Btrfs: fix -ENOSPC when finishing block group creation
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 if (locked_ref->is_data &&
2542 locked_ref->total_ref_mod < 0) {
2543 spin_lock(&delayed_refs->lock);
2544 delayed_refs->pending_csums -= ref->num_bytes;
2545 spin_unlock(&delayed_refs->lock);
2546 }
2547 btrfs_delayed_ref_unlock(locked_ref);
2548 locked_ref = NULL;
2549 }
2550 btrfs_put_delayed_ref(ref);
2551 count++;
2552 cond_resched();
2553 }
2554
2555 /*
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2559 */
2560 if (actual_count > 0) {
2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 u64 avg;
2563
2564 /*
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2567 */
2568 spin_lock(&delayed_refs->lock);
2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2571 spin_unlock(&delayed_refs->lock);
2572 }
2573 return 0;
2574 }
2575
2576 #ifdef SCRAMBLE_DELAYED_REFS
2577 /*
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2581 */
2582 static u64 find_middle(struct rb_root *root)
2583 {
2584 struct rb_node *n = root->rb_node;
2585 struct btrfs_delayed_ref_node *entry;
2586 int alt = 1;
2587 u64 middle;
2588 u64 first = 0, last = 0;
2589
2590 n = rb_first(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 first = entry->bytenr;
2594 }
2595 n = rb_last(root);
2596 if (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 last = entry->bytenr;
2599 }
2600 n = root->rb_node;
2601
2602 while (n) {
2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 WARN_ON(!entry->in_tree);
2605
2606 middle = entry->bytenr;
2607
2608 if (alt)
2609 n = n->rb_left;
2610 else
2611 n = n->rb_right;
2612
2613 alt = 1 - alt;
2614 }
2615 return middle;
2616 }
2617 #endif
2618
2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620 {
2621 u64 num_bytes;
2622
2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 sizeof(struct btrfs_extent_inline_ref));
2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627
2628 /*
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2631 */
2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2633 }
2634
2635 /*
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2638 */
2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2640 {
2641 u64 csum_size;
2642 u64 num_csums_per_leaf;
2643 u64 num_csums;
2644
2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 num_csums_per_leaf = div64_u64(csum_size,
2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 num_csums += num_csums_per_leaf - 1;
2650 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 return num_csums;
2652 }
2653
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655 struct btrfs_root *root)
2656 {
2657 struct btrfs_block_rsv *global_rsv;
2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 u64 num_bytes, num_dirty_bgs_bytes;
2662 int ret = 0;
2663
2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 num_heads = heads_to_leaves(root, num_heads);
2666 if (num_heads > 1)
2667 num_bytes += (num_heads - 1) * root->nodesize;
2668 num_bytes <<= 1;
2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 num_dirty_bgs);
2672 global_rsv = &root->fs_info->global_block_rsv;
2673
2674 /*
2675 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 * wiggle room since running delayed refs can create more delayed refs.
2677 */
2678 if (global_rsv->space_info->full) {
2679 num_dirty_bgs_bytes <<= 1;
2680 num_bytes <<= 1;
2681 }
2682
2683 spin_lock(&global_rsv->lock);
2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2685 ret = 1;
2686 spin_unlock(&global_rsv->lock);
2687 return ret;
2688 }
2689
2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root)
2692 {
2693 struct btrfs_fs_info *fs_info = root->fs_info;
2694 u64 num_entries =
2695 atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 u64 avg_runtime;
2697 u64 val;
2698
2699 smp_mb();
2700 avg_runtime = fs_info->avg_delayed_ref_runtime;
2701 val = num_entries * avg_runtime;
2702 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 return 1;
2704 if (val >= NSEC_PER_SEC / 2)
2705 return 2;
2706
2707 return btrfs_check_space_for_delayed_refs(trans, root);
2708 }
2709
2710 struct async_delayed_refs {
2711 struct btrfs_root *root;
2712 int count;
2713 int error;
2714 int sync;
2715 struct completion wait;
2716 struct btrfs_work work;
2717 };
2718
2719 static void delayed_ref_async_start(struct btrfs_work *work)
2720 {
2721 struct async_delayed_refs *async;
2722 struct btrfs_trans_handle *trans;
2723 int ret;
2724
2725 async = container_of(work, struct async_delayed_refs, work);
2726
2727 trans = btrfs_join_transaction(async->root);
2728 if (IS_ERR(trans)) {
2729 async->error = PTR_ERR(trans);
2730 goto done;
2731 }
2732
2733 /*
2734 * trans->sync means that when we call end_transaciton, we won't
2735 * wait on delayed refs
2736 */
2737 trans->sync = true;
2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 if (ret)
2740 async->error = ret;
2741
2742 ret = btrfs_end_transaction(trans, async->root);
2743 if (ret && !async->error)
2744 async->error = ret;
2745 done:
2746 if (async->sync)
2747 complete(&async->wait);
2748 else
2749 kfree(async);
2750 }
2751
2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 unsigned long count, int wait)
2754 {
2755 struct async_delayed_refs *async;
2756 int ret;
2757
2758 async = kmalloc(sizeof(*async), GFP_NOFS);
2759 if (!async)
2760 return -ENOMEM;
2761
2762 async->root = root->fs_info->tree_root;
2763 async->count = count;
2764 async->error = 0;
2765 if (wait)
2766 async->sync = 1;
2767 else
2768 async->sync = 0;
2769 init_completion(&async->wait);
2770
2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 delayed_ref_async_start, NULL, NULL);
2773
2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775
2776 if (wait) {
2777 wait_for_completion(&async->wait);
2778 ret = async->error;
2779 kfree(async);
2780 return ret;
2781 }
2782 return 0;
2783 }
2784
2785 /*
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far. count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
2791 *
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
2794 */
2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 struct btrfs_root *root, unsigned long count)
2797 {
2798 struct rb_node *node;
2799 struct btrfs_delayed_ref_root *delayed_refs;
2800 struct btrfs_delayed_ref_head *head;
2801 int ret;
2802 int run_all = count == (unsigned long)-1;
2803
2804 /* We'll clean this up in btrfs_cleanup_transaction */
2805 if (trans->aborted)
2806 return 0;
2807
2808 if (root == root->fs_info->extent_root)
2809 root = root->fs_info->tree_root;
2810
2811 delayed_refs = &trans->transaction->delayed_refs;
2812 if (count == 0)
2813 count = atomic_read(&delayed_refs->num_entries) * 2;
2814
2815 again:
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818 #endif
2819 ret = __btrfs_run_delayed_refs(trans, root, count);
2820 if (ret < 0) {
2821 btrfs_abort_transaction(trans, root, ret);
2822 return ret;
2823 }
2824
2825 if (run_all) {
2826 if (!list_empty(&trans->new_bgs))
2827 btrfs_create_pending_block_groups(trans, root);
2828
2829 spin_lock(&delayed_refs->lock);
2830 node = rb_first(&delayed_refs->href_root);
2831 if (!node) {
2832 spin_unlock(&delayed_refs->lock);
2833 goto out;
2834 }
2835 count = (unsigned long)-1;
2836
2837 while (node) {
2838 head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 href_node);
2840 if (btrfs_delayed_ref_is_head(&head->node)) {
2841 struct btrfs_delayed_ref_node *ref;
2842
2843 ref = &head->node;
2844 atomic_inc(&ref->refs);
2845
2846 spin_unlock(&delayed_refs->lock);
2847 /*
2848 * Mutex was contended, block until it's
2849 * released and try again
2850 */
2851 mutex_lock(&head->mutex);
2852 mutex_unlock(&head->mutex);
2853
2854 btrfs_put_delayed_ref(ref);
2855 cond_resched();
2856 goto again;
2857 } else {
2858 WARN_ON(1);
2859 }
2860 node = rb_next(node);
2861 }
2862 spin_unlock(&delayed_refs->lock);
2863 cond_resched();
2864 goto again;
2865 }
2866 out:
2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 if (ret)
2869 return ret;
2870 assert_qgroups_uptodate(trans);
2871 return 0;
2872 }
2873
2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 u64 bytenr, u64 num_bytes, u64 flags,
2877 int level, int is_data)
2878 {
2879 struct btrfs_delayed_extent_op *extent_op;
2880 int ret;
2881
2882 extent_op = btrfs_alloc_delayed_extent_op();
2883 if (!extent_op)
2884 return -ENOMEM;
2885
2886 extent_op->flags_to_set = flags;
2887 extent_op->update_flags = 1;
2888 extent_op->update_key = 0;
2889 extent_op->is_data = is_data ? 1 : 0;
2890 extent_op->level = level;
2891
2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 num_bytes, extent_op);
2894 if (ret)
2895 btrfs_free_delayed_extent_op(extent_op);
2896 return ret;
2897 }
2898
2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 struct btrfs_path *path,
2902 u64 objectid, u64 offset, u64 bytenr)
2903 {
2904 struct btrfs_delayed_ref_head *head;
2905 struct btrfs_delayed_ref_node *ref;
2906 struct btrfs_delayed_data_ref *data_ref;
2907 struct btrfs_delayed_ref_root *delayed_refs;
2908 struct rb_node *node;
2909 int ret = 0;
2910
2911 delayed_refs = &trans->transaction->delayed_refs;
2912 spin_lock(&delayed_refs->lock);
2913 head = btrfs_find_delayed_ref_head(trans, bytenr);
2914 if (!head) {
2915 spin_unlock(&delayed_refs->lock);
2916 return 0;
2917 }
2918
2919 if (!mutex_trylock(&head->mutex)) {
2920 atomic_inc(&head->node.refs);
2921 spin_unlock(&delayed_refs->lock);
2922
2923 btrfs_release_path(path);
2924
2925 /*
2926 * Mutex was contended, block until it's released and let
2927 * caller try again
2928 */
2929 mutex_lock(&head->mutex);
2930 mutex_unlock(&head->mutex);
2931 btrfs_put_delayed_ref(&head->node);
2932 return -EAGAIN;
2933 }
2934 spin_unlock(&delayed_refs->lock);
2935
2936 spin_lock(&head->lock);
2937 node = rb_first(&head->ref_root);
2938 while (node) {
2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 node = rb_next(node);
2941
2942 /* If it's a shared ref we know a cross reference exists */
2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 ret = 1;
2945 break;
2946 }
2947
2948 data_ref = btrfs_delayed_node_to_data_ref(ref);
2949
2950 /*
2951 * If our ref doesn't match the one we're currently looking at
2952 * then we have a cross reference.
2953 */
2954 if (data_ref->root != root->root_key.objectid ||
2955 data_ref->objectid != objectid ||
2956 data_ref->offset != offset) {
2957 ret = 1;
2958 break;
2959 }
2960 }
2961 spin_unlock(&head->lock);
2962 mutex_unlock(&head->mutex);
2963 return ret;
2964 }
2965
2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path,
2969 u64 objectid, u64 offset, u64 bytenr)
2970 {
2971 struct btrfs_root *extent_root = root->fs_info->extent_root;
2972 struct extent_buffer *leaf;
2973 struct btrfs_extent_data_ref *ref;
2974 struct btrfs_extent_inline_ref *iref;
2975 struct btrfs_extent_item *ei;
2976 struct btrfs_key key;
2977 u32 item_size;
2978 int ret;
2979
2980 key.objectid = bytenr;
2981 key.offset = (u64)-1;
2982 key.type = BTRFS_EXTENT_ITEM_KEY;
2983
2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 if (ret < 0)
2986 goto out;
2987 BUG_ON(ret == 0); /* Corruption */
2988
2989 ret = -ENOENT;
2990 if (path->slots[0] == 0)
2991 goto out;
2992
2993 path->slots[0]--;
2994 leaf = path->nodes[0];
2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2996
2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2998 goto out;
2999
3000 ret = 1;
3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 if (item_size < sizeof(*ei)) {
3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 goto out;
3006 }
3007 #endif
3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3009
3010 if (item_size != sizeof(*ei) +
3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 goto out;
3013
3014 if (btrfs_extent_generation(leaf, ei) <=
3015 btrfs_root_last_snapshot(&root->root_item))
3016 goto out;
3017
3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 BTRFS_EXTENT_DATA_REF_KEY)
3021 goto out;
3022
3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 if (btrfs_extent_refs(leaf, ei) !=
3025 btrfs_extent_data_ref_count(leaf, ref) ||
3026 btrfs_extent_data_ref_root(leaf, ref) !=
3027 root->root_key.objectid ||
3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 goto out;
3031
3032 ret = 0;
3033 out:
3034 return ret;
3035 }
3036
3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 struct btrfs_path *path;
3042 int ret;
3043 int ret2;
3044
3045 path = btrfs_alloc_path();
3046 if (!path)
3047 return -ENOENT;
3048
3049 do {
3050 ret = check_committed_ref(trans, root, path, objectid,
3051 offset, bytenr);
3052 if (ret && ret != -ENOENT)
3053 goto out;
3054
3055 ret2 = check_delayed_ref(trans, root, path, objectid,
3056 offset, bytenr);
3057 } while (ret2 == -EAGAIN);
3058
3059 if (ret2 && ret2 != -ENOENT) {
3060 ret = ret2;
3061 goto out;
3062 }
3063
3064 if (ret != -ENOENT || ret2 != -ENOENT)
3065 ret = 0;
3066 out:
3067 btrfs_free_path(path);
3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 WARN_ON(ret > 0);
3070 return ret;
3071 }
3072
3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3074 struct btrfs_root *root,
3075 struct extent_buffer *buf,
3076 int full_backref, int inc)
3077 {
3078 u64 bytenr;
3079 u64 num_bytes;
3080 u64 parent;
3081 u64 ref_root;
3082 u32 nritems;
3083 struct btrfs_key key;
3084 struct btrfs_file_extent_item *fi;
3085 int i;
3086 int level;
3087 int ret = 0;
3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3089 u64, u64, u64, u64, u64, u64, int);
3090
3091
3092 if (btrfs_test_is_dummy_root(root))
3093 return 0;
3094
3095 ref_root = btrfs_header_owner(buf);
3096 nritems = btrfs_header_nritems(buf);
3097 level = btrfs_header_level(buf);
3098
3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3100 return 0;
3101
3102 if (inc)
3103 process_func = btrfs_inc_extent_ref;
3104 else
3105 process_func = btrfs_free_extent;
3106
3107 if (full_backref)
3108 parent = buf->start;
3109 else
3110 parent = 0;
3111
3112 for (i = 0; i < nritems; i++) {
3113 if (level == 0) {
3114 btrfs_item_key_to_cpu(buf, &key, i);
3115 if (key.type != BTRFS_EXTENT_DATA_KEY)
3116 continue;
3117 fi = btrfs_item_ptr(buf, i,
3118 struct btrfs_file_extent_item);
3119 if (btrfs_file_extent_type(buf, fi) ==
3120 BTRFS_FILE_EXTENT_INLINE)
3121 continue;
3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 if (bytenr == 0)
3124 continue;
3125
3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 key.offset -= btrfs_file_extent_offset(buf, fi);
3128 ret = process_func(trans, root, bytenr, num_bytes,
3129 parent, ref_root, key.objectid,
3130 key.offset, 1);
3131 if (ret)
3132 goto fail;
3133 } else {
3134 bytenr = btrfs_node_blockptr(buf, i);
3135 num_bytes = root->nodesize;
3136 ret = process_func(trans, root, bytenr, num_bytes,
3137 parent, ref_root, level - 1, 0,
3138 1);
3139 if (ret)
3140 goto fail;
3141 }
3142 }
3143 return 0;
3144 fail:
3145 return ret;
3146 }
3147
3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3149 struct extent_buffer *buf, int full_backref)
3150 {
3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3152 }
3153
3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3155 struct extent_buffer *buf, int full_backref)
3156 {
3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3158 }
3159
3160 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 struct btrfs_path *path,
3163 struct btrfs_block_group_cache *cache)
3164 {
3165 int ret;
3166 struct btrfs_root *extent_root = root->fs_info->extent_root;
3167 unsigned long bi;
3168 struct extent_buffer *leaf;
3169
3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3171 if (ret) {
3172 if (ret > 0)
3173 ret = -ENOENT;
3174 goto fail;
3175 }
3176
3177 leaf = path->nodes[0];
3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 btrfs_mark_buffer_dirty(leaf);
3181 fail:
3182 btrfs_release_path(path);
3183 return ret;
3184
3185 }
3186
3187 static struct btrfs_block_group_cache *
3188 next_block_group(struct btrfs_root *root,
3189 struct btrfs_block_group_cache *cache)
3190 {
3191 struct rb_node *node;
3192
3193 spin_lock(&root->fs_info->block_group_cache_lock);
3194
3195 /* If our block group was removed, we need a full search. */
3196 if (RB_EMPTY_NODE(&cache->cache_node)) {
3197 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3198
3199 spin_unlock(&root->fs_info->block_group_cache_lock);
3200 btrfs_put_block_group(cache);
3201 cache = btrfs_lookup_first_block_group(root->fs_info,
3202 next_bytenr);
3203 return cache;
3204 }
3205 node = rb_next(&cache->cache_node);
3206 btrfs_put_block_group(cache);
3207 if (node) {
3208 cache = rb_entry(node, struct btrfs_block_group_cache,
3209 cache_node);
3210 btrfs_get_block_group(cache);
3211 } else
3212 cache = NULL;
3213 spin_unlock(&root->fs_info->block_group_cache_lock);
3214 return cache;
3215 }
3216
3217 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3218 struct btrfs_trans_handle *trans,
3219 struct btrfs_path *path)
3220 {
3221 struct btrfs_root *root = block_group->fs_info->tree_root;
3222 struct inode *inode = NULL;
3223 u64 alloc_hint = 0;
3224 int dcs = BTRFS_DC_ERROR;
3225 u64 num_pages = 0;
3226 int retries = 0;
3227 int ret = 0;
3228
3229 /*
3230 * If this block group is smaller than 100 megs don't bother caching the
3231 * block group.
3232 */
3233 if (block_group->key.offset < (100 * 1024 * 1024)) {
3234 spin_lock(&block_group->lock);
3235 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3236 spin_unlock(&block_group->lock);
3237 return 0;
3238 }
3239
3240 if (trans->aborted)
3241 return 0;
3242 again:
3243 inode = lookup_free_space_inode(root, block_group, path);
3244 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3245 ret = PTR_ERR(inode);
3246 btrfs_release_path(path);
3247 goto out;
3248 }
3249
3250 if (IS_ERR(inode)) {
3251 BUG_ON(retries);
3252 retries++;
3253
3254 if (block_group->ro)
3255 goto out_free;
3256
3257 ret = create_free_space_inode(root, trans, block_group, path);
3258 if (ret)
3259 goto out_free;
3260 goto again;
3261 }
3262
3263 /* We've already setup this transaction, go ahead and exit */
3264 if (block_group->cache_generation == trans->transid &&
3265 i_size_read(inode)) {
3266 dcs = BTRFS_DC_SETUP;
3267 goto out_put;
3268 }
3269
3270 /*
3271 * We want to set the generation to 0, that way if anything goes wrong
3272 * from here on out we know not to trust this cache when we load up next
3273 * time.
3274 */
3275 BTRFS_I(inode)->generation = 0;
3276 ret = btrfs_update_inode(trans, root, inode);
3277 if (ret) {
3278 /*
3279 * So theoretically we could recover from this, simply set the
3280 * super cache generation to 0 so we know to invalidate the
3281 * cache, but then we'd have to keep track of the block groups
3282 * that fail this way so we know we _have_ to reset this cache
3283 * before the next commit or risk reading stale cache. So to
3284 * limit our exposure to horrible edge cases lets just abort the
3285 * transaction, this only happens in really bad situations
3286 * anyway.
3287 */
3288 btrfs_abort_transaction(trans, root, ret);
3289 goto out_put;
3290 }
3291 WARN_ON(ret);
3292
3293 if (i_size_read(inode) > 0) {
3294 ret = btrfs_check_trunc_cache_free_space(root,
3295 &root->fs_info->global_block_rsv);
3296 if (ret)
3297 goto out_put;
3298
3299 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3300 if (ret)
3301 goto out_put;
3302 }
3303
3304 spin_lock(&block_group->lock);
3305 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3306 !btrfs_test_opt(root, SPACE_CACHE)) {
3307 /*
3308 * don't bother trying to write stuff out _if_
3309 * a) we're not cached,
3310 * b) we're with nospace_cache mount option.
3311 */
3312 dcs = BTRFS_DC_WRITTEN;
3313 spin_unlock(&block_group->lock);
3314 goto out_put;
3315 }
3316 spin_unlock(&block_group->lock);
3317
3318 /*
3319 * Try to preallocate enough space based on how big the block group is.
3320 * Keep in mind this has to include any pinned space which could end up
3321 * taking up quite a bit since it's not folded into the other space
3322 * cache.
3323 */
3324 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3325 if (!num_pages)
3326 num_pages = 1;
3327
3328 num_pages *= 16;
3329 num_pages *= PAGE_CACHE_SIZE;
3330
3331 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3332 if (ret)
3333 goto out_put;
3334
3335 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3336 num_pages, num_pages,
3337 &alloc_hint);
3338 if (!ret)
3339 dcs = BTRFS_DC_SETUP;
3340 btrfs_free_reserved_data_space(inode, num_pages);
3341
3342 out_put:
3343 iput(inode);
3344 out_free:
3345 btrfs_release_path(path);
3346 out:
3347 spin_lock(&block_group->lock);
3348 if (!ret && dcs == BTRFS_DC_SETUP)
3349 block_group->cache_generation = trans->transid;
3350 block_group->disk_cache_state = dcs;
3351 spin_unlock(&block_group->lock);
3352
3353 return ret;
3354 }
3355
3356 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3357 struct btrfs_root *root)
3358 {
3359 struct btrfs_block_group_cache *cache, *tmp;
3360 struct btrfs_transaction *cur_trans = trans->transaction;
3361 struct btrfs_path *path;
3362
3363 if (list_empty(&cur_trans->dirty_bgs) ||
3364 !btrfs_test_opt(root, SPACE_CACHE))
3365 return 0;
3366
3367 path = btrfs_alloc_path();
3368 if (!path)
3369 return -ENOMEM;
3370
3371 /* Could add new block groups, use _safe just in case */
3372 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3373 dirty_list) {
3374 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3375 cache_save_setup(cache, trans, path);
3376 }
3377
3378 btrfs_free_path(path);
3379 return 0;
3380 }
3381
3382 /*
3383 * transaction commit does final block group cache writeback during a
3384 * critical section where nothing is allowed to change the FS. This is
3385 * required in order for the cache to actually match the block group,
3386 * but can introduce a lot of latency into the commit.
3387 *
3388 * So, btrfs_start_dirty_block_groups is here to kick off block group
3389 * cache IO. There's a chance we'll have to redo some of it if the
3390 * block group changes again during the commit, but it greatly reduces
3391 * the commit latency by getting rid of the easy block groups while
3392 * we're still allowing others to join the commit.
3393 */
3394 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3395 struct btrfs_root *root)
3396 {
3397 struct btrfs_block_group_cache *cache;
3398 struct btrfs_transaction *cur_trans = trans->transaction;
3399 int ret = 0;
3400 int should_put;
3401 struct btrfs_path *path = NULL;
3402 LIST_HEAD(dirty);
3403 struct list_head *io = &cur_trans->io_bgs;
3404 int num_started = 0;
3405 int loops = 0;
3406
3407 spin_lock(&cur_trans->dirty_bgs_lock);
3408 if (list_empty(&cur_trans->dirty_bgs)) {
3409 spin_unlock(&cur_trans->dirty_bgs_lock);
3410 return 0;
3411 }
3412 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3413 spin_unlock(&cur_trans->dirty_bgs_lock);
3414
3415 again:
3416 /*
3417 * make sure all the block groups on our dirty list actually
3418 * exist
3419 */
3420 btrfs_create_pending_block_groups(trans, root);
3421
3422 if (!path) {
3423 path = btrfs_alloc_path();
3424 if (!path)
3425 return -ENOMEM;
3426 }
3427
3428 /*
3429 * cache_write_mutex is here only to save us from balance or automatic
3430 * removal of empty block groups deleting this block group while we are
3431 * writing out the cache
3432 */
3433 mutex_lock(&trans->transaction->cache_write_mutex);
3434 while (!list_empty(&dirty)) {
3435 cache = list_first_entry(&dirty,
3436 struct btrfs_block_group_cache,
3437 dirty_list);
3438 /*
3439 * this can happen if something re-dirties a block
3440 * group that is already under IO. Just wait for it to
3441 * finish and then do it all again
3442 */
3443 if (!list_empty(&cache->io_list)) {
3444 list_del_init(&cache->io_list);
3445 btrfs_wait_cache_io(root, trans, cache,
3446 &cache->io_ctl, path,
3447 cache->key.objectid);
3448 btrfs_put_block_group(cache);
3449 }
3450
3451
3452 /*
3453 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3454 * if it should update the cache_state. Don't delete
3455 * until after we wait.
3456 *
3457 * Since we're not running in the commit critical section
3458 * we need the dirty_bgs_lock to protect from update_block_group
3459 */
3460 spin_lock(&cur_trans->dirty_bgs_lock);
3461 list_del_init(&cache->dirty_list);
3462 spin_unlock(&cur_trans->dirty_bgs_lock);
3463
3464 should_put = 1;
3465
3466 cache_save_setup(cache, trans, path);
3467
3468 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3469 cache->io_ctl.inode = NULL;
3470 ret = btrfs_write_out_cache(root, trans, cache, path);
3471 if (ret == 0 && cache->io_ctl.inode) {
3472 num_started++;
3473 should_put = 0;
3474
3475 /*
3476 * the cache_write_mutex is protecting
3477 * the io_list
3478 */
3479 list_add_tail(&cache->io_list, io);
3480 } else {
3481 /*
3482 * if we failed to write the cache, the
3483 * generation will be bad and life goes on
3484 */
3485 ret = 0;
3486 }
3487 }
3488 if (!ret) {
3489 ret = write_one_cache_group(trans, root, path, cache);
3490 /*
3491 * Our block group might still be attached to the list
3492 * of new block groups in the transaction handle of some
3493 * other task (struct btrfs_trans_handle->new_bgs). This
3494 * means its block group item isn't yet in the extent
3495 * tree. If this happens ignore the error, as we will
3496 * try again later in the critical section of the
3497 * transaction commit.
3498 */
3499 if (ret == -ENOENT) {
3500 ret = 0;
3501 spin_lock(&cur_trans->dirty_bgs_lock);
3502 if (list_empty(&cache->dirty_list)) {
3503 list_add_tail(&cache->dirty_list,
3504 &cur_trans->dirty_bgs);
3505 btrfs_get_block_group(cache);
3506 }
3507 spin_unlock(&cur_trans->dirty_bgs_lock);
3508 } else if (ret) {
3509 btrfs_abort_transaction(trans, root, ret);
3510 }
3511 }
3512
3513 /* if its not on the io list, we need to put the block group */
3514 if (should_put)
3515 btrfs_put_block_group(cache);
3516
3517 if (ret)
3518 break;
3519
3520 /*
3521 * Avoid blocking other tasks for too long. It might even save
3522 * us from writing caches for block groups that are going to be
3523 * removed.
3524 */
3525 mutex_unlock(&trans->transaction->cache_write_mutex);
3526 mutex_lock(&trans->transaction->cache_write_mutex);
3527 }
3528 mutex_unlock(&trans->transaction->cache_write_mutex);
3529
3530 /*
3531 * go through delayed refs for all the stuff we've just kicked off
3532 * and then loop back (just once)
3533 */
3534 ret = btrfs_run_delayed_refs(trans, root, 0);
3535 if (!ret && loops == 0) {
3536 loops++;
3537 spin_lock(&cur_trans->dirty_bgs_lock);
3538 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3539 /*
3540 * dirty_bgs_lock protects us from concurrent block group
3541 * deletes too (not just cache_write_mutex).
3542 */
3543 if (!list_empty(&dirty)) {
3544 spin_unlock(&cur_trans->dirty_bgs_lock);
3545 goto again;
3546 }
3547 spin_unlock(&cur_trans->dirty_bgs_lock);
3548 }
3549
3550 btrfs_free_path(path);
3551 return ret;
3552 }
3553
3554 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3555 struct btrfs_root *root)
3556 {
3557 struct btrfs_block_group_cache *cache;
3558 struct btrfs_transaction *cur_trans = trans->transaction;
3559 int ret = 0;
3560 int should_put;
3561 struct btrfs_path *path;
3562 struct list_head *io = &cur_trans->io_bgs;
3563 int num_started = 0;
3564
3565 path = btrfs_alloc_path();
3566 if (!path)
3567 return -ENOMEM;
3568
3569 /*
3570 * We don't need the lock here since we are protected by the transaction
3571 * commit. We want to do the cache_save_setup first and then run the
3572 * delayed refs to make sure we have the best chance at doing this all
3573 * in one shot.
3574 */
3575 while (!list_empty(&cur_trans->dirty_bgs)) {
3576 cache = list_first_entry(&cur_trans->dirty_bgs,
3577 struct btrfs_block_group_cache,
3578 dirty_list);
3579
3580 /*
3581 * this can happen if cache_save_setup re-dirties a block
3582 * group that is already under IO. Just wait for it to
3583 * finish and then do it all again
3584 */
3585 if (!list_empty(&cache->io_list)) {
3586 list_del_init(&cache->io_list);
3587 btrfs_wait_cache_io(root, trans, cache,
3588 &cache->io_ctl, path,
3589 cache->key.objectid);
3590 btrfs_put_block_group(cache);
3591 }
3592
3593 /*
3594 * don't remove from the dirty list until after we've waited
3595 * on any pending IO
3596 */
3597 list_del_init(&cache->dirty_list);
3598 should_put = 1;
3599
3600 cache_save_setup(cache, trans, path);
3601
3602 if (!ret)
3603 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3604
3605 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3606 cache->io_ctl.inode = NULL;
3607 ret = btrfs_write_out_cache(root, trans, cache, path);
3608 if (ret == 0 && cache->io_ctl.inode) {
3609 num_started++;
3610 should_put = 0;
3611 list_add_tail(&cache->io_list, io);
3612 } else {
3613 /*
3614 * if we failed to write the cache, the
3615 * generation will be bad and life goes on
3616 */
3617 ret = 0;
3618 }
3619 }
3620 if (!ret) {
3621 ret = write_one_cache_group(trans, root, path, cache);
3622 if (ret)
3623 btrfs_abort_transaction(trans, root, ret);
3624 }
3625
3626 /* if its not on the io list, we need to put the block group */
3627 if (should_put)
3628 btrfs_put_block_group(cache);
3629 }
3630
3631 while (!list_empty(io)) {
3632 cache = list_first_entry(io, struct btrfs_block_group_cache,
3633 io_list);
3634 list_del_init(&cache->io_list);
3635 btrfs_wait_cache_io(root, trans, cache,
3636 &cache->io_ctl, path, cache->key.objectid);
3637 btrfs_put_block_group(cache);
3638 }
3639
3640 btrfs_free_path(path);
3641 return ret;
3642 }
3643
3644 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3645 {
3646 struct btrfs_block_group_cache *block_group;
3647 int readonly = 0;
3648
3649 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3650 if (!block_group || block_group->ro)
3651 readonly = 1;
3652 if (block_group)
3653 btrfs_put_block_group(block_group);
3654 return readonly;
3655 }
3656
3657 static const char *alloc_name(u64 flags)
3658 {
3659 switch (flags) {
3660 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3661 return "mixed";
3662 case BTRFS_BLOCK_GROUP_METADATA:
3663 return "metadata";
3664 case BTRFS_BLOCK_GROUP_DATA:
3665 return "data";
3666 case BTRFS_BLOCK_GROUP_SYSTEM:
3667 return "system";
3668 default:
3669 WARN_ON(1);
3670 return "invalid-combination";
3671 };
3672 }
3673
3674 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3675 u64 total_bytes, u64 bytes_used,
3676 struct btrfs_space_info **space_info)
3677 {
3678 struct btrfs_space_info *found;
3679 int i;
3680 int factor;
3681 int ret;
3682
3683 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3684 BTRFS_BLOCK_GROUP_RAID10))
3685 factor = 2;
3686 else
3687 factor = 1;
3688
3689 found = __find_space_info(info, flags);
3690 if (found) {
3691 spin_lock(&found->lock);
3692 found->total_bytes += total_bytes;
3693 found->disk_total += total_bytes * factor;
3694 found->bytes_used += bytes_used;
3695 found->disk_used += bytes_used * factor;
3696 if (total_bytes > 0)
3697 found->full = 0;
3698 spin_unlock(&found->lock);
3699 *space_info = found;
3700 return 0;
3701 }
3702 found = kzalloc(sizeof(*found), GFP_NOFS);
3703 if (!found)
3704 return -ENOMEM;
3705
3706 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3707 if (ret) {
3708 kfree(found);
3709 return ret;
3710 }
3711
3712 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3713 INIT_LIST_HEAD(&found->block_groups[i]);
3714 init_rwsem(&found->groups_sem);
3715 spin_lock_init(&found->lock);
3716 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3717 found->total_bytes = total_bytes;
3718 found->disk_total = total_bytes * factor;
3719 found->bytes_used = bytes_used;
3720 found->disk_used = bytes_used * factor;
3721 found->bytes_pinned = 0;
3722 found->bytes_reserved = 0;
3723 found->bytes_readonly = 0;
3724 found->bytes_may_use = 0;
3725 if (total_bytes > 0)
3726 found->full = 0;
3727 else
3728 found->full = 1;
3729 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3730 found->chunk_alloc = 0;
3731 found->flush = 0;
3732 init_waitqueue_head(&found->wait);
3733 INIT_LIST_HEAD(&found->ro_bgs);
3734
3735 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3736 info->space_info_kobj, "%s",
3737 alloc_name(found->flags));
3738 if (ret) {
3739 kfree(found);
3740 return ret;
3741 }
3742
3743 *space_info = found;
3744 list_add_rcu(&found->list, &info->space_info);
3745 if (flags & BTRFS_BLOCK_GROUP_DATA)
3746 info->data_sinfo = found;
3747
3748 return ret;
3749 }
3750
3751 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3752 {
3753 u64 extra_flags = chunk_to_extended(flags) &
3754 BTRFS_EXTENDED_PROFILE_MASK;
3755
3756 write_seqlock(&fs_info->profiles_lock);
3757 if (flags & BTRFS_BLOCK_GROUP_DATA)
3758 fs_info->avail_data_alloc_bits |= extra_flags;
3759 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3760 fs_info->avail_metadata_alloc_bits |= extra_flags;
3761 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3762 fs_info->avail_system_alloc_bits |= extra_flags;
3763 write_sequnlock(&fs_info->profiles_lock);
3764 }
3765
3766 /*
3767 * returns target flags in extended format or 0 if restripe for this
3768 * chunk_type is not in progress
3769 *
3770 * should be called with either volume_mutex or balance_lock held
3771 */
3772 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3773 {
3774 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3775 u64 target = 0;
3776
3777 if (!bctl)
3778 return 0;
3779
3780 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3781 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3782 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3783 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3784 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3785 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3786 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3787 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3788 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3789 }
3790
3791 return target;
3792 }
3793
3794 /*
3795 * @flags: available profiles in extended format (see ctree.h)
3796 *
3797 * Returns reduced profile in chunk format. If profile changing is in
3798 * progress (either running or paused) picks the target profile (if it's
3799 * already available), otherwise falls back to plain reducing.
3800 */
3801 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3802 {
3803 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3804 u64 target;
3805 u64 tmp;
3806
3807 /*
3808 * see if restripe for this chunk_type is in progress, if so
3809 * try to reduce to the target profile
3810 */
3811 spin_lock(&root->fs_info->balance_lock);
3812 target = get_restripe_target(root->fs_info, flags);
3813 if (target) {
3814 /* pick target profile only if it's already available */
3815 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3816 spin_unlock(&root->fs_info->balance_lock);
3817 return extended_to_chunk(target);
3818 }
3819 }
3820 spin_unlock(&root->fs_info->balance_lock);
3821
3822 /* First, mask out the RAID levels which aren't possible */
3823 if (num_devices == 1)
3824 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3825 BTRFS_BLOCK_GROUP_RAID5);
3826 if (num_devices < 3)
3827 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3828 if (num_devices < 4)
3829 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3830
3831 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3832 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3833 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3834 flags &= ~tmp;
3835
3836 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3837 tmp = BTRFS_BLOCK_GROUP_RAID6;
3838 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3839 tmp = BTRFS_BLOCK_GROUP_RAID5;
3840 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3841 tmp = BTRFS_BLOCK_GROUP_RAID10;
3842 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3843 tmp = BTRFS_BLOCK_GROUP_RAID1;
3844 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3845 tmp = BTRFS_BLOCK_GROUP_RAID0;
3846
3847 return extended_to_chunk(flags | tmp);
3848 }
3849
3850 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3851 {
3852 unsigned seq;
3853 u64 flags;
3854
3855 do {
3856 flags = orig_flags;
3857 seq = read_seqbegin(&root->fs_info->profiles_lock);
3858
3859 if (flags & BTRFS_BLOCK_GROUP_DATA)
3860 flags |= root->fs_info->avail_data_alloc_bits;
3861 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3862 flags |= root->fs_info->avail_system_alloc_bits;
3863 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3864 flags |= root->fs_info->avail_metadata_alloc_bits;
3865 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3866
3867 return btrfs_reduce_alloc_profile(root, flags);
3868 }
3869
3870 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3871 {
3872 u64 flags;
3873 u64 ret;
3874
3875 if (data)
3876 flags = BTRFS_BLOCK_GROUP_DATA;
3877 else if (root == root->fs_info->chunk_root)
3878 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3879 else
3880 flags = BTRFS_BLOCK_GROUP_METADATA;
3881
3882 ret = get_alloc_profile(root, flags);
3883 return ret;
3884 }
3885
3886 /*
3887 * This will check the space that the inode allocates from to make sure we have
3888 * enough space for bytes.
3889 */
3890 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3891 {
3892 struct btrfs_space_info *data_sinfo;
3893 struct btrfs_root *root = BTRFS_I(inode)->root;
3894 struct btrfs_fs_info *fs_info = root->fs_info;
3895 u64 used;
3896 int ret = 0;
3897 int need_commit = 2;
3898 int have_pinned_space;
3899
3900 /* make sure bytes are sectorsize aligned */
3901 bytes = ALIGN(bytes, root->sectorsize);
3902
3903 if (btrfs_is_free_space_inode(inode)) {
3904 need_commit = 0;
3905 ASSERT(current->journal_info);
3906 }
3907
3908 data_sinfo = fs_info->data_sinfo;
3909 if (!data_sinfo)
3910 goto alloc;
3911
3912 again:
3913 /* make sure we have enough space to handle the data first */
3914 spin_lock(&data_sinfo->lock);
3915 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3916 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3917 data_sinfo->bytes_may_use;
3918
3919 if (used + bytes > data_sinfo->total_bytes) {
3920 struct btrfs_trans_handle *trans;
3921
3922 /*
3923 * if we don't have enough free bytes in this space then we need
3924 * to alloc a new chunk.
3925 */
3926 if (!data_sinfo->full) {
3927 u64 alloc_target;
3928
3929 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3930 spin_unlock(&data_sinfo->lock);
3931 alloc:
3932 alloc_target = btrfs_get_alloc_profile(root, 1);
3933 /*
3934 * It is ugly that we don't call nolock join
3935 * transaction for the free space inode case here.
3936 * But it is safe because we only do the data space
3937 * reservation for the free space cache in the
3938 * transaction context, the common join transaction
3939 * just increase the counter of the current transaction
3940 * handler, doesn't try to acquire the trans_lock of
3941 * the fs.
3942 */
3943 trans = btrfs_join_transaction(root);
3944 if (IS_ERR(trans))
3945 return PTR_ERR(trans);
3946
3947 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3948 alloc_target,
3949 CHUNK_ALLOC_NO_FORCE);
3950 btrfs_end_transaction(trans, root);
3951 if (ret < 0) {
3952 if (ret != -ENOSPC)
3953 return ret;
3954 else {
3955 have_pinned_space = 1;
3956 goto commit_trans;
3957 }
3958 }
3959
3960 if (!data_sinfo)
3961 data_sinfo = fs_info->data_sinfo;
3962
3963 goto again;
3964 }
3965
3966 /*
3967 * If we don't have enough pinned space to deal with this
3968 * allocation, and no removed chunk in current transaction,
3969 * don't bother committing the transaction.
3970 */
3971 have_pinned_space = percpu_counter_compare(
3972 &data_sinfo->total_bytes_pinned,
3973 used + bytes - data_sinfo->total_bytes);
3974 spin_unlock(&data_sinfo->lock);
3975
3976 /* commit the current transaction and try again */
3977 commit_trans:
3978 if (need_commit &&
3979 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3980 need_commit--;
3981
3982 trans = btrfs_join_transaction(root);
3983 if (IS_ERR(trans))
3984 return PTR_ERR(trans);
3985 if (have_pinned_space >= 0 ||
3986 trans->transaction->have_free_bgs ||
3987 need_commit > 0) {
3988 ret = btrfs_commit_transaction(trans, root);
3989 if (ret)
3990 return ret;
3991 /*
3992 * make sure that all running delayed iput are
3993 * done
3994 */
3995 down_write(&root->fs_info->delayed_iput_sem);
3996 up_write(&root->fs_info->delayed_iput_sem);
3997 goto again;
3998 } else {
3999 btrfs_end_transaction(trans, root);
4000 }
4001 }
4002
4003 trace_btrfs_space_reservation(root->fs_info,
4004 "space_info:enospc",
4005 data_sinfo->flags, bytes, 1);
4006 return -ENOSPC;
4007 }
4008 ret = btrfs_qgroup_reserve(root, write_bytes);
4009 if (ret)
4010 goto out;
4011 data_sinfo->bytes_may_use += bytes;
4012 trace_btrfs_space_reservation(root->fs_info, "space_info",
4013 data_sinfo->flags, bytes, 1);
4014 out:
4015 spin_unlock(&data_sinfo->lock);
4016
4017 return ret;
4018 }
4019
4020 /*
4021 * Called if we need to clear a data reservation for this inode.
4022 */
4023 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
4024 {
4025 struct btrfs_root *root = BTRFS_I(inode)->root;
4026 struct btrfs_space_info *data_sinfo;
4027
4028 /* make sure bytes are sectorsize aligned */
4029 bytes = ALIGN(bytes, root->sectorsize);
4030
4031 data_sinfo = root->fs_info->data_sinfo;
4032 spin_lock(&data_sinfo->lock);
4033 WARN_ON(data_sinfo->bytes_may_use < bytes);
4034 data_sinfo->bytes_may_use -= bytes;
4035 trace_btrfs_space_reservation(root->fs_info, "space_info",
4036 data_sinfo->flags, bytes, 0);
4037 spin_unlock(&data_sinfo->lock);
4038 }
4039
4040 static void force_metadata_allocation(struct btrfs_fs_info *info)
4041 {
4042 struct list_head *head = &info->space_info;
4043 struct btrfs_space_info *found;
4044
4045 rcu_read_lock();
4046 list_for_each_entry_rcu(found, head, list) {
4047 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4048 found->force_alloc = CHUNK_ALLOC_FORCE;
4049 }
4050 rcu_read_unlock();
4051 }
4052
4053 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4054 {
4055 return (global->size << 1);
4056 }
4057
4058 static int should_alloc_chunk(struct btrfs_root *root,
4059 struct btrfs_space_info *sinfo, int force)
4060 {
4061 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4062 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4063 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4064 u64 thresh;
4065
4066 if (force == CHUNK_ALLOC_FORCE)
4067 return 1;
4068
4069 /*
4070 * We need to take into account the global rsv because for all intents
4071 * and purposes it's used space. Don't worry about locking the
4072 * global_rsv, it doesn't change except when the transaction commits.
4073 */
4074 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4075 num_allocated += calc_global_rsv_need_space(global_rsv);
4076
4077 /*
4078 * in limited mode, we want to have some free space up to
4079 * about 1% of the FS size.
4080 */
4081 if (force == CHUNK_ALLOC_LIMITED) {
4082 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4083 thresh = max_t(u64, 64 * 1024 * 1024,
4084 div_factor_fine(thresh, 1));
4085
4086 if (num_bytes - num_allocated < thresh)
4087 return 1;
4088 }
4089
4090 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4091 return 0;
4092 return 1;
4093 }
4094
4095 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4096 {
4097 u64 num_dev;
4098
4099 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4100 BTRFS_BLOCK_GROUP_RAID0 |
4101 BTRFS_BLOCK_GROUP_RAID5 |
4102 BTRFS_BLOCK_GROUP_RAID6))
4103 num_dev = root->fs_info->fs_devices->rw_devices;
4104 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4105 num_dev = 2;
4106 else
4107 num_dev = 1; /* DUP or single */
4108
4109 /* metadata for updaing devices and chunk tree */
4110 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4111 }
4112
4113 static void check_system_chunk(struct btrfs_trans_handle *trans,
4114 struct btrfs_root *root, u64 type)
4115 {
4116 struct btrfs_space_info *info;
4117 u64 left;
4118 u64 thresh;
4119 int ret = 0;
4120
4121 /*
4122 * Needed because we can end up allocating a system chunk and for an
4123 * atomic and race free space reservation in the chunk block reserve.
4124 */
4125 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4126
4127 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4128 spin_lock(&info->lock);
4129 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4130 info->bytes_reserved - info->bytes_readonly -
4131 info->bytes_may_use;
4132 spin_unlock(&info->lock);
4133
4134 thresh = get_system_chunk_thresh(root, type);
4135 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4136 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4137 left, thresh, type);
4138 dump_space_info(info, 0, 0);
4139 }
4140
4141 if (left < thresh) {
4142 u64 flags;
4143
4144 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4145 /*
4146 * Ignore failure to create system chunk. We might end up not
4147 * needing it, as we might not need to COW all nodes/leafs from
4148 * the paths we visit in the chunk tree (they were already COWed
4149 * or created in the current transaction for example).
4150 */
4151 ret = btrfs_alloc_chunk(trans, root, flags);
4152 }
4153
4154 if (!ret) {
4155 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4156 &root->fs_info->chunk_block_rsv,
4157 thresh, BTRFS_RESERVE_NO_FLUSH);
4158 if (!ret)
4159 trans->chunk_bytes_reserved += thresh;
4160 }
4161 }
4162
4163 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4164 struct btrfs_root *extent_root, u64 flags, int force)
4165 {
4166 struct btrfs_space_info *space_info;
4167 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4168 int wait_for_alloc = 0;
4169 int ret = 0;
4170
4171 /* Don't re-enter if we're already allocating a chunk */
4172 if (trans->allocating_chunk)
4173 return -ENOSPC;
4174
4175 space_info = __find_space_info(extent_root->fs_info, flags);
4176 if (!space_info) {
4177 ret = update_space_info(extent_root->fs_info, flags,
4178 0, 0, &space_info);
4179 BUG_ON(ret); /* -ENOMEM */
4180 }
4181 BUG_ON(!space_info); /* Logic error */
4182
4183 again:
4184 spin_lock(&space_info->lock);
4185 if (force < space_info->force_alloc)
4186 force = space_info->force_alloc;
4187 if (space_info->full) {
4188 if (should_alloc_chunk(extent_root, space_info, force))
4189 ret = -ENOSPC;
4190 else
4191 ret = 0;
4192 spin_unlock(&space_info->lock);
4193 return ret;
4194 }
4195
4196 if (!should_alloc_chunk(extent_root, space_info, force)) {
4197 spin_unlock(&space_info->lock);
4198 return 0;
4199 } else if (space_info->chunk_alloc) {
4200 wait_for_alloc = 1;
4201 } else {
4202 space_info->chunk_alloc = 1;
4203 }
4204
4205 spin_unlock(&space_info->lock);
4206
4207 mutex_lock(&fs_info->chunk_mutex);
4208
4209 /*
4210 * The chunk_mutex is held throughout the entirety of a chunk
4211 * allocation, so once we've acquired the chunk_mutex we know that the
4212 * other guy is done and we need to recheck and see if we should
4213 * allocate.
4214 */
4215 if (wait_for_alloc) {
4216 mutex_unlock(&fs_info->chunk_mutex);
4217 wait_for_alloc = 0;
4218 goto again;
4219 }
4220
4221 trans->allocating_chunk = true;
4222
4223 /*
4224 * If we have mixed data/metadata chunks we want to make sure we keep
4225 * allocating mixed chunks instead of individual chunks.
4226 */
4227 if (btrfs_mixed_space_info(space_info))
4228 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4229
4230 /*
4231 * if we're doing a data chunk, go ahead and make sure that
4232 * we keep a reasonable number of metadata chunks allocated in the
4233 * FS as well.
4234 */
4235 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4236 fs_info->data_chunk_allocations++;
4237 if (!(fs_info->data_chunk_allocations %
4238 fs_info->metadata_ratio))
4239 force_metadata_allocation(fs_info);
4240 }
4241
4242 /*
4243 * Check if we have enough space in SYSTEM chunk because we may need
4244 * to update devices.
4245 */
4246 check_system_chunk(trans, extent_root, flags);
4247
4248 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4249 trans->allocating_chunk = false;
4250
4251 spin_lock(&space_info->lock);
4252 if (ret < 0 && ret != -ENOSPC)
4253 goto out;
4254 if (ret)
4255 space_info->full = 1;
4256 else
4257 ret = 1;
4258
4259 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4260 out:
4261 space_info->chunk_alloc = 0;
4262 spin_unlock(&space_info->lock);
4263 mutex_unlock(&fs_info->chunk_mutex);
4264 return ret;
4265 }
4266
4267 static int can_overcommit(struct btrfs_root *root,
4268 struct btrfs_space_info *space_info, u64 bytes,
4269 enum btrfs_reserve_flush_enum flush)
4270 {
4271 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4272 u64 profile = btrfs_get_alloc_profile(root, 0);
4273 u64 space_size;
4274 u64 avail;
4275 u64 used;
4276
4277 used = space_info->bytes_used + space_info->bytes_reserved +
4278 space_info->bytes_pinned + space_info->bytes_readonly;
4279
4280 /*
4281 * We only want to allow over committing if we have lots of actual space
4282 * free, but if we don't have enough space to handle the global reserve
4283 * space then we could end up having a real enospc problem when trying
4284 * to allocate a chunk or some other such important allocation.
4285 */
4286 spin_lock(&global_rsv->lock);
4287 space_size = calc_global_rsv_need_space(global_rsv);
4288 spin_unlock(&global_rsv->lock);
4289 if (used + space_size >= space_info->total_bytes)
4290 return 0;
4291
4292 used += space_info->bytes_may_use;
4293
4294 spin_lock(&root->fs_info->free_chunk_lock);
4295 avail = root->fs_info->free_chunk_space;
4296 spin_unlock(&root->fs_info->free_chunk_lock);
4297
4298 /*
4299 * If we have dup, raid1 or raid10 then only half of the free
4300 * space is actually useable. For raid56, the space info used
4301 * doesn't include the parity drive, so we don't have to
4302 * change the math
4303 */
4304 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4305 BTRFS_BLOCK_GROUP_RAID1 |
4306 BTRFS_BLOCK_GROUP_RAID10))
4307 avail >>= 1;
4308
4309 /*
4310 * If we aren't flushing all things, let us overcommit up to
4311 * 1/2th of the space. If we can flush, don't let us overcommit
4312 * too much, let it overcommit up to 1/8 of the space.
4313 */
4314 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4315 avail >>= 3;
4316 else
4317 avail >>= 1;
4318
4319 if (used + bytes < space_info->total_bytes + avail)
4320 return 1;
4321 return 0;
4322 }
4323
4324 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4325 unsigned long nr_pages, int nr_items)
4326 {
4327 struct super_block *sb = root->fs_info->sb;
4328
4329 if (down_read_trylock(&sb->s_umount)) {
4330 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4331 up_read(&sb->s_umount);
4332 } else {
4333 /*
4334 * We needn't worry the filesystem going from r/w to r/o though
4335 * we don't acquire ->s_umount mutex, because the filesystem
4336 * should guarantee the delalloc inodes list be empty after
4337 * the filesystem is readonly(all dirty pages are written to
4338 * the disk).
4339 */
4340 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4341 if (!current->journal_info)
4342 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4343 }
4344 }
4345
4346 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4347 {
4348 u64 bytes;
4349 int nr;
4350
4351 bytes = btrfs_calc_trans_metadata_size(root, 1);
4352 nr = (int)div64_u64(to_reclaim, bytes);
4353 if (!nr)
4354 nr = 1;
4355 return nr;
4356 }
4357
4358 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4359
4360 /*
4361 * shrink metadata reservation for delalloc
4362 */
4363 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4364 bool wait_ordered)
4365 {
4366 struct btrfs_block_rsv *block_rsv;
4367 struct btrfs_space_info *space_info;
4368 struct btrfs_trans_handle *trans;
4369 u64 delalloc_bytes;
4370 u64 max_reclaim;
4371 long time_left;
4372 unsigned long nr_pages;
4373 int loops;
4374 int items;
4375 enum btrfs_reserve_flush_enum flush;
4376
4377 /* Calc the number of the pages we need flush for space reservation */
4378 items = calc_reclaim_items_nr(root, to_reclaim);
4379 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4380
4381 trans = (struct btrfs_trans_handle *)current->journal_info;
4382 block_rsv = &root->fs_info->delalloc_block_rsv;
4383 space_info = block_rsv->space_info;
4384
4385 delalloc_bytes = percpu_counter_sum_positive(
4386 &root->fs_info->delalloc_bytes);
4387 if (delalloc_bytes == 0) {
4388 if (trans)
4389 return;
4390 if (wait_ordered)
4391 btrfs_wait_ordered_roots(root->fs_info, items);
4392 return;
4393 }
4394
4395 loops = 0;
4396 while (delalloc_bytes && loops < 3) {
4397 max_reclaim = min(delalloc_bytes, to_reclaim);
4398 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4399 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4400 /*
4401 * We need to wait for the async pages to actually start before
4402 * we do anything.
4403 */
4404 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4405 if (!max_reclaim)
4406 goto skip_async;
4407
4408 if (max_reclaim <= nr_pages)
4409 max_reclaim = 0;
4410 else
4411 max_reclaim -= nr_pages;
4412
4413 wait_event(root->fs_info->async_submit_wait,
4414 atomic_read(&root->fs_info->async_delalloc_pages) <=
4415 (int)max_reclaim);
4416 skip_async:
4417 if (!trans)
4418 flush = BTRFS_RESERVE_FLUSH_ALL;
4419 else
4420 flush = BTRFS_RESERVE_NO_FLUSH;
4421 spin_lock(&space_info->lock);
4422 if (can_overcommit(root, space_info, orig, flush)) {
4423 spin_unlock(&space_info->lock);
4424 break;
4425 }
4426 spin_unlock(&space_info->lock);
4427
4428 loops++;
4429 if (wait_ordered && !trans) {
4430 btrfs_wait_ordered_roots(root->fs_info, items);
4431 } else {
4432 time_left = schedule_timeout_killable(1);
4433 if (time_left)
4434 break;
4435 }
4436 delalloc_bytes = percpu_counter_sum_positive(
4437 &root->fs_info->delalloc_bytes);
4438 }
4439 }
4440
4441 /**
4442 * maybe_commit_transaction - possibly commit the transaction if its ok to
4443 * @root - the root we're allocating for
4444 * @bytes - the number of bytes we want to reserve
4445 * @force - force the commit
4446 *
4447 * This will check to make sure that committing the transaction will actually
4448 * get us somewhere and then commit the transaction if it does. Otherwise it
4449 * will return -ENOSPC.
4450 */
4451 static int may_commit_transaction(struct btrfs_root *root,
4452 struct btrfs_space_info *space_info,
4453 u64 bytes, int force)
4454 {
4455 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4456 struct btrfs_trans_handle *trans;
4457
4458 trans = (struct btrfs_trans_handle *)current->journal_info;
4459 if (trans)
4460 return -EAGAIN;
4461
4462 if (force)
4463 goto commit;
4464
4465 /* See if there is enough pinned space to make this reservation */
4466 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4467 bytes) >= 0)
4468 goto commit;
4469
4470 /*
4471 * See if there is some space in the delayed insertion reservation for
4472 * this reservation.
4473 */
4474 if (space_info != delayed_rsv->space_info)
4475 return -ENOSPC;
4476
4477 spin_lock(&delayed_rsv->lock);
4478 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4479 bytes - delayed_rsv->size) >= 0) {
4480 spin_unlock(&delayed_rsv->lock);
4481 return -ENOSPC;
4482 }
4483 spin_unlock(&delayed_rsv->lock);
4484
4485 commit:
4486 trans = btrfs_join_transaction(root);
4487 if (IS_ERR(trans))
4488 return -ENOSPC;
4489
4490 return btrfs_commit_transaction(trans, root);
4491 }
4492
4493 enum flush_state {
4494 FLUSH_DELAYED_ITEMS_NR = 1,
4495 FLUSH_DELAYED_ITEMS = 2,
4496 FLUSH_DELALLOC = 3,
4497 FLUSH_DELALLOC_WAIT = 4,
4498 ALLOC_CHUNK = 5,
4499 COMMIT_TRANS = 6,
4500 };
4501
4502 static int flush_space(struct btrfs_root *root,
4503 struct btrfs_space_info *space_info, u64 num_bytes,
4504 u64 orig_bytes, int state)
4505 {
4506 struct btrfs_trans_handle *trans;
4507 int nr;
4508 int ret = 0;
4509
4510 switch (state) {
4511 case FLUSH_DELAYED_ITEMS_NR:
4512 case FLUSH_DELAYED_ITEMS:
4513 if (state == FLUSH_DELAYED_ITEMS_NR)
4514 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4515 else
4516 nr = -1;
4517
4518 trans = btrfs_join_transaction(root);
4519 if (IS_ERR(trans)) {
4520 ret = PTR_ERR(trans);
4521 break;
4522 }
4523 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4524 btrfs_end_transaction(trans, root);
4525 break;
4526 case FLUSH_DELALLOC:
4527 case FLUSH_DELALLOC_WAIT:
4528 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4529 state == FLUSH_DELALLOC_WAIT);
4530 break;
4531 case ALLOC_CHUNK:
4532 trans = btrfs_join_transaction(root);
4533 if (IS_ERR(trans)) {
4534 ret = PTR_ERR(trans);
4535 break;
4536 }
4537 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4538 btrfs_get_alloc_profile(root, 0),
4539 CHUNK_ALLOC_NO_FORCE);
4540 btrfs_end_transaction(trans, root);
4541 if (ret == -ENOSPC)
4542 ret = 0;
4543 break;
4544 case COMMIT_TRANS:
4545 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4546 break;
4547 default:
4548 ret = -ENOSPC;
4549 break;
4550 }
4551
4552 return ret;
4553 }
4554
4555 static inline u64
4556 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4557 struct btrfs_space_info *space_info)
4558 {
4559 u64 used;
4560 u64 expected;
4561 u64 to_reclaim;
4562
4563 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4564 16 * 1024 * 1024);
4565 spin_lock(&space_info->lock);
4566 if (can_overcommit(root, space_info, to_reclaim,
4567 BTRFS_RESERVE_FLUSH_ALL)) {
4568 to_reclaim = 0;
4569 goto out;
4570 }
4571
4572 used = space_info->bytes_used + space_info->bytes_reserved +
4573 space_info->bytes_pinned + space_info->bytes_readonly +
4574 space_info->bytes_may_use;
4575 if (can_overcommit(root, space_info, 1024 * 1024,
4576 BTRFS_RESERVE_FLUSH_ALL))
4577 expected = div_factor_fine(space_info->total_bytes, 95);
4578 else
4579 expected = div_factor_fine(space_info->total_bytes, 90);
4580
4581 if (used > expected)
4582 to_reclaim = used - expected;
4583 else
4584 to_reclaim = 0;
4585 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4586 space_info->bytes_reserved);
4587 out:
4588 spin_unlock(&space_info->lock);
4589
4590 return to_reclaim;
4591 }
4592
4593 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4594 struct btrfs_fs_info *fs_info, u64 used)
4595 {
4596 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4597
4598 /* If we're just plain full then async reclaim just slows us down. */
4599 if (space_info->bytes_used >= thresh)
4600 return 0;
4601
4602 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4603 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4604 }
4605
4606 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4607 struct btrfs_fs_info *fs_info,
4608 int flush_state)
4609 {
4610 u64 used;
4611
4612 spin_lock(&space_info->lock);
4613 /*
4614 * We run out of space and have not got any free space via flush_space,
4615 * so don't bother doing async reclaim.
4616 */
4617 if (flush_state > COMMIT_TRANS && space_info->full) {
4618 spin_unlock(&space_info->lock);
4619 return 0;
4620 }
4621
4622 used = space_info->bytes_used + space_info->bytes_reserved +
4623 space_info->bytes_pinned + space_info->bytes_readonly +
4624 space_info->bytes_may_use;
4625 if (need_do_async_reclaim(space_info, fs_info, used)) {
4626 spin_unlock(&space_info->lock);
4627 return 1;
4628 }
4629 spin_unlock(&space_info->lock);
4630
4631 return 0;
4632 }
4633
4634 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4635 {
4636 struct btrfs_fs_info *fs_info;
4637 struct btrfs_space_info *space_info;
4638 u64 to_reclaim;
4639 int flush_state;
4640
4641 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4642 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4643
4644 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4645 space_info);
4646 if (!to_reclaim)
4647 return;
4648
4649 flush_state = FLUSH_DELAYED_ITEMS_NR;
4650 do {
4651 flush_space(fs_info->fs_root, space_info, to_reclaim,
4652 to_reclaim, flush_state);
4653 flush_state++;
4654 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4655 flush_state))
4656 return;
4657 } while (flush_state < COMMIT_TRANS);
4658 }
4659
4660 void btrfs_init_async_reclaim_work(struct work_struct *work)
4661 {
4662 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4663 }
4664
4665 /**
4666 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4667 * @root - the root we're allocating for
4668 * @block_rsv - the block_rsv we're allocating for
4669 * @orig_bytes - the number of bytes we want
4670 * @flush - whether or not we can flush to make our reservation
4671 *
4672 * This will reserve orgi_bytes number of bytes from the space info associated
4673 * with the block_rsv. If there is not enough space it will make an attempt to
4674 * flush out space to make room. It will do this by flushing delalloc if
4675 * possible or committing the transaction. If flush is 0 then no attempts to
4676 * regain reservations will be made and this will fail if there is not enough
4677 * space already.
4678 */
4679 static int reserve_metadata_bytes(struct btrfs_root *root,
4680 struct btrfs_block_rsv *block_rsv,
4681 u64 orig_bytes,
4682 enum btrfs_reserve_flush_enum flush)
4683 {
4684 struct btrfs_space_info *space_info = block_rsv->space_info;
4685 u64 used;
4686 u64 num_bytes = orig_bytes;
4687 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4688 int ret = 0;
4689 bool flushing = false;
4690
4691 again:
4692 ret = 0;
4693 spin_lock(&space_info->lock);
4694 /*
4695 * We only want to wait if somebody other than us is flushing and we
4696 * are actually allowed to flush all things.
4697 */
4698 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4699 space_info->flush) {
4700 spin_unlock(&space_info->lock);
4701 /*
4702 * If we have a trans handle we can't wait because the flusher
4703 * may have to commit the transaction, which would mean we would
4704 * deadlock since we are waiting for the flusher to finish, but
4705 * hold the current transaction open.
4706 */
4707 if (current->journal_info)
4708 return -EAGAIN;
4709 ret = wait_event_killable(space_info->wait, !space_info->flush);
4710 /* Must have been killed, return */
4711 if (ret)
4712 return -EINTR;
4713
4714 spin_lock(&space_info->lock);
4715 }
4716
4717 ret = -ENOSPC;
4718 used = space_info->bytes_used + space_info->bytes_reserved +
4719 space_info->bytes_pinned + space_info->bytes_readonly +
4720 space_info->bytes_may_use;
4721
4722 /*
4723 * The idea here is that we've not already over-reserved the block group
4724 * then we can go ahead and save our reservation first and then start
4725 * flushing if we need to. Otherwise if we've already overcommitted
4726 * lets start flushing stuff first and then come back and try to make
4727 * our reservation.
4728 */
4729 if (used <= space_info->total_bytes) {
4730 if (used + orig_bytes <= space_info->total_bytes) {
4731 space_info->bytes_may_use += orig_bytes;
4732 trace_btrfs_space_reservation(root->fs_info,
4733 "space_info", space_info->flags, orig_bytes, 1);
4734 ret = 0;
4735 } else {
4736 /*
4737 * Ok set num_bytes to orig_bytes since we aren't
4738 * overocmmitted, this way we only try and reclaim what
4739 * we need.
4740 */
4741 num_bytes = orig_bytes;
4742 }
4743 } else {
4744 /*
4745 * Ok we're over committed, set num_bytes to the overcommitted
4746 * amount plus the amount of bytes that we need for this
4747 * reservation.
4748 */
4749 num_bytes = used - space_info->total_bytes +
4750 (orig_bytes * 2);
4751 }
4752
4753 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4754 space_info->bytes_may_use += orig_bytes;
4755 trace_btrfs_space_reservation(root->fs_info, "space_info",
4756 space_info->flags, orig_bytes,
4757 1);
4758 ret = 0;
4759 }
4760
4761 /*
4762 * Couldn't make our reservation, save our place so while we're trying
4763 * to reclaim space we can actually use it instead of somebody else
4764 * stealing it from us.
4765 *
4766 * We make the other tasks wait for the flush only when we can flush
4767 * all things.
4768 */
4769 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4770 flushing = true;
4771 space_info->flush = 1;
4772 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4773 used += orig_bytes;
4774 /*
4775 * We will do the space reservation dance during log replay,
4776 * which means we won't have fs_info->fs_root set, so don't do
4777 * the async reclaim as we will panic.
4778 */
4779 if (!root->fs_info->log_root_recovering &&
4780 need_do_async_reclaim(space_info, root->fs_info, used) &&
4781 !work_busy(&root->fs_info->async_reclaim_work))
4782 queue_work(system_unbound_wq,
4783 &root->fs_info->async_reclaim_work);
4784 }
4785 spin_unlock(&space_info->lock);
4786
4787 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4788 goto out;
4789
4790 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4791 flush_state);
4792 flush_state++;
4793
4794 /*
4795 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4796 * would happen. So skip delalloc flush.
4797 */
4798 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4799 (flush_state == FLUSH_DELALLOC ||
4800 flush_state == FLUSH_DELALLOC_WAIT))
4801 flush_state = ALLOC_CHUNK;
4802
4803 if (!ret)
4804 goto again;
4805 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4806 flush_state < COMMIT_TRANS)
4807 goto again;
4808 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4809 flush_state <= COMMIT_TRANS)
4810 goto again;
4811
4812 out:
4813 if (ret == -ENOSPC &&
4814 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4815 struct btrfs_block_rsv *global_rsv =
4816 &root->fs_info->global_block_rsv;
4817
4818 if (block_rsv != global_rsv &&
4819 !block_rsv_use_bytes(global_rsv, orig_bytes))
4820 ret = 0;
4821 }
4822 if (ret == -ENOSPC)
4823 trace_btrfs_space_reservation(root->fs_info,
4824 "space_info:enospc",
4825 space_info->flags, orig_bytes, 1);
4826 if (flushing) {
4827 spin_lock(&space_info->lock);
4828 space_info->flush = 0;
4829 wake_up_all(&space_info->wait);
4830 spin_unlock(&space_info->lock);
4831 }
4832 return ret;
4833 }
4834
4835 static struct btrfs_block_rsv *get_block_rsv(
4836 const struct btrfs_trans_handle *trans,
4837 const struct btrfs_root *root)
4838 {
4839 struct btrfs_block_rsv *block_rsv = NULL;
4840
4841 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4842 block_rsv = trans->block_rsv;
4843
4844 if (root == root->fs_info->csum_root && trans->adding_csums)
4845 block_rsv = trans->block_rsv;
4846
4847 if (root == root->fs_info->uuid_root)
4848 block_rsv = trans->block_rsv;
4849
4850 if (!block_rsv)
4851 block_rsv = root->block_rsv;
4852
4853 if (!block_rsv)
4854 block_rsv = &root->fs_info->empty_block_rsv;
4855
4856 return block_rsv;
4857 }
4858
4859 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4860 u64 num_bytes)
4861 {
4862 int ret = -ENOSPC;
4863 spin_lock(&block_rsv->lock);
4864 if (block_rsv->reserved >= num_bytes) {
4865 block_rsv->reserved -= num_bytes;
4866 if (block_rsv->reserved < block_rsv->size)
4867 block_rsv->full = 0;
4868 ret = 0;
4869 }
4870 spin_unlock(&block_rsv->lock);
4871 return ret;
4872 }
4873
4874 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4875 u64 num_bytes, int update_size)
4876 {
4877 spin_lock(&block_rsv->lock);
4878 block_rsv->reserved += num_bytes;
4879 if (update_size)
4880 block_rsv->size += num_bytes;
4881 else if (block_rsv->reserved >= block_rsv->size)
4882 block_rsv->full = 1;
4883 spin_unlock(&block_rsv->lock);
4884 }
4885
4886 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4887 struct btrfs_block_rsv *dest, u64 num_bytes,
4888 int min_factor)
4889 {
4890 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4891 u64 min_bytes;
4892
4893 if (global_rsv->space_info != dest->space_info)
4894 return -ENOSPC;
4895
4896 spin_lock(&global_rsv->lock);
4897 min_bytes = div_factor(global_rsv->size, min_factor);
4898 if (global_rsv->reserved < min_bytes + num_bytes) {
4899 spin_unlock(&global_rsv->lock);
4900 return -ENOSPC;
4901 }
4902 global_rsv->reserved -= num_bytes;
4903 if (global_rsv->reserved < global_rsv->size)
4904 global_rsv->full = 0;
4905 spin_unlock(&global_rsv->lock);
4906
4907 block_rsv_add_bytes(dest, num_bytes, 1);
4908 return 0;
4909 }
4910
4911 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4912 struct btrfs_block_rsv *block_rsv,
4913 struct btrfs_block_rsv *dest, u64 num_bytes)
4914 {
4915 struct btrfs_space_info *space_info = block_rsv->space_info;
4916
4917 spin_lock(&block_rsv->lock);
4918 if (num_bytes == (u64)-1)
4919 num_bytes = block_rsv->size;
4920 block_rsv->size -= num_bytes;
4921 if (block_rsv->reserved >= block_rsv->size) {
4922 num_bytes = block_rsv->reserved - block_rsv->size;
4923 block_rsv->reserved = block_rsv->size;
4924 block_rsv->full = 1;
4925 } else {
4926 num_bytes = 0;
4927 }
4928 spin_unlock(&block_rsv->lock);
4929
4930 if (num_bytes > 0) {
4931 if (dest) {
4932 spin_lock(&dest->lock);
4933 if (!dest->full) {
4934 u64 bytes_to_add;
4935
4936 bytes_to_add = dest->size - dest->reserved;
4937 bytes_to_add = min(num_bytes, bytes_to_add);
4938 dest->reserved += bytes_to_add;
4939 if (dest->reserved >= dest->size)
4940 dest->full = 1;
4941 num_bytes -= bytes_to_add;
4942 }
4943 spin_unlock(&dest->lock);
4944 }
4945 if (num_bytes) {
4946 spin_lock(&space_info->lock);
4947 space_info->bytes_may_use -= num_bytes;
4948 trace_btrfs_space_reservation(fs_info, "space_info",
4949 space_info->flags, num_bytes, 0);
4950 spin_unlock(&space_info->lock);
4951 }
4952 }
4953 }
4954
4955 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4956 struct btrfs_block_rsv *dst, u64 num_bytes)
4957 {
4958 int ret;
4959
4960 ret = block_rsv_use_bytes(src, num_bytes);
4961 if (ret)
4962 return ret;
4963
4964 block_rsv_add_bytes(dst, num_bytes, 1);
4965 return 0;
4966 }
4967
4968 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4969 {
4970 memset(rsv, 0, sizeof(*rsv));
4971 spin_lock_init(&rsv->lock);
4972 rsv->type = type;
4973 }
4974
4975 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4976 unsigned short type)
4977 {
4978 struct btrfs_block_rsv *block_rsv;
4979 struct btrfs_fs_info *fs_info = root->fs_info;
4980
4981 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4982 if (!block_rsv)
4983 return NULL;
4984
4985 btrfs_init_block_rsv(block_rsv, type);
4986 block_rsv->space_info = __find_space_info(fs_info,
4987 BTRFS_BLOCK_GROUP_METADATA);
4988 return block_rsv;
4989 }
4990
4991 void btrfs_free_block_rsv(struct btrfs_root *root,
4992 struct btrfs_block_rsv *rsv)
4993 {
4994 if (!rsv)
4995 return;
4996 btrfs_block_rsv_release(root, rsv, (u64)-1);
4997 kfree(rsv);
4998 }
4999
5000 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5001 {
5002 kfree(rsv);
5003 }
5004
5005 int btrfs_block_rsv_add(struct btrfs_root *root,
5006 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5007 enum btrfs_reserve_flush_enum flush)
5008 {
5009 int ret;
5010
5011 if (num_bytes == 0)
5012 return 0;
5013
5014 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5015 if (!ret) {
5016 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5017 return 0;
5018 }
5019
5020 return ret;
5021 }
5022
5023 int btrfs_block_rsv_check(struct btrfs_root *root,
5024 struct btrfs_block_rsv *block_rsv, int min_factor)
5025 {
5026 u64 num_bytes = 0;
5027 int ret = -ENOSPC;
5028
5029 if (!block_rsv)
5030 return 0;
5031
5032 spin_lock(&block_rsv->lock);
5033 num_bytes = div_factor(block_rsv->size, min_factor);
5034 if (block_rsv->reserved >= num_bytes)
5035 ret = 0;
5036 spin_unlock(&block_rsv->lock);
5037
5038 return ret;
5039 }
5040
5041 int btrfs_block_rsv_refill(struct btrfs_root *root,
5042 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5043 enum btrfs_reserve_flush_enum flush)
5044 {
5045 u64 num_bytes = 0;
5046 int ret = -ENOSPC;
5047
5048 if (!block_rsv)
5049 return 0;
5050
5051 spin_lock(&block_rsv->lock);
5052 num_bytes = min_reserved;
5053 if (block_rsv->reserved >= num_bytes)
5054 ret = 0;
5055 else
5056 num_bytes -= block_rsv->reserved;
5057 spin_unlock(&block_rsv->lock);
5058
5059 if (!ret)
5060 return 0;
5061
5062 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5063 if (!ret) {
5064 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5065 return 0;
5066 }
5067
5068 return ret;
5069 }
5070
5071 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5072 struct btrfs_block_rsv *dst_rsv,
5073 u64 num_bytes)
5074 {
5075 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5076 }
5077
5078 void btrfs_block_rsv_release(struct btrfs_root *root,
5079 struct btrfs_block_rsv *block_rsv,
5080 u64 num_bytes)
5081 {
5082 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5083 if (global_rsv == block_rsv ||
5084 block_rsv->space_info != global_rsv->space_info)
5085 global_rsv = NULL;
5086 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5087 num_bytes);
5088 }
5089
5090 /*
5091 * helper to calculate size of global block reservation.
5092 * the desired value is sum of space used by extent tree,
5093 * checksum tree and root tree
5094 */
5095 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5096 {
5097 struct btrfs_space_info *sinfo;
5098 u64 num_bytes;
5099 u64 meta_used;
5100 u64 data_used;
5101 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5102
5103 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5104 spin_lock(&sinfo->lock);
5105 data_used = sinfo->bytes_used;
5106 spin_unlock(&sinfo->lock);
5107
5108 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5109 spin_lock(&sinfo->lock);
5110 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5111 data_used = 0;
5112 meta_used = sinfo->bytes_used;
5113 spin_unlock(&sinfo->lock);
5114
5115 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5116 csum_size * 2;
5117 num_bytes += div_u64(data_used + meta_used, 50);
5118
5119 if (num_bytes * 3 > meta_used)
5120 num_bytes = div_u64(meta_used, 3);
5121
5122 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5123 }
5124
5125 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5126 {
5127 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5128 struct btrfs_space_info *sinfo = block_rsv->space_info;
5129 u64 num_bytes;
5130
5131 num_bytes = calc_global_metadata_size(fs_info);
5132
5133 spin_lock(&sinfo->lock);
5134 spin_lock(&block_rsv->lock);
5135
5136 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5137
5138 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5139 sinfo->bytes_reserved + sinfo->bytes_readonly +
5140 sinfo->bytes_may_use;
5141
5142 if (sinfo->total_bytes > num_bytes) {
5143 num_bytes = sinfo->total_bytes - num_bytes;
5144 block_rsv->reserved += num_bytes;
5145 sinfo->bytes_may_use += num_bytes;
5146 trace_btrfs_space_reservation(fs_info, "space_info",
5147 sinfo->flags, num_bytes, 1);
5148 }
5149
5150 if (block_rsv->reserved >= block_rsv->size) {
5151 num_bytes = block_rsv->reserved - block_rsv->size;
5152 sinfo->bytes_may_use -= num_bytes;
5153 trace_btrfs_space_reservation(fs_info, "space_info",
5154 sinfo->flags, num_bytes, 0);
5155 block_rsv->reserved = block_rsv->size;
5156 block_rsv->full = 1;
5157 }
5158
5159 spin_unlock(&block_rsv->lock);
5160 spin_unlock(&sinfo->lock);
5161 }
5162
5163 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5164 {
5165 struct btrfs_space_info *space_info;
5166
5167 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5168 fs_info->chunk_block_rsv.space_info = space_info;
5169
5170 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5171 fs_info->global_block_rsv.space_info = space_info;
5172 fs_info->delalloc_block_rsv.space_info = space_info;
5173 fs_info->trans_block_rsv.space_info = space_info;
5174 fs_info->empty_block_rsv.space_info = space_info;
5175 fs_info->delayed_block_rsv.space_info = space_info;
5176
5177 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5178 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5179 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5180 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5181 if (fs_info->quota_root)
5182 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5183 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5184
5185 update_global_block_rsv(fs_info);
5186 }
5187
5188 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5189 {
5190 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5191 (u64)-1);
5192 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5193 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5194 WARN_ON(fs_info->trans_block_rsv.size > 0);
5195 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5196 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5197 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5198 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5199 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5200 }
5201
5202 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5203 struct btrfs_root *root)
5204 {
5205 if (!trans->block_rsv)
5206 return;
5207
5208 if (!trans->bytes_reserved)
5209 return;
5210
5211 trace_btrfs_space_reservation(root->fs_info, "transaction",
5212 trans->transid, trans->bytes_reserved, 0);
5213 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5214 trans->bytes_reserved = 0;
5215 }
5216
5217 /*
5218 * To be called after all the new block groups attached to the transaction
5219 * handle have been created (btrfs_create_pending_block_groups()).
5220 */
5221 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5222 {
5223 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5224
5225 if (!trans->chunk_bytes_reserved)
5226 return;
5227
5228 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5229
5230 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5231 trans->chunk_bytes_reserved);
5232 trans->chunk_bytes_reserved = 0;
5233 }
5234
5235 /* Can only return 0 or -ENOSPC */
5236 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5237 struct inode *inode)
5238 {
5239 struct btrfs_root *root = BTRFS_I(inode)->root;
5240 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5241 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5242
5243 /*
5244 * We need to hold space in order to delete our orphan item once we've
5245 * added it, so this takes the reservation so we can release it later
5246 * when we are truly done with the orphan item.
5247 */
5248 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5249 trace_btrfs_space_reservation(root->fs_info, "orphan",
5250 btrfs_ino(inode), num_bytes, 1);
5251 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5252 }
5253
5254 void btrfs_orphan_release_metadata(struct inode *inode)
5255 {
5256 struct btrfs_root *root = BTRFS_I(inode)->root;
5257 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5258 trace_btrfs_space_reservation(root->fs_info, "orphan",
5259 btrfs_ino(inode), num_bytes, 0);
5260 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5261 }
5262
5263 /*
5264 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5265 * root: the root of the parent directory
5266 * rsv: block reservation
5267 * items: the number of items that we need do reservation
5268 * qgroup_reserved: used to return the reserved size in qgroup
5269 *
5270 * This function is used to reserve the space for snapshot/subvolume
5271 * creation and deletion. Those operations are different with the
5272 * common file/directory operations, they change two fs/file trees
5273 * and root tree, the number of items that the qgroup reserves is
5274 * different with the free space reservation. So we can not use
5275 * the space reseravtion mechanism in start_transaction().
5276 */
5277 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5278 struct btrfs_block_rsv *rsv,
5279 int items,
5280 u64 *qgroup_reserved,
5281 bool use_global_rsv)
5282 {
5283 u64 num_bytes;
5284 int ret;
5285 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5286
5287 if (root->fs_info->quota_enabled) {
5288 /* One for parent inode, two for dir entries */
5289 num_bytes = 3 * root->nodesize;
5290 ret = btrfs_qgroup_reserve(root, num_bytes);
5291 if (ret)
5292 return ret;
5293 } else {
5294 num_bytes = 0;
5295 }
5296
5297 *qgroup_reserved = num_bytes;
5298
5299 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5300 rsv->space_info = __find_space_info(root->fs_info,
5301 BTRFS_BLOCK_GROUP_METADATA);
5302 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5303 BTRFS_RESERVE_FLUSH_ALL);
5304
5305 if (ret == -ENOSPC && use_global_rsv)
5306 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5307
5308 if (ret) {
5309 if (*qgroup_reserved)
5310 btrfs_qgroup_free(root, *qgroup_reserved);
5311 }
5312
5313 return ret;
5314 }
5315
5316 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5317 struct btrfs_block_rsv *rsv,
5318 u64 qgroup_reserved)
5319 {
5320 btrfs_block_rsv_release(root, rsv, (u64)-1);
5321 }
5322
5323 /**
5324 * drop_outstanding_extent - drop an outstanding extent
5325 * @inode: the inode we're dropping the extent for
5326 * @num_bytes: the number of bytes we're relaseing.
5327 *
5328 * This is called when we are freeing up an outstanding extent, either called
5329 * after an error or after an extent is written. This will return the number of
5330 * reserved extents that need to be freed. This must be called with
5331 * BTRFS_I(inode)->lock held.
5332 */
5333 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5334 {
5335 unsigned drop_inode_space = 0;
5336 unsigned dropped_extents = 0;
5337 unsigned num_extents = 0;
5338
5339 num_extents = (unsigned)div64_u64(num_bytes +
5340 BTRFS_MAX_EXTENT_SIZE - 1,
5341 BTRFS_MAX_EXTENT_SIZE);
5342 ASSERT(num_extents);
5343 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5344 BTRFS_I(inode)->outstanding_extents -= num_extents;
5345
5346 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5347 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5348 &BTRFS_I(inode)->runtime_flags))
5349 drop_inode_space = 1;
5350
5351 /*
5352 * If we have more or the same amount of outsanding extents than we have
5353 * reserved then we need to leave the reserved extents count alone.
5354 */
5355 if (BTRFS_I(inode)->outstanding_extents >=
5356 BTRFS_I(inode)->reserved_extents)
5357 return drop_inode_space;
5358
5359 dropped_extents = BTRFS_I(inode)->reserved_extents -
5360 BTRFS_I(inode)->outstanding_extents;
5361 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5362 return dropped_extents + drop_inode_space;
5363 }
5364
5365 /**
5366 * calc_csum_metadata_size - return the amount of metada space that must be
5367 * reserved/free'd for the given bytes.
5368 * @inode: the inode we're manipulating
5369 * @num_bytes: the number of bytes in question
5370 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5371 *
5372 * This adjusts the number of csum_bytes in the inode and then returns the
5373 * correct amount of metadata that must either be reserved or freed. We
5374 * calculate how many checksums we can fit into one leaf and then divide the
5375 * number of bytes that will need to be checksumed by this value to figure out
5376 * how many checksums will be required. If we are adding bytes then the number
5377 * may go up and we will return the number of additional bytes that must be
5378 * reserved. If it is going down we will return the number of bytes that must
5379 * be freed.
5380 *
5381 * This must be called with BTRFS_I(inode)->lock held.
5382 */
5383 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5384 int reserve)
5385 {
5386 struct btrfs_root *root = BTRFS_I(inode)->root;
5387 u64 old_csums, num_csums;
5388
5389 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5390 BTRFS_I(inode)->csum_bytes == 0)
5391 return 0;
5392
5393 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5394 if (reserve)
5395 BTRFS_I(inode)->csum_bytes += num_bytes;
5396 else
5397 BTRFS_I(inode)->csum_bytes -= num_bytes;
5398 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5399
5400 /* No change, no need to reserve more */
5401 if (old_csums == num_csums)
5402 return 0;
5403
5404 if (reserve)
5405 return btrfs_calc_trans_metadata_size(root,
5406 num_csums - old_csums);
5407
5408 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5409 }
5410
5411 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5412 {
5413 struct btrfs_root *root = BTRFS_I(inode)->root;
5414 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5415 u64 to_reserve = 0;
5416 u64 csum_bytes;
5417 unsigned nr_extents = 0;
5418 int extra_reserve = 0;
5419 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5420 int ret = 0;
5421 bool delalloc_lock = true;
5422 u64 to_free = 0;
5423 unsigned dropped;
5424
5425 /* If we are a free space inode we need to not flush since we will be in
5426 * the middle of a transaction commit. We also don't need the delalloc
5427 * mutex since we won't race with anybody. We need this mostly to make
5428 * lockdep shut its filthy mouth.
5429 */
5430 if (btrfs_is_free_space_inode(inode)) {
5431 flush = BTRFS_RESERVE_NO_FLUSH;
5432 delalloc_lock = false;
5433 }
5434
5435 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5436 btrfs_transaction_in_commit(root->fs_info))
5437 schedule_timeout(1);
5438
5439 if (delalloc_lock)
5440 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5441
5442 num_bytes = ALIGN(num_bytes, root->sectorsize);
5443
5444 spin_lock(&BTRFS_I(inode)->lock);
5445 nr_extents = (unsigned)div64_u64(num_bytes +
5446 BTRFS_MAX_EXTENT_SIZE - 1,
5447 BTRFS_MAX_EXTENT_SIZE);
5448 BTRFS_I(inode)->outstanding_extents += nr_extents;
5449 nr_extents = 0;
5450
5451 if (BTRFS_I(inode)->outstanding_extents >
5452 BTRFS_I(inode)->reserved_extents)
5453 nr_extents = BTRFS_I(inode)->outstanding_extents -
5454 BTRFS_I(inode)->reserved_extents;
5455
5456 /*
5457 * Add an item to reserve for updating the inode when we complete the
5458 * delalloc io.
5459 */
5460 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5461 &BTRFS_I(inode)->runtime_flags)) {
5462 nr_extents++;
5463 extra_reserve = 1;
5464 }
5465
5466 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5467 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5468 csum_bytes = BTRFS_I(inode)->csum_bytes;
5469 spin_unlock(&BTRFS_I(inode)->lock);
5470
5471 if (root->fs_info->quota_enabled) {
5472 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5473 if (ret)
5474 goto out_fail;
5475 }
5476
5477 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5478 if (unlikely(ret)) {
5479 if (root->fs_info->quota_enabled)
5480 btrfs_qgroup_free(root, nr_extents * root->nodesize);
5481 goto out_fail;
5482 }
5483
5484 spin_lock(&BTRFS_I(inode)->lock);
5485 if (extra_reserve) {
5486 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5487 &BTRFS_I(inode)->runtime_flags);
5488 nr_extents--;
5489 }
5490 BTRFS_I(inode)->reserved_extents += nr_extents;
5491 spin_unlock(&BTRFS_I(inode)->lock);
5492
5493 if (delalloc_lock)
5494 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5495
5496 if (to_reserve)
5497 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5498 btrfs_ino(inode), to_reserve, 1);
5499 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5500
5501 return 0;
5502
5503 out_fail:
5504 spin_lock(&BTRFS_I(inode)->lock);
5505 dropped = drop_outstanding_extent(inode, num_bytes);
5506 /*
5507 * If the inodes csum_bytes is the same as the original
5508 * csum_bytes then we know we haven't raced with any free()ers
5509 * so we can just reduce our inodes csum bytes and carry on.
5510 */
5511 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5512 calc_csum_metadata_size(inode, num_bytes, 0);
5513 } else {
5514 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5515 u64 bytes;
5516
5517 /*
5518 * This is tricky, but first we need to figure out how much we
5519 * free'd from any free-ers that occured during this
5520 * reservation, so we reset ->csum_bytes to the csum_bytes
5521 * before we dropped our lock, and then call the free for the
5522 * number of bytes that were freed while we were trying our
5523 * reservation.
5524 */
5525 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5526 BTRFS_I(inode)->csum_bytes = csum_bytes;
5527 to_free = calc_csum_metadata_size(inode, bytes, 0);
5528
5529
5530 /*
5531 * Now we need to see how much we would have freed had we not
5532 * been making this reservation and our ->csum_bytes were not
5533 * artificially inflated.
5534 */
5535 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5536 bytes = csum_bytes - orig_csum_bytes;
5537 bytes = calc_csum_metadata_size(inode, bytes, 0);
5538
5539 /*
5540 * Now reset ->csum_bytes to what it should be. If bytes is
5541 * more than to_free then we would have free'd more space had we
5542 * not had an artificially high ->csum_bytes, so we need to free
5543 * the remainder. If bytes is the same or less then we don't
5544 * need to do anything, the other free-ers did the correct
5545 * thing.
5546 */
5547 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5548 if (bytes > to_free)
5549 to_free = bytes - to_free;
5550 else
5551 to_free = 0;
5552 }
5553 spin_unlock(&BTRFS_I(inode)->lock);
5554 if (dropped)
5555 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5556
5557 if (to_free) {
5558 btrfs_block_rsv_release(root, block_rsv, to_free);
5559 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5560 btrfs_ino(inode), to_free, 0);
5561 }
5562 if (delalloc_lock)
5563 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5564 return ret;
5565 }
5566
5567 /**
5568 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5569 * @inode: the inode to release the reservation for
5570 * @num_bytes: the number of bytes we're releasing
5571 *
5572 * This will release the metadata reservation for an inode. This can be called
5573 * once we complete IO for a given set of bytes to release their metadata
5574 * reservations.
5575 */
5576 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5577 {
5578 struct btrfs_root *root = BTRFS_I(inode)->root;
5579 u64 to_free = 0;
5580 unsigned dropped;
5581
5582 num_bytes = ALIGN(num_bytes, root->sectorsize);
5583 spin_lock(&BTRFS_I(inode)->lock);
5584 dropped = drop_outstanding_extent(inode, num_bytes);
5585
5586 if (num_bytes)
5587 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5588 spin_unlock(&BTRFS_I(inode)->lock);
5589 if (dropped > 0)
5590 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5591
5592 if (btrfs_test_is_dummy_root(root))
5593 return;
5594
5595 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5596 btrfs_ino(inode), to_free, 0);
5597
5598 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5599 to_free);
5600 }
5601
5602 /**
5603 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5604 * @inode: inode we're writing to
5605 * @num_bytes: the number of bytes we want to allocate
5606 *
5607 * This will do the following things
5608 *
5609 * o reserve space in the data space info for num_bytes
5610 * o reserve space in the metadata space info based on number of outstanding
5611 * extents and how much csums will be needed
5612 * o add to the inodes ->delalloc_bytes
5613 * o add it to the fs_info's delalloc inodes list.
5614 *
5615 * This will return 0 for success and -ENOSPC if there is no space left.
5616 */
5617 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5618 {
5619 int ret;
5620
5621 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5622 if (ret)
5623 return ret;
5624
5625 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5626 if (ret) {
5627 btrfs_free_reserved_data_space(inode, num_bytes);
5628 return ret;
5629 }
5630
5631 return 0;
5632 }
5633
5634 /**
5635 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5636 * @inode: inode we're releasing space for
5637 * @num_bytes: the number of bytes we want to free up
5638 *
5639 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5640 * called in the case that we don't need the metadata AND data reservations
5641 * anymore. So if there is an error or we insert an inline extent.
5642 *
5643 * This function will release the metadata space that was not used and will
5644 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5645 * list if there are no delalloc bytes left.
5646 */
5647 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5648 {
5649 btrfs_delalloc_release_metadata(inode, num_bytes);
5650 btrfs_free_reserved_data_space(inode, num_bytes);
5651 }
5652
5653 static int update_block_group(struct btrfs_trans_handle *trans,
5654 struct btrfs_root *root, u64 bytenr,
5655 u64 num_bytes, int alloc)
5656 {
5657 struct btrfs_block_group_cache *cache = NULL;
5658 struct btrfs_fs_info *info = root->fs_info;
5659 u64 total = num_bytes;
5660 u64 old_val;
5661 u64 byte_in_group;
5662 int factor;
5663
5664 /* block accounting for super block */
5665 spin_lock(&info->delalloc_root_lock);
5666 old_val = btrfs_super_bytes_used(info->super_copy);
5667 if (alloc)
5668 old_val += num_bytes;
5669 else
5670 old_val -= num_bytes;
5671 btrfs_set_super_bytes_used(info->super_copy, old_val);
5672 spin_unlock(&info->delalloc_root_lock);
5673
5674 while (total) {
5675 cache = btrfs_lookup_block_group(info, bytenr);
5676 if (!cache)
5677 return -ENOENT;
5678 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5679 BTRFS_BLOCK_GROUP_RAID1 |
5680 BTRFS_BLOCK_GROUP_RAID10))
5681 factor = 2;
5682 else
5683 factor = 1;
5684 /*
5685 * If this block group has free space cache written out, we
5686 * need to make sure to load it if we are removing space. This
5687 * is because we need the unpinning stage to actually add the
5688 * space back to the block group, otherwise we will leak space.
5689 */
5690 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5691 cache_block_group(cache, 1);
5692
5693 byte_in_group = bytenr - cache->key.objectid;
5694 WARN_ON(byte_in_group > cache->key.offset);
5695
5696 spin_lock(&cache->space_info->lock);
5697 spin_lock(&cache->lock);
5698
5699 if (btrfs_test_opt(root, SPACE_CACHE) &&
5700 cache->disk_cache_state < BTRFS_DC_CLEAR)
5701 cache->disk_cache_state = BTRFS_DC_CLEAR;
5702
5703 old_val = btrfs_block_group_used(&cache->item);
5704 num_bytes = min(total, cache->key.offset - byte_in_group);
5705 if (alloc) {
5706 old_val += num_bytes;
5707 btrfs_set_block_group_used(&cache->item, old_val);
5708 cache->reserved -= num_bytes;
5709 cache->space_info->bytes_reserved -= num_bytes;
5710 cache->space_info->bytes_used += num_bytes;
5711 cache->space_info->disk_used += num_bytes * factor;
5712 spin_unlock(&cache->lock);
5713 spin_unlock(&cache->space_info->lock);
5714 } else {
5715 old_val -= num_bytes;
5716 btrfs_set_block_group_used(&cache->item, old_val);
5717 cache->pinned += num_bytes;
5718 cache->space_info->bytes_pinned += num_bytes;
5719 cache->space_info->bytes_used -= num_bytes;
5720 cache->space_info->disk_used -= num_bytes * factor;
5721 spin_unlock(&cache->lock);
5722 spin_unlock(&cache->space_info->lock);
5723
5724 set_extent_dirty(info->pinned_extents,
5725 bytenr, bytenr + num_bytes - 1,
5726 GFP_NOFS | __GFP_NOFAIL);
5727 /*
5728 * No longer have used bytes in this block group, queue
5729 * it for deletion.
5730 */
5731 if (old_val == 0) {
5732 spin_lock(&info->unused_bgs_lock);
5733 if (list_empty(&cache->bg_list)) {
5734 btrfs_get_block_group(cache);
5735 list_add_tail(&cache->bg_list,
5736 &info->unused_bgs);
5737 }
5738 spin_unlock(&info->unused_bgs_lock);
5739 }
5740 }
5741
5742 spin_lock(&trans->transaction->dirty_bgs_lock);
5743 if (list_empty(&cache->dirty_list)) {
5744 list_add_tail(&cache->dirty_list,
5745 &trans->transaction->dirty_bgs);
5746 trans->transaction->num_dirty_bgs++;
5747 btrfs_get_block_group(cache);
5748 }
5749 spin_unlock(&trans->transaction->dirty_bgs_lock);
5750
5751 btrfs_put_block_group(cache);
5752 total -= num_bytes;
5753 bytenr += num_bytes;
5754 }
5755 return 0;
5756 }
5757
5758 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5759 {
5760 struct btrfs_block_group_cache *cache;
5761 u64 bytenr;
5762
5763 spin_lock(&root->fs_info->block_group_cache_lock);
5764 bytenr = root->fs_info->first_logical_byte;
5765 spin_unlock(&root->fs_info->block_group_cache_lock);
5766
5767 if (bytenr < (u64)-1)
5768 return bytenr;
5769
5770 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5771 if (!cache)
5772 return 0;
5773
5774 bytenr = cache->key.objectid;
5775 btrfs_put_block_group(cache);
5776
5777 return bytenr;
5778 }
5779
5780 static int pin_down_extent(struct btrfs_root *root,
5781 struct btrfs_block_group_cache *cache,
5782 u64 bytenr, u64 num_bytes, int reserved)
5783 {
5784 spin_lock(&cache->space_info->lock);
5785 spin_lock(&cache->lock);
5786 cache->pinned += num_bytes;
5787 cache->space_info->bytes_pinned += num_bytes;
5788 if (reserved) {
5789 cache->reserved -= num_bytes;
5790 cache->space_info->bytes_reserved -= num_bytes;
5791 }
5792 spin_unlock(&cache->lock);
5793 spin_unlock(&cache->space_info->lock);
5794
5795 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5796 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5797 if (reserved)
5798 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5799 return 0;
5800 }
5801
5802 /*
5803 * this function must be called within transaction
5804 */
5805 int btrfs_pin_extent(struct btrfs_root *root,
5806 u64 bytenr, u64 num_bytes, int reserved)
5807 {
5808 struct btrfs_block_group_cache *cache;
5809
5810 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5811 BUG_ON(!cache); /* Logic error */
5812
5813 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5814
5815 btrfs_put_block_group(cache);
5816 return 0;
5817 }
5818
5819 /*
5820 * this function must be called within transaction
5821 */
5822 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5823 u64 bytenr, u64 num_bytes)
5824 {
5825 struct btrfs_block_group_cache *cache;
5826 int ret;
5827
5828 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5829 if (!cache)
5830 return -EINVAL;
5831
5832 /*
5833 * pull in the free space cache (if any) so that our pin
5834 * removes the free space from the cache. We have load_only set
5835 * to one because the slow code to read in the free extents does check
5836 * the pinned extents.
5837 */
5838 cache_block_group(cache, 1);
5839
5840 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5841
5842 /* remove us from the free space cache (if we're there at all) */
5843 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5844 btrfs_put_block_group(cache);
5845 return ret;
5846 }
5847
5848 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5849 {
5850 int ret;
5851 struct btrfs_block_group_cache *block_group;
5852 struct btrfs_caching_control *caching_ctl;
5853
5854 block_group = btrfs_lookup_block_group(root->fs_info, start);
5855 if (!block_group)
5856 return -EINVAL;
5857
5858 cache_block_group(block_group, 0);
5859 caching_ctl = get_caching_control(block_group);
5860
5861 if (!caching_ctl) {
5862 /* Logic error */
5863 BUG_ON(!block_group_cache_done(block_group));
5864 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5865 } else {
5866 mutex_lock(&caching_ctl->mutex);
5867
5868 if (start >= caching_ctl->progress) {
5869 ret = add_excluded_extent(root, start, num_bytes);
5870 } else if (start + num_bytes <= caching_ctl->progress) {
5871 ret = btrfs_remove_free_space(block_group,
5872 start, num_bytes);
5873 } else {
5874 num_bytes = caching_ctl->progress - start;
5875 ret = btrfs_remove_free_space(block_group,
5876 start, num_bytes);
5877 if (ret)
5878 goto out_lock;
5879
5880 num_bytes = (start + num_bytes) -
5881 caching_ctl->progress;
5882 start = caching_ctl->progress;
5883 ret = add_excluded_extent(root, start, num_bytes);
5884 }
5885 out_lock:
5886 mutex_unlock(&caching_ctl->mutex);
5887 put_caching_control(caching_ctl);
5888 }
5889 btrfs_put_block_group(block_group);
5890 return ret;
5891 }
5892
5893 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5894 struct extent_buffer *eb)
5895 {
5896 struct btrfs_file_extent_item *item;
5897 struct btrfs_key key;
5898 int found_type;
5899 int i;
5900
5901 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5902 return 0;
5903
5904 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5905 btrfs_item_key_to_cpu(eb, &key, i);
5906 if (key.type != BTRFS_EXTENT_DATA_KEY)
5907 continue;
5908 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5909 found_type = btrfs_file_extent_type(eb, item);
5910 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5911 continue;
5912 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5913 continue;
5914 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5915 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5916 __exclude_logged_extent(log, key.objectid, key.offset);
5917 }
5918
5919 return 0;
5920 }
5921
5922 /**
5923 * btrfs_update_reserved_bytes - update the block_group and space info counters
5924 * @cache: The cache we are manipulating
5925 * @num_bytes: The number of bytes in question
5926 * @reserve: One of the reservation enums
5927 * @delalloc: The blocks are allocated for the delalloc write
5928 *
5929 * This is called by the allocator when it reserves space, or by somebody who is
5930 * freeing space that was never actually used on disk. For example if you
5931 * reserve some space for a new leaf in transaction A and before transaction A
5932 * commits you free that leaf, you call this with reserve set to 0 in order to
5933 * clear the reservation.
5934 *
5935 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5936 * ENOSPC accounting. For data we handle the reservation through clearing the
5937 * delalloc bits in the io_tree. We have to do this since we could end up
5938 * allocating less disk space for the amount of data we have reserved in the
5939 * case of compression.
5940 *
5941 * If this is a reservation and the block group has become read only we cannot
5942 * make the reservation and return -EAGAIN, otherwise this function always
5943 * succeeds.
5944 */
5945 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5946 u64 num_bytes, int reserve, int delalloc)
5947 {
5948 struct btrfs_space_info *space_info = cache->space_info;
5949 int ret = 0;
5950
5951 spin_lock(&space_info->lock);
5952 spin_lock(&cache->lock);
5953 if (reserve != RESERVE_FREE) {
5954 if (cache->ro) {
5955 ret = -EAGAIN;
5956 } else {
5957 cache->reserved += num_bytes;
5958 space_info->bytes_reserved += num_bytes;
5959 if (reserve == RESERVE_ALLOC) {
5960 trace_btrfs_space_reservation(cache->fs_info,
5961 "space_info", space_info->flags,
5962 num_bytes, 0);
5963 space_info->bytes_may_use -= num_bytes;
5964 }
5965
5966 if (delalloc)
5967 cache->delalloc_bytes += num_bytes;
5968 }
5969 } else {
5970 if (cache->ro)
5971 space_info->bytes_readonly += num_bytes;
5972 cache->reserved -= num_bytes;
5973 space_info->bytes_reserved -= num_bytes;
5974
5975 if (delalloc)
5976 cache->delalloc_bytes -= num_bytes;
5977 }
5978 spin_unlock(&cache->lock);
5979 spin_unlock(&space_info->lock);
5980 return ret;
5981 }
5982
5983 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5984 struct btrfs_root *root)
5985 {
5986 struct btrfs_fs_info *fs_info = root->fs_info;
5987 struct btrfs_caching_control *next;
5988 struct btrfs_caching_control *caching_ctl;
5989 struct btrfs_block_group_cache *cache;
5990
5991 down_write(&fs_info->commit_root_sem);
5992
5993 list_for_each_entry_safe(caching_ctl, next,
5994 &fs_info->caching_block_groups, list) {
5995 cache = caching_ctl->block_group;
5996 if (block_group_cache_done(cache)) {
5997 cache->last_byte_to_unpin = (u64)-1;
5998 list_del_init(&caching_ctl->list);
5999 put_caching_control(caching_ctl);
6000 } else {
6001 cache->last_byte_to_unpin = caching_ctl->progress;
6002 }
6003 }
6004
6005 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6006 fs_info->pinned_extents = &fs_info->freed_extents[1];
6007 else
6008 fs_info->pinned_extents = &fs_info->freed_extents[0];
6009
6010 up_write(&fs_info->commit_root_sem);
6011
6012 update_global_block_rsv(fs_info);
6013 }
6014
6015 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6016 const bool return_free_space)
6017 {
6018 struct btrfs_fs_info *fs_info = root->fs_info;
6019 struct btrfs_block_group_cache *cache = NULL;
6020 struct btrfs_space_info *space_info;
6021 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6022 u64 len;
6023 bool readonly;
6024
6025 while (start <= end) {
6026 readonly = false;
6027 if (!cache ||
6028 start >= cache->key.objectid + cache->key.offset) {
6029 if (cache)
6030 btrfs_put_block_group(cache);
6031 cache = btrfs_lookup_block_group(fs_info, start);
6032 BUG_ON(!cache); /* Logic error */
6033 }
6034
6035 len = cache->key.objectid + cache->key.offset - start;
6036 len = min(len, end + 1 - start);
6037
6038 if (start < cache->last_byte_to_unpin) {
6039 len = min(len, cache->last_byte_to_unpin - start);
6040 if (return_free_space)
6041 btrfs_add_free_space(cache, start, len);
6042 }
6043
6044 start += len;
6045 space_info = cache->space_info;
6046
6047 spin_lock(&space_info->lock);
6048 spin_lock(&cache->lock);
6049 cache->pinned -= len;
6050 space_info->bytes_pinned -= len;
6051 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6052 if (cache->ro) {
6053 space_info->bytes_readonly += len;
6054 readonly = true;
6055 }
6056 spin_unlock(&cache->lock);
6057 if (!readonly && global_rsv->space_info == space_info) {
6058 spin_lock(&global_rsv->lock);
6059 if (!global_rsv->full) {
6060 len = min(len, global_rsv->size -
6061 global_rsv->reserved);
6062 global_rsv->reserved += len;
6063 space_info->bytes_may_use += len;
6064 if (global_rsv->reserved >= global_rsv->size)
6065 global_rsv->full = 1;
6066 }
6067 spin_unlock(&global_rsv->lock);
6068 }
6069 spin_unlock(&space_info->lock);
6070 }
6071
6072 if (cache)
6073 btrfs_put_block_group(cache);
6074 return 0;
6075 }
6076
6077 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6078 struct btrfs_root *root)
6079 {
6080 struct btrfs_fs_info *fs_info = root->fs_info;
6081 struct extent_io_tree *unpin;
6082 u64 start;
6083 u64 end;
6084 int ret;
6085
6086 if (trans->aborted)
6087 return 0;
6088
6089 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6090 unpin = &fs_info->freed_extents[1];
6091 else
6092 unpin = &fs_info->freed_extents[0];
6093
6094 while (1) {
6095 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6096 ret = find_first_extent_bit(unpin, 0, &start, &end,
6097 EXTENT_DIRTY, NULL);
6098 if (ret) {
6099 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6100 break;
6101 }
6102
6103 if (btrfs_test_opt(root, DISCARD))
6104 ret = btrfs_discard_extent(root, start,
6105 end + 1 - start, NULL);
6106
6107 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6108 unpin_extent_range(root, start, end, true);
6109 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6110 cond_resched();
6111 }
6112
6113 return 0;
6114 }
6115
6116 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6117 u64 owner, u64 root_objectid)
6118 {
6119 struct btrfs_space_info *space_info;
6120 u64 flags;
6121
6122 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6123 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6124 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6125 else
6126 flags = BTRFS_BLOCK_GROUP_METADATA;
6127 } else {
6128 flags = BTRFS_BLOCK_GROUP_DATA;
6129 }
6130
6131 space_info = __find_space_info(fs_info, flags);
6132 BUG_ON(!space_info); /* Logic bug */
6133 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6134 }
6135
6136
6137 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6138 struct btrfs_root *root,
6139 u64 bytenr, u64 num_bytes, u64 parent,
6140 u64 root_objectid, u64 owner_objectid,
6141 u64 owner_offset, int refs_to_drop,
6142 struct btrfs_delayed_extent_op *extent_op,
6143 int no_quota)
6144 {
6145 struct btrfs_key key;
6146 struct btrfs_path *path;
6147 struct btrfs_fs_info *info = root->fs_info;
6148 struct btrfs_root *extent_root = info->extent_root;
6149 struct extent_buffer *leaf;
6150 struct btrfs_extent_item *ei;
6151 struct btrfs_extent_inline_ref *iref;
6152 int ret;
6153 int is_data;
6154 int extent_slot = 0;
6155 int found_extent = 0;
6156 int num_to_del = 1;
6157 u32 item_size;
6158 u64 refs;
6159 int last_ref = 0;
6160 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6161 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6162 SKINNY_METADATA);
6163
6164 if (!info->quota_enabled || !is_fstree(root_objectid))
6165 no_quota = 1;
6166
6167 path = btrfs_alloc_path();
6168 if (!path)
6169 return -ENOMEM;
6170
6171 path->reada = 1;
6172 path->leave_spinning = 1;
6173
6174 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6175 BUG_ON(!is_data && refs_to_drop != 1);
6176
6177 if (is_data)
6178 skinny_metadata = 0;
6179
6180 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6181 bytenr, num_bytes, parent,
6182 root_objectid, owner_objectid,
6183 owner_offset);
6184 if (ret == 0) {
6185 extent_slot = path->slots[0];
6186 while (extent_slot >= 0) {
6187 btrfs_item_key_to_cpu(path->nodes[0], &key,
6188 extent_slot);
6189 if (key.objectid != bytenr)
6190 break;
6191 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6192 key.offset == num_bytes) {
6193 found_extent = 1;
6194 break;
6195 }
6196 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6197 key.offset == owner_objectid) {
6198 found_extent = 1;
6199 break;
6200 }
6201 if (path->slots[0] - extent_slot > 5)
6202 break;
6203 extent_slot--;
6204 }
6205 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6206 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6207 if (found_extent && item_size < sizeof(*ei))
6208 found_extent = 0;
6209 #endif
6210 if (!found_extent) {
6211 BUG_ON(iref);
6212 ret = remove_extent_backref(trans, extent_root, path,
6213 NULL, refs_to_drop,
6214 is_data, &last_ref);
6215 if (ret) {
6216 btrfs_abort_transaction(trans, extent_root, ret);
6217 goto out;
6218 }
6219 btrfs_release_path(path);
6220 path->leave_spinning = 1;
6221
6222 key.objectid = bytenr;
6223 key.type = BTRFS_EXTENT_ITEM_KEY;
6224 key.offset = num_bytes;
6225
6226 if (!is_data && skinny_metadata) {
6227 key.type = BTRFS_METADATA_ITEM_KEY;
6228 key.offset = owner_objectid;
6229 }
6230
6231 ret = btrfs_search_slot(trans, extent_root,
6232 &key, path, -1, 1);
6233 if (ret > 0 && skinny_metadata && path->slots[0]) {
6234 /*
6235 * Couldn't find our skinny metadata item,
6236 * see if we have ye olde extent item.
6237 */
6238 path->slots[0]--;
6239 btrfs_item_key_to_cpu(path->nodes[0], &key,
6240 path->slots[0]);
6241 if (key.objectid == bytenr &&
6242 key.type == BTRFS_EXTENT_ITEM_KEY &&
6243 key.offset == num_bytes)
6244 ret = 0;
6245 }
6246
6247 if (ret > 0 && skinny_metadata) {
6248 skinny_metadata = false;
6249 key.objectid = bytenr;
6250 key.type = BTRFS_EXTENT_ITEM_KEY;
6251 key.offset = num_bytes;
6252 btrfs_release_path(path);
6253 ret = btrfs_search_slot(trans, extent_root,
6254 &key, path, -1, 1);
6255 }
6256
6257 if (ret) {
6258 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6259 ret, bytenr);
6260 if (ret > 0)
6261 btrfs_print_leaf(extent_root,
6262 path->nodes[0]);
6263 }
6264 if (ret < 0) {
6265 btrfs_abort_transaction(trans, extent_root, ret);
6266 goto out;
6267 }
6268 extent_slot = path->slots[0];
6269 }
6270 } else if (WARN_ON(ret == -ENOENT)) {
6271 btrfs_print_leaf(extent_root, path->nodes[0]);
6272 btrfs_err(info,
6273 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6274 bytenr, parent, root_objectid, owner_objectid,
6275 owner_offset);
6276 btrfs_abort_transaction(trans, extent_root, ret);
6277 goto out;
6278 } else {
6279 btrfs_abort_transaction(trans, extent_root, ret);
6280 goto out;
6281 }
6282
6283 leaf = path->nodes[0];
6284 item_size = btrfs_item_size_nr(leaf, extent_slot);
6285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6286 if (item_size < sizeof(*ei)) {
6287 BUG_ON(found_extent || extent_slot != path->slots[0]);
6288 ret = convert_extent_item_v0(trans, extent_root, path,
6289 owner_objectid, 0);
6290 if (ret < 0) {
6291 btrfs_abort_transaction(trans, extent_root, ret);
6292 goto out;
6293 }
6294
6295 btrfs_release_path(path);
6296 path->leave_spinning = 1;
6297
6298 key.objectid = bytenr;
6299 key.type = BTRFS_EXTENT_ITEM_KEY;
6300 key.offset = num_bytes;
6301
6302 ret = btrfs_search_slot(trans, extent_root, &key, path,
6303 -1, 1);
6304 if (ret) {
6305 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6306 ret, bytenr);
6307 btrfs_print_leaf(extent_root, path->nodes[0]);
6308 }
6309 if (ret < 0) {
6310 btrfs_abort_transaction(trans, extent_root, ret);
6311 goto out;
6312 }
6313
6314 extent_slot = path->slots[0];
6315 leaf = path->nodes[0];
6316 item_size = btrfs_item_size_nr(leaf, extent_slot);
6317 }
6318 #endif
6319 BUG_ON(item_size < sizeof(*ei));
6320 ei = btrfs_item_ptr(leaf, extent_slot,
6321 struct btrfs_extent_item);
6322 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6323 key.type == BTRFS_EXTENT_ITEM_KEY) {
6324 struct btrfs_tree_block_info *bi;
6325 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6326 bi = (struct btrfs_tree_block_info *)(ei + 1);
6327 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6328 }
6329
6330 refs = btrfs_extent_refs(leaf, ei);
6331 if (refs < refs_to_drop) {
6332 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6333 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6334 ret = -EINVAL;
6335 btrfs_abort_transaction(trans, extent_root, ret);
6336 goto out;
6337 }
6338 refs -= refs_to_drop;
6339
6340 if (refs > 0) {
6341 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6342 if (extent_op)
6343 __run_delayed_extent_op(extent_op, leaf, ei);
6344 /*
6345 * In the case of inline back ref, reference count will
6346 * be updated by remove_extent_backref
6347 */
6348 if (iref) {
6349 BUG_ON(!found_extent);
6350 } else {
6351 btrfs_set_extent_refs(leaf, ei, refs);
6352 btrfs_mark_buffer_dirty(leaf);
6353 }
6354 if (found_extent) {
6355 ret = remove_extent_backref(trans, extent_root, path,
6356 iref, refs_to_drop,
6357 is_data, &last_ref);
6358 if (ret) {
6359 btrfs_abort_transaction(trans, extent_root, ret);
6360 goto out;
6361 }
6362 }
6363 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6364 root_objectid);
6365 } else {
6366 if (found_extent) {
6367 BUG_ON(is_data && refs_to_drop !=
6368 extent_data_ref_count(root, path, iref));
6369 if (iref) {
6370 BUG_ON(path->slots[0] != extent_slot);
6371 } else {
6372 BUG_ON(path->slots[0] != extent_slot + 1);
6373 path->slots[0] = extent_slot;
6374 num_to_del = 2;
6375 }
6376 }
6377
6378 last_ref = 1;
6379 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6380 num_to_del);
6381 if (ret) {
6382 btrfs_abort_transaction(trans, extent_root, ret);
6383 goto out;
6384 }
6385 btrfs_release_path(path);
6386
6387 if (is_data) {
6388 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6389 if (ret) {
6390 btrfs_abort_transaction(trans, extent_root, ret);
6391 goto out;
6392 }
6393 }
6394
6395 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6396 if (ret) {
6397 btrfs_abort_transaction(trans, extent_root, ret);
6398 goto out;
6399 }
6400 }
6401 btrfs_release_path(path);
6402
6403 /* Deal with the quota accounting */
6404 if (!ret && last_ref && !no_quota) {
6405 int mod_seq = 0;
6406
6407 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6408 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6409 mod_seq = 1;
6410
6411 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6412 bytenr, num_bytes, type,
6413 mod_seq);
6414 }
6415 out:
6416 btrfs_free_path(path);
6417 return ret;
6418 }
6419
6420 /*
6421 * when we free an block, it is possible (and likely) that we free the last
6422 * delayed ref for that extent as well. This searches the delayed ref tree for
6423 * a given extent, and if there are no other delayed refs to be processed, it
6424 * removes it from the tree.
6425 */
6426 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6427 struct btrfs_root *root, u64 bytenr)
6428 {
6429 struct btrfs_delayed_ref_head *head;
6430 struct btrfs_delayed_ref_root *delayed_refs;
6431 int ret = 0;
6432
6433 delayed_refs = &trans->transaction->delayed_refs;
6434 spin_lock(&delayed_refs->lock);
6435 head = btrfs_find_delayed_ref_head(trans, bytenr);
6436 if (!head)
6437 goto out_delayed_unlock;
6438
6439 spin_lock(&head->lock);
6440 if (rb_first(&head->ref_root))
6441 goto out;
6442
6443 if (head->extent_op) {
6444 if (!head->must_insert_reserved)
6445 goto out;
6446 btrfs_free_delayed_extent_op(head->extent_op);
6447 head->extent_op = NULL;
6448 }
6449
6450 /*
6451 * waiting for the lock here would deadlock. If someone else has it
6452 * locked they are already in the process of dropping it anyway
6453 */
6454 if (!mutex_trylock(&head->mutex))
6455 goto out;
6456
6457 /*
6458 * at this point we have a head with no other entries. Go
6459 * ahead and process it.
6460 */
6461 head->node.in_tree = 0;
6462 rb_erase(&head->href_node, &delayed_refs->href_root);
6463
6464 atomic_dec(&delayed_refs->num_entries);
6465
6466 /*
6467 * we don't take a ref on the node because we're removing it from the
6468 * tree, so we just steal the ref the tree was holding.
6469 */
6470 delayed_refs->num_heads--;
6471 if (head->processing == 0)
6472 delayed_refs->num_heads_ready--;
6473 head->processing = 0;
6474 spin_unlock(&head->lock);
6475 spin_unlock(&delayed_refs->lock);
6476
6477 BUG_ON(head->extent_op);
6478 if (head->must_insert_reserved)
6479 ret = 1;
6480
6481 mutex_unlock(&head->mutex);
6482 btrfs_put_delayed_ref(&head->node);
6483 return ret;
6484 out:
6485 spin_unlock(&head->lock);
6486
6487 out_delayed_unlock:
6488 spin_unlock(&delayed_refs->lock);
6489 return 0;
6490 }
6491
6492 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6493 struct btrfs_root *root,
6494 struct extent_buffer *buf,
6495 u64 parent, int last_ref)
6496 {
6497 int pin = 1;
6498 int ret;
6499
6500 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6501 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6502 buf->start, buf->len,
6503 parent, root->root_key.objectid,
6504 btrfs_header_level(buf),
6505 BTRFS_DROP_DELAYED_REF, NULL, 0);
6506 BUG_ON(ret); /* -ENOMEM */
6507 }
6508
6509 if (!last_ref)
6510 return;
6511
6512 if (btrfs_header_generation(buf) == trans->transid) {
6513 struct btrfs_block_group_cache *cache;
6514
6515 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6516 ret = check_ref_cleanup(trans, root, buf->start);
6517 if (!ret)
6518 goto out;
6519 }
6520
6521 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6522
6523 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6524 pin_down_extent(root, cache, buf->start, buf->len, 1);
6525 btrfs_put_block_group(cache);
6526 goto out;
6527 }
6528
6529 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6530
6531 btrfs_add_free_space(cache, buf->start, buf->len);
6532 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6533 btrfs_put_block_group(cache);
6534 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6535 pin = 0;
6536 }
6537 out:
6538 if (pin)
6539 add_pinned_bytes(root->fs_info, buf->len,
6540 btrfs_header_level(buf),
6541 root->root_key.objectid);
6542
6543 /*
6544 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6545 * anymore.
6546 */
6547 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6548 }
6549
6550 /* Can return -ENOMEM */
6551 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6552 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6553 u64 owner, u64 offset, int no_quota)
6554 {
6555 int ret;
6556 struct btrfs_fs_info *fs_info = root->fs_info;
6557
6558 if (btrfs_test_is_dummy_root(root))
6559 return 0;
6560
6561 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6562
6563 /*
6564 * tree log blocks never actually go into the extent allocation
6565 * tree, just update pinning info and exit early.
6566 */
6567 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6568 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6569 /* unlocks the pinned mutex */
6570 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6571 ret = 0;
6572 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6573 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6574 num_bytes,
6575 parent, root_objectid, (int)owner,
6576 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6577 } else {
6578 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6579 num_bytes,
6580 parent, root_objectid, owner,
6581 offset, BTRFS_DROP_DELAYED_REF,
6582 NULL, no_quota);
6583 }
6584 return ret;
6585 }
6586
6587 /*
6588 * when we wait for progress in the block group caching, its because
6589 * our allocation attempt failed at least once. So, we must sleep
6590 * and let some progress happen before we try again.
6591 *
6592 * This function will sleep at least once waiting for new free space to
6593 * show up, and then it will check the block group free space numbers
6594 * for our min num_bytes. Another option is to have it go ahead
6595 * and look in the rbtree for a free extent of a given size, but this
6596 * is a good start.
6597 *
6598 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6599 * any of the information in this block group.
6600 */
6601 static noinline void
6602 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6603 u64 num_bytes)
6604 {
6605 struct btrfs_caching_control *caching_ctl;
6606
6607 caching_ctl = get_caching_control(cache);
6608 if (!caching_ctl)
6609 return;
6610
6611 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6612 (cache->free_space_ctl->free_space >= num_bytes));
6613
6614 put_caching_control(caching_ctl);
6615 }
6616
6617 static noinline int
6618 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6619 {
6620 struct btrfs_caching_control *caching_ctl;
6621 int ret = 0;
6622
6623 caching_ctl = get_caching_control(cache);
6624 if (!caching_ctl)
6625 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6626
6627 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6628 if (cache->cached == BTRFS_CACHE_ERROR)
6629 ret = -EIO;
6630 put_caching_control(caching_ctl);
6631 return ret;
6632 }
6633
6634 int __get_raid_index(u64 flags)
6635 {
6636 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6637 return BTRFS_RAID_RAID10;
6638 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6639 return BTRFS_RAID_RAID1;
6640 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6641 return BTRFS_RAID_DUP;
6642 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6643 return BTRFS_RAID_RAID0;
6644 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6645 return BTRFS_RAID_RAID5;
6646 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6647 return BTRFS_RAID_RAID6;
6648
6649 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6650 }
6651
6652 int get_block_group_index(struct btrfs_block_group_cache *cache)
6653 {
6654 return __get_raid_index(cache->flags);
6655 }
6656
6657 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6658 [BTRFS_RAID_RAID10] = "raid10",
6659 [BTRFS_RAID_RAID1] = "raid1",
6660 [BTRFS_RAID_DUP] = "dup",
6661 [BTRFS_RAID_RAID0] = "raid0",
6662 [BTRFS_RAID_SINGLE] = "single",
6663 [BTRFS_RAID_RAID5] = "raid5",
6664 [BTRFS_RAID_RAID6] = "raid6",
6665 };
6666
6667 static const char *get_raid_name(enum btrfs_raid_types type)
6668 {
6669 if (type >= BTRFS_NR_RAID_TYPES)
6670 return NULL;
6671
6672 return btrfs_raid_type_names[type];
6673 }
6674
6675 enum btrfs_loop_type {
6676 LOOP_CACHING_NOWAIT = 0,
6677 LOOP_CACHING_WAIT = 1,
6678 LOOP_ALLOC_CHUNK = 2,
6679 LOOP_NO_EMPTY_SIZE = 3,
6680 };
6681
6682 static inline void
6683 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6684 int delalloc)
6685 {
6686 if (delalloc)
6687 down_read(&cache->data_rwsem);
6688 }
6689
6690 static inline void
6691 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6692 int delalloc)
6693 {
6694 btrfs_get_block_group(cache);
6695 if (delalloc)
6696 down_read(&cache->data_rwsem);
6697 }
6698
6699 static struct btrfs_block_group_cache *
6700 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6701 struct btrfs_free_cluster *cluster,
6702 int delalloc)
6703 {
6704 struct btrfs_block_group_cache *used_bg;
6705 bool locked = false;
6706 again:
6707 spin_lock(&cluster->refill_lock);
6708 if (locked) {
6709 if (used_bg == cluster->block_group)
6710 return used_bg;
6711
6712 up_read(&used_bg->data_rwsem);
6713 btrfs_put_block_group(used_bg);
6714 }
6715
6716 used_bg = cluster->block_group;
6717 if (!used_bg)
6718 return NULL;
6719
6720 if (used_bg == block_group)
6721 return used_bg;
6722
6723 btrfs_get_block_group(used_bg);
6724
6725 if (!delalloc)
6726 return used_bg;
6727
6728 if (down_read_trylock(&used_bg->data_rwsem))
6729 return used_bg;
6730
6731 spin_unlock(&cluster->refill_lock);
6732 down_read(&used_bg->data_rwsem);
6733 locked = true;
6734 goto again;
6735 }
6736
6737 static inline void
6738 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6739 int delalloc)
6740 {
6741 if (delalloc)
6742 up_read(&cache->data_rwsem);
6743 btrfs_put_block_group(cache);
6744 }
6745
6746 /*
6747 * walks the btree of allocated extents and find a hole of a given size.
6748 * The key ins is changed to record the hole:
6749 * ins->objectid == start position
6750 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6751 * ins->offset == the size of the hole.
6752 * Any available blocks before search_start are skipped.
6753 *
6754 * If there is no suitable free space, we will record the max size of
6755 * the free space extent currently.
6756 */
6757 static noinline int find_free_extent(struct btrfs_root *orig_root,
6758 u64 num_bytes, u64 empty_size,
6759 u64 hint_byte, struct btrfs_key *ins,
6760 u64 flags, int delalloc)
6761 {
6762 int ret = 0;
6763 struct btrfs_root *root = orig_root->fs_info->extent_root;
6764 struct btrfs_free_cluster *last_ptr = NULL;
6765 struct btrfs_block_group_cache *block_group = NULL;
6766 u64 search_start = 0;
6767 u64 max_extent_size = 0;
6768 int empty_cluster = 2 * 1024 * 1024;
6769 struct btrfs_space_info *space_info;
6770 int loop = 0;
6771 int index = __get_raid_index(flags);
6772 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6773 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6774 bool failed_cluster_refill = false;
6775 bool failed_alloc = false;
6776 bool use_cluster = true;
6777 bool have_caching_bg = false;
6778
6779 WARN_ON(num_bytes < root->sectorsize);
6780 ins->type = BTRFS_EXTENT_ITEM_KEY;
6781 ins->objectid = 0;
6782 ins->offset = 0;
6783
6784 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6785
6786 space_info = __find_space_info(root->fs_info, flags);
6787 if (!space_info) {
6788 btrfs_err(root->fs_info, "No space info for %llu", flags);
6789 return -ENOSPC;
6790 }
6791
6792 /*
6793 * If the space info is for both data and metadata it means we have a
6794 * small filesystem and we can't use the clustering stuff.
6795 */
6796 if (btrfs_mixed_space_info(space_info))
6797 use_cluster = false;
6798
6799 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6800 last_ptr = &root->fs_info->meta_alloc_cluster;
6801 if (!btrfs_test_opt(root, SSD))
6802 empty_cluster = 64 * 1024;
6803 }
6804
6805 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6806 btrfs_test_opt(root, SSD)) {
6807 last_ptr = &root->fs_info->data_alloc_cluster;
6808 }
6809
6810 if (last_ptr) {
6811 spin_lock(&last_ptr->lock);
6812 if (last_ptr->block_group)
6813 hint_byte = last_ptr->window_start;
6814 spin_unlock(&last_ptr->lock);
6815 }
6816
6817 search_start = max(search_start, first_logical_byte(root, 0));
6818 search_start = max(search_start, hint_byte);
6819
6820 if (!last_ptr)
6821 empty_cluster = 0;
6822
6823 if (search_start == hint_byte) {
6824 block_group = btrfs_lookup_block_group(root->fs_info,
6825 search_start);
6826 /*
6827 * we don't want to use the block group if it doesn't match our
6828 * allocation bits, or if its not cached.
6829 *
6830 * However if we are re-searching with an ideal block group
6831 * picked out then we don't care that the block group is cached.
6832 */
6833 if (block_group && block_group_bits(block_group, flags) &&
6834 block_group->cached != BTRFS_CACHE_NO) {
6835 down_read(&space_info->groups_sem);
6836 if (list_empty(&block_group->list) ||
6837 block_group->ro) {
6838 /*
6839 * someone is removing this block group,
6840 * we can't jump into the have_block_group
6841 * target because our list pointers are not
6842 * valid
6843 */
6844 btrfs_put_block_group(block_group);
6845 up_read(&space_info->groups_sem);
6846 } else {
6847 index = get_block_group_index(block_group);
6848 btrfs_lock_block_group(block_group, delalloc);
6849 goto have_block_group;
6850 }
6851 } else if (block_group) {
6852 btrfs_put_block_group(block_group);
6853 }
6854 }
6855 search:
6856 have_caching_bg = false;
6857 down_read(&space_info->groups_sem);
6858 list_for_each_entry(block_group, &space_info->block_groups[index],
6859 list) {
6860 u64 offset;
6861 int cached;
6862
6863 btrfs_grab_block_group(block_group, delalloc);
6864 search_start = block_group->key.objectid;
6865
6866 /*
6867 * this can happen if we end up cycling through all the
6868 * raid types, but we want to make sure we only allocate
6869 * for the proper type.
6870 */
6871 if (!block_group_bits(block_group, flags)) {
6872 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6873 BTRFS_BLOCK_GROUP_RAID1 |
6874 BTRFS_BLOCK_GROUP_RAID5 |
6875 BTRFS_BLOCK_GROUP_RAID6 |
6876 BTRFS_BLOCK_GROUP_RAID10;
6877
6878 /*
6879 * if they asked for extra copies and this block group
6880 * doesn't provide them, bail. This does allow us to
6881 * fill raid0 from raid1.
6882 */
6883 if ((flags & extra) && !(block_group->flags & extra))
6884 goto loop;
6885 }
6886
6887 have_block_group:
6888 cached = block_group_cache_done(block_group);
6889 if (unlikely(!cached)) {
6890 ret = cache_block_group(block_group, 0);
6891 BUG_ON(ret < 0);
6892 ret = 0;
6893 }
6894
6895 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6896 goto loop;
6897 if (unlikely(block_group->ro))
6898 goto loop;
6899
6900 /*
6901 * Ok we want to try and use the cluster allocator, so
6902 * lets look there
6903 */
6904 if (last_ptr) {
6905 struct btrfs_block_group_cache *used_block_group;
6906 unsigned long aligned_cluster;
6907 /*
6908 * the refill lock keeps out other
6909 * people trying to start a new cluster
6910 */
6911 used_block_group = btrfs_lock_cluster(block_group,
6912 last_ptr,
6913 delalloc);
6914 if (!used_block_group)
6915 goto refill_cluster;
6916
6917 if (used_block_group != block_group &&
6918 (used_block_group->ro ||
6919 !block_group_bits(used_block_group, flags)))
6920 goto release_cluster;
6921
6922 offset = btrfs_alloc_from_cluster(used_block_group,
6923 last_ptr,
6924 num_bytes,
6925 used_block_group->key.objectid,
6926 &max_extent_size);
6927 if (offset) {
6928 /* we have a block, we're done */
6929 spin_unlock(&last_ptr->refill_lock);
6930 trace_btrfs_reserve_extent_cluster(root,
6931 used_block_group,
6932 search_start, num_bytes);
6933 if (used_block_group != block_group) {
6934 btrfs_release_block_group(block_group,
6935 delalloc);
6936 block_group = used_block_group;
6937 }
6938 goto checks;
6939 }
6940
6941 WARN_ON(last_ptr->block_group != used_block_group);
6942 release_cluster:
6943 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6944 * set up a new clusters, so lets just skip it
6945 * and let the allocator find whatever block
6946 * it can find. If we reach this point, we
6947 * will have tried the cluster allocator
6948 * plenty of times and not have found
6949 * anything, so we are likely way too
6950 * fragmented for the clustering stuff to find
6951 * anything.
6952 *
6953 * However, if the cluster is taken from the
6954 * current block group, release the cluster
6955 * first, so that we stand a better chance of
6956 * succeeding in the unclustered
6957 * allocation. */
6958 if (loop >= LOOP_NO_EMPTY_SIZE &&
6959 used_block_group != block_group) {
6960 spin_unlock(&last_ptr->refill_lock);
6961 btrfs_release_block_group(used_block_group,
6962 delalloc);
6963 goto unclustered_alloc;
6964 }
6965
6966 /*
6967 * this cluster didn't work out, free it and
6968 * start over
6969 */
6970 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6971
6972 if (used_block_group != block_group)
6973 btrfs_release_block_group(used_block_group,
6974 delalloc);
6975 refill_cluster:
6976 if (loop >= LOOP_NO_EMPTY_SIZE) {
6977 spin_unlock(&last_ptr->refill_lock);
6978 goto unclustered_alloc;
6979 }
6980
6981 aligned_cluster = max_t(unsigned long,
6982 empty_cluster + empty_size,
6983 block_group->full_stripe_len);
6984
6985 /* allocate a cluster in this block group */
6986 ret = btrfs_find_space_cluster(root, block_group,
6987 last_ptr, search_start,
6988 num_bytes,
6989 aligned_cluster);
6990 if (ret == 0) {
6991 /*
6992 * now pull our allocation out of this
6993 * cluster
6994 */
6995 offset = btrfs_alloc_from_cluster(block_group,
6996 last_ptr,
6997 num_bytes,
6998 search_start,
6999 &max_extent_size);
7000 if (offset) {
7001 /* we found one, proceed */
7002 spin_unlock(&last_ptr->refill_lock);
7003 trace_btrfs_reserve_extent_cluster(root,
7004 block_group, search_start,
7005 num_bytes);
7006 goto checks;
7007 }
7008 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7009 && !failed_cluster_refill) {
7010 spin_unlock(&last_ptr->refill_lock);
7011
7012 failed_cluster_refill = true;
7013 wait_block_group_cache_progress(block_group,
7014 num_bytes + empty_cluster + empty_size);
7015 goto have_block_group;
7016 }
7017
7018 /*
7019 * at this point we either didn't find a cluster
7020 * or we weren't able to allocate a block from our
7021 * cluster. Free the cluster we've been trying
7022 * to use, and go to the next block group
7023 */
7024 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7025 spin_unlock(&last_ptr->refill_lock);
7026 goto loop;
7027 }
7028
7029 unclustered_alloc:
7030 spin_lock(&block_group->free_space_ctl->tree_lock);
7031 if (cached &&
7032 block_group->free_space_ctl->free_space <
7033 num_bytes + empty_cluster + empty_size) {
7034 if (block_group->free_space_ctl->free_space >
7035 max_extent_size)
7036 max_extent_size =
7037 block_group->free_space_ctl->free_space;
7038 spin_unlock(&block_group->free_space_ctl->tree_lock);
7039 goto loop;
7040 }
7041 spin_unlock(&block_group->free_space_ctl->tree_lock);
7042
7043 offset = btrfs_find_space_for_alloc(block_group, search_start,
7044 num_bytes, empty_size,
7045 &max_extent_size);
7046 /*
7047 * If we didn't find a chunk, and we haven't failed on this
7048 * block group before, and this block group is in the middle of
7049 * caching and we are ok with waiting, then go ahead and wait
7050 * for progress to be made, and set failed_alloc to true.
7051 *
7052 * If failed_alloc is true then we've already waited on this
7053 * block group once and should move on to the next block group.
7054 */
7055 if (!offset && !failed_alloc && !cached &&
7056 loop > LOOP_CACHING_NOWAIT) {
7057 wait_block_group_cache_progress(block_group,
7058 num_bytes + empty_size);
7059 failed_alloc = true;
7060 goto have_block_group;
7061 } else if (!offset) {
7062 if (!cached)
7063 have_caching_bg = true;
7064 goto loop;
7065 }
7066 checks:
7067 search_start = ALIGN(offset, root->stripesize);
7068
7069 /* move on to the next group */
7070 if (search_start + num_bytes >
7071 block_group->key.objectid + block_group->key.offset) {
7072 btrfs_add_free_space(block_group, offset, num_bytes);
7073 goto loop;
7074 }
7075
7076 if (offset < search_start)
7077 btrfs_add_free_space(block_group, offset,
7078 search_start - offset);
7079 BUG_ON(offset > search_start);
7080
7081 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7082 alloc_type, delalloc);
7083 if (ret == -EAGAIN) {
7084 btrfs_add_free_space(block_group, offset, num_bytes);
7085 goto loop;
7086 }
7087
7088 /* we are all good, lets return */
7089 ins->objectid = search_start;
7090 ins->offset = num_bytes;
7091
7092 trace_btrfs_reserve_extent(orig_root, block_group,
7093 search_start, num_bytes);
7094 btrfs_release_block_group(block_group, delalloc);
7095 break;
7096 loop:
7097 failed_cluster_refill = false;
7098 failed_alloc = false;
7099 BUG_ON(index != get_block_group_index(block_group));
7100 btrfs_release_block_group(block_group, delalloc);
7101 }
7102 up_read(&space_info->groups_sem);
7103
7104 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7105 goto search;
7106
7107 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7108 goto search;
7109
7110 /*
7111 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7112 * caching kthreads as we move along
7113 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7114 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7115 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7116 * again
7117 */
7118 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7119 index = 0;
7120 loop++;
7121 if (loop == LOOP_ALLOC_CHUNK) {
7122 struct btrfs_trans_handle *trans;
7123 int exist = 0;
7124
7125 trans = current->journal_info;
7126 if (trans)
7127 exist = 1;
7128 else
7129 trans = btrfs_join_transaction(root);
7130
7131 if (IS_ERR(trans)) {
7132 ret = PTR_ERR(trans);
7133 goto out;
7134 }
7135
7136 ret = do_chunk_alloc(trans, root, flags,
7137 CHUNK_ALLOC_FORCE);
7138 /*
7139 * Do not bail out on ENOSPC since we
7140 * can do more things.
7141 */
7142 if (ret < 0 && ret != -ENOSPC)
7143 btrfs_abort_transaction(trans,
7144 root, ret);
7145 else
7146 ret = 0;
7147 if (!exist)
7148 btrfs_end_transaction(trans, root);
7149 if (ret)
7150 goto out;
7151 }
7152
7153 if (loop == LOOP_NO_EMPTY_SIZE) {
7154 empty_size = 0;
7155 empty_cluster = 0;
7156 }
7157
7158 goto search;
7159 } else if (!ins->objectid) {
7160 ret = -ENOSPC;
7161 } else if (ins->objectid) {
7162 ret = 0;
7163 }
7164 out:
7165 if (ret == -ENOSPC)
7166 ins->offset = max_extent_size;
7167 return ret;
7168 }
7169
7170 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7171 int dump_block_groups)
7172 {
7173 struct btrfs_block_group_cache *cache;
7174 int index = 0;
7175
7176 spin_lock(&info->lock);
7177 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7178 info->flags,
7179 info->total_bytes - info->bytes_used - info->bytes_pinned -
7180 info->bytes_reserved - info->bytes_readonly,
7181 (info->full) ? "" : "not ");
7182 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7183 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7184 info->total_bytes, info->bytes_used, info->bytes_pinned,
7185 info->bytes_reserved, info->bytes_may_use,
7186 info->bytes_readonly);
7187 spin_unlock(&info->lock);
7188
7189 if (!dump_block_groups)
7190 return;
7191
7192 down_read(&info->groups_sem);
7193 again:
7194 list_for_each_entry(cache, &info->block_groups[index], list) {
7195 spin_lock(&cache->lock);
7196 printk(KERN_INFO "BTRFS: "
7197 "block group %llu has %llu bytes, "
7198 "%llu used %llu pinned %llu reserved %s\n",
7199 cache->key.objectid, cache->key.offset,
7200 btrfs_block_group_used(&cache->item), cache->pinned,
7201 cache->reserved, cache->ro ? "[readonly]" : "");
7202 btrfs_dump_free_space(cache, bytes);
7203 spin_unlock(&cache->lock);
7204 }
7205 if (++index < BTRFS_NR_RAID_TYPES)
7206 goto again;
7207 up_read(&info->groups_sem);
7208 }
7209
7210 int btrfs_reserve_extent(struct btrfs_root *root,
7211 u64 num_bytes, u64 min_alloc_size,
7212 u64 empty_size, u64 hint_byte,
7213 struct btrfs_key *ins, int is_data, int delalloc)
7214 {
7215 bool final_tried = false;
7216 u64 flags;
7217 int ret;
7218
7219 flags = btrfs_get_alloc_profile(root, is_data);
7220 again:
7221 WARN_ON(num_bytes < root->sectorsize);
7222 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7223 flags, delalloc);
7224
7225 if (ret == -ENOSPC) {
7226 if (!final_tried && ins->offset) {
7227 num_bytes = min(num_bytes >> 1, ins->offset);
7228 num_bytes = round_down(num_bytes, root->sectorsize);
7229 num_bytes = max(num_bytes, min_alloc_size);
7230 if (num_bytes == min_alloc_size)
7231 final_tried = true;
7232 goto again;
7233 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7234 struct btrfs_space_info *sinfo;
7235
7236 sinfo = __find_space_info(root->fs_info, flags);
7237 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7238 flags, num_bytes);
7239 if (sinfo)
7240 dump_space_info(sinfo, num_bytes, 1);
7241 }
7242 }
7243
7244 return ret;
7245 }
7246
7247 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7248 u64 start, u64 len,
7249 int pin, int delalloc)
7250 {
7251 struct btrfs_block_group_cache *cache;
7252 int ret = 0;
7253
7254 cache = btrfs_lookup_block_group(root->fs_info, start);
7255 if (!cache) {
7256 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7257 start);
7258 return -ENOSPC;
7259 }
7260
7261 if (pin)
7262 pin_down_extent(root, cache, start, len, 1);
7263 else {
7264 if (btrfs_test_opt(root, DISCARD))
7265 ret = btrfs_discard_extent(root, start, len, NULL);
7266 btrfs_add_free_space(cache, start, len);
7267 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7268 }
7269
7270 btrfs_put_block_group(cache);
7271
7272 trace_btrfs_reserved_extent_free(root, start, len);
7273
7274 return ret;
7275 }
7276
7277 int btrfs_free_reserved_extent(struct btrfs_root *root,
7278 u64 start, u64 len, int delalloc)
7279 {
7280 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7281 }
7282
7283 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7284 u64 start, u64 len)
7285 {
7286 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7287 }
7288
7289 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7290 struct btrfs_root *root,
7291 u64 parent, u64 root_objectid,
7292 u64 flags, u64 owner, u64 offset,
7293 struct btrfs_key *ins, int ref_mod)
7294 {
7295 int ret;
7296 struct btrfs_fs_info *fs_info = root->fs_info;
7297 struct btrfs_extent_item *extent_item;
7298 struct btrfs_extent_inline_ref *iref;
7299 struct btrfs_path *path;
7300 struct extent_buffer *leaf;
7301 int type;
7302 u32 size;
7303
7304 if (parent > 0)
7305 type = BTRFS_SHARED_DATA_REF_KEY;
7306 else
7307 type = BTRFS_EXTENT_DATA_REF_KEY;
7308
7309 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7310
7311 path = btrfs_alloc_path();
7312 if (!path)
7313 return -ENOMEM;
7314
7315 path->leave_spinning = 1;
7316 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7317 ins, size);
7318 if (ret) {
7319 btrfs_free_path(path);
7320 return ret;
7321 }
7322
7323 leaf = path->nodes[0];
7324 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7325 struct btrfs_extent_item);
7326 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7327 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7328 btrfs_set_extent_flags(leaf, extent_item,
7329 flags | BTRFS_EXTENT_FLAG_DATA);
7330
7331 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7332 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7333 if (parent > 0) {
7334 struct btrfs_shared_data_ref *ref;
7335 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7336 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7337 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7338 } else {
7339 struct btrfs_extent_data_ref *ref;
7340 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7341 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7342 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7343 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7344 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7345 }
7346
7347 btrfs_mark_buffer_dirty(path->nodes[0]);
7348 btrfs_free_path(path);
7349
7350 /* Always set parent to 0 here since its exclusive anyway. */
7351 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7352 ins->objectid, ins->offset,
7353 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7354 if (ret)
7355 return ret;
7356
7357 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7358 if (ret) { /* -ENOENT, logic error */
7359 btrfs_err(fs_info, "update block group failed for %llu %llu",
7360 ins->objectid, ins->offset);
7361 BUG();
7362 }
7363 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7364 return ret;
7365 }
7366
7367 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7368 struct btrfs_root *root,
7369 u64 parent, u64 root_objectid,
7370 u64 flags, struct btrfs_disk_key *key,
7371 int level, struct btrfs_key *ins,
7372 int no_quota)
7373 {
7374 int ret;
7375 struct btrfs_fs_info *fs_info = root->fs_info;
7376 struct btrfs_extent_item *extent_item;
7377 struct btrfs_tree_block_info *block_info;
7378 struct btrfs_extent_inline_ref *iref;
7379 struct btrfs_path *path;
7380 struct extent_buffer *leaf;
7381 u32 size = sizeof(*extent_item) + sizeof(*iref);
7382 u64 num_bytes = ins->offset;
7383 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7384 SKINNY_METADATA);
7385
7386 if (!skinny_metadata)
7387 size += sizeof(*block_info);
7388
7389 path = btrfs_alloc_path();
7390 if (!path) {
7391 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7392 root->nodesize);
7393 return -ENOMEM;
7394 }
7395
7396 path->leave_spinning = 1;
7397 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7398 ins, size);
7399 if (ret) {
7400 btrfs_free_path(path);
7401 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7402 root->nodesize);
7403 return ret;
7404 }
7405
7406 leaf = path->nodes[0];
7407 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7408 struct btrfs_extent_item);
7409 btrfs_set_extent_refs(leaf, extent_item, 1);
7410 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7411 btrfs_set_extent_flags(leaf, extent_item,
7412 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7413
7414 if (skinny_metadata) {
7415 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7416 num_bytes = root->nodesize;
7417 } else {
7418 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7419 btrfs_set_tree_block_key(leaf, block_info, key);
7420 btrfs_set_tree_block_level(leaf, block_info, level);
7421 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7422 }
7423
7424 if (parent > 0) {
7425 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7426 btrfs_set_extent_inline_ref_type(leaf, iref,
7427 BTRFS_SHARED_BLOCK_REF_KEY);
7428 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7429 } else {
7430 btrfs_set_extent_inline_ref_type(leaf, iref,
7431 BTRFS_TREE_BLOCK_REF_KEY);
7432 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7433 }
7434
7435 btrfs_mark_buffer_dirty(leaf);
7436 btrfs_free_path(path);
7437
7438 if (!no_quota) {
7439 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7440 ins->objectid, num_bytes,
7441 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7442 if (ret)
7443 return ret;
7444 }
7445
7446 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7447 1);
7448 if (ret) { /* -ENOENT, logic error */
7449 btrfs_err(fs_info, "update block group failed for %llu %llu",
7450 ins->objectid, ins->offset);
7451 BUG();
7452 }
7453
7454 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7455 return ret;
7456 }
7457
7458 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7459 struct btrfs_root *root,
7460 u64 root_objectid, u64 owner,
7461 u64 offset, struct btrfs_key *ins)
7462 {
7463 int ret;
7464
7465 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7466
7467 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7468 ins->offset, 0,
7469 root_objectid, owner, offset,
7470 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7471 return ret;
7472 }
7473
7474 /*
7475 * this is used by the tree logging recovery code. It records that
7476 * an extent has been allocated and makes sure to clear the free
7477 * space cache bits as well
7478 */
7479 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7480 struct btrfs_root *root,
7481 u64 root_objectid, u64 owner, u64 offset,
7482 struct btrfs_key *ins)
7483 {
7484 int ret;
7485 struct btrfs_block_group_cache *block_group;
7486
7487 /*
7488 * Mixed block groups will exclude before processing the log so we only
7489 * need to do the exlude dance if this fs isn't mixed.
7490 */
7491 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7492 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7493 if (ret)
7494 return ret;
7495 }
7496
7497 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7498 if (!block_group)
7499 return -EINVAL;
7500
7501 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7502 RESERVE_ALLOC_NO_ACCOUNT, 0);
7503 BUG_ON(ret); /* logic error */
7504 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7505 0, owner, offset, ins, 1);
7506 btrfs_put_block_group(block_group);
7507 return ret;
7508 }
7509
7510 static struct extent_buffer *
7511 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7512 u64 bytenr, int level)
7513 {
7514 struct extent_buffer *buf;
7515
7516 buf = btrfs_find_create_tree_block(root, bytenr);
7517 if (!buf)
7518 return ERR_PTR(-ENOMEM);
7519 btrfs_set_header_generation(buf, trans->transid);
7520 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7521 btrfs_tree_lock(buf);
7522 clean_tree_block(trans, root->fs_info, buf);
7523 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7524
7525 btrfs_set_lock_blocking(buf);
7526 btrfs_set_buffer_uptodate(buf);
7527
7528 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7529 buf->log_index = root->log_transid % 2;
7530 /*
7531 * we allow two log transactions at a time, use different
7532 * EXENT bit to differentiate dirty pages.
7533 */
7534 if (buf->log_index == 0)
7535 set_extent_dirty(&root->dirty_log_pages, buf->start,
7536 buf->start + buf->len - 1, GFP_NOFS);
7537 else
7538 set_extent_new(&root->dirty_log_pages, buf->start,
7539 buf->start + buf->len - 1, GFP_NOFS);
7540 } else {
7541 buf->log_index = -1;
7542 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7543 buf->start + buf->len - 1, GFP_NOFS);
7544 }
7545 trans->blocks_used++;
7546 /* this returns a buffer locked for blocking */
7547 return buf;
7548 }
7549
7550 static struct btrfs_block_rsv *
7551 use_block_rsv(struct btrfs_trans_handle *trans,
7552 struct btrfs_root *root, u32 blocksize)
7553 {
7554 struct btrfs_block_rsv *block_rsv;
7555 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7556 int ret;
7557 bool global_updated = false;
7558
7559 block_rsv = get_block_rsv(trans, root);
7560
7561 if (unlikely(block_rsv->size == 0))
7562 goto try_reserve;
7563 again:
7564 ret = block_rsv_use_bytes(block_rsv, blocksize);
7565 if (!ret)
7566 return block_rsv;
7567
7568 if (block_rsv->failfast)
7569 return ERR_PTR(ret);
7570
7571 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7572 global_updated = true;
7573 update_global_block_rsv(root->fs_info);
7574 goto again;
7575 }
7576
7577 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7578 static DEFINE_RATELIMIT_STATE(_rs,
7579 DEFAULT_RATELIMIT_INTERVAL * 10,
7580 /*DEFAULT_RATELIMIT_BURST*/ 1);
7581 if (__ratelimit(&_rs))
7582 WARN(1, KERN_DEBUG
7583 "BTRFS: block rsv returned %d\n", ret);
7584 }
7585 try_reserve:
7586 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7587 BTRFS_RESERVE_NO_FLUSH);
7588 if (!ret)
7589 return block_rsv;
7590 /*
7591 * If we couldn't reserve metadata bytes try and use some from
7592 * the global reserve if its space type is the same as the global
7593 * reservation.
7594 */
7595 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7596 block_rsv->space_info == global_rsv->space_info) {
7597 ret = block_rsv_use_bytes(global_rsv, blocksize);
7598 if (!ret)
7599 return global_rsv;
7600 }
7601 return ERR_PTR(ret);
7602 }
7603
7604 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7605 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7606 {
7607 block_rsv_add_bytes(block_rsv, blocksize, 0);
7608 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7609 }
7610
7611 /*
7612 * finds a free extent and does all the dirty work required for allocation
7613 * returns the key for the extent through ins, and a tree buffer for
7614 * the first block of the extent through buf.
7615 *
7616 * returns the tree buffer or an ERR_PTR on error.
7617 */
7618 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7619 struct btrfs_root *root,
7620 u64 parent, u64 root_objectid,
7621 struct btrfs_disk_key *key, int level,
7622 u64 hint, u64 empty_size)
7623 {
7624 struct btrfs_key ins;
7625 struct btrfs_block_rsv *block_rsv;
7626 struct extent_buffer *buf;
7627 struct btrfs_delayed_extent_op *extent_op;
7628 u64 flags = 0;
7629 int ret;
7630 u32 blocksize = root->nodesize;
7631 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7632 SKINNY_METADATA);
7633
7634 if (btrfs_test_is_dummy_root(root)) {
7635 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7636 level);
7637 if (!IS_ERR(buf))
7638 root->alloc_bytenr += blocksize;
7639 return buf;
7640 }
7641
7642 block_rsv = use_block_rsv(trans, root, blocksize);
7643 if (IS_ERR(block_rsv))
7644 return ERR_CAST(block_rsv);
7645
7646 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7647 empty_size, hint, &ins, 0, 0);
7648 if (ret)
7649 goto out_unuse;
7650
7651 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7652 if (IS_ERR(buf)) {
7653 ret = PTR_ERR(buf);
7654 goto out_free_reserved;
7655 }
7656
7657 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7658 if (parent == 0)
7659 parent = ins.objectid;
7660 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7661 } else
7662 BUG_ON(parent > 0);
7663
7664 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7665 extent_op = btrfs_alloc_delayed_extent_op();
7666 if (!extent_op) {
7667 ret = -ENOMEM;
7668 goto out_free_buf;
7669 }
7670 if (key)
7671 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7672 else
7673 memset(&extent_op->key, 0, sizeof(extent_op->key));
7674 extent_op->flags_to_set = flags;
7675 if (skinny_metadata)
7676 extent_op->update_key = 0;
7677 else
7678 extent_op->update_key = 1;
7679 extent_op->update_flags = 1;
7680 extent_op->is_data = 0;
7681 extent_op->level = level;
7682
7683 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7684 ins.objectid, ins.offset,
7685 parent, root_objectid, level,
7686 BTRFS_ADD_DELAYED_EXTENT,
7687 extent_op, 0);
7688 if (ret)
7689 goto out_free_delayed;
7690 }
7691 return buf;
7692
7693 out_free_delayed:
7694 btrfs_free_delayed_extent_op(extent_op);
7695 out_free_buf:
7696 free_extent_buffer(buf);
7697 out_free_reserved:
7698 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7699 out_unuse:
7700 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7701 return ERR_PTR(ret);
7702 }
7703
7704 struct walk_control {
7705 u64 refs[BTRFS_MAX_LEVEL];
7706 u64 flags[BTRFS_MAX_LEVEL];
7707 struct btrfs_key update_progress;
7708 int stage;
7709 int level;
7710 int shared_level;
7711 int update_ref;
7712 int keep_locks;
7713 int reada_slot;
7714 int reada_count;
7715 int for_reloc;
7716 };
7717
7718 #define DROP_REFERENCE 1
7719 #define UPDATE_BACKREF 2
7720
7721 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7722 struct btrfs_root *root,
7723 struct walk_control *wc,
7724 struct btrfs_path *path)
7725 {
7726 u64 bytenr;
7727 u64 generation;
7728 u64 refs;
7729 u64 flags;
7730 u32 nritems;
7731 u32 blocksize;
7732 struct btrfs_key key;
7733 struct extent_buffer *eb;
7734 int ret;
7735 int slot;
7736 int nread = 0;
7737
7738 if (path->slots[wc->level] < wc->reada_slot) {
7739 wc->reada_count = wc->reada_count * 2 / 3;
7740 wc->reada_count = max(wc->reada_count, 2);
7741 } else {
7742 wc->reada_count = wc->reada_count * 3 / 2;
7743 wc->reada_count = min_t(int, wc->reada_count,
7744 BTRFS_NODEPTRS_PER_BLOCK(root));
7745 }
7746
7747 eb = path->nodes[wc->level];
7748 nritems = btrfs_header_nritems(eb);
7749 blocksize = root->nodesize;
7750
7751 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7752 if (nread >= wc->reada_count)
7753 break;
7754
7755 cond_resched();
7756 bytenr = btrfs_node_blockptr(eb, slot);
7757 generation = btrfs_node_ptr_generation(eb, slot);
7758
7759 if (slot == path->slots[wc->level])
7760 goto reada;
7761
7762 if (wc->stage == UPDATE_BACKREF &&
7763 generation <= root->root_key.offset)
7764 continue;
7765
7766 /* We don't lock the tree block, it's OK to be racy here */
7767 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7768 wc->level - 1, 1, &refs,
7769 &flags);
7770 /* We don't care about errors in readahead. */
7771 if (ret < 0)
7772 continue;
7773 BUG_ON(refs == 0);
7774
7775 if (wc->stage == DROP_REFERENCE) {
7776 if (refs == 1)
7777 goto reada;
7778
7779 if (wc->level == 1 &&
7780 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7781 continue;
7782 if (!wc->update_ref ||
7783 generation <= root->root_key.offset)
7784 continue;
7785 btrfs_node_key_to_cpu(eb, &key, slot);
7786 ret = btrfs_comp_cpu_keys(&key,
7787 &wc->update_progress);
7788 if (ret < 0)
7789 continue;
7790 } else {
7791 if (wc->level == 1 &&
7792 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7793 continue;
7794 }
7795 reada:
7796 readahead_tree_block(root, bytenr);
7797 nread++;
7798 }
7799 wc->reada_slot = slot;
7800 }
7801
7802 static int account_leaf_items(struct btrfs_trans_handle *trans,
7803 struct btrfs_root *root,
7804 struct extent_buffer *eb)
7805 {
7806 int nr = btrfs_header_nritems(eb);
7807 int i, extent_type, ret;
7808 struct btrfs_key key;
7809 struct btrfs_file_extent_item *fi;
7810 u64 bytenr, num_bytes;
7811
7812 for (i = 0; i < nr; i++) {
7813 btrfs_item_key_to_cpu(eb, &key, i);
7814
7815 if (key.type != BTRFS_EXTENT_DATA_KEY)
7816 continue;
7817
7818 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7819 /* filter out non qgroup-accountable extents */
7820 extent_type = btrfs_file_extent_type(eb, fi);
7821
7822 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7823 continue;
7824
7825 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7826 if (!bytenr)
7827 continue;
7828
7829 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7830
7831 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7832 root->objectid,
7833 bytenr, num_bytes,
7834 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7835 if (ret)
7836 return ret;
7837 }
7838 return 0;
7839 }
7840
7841 /*
7842 * Walk up the tree from the bottom, freeing leaves and any interior
7843 * nodes which have had all slots visited. If a node (leaf or
7844 * interior) is freed, the node above it will have it's slot
7845 * incremented. The root node will never be freed.
7846 *
7847 * At the end of this function, we should have a path which has all
7848 * slots incremented to the next position for a search. If we need to
7849 * read a new node it will be NULL and the node above it will have the
7850 * correct slot selected for a later read.
7851 *
7852 * If we increment the root nodes slot counter past the number of
7853 * elements, 1 is returned to signal completion of the search.
7854 */
7855 static int adjust_slots_upwards(struct btrfs_root *root,
7856 struct btrfs_path *path, int root_level)
7857 {
7858 int level = 0;
7859 int nr, slot;
7860 struct extent_buffer *eb;
7861
7862 if (root_level == 0)
7863 return 1;
7864
7865 while (level <= root_level) {
7866 eb = path->nodes[level];
7867 nr = btrfs_header_nritems(eb);
7868 path->slots[level]++;
7869 slot = path->slots[level];
7870 if (slot >= nr || level == 0) {
7871 /*
7872 * Don't free the root - we will detect this
7873 * condition after our loop and return a
7874 * positive value for caller to stop walking the tree.
7875 */
7876 if (level != root_level) {
7877 btrfs_tree_unlock_rw(eb, path->locks[level]);
7878 path->locks[level] = 0;
7879
7880 free_extent_buffer(eb);
7881 path->nodes[level] = NULL;
7882 path->slots[level] = 0;
7883 }
7884 } else {
7885 /*
7886 * We have a valid slot to walk back down
7887 * from. Stop here so caller can process these
7888 * new nodes.
7889 */
7890 break;
7891 }
7892
7893 level++;
7894 }
7895
7896 eb = path->nodes[root_level];
7897 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7898 return 1;
7899
7900 return 0;
7901 }
7902
7903 /*
7904 * root_eb is the subtree root and is locked before this function is called.
7905 */
7906 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7907 struct btrfs_root *root,
7908 struct extent_buffer *root_eb,
7909 u64 root_gen,
7910 int root_level)
7911 {
7912 int ret = 0;
7913 int level;
7914 struct extent_buffer *eb = root_eb;
7915 struct btrfs_path *path = NULL;
7916
7917 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7918 BUG_ON(root_eb == NULL);
7919
7920 if (!root->fs_info->quota_enabled)
7921 return 0;
7922
7923 if (!extent_buffer_uptodate(root_eb)) {
7924 ret = btrfs_read_buffer(root_eb, root_gen);
7925 if (ret)
7926 goto out;
7927 }
7928
7929 if (root_level == 0) {
7930 ret = account_leaf_items(trans, root, root_eb);
7931 goto out;
7932 }
7933
7934 path = btrfs_alloc_path();
7935 if (!path)
7936 return -ENOMEM;
7937
7938 /*
7939 * Walk down the tree. Missing extent blocks are filled in as
7940 * we go. Metadata is accounted every time we read a new
7941 * extent block.
7942 *
7943 * When we reach a leaf, we account for file extent items in it,
7944 * walk back up the tree (adjusting slot pointers as we go)
7945 * and restart the search process.
7946 */
7947 extent_buffer_get(root_eb); /* For path */
7948 path->nodes[root_level] = root_eb;
7949 path->slots[root_level] = 0;
7950 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7951 walk_down:
7952 level = root_level;
7953 while (level >= 0) {
7954 if (path->nodes[level] == NULL) {
7955 int parent_slot;
7956 u64 child_gen;
7957 u64 child_bytenr;
7958
7959 /* We need to get child blockptr/gen from
7960 * parent before we can read it. */
7961 eb = path->nodes[level + 1];
7962 parent_slot = path->slots[level + 1];
7963 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7964 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7965
7966 eb = read_tree_block(root, child_bytenr, child_gen);
7967 if (!eb || !extent_buffer_uptodate(eb)) {
7968 ret = -EIO;
7969 goto out;
7970 }
7971
7972 path->nodes[level] = eb;
7973 path->slots[level] = 0;
7974
7975 btrfs_tree_read_lock(eb);
7976 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7977 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7978
7979 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7980 root->objectid,
7981 child_bytenr,
7982 root->nodesize,
7983 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7984 0);
7985 if (ret)
7986 goto out;
7987
7988 }
7989
7990 if (level == 0) {
7991 ret = account_leaf_items(trans, root, path->nodes[level]);
7992 if (ret)
7993 goto out;
7994
7995 /* Nonzero return here means we completed our search */
7996 ret = adjust_slots_upwards(root, path, root_level);
7997 if (ret)
7998 break;
7999
8000 /* Restart search with new slots */
8001 goto walk_down;
8002 }
8003
8004 level--;
8005 }
8006
8007 ret = 0;
8008 out:
8009 btrfs_free_path(path);
8010
8011 return ret;
8012 }
8013
8014 /*
8015 * helper to process tree block while walking down the tree.
8016 *
8017 * when wc->stage == UPDATE_BACKREF, this function updates
8018 * back refs for pointers in the block.
8019 *
8020 * NOTE: return value 1 means we should stop walking down.
8021 */
8022 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8023 struct btrfs_root *root,
8024 struct btrfs_path *path,
8025 struct walk_control *wc, int lookup_info)
8026 {
8027 int level = wc->level;
8028 struct extent_buffer *eb = path->nodes[level];
8029 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8030 int ret;
8031
8032 if (wc->stage == UPDATE_BACKREF &&
8033 btrfs_header_owner(eb) != root->root_key.objectid)
8034 return 1;
8035
8036 /*
8037 * when reference count of tree block is 1, it won't increase
8038 * again. once full backref flag is set, we never clear it.
8039 */
8040 if (lookup_info &&
8041 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8042 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8043 BUG_ON(!path->locks[level]);
8044 ret = btrfs_lookup_extent_info(trans, root,
8045 eb->start, level, 1,
8046 &wc->refs[level],
8047 &wc->flags[level]);
8048 BUG_ON(ret == -ENOMEM);
8049 if (ret)
8050 return ret;
8051 BUG_ON(wc->refs[level] == 0);
8052 }
8053
8054 if (wc->stage == DROP_REFERENCE) {
8055 if (wc->refs[level] > 1)
8056 return 1;
8057
8058 if (path->locks[level] && !wc->keep_locks) {
8059 btrfs_tree_unlock_rw(eb, path->locks[level]);
8060 path->locks[level] = 0;
8061 }
8062 return 0;
8063 }
8064
8065 /* wc->stage == UPDATE_BACKREF */
8066 if (!(wc->flags[level] & flag)) {
8067 BUG_ON(!path->locks[level]);
8068 ret = btrfs_inc_ref(trans, root, eb, 1);
8069 BUG_ON(ret); /* -ENOMEM */
8070 ret = btrfs_dec_ref(trans, root, eb, 0);
8071 BUG_ON(ret); /* -ENOMEM */
8072 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8073 eb->len, flag,
8074 btrfs_header_level(eb), 0);
8075 BUG_ON(ret); /* -ENOMEM */
8076 wc->flags[level] |= flag;
8077 }
8078
8079 /*
8080 * the block is shared by multiple trees, so it's not good to
8081 * keep the tree lock
8082 */
8083 if (path->locks[level] && level > 0) {
8084 btrfs_tree_unlock_rw(eb, path->locks[level]);
8085 path->locks[level] = 0;
8086 }
8087 return 0;
8088 }
8089
8090 /*
8091 * helper to process tree block pointer.
8092 *
8093 * when wc->stage == DROP_REFERENCE, this function checks
8094 * reference count of the block pointed to. if the block
8095 * is shared and we need update back refs for the subtree
8096 * rooted at the block, this function changes wc->stage to
8097 * UPDATE_BACKREF. if the block is shared and there is no
8098 * need to update back, this function drops the reference
8099 * to the block.
8100 *
8101 * NOTE: return value 1 means we should stop walking down.
8102 */
8103 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8104 struct btrfs_root *root,
8105 struct btrfs_path *path,
8106 struct walk_control *wc, int *lookup_info)
8107 {
8108 u64 bytenr;
8109 u64 generation;
8110 u64 parent;
8111 u32 blocksize;
8112 struct btrfs_key key;
8113 struct extent_buffer *next;
8114 int level = wc->level;
8115 int reada = 0;
8116 int ret = 0;
8117 bool need_account = false;
8118
8119 generation = btrfs_node_ptr_generation(path->nodes[level],
8120 path->slots[level]);
8121 /*
8122 * if the lower level block was created before the snapshot
8123 * was created, we know there is no need to update back refs
8124 * for the subtree
8125 */
8126 if (wc->stage == UPDATE_BACKREF &&
8127 generation <= root->root_key.offset) {
8128 *lookup_info = 1;
8129 return 1;
8130 }
8131
8132 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8133 blocksize = root->nodesize;
8134
8135 next = btrfs_find_tree_block(root->fs_info, bytenr);
8136 if (!next) {
8137 next = btrfs_find_create_tree_block(root, bytenr);
8138 if (!next)
8139 return -ENOMEM;
8140 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8141 level - 1);
8142 reada = 1;
8143 }
8144 btrfs_tree_lock(next);
8145 btrfs_set_lock_blocking(next);
8146
8147 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8148 &wc->refs[level - 1],
8149 &wc->flags[level - 1]);
8150 if (ret < 0) {
8151 btrfs_tree_unlock(next);
8152 return ret;
8153 }
8154
8155 if (unlikely(wc->refs[level - 1] == 0)) {
8156 btrfs_err(root->fs_info, "Missing references.");
8157 BUG();
8158 }
8159 *lookup_info = 0;
8160
8161 if (wc->stage == DROP_REFERENCE) {
8162 if (wc->refs[level - 1] > 1) {
8163 need_account = true;
8164 if (level == 1 &&
8165 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8166 goto skip;
8167
8168 if (!wc->update_ref ||
8169 generation <= root->root_key.offset)
8170 goto skip;
8171
8172 btrfs_node_key_to_cpu(path->nodes[level], &key,
8173 path->slots[level]);
8174 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8175 if (ret < 0)
8176 goto skip;
8177
8178 wc->stage = UPDATE_BACKREF;
8179 wc->shared_level = level - 1;
8180 }
8181 } else {
8182 if (level == 1 &&
8183 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8184 goto skip;
8185 }
8186
8187 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8188 btrfs_tree_unlock(next);
8189 free_extent_buffer(next);
8190 next = NULL;
8191 *lookup_info = 1;
8192 }
8193
8194 if (!next) {
8195 if (reada && level == 1)
8196 reada_walk_down(trans, root, wc, path);
8197 next = read_tree_block(root, bytenr, generation);
8198 if (!next || !extent_buffer_uptodate(next)) {
8199 free_extent_buffer(next);
8200 return -EIO;
8201 }
8202 btrfs_tree_lock(next);
8203 btrfs_set_lock_blocking(next);
8204 }
8205
8206 level--;
8207 BUG_ON(level != btrfs_header_level(next));
8208 path->nodes[level] = next;
8209 path->slots[level] = 0;
8210 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8211 wc->level = level;
8212 if (wc->level == 1)
8213 wc->reada_slot = 0;
8214 return 0;
8215 skip:
8216 wc->refs[level - 1] = 0;
8217 wc->flags[level - 1] = 0;
8218 if (wc->stage == DROP_REFERENCE) {
8219 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8220 parent = path->nodes[level]->start;
8221 } else {
8222 BUG_ON(root->root_key.objectid !=
8223 btrfs_header_owner(path->nodes[level]));
8224 parent = 0;
8225 }
8226
8227 if (need_account) {
8228 ret = account_shared_subtree(trans, root, next,
8229 generation, level - 1);
8230 if (ret) {
8231 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8232 "%d accounting shared subtree. Quota "
8233 "is out of sync, rescan required.\n",
8234 root->fs_info->sb->s_id, ret);
8235 }
8236 }
8237 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8238 root->root_key.objectid, level - 1, 0, 0);
8239 BUG_ON(ret); /* -ENOMEM */
8240 }
8241 btrfs_tree_unlock(next);
8242 free_extent_buffer(next);
8243 *lookup_info = 1;
8244 return 1;
8245 }
8246
8247 /*
8248 * helper to process tree block while walking up the tree.
8249 *
8250 * when wc->stage == DROP_REFERENCE, this function drops
8251 * reference count on the block.
8252 *
8253 * when wc->stage == UPDATE_BACKREF, this function changes
8254 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8255 * to UPDATE_BACKREF previously while processing the block.
8256 *
8257 * NOTE: return value 1 means we should stop walking up.
8258 */
8259 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8260 struct btrfs_root *root,
8261 struct btrfs_path *path,
8262 struct walk_control *wc)
8263 {
8264 int ret;
8265 int level = wc->level;
8266 struct extent_buffer *eb = path->nodes[level];
8267 u64 parent = 0;
8268
8269 if (wc->stage == UPDATE_BACKREF) {
8270 BUG_ON(wc->shared_level < level);
8271 if (level < wc->shared_level)
8272 goto out;
8273
8274 ret = find_next_key(path, level + 1, &wc->update_progress);
8275 if (ret > 0)
8276 wc->update_ref = 0;
8277
8278 wc->stage = DROP_REFERENCE;
8279 wc->shared_level = -1;
8280 path->slots[level] = 0;
8281
8282 /*
8283 * check reference count again if the block isn't locked.
8284 * we should start walking down the tree again if reference
8285 * count is one.
8286 */
8287 if (!path->locks[level]) {
8288 BUG_ON(level == 0);
8289 btrfs_tree_lock(eb);
8290 btrfs_set_lock_blocking(eb);
8291 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8292
8293 ret = btrfs_lookup_extent_info(trans, root,
8294 eb->start, level, 1,
8295 &wc->refs[level],
8296 &wc->flags[level]);
8297 if (ret < 0) {
8298 btrfs_tree_unlock_rw(eb, path->locks[level]);
8299 path->locks[level] = 0;
8300 return ret;
8301 }
8302 BUG_ON(wc->refs[level] == 0);
8303 if (wc->refs[level] == 1) {
8304 btrfs_tree_unlock_rw(eb, path->locks[level]);
8305 path->locks[level] = 0;
8306 return 1;
8307 }
8308 }
8309 }
8310
8311 /* wc->stage == DROP_REFERENCE */
8312 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8313
8314 if (wc->refs[level] == 1) {
8315 if (level == 0) {
8316 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8317 ret = btrfs_dec_ref(trans, root, eb, 1);
8318 else
8319 ret = btrfs_dec_ref(trans, root, eb, 0);
8320 BUG_ON(ret); /* -ENOMEM */
8321 ret = account_leaf_items(trans, root, eb);
8322 if (ret) {
8323 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8324 "%d accounting leaf items. Quota "
8325 "is out of sync, rescan required.\n",
8326 root->fs_info->sb->s_id, ret);
8327 }
8328 }
8329 /* make block locked assertion in clean_tree_block happy */
8330 if (!path->locks[level] &&
8331 btrfs_header_generation(eb) == trans->transid) {
8332 btrfs_tree_lock(eb);
8333 btrfs_set_lock_blocking(eb);
8334 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8335 }
8336 clean_tree_block(trans, root->fs_info, eb);
8337 }
8338
8339 if (eb == root->node) {
8340 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8341 parent = eb->start;
8342 else
8343 BUG_ON(root->root_key.objectid !=
8344 btrfs_header_owner(eb));
8345 } else {
8346 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8347 parent = path->nodes[level + 1]->start;
8348 else
8349 BUG_ON(root->root_key.objectid !=
8350 btrfs_header_owner(path->nodes[level + 1]));
8351 }
8352
8353 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8354 out:
8355 wc->refs[level] = 0;
8356 wc->flags[level] = 0;
8357 return 0;
8358 }
8359
8360 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8361 struct btrfs_root *root,
8362 struct btrfs_path *path,
8363 struct walk_control *wc)
8364 {
8365 int level = wc->level;
8366 int lookup_info = 1;
8367 int ret;
8368
8369 while (level >= 0) {
8370 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8371 if (ret > 0)
8372 break;
8373
8374 if (level == 0)
8375 break;
8376
8377 if (path->slots[level] >=
8378 btrfs_header_nritems(path->nodes[level]))
8379 break;
8380
8381 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8382 if (ret > 0) {
8383 path->slots[level]++;
8384 continue;
8385 } else if (ret < 0)
8386 return ret;
8387 level = wc->level;
8388 }
8389 return 0;
8390 }
8391
8392 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8393 struct btrfs_root *root,
8394 struct btrfs_path *path,
8395 struct walk_control *wc, int max_level)
8396 {
8397 int level = wc->level;
8398 int ret;
8399
8400 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8401 while (level < max_level && path->nodes[level]) {
8402 wc->level = level;
8403 if (path->slots[level] + 1 <
8404 btrfs_header_nritems(path->nodes[level])) {
8405 path->slots[level]++;
8406 return 0;
8407 } else {
8408 ret = walk_up_proc(trans, root, path, wc);
8409 if (ret > 0)
8410 return 0;
8411
8412 if (path->locks[level]) {
8413 btrfs_tree_unlock_rw(path->nodes[level],
8414 path->locks[level]);
8415 path->locks[level] = 0;
8416 }
8417 free_extent_buffer(path->nodes[level]);
8418 path->nodes[level] = NULL;
8419 level++;
8420 }
8421 }
8422 return 1;
8423 }
8424
8425 /*
8426 * drop a subvolume tree.
8427 *
8428 * this function traverses the tree freeing any blocks that only
8429 * referenced by the tree.
8430 *
8431 * when a shared tree block is found. this function decreases its
8432 * reference count by one. if update_ref is true, this function
8433 * also make sure backrefs for the shared block and all lower level
8434 * blocks are properly updated.
8435 *
8436 * If called with for_reloc == 0, may exit early with -EAGAIN
8437 */
8438 int btrfs_drop_snapshot(struct btrfs_root *root,
8439 struct btrfs_block_rsv *block_rsv, int update_ref,
8440 int for_reloc)
8441 {
8442 struct btrfs_path *path;
8443 struct btrfs_trans_handle *trans;
8444 struct btrfs_root *tree_root = root->fs_info->tree_root;
8445 struct btrfs_root_item *root_item = &root->root_item;
8446 struct walk_control *wc;
8447 struct btrfs_key key;
8448 int err = 0;
8449 int ret;
8450 int level;
8451 bool root_dropped = false;
8452
8453 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8454
8455 path = btrfs_alloc_path();
8456 if (!path) {
8457 err = -ENOMEM;
8458 goto out;
8459 }
8460
8461 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8462 if (!wc) {
8463 btrfs_free_path(path);
8464 err = -ENOMEM;
8465 goto out;
8466 }
8467
8468 trans = btrfs_start_transaction(tree_root, 0);
8469 if (IS_ERR(trans)) {
8470 err = PTR_ERR(trans);
8471 goto out_free;
8472 }
8473
8474 if (block_rsv)
8475 trans->block_rsv = block_rsv;
8476
8477 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8478 level = btrfs_header_level(root->node);
8479 path->nodes[level] = btrfs_lock_root_node(root);
8480 btrfs_set_lock_blocking(path->nodes[level]);
8481 path->slots[level] = 0;
8482 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8483 memset(&wc->update_progress, 0,
8484 sizeof(wc->update_progress));
8485 } else {
8486 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8487 memcpy(&wc->update_progress, &key,
8488 sizeof(wc->update_progress));
8489
8490 level = root_item->drop_level;
8491 BUG_ON(level == 0);
8492 path->lowest_level = level;
8493 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8494 path->lowest_level = 0;
8495 if (ret < 0) {
8496 err = ret;
8497 goto out_end_trans;
8498 }
8499 WARN_ON(ret > 0);
8500
8501 /*
8502 * unlock our path, this is safe because only this
8503 * function is allowed to delete this snapshot
8504 */
8505 btrfs_unlock_up_safe(path, 0);
8506
8507 level = btrfs_header_level(root->node);
8508 while (1) {
8509 btrfs_tree_lock(path->nodes[level]);
8510 btrfs_set_lock_blocking(path->nodes[level]);
8511 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8512
8513 ret = btrfs_lookup_extent_info(trans, root,
8514 path->nodes[level]->start,
8515 level, 1, &wc->refs[level],
8516 &wc->flags[level]);
8517 if (ret < 0) {
8518 err = ret;
8519 goto out_end_trans;
8520 }
8521 BUG_ON(wc->refs[level] == 0);
8522
8523 if (level == root_item->drop_level)
8524 break;
8525
8526 btrfs_tree_unlock(path->nodes[level]);
8527 path->locks[level] = 0;
8528 WARN_ON(wc->refs[level] != 1);
8529 level--;
8530 }
8531 }
8532
8533 wc->level = level;
8534 wc->shared_level = -1;
8535 wc->stage = DROP_REFERENCE;
8536 wc->update_ref = update_ref;
8537 wc->keep_locks = 0;
8538 wc->for_reloc = for_reloc;
8539 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8540
8541 while (1) {
8542
8543 ret = walk_down_tree(trans, root, path, wc);
8544 if (ret < 0) {
8545 err = ret;
8546 break;
8547 }
8548
8549 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8550 if (ret < 0) {
8551 err = ret;
8552 break;
8553 }
8554
8555 if (ret > 0) {
8556 BUG_ON(wc->stage != DROP_REFERENCE);
8557 break;
8558 }
8559
8560 if (wc->stage == DROP_REFERENCE) {
8561 level = wc->level;
8562 btrfs_node_key(path->nodes[level],
8563 &root_item->drop_progress,
8564 path->slots[level]);
8565 root_item->drop_level = level;
8566 }
8567
8568 BUG_ON(wc->level == 0);
8569 if (btrfs_should_end_transaction(trans, tree_root) ||
8570 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8571 ret = btrfs_update_root(trans, tree_root,
8572 &root->root_key,
8573 root_item);
8574 if (ret) {
8575 btrfs_abort_transaction(trans, tree_root, ret);
8576 err = ret;
8577 goto out_end_trans;
8578 }
8579
8580 /*
8581 * Qgroup update accounting is run from
8582 * delayed ref handling. This usually works
8583 * out because delayed refs are normally the
8584 * only way qgroup updates are added. However,
8585 * we may have added updates during our tree
8586 * walk so run qgroups here to make sure we
8587 * don't lose any updates.
8588 */
8589 ret = btrfs_delayed_qgroup_accounting(trans,
8590 root->fs_info);
8591 if (ret)
8592 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8593 "running qgroup updates "
8594 "during snapshot delete. "
8595 "Quota is out of sync, "
8596 "rescan required.\n", ret);
8597
8598 btrfs_end_transaction_throttle(trans, tree_root);
8599 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8600 pr_debug("BTRFS: drop snapshot early exit\n");
8601 err = -EAGAIN;
8602 goto out_free;
8603 }
8604
8605 trans = btrfs_start_transaction(tree_root, 0);
8606 if (IS_ERR(trans)) {
8607 err = PTR_ERR(trans);
8608 goto out_free;
8609 }
8610 if (block_rsv)
8611 trans->block_rsv = block_rsv;
8612 }
8613 }
8614 btrfs_release_path(path);
8615 if (err)
8616 goto out_end_trans;
8617
8618 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8619 if (ret) {
8620 btrfs_abort_transaction(trans, tree_root, ret);
8621 goto out_end_trans;
8622 }
8623
8624 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8625 ret = btrfs_find_root(tree_root, &root->root_key, path,
8626 NULL, NULL);
8627 if (ret < 0) {
8628 btrfs_abort_transaction(trans, tree_root, ret);
8629 err = ret;
8630 goto out_end_trans;
8631 } else if (ret > 0) {
8632 /* if we fail to delete the orphan item this time
8633 * around, it'll get picked up the next time.
8634 *
8635 * The most common failure here is just -ENOENT.
8636 */
8637 btrfs_del_orphan_item(trans, tree_root,
8638 root->root_key.objectid);
8639 }
8640 }
8641
8642 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8643 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8644 } else {
8645 free_extent_buffer(root->node);
8646 free_extent_buffer(root->commit_root);
8647 btrfs_put_fs_root(root);
8648 }
8649 root_dropped = true;
8650 out_end_trans:
8651 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8652 if (ret)
8653 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8654 "running qgroup updates "
8655 "during snapshot delete. "
8656 "Quota is out of sync, "
8657 "rescan required.\n", ret);
8658
8659 btrfs_end_transaction_throttle(trans, tree_root);
8660 out_free:
8661 kfree(wc);
8662 btrfs_free_path(path);
8663 out:
8664 /*
8665 * So if we need to stop dropping the snapshot for whatever reason we
8666 * need to make sure to add it back to the dead root list so that we
8667 * keep trying to do the work later. This also cleans up roots if we
8668 * don't have it in the radix (like when we recover after a power fail
8669 * or unmount) so we don't leak memory.
8670 */
8671 if (!for_reloc && root_dropped == false)
8672 btrfs_add_dead_root(root);
8673 if (err && err != -EAGAIN)
8674 btrfs_std_error(root->fs_info, err);
8675 return err;
8676 }
8677
8678 /*
8679 * drop subtree rooted at tree block 'node'.
8680 *
8681 * NOTE: this function will unlock and release tree block 'node'
8682 * only used by relocation code
8683 */
8684 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8685 struct btrfs_root *root,
8686 struct extent_buffer *node,
8687 struct extent_buffer *parent)
8688 {
8689 struct btrfs_path *path;
8690 struct walk_control *wc;
8691 int level;
8692 int parent_level;
8693 int ret = 0;
8694 int wret;
8695
8696 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8697
8698 path = btrfs_alloc_path();
8699 if (!path)
8700 return -ENOMEM;
8701
8702 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8703 if (!wc) {
8704 btrfs_free_path(path);
8705 return -ENOMEM;
8706 }
8707
8708 btrfs_assert_tree_locked(parent);
8709 parent_level = btrfs_header_level(parent);
8710 extent_buffer_get(parent);
8711 path->nodes[parent_level] = parent;
8712 path->slots[parent_level] = btrfs_header_nritems(parent);
8713
8714 btrfs_assert_tree_locked(node);
8715 level = btrfs_header_level(node);
8716 path->nodes[level] = node;
8717 path->slots[level] = 0;
8718 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8719
8720 wc->refs[parent_level] = 1;
8721 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8722 wc->level = level;
8723 wc->shared_level = -1;
8724 wc->stage = DROP_REFERENCE;
8725 wc->update_ref = 0;
8726 wc->keep_locks = 1;
8727 wc->for_reloc = 1;
8728 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8729
8730 while (1) {
8731 wret = walk_down_tree(trans, root, path, wc);
8732 if (wret < 0) {
8733 ret = wret;
8734 break;
8735 }
8736
8737 wret = walk_up_tree(trans, root, path, wc, parent_level);
8738 if (wret < 0)
8739 ret = wret;
8740 if (wret != 0)
8741 break;
8742 }
8743
8744 kfree(wc);
8745 btrfs_free_path(path);
8746 return ret;
8747 }
8748
8749 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8750 {
8751 u64 num_devices;
8752 u64 stripped;
8753
8754 /*
8755 * if restripe for this chunk_type is on pick target profile and
8756 * return, otherwise do the usual balance
8757 */
8758 stripped = get_restripe_target(root->fs_info, flags);
8759 if (stripped)
8760 return extended_to_chunk(stripped);
8761
8762 num_devices = root->fs_info->fs_devices->rw_devices;
8763
8764 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8765 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8766 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8767
8768 if (num_devices == 1) {
8769 stripped |= BTRFS_BLOCK_GROUP_DUP;
8770 stripped = flags & ~stripped;
8771
8772 /* turn raid0 into single device chunks */
8773 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8774 return stripped;
8775
8776 /* turn mirroring into duplication */
8777 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8778 BTRFS_BLOCK_GROUP_RAID10))
8779 return stripped | BTRFS_BLOCK_GROUP_DUP;
8780 } else {
8781 /* they already had raid on here, just return */
8782 if (flags & stripped)
8783 return flags;
8784
8785 stripped |= BTRFS_BLOCK_GROUP_DUP;
8786 stripped = flags & ~stripped;
8787
8788 /* switch duplicated blocks with raid1 */
8789 if (flags & BTRFS_BLOCK_GROUP_DUP)
8790 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8791
8792 /* this is drive concat, leave it alone */
8793 }
8794
8795 return flags;
8796 }
8797
8798 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8799 {
8800 struct btrfs_space_info *sinfo = cache->space_info;
8801 u64 num_bytes;
8802 u64 min_allocable_bytes;
8803 int ret = -ENOSPC;
8804
8805
8806 /*
8807 * We need some metadata space and system metadata space for
8808 * allocating chunks in some corner cases until we force to set
8809 * it to be readonly.
8810 */
8811 if ((sinfo->flags &
8812 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8813 !force)
8814 min_allocable_bytes = 1 * 1024 * 1024;
8815 else
8816 min_allocable_bytes = 0;
8817
8818 spin_lock(&sinfo->lock);
8819 spin_lock(&cache->lock);
8820
8821 if (cache->ro) {
8822 ret = 0;
8823 goto out;
8824 }
8825
8826 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8827 cache->bytes_super - btrfs_block_group_used(&cache->item);
8828
8829 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8830 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8831 min_allocable_bytes <= sinfo->total_bytes) {
8832 sinfo->bytes_readonly += num_bytes;
8833 cache->ro = 1;
8834 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8835 ret = 0;
8836 }
8837 out:
8838 spin_unlock(&cache->lock);
8839 spin_unlock(&sinfo->lock);
8840 return ret;
8841 }
8842
8843 int btrfs_set_block_group_ro(struct btrfs_root *root,
8844 struct btrfs_block_group_cache *cache)
8845
8846 {
8847 struct btrfs_trans_handle *trans;
8848 u64 alloc_flags;
8849 int ret;
8850
8851 BUG_ON(cache->ro);
8852
8853 again:
8854 trans = btrfs_join_transaction(root);
8855 if (IS_ERR(trans))
8856 return PTR_ERR(trans);
8857
8858 /*
8859 * we're not allowed to set block groups readonly after the dirty
8860 * block groups cache has started writing. If it already started,
8861 * back off and let this transaction commit
8862 */
8863 mutex_lock(&root->fs_info->ro_block_group_mutex);
8864 if (trans->transaction->dirty_bg_run) {
8865 u64 transid = trans->transid;
8866
8867 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8868 btrfs_end_transaction(trans, root);
8869
8870 ret = btrfs_wait_for_commit(root, transid);
8871 if (ret)
8872 return ret;
8873 goto again;
8874 }
8875
8876 /*
8877 * if we are changing raid levels, try to allocate a corresponding
8878 * block group with the new raid level.
8879 */
8880 alloc_flags = update_block_group_flags(root, cache->flags);
8881 if (alloc_flags != cache->flags) {
8882 ret = do_chunk_alloc(trans, root, alloc_flags,
8883 CHUNK_ALLOC_FORCE);
8884 /*
8885 * ENOSPC is allowed here, we may have enough space
8886 * already allocated at the new raid level to
8887 * carry on
8888 */
8889 if (ret == -ENOSPC)
8890 ret = 0;
8891 if (ret < 0)
8892 goto out;
8893 }
8894
8895 ret = set_block_group_ro(cache, 0);
8896 if (!ret)
8897 goto out;
8898 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8899 ret = do_chunk_alloc(trans, root, alloc_flags,
8900 CHUNK_ALLOC_FORCE);
8901 if (ret < 0)
8902 goto out;
8903 ret = set_block_group_ro(cache, 0);
8904 out:
8905 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8906 alloc_flags = update_block_group_flags(root, cache->flags);
8907 lock_chunks(root->fs_info->chunk_root);
8908 check_system_chunk(trans, root, alloc_flags);
8909 unlock_chunks(root->fs_info->chunk_root);
8910 }
8911 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8912
8913 btrfs_end_transaction(trans, root);
8914 return ret;
8915 }
8916
8917 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8918 struct btrfs_root *root, u64 type)
8919 {
8920 u64 alloc_flags = get_alloc_profile(root, type);
8921 return do_chunk_alloc(trans, root, alloc_flags,
8922 CHUNK_ALLOC_FORCE);
8923 }
8924
8925 /*
8926 * helper to account the unused space of all the readonly block group in the
8927 * space_info. takes mirrors into account.
8928 */
8929 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8930 {
8931 struct btrfs_block_group_cache *block_group;
8932 u64 free_bytes = 0;
8933 int factor;
8934
8935 /* It's df, we don't care if it's racey */
8936 if (list_empty(&sinfo->ro_bgs))
8937 return 0;
8938
8939 spin_lock(&sinfo->lock);
8940 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8941 spin_lock(&block_group->lock);
8942
8943 if (!block_group->ro) {
8944 spin_unlock(&block_group->lock);
8945 continue;
8946 }
8947
8948 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8949 BTRFS_BLOCK_GROUP_RAID10 |
8950 BTRFS_BLOCK_GROUP_DUP))
8951 factor = 2;
8952 else
8953 factor = 1;
8954
8955 free_bytes += (block_group->key.offset -
8956 btrfs_block_group_used(&block_group->item)) *
8957 factor;
8958
8959 spin_unlock(&block_group->lock);
8960 }
8961 spin_unlock(&sinfo->lock);
8962
8963 return free_bytes;
8964 }
8965
8966 void btrfs_set_block_group_rw(struct btrfs_root *root,
8967 struct btrfs_block_group_cache *cache)
8968 {
8969 struct btrfs_space_info *sinfo = cache->space_info;
8970 u64 num_bytes;
8971
8972 BUG_ON(!cache->ro);
8973
8974 spin_lock(&sinfo->lock);
8975 spin_lock(&cache->lock);
8976 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8977 cache->bytes_super - btrfs_block_group_used(&cache->item);
8978 sinfo->bytes_readonly -= num_bytes;
8979 cache->ro = 0;
8980 list_del_init(&cache->ro_list);
8981 spin_unlock(&cache->lock);
8982 spin_unlock(&sinfo->lock);
8983 }
8984
8985 /*
8986 * checks to see if its even possible to relocate this block group.
8987 *
8988 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8989 * ok to go ahead and try.
8990 */
8991 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8992 {
8993 struct btrfs_block_group_cache *block_group;
8994 struct btrfs_space_info *space_info;
8995 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8996 struct btrfs_device *device;
8997 struct btrfs_trans_handle *trans;
8998 u64 min_free;
8999 u64 dev_min = 1;
9000 u64 dev_nr = 0;
9001 u64 target;
9002 int index;
9003 int full = 0;
9004 int ret = 0;
9005
9006 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9007
9008 /* odd, couldn't find the block group, leave it alone */
9009 if (!block_group)
9010 return -1;
9011
9012 min_free = btrfs_block_group_used(&block_group->item);
9013
9014 /* no bytes used, we're good */
9015 if (!min_free)
9016 goto out;
9017
9018 space_info = block_group->space_info;
9019 spin_lock(&space_info->lock);
9020
9021 full = space_info->full;
9022
9023 /*
9024 * if this is the last block group we have in this space, we can't
9025 * relocate it unless we're able to allocate a new chunk below.
9026 *
9027 * Otherwise, we need to make sure we have room in the space to handle
9028 * all of the extents from this block group. If we can, we're good
9029 */
9030 if ((space_info->total_bytes != block_group->key.offset) &&
9031 (space_info->bytes_used + space_info->bytes_reserved +
9032 space_info->bytes_pinned + space_info->bytes_readonly +
9033 min_free < space_info->total_bytes)) {
9034 spin_unlock(&space_info->lock);
9035 goto out;
9036 }
9037 spin_unlock(&space_info->lock);
9038
9039 /*
9040 * ok we don't have enough space, but maybe we have free space on our
9041 * devices to allocate new chunks for relocation, so loop through our
9042 * alloc devices and guess if we have enough space. if this block
9043 * group is going to be restriped, run checks against the target
9044 * profile instead of the current one.
9045 */
9046 ret = -1;
9047
9048 /*
9049 * index:
9050 * 0: raid10
9051 * 1: raid1
9052 * 2: dup
9053 * 3: raid0
9054 * 4: single
9055 */
9056 target = get_restripe_target(root->fs_info, block_group->flags);
9057 if (target) {
9058 index = __get_raid_index(extended_to_chunk(target));
9059 } else {
9060 /*
9061 * this is just a balance, so if we were marked as full
9062 * we know there is no space for a new chunk
9063 */
9064 if (full)
9065 goto out;
9066
9067 index = get_block_group_index(block_group);
9068 }
9069
9070 if (index == BTRFS_RAID_RAID10) {
9071 dev_min = 4;
9072 /* Divide by 2 */
9073 min_free >>= 1;
9074 } else if (index == BTRFS_RAID_RAID1) {
9075 dev_min = 2;
9076 } else if (index == BTRFS_RAID_DUP) {
9077 /* Multiply by 2 */
9078 min_free <<= 1;
9079 } else if (index == BTRFS_RAID_RAID0) {
9080 dev_min = fs_devices->rw_devices;
9081 min_free = div64_u64(min_free, dev_min);
9082 }
9083
9084 /* We need to do this so that we can look at pending chunks */
9085 trans = btrfs_join_transaction(root);
9086 if (IS_ERR(trans)) {
9087 ret = PTR_ERR(trans);
9088 goto out;
9089 }
9090
9091 mutex_lock(&root->fs_info->chunk_mutex);
9092 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9093 u64 dev_offset;
9094
9095 /*
9096 * check to make sure we can actually find a chunk with enough
9097 * space to fit our block group in.
9098 */
9099 if (device->total_bytes > device->bytes_used + min_free &&
9100 !device->is_tgtdev_for_dev_replace) {
9101 ret = find_free_dev_extent(trans, device, min_free,
9102 &dev_offset, NULL);
9103 if (!ret)
9104 dev_nr++;
9105
9106 if (dev_nr >= dev_min)
9107 break;
9108
9109 ret = -1;
9110 }
9111 }
9112 mutex_unlock(&root->fs_info->chunk_mutex);
9113 btrfs_end_transaction(trans, root);
9114 out:
9115 btrfs_put_block_group(block_group);
9116 return ret;
9117 }
9118
9119 static int find_first_block_group(struct btrfs_root *root,
9120 struct btrfs_path *path, struct btrfs_key *key)
9121 {
9122 int ret = 0;
9123 struct btrfs_key found_key;
9124 struct extent_buffer *leaf;
9125 int slot;
9126
9127 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9128 if (ret < 0)
9129 goto out;
9130
9131 while (1) {
9132 slot = path->slots[0];
9133 leaf = path->nodes[0];
9134 if (slot >= btrfs_header_nritems(leaf)) {
9135 ret = btrfs_next_leaf(root, path);
9136 if (ret == 0)
9137 continue;
9138 if (ret < 0)
9139 goto out;
9140 break;
9141 }
9142 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9143
9144 if (found_key.objectid >= key->objectid &&
9145 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9146 ret = 0;
9147 goto out;
9148 }
9149 path->slots[0]++;
9150 }
9151 out:
9152 return ret;
9153 }
9154
9155 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9156 {
9157 struct btrfs_block_group_cache *block_group;
9158 u64 last = 0;
9159
9160 while (1) {
9161 struct inode *inode;
9162
9163 block_group = btrfs_lookup_first_block_group(info, last);
9164 while (block_group) {
9165 spin_lock(&block_group->lock);
9166 if (block_group->iref)
9167 break;
9168 spin_unlock(&block_group->lock);
9169 block_group = next_block_group(info->tree_root,
9170 block_group);
9171 }
9172 if (!block_group) {
9173 if (last == 0)
9174 break;
9175 last = 0;
9176 continue;
9177 }
9178
9179 inode = block_group->inode;
9180 block_group->iref = 0;
9181 block_group->inode = NULL;
9182 spin_unlock(&block_group->lock);
9183 iput(inode);
9184 last = block_group->key.objectid + block_group->key.offset;
9185 btrfs_put_block_group(block_group);
9186 }
9187 }
9188
9189 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9190 {
9191 struct btrfs_block_group_cache *block_group;
9192 struct btrfs_space_info *space_info;
9193 struct btrfs_caching_control *caching_ctl;
9194 struct rb_node *n;
9195
9196 down_write(&info->commit_root_sem);
9197 while (!list_empty(&info->caching_block_groups)) {
9198 caching_ctl = list_entry(info->caching_block_groups.next,
9199 struct btrfs_caching_control, list);
9200 list_del(&caching_ctl->list);
9201 put_caching_control(caching_ctl);
9202 }
9203 up_write(&info->commit_root_sem);
9204
9205 spin_lock(&info->unused_bgs_lock);
9206 while (!list_empty(&info->unused_bgs)) {
9207 block_group = list_first_entry(&info->unused_bgs,
9208 struct btrfs_block_group_cache,
9209 bg_list);
9210 list_del_init(&block_group->bg_list);
9211 btrfs_put_block_group(block_group);
9212 }
9213 spin_unlock(&info->unused_bgs_lock);
9214
9215 spin_lock(&info->block_group_cache_lock);
9216 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9217 block_group = rb_entry(n, struct btrfs_block_group_cache,
9218 cache_node);
9219 rb_erase(&block_group->cache_node,
9220 &info->block_group_cache_tree);
9221 RB_CLEAR_NODE(&block_group->cache_node);
9222 spin_unlock(&info->block_group_cache_lock);
9223
9224 down_write(&block_group->space_info->groups_sem);
9225 list_del(&block_group->list);
9226 up_write(&block_group->space_info->groups_sem);
9227
9228 if (block_group->cached == BTRFS_CACHE_STARTED)
9229 wait_block_group_cache_done(block_group);
9230
9231 /*
9232 * We haven't cached this block group, which means we could
9233 * possibly have excluded extents on this block group.
9234 */
9235 if (block_group->cached == BTRFS_CACHE_NO ||
9236 block_group->cached == BTRFS_CACHE_ERROR)
9237 free_excluded_extents(info->extent_root, block_group);
9238
9239 btrfs_remove_free_space_cache(block_group);
9240 btrfs_put_block_group(block_group);
9241
9242 spin_lock(&info->block_group_cache_lock);
9243 }
9244 spin_unlock(&info->block_group_cache_lock);
9245
9246 /* now that all the block groups are freed, go through and
9247 * free all the space_info structs. This is only called during
9248 * the final stages of unmount, and so we know nobody is
9249 * using them. We call synchronize_rcu() once before we start,
9250 * just to be on the safe side.
9251 */
9252 synchronize_rcu();
9253
9254 release_global_block_rsv(info);
9255
9256 while (!list_empty(&info->space_info)) {
9257 int i;
9258
9259 space_info = list_entry(info->space_info.next,
9260 struct btrfs_space_info,
9261 list);
9262 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9263 if (WARN_ON(space_info->bytes_pinned > 0 ||
9264 space_info->bytes_reserved > 0 ||
9265 space_info->bytes_may_use > 0)) {
9266 dump_space_info(space_info, 0, 0);
9267 }
9268 }
9269 list_del(&space_info->list);
9270 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9271 struct kobject *kobj;
9272 kobj = space_info->block_group_kobjs[i];
9273 space_info->block_group_kobjs[i] = NULL;
9274 if (kobj) {
9275 kobject_del(kobj);
9276 kobject_put(kobj);
9277 }
9278 }
9279 kobject_del(&space_info->kobj);
9280 kobject_put(&space_info->kobj);
9281 }
9282 return 0;
9283 }
9284
9285 static void __link_block_group(struct btrfs_space_info *space_info,
9286 struct btrfs_block_group_cache *cache)
9287 {
9288 int index = get_block_group_index(cache);
9289 bool first = false;
9290
9291 down_write(&space_info->groups_sem);
9292 if (list_empty(&space_info->block_groups[index]))
9293 first = true;
9294 list_add_tail(&cache->list, &space_info->block_groups[index]);
9295 up_write(&space_info->groups_sem);
9296
9297 if (first) {
9298 struct raid_kobject *rkobj;
9299 int ret;
9300
9301 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9302 if (!rkobj)
9303 goto out_err;
9304 rkobj->raid_type = index;
9305 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9306 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9307 "%s", get_raid_name(index));
9308 if (ret) {
9309 kobject_put(&rkobj->kobj);
9310 goto out_err;
9311 }
9312 space_info->block_group_kobjs[index] = &rkobj->kobj;
9313 }
9314
9315 return;
9316 out_err:
9317 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9318 }
9319
9320 static struct btrfs_block_group_cache *
9321 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9322 {
9323 struct btrfs_block_group_cache *cache;
9324
9325 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9326 if (!cache)
9327 return NULL;
9328
9329 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9330 GFP_NOFS);
9331 if (!cache->free_space_ctl) {
9332 kfree(cache);
9333 return NULL;
9334 }
9335
9336 cache->key.objectid = start;
9337 cache->key.offset = size;
9338 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9339
9340 cache->sectorsize = root->sectorsize;
9341 cache->fs_info = root->fs_info;
9342 cache->full_stripe_len = btrfs_full_stripe_len(root,
9343 &root->fs_info->mapping_tree,
9344 start);
9345 atomic_set(&cache->count, 1);
9346 spin_lock_init(&cache->lock);
9347 init_rwsem(&cache->data_rwsem);
9348 INIT_LIST_HEAD(&cache->list);
9349 INIT_LIST_HEAD(&cache->cluster_list);
9350 INIT_LIST_HEAD(&cache->bg_list);
9351 INIT_LIST_HEAD(&cache->ro_list);
9352 INIT_LIST_HEAD(&cache->dirty_list);
9353 INIT_LIST_HEAD(&cache->io_list);
9354 btrfs_init_free_space_ctl(cache);
9355 atomic_set(&cache->trimming, 0);
9356
9357 return cache;
9358 }
9359
9360 int btrfs_read_block_groups(struct btrfs_root *root)
9361 {
9362 struct btrfs_path *path;
9363 int ret;
9364 struct btrfs_block_group_cache *cache;
9365 struct btrfs_fs_info *info = root->fs_info;
9366 struct btrfs_space_info *space_info;
9367 struct btrfs_key key;
9368 struct btrfs_key found_key;
9369 struct extent_buffer *leaf;
9370 int need_clear = 0;
9371 u64 cache_gen;
9372
9373 root = info->extent_root;
9374 key.objectid = 0;
9375 key.offset = 0;
9376 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9377 path = btrfs_alloc_path();
9378 if (!path)
9379 return -ENOMEM;
9380 path->reada = 1;
9381
9382 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9383 if (btrfs_test_opt(root, SPACE_CACHE) &&
9384 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9385 need_clear = 1;
9386 if (btrfs_test_opt(root, CLEAR_CACHE))
9387 need_clear = 1;
9388
9389 while (1) {
9390 ret = find_first_block_group(root, path, &key);
9391 if (ret > 0)
9392 break;
9393 if (ret != 0)
9394 goto error;
9395
9396 leaf = path->nodes[0];
9397 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9398
9399 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9400 found_key.offset);
9401 if (!cache) {
9402 ret = -ENOMEM;
9403 goto error;
9404 }
9405
9406 if (need_clear) {
9407 /*
9408 * When we mount with old space cache, we need to
9409 * set BTRFS_DC_CLEAR and set dirty flag.
9410 *
9411 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9412 * truncate the old free space cache inode and
9413 * setup a new one.
9414 * b) Setting 'dirty flag' makes sure that we flush
9415 * the new space cache info onto disk.
9416 */
9417 if (btrfs_test_opt(root, SPACE_CACHE))
9418 cache->disk_cache_state = BTRFS_DC_CLEAR;
9419 }
9420
9421 read_extent_buffer(leaf, &cache->item,
9422 btrfs_item_ptr_offset(leaf, path->slots[0]),
9423 sizeof(cache->item));
9424 cache->flags = btrfs_block_group_flags(&cache->item);
9425
9426 key.objectid = found_key.objectid + found_key.offset;
9427 btrfs_release_path(path);
9428
9429 /*
9430 * We need to exclude the super stripes now so that the space
9431 * info has super bytes accounted for, otherwise we'll think
9432 * we have more space than we actually do.
9433 */
9434 ret = exclude_super_stripes(root, cache);
9435 if (ret) {
9436 /*
9437 * We may have excluded something, so call this just in
9438 * case.
9439 */
9440 free_excluded_extents(root, cache);
9441 btrfs_put_block_group(cache);
9442 goto error;
9443 }
9444
9445 /*
9446 * check for two cases, either we are full, and therefore
9447 * don't need to bother with the caching work since we won't
9448 * find any space, or we are empty, and we can just add all
9449 * the space in and be done with it. This saves us _alot_ of
9450 * time, particularly in the full case.
9451 */
9452 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9453 cache->last_byte_to_unpin = (u64)-1;
9454 cache->cached = BTRFS_CACHE_FINISHED;
9455 free_excluded_extents(root, cache);
9456 } else if (btrfs_block_group_used(&cache->item) == 0) {
9457 cache->last_byte_to_unpin = (u64)-1;
9458 cache->cached = BTRFS_CACHE_FINISHED;
9459 add_new_free_space(cache, root->fs_info,
9460 found_key.objectid,
9461 found_key.objectid +
9462 found_key.offset);
9463 free_excluded_extents(root, cache);
9464 }
9465
9466 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9467 if (ret) {
9468 btrfs_remove_free_space_cache(cache);
9469 btrfs_put_block_group(cache);
9470 goto error;
9471 }
9472
9473 ret = update_space_info(info, cache->flags, found_key.offset,
9474 btrfs_block_group_used(&cache->item),
9475 &space_info);
9476 if (ret) {
9477 btrfs_remove_free_space_cache(cache);
9478 spin_lock(&info->block_group_cache_lock);
9479 rb_erase(&cache->cache_node,
9480 &info->block_group_cache_tree);
9481 RB_CLEAR_NODE(&cache->cache_node);
9482 spin_unlock(&info->block_group_cache_lock);
9483 btrfs_put_block_group(cache);
9484 goto error;
9485 }
9486
9487 cache->space_info = space_info;
9488 spin_lock(&cache->space_info->lock);
9489 cache->space_info->bytes_readonly += cache->bytes_super;
9490 spin_unlock(&cache->space_info->lock);
9491
9492 __link_block_group(space_info, cache);
9493
9494 set_avail_alloc_bits(root->fs_info, cache->flags);
9495 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9496 set_block_group_ro(cache, 1);
9497 } else if (btrfs_block_group_used(&cache->item) == 0) {
9498 spin_lock(&info->unused_bgs_lock);
9499 /* Should always be true but just in case. */
9500 if (list_empty(&cache->bg_list)) {
9501 btrfs_get_block_group(cache);
9502 list_add_tail(&cache->bg_list,
9503 &info->unused_bgs);
9504 }
9505 spin_unlock(&info->unused_bgs_lock);
9506 }
9507 }
9508
9509 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9510 if (!(get_alloc_profile(root, space_info->flags) &
9511 (BTRFS_BLOCK_GROUP_RAID10 |
9512 BTRFS_BLOCK_GROUP_RAID1 |
9513 BTRFS_BLOCK_GROUP_RAID5 |
9514 BTRFS_BLOCK_GROUP_RAID6 |
9515 BTRFS_BLOCK_GROUP_DUP)))
9516 continue;
9517 /*
9518 * avoid allocating from un-mirrored block group if there are
9519 * mirrored block groups.
9520 */
9521 list_for_each_entry(cache,
9522 &space_info->block_groups[BTRFS_RAID_RAID0],
9523 list)
9524 set_block_group_ro(cache, 1);
9525 list_for_each_entry(cache,
9526 &space_info->block_groups[BTRFS_RAID_SINGLE],
9527 list)
9528 set_block_group_ro(cache, 1);
9529 }
9530
9531 init_global_block_rsv(info);
9532 ret = 0;
9533 error:
9534 btrfs_free_path(path);
9535 return ret;
9536 }
9537
9538 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9539 struct btrfs_root *root)
9540 {
9541 struct btrfs_block_group_cache *block_group, *tmp;
9542 struct btrfs_root *extent_root = root->fs_info->extent_root;
9543 struct btrfs_block_group_item item;
9544 struct btrfs_key key;
9545 int ret = 0;
9546
9547 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9548 if (ret)
9549 goto next;
9550
9551 spin_lock(&block_group->lock);
9552 memcpy(&item, &block_group->item, sizeof(item));
9553 memcpy(&key, &block_group->key, sizeof(key));
9554 spin_unlock(&block_group->lock);
9555
9556 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9557 sizeof(item));
9558 if (ret)
9559 btrfs_abort_transaction(trans, extent_root, ret);
9560 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9561 key.objectid, key.offset);
9562 if (ret)
9563 btrfs_abort_transaction(trans, extent_root, ret);
9564 next:
9565 list_del_init(&block_group->bg_list);
9566 }
9567 }
9568
9569 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9570 struct btrfs_root *root, u64 bytes_used,
9571 u64 type, u64 chunk_objectid, u64 chunk_offset,
9572 u64 size)
9573 {
9574 int ret;
9575 struct btrfs_root *extent_root;
9576 struct btrfs_block_group_cache *cache;
9577
9578 extent_root = root->fs_info->extent_root;
9579
9580 btrfs_set_log_full_commit(root->fs_info, trans);
9581
9582 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9583 if (!cache)
9584 return -ENOMEM;
9585
9586 btrfs_set_block_group_used(&cache->item, bytes_used);
9587 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9588 btrfs_set_block_group_flags(&cache->item, type);
9589
9590 cache->flags = type;
9591 cache->last_byte_to_unpin = (u64)-1;
9592 cache->cached = BTRFS_CACHE_FINISHED;
9593 ret = exclude_super_stripes(root, cache);
9594 if (ret) {
9595 /*
9596 * We may have excluded something, so call this just in
9597 * case.
9598 */
9599 free_excluded_extents(root, cache);
9600 btrfs_put_block_group(cache);
9601 return ret;
9602 }
9603
9604 add_new_free_space(cache, root->fs_info, chunk_offset,
9605 chunk_offset + size);
9606
9607 free_excluded_extents(root, cache);
9608
9609 /*
9610 * Call to ensure the corresponding space_info object is created and
9611 * assigned to our block group, but don't update its counters just yet.
9612 * We want our bg to be added to the rbtree with its ->space_info set.
9613 */
9614 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9615 &cache->space_info);
9616 if (ret) {
9617 btrfs_remove_free_space_cache(cache);
9618 btrfs_put_block_group(cache);
9619 return ret;
9620 }
9621
9622 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9623 if (ret) {
9624 btrfs_remove_free_space_cache(cache);
9625 btrfs_put_block_group(cache);
9626 return ret;
9627 }
9628
9629 /*
9630 * Now that our block group has its ->space_info set and is inserted in
9631 * the rbtree, update the space info's counters.
9632 */
9633 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9634 &cache->space_info);
9635 if (ret) {
9636 btrfs_remove_free_space_cache(cache);
9637 spin_lock(&root->fs_info->block_group_cache_lock);
9638 rb_erase(&cache->cache_node,
9639 &root->fs_info->block_group_cache_tree);
9640 RB_CLEAR_NODE(&cache->cache_node);
9641 spin_unlock(&root->fs_info->block_group_cache_lock);
9642 btrfs_put_block_group(cache);
9643 return ret;
9644 }
9645 update_global_block_rsv(root->fs_info);
9646
9647 spin_lock(&cache->space_info->lock);
9648 cache->space_info->bytes_readonly += cache->bytes_super;
9649 spin_unlock(&cache->space_info->lock);
9650
9651 __link_block_group(cache->space_info, cache);
9652
9653 list_add_tail(&cache->bg_list, &trans->new_bgs);
9654
9655 set_avail_alloc_bits(extent_root->fs_info, type);
9656
9657 return 0;
9658 }
9659
9660 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9661 {
9662 u64 extra_flags = chunk_to_extended(flags) &
9663 BTRFS_EXTENDED_PROFILE_MASK;
9664
9665 write_seqlock(&fs_info->profiles_lock);
9666 if (flags & BTRFS_BLOCK_GROUP_DATA)
9667 fs_info->avail_data_alloc_bits &= ~extra_flags;
9668 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9669 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9670 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9671 fs_info->avail_system_alloc_bits &= ~extra_flags;
9672 write_sequnlock(&fs_info->profiles_lock);
9673 }
9674
9675 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9676 struct btrfs_root *root, u64 group_start,
9677 struct extent_map *em)
9678 {
9679 struct btrfs_path *path;
9680 struct btrfs_block_group_cache *block_group;
9681 struct btrfs_free_cluster *cluster;
9682 struct btrfs_root *tree_root = root->fs_info->tree_root;
9683 struct btrfs_key key;
9684 struct inode *inode;
9685 struct kobject *kobj = NULL;
9686 int ret;
9687 int index;
9688 int factor;
9689 struct btrfs_caching_control *caching_ctl = NULL;
9690 bool remove_em;
9691
9692 root = root->fs_info->extent_root;
9693
9694 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9695 BUG_ON(!block_group);
9696 BUG_ON(!block_group->ro);
9697
9698 /*
9699 * Free the reserved super bytes from this block group before
9700 * remove it.
9701 */
9702 free_excluded_extents(root, block_group);
9703
9704 memcpy(&key, &block_group->key, sizeof(key));
9705 index = get_block_group_index(block_group);
9706 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9707 BTRFS_BLOCK_GROUP_RAID1 |
9708 BTRFS_BLOCK_GROUP_RAID10))
9709 factor = 2;
9710 else
9711 factor = 1;
9712
9713 /* make sure this block group isn't part of an allocation cluster */
9714 cluster = &root->fs_info->data_alloc_cluster;
9715 spin_lock(&cluster->refill_lock);
9716 btrfs_return_cluster_to_free_space(block_group, cluster);
9717 spin_unlock(&cluster->refill_lock);
9718
9719 /*
9720 * make sure this block group isn't part of a metadata
9721 * allocation cluster
9722 */
9723 cluster = &root->fs_info->meta_alloc_cluster;
9724 spin_lock(&cluster->refill_lock);
9725 btrfs_return_cluster_to_free_space(block_group, cluster);
9726 spin_unlock(&cluster->refill_lock);
9727
9728 path = btrfs_alloc_path();
9729 if (!path) {
9730 ret = -ENOMEM;
9731 goto out;
9732 }
9733
9734 /*
9735 * get the inode first so any iput calls done for the io_list
9736 * aren't the final iput (no unlinks allowed now)
9737 */
9738 inode = lookup_free_space_inode(tree_root, block_group, path);
9739
9740 mutex_lock(&trans->transaction->cache_write_mutex);
9741 /*
9742 * make sure our free spache cache IO is done before remove the
9743 * free space inode
9744 */
9745 spin_lock(&trans->transaction->dirty_bgs_lock);
9746 if (!list_empty(&block_group->io_list)) {
9747 list_del_init(&block_group->io_list);
9748
9749 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9750
9751 spin_unlock(&trans->transaction->dirty_bgs_lock);
9752 btrfs_wait_cache_io(root, trans, block_group,
9753 &block_group->io_ctl, path,
9754 block_group->key.objectid);
9755 btrfs_put_block_group(block_group);
9756 spin_lock(&trans->transaction->dirty_bgs_lock);
9757 }
9758
9759 if (!list_empty(&block_group->dirty_list)) {
9760 list_del_init(&block_group->dirty_list);
9761 btrfs_put_block_group(block_group);
9762 }
9763 spin_unlock(&trans->transaction->dirty_bgs_lock);
9764 mutex_unlock(&trans->transaction->cache_write_mutex);
9765
9766 if (!IS_ERR(inode)) {
9767 ret = btrfs_orphan_add(trans, inode);
9768 if (ret) {
9769 btrfs_add_delayed_iput(inode);
9770 goto out;
9771 }
9772 clear_nlink(inode);
9773 /* One for the block groups ref */
9774 spin_lock(&block_group->lock);
9775 if (block_group->iref) {
9776 block_group->iref = 0;
9777 block_group->inode = NULL;
9778 spin_unlock(&block_group->lock);
9779 iput(inode);
9780 } else {
9781 spin_unlock(&block_group->lock);
9782 }
9783 /* One for our lookup ref */
9784 btrfs_add_delayed_iput(inode);
9785 }
9786
9787 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9788 key.offset = block_group->key.objectid;
9789 key.type = 0;
9790
9791 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9792 if (ret < 0)
9793 goto out;
9794 if (ret > 0)
9795 btrfs_release_path(path);
9796 if (ret == 0) {
9797 ret = btrfs_del_item(trans, tree_root, path);
9798 if (ret)
9799 goto out;
9800 btrfs_release_path(path);
9801 }
9802
9803 spin_lock(&root->fs_info->block_group_cache_lock);
9804 rb_erase(&block_group->cache_node,
9805 &root->fs_info->block_group_cache_tree);
9806 RB_CLEAR_NODE(&block_group->cache_node);
9807
9808 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9809 root->fs_info->first_logical_byte = (u64)-1;
9810 spin_unlock(&root->fs_info->block_group_cache_lock);
9811
9812 down_write(&block_group->space_info->groups_sem);
9813 /*
9814 * we must use list_del_init so people can check to see if they
9815 * are still on the list after taking the semaphore
9816 */
9817 list_del_init(&block_group->list);
9818 if (list_empty(&block_group->space_info->block_groups[index])) {
9819 kobj = block_group->space_info->block_group_kobjs[index];
9820 block_group->space_info->block_group_kobjs[index] = NULL;
9821 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9822 }
9823 up_write(&block_group->space_info->groups_sem);
9824 if (kobj) {
9825 kobject_del(kobj);
9826 kobject_put(kobj);
9827 }
9828
9829 if (block_group->has_caching_ctl)
9830 caching_ctl = get_caching_control(block_group);
9831 if (block_group->cached == BTRFS_CACHE_STARTED)
9832 wait_block_group_cache_done(block_group);
9833 if (block_group->has_caching_ctl) {
9834 down_write(&root->fs_info->commit_root_sem);
9835 if (!caching_ctl) {
9836 struct btrfs_caching_control *ctl;
9837
9838 list_for_each_entry(ctl,
9839 &root->fs_info->caching_block_groups, list)
9840 if (ctl->block_group == block_group) {
9841 caching_ctl = ctl;
9842 atomic_inc(&caching_ctl->count);
9843 break;
9844 }
9845 }
9846 if (caching_ctl)
9847 list_del_init(&caching_ctl->list);
9848 up_write(&root->fs_info->commit_root_sem);
9849 if (caching_ctl) {
9850 /* Once for the caching bgs list and once for us. */
9851 put_caching_control(caching_ctl);
9852 put_caching_control(caching_ctl);
9853 }
9854 }
9855
9856 spin_lock(&trans->transaction->dirty_bgs_lock);
9857 if (!list_empty(&block_group->dirty_list)) {
9858 WARN_ON(1);
9859 }
9860 if (!list_empty(&block_group->io_list)) {
9861 WARN_ON(1);
9862 }
9863 spin_unlock(&trans->transaction->dirty_bgs_lock);
9864 btrfs_remove_free_space_cache(block_group);
9865
9866 spin_lock(&block_group->space_info->lock);
9867 list_del_init(&block_group->ro_list);
9868
9869 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9870 WARN_ON(block_group->space_info->total_bytes
9871 < block_group->key.offset);
9872 WARN_ON(block_group->space_info->bytes_readonly
9873 < block_group->key.offset);
9874 WARN_ON(block_group->space_info->disk_total
9875 < block_group->key.offset * factor);
9876 }
9877 block_group->space_info->total_bytes -= block_group->key.offset;
9878 block_group->space_info->bytes_readonly -= block_group->key.offset;
9879 block_group->space_info->disk_total -= block_group->key.offset * factor;
9880
9881 spin_unlock(&block_group->space_info->lock);
9882
9883 memcpy(&key, &block_group->key, sizeof(key));
9884
9885 lock_chunks(root);
9886 if (!list_empty(&em->list)) {
9887 /* We're in the transaction->pending_chunks list. */
9888 free_extent_map(em);
9889 }
9890 spin_lock(&block_group->lock);
9891 block_group->removed = 1;
9892 /*
9893 * At this point trimming can't start on this block group, because we
9894 * removed the block group from the tree fs_info->block_group_cache_tree
9895 * so no one can't find it anymore and even if someone already got this
9896 * block group before we removed it from the rbtree, they have already
9897 * incremented block_group->trimming - if they didn't, they won't find
9898 * any free space entries because we already removed them all when we
9899 * called btrfs_remove_free_space_cache().
9900 *
9901 * And we must not remove the extent map from the fs_info->mapping_tree
9902 * to prevent the same logical address range and physical device space
9903 * ranges from being reused for a new block group. This is because our
9904 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9905 * completely transactionless, so while it is trimming a range the
9906 * currently running transaction might finish and a new one start,
9907 * allowing for new block groups to be created that can reuse the same
9908 * physical device locations unless we take this special care.
9909 */
9910 remove_em = (atomic_read(&block_group->trimming) == 0);
9911 /*
9912 * Make sure a trimmer task always sees the em in the pinned_chunks list
9913 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9914 * before checking block_group->removed).
9915 */
9916 if (!remove_em) {
9917 /*
9918 * Our em might be in trans->transaction->pending_chunks which
9919 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9920 * and so is the fs_info->pinned_chunks list.
9921 *
9922 * So at this point we must be holding the chunk_mutex to avoid
9923 * any races with chunk allocation (more specifically at
9924 * volumes.c:contains_pending_extent()), to ensure it always
9925 * sees the em, either in the pending_chunks list or in the
9926 * pinned_chunks list.
9927 */
9928 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9929 }
9930 spin_unlock(&block_group->lock);
9931
9932 if (remove_em) {
9933 struct extent_map_tree *em_tree;
9934
9935 em_tree = &root->fs_info->mapping_tree.map_tree;
9936 write_lock(&em_tree->lock);
9937 /*
9938 * The em might be in the pending_chunks list, so make sure the
9939 * chunk mutex is locked, since remove_extent_mapping() will
9940 * delete us from that list.
9941 */
9942 remove_extent_mapping(em_tree, em);
9943 write_unlock(&em_tree->lock);
9944 /* once for the tree */
9945 free_extent_map(em);
9946 }
9947
9948 unlock_chunks(root);
9949
9950 btrfs_put_block_group(block_group);
9951 btrfs_put_block_group(block_group);
9952
9953 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9954 if (ret > 0)
9955 ret = -EIO;
9956 if (ret < 0)
9957 goto out;
9958
9959 ret = btrfs_del_item(trans, root, path);
9960 out:
9961 btrfs_free_path(path);
9962 return ret;
9963 }
9964
9965 /*
9966 * Process the unused_bgs list and remove any that don't have any allocated
9967 * space inside of them.
9968 */
9969 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9970 {
9971 struct btrfs_block_group_cache *block_group;
9972 struct btrfs_space_info *space_info;
9973 struct btrfs_root *root = fs_info->extent_root;
9974 struct btrfs_trans_handle *trans;
9975 int ret = 0;
9976
9977 if (!fs_info->open)
9978 return;
9979
9980 spin_lock(&fs_info->unused_bgs_lock);
9981 while (!list_empty(&fs_info->unused_bgs)) {
9982 u64 start, end;
9983
9984 block_group = list_first_entry(&fs_info->unused_bgs,
9985 struct btrfs_block_group_cache,
9986 bg_list);
9987 space_info = block_group->space_info;
9988 list_del_init(&block_group->bg_list);
9989 if (ret || btrfs_mixed_space_info(space_info)) {
9990 btrfs_put_block_group(block_group);
9991 continue;
9992 }
9993 spin_unlock(&fs_info->unused_bgs_lock);
9994
9995 /* Don't want to race with allocators so take the groups_sem */
9996 down_write(&space_info->groups_sem);
9997 spin_lock(&block_group->lock);
9998 if (block_group->reserved ||
9999 btrfs_block_group_used(&block_group->item) ||
10000 block_group->ro) {
10001 /*
10002 * We want to bail if we made new allocations or have
10003 * outstanding allocations in this block group. We do
10004 * the ro check in case balance is currently acting on
10005 * this block group.
10006 */
10007 spin_unlock(&block_group->lock);
10008 up_write(&space_info->groups_sem);
10009 goto next;
10010 }
10011 spin_unlock(&block_group->lock);
10012
10013 /* We don't want to force the issue, only flip if it's ok. */
10014 ret = set_block_group_ro(block_group, 0);
10015 up_write(&space_info->groups_sem);
10016 if (ret < 0) {
10017 ret = 0;
10018 goto next;
10019 }
10020
10021 /*
10022 * Want to do this before we do anything else so we can recover
10023 * properly if we fail to join the transaction.
10024 */
10025 /* 1 for btrfs_orphan_reserve_metadata() */
10026 trans = btrfs_start_transaction(root, 1);
10027 if (IS_ERR(trans)) {
10028 btrfs_set_block_group_rw(root, block_group);
10029 ret = PTR_ERR(trans);
10030 goto next;
10031 }
10032
10033 /*
10034 * We could have pending pinned extents for this block group,
10035 * just delete them, we don't care about them anymore.
10036 */
10037 start = block_group->key.objectid;
10038 end = start + block_group->key.offset - 1;
10039 /*
10040 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10041 * btrfs_finish_extent_commit(). If we are at transaction N,
10042 * another task might be running finish_extent_commit() for the
10043 * previous transaction N - 1, and have seen a range belonging
10044 * to the block group in freed_extents[] before we were able to
10045 * clear the whole block group range from freed_extents[]. This
10046 * means that task can lookup for the block group after we
10047 * unpinned it from freed_extents[] and removed it, leading to
10048 * a BUG_ON() at btrfs_unpin_extent_range().
10049 */
10050 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10051 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10052 EXTENT_DIRTY, GFP_NOFS);
10053 if (ret) {
10054 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10055 btrfs_set_block_group_rw(root, block_group);
10056 goto end_trans;
10057 }
10058 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10059 EXTENT_DIRTY, GFP_NOFS);
10060 if (ret) {
10061 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10062 btrfs_set_block_group_rw(root, block_group);
10063 goto end_trans;
10064 }
10065 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10066
10067 /* Reset pinned so btrfs_put_block_group doesn't complain */
10068 spin_lock(&space_info->lock);
10069 spin_lock(&block_group->lock);
10070
10071 space_info->bytes_pinned -= block_group->pinned;
10072 space_info->bytes_readonly += block_group->pinned;
10073 percpu_counter_add(&space_info->total_bytes_pinned,
10074 -block_group->pinned);
10075 block_group->pinned = 0;
10076
10077 spin_unlock(&block_group->lock);
10078 spin_unlock(&space_info->lock);
10079
10080 /*
10081 * Btrfs_remove_chunk will abort the transaction if things go
10082 * horribly wrong.
10083 */
10084 ret = btrfs_remove_chunk(trans, root,
10085 block_group->key.objectid);
10086 end_trans:
10087 btrfs_end_transaction(trans, root);
10088 next:
10089 btrfs_put_block_group(block_group);
10090 spin_lock(&fs_info->unused_bgs_lock);
10091 }
10092 spin_unlock(&fs_info->unused_bgs_lock);
10093 }
10094
10095 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10096 {
10097 struct btrfs_space_info *space_info;
10098 struct btrfs_super_block *disk_super;
10099 u64 features;
10100 u64 flags;
10101 int mixed = 0;
10102 int ret;
10103
10104 disk_super = fs_info->super_copy;
10105 if (!btrfs_super_root(disk_super))
10106 return 1;
10107
10108 features = btrfs_super_incompat_flags(disk_super);
10109 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10110 mixed = 1;
10111
10112 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10113 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10114 if (ret)
10115 goto out;
10116
10117 if (mixed) {
10118 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10119 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10120 } else {
10121 flags = BTRFS_BLOCK_GROUP_METADATA;
10122 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10123 if (ret)
10124 goto out;
10125
10126 flags = BTRFS_BLOCK_GROUP_DATA;
10127 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10128 }
10129 out:
10130 return ret;
10131 }
10132
10133 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10134 {
10135 return unpin_extent_range(root, start, end, false);
10136 }
10137
10138 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10139 {
10140 struct btrfs_fs_info *fs_info = root->fs_info;
10141 struct btrfs_block_group_cache *cache = NULL;
10142 u64 group_trimmed;
10143 u64 start;
10144 u64 end;
10145 u64 trimmed = 0;
10146 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10147 int ret = 0;
10148
10149 /*
10150 * try to trim all FS space, our block group may start from non-zero.
10151 */
10152 if (range->len == total_bytes)
10153 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10154 else
10155 cache = btrfs_lookup_block_group(fs_info, range->start);
10156
10157 while (cache) {
10158 if (cache->key.objectid >= (range->start + range->len)) {
10159 btrfs_put_block_group(cache);
10160 break;
10161 }
10162
10163 start = max(range->start, cache->key.objectid);
10164 end = min(range->start + range->len,
10165 cache->key.objectid + cache->key.offset);
10166
10167 if (end - start >= range->minlen) {
10168 if (!block_group_cache_done(cache)) {
10169 ret = cache_block_group(cache, 0);
10170 if (ret) {
10171 btrfs_put_block_group(cache);
10172 break;
10173 }
10174 ret = wait_block_group_cache_done(cache);
10175 if (ret) {
10176 btrfs_put_block_group(cache);
10177 break;
10178 }
10179 }
10180 ret = btrfs_trim_block_group(cache,
10181 &group_trimmed,
10182 start,
10183 end,
10184 range->minlen);
10185
10186 trimmed += group_trimmed;
10187 if (ret) {
10188 btrfs_put_block_group(cache);
10189 break;
10190 }
10191 }
10192
10193 cache = next_block_group(fs_info->tree_root, cache);
10194 }
10195
10196 range->len = trimmed;
10197 return ret;
10198 }
10199
10200 /*
10201 * btrfs_{start,end}_write_no_snapshoting() are similar to
10202 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10203 * data into the page cache through nocow before the subvolume is snapshoted,
10204 * but flush the data into disk after the snapshot creation, or to prevent
10205 * operations while snapshoting is ongoing and that cause the snapshot to be
10206 * inconsistent (writes followed by expanding truncates for example).
10207 */
10208 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10209 {
10210 percpu_counter_dec(&root->subv_writers->counter);
10211 /*
10212 * Make sure counter is updated before we wake up
10213 * waiters.
10214 */
10215 smp_mb();
10216 if (waitqueue_active(&root->subv_writers->wait))
10217 wake_up(&root->subv_writers->wait);
10218 }
10219
10220 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10221 {
10222 if (atomic_read(&root->will_be_snapshoted))
10223 return 0;
10224
10225 percpu_counter_inc(&root->subv_writers->counter);
10226 /*
10227 * Make sure counter is updated before we check for snapshot creation.
10228 */
10229 smp_mb();
10230 if (atomic_read(&root->will_be_snapshoted)) {
10231 btrfs_end_write_no_snapshoting(root);
10232 return 0;
10233 }
10234 return 1;
10235 }
This page took 1.888977 seconds and 6 git commands to generate.