(target));
7356 } else {
7357 /*
7358 * this is just a balance, so if we were marked as full
7359 * we know there is no space for a new chunk
7360 */
7361 if (full)
7362 goto out;
7363
7364 index = get_block_group_index(block_group);
7365 }
7366
7367 if (index == 0) {
7368 dev_min = 4;
7369 /* Divide by 2 */
7370 min_free >>= 1;
7371 } else if (index == 1) {
7372 dev_min = 2;
7373 } else if (index == 2) {
7374 /* Multiply by 2 */
7375 min_free <<= 1;
7376 } else if (index == 3) {
7377 dev_min = fs_devices->rw_devices;
7378 do_div(min_free, dev_min);
7379 }
7380
7381 mutex_lock(&root->fs_info->chunk_mutex);
7382 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7383 u64 dev_offset;
7384
7385 /*
7386 * check to make sure we can actually find a chunk with enough
7387 * space to fit our block group in.
7388 */
7389 if (device->total_bytes > device->bytes_used + min_free) {
7390 ret = find_free_dev_extent(device, min_free,
7391 &dev_offset, NULL);
7392 if (!ret)
7393 dev_nr++;
7394
7395 if (dev_nr >= dev_min)
7396 break;
7397
7398 ret = -1;
7399 }
7400 }
7401 mutex_unlock(&root->fs_info->chunk_mutex);
7402 out:
7403 btrfs_put_block_group(block_group);
7404 return ret;
7405 }
7406
7407 static int find_first_block_group(struct btrfs_root *root,
7408 struct btrfs_path *path, struct btrfs_key *key)
7409 {
7410 int ret = 0;
7411 struct btrfs_key found_key;
7412 struct extent_buffer *leaf;
7413 int slot;
7414
7415 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7416 if (ret < 0)
7417 goto out;
7418
7419 while (1) {
7420 slot = path->slots[0];
7421 leaf = path->nodes[0];
7422 if (slot >= btrfs_header_nritems(leaf)) {
7423 ret = btrfs_next_leaf(root, path);
7424 if (ret == 0)
7425 continue;
7426 if (ret < 0)
7427 goto out;
7428 break;
7429 }
7430 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7431
7432 if (found_key.objectid >= key->objectid &&
7433 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7434 ret = 0;
7435 goto out;
7436 }
7437 path->slots[0]++;
7438 }
7439 out:
7440 return ret;
7441 }
7442
7443 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7444 {
7445 struct btrfs_block_group_cache *block_group;
7446 u64 last = 0;
7447
7448 while (1) {
7449 struct inode *inode;
7450
7451 block_group = btrfs_lookup_first_block_group(info, last);
7452 while (block_group) {
7453 spin_lock(&block_group->lock);
7454 if (block_group->iref)
7455 break;
7456 spin_unlock(&block_group->lock);
7457 block_group = next_block_group(info->tree_root,
7458 block_group);
7459 }
7460 if (!block_group) {
7461 if (last == 0)
7462 break;
7463 last = 0;
7464 continue;
7465 }
7466
7467 inode = block_group->inode;
7468 block_group->iref = 0;
7469 block_group->inode = NULL;
7470 spin_unlock(&block_group->lock);
7471 iput(inode);
7472 last = block_group->key.objectid + block_group->key.offset;
7473 btrfs_put_block_group(block_group);
7474 }
7475 }
7476
7477 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7478 {
7479 struct btrfs_block_group_cache *block_group;
7480 struct btrfs_space_info *space_info;
7481 struct btrfs_caching_control *caching_ctl;
7482 struct rb_node *n;
7483
7484 down_write(&info->extent_commit_sem);
7485 while (!list_empty(&info->caching_block_groups)) {
7486 caching_ctl = list_entry(info->caching_block_groups.next,
7487 struct btrfs_caching_control, list);
7488 list_del(&caching_ctl->list);
7489 put_caching_control(caching_ctl);
7490 }
7491 up_write(&info->extent_commit_sem);
7492
7493 spin_lock(&info->block_group_cache_lock);
7494 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7495 block_group = rb_entry(n, struct btrfs_block_group_cache,
7496 cache_node);
7497 rb_erase(&block_group->cache_node,
7498 &info->block_group_cache_tree);
7499 spin_unlock(&info->block_group_cache_lock);
7500
7501 down_write(&block_group->space_info->groups_sem);
7502 list_del(&block_group->list);
7503 up_write(&block_group->space_info->groups_sem);
7504
7505 if (block_group->cached == BTRFS_CACHE_STARTED)
7506 wait_block_group_cache_done(block_group);
7507
7508 /*
7509 * We haven't cached this block group, which means we could
7510 * possibly have excluded extents on this block group.
7511 */
7512 if (block_group->cached == BTRFS_CACHE_NO)
7513 free_excluded_extents(info->extent_root, block_group);
7514
7515 btrfs_remove_free_space_cache(block_group);
7516 btrfs_put_block_group(block_group);
7517
7518 spin_lock(&info->block_group_cache_lock);
7519 }
7520 spin_unlock(&info->block_group_cache_lock);
7521
7522 /* now that all the block groups are freed, go through and
7523 * free all the space_info structs. This is only called during
7524 * the final stages of unmount, and so we know nobody is
7525 * using them. We call synchronize_rcu() once before we start,
7526 * just to be on the safe side.
7527 */
7528 synchronize_rcu();
7529
7530 release_global_block_rsv(info);
7531
7532 while(!list_empty(&info->space_info)) {
7533 space_info = list_entry(info->space_info.next,
7534 struct btrfs_space_info,
7535 list);
7536 if (space_info->bytes_pinned > 0 ||
7537 space_info->bytes_reserved > 0 ||
7538 space_info->bytes_may_use > 0) {
7539 WARN_ON(1);
7540 dump_space_info(space_info, 0, 0);
7541 }
7542 list_del(&space_info->list);
7543 kfree(space_info);
7544 }
7545 return 0;
7546 }
7547
7548 static void __link_block_group(struct btrfs_space_info *space_info,
7549 struct btrfs_block_group_cache *cache)
7550 {
7551 int index = get_block_group_index(cache);
7552
7553 down_write(&space_info->groups_sem);
7554 list_add_tail(&cache->list, &space_info->block_groups[index]);
7555 up_write(&space_info->groups_sem);
7556 }
7557
7558 int btrfs_read_block_groups(struct btrfs_root *root)
7559 {
7560 struct btrfs_path *path;
7561 int ret;
7562 struct btrfs_block_group_cache *cache;
7563 struct btrfs_fs_info *info = root->fs_info;
7564 struct btrfs_space_info *space_info;
7565 struct btrfs_key key;
7566 struct btrfs_key found_key;
7567 struct extent_buffer *leaf;
7568 int need_clear = 0;
7569 u64 cache_gen;
7570
7571 root = info->extent_root;
7572 key.objectid = 0;
7573 key.offset = 0;
7574 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7575 path = btrfs_alloc_path();
7576 if (!path)
7577 return -ENOMEM;
7578 path->reada = 1;
7579
7580 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7581 if (btrfs_test_opt(root, SPACE_CACHE) &&
7582 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7583 need_clear = 1;
7584 if (btrfs_test_opt(root, CLEAR_CACHE))
7585 need_clear = 1;
7586
7587 while (1) {
7588 ret = find_first_block_group(root, path, &key);
7589 if (ret > 0)
7590 break;
7591 if (ret != 0)
7592 goto error;
7593 leaf = path->nodes[0];
7594 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7595 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7596 if (!cache) {
7597 ret = -ENOMEM;
7598 goto error;
7599 }
7600 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7601 GFP_NOFS);
7602 if (!cache->free_space_ctl) {
7603 kfree(cache);
7604 ret = -ENOMEM;
7605 goto error;
7606 }
7607
7608 atomic_set(&cache->count, 1);
7609 spin_lock_init(&cache->lock);
7610 cache->fs_info = info;
7611 INIT_LIST_HEAD(&cache->list);
7612 INIT_LIST_HEAD(&cache->cluster_list);
7613
7614 if (need_clear)
7615 cache->disk_cache_state = BTRFS_DC_CLEAR;
7616
7617 read_extent_buffer(leaf, &cache->item,
7618 btrfs_item_ptr_offset(leaf, path->slots[0]),
7619 sizeof(cache->item));
7620 memcpy(&cache->key, &found_key, sizeof(found_key));
7621
7622 key.objectid = found_key.objectid + found_key.offset;
7623 btrfs_release_path(path);
7624 cache->flags = btrfs_block_group_flags(&cache->item);
7625 cache->sectorsize = root->sectorsize;
7626
7627 btrfs_init_free_space_ctl(cache);
7628
7629 /*
7630 * We need to exclude the super stripes now so that the space
7631 * info has super bytes accounted for, otherwise we'll think
7632 * we have more space than we actually do.
7633 */
7634 exclude_super_stripes(root, cache);
7635
7636 /*
7637 * check for two cases, either we are full, and therefore
7638 * don't need to bother with the caching work since we won't
7639 * find any space, or we are empty, and we can just add all
7640 * the space in and be done with it. This saves us _alot_ of
7641 * time, particularly in the full case.
7642 */
7643 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7644 cache->last_byte_to_unpin = (u64)-1;
7645 cache->cached = BTRFS_CACHE_FINISHED;
7646 free_excluded_extents(root, cache);
7647 } else if (btrfs_block_group_used(&cache->item) == 0) {
7648 cache->last_byte_to_unpin = (u64)-1;
7649 cache->cached = BTRFS_CACHE_FINISHED;
7650 add_new_free_space(cache, root->fs_info,
7651 found_key.objectid,
7652 found_key.objectid +
7653 found_key.offset);
7654 free_excluded_extents(root, cache);
7655 }
7656
7657 ret = update_space_info(info, cache->flags, found_key.offset,
7658 btrfs_block_group_used(&cache->item),
7659 &space_info);
7660 BUG_ON(ret); /* -ENOMEM */
7661 cache->space_info = space_info;
7662 spin_lock(&cache->space_info->lock);
7663 cache->space_info->bytes_readonly += cache->bytes_super;
7664 spin_unlock(&cache->space_info->lock);
7665
7666 __link_block_group(space_info, cache);
7667
7668 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7669 BUG_ON(ret); /* Logic error */
7670
7671 set_avail_alloc_bits(root->fs_info, cache->flags);
7672 if (btrfs_chunk_readonly(root, cache->key.objectid))
7673 set_block_group_ro(cache, 1);
7674 }
7675
7676 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7677 if (!(get_alloc_profile(root, space_info->flags) &
7678 (BTRFS_BLOCK_GROUP_RAID10 |
7679 BTRFS_BLOCK_GROUP_RAID1 |
7680 BTRFS_BLOCK_GROUP_DUP)))
7681 continue;
7682 /*
7683 * avoid allocating from un-mirrored block group if there are
7684 * mirrored block groups.
7685 */
7686 list_for_each_entry(cache, &space_info->block_groups[3], list)
7687 set_block_group_ro(cache, 1);
7688 list_for_each_entry(cache, &space_info->block_groups[4], list)
7689 set_block_group_ro(cache, 1);
7690 }
7691
7692 init_global_block_rsv(info);
7693 ret = 0;
7694 error:
7695 btrfs_free_path(path);
7696 return ret;
7697 }
7698
7699 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7700 struct btrfs_root *root, u64 bytes_used,
7701 u64 type, u64 chunk_objectid, u64 chunk_offset,
7702 u64 size)
7703 {
7704 int ret;
7705 struct btrfs_root *extent_root;
7706 struct btrfs_block_group_cache *cache;
7707
7708 extent_root = root->fs_info->extent_root;
7709
7710 root->fs_info->last_trans_log_full_commit = trans->transid;
7711
7712 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7713 if (!cache)
7714 return -ENOMEM;
7715 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7716 GFP_NOFS);
7717 if (!cache->free_space_ctl) {
7718 kfree(cache);
7719 return -ENOMEM;
7720 }
7721
7722 cache->key.objectid = chunk_offset;
7723 cache->key.offset = size;
7724 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7725 cache->sectorsize = root->sectorsize;
7726 cache->fs_info = root->fs_info;
7727
7728 atomic_set(&cache->count, 1);
7729 spin_lock_init(&cache->lock);
7730 INIT_LIST_HEAD(&cache->list);
7731 INIT_LIST_HEAD(&cache->cluster_list);
7732
7733 btrfs_init_free_space_ctl(cache);
7734
7735 btrfs_set_block_group_used(&cache->item, bytes_used);
7736 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7737 cache->flags = type;
7738 btrfs_set_block_group_flags(&cache->item, type);
7739
7740 cache->last_byte_to_unpin = (u64)-1;
7741 cache->cached = BTRFS_CACHE_FINISHED;
7742 exclude_super_stripes(root, cache);
7743
7744 add_new_free_space(cache, root->fs_info, chunk_offset,
7745 chunk_offset + size);
7746
7747 free_excluded_extents(root, cache);
7748
7749 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7750 &cache->space_info);
7751 BUG_ON(ret); /* -ENOMEM */
7752 update_global_block_rsv(root->fs_info);
7753
7754 spin_lock(&cache->space_info->lock);
7755 cache->space_info->bytes_readonly += cache->bytes_super;
7756 spin_unlock(&cache->space_info->lock);
7757
7758 __link_block_group(cache->space_info, cache);
7759
7760 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7761 BUG_ON(ret); /* Logic error */
7762
7763 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7764 sizeof(cache->item));
7765 if (ret) {
7766 btrfs_abort_transaction(trans, extent_root, ret);
7767 return ret;
7768 }
7769
7770 set_avail_alloc_bits(extent_root->fs_info, type);
7771
7772 return 0;
7773 }
7774
7775 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7776 {
7777 u64 extra_flags = chunk_to_extended(flags) &
7778 BTRFS_EXTENDED_PROFILE_MASK;
7779
7780 if (flags & BTRFS_BLOCK_GROUP_DATA)
7781 fs_info->avail_data_alloc_bits &= ~extra_flags;
7782 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7783 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7784 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7785 fs_info->avail_system_alloc_bits &= ~extra_flags;
7786 }
7787
7788 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7789 struct btrfs_root *root, u64 group_start)
7790 {
7791 struct btrfs_path *path;
7792 struct btrfs_block_group_cache *block_group;
7793 struct btrfs_free_cluster *cluster;
7794 struct btrfs_root *tree_root = root->fs_info->tree_root;
7795 struct btrfs_key key;
7796 struct inode *inode;
7797 int ret;
7798 int index;
7799 int factor;
7800
7801 root = root->fs_info->extent_root;
7802
7803 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7804 BUG_ON(!block_group);
7805 BUG_ON(!block_group->ro);
7806
7807 /*
7808 * Free the reserved super bytes from this block group before
7809 * remove it.
7810 */
7811 free_excluded_extents(root, block_group);
7812
7813 memcpy(&key, &block_group->key, sizeof(key));
7814 index = get_block_group_index(block_group);
7815 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7816 BTRFS_BLOCK_GROUP_RAID1 |
7817 BTRFS_BLOCK_GROUP_RAID10))
7818 factor = 2;
7819 else
7820 factor = 1;
7821
7822 /* make sure this block group isn't part of an allocation cluster */
7823 cluster = &root->fs_info->data_alloc_cluster;
7824 spin_lock(&cluster->refill_lock);
7825 btrfs_return_cluster_to_free_space(block_group, cluster);
7826 spin_unlock(&cluster->refill_lock);
7827
7828 /*
7829 * make sure this block group isn't part of a metadata
7830 * allocation cluster
7831 */
7832 cluster = &root->fs_info->meta_alloc_cluster;
7833 spin_lock(&cluster->refill_lock);
7834 btrfs_return_cluster_to_free_space(block_group, cluster);
7835 spin_unlock(&cluster->refill_lock);
7836
7837 path = btrfs_alloc_path();
7838 if (!path) {
7839 ret = -ENOMEM;
7840 goto out;
7841 }
7842
7843 inode = lookup_free_space_inode(tree_root, block_group, path);
7844 if (!IS_ERR(inode)) {
7845 ret = btrfs_orphan_add(trans, inode);
7846 if (ret) {
7847 btrfs_add_delayed_iput(inode);
7848 goto out;
7849 }
7850 clear_nlink(inode);
7851 /* One for the block groups ref */
7852 spin_lock(&block_group->lock);
7853 if (block_group->iref) {
7854 block_group->iref = 0;
7855 block_group->inode = NULL;
7856 spin_unlock(&block_group->lock);
7857 iput(inode);
7858 } else {
7859 spin_unlock(&block_group->lock);
7860 }
7861 /* One for our lookup ref */
7862 btrfs_add_delayed_iput(inode);
7863 }
7864
7865 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7866 key.offset = block_group->key.objectid;
7867 key.type = 0;
7868
7869 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7870 if (ret < 0)
7871 goto out;
7872 if (ret > 0)
7873 btrfs_release_path(path);
7874 if (ret == 0) {
7875 ret = btrfs_del_item(trans, tree_root, path);
7876 if (ret)
7877 goto out;
7878 btrfs_release_path(path);
7879 }
7880
7881 spin_lock(&root->fs_info->block_group_cache_lock);
7882 rb_erase(&block_group->cache_node,
7883 &root->fs_info->block_group_cache_tree);
7884 spin_unlock(&root->fs_info->block_group_cache_lock);
7885
7886 down_write(&block_group->space_info->groups_sem);
7887 /*
7888 * we must use list_del_init so people can check to see if they
7889 * are still on the list after taking the semaphore
7890 */
7891 list_del_init(&block_group->list);
7892 if (list_empty(&block_group->space_info->block_groups[index]))
7893 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7894 up_write(&block_group->space_info->groups_sem);
7895
7896 if (block_group->cached == BTRFS_CACHE_STARTED)
7897 wait_block_group_cache_done(block_group);
7898
7899 btrfs_remove_free_space_cache(block_group);
7900
7901 spin_lock(&block_group->space_info->lock);
7902 block_group->space_info->total_bytes -= block_group->key.offset;
7903 block_group->space_info->bytes_readonly -= block_group->key.offset;
7904 block_group->space_info->disk_total -= block_group->key.offset * factor;
7905 spin_unlock(&block_group->space_info->lock);
7906
7907 memcpy(&key, &block_group->key, sizeof(key));
7908
7909 btrfs_clear_space_info_full(root->fs_info);
7910
7911 btrfs_put_block_group(block_group);
7912 btrfs_put_block_group(block_group);
7913
7914 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7915 if (ret > 0)
7916 ret = -EIO;
7917 if (ret < 0)
7918 goto out;
7919
7920 ret = btrfs_del_item(trans, root, path);
7921 out:
7922 btrfs_free_path(path);
7923 return ret;
7924 }
7925
7926 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7927 {
7928 struct btrfs_space_info *space_info;
7929 struct btrfs_super_block *disk_super;
7930 u64 features;
7931 u64 flags;
7932 int mixed = 0;
7933 int ret;
7934
7935 disk_super = fs_info->super_copy;
7936 if (!btrfs_super_root(disk_super))
7937 return 1;
7938
7939 features = btrfs_super_incompat_flags(disk_super);
7940 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7941 mixed = 1;
7942
7943 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7944 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7945 if (ret)
7946 goto out;
7947
7948 if (mixed) {
7949 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7950 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7951 } else {
7952 flags = BTRFS_BLOCK_GROUP_METADATA;
7953 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7954 if (ret)
7955 goto out;
7956
7957 flags = BTRFS_BLOCK_GROUP_DATA;
7958 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7959 }
7960 out:
7961 return ret;
7962 }
7963
7964 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7965 {
7966 return unpin_extent_range(root, start, end);
7967 }
7968
7969 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7970 u64 num_bytes, u64 *actual_bytes)
7971 {
7972 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7973 }
7974
7975 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7976 {
7977 struct btrfs_fs_info *fs_info = root->fs_info;
7978 struct btrfs_block_group_cache *cache = NULL;
7979 u64 group_trimmed;
7980 u64 start;
7981 u64 end;
7982 u64 trimmed = 0;
7983 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
7984 int ret = 0;
7985
7986 /*
7987 * try to trim all FS space, our block group may start from non-zero.
7988 */
7989 if (range->len == total_bytes)
7990 cache = btrfs_lookup_first_block_group(fs_info, range->start);
7991 else
7992 cache = btrfs_lookup_block_group(fs_info, range->start);
7993
7994 while (cache) {
7995 if (cache->key.objectid >= (range->start + range->len)) {
7996 btrfs_put_block_group(cache);
7997 break;
7998 }
7999
8000 start = max(range->start, cache->key.objectid);
8001 end = min(range->start + range->len,
8002 cache->key.objectid + cache->key.offset);
8003
8004 if (end - start >= range->minlen) {
8005 if (!block_group_cache_done(cache)) {
8006 ret = cache_block_group(cache, NULL, root, 0);
8007 if (!ret)
8008 wait_block_group_cache_done(cache);
8009 }
8010 ret = btrfs_trim_block_group(cache,
8011 &group_trimmed,
8012 start,
8013 end,
8014 range->minlen);
8015
8016 trimmed += group_trimmed;
8017 if (ret) {
8018 btrfs_put_block_group(cache);
8019 break;
8020 }
8021 }
8022
8023 cache = next_block_group(fs_info->tree_root, cache);
8024 }
8025
8026 range->len = trimmed;
8027 return ret;
8028 }
This page took 0.846651 seconds and 6 git commands to generate.