Btrfs: handle errors in btrfs_orphan_cleanup
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35
36 static int update_block_group(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 u64 bytenr, u64 num_bytes, int alloc);
39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
40 u64 num_bytes, int reserve, int sinfo);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root,
43 u64 bytenr, u64 num_bytes, u64 parent,
44 u64 root_objectid, u64 owner_objectid,
45 u64 owner_offset, int refs_to_drop,
46 struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 struct extent_buffer *leaf,
49 struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 parent, u64 root_objectid,
58 u64 flags, struct btrfs_disk_key *key,
59 int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 struct btrfs_root *extent_root, u64 alloc_bytes,
62 u64 flags, int force);
63 static int find_next_key(struct btrfs_path *path, int level,
64 struct btrfs_key *key);
65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
66 int dump_block_groups);
67
68 static noinline int
69 block_group_cache_done(struct btrfs_block_group_cache *cache)
70 {
71 smp_mb();
72 return cache->cached == BTRFS_CACHE_FINISHED;
73 }
74
75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
76 {
77 return (cache->flags & bits) == bits;
78 }
79
80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
81 {
82 atomic_inc(&cache->count);
83 }
84
85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
86 {
87 if (atomic_dec_and_test(&cache->count)) {
88 WARN_ON(cache->pinned > 0);
89 WARN_ON(cache->reserved > 0);
90 WARN_ON(cache->reserved_pinned > 0);
91 kfree(cache);
92 }
93 }
94
95 /*
96 * this adds the block group to the fs_info rb tree for the block group
97 * cache
98 */
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
100 struct btrfs_block_group_cache *block_group)
101 {
102 struct rb_node **p;
103 struct rb_node *parent = NULL;
104 struct btrfs_block_group_cache *cache;
105
106 spin_lock(&info->block_group_cache_lock);
107 p = &info->block_group_cache_tree.rb_node;
108
109 while (*p) {
110 parent = *p;
111 cache = rb_entry(parent, struct btrfs_block_group_cache,
112 cache_node);
113 if (block_group->key.objectid < cache->key.objectid) {
114 p = &(*p)->rb_left;
115 } else if (block_group->key.objectid > cache->key.objectid) {
116 p = &(*p)->rb_right;
117 } else {
118 spin_unlock(&info->block_group_cache_lock);
119 return -EEXIST;
120 }
121 }
122
123 rb_link_node(&block_group->cache_node, parent, p);
124 rb_insert_color(&block_group->cache_node,
125 &info->block_group_cache_tree);
126 spin_unlock(&info->block_group_cache_lock);
127
128 return 0;
129 }
130
131 /*
132 * This will return the block group at or after bytenr if contains is 0, else
133 * it will return the block group that contains the bytenr
134 */
135 static struct btrfs_block_group_cache *
136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
137 int contains)
138 {
139 struct btrfs_block_group_cache *cache, *ret = NULL;
140 struct rb_node *n;
141 u64 end, start;
142
143 spin_lock(&info->block_group_cache_lock);
144 n = info->block_group_cache_tree.rb_node;
145
146 while (n) {
147 cache = rb_entry(n, struct btrfs_block_group_cache,
148 cache_node);
149 end = cache->key.objectid + cache->key.offset - 1;
150 start = cache->key.objectid;
151
152 if (bytenr < start) {
153 if (!contains && (!ret || start < ret->key.objectid))
154 ret = cache;
155 n = n->rb_left;
156 } else if (bytenr > start) {
157 if (contains && bytenr <= end) {
158 ret = cache;
159 break;
160 }
161 n = n->rb_right;
162 } else {
163 ret = cache;
164 break;
165 }
166 }
167 if (ret)
168 btrfs_get_block_group(ret);
169 spin_unlock(&info->block_group_cache_lock);
170
171 return ret;
172 }
173
174 static int add_excluded_extent(struct btrfs_root *root,
175 u64 start, u64 num_bytes)
176 {
177 u64 end = start + num_bytes - 1;
178 set_extent_bits(&root->fs_info->freed_extents[0],
179 start, end, EXTENT_UPTODATE, GFP_NOFS);
180 set_extent_bits(&root->fs_info->freed_extents[1],
181 start, end, EXTENT_UPTODATE, GFP_NOFS);
182 return 0;
183 }
184
185 static void free_excluded_extents(struct btrfs_root *root,
186 struct btrfs_block_group_cache *cache)
187 {
188 u64 start, end;
189
190 start = cache->key.objectid;
191 end = start + cache->key.offset - 1;
192
193 clear_extent_bits(&root->fs_info->freed_extents[0],
194 start, end, EXTENT_UPTODATE, GFP_NOFS);
195 clear_extent_bits(&root->fs_info->freed_extents[1],
196 start, end, EXTENT_UPTODATE, GFP_NOFS);
197 }
198
199 static int exclude_super_stripes(struct btrfs_root *root,
200 struct btrfs_block_group_cache *cache)
201 {
202 u64 bytenr;
203 u64 *logical;
204 int stripe_len;
205 int i, nr, ret;
206
207 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
208 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
209 cache->bytes_super += stripe_len;
210 ret = add_excluded_extent(root, cache->key.objectid,
211 stripe_len);
212 BUG_ON(ret);
213 }
214
215 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
216 bytenr = btrfs_sb_offset(i);
217 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
218 cache->key.objectid, bytenr,
219 0, &logical, &nr, &stripe_len);
220 BUG_ON(ret);
221
222 while (nr--) {
223 cache->bytes_super += stripe_len;
224 ret = add_excluded_extent(root, logical[nr],
225 stripe_len);
226 BUG_ON(ret);
227 }
228
229 kfree(logical);
230 }
231 return 0;
232 }
233
234 static struct btrfs_caching_control *
235 get_caching_control(struct btrfs_block_group_cache *cache)
236 {
237 struct btrfs_caching_control *ctl;
238
239 spin_lock(&cache->lock);
240 if (cache->cached != BTRFS_CACHE_STARTED) {
241 spin_unlock(&cache->lock);
242 return NULL;
243 }
244
245 /* We're loading it the fast way, so we don't have a caching_ctl. */
246 if (!cache->caching_ctl) {
247 spin_unlock(&cache->lock);
248 return NULL;
249 }
250
251 ctl = cache->caching_ctl;
252 atomic_inc(&ctl->count);
253 spin_unlock(&cache->lock);
254 return ctl;
255 }
256
257 static void put_caching_control(struct btrfs_caching_control *ctl)
258 {
259 if (atomic_dec_and_test(&ctl->count))
260 kfree(ctl);
261 }
262
263 /*
264 * this is only called by cache_block_group, since we could have freed extents
265 * we need to check the pinned_extents for any extents that can't be used yet
266 * since their free space will be released as soon as the transaction commits.
267 */
268 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
269 struct btrfs_fs_info *info, u64 start, u64 end)
270 {
271 u64 extent_start, extent_end, size, total_added = 0;
272 int ret;
273
274 while (start < end) {
275 ret = find_first_extent_bit(info->pinned_extents, start,
276 &extent_start, &extent_end,
277 EXTENT_DIRTY | EXTENT_UPTODATE);
278 if (ret)
279 break;
280
281 if (extent_start <= start) {
282 start = extent_end + 1;
283 } else if (extent_start > start && extent_start < end) {
284 size = extent_start - start;
285 total_added += size;
286 ret = btrfs_add_free_space(block_group, start,
287 size);
288 BUG_ON(ret);
289 start = extent_end + 1;
290 } else {
291 break;
292 }
293 }
294
295 if (start < end) {
296 size = end - start;
297 total_added += size;
298 ret = btrfs_add_free_space(block_group, start, size);
299 BUG_ON(ret);
300 }
301
302 return total_added;
303 }
304
305 static int caching_kthread(void *data)
306 {
307 struct btrfs_block_group_cache *block_group = data;
308 struct btrfs_fs_info *fs_info = block_group->fs_info;
309 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
310 struct btrfs_root *extent_root = fs_info->extent_root;
311 struct btrfs_path *path;
312 struct extent_buffer *leaf;
313 struct btrfs_key key;
314 u64 total_found = 0;
315 u64 last = 0;
316 u32 nritems;
317 int ret = 0;
318
319 path = btrfs_alloc_path();
320 if (!path)
321 return -ENOMEM;
322
323 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
324
325 /*
326 * We don't want to deadlock with somebody trying to allocate a new
327 * extent for the extent root while also trying to search the extent
328 * root to add free space. So we skip locking and search the commit
329 * root, since its read-only
330 */
331 path->skip_locking = 1;
332 path->search_commit_root = 1;
333 path->reada = 2;
334
335 key.objectid = last;
336 key.offset = 0;
337 key.type = BTRFS_EXTENT_ITEM_KEY;
338 again:
339 mutex_lock(&caching_ctl->mutex);
340 /* need to make sure the commit_root doesn't disappear */
341 down_read(&fs_info->extent_commit_sem);
342
343 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
344 if (ret < 0)
345 goto err;
346
347 leaf = path->nodes[0];
348 nritems = btrfs_header_nritems(leaf);
349
350 while (1) {
351 smp_mb();
352 if (fs_info->closing > 1) {
353 last = (u64)-1;
354 break;
355 }
356
357 if (path->slots[0] < nritems) {
358 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
359 } else {
360 ret = find_next_key(path, 0, &key);
361 if (ret)
362 break;
363
364 caching_ctl->progress = last;
365 btrfs_release_path(extent_root, path);
366 up_read(&fs_info->extent_commit_sem);
367 mutex_unlock(&caching_ctl->mutex);
368 if (btrfs_transaction_in_commit(fs_info))
369 schedule_timeout(1);
370 else
371 cond_resched();
372 goto again;
373 }
374
375 if (key.objectid < block_group->key.objectid) {
376 path->slots[0]++;
377 continue;
378 }
379
380 if (key.objectid >= block_group->key.objectid +
381 block_group->key.offset)
382 break;
383
384 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
385 total_found += add_new_free_space(block_group,
386 fs_info, last,
387 key.objectid);
388 last = key.objectid + key.offset;
389
390 if (total_found > (1024 * 1024 * 2)) {
391 total_found = 0;
392 wake_up(&caching_ctl->wait);
393 }
394 }
395 path->slots[0]++;
396 }
397 ret = 0;
398
399 total_found += add_new_free_space(block_group, fs_info, last,
400 block_group->key.objectid +
401 block_group->key.offset);
402 caching_ctl->progress = (u64)-1;
403
404 spin_lock(&block_group->lock);
405 block_group->caching_ctl = NULL;
406 block_group->cached = BTRFS_CACHE_FINISHED;
407 spin_unlock(&block_group->lock);
408
409 err:
410 btrfs_free_path(path);
411 up_read(&fs_info->extent_commit_sem);
412
413 free_excluded_extents(extent_root, block_group);
414
415 mutex_unlock(&caching_ctl->mutex);
416 wake_up(&caching_ctl->wait);
417
418 put_caching_control(caching_ctl);
419 atomic_dec(&block_group->space_info->caching_threads);
420 btrfs_put_block_group(block_group);
421
422 return 0;
423 }
424
425 static int cache_block_group(struct btrfs_block_group_cache *cache,
426 struct btrfs_trans_handle *trans,
427 struct btrfs_root *root,
428 int load_cache_only)
429 {
430 struct btrfs_fs_info *fs_info = cache->fs_info;
431 struct btrfs_caching_control *caching_ctl;
432 struct task_struct *tsk;
433 int ret = 0;
434
435 smp_mb();
436 if (cache->cached != BTRFS_CACHE_NO)
437 return 0;
438
439 /*
440 * We can't do the read from on-disk cache during a commit since we need
441 * to have the normal tree locking. Also if we are currently trying to
442 * allocate blocks for the tree root we can't do the fast caching since
443 * we likely hold important locks.
444 */
445 if (!trans->transaction->in_commit &&
446 (root && root != root->fs_info->tree_root)) {
447 spin_lock(&cache->lock);
448 if (cache->cached != BTRFS_CACHE_NO) {
449 spin_unlock(&cache->lock);
450 return 0;
451 }
452 cache->cached = BTRFS_CACHE_STARTED;
453 spin_unlock(&cache->lock);
454
455 ret = load_free_space_cache(fs_info, cache);
456
457 spin_lock(&cache->lock);
458 if (ret == 1) {
459 cache->cached = BTRFS_CACHE_FINISHED;
460 cache->last_byte_to_unpin = (u64)-1;
461 } else {
462 cache->cached = BTRFS_CACHE_NO;
463 }
464 spin_unlock(&cache->lock);
465 if (ret == 1) {
466 free_excluded_extents(fs_info->extent_root, cache);
467 return 0;
468 }
469 }
470
471 if (load_cache_only)
472 return 0;
473
474 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
475 BUG_ON(!caching_ctl);
476
477 INIT_LIST_HEAD(&caching_ctl->list);
478 mutex_init(&caching_ctl->mutex);
479 init_waitqueue_head(&caching_ctl->wait);
480 caching_ctl->block_group = cache;
481 caching_ctl->progress = cache->key.objectid;
482 /* one for caching kthread, one for caching block group list */
483 atomic_set(&caching_ctl->count, 2);
484
485 spin_lock(&cache->lock);
486 if (cache->cached != BTRFS_CACHE_NO) {
487 spin_unlock(&cache->lock);
488 kfree(caching_ctl);
489 return 0;
490 }
491 cache->caching_ctl = caching_ctl;
492 cache->cached = BTRFS_CACHE_STARTED;
493 spin_unlock(&cache->lock);
494
495 down_write(&fs_info->extent_commit_sem);
496 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
497 up_write(&fs_info->extent_commit_sem);
498
499 atomic_inc(&cache->space_info->caching_threads);
500 btrfs_get_block_group(cache);
501
502 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
503 cache->key.objectid);
504 if (IS_ERR(tsk)) {
505 ret = PTR_ERR(tsk);
506 printk(KERN_ERR "error running thread %d\n", ret);
507 BUG();
508 }
509
510 return ret;
511 }
512
513 /*
514 * return the block group that starts at or after bytenr
515 */
516 static struct btrfs_block_group_cache *
517 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
518 {
519 struct btrfs_block_group_cache *cache;
520
521 cache = block_group_cache_tree_search(info, bytenr, 0);
522
523 return cache;
524 }
525
526 /*
527 * return the block group that contains the given bytenr
528 */
529 struct btrfs_block_group_cache *btrfs_lookup_block_group(
530 struct btrfs_fs_info *info,
531 u64 bytenr)
532 {
533 struct btrfs_block_group_cache *cache;
534
535 cache = block_group_cache_tree_search(info, bytenr, 1);
536
537 return cache;
538 }
539
540 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
541 u64 flags)
542 {
543 struct list_head *head = &info->space_info;
544 struct btrfs_space_info *found;
545
546 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
547 BTRFS_BLOCK_GROUP_METADATA;
548
549 rcu_read_lock();
550 list_for_each_entry_rcu(found, head, list) {
551 if (found->flags & flags) {
552 rcu_read_unlock();
553 return found;
554 }
555 }
556 rcu_read_unlock();
557 return NULL;
558 }
559
560 /*
561 * after adding space to the filesystem, we need to clear the full flags
562 * on all the space infos.
563 */
564 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
565 {
566 struct list_head *head = &info->space_info;
567 struct btrfs_space_info *found;
568
569 rcu_read_lock();
570 list_for_each_entry_rcu(found, head, list)
571 found->full = 0;
572 rcu_read_unlock();
573 }
574
575 static u64 div_factor(u64 num, int factor)
576 {
577 if (factor == 10)
578 return num;
579 num *= factor;
580 do_div(num, 10);
581 return num;
582 }
583
584 static u64 div_factor_fine(u64 num, int factor)
585 {
586 if (factor == 100)
587 return num;
588 num *= factor;
589 do_div(num, 100);
590 return num;
591 }
592
593 u64 btrfs_find_block_group(struct btrfs_root *root,
594 u64 search_start, u64 search_hint, int owner)
595 {
596 struct btrfs_block_group_cache *cache;
597 u64 used;
598 u64 last = max(search_hint, search_start);
599 u64 group_start = 0;
600 int full_search = 0;
601 int factor = 9;
602 int wrapped = 0;
603 again:
604 while (1) {
605 cache = btrfs_lookup_first_block_group(root->fs_info, last);
606 if (!cache)
607 break;
608
609 spin_lock(&cache->lock);
610 last = cache->key.objectid + cache->key.offset;
611 used = btrfs_block_group_used(&cache->item);
612
613 if ((full_search || !cache->ro) &&
614 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
615 if (used + cache->pinned + cache->reserved <
616 div_factor(cache->key.offset, factor)) {
617 group_start = cache->key.objectid;
618 spin_unlock(&cache->lock);
619 btrfs_put_block_group(cache);
620 goto found;
621 }
622 }
623 spin_unlock(&cache->lock);
624 btrfs_put_block_group(cache);
625 cond_resched();
626 }
627 if (!wrapped) {
628 last = search_start;
629 wrapped = 1;
630 goto again;
631 }
632 if (!full_search && factor < 10) {
633 last = search_start;
634 full_search = 1;
635 factor = 10;
636 goto again;
637 }
638 found:
639 return group_start;
640 }
641
642 /* simple helper to search for an existing extent at a given offset */
643 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
644 {
645 int ret;
646 struct btrfs_key key;
647 struct btrfs_path *path;
648
649 path = btrfs_alloc_path();
650 BUG_ON(!path);
651 key.objectid = start;
652 key.offset = len;
653 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
654 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
655 0, 0);
656 btrfs_free_path(path);
657 return ret;
658 }
659
660 /*
661 * helper function to lookup reference count and flags of extent.
662 *
663 * the head node for delayed ref is used to store the sum of all the
664 * reference count modifications queued up in the rbtree. the head
665 * node may also store the extent flags to set. This way you can check
666 * to see what the reference count and extent flags would be if all of
667 * the delayed refs are not processed.
668 */
669 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
670 struct btrfs_root *root, u64 bytenr,
671 u64 num_bytes, u64 *refs, u64 *flags)
672 {
673 struct btrfs_delayed_ref_head *head;
674 struct btrfs_delayed_ref_root *delayed_refs;
675 struct btrfs_path *path;
676 struct btrfs_extent_item *ei;
677 struct extent_buffer *leaf;
678 struct btrfs_key key;
679 u32 item_size;
680 u64 num_refs;
681 u64 extent_flags;
682 int ret;
683
684 path = btrfs_alloc_path();
685 if (!path)
686 return -ENOMEM;
687
688 key.objectid = bytenr;
689 key.type = BTRFS_EXTENT_ITEM_KEY;
690 key.offset = num_bytes;
691 if (!trans) {
692 path->skip_locking = 1;
693 path->search_commit_root = 1;
694 }
695 again:
696 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
697 &key, path, 0, 0);
698 if (ret < 0)
699 goto out_free;
700
701 if (ret == 0) {
702 leaf = path->nodes[0];
703 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
704 if (item_size >= sizeof(*ei)) {
705 ei = btrfs_item_ptr(leaf, path->slots[0],
706 struct btrfs_extent_item);
707 num_refs = btrfs_extent_refs(leaf, ei);
708 extent_flags = btrfs_extent_flags(leaf, ei);
709 } else {
710 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
711 struct btrfs_extent_item_v0 *ei0;
712 BUG_ON(item_size != sizeof(*ei0));
713 ei0 = btrfs_item_ptr(leaf, path->slots[0],
714 struct btrfs_extent_item_v0);
715 num_refs = btrfs_extent_refs_v0(leaf, ei0);
716 /* FIXME: this isn't correct for data */
717 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
718 #else
719 BUG();
720 #endif
721 }
722 BUG_ON(num_refs == 0);
723 } else {
724 num_refs = 0;
725 extent_flags = 0;
726 ret = 0;
727 }
728
729 if (!trans)
730 goto out;
731
732 delayed_refs = &trans->transaction->delayed_refs;
733 spin_lock(&delayed_refs->lock);
734 head = btrfs_find_delayed_ref_head(trans, bytenr);
735 if (head) {
736 if (!mutex_trylock(&head->mutex)) {
737 atomic_inc(&head->node.refs);
738 spin_unlock(&delayed_refs->lock);
739
740 btrfs_release_path(root->fs_info->extent_root, path);
741
742 mutex_lock(&head->mutex);
743 mutex_unlock(&head->mutex);
744 btrfs_put_delayed_ref(&head->node);
745 goto again;
746 }
747 if (head->extent_op && head->extent_op->update_flags)
748 extent_flags |= head->extent_op->flags_to_set;
749 else
750 BUG_ON(num_refs == 0);
751
752 num_refs += head->node.ref_mod;
753 mutex_unlock(&head->mutex);
754 }
755 spin_unlock(&delayed_refs->lock);
756 out:
757 WARN_ON(num_refs == 0);
758 if (refs)
759 *refs = num_refs;
760 if (flags)
761 *flags = extent_flags;
762 out_free:
763 btrfs_free_path(path);
764 return ret;
765 }
766
767 /*
768 * Back reference rules. Back refs have three main goals:
769 *
770 * 1) differentiate between all holders of references to an extent so that
771 * when a reference is dropped we can make sure it was a valid reference
772 * before freeing the extent.
773 *
774 * 2) Provide enough information to quickly find the holders of an extent
775 * if we notice a given block is corrupted or bad.
776 *
777 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
778 * maintenance. This is actually the same as #2, but with a slightly
779 * different use case.
780 *
781 * There are two kinds of back refs. The implicit back refs is optimized
782 * for pointers in non-shared tree blocks. For a given pointer in a block,
783 * back refs of this kind provide information about the block's owner tree
784 * and the pointer's key. These information allow us to find the block by
785 * b-tree searching. The full back refs is for pointers in tree blocks not
786 * referenced by their owner trees. The location of tree block is recorded
787 * in the back refs. Actually the full back refs is generic, and can be
788 * used in all cases the implicit back refs is used. The major shortcoming
789 * of the full back refs is its overhead. Every time a tree block gets
790 * COWed, we have to update back refs entry for all pointers in it.
791 *
792 * For a newly allocated tree block, we use implicit back refs for
793 * pointers in it. This means most tree related operations only involve
794 * implicit back refs. For a tree block created in old transaction, the
795 * only way to drop a reference to it is COW it. So we can detect the
796 * event that tree block loses its owner tree's reference and do the
797 * back refs conversion.
798 *
799 * When a tree block is COW'd through a tree, there are four cases:
800 *
801 * The reference count of the block is one and the tree is the block's
802 * owner tree. Nothing to do in this case.
803 *
804 * The reference count of the block is one and the tree is not the
805 * block's owner tree. In this case, full back refs is used for pointers
806 * in the block. Remove these full back refs, add implicit back refs for
807 * every pointers in the new block.
808 *
809 * The reference count of the block is greater than one and the tree is
810 * the block's owner tree. In this case, implicit back refs is used for
811 * pointers in the block. Add full back refs for every pointers in the
812 * block, increase lower level extents' reference counts. The original
813 * implicit back refs are entailed to the new block.
814 *
815 * The reference count of the block is greater than one and the tree is
816 * not the block's owner tree. Add implicit back refs for every pointer in
817 * the new block, increase lower level extents' reference count.
818 *
819 * Back Reference Key composing:
820 *
821 * The key objectid corresponds to the first byte in the extent,
822 * The key type is used to differentiate between types of back refs.
823 * There are different meanings of the key offset for different types
824 * of back refs.
825 *
826 * File extents can be referenced by:
827 *
828 * - multiple snapshots, subvolumes, or different generations in one subvol
829 * - different files inside a single subvolume
830 * - different offsets inside a file (bookend extents in file.c)
831 *
832 * The extent ref structure for the implicit back refs has fields for:
833 *
834 * - Objectid of the subvolume root
835 * - objectid of the file holding the reference
836 * - original offset in the file
837 * - how many bookend extents
838 *
839 * The key offset for the implicit back refs is hash of the first
840 * three fields.
841 *
842 * The extent ref structure for the full back refs has field for:
843 *
844 * - number of pointers in the tree leaf
845 *
846 * The key offset for the implicit back refs is the first byte of
847 * the tree leaf
848 *
849 * When a file extent is allocated, The implicit back refs is used.
850 * the fields are filled in:
851 *
852 * (root_key.objectid, inode objectid, offset in file, 1)
853 *
854 * When a file extent is removed file truncation, we find the
855 * corresponding implicit back refs and check the following fields:
856 *
857 * (btrfs_header_owner(leaf), inode objectid, offset in file)
858 *
859 * Btree extents can be referenced by:
860 *
861 * - Different subvolumes
862 *
863 * Both the implicit back refs and the full back refs for tree blocks
864 * only consist of key. The key offset for the implicit back refs is
865 * objectid of block's owner tree. The key offset for the full back refs
866 * is the first byte of parent block.
867 *
868 * When implicit back refs is used, information about the lowest key and
869 * level of the tree block are required. These information are stored in
870 * tree block info structure.
871 */
872
873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
875 struct btrfs_root *root,
876 struct btrfs_path *path,
877 u64 owner, u32 extra_size)
878 {
879 struct btrfs_extent_item *item;
880 struct btrfs_extent_item_v0 *ei0;
881 struct btrfs_extent_ref_v0 *ref0;
882 struct btrfs_tree_block_info *bi;
883 struct extent_buffer *leaf;
884 struct btrfs_key key;
885 struct btrfs_key found_key;
886 u32 new_size = sizeof(*item);
887 u64 refs;
888 int ret;
889
890 leaf = path->nodes[0];
891 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
892
893 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
894 ei0 = btrfs_item_ptr(leaf, path->slots[0],
895 struct btrfs_extent_item_v0);
896 refs = btrfs_extent_refs_v0(leaf, ei0);
897
898 if (owner == (u64)-1) {
899 while (1) {
900 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
901 ret = btrfs_next_leaf(root, path);
902 if (ret < 0)
903 return ret;
904 BUG_ON(ret > 0);
905 leaf = path->nodes[0];
906 }
907 btrfs_item_key_to_cpu(leaf, &found_key,
908 path->slots[0]);
909 BUG_ON(key.objectid != found_key.objectid);
910 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
911 path->slots[0]++;
912 continue;
913 }
914 ref0 = btrfs_item_ptr(leaf, path->slots[0],
915 struct btrfs_extent_ref_v0);
916 owner = btrfs_ref_objectid_v0(leaf, ref0);
917 break;
918 }
919 }
920 btrfs_release_path(root, path);
921
922 if (owner < BTRFS_FIRST_FREE_OBJECTID)
923 new_size += sizeof(*bi);
924
925 new_size -= sizeof(*ei0);
926 ret = btrfs_search_slot(trans, root, &key, path,
927 new_size + extra_size, 1);
928 if (ret < 0)
929 return ret;
930 BUG_ON(ret);
931
932 ret = btrfs_extend_item(trans, root, path, new_size);
933 BUG_ON(ret);
934
935 leaf = path->nodes[0];
936 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
937 btrfs_set_extent_refs(leaf, item, refs);
938 /* FIXME: get real generation */
939 btrfs_set_extent_generation(leaf, item, 0);
940 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
941 btrfs_set_extent_flags(leaf, item,
942 BTRFS_EXTENT_FLAG_TREE_BLOCK |
943 BTRFS_BLOCK_FLAG_FULL_BACKREF);
944 bi = (struct btrfs_tree_block_info *)(item + 1);
945 /* FIXME: get first key of the block */
946 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
947 btrfs_set_tree_block_level(leaf, bi, (int)owner);
948 } else {
949 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
950 }
951 btrfs_mark_buffer_dirty(leaf);
952 return 0;
953 }
954 #endif
955
956 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
957 {
958 u32 high_crc = ~(u32)0;
959 u32 low_crc = ~(u32)0;
960 __le64 lenum;
961
962 lenum = cpu_to_le64(root_objectid);
963 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
964 lenum = cpu_to_le64(owner);
965 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
966 lenum = cpu_to_le64(offset);
967 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
968
969 return ((u64)high_crc << 31) ^ (u64)low_crc;
970 }
971
972 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
973 struct btrfs_extent_data_ref *ref)
974 {
975 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
976 btrfs_extent_data_ref_objectid(leaf, ref),
977 btrfs_extent_data_ref_offset(leaf, ref));
978 }
979
980 static int match_extent_data_ref(struct extent_buffer *leaf,
981 struct btrfs_extent_data_ref *ref,
982 u64 root_objectid, u64 owner, u64 offset)
983 {
984 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
985 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
986 btrfs_extent_data_ref_offset(leaf, ref) != offset)
987 return 0;
988 return 1;
989 }
990
991 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
992 struct btrfs_root *root,
993 struct btrfs_path *path,
994 u64 bytenr, u64 parent,
995 u64 root_objectid,
996 u64 owner, u64 offset)
997 {
998 struct btrfs_key key;
999 struct btrfs_extent_data_ref *ref;
1000 struct extent_buffer *leaf;
1001 u32 nritems;
1002 int ret;
1003 int recow;
1004 int err = -ENOENT;
1005
1006 key.objectid = bytenr;
1007 if (parent) {
1008 key.type = BTRFS_SHARED_DATA_REF_KEY;
1009 key.offset = parent;
1010 } else {
1011 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1012 key.offset = hash_extent_data_ref(root_objectid,
1013 owner, offset);
1014 }
1015 again:
1016 recow = 0;
1017 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1018 if (ret < 0) {
1019 err = ret;
1020 goto fail;
1021 }
1022
1023 if (parent) {
1024 if (!ret)
1025 return 0;
1026 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1027 key.type = BTRFS_EXTENT_REF_V0_KEY;
1028 btrfs_release_path(root, path);
1029 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1030 if (ret < 0) {
1031 err = ret;
1032 goto fail;
1033 }
1034 if (!ret)
1035 return 0;
1036 #endif
1037 goto fail;
1038 }
1039
1040 leaf = path->nodes[0];
1041 nritems = btrfs_header_nritems(leaf);
1042 while (1) {
1043 if (path->slots[0] >= nritems) {
1044 ret = btrfs_next_leaf(root, path);
1045 if (ret < 0)
1046 err = ret;
1047 if (ret)
1048 goto fail;
1049
1050 leaf = path->nodes[0];
1051 nritems = btrfs_header_nritems(leaf);
1052 recow = 1;
1053 }
1054
1055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1056 if (key.objectid != bytenr ||
1057 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1058 goto fail;
1059
1060 ref = btrfs_item_ptr(leaf, path->slots[0],
1061 struct btrfs_extent_data_ref);
1062
1063 if (match_extent_data_ref(leaf, ref, root_objectid,
1064 owner, offset)) {
1065 if (recow) {
1066 btrfs_release_path(root, path);
1067 goto again;
1068 }
1069 err = 0;
1070 break;
1071 }
1072 path->slots[0]++;
1073 }
1074 fail:
1075 return err;
1076 }
1077
1078 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1079 struct btrfs_root *root,
1080 struct btrfs_path *path,
1081 u64 bytenr, u64 parent,
1082 u64 root_objectid, u64 owner,
1083 u64 offset, int refs_to_add)
1084 {
1085 struct btrfs_key key;
1086 struct extent_buffer *leaf;
1087 u32 size;
1088 u32 num_refs;
1089 int ret;
1090
1091 key.objectid = bytenr;
1092 if (parent) {
1093 key.type = BTRFS_SHARED_DATA_REF_KEY;
1094 key.offset = parent;
1095 size = sizeof(struct btrfs_shared_data_ref);
1096 } else {
1097 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1098 key.offset = hash_extent_data_ref(root_objectid,
1099 owner, offset);
1100 size = sizeof(struct btrfs_extent_data_ref);
1101 }
1102
1103 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1104 if (ret && ret != -EEXIST)
1105 goto fail;
1106
1107 leaf = path->nodes[0];
1108 if (parent) {
1109 struct btrfs_shared_data_ref *ref;
1110 ref = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_shared_data_ref);
1112 if (ret == 0) {
1113 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1114 } else {
1115 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1116 num_refs += refs_to_add;
1117 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1118 }
1119 } else {
1120 struct btrfs_extent_data_ref *ref;
1121 while (ret == -EEXIST) {
1122 ref = btrfs_item_ptr(leaf, path->slots[0],
1123 struct btrfs_extent_data_ref);
1124 if (match_extent_data_ref(leaf, ref, root_objectid,
1125 owner, offset))
1126 break;
1127 btrfs_release_path(root, path);
1128 key.offset++;
1129 ret = btrfs_insert_empty_item(trans, root, path, &key,
1130 size);
1131 if (ret && ret != -EEXIST)
1132 goto fail;
1133
1134 leaf = path->nodes[0];
1135 }
1136 ref = btrfs_item_ptr(leaf, path->slots[0],
1137 struct btrfs_extent_data_ref);
1138 if (ret == 0) {
1139 btrfs_set_extent_data_ref_root(leaf, ref,
1140 root_objectid);
1141 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1142 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1143 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1144 } else {
1145 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1146 num_refs += refs_to_add;
1147 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1148 }
1149 }
1150 btrfs_mark_buffer_dirty(leaf);
1151 ret = 0;
1152 fail:
1153 btrfs_release_path(root, path);
1154 return ret;
1155 }
1156
1157 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root,
1159 struct btrfs_path *path,
1160 int refs_to_drop)
1161 {
1162 struct btrfs_key key;
1163 struct btrfs_extent_data_ref *ref1 = NULL;
1164 struct btrfs_shared_data_ref *ref2 = NULL;
1165 struct extent_buffer *leaf;
1166 u32 num_refs = 0;
1167 int ret = 0;
1168
1169 leaf = path->nodes[0];
1170 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1171
1172 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1173 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_extent_data_ref);
1175 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1176 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1177 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1178 struct btrfs_shared_data_ref);
1179 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1180 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1181 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1182 struct btrfs_extent_ref_v0 *ref0;
1183 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1184 struct btrfs_extent_ref_v0);
1185 num_refs = btrfs_ref_count_v0(leaf, ref0);
1186 #endif
1187 } else {
1188 BUG();
1189 }
1190
1191 BUG_ON(num_refs < refs_to_drop);
1192 num_refs -= refs_to_drop;
1193
1194 if (num_refs == 0) {
1195 ret = btrfs_del_item(trans, root, path);
1196 } else {
1197 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1198 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1199 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1200 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 else {
1203 struct btrfs_extent_ref_v0 *ref0;
1204 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1205 struct btrfs_extent_ref_v0);
1206 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1207 }
1208 #endif
1209 btrfs_mark_buffer_dirty(leaf);
1210 }
1211 return ret;
1212 }
1213
1214 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1215 struct btrfs_path *path,
1216 struct btrfs_extent_inline_ref *iref)
1217 {
1218 struct btrfs_key key;
1219 struct extent_buffer *leaf;
1220 struct btrfs_extent_data_ref *ref1;
1221 struct btrfs_shared_data_ref *ref2;
1222 u32 num_refs = 0;
1223
1224 leaf = path->nodes[0];
1225 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1226 if (iref) {
1227 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1228 BTRFS_EXTENT_DATA_REF_KEY) {
1229 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1230 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1231 } else {
1232 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1233 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1234 }
1235 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1236 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_extent_data_ref);
1238 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1239 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1240 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_shared_data_ref);
1242 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1243 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1244 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1245 struct btrfs_extent_ref_v0 *ref0;
1246 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1247 struct btrfs_extent_ref_v0);
1248 num_refs = btrfs_ref_count_v0(leaf, ref0);
1249 #endif
1250 } else {
1251 WARN_ON(1);
1252 }
1253 return num_refs;
1254 }
1255
1256 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1257 struct btrfs_root *root,
1258 struct btrfs_path *path,
1259 u64 bytenr, u64 parent,
1260 u64 root_objectid)
1261 {
1262 struct btrfs_key key;
1263 int ret;
1264
1265 key.objectid = bytenr;
1266 if (parent) {
1267 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1268 key.offset = parent;
1269 } else {
1270 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1271 key.offset = root_objectid;
1272 }
1273
1274 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1275 if (ret > 0)
1276 ret = -ENOENT;
1277 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1278 if (ret == -ENOENT && parent) {
1279 btrfs_release_path(root, path);
1280 key.type = BTRFS_EXTENT_REF_V0_KEY;
1281 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1282 if (ret > 0)
1283 ret = -ENOENT;
1284 }
1285 #endif
1286 return ret;
1287 }
1288
1289 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1290 struct btrfs_root *root,
1291 struct btrfs_path *path,
1292 u64 bytenr, u64 parent,
1293 u64 root_objectid)
1294 {
1295 struct btrfs_key key;
1296 int ret;
1297
1298 key.objectid = bytenr;
1299 if (parent) {
1300 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1301 key.offset = parent;
1302 } else {
1303 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1304 key.offset = root_objectid;
1305 }
1306
1307 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1308 btrfs_release_path(root, path);
1309 return ret;
1310 }
1311
1312 static inline int extent_ref_type(u64 parent, u64 owner)
1313 {
1314 int type;
1315 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1316 if (parent > 0)
1317 type = BTRFS_SHARED_BLOCK_REF_KEY;
1318 else
1319 type = BTRFS_TREE_BLOCK_REF_KEY;
1320 } else {
1321 if (parent > 0)
1322 type = BTRFS_SHARED_DATA_REF_KEY;
1323 else
1324 type = BTRFS_EXTENT_DATA_REF_KEY;
1325 }
1326 return type;
1327 }
1328
1329 static int find_next_key(struct btrfs_path *path, int level,
1330 struct btrfs_key *key)
1331
1332 {
1333 for (; level < BTRFS_MAX_LEVEL; level++) {
1334 if (!path->nodes[level])
1335 break;
1336 if (path->slots[level] + 1 >=
1337 btrfs_header_nritems(path->nodes[level]))
1338 continue;
1339 if (level == 0)
1340 btrfs_item_key_to_cpu(path->nodes[level], key,
1341 path->slots[level] + 1);
1342 else
1343 btrfs_node_key_to_cpu(path->nodes[level], key,
1344 path->slots[level] + 1);
1345 return 0;
1346 }
1347 return 1;
1348 }
1349
1350 /*
1351 * look for inline back ref. if back ref is found, *ref_ret is set
1352 * to the address of inline back ref, and 0 is returned.
1353 *
1354 * if back ref isn't found, *ref_ret is set to the address where it
1355 * should be inserted, and -ENOENT is returned.
1356 *
1357 * if insert is true and there are too many inline back refs, the path
1358 * points to the extent item, and -EAGAIN is returned.
1359 *
1360 * NOTE: inline back refs are ordered in the same way that back ref
1361 * items in the tree are ordered.
1362 */
1363 static noinline_for_stack
1364 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1365 struct btrfs_root *root,
1366 struct btrfs_path *path,
1367 struct btrfs_extent_inline_ref **ref_ret,
1368 u64 bytenr, u64 num_bytes,
1369 u64 parent, u64 root_objectid,
1370 u64 owner, u64 offset, int insert)
1371 {
1372 struct btrfs_key key;
1373 struct extent_buffer *leaf;
1374 struct btrfs_extent_item *ei;
1375 struct btrfs_extent_inline_ref *iref;
1376 u64 flags;
1377 u64 item_size;
1378 unsigned long ptr;
1379 unsigned long end;
1380 int extra_size;
1381 int type;
1382 int want;
1383 int ret;
1384 int err = 0;
1385
1386 key.objectid = bytenr;
1387 key.type = BTRFS_EXTENT_ITEM_KEY;
1388 key.offset = num_bytes;
1389
1390 want = extent_ref_type(parent, owner);
1391 if (insert) {
1392 extra_size = btrfs_extent_inline_ref_size(want);
1393 path->keep_locks = 1;
1394 } else
1395 extra_size = -1;
1396 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1397 if (ret < 0) {
1398 err = ret;
1399 goto out;
1400 }
1401 BUG_ON(ret);
1402
1403 leaf = path->nodes[0];
1404 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1406 if (item_size < sizeof(*ei)) {
1407 if (!insert) {
1408 err = -ENOENT;
1409 goto out;
1410 }
1411 ret = convert_extent_item_v0(trans, root, path, owner,
1412 extra_size);
1413 if (ret < 0) {
1414 err = ret;
1415 goto out;
1416 }
1417 leaf = path->nodes[0];
1418 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1419 }
1420 #endif
1421 BUG_ON(item_size < sizeof(*ei));
1422
1423 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1424 flags = btrfs_extent_flags(leaf, ei);
1425
1426 ptr = (unsigned long)(ei + 1);
1427 end = (unsigned long)ei + item_size;
1428
1429 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1430 ptr += sizeof(struct btrfs_tree_block_info);
1431 BUG_ON(ptr > end);
1432 } else {
1433 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1434 }
1435
1436 err = -ENOENT;
1437 while (1) {
1438 if (ptr >= end) {
1439 WARN_ON(ptr > end);
1440 break;
1441 }
1442 iref = (struct btrfs_extent_inline_ref *)ptr;
1443 type = btrfs_extent_inline_ref_type(leaf, iref);
1444 if (want < type)
1445 break;
1446 if (want > type) {
1447 ptr += btrfs_extent_inline_ref_size(type);
1448 continue;
1449 }
1450
1451 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1452 struct btrfs_extent_data_ref *dref;
1453 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1454 if (match_extent_data_ref(leaf, dref, root_objectid,
1455 owner, offset)) {
1456 err = 0;
1457 break;
1458 }
1459 if (hash_extent_data_ref_item(leaf, dref) <
1460 hash_extent_data_ref(root_objectid, owner, offset))
1461 break;
1462 } else {
1463 u64 ref_offset;
1464 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1465 if (parent > 0) {
1466 if (parent == ref_offset) {
1467 err = 0;
1468 break;
1469 }
1470 if (ref_offset < parent)
1471 break;
1472 } else {
1473 if (root_objectid == ref_offset) {
1474 err = 0;
1475 break;
1476 }
1477 if (ref_offset < root_objectid)
1478 break;
1479 }
1480 }
1481 ptr += btrfs_extent_inline_ref_size(type);
1482 }
1483 if (err == -ENOENT && insert) {
1484 if (item_size + extra_size >=
1485 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1486 err = -EAGAIN;
1487 goto out;
1488 }
1489 /*
1490 * To add new inline back ref, we have to make sure
1491 * there is no corresponding back ref item.
1492 * For simplicity, we just do not add new inline back
1493 * ref if there is any kind of item for this block
1494 */
1495 if (find_next_key(path, 0, &key) == 0 &&
1496 key.objectid == bytenr &&
1497 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1498 err = -EAGAIN;
1499 goto out;
1500 }
1501 }
1502 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1503 out:
1504 if (insert) {
1505 path->keep_locks = 0;
1506 btrfs_unlock_up_safe(path, 1);
1507 }
1508 return err;
1509 }
1510
1511 /*
1512 * helper to add new inline back ref
1513 */
1514 static noinline_for_stack
1515 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1516 struct btrfs_root *root,
1517 struct btrfs_path *path,
1518 struct btrfs_extent_inline_ref *iref,
1519 u64 parent, u64 root_objectid,
1520 u64 owner, u64 offset, int refs_to_add,
1521 struct btrfs_delayed_extent_op *extent_op)
1522 {
1523 struct extent_buffer *leaf;
1524 struct btrfs_extent_item *ei;
1525 unsigned long ptr;
1526 unsigned long end;
1527 unsigned long item_offset;
1528 u64 refs;
1529 int size;
1530 int type;
1531 int ret;
1532
1533 leaf = path->nodes[0];
1534 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1535 item_offset = (unsigned long)iref - (unsigned long)ei;
1536
1537 type = extent_ref_type(parent, owner);
1538 size = btrfs_extent_inline_ref_size(type);
1539
1540 ret = btrfs_extend_item(trans, root, path, size);
1541 BUG_ON(ret);
1542
1543 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1544 refs = btrfs_extent_refs(leaf, ei);
1545 refs += refs_to_add;
1546 btrfs_set_extent_refs(leaf, ei, refs);
1547 if (extent_op)
1548 __run_delayed_extent_op(extent_op, leaf, ei);
1549
1550 ptr = (unsigned long)ei + item_offset;
1551 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1552 if (ptr < end - size)
1553 memmove_extent_buffer(leaf, ptr + size, ptr,
1554 end - size - ptr);
1555
1556 iref = (struct btrfs_extent_inline_ref *)ptr;
1557 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1558 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1559 struct btrfs_extent_data_ref *dref;
1560 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1561 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1562 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1563 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1564 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1565 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1566 struct btrfs_shared_data_ref *sref;
1567 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1568 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1569 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1570 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1571 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1572 } else {
1573 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1574 }
1575 btrfs_mark_buffer_dirty(leaf);
1576 return 0;
1577 }
1578
1579 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1580 struct btrfs_root *root,
1581 struct btrfs_path *path,
1582 struct btrfs_extent_inline_ref **ref_ret,
1583 u64 bytenr, u64 num_bytes, u64 parent,
1584 u64 root_objectid, u64 owner, u64 offset)
1585 {
1586 int ret;
1587
1588 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1589 bytenr, num_bytes, parent,
1590 root_objectid, owner, offset, 0);
1591 if (ret != -ENOENT)
1592 return ret;
1593
1594 btrfs_release_path(root, path);
1595 *ref_ret = NULL;
1596
1597 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1598 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1599 root_objectid);
1600 } else {
1601 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1602 root_objectid, owner, offset);
1603 }
1604 return ret;
1605 }
1606
1607 /*
1608 * helper to update/remove inline back ref
1609 */
1610 static noinline_for_stack
1611 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1612 struct btrfs_root *root,
1613 struct btrfs_path *path,
1614 struct btrfs_extent_inline_ref *iref,
1615 int refs_to_mod,
1616 struct btrfs_delayed_extent_op *extent_op)
1617 {
1618 struct extent_buffer *leaf;
1619 struct btrfs_extent_item *ei;
1620 struct btrfs_extent_data_ref *dref = NULL;
1621 struct btrfs_shared_data_ref *sref = NULL;
1622 unsigned long ptr;
1623 unsigned long end;
1624 u32 item_size;
1625 int size;
1626 int type;
1627 int ret;
1628 u64 refs;
1629
1630 leaf = path->nodes[0];
1631 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1632 refs = btrfs_extent_refs(leaf, ei);
1633 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1634 refs += refs_to_mod;
1635 btrfs_set_extent_refs(leaf, ei, refs);
1636 if (extent_op)
1637 __run_delayed_extent_op(extent_op, leaf, ei);
1638
1639 type = btrfs_extent_inline_ref_type(leaf, iref);
1640
1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1642 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1643 refs = btrfs_extent_data_ref_count(leaf, dref);
1644 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1645 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1646 refs = btrfs_shared_data_ref_count(leaf, sref);
1647 } else {
1648 refs = 1;
1649 BUG_ON(refs_to_mod != -1);
1650 }
1651
1652 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1653 refs += refs_to_mod;
1654
1655 if (refs > 0) {
1656 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1657 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1658 else
1659 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1660 } else {
1661 size = btrfs_extent_inline_ref_size(type);
1662 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1663 ptr = (unsigned long)iref;
1664 end = (unsigned long)ei + item_size;
1665 if (ptr + size < end)
1666 memmove_extent_buffer(leaf, ptr, ptr + size,
1667 end - ptr - size);
1668 item_size -= size;
1669 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1670 BUG_ON(ret);
1671 }
1672 btrfs_mark_buffer_dirty(leaf);
1673 return 0;
1674 }
1675
1676 static noinline_for_stack
1677 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1678 struct btrfs_root *root,
1679 struct btrfs_path *path,
1680 u64 bytenr, u64 num_bytes, u64 parent,
1681 u64 root_objectid, u64 owner,
1682 u64 offset, int refs_to_add,
1683 struct btrfs_delayed_extent_op *extent_op)
1684 {
1685 struct btrfs_extent_inline_ref *iref;
1686 int ret;
1687
1688 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1689 bytenr, num_bytes, parent,
1690 root_objectid, owner, offset, 1);
1691 if (ret == 0) {
1692 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1693 ret = update_inline_extent_backref(trans, root, path, iref,
1694 refs_to_add, extent_op);
1695 } else if (ret == -ENOENT) {
1696 ret = setup_inline_extent_backref(trans, root, path, iref,
1697 parent, root_objectid,
1698 owner, offset, refs_to_add,
1699 extent_op);
1700 }
1701 return ret;
1702 }
1703
1704 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1705 struct btrfs_root *root,
1706 struct btrfs_path *path,
1707 u64 bytenr, u64 parent, u64 root_objectid,
1708 u64 owner, u64 offset, int refs_to_add)
1709 {
1710 int ret;
1711 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1712 BUG_ON(refs_to_add != 1);
1713 ret = insert_tree_block_ref(trans, root, path, bytenr,
1714 parent, root_objectid);
1715 } else {
1716 ret = insert_extent_data_ref(trans, root, path, bytenr,
1717 parent, root_objectid,
1718 owner, offset, refs_to_add);
1719 }
1720 return ret;
1721 }
1722
1723 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref *iref,
1727 int refs_to_drop, int is_data)
1728 {
1729 int ret;
1730
1731 BUG_ON(!is_data && refs_to_drop != 1);
1732 if (iref) {
1733 ret = update_inline_extent_backref(trans, root, path, iref,
1734 -refs_to_drop, NULL);
1735 } else if (is_data) {
1736 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1737 } else {
1738 ret = btrfs_del_item(trans, root, path);
1739 }
1740 return ret;
1741 }
1742
1743 static void btrfs_issue_discard(struct block_device *bdev,
1744 u64 start, u64 len)
1745 {
1746 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0);
1747 }
1748
1749 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1750 u64 num_bytes)
1751 {
1752 int ret;
1753 u64 map_length = num_bytes;
1754 struct btrfs_multi_bio *multi = NULL;
1755
1756 if (!btrfs_test_opt(root, DISCARD))
1757 return 0;
1758
1759 /* Tell the block device(s) that the sectors can be discarded */
1760 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1761 bytenr, &map_length, &multi, 0);
1762 if (!ret) {
1763 struct btrfs_bio_stripe *stripe = multi->stripes;
1764 int i;
1765
1766 if (map_length > num_bytes)
1767 map_length = num_bytes;
1768
1769 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1770 btrfs_issue_discard(stripe->dev->bdev,
1771 stripe->physical,
1772 map_length);
1773 }
1774 kfree(multi);
1775 }
1776
1777 return ret;
1778 }
1779
1780 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1781 struct btrfs_root *root,
1782 u64 bytenr, u64 num_bytes, u64 parent,
1783 u64 root_objectid, u64 owner, u64 offset)
1784 {
1785 int ret;
1786 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1787 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1788
1789 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1790 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1791 parent, root_objectid, (int)owner,
1792 BTRFS_ADD_DELAYED_REF, NULL);
1793 } else {
1794 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1795 parent, root_objectid, owner, offset,
1796 BTRFS_ADD_DELAYED_REF, NULL);
1797 }
1798 return ret;
1799 }
1800
1801 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1802 struct btrfs_root *root,
1803 u64 bytenr, u64 num_bytes,
1804 u64 parent, u64 root_objectid,
1805 u64 owner, u64 offset, int refs_to_add,
1806 struct btrfs_delayed_extent_op *extent_op)
1807 {
1808 struct btrfs_path *path;
1809 struct extent_buffer *leaf;
1810 struct btrfs_extent_item *item;
1811 u64 refs;
1812 int ret;
1813 int err = 0;
1814
1815 path = btrfs_alloc_path();
1816 if (!path)
1817 return -ENOMEM;
1818
1819 path->reada = 1;
1820 path->leave_spinning = 1;
1821 /* this will setup the path even if it fails to insert the back ref */
1822 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1823 path, bytenr, num_bytes, parent,
1824 root_objectid, owner, offset,
1825 refs_to_add, extent_op);
1826 if (ret == 0)
1827 goto out;
1828
1829 if (ret != -EAGAIN) {
1830 err = ret;
1831 goto out;
1832 }
1833
1834 leaf = path->nodes[0];
1835 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1836 refs = btrfs_extent_refs(leaf, item);
1837 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1838 if (extent_op)
1839 __run_delayed_extent_op(extent_op, leaf, item);
1840
1841 btrfs_mark_buffer_dirty(leaf);
1842 btrfs_release_path(root->fs_info->extent_root, path);
1843
1844 path->reada = 1;
1845 path->leave_spinning = 1;
1846
1847 /* now insert the actual backref */
1848 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1849 path, bytenr, parent, root_objectid,
1850 owner, offset, refs_to_add);
1851 BUG_ON(ret);
1852 out:
1853 btrfs_free_path(path);
1854 return err;
1855 }
1856
1857 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1858 struct btrfs_root *root,
1859 struct btrfs_delayed_ref_node *node,
1860 struct btrfs_delayed_extent_op *extent_op,
1861 int insert_reserved)
1862 {
1863 int ret = 0;
1864 struct btrfs_delayed_data_ref *ref;
1865 struct btrfs_key ins;
1866 u64 parent = 0;
1867 u64 ref_root = 0;
1868 u64 flags = 0;
1869
1870 ins.objectid = node->bytenr;
1871 ins.offset = node->num_bytes;
1872 ins.type = BTRFS_EXTENT_ITEM_KEY;
1873
1874 ref = btrfs_delayed_node_to_data_ref(node);
1875 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1876 parent = ref->parent;
1877 else
1878 ref_root = ref->root;
1879
1880 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1881 if (extent_op) {
1882 BUG_ON(extent_op->update_key);
1883 flags |= extent_op->flags_to_set;
1884 }
1885 ret = alloc_reserved_file_extent(trans, root,
1886 parent, ref_root, flags,
1887 ref->objectid, ref->offset,
1888 &ins, node->ref_mod);
1889 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1890 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1891 node->num_bytes, parent,
1892 ref_root, ref->objectid,
1893 ref->offset, node->ref_mod,
1894 extent_op);
1895 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1896 ret = __btrfs_free_extent(trans, root, node->bytenr,
1897 node->num_bytes, parent,
1898 ref_root, ref->objectid,
1899 ref->offset, node->ref_mod,
1900 extent_op);
1901 } else {
1902 BUG();
1903 }
1904 return ret;
1905 }
1906
1907 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1908 struct extent_buffer *leaf,
1909 struct btrfs_extent_item *ei)
1910 {
1911 u64 flags = btrfs_extent_flags(leaf, ei);
1912 if (extent_op->update_flags) {
1913 flags |= extent_op->flags_to_set;
1914 btrfs_set_extent_flags(leaf, ei, flags);
1915 }
1916
1917 if (extent_op->update_key) {
1918 struct btrfs_tree_block_info *bi;
1919 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1920 bi = (struct btrfs_tree_block_info *)(ei + 1);
1921 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1922 }
1923 }
1924
1925 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1926 struct btrfs_root *root,
1927 struct btrfs_delayed_ref_node *node,
1928 struct btrfs_delayed_extent_op *extent_op)
1929 {
1930 struct btrfs_key key;
1931 struct btrfs_path *path;
1932 struct btrfs_extent_item *ei;
1933 struct extent_buffer *leaf;
1934 u32 item_size;
1935 int ret;
1936 int err = 0;
1937
1938 path = btrfs_alloc_path();
1939 if (!path)
1940 return -ENOMEM;
1941
1942 key.objectid = node->bytenr;
1943 key.type = BTRFS_EXTENT_ITEM_KEY;
1944 key.offset = node->num_bytes;
1945
1946 path->reada = 1;
1947 path->leave_spinning = 1;
1948 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1949 path, 0, 1);
1950 if (ret < 0) {
1951 err = ret;
1952 goto out;
1953 }
1954 if (ret > 0) {
1955 err = -EIO;
1956 goto out;
1957 }
1958
1959 leaf = path->nodes[0];
1960 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1961 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1962 if (item_size < sizeof(*ei)) {
1963 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1964 path, (u64)-1, 0);
1965 if (ret < 0) {
1966 err = ret;
1967 goto out;
1968 }
1969 leaf = path->nodes[0];
1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 }
1972 #endif
1973 BUG_ON(item_size < sizeof(*ei));
1974 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1975 __run_delayed_extent_op(extent_op, leaf, ei);
1976
1977 btrfs_mark_buffer_dirty(leaf);
1978 out:
1979 btrfs_free_path(path);
1980 return err;
1981 }
1982
1983 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1984 struct btrfs_root *root,
1985 struct btrfs_delayed_ref_node *node,
1986 struct btrfs_delayed_extent_op *extent_op,
1987 int insert_reserved)
1988 {
1989 int ret = 0;
1990 struct btrfs_delayed_tree_ref *ref;
1991 struct btrfs_key ins;
1992 u64 parent = 0;
1993 u64 ref_root = 0;
1994
1995 ins.objectid = node->bytenr;
1996 ins.offset = node->num_bytes;
1997 ins.type = BTRFS_EXTENT_ITEM_KEY;
1998
1999 ref = btrfs_delayed_node_to_tree_ref(node);
2000 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2001 parent = ref->parent;
2002 else
2003 ref_root = ref->root;
2004
2005 BUG_ON(node->ref_mod != 1);
2006 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2007 BUG_ON(!extent_op || !extent_op->update_flags ||
2008 !extent_op->update_key);
2009 ret = alloc_reserved_tree_block(trans, root,
2010 parent, ref_root,
2011 extent_op->flags_to_set,
2012 &extent_op->key,
2013 ref->level, &ins);
2014 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2015 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2016 node->num_bytes, parent, ref_root,
2017 ref->level, 0, 1, extent_op);
2018 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2019 ret = __btrfs_free_extent(trans, root, node->bytenr,
2020 node->num_bytes, parent, ref_root,
2021 ref->level, 0, 1, extent_op);
2022 } else {
2023 BUG();
2024 }
2025 return ret;
2026 }
2027
2028 /* helper function to actually process a single delayed ref entry */
2029 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2030 struct btrfs_root *root,
2031 struct btrfs_delayed_ref_node *node,
2032 struct btrfs_delayed_extent_op *extent_op,
2033 int insert_reserved)
2034 {
2035 int ret;
2036 if (btrfs_delayed_ref_is_head(node)) {
2037 struct btrfs_delayed_ref_head *head;
2038 /*
2039 * we've hit the end of the chain and we were supposed
2040 * to insert this extent into the tree. But, it got
2041 * deleted before we ever needed to insert it, so all
2042 * we have to do is clean up the accounting
2043 */
2044 BUG_ON(extent_op);
2045 head = btrfs_delayed_node_to_head(node);
2046 if (insert_reserved) {
2047 btrfs_pin_extent(root, node->bytenr,
2048 node->num_bytes, 1);
2049 if (head->is_data) {
2050 ret = btrfs_del_csums(trans, root,
2051 node->bytenr,
2052 node->num_bytes);
2053 BUG_ON(ret);
2054 }
2055 }
2056 mutex_unlock(&head->mutex);
2057 return 0;
2058 }
2059
2060 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2061 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2062 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2063 insert_reserved);
2064 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2065 node->type == BTRFS_SHARED_DATA_REF_KEY)
2066 ret = run_delayed_data_ref(trans, root, node, extent_op,
2067 insert_reserved);
2068 else
2069 BUG();
2070 return ret;
2071 }
2072
2073 static noinline struct btrfs_delayed_ref_node *
2074 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2075 {
2076 struct rb_node *node;
2077 struct btrfs_delayed_ref_node *ref;
2078 int action = BTRFS_ADD_DELAYED_REF;
2079 again:
2080 /*
2081 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2082 * this prevents ref count from going down to zero when
2083 * there still are pending delayed ref.
2084 */
2085 node = rb_prev(&head->node.rb_node);
2086 while (1) {
2087 if (!node)
2088 break;
2089 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2090 rb_node);
2091 if (ref->bytenr != head->node.bytenr)
2092 break;
2093 if (ref->action == action)
2094 return ref;
2095 node = rb_prev(node);
2096 }
2097 if (action == BTRFS_ADD_DELAYED_REF) {
2098 action = BTRFS_DROP_DELAYED_REF;
2099 goto again;
2100 }
2101 return NULL;
2102 }
2103
2104 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2105 struct btrfs_root *root,
2106 struct list_head *cluster)
2107 {
2108 struct btrfs_delayed_ref_root *delayed_refs;
2109 struct btrfs_delayed_ref_node *ref;
2110 struct btrfs_delayed_ref_head *locked_ref = NULL;
2111 struct btrfs_delayed_extent_op *extent_op;
2112 int ret;
2113 int count = 0;
2114 int must_insert_reserved = 0;
2115
2116 delayed_refs = &trans->transaction->delayed_refs;
2117 while (1) {
2118 if (!locked_ref) {
2119 /* pick a new head ref from the cluster list */
2120 if (list_empty(cluster))
2121 break;
2122
2123 locked_ref = list_entry(cluster->next,
2124 struct btrfs_delayed_ref_head, cluster);
2125
2126 /* grab the lock that says we are going to process
2127 * all the refs for this head */
2128 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2129
2130 /*
2131 * we may have dropped the spin lock to get the head
2132 * mutex lock, and that might have given someone else
2133 * time to free the head. If that's true, it has been
2134 * removed from our list and we can move on.
2135 */
2136 if (ret == -EAGAIN) {
2137 locked_ref = NULL;
2138 count++;
2139 continue;
2140 }
2141 }
2142
2143 /*
2144 * record the must insert reserved flag before we
2145 * drop the spin lock.
2146 */
2147 must_insert_reserved = locked_ref->must_insert_reserved;
2148 locked_ref->must_insert_reserved = 0;
2149
2150 extent_op = locked_ref->extent_op;
2151 locked_ref->extent_op = NULL;
2152
2153 /*
2154 * locked_ref is the head node, so we have to go one
2155 * node back for any delayed ref updates
2156 */
2157 ref = select_delayed_ref(locked_ref);
2158 if (!ref) {
2159 /* All delayed refs have been processed, Go ahead
2160 * and send the head node to run_one_delayed_ref,
2161 * so that any accounting fixes can happen
2162 */
2163 ref = &locked_ref->node;
2164
2165 if (extent_op && must_insert_reserved) {
2166 kfree(extent_op);
2167 extent_op = NULL;
2168 }
2169
2170 if (extent_op) {
2171 spin_unlock(&delayed_refs->lock);
2172
2173 ret = run_delayed_extent_op(trans, root,
2174 ref, extent_op);
2175 BUG_ON(ret);
2176 kfree(extent_op);
2177
2178 cond_resched();
2179 spin_lock(&delayed_refs->lock);
2180 continue;
2181 }
2182
2183 list_del_init(&locked_ref->cluster);
2184 locked_ref = NULL;
2185 }
2186
2187 ref->in_tree = 0;
2188 rb_erase(&ref->rb_node, &delayed_refs->root);
2189 delayed_refs->num_entries--;
2190
2191 spin_unlock(&delayed_refs->lock);
2192
2193 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2194 must_insert_reserved);
2195 BUG_ON(ret);
2196
2197 btrfs_put_delayed_ref(ref);
2198 kfree(extent_op);
2199 count++;
2200
2201 cond_resched();
2202 spin_lock(&delayed_refs->lock);
2203 }
2204 return count;
2205 }
2206
2207 /*
2208 * this starts processing the delayed reference count updates and
2209 * extent insertions we have queued up so far. count can be
2210 * 0, which means to process everything in the tree at the start
2211 * of the run (but not newly added entries), or it can be some target
2212 * number you'd like to process.
2213 */
2214 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root, unsigned long count)
2216 {
2217 struct rb_node *node;
2218 struct btrfs_delayed_ref_root *delayed_refs;
2219 struct btrfs_delayed_ref_node *ref;
2220 struct list_head cluster;
2221 int ret;
2222 int run_all = count == (unsigned long)-1;
2223 int run_most = 0;
2224
2225 if (root == root->fs_info->extent_root)
2226 root = root->fs_info->tree_root;
2227
2228 delayed_refs = &trans->transaction->delayed_refs;
2229 INIT_LIST_HEAD(&cluster);
2230 again:
2231 spin_lock(&delayed_refs->lock);
2232 if (count == 0) {
2233 count = delayed_refs->num_entries * 2;
2234 run_most = 1;
2235 }
2236 while (1) {
2237 if (!(run_all || run_most) &&
2238 delayed_refs->num_heads_ready < 64)
2239 break;
2240
2241 /*
2242 * go find something we can process in the rbtree. We start at
2243 * the beginning of the tree, and then build a cluster
2244 * of refs to process starting at the first one we are able to
2245 * lock
2246 */
2247 ret = btrfs_find_ref_cluster(trans, &cluster,
2248 delayed_refs->run_delayed_start);
2249 if (ret)
2250 break;
2251
2252 ret = run_clustered_refs(trans, root, &cluster);
2253 BUG_ON(ret < 0);
2254
2255 count -= min_t(unsigned long, ret, count);
2256
2257 if (count == 0)
2258 break;
2259 }
2260
2261 if (run_all) {
2262 node = rb_first(&delayed_refs->root);
2263 if (!node)
2264 goto out;
2265 count = (unsigned long)-1;
2266
2267 while (node) {
2268 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2269 rb_node);
2270 if (btrfs_delayed_ref_is_head(ref)) {
2271 struct btrfs_delayed_ref_head *head;
2272
2273 head = btrfs_delayed_node_to_head(ref);
2274 atomic_inc(&ref->refs);
2275
2276 spin_unlock(&delayed_refs->lock);
2277 mutex_lock(&head->mutex);
2278 mutex_unlock(&head->mutex);
2279
2280 btrfs_put_delayed_ref(ref);
2281 cond_resched();
2282 goto again;
2283 }
2284 node = rb_next(node);
2285 }
2286 spin_unlock(&delayed_refs->lock);
2287 schedule_timeout(1);
2288 goto again;
2289 }
2290 out:
2291 spin_unlock(&delayed_refs->lock);
2292 return 0;
2293 }
2294
2295 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2296 struct btrfs_root *root,
2297 u64 bytenr, u64 num_bytes, u64 flags,
2298 int is_data)
2299 {
2300 struct btrfs_delayed_extent_op *extent_op;
2301 int ret;
2302
2303 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2304 if (!extent_op)
2305 return -ENOMEM;
2306
2307 extent_op->flags_to_set = flags;
2308 extent_op->update_flags = 1;
2309 extent_op->update_key = 0;
2310 extent_op->is_data = is_data ? 1 : 0;
2311
2312 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2313 if (ret)
2314 kfree(extent_op);
2315 return ret;
2316 }
2317
2318 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2319 struct btrfs_root *root,
2320 struct btrfs_path *path,
2321 u64 objectid, u64 offset, u64 bytenr)
2322 {
2323 struct btrfs_delayed_ref_head *head;
2324 struct btrfs_delayed_ref_node *ref;
2325 struct btrfs_delayed_data_ref *data_ref;
2326 struct btrfs_delayed_ref_root *delayed_refs;
2327 struct rb_node *node;
2328 int ret = 0;
2329
2330 ret = -ENOENT;
2331 delayed_refs = &trans->transaction->delayed_refs;
2332 spin_lock(&delayed_refs->lock);
2333 head = btrfs_find_delayed_ref_head(trans, bytenr);
2334 if (!head)
2335 goto out;
2336
2337 if (!mutex_trylock(&head->mutex)) {
2338 atomic_inc(&head->node.refs);
2339 spin_unlock(&delayed_refs->lock);
2340
2341 btrfs_release_path(root->fs_info->extent_root, path);
2342
2343 mutex_lock(&head->mutex);
2344 mutex_unlock(&head->mutex);
2345 btrfs_put_delayed_ref(&head->node);
2346 return -EAGAIN;
2347 }
2348
2349 node = rb_prev(&head->node.rb_node);
2350 if (!node)
2351 goto out_unlock;
2352
2353 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2354
2355 if (ref->bytenr != bytenr)
2356 goto out_unlock;
2357
2358 ret = 1;
2359 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2360 goto out_unlock;
2361
2362 data_ref = btrfs_delayed_node_to_data_ref(ref);
2363
2364 node = rb_prev(node);
2365 if (node) {
2366 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2367 if (ref->bytenr == bytenr)
2368 goto out_unlock;
2369 }
2370
2371 if (data_ref->root != root->root_key.objectid ||
2372 data_ref->objectid != objectid || data_ref->offset != offset)
2373 goto out_unlock;
2374
2375 ret = 0;
2376 out_unlock:
2377 mutex_unlock(&head->mutex);
2378 out:
2379 spin_unlock(&delayed_refs->lock);
2380 return ret;
2381 }
2382
2383 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2384 struct btrfs_root *root,
2385 struct btrfs_path *path,
2386 u64 objectid, u64 offset, u64 bytenr)
2387 {
2388 struct btrfs_root *extent_root = root->fs_info->extent_root;
2389 struct extent_buffer *leaf;
2390 struct btrfs_extent_data_ref *ref;
2391 struct btrfs_extent_inline_ref *iref;
2392 struct btrfs_extent_item *ei;
2393 struct btrfs_key key;
2394 u32 item_size;
2395 int ret;
2396
2397 key.objectid = bytenr;
2398 key.offset = (u64)-1;
2399 key.type = BTRFS_EXTENT_ITEM_KEY;
2400
2401 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2402 if (ret < 0)
2403 goto out;
2404 BUG_ON(ret == 0);
2405
2406 ret = -ENOENT;
2407 if (path->slots[0] == 0)
2408 goto out;
2409
2410 path->slots[0]--;
2411 leaf = path->nodes[0];
2412 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2413
2414 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2415 goto out;
2416
2417 ret = 1;
2418 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2420 if (item_size < sizeof(*ei)) {
2421 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2422 goto out;
2423 }
2424 #endif
2425 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2426
2427 if (item_size != sizeof(*ei) +
2428 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2429 goto out;
2430
2431 if (btrfs_extent_generation(leaf, ei) <=
2432 btrfs_root_last_snapshot(&root->root_item))
2433 goto out;
2434
2435 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2436 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2437 BTRFS_EXTENT_DATA_REF_KEY)
2438 goto out;
2439
2440 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2441 if (btrfs_extent_refs(leaf, ei) !=
2442 btrfs_extent_data_ref_count(leaf, ref) ||
2443 btrfs_extent_data_ref_root(leaf, ref) !=
2444 root->root_key.objectid ||
2445 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2446 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2447 goto out;
2448
2449 ret = 0;
2450 out:
2451 return ret;
2452 }
2453
2454 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2455 struct btrfs_root *root,
2456 u64 objectid, u64 offset, u64 bytenr)
2457 {
2458 struct btrfs_path *path;
2459 int ret;
2460 int ret2;
2461
2462 path = btrfs_alloc_path();
2463 if (!path)
2464 return -ENOENT;
2465
2466 do {
2467 ret = check_committed_ref(trans, root, path, objectid,
2468 offset, bytenr);
2469 if (ret && ret != -ENOENT)
2470 goto out;
2471
2472 ret2 = check_delayed_ref(trans, root, path, objectid,
2473 offset, bytenr);
2474 } while (ret2 == -EAGAIN);
2475
2476 if (ret2 && ret2 != -ENOENT) {
2477 ret = ret2;
2478 goto out;
2479 }
2480
2481 if (ret != -ENOENT || ret2 != -ENOENT)
2482 ret = 0;
2483 out:
2484 btrfs_free_path(path);
2485 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2486 WARN_ON(ret > 0);
2487 return ret;
2488 }
2489
2490 #if 0
2491 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2492 struct extent_buffer *buf, u32 nr_extents)
2493 {
2494 struct btrfs_key key;
2495 struct btrfs_file_extent_item *fi;
2496 u64 root_gen;
2497 u32 nritems;
2498 int i;
2499 int level;
2500 int ret = 0;
2501 int shared = 0;
2502
2503 if (!root->ref_cows)
2504 return 0;
2505
2506 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2507 shared = 0;
2508 root_gen = root->root_key.offset;
2509 } else {
2510 shared = 1;
2511 root_gen = trans->transid - 1;
2512 }
2513
2514 level = btrfs_header_level(buf);
2515 nritems = btrfs_header_nritems(buf);
2516
2517 if (level == 0) {
2518 struct btrfs_leaf_ref *ref;
2519 struct btrfs_extent_info *info;
2520
2521 ref = btrfs_alloc_leaf_ref(root, nr_extents);
2522 if (!ref) {
2523 ret = -ENOMEM;
2524 goto out;
2525 }
2526
2527 ref->root_gen = root_gen;
2528 ref->bytenr = buf->start;
2529 ref->owner = btrfs_header_owner(buf);
2530 ref->generation = btrfs_header_generation(buf);
2531 ref->nritems = nr_extents;
2532 info = ref->extents;
2533
2534 for (i = 0; nr_extents > 0 && i < nritems; i++) {
2535 u64 disk_bytenr;
2536 btrfs_item_key_to_cpu(buf, &key, i);
2537 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2538 continue;
2539 fi = btrfs_item_ptr(buf, i,
2540 struct btrfs_file_extent_item);
2541 if (btrfs_file_extent_type(buf, fi) ==
2542 BTRFS_FILE_EXTENT_INLINE)
2543 continue;
2544 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2545 if (disk_bytenr == 0)
2546 continue;
2547
2548 info->bytenr = disk_bytenr;
2549 info->num_bytes =
2550 btrfs_file_extent_disk_num_bytes(buf, fi);
2551 info->objectid = key.objectid;
2552 info->offset = key.offset;
2553 info++;
2554 }
2555
2556 ret = btrfs_add_leaf_ref(root, ref, shared);
2557 if (ret == -EEXIST && shared) {
2558 struct btrfs_leaf_ref *old;
2559 old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2560 BUG_ON(!old);
2561 btrfs_remove_leaf_ref(root, old);
2562 btrfs_free_leaf_ref(root, old);
2563 ret = btrfs_add_leaf_ref(root, ref, shared);
2564 }
2565 WARN_ON(ret);
2566 btrfs_free_leaf_ref(root, ref);
2567 }
2568 out:
2569 return ret;
2570 }
2571
2572 /* when a block goes through cow, we update the reference counts of
2573 * everything that block points to. The internal pointers of the block
2574 * can be in just about any order, and it is likely to have clusters of
2575 * things that are close together and clusters of things that are not.
2576 *
2577 * To help reduce the seeks that come with updating all of these reference
2578 * counts, sort them by byte number before actual updates are done.
2579 *
2580 * struct refsort is used to match byte number to slot in the btree block.
2581 * we sort based on the byte number and then use the slot to actually
2582 * find the item.
2583 *
2584 * struct refsort is smaller than strcut btrfs_item and smaller than
2585 * struct btrfs_key_ptr. Since we're currently limited to the page size
2586 * for a btree block, there's no way for a kmalloc of refsorts for a
2587 * single node to be bigger than a page.
2588 */
2589 struct refsort {
2590 u64 bytenr;
2591 u32 slot;
2592 };
2593
2594 /*
2595 * for passing into sort()
2596 */
2597 static int refsort_cmp(const void *a_void, const void *b_void)
2598 {
2599 const struct refsort *a = a_void;
2600 const struct refsort *b = b_void;
2601
2602 if (a->bytenr < b->bytenr)
2603 return -1;
2604 if (a->bytenr > b->bytenr)
2605 return 1;
2606 return 0;
2607 }
2608 #endif
2609
2610 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2611 struct btrfs_root *root,
2612 struct extent_buffer *buf,
2613 int full_backref, int inc)
2614 {
2615 u64 bytenr;
2616 u64 num_bytes;
2617 u64 parent;
2618 u64 ref_root;
2619 u32 nritems;
2620 struct btrfs_key key;
2621 struct btrfs_file_extent_item *fi;
2622 int i;
2623 int level;
2624 int ret = 0;
2625 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2626 u64, u64, u64, u64, u64, u64);
2627
2628 ref_root = btrfs_header_owner(buf);
2629 nritems = btrfs_header_nritems(buf);
2630 level = btrfs_header_level(buf);
2631
2632 if (!root->ref_cows && level == 0)
2633 return 0;
2634
2635 if (inc)
2636 process_func = btrfs_inc_extent_ref;
2637 else
2638 process_func = btrfs_free_extent;
2639
2640 if (full_backref)
2641 parent = buf->start;
2642 else
2643 parent = 0;
2644
2645 for (i = 0; i < nritems; i++) {
2646 if (level == 0) {
2647 btrfs_item_key_to_cpu(buf, &key, i);
2648 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2649 continue;
2650 fi = btrfs_item_ptr(buf, i,
2651 struct btrfs_file_extent_item);
2652 if (btrfs_file_extent_type(buf, fi) ==
2653 BTRFS_FILE_EXTENT_INLINE)
2654 continue;
2655 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2656 if (bytenr == 0)
2657 continue;
2658
2659 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2660 key.offset -= btrfs_file_extent_offset(buf, fi);
2661 ret = process_func(trans, root, bytenr, num_bytes,
2662 parent, ref_root, key.objectid,
2663 key.offset);
2664 if (ret)
2665 goto fail;
2666 } else {
2667 bytenr = btrfs_node_blockptr(buf, i);
2668 num_bytes = btrfs_level_size(root, level - 1);
2669 ret = process_func(trans, root, bytenr, num_bytes,
2670 parent, ref_root, level - 1, 0);
2671 if (ret)
2672 goto fail;
2673 }
2674 }
2675 return 0;
2676 fail:
2677 BUG();
2678 return ret;
2679 }
2680
2681 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2682 struct extent_buffer *buf, int full_backref)
2683 {
2684 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2685 }
2686
2687 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2688 struct extent_buffer *buf, int full_backref)
2689 {
2690 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2691 }
2692
2693 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2694 struct btrfs_root *root,
2695 struct btrfs_path *path,
2696 struct btrfs_block_group_cache *cache)
2697 {
2698 int ret;
2699 struct btrfs_root *extent_root = root->fs_info->extent_root;
2700 unsigned long bi;
2701 struct extent_buffer *leaf;
2702
2703 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2704 if (ret < 0)
2705 goto fail;
2706 BUG_ON(ret);
2707
2708 leaf = path->nodes[0];
2709 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2710 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2711 btrfs_mark_buffer_dirty(leaf);
2712 btrfs_release_path(extent_root, path);
2713 fail:
2714 if (ret)
2715 return ret;
2716 return 0;
2717
2718 }
2719
2720 static struct btrfs_block_group_cache *
2721 next_block_group(struct btrfs_root *root,
2722 struct btrfs_block_group_cache *cache)
2723 {
2724 struct rb_node *node;
2725 spin_lock(&root->fs_info->block_group_cache_lock);
2726 node = rb_next(&cache->cache_node);
2727 btrfs_put_block_group(cache);
2728 if (node) {
2729 cache = rb_entry(node, struct btrfs_block_group_cache,
2730 cache_node);
2731 btrfs_get_block_group(cache);
2732 } else
2733 cache = NULL;
2734 spin_unlock(&root->fs_info->block_group_cache_lock);
2735 return cache;
2736 }
2737
2738 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2739 struct btrfs_trans_handle *trans,
2740 struct btrfs_path *path)
2741 {
2742 struct btrfs_root *root = block_group->fs_info->tree_root;
2743 struct inode *inode = NULL;
2744 u64 alloc_hint = 0;
2745 int dcs = BTRFS_DC_ERROR;
2746 int num_pages = 0;
2747 int retries = 0;
2748 int ret = 0;
2749
2750 /*
2751 * If this block group is smaller than 100 megs don't bother caching the
2752 * block group.
2753 */
2754 if (block_group->key.offset < (100 * 1024 * 1024)) {
2755 spin_lock(&block_group->lock);
2756 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2757 spin_unlock(&block_group->lock);
2758 return 0;
2759 }
2760
2761 again:
2762 inode = lookup_free_space_inode(root, block_group, path);
2763 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2764 ret = PTR_ERR(inode);
2765 btrfs_release_path(root, path);
2766 goto out;
2767 }
2768
2769 if (IS_ERR(inode)) {
2770 BUG_ON(retries);
2771 retries++;
2772
2773 if (block_group->ro)
2774 goto out_free;
2775
2776 ret = create_free_space_inode(root, trans, block_group, path);
2777 if (ret)
2778 goto out_free;
2779 goto again;
2780 }
2781
2782 /*
2783 * We want to set the generation to 0, that way if anything goes wrong
2784 * from here on out we know not to trust this cache when we load up next
2785 * time.
2786 */
2787 BTRFS_I(inode)->generation = 0;
2788 ret = btrfs_update_inode(trans, root, inode);
2789 WARN_ON(ret);
2790
2791 if (i_size_read(inode) > 0) {
2792 ret = btrfs_truncate_free_space_cache(root, trans, path,
2793 inode);
2794 if (ret)
2795 goto out_put;
2796 }
2797
2798 spin_lock(&block_group->lock);
2799 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2800 /* We're not cached, don't bother trying to write stuff out */
2801 dcs = BTRFS_DC_WRITTEN;
2802 spin_unlock(&block_group->lock);
2803 goto out_put;
2804 }
2805 spin_unlock(&block_group->lock);
2806
2807 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2808 if (!num_pages)
2809 num_pages = 1;
2810
2811 /*
2812 * Just to make absolutely sure we have enough space, we're going to
2813 * preallocate 12 pages worth of space for each block group. In
2814 * practice we ought to use at most 8, but we need extra space so we can
2815 * add our header and have a terminator between the extents and the
2816 * bitmaps.
2817 */
2818 num_pages *= 16;
2819 num_pages *= PAGE_CACHE_SIZE;
2820
2821 ret = btrfs_check_data_free_space(inode, num_pages);
2822 if (ret)
2823 goto out_put;
2824
2825 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2826 num_pages, num_pages,
2827 &alloc_hint);
2828 if (!ret)
2829 dcs = BTRFS_DC_SETUP;
2830 btrfs_free_reserved_data_space(inode, num_pages);
2831 out_put:
2832 iput(inode);
2833 out_free:
2834 btrfs_release_path(root, path);
2835 out:
2836 spin_lock(&block_group->lock);
2837 block_group->disk_cache_state = dcs;
2838 spin_unlock(&block_group->lock);
2839
2840 return ret;
2841 }
2842
2843 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *root)
2845 {
2846 struct btrfs_block_group_cache *cache;
2847 int err = 0;
2848 struct btrfs_path *path;
2849 u64 last = 0;
2850
2851 path = btrfs_alloc_path();
2852 if (!path)
2853 return -ENOMEM;
2854
2855 again:
2856 while (1) {
2857 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2858 while (cache) {
2859 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2860 break;
2861 cache = next_block_group(root, cache);
2862 }
2863 if (!cache) {
2864 if (last == 0)
2865 break;
2866 last = 0;
2867 continue;
2868 }
2869 err = cache_save_setup(cache, trans, path);
2870 last = cache->key.objectid + cache->key.offset;
2871 btrfs_put_block_group(cache);
2872 }
2873
2874 while (1) {
2875 if (last == 0) {
2876 err = btrfs_run_delayed_refs(trans, root,
2877 (unsigned long)-1);
2878 BUG_ON(err);
2879 }
2880
2881 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2882 while (cache) {
2883 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2884 btrfs_put_block_group(cache);
2885 goto again;
2886 }
2887
2888 if (cache->dirty)
2889 break;
2890 cache = next_block_group(root, cache);
2891 }
2892 if (!cache) {
2893 if (last == 0)
2894 break;
2895 last = 0;
2896 continue;
2897 }
2898
2899 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2900 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2901 cache->dirty = 0;
2902 last = cache->key.objectid + cache->key.offset;
2903
2904 err = write_one_cache_group(trans, root, path, cache);
2905 BUG_ON(err);
2906 btrfs_put_block_group(cache);
2907 }
2908
2909 while (1) {
2910 /*
2911 * I don't think this is needed since we're just marking our
2912 * preallocated extent as written, but just in case it can't
2913 * hurt.
2914 */
2915 if (last == 0) {
2916 err = btrfs_run_delayed_refs(trans, root,
2917 (unsigned long)-1);
2918 BUG_ON(err);
2919 }
2920
2921 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2922 while (cache) {
2923 /*
2924 * Really this shouldn't happen, but it could if we
2925 * couldn't write the entire preallocated extent and
2926 * splitting the extent resulted in a new block.
2927 */
2928 if (cache->dirty) {
2929 btrfs_put_block_group(cache);
2930 goto again;
2931 }
2932 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2933 break;
2934 cache = next_block_group(root, cache);
2935 }
2936 if (!cache) {
2937 if (last == 0)
2938 break;
2939 last = 0;
2940 continue;
2941 }
2942
2943 btrfs_write_out_cache(root, trans, cache, path);
2944
2945 /*
2946 * If we didn't have an error then the cache state is still
2947 * NEED_WRITE, so we can set it to WRITTEN.
2948 */
2949 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2950 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2951 last = cache->key.objectid + cache->key.offset;
2952 btrfs_put_block_group(cache);
2953 }
2954
2955 btrfs_free_path(path);
2956 return 0;
2957 }
2958
2959 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2960 {
2961 struct btrfs_block_group_cache *block_group;
2962 int readonly = 0;
2963
2964 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2965 if (!block_group || block_group->ro)
2966 readonly = 1;
2967 if (block_group)
2968 btrfs_put_block_group(block_group);
2969 return readonly;
2970 }
2971
2972 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2973 u64 total_bytes, u64 bytes_used,
2974 struct btrfs_space_info **space_info)
2975 {
2976 struct btrfs_space_info *found;
2977 int i;
2978 int factor;
2979
2980 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2981 BTRFS_BLOCK_GROUP_RAID10))
2982 factor = 2;
2983 else
2984 factor = 1;
2985
2986 found = __find_space_info(info, flags);
2987 if (found) {
2988 spin_lock(&found->lock);
2989 found->total_bytes += total_bytes;
2990 found->disk_total += total_bytes * factor;
2991 found->bytes_used += bytes_used;
2992 found->disk_used += bytes_used * factor;
2993 found->full = 0;
2994 spin_unlock(&found->lock);
2995 *space_info = found;
2996 return 0;
2997 }
2998 found = kzalloc(sizeof(*found), GFP_NOFS);
2999 if (!found)
3000 return -ENOMEM;
3001
3002 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3003 INIT_LIST_HEAD(&found->block_groups[i]);
3004 init_rwsem(&found->groups_sem);
3005 spin_lock_init(&found->lock);
3006 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
3007 BTRFS_BLOCK_GROUP_SYSTEM |
3008 BTRFS_BLOCK_GROUP_METADATA);
3009 found->total_bytes = total_bytes;
3010 found->disk_total = total_bytes * factor;
3011 found->bytes_used = bytes_used;
3012 found->disk_used = bytes_used * factor;
3013 found->bytes_pinned = 0;
3014 found->bytes_reserved = 0;
3015 found->bytes_readonly = 0;
3016 found->bytes_may_use = 0;
3017 found->full = 0;
3018 found->force_alloc = 0;
3019 *space_info = found;
3020 list_add_rcu(&found->list, &info->space_info);
3021 atomic_set(&found->caching_threads, 0);
3022 return 0;
3023 }
3024
3025 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3026 {
3027 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
3028 BTRFS_BLOCK_GROUP_RAID1 |
3029 BTRFS_BLOCK_GROUP_RAID10 |
3030 BTRFS_BLOCK_GROUP_DUP);
3031 if (extra_flags) {
3032 if (flags & BTRFS_BLOCK_GROUP_DATA)
3033 fs_info->avail_data_alloc_bits |= extra_flags;
3034 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3035 fs_info->avail_metadata_alloc_bits |= extra_flags;
3036 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3037 fs_info->avail_system_alloc_bits |= extra_flags;
3038 }
3039 }
3040
3041 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3042 {
3043 /*
3044 * we add in the count of missing devices because we want
3045 * to make sure that any RAID levels on a degraded FS
3046 * continue to be honored.
3047 */
3048 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3049 root->fs_info->fs_devices->missing_devices;
3050
3051 if (num_devices == 1)
3052 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3053 if (num_devices < 4)
3054 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3055
3056 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3057 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3058 BTRFS_BLOCK_GROUP_RAID10))) {
3059 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3060 }
3061
3062 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3063 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3064 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3065 }
3066
3067 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3068 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3069 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3070 (flags & BTRFS_BLOCK_GROUP_DUP)))
3071 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3072 return flags;
3073 }
3074
3075 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3076 {
3077 if (flags & BTRFS_BLOCK_GROUP_DATA)
3078 flags |= root->fs_info->avail_data_alloc_bits &
3079 root->fs_info->data_alloc_profile;
3080 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3081 flags |= root->fs_info->avail_system_alloc_bits &
3082 root->fs_info->system_alloc_profile;
3083 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3084 flags |= root->fs_info->avail_metadata_alloc_bits &
3085 root->fs_info->metadata_alloc_profile;
3086 return btrfs_reduce_alloc_profile(root, flags);
3087 }
3088
3089 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3090 {
3091 u64 flags;
3092
3093 if (data)
3094 flags = BTRFS_BLOCK_GROUP_DATA;
3095 else if (root == root->fs_info->chunk_root)
3096 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3097 else
3098 flags = BTRFS_BLOCK_GROUP_METADATA;
3099
3100 return get_alloc_profile(root, flags);
3101 }
3102
3103 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3104 {
3105 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3106 BTRFS_BLOCK_GROUP_DATA);
3107 }
3108
3109 /*
3110 * This will check the space that the inode allocates from to make sure we have
3111 * enough space for bytes.
3112 */
3113 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3114 {
3115 struct btrfs_space_info *data_sinfo;
3116 struct btrfs_root *root = BTRFS_I(inode)->root;
3117 u64 used;
3118 int ret = 0, committed = 0, alloc_chunk = 1;
3119
3120 /* make sure bytes are sectorsize aligned */
3121 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3122
3123 if (root == root->fs_info->tree_root) {
3124 alloc_chunk = 0;
3125 committed = 1;
3126 }
3127
3128 data_sinfo = BTRFS_I(inode)->space_info;
3129 if (!data_sinfo)
3130 goto alloc;
3131
3132 again:
3133 /* make sure we have enough space to handle the data first */
3134 spin_lock(&data_sinfo->lock);
3135 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3136 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3137 data_sinfo->bytes_may_use;
3138
3139 if (used + bytes > data_sinfo->total_bytes) {
3140 struct btrfs_trans_handle *trans;
3141
3142 /*
3143 * if we don't have enough free bytes in this space then we need
3144 * to alloc a new chunk.
3145 */
3146 if (!data_sinfo->full && alloc_chunk) {
3147 u64 alloc_target;
3148
3149 data_sinfo->force_alloc = 1;
3150 spin_unlock(&data_sinfo->lock);
3151 alloc:
3152 alloc_target = btrfs_get_alloc_profile(root, 1);
3153 trans = btrfs_join_transaction(root, 1);
3154 if (IS_ERR(trans))
3155 return PTR_ERR(trans);
3156
3157 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3158 bytes + 2 * 1024 * 1024,
3159 alloc_target, 0);
3160 btrfs_end_transaction(trans, root);
3161 if (ret < 0) {
3162 if (ret != -ENOSPC)
3163 return ret;
3164 else
3165 goto commit_trans;
3166 }
3167
3168 if (!data_sinfo) {
3169 btrfs_set_inode_space_info(root, inode);
3170 data_sinfo = BTRFS_I(inode)->space_info;
3171 }
3172 goto again;
3173 }
3174 spin_unlock(&data_sinfo->lock);
3175
3176 /* commit the current transaction and try again */
3177 commit_trans:
3178 if (!committed && !root->fs_info->open_ioctl_trans) {
3179 committed = 1;
3180 trans = btrfs_join_transaction(root, 1);
3181 if (IS_ERR(trans))
3182 return PTR_ERR(trans);
3183 ret = btrfs_commit_transaction(trans, root);
3184 if (ret)
3185 return ret;
3186 goto again;
3187 }
3188
3189 #if 0 /* I hope we never need this code again, just in case */
3190 printk(KERN_ERR "no space left, need %llu, %llu bytes_used, "
3191 "%llu bytes_reserved, " "%llu bytes_pinned, "
3192 "%llu bytes_readonly, %llu may use %llu total\n",
3193 (unsigned long long)bytes,
3194 (unsigned long long)data_sinfo->bytes_used,
3195 (unsigned long long)data_sinfo->bytes_reserved,
3196 (unsigned long long)data_sinfo->bytes_pinned,
3197 (unsigned long long)data_sinfo->bytes_readonly,
3198 (unsigned long long)data_sinfo->bytes_may_use,
3199 (unsigned long long)data_sinfo->total_bytes);
3200 #endif
3201 return -ENOSPC;
3202 }
3203 data_sinfo->bytes_may_use += bytes;
3204 BTRFS_I(inode)->reserved_bytes += bytes;
3205 spin_unlock(&data_sinfo->lock);
3206
3207 return 0;
3208 }
3209
3210 /*
3211 * called when we are clearing an delalloc extent from the
3212 * inode's io_tree or there was an error for whatever reason
3213 * after calling btrfs_check_data_free_space
3214 */
3215 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3216 {
3217 struct btrfs_root *root = BTRFS_I(inode)->root;
3218 struct btrfs_space_info *data_sinfo;
3219
3220 /* make sure bytes are sectorsize aligned */
3221 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3222
3223 data_sinfo = BTRFS_I(inode)->space_info;
3224 spin_lock(&data_sinfo->lock);
3225 data_sinfo->bytes_may_use -= bytes;
3226 BTRFS_I(inode)->reserved_bytes -= bytes;
3227 spin_unlock(&data_sinfo->lock);
3228 }
3229
3230 static void force_metadata_allocation(struct btrfs_fs_info *info)
3231 {
3232 struct list_head *head = &info->space_info;
3233 struct btrfs_space_info *found;
3234
3235 rcu_read_lock();
3236 list_for_each_entry_rcu(found, head, list) {
3237 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3238 found->force_alloc = 1;
3239 }
3240 rcu_read_unlock();
3241 }
3242
3243 static int should_alloc_chunk(struct btrfs_root *root,
3244 struct btrfs_space_info *sinfo, u64 alloc_bytes)
3245 {
3246 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3247 u64 thresh;
3248
3249 if (sinfo->bytes_used + sinfo->bytes_reserved +
3250 alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3251 return 0;
3252
3253 if (sinfo->bytes_used + sinfo->bytes_reserved +
3254 alloc_bytes < div_factor(num_bytes, 8))
3255 return 0;
3256
3257 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3258 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3259
3260 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3261 return 0;
3262
3263 return 1;
3264 }
3265
3266 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3267 struct btrfs_root *extent_root, u64 alloc_bytes,
3268 u64 flags, int force)
3269 {
3270 struct btrfs_space_info *space_info;
3271 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3272 int ret = 0;
3273
3274 mutex_lock(&fs_info->chunk_mutex);
3275
3276 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3277
3278 space_info = __find_space_info(extent_root->fs_info, flags);
3279 if (!space_info) {
3280 ret = update_space_info(extent_root->fs_info, flags,
3281 0, 0, &space_info);
3282 BUG_ON(ret);
3283 }
3284 BUG_ON(!space_info);
3285
3286 spin_lock(&space_info->lock);
3287 if (space_info->force_alloc)
3288 force = 1;
3289 if (space_info->full) {
3290 spin_unlock(&space_info->lock);
3291 goto out;
3292 }
3293
3294 if (!force && !should_alloc_chunk(extent_root, space_info,
3295 alloc_bytes)) {
3296 spin_unlock(&space_info->lock);
3297 goto out;
3298 }
3299 spin_unlock(&space_info->lock);
3300
3301 /*
3302 * If we have mixed data/metadata chunks we want to make sure we keep
3303 * allocating mixed chunks instead of individual chunks.
3304 */
3305 if (btrfs_mixed_space_info(space_info))
3306 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3307
3308 /*
3309 * if we're doing a data chunk, go ahead and make sure that
3310 * we keep a reasonable number of metadata chunks allocated in the
3311 * FS as well.
3312 */
3313 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3314 fs_info->data_chunk_allocations++;
3315 if (!(fs_info->data_chunk_allocations %
3316 fs_info->metadata_ratio))
3317 force_metadata_allocation(fs_info);
3318 }
3319
3320 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3321 spin_lock(&space_info->lock);
3322 if (ret)
3323 space_info->full = 1;
3324 else
3325 ret = 1;
3326 space_info->force_alloc = 0;
3327 spin_unlock(&space_info->lock);
3328 out:
3329 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3330 return ret;
3331 }
3332
3333 /*
3334 * shrink metadata reservation for delalloc
3335 */
3336 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3337 struct btrfs_root *root, u64 to_reclaim, int sync)
3338 {
3339 struct btrfs_block_rsv *block_rsv;
3340 struct btrfs_space_info *space_info;
3341 u64 reserved;
3342 u64 max_reclaim;
3343 u64 reclaimed = 0;
3344 long time_left;
3345 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3346 int loops = 0;
3347 unsigned long progress;
3348
3349 block_rsv = &root->fs_info->delalloc_block_rsv;
3350 space_info = block_rsv->space_info;
3351
3352 smp_mb();
3353 reserved = space_info->bytes_reserved;
3354 progress = space_info->reservation_progress;
3355
3356 if (reserved == 0)
3357 return 0;
3358
3359 max_reclaim = min(reserved, to_reclaim);
3360
3361 while (loops < 1024) {
3362 /* have the flusher threads jump in and do some IO */
3363 smp_mb();
3364 nr_pages = min_t(unsigned long, nr_pages,
3365 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3366 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3367
3368 spin_lock(&space_info->lock);
3369 if (reserved > space_info->bytes_reserved)
3370 reclaimed += reserved - space_info->bytes_reserved;
3371 reserved = space_info->bytes_reserved;
3372 spin_unlock(&space_info->lock);
3373
3374 loops++;
3375
3376 if (reserved == 0 || reclaimed >= max_reclaim)
3377 break;
3378
3379 if (trans && trans->transaction->blocked)
3380 return -EAGAIN;
3381
3382 time_left = schedule_timeout_interruptible(1);
3383
3384 /* We were interrupted, exit */
3385 if (time_left)
3386 break;
3387
3388 /* we've kicked the IO a few times, if anything has been freed,
3389 * exit. There is no sense in looping here for a long time
3390 * when we really need to commit the transaction, or there are
3391 * just too many writers without enough free space
3392 */
3393
3394 if (loops > 3) {
3395 smp_mb();
3396 if (progress != space_info->reservation_progress)
3397 break;
3398 }
3399
3400 }
3401 return reclaimed >= to_reclaim;
3402 }
3403
3404 /*
3405 * Retries tells us how many times we've called reserve_metadata_bytes. The
3406 * idea is if this is the first call (retries == 0) then we will add to our
3407 * reserved count if we can't make the allocation in order to hold our place
3408 * while we go and try and free up space. That way for retries > 1 we don't try
3409 * and add space, we just check to see if the amount of unused space is >= the
3410 * total space, meaning that our reservation is valid.
3411 *
3412 * However if we don't intend to retry this reservation, pass -1 as retries so
3413 * that it short circuits this logic.
3414 */
3415 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3416 struct btrfs_root *root,
3417 struct btrfs_block_rsv *block_rsv,
3418 u64 orig_bytes, int flush)
3419 {
3420 struct btrfs_space_info *space_info = block_rsv->space_info;
3421 u64 unused;
3422 u64 num_bytes = orig_bytes;
3423 int retries = 0;
3424 int ret = 0;
3425 bool reserved = false;
3426 bool committed = false;
3427
3428 again:
3429 ret = -ENOSPC;
3430 if (reserved)
3431 num_bytes = 0;
3432
3433 spin_lock(&space_info->lock);
3434 unused = space_info->bytes_used + space_info->bytes_reserved +
3435 space_info->bytes_pinned + space_info->bytes_readonly +
3436 space_info->bytes_may_use;
3437
3438 /*
3439 * The idea here is that we've not already over-reserved the block group
3440 * then we can go ahead and save our reservation first and then start
3441 * flushing if we need to. Otherwise if we've already overcommitted
3442 * lets start flushing stuff first and then come back and try to make
3443 * our reservation.
3444 */
3445 if (unused <= space_info->total_bytes) {
3446 unused = space_info->total_bytes - unused;
3447 if (unused >= num_bytes) {
3448 if (!reserved)
3449 space_info->bytes_reserved += orig_bytes;
3450 ret = 0;
3451 } else {
3452 /*
3453 * Ok set num_bytes to orig_bytes since we aren't
3454 * overocmmitted, this way we only try and reclaim what
3455 * we need.
3456 */
3457 num_bytes = orig_bytes;
3458 }
3459 } else {
3460 /*
3461 * Ok we're over committed, set num_bytes to the overcommitted
3462 * amount plus the amount of bytes that we need for this
3463 * reservation.
3464 */
3465 num_bytes = unused - space_info->total_bytes +
3466 (orig_bytes * (retries + 1));
3467 }
3468
3469 /*
3470 * Couldn't make our reservation, save our place so while we're trying
3471 * to reclaim space we can actually use it instead of somebody else
3472 * stealing it from us.
3473 */
3474 if (ret && !reserved) {
3475 space_info->bytes_reserved += orig_bytes;
3476 reserved = true;
3477 }
3478
3479 spin_unlock(&space_info->lock);
3480
3481 if (!ret)
3482 return 0;
3483
3484 if (!flush)
3485 goto out;
3486
3487 /*
3488 * We do synchronous shrinking since we don't actually unreserve
3489 * metadata until after the IO is completed.
3490 */
3491 ret = shrink_delalloc(trans, root, num_bytes, 1);
3492 if (ret > 0)
3493 return 0;
3494 else if (ret < 0)
3495 goto out;
3496
3497 /*
3498 * So if we were overcommitted it's possible that somebody else flushed
3499 * out enough space and we simply didn't have enough space to reclaim,
3500 * so go back around and try again.
3501 */
3502 if (retries < 2) {
3503 retries++;
3504 goto again;
3505 }
3506
3507 spin_lock(&space_info->lock);
3508 /*
3509 * Not enough space to be reclaimed, don't bother committing the
3510 * transaction.
3511 */
3512 if (space_info->bytes_pinned < orig_bytes)
3513 ret = -ENOSPC;
3514 spin_unlock(&space_info->lock);
3515 if (ret)
3516 goto out;
3517
3518 ret = -EAGAIN;
3519 if (trans || committed)
3520 goto out;
3521
3522 ret = -ENOSPC;
3523 trans = btrfs_join_transaction(root, 1);
3524 if (IS_ERR(trans))
3525 goto out;
3526 ret = btrfs_commit_transaction(trans, root);
3527 if (!ret) {
3528 trans = NULL;
3529 committed = true;
3530 goto again;
3531 }
3532
3533 out:
3534 if (reserved) {
3535 spin_lock(&space_info->lock);
3536 space_info->bytes_reserved -= orig_bytes;
3537 spin_unlock(&space_info->lock);
3538 }
3539
3540 return ret;
3541 }
3542
3543 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3544 struct btrfs_root *root)
3545 {
3546 struct btrfs_block_rsv *block_rsv;
3547 if (root->ref_cows)
3548 block_rsv = trans->block_rsv;
3549 else
3550 block_rsv = root->block_rsv;
3551
3552 if (!block_rsv)
3553 block_rsv = &root->fs_info->empty_block_rsv;
3554
3555 return block_rsv;
3556 }
3557
3558 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3559 u64 num_bytes)
3560 {
3561 int ret = -ENOSPC;
3562 spin_lock(&block_rsv->lock);
3563 if (block_rsv->reserved >= num_bytes) {
3564 block_rsv->reserved -= num_bytes;
3565 if (block_rsv->reserved < block_rsv->size)
3566 block_rsv->full = 0;
3567 ret = 0;
3568 }
3569 spin_unlock(&block_rsv->lock);
3570 return ret;
3571 }
3572
3573 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3574 u64 num_bytes, int update_size)
3575 {
3576 spin_lock(&block_rsv->lock);
3577 block_rsv->reserved += num_bytes;
3578 if (update_size)
3579 block_rsv->size += num_bytes;
3580 else if (block_rsv->reserved >= block_rsv->size)
3581 block_rsv->full = 1;
3582 spin_unlock(&block_rsv->lock);
3583 }
3584
3585 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3586 struct btrfs_block_rsv *dest, u64 num_bytes)
3587 {
3588 struct btrfs_space_info *space_info = block_rsv->space_info;
3589
3590 spin_lock(&block_rsv->lock);
3591 if (num_bytes == (u64)-1)
3592 num_bytes = block_rsv->size;
3593 block_rsv->size -= num_bytes;
3594 if (block_rsv->reserved >= block_rsv->size) {
3595 num_bytes = block_rsv->reserved - block_rsv->size;
3596 block_rsv->reserved = block_rsv->size;
3597 block_rsv->full = 1;
3598 } else {
3599 num_bytes = 0;
3600 }
3601 spin_unlock(&block_rsv->lock);
3602
3603 if (num_bytes > 0) {
3604 if (dest) {
3605 spin_lock(&dest->lock);
3606 if (!dest->full) {
3607 u64 bytes_to_add;
3608
3609 bytes_to_add = dest->size - dest->reserved;
3610 bytes_to_add = min(num_bytes, bytes_to_add);
3611 dest->reserved += bytes_to_add;
3612 if (dest->reserved >= dest->size)
3613 dest->full = 1;
3614 num_bytes -= bytes_to_add;
3615 }
3616 spin_unlock(&dest->lock);
3617 }
3618 if (num_bytes) {
3619 spin_lock(&space_info->lock);
3620 space_info->bytes_reserved -= num_bytes;
3621 space_info->reservation_progress++;
3622 spin_unlock(&space_info->lock);
3623 }
3624 }
3625 }
3626
3627 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3628 struct btrfs_block_rsv *dst, u64 num_bytes)
3629 {
3630 int ret;
3631
3632 ret = block_rsv_use_bytes(src, num_bytes);
3633 if (ret)
3634 return ret;
3635
3636 block_rsv_add_bytes(dst, num_bytes, 1);
3637 return 0;
3638 }
3639
3640 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3641 {
3642 memset(rsv, 0, sizeof(*rsv));
3643 spin_lock_init(&rsv->lock);
3644 atomic_set(&rsv->usage, 1);
3645 rsv->priority = 6;
3646 INIT_LIST_HEAD(&rsv->list);
3647 }
3648
3649 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3650 {
3651 struct btrfs_block_rsv *block_rsv;
3652 struct btrfs_fs_info *fs_info = root->fs_info;
3653
3654 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3655 if (!block_rsv)
3656 return NULL;
3657
3658 btrfs_init_block_rsv(block_rsv);
3659 block_rsv->space_info = __find_space_info(fs_info,
3660 BTRFS_BLOCK_GROUP_METADATA);
3661 return block_rsv;
3662 }
3663
3664 void btrfs_free_block_rsv(struct btrfs_root *root,
3665 struct btrfs_block_rsv *rsv)
3666 {
3667 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3668 btrfs_block_rsv_release(root, rsv, (u64)-1);
3669 if (!rsv->durable)
3670 kfree(rsv);
3671 }
3672 }
3673
3674 /*
3675 * make the block_rsv struct be able to capture freed space.
3676 * the captured space will re-add to the the block_rsv struct
3677 * after transaction commit
3678 */
3679 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3680 struct btrfs_block_rsv *block_rsv)
3681 {
3682 block_rsv->durable = 1;
3683 mutex_lock(&fs_info->durable_block_rsv_mutex);
3684 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3685 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3686 }
3687
3688 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3689 struct btrfs_root *root,
3690 struct btrfs_block_rsv *block_rsv,
3691 u64 num_bytes)
3692 {
3693 int ret;
3694
3695 if (num_bytes == 0)
3696 return 0;
3697
3698 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3699 if (!ret) {
3700 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3701 return 0;
3702 }
3703
3704 return ret;
3705 }
3706
3707 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3708 struct btrfs_root *root,
3709 struct btrfs_block_rsv *block_rsv,
3710 u64 min_reserved, int min_factor)
3711 {
3712 u64 num_bytes = 0;
3713 int commit_trans = 0;
3714 int ret = -ENOSPC;
3715
3716 if (!block_rsv)
3717 return 0;
3718
3719 spin_lock(&block_rsv->lock);
3720 if (min_factor > 0)
3721 num_bytes = div_factor(block_rsv->size, min_factor);
3722 if (min_reserved > num_bytes)
3723 num_bytes = min_reserved;
3724
3725 if (block_rsv->reserved >= num_bytes) {
3726 ret = 0;
3727 } else {
3728 num_bytes -= block_rsv->reserved;
3729 if (block_rsv->durable &&
3730 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3731 commit_trans = 1;
3732 }
3733 spin_unlock(&block_rsv->lock);
3734 if (!ret)
3735 return 0;
3736
3737 if (block_rsv->refill_used) {
3738 ret = reserve_metadata_bytes(trans, root, block_rsv,
3739 num_bytes, 0);
3740 if (!ret) {
3741 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3742 return 0;
3743 }
3744 }
3745
3746 if (commit_trans) {
3747 if (trans)
3748 return -EAGAIN;
3749
3750 trans = btrfs_join_transaction(root, 1);
3751 BUG_ON(IS_ERR(trans));
3752 ret = btrfs_commit_transaction(trans, root);
3753 return 0;
3754 }
3755
3756 return -ENOSPC;
3757 }
3758
3759 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3760 struct btrfs_block_rsv *dst_rsv,
3761 u64 num_bytes)
3762 {
3763 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3764 }
3765
3766 void btrfs_block_rsv_release(struct btrfs_root *root,
3767 struct btrfs_block_rsv *block_rsv,
3768 u64 num_bytes)
3769 {
3770 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3771 if (global_rsv->full || global_rsv == block_rsv ||
3772 block_rsv->space_info != global_rsv->space_info)
3773 global_rsv = NULL;
3774 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3775 }
3776
3777 /*
3778 * helper to calculate size of global block reservation.
3779 * the desired value is sum of space used by extent tree,
3780 * checksum tree and root tree
3781 */
3782 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3783 {
3784 struct btrfs_space_info *sinfo;
3785 u64 num_bytes;
3786 u64 meta_used;
3787 u64 data_used;
3788 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3789 #if 0
3790 /*
3791 * per tree used space accounting can be inaccuracy, so we
3792 * can't rely on it.
3793 */
3794 spin_lock(&fs_info->extent_root->accounting_lock);
3795 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item);
3796 spin_unlock(&fs_info->extent_root->accounting_lock);
3797
3798 spin_lock(&fs_info->csum_root->accounting_lock);
3799 num_bytes += btrfs_root_used(&fs_info->csum_root->root_item);
3800 spin_unlock(&fs_info->csum_root->accounting_lock);
3801
3802 spin_lock(&fs_info->tree_root->accounting_lock);
3803 num_bytes += btrfs_root_used(&fs_info->tree_root->root_item);
3804 spin_unlock(&fs_info->tree_root->accounting_lock);
3805 #endif
3806 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3807 spin_lock(&sinfo->lock);
3808 data_used = sinfo->bytes_used;
3809 spin_unlock(&sinfo->lock);
3810
3811 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3812 spin_lock(&sinfo->lock);
3813 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3814 data_used = 0;
3815 meta_used = sinfo->bytes_used;
3816 spin_unlock(&sinfo->lock);
3817
3818 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3819 csum_size * 2;
3820 num_bytes += div64_u64(data_used + meta_used, 50);
3821
3822 if (num_bytes * 3 > meta_used)
3823 num_bytes = div64_u64(meta_used, 3);
3824
3825 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3826 }
3827
3828 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3829 {
3830 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3831 struct btrfs_space_info *sinfo = block_rsv->space_info;
3832 u64 num_bytes;
3833
3834 num_bytes = calc_global_metadata_size(fs_info);
3835
3836 spin_lock(&block_rsv->lock);
3837 spin_lock(&sinfo->lock);
3838
3839 block_rsv->size = num_bytes;
3840
3841 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3842 sinfo->bytes_reserved + sinfo->bytes_readonly +
3843 sinfo->bytes_may_use;
3844
3845 if (sinfo->total_bytes > num_bytes) {
3846 num_bytes = sinfo->total_bytes - num_bytes;
3847 block_rsv->reserved += num_bytes;
3848 sinfo->bytes_reserved += num_bytes;
3849 }
3850
3851 if (block_rsv->reserved >= block_rsv->size) {
3852 num_bytes = block_rsv->reserved - block_rsv->size;
3853 sinfo->bytes_reserved -= num_bytes;
3854 sinfo->reservation_progress++;
3855 block_rsv->reserved = block_rsv->size;
3856 block_rsv->full = 1;
3857 }
3858 #if 0
3859 printk(KERN_INFO"global block rsv size %llu reserved %llu\n",
3860 block_rsv->size, block_rsv->reserved);
3861 #endif
3862 spin_unlock(&sinfo->lock);
3863 spin_unlock(&block_rsv->lock);
3864 }
3865
3866 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3867 {
3868 struct btrfs_space_info *space_info;
3869
3870 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3871 fs_info->chunk_block_rsv.space_info = space_info;
3872 fs_info->chunk_block_rsv.priority = 10;
3873
3874 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3875 fs_info->global_block_rsv.space_info = space_info;
3876 fs_info->global_block_rsv.priority = 10;
3877 fs_info->global_block_rsv.refill_used = 1;
3878 fs_info->delalloc_block_rsv.space_info = space_info;
3879 fs_info->trans_block_rsv.space_info = space_info;
3880 fs_info->empty_block_rsv.space_info = space_info;
3881 fs_info->empty_block_rsv.priority = 10;
3882
3883 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3884 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3885 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3886 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3887 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3888
3889 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3890
3891 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3892
3893 update_global_block_rsv(fs_info);
3894 }
3895
3896 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3897 {
3898 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3899 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3900 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3901 WARN_ON(fs_info->trans_block_rsv.size > 0);
3902 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3903 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3904 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3905 }
3906
3907 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
3908 {
3909 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3910 3 * num_items;
3911 }
3912
3913 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3914 struct btrfs_root *root,
3915 int num_items)
3916 {
3917 u64 num_bytes;
3918 int ret;
3919
3920 if (num_items == 0 || root->fs_info->chunk_root == root)
3921 return 0;
3922
3923 num_bytes = calc_trans_metadata_size(root, num_items);
3924 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3925 num_bytes);
3926 if (!ret) {
3927 trans->bytes_reserved += num_bytes;
3928 trans->block_rsv = &root->fs_info->trans_block_rsv;
3929 }
3930 return ret;
3931 }
3932
3933 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3934 struct btrfs_root *root)
3935 {
3936 if (!trans->bytes_reserved)
3937 return;
3938
3939 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3940 btrfs_block_rsv_release(root, trans->block_rsv,
3941 trans->bytes_reserved);
3942 trans->bytes_reserved = 0;
3943 }
3944
3945 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3946 struct inode *inode)
3947 {
3948 struct btrfs_root *root = BTRFS_I(inode)->root;
3949 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3950 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3951
3952 /*
3953 * one for deleting orphan item, one for updating inode and
3954 * two for calling btrfs_truncate_inode_items.
3955 *
3956 * btrfs_truncate_inode_items is a delete operation, it frees
3957 * more space than it uses in most cases. So two units of
3958 * metadata space should be enough for calling it many times.
3959 * If all of the metadata space is used, we can commit
3960 * transaction and use space it freed.
3961 */
3962 u64 num_bytes = calc_trans_metadata_size(root, 4);
3963 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3964 }
3965
3966 void btrfs_orphan_release_metadata(struct inode *inode)
3967 {
3968 struct btrfs_root *root = BTRFS_I(inode)->root;
3969 u64 num_bytes = calc_trans_metadata_size(root, 4);
3970 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3971 }
3972
3973 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3974 struct btrfs_pending_snapshot *pending)
3975 {
3976 struct btrfs_root *root = pending->root;
3977 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3978 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3979 /*
3980 * two for root back/forward refs, two for directory entries
3981 * and one for root of the snapshot.
3982 */
3983 u64 num_bytes = calc_trans_metadata_size(root, 5);
3984 dst_rsv->space_info = src_rsv->space_info;
3985 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3986 }
3987
3988 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3989 {
3990 return num_bytes >>= 3;
3991 }
3992
3993 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3994 {
3995 struct btrfs_root *root = BTRFS_I(inode)->root;
3996 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3997 u64 to_reserve;
3998 int nr_extents;
3999 int reserved_extents;
4000 int ret;
4001
4002 if (btrfs_transaction_in_commit(root->fs_info))
4003 schedule_timeout(1);
4004
4005 num_bytes = ALIGN(num_bytes, root->sectorsize);
4006
4007 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
4008 reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
4009
4010 if (nr_extents > reserved_extents) {
4011 nr_extents -= reserved_extents;
4012 to_reserve = calc_trans_metadata_size(root, nr_extents);
4013 } else {
4014 nr_extents = 0;
4015 to_reserve = 0;
4016 }
4017
4018 to_reserve += calc_csum_metadata_size(inode, num_bytes);
4019 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
4020 if (ret)
4021 return ret;
4022
4023 atomic_add(nr_extents, &BTRFS_I(inode)->reserved_extents);
4024 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
4025
4026 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4027
4028 if (block_rsv->size > 512 * 1024 * 1024)
4029 shrink_delalloc(NULL, root, to_reserve, 0);
4030
4031 return 0;
4032 }
4033
4034 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4035 {
4036 struct btrfs_root *root = BTRFS_I(inode)->root;
4037 u64 to_free;
4038 int nr_extents;
4039 int reserved_extents;
4040
4041 num_bytes = ALIGN(num_bytes, root->sectorsize);
4042 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
4043 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0);
4044
4045 reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
4046 do {
4047 int old, new;
4048
4049 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
4050 if (nr_extents >= reserved_extents) {
4051 nr_extents = 0;
4052 break;
4053 }
4054 old = reserved_extents;
4055 nr_extents = reserved_extents - nr_extents;
4056 new = reserved_extents - nr_extents;
4057 old = atomic_cmpxchg(&BTRFS_I(inode)->reserved_extents,
4058 reserved_extents, new);
4059 if (likely(old == reserved_extents))
4060 break;
4061 reserved_extents = old;
4062 } while (1);
4063
4064 to_free = calc_csum_metadata_size(inode, num_bytes);
4065 if (nr_extents > 0)
4066 to_free += calc_trans_metadata_size(root, nr_extents);
4067
4068 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4069 to_free);
4070 }
4071
4072 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4073 {
4074 int ret;
4075
4076 ret = btrfs_check_data_free_space(inode, num_bytes);
4077 if (ret)
4078 return ret;
4079
4080 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4081 if (ret) {
4082 btrfs_free_reserved_data_space(inode, num_bytes);
4083 return ret;
4084 }
4085
4086 return 0;
4087 }
4088
4089 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4090 {
4091 btrfs_delalloc_release_metadata(inode, num_bytes);
4092 btrfs_free_reserved_data_space(inode, num_bytes);
4093 }
4094
4095 static int update_block_group(struct btrfs_trans_handle *trans,
4096 struct btrfs_root *root,
4097 u64 bytenr, u64 num_bytes, int alloc)
4098 {
4099 struct btrfs_block_group_cache *cache = NULL;
4100 struct btrfs_fs_info *info = root->fs_info;
4101 u64 total = num_bytes;
4102 u64 old_val;
4103 u64 byte_in_group;
4104 int factor;
4105
4106 /* block accounting for super block */
4107 spin_lock(&info->delalloc_lock);
4108 old_val = btrfs_super_bytes_used(&info->super_copy);
4109 if (alloc)
4110 old_val += num_bytes;
4111 else
4112 old_val -= num_bytes;
4113 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4114 spin_unlock(&info->delalloc_lock);
4115
4116 while (total) {
4117 cache = btrfs_lookup_block_group(info, bytenr);
4118 if (!cache)
4119 return -1;
4120 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4121 BTRFS_BLOCK_GROUP_RAID1 |
4122 BTRFS_BLOCK_GROUP_RAID10))
4123 factor = 2;
4124 else
4125 factor = 1;
4126 /*
4127 * If this block group has free space cache written out, we
4128 * need to make sure to load it if we are removing space. This
4129 * is because we need the unpinning stage to actually add the
4130 * space back to the block group, otherwise we will leak space.
4131 */
4132 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4133 cache_block_group(cache, trans, NULL, 1);
4134
4135 byte_in_group = bytenr - cache->key.objectid;
4136 WARN_ON(byte_in_group > cache->key.offset);
4137
4138 spin_lock(&cache->space_info->lock);
4139 spin_lock(&cache->lock);
4140
4141 if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4142 cache->disk_cache_state < BTRFS_DC_CLEAR)
4143 cache->disk_cache_state = BTRFS_DC_CLEAR;
4144
4145 cache->dirty = 1;
4146 old_val = btrfs_block_group_used(&cache->item);
4147 num_bytes = min(total, cache->key.offset - byte_in_group);
4148 if (alloc) {
4149 old_val += num_bytes;
4150 btrfs_set_block_group_used(&cache->item, old_val);
4151 cache->reserved -= num_bytes;
4152 cache->space_info->bytes_reserved -= num_bytes;
4153 cache->space_info->reservation_progress++;
4154 cache->space_info->bytes_used += num_bytes;
4155 cache->space_info->disk_used += num_bytes * factor;
4156 spin_unlock(&cache->lock);
4157 spin_unlock(&cache->space_info->lock);
4158 } else {
4159 old_val -= num_bytes;
4160 btrfs_set_block_group_used(&cache->item, old_val);
4161 cache->pinned += num_bytes;
4162 cache->space_info->bytes_pinned += num_bytes;
4163 cache->space_info->bytes_used -= num_bytes;
4164 cache->space_info->disk_used -= num_bytes * factor;
4165 spin_unlock(&cache->lock);
4166 spin_unlock(&cache->space_info->lock);
4167
4168 set_extent_dirty(info->pinned_extents,
4169 bytenr, bytenr + num_bytes - 1,
4170 GFP_NOFS | __GFP_NOFAIL);
4171 }
4172 btrfs_put_block_group(cache);
4173 total -= num_bytes;
4174 bytenr += num_bytes;
4175 }
4176 return 0;
4177 }
4178
4179 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4180 {
4181 struct btrfs_block_group_cache *cache;
4182 u64 bytenr;
4183
4184 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4185 if (!cache)
4186 return 0;
4187
4188 bytenr = cache->key.objectid;
4189 btrfs_put_block_group(cache);
4190
4191 return bytenr;
4192 }
4193
4194 static int pin_down_extent(struct btrfs_root *root,
4195 struct btrfs_block_group_cache *cache,
4196 u64 bytenr, u64 num_bytes, int reserved)
4197 {
4198 spin_lock(&cache->space_info->lock);
4199 spin_lock(&cache->lock);
4200 cache->pinned += num_bytes;
4201 cache->space_info->bytes_pinned += num_bytes;
4202 if (reserved) {
4203 cache->reserved -= num_bytes;
4204 cache->space_info->bytes_reserved -= num_bytes;
4205 cache->space_info->reservation_progress++;
4206 }
4207 spin_unlock(&cache->lock);
4208 spin_unlock(&cache->space_info->lock);
4209
4210 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4211 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4212 return 0;
4213 }
4214
4215 /*
4216 * this function must be called within transaction
4217 */
4218 int btrfs_pin_extent(struct btrfs_root *root,
4219 u64 bytenr, u64 num_bytes, int reserved)
4220 {
4221 struct btrfs_block_group_cache *cache;
4222
4223 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4224 BUG_ON(!cache);
4225
4226 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4227
4228 btrfs_put_block_group(cache);
4229 return 0;
4230 }
4231
4232 /*
4233 * update size of reserved extents. this function may return -EAGAIN
4234 * if 'reserve' is true or 'sinfo' is false.
4235 */
4236 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
4237 u64 num_bytes, int reserve, int sinfo)
4238 {
4239 int ret = 0;
4240 if (sinfo) {
4241 struct btrfs_space_info *space_info = cache->space_info;
4242 spin_lock(&space_info->lock);
4243 spin_lock(&cache->lock);
4244 if (reserve) {
4245 if (cache->ro) {
4246 ret = -EAGAIN;
4247 } else {
4248 cache->reserved += num_bytes;
4249 space_info->bytes_reserved += num_bytes;
4250 }
4251 } else {
4252 if (cache->ro)
4253 space_info->bytes_readonly += num_bytes;
4254 cache->reserved -= num_bytes;
4255 space_info->bytes_reserved -= num_bytes;
4256 space_info->reservation_progress++;
4257 }
4258 spin_unlock(&cache->lock);
4259 spin_unlock(&space_info->lock);
4260 } else {
4261 spin_lock(&cache->lock);
4262 if (cache->ro) {
4263 ret = -EAGAIN;
4264 } else {
4265 if (reserve)
4266 cache->reserved += num_bytes;
4267 else
4268 cache->reserved -= num_bytes;
4269 }
4270 spin_unlock(&cache->lock);
4271 }
4272 return ret;
4273 }
4274
4275 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4276 struct btrfs_root *root)
4277 {
4278 struct btrfs_fs_info *fs_info = root->fs_info;
4279 struct btrfs_caching_control *next;
4280 struct btrfs_caching_control *caching_ctl;
4281 struct btrfs_block_group_cache *cache;
4282
4283 down_write(&fs_info->extent_commit_sem);
4284
4285 list_for_each_entry_safe(caching_ctl, next,
4286 &fs_info->caching_block_groups, list) {
4287 cache = caching_ctl->block_group;
4288 if (block_group_cache_done(cache)) {
4289 cache->last_byte_to_unpin = (u64)-1;
4290 list_del_init(&caching_ctl->list);
4291 put_caching_control(caching_ctl);
4292 } else {
4293 cache->last_byte_to_unpin = caching_ctl->progress;
4294 }
4295 }
4296
4297 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4298 fs_info->pinned_extents = &fs_info->freed_extents[1];
4299 else
4300 fs_info->pinned_extents = &fs_info->freed_extents[0];
4301
4302 up_write(&fs_info->extent_commit_sem);
4303
4304 update_global_block_rsv(fs_info);
4305 return 0;
4306 }
4307
4308 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4309 {
4310 struct btrfs_fs_info *fs_info = root->fs_info;
4311 struct btrfs_block_group_cache *cache = NULL;
4312 u64 len;
4313
4314 while (start <= end) {
4315 if (!cache ||
4316 start >= cache->key.objectid + cache->key.offset) {
4317 if (cache)
4318 btrfs_put_block_group(cache);
4319 cache = btrfs_lookup_block_group(fs_info, start);
4320 BUG_ON(!cache);
4321 }
4322
4323 len = cache->key.objectid + cache->key.offset - start;
4324 len = min(len, end + 1 - start);
4325
4326 if (start < cache->last_byte_to_unpin) {
4327 len = min(len, cache->last_byte_to_unpin - start);
4328 btrfs_add_free_space(cache, start, len);
4329 }
4330
4331 start += len;
4332
4333 spin_lock(&cache->space_info->lock);
4334 spin_lock(&cache->lock);
4335 cache->pinned -= len;
4336 cache->space_info->bytes_pinned -= len;
4337 if (cache->ro) {
4338 cache->space_info->bytes_readonly += len;
4339 } else if (cache->reserved_pinned > 0) {
4340 len = min(len, cache->reserved_pinned);
4341 cache->reserved_pinned -= len;
4342 cache->space_info->bytes_reserved += len;
4343 }
4344 spin_unlock(&cache->lock);
4345 spin_unlock(&cache->space_info->lock);
4346 }
4347
4348 if (cache)
4349 btrfs_put_block_group(cache);
4350 return 0;
4351 }
4352
4353 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4354 struct btrfs_root *root)
4355 {
4356 struct btrfs_fs_info *fs_info = root->fs_info;
4357 struct extent_io_tree *unpin;
4358 struct btrfs_block_rsv *block_rsv;
4359 struct btrfs_block_rsv *next_rsv;
4360 u64 start;
4361 u64 end;
4362 int idx;
4363 int ret;
4364
4365 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4366 unpin = &fs_info->freed_extents[1];
4367 else
4368 unpin = &fs_info->freed_extents[0];
4369
4370 while (1) {
4371 ret = find_first_extent_bit(unpin, 0, &start, &end,
4372 EXTENT_DIRTY);
4373 if (ret)
4374 break;
4375
4376 ret = btrfs_discard_extent(root, start, end + 1 - start);
4377
4378 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4379 unpin_extent_range(root, start, end);
4380 cond_resched();
4381 }
4382
4383 mutex_lock(&fs_info->durable_block_rsv_mutex);
4384 list_for_each_entry_safe(block_rsv, next_rsv,
4385 &fs_info->durable_block_rsv_list, list) {
4386
4387 idx = trans->transid & 0x1;
4388 if (block_rsv->freed[idx] > 0) {
4389 block_rsv_add_bytes(block_rsv,
4390 block_rsv->freed[idx], 0);
4391 block_rsv->freed[idx] = 0;
4392 }
4393 if (atomic_read(&block_rsv->usage) == 0) {
4394 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4395
4396 if (block_rsv->freed[0] == 0 &&
4397 block_rsv->freed[1] == 0) {
4398 list_del_init(&block_rsv->list);
4399 kfree(block_rsv);
4400 }
4401 } else {
4402 btrfs_block_rsv_release(root, block_rsv, 0);
4403 }
4404 }
4405 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4406
4407 return 0;
4408 }
4409
4410 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4411 struct btrfs_root *root,
4412 u64 bytenr, u64 num_bytes, u64 parent,
4413 u64 root_objectid, u64 owner_objectid,
4414 u64 owner_offset, int refs_to_drop,
4415 struct btrfs_delayed_extent_op *extent_op)
4416 {
4417 struct btrfs_key key;
4418 struct btrfs_path *path;
4419 struct btrfs_fs_info *info = root->fs_info;
4420 struct btrfs_root *extent_root = info->extent_root;
4421 struct extent_buffer *leaf;
4422 struct btrfs_extent_item *ei;
4423 struct btrfs_extent_inline_ref *iref;
4424 int ret;
4425 int is_data;
4426 int extent_slot = 0;
4427 int found_extent = 0;
4428 int num_to_del = 1;
4429 u32 item_size;
4430 u64 refs;
4431
4432 path = btrfs_alloc_path();
4433 if (!path)
4434 return -ENOMEM;
4435
4436 path->reada = 1;
4437 path->leave_spinning = 1;
4438
4439 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4440 BUG_ON(!is_data && refs_to_drop != 1);
4441
4442 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4443 bytenr, num_bytes, parent,
4444 root_objectid, owner_objectid,
4445 owner_offset);
4446 if (ret == 0) {
4447 extent_slot = path->slots[0];
4448 while (extent_slot >= 0) {
4449 btrfs_item_key_to_cpu(path->nodes[0], &key,
4450 extent_slot);
4451 if (key.objectid != bytenr)
4452 break;
4453 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4454 key.offset == num_bytes) {
4455 found_extent = 1;
4456 break;
4457 }
4458 if (path->slots[0] - extent_slot > 5)
4459 break;
4460 extent_slot--;
4461 }
4462 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4463 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4464 if (found_extent && item_size < sizeof(*ei))
4465 found_extent = 0;
4466 #endif
4467 if (!found_extent) {
4468 BUG_ON(iref);
4469 ret = remove_extent_backref(trans, extent_root, path,
4470 NULL, refs_to_drop,
4471 is_data);
4472 BUG_ON(ret);
4473 btrfs_release_path(extent_root, path);
4474 path->leave_spinning = 1;
4475
4476 key.objectid = bytenr;
4477 key.type = BTRFS_EXTENT_ITEM_KEY;
4478 key.offset = num_bytes;
4479
4480 ret = btrfs_search_slot(trans, extent_root,
4481 &key, path, -1, 1);
4482 if (ret) {
4483 printk(KERN_ERR "umm, got %d back from search"
4484 ", was looking for %llu\n", ret,
4485 (unsigned long long)bytenr);
4486 btrfs_print_leaf(extent_root, path->nodes[0]);
4487 }
4488 BUG_ON(ret);
4489 extent_slot = path->slots[0];
4490 }
4491 } else {
4492 btrfs_print_leaf(extent_root, path->nodes[0]);
4493 WARN_ON(1);
4494 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4495 "parent %llu root %llu owner %llu offset %llu\n",
4496 (unsigned long long)bytenr,
4497 (unsigned long long)parent,
4498 (unsigned long long)root_objectid,
4499 (unsigned long long)owner_objectid,
4500 (unsigned long long)owner_offset);
4501 }
4502
4503 leaf = path->nodes[0];
4504 item_size = btrfs_item_size_nr(leaf, extent_slot);
4505 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4506 if (item_size < sizeof(*ei)) {
4507 BUG_ON(found_extent || extent_slot != path->slots[0]);
4508 ret = convert_extent_item_v0(trans, extent_root, path,
4509 owner_objectid, 0);
4510 BUG_ON(ret < 0);
4511
4512 btrfs_release_path(extent_root, path);
4513 path->leave_spinning = 1;
4514
4515 key.objectid = bytenr;
4516 key.type = BTRFS_EXTENT_ITEM_KEY;
4517 key.offset = num_bytes;
4518
4519 ret = btrfs_search_slot(trans, extent_root, &key, path,
4520 -1, 1);
4521 if (ret) {
4522 printk(KERN_ERR "umm, got %d back from search"
4523 ", was looking for %llu\n", ret,
4524 (unsigned long long)bytenr);
4525 btrfs_print_leaf(extent_root, path->nodes[0]);
4526 }
4527 BUG_ON(ret);
4528 extent_slot = path->slots[0];
4529 leaf = path->nodes[0];
4530 item_size = btrfs_item_size_nr(leaf, extent_slot);
4531 }
4532 #endif
4533 BUG_ON(item_size < sizeof(*ei));
4534 ei = btrfs_item_ptr(leaf, extent_slot,
4535 struct btrfs_extent_item);
4536 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4537 struct btrfs_tree_block_info *bi;
4538 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4539 bi = (struct btrfs_tree_block_info *)(ei + 1);
4540 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4541 }
4542
4543 refs = btrfs_extent_refs(leaf, ei);
4544 BUG_ON(refs < refs_to_drop);
4545 refs -= refs_to_drop;
4546
4547 if (refs > 0) {
4548 if (extent_op)
4549 __run_delayed_extent_op(extent_op, leaf, ei);
4550 /*
4551 * In the case of inline back ref, reference count will
4552 * be updated by remove_extent_backref
4553 */
4554 if (iref) {
4555 BUG_ON(!found_extent);
4556 } else {
4557 btrfs_set_extent_refs(leaf, ei, refs);
4558 btrfs_mark_buffer_dirty(leaf);
4559 }
4560 if (found_extent) {
4561 ret = remove_extent_backref(trans, extent_root, path,
4562 iref, refs_to_drop,
4563 is_data);
4564 BUG_ON(ret);
4565 }
4566 } else {
4567 if (found_extent) {
4568 BUG_ON(is_data && refs_to_drop !=
4569 extent_data_ref_count(root, path, iref));
4570 if (iref) {
4571 BUG_ON(path->slots[0] != extent_slot);
4572 } else {
4573 BUG_ON(path->slots[0] != extent_slot + 1);
4574 path->slots[0] = extent_slot;
4575 num_to_del = 2;
4576 }
4577 }
4578
4579 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4580 num_to_del);
4581 BUG_ON(ret);
4582 btrfs_release_path(extent_root, path);
4583
4584 if (is_data) {
4585 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4586 BUG_ON(ret);
4587 } else {
4588 invalidate_mapping_pages(info->btree_inode->i_mapping,
4589 bytenr >> PAGE_CACHE_SHIFT,
4590 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4591 }
4592
4593 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4594 BUG_ON(ret);
4595 }
4596 btrfs_free_path(path);
4597 return ret;
4598 }
4599
4600 /*
4601 * when we free an block, it is possible (and likely) that we free the last
4602 * delayed ref for that extent as well. This searches the delayed ref tree for
4603 * a given extent, and if there are no other delayed refs to be processed, it
4604 * removes it from the tree.
4605 */
4606 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4607 struct btrfs_root *root, u64 bytenr)
4608 {
4609 struct btrfs_delayed_ref_head *head;
4610 struct btrfs_delayed_ref_root *delayed_refs;
4611 struct btrfs_delayed_ref_node *ref;
4612 struct rb_node *node;
4613 int ret = 0;
4614
4615 delayed_refs = &trans->transaction->delayed_refs;
4616 spin_lock(&delayed_refs->lock);
4617 head = btrfs_find_delayed_ref_head(trans, bytenr);
4618 if (!head)
4619 goto out;
4620
4621 node = rb_prev(&head->node.rb_node);
4622 if (!node)
4623 goto out;
4624
4625 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4626
4627 /* there are still entries for this ref, we can't drop it */
4628 if (ref->bytenr == bytenr)
4629 goto out;
4630
4631 if (head->extent_op) {
4632 if (!head->must_insert_reserved)
4633 goto out;
4634 kfree(head->extent_op);
4635 head->extent_op = NULL;
4636 }
4637
4638 /*
4639 * waiting for the lock here would deadlock. If someone else has it
4640 * locked they are already in the process of dropping it anyway
4641 */
4642 if (!mutex_trylock(&head->mutex))
4643 goto out;
4644
4645 /*
4646 * at this point we have a head with no other entries. Go
4647 * ahead and process it.
4648 */
4649 head->node.in_tree = 0;
4650 rb_erase(&head->node.rb_node, &delayed_refs->root);
4651
4652 delayed_refs->num_entries--;
4653
4654 /*
4655 * we don't take a ref on the node because we're removing it from the
4656 * tree, so we just steal the ref the tree was holding.
4657 */
4658 delayed_refs->num_heads--;
4659 if (list_empty(&head->cluster))
4660 delayed_refs->num_heads_ready--;
4661
4662 list_del_init(&head->cluster);
4663 spin_unlock(&delayed_refs->lock);
4664
4665 BUG_ON(head->extent_op);
4666 if (head->must_insert_reserved)
4667 ret = 1;
4668
4669 mutex_unlock(&head->mutex);
4670 btrfs_put_delayed_ref(&head->node);
4671 return ret;
4672 out:
4673 spin_unlock(&delayed_refs->lock);
4674 return 0;
4675 }
4676
4677 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4678 struct btrfs_root *root,
4679 struct extent_buffer *buf,
4680 u64 parent, int last_ref)
4681 {
4682 struct btrfs_block_rsv *block_rsv;
4683 struct btrfs_block_group_cache *cache = NULL;
4684 int ret;
4685
4686 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4687 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4688 parent, root->root_key.objectid,
4689 btrfs_header_level(buf),
4690 BTRFS_DROP_DELAYED_REF, NULL);
4691 BUG_ON(ret);
4692 }
4693
4694 if (!last_ref)
4695 return;
4696
4697 block_rsv = get_block_rsv(trans, root);
4698 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4699 if (block_rsv->space_info != cache->space_info)
4700 goto out;
4701
4702 if (btrfs_header_generation(buf) == trans->transid) {
4703 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4704 ret = check_ref_cleanup(trans, root, buf->start);
4705 if (!ret)
4706 goto pin;
4707 }
4708
4709 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4710 pin_down_extent(root, cache, buf->start, buf->len, 1);
4711 goto pin;
4712 }
4713
4714 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4715
4716 btrfs_add_free_space(cache, buf->start, buf->len);
4717 ret = update_reserved_bytes(cache, buf->len, 0, 0);
4718 if (ret == -EAGAIN) {
4719 /* block group became read-only */
4720 update_reserved_bytes(cache, buf->len, 0, 1);
4721 goto out;
4722 }
4723
4724 ret = 1;
4725 spin_lock(&block_rsv->lock);
4726 if (block_rsv->reserved < block_rsv->size) {
4727 block_rsv->reserved += buf->len;
4728 ret = 0;
4729 }
4730 spin_unlock(&block_rsv->lock);
4731
4732 if (ret) {
4733 spin_lock(&cache->space_info->lock);
4734 cache->space_info->bytes_reserved -= buf->len;
4735 cache->space_info->reservation_progress++;
4736 spin_unlock(&cache->space_info->lock);
4737 }
4738 goto out;
4739 }
4740 pin:
4741 if (block_rsv->durable && !cache->ro) {
4742 ret = 0;
4743 spin_lock(&cache->lock);
4744 if (!cache->ro) {
4745 cache->reserved_pinned += buf->len;
4746 ret = 1;
4747 }
4748 spin_unlock(&cache->lock);
4749
4750 if (ret) {
4751 spin_lock(&block_rsv->lock);
4752 block_rsv->freed[trans->transid & 0x1] += buf->len;
4753 spin_unlock(&block_rsv->lock);
4754 }
4755 }
4756 out:
4757 btrfs_put_block_group(cache);
4758 }
4759
4760 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4761 struct btrfs_root *root,
4762 u64 bytenr, u64 num_bytes, u64 parent,
4763 u64 root_objectid, u64 owner, u64 offset)
4764 {
4765 int ret;
4766
4767 /*
4768 * tree log blocks never actually go into the extent allocation
4769 * tree, just update pinning info and exit early.
4770 */
4771 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4772 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4773 /* unlocks the pinned mutex */
4774 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4775 ret = 0;
4776 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4777 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4778 parent, root_objectid, (int)owner,
4779 BTRFS_DROP_DELAYED_REF, NULL);
4780 BUG_ON(ret);
4781 } else {
4782 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4783 parent, root_objectid, owner,
4784 offset, BTRFS_DROP_DELAYED_REF, NULL);
4785 BUG_ON(ret);
4786 }
4787 return ret;
4788 }
4789
4790 static u64 stripe_align(struct btrfs_root *root, u64 val)
4791 {
4792 u64 mask = ((u64)root->stripesize - 1);
4793 u64 ret = (val + mask) & ~mask;
4794 return ret;
4795 }
4796
4797 /*
4798 * when we wait for progress in the block group caching, its because
4799 * our allocation attempt failed at least once. So, we must sleep
4800 * and let some progress happen before we try again.
4801 *
4802 * This function will sleep at least once waiting for new free space to
4803 * show up, and then it will check the block group free space numbers
4804 * for our min num_bytes. Another option is to have it go ahead
4805 * and look in the rbtree for a free extent of a given size, but this
4806 * is a good start.
4807 */
4808 static noinline int
4809 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4810 u64 num_bytes)
4811 {
4812 struct btrfs_caching_control *caching_ctl;
4813 DEFINE_WAIT(wait);
4814
4815 caching_ctl = get_caching_control(cache);
4816 if (!caching_ctl)
4817 return 0;
4818
4819 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4820 (cache->free_space >= num_bytes));
4821
4822 put_caching_control(caching_ctl);
4823 return 0;
4824 }
4825
4826 static noinline int
4827 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4828 {
4829 struct btrfs_caching_control *caching_ctl;
4830 DEFINE_WAIT(wait);
4831
4832 caching_ctl = get_caching_control(cache);
4833 if (!caching_ctl)
4834 return 0;
4835
4836 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4837
4838 put_caching_control(caching_ctl);
4839 return 0;
4840 }
4841
4842 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4843 {
4844 int index;
4845 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4846 index = 0;
4847 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4848 index = 1;
4849 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4850 index = 2;
4851 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4852 index = 3;
4853 else
4854 index = 4;
4855 return index;
4856 }
4857
4858 enum btrfs_loop_type {
4859 LOOP_FIND_IDEAL = 0,
4860 LOOP_CACHING_NOWAIT = 1,
4861 LOOP_CACHING_WAIT = 2,
4862 LOOP_ALLOC_CHUNK = 3,
4863 LOOP_NO_EMPTY_SIZE = 4,
4864 };
4865
4866 /*
4867 * walks the btree of allocated extents and find a hole of a given size.
4868 * The key ins is changed to record the hole:
4869 * ins->objectid == block start
4870 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4871 * ins->offset == number of blocks
4872 * Any available blocks before search_start are skipped.
4873 */
4874 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4875 struct btrfs_root *orig_root,
4876 u64 num_bytes, u64 empty_size,
4877 u64 search_start, u64 search_end,
4878 u64 hint_byte, struct btrfs_key *ins,
4879 int data)
4880 {
4881 int ret = 0;
4882 struct btrfs_root *root = orig_root->fs_info->extent_root;
4883 struct btrfs_free_cluster *last_ptr = NULL;
4884 struct btrfs_block_group_cache *block_group = NULL;
4885 int empty_cluster = 2 * 1024 * 1024;
4886 int allowed_chunk_alloc = 0;
4887 int done_chunk_alloc = 0;
4888 struct btrfs_space_info *space_info;
4889 int last_ptr_loop = 0;
4890 int loop = 0;
4891 int index = 0;
4892 bool found_uncached_bg = false;
4893 bool failed_cluster_refill = false;
4894 bool failed_alloc = false;
4895 bool use_cluster = true;
4896 u64 ideal_cache_percent = 0;
4897 u64 ideal_cache_offset = 0;
4898
4899 WARN_ON(num_bytes < root->sectorsize);
4900 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4901 ins->objectid = 0;
4902 ins->offset = 0;
4903
4904 space_info = __find_space_info(root->fs_info, data);
4905 if (!space_info) {
4906 printk(KERN_ERR "No space info for %d\n", data);
4907 return -ENOSPC;
4908 }
4909
4910 /*
4911 * If the space info is for both data and metadata it means we have a
4912 * small filesystem and we can't use the clustering stuff.
4913 */
4914 if (btrfs_mixed_space_info(space_info))
4915 use_cluster = false;
4916
4917 if (orig_root->ref_cows || empty_size)
4918 allowed_chunk_alloc = 1;
4919
4920 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4921 last_ptr = &root->fs_info->meta_alloc_cluster;
4922 if (!btrfs_test_opt(root, SSD))
4923 empty_cluster = 64 * 1024;
4924 }
4925
4926 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4927 btrfs_test_opt(root, SSD)) {
4928 last_ptr = &root->fs_info->data_alloc_cluster;
4929 }
4930
4931 if (last_ptr) {
4932 spin_lock(&last_ptr->lock);
4933 if (last_ptr->block_group)
4934 hint_byte = last_ptr->window_start;
4935 spin_unlock(&last_ptr->lock);
4936 }
4937
4938 search_start = max(search_start, first_logical_byte(root, 0));
4939 search_start = max(search_start, hint_byte);
4940
4941 if (!last_ptr)
4942 empty_cluster = 0;
4943
4944 if (search_start == hint_byte) {
4945 ideal_cache:
4946 block_group = btrfs_lookup_block_group(root->fs_info,
4947 search_start);
4948 /*
4949 * we don't want to use the block group if it doesn't match our
4950 * allocation bits, or if its not cached.
4951 *
4952 * However if we are re-searching with an ideal block group
4953 * picked out then we don't care that the block group is cached.
4954 */
4955 if (block_group && block_group_bits(block_group, data) &&
4956 (block_group->cached != BTRFS_CACHE_NO ||
4957 search_start == ideal_cache_offset)) {
4958 down_read(&space_info->groups_sem);
4959 if (list_empty(&block_group->list) ||
4960 block_group->ro) {
4961 /*
4962 * someone is removing this block group,
4963 * we can't jump into the have_block_group
4964 * target because our list pointers are not
4965 * valid
4966 */
4967 btrfs_put_block_group(block_group);
4968 up_read(&space_info->groups_sem);
4969 } else {
4970 index = get_block_group_index(block_group);
4971 goto have_block_group;
4972 }
4973 } else if (block_group) {
4974 btrfs_put_block_group(block_group);
4975 }
4976 }
4977 search:
4978 down_read(&space_info->groups_sem);
4979 list_for_each_entry(block_group, &space_info->block_groups[index],
4980 list) {
4981 u64 offset;
4982 int cached;
4983
4984 btrfs_get_block_group(block_group);
4985 search_start = block_group->key.objectid;
4986
4987 /*
4988 * this can happen if we end up cycling through all the
4989 * raid types, but we want to make sure we only allocate
4990 * for the proper type.
4991 */
4992 if (!block_group_bits(block_group, data)) {
4993 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4994 BTRFS_BLOCK_GROUP_RAID1 |
4995 BTRFS_BLOCK_GROUP_RAID10;
4996
4997 /*
4998 * if they asked for extra copies and this block group
4999 * doesn't provide them, bail. This does allow us to
5000 * fill raid0 from raid1.
5001 */
5002 if ((data & extra) && !(block_group->flags & extra))
5003 goto loop;
5004 }
5005
5006 have_block_group:
5007 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
5008 u64 free_percent;
5009
5010 ret = cache_block_group(block_group, trans,
5011 orig_root, 1);
5012 if (block_group->cached == BTRFS_CACHE_FINISHED)
5013 goto have_block_group;
5014
5015 free_percent = btrfs_block_group_used(&block_group->item);
5016 free_percent *= 100;
5017 free_percent = div64_u64(free_percent,
5018 block_group->key.offset);
5019 free_percent = 100 - free_percent;
5020 if (free_percent > ideal_cache_percent &&
5021 likely(!block_group->ro)) {
5022 ideal_cache_offset = block_group->key.objectid;
5023 ideal_cache_percent = free_percent;
5024 }
5025
5026 /*
5027 * We only want to start kthread caching if we are at
5028 * the point where we will wait for caching to make
5029 * progress, or if our ideal search is over and we've
5030 * found somebody to start caching.
5031 */
5032 if (loop > LOOP_CACHING_NOWAIT ||
5033 (loop > LOOP_FIND_IDEAL &&
5034 atomic_read(&space_info->caching_threads) < 2)) {
5035 ret = cache_block_group(block_group, trans,
5036 orig_root, 0);
5037 BUG_ON(ret);
5038 }
5039 found_uncached_bg = true;
5040
5041 /*
5042 * If loop is set for cached only, try the next block
5043 * group.
5044 */
5045 if (loop == LOOP_FIND_IDEAL)
5046 goto loop;
5047 }
5048
5049 cached = block_group_cache_done(block_group);
5050 if (unlikely(!cached))
5051 found_uncached_bg = true;
5052
5053 if (unlikely(block_group->ro))
5054 goto loop;
5055
5056 /*
5057 * Ok we want to try and use the cluster allocator, so lets look
5058 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5059 * have tried the cluster allocator plenty of times at this
5060 * point and not have found anything, so we are likely way too
5061 * fragmented for the clustering stuff to find anything, so lets
5062 * just skip it and let the allocator find whatever block it can
5063 * find
5064 */
5065 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5066 /*
5067 * the refill lock keeps out other
5068 * people trying to start a new cluster
5069 */
5070 spin_lock(&last_ptr->refill_lock);
5071 if (last_ptr->block_group &&
5072 (last_ptr->block_group->ro ||
5073 !block_group_bits(last_ptr->block_group, data))) {
5074 offset = 0;
5075 goto refill_cluster;
5076 }
5077
5078 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5079 num_bytes, search_start);
5080 if (offset) {
5081 /* we have a block, we're done */
5082 spin_unlock(&last_ptr->refill_lock);
5083 goto checks;
5084 }
5085
5086 spin_lock(&last_ptr->lock);
5087 /*
5088 * whoops, this cluster doesn't actually point to
5089 * this block group. Get a ref on the block
5090 * group is does point to and try again
5091 */
5092 if (!last_ptr_loop && last_ptr->block_group &&
5093 last_ptr->block_group != block_group) {
5094
5095 btrfs_put_block_group(block_group);
5096 block_group = last_ptr->block_group;
5097 btrfs_get_block_group(block_group);
5098 spin_unlock(&last_ptr->lock);
5099 spin_unlock(&last_ptr->refill_lock);
5100
5101 last_ptr_loop = 1;
5102 search_start = block_group->key.objectid;
5103 /*
5104 * we know this block group is properly
5105 * in the list because
5106 * btrfs_remove_block_group, drops the
5107 * cluster before it removes the block
5108 * group from the list
5109 */
5110 goto have_block_group;
5111 }
5112 spin_unlock(&last_ptr->lock);
5113 refill_cluster:
5114 /*
5115 * this cluster didn't work out, free it and
5116 * start over
5117 */
5118 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5119
5120 last_ptr_loop = 0;
5121
5122 /* allocate a cluster in this block group */
5123 ret = btrfs_find_space_cluster(trans, root,
5124 block_group, last_ptr,
5125 offset, num_bytes,
5126 empty_cluster + empty_size);
5127 if (ret == 0) {
5128 /*
5129 * now pull our allocation out of this
5130 * cluster
5131 */
5132 offset = btrfs_alloc_from_cluster(block_group,
5133 last_ptr, num_bytes,
5134 search_start);
5135 if (offset) {
5136 /* we found one, proceed */
5137 spin_unlock(&last_ptr->refill_lock);
5138 goto checks;
5139 }
5140 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5141 && !failed_cluster_refill) {
5142 spin_unlock(&last_ptr->refill_lock);
5143
5144 failed_cluster_refill = true;
5145 wait_block_group_cache_progress(block_group,
5146 num_bytes + empty_cluster + empty_size);
5147 goto have_block_group;
5148 }
5149
5150 /*
5151 * at this point we either didn't find a cluster
5152 * or we weren't able to allocate a block from our
5153 * cluster. Free the cluster we've been trying
5154 * to use, and go to the next block group
5155 */
5156 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5157 spin_unlock(&last_ptr->refill_lock);
5158 goto loop;
5159 }
5160
5161 offset = btrfs_find_space_for_alloc(block_group, search_start,
5162 num_bytes, empty_size);
5163 /*
5164 * If we didn't find a chunk, and we haven't failed on this
5165 * block group before, and this block group is in the middle of
5166 * caching and we are ok with waiting, then go ahead and wait
5167 * for progress to be made, and set failed_alloc to true.
5168 *
5169 * If failed_alloc is true then we've already waited on this
5170 * block group once and should move on to the next block group.
5171 */
5172 if (!offset && !failed_alloc && !cached &&
5173 loop > LOOP_CACHING_NOWAIT) {
5174 wait_block_group_cache_progress(block_group,
5175 num_bytes + empty_size);
5176 failed_alloc = true;
5177 goto have_block_group;
5178 } else if (!offset) {
5179 goto loop;
5180 }
5181 checks:
5182 search_start = stripe_align(root, offset);
5183 /* move on to the next group */
5184 if (search_start + num_bytes >= search_end) {
5185 btrfs_add_free_space(block_group, offset, num_bytes);
5186 goto loop;
5187 }
5188
5189 /* move on to the next group */
5190 if (search_start + num_bytes >
5191 block_group->key.objectid + block_group->key.offset) {
5192 btrfs_add_free_space(block_group, offset, num_bytes);
5193 goto loop;
5194 }
5195
5196 ins->objectid = search_start;
5197 ins->offset = num_bytes;
5198
5199 if (offset < search_start)
5200 btrfs_add_free_space(block_group, offset,
5201 search_start - offset);
5202 BUG_ON(offset > search_start);
5203
5204 ret = update_reserved_bytes(block_group, num_bytes, 1,
5205 (data & BTRFS_BLOCK_GROUP_DATA));
5206 if (ret == -EAGAIN) {
5207 btrfs_add_free_space(block_group, offset, num_bytes);
5208 goto loop;
5209 }
5210
5211 /* we are all good, lets return */
5212 ins->objectid = search_start;
5213 ins->offset = num_bytes;
5214
5215 if (offset < search_start)
5216 btrfs_add_free_space(block_group, offset,
5217 search_start - offset);
5218 BUG_ON(offset > search_start);
5219 break;
5220 loop:
5221 failed_cluster_refill = false;
5222 failed_alloc = false;
5223 BUG_ON(index != get_block_group_index(block_group));
5224 btrfs_put_block_group(block_group);
5225 }
5226 up_read(&space_info->groups_sem);
5227
5228 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5229 goto search;
5230
5231 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5232 * for them to make caching progress. Also
5233 * determine the best possible bg to cache
5234 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5235 * caching kthreads as we move along
5236 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5237 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5238 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5239 * again
5240 */
5241 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
5242 (found_uncached_bg || empty_size || empty_cluster ||
5243 allowed_chunk_alloc)) {
5244 index = 0;
5245 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5246 found_uncached_bg = false;
5247 loop++;
5248 if (!ideal_cache_percent &&
5249 atomic_read(&space_info->caching_threads))
5250 goto search;
5251
5252 /*
5253 * 1 of the following 2 things have happened so far
5254 *
5255 * 1) We found an ideal block group for caching that
5256 * is mostly full and will cache quickly, so we might
5257 * as well wait for it.
5258 *
5259 * 2) We searched for cached only and we didn't find
5260 * anything, and we didn't start any caching kthreads
5261 * either, so chances are we will loop through and
5262 * start a couple caching kthreads, and then come back
5263 * around and just wait for them. This will be slower
5264 * because we will have 2 caching kthreads reading at
5265 * the same time when we could have just started one
5266 * and waited for it to get far enough to give us an
5267 * allocation, so go ahead and go to the wait caching
5268 * loop.
5269 */
5270 loop = LOOP_CACHING_WAIT;
5271 search_start = ideal_cache_offset;
5272 ideal_cache_percent = 0;
5273 goto ideal_cache;
5274 } else if (loop == LOOP_FIND_IDEAL) {
5275 /*
5276 * Didn't find a uncached bg, wait on anything we find
5277 * next.
5278 */
5279 loop = LOOP_CACHING_WAIT;
5280 goto search;
5281 }
5282
5283 if (loop < LOOP_CACHING_WAIT) {
5284 loop++;
5285 goto search;
5286 }
5287
5288 if (loop == LOOP_ALLOC_CHUNK) {
5289 empty_size = 0;
5290 empty_cluster = 0;
5291 }
5292
5293 if (allowed_chunk_alloc) {
5294 ret = do_chunk_alloc(trans, root, num_bytes +
5295 2 * 1024 * 1024, data, 1);
5296 allowed_chunk_alloc = 0;
5297 done_chunk_alloc = 1;
5298 } else if (!done_chunk_alloc) {
5299 space_info->force_alloc = 1;
5300 }
5301
5302 if (loop < LOOP_NO_EMPTY_SIZE) {
5303 loop++;
5304 goto search;
5305 }
5306 ret = -ENOSPC;
5307 } else if (!ins->objectid) {
5308 ret = -ENOSPC;
5309 }
5310
5311 /* we found what we needed */
5312 if (ins->objectid) {
5313 if (!(data & BTRFS_BLOCK_GROUP_DATA))
5314 trans->block_group = block_group->key.objectid;
5315
5316 btrfs_put_block_group(block_group);
5317 ret = 0;
5318 }
5319
5320 return ret;
5321 }
5322
5323 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5324 int dump_block_groups)
5325 {
5326 struct btrfs_block_group_cache *cache;
5327 int index = 0;
5328
5329 spin_lock(&info->lock);
5330 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5331 (unsigned long long)(info->total_bytes - info->bytes_used -
5332 info->bytes_pinned - info->bytes_reserved -
5333 info->bytes_readonly),
5334 (info->full) ? "" : "not ");
5335 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5336 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5337 (unsigned long long)info->total_bytes,
5338 (unsigned long long)info->bytes_used,
5339 (unsigned long long)info->bytes_pinned,
5340 (unsigned long long)info->bytes_reserved,
5341 (unsigned long long)info->bytes_may_use,
5342 (unsigned long long)info->bytes_readonly);
5343 spin_unlock(&info->lock);
5344
5345 if (!dump_block_groups)
5346 return;
5347
5348 down_read(&info->groups_sem);
5349 again:
5350 list_for_each_entry(cache, &info->block_groups[index], list) {
5351 spin_lock(&cache->lock);
5352 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5353 "%llu pinned %llu reserved\n",
5354 (unsigned long long)cache->key.objectid,
5355 (unsigned long long)cache->key.offset,
5356 (unsigned long long)btrfs_block_group_used(&cache->item),
5357 (unsigned long long)cache->pinned,
5358 (unsigned long long)cache->reserved);
5359 btrfs_dump_free_space(cache, bytes);
5360 spin_unlock(&cache->lock);
5361 }
5362 if (++index < BTRFS_NR_RAID_TYPES)
5363 goto again;
5364 up_read(&info->groups_sem);
5365 }
5366
5367 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5368 struct btrfs_root *root,
5369 u64 num_bytes, u64 min_alloc_size,
5370 u64 empty_size, u64 hint_byte,
5371 u64 search_end, struct btrfs_key *ins,
5372 u64 data)
5373 {
5374 int ret;
5375 u64 search_start = 0;
5376
5377 data = btrfs_get_alloc_profile(root, data);
5378 again:
5379 /*
5380 * the only place that sets empty_size is btrfs_realloc_node, which
5381 * is not called recursively on allocations
5382 */
5383 if (empty_size || root->ref_cows)
5384 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5385 num_bytes + 2 * 1024 * 1024, data, 0);
5386
5387 WARN_ON(num_bytes < root->sectorsize);
5388 ret = find_free_extent(trans, root, num_bytes, empty_size,
5389 search_start, search_end, hint_byte,
5390 ins, data);
5391
5392 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5393 num_bytes = num_bytes >> 1;
5394 num_bytes = num_bytes & ~(root->sectorsize - 1);
5395 num_bytes = max(num_bytes, min_alloc_size);
5396 do_chunk_alloc(trans, root->fs_info->extent_root,
5397 num_bytes, data, 1);
5398 goto again;
5399 }
5400 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5401 struct btrfs_space_info *sinfo;
5402
5403 sinfo = __find_space_info(root->fs_info, data);
5404 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5405 "wanted %llu\n", (unsigned long long)data,
5406 (unsigned long long)num_bytes);
5407 dump_space_info(sinfo, num_bytes, 1);
5408 }
5409
5410 return ret;
5411 }
5412
5413 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5414 {
5415 struct btrfs_block_group_cache *cache;
5416 int ret = 0;
5417
5418 cache = btrfs_lookup_block_group(root->fs_info, start);
5419 if (!cache) {
5420 printk(KERN_ERR "Unable to find block group for %llu\n",
5421 (unsigned long long)start);
5422 return -ENOSPC;
5423 }
5424
5425 ret = btrfs_discard_extent(root, start, len);
5426
5427 btrfs_add_free_space(cache, start, len);
5428 update_reserved_bytes(cache, len, 0, 1);
5429 btrfs_put_block_group(cache);
5430
5431 return ret;
5432 }
5433
5434 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5435 struct btrfs_root *root,
5436 u64 parent, u64 root_objectid,
5437 u64 flags, u64 owner, u64 offset,
5438 struct btrfs_key *ins, int ref_mod)
5439 {
5440 int ret;
5441 struct btrfs_fs_info *fs_info = root->fs_info;
5442 struct btrfs_extent_item *extent_item;
5443 struct btrfs_extent_inline_ref *iref;
5444 struct btrfs_path *path;
5445 struct extent_buffer *leaf;
5446 int type;
5447 u32 size;
5448
5449 if (parent > 0)
5450 type = BTRFS_SHARED_DATA_REF_KEY;
5451 else
5452 type = BTRFS_EXTENT_DATA_REF_KEY;
5453
5454 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5455
5456 path = btrfs_alloc_path();
5457 BUG_ON(!path);
5458
5459 path->leave_spinning = 1;
5460 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5461 ins, size);
5462 BUG_ON(ret);
5463
5464 leaf = path->nodes[0];
5465 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5466 struct btrfs_extent_item);
5467 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5468 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5469 btrfs_set_extent_flags(leaf, extent_item,
5470 flags | BTRFS_EXTENT_FLAG_DATA);
5471
5472 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5473 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5474 if (parent > 0) {
5475 struct btrfs_shared_data_ref *ref;
5476 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5477 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5478 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5479 } else {
5480 struct btrfs_extent_data_ref *ref;
5481 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5482 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5483 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5484 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5485 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5486 }
5487
5488 btrfs_mark_buffer_dirty(path->nodes[0]);
5489 btrfs_free_path(path);
5490
5491 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5492 if (ret) {
5493 printk(KERN_ERR "btrfs update block group failed for %llu "
5494 "%llu\n", (unsigned long long)ins->objectid,
5495 (unsigned long long)ins->offset);
5496 BUG();
5497 }
5498 return ret;
5499 }
5500
5501 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5502 struct btrfs_root *root,
5503 u64 parent, u64 root_objectid,
5504 u64 flags, struct btrfs_disk_key *key,
5505 int level, struct btrfs_key *ins)
5506 {
5507 int ret;
5508 struct btrfs_fs_info *fs_info = root->fs_info;
5509 struct btrfs_extent_item *extent_item;
5510 struct btrfs_tree_block_info *block_info;
5511 struct btrfs_extent_inline_ref *iref;
5512 struct btrfs_path *path;
5513 struct extent_buffer *leaf;
5514 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5515
5516 path = btrfs_alloc_path();
5517 BUG_ON(!path);
5518
5519 path->leave_spinning = 1;
5520 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5521 ins, size);
5522 BUG_ON(ret);
5523
5524 leaf = path->nodes[0];
5525 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5526 struct btrfs_extent_item);
5527 btrfs_set_extent_refs(leaf, extent_item, 1);
5528 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5529 btrfs_set_extent_flags(leaf, extent_item,
5530 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5531 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5532
5533 btrfs_set_tree_block_key(leaf, block_info, key);
5534 btrfs_set_tree_block_level(leaf, block_info, level);
5535
5536 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5537 if (parent > 0) {
5538 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5539 btrfs_set_extent_inline_ref_type(leaf, iref,
5540 BTRFS_SHARED_BLOCK_REF_KEY);
5541 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5542 } else {
5543 btrfs_set_extent_inline_ref_type(leaf, iref,
5544 BTRFS_TREE_BLOCK_REF_KEY);
5545 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5546 }
5547
5548 btrfs_mark_buffer_dirty(leaf);
5549 btrfs_free_path(path);
5550
5551 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5552 if (ret) {
5553 printk(KERN_ERR "btrfs update block group failed for %llu "
5554 "%llu\n", (unsigned long long)ins->objectid,
5555 (unsigned long long)ins->offset);
5556 BUG();
5557 }
5558 return ret;
5559 }
5560
5561 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5562 struct btrfs_root *root,
5563 u64 root_objectid, u64 owner,
5564 u64 offset, struct btrfs_key *ins)
5565 {
5566 int ret;
5567
5568 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5569
5570 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5571 0, root_objectid, owner, offset,
5572 BTRFS_ADD_DELAYED_EXTENT, NULL);
5573 return ret;
5574 }
5575
5576 /*
5577 * this is used by the tree logging recovery code. It records that
5578 * an extent has been allocated and makes sure to clear the free
5579 * space cache bits as well
5580 */
5581 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5582 struct btrfs_root *root,
5583 u64 root_objectid, u64 owner, u64 offset,
5584 struct btrfs_key *ins)
5585 {
5586 int ret;
5587 struct btrfs_block_group_cache *block_group;
5588 struct btrfs_caching_control *caching_ctl;
5589 u64 start = ins->objectid;
5590 u64 num_bytes = ins->offset;
5591
5592 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5593 cache_block_group(block_group, trans, NULL, 0);
5594 caching_ctl = get_caching_control(block_group);
5595
5596 if (!caching_ctl) {
5597 BUG_ON(!block_group_cache_done(block_group));
5598 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5599 BUG_ON(ret);
5600 } else {
5601 mutex_lock(&caching_ctl->mutex);
5602
5603 if (start >= caching_ctl->progress) {
5604 ret = add_excluded_extent(root, start, num_bytes);
5605 BUG_ON(ret);
5606 } else if (start + num_bytes <= caching_ctl->progress) {
5607 ret = btrfs_remove_free_space(block_group,
5608 start, num_bytes);
5609 BUG_ON(ret);
5610 } else {
5611 num_bytes = caching_ctl->progress - start;
5612 ret = btrfs_remove_free_space(block_group,
5613 start, num_bytes);
5614 BUG_ON(ret);
5615
5616 start = caching_ctl->progress;
5617 num_bytes = ins->objectid + ins->offset -
5618 caching_ctl->progress;
5619 ret = add_excluded_extent(root, start, num_bytes);
5620 BUG_ON(ret);
5621 }
5622
5623 mutex_unlock(&caching_ctl->mutex);
5624 put_caching_control(caching_ctl);
5625 }
5626
5627 ret = update_reserved_bytes(block_group, ins->offset, 1, 1);
5628 BUG_ON(ret);
5629 btrfs_put_block_group(block_group);
5630 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5631 0, owner, offset, ins, 1);
5632 return ret;
5633 }
5634
5635 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5636 struct btrfs_root *root,
5637 u64 bytenr, u32 blocksize,
5638 int level)
5639 {
5640 struct extent_buffer *buf;
5641
5642 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5643 if (!buf)
5644 return ERR_PTR(-ENOMEM);
5645 btrfs_set_header_generation(buf, trans->transid);
5646 btrfs_set_buffer_lockdep_class(buf, level);
5647 btrfs_tree_lock(buf);
5648 clean_tree_block(trans, root, buf);
5649
5650 btrfs_set_lock_blocking(buf);
5651 btrfs_set_buffer_uptodate(buf);
5652
5653 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5654 /*
5655 * we allow two log transactions at a time, use different
5656 * EXENT bit to differentiate dirty pages.
5657 */
5658 if (root->log_transid % 2 == 0)
5659 set_extent_dirty(&root->dirty_log_pages, buf->start,
5660 buf->start + buf->len - 1, GFP_NOFS);
5661 else
5662 set_extent_new(&root->dirty_log_pages, buf->start,
5663 buf->start + buf->len - 1, GFP_NOFS);
5664 } else {
5665 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5666 buf->start + buf->len - 1, GFP_NOFS);
5667 }
5668 trans->blocks_used++;
5669 /* this returns a buffer locked for blocking */
5670 return buf;
5671 }
5672
5673 static struct btrfs_block_rsv *
5674 use_block_rsv(struct btrfs_trans_handle *trans,
5675 struct btrfs_root *root, u32 blocksize)
5676 {
5677 struct btrfs_block_rsv *block_rsv;
5678 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5679 int ret;
5680
5681 block_rsv = get_block_rsv(trans, root);
5682
5683 if (block_rsv->size == 0) {
5684 ret = reserve_metadata_bytes(trans, root, block_rsv,
5685 blocksize, 0);
5686 /*
5687 * If we couldn't reserve metadata bytes try and use some from
5688 * the global reserve.
5689 */
5690 if (ret && block_rsv != global_rsv) {
5691 ret = block_rsv_use_bytes(global_rsv, blocksize);
5692 if (!ret)
5693 return global_rsv;
5694 return ERR_PTR(ret);
5695 } else if (ret) {
5696 return ERR_PTR(ret);
5697 }
5698 return block_rsv;
5699 }
5700
5701 ret = block_rsv_use_bytes(block_rsv, blocksize);
5702 if (!ret)
5703 return block_rsv;
5704 if (ret) {
5705 WARN_ON(1);
5706 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5707 0);
5708 if (!ret) {
5709 spin_lock(&block_rsv->lock);
5710 block_rsv->size += blocksize;
5711 spin_unlock(&block_rsv->lock);
5712 return block_rsv;
5713 } else if (ret && block_rsv != global_rsv) {
5714 ret = block_rsv_use_bytes(global_rsv, blocksize);
5715 if (!ret)
5716 return global_rsv;
5717 }
5718 }
5719
5720 return ERR_PTR(-ENOSPC);
5721 }
5722
5723 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5724 {
5725 block_rsv_add_bytes(block_rsv, blocksize, 0);
5726 block_rsv_release_bytes(block_rsv, NULL, 0);
5727 }
5728
5729 /*
5730 * finds a free extent and does all the dirty work required for allocation
5731 * returns the key for the extent through ins, and a tree buffer for
5732 * the first block of the extent through buf.
5733 *
5734 * returns the tree buffer or NULL.
5735 */
5736 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5737 struct btrfs_root *root, u32 blocksize,
5738 u64 parent, u64 root_objectid,
5739 struct btrfs_disk_key *key, int level,
5740 u64 hint, u64 empty_size)
5741 {
5742 struct btrfs_key ins;
5743 struct btrfs_block_rsv *block_rsv;
5744 struct extent_buffer *buf;
5745 u64 flags = 0;
5746 int ret;
5747
5748
5749 block_rsv = use_block_rsv(trans, root, blocksize);
5750 if (IS_ERR(block_rsv))
5751 return ERR_CAST(block_rsv);
5752
5753 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5754 empty_size, hint, (u64)-1, &ins, 0);
5755 if (ret) {
5756 unuse_block_rsv(block_rsv, blocksize);
5757 return ERR_PTR(ret);
5758 }
5759
5760 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5761 blocksize, level);
5762 BUG_ON(IS_ERR(buf));
5763
5764 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5765 if (parent == 0)
5766 parent = ins.objectid;
5767 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5768 } else
5769 BUG_ON(parent > 0);
5770
5771 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5772 struct btrfs_delayed_extent_op *extent_op;
5773 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5774 BUG_ON(!extent_op);
5775 if (key)
5776 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5777 else
5778 memset(&extent_op->key, 0, sizeof(extent_op->key));
5779 extent_op->flags_to_set = flags;
5780 extent_op->update_key = 1;
5781 extent_op->update_flags = 1;
5782 extent_op->is_data = 0;
5783
5784 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5785 ins.offset, parent, root_objectid,
5786 level, BTRFS_ADD_DELAYED_EXTENT,
5787 extent_op);
5788 BUG_ON(ret);
5789 }
5790 return buf;
5791 }
5792
5793 struct walk_control {
5794 u64 refs[BTRFS_MAX_LEVEL];
5795 u64 flags[BTRFS_MAX_LEVEL];
5796 struct btrfs_key update_progress;
5797 int stage;
5798 int level;
5799 int shared_level;
5800 int update_ref;
5801 int keep_locks;
5802 int reada_slot;
5803 int reada_count;
5804 };
5805
5806 #define DROP_REFERENCE 1
5807 #define UPDATE_BACKREF 2
5808
5809 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5810 struct btrfs_root *root,
5811 struct walk_control *wc,
5812 struct btrfs_path *path)
5813 {
5814 u64 bytenr;
5815 u64 generation;
5816 u64 refs;
5817 u64 flags;
5818 u32 nritems;
5819 u32 blocksize;
5820 struct btrfs_key key;
5821 struct extent_buffer *eb;
5822 int ret;
5823 int slot;
5824 int nread = 0;
5825
5826 if (path->slots[wc->level] < wc->reada_slot) {
5827 wc->reada_count = wc->reada_count * 2 / 3;
5828 wc->reada_count = max(wc->reada_count, 2);
5829 } else {
5830 wc->reada_count = wc->reada_count * 3 / 2;
5831 wc->reada_count = min_t(int, wc->reada_count,
5832 BTRFS_NODEPTRS_PER_BLOCK(root));
5833 }
5834
5835 eb = path->nodes[wc->level];
5836 nritems = btrfs_header_nritems(eb);
5837 blocksize = btrfs_level_size(root, wc->level - 1);
5838
5839 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5840 if (nread >= wc->reada_count)
5841 break;
5842
5843 cond_resched();
5844 bytenr = btrfs_node_blockptr(eb, slot);
5845 generation = btrfs_node_ptr_generation(eb, slot);
5846
5847 if (slot == path->slots[wc->level])
5848 goto reada;
5849
5850 if (wc->stage == UPDATE_BACKREF &&
5851 generation <= root->root_key.offset)
5852 continue;
5853
5854 /* We don't lock the tree block, it's OK to be racy here */
5855 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5856 &refs, &flags);
5857 BUG_ON(ret);
5858 BUG_ON(refs == 0);
5859
5860 if (wc->stage == DROP_REFERENCE) {
5861 if (refs == 1)
5862 goto reada;
5863
5864 if (wc->level == 1 &&
5865 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5866 continue;
5867 if (!wc->update_ref ||
5868 generation <= root->root_key.offset)
5869 continue;
5870 btrfs_node_key_to_cpu(eb, &key, slot);
5871 ret = btrfs_comp_cpu_keys(&key,
5872 &wc->update_progress);
5873 if (ret < 0)
5874 continue;
5875 } else {
5876 if (wc->level == 1 &&
5877 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5878 continue;
5879 }
5880 reada:
5881 ret = readahead_tree_block(root, bytenr, blocksize,
5882 generation);
5883 if (ret)
5884 break;
5885 nread++;
5886 }
5887 wc->reada_slot = slot;
5888 }
5889
5890 /*
5891 * hepler to process tree block while walking down the tree.
5892 *
5893 * when wc->stage == UPDATE_BACKREF, this function updates
5894 * back refs for pointers in the block.
5895 *
5896 * NOTE: return value 1 means we should stop walking down.
5897 */
5898 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5899 struct btrfs_root *root,
5900 struct btrfs_path *path,
5901 struct walk_control *wc, int lookup_info)
5902 {
5903 int level = wc->level;
5904 struct extent_buffer *eb = path->nodes[level];
5905 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5906 int ret;
5907
5908 if (wc->stage == UPDATE_BACKREF &&
5909 btrfs_header_owner(eb) != root->root_key.objectid)
5910 return 1;
5911
5912 /*
5913 * when reference count of tree block is 1, it won't increase
5914 * again. once full backref flag is set, we never clear it.
5915 */
5916 if (lookup_info &&
5917 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5918 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5919 BUG_ON(!path->locks[level]);
5920 ret = btrfs_lookup_extent_info(trans, root,
5921 eb->start, eb->len,
5922 &wc->refs[level],
5923 &wc->flags[level]);
5924 BUG_ON(ret);
5925 BUG_ON(wc->refs[level] == 0);
5926 }
5927
5928 if (wc->stage == DROP_REFERENCE) {
5929 if (wc->refs[level] > 1)
5930 return 1;
5931
5932 if (path->locks[level] && !wc->keep_locks) {
5933 btrfs_tree_unlock(eb);
5934 path->locks[level] = 0;
5935 }
5936 return 0;
5937 }
5938
5939 /* wc->stage == UPDATE_BACKREF */
5940 if (!(wc->flags[level] & flag)) {
5941 BUG_ON(!path->locks[level]);
5942 ret = btrfs_inc_ref(trans, root, eb, 1);
5943 BUG_ON(ret);
5944 ret = btrfs_dec_ref(trans, root, eb, 0);
5945 BUG_ON(ret);
5946 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5947 eb->len, flag, 0);
5948 BUG_ON(ret);
5949 wc->flags[level] |= flag;
5950 }
5951
5952 /*
5953 * the block is shared by multiple trees, so it's not good to
5954 * keep the tree lock
5955 */
5956 if (path->locks[level] && level > 0) {
5957 btrfs_tree_unlock(eb);
5958 path->locks[level] = 0;
5959 }
5960 return 0;
5961 }
5962
5963 /*
5964 * hepler to process tree block pointer.
5965 *
5966 * when wc->stage == DROP_REFERENCE, this function checks
5967 * reference count of the block pointed to. if the block
5968 * is shared and we need update back refs for the subtree
5969 * rooted at the block, this function changes wc->stage to
5970 * UPDATE_BACKREF. if the block is shared and there is no
5971 * need to update back, this function drops the reference
5972 * to the block.
5973 *
5974 * NOTE: return value 1 means we should stop walking down.
5975 */
5976 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5977 struct btrfs_root *root,
5978 struct btrfs_path *path,
5979 struct walk_control *wc, int *lookup_info)
5980 {
5981 u64 bytenr;
5982 u64 generation;
5983 u64 parent;
5984 u32 blocksize;
5985 struct btrfs_key key;
5986 struct extent_buffer *next;
5987 int level = wc->level;
5988 int reada = 0;
5989 int ret = 0;
5990
5991 generation = btrfs_node_ptr_generation(path->nodes[level],
5992 path->slots[level]);
5993 /*
5994 * if the lower level block was created before the snapshot
5995 * was created, we know there is no need to update back refs
5996 * for the subtree
5997 */
5998 if (wc->stage == UPDATE_BACKREF &&
5999 generation <= root->root_key.offset) {
6000 *lookup_info = 1;
6001 return 1;
6002 }
6003
6004 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6005 blocksize = btrfs_level_size(root, level - 1);
6006
6007 next = btrfs_find_tree_block(root, bytenr, blocksize);
6008 if (!next) {
6009 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6010 if (!next)
6011 return -ENOMEM;
6012 reada = 1;
6013 }
6014 btrfs_tree_lock(next);
6015 btrfs_set_lock_blocking(next);
6016
6017 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6018 &wc->refs[level - 1],
6019 &wc->flags[level - 1]);
6020 BUG_ON(ret);
6021 BUG_ON(wc->refs[level - 1] == 0);
6022 *lookup_info = 0;
6023
6024 if (wc->stage == DROP_REFERENCE) {
6025 if (wc->refs[level - 1] > 1) {
6026 if (level == 1 &&
6027 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6028 goto skip;
6029
6030 if (!wc->update_ref ||
6031 generation <= root->root_key.offset)
6032 goto skip;
6033
6034 btrfs_node_key_to_cpu(path->nodes[level], &key,
6035 path->slots[level]);
6036 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6037 if (ret < 0)
6038 goto skip;
6039
6040 wc->stage = UPDATE_BACKREF;
6041 wc->shared_level = level - 1;
6042 }
6043 } else {
6044 if (level == 1 &&
6045 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6046 goto skip;
6047 }
6048
6049 if (!btrfs_buffer_uptodate(next, generation)) {
6050 btrfs_tree_unlock(next);
6051 free_extent_buffer(next);
6052 next = NULL;
6053 *lookup_info = 1;
6054 }
6055
6056 if (!next) {
6057 if (reada && level == 1)
6058 reada_walk_down(trans, root, wc, path);
6059 next = read_tree_block(root, bytenr, blocksize, generation);
6060 btrfs_tree_lock(next);
6061 btrfs_set_lock_blocking(next);
6062 }
6063
6064 level--;
6065 BUG_ON(level != btrfs_header_level(next));
6066 path->nodes[level] = next;
6067 path->slots[level] = 0;
6068 path->locks[level] = 1;
6069 wc->level = level;
6070 if (wc->level == 1)
6071 wc->reada_slot = 0;
6072 return 0;
6073 skip:
6074 wc->refs[level - 1] = 0;
6075 wc->flags[level - 1] = 0;
6076 if (wc->stage == DROP_REFERENCE) {
6077 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6078 parent = path->nodes[level]->start;
6079 } else {
6080 BUG_ON(root->root_key.objectid !=
6081 btrfs_header_owner(path->nodes[level]));
6082 parent = 0;
6083 }
6084
6085 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6086 root->root_key.objectid, level - 1, 0);
6087 BUG_ON(ret);
6088 }
6089 btrfs_tree_unlock(next);
6090 free_extent_buffer(next);
6091 *lookup_info = 1;
6092 return 1;
6093 }
6094
6095 /*
6096 * hepler to process tree block while walking up the tree.
6097 *
6098 * when wc->stage == DROP_REFERENCE, this function drops
6099 * reference count on the block.
6100 *
6101 * when wc->stage == UPDATE_BACKREF, this function changes
6102 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6103 * to UPDATE_BACKREF previously while processing the block.
6104 *
6105 * NOTE: return value 1 means we should stop walking up.
6106 */
6107 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6108 struct btrfs_root *root,
6109 struct btrfs_path *path,
6110 struct walk_control *wc)
6111 {
6112 int ret;
6113 int level = wc->level;
6114 struct extent_buffer *eb = path->nodes[level];
6115 u64 parent = 0;
6116
6117 if (wc->stage == UPDATE_BACKREF) {
6118 BUG_ON(wc->shared_level < level);
6119 if (level < wc->shared_level)
6120 goto out;
6121
6122 ret = find_next_key(path, level + 1, &wc->update_progress);
6123 if (ret > 0)
6124 wc->update_ref = 0;
6125
6126 wc->stage = DROP_REFERENCE;
6127 wc->shared_level = -1;
6128 path->slots[level] = 0;
6129
6130 /*
6131 * check reference count again if the block isn't locked.
6132 * we should start walking down the tree again if reference
6133 * count is one.
6134 */
6135 if (!path->locks[level]) {
6136 BUG_ON(level == 0);
6137 btrfs_tree_lock(eb);
6138 btrfs_set_lock_blocking(eb);
6139 path->locks[level] = 1;
6140
6141 ret = btrfs_lookup_extent_info(trans, root,
6142 eb->start, eb->len,
6143 &wc->refs[level],
6144 &wc->flags[level]);
6145 BUG_ON(ret);
6146 BUG_ON(wc->refs[level] == 0);
6147 if (wc->refs[level] == 1) {
6148 btrfs_tree_unlock(eb);
6149 path->locks[level] = 0;
6150 return 1;
6151 }
6152 }
6153 }
6154
6155 /* wc->stage == DROP_REFERENCE */
6156 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6157
6158 if (wc->refs[level] == 1) {
6159 if (level == 0) {
6160 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6161 ret = btrfs_dec_ref(trans, root, eb, 1);
6162 else
6163 ret = btrfs_dec_ref(trans, root, eb, 0);
6164 BUG_ON(ret);
6165 }
6166 /* make block locked assertion in clean_tree_block happy */
6167 if (!path->locks[level] &&
6168 btrfs_header_generation(eb) == trans->transid) {
6169 btrfs_tree_lock(eb);
6170 btrfs_set_lock_blocking(eb);
6171 path->locks[level] = 1;
6172 }
6173 clean_tree_block(trans, root, eb);
6174 }
6175
6176 if (eb == root->node) {
6177 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6178 parent = eb->start;
6179 else
6180 BUG_ON(root->root_key.objectid !=
6181 btrfs_header_owner(eb));
6182 } else {
6183 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6184 parent = path->nodes[level + 1]->start;
6185 else
6186 BUG_ON(root->root_key.objectid !=
6187 btrfs_header_owner(path->nodes[level + 1]));
6188 }
6189
6190 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6191 out:
6192 wc->refs[level] = 0;
6193 wc->flags[level] = 0;
6194 return 0;
6195 }
6196
6197 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6198 struct btrfs_root *root,
6199 struct btrfs_path *path,
6200 struct walk_control *wc)
6201 {
6202 int level = wc->level;
6203 int lookup_info = 1;
6204 int ret;
6205
6206 while (level >= 0) {
6207 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6208 if (ret > 0)
6209 break;
6210
6211 if (level == 0)
6212 break;
6213
6214 if (path->slots[level] >=
6215 btrfs_header_nritems(path->nodes[level]))
6216 break;
6217
6218 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6219 if (ret > 0) {
6220 path->slots[level]++;
6221 continue;
6222 } else if (ret < 0)
6223 return ret;
6224 level = wc->level;
6225 }
6226 return 0;
6227 }
6228
6229 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6230 struct btrfs_root *root,
6231 struct btrfs_path *path,
6232 struct walk_control *wc, int max_level)
6233 {
6234 int level = wc->level;
6235 int ret;
6236
6237 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6238 while (level < max_level && path->nodes[level]) {
6239 wc->level = level;
6240 if (path->slots[level] + 1 <
6241 btrfs_header_nritems(path->nodes[level])) {
6242 path->slots[level]++;
6243 return 0;
6244 } else {
6245 ret = walk_up_proc(trans, root, path, wc);
6246 if (ret > 0)
6247 return 0;
6248
6249 if (path->locks[level]) {
6250 btrfs_tree_unlock(path->nodes[level]);
6251 path->locks[level] = 0;
6252 }
6253 free_extent_buffer(path->nodes[level]);
6254 path->nodes[level] = NULL;
6255 level++;
6256 }
6257 }
6258 return 1;
6259 }
6260
6261 /*
6262 * drop a subvolume tree.
6263 *
6264 * this function traverses the tree freeing any blocks that only
6265 * referenced by the tree.
6266 *
6267 * when a shared tree block is found. this function decreases its
6268 * reference count by one. if update_ref is true, this function
6269 * also make sure backrefs for the shared block and all lower level
6270 * blocks are properly updated.
6271 */
6272 int btrfs_drop_snapshot(struct btrfs_root *root,
6273 struct btrfs_block_rsv *block_rsv, int update_ref)
6274 {
6275 struct btrfs_path *path;
6276 struct btrfs_trans_handle *trans;
6277 struct btrfs_root *tree_root = root->fs_info->tree_root;
6278 struct btrfs_root_item *root_item = &root->root_item;
6279 struct walk_control *wc;
6280 struct btrfs_key key;
6281 int err = 0;
6282 int ret;
6283 int level;
6284
6285 path = btrfs_alloc_path();
6286 BUG_ON(!path);
6287
6288 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6289 BUG_ON(!wc);
6290
6291 trans = btrfs_start_transaction(tree_root, 0);
6292 BUG_ON(IS_ERR(trans));
6293
6294 if (block_rsv)
6295 trans->block_rsv = block_rsv;
6296
6297 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6298 level = btrfs_header_level(root->node);
6299 path->nodes[level] = btrfs_lock_root_node(root);
6300 btrfs_set_lock_blocking(path->nodes[level]);
6301 path->slots[level] = 0;
6302 path->locks[level] = 1;
6303 memset(&wc->update_progress, 0,
6304 sizeof(wc->update_progress));
6305 } else {
6306 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6307 memcpy(&wc->update_progress, &key,
6308 sizeof(wc->update_progress));
6309
6310 level = root_item->drop_level;
6311 BUG_ON(level == 0);
6312 path->lowest_level = level;
6313 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6314 path->lowest_level = 0;
6315 if (ret < 0) {
6316 err = ret;
6317 goto out;
6318 }
6319 WARN_ON(ret > 0);
6320
6321 /*
6322 * unlock our path, this is safe because only this
6323 * function is allowed to delete this snapshot
6324 */
6325 btrfs_unlock_up_safe(path, 0);
6326
6327 level = btrfs_header_level(root->node);
6328 while (1) {
6329 btrfs_tree_lock(path->nodes[level]);
6330 btrfs_set_lock_blocking(path->nodes[level]);
6331
6332 ret = btrfs_lookup_extent_info(trans, root,
6333 path->nodes[level]->start,
6334 path->nodes[level]->len,
6335 &wc->refs[level],
6336 &wc->flags[level]);
6337 BUG_ON(ret);
6338 BUG_ON(wc->refs[level] == 0);
6339
6340 if (level == root_item->drop_level)
6341 break;
6342
6343 btrfs_tree_unlock(path->nodes[level]);
6344 WARN_ON(wc->refs[level] != 1);
6345 level--;
6346 }
6347 }
6348
6349 wc->level = level;
6350 wc->shared_level = -1;
6351 wc->stage = DROP_REFERENCE;
6352 wc->update_ref = update_ref;
6353 wc->keep_locks = 0;
6354 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6355
6356 while (1) {
6357 ret = walk_down_tree(trans, root, path, wc);
6358 if (ret < 0) {
6359 err = ret;
6360 break;
6361 }
6362
6363 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6364 if (ret < 0) {
6365 err = ret;
6366 break;
6367 }
6368
6369 if (ret > 0) {
6370 BUG_ON(wc->stage != DROP_REFERENCE);
6371 break;
6372 }
6373
6374 if (wc->stage == DROP_REFERENCE) {
6375 level = wc->level;
6376 btrfs_node_key(path->nodes[level],
6377 &root_item->drop_progress,
6378 path->slots[level]);
6379 root_item->drop_level = level;
6380 }
6381
6382 BUG_ON(wc->level == 0);
6383 if (btrfs_should_end_transaction(trans, tree_root)) {
6384 ret = btrfs_update_root(trans, tree_root,
6385 &root->root_key,
6386 root_item);
6387 BUG_ON(ret);
6388
6389 btrfs_end_transaction_throttle(trans, tree_root);
6390 trans = btrfs_start_transaction(tree_root, 0);
6391 BUG_ON(IS_ERR(trans));
6392 if (block_rsv)
6393 trans->block_rsv = block_rsv;
6394 }
6395 }
6396 btrfs_release_path(root, path);
6397 BUG_ON(err);
6398
6399 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6400 BUG_ON(ret);
6401
6402 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6403 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6404 NULL, NULL);
6405 BUG_ON(ret < 0);
6406 if (ret > 0) {
6407 /* if we fail to delete the orphan item this time
6408 * around, it'll get picked up the next time.
6409 *
6410 * The most common failure here is just -ENOENT.
6411 */
6412 btrfs_del_orphan_item(trans, tree_root,
6413 root->root_key.objectid);
6414 }
6415 }
6416
6417 if (root->in_radix) {
6418 btrfs_free_fs_root(tree_root->fs_info, root);
6419 } else {
6420 free_extent_buffer(root->node);
6421 free_extent_buffer(root->commit_root);
6422 kfree(root);
6423 }
6424 out:
6425 btrfs_end_transaction_throttle(trans, tree_root);
6426 kfree(wc);
6427 btrfs_free_path(path);
6428 return err;
6429 }
6430
6431 /*
6432 * drop subtree rooted at tree block 'node'.
6433 *
6434 * NOTE: this function will unlock and release tree block 'node'
6435 */
6436 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6437 struct btrfs_root *root,
6438 struct extent_buffer *node,
6439 struct extent_buffer *parent)
6440 {
6441 struct btrfs_path *path;
6442 struct walk_control *wc;
6443 int level;
6444 int parent_level;
6445 int ret = 0;
6446 int wret;
6447
6448 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6449
6450 path = btrfs_alloc_path();
6451 BUG_ON(!path);
6452
6453 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6454 BUG_ON(!wc);
6455
6456 btrfs_assert_tree_locked(parent);
6457 parent_level = btrfs_header_level(parent);
6458 extent_buffer_get(parent);
6459 path->nodes[parent_level] = parent;
6460 path->slots[parent_level] = btrfs_header_nritems(parent);
6461
6462 btrfs_assert_tree_locked(node);
6463 level = btrfs_header_level(node);
6464 path->nodes[level] = node;
6465 path->slots[level] = 0;
6466 path->locks[level] = 1;
6467
6468 wc->refs[parent_level] = 1;
6469 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6470 wc->level = level;
6471 wc->shared_level = -1;
6472 wc->stage = DROP_REFERENCE;
6473 wc->update_ref = 0;
6474 wc->keep_locks = 1;
6475 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6476
6477 while (1) {
6478 wret = walk_down_tree(trans, root, path, wc);
6479 if (wret < 0) {
6480 ret = wret;
6481 break;
6482 }
6483
6484 wret = walk_up_tree(trans, root, path, wc, parent_level);
6485 if (wret < 0)
6486 ret = wret;
6487 if (wret != 0)
6488 break;
6489 }
6490
6491 kfree(wc);
6492 btrfs_free_path(path);
6493 return ret;
6494 }
6495
6496 #if 0
6497 static unsigned long calc_ra(unsigned long start, unsigned long last,
6498 unsigned long nr)
6499 {
6500 return min(last, start + nr - 1);
6501 }
6502
6503 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
6504 u64 len)
6505 {
6506 u64 page_start;
6507 u64 page_end;
6508 unsigned long first_index;
6509 unsigned long last_index;
6510 unsigned long i;
6511 struct page *page;
6512 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6513 struct file_ra_state *ra;
6514 struct btrfs_ordered_extent *ordered;
6515 unsigned int total_read = 0;
6516 unsigned int total_dirty = 0;
6517 int ret = 0;
6518
6519 ra = kzalloc(sizeof(*ra), GFP_NOFS);
6520 if (!ra)
6521 return -ENOMEM;
6522
6523 mutex_lock(&inode->i_mutex);
6524 first_index = start >> PAGE_CACHE_SHIFT;
6525 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
6526
6527 /* make sure the dirty trick played by the caller work */
6528 ret = invalidate_inode_pages2_range(inode->i_mapping,
6529 first_index, last_index);
6530 if (ret)
6531 goto out_unlock;
6532
6533 file_ra_state_init(ra, inode->i_mapping);
6534
6535 for (i = first_index ; i <= last_index; i++) {
6536 if (total_read % ra->ra_pages == 0) {
6537 btrfs_force_ra(inode->i_mapping, ra, NULL, i,
6538 calc_ra(i, last_index, ra->ra_pages));
6539 }
6540 total_read++;
6541 again:
6542 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
6543 BUG_ON(1);
6544 page = grab_cache_page(inode->i_mapping, i);
6545 if (!page) {
6546 ret = -ENOMEM;
6547 goto out_unlock;
6548 }
6549 if (!PageUptodate(page)) {
6550 btrfs_readpage(NULL, page);
6551 lock_page(page);
6552 if (!PageUptodate(page)) {
6553 unlock_page(page);
6554 page_cache_release(page);
6555 ret = -EIO;
6556 goto out_unlock;
6557 }
6558 }
6559 wait_on_page_writeback(page);
6560
6561 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
6562 page_end = page_start + PAGE_CACHE_SIZE - 1;
6563 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
6564
6565 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6566 if (ordered) {
6567 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6568 unlock_page(page);
6569 page_cache_release(page);
6570 btrfs_start_ordered_extent(inode, ordered, 1);
6571 btrfs_put_ordered_extent(ordered);
6572 goto again;
6573 }
6574 set_page_extent_mapped(page);
6575
6576 if (i == first_index)
6577 set_extent_bits(io_tree, page_start, page_end,
6578 EXTENT_BOUNDARY, GFP_NOFS);
6579 btrfs_set_extent_delalloc(inode, page_start, page_end);
6580
6581 set_page_dirty(page);
6582 total_dirty++;
6583
6584 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6585 unlock_page(page);
6586 page_cache_release(page);
6587 }
6588
6589 out_unlock:
6590 kfree(ra);
6591 mutex_unlock(&inode->i_mutex);
6592 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
6593 return ret;
6594 }
6595
6596 static noinline int relocate_data_extent(struct inode *reloc_inode,
6597 struct btrfs_key *extent_key,
6598 u64 offset)
6599 {
6600 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6601 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
6602 struct extent_map *em;
6603 u64 start = extent_key->objectid - offset;
6604 u64 end = start + extent_key->offset - 1;
6605
6606 em = alloc_extent_map(GFP_NOFS);
6607 BUG_ON(!em);
6608
6609 em->start = start;
6610 em->len = extent_key->offset;
6611 em->block_len = extent_key->offset;
6612 em->block_start = extent_key->objectid;
6613 em->bdev = root->fs_info->fs_devices->latest_bdev;
6614 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6615
6616 /* setup extent map to cheat btrfs_readpage */
6617 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6618 while (1) {
6619 int ret;
6620 write_lock(&em_tree->lock);
6621 ret = add_extent_mapping(em_tree, em);
6622 write_unlock(&em_tree->lock);
6623 if (ret != -EEXIST) {
6624 free_extent_map(em);
6625 break;
6626 }
6627 btrfs_drop_extent_cache(reloc_inode, start, end, 0);
6628 }
6629 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6630
6631 return relocate_inode_pages(reloc_inode, start, extent_key->offset);
6632 }
6633
6634 struct btrfs_ref_path {
6635 u64 extent_start;
6636 u64 nodes[BTRFS_MAX_LEVEL];
6637 u64 root_objectid;
6638 u64 root_generation;
6639 u64 owner_objectid;
6640 u32 num_refs;
6641 int lowest_level;
6642 int current_level;
6643 int shared_level;
6644
6645 struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
6646 u64 new_nodes[BTRFS_MAX_LEVEL];
6647 };
6648
6649 struct disk_extent {
6650 u64 ram_bytes;
6651 u64 disk_bytenr;
6652 u64 disk_num_bytes;
6653 u64 offset;
6654 u64 num_bytes;
6655 u8 compression;
6656 u8 encryption;
6657 u16 other_encoding;
6658 };
6659
6660 static int is_cowonly_root(u64 root_objectid)
6661 {
6662 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
6663 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
6664 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
6665 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
6666 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6667 root_objectid == BTRFS_CSUM_TREE_OBJECTID)
6668 return 1;
6669 return 0;
6670 }
6671
6672 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
6673 struct btrfs_root *extent_root,
6674 struct btrfs_ref_path *ref_path,
6675 int first_time)
6676 {
6677 struct extent_buffer *leaf;
6678 struct btrfs_path *path;
6679 struct btrfs_extent_ref *ref;
6680 struct btrfs_key key;
6681 struct btrfs_key found_key;
6682 u64 bytenr;
6683 u32 nritems;
6684 int level;
6685 int ret = 1;
6686
6687 path = btrfs_alloc_path();
6688 if (!path)
6689 return -ENOMEM;
6690
6691 if (first_time) {
6692 ref_path->lowest_level = -1;
6693 ref_path->current_level = -1;
6694 ref_path->shared_level = -1;
6695 goto walk_up;
6696 }
6697 walk_down:
6698 level = ref_path->current_level - 1;
6699 while (level >= -1) {
6700 u64 parent;
6701 if (level < ref_path->lowest_level)
6702 break;
6703
6704 if (level >= 0)
6705 bytenr = ref_path->nodes[level];
6706 else
6707 bytenr = ref_path->extent_start;
6708 BUG_ON(bytenr == 0);
6709
6710 parent = ref_path->nodes[level + 1];
6711 ref_path->nodes[level + 1] = 0;
6712 ref_path->current_level = level;
6713 BUG_ON(parent == 0);
6714
6715 key.objectid = bytenr;
6716 key.offset = parent + 1;
6717 key.type = BTRFS_EXTENT_REF_KEY;
6718
6719 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6720 if (ret < 0)
6721 goto out;
6722 BUG_ON(ret == 0);
6723
6724 leaf = path->nodes[0];
6725 nritems = btrfs_header_nritems(leaf);
6726 if (path->slots[0] >= nritems) {
6727 ret = btrfs_next_leaf(extent_root, path);
6728 if (ret < 0)
6729 goto out;
6730 if (ret > 0)
6731 goto next;
6732 leaf = path->nodes[0];
6733 }
6734
6735 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6736 if (found_key.objectid == bytenr &&
6737 found_key.type == BTRFS_EXTENT_REF_KEY) {
6738 if (level < ref_path->shared_level)
6739 ref_path->shared_level = level;
6740 goto found;
6741 }
6742 next:
6743 level--;
6744 btrfs_release_path(extent_root, path);
6745 cond_resched();
6746 }
6747 /* reached lowest level */
6748 ret = 1;
6749 goto out;
6750 walk_up:
6751 level = ref_path->current_level;
6752 while (level < BTRFS_MAX_LEVEL - 1) {
6753 u64 ref_objectid;
6754
6755 if (level >= 0)
6756 bytenr = ref_path->nodes[level];
6757 else
6758 bytenr = ref_path->extent_start;
6759
6760 BUG_ON(bytenr == 0);
6761
6762 key.objectid = bytenr;
6763 key.offset = 0;
6764 key.type = BTRFS_EXTENT_REF_KEY;
6765
6766 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6767 if (ret < 0)
6768 goto out;
6769
6770 leaf = path->nodes[0];
6771 nritems = btrfs_header_nritems(leaf);
6772 if (path->slots[0] >= nritems) {
6773 ret = btrfs_next_leaf(extent_root, path);
6774 if (ret < 0)
6775 goto out;
6776 if (ret > 0) {
6777 /* the extent was freed by someone */
6778 if (ref_path->lowest_level == level)
6779 goto out;
6780 btrfs_release_path(extent_root, path);
6781 goto walk_down;
6782 }
6783 leaf = path->nodes[0];
6784 }
6785
6786 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6787 if (found_key.objectid != bytenr ||
6788 found_key.type != BTRFS_EXTENT_REF_KEY) {
6789 /* the extent was freed by someone */
6790 if (ref_path->lowest_level == level) {
6791 ret = 1;
6792 goto out;
6793 }
6794 btrfs_release_path(extent_root, path);
6795 goto walk_down;
6796 }
6797 found:
6798 ref = btrfs_item_ptr(leaf, path->slots[0],
6799 struct btrfs_extent_ref);
6800 ref_objectid = btrfs_ref_objectid(leaf, ref);
6801 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
6802 if (first_time) {
6803 level = (int)ref_objectid;
6804 BUG_ON(level >= BTRFS_MAX_LEVEL);
6805 ref_path->lowest_level = level;
6806 ref_path->current_level = level;
6807 ref_path->nodes[level] = bytenr;
6808 } else {
6809 WARN_ON(ref_objectid != level);
6810 }
6811 } else {
6812 WARN_ON(level != -1);
6813 }
6814 first_time = 0;
6815
6816 if (ref_path->lowest_level == level) {
6817 ref_path->owner_objectid = ref_objectid;
6818 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6819 }
6820
6821 /*
6822 * the block is tree root or the block isn't in reference
6823 * counted tree.
6824 */
6825 if (found_key.objectid == found_key.offset ||
6826 is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6827 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6828 ref_path->root_generation =
6829 btrfs_ref_generation(leaf, ref);
6830 if (level < 0) {
6831 /* special reference from the tree log */
6832 ref_path->nodes[0] = found_key.offset;
6833 ref_path->current_level = 0;
6834 }
6835 ret = 0;
6836 goto out;
6837 }
6838
6839 level++;
6840 BUG_ON(ref_path->nodes[level] != 0);
6841 ref_path->nodes[level] = found_key.offset;
6842 ref_path->current_level = level;
6843
6844 /*
6845 * the reference was created in the running transaction,
6846 * no need to continue walking up.
6847 */
6848 if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6849 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6850 ref_path->root_generation =
6851 btrfs_ref_generation(leaf, ref);
6852 ret = 0;
6853 goto out;
6854 }
6855
6856 btrfs_release_path(extent_root, path);
6857 cond_resched();
6858 }
6859 /* reached max tree level, but no tree root found. */
6860 BUG();
6861 out:
6862 btrfs_free_path(path);
6863 return ret;
6864 }
6865
6866 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6867 struct btrfs_root *extent_root,
6868 struct btrfs_ref_path *ref_path,
6869 u64 extent_start)
6870 {
6871 memset(ref_path, 0, sizeof(*ref_path));
6872 ref_path->extent_start = extent_start;
6873
6874 return __next_ref_path(trans, extent_root, ref_path, 1);
6875 }
6876
6877 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6878 struct btrfs_root *extent_root,
6879 struct btrfs_ref_path *ref_path)
6880 {
6881 return __next_ref_path(trans, extent_root, ref_path, 0);
6882 }
6883
6884 static noinline int get_new_locations(struct inode *reloc_inode,
6885 struct btrfs_key *extent_key,
6886 u64 offset, int no_fragment,
6887 struct disk_extent **extents,
6888 int *nr_extents)
6889 {
6890 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6891 struct btrfs_path *path;
6892 struct btrfs_file_extent_item *fi;
6893 struct extent_buffer *leaf;
6894 struct disk_extent *exts = *extents;
6895 struct btrfs_key found_key;
6896 u64 cur_pos;
6897 u64 last_byte;
6898 u32 nritems;
6899 int nr = 0;
6900 int max = *nr_extents;
6901 int ret;
6902
6903 WARN_ON(!no_fragment && *extents);
6904 if (!exts) {
6905 max = 1;
6906 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6907 if (!exts)
6908 return -ENOMEM;
6909 }
6910
6911 path = btrfs_alloc_path();
6912 BUG_ON(!path);
6913
6914 cur_pos = extent_key->objectid - offset;
6915 last_byte = extent_key->objectid + extent_key->offset;
6916 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6917 cur_pos, 0);
6918 if (ret < 0)
6919 goto out;
6920 if (ret > 0) {
6921 ret = -ENOENT;
6922 goto out;
6923 }
6924
6925 while (1) {
6926 leaf = path->nodes[0];
6927 nritems = btrfs_header_nritems(leaf);
6928 if (path->slots[0] >= nritems) {
6929 ret = btrfs_next_leaf(root, path);
6930 if (ret < 0)
6931 goto out;
6932 if (ret > 0)
6933 break;
6934 leaf = path->nodes[0];
6935 }
6936
6937 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6938 if (found_key.offset != cur_pos ||
6939 found_key.type != BTRFS_EXTENT_DATA_KEY ||
6940 found_key.objectid != reloc_inode->i_ino)
6941 break;
6942
6943 fi = btrfs_item_ptr(leaf, path->slots[0],
6944 struct btrfs_file_extent_item);
6945 if (btrfs_file_extent_type(leaf, fi) !=
6946 BTRFS_FILE_EXTENT_REG ||
6947 btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6948 break;
6949
6950 if (nr == max) {
6951 struct disk_extent *old = exts;
6952 max *= 2;
6953 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6954 memcpy(exts, old, sizeof(*exts) * nr);
6955 if (old != *extents)
6956 kfree(old);
6957 }
6958
6959 exts[nr].disk_bytenr =
6960 btrfs_file_extent_disk_bytenr(leaf, fi);
6961 exts[nr].disk_num_bytes =
6962 btrfs_file_extent_disk_num_bytes(leaf, fi);
6963 exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6964 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6965 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6966 exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6967 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6968 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6969 fi);
6970 BUG_ON(exts[nr].offset > 0);
6971 BUG_ON(exts[nr].compression || exts[nr].encryption);
6972 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6973
6974 cur_pos += exts[nr].num_bytes;
6975 nr++;
6976
6977 if (cur_pos + offset >= last_byte)
6978 break;
6979
6980 if (no_fragment) {
6981 ret = 1;
6982 goto out;
6983 }
6984 path->slots[0]++;
6985 }
6986
6987 BUG_ON(cur_pos + offset > last_byte);
6988 if (cur_pos + offset < last_byte) {
6989 ret = -ENOENT;
6990 goto out;
6991 }
6992 ret = 0;
6993 out:
6994 btrfs_free_path(path);
6995 if (ret) {
6996 if (exts != *extents)
6997 kfree(exts);
6998 } else {
6999 *extents = exts;
7000 *nr_extents = nr;
7001 }
7002 return ret;
7003 }
7004
7005 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
7006 struct btrfs_root *root,
7007 struct btrfs_path *path,
7008 struct btrfs_key *extent_key,
7009 struct btrfs_key *leaf_key,
7010 struct btrfs_ref_path *ref_path,
7011 struct disk_extent *new_extents,
7012 int nr_extents)
7013 {
7014 struct extent_buffer *leaf;
7015 struct btrfs_file_extent_item *fi;
7016 struct inode *inode = NULL;
7017 struct btrfs_key key;
7018 u64 lock_start = 0;
7019 u64 lock_end = 0;
7020 u64 num_bytes;
7021 u64 ext_offset;
7022 u64 search_end = (u64)-1;
7023 u32 nritems;
7024 int nr_scaned = 0;
7025 int extent_locked = 0;
7026 int extent_type;
7027 int ret;
7028
7029 memcpy(&key, leaf_key, sizeof(key));
7030 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
7031 if (key.objectid < ref_path->owner_objectid ||
7032 (key.objectid == ref_path->owner_objectid &&
7033 key.type < BTRFS_EXTENT_DATA_KEY)) {
7034 key.objectid = ref_path->owner_objectid;
7035 key.type = BTRFS_EXTENT_DATA_KEY;
7036 key.offset = 0;
7037 }
7038 }
7039
7040 while (1) {
7041 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
7042 if (ret < 0)
7043 goto out;
7044
7045 leaf = path->nodes[0];
7046 nritems = btrfs_header_nritems(leaf);
7047 next:
7048 if (extent_locked && ret > 0) {
7049 /*
7050 * the file extent item was modified by someone
7051 * before the extent got locked.
7052 */
7053 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7054 lock_end, GFP_NOFS);
7055 extent_locked = 0;
7056 }
7057
7058 if (path->slots[0] >= nritems) {
7059 if (++nr_scaned > 2)
7060 break;
7061
7062 BUG_ON(extent_locked);
7063 ret = btrfs_next_leaf(root, path);
7064 if (ret < 0)
7065 goto out;
7066 if (ret > 0)
7067 break;
7068 leaf = path->nodes[0];
7069 nritems = btrfs_header_nritems(leaf);
7070 }
7071
7072 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7073
7074 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
7075 if ((key.objectid > ref_path->owner_objectid) ||
7076 (key.objectid == ref_path->owner_objectid &&
7077 key.type > BTRFS_EXTENT_DATA_KEY) ||
7078 key.offset >= search_end)
7079 break;
7080 }
7081
7082 if (inode && key.objectid != inode->i_ino) {
7083 BUG_ON(extent_locked);
7084 btrfs_release_path(root, path);
7085 mutex_unlock(&inode->i_mutex);
7086 iput(inode);
7087 inode = NULL;
7088 continue;
7089 }
7090
7091 if (key.type != BTRFS_EXTENT_DATA_KEY) {
7092 path->slots[0]++;
7093 ret = 1;
7094 goto next;
7095 }
7096 fi = btrfs_item_ptr(leaf, path->slots[0],
7097 struct btrfs_file_extent_item);
7098 extent_type = btrfs_file_extent_type(leaf, fi);
7099 if ((extent_type != BTRFS_FILE_EXTENT_REG &&
7100 extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
7101 (btrfs_file_extent_disk_bytenr(leaf, fi) !=
7102 extent_key->objectid)) {
7103 path->slots[0]++;
7104 ret = 1;
7105 goto next;
7106 }
7107
7108 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7109 ext_offset = btrfs_file_extent_offset(leaf, fi);
7110
7111 if (search_end == (u64)-1) {
7112 search_end = key.offset - ext_offset +
7113 btrfs_file_extent_ram_bytes(leaf, fi);
7114 }
7115
7116 if (!extent_locked) {
7117 lock_start = key.offset;
7118 lock_end = lock_start + num_bytes - 1;
7119 } else {
7120 if (lock_start > key.offset ||
7121 lock_end + 1 < key.offset + num_bytes) {
7122 unlock_extent(&BTRFS_I(inode)->io_tree,
7123 lock_start, lock_end, GFP_NOFS);
7124 extent_locked = 0;
7125 }
7126 }
7127
7128 if (!inode) {
7129 btrfs_release_path(root, path);
7130
7131 inode = btrfs_iget_locked(root->fs_info->sb,
7132 key.objectid, root);
7133 if (inode->i_state & I_NEW) {
7134 BTRFS_I(inode)->root = root;
7135 BTRFS_I(inode)->location.objectid =
7136 key.objectid;
7137 BTRFS_I(inode)->location.type =
7138 BTRFS_INODE_ITEM_KEY;
7139 BTRFS_I(inode)->location.offset = 0;
7140 btrfs_read_locked_inode(inode);
7141 unlock_new_inode(inode);
7142 }
7143 /*
7144 * some code call btrfs_commit_transaction while
7145 * holding the i_mutex, so we can't use mutex_lock
7146 * here.
7147 */
7148 if (is_bad_inode(inode) ||
7149 !mutex_trylock(&inode->i_mutex)) {
7150 iput(inode);
7151 inode = NULL;
7152 key.offset = (u64)-1;
7153 goto skip;
7154 }
7155 }
7156
7157 if (!extent_locked) {
7158 struct btrfs_ordered_extent *ordered;
7159
7160 btrfs_release_path(root, path);
7161
7162 lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7163 lock_end, GFP_NOFS);
7164 ordered = btrfs_lookup_first_ordered_extent(inode,
7165 lock_end);
7166 if (ordered &&
7167 ordered->file_offset <= lock_end &&
7168 ordered->file_offset + ordered->len > lock_start) {
7169 unlock_extent(&BTRFS_I(inode)->io_tree,
7170 lock_start, lock_end, GFP_NOFS);
7171 btrfs_start_ordered_extent(inode, ordered, 1);
7172 btrfs_put_ordered_extent(ordered);
7173 key.offset += num_bytes;
7174 goto skip;
7175 }
7176 if (ordered)
7177 btrfs_put_ordered_extent(ordered);
7178
7179 extent_locked = 1;
7180 continue;
7181 }
7182
7183 if (nr_extents == 1) {
7184 /* update extent pointer in place */
7185 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7186 new_extents[0].disk_bytenr);
7187 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7188 new_extents[0].disk_num_bytes);
7189 btrfs_mark_buffer_dirty(leaf);
7190
7191 btrfs_drop_extent_cache(inode, key.offset,
7192 key.offset + num_bytes - 1, 0);
7193
7194 ret = btrfs_inc_extent_ref(trans, root,
7195 new_extents[0].disk_bytenr,
7196 new_extents[0].disk_num_bytes,
7197 leaf->start,
7198 root->root_key.objectid,
7199 trans->transid,
7200 key.objectid);
7201 BUG_ON(ret);
7202
7203 ret = btrfs_free_extent(trans, root,
7204 extent_key->objectid,
7205 extent_key->offset,
7206 leaf->start,
7207 btrfs_header_owner(leaf),
7208 btrfs_header_generation(leaf),
7209 key.objectid, 0);
7210 BUG_ON(ret);
7211
7212 btrfs_release_path(root, path);
7213 key.offset += num_bytes;
7214 } else {
7215 BUG_ON(1);
7216 #if 0
7217 u64 alloc_hint;
7218 u64 extent_len;
7219 int i;
7220 /*
7221 * drop old extent pointer at first, then insert the
7222 * new pointers one bye one
7223 */
7224 btrfs_release_path(root, path);
7225 ret = btrfs_drop_extents(trans, root, inode, key.offset,
7226 key.offset + num_bytes,
7227 key.offset, &alloc_hint);
7228 BUG_ON(ret);
7229
7230 for (i = 0; i < nr_extents; i++) {
7231 if (ext_offset >= new_extents[i].num_bytes) {
7232 ext_offset -= new_extents[i].num_bytes;
7233 continue;
7234 }
7235 extent_len = min(new_extents[i].num_bytes -
7236 ext_offset, num_bytes);
7237
7238 ret = btrfs_insert_empty_item(trans, root,
7239 path, &key,
7240 sizeof(*fi));
7241 BUG_ON(ret);
7242
7243 leaf = path->nodes[0];
7244 fi = btrfs_item_ptr(leaf, path->slots[0],
7245 struct btrfs_file_extent_item);
7246 btrfs_set_file_extent_generation(leaf, fi,
7247 trans->transid);
7248 btrfs_set_file_extent_type(leaf, fi,
7249 BTRFS_FILE_EXTENT_REG);
7250 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7251 new_extents[i].disk_bytenr);
7252 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7253 new_extents[i].disk_num_bytes);
7254 btrfs_set_file_extent_ram_bytes(leaf, fi,
7255 new_extents[i].ram_bytes);
7256
7257 btrfs_set_file_extent_compression(leaf, fi,
7258 new_extents[i].compression);
7259 btrfs_set_file_extent_encryption(leaf, fi,
7260 new_extents[i].encryption);
7261 btrfs_set_file_extent_other_encoding(leaf, fi,
7262 new_extents[i].other_encoding);
7263
7264 btrfs_set_file_extent_num_bytes(leaf, fi,
7265 extent_len);
7266 ext_offset += new_extents[i].offset;
7267 btrfs_set_file_extent_offset(leaf, fi,
7268 ext_offset);
7269 btrfs_mark_buffer_dirty(leaf);
7270
7271 btrfs_drop_extent_cache(inode, key.offset,
7272 key.offset + extent_len - 1, 0);
7273
7274 ret = btrfs_inc_extent_ref(trans, root,
7275 new_extents[i].disk_bytenr,
7276 new_extents[i].disk_num_bytes,
7277 leaf->start,
7278 root->root_key.objectid,
7279 trans->transid, key.objectid);
7280 BUG_ON(ret);
7281 btrfs_release_path(root, path);
7282
7283 inode_add_bytes(inode, extent_len);
7284
7285 ext_offset = 0;
7286 num_bytes -= extent_len;
7287 key.offset += extent_len;
7288
7289 if (num_bytes == 0)
7290 break;
7291 }
7292 BUG_ON(i >= nr_extents);
7293 #endif
7294 }
7295
7296 if (extent_locked) {
7297 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7298 lock_end, GFP_NOFS);
7299 extent_locked = 0;
7300 }
7301 skip:
7302 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
7303 key.offset >= search_end)
7304 break;
7305
7306 cond_resched();
7307 }
7308 ret = 0;
7309 out:
7310 btrfs_release_path(root, path);
7311 if (inode) {
7312 mutex_unlock(&inode->i_mutex);
7313 if (extent_locked) {
7314 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7315 lock_end, GFP_NOFS);
7316 }
7317 iput(inode);
7318 }
7319 return ret;
7320 }
7321
7322 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
7323 struct btrfs_root *root,
7324 struct extent_buffer *buf, u64 orig_start)
7325 {
7326 int level;
7327 int ret;
7328
7329 BUG_ON(btrfs_header_generation(buf) != trans->transid);
7330 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7331
7332 level = btrfs_header_level(buf);
7333 if (level == 0) {
7334 struct btrfs_leaf_ref *ref;
7335 struct btrfs_leaf_ref *orig_ref;
7336
7337 orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
7338 if (!orig_ref)
7339 return -ENOENT;
7340
7341 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
7342 if (!ref) {
7343 btrfs_free_leaf_ref(root, orig_ref);
7344 return -ENOMEM;
7345 }
7346
7347 ref->nritems = orig_ref->nritems;
7348 memcpy(ref->extents, orig_ref->extents,
7349 sizeof(ref->extents[0]) * ref->nritems);
7350
7351 btrfs_free_leaf_ref(root, orig_ref);
7352
7353 ref->root_gen = trans->transid;
7354 ref->bytenr = buf->start;
7355 ref->owner = btrfs_header_owner(buf);
7356 ref->generation = btrfs_header_generation(buf);
7357
7358 ret = btrfs_add_leaf_ref(root, ref, 0);
7359 WARN_ON(ret);
7360 btrfs_free_leaf_ref(root, ref);
7361 }
7362 return 0;
7363 }
7364
7365 static noinline int invalidate_extent_cache(struct btrfs_root *root,
7366 struct extent_buffer *leaf,
7367 struct btrfs_block_group_cache *group,
7368 struct btrfs_root *target_root)
7369 {
7370 struct btrfs_key key;
7371 struct inode *inode = NULL;
7372 struct btrfs_file_extent_item *fi;
7373 struct extent_state *cached_state = NULL;
7374 u64 num_bytes;
7375 u64 skip_objectid = 0;
7376 u32 nritems;
7377 u32 i;
7378
7379 nritems = btrfs_header_nritems(leaf);
7380 for (i = 0; i < nritems; i++) {
7381 btrfs_item_key_to_cpu(leaf, &key, i);
7382 if (key.objectid == skip_objectid ||
7383 key.type != BTRFS_EXTENT_DATA_KEY)
7384 continue;
7385 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7386 if (btrfs_file_extent_type(leaf, fi) ==
7387 BTRFS_FILE_EXTENT_INLINE)
7388 continue;
7389 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
7390 continue;
7391 if (!inode || inode->i_ino != key.objectid) {
7392 iput(inode);
7393 inode = btrfs_ilookup(target_root->fs_info->sb,
7394 key.objectid, target_root, 1);
7395 }
7396 if (!inode) {
7397 skip_objectid = key.objectid;
7398 continue;
7399 }
7400 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7401
7402 lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset,
7403 key.offset + num_bytes - 1, 0, &cached_state,
7404 GFP_NOFS);
7405 btrfs_drop_extent_cache(inode, key.offset,
7406 key.offset + num_bytes - 1, 1);
7407 unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset,
7408 key.offset + num_bytes - 1, &cached_state,
7409 GFP_NOFS);
7410 cond_resched();
7411 }
7412 iput(inode);
7413 return 0;
7414 }
7415
7416 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
7417 struct btrfs_root *root,
7418 struct extent_buffer *leaf,
7419 struct btrfs_block_group_cache *group,
7420 struct inode *reloc_inode)
7421 {
7422 struct btrfs_key key;
7423 struct btrfs_key extent_key;
7424 struct btrfs_file_extent_item *fi;
7425 struct btrfs_leaf_ref *ref;
7426 struct disk_extent *new_extent;
7427 u64 bytenr;
7428 u64 num_bytes;
7429 u32 nritems;
7430 u32 i;
7431 int ext_index;
7432 int nr_extent;
7433 int ret;
7434
7435 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
7436 BUG_ON(!new_extent);
7437
7438 ref = btrfs_lookup_leaf_ref(root, leaf->start);
7439 BUG_ON(!ref);
7440
7441 ext_index = -1;
7442 nritems = btrfs_header_nritems(leaf);
7443 for (i = 0; i < nritems; i++) {
7444 btrfs_item_key_to_cpu(leaf, &key, i);
7445 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
7446 continue;
7447 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7448 if (btrfs_file_extent_type(leaf, fi) ==
7449 BTRFS_FILE_EXTENT_INLINE)
7450 continue;
7451 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7452 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
7453 if (bytenr == 0)
7454 continue;
7455
7456 ext_index++;
7457 if (bytenr >= group->key.objectid + group->key.offset ||
7458 bytenr + num_bytes <= group->key.objectid)
7459 continue;
7460
7461 extent_key.objectid = bytenr;
7462 extent_key.offset = num_bytes;
7463 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7464 nr_extent = 1;
7465 ret = get_new_locations(reloc_inode, &extent_key,
7466 group->key.objectid, 1,
7467 &new_extent, &nr_extent);
7468 if (ret > 0)
7469 continue;
7470 BUG_ON(ret < 0);
7471
7472 BUG_ON(ref->extents[ext_index].bytenr != bytenr);
7473 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
7474 ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
7475 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
7476
7477 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7478 new_extent->disk_bytenr);
7479 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7480 new_extent->disk_num_bytes);
7481 btrfs_mark_buffer_dirty(leaf);
7482
7483 ret = btrfs_inc_extent_ref(trans, root,
7484 new_extent->disk_bytenr,
7485 new_extent->disk_num_bytes,
7486 leaf->start,
7487 root->root_key.objectid,
7488 trans->transid, key.objectid);
7489 BUG_ON(ret);
7490
7491 ret = btrfs_free_extent(trans, root,
7492 bytenr, num_bytes, leaf->start,
7493 btrfs_header_owner(leaf),
7494 btrfs_header_generation(leaf),
7495 key.objectid, 0);
7496 BUG_ON(ret);
7497 cond_resched();
7498 }
7499 kfree(new_extent);
7500 BUG_ON(ext_index + 1 != ref->nritems);
7501 btrfs_free_leaf_ref(root, ref);
7502 return 0;
7503 }
7504
7505 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
7506 struct btrfs_root *root)
7507 {
7508 struct btrfs_root *reloc_root;
7509 int ret;
7510
7511 if (root->reloc_root) {
7512 reloc_root = root->reloc_root;
7513 root->reloc_root = NULL;
7514 list_add(&reloc_root->dead_list,
7515 &root->fs_info->dead_reloc_roots);
7516
7517 btrfs_set_root_bytenr(&reloc_root->root_item,
7518 reloc_root->node->start);
7519 btrfs_set_root_level(&root->root_item,
7520 btrfs_header_level(reloc_root->node));
7521 memset(&reloc_root->root_item.drop_progress, 0,
7522 sizeof(struct btrfs_disk_key));
7523 reloc_root->root_item.drop_level = 0;
7524
7525 ret = btrfs_update_root(trans, root->fs_info->tree_root,
7526 &reloc_root->root_key,
7527 &reloc_root->root_item);
7528 BUG_ON(ret);
7529 }
7530 return 0;
7531 }
7532
7533 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
7534 {
7535 struct btrfs_trans_handle *trans;
7536 struct btrfs_root *reloc_root;
7537 struct btrfs_root *prev_root = NULL;
7538 struct list_head dead_roots;
7539 int ret;
7540 unsigned long nr;
7541
7542 INIT_LIST_HEAD(&dead_roots);
7543 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
7544
7545 while (!list_empty(&dead_roots)) {
7546 reloc_root = list_entry(dead_roots.prev,
7547 struct btrfs_root, dead_list);
7548 list_del_init(&reloc_root->dead_list);
7549
7550 BUG_ON(reloc_root->commit_root != NULL);
7551 while (1) {
7552 trans = btrfs_join_transaction(root, 1);
7553 BUG_ON(IS_ERR(trans));
7554
7555 mutex_lock(&root->fs_info->drop_mutex);
7556 ret = btrfs_drop_snapshot(trans, reloc_root);
7557 if (ret != -EAGAIN)
7558 break;
7559 mutex_unlock(&root->fs_info->drop_mutex);
7560
7561 nr = trans->blocks_used;
7562 ret = btrfs_end_transaction(trans, root);
7563 BUG_ON(ret);
7564 btrfs_btree_balance_dirty(root, nr);
7565 }
7566
7567 free_extent_buffer(reloc_root->node);
7568
7569 ret = btrfs_del_root(trans, root->fs_info->tree_root,
7570 &reloc_root->root_key);
7571 BUG_ON(ret);
7572 mutex_unlock(&root->fs_info->drop_mutex);
7573
7574 nr = trans->blocks_used;
7575 ret = btrfs_end_transaction(trans, root);
7576 BUG_ON(ret);
7577 btrfs_btree_balance_dirty(root, nr);
7578
7579 kfree(prev_root);
7580 prev_root = reloc_root;
7581 }
7582 if (prev_root) {
7583 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
7584 kfree(prev_root);
7585 }
7586 return 0;
7587 }
7588
7589 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
7590 {
7591 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
7592 return 0;
7593 }
7594
7595 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
7596 {
7597 struct btrfs_root *reloc_root;
7598 struct btrfs_trans_handle *trans;
7599 struct btrfs_key location;
7600 int found;
7601 int ret;
7602
7603 mutex_lock(&root->fs_info->tree_reloc_mutex);
7604 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
7605 BUG_ON(ret);
7606 found = !list_empty(&root->fs_info->dead_reloc_roots);
7607 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7608
7609 if (found) {
7610 trans = btrfs_start_transaction(root, 1);
7611 BUG_ON(IS_ERR(trans));
7612 ret = btrfs_commit_transaction(trans, root);
7613 BUG_ON(ret);
7614 }
7615
7616 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
7617 location.offset = (u64)-1;
7618 location.type = BTRFS_ROOT_ITEM_KEY;
7619
7620 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
7621 BUG_ON(!reloc_root);
7622 ret = btrfs_orphan_cleanup(reloc_root);
7623 BUG_ON(ret);
7624 return 0;
7625 }
7626
7627 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
7628 struct btrfs_root *root)
7629 {
7630 struct btrfs_root *reloc_root;
7631 struct extent_buffer *eb;
7632 struct btrfs_root_item *root_item;
7633 struct btrfs_key root_key;
7634 int ret;
7635
7636 BUG_ON(!root->ref_cows);
7637 if (root->reloc_root)
7638 return 0;
7639
7640 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
7641 BUG_ON(!root_item);
7642
7643 ret = btrfs_copy_root(trans, root, root->commit_root,
7644 &eb, BTRFS_TREE_RELOC_OBJECTID);
7645 BUG_ON(ret);
7646
7647 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
7648 root_key.offset = root->root_key.objectid;
7649 root_key.type = BTRFS_ROOT_ITEM_KEY;
7650
7651 memcpy(root_item, &root->root_item, sizeof(root_item));
7652 btrfs_set_root_refs(root_item, 0);
7653 btrfs_set_root_bytenr(root_item, eb->start);
7654 btrfs_set_root_level(root_item, btrfs_header_level(eb));
7655 btrfs_set_root_generation(root_item, trans->transid);
7656
7657 btrfs_tree_unlock(eb);
7658 free_extent_buffer(eb);
7659
7660 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
7661 &root_key, root_item);
7662 BUG_ON(ret);
7663 kfree(root_item);
7664
7665 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
7666 &root_key);
7667 BUG_ON(!reloc_root);
7668 reloc_root->last_trans = trans->transid;
7669 reloc_root->commit_root = NULL;
7670 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
7671
7672 root->reloc_root = reloc_root;
7673 return 0;
7674 }
7675
7676 /*
7677 * Core function of space balance.
7678 *
7679 * The idea is using reloc trees to relocate tree blocks in reference
7680 * counted roots. There is one reloc tree for each subvol, and all
7681 * reloc trees share same root key objectid. Reloc trees are snapshots
7682 * of the latest committed roots of subvols (root->commit_root).
7683 *
7684 * To relocate a tree block referenced by a subvol, there are two steps.
7685 * COW the block through subvol's reloc tree, then update block pointer
7686 * in the subvol to point to the new block. Since all reloc trees share
7687 * same root key objectid, doing special handing for tree blocks owned
7688 * by them is easy. Once a tree block has been COWed in one reloc tree,
7689 * we can use the resulting new block directly when the same block is
7690 * required to COW again through other reloc trees. By this way, relocated
7691 * tree blocks are shared between reloc trees, so they are also shared
7692 * between subvols.
7693 */
7694 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
7695 struct btrfs_root *root,
7696 struct btrfs_path *path,
7697 struct btrfs_key *first_key,
7698 struct btrfs_ref_path *ref_path,
7699 struct btrfs_block_group_cache *group,
7700 struct inode *reloc_inode)
7701 {
7702 struct btrfs_root *reloc_root;
7703 struct extent_buffer *eb = NULL;
7704 struct btrfs_key *keys;
7705 u64 *nodes;
7706 int level;
7707 int shared_level;
7708 int lowest_level = 0;
7709 int ret;
7710
7711 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
7712 lowest_level = ref_path->owner_objectid;
7713
7714 if (!root->ref_cows) {
7715 path->lowest_level = lowest_level;
7716 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
7717 BUG_ON(ret < 0);
7718 path->lowest_level = 0;
7719 btrfs_release_path(root, path);
7720 return 0;
7721 }
7722
7723 mutex_lock(&root->fs_info->tree_reloc_mutex);
7724 ret = init_reloc_tree(trans, root);
7725 BUG_ON(ret);
7726 reloc_root = root->reloc_root;
7727
7728 shared_level = ref_path->shared_level;
7729 ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
7730
7731 keys = ref_path->node_keys;
7732 nodes = ref_path->new_nodes;
7733 memset(&keys[shared_level + 1], 0,
7734 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
7735 memset(&nodes[shared_level + 1], 0,
7736 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
7737
7738 if (nodes[lowest_level] == 0) {
7739 path->lowest_level = lowest_level;
7740 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7741 0, 1);
7742 BUG_ON(ret);
7743 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
7744 eb = path->nodes[level];
7745 if (!eb || eb == reloc_root->node)
7746 break;
7747 nodes[level] = eb->start;
7748 if (level == 0)
7749 btrfs_item_key_to_cpu(eb, &keys[level], 0);
7750 else
7751 btrfs_node_key_to_cpu(eb, &keys[level], 0);
7752 }
7753 if (nodes[0] &&
7754 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7755 eb = path->nodes[0];
7756 ret = replace_extents_in_leaf(trans, reloc_root, eb,
7757 group, reloc_inode);
7758 BUG_ON(ret);
7759 }
7760 btrfs_release_path(reloc_root, path);
7761 } else {
7762 ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
7763 lowest_level);
7764 BUG_ON(ret);
7765 }
7766
7767 /*
7768 * replace tree blocks in the fs tree with tree blocks in
7769 * the reloc tree.
7770 */
7771 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
7772 BUG_ON(ret < 0);
7773
7774 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7775 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7776 0, 0);
7777 BUG_ON(ret);
7778 extent_buffer_get(path->nodes[0]);
7779 eb = path->nodes[0];
7780 btrfs_release_path(reloc_root, path);
7781 ret = invalidate_extent_cache(reloc_root, eb, group, root);
7782 BUG_ON(ret);
7783 free_extent_buffer(eb);
7784 }
7785
7786 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7787 path->lowest_level = 0;
7788 return 0;
7789 }
7790
7791 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
7792 struct btrfs_root *root,
7793 struct btrfs_path *path,
7794 struct btrfs_key *first_key,
7795 struct btrfs_ref_path *ref_path)
7796 {
7797 int ret;
7798
7799 ret = relocate_one_path(trans, root, path, first_key,
7800 ref_path, NULL, NULL);
7801 BUG_ON(ret);
7802
7803 return 0;
7804 }
7805
7806 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
7807 struct btrfs_root *extent_root,
7808 struct btrfs_path *path,
7809 struct btrfs_key *extent_key)
7810 {
7811 int ret;
7812
7813 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
7814 if (ret)
7815 goto out;
7816 ret = btrfs_del_item(trans, extent_root, path);
7817 out:
7818 btrfs_release_path(extent_root, path);
7819 return ret;
7820 }
7821
7822 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7823 struct btrfs_ref_path *ref_path)
7824 {
7825 struct btrfs_key root_key;
7826
7827 root_key.objectid = ref_path->root_objectid;
7828 root_key.type = BTRFS_ROOT_ITEM_KEY;
7829 if (is_cowonly_root(ref_path->root_objectid))
7830 root_key.offset = 0;
7831 else
7832 root_key.offset = (u64)-1;
7833
7834 return btrfs_read_fs_root_no_name(fs_info, &root_key);
7835 }
7836
7837 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7838 struct btrfs_path *path,
7839 struct btrfs_key *extent_key,
7840 struct btrfs_block_group_cache *group,
7841 struct inode *reloc_inode, int pass)
7842 {
7843 struct btrfs_trans_handle *trans;
7844 struct btrfs_root *found_root;
7845 struct btrfs_ref_path *ref_path = NULL;
7846 struct disk_extent *new_extents = NULL;
7847 int nr_extents = 0;
7848 int loops;
7849 int ret;
7850 int level;
7851 struct btrfs_key first_key;
7852 u64 prev_block = 0;
7853
7854
7855 trans = btrfs_start_transaction(extent_root, 1);
7856 BUG_ON(IS_ERR(trans));
7857
7858 if (extent_key->objectid == 0) {
7859 ret = del_extent_zero(trans, extent_root, path, extent_key);
7860 goto out;
7861 }
7862
7863 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7864 if (!ref_path) {
7865 ret = -ENOMEM;
7866 goto out;
7867 }
7868
7869 for (loops = 0; ; loops++) {
7870 if (loops == 0) {
7871 ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7872 extent_key->objectid);
7873 } else {
7874 ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7875 }
7876 if (ret < 0)
7877 goto out;
7878 if (ret > 0)
7879 break;
7880
7881 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7882 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7883 continue;
7884
7885 found_root = read_ref_root(extent_root->fs_info, ref_path);
7886 BUG_ON(!found_root);
7887 /*
7888 * for reference counted tree, only process reference paths
7889 * rooted at the latest committed root.
7890 */
7891 if (found_root->ref_cows &&
7892 ref_path->root_generation != found_root->root_key.offset)
7893 continue;
7894
7895 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7896 if (pass == 0) {
7897 /*
7898 * copy data extents to new locations
7899 */
7900 u64 group_start = group->key.objectid;
7901 ret = relocate_data_extent(reloc_inode,
7902 extent_key,
7903 group_start);
7904 if (ret < 0)
7905 goto out;
7906 break;
7907 }
7908 level = 0;
7909 } else {
7910 level = ref_path->owner_objectid;
7911 }
7912
7913 if (prev_block != ref_path->nodes[level]) {
7914 struct extent_buffer *eb;
7915 u64 block_start = ref_path->nodes[level];
7916 u64 block_size = btrfs_level_size(found_root, level);
7917
7918 eb = read_tree_block(found_root, block_start,
7919 block_size, 0);
7920 btrfs_tree_lock(eb);
7921 BUG_ON(level != btrfs_header_level(eb));
7922
7923 if (level == 0)
7924 btrfs_item_key_to_cpu(eb, &first_key, 0);
7925 else
7926 btrfs_node_key_to_cpu(eb, &first_key, 0);
7927
7928 btrfs_tree_unlock(eb);
7929 free_extent_buffer(eb);
7930 prev_block = block_start;
7931 }
7932
7933 mutex_lock(&extent_root->fs_info->trans_mutex);
7934 btrfs_record_root_in_trans(found_root);
7935 mutex_unlock(&extent_root->fs_info->trans_mutex);
7936 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7937 /*
7938 * try to update data extent references while
7939 * keeping metadata shared between snapshots.
7940 */
7941 if (pass == 1) {
7942 ret = relocate_one_path(trans, found_root,
7943 path, &first_key, ref_path,
7944 group, reloc_inode);
7945 if (ret < 0)
7946 goto out;
7947 continue;
7948 }
7949 /*
7950 * use fallback method to process the remaining
7951 * references.
7952 */
7953 if (!new_extents) {
7954 u64 group_start = group->key.objectid;
7955 new_extents = kmalloc(sizeof(*new_extents),
7956 GFP_NOFS);
7957 nr_extents = 1;
7958 ret = get_new_locations(reloc_inode,
7959 extent_key,
7960 group_start, 1,
7961 &new_extents,
7962 &nr_extents);
7963 if (ret)
7964 goto out;
7965 }
7966 ret = replace_one_extent(trans, found_root,
7967 path, extent_key,
7968 &first_key, ref_path,
7969 new_extents, nr_extents);
7970 } else {
7971 ret = relocate_tree_block(trans, found_root, path,
7972 &first_key, ref_path);
7973 }
7974 if (ret < 0)
7975 goto out;
7976 }
7977 ret = 0;
7978 out:
7979 btrfs_end_transaction(trans, extent_root);
7980 kfree(new_extents);
7981 kfree(ref_path);
7982 return ret;
7983 }
7984 #endif
7985
7986 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7987 {
7988 u64 num_devices;
7989 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7990 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7991
7992 /*
7993 * we add in the count of missing devices because we want
7994 * to make sure that any RAID levels on a degraded FS
7995 * continue to be honored.
7996 */
7997 num_devices = root->fs_info->fs_devices->rw_devices +
7998 root->fs_info->fs_devices->missing_devices;
7999
8000 if (num_devices == 1) {
8001 stripped |= BTRFS_BLOCK_GROUP_DUP;
8002 stripped = flags & ~stripped;
8003
8004 /* turn raid0 into single device chunks */
8005 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8006 return stripped;
8007
8008 /* turn mirroring into duplication */
8009 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8010 BTRFS_BLOCK_GROUP_RAID10))
8011 return stripped | BTRFS_BLOCK_GROUP_DUP;
8012 return flags;
8013 } else {
8014 /* they already had raid on here, just return */
8015 if (flags & stripped)
8016 return flags;
8017
8018 stripped |= BTRFS_BLOCK_GROUP_DUP;
8019 stripped = flags & ~stripped;
8020
8021 /* switch duplicated blocks with raid1 */
8022 if (flags & BTRFS_BLOCK_GROUP_DUP)
8023 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8024
8025 /* turn single device chunks into raid0 */
8026 return stripped | BTRFS_BLOCK_GROUP_RAID0;
8027 }
8028 return flags;
8029 }
8030
8031 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
8032 {
8033 struct btrfs_space_info *sinfo = cache->space_info;
8034 u64 num_bytes;
8035 int ret = -ENOSPC;
8036
8037 if (cache->ro)
8038 return 0;
8039
8040 spin_lock(&sinfo->lock);
8041 spin_lock(&cache->lock);
8042 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8043 cache->bytes_super - btrfs_block_group_used(&cache->item);
8044
8045 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8046 sinfo->bytes_may_use + sinfo->bytes_readonly +
8047 cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
8048 sinfo->bytes_readonly += num_bytes;
8049 sinfo->bytes_reserved += cache->reserved_pinned;
8050 cache->reserved_pinned = 0;
8051 cache->ro = 1;
8052 ret = 0;
8053 }
8054
8055 spin_unlock(&cache->lock);
8056 spin_unlock(&sinfo->lock);
8057 return ret;
8058 }
8059
8060 int btrfs_set_block_group_ro(struct btrfs_root *root,
8061 struct btrfs_block_group_cache *cache)
8062
8063 {
8064 struct btrfs_trans_handle *trans;
8065 u64 alloc_flags;
8066 int ret;
8067
8068 BUG_ON(cache->ro);
8069
8070 trans = btrfs_join_transaction(root, 1);
8071 BUG_ON(IS_ERR(trans));
8072
8073 alloc_flags = update_block_group_flags(root, cache->flags);
8074 if (alloc_flags != cache->flags)
8075 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8076
8077 ret = set_block_group_ro(cache);
8078 if (!ret)
8079 goto out;
8080 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8081 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8082 if (ret < 0)
8083 goto out;
8084 ret = set_block_group_ro(cache);
8085 out:
8086 btrfs_end_transaction(trans, root);
8087 return ret;
8088 }
8089
8090 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8091 struct btrfs_root *root, u64 type)
8092 {
8093 u64 alloc_flags = get_alloc_profile(root, type);
8094 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8095 }
8096
8097 /*
8098 * helper to account the unused space of all the readonly block group in the
8099 * list. takes mirrors into account.
8100 */
8101 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8102 {
8103 struct btrfs_block_group_cache *block_group;
8104 u64 free_bytes = 0;
8105 int factor;
8106
8107 list_for_each_entry(block_group, groups_list, list) {
8108 spin_lock(&block_group->lock);
8109
8110 if (!block_group->ro) {
8111 spin_unlock(&block_group->lock);
8112 continue;
8113 }
8114
8115 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8116 BTRFS_BLOCK_GROUP_RAID10 |
8117 BTRFS_BLOCK_GROUP_DUP))
8118 factor = 2;
8119 else
8120 factor = 1;
8121
8122 free_bytes += (block_group->key.offset -
8123 btrfs_block_group_used(&block_group->item)) *
8124 factor;
8125
8126 spin_unlock(&block_group->lock);
8127 }
8128
8129 return free_bytes;
8130 }
8131
8132 /*
8133 * helper to account the unused space of all the readonly block group in the
8134 * space_info. takes mirrors into account.
8135 */
8136 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8137 {
8138 int i;
8139 u64 free_bytes = 0;
8140
8141 spin_lock(&sinfo->lock);
8142
8143 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8144 if (!list_empty(&sinfo->block_groups[i]))
8145 free_bytes += __btrfs_get_ro_block_group_free_space(
8146 &sinfo->block_groups[i]);
8147
8148 spin_unlock(&sinfo->lock);
8149
8150 return free_bytes;
8151 }
8152
8153 int btrfs_set_block_group_rw(struct btrfs_root *root,
8154 struct btrfs_block_group_cache *cache)
8155 {
8156 struct btrfs_space_info *sinfo = cache->space_info;
8157 u64 num_bytes;
8158
8159 BUG_ON(!cache->ro);
8160
8161 spin_lock(&sinfo->lock);
8162 spin_lock(&cache->lock);
8163 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8164 cache->bytes_super - btrfs_block_group_used(&cache->item);
8165 sinfo->bytes_readonly -= num_bytes;
8166 cache->ro = 0;
8167 spin_unlock(&cache->lock);
8168 spin_unlock(&sinfo->lock);
8169 return 0;
8170 }
8171
8172 /*
8173 * checks to see if its even possible to relocate this block group.
8174 *
8175 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8176 * ok to go ahead and try.
8177 */
8178 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8179 {
8180 struct btrfs_block_group_cache *block_group;
8181 struct btrfs_space_info *space_info;
8182 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8183 struct btrfs_device *device;
8184 int full = 0;
8185 int ret = 0;
8186
8187 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8188
8189 /* odd, couldn't find the block group, leave it alone */
8190 if (!block_group)
8191 return -1;
8192
8193 /* no bytes used, we're good */
8194 if (!btrfs_block_group_used(&block_group->item))
8195 goto out;
8196
8197 space_info = block_group->space_info;
8198 spin_lock(&space_info->lock);
8199
8200 full = space_info->full;
8201
8202 /*
8203 * if this is the last block group we have in this space, we can't
8204 * relocate it unless we're able to allocate a new chunk below.
8205 *
8206 * Otherwise, we need to make sure we have room in the space to handle
8207 * all of the extents from this block group. If we can, we're good
8208 */
8209 if ((space_info->total_bytes != block_group->key.offset) &&
8210 (space_info->bytes_used + space_info->bytes_reserved +
8211 space_info->bytes_pinned + space_info->bytes_readonly +
8212 btrfs_block_group_used(&block_group->item) <
8213 space_info->total_bytes)) {
8214 spin_unlock(&space_info->lock);
8215 goto out;
8216 }
8217 spin_unlock(&space_info->lock);
8218
8219 /*
8220 * ok we don't have enough space, but maybe we have free space on our
8221 * devices to allocate new chunks for relocation, so loop through our
8222 * alloc devices and guess if we have enough space. However, if we
8223 * were marked as full, then we know there aren't enough chunks, and we
8224 * can just return.
8225 */
8226 ret = -1;
8227 if (full)
8228 goto out;
8229
8230 mutex_lock(&root->fs_info->chunk_mutex);
8231 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8232 u64 min_free = btrfs_block_group_used(&block_group->item);
8233 u64 dev_offset;
8234
8235 /*
8236 * check to make sure we can actually find a chunk with enough
8237 * space to fit our block group in.
8238 */
8239 if (device->total_bytes > device->bytes_used + min_free) {
8240 ret = find_free_dev_extent(NULL, device, min_free,
8241 &dev_offset, NULL);
8242 if (!ret)
8243 break;
8244 ret = -1;
8245 }
8246 }
8247 mutex_unlock(&root->fs_info->chunk_mutex);
8248 out:
8249 btrfs_put_block_group(block_group);
8250 return ret;
8251 }
8252
8253 static int find_first_block_group(struct btrfs_root *root,
8254 struct btrfs_path *path, struct btrfs_key *key)
8255 {
8256 int ret = 0;
8257 struct btrfs_key found_key;
8258 struct extent_buffer *leaf;
8259 int slot;
8260
8261 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8262 if (ret < 0)
8263 goto out;
8264
8265 while (1) {
8266 slot = path->slots[0];
8267 leaf = path->nodes[0];
8268 if (slot >= btrfs_header_nritems(leaf)) {
8269 ret = btrfs_next_leaf(root, path);
8270 if (ret == 0)
8271 continue;
8272 if (ret < 0)
8273 goto out;
8274 break;
8275 }
8276 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8277
8278 if (found_key.objectid >= key->objectid &&
8279 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8280 ret = 0;
8281 goto out;
8282 }
8283 path->slots[0]++;
8284 }
8285 out:
8286 return ret;
8287 }
8288
8289 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8290 {
8291 struct btrfs_block_group_cache *block_group;
8292 u64 last = 0;
8293
8294 while (1) {
8295 struct inode *inode;
8296
8297 block_group = btrfs_lookup_first_block_group(info, last);
8298 while (block_group) {
8299 spin_lock(&block_group->lock);
8300 if (block_group->iref)
8301 break;
8302 spin_unlock(&block_group->lock);
8303 block_group = next_block_group(info->tree_root,
8304 block_group);
8305 }
8306 if (!block_group) {
8307 if (last == 0)
8308 break;
8309 last = 0;
8310 continue;
8311 }
8312
8313 inode = block_group->inode;
8314 block_group->iref = 0;
8315 block_group->inode = NULL;
8316 spin_unlock(&block_group->lock);
8317 iput(inode);
8318 last = block_group->key.objectid + block_group->key.offset;
8319 btrfs_put_block_group(block_group);
8320 }
8321 }
8322
8323 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8324 {
8325 struct btrfs_block_group_cache *block_group;
8326 struct btrfs_space_info *space_info;
8327 struct btrfs_caching_control *caching_ctl;
8328 struct rb_node *n;
8329
8330 down_write(&info->extent_commit_sem);
8331 while (!list_empty(&info->caching_block_groups)) {
8332 caching_ctl = list_entry(info->caching_block_groups.next,
8333 struct btrfs_caching_control, list);
8334 list_del(&caching_ctl->list);
8335 put_caching_control(caching_ctl);
8336 }
8337 up_write(&info->extent_commit_sem);
8338
8339 spin_lock(&info->block_group_cache_lock);
8340 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8341 block_group = rb_entry(n, struct btrfs_block_group_cache,
8342 cache_node);
8343 rb_erase(&block_group->cache_node,
8344 &info->block_group_cache_tree);
8345 spin_unlock(&info->block_group_cache_lock);
8346
8347 down_write(&block_group->space_info->groups_sem);
8348 list_del(&block_group->list);
8349 up_write(&block_group->space_info->groups_sem);
8350
8351 if (block_group->cached == BTRFS_CACHE_STARTED)
8352 wait_block_group_cache_done(block_group);
8353
8354 /*
8355 * We haven't cached this block group, which means we could
8356 * possibly have excluded extents on this block group.
8357 */
8358 if (block_group->cached == BTRFS_CACHE_NO)
8359 free_excluded_extents(info->extent_root, block_group);
8360
8361 btrfs_remove_free_space_cache(block_group);
8362 btrfs_put_block_group(block_group);
8363
8364 spin_lock(&info->block_group_cache_lock);
8365 }
8366 spin_unlock(&info->block_group_cache_lock);
8367
8368 /* now that all the block groups are freed, go through and
8369 * free all the space_info structs. This is only called during
8370 * the final stages of unmount, and so we know nobody is
8371 * using them. We call synchronize_rcu() once before we start,
8372 * just to be on the safe side.
8373 */
8374 synchronize_rcu();
8375
8376 release_global_block_rsv(info);
8377
8378 while(!list_empty(&info->space_info)) {
8379 space_info = list_entry(info->space_info.next,
8380 struct btrfs_space_info,
8381 list);
8382 if (space_info->bytes_pinned > 0 ||
8383 space_info->bytes_reserved > 0) {
8384 WARN_ON(1);
8385 dump_space_info(space_info, 0, 0);
8386 }
8387 list_del(&space_info->list);
8388 kfree(space_info);
8389 }
8390 return 0;
8391 }
8392
8393 static void __link_block_group(struct btrfs_space_info *space_info,
8394 struct btrfs_block_group_cache *cache)
8395 {
8396 int index = get_block_group_index(cache);
8397
8398 down_write(&space_info->groups_sem);
8399 list_add_tail(&cache->list, &space_info->block_groups[index]);
8400 up_write(&space_info->groups_sem);
8401 }
8402
8403 int btrfs_read_block_groups(struct btrfs_root *root)
8404 {
8405 struct btrfs_path *path;
8406 int ret;
8407 struct btrfs_block_group_cache *cache;
8408 struct btrfs_fs_info *info = root->fs_info;
8409 struct btrfs_space_info *space_info;
8410 struct btrfs_key key;
8411 struct btrfs_key found_key;
8412 struct extent_buffer *leaf;
8413 int need_clear = 0;
8414 u64 cache_gen;
8415
8416 root = info->extent_root;
8417 key.objectid = 0;
8418 key.offset = 0;
8419 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8420 path = btrfs_alloc_path();
8421 if (!path)
8422 return -ENOMEM;
8423
8424 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
8425 if (cache_gen != 0 &&
8426 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
8427 need_clear = 1;
8428 if (btrfs_test_opt(root, CLEAR_CACHE))
8429 need_clear = 1;
8430 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
8431 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
8432
8433 while (1) {
8434 ret = find_first_block_group(root, path, &key);
8435 if (ret > 0)
8436 break;
8437 if (ret != 0)
8438 goto error;
8439 leaf = path->nodes[0];
8440 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8441 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8442 if (!cache) {
8443 ret = -ENOMEM;
8444 goto error;
8445 }
8446
8447 atomic_set(&cache->count, 1);
8448 spin_lock_init(&cache->lock);
8449 spin_lock_init(&cache->tree_lock);
8450 cache->fs_info = info;
8451 INIT_LIST_HEAD(&cache->list);
8452 INIT_LIST_HEAD(&cache->cluster_list);
8453
8454 if (need_clear)
8455 cache->disk_cache_state = BTRFS_DC_CLEAR;
8456
8457 /*
8458 * we only want to have 32k of ram per block group for keeping
8459 * track of free space, and if we pass 1/2 of that we want to
8460 * start converting things over to using bitmaps
8461 */
8462 cache->extents_thresh = ((1024 * 32) / 2) /
8463 sizeof(struct btrfs_free_space);
8464
8465 read_extent_buffer(leaf, &cache->item,
8466 btrfs_item_ptr_offset(leaf, path->slots[0]),
8467 sizeof(cache->item));
8468 memcpy(&cache->key, &found_key, sizeof(found_key));
8469
8470 key.objectid = found_key.objectid + found_key.offset;
8471 btrfs_release_path(root, path);
8472 cache->flags = btrfs_block_group_flags(&cache->item);
8473 cache->sectorsize = root->sectorsize;
8474
8475 /*
8476 * We need to exclude the super stripes now so that the space
8477 * info has super bytes accounted for, otherwise we'll think
8478 * we have more space than we actually do.
8479 */
8480 exclude_super_stripes(root, cache);
8481
8482 /*
8483 * check for two cases, either we are full, and therefore
8484 * don't need to bother with the caching work since we won't
8485 * find any space, or we are empty, and we can just add all
8486 * the space in and be done with it. This saves us _alot_ of
8487 * time, particularly in the full case.
8488 */
8489 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8490 cache->last_byte_to_unpin = (u64)-1;
8491 cache->cached = BTRFS_CACHE_FINISHED;
8492 free_excluded_extents(root, cache);
8493 } else if (btrfs_block_group_used(&cache->item) == 0) {
8494 cache->last_byte_to_unpin = (u64)-1;
8495 cache->cached = BTRFS_CACHE_FINISHED;
8496 add_new_free_space(cache, root->fs_info,
8497 found_key.objectid,
8498 found_key.objectid +
8499 found_key.offset);
8500 free_excluded_extents(root, cache);
8501 }
8502
8503 ret = update_space_info(info, cache->flags, found_key.offset,
8504 btrfs_block_group_used(&cache->item),
8505 &space_info);
8506 BUG_ON(ret);
8507 cache->space_info = space_info;
8508 spin_lock(&cache->space_info->lock);
8509 cache->space_info->bytes_readonly += cache->bytes_super;
8510 spin_unlock(&cache->space_info->lock);
8511
8512 __link_block_group(space_info, cache);
8513
8514 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8515 BUG_ON(ret);
8516
8517 set_avail_alloc_bits(root->fs_info, cache->flags);
8518 if (btrfs_chunk_readonly(root, cache->key.objectid))
8519 set_block_group_ro(cache);
8520 }
8521
8522 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8523 if (!(get_alloc_profile(root, space_info->flags) &
8524 (BTRFS_BLOCK_GROUP_RAID10 |
8525 BTRFS_BLOCK_GROUP_RAID1 |
8526 BTRFS_BLOCK_GROUP_DUP)))
8527 continue;
8528 /*
8529 * avoid allocating from un-mirrored block group if there are
8530 * mirrored block groups.
8531 */
8532 list_for_each_entry(cache, &space_info->block_groups[3], list)
8533 set_block_group_ro(cache);
8534 list_for_each_entry(cache, &space_info->block_groups[4], list)
8535 set_block_group_ro(cache);
8536 }
8537
8538 init_global_block_rsv(info);
8539 ret = 0;
8540 error:
8541 btrfs_free_path(path);
8542 return ret;
8543 }
8544
8545 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8546 struct btrfs_root *root, u64 bytes_used,
8547 u64 type, u64 chunk_objectid, u64 chunk_offset,
8548 u64 size)
8549 {
8550 int ret;
8551 struct btrfs_root *extent_root;
8552 struct btrfs_block_group_cache *cache;
8553
8554 extent_root = root->fs_info->extent_root;
8555
8556 root->fs_info->last_trans_log_full_commit = trans->transid;
8557
8558 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8559 if (!cache)
8560 return -ENOMEM;
8561
8562 cache->key.objectid = chunk_offset;
8563 cache->key.offset = size;
8564 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8565 cache->sectorsize = root->sectorsize;
8566 cache->fs_info = root->fs_info;
8567
8568 /*
8569 * we only want to have 32k of ram per block group for keeping track
8570 * of free space, and if we pass 1/2 of that we want to start
8571 * converting things over to using bitmaps
8572 */
8573 cache->extents_thresh = ((1024 * 32) / 2) /
8574 sizeof(struct btrfs_free_space);
8575 atomic_set(&cache->count, 1);
8576 spin_lock_init(&cache->lock);
8577 spin_lock_init(&cache->tree_lock);
8578 INIT_LIST_HEAD(&cache->list);
8579 INIT_LIST_HEAD(&cache->cluster_list);
8580
8581 btrfs_set_block_group_used(&cache->item, bytes_used);
8582 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8583 cache->flags = type;
8584 btrfs_set_block_group_flags(&cache->item, type);
8585
8586 cache->last_byte_to_unpin = (u64)-1;
8587 cache->cached = BTRFS_CACHE_FINISHED;
8588 exclude_super_stripes(root, cache);
8589
8590 add_new_free_space(cache, root->fs_info, chunk_offset,
8591 chunk_offset + size);
8592
8593 free_excluded_extents(root, cache);
8594
8595 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8596 &cache->space_info);
8597 BUG_ON(ret);
8598
8599 spin_lock(&cache->space_info->lock);
8600 cache->space_info->bytes_readonly += cache->bytes_super;
8601 spin_unlock(&cache->space_info->lock);
8602
8603 __link_block_group(cache->space_info, cache);
8604
8605 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8606 BUG_ON(ret);
8607
8608 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
8609 sizeof(cache->item));
8610 BUG_ON(ret);
8611
8612 set_avail_alloc_bits(extent_root->fs_info, type);
8613
8614 return 0;
8615 }
8616
8617 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8618 struct btrfs_root *root, u64 group_start)
8619 {
8620 struct btrfs_path *path;
8621 struct btrfs_block_group_cache *block_group;
8622 struct btrfs_free_cluster *cluster;
8623 struct btrfs_root *tree_root = root->fs_info->tree_root;
8624 struct btrfs_key key;
8625 struct inode *inode;
8626 int ret;
8627 int factor;
8628
8629 root = root->fs_info->extent_root;
8630
8631 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8632 BUG_ON(!block_group);
8633 BUG_ON(!block_group->ro);
8634
8635 memcpy(&key, &block_group->key, sizeof(key));
8636 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8637 BTRFS_BLOCK_GROUP_RAID1 |
8638 BTRFS_BLOCK_GROUP_RAID10))
8639 factor = 2;
8640 else
8641 factor = 1;
8642
8643 /* make sure this block group isn't part of an allocation cluster */
8644 cluster = &root->fs_info->data_alloc_cluster;
8645 spin_lock(&cluster->refill_lock);
8646 btrfs_return_cluster_to_free_space(block_group, cluster);
8647 spin_unlock(&cluster->refill_lock);
8648
8649 /*
8650 * make sure this block group isn't part of a metadata
8651 * allocation cluster
8652 */
8653 cluster = &root->fs_info->meta_alloc_cluster;
8654 spin_lock(&cluster->refill_lock);
8655 btrfs_return_cluster_to_free_space(block_group, cluster);
8656 spin_unlock(&cluster->refill_lock);
8657
8658 path = btrfs_alloc_path();
8659 BUG_ON(!path);
8660
8661 inode = lookup_free_space_inode(root, block_group, path);
8662 if (!IS_ERR(inode)) {
8663 btrfs_orphan_add(trans, inode);
8664 clear_nlink(inode);
8665 /* One for the block groups ref */
8666 spin_lock(&block_group->lock);
8667 if (block_group->iref) {
8668 block_group->iref = 0;
8669 block_group->inode = NULL;
8670 spin_unlock(&block_group->lock);
8671 iput(inode);
8672 } else {
8673 spin_unlock(&block_group->lock);
8674 }
8675 /* One for our lookup ref */
8676 iput(inode);
8677 }
8678
8679 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8680 key.offset = block_group->key.objectid;
8681 key.type = 0;
8682
8683 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8684 if (ret < 0)
8685 goto out;
8686 if (ret > 0)
8687 btrfs_release_path(tree_root, path);
8688 if (ret == 0) {
8689 ret = btrfs_del_item(trans, tree_root, path);
8690 if (ret)
8691 goto out;
8692 btrfs_release_path(tree_root, path);
8693 }
8694
8695 spin_lock(&root->fs_info->block_group_cache_lock);
8696 rb_erase(&block_group->cache_node,
8697 &root->fs_info->block_group_cache_tree);
8698 spin_unlock(&root->fs_info->block_group_cache_lock);
8699
8700 down_write(&block_group->space_info->groups_sem);
8701 /*
8702 * we must use list_del_init so people can check to see if they
8703 * are still on the list after taking the semaphore
8704 */
8705 list_del_init(&block_group->list);
8706 up_write(&block_group->space_info->groups_sem);
8707
8708 if (block_group->cached == BTRFS_CACHE_STARTED)
8709 wait_block_group_cache_done(block_group);
8710
8711 btrfs_remove_free_space_cache(block_group);
8712
8713 spin_lock(&block_group->space_info->lock);
8714 block_group->space_info->total_bytes -= block_group->key.offset;
8715 block_group->space_info->bytes_readonly -= block_group->key.offset;
8716 block_group->space_info->disk_total -= block_group->key.offset * factor;
8717 spin_unlock(&block_group->space_info->lock);
8718
8719 memcpy(&key, &block_group->key, sizeof(key));
8720
8721 btrfs_clear_space_info_full(root->fs_info);
8722
8723 btrfs_put_block_group(block_group);
8724 btrfs_put_block_group(block_group);
8725
8726 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8727 if (ret > 0)
8728 ret = -EIO;
8729 if (ret < 0)
8730 goto out;
8731
8732 ret = btrfs_del_item(trans, root, path);
8733 out:
8734 btrfs_free_path(path);
8735 return ret;
8736 }
8737
8738 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8739 {
8740 return unpin_extent_range(root, start, end);
8741 }
8742
8743 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8744 u64 num_bytes)
8745 {
8746 return btrfs_discard_extent(root, bytenr, num_bytes);
8747 }
This page took 0.266106 seconds and 6 git commands to generate.