Merge tag 'regmap-v3.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38
39 #undef SCRAMBLE_DELAYED_REFS
40
41 /*
42 * control flags for do_chunk_alloc's force field
43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44 * if we really need one.
45 *
46 * CHUNK_ALLOC_LIMITED means to only try and allocate one
47 * if we have very few chunks already allocated. This is
48 * used as part of the clustering code to help make sure
49 * we have a good pool of storage to cluster in, without
50 * filling the FS with empty chunks
51 *
52 * CHUNK_ALLOC_FORCE means it must try to allocate one
53 *
54 */
55 enum {
56 CHUNK_ALLOC_NO_FORCE = 0,
57 CHUNK_ALLOC_LIMITED = 1,
58 CHUNK_ALLOC_FORCE = 2,
59 };
60
61 /*
62 * Control how reservations are dealt with.
63 *
64 * RESERVE_FREE - freeing a reservation.
65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66 * ENOSPC accounting
67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 */
70 enum {
71 RESERVE_FREE = 0,
72 RESERVE_ALLOC = 1,
73 RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75
76 static int update_block_group(struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
99 int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 u64 num_bytes);
108
109 static noinline int
110 block_group_cache_done(struct btrfs_block_group_cache *cache)
111 {
112 smp_mb();
113 return cache->cached == BTRFS_CACHE_FINISHED;
114 }
115
116 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
117 {
118 return (cache->flags & bits) == bits;
119 }
120
121 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
122 {
123 atomic_inc(&cache->count);
124 }
125
126 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
127 {
128 if (atomic_dec_and_test(&cache->count)) {
129 WARN_ON(cache->pinned > 0);
130 WARN_ON(cache->reserved > 0);
131 kfree(cache->free_space_ctl);
132 kfree(cache);
133 }
134 }
135
136 /*
137 * this adds the block group to the fs_info rb tree for the block group
138 * cache
139 */
140 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
141 struct btrfs_block_group_cache *block_group)
142 {
143 struct rb_node **p;
144 struct rb_node *parent = NULL;
145 struct btrfs_block_group_cache *cache;
146
147 spin_lock(&info->block_group_cache_lock);
148 p = &info->block_group_cache_tree.rb_node;
149
150 while (*p) {
151 parent = *p;
152 cache = rb_entry(parent, struct btrfs_block_group_cache,
153 cache_node);
154 if (block_group->key.objectid < cache->key.objectid) {
155 p = &(*p)->rb_left;
156 } else if (block_group->key.objectid > cache->key.objectid) {
157 p = &(*p)->rb_right;
158 } else {
159 spin_unlock(&info->block_group_cache_lock);
160 return -EEXIST;
161 }
162 }
163
164 rb_link_node(&block_group->cache_node, parent, p);
165 rb_insert_color(&block_group->cache_node,
166 &info->block_group_cache_tree);
167
168 if (info->first_logical_byte > block_group->key.objectid)
169 info->first_logical_byte = block_group->key.objectid;
170
171 spin_unlock(&info->block_group_cache_lock);
172
173 return 0;
174 }
175
176 /*
177 * This will return the block group at or after bytenr if contains is 0, else
178 * it will return the block group that contains the bytenr
179 */
180 static struct btrfs_block_group_cache *
181 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
182 int contains)
183 {
184 struct btrfs_block_group_cache *cache, *ret = NULL;
185 struct rb_node *n;
186 u64 end, start;
187
188 spin_lock(&info->block_group_cache_lock);
189 n = info->block_group_cache_tree.rb_node;
190
191 while (n) {
192 cache = rb_entry(n, struct btrfs_block_group_cache,
193 cache_node);
194 end = cache->key.objectid + cache->key.offset - 1;
195 start = cache->key.objectid;
196
197 if (bytenr < start) {
198 if (!contains && (!ret || start < ret->key.objectid))
199 ret = cache;
200 n = n->rb_left;
201 } else if (bytenr > start) {
202 if (contains && bytenr <= end) {
203 ret = cache;
204 break;
205 }
206 n = n->rb_right;
207 } else {
208 ret = cache;
209 break;
210 }
211 }
212 if (ret) {
213 btrfs_get_block_group(ret);
214 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
215 info->first_logical_byte = ret->key.objectid;
216 }
217 spin_unlock(&info->block_group_cache_lock);
218
219 return ret;
220 }
221
222 static int add_excluded_extent(struct btrfs_root *root,
223 u64 start, u64 num_bytes)
224 {
225 u64 end = start + num_bytes - 1;
226 set_extent_bits(&root->fs_info->freed_extents[0],
227 start, end, EXTENT_UPTODATE, GFP_NOFS);
228 set_extent_bits(&root->fs_info->freed_extents[1],
229 start, end, EXTENT_UPTODATE, GFP_NOFS);
230 return 0;
231 }
232
233 static void free_excluded_extents(struct btrfs_root *root,
234 struct btrfs_block_group_cache *cache)
235 {
236 u64 start, end;
237
238 start = cache->key.objectid;
239 end = start + cache->key.offset - 1;
240
241 clear_extent_bits(&root->fs_info->freed_extents[0],
242 start, end, EXTENT_UPTODATE, GFP_NOFS);
243 clear_extent_bits(&root->fs_info->freed_extents[1],
244 start, end, EXTENT_UPTODATE, GFP_NOFS);
245 }
246
247 static int exclude_super_stripes(struct btrfs_root *root,
248 struct btrfs_block_group_cache *cache)
249 {
250 u64 bytenr;
251 u64 *logical;
252 int stripe_len;
253 int i, nr, ret;
254
255 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
256 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
257 cache->bytes_super += stripe_len;
258 ret = add_excluded_extent(root, cache->key.objectid,
259 stripe_len);
260 if (ret)
261 return ret;
262 }
263
264 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
265 bytenr = btrfs_sb_offset(i);
266 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
267 cache->key.objectid, bytenr,
268 0, &logical, &nr, &stripe_len);
269 if (ret)
270 return ret;
271
272 while (nr--) {
273 cache->bytes_super += stripe_len;
274 ret = add_excluded_extent(root, logical[nr],
275 stripe_len);
276 if (ret) {
277 kfree(logical);
278 return ret;
279 }
280 }
281
282 kfree(logical);
283 }
284 return 0;
285 }
286
287 static struct btrfs_caching_control *
288 get_caching_control(struct btrfs_block_group_cache *cache)
289 {
290 struct btrfs_caching_control *ctl;
291
292 spin_lock(&cache->lock);
293 if (cache->cached != BTRFS_CACHE_STARTED) {
294 spin_unlock(&cache->lock);
295 return NULL;
296 }
297
298 /* We're loading it the fast way, so we don't have a caching_ctl. */
299 if (!cache->caching_ctl) {
300 spin_unlock(&cache->lock);
301 return NULL;
302 }
303
304 ctl = cache->caching_ctl;
305 atomic_inc(&ctl->count);
306 spin_unlock(&cache->lock);
307 return ctl;
308 }
309
310 static void put_caching_control(struct btrfs_caching_control *ctl)
311 {
312 if (atomic_dec_and_test(&ctl->count))
313 kfree(ctl);
314 }
315
316 /*
317 * this is only called by cache_block_group, since we could have freed extents
318 * we need to check the pinned_extents for any extents that can't be used yet
319 * since their free space will be released as soon as the transaction commits.
320 */
321 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
322 struct btrfs_fs_info *info, u64 start, u64 end)
323 {
324 u64 extent_start, extent_end, size, total_added = 0;
325 int ret;
326
327 while (start < end) {
328 ret = find_first_extent_bit(info->pinned_extents, start,
329 &extent_start, &extent_end,
330 EXTENT_DIRTY | EXTENT_UPTODATE,
331 NULL);
332 if (ret)
333 break;
334
335 if (extent_start <= start) {
336 start = extent_end + 1;
337 } else if (extent_start > start && extent_start < end) {
338 size = extent_start - start;
339 total_added += size;
340 ret = btrfs_add_free_space(block_group, start,
341 size);
342 BUG_ON(ret); /* -ENOMEM or logic error */
343 start = extent_end + 1;
344 } else {
345 break;
346 }
347 }
348
349 if (start < end) {
350 size = end - start;
351 total_added += size;
352 ret = btrfs_add_free_space(block_group, start, size);
353 BUG_ON(ret); /* -ENOMEM or logic error */
354 }
355
356 return total_added;
357 }
358
359 static noinline void caching_thread(struct btrfs_work *work)
360 {
361 struct btrfs_block_group_cache *block_group;
362 struct btrfs_fs_info *fs_info;
363 struct btrfs_caching_control *caching_ctl;
364 struct btrfs_root *extent_root;
365 struct btrfs_path *path;
366 struct extent_buffer *leaf;
367 struct btrfs_key key;
368 u64 total_found = 0;
369 u64 last = 0;
370 u32 nritems;
371 int ret = 0;
372
373 caching_ctl = container_of(work, struct btrfs_caching_control, work);
374 block_group = caching_ctl->block_group;
375 fs_info = block_group->fs_info;
376 extent_root = fs_info->extent_root;
377
378 path = btrfs_alloc_path();
379 if (!path)
380 goto out;
381
382 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
383
384 /*
385 * We don't want to deadlock with somebody trying to allocate a new
386 * extent for the extent root while also trying to search the extent
387 * root to add free space. So we skip locking and search the commit
388 * root, since its read-only
389 */
390 path->skip_locking = 1;
391 path->search_commit_root = 1;
392 path->reada = 1;
393
394 key.objectid = last;
395 key.offset = 0;
396 key.type = BTRFS_EXTENT_ITEM_KEY;
397 again:
398 mutex_lock(&caching_ctl->mutex);
399 /* need to make sure the commit_root doesn't disappear */
400 down_read(&fs_info->extent_commit_sem);
401
402 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
403 if (ret < 0)
404 goto err;
405
406 leaf = path->nodes[0];
407 nritems = btrfs_header_nritems(leaf);
408
409 while (1) {
410 if (btrfs_fs_closing(fs_info) > 1) {
411 last = (u64)-1;
412 break;
413 }
414
415 if (path->slots[0] < nritems) {
416 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
417 } else {
418 ret = find_next_key(path, 0, &key);
419 if (ret)
420 break;
421
422 if (need_resched() ||
423 btrfs_next_leaf(extent_root, path)) {
424 caching_ctl->progress = last;
425 btrfs_release_path(path);
426 up_read(&fs_info->extent_commit_sem);
427 mutex_unlock(&caching_ctl->mutex);
428 cond_resched();
429 goto again;
430 }
431 leaf = path->nodes[0];
432 nritems = btrfs_header_nritems(leaf);
433 continue;
434 }
435
436 if (key.objectid < block_group->key.objectid) {
437 path->slots[0]++;
438 continue;
439 }
440
441 if (key.objectid >= block_group->key.objectid +
442 block_group->key.offset)
443 break;
444
445 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
446 total_found += add_new_free_space(block_group,
447 fs_info, last,
448 key.objectid);
449 last = key.objectid + key.offset;
450
451 if (total_found > (1024 * 1024 * 2)) {
452 total_found = 0;
453 wake_up(&caching_ctl->wait);
454 }
455 }
456 path->slots[0]++;
457 }
458 ret = 0;
459
460 total_found += add_new_free_space(block_group, fs_info, last,
461 block_group->key.objectid +
462 block_group->key.offset);
463 caching_ctl->progress = (u64)-1;
464
465 spin_lock(&block_group->lock);
466 block_group->caching_ctl = NULL;
467 block_group->cached = BTRFS_CACHE_FINISHED;
468 spin_unlock(&block_group->lock);
469
470 err:
471 btrfs_free_path(path);
472 up_read(&fs_info->extent_commit_sem);
473
474 free_excluded_extents(extent_root, block_group);
475
476 mutex_unlock(&caching_ctl->mutex);
477 out:
478 wake_up(&caching_ctl->wait);
479
480 put_caching_control(caching_ctl);
481 btrfs_put_block_group(block_group);
482 }
483
484 static int cache_block_group(struct btrfs_block_group_cache *cache,
485 int load_cache_only)
486 {
487 DEFINE_WAIT(wait);
488 struct btrfs_fs_info *fs_info = cache->fs_info;
489 struct btrfs_caching_control *caching_ctl;
490 int ret = 0;
491
492 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
493 if (!caching_ctl)
494 return -ENOMEM;
495
496 INIT_LIST_HEAD(&caching_ctl->list);
497 mutex_init(&caching_ctl->mutex);
498 init_waitqueue_head(&caching_ctl->wait);
499 caching_ctl->block_group = cache;
500 caching_ctl->progress = cache->key.objectid;
501 atomic_set(&caching_ctl->count, 1);
502 caching_ctl->work.func = caching_thread;
503
504 spin_lock(&cache->lock);
505 /*
506 * This should be a rare occasion, but this could happen I think in the
507 * case where one thread starts to load the space cache info, and then
508 * some other thread starts a transaction commit which tries to do an
509 * allocation while the other thread is still loading the space cache
510 * info. The previous loop should have kept us from choosing this block
511 * group, but if we've moved to the state where we will wait on caching
512 * block groups we need to first check if we're doing a fast load here,
513 * so we can wait for it to finish, otherwise we could end up allocating
514 * from a block group who's cache gets evicted for one reason or
515 * another.
516 */
517 while (cache->cached == BTRFS_CACHE_FAST) {
518 struct btrfs_caching_control *ctl;
519
520 ctl = cache->caching_ctl;
521 atomic_inc(&ctl->count);
522 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
523 spin_unlock(&cache->lock);
524
525 schedule();
526
527 finish_wait(&ctl->wait, &wait);
528 put_caching_control(ctl);
529 spin_lock(&cache->lock);
530 }
531
532 if (cache->cached != BTRFS_CACHE_NO) {
533 spin_unlock(&cache->lock);
534 kfree(caching_ctl);
535 return 0;
536 }
537 WARN_ON(cache->caching_ctl);
538 cache->caching_ctl = caching_ctl;
539 cache->cached = BTRFS_CACHE_FAST;
540 spin_unlock(&cache->lock);
541
542 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
543 ret = load_free_space_cache(fs_info, cache);
544
545 spin_lock(&cache->lock);
546 if (ret == 1) {
547 cache->caching_ctl = NULL;
548 cache->cached = BTRFS_CACHE_FINISHED;
549 cache->last_byte_to_unpin = (u64)-1;
550 } else {
551 if (load_cache_only) {
552 cache->caching_ctl = NULL;
553 cache->cached = BTRFS_CACHE_NO;
554 } else {
555 cache->cached = BTRFS_CACHE_STARTED;
556 }
557 }
558 spin_unlock(&cache->lock);
559 wake_up(&caching_ctl->wait);
560 if (ret == 1) {
561 put_caching_control(caching_ctl);
562 free_excluded_extents(fs_info->extent_root, cache);
563 return 0;
564 }
565 } else {
566 /*
567 * We are not going to do the fast caching, set cached to the
568 * appropriate value and wakeup any waiters.
569 */
570 spin_lock(&cache->lock);
571 if (load_cache_only) {
572 cache->caching_ctl = NULL;
573 cache->cached = BTRFS_CACHE_NO;
574 } else {
575 cache->cached = BTRFS_CACHE_STARTED;
576 }
577 spin_unlock(&cache->lock);
578 wake_up(&caching_ctl->wait);
579 }
580
581 if (load_cache_only) {
582 put_caching_control(caching_ctl);
583 return 0;
584 }
585
586 down_write(&fs_info->extent_commit_sem);
587 atomic_inc(&caching_ctl->count);
588 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
589 up_write(&fs_info->extent_commit_sem);
590
591 btrfs_get_block_group(cache);
592
593 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
594
595 return ret;
596 }
597
598 /*
599 * return the block group that starts at or after bytenr
600 */
601 static struct btrfs_block_group_cache *
602 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
603 {
604 struct btrfs_block_group_cache *cache;
605
606 cache = block_group_cache_tree_search(info, bytenr, 0);
607
608 return cache;
609 }
610
611 /*
612 * return the block group that contains the given bytenr
613 */
614 struct btrfs_block_group_cache *btrfs_lookup_block_group(
615 struct btrfs_fs_info *info,
616 u64 bytenr)
617 {
618 struct btrfs_block_group_cache *cache;
619
620 cache = block_group_cache_tree_search(info, bytenr, 1);
621
622 return cache;
623 }
624
625 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
626 u64 flags)
627 {
628 struct list_head *head = &info->space_info;
629 struct btrfs_space_info *found;
630
631 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
632
633 rcu_read_lock();
634 list_for_each_entry_rcu(found, head, list) {
635 if (found->flags & flags) {
636 rcu_read_unlock();
637 return found;
638 }
639 }
640 rcu_read_unlock();
641 return NULL;
642 }
643
644 /*
645 * after adding space to the filesystem, we need to clear the full flags
646 * on all the space infos.
647 */
648 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
649 {
650 struct list_head *head = &info->space_info;
651 struct btrfs_space_info *found;
652
653 rcu_read_lock();
654 list_for_each_entry_rcu(found, head, list)
655 found->full = 0;
656 rcu_read_unlock();
657 }
658
659 u64 btrfs_find_block_group(struct btrfs_root *root,
660 u64 search_start, u64 search_hint, int owner)
661 {
662 struct btrfs_block_group_cache *cache;
663 u64 used;
664 u64 last = max(search_hint, search_start);
665 u64 group_start = 0;
666 int full_search = 0;
667 int factor = 9;
668 int wrapped = 0;
669 again:
670 while (1) {
671 cache = btrfs_lookup_first_block_group(root->fs_info, last);
672 if (!cache)
673 break;
674
675 spin_lock(&cache->lock);
676 last = cache->key.objectid + cache->key.offset;
677 used = btrfs_block_group_used(&cache->item);
678
679 if ((full_search || !cache->ro) &&
680 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
681 if (used + cache->pinned + cache->reserved <
682 div_factor(cache->key.offset, factor)) {
683 group_start = cache->key.objectid;
684 spin_unlock(&cache->lock);
685 btrfs_put_block_group(cache);
686 goto found;
687 }
688 }
689 spin_unlock(&cache->lock);
690 btrfs_put_block_group(cache);
691 cond_resched();
692 }
693 if (!wrapped) {
694 last = search_start;
695 wrapped = 1;
696 goto again;
697 }
698 if (!full_search && factor < 10) {
699 last = search_start;
700 full_search = 1;
701 factor = 10;
702 goto again;
703 }
704 found:
705 return group_start;
706 }
707
708 /* simple helper to search for an existing extent at a given offset */
709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
710 {
711 int ret;
712 struct btrfs_key key;
713 struct btrfs_path *path;
714
715 path = btrfs_alloc_path();
716 if (!path)
717 return -ENOMEM;
718
719 key.objectid = start;
720 key.offset = len;
721 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
722 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
723 0, 0);
724 btrfs_free_path(path);
725 return ret;
726 }
727
728 /*
729 * helper function to lookup reference count and flags of extent.
730 *
731 * the head node for delayed ref is used to store the sum of all the
732 * reference count modifications queued up in the rbtree. the head
733 * node may also store the extent flags to set. This way you can check
734 * to see what the reference count and extent flags would be if all of
735 * the delayed refs are not processed.
736 */
737 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
738 struct btrfs_root *root, u64 bytenr,
739 u64 num_bytes, u64 *refs, u64 *flags)
740 {
741 struct btrfs_delayed_ref_head *head;
742 struct btrfs_delayed_ref_root *delayed_refs;
743 struct btrfs_path *path;
744 struct btrfs_extent_item *ei;
745 struct extent_buffer *leaf;
746 struct btrfs_key key;
747 u32 item_size;
748 u64 num_refs;
749 u64 extent_flags;
750 int ret;
751
752 path = btrfs_alloc_path();
753 if (!path)
754 return -ENOMEM;
755
756 key.objectid = bytenr;
757 key.type = BTRFS_EXTENT_ITEM_KEY;
758 key.offset = num_bytes;
759 if (!trans) {
760 path->skip_locking = 1;
761 path->search_commit_root = 1;
762 }
763 again:
764 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
765 &key, path, 0, 0);
766 if (ret < 0)
767 goto out_free;
768
769 if (ret == 0) {
770 leaf = path->nodes[0];
771 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
772 if (item_size >= sizeof(*ei)) {
773 ei = btrfs_item_ptr(leaf, path->slots[0],
774 struct btrfs_extent_item);
775 num_refs = btrfs_extent_refs(leaf, ei);
776 extent_flags = btrfs_extent_flags(leaf, ei);
777 } else {
778 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
779 struct btrfs_extent_item_v0 *ei0;
780 BUG_ON(item_size != sizeof(*ei0));
781 ei0 = btrfs_item_ptr(leaf, path->slots[0],
782 struct btrfs_extent_item_v0);
783 num_refs = btrfs_extent_refs_v0(leaf, ei0);
784 /* FIXME: this isn't correct for data */
785 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
786 #else
787 BUG();
788 #endif
789 }
790 BUG_ON(num_refs == 0);
791 } else {
792 num_refs = 0;
793 extent_flags = 0;
794 ret = 0;
795 }
796
797 if (!trans)
798 goto out;
799
800 delayed_refs = &trans->transaction->delayed_refs;
801 spin_lock(&delayed_refs->lock);
802 head = btrfs_find_delayed_ref_head(trans, bytenr);
803 if (head) {
804 if (!mutex_trylock(&head->mutex)) {
805 atomic_inc(&head->node.refs);
806 spin_unlock(&delayed_refs->lock);
807
808 btrfs_release_path(path);
809
810 /*
811 * Mutex was contended, block until it's released and try
812 * again
813 */
814 mutex_lock(&head->mutex);
815 mutex_unlock(&head->mutex);
816 btrfs_put_delayed_ref(&head->node);
817 goto again;
818 }
819 if (head->extent_op && head->extent_op->update_flags)
820 extent_flags |= head->extent_op->flags_to_set;
821 else
822 BUG_ON(num_refs == 0);
823
824 num_refs += head->node.ref_mod;
825 mutex_unlock(&head->mutex);
826 }
827 spin_unlock(&delayed_refs->lock);
828 out:
829 WARN_ON(num_refs == 0);
830 if (refs)
831 *refs = num_refs;
832 if (flags)
833 *flags = extent_flags;
834 out_free:
835 btrfs_free_path(path);
836 return ret;
837 }
838
839 /*
840 * Back reference rules. Back refs have three main goals:
841 *
842 * 1) differentiate between all holders of references to an extent so that
843 * when a reference is dropped we can make sure it was a valid reference
844 * before freeing the extent.
845 *
846 * 2) Provide enough information to quickly find the holders of an extent
847 * if we notice a given block is corrupted or bad.
848 *
849 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
850 * maintenance. This is actually the same as #2, but with a slightly
851 * different use case.
852 *
853 * There are two kinds of back refs. The implicit back refs is optimized
854 * for pointers in non-shared tree blocks. For a given pointer in a block,
855 * back refs of this kind provide information about the block's owner tree
856 * and the pointer's key. These information allow us to find the block by
857 * b-tree searching. The full back refs is for pointers in tree blocks not
858 * referenced by their owner trees. The location of tree block is recorded
859 * in the back refs. Actually the full back refs is generic, and can be
860 * used in all cases the implicit back refs is used. The major shortcoming
861 * of the full back refs is its overhead. Every time a tree block gets
862 * COWed, we have to update back refs entry for all pointers in it.
863 *
864 * For a newly allocated tree block, we use implicit back refs for
865 * pointers in it. This means most tree related operations only involve
866 * implicit back refs. For a tree block created in old transaction, the
867 * only way to drop a reference to it is COW it. So we can detect the
868 * event that tree block loses its owner tree's reference and do the
869 * back refs conversion.
870 *
871 * When a tree block is COW'd through a tree, there are four cases:
872 *
873 * The reference count of the block is one and the tree is the block's
874 * owner tree. Nothing to do in this case.
875 *
876 * The reference count of the block is one and the tree is not the
877 * block's owner tree. In this case, full back refs is used for pointers
878 * in the block. Remove these full back refs, add implicit back refs for
879 * every pointers in the new block.
880 *
881 * The reference count of the block is greater than one and the tree is
882 * the block's owner tree. In this case, implicit back refs is used for
883 * pointers in the block. Add full back refs for every pointers in the
884 * block, increase lower level extents' reference counts. The original
885 * implicit back refs are entailed to the new block.
886 *
887 * The reference count of the block is greater than one and the tree is
888 * not the block's owner tree. Add implicit back refs for every pointer in
889 * the new block, increase lower level extents' reference count.
890 *
891 * Back Reference Key composing:
892 *
893 * The key objectid corresponds to the first byte in the extent,
894 * The key type is used to differentiate between types of back refs.
895 * There are different meanings of the key offset for different types
896 * of back refs.
897 *
898 * File extents can be referenced by:
899 *
900 * - multiple snapshots, subvolumes, or different generations in one subvol
901 * - different files inside a single subvolume
902 * - different offsets inside a file (bookend extents in file.c)
903 *
904 * The extent ref structure for the implicit back refs has fields for:
905 *
906 * - Objectid of the subvolume root
907 * - objectid of the file holding the reference
908 * - original offset in the file
909 * - how many bookend extents
910 *
911 * The key offset for the implicit back refs is hash of the first
912 * three fields.
913 *
914 * The extent ref structure for the full back refs has field for:
915 *
916 * - number of pointers in the tree leaf
917 *
918 * The key offset for the implicit back refs is the first byte of
919 * the tree leaf
920 *
921 * When a file extent is allocated, The implicit back refs is used.
922 * the fields are filled in:
923 *
924 * (root_key.objectid, inode objectid, offset in file, 1)
925 *
926 * When a file extent is removed file truncation, we find the
927 * corresponding implicit back refs and check the following fields:
928 *
929 * (btrfs_header_owner(leaf), inode objectid, offset in file)
930 *
931 * Btree extents can be referenced by:
932 *
933 * - Different subvolumes
934 *
935 * Both the implicit back refs and the full back refs for tree blocks
936 * only consist of key. The key offset for the implicit back refs is
937 * objectid of block's owner tree. The key offset for the full back refs
938 * is the first byte of parent block.
939 *
940 * When implicit back refs is used, information about the lowest key and
941 * level of the tree block are required. These information are stored in
942 * tree block info structure.
943 */
944
945 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
946 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
947 struct btrfs_root *root,
948 struct btrfs_path *path,
949 u64 owner, u32 extra_size)
950 {
951 struct btrfs_extent_item *item;
952 struct btrfs_extent_item_v0 *ei0;
953 struct btrfs_extent_ref_v0 *ref0;
954 struct btrfs_tree_block_info *bi;
955 struct extent_buffer *leaf;
956 struct btrfs_key key;
957 struct btrfs_key found_key;
958 u32 new_size = sizeof(*item);
959 u64 refs;
960 int ret;
961
962 leaf = path->nodes[0];
963 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
964
965 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
966 ei0 = btrfs_item_ptr(leaf, path->slots[0],
967 struct btrfs_extent_item_v0);
968 refs = btrfs_extent_refs_v0(leaf, ei0);
969
970 if (owner == (u64)-1) {
971 while (1) {
972 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
973 ret = btrfs_next_leaf(root, path);
974 if (ret < 0)
975 return ret;
976 BUG_ON(ret > 0); /* Corruption */
977 leaf = path->nodes[0];
978 }
979 btrfs_item_key_to_cpu(leaf, &found_key,
980 path->slots[0]);
981 BUG_ON(key.objectid != found_key.objectid);
982 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
983 path->slots[0]++;
984 continue;
985 }
986 ref0 = btrfs_item_ptr(leaf, path->slots[0],
987 struct btrfs_extent_ref_v0);
988 owner = btrfs_ref_objectid_v0(leaf, ref0);
989 break;
990 }
991 }
992 btrfs_release_path(path);
993
994 if (owner < BTRFS_FIRST_FREE_OBJECTID)
995 new_size += sizeof(*bi);
996
997 new_size -= sizeof(*ei0);
998 ret = btrfs_search_slot(trans, root, &key, path,
999 new_size + extra_size, 1);
1000 if (ret < 0)
1001 return ret;
1002 BUG_ON(ret); /* Corruption */
1003
1004 btrfs_extend_item(trans, root, path, new_size);
1005
1006 leaf = path->nodes[0];
1007 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1008 btrfs_set_extent_refs(leaf, item, refs);
1009 /* FIXME: get real generation */
1010 btrfs_set_extent_generation(leaf, item, 0);
1011 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1012 btrfs_set_extent_flags(leaf, item,
1013 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1014 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1015 bi = (struct btrfs_tree_block_info *)(item + 1);
1016 /* FIXME: get first key of the block */
1017 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1018 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1019 } else {
1020 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1021 }
1022 btrfs_mark_buffer_dirty(leaf);
1023 return 0;
1024 }
1025 #endif
1026
1027 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1028 {
1029 u32 high_crc = ~(u32)0;
1030 u32 low_crc = ~(u32)0;
1031 __le64 lenum;
1032
1033 lenum = cpu_to_le64(root_objectid);
1034 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1035 lenum = cpu_to_le64(owner);
1036 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1037 lenum = cpu_to_le64(offset);
1038 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1039
1040 return ((u64)high_crc << 31) ^ (u64)low_crc;
1041 }
1042
1043 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1044 struct btrfs_extent_data_ref *ref)
1045 {
1046 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1047 btrfs_extent_data_ref_objectid(leaf, ref),
1048 btrfs_extent_data_ref_offset(leaf, ref));
1049 }
1050
1051 static int match_extent_data_ref(struct extent_buffer *leaf,
1052 struct btrfs_extent_data_ref *ref,
1053 u64 root_objectid, u64 owner, u64 offset)
1054 {
1055 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1056 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1057 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1058 return 0;
1059 return 1;
1060 }
1061
1062 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1063 struct btrfs_root *root,
1064 struct btrfs_path *path,
1065 u64 bytenr, u64 parent,
1066 u64 root_objectid,
1067 u64 owner, u64 offset)
1068 {
1069 struct btrfs_key key;
1070 struct btrfs_extent_data_ref *ref;
1071 struct extent_buffer *leaf;
1072 u32 nritems;
1073 int ret;
1074 int recow;
1075 int err = -ENOENT;
1076
1077 key.objectid = bytenr;
1078 if (parent) {
1079 key.type = BTRFS_SHARED_DATA_REF_KEY;
1080 key.offset = parent;
1081 } else {
1082 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1083 key.offset = hash_extent_data_ref(root_objectid,
1084 owner, offset);
1085 }
1086 again:
1087 recow = 0;
1088 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1089 if (ret < 0) {
1090 err = ret;
1091 goto fail;
1092 }
1093
1094 if (parent) {
1095 if (!ret)
1096 return 0;
1097 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1098 key.type = BTRFS_EXTENT_REF_V0_KEY;
1099 btrfs_release_path(path);
1100 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1101 if (ret < 0) {
1102 err = ret;
1103 goto fail;
1104 }
1105 if (!ret)
1106 return 0;
1107 #endif
1108 goto fail;
1109 }
1110
1111 leaf = path->nodes[0];
1112 nritems = btrfs_header_nritems(leaf);
1113 while (1) {
1114 if (path->slots[0] >= nritems) {
1115 ret = btrfs_next_leaf(root, path);
1116 if (ret < 0)
1117 err = ret;
1118 if (ret)
1119 goto fail;
1120
1121 leaf = path->nodes[0];
1122 nritems = btrfs_header_nritems(leaf);
1123 recow = 1;
1124 }
1125
1126 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1127 if (key.objectid != bytenr ||
1128 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1129 goto fail;
1130
1131 ref = btrfs_item_ptr(leaf, path->slots[0],
1132 struct btrfs_extent_data_ref);
1133
1134 if (match_extent_data_ref(leaf, ref, root_objectid,
1135 owner, offset)) {
1136 if (recow) {
1137 btrfs_release_path(path);
1138 goto again;
1139 }
1140 err = 0;
1141 break;
1142 }
1143 path->slots[0]++;
1144 }
1145 fail:
1146 return err;
1147 }
1148
1149 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1150 struct btrfs_root *root,
1151 struct btrfs_path *path,
1152 u64 bytenr, u64 parent,
1153 u64 root_objectid, u64 owner,
1154 u64 offset, int refs_to_add)
1155 {
1156 struct btrfs_key key;
1157 struct extent_buffer *leaf;
1158 u32 size;
1159 u32 num_refs;
1160 int ret;
1161
1162 key.objectid = bytenr;
1163 if (parent) {
1164 key.type = BTRFS_SHARED_DATA_REF_KEY;
1165 key.offset = parent;
1166 size = sizeof(struct btrfs_shared_data_ref);
1167 } else {
1168 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1169 key.offset = hash_extent_data_ref(root_objectid,
1170 owner, offset);
1171 size = sizeof(struct btrfs_extent_data_ref);
1172 }
1173
1174 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1175 if (ret && ret != -EEXIST)
1176 goto fail;
1177
1178 leaf = path->nodes[0];
1179 if (parent) {
1180 struct btrfs_shared_data_ref *ref;
1181 ref = btrfs_item_ptr(leaf, path->slots[0],
1182 struct btrfs_shared_data_ref);
1183 if (ret == 0) {
1184 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1185 } else {
1186 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1187 num_refs += refs_to_add;
1188 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1189 }
1190 } else {
1191 struct btrfs_extent_data_ref *ref;
1192 while (ret == -EEXIST) {
1193 ref = btrfs_item_ptr(leaf, path->slots[0],
1194 struct btrfs_extent_data_ref);
1195 if (match_extent_data_ref(leaf, ref, root_objectid,
1196 owner, offset))
1197 break;
1198 btrfs_release_path(path);
1199 key.offset++;
1200 ret = btrfs_insert_empty_item(trans, root, path, &key,
1201 size);
1202 if (ret && ret != -EEXIST)
1203 goto fail;
1204
1205 leaf = path->nodes[0];
1206 }
1207 ref = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_extent_data_ref);
1209 if (ret == 0) {
1210 btrfs_set_extent_data_ref_root(leaf, ref,
1211 root_objectid);
1212 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1213 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1214 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1215 } else {
1216 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1217 num_refs += refs_to_add;
1218 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1219 }
1220 }
1221 btrfs_mark_buffer_dirty(leaf);
1222 ret = 0;
1223 fail:
1224 btrfs_release_path(path);
1225 return ret;
1226 }
1227
1228 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1229 struct btrfs_root *root,
1230 struct btrfs_path *path,
1231 int refs_to_drop)
1232 {
1233 struct btrfs_key key;
1234 struct btrfs_extent_data_ref *ref1 = NULL;
1235 struct btrfs_shared_data_ref *ref2 = NULL;
1236 struct extent_buffer *leaf;
1237 u32 num_refs = 0;
1238 int ret = 0;
1239
1240 leaf = path->nodes[0];
1241 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1242
1243 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1244 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1245 struct btrfs_extent_data_ref);
1246 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1247 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1248 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1249 struct btrfs_shared_data_ref);
1250 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1251 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1252 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1253 struct btrfs_extent_ref_v0 *ref0;
1254 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_extent_ref_v0);
1256 num_refs = btrfs_ref_count_v0(leaf, ref0);
1257 #endif
1258 } else {
1259 BUG();
1260 }
1261
1262 BUG_ON(num_refs < refs_to_drop);
1263 num_refs -= refs_to_drop;
1264
1265 if (num_refs == 0) {
1266 ret = btrfs_del_item(trans, root, path);
1267 } else {
1268 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1269 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1270 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1271 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1273 else {
1274 struct btrfs_extent_ref_v0 *ref0;
1275 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1276 struct btrfs_extent_ref_v0);
1277 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1278 }
1279 #endif
1280 btrfs_mark_buffer_dirty(leaf);
1281 }
1282 return ret;
1283 }
1284
1285 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1286 struct btrfs_path *path,
1287 struct btrfs_extent_inline_ref *iref)
1288 {
1289 struct btrfs_key key;
1290 struct extent_buffer *leaf;
1291 struct btrfs_extent_data_ref *ref1;
1292 struct btrfs_shared_data_ref *ref2;
1293 u32 num_refs = 0;
1294
1295 leaf = path->nodes[0];
1296 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1297 if (iref) {
1298 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1299 BTRFS_EXTENT_DATA_REF_KEY) {
1300 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1301 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1302 } else {
1303 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1304 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1305 }
1306 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1307 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_extent_data_ref);
1309 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1310 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1311 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1312 struct btrfs_shared_data_ref);
1313 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1316 struct btrfs_extent_ref_v0 *ref0;
1317 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_ref_v0);
1319 num_refs = btrfs_ref_count_v0(leaf, ref0);
1320 #endif
1321 } else {
1322 WARN_ON(1);
1323 }
1324 return num_refs;
1325 }
1326
1327 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1328 struct btrfs_root *root,
1329 struct btrfs_path *path,
1330 u64 bytenr, u64 parent,
1331 u64 root_objectid)
1332 {
1333 struct btrfs_key key;
1334 int ret;
1335
1336 key.objectid = bytenr;
1337 if (parent) {
1338 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1339 key.offset = parent;
1340 } else {
1341 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1342 key.offset = root_objectid;
1343 }
1344
1345 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1346 if (ret > 0)
1347 ret = -ENOENT;
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 if (ret == -ENOENT && parent) {
1350 btrfs_release_path(path);
1351 key.type = BTRFS_EXTENT_REF_V0_KEY;
1352 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1353 if (ret > 0)
1354 ret = -ENOENT;
1355 }
1356 #endif
1357 return ret;
1358 }
1359
1360 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1361 struct btrfs_root *root,
1362 struct btrfs_path *path,
1363 u64 bytenr, u64 parent,
1364 u64 root_objectid)
1365 {
1366 struct btrfs_key key;
1367 int ret;
1368
1369 key.objectid = bytenr;
1370 if (parent) {
1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 key.offset = parent;
1373 } else {
1374 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 key.offset = root_objectid;
1376 }
1377
1378 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1379 btrfs_release_path(path);
1380 return ret;
1381 }
1382
1383 static inline int extent_ref_type(u64 parent, u64 owner)
1384 {
1385 int type;
1386 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1387 if (parent > 0)
1388 type = BTRFS_SHARED_BLOCK_REF_KEY;
1389 else
1390 type = BTRFS_TREE_BLOCK_REF_KEY;
1391 } else {
1392 if (parent > 0)
1393 type = BTRFS_SHARED_DATA_REF_KEY;
1394 else
1395 type = BTRFS_EXTENT_DATA_REF_KEY;
1396 }
1397 return type;
1398 }
1399
1400 static int find_next_key(struct btrfs_path *path, int level,
1401 struct btrfs_key *key)
1402
1403 {
1404 for (; level < BTRFS_MAX_LEVEL; level++) {
1405 if (!path->nodes[level])
1406 break;
1407 if (path->slots[level] + 1 >=
1408 btrfs_header_nritems(path->nodes[level]))
1409 continue;
1410 if (level == 0)
1411 btrfs_item_key_to_cpu(path->nodes[level], key,
1412 path->slots[level] + 1);
1413 else
1414 btrfs_node_key_to_cpu(path->nodes[level], key,
1415 path->slots[level] + 1);
1416 return 0;
1417 }
1418 return 1;
1419 }
1420
1421 /*
1422 * look for inline back ref. if back ref is found, *ref_ret is set
1423 * to the address of inline back ref, and 0 is returned.
1424 *
1425 * if back ref isn't found, *ref_ret is set to the address where it
1426 * should be inserted, and -ENOENT is returned.
1427 *
1428 * if insert is true and there are too many inline back refs, the path
1429 * points to the extent item, and -EAGAIN is returned.
1430 *
1431 * NOTE: inline back refs are ordered in the same way that back ref
1432 * items in the tree are ordered.
1433 */
1434 static noinline_for_stack
1435 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1436 struct btrfs_root *root,
1437 struct btrfs_path *path,
1438 struct btrfs_extent_inline_ref **ref_ret,
1439 u64 bytenr, u64 num_bytes,
1440 u64 parent, u64 root_objectid,
1441 u64 owner, u64 offset, int insert)
1442 {
1443 struct btrfs_key key;
1444 struct extent_buffer *leaf;
1445 struct btrfs_extent_item *ei;
1446 struct btrfs_extent_inline_ref *iref;
1447 u64 flags;
1448 u64 item_size;
1449 unsigned long ptr;
1450 unsigned long end;
1451 int extra_size;
1452 int type;
1453 int want;
1454 int ret;
1455 int err = 0;
1456
1457 key.objectid = bytenr;
1458 key.type = BTRFS_EXTENT_ITEM_KEY;
1459 key.offset = num_bytes;
1460
1461 want = extent_ref_type(parent, owner);
1462 if (insert) {
1463 extra_size = btrfs_extent_inline_ref_size(want);
1464 path->keep_locks = 1;
1465 } else
1466 extra_size = -1;
1467 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1468 if (ret < 0) {
1469 err = ret;
1470 goto out;
1471 }
1472 if (ret && !insert) {
1473 err = -ENOENT;
1474 goto out;
1475 } else if (ret) {
1476 err = -EIO;
1477 WARN_ON(1);
1478 goto out;
1479 }
1480
1481 leaf = path->nodes[0];
1482 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1483 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1484 if (item_size < sizeof(*ei)) {
1485 if (!insert) {
1486 err = -ENOENT;
1487 goto out;
1488 }
1489 ret = convert_extent_item_v0(trans, root, path, owner,
1490 extra_size);
1491 if (ret < 0) {
1492 err = ret;
1493 goto out;
1494 }
1495 leaf = path->nodes[0];
1496 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1497 }
1498 #endif
1499 BUG_ON(item_size < sizeof(*ei));
1500
1501 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1502 flags = btrfs_extent_flags(leaf, ei);
1503
1504 ptr = (unsigned long)(ei + 1);
1505 end = (unsigned long)ei + item_size;
1506
1507 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1508 ptr += sizeof(struct btrfs_tree_block_info);
1509 BUG_ON(ptr > end);
1510 } else {
1511 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1512 }
1513
1514 err = -ENOENT;
1515 while (1) {
1516 if (ptr >= end) {
1517 WARN_ON(ptr > end);
1518 break;
1519 }
1520 iref = (struct btrfs_extent_inline_ref *)ptr;
1521 type = btrfs_extent_inline_ref_type(leaf, iref);
1522 if (want < type)
1523 break;
1524 if (want > type) {
1525 ptr += btrfs_extent_inline_ref_size(type);
1526 continue;
1527 }
1528
1529 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1530 struct btrfs_extent_data_ref *dref;
1531 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1532 if (match_extent_data_ref(leaf, dref, root_objectid,
1533 owner, offset)) {
1534 err = 0;
1535 break;
1536 }
1537 if (hash_extent_data_ref_item(leaf, dref) <
1538 hash_extent_data_ref(root_objectid, owner, offset))
1539 break;
1540 } else {
1541 u64 ref_offset;
1542 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1543 if (parent > 0) {
1544 if (parent == ref_offset) {
1545 err = 0;
1546 break;
1547 }
1548 if (ref_offset < parent)
1549 break;
1550 } else {
1551 if (root_objectid == ref_offset) {
1552 err = 0;
1553 break;
1554 }
1555 if (ref_offset < root_objectid)
1556 break;
1557 }
1558 }
1559 ptr += btrfs_extent_inline_ref_size(type);
1560 }
1561 if (err == -ENOENT && insert) {
1562 if (item_size + extra_size >=
1563 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1564 err = -EAGAIN;
1565 goto out;
1566 }
1567 /*
1568 * To add new inline back ref, we have to make sure
1569 * there is no corresponding back ref item.
1570 * For simplicity, we just do not add new inline back
1571 * ref if there is any kind of item for this block
1572 */
1573 if (find_next_key(path, 0, &key) == 0 &&
1574 key.objectid == bytenr &&
1575 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1576 err = -EAGAIN;
1577 goto out;
1578 }
1579 }
1580 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1581 out:
1582 if (insert) {
1583 path->keep_locks = 0;
1584 btrfs_unlock_up_safe(path, 1);
1585 }
1586 return err;
1587 }
1588
1589 /*
1590 * helper to add new inline back ref
1591 */
1592 static noinline_for_stack
1593 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1594 struct btrfs_root *root,
1595 struct btrfs_path *path,
1596 struct btrfs_extent_inline_ref *iref,
1597 u64 parent, u64 root_objectid,
1598 u64 owner, u64 offset, int refs_to_add,
1599 struct btrfs_delayed_extent_op *extent_op)
1600 {
1601 struct extent_buffer *leaf;
1602 struct btrfs_extent_item *ei;
1603 unsigned long ptr;
1604 unsigned long end;
1605 unsigned long item_offset;
1606 u64 refs;
1607 int size;
1608 int type;
1609
1610 leaf = path->nodes[0];
1611 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1612 item_offset = (unsigned long)iref - (unsigned long)ei;
1613
1614 type = extent_ref_type(parent, owner);
1615 size = btrfs_extent_inline_ref_size(type);
1616
1617 btrfs_extend_item(trans, root, path, size);
1618
1619 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1620 refs = btrfs_extent_refs(leaf, ei);
1621 refs += refs_to_add;
1622 btrfs_set_extent_refs(leaf, ei, refs);
1623 if (extent_op)
1624 __run_delayed_extent_op(extent_op, leaf, ei);
1625
1626 ptr = (unsigned long)ei + item_offset;
1627 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1628 if (ptr < end - size)
1629 memmove_extent_buffer(leaf, ptr + size, ptr,
1630 end - size - ptr);
1631
1632 iref = (struct btrfs_extent_inline_ref *)ptr;
1633 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1634 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1635 struct btrfs_extent_data_ref *dref;
1636 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1637 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1638 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1639 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1640 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1641 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1642 struct btrfs_shared_data_ref *sref;
1643 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1644 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1645 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1646 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1647 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1648 } else {
1649 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1650 }
1651 btrfs_mark_buffer_dirty(leaf);
1652 }
1653
1654 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1655 struct btrfs_root *root,
1656 struct btrfs_path *path,
1657 struct btrfs_extent_inline_ref **ref_ret,
1658 u64 bytenr, u64 num_bytes, u64 parent,
1659 u64 root_objectid, u64 owner, u64 offset)
1660 {
1661 int ret;
1662
1663 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1664 bytenr, num_bytes, parent,
1665 root_objectid, owner, offset, 0);
1666 if (ret != -ENOENT)
1667 return ret;
1668
1669 btrfs_release_path(path);
1670 *ref_ret = NULL;
1671
1672 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1673 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1674 root_objectid);
1675 } else {
1676 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1677 root_objectid, owner, offset);
1678 }
1679 return ret;
1680 }
1681
1682 /*
1683 * helper to update/remove inline back ref
1684 */
1685 static noinline_for_stack
1686 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1687 struct btrfs_root *root,
1688 struct btrfs_path *path,
1689 struct btrfs_extent_inline_ref *iref,
1690 int refs_to_mod,
1691 struct btrfs_delayed_extent_op *extent_op)
1692 {
1693 struct extent_buffer *leaf;
1694 struct btrfs_extent_item *ei;
1695 struct btrfs_extent_data_ref *dref = NULL;
1696 struct btrfs_shared_data_ref *sref = NULL;
1697 unsigned long ptr;
1698 unsigned long end;
1699 u32 item_size;
1700 int size;
1701 int type;
1702 u64 refs;
1703
1704 leaf = path->nodes[0];
1705 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1706 refs = btrfs_extent_refs(leaf, ei);
1707 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1708 refs += refs_to_mod;
1709 btrfs_set_extent_refs(leaf, ei, refs);
1710 if (extent_op)
1711 __run_delayed_extent_op(extent_op, leaf, ei);
1712
1713 type = btrfs_extent_inline_ref_type(leaf, iref);
1714
1715 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1716 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1717 refs = btrfs_extent_data_ref_count(leaf, dref);
1718 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1719 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 refs = btrfs_shared_data_ref_count(leaf, sref);
1721 } else {
1722 refs = 1;
1723 BUG_ON(refs_to_mod != -1);
1724 }
1725
1726 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1727 refs += refs_to_mod;
1728
1729 if (refs > 0) {
1730 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1731 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1732 else
1733 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1734 } else {
1735 size = btrfs_extent_inline_ref_size(type);
1736 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1737 ptr = (unsigned long)iref;
1738 end = (unsigned long)ei + item_size;
1739 if (ptr + size < end)
1740 memmove_extent_buffer(leaf, ptr, ptr + size,
1741 end - ptr - size);
1742 item_size -= size;
1743 btrfs_truncate_item(trans, root, path, item_size, 1);
1744 }
1745 btrfs_mark_buffer_dirty(leaf);
1746 }
1747
1748 static noinline_for_stack
1749 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1750 struct btrfs_root *root,
1751 struct btrfs_path *path,
1752 u64 bytenr, u64 num_bytes, u64 parent,
1753 u64 root_objectid, u64 owner,
1754 u64 offset, int refs_to_add,
1755 struct btrfs_delayed_extent_op *extent_op)
1756 {
1757 struct btrfs_extent_inline_ref *iref;
1758 int ret;
1759
1760 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1761 bytenr, num_bytes, parent,
1762 root_objectid, owner, offset, 1);
1763 if (ret == 0) {
1764 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1765 update_inline_extent_backref(trans, root, path, iref,
1766 refs_to_add, extent_op);
1767 } else if (ret == -ENOENT) {
1768 setup_inline_extent_backref(trans, root, path, iref, parent,
1769 root_objectid, owner, offset,
1770 refs_to_add, extent_op);
1771 ret = 0;
1772 }
1773 return ret;
1774 }
1775
1776 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1777 struct btrfs_root *root,
1778 struct btrfs_path *path,
1779 u64 bytenr, u64 parent, u64 root_objectid,
1780 u64 owner, u64 offset, int refs_to_add)
1781 {
1782 int ret;
1783 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1784 BUG_ON(refs_to_add != 1);
1785 ret = insert_tree_block_ref(trans, root, path, bytenr,
1786 parent, root_objectid);
1787 } else {
1788 ret = insert_extent_data_ref(trans, root, path, bytenr,
1789 parent, root_objectid,
1790 owner, offset, refs_to_add);
1791 }
1792 return ret;
1793 }
1794
1795 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1796 struct btrfs_root *root,
1797 struct btrfs_path *path,
1798 struct btrfs_extent_inline_ref *iref,
1799 int refs_to_drop, int is_data)
1800 {
1801 int ret = 0;
1802
1803 BUG_ON(!is_data && refs_to_drop != 1);
1804 if (iref) {
1805 update_inline_extent_backref(trans, root, path, iref,
1806 -refs_to_drop, NULL);
1807 } else if (is_data) {
1808 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1809 } else {
1810 ret = btrfs_del_item(trans, root, path);
1811 }
1812 return ret;
1813 }
1814
1815 static int btrfs_issue_discard(struct block_device *bdev,
1816 u64 start, u64 len)
1817 {
1818 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1819 }
1820
1821 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1822 u64 num_bytes, u64 *actual_bytes)
1823 {
1824 int ret;
1825 u64 discarded_bytes = 0;
1826 struct btrfs_bio *bbio = NULL;
1827
1828
1829 /* Tell the block device(s) that the sectors can be discarded */
1830 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1831 bytenr, &num_bytes, &bbio, 0);
1832 /* Error condition is -ENOMEM */
1833 if (!ret) {
1834 struct btrfs_bio_stripe *stripe = bbio->stripes;
1835 int i;
1836
1837
1838 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1839 if (!stripe->dev->can_discard)
1840 continue;
1841
1842 ret = btrfs_issue_discard(stripe->dev->bdev,
1843 stripe->physical,
1844 stripe->length);
1845 if (!ret)
1846 discarded_bytes += stripe->length;
1847 else if (ret != -EOPNOTSUPP)
1848 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1849
1850 /*
1851 * Just in case we get back EOPNOTSUPP for some reason,
1852 * just ignore the return value so we don't screw up
1853 * people calling discard_extent.
1854 */
1855 ret = 0;
1856 }
1857 kfree(bbio);
1858 }
1859
1860 if (actual_bytes)
1861 *actual_bytes = discarded_bytes;
1862
1863
1864 if (ret == -EOPNOTSUPP)
1865 ret = 0;
1866 return ret;
1867 }
1868
1869 /* Can return -ENOMEM */
1870 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root,
1872 u64 bytenr, u64 num_bytes, u64 parent,
1873 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1874 {
1875 int ret;
1876 struct btrfs_fs_info *fs_info = root->fs_info;
1877
1878 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1879 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1880
1881 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1882 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1883 num_bytes,
1884 parent, root_objectid, (int)owner,
1885 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1886 } else {
1887 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1888 num_bytes,
1889 parent, root_objectid, owner, offset,
1890 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1891 }
1892 return ret;
1893 }
1894
1895 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1896 struct btrfs_root *root,
1897 u64 bytenr, u64 num_bytes,
1898 u64 parent, u64 root_objectid,
1899 u64 owner, u64 offset, int refs_to_add,
1900 struct btrfs_delayed_extent_op *extent_op)
1901 {
1902 struct btrfs_path *path;
1903 struct extent_buffer *leaf;
1904 struct btrfs_extent_item *item;
1905 u64 refs;
1906 int ret;
1907 int err = 0;
1908
1909 path = btrfs_alloc_path();
1910 if (!path)
1911 return -ENOMEM;
1912
1913 path->reada = 1;
1914 path->leave_spinning = 1;
1915 /* this will setup the path even if it fails to insert the back ref */
1916 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1917 path, bytenr, num_bytes, parent,
1918 root_objectid, owner, offset,
1919 refs_to_add, extent_op);
1920 if (ret == 0)
1921 goto out;
1922
1923 if (ret != -EAGAIN) {
1924 err = ret;
1925 goto out;
1926 }
1927
1928 leaf = path->nodes[0];
1929 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1930 refs = btrfs_extent_refs(leaf, item);
1931 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1932 if (extent_op)
1933 __run_delayed_extent_op(extent_op, leaf, item);
1934
1935 btrfs_mark_buffer_dirty(leaf);
1936 btrfs_release_path(path);
1937
1938 path->reada = 1;
1939 path->leave_spinning = 1;
1940
1941 /* now insert the actual backref */
1942 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1943 path, bytenr, parent, root_objectid,
1944 owner, offset, refs_to_add);
1945 if (ret)
1946 btrfs_abort_transaction(trans, root, ret);
1947 out:
1948 btrfs_free_path(path);
1949 return err;
1950 }
1951
1952 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1953 struct btrfs_root *root,
1954 struct btrfs_delayed_ref_node *node,
1955 struct btrfs_delayed_extent_op *extent_op,
1956 int insert_reserved)
1957 {
1958 int ret = 0;
1959 struct btrfs_delayed_data_ref *ref;
1960 struct btrfs_key ins;
1961 u64 parent = 0;
1962 u64 ref_root = 0;
1963 u64 flags = 0;
1964
1965 ins.objectid = node->bytenr;
1966 ins.offset = node->num_bytes;
1967 ins.type = BTRFS_EXTENT_ITEM_KEY;
1968
1969 ref = btrfs_delayed_node_to_data_ref(node);
1970 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1971 parent = ref->parent;
1972 else
1973 ref_root = ref->root;
1974
1975 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1976 if (extent_op) {
1977 BUG_ON(extent_op->update_key);
1978 flags |= extent_op->flags_to_set;
1979 }
1980 ret = alloc_reserved_file_extent(trans, root,
1981 parent, ref_root, flags,
1982 ref->objectid, ref->offset,
1983 &ins, node->ref_mod);
1984 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1985 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1986 node->num_bytes, parent,
1987 ref_root, ref->objectid,
1988 ref->offset, node->ref_mod,
1989 extent_op);
1990 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1991 ret = __btrfs_free_extent(trans, root, node->bytenr,
1992 node->num_bytes, parent,
1993 ref_root, ref->objectid,
1994 ref->offset, node->ref_mod,
1995 extent_op);
1996 } else {
1997 BUG();
1998 }
1999 return ret;
2000 }
2001
2002 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2003 struct extent_buffer *leaf,
2004 struct btrfs_extent_item *ei)
2005 {
2006 u64 flags = btrfs_extent_flags(leaf, ei);
2007 if (extent_op->update_flags) {
2008 flags |= extent_op->flags_to_set;
2009 btrfs_set_extent_flags(leaf, ei, flags);
2010 }
2011
2012 if (extent_op->update_key) {
2013 struct btrfs_tree_block_info *bi;
2014 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2015 bi = (struct btrfs_tree_block_info *)(ei + 1);
2016 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2017 }
2018 }
2019
2020 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2021 struct btrfs_root *root,
2022 struct btrfs_delayed_ref_node *node,
2023 struct btrfs_delayed_extent_op *extent_op)
2024 {
2025 struct btrfs_key key;
2026 struct btrfs_path *path;
2027 struct btrfs_extent_item *ei;
2028 struct extent_buffer *leaf;
2029 u32 item_size;
2030 int ret;
2031 int err = 0;
2032
2033 if (trans->aborted)
2034 return 0;
2035
2036 path = btrfs_alloc_path();
2037 if (!path)
2038 return -ENOMEM;
2039
2040 key.objectid = node->bytenr;
2041 key.type = BTRFS_EXTENT_ITEM_KEY;
2042 key.offset = node->num_bytes;
2043
2044 path->reada = 1;
2045 path->leave_spinning = 1;
2046 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2047 path, 0, 1);
2048 if (ret < 0) {
2049 err = ret;
2050 goto out;
2051 }
2052 if (ret > 0) {
2053 err = -EIO;
2054 goto out;
2055 }
2056
2057 leaf = path->nodes[0];
2058 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2059 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2060 if (item_size < sizeof(*ei)) {
2061 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2062 path, (u64)-1, 0);
2063 if (ret < 0) {
2064 err = ret;
2065 goto out;
2066 }
2067 leaf = path->nodes[0];
2068 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2069 }
2070 #endif
2071 BUG_ON(item_size < sizeof(*ei));
2072 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2073 __run_delayed_extent_op(extent_op, leaf, ei);
2074
2075 btrfs_mark_buffer_dirty(leaf);
2076 out:
2077 btrfs_free_path(path);
2078 return err;
2079 }
2080
2081 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2082 struct btrfs_root *root,
2083 struct btrfs_delayed_ref_node *node,
2084 struct btrfs_delayed_extent_op *extent_op,
2085 int insert_reserved)
2086 {
2087 int ret = 0;
2088 struct btrfs_delayed_tree_ref *ref;
2089 struct btrfs_key ins;
2090 u64 parent = 0;
2091 u64 ref_root = 0;
2092
2093 ins.objectid = node->bytenr;
2094 ins.offset = node->num_bytes;
2095 ins.type = BTRFS_EXTENT_ITEM_KEY;
2096
2097 ref = btrfs_delayed_node_to_tree_ref(node);
2098 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2099 parent = ref->parent;
2100 else
2101 ref_root = ref->root;
2102
2103 BUG_ON(node->ref_mod != 1);
2104 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2105 BUG_ON(!extent_op || !extent_op->update_flags ||
2106 !extent_op->update_key);
2107 ret = alloc_reserved_tree_block(trans, root,
2108 parent, ref_root,
2109 extent_op->flags_to_set,
2110 &extent_op->key,
2111 ref->level, &ins);
2112 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2113 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2114 node->num_bytes, parent, ref_root,
2115 ref->level, 0, 1, extent_op);
2116 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2117 ret = __btrfs_free_extent(trans, root, node->bytenr,
2118 node->num_bytes, parent, ref_root,
2119 ref->level, 0, 1, extent_op);
2120 } else {
2121 BUG();
2122 }
2123 return ret;
2124 }
2125
2126 /* helper function to actually process a single delayed ref entry */
2127 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2128 struct btrfs_root *root,
2129 struct btrfs_delayed_ref_node *node,
2130 struct btrfs_delayed_extent_op *extent_op,
2131 int insert_reserved)
2132 {
2133 int ret = 0;
2134
2135 if (trans->aborted)
2136 return 0;
2137
2138 if (btrfs_delayed_ref_is_head(node)) {
2139 struct btrfs_delayed_ref_head *head;
2140 /*
2141 * we've hit the end of the chain and we were supposed
2142 * to insert this extent into the tree. But, it got
2143 * deleted before we ever needed to insert it, so all
2144 * we have to do is clean up the accounting
2145 */
2146 BUG_ON(extent_op);
2147 head = btrfs_delayed_node_to_head(node);
2148 if (insert_reserved) {
2149 btrfs_pin_extent(root, node->bytenr,
2150 node->num_bytes, 1);
2151 if (head->is_data) {
2152 ret = btrfs_del_csums(trans, root,
2153 node->bytenr,
2154 node->num_bytes);
2155 }
2156 }
2157 return ret;
2158 }
2159
2160 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2161 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2162 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2163 insert_reserved);
2164 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2165 node->type == BTRFS_SHARED_DATA_REF_KEY)
2166 ret = run_delayed_data_ref(trans, root, node, extent_op,
2167 insert_reserved);
2168 else
2169 BUG();
2170 return ret;
2171 }
2172
2173 static noinline struct btrfs_delayed_ref_node *
2174 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2175 {
2176 struct rb_node *node;
2177 struct btrfs_delayed_ref_node *ref;
2178 int action = BTRFS_ADD_DELAYED_REF;
2179 again:
2180 /*
2181 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2182 * this prevents ref count from going down to zero when
2183 * there still are pending delayed ref.
2184 */
2185 node = rb_prev(&head->node.rb_node);
2186 while (1) {
2187 if (!node)
2188 break;
2189 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2190 rb_node);
2191 if (ref->bytenr != head->node.bytenr)
2192 break;
2193 if (ref->action == action)
2194 return ref;
2195 node = rb_prev(node);
2196 }
2197 if (action == BTRFS_ADD_DELAYED_REF) {
2198 action = BTRFS_DROP_DELAYED_REF;
2199 goto again;
2200 }
2201 return NULL;
2202 }
2203
2204 /*
2205 * Returns 0 on success or if called with an already aborted transaction.
2206 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2207 */
2208 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2209 struct btrfs_root *root,
2210 struct list_head *cluster)
2211 {
2212 struct btrfs_delayed_ref_root *delayed_refs;
2213 struct btrfs_delayed_ref_node *ref;
2214 struct btrfs_delayed_ref_head *locked_ref = NULL;
2215 struct btrfs_delayed_extent_op *extent_op;
2216 struct btrfs_fs_info *fs_info = root->fs_info;
2217 int ret;
2218 int count = 0;
2219 int must_insert_reserved = 0;
2220
2221 delayed_refs = &trans->transaction->delayed_refs;
2222 while (1) {
2223 if (!locked_ref) {
2224 /* pick a new head ref from the cluster list */
2225 if (list_empty(cluster))
2226 break;
2227
2228 locked_ref = list_entry(cluster->next,
2229 struct btrfs_delayed_ref_head, cluster);
2230
2231 /* grab the lock that says we are going to process
2232 * all the refs for this head */
2233 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2234
2235 /*
2236 * we may have dropped the spin lock to get the head
2237 * mutex lock, and that might have given someone else
2238 * time to free the head. If that's true, it has been
2239 * removed from our list and we can move on.
2240 */
2241 if (ret == -EAGAIN) {
2242 locked_ref = NULL;
2243 count++;
2244 continue;
2245 }
2246 }
2247
2248 /*
2249 * We need to try and merge add/drops of the same ref since we
2250 * can run into issues with relocate dropping the implicit ref
2251 * and then it being added back again before the drop can
2252 * finish. If we merged anything we need to re-loop so we can
2253 * get a good ref.
2254 */
2255 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2256 locked_ref);
2257
2258 /*
2259 * locked_ref is the head node, so we have to go one
2260 * node back for any delayed ref updates
2261 */
2262 ref = select_delayed_ref(locked_ref);
2263
2264 if (ref && ref->seq &&
2265 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2266 /*
2267 * there are still refs with lower seq numbers in the
2268 * process of being added. Don't run this ref yet.
2269 */
2270 list_del_init(&locked_ref->cluster);
2271 btrfs_delayed_ref_unlock(locked_ref);
2272 locked_ref = NULL;
2273 delayed_refs->num_heads_ready++;
2274 spin_unlock(&delayed_refs->lock);
2275 cond_resched();
2276 spin_lock(&delayed_refs->lock);
2277 continue;
2278 }
2279
2280 /*
2281 * record the must insert reserved flag before we
2282 * drop the spin lock.
2283 */
2284 must_insert_reserved = locked_ref->must_insert_reserved;
2285 locked_ref->must_insert_reserved = 0;
2286
2287 extent_op = locked_ref->extent_op;
2288 locked_ref->extent_op = NULL;
2289
2290 if (!ref) {
2291 /* All delayed refs have been processed, Go ahead
2292 * and send the head node to run_one_delayed_ref,
2293 * so that any accounting fixes can happen
2294 */
2295 ref = &locked_ref->node;
2296
2297 if (extent_op && must_insert_reserved) {
2298 btrfs_free_delayed_extent_op(extent_op);
2299 extent_op = NULL;
2300 }
2301
2302 if (extent_op) {
2303 spin_unlock(&delayed_refs->lock);
2304
2305 ret = run_delayed_extent_op(trans, root,
2306 ref, extent_op);
2307 btrfs_free_delayed_extent_op(extent_op);
2308
2309 if (ret) {
2310 printk(KERN_DEBUG
2311 "btrfs: run_delayed_extent_op "
2312 "returned %d\n", ret);
2313 spin_lock(&delayed_refs->lock);
2314 btrfs_delayed_ref_unlock(locked_ref);
2315 return ret;
2316 }
2317
2318 goto next;
2319 }
2320 }
2321
2322 ref->in_tree = 0;
2323 rb_erase(&ref->rb_node, &delayed_refs->root);
2324 delayed_refs->num_entries--;
2325 if (!btrfs_delayed_ref_is_head(ref)) {
2326 /*
2327 * when we play the delayed ref, also correct the
2328 * ref_mod on head
2329 */
2330 switch (ref->action) {
2331 case BTRFS_ADD_DELAYED_REF:
2332 case BTRFS_ADD_DELAYED_EXTENT:
2333 locked_ref->node.ref_mod -= ref->ref_mod;
2334 break;
2335 case BTRFS_DROP_DELAYED_REF:
2336 locked_ref->node.ref_mod += ref->ref_mod;
2337 break;
2338 default:
2339 WARN_ON(1);
2340 }
2341 }
2342 spin_unlock(&delayed_refs->lock);
2343
2344 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2345 must_insert_reserved);
2346
2347 btrfs_free_delayed_extent_op(extent_op);
2348 if (ret) {
2349 btrfs_delayed_ref_unlock(locked_ref);
2350 btrfs_put_delayed_ref(ref);
2351 printk(KERN_DEBUG
2352 "btrfs: run_one_delayed_ref returned %d\n", ret);
2353 spin_lock(&delayed_refs->lock);
2354 return ret;
2355 }
2356
2357 /*
2358 * If this node is a head, that means all the refs in this head
2359 * have been dealt with, and we will pick the next head to deal
2360 * with, so we must unlock the head and drop it from the cluster
2361 * list before we release it.
2362 */
2363 if (btrfs_delayed_ref_is_head(ref)) {
2364 list_del_init(&locked_ref->cluster);
2365 btrfs_delayed_ref_unlock(locked_ref);
2366 locked_ref = NULL;
2367 }
2368 btrfs_put_delayed_ref(ref);
2369 count++;
2370 next:
2371 cond_resched();
2372 spin_lock(&delayed_refs->lock);
2373 }
2374 return count;
2375 }
2376
2377 #ifdef SCRAMBLE_DELAYED_REFS
2378 /*
2379 * Normally delayed refs get processed in ascending bytenr order. This
2380 * correlates in most cases to the order added. To expose dependencies on this
2381 * order, we start to process the tree in the middle instead of the beginning
2382 */
2383 static u64 find_middle(struct rb_root *root)
2384 {
2385 struct rb_node *n = root->rb_node;
2386 struct btrfs_delayed_ref_node *entry;
2387 int alt = 1;
2388 u64 middle;
2389 u64 first = 0, last = 0;
2390
2391 n = rb_first(root);
2392 if (n) {
2393 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2394 first = entry->bytenr;
2395 }
2396 n = rb_last(root);
2397 if (n) {
2398 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2399 last = entry->bytenr;
2400 }
2401 n = root->rb_node;
2402
2403 while (n) {
2404 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2405 WARN_ON(!entry->in_tree);
2406
2407 middle = entry->bytenr;
2408
2409 if (alt)
2410 n = n->rb_left;
2411 else
2412 n = n->rb_right;
2413
2414 alt = 1 - alt;
2415 }
2416 return middle;
2417 }
2418 #endif
2419
2420 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2421 struct btrfs_fs_info *fs_info)
2422 {
2423 struct qgroup_update *qgroup_update;
2424 int ret = 0;
2425
2426 if (list_empty(&trans->qgroup_ref_list) !=
2427 !trans->delayed_ref_elem.seq) {
2428 /* list without seq or seq without list */
2429 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2430 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2431 trans->delayed_ref_elem.seq);
2432 BUG();
2433 }
2434
2435 if (!trans->delayed_ref_elem.seq)
2436 return 0;
2437
2438 while (!list_empty(&trans->qgroup_ref_list)) {
2439 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2440 struct qgroup_update, list);
2441 list_del(&qgroup_update->list);
2442 if (!ret)
2443 ret = btrfs_qgroup_account_ref(
2444 trans, fs_info, qgroup_update->node,
2445 qgroup_update->extent_op);
2446 kfree(qgroup_update);
2447 }
2448
2449 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2450
2451 return ret;
2452 }
2453
2454 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2455 int count)
2456 {
2457 int val = atomic_read(&delayed_refs->ref_seq);
2458
2459 if (val < seq || val >= seq + count)
2460 return 1;
2461 return 0;
2462 }
2463
2464 /*
2465 * this starts processing the delayed reference count updates and
2466 * extent insertions we have queued up so far. count can be
2467 * 0, which means to process everything in the tree at the start
2468 * of the run (but not newly added entries), or it can be some target
2469 * number you'd like to process.
2470 *
2471 * Returns 0 on success or if called with an aborted transaction
2472 * Returns <0 on error and aborts the transaction
2473 */
2474 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2475 struct btrfs_root *root, unsigned long count)
2476 {
2477 struct rb_node *node;
2478 struct btrfs_delayed_ref_root *delayed_refs;
2479 struct btrfs_delayed_ref_node *ref;
2480 struct list_head cluster;
2481 int ret;
2482 u64 delayed_start;
2483 int run_all = count == (unsigned long)-1;
2484 int run_most = 0;
2485 int loops;
2486
2487 /* We'll clean this up in btrfs_cleanup_transaction */
2488 if (trans->aborted)
2489 return 0;
2490
2491 if (root == root->fs_info->extent_root)
2492 root = root->fs_info->tree_root;
2493
2494 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2495
2496 delayed_refs = &trans->transaction->delayed_refs;
2497 INIT_LIST_HEAD(&cluster);
2498 if (count == 0) {
2499 count = delayed_refs->num_entries * 2;
2500 run_most = 1;
2501 }
2502
2503 if (!run_all && !run_most) {
2504 int old;
2505 int seq = atomic_read(&delayed_refs->ref_seq);
2506
2507 progress:
2508 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2509 if (old) {
2510 DEFINE_WAIT(__wait);
2511 if (delayed_refs->num_entries < 16348)
2512 return 0;
2513
2514 prepare_to_wait(&delayed_refs->wait, &__wait,
2515 TASK_UNINTERRUPTIBLE);
2516
2517 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2518 if (old) {
2519 schedule();
2520 finish_wait(&delayed_refs->wait, &__wait);
2521
2522 if (!refs_newer(delayed_refs, seq, 256))
2523 goto progress;
2524 else
2525 return 0;
2526 } else {
2527 finish_wait(&delayed_refs->wait, &__wait);
2528 goto again;
2529 }
2530 }
2531
2532 } else {
2533 atomic_inc(&delayed_refs->procs_running_refs);
2534 }
2535
2536 again:
2537 loops = 0;
2538 spin_lock(&delayed_refs->lock);
2539
2540 #ifdef SCRAMBLE_DELAYED_REFS
2541 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2542 #endif
2543
2544 while (1) {
2545 if (!(run_all || run_most) &&
2546 delayed_refs->num_heads_ready < 64)
2547 break;
2548
2549 /*
2550 * go find something we can process in the rbtree. We start at
2551 * the beginning of the tree, and then build a cluster
2552 * of refs to process starting at the first one we are able to
2553 * lock
2554 */
2555 delayed_start = delayed_refs->run_delayed_start;
2556 ret = btrfs_find_ref_cluster(trans, &cluster,
2557 delayed_refs->run_delayed_start);
2558 if (ret)
2559 break;
2560
2561 ret = run_clustered_refs(trans, root, &cluster);
2562 if (ret < 0) {
2563 btrfs_release_ref_cluster(&cluster);
2564 spin_unlock(&delayed_refs->lock);
2565 btrfs_abort_transaction(trans, root, ret);
2566 atomic_dec(&delayed_refs->procs_running_refs);
2567 return ret;
2568 }
2569
2570 atomic_add(ret, &delayed_refs->ref_seq);
2571
2572 count -= min_t(unsigned long, ret, count);
2573
2574 if (count == 0)
2575 break;
2576
2577 if (delayed_start >= delayed_refs->run_delayed_start) {
2578 if (loops == 0) {
2579 /*
2580 * btrfs_find_ref_cluster looped. let's do one
2581 * more cycle. if we don't run any delayed ref
2582 * during that cycle (because we can't because
2583 * all of them are blocked), bail out.
2584 */
2585 loops = 1;
2586 } else {
2587 /*
2588 * no runnable refs left, stop trying
2589 */
2590 BUG_ON(run_all);
2591 break;
2592 }
2593 }
2594 if (ret) {
2595 /* refs were run, let's reset staleness detection */
2596 loops = 0;
2597 }
2598 }
2599
2600 if (run_all) {
2601 if (!list_empty(&trans->new_bgs)) {
2602 spin_unlock(&delayed_refs->lock);
2603 btrfs_create_pending_block_groups(trans, root);
2604 spin_lock(&delayed_refs->lock);
2605 }
2606
2607 node = rb_first(&delayed_refs->root);
2608 if (!node)
2609 goto out;
2610 count = (unsigned long)-1;
2611
2612 while (node) {
2613 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2614 rb_node);
2615 if (btrfs_delayed_ref_is_head(ref)) {
2616 struct btrfs_delayed_ref_head *head;
2617
2618 head = btrfs_delayed_node_to_head(ref);
2619 atomic_inc(&ref->refs);
2620
2621 spin_unlock(&delayed_refs->lock);
2622 /*
2623 * Mutex was contended, block until it's
2624 * released and try again
2625 */
2626 mutex_lock(&head->mutex);
2627 mutex_unlock(&head->mutex);
2628
2629 btrfs_put_delayed_ref(ref);
2630 cond_resched();
2631 goto again;
2632 }
2633 node = rb_next(node);
2634 }
2635 spin_unlock(&delayed_refs->lock);
2636 schedule_timeout(1);
2637 goto again;
2638 }
2639 out:
2640 atomic_dec(&delayed_refs->procs_running_refs);
2641 smp_mb();
2642 if (waitqueue_active(&delayed_refs->wait))
2643 wake_up(&delayed_refs->wait);
2644
2645 spin_unlock(&delayed_refs->lock);
2646 assert_qgroups_uptodate(trans);
2647 return 0;
2648 }
2649
2650 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2651 struct btrfs_root *root,
2652 u64 bytenr, u64 num_bytes, u64 flags,
2653 int is_data)
2654 {
2655 struct btrfs_delayed_extent_op *extent_op;
2656 int ret;
2657
2658 extent_op = btrfs_alloc_delayed_extent_op();
2659 if (!extent_op)
2660 return -ENOMEM;
2661
2662 extent_op->flags_to_set = flags;
2663 extent_op->update_flags = 1;
2664 extent_op->update_key = 0;
2665 extent_op->is_data = is_data ? 1 : 0;
2666
2667 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2668 num_bytes, extent_op);
2669 if (ret)
2670 btrfs_free_delayed_extent_op(extent_op);
2671 return ret;
2672 }
2673
2674 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2675 struct btrfs_root *root,
2676 struct btrfs_path *path,
2677 u64 objectid, u64 offset, u64 bytenr)
2678 {
2679 struct btrfs_delayed_ref_head *head;
2680 struct btrfs_delayed_ref_node *ref;
2681 struct btrfs_delayed_data_ref *data_ref;
2682 struct btrfs_delayed_ref_root *delayed_refs;
2683 struct rb_node *node;
2684 int ret = 0;
2685
2686 ret = -ENOENT;
2687 delayed_refs = &trans->transaction->delayed_refs;
2688 spin_lock(&delayed_refs->lock);
2689 head = btrfs_find_delayed_ref_head(trans, bytenr);
2690 if (!head)
2691 goto out;
2692
2693 if (!mutex_trylock(&head->mutex)) {
2694 atomic_inc(&head->node.refs);
2695 spin_unlock(&delayed_refs->lock);
2696
2697 btrfs_release_path(path);
2698
2699 /*
2700 * Mutex was contended, block until it's released and let
2701 * caller try again
2702 */
2703 mutex_lock(&head->mutex);
2704 mutex_unlock(&head->mutex);
2705 btrfs_put_delayed_ref(&head->node);
2706 return -EAGAIN;
2707 }
2708
2709 node = rb_prev(&head->node.rb_node);
2710 if (!node)
2711 goto out_unlock;
2712
2713 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2714
2715 if (ref->bytenr != bytenr)
2716 goto out_unlock;
2717
2718 ret = 1;
2719 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2720 goto out_unlock;
2721
2722 data_ref = btrfs_delayed_node_to_data_ref(ref);
2723
2724 node = rb_prev(node);
2725 if (node) {
2726 int seq = ref->seq;
2727
2728 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2729 if (ref->bytenr == bytenr && ref->seq == seq)
2730 goto out_unlock;
2731 }
2732
2733 if (data_ref->root != root->root_key.objectid ||
2734 data_ref->objectid != objectid || data_ref->offset != offset)
2735 goto out_unlock;
2736
2737 ret = 0;
2738 out_unlock:
2739 mutex_unlock(&head->mutex);
2740 out:
2741 spin_unlock(&delayed_refs->lock);
2742 return ret;
2743 }
2744
2745 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2746 struct btrfs_root *root,
2747 struct btrfs_path *path,
2748 u64 objectid, u64 offset, u64 bytenr)
2749 {
2750 struct btrfs_root *extent_root = root->fs_info->extent_root;
2751 struct extent_buffer *leaf;
2752 struct btrfs_extent_data_ref *ref;
2753 struct btrfs_extent_inline_ref *iref;
2754 struct btrfs_extent_item *ei;
2755 struct btrfs_key key;
2756 u32 item_size;
2757 int ret;
2758
2759 key.objectid = bytenr;
2760 key.offset = (u64)-1;
2761 key.type = BTRFS_EXTENT_ITEM_KEY;
2762
2763 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2764 if (ret < 0)
2765 goto out;
2766 BUG_ON(ret == 0); /* Corruption */
2767
2768 ret = -ENOENT;
2769 if (path->slots[0] == 0)
2770 goto out;
2771
2772 path->slots[0]--;
2773 leaf = path->nodes[0];
2774 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2775
2776 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2777 goto out;
2778
2779 ret = 1;
2780 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2781 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2782 if (item_size < sizeof(*ei)) {
2783 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2784 goto out;
2785 }
2786 #endif
2787 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2788
2789 if (item_size != sizeof(*ei) +
2790 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2791 goto out;
2792
2793 if (btrfs_extent_generation(leaf, ei) <=
2794 btrfs_root_last_snapshot(&root->root_item))
2795 goto out;
2796
2797 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2798 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2799 BTRFS_EXTENT_DATA_REF_KEY)
2800 goto out;
2801
2802 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2803 if (btrfs_extent_refs(leaf, ei) !=
2804 btrfs_extent_data_ref_count(leaf, ref) ||
2805 btrfs_extent_data_ref_root(leaf, ref) !=
2806 root->root_key.objectid ||
2807 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2808 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2809 goto out;
2810
2811 ret = 0;
2812 out:
2813 return ret;
2814 }
2815
2816 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2817 struct btrfs_root *root,
2818 u64 objectid, u64 offset, u64 bytenr)
2819 {
2820 struct btrfs_path *path;
2821 int ret;
2822 int ret2;
2823
2824 path = btrfs_alloc_path();
2825 if (!path)
2826 return -ENOENT;
2827
2828 do {
2829 ret = check_committed_ref(trans, root, path, objectid,
2830 offset, bytenr);
2831 if (ret && ret != -ENOENT)
2832 goto out;
2833
2834 ret2 = check_delayed_ref(trans, root, path, objectid,
2835 offset, bytenr);
2836 } while (ret2 == -EAGAIN);
2837
2838 if (ret2 && ret2 != -ENOENT) {
2839 ret = ret2;
2840 goto out;
2841 }
2842
2843 if (ret != -ENOENT || ret2 != -ENOENT)
2844 ret = 0;
2845 out:
2846 btrfs_free_path(path);
2847 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2848 WARN_ON(ret > 0);
2849 return ret;
2850 }
2851
2852 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2853 struct btrfs_root *root,
2854 struct extent_buffer *buf,
2855 int full_backref, int inc, int for_cow)
2856 {
2857 u64 bytenr;
2858 u64 num_bytes;
2859 u64 parent;
2860 u64 ref_root;
2861 u32 nritems;
2862 struct btrfs_key key;
2863 struct btrfs_file_extent_item *fi;
2864 int i;
2865 int level;
2866 int ret = 0;
2867 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2868 u64, u64, u64, u64, u64, u64, int);
2869
2870 ref_root = btrfs_header_owner(buf);
2871 nritems = btrfs_header_nritems(buf);
2872 level = btrfs_header_level(buf);
2873
2874 if (!root->ref_cows && level == 0)
2875 return 0;
2876
2877 if (inc)
2878 process_func = btrfs_inc_extent_ref;
2879 else
2880 process_func = btrfs_free_extent;
2881
2882 if (full_backref)
2883 parent = buf->start;
2884 else
2885 parent = 0;
2886
2887 for (i = 0; i < nritems; i++) {
2888 if (level == 0) {
2889 btrfs_item_key_to_cpu(buf, &key, i);
2890 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2891 continue;
2892 fi = btrfs_item_ptr(buf, i,
2893 struct btrfs_file_extent_item);
2894 if (btrfs_file_extent_type(buf, fi) ==
2895 BTRFS_FILE_EXTENT_INLINE)
2896 continue;
2897 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2898 if (bytenr == 0)
2899 continue;
2900
2901 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2902 key.offset -= btrfs_file_extent_offset(buf, fi);
2903 ret = process_func(trans, root, bytenr, num_bytes,
2904 parent, ref_root, key.objectid,
2905 key.offset, for_cow);
2906 if (ret)
2907 goto fail;
2908 } else {
2909 bytenr = btrfs_node_blockptr(buf, i);
2910 num_bytes = btrfs_level_size(root, level - 1);
2911 ret = process_func(trans, root, bytenr, num_bytes,
2912 parent, ref_root, level - 1, 0,
2913 for_cow);
2914 if (ret)
2915 goto fail;
2916 }
2917 }
2918 return 0;
2919 fail:
2920 return ret;
2921 }
2922
2923 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2924 struct extent_buffer *buf, int full_backref, int for_cow)
2925 {
2926 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2927 }
2928
2929 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2930 struct extent_buffer *buf, int full_backref, int for_cow)
2931 {
2932 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2933 }
2934
2935 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2936 struct btrfs_root *root,
2937 struct btrfs_path *path,
2938 struct btrfs_block_group_cache *cache)
2939 {
2940 int ret;
2941 struct btrfs_root *extent_root = root->fs_info->extent_root;
2942 unsigned long bi;
2943 struct extent_buffer *leaf;
2944
2945 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2946 if (ret < 0)
2947 goto fail;
2948 BUG_ON(ret); /* Corruption */
2949
2950 leaf = path->nodes[0];
2951 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2952 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2953 btrfs_mark_buffer_dirty(leaf);
2954 btrfs_release_path(path);
2955 fail:
2956 if (ret) {
2957 btrfs_abort_transaction(trans, root, ret);
2958 return ret;
2959 }
2960 return 0;
2961
2962 }
2963
2964 static struct btrfs_block_group_cache *
2965 next_block_group(struct btrfs_root *root,
2966 struct btrfs_block_group_cache *cache)
2967 {
2968 struct rb_node *node;
2969 spin_lock(&root->fs_info->block_group_cache_lock);
2970 node = rb_next(&cache->cache_node);
2971 btrfs_put_block_group(cache);
2972 if (node) {
2973 cache = rb_entry(node, struct btrfs_block_group_cache,
2974 cache_node);
2975 btrfs_get_block_group(cache);
2976 } else
2977 cache = NULL;
2978 spin_unlock(&root->fs_info->block_group_cache_lock);
2979 return cache;
2980 }
2981
2982 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2983 struct btrfs_trans_handle *trans,
2984 struct btrfs_path *path)
2985 {
2986 struct btrfs_root *root = block_group->fs_info->tree_root;
2987 struct inode *inode = NULL;
2988 u64 alloc_hint = 0;
2989 int dcs = BTRFS_DC_ERROR;
2990 int num_pages = 0;
2991 int retries = 0;
2992 int ret = 0;
2993
2994 /*
2995 * If this block group is smaller than 100 megs don't bother caching the
2996 * block group.
2997 */
2998 if (block_group->key.offset < (100 * 1024 * 1024)) {
2999 spin_lock(&block_group->lock);
3000 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3001 spin_unlock(&block_group->lock);
3002 return 0;
3003 }
3004
3005 again:
3006 inode = lookup_free_space_inode(root, block_group, path);
3007 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3008 ret = PTR_ERR(inode);
3009 btrfs_release_path(path);
3010 goto out;
3011 }
3012
3013 if (IS_ERR(inode)) {
3014 BUG_ON(retries);
3015 retries++;
3016
3017 if (block_group->ro)
3018 goto out_free;
3019
3020 ret = create_free_space_inode(root, trans, block_group, path);
3021 if (ret)
3022 goto out_free;
3023 goto again;
3024 }
3025
3026 /* We've already setup this transaction, go ahead and exit */
3027 if (block_group->cache_generation == trans->transid &&
3028 i_size_read(inode)) {
3029 dcs = BTRFS_DC_SETUP;
3030 goto out_put;
3031 }
3032
3033 /*
3034 * We want to set the generation to 0, that way if anything goes wrong
3035 * from here on out we know not to trust this cache when we load up next
3036 * time.
3037 */
3038 BTRFS_I(inode)->generation = 0;
3039 ret = btrfs_update_inode(trans, root, inode);
3040 WARN_ON(ret);
3041
3042 if (i_size_read(inode) > 0) {
3043 ret = btrfs_truncate_free_space_cache(root, trans, path,
3044 inode);
3045 if (ret)
3046 goto out_put;
3047 }
3048
3049 spin_lock(&block_group->lock);
3050 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3051 !btrfs_test_opt(root, SPACE_CACHE)) {
3052 /*
3053 * don't bother trying to write stuff out _if_
3054 * a) we're not cached,
3055 * b) we're with nospace_cache mount option.
3056 */
3057 dcs = BTRFS_DC_WRITTEN;
3058 spin_unlock(&block_group->lock);
3059 goto out_put;
3060 }
3061 spin_unlock(&block_group->lock);
3062
3063 /*
3064 * Try to preallocate enough space based on how big the block group is.
3065 * Keep in mind this has to include any pinned space which could end up
3066 * taking up quite a bit since it's not folded into the other space
3067 * cache.
3068 */
3069 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3070 if (!num_pages)
3071 num_pages = 1;
3072
3073 num_pages *= 16;
3074 num_pages *= PAGE_CACHE_SIZE;
3075
3076 ret = btrfs_check_data_free_space(inode, num_pages);
3077 if (ret)
3078 goto out_put;
3079
3080 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3081 num_pages, num_pages,
3082 &alloc_hint);
3083 if (!ret)
3084 dcs = BTRFS_DC_SETUP;
3085 btrfs_free_reserved_data_space(inode, num_pages);
3086
3087 out_put:
3088 iput(inode);
3089 out_free:
3090 btrfs_release_path(path);
3091 out:
3092 spin_lock(&block_group->lock);
3093 if (!ret && dcs == BTRFS_DC_SETUP)
3094 block_group->cache_generation = trans->transid;
3095 block_group->disk_cache_state = dcs;
3096 spin_unlock(&block_group->lock);
3097
3098 return ret;
3099 }
3100
3101 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *root)
3103 {
3104 struct btrfs_block_group_cache *cache;
3105 int err = 0;
3106 struct btrfs_path *path;
3107 u64 last = 0;
3108
3109 path = btrfs_alloc_path();
3110 if (!path)
3111 return -ENOMEM;
3112
3113 again:
3114 while (1) {
3115 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3116 while (cache) {
3117 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3118 break;
3119 cache = next_block_group(root, cache);
3120 }
3121 if (!cache) {
3122 if (last == 0)
3123 break;
3124 last = 0;
3125 continue;
3126 }
3127 err = cache_save_setup(cache, trans, path);
3128 last = cache->key.objectid + cache->key.offset;
3129 btrfs_put_block_group(cache);
3130 }
3131
3132 while (1) {
3133 if (last == 0) {
3134 err = btrfs_run_delayed_refs(trans, root,
3135 (unsigned long)-1);
3136 if (err) /* File system offline */
3137 goto out;
3138 }
3139
3140 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3141 while (cache) {
3142 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3143 btrfs_put_block_group(cache);
3144 goto again;
3145 }
3146
3147 if (cache->dirty)
3148 break;
3149 cache = next_block_group(root, cache);
3150 }
3151 if (!cache) {
3152 if (last == 0)
3153 break;
3154 last = 0;
3155 continue;
3156 }
3157
3158 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3159 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3160 cache->dirty = 0;
3161 last = cache->key.objectid + cache->key.offset;
3162
3163 err = write_one_cache_group(trans, root, path, cache);
3164 if (err) /* File system offline */
3165 goto out;
3166
3167 btrfs_put_block_group(cache);
3168 }
3169
3170 while (1) {
3171 /*
3172 * I don't think this is needed since we're just marking our
3173 * preallocated extent as written, but just in case it can't
3174 * hurt.
3175 */
3176 if (last == 0) {
3177 err = btrfs_run_delayed_refs(trans, root,
3178 (unsigned long)-1);
3179 if (err) /* File system offline */
3180 goto out;
3181 }
3182
3183 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3184 while (cache) {
3185 /*
3186 * Really this shouldn't happen, but it could if we
3187 * couldn't write the entire preallocated extent and
3188 * splitting the extent resulted in a new block.
3189 */
3190 if (cache->dirty) {
3191 btrfs_put_block_group(cache);
3192 goto again;
3193 }
3194 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3195 break;
3196 cache = next_block_group(root, cache);
3197 }
3198 if (!cache) {
3199 if (last == 0)
3200 break;
3201 last = 0;
3202 continue;
3203 }
3204
3205 err = btrfs_write_out_cache(root, trans, cache, path);
3206
3207 /*
3208 * If we didn't have an error then the cache state is still
3209 * NEED_WRITE, so we can set it to WRITTEN.
3210 */
3211 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3212 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3213 last = cache->key.objectid + cache->key.offset;
3214 btrfs_put_block_group(cache);
3215 }
3216 out:
3217
3218 btrfs_free_path(path);
3219 return err;
3220 }
3221
3222 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3223 {
3224 struct btrfs_block_group_cache *block_group;
3225 int readonly = 0;
3226
3227 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3228 if (!block_group || block_group->ro)
3229 readonly = 1;
3230 if (block_group)
3231 btrfs_put_block_group(block_group);
3232 return readonly;
3233 }
3234
3235 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3236 u64 total_bytes, u64 bytes_used,
3237 struct btrfs_space_info **space_info)
3238 {
3239 struct btrfs_space_info *found;
3240 int i;
3241 int factor;
3242
3243 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3244 BTRFS_BLOCK_GROUP_RAID10))
3245 factor = 2;
3246 else
3247 factor = 1;
3248
3249 found = __find_space_info(info, flags);
3250 if (found) {
3251 spin_lock(&found->lock);
3252 found->total_bytes += total_bytes;
3253 found->disk_total += total_bytes * factor;
3254 found->bytes_used += bytes_used;
3255 found->disk_used += bytes_used * factor;
3256 found->full = 0;
3257 spin_unlock(&found->lock);
3258 *space_info = found;
3259 return 0;
3260 }
3261 found = kzalloc(sizeof(*found), GFP_NOFS);
3262 if (!found)
3263 return -ENOMEM;
3264
3265 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3266 INIT_LIST_HEAD(&found->block_groups[i]);
3267 init_rwsem(&found->groups_sem);
3268 spin_lock_init(&found->lock);
3269 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3270 found->total_bytes = total_bytes;
3271 found->disk_total = total_bytes * factor;
3272 found->bytes_used = bytes_used;
3273 found->disk_used = bytes_used * factor;
3274 found->bytes_pinned = 0;
3275 found->bytes_reserved = 0;
3276 found->bytes_readonly = 0;
3277 found->bytes_may_use = 0;
3278 found->full = 0;
3279 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3280 found->chunk_alloc = 0;
3281 found->flush = 0;
3282 init_waitqueue_head(&found->wait);
3283 *space_info = found;
3284 list_add_rcu(&found->list, &info->space_info);
3285 if (flags & BTRFS_BLOCK_GROUP_DATA)
3286 info->data_sinfo = found;
3287 return 0;
3288 }
3289
3290 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3291 {
3292 u64 extra_flags = chunk_to_extended(flags) &
3293 BTRFS_EXTENDED_PROFILE_MASK;
3294
3295 write_seqlock(&fs_info->profiles_lock);
3296 if (flags & BTRFS_BLOCK_GROUP_DATA)
3297 fs_info->avail_data_alloc_bits |= extra_flags;
3298 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3299 fs_info->avail_metadata_alloc_bits |= extra_flags;
3300 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3301 fs_info->avail_system_alloc_bits |= extra_flags;
3302 write_sequnlock(&fs_info->profiles_lock);
3303 }
3304
3305 /*
3306 * returns target flags in extended format or 0 if restripe for this
3307 * chunk_type is not in progress
3308 *
3309 * should be called with either volume_mutex or balance_lock held
3310 */
3311 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3312 {
3313 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3314 u64 target = 0;
3315
3316 if (!bctl)
3317 return 0;
3318
3319 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3320 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3321 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3322 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3323 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3324 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3325 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3326 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3327 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3328 }
3329
3330 return target;
3331 }
3332
3333 /*
3334 * @flags: available profiles in extended format (see ctree.h)
3335 *
3336 * Returns reduced profile in chunk format. If profile changing is in
3337 * progress (either running or paused) picks the target profile (if it's
3338 * already available), otherwise falls back to plain reducing.
3339 */
3340 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3341 {
3342 /*
3343 * we add in the count of missing devices because we want
3344 * to make sure that any RAID levels on a degraded FS
3345 * continue to be honored.
3346 */
3347 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3348 root->fs_info->fs_devices->missing_devices;
3349 u64 target;
3350 u64 tmp;
3351
3352 /*
3353 * see if restripe for this chunk_type is in progress, if so
3354 * try to reduce to the target profile
3355 */
3356 spin_lock(&root->fs_info->balance_lock);
3357 target = get_restripe_target(root->fs_info, flags);
3358 if (target) {
3359 /* pick target profile only if it's already available */
3360 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3361 spin_unlock(&root->fs_info->balance_lock);
3362 return extended_to_chunk(target);
3363 }
3364 }
3365 spin_unlock(&root->fs_info->balance_lock);
3366
3367 /* First, mask out the RAID levels which aren't possible */
3368 if (num_devices == 1)
3369 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3370 BTRFS_BLOCK_GROUP_RAID5);
3371 if (num_devices < 3)
3372 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3373 if (num_devices < 4)
3374 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3375
3376 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3377 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3378 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3379 flags &= ~tmp;
3380
3381 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3382 tmp = BTRFS_BLOCK_GROUP_RAID6;
3383 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3384 tmp = BTRFS_BLOCK_GROUP_RAID5;
3385 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3386 tmp = BTRFS_BLOCK_GROUP_RAID10;
3387 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3388 tmp = BTRFS_BLOCK_GROUP_RAID1;
3389 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3390 tmp = BTRFS_BLOCK_GROUP_RAID0;
3391
3392 return extended_to_chunk(flags | tmp);
3393 }
3394
3395 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3396 {
3397 unsigned seq;
3398
3399 do {
3400 seq = read_seqbegin(&root->fs_info->profiles_lock);
3401
3402 if (flags & BTRFS_BLOCK_GROUP_DATA)
3403 flags |= root->fs_info->avail_data_alloc_bits;
3404 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3405 flags |= root->fs_info->avail_system_alloc_bits;
3406 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3407 flags |= root->fs_info->avail_metadata_alloc_bits;
3408 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3409
3410 return btrfs_reduce_alloc_profile(root, flags);
3411 }
3412
3413 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3414 {
3415 u64 flags;
3416 u64 ret;
3417
3418 if (data)
3419 flags = BTRFS_BLOCK_GROUP_DATA;
3420 else if (root == root->fs_info->chunk_root)
3421 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3422 else
3423 flags = BTRFS_BLOCK_GROUP_METADATA;
3424
3425 ret = get_alloc_profile(root, flags);
3426 return ret;
3427 }
3428
3429 /*
3430 * This will check the space that the inode allocates from to make sure we have
3431 * enough space for bytes.
3432 */
3433 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3434 {
3435 struct btrfs_space_info *data_sinfo;
3436 struct btrfs_root *root = BTRFS_I(inode)->root;
3437 struct btrfs_fs_info *fs_info = root->fs_info;
3438 u64 used;
3439 int ret = 0, committed = 0, alloc_chunk = 1;
3440
3441 /* make sure bytes are sectorsize aligned */
3442 bytes = ALIGN(bytes, root->sectorsize);
3443
3444 if (root == root->fs_info->tree_root ||
3445 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3446 alloc_chunk = 0;
3447 committed = 1;
3448 }
3449
3450 data_sinfo = fs_info->data_sinfo;
3451 if (!data_sinfo)
3452 goto alloc;
3453
3454 again:
3455 /* make sure we have enough space to handle the data first */
3456 spin_lock(&data_sinfo->lock);
3457 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3458 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3459 data_sinfo->bytes_may_use;
3460
3461 if (used + bytes > data_sinfo->total_bytes) {
3462 struct btrfs_trans_handle *trans;
3463
3464 /*
3465 * if we don't have enough free bytes in this space then we need
3466 * to alloc a new chunk.
3467 */
3468 if (!data_sinfo->full && alloc_chunk) {
3469 u64 alloc_target;
3470
3471 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3472 spin_unlock(&data_sinfo->lock);
3473 alloc:
3474 alloc_target = btrfs_get_alloc_profile(root, 1);
3475 trans = btrfs_join_transaction(root);
3476 if (IS_ERR(trans))
3477 return PTR_ERR(trans);
3478
3479 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3480 alloc_target,
3481 CHUNK_ALLOC_NO_FORCE);
3482 btrfs_end_transaction(trans, root);
3483 if (ret < 0) {
3484 if (ret != -ENOSPC)
3485 return ret;
3486 else
3487 goto commit_trans;
3488 }
3489
3490 if (!data_sinfo)
3491 data_sinfo = fs_info->data_sinfo;
3492
3493 goto again;
3494 }
3495
3496 /*
3497 * If we have less pinned bytes than we want to allocate then
3498 * don't bother committing the transaction, it won't help us.
3499 */
3500 if (data_sinfo->bytes_pinned < bytes)
3501 committed = 1;
3502 spin_unlock(&data_sinfo->lock);
3503
3504 /* commit the current transaction and try again */
3505 commit_trans:
3506 if (!committed &&
3507 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3508 committed = 1;
3509 trans = btrfs_join_transaction(root);
3510 if (IS_ERR(trans))
3511 return PTR_ERR(trans);
3512 ret = btrfs_commit_transaction(trans, root);
3513 if (ret)
3514 return ret;
3515 goto again;
3516 }
3517
3518 return -ENOSPC;
3519 }
3520 data_sinfo->bytes_may_use += bytes;
3521 trace_btrfs_space_reservation(root->fs_info, "space_info",
3522 data_sinfo->flags, bytes, 1);
3523 spin_unlock(&data_sinfo->lock);
3524
3525 return 0;
3526 }
3527
3528 /*
3529 * Called if we need to clear a data reservation for this inode.
3530 */
3531 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3532 {
3533 struct btrfs_root *root = BTRFS_I(inode)->root;
3534 struct btrfs_space_info *data_sinfo;
3535
3536 /* make sure bytes are sectorsize aligned */
3537 bytes = ALIGN(bytes, root->sectorsize);
3538
3539 data_sinfo = root->fs_info->data_sinfo;
3540 spin_lock(&data_sinfo->lock);
3541 data_sinfo->bytes_may_use -= bytes;
3542 trace_btrfs_space_reservation(root->fs_info, "space_info",
3543 data_sinfo->flags, bytes, 0);
3544 spin_unlock(&data_sinfo->lock);
3545 }
3546
3547 static void force_metadata_allocation(struct btrfs_fs_info *info)
3548 {
3549 struct list_head *head = &info->space_info;
3550 struct btrfs_space_info *found;
3551
3552 rcu_read_lock();
3553 list_for_each_entry_rcu(found, head, list) {
3554 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3555 found->force_alloc = CHUNK_ALLOC_FORCE;
3556 }
3557 rcu_read_unlock();
3558 }
3559
3560 static int should_alloc_chunk(struct btrfs_root *root,
3561 struct btrfs_space_info *sinfo, int force)
3562 {
3563 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3564 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3565 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3566 u64 thresh;
3567
3568 if (force == CHUNK_ALLOC_FORCE)
3569 return 1;
3570
3571 /*
3572 * We need to take into account the global rsv because for all intents
3573 * and purposes it's used space. Don't worry about locking the
3574 * global_rsv, it doesn't change except when the transaction commits.
3575 */
3576 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3577 num_allocated += global_rsv->size;
3578
3579 /*
3580 * in limited mode, we want to have some free space up to
3581 * about 1% of the FS size.
3582 */
3583 if (force == CHUNK_ALLOC_LIMITED) {
3584 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3585 thresh = max_t(u64, 64 * 1024 * 1024,
3586 div_factor_fine(thresh, 1));
3587
3588 if (num_bytes - num_allocated < thresh)
3589 return 1;
3590 }
3591
3592 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3593 return 0;
3594 return 1;
3595 }
3596
3597 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3598 {
3599 u64 num_dev;
3600
3601 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3602 BTRFS_BLOCK_GROUP_RAID0 |
3603 BTRFS_BLOCK_GROUP_RAID5 |
3604 BTRFS_BLOCK_GROUP_RAID6))
3605 num_dev = root->fs_info->fs_devices->rw_devices;
3606 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3607 num_dev = 2;
3608 else
3609 num_dev = 1; /* DUP or single */
3610
3611 /* metadata for updaing devices and chunk tree */
3612 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3613 }
3614
3615 static void check_system_chunk(struct btrfs_trans_handle *trans,
3616 struct btrfs_root *root, u64 type)
3617 {
3618 struct btrfs_space_info *info;
3619 u64 left;
3620 u64 thresh;
3621
3622 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3623 spin_lock(&info->lock);
3624 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3625 info->bytes_reserved - info->bytes_readonly;
3626 spin_unlock(&info->lock);
3627
3628 thresh = get_system_chunk_thresh(root, type);
3629 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3630 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3631 left, thresh, type);
3632 dump_space_info(info, 0, 0);
3633 }
3634
3635 if (left < thresh) {
3636 u64 flags;
3637
3638 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3639 btrfs_alloc_chunk(trans, root, flags);
3640 }
3641 }
3642
3643 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3644 struct btrfs_root *extent_root, u64 flags, int force)
3645 {
3646 struct btrfs_space_info *space_info;
3647 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3648 int wait_for_alloc = 0;
3649 int ret = 0;
3650
3651 /* Don't re-enter if we're already allocating a chunk */
3652 if (trans->allocating_chunk)
3653 return -ENOSPC;
3654
3655 space_info = __find_space_info(extent_root->fs_info, flags);
3656 if (!space_info) {
3657 ret = update_space_info(extent_root->fs_info, flags,
3658 0, 0, &space_info);
3659 BUG_ON(ret); /* -ENOMEM */
3660 }
3661 BUG_ON(!space_info); /* Logic error */
3662
3663 again:
3664 spin_lock(&space_info->lock);
3665 if (force < space_info->force_alloc)
3666 force = space_info->force_alloc;
3667 if (space_info->full) {
3668 spin_unlock(&space_info->lock);
3669 return 0;
3670 }
3671
3672 if (!should_alloc_chunk(extent_root, space_info, force)) {
3673 spin_unlock(&space_info->lock);
3674 return 0;
3675 } else if (space_info->chunk_alloc) {
3676 wait_for_alloc = 1;
3677 } else {
3678 space_info->chunk_alloc = 1;
3679 }
3680
3681 spin_unlock(&space_info->lock);
3682
3683 mutex_lock(&fs_info->chunk_mutex);
3684
3685 /*
3686 * The chunk_mutex is held throughout the entirety of a chunk
3687 * allocation, so once we've acquired the chunk_mutex we know that the
3688 * other guy is done and we need to recheck and see if we should
3689 * allocate.
3690 */
3691 if (wait_for_alloc) {
3692 mutex_unlock(&fs_info->chunk_mutex);
3693 wait_for_alloc = 0;
3694 goto again;
3695 }
3696
3697 trans->allocating_chunk = true;
3698
3699 /*
3700 * If we have mixed data/metadata chunks we want to make sure we keep
3701 * allocating mixed chunks instead of individual chunks.
3702 */
3703 if (btrfs_mixed_space_info(space_info))
3704 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3705
3706 /*
3707 * if we're doing a data chunk, go ahead and make sure that
3708 * we keep a reasonable number of metadata chunks allocated in the
3709 * FS as well.
3710 */
3711 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3712 fs_info->data_chunk_allocations++;
3713 if (!(fs_info->data_chunk_allocations %
3714 fs_info->metadata_ratio))
3715 force_metadata_allocation(fs_info);
3716 }
3717
3718 /*
3719 * Check if we have enough space in SYSTEM chunk because we may need
3720 * to update devices.
3721 */
3722 check_system_chunk(trans, extent_root, flags);
3723
3724 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3725 trans->allocating_chunk = false;
3726
3727 spin_lock(&space_info->lock);
3728 if (ret < 0 && ret != -ENOSPC)
3729 goto out;
3730 if (ret)
3731 space_info->full = 1;
3732 else
3733 ret = 1;
3734
3735 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3736 out:
3737 space_info->chunk_alloc = 0;
3738 spin_unlock(&space_info->lock);
3739 mutex_unlock(&fs_info->chunk_mutex);
3740 return ret;
3741 }
3742
3743 static int can_overcommit(struct btrfs_root *root,
3744 struct btrfs_space_info *space_info, u64 bytes,
3745 enum btrfs_reserve_flush_enum flush)
3746 {
3747 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3748 u64 profile = btrfs_get_alloc_profile(root, 0);
3749 u64 rsv_size = 0;
3750 u64 avail;
3751 u64 used;
3752 u64 to_add;
3753
3754 used = space_info->bytes_used + space_info->bytes_reserved +
3755 space_info->bytes_pinned + space_info->bytes_readonly;
3756
3757 spin_lock(&global_rsv->lock);
3758 rsv_size = global_rsv->size;
3759 spin_unlock(&global_rsv->lock);
3760
3761 /*
3762 * We only want to allow over committing if we have lots of actual space
3763 * free, but if we don't have enough space to handle the global reserve
3764 * space then we could end up having a real enospc problem when trying
3765 * to allocate a chunk or some other such important allocation.
3766 */
3767 rsv_size <<= 1;
3768 if (used + rsv_size >= space_info->total_bytes)
3769 return 0;
3770
3771 used += space_info->bytes_may_use;
3772
3773 spin_lock(&root->fs_info->free_chunk_lock);
3774 avail = root->fs_info->free_chunk_space;
3775 spin_unlock(&root->fs_info->free_chunk_lock);
3776
3777 /*
3778 * If we have dup, raid1 or raid10 then only half of the free
3779 * space is actually useable. For raid56, the space info used
3780 * doesn't include the parity drive, so we don't have to
3781 * change the math
3782 */
3783 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3784 BTRFS_BLOCK_GROUP_RAID1 |
3785 BTRFS_BLOCK_GROUP_RAID10))
3786 avail >>= 1;
3787
3788 to_add = space_info->total_bytes;
3789
3790 /*
3791 * If we aren't flushing all things, let us overcommit up to
3792 * 1/2th of the space. If we can flush, don't let us overcommit
3793 * too much, let it overcommit up to 1/8 of the space.
3794 */
3795 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3796 to_add >>= 3;
3797 else
3798 to_add >>= 1;
3799
3800 /*
3801 * Limit the overcommit to the amount of free space we could possibly
3802 * allocate for chunks.
3803 */
3804 to_add = min(avail, to_add);
3805
3806 if (used + bytes < space_info->total_bytes + to_add)
3807 return 1;
3808 return 0;
3809 }
3810
3811 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3812 unsigned long nr_pages)
3813 {
3814 struct super_block *sb = root->fs_info->sb;
3815 int started;
3816
3817 /* If we can not start writeback, just sync all the delalloc file. */
3818 started = try_to_writeback_inodes_sb_nr(sb, nr_pages,
3819 WB_REASON_FS_FREE_SPACE);
3820 if (!started) {
3821 /*
3822 * We needn't worry the filesystem going from r/w to r/o though
3823 * we don't acquire ->s_umount mutex, because the filesystem
3824 * should guarantee the delalloc inodes list be empty after
3825 * the filesystem is readonly(all dirty pages are written to
3826 * the disk).
3827 */
3828 btrfs_start_delalloc_inodes(root, 0);
3829 btrfs_wait_ordered_extents(root, 0);
3830 }
3831 }
3832
3833 /*
3834 * shrink metadata reservation for delalloc
3835 */
3836 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3837 bool wait_ordered)
3838 {
3839 struct btrfs_block_rsv *block_rsv;
3840 struct btrfs_space_info *space_info;
3841 struct btrfs_trans_handle *trans;
3842 u64 delalloc_bytes;
3843 u64 max_reclaim;
3844 long time_left;
3845 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3846 int loops = 0;
3847 enum btrfs_reserve_flush_enum flush;
3848
3849 trans = (struct btrfs_trans_handle *)current->journal_info;
3850 block_rsv = &root->fs_info->delalloc_block_rsv;
3851 space_info = block_rsv->space_info;
3852
3853 smp_mb();
3854 delalloc_bytes = percpu_counter_sum_positive(
3855 &root->fs_info->delalloc_bytes);
3856 if (delalloc_bytes == 0) {
3857 if (trans)
3858 return;
3859 btrfs_wait_ordered_extents(root, 0);
3860 return;
3861 }
3862
3863 while (delalloc_bytes && loops < 3) {
3864 max_reclaim = min(delalloc_bytes, to_reclaim);
3865 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3866 btrfs_writeback_inodes_sb_nr(root, nr_pages);
3867 /*
3868 * We need to wait for the async pages to actually start before
3869 * we do anything.
3870 */
3871 wait_event(root->fs_info->async_submit_wait,
3872 !atomic_read(&root->fs_info->async_delalloc_pages));
3873
3874 if (!trans)
3875 flush = BTRFS_RESERVE_FLUSH_ALL;
3876 else
3877 flush = BTRFS_RESERVE_NO_FLUSH;
3878 spin_lock(&space_info->lock);
3879 if (can_overcommit(root, space_info, orig, flush)) {
3880 spin_unlock(&space_info->lock);
3881 break;
3882 }
3883 spin_unlock(&space_info->lock);
3884
3885 loops++;
3886 if (wait_ordered && !trans) {
3887 btrfs_wait_ordered_extents(root, 0);
3888 } else {
3889 time_left = schedule_timeout_killable(1);
3890 if (time_left)
3891 break;
3892 }
3893 smp_mb();
3894 delalloc_bytes = percpu_counter_sum_positive(
3895 &root->fs_info->delalloc_bytes);
3896 }
3897 }
3898
3899 /**
3900 * maybe_commit_transaction - possibly commit the transaction if its ok to
3901 * @root - the root we're allocating for
3902 * @bytes - the number of bytes we want to reserve
3903 * @force - force the commit
3904 *
3905 * This will check to make sure that committing the transaction will actually
3906 * get us somewhere and then commit the transaction if it does. Otherwise it
3907 * will return -ENOSPC.
3908 */
3909 static int may_commit_transaction(struct btrfs_root *root,
3910 struct btrfs_space_info *space_info,
3911 u64 bytes, int force)
3912 {
3913 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3914 struct btrfs_trans_handle *trans;
3915
3916 trans = (struct btrfs_trans_handle *)current->journal_info;
3917 if (trans)
3918 return -EAGAIN;
3919
3920 if (force)
3921 goto commit;
3922
3923 /* See if there is enough pinned space to make this reservation */
3924 spin_lock(&space_info->lock);
3925 if (space_info->bytes_pinned >= bytes) {
3926 spin_unlock(&space_info->lock);
3927 goto commit;
3928 }
3929 spin_unlock(&space_info->lock);
3930
3931 /*
3932 * See if there is some space in the delayed insertion reservation for
3933 * this reservation.
3934 */
3935 if (space_info != delayed_rsv->space_info)
3936 return -ENOSPC;
3937
3938 spin_lock(&space_info->lock);
3939 spin_lock(&delayed_rsv->lock);
3940 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3941 spin_unlock(&delayed_rsv->lock);
3942 spin_unlock(&space_info->lock);
3943 return -ENOSPC;
3944 }
3945 spin_unlock(&delayed_rsv->lock);
3946 spin_unlock(&space_info->lock);
3947
3948 commit:
3949 trans = btrfs_join_transaction(root);
3950 if (IS_ERR(trans))
3951 return -ENOSPC;
3952
3953 return btrfs_commit_transaction(trans, root);
3954 }
3955
3956 enum flush_state {
3957 FLUSH_DELAYED_ITEMS_NR = 1,
3958 FLUSH_DELAYED_ITEMS = 2,
3959 FLUSH_DELALLOC = 3,
3960 FLUSH_DELALLOC_WAIT = 4,
3961 ALLOC_CHUNK = 5,
3962 COMMIT_TRANS = 6,
3963 };
3964
3965 static int flush_space(struct btrfs_root *root,
3966 struct btrfs_space_info *space_info, u64 num_bytes,
3967 u64 orig_bytes, int state)
3968 {
3969 struct btrfs_trans_handle *trans;
3970 int nr;
3971 int ret = 0;
3972
3973 switch (state) {
3974 case FLUSH_DELAYED_ITEMS_NR:
3975 case FLUSH_DELAYED_ITEMS:
3976 if (state == FLUSH_DELAYED_ITEMS_NR) {
3977 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3978
3979 nr = (int)div64_u64(num_bytes, bytes);
3980 if (!nr)
3981 nr = 1;
3982 nr *= 2;
3983 } else {
3984 nr = -1;
3985 }
3986 trans = btrfs_join_transaction(root);
3987 if (IS_ERR(trans)) {
3988 ret = PTR_ERR(trans);
3989 break;
3990 }
3991 ret = btrfs_run_delayed_items_nr(trans, root, nr);
3992 btrfs_end_transaction(trans, root);
3993 break;
3994 case FLUSH_DELALLOC:
3995 case FLUSH_DELALLOC_WAIT:
3996 shrink_delalloc(root, num_bytes, orig_bytes,
3997 state == FLUSH_DELALLOC_WAIT);
3998 break;
3999 case ALLOC_CHUNK:
4000 trans = btrfs_join_transaction(root);
4001 if (IS_ERR(trans)) {
4002 ret = PTR_ERR(trans);
4003 break;
4004 }
4005 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4006 btrfs_get_alloc_profile(root, 0),
4007 CHUNK_ALLOC_NO_FORCE);
4008 btrfs_end_transaction(trans, root);
4009 if (ret == -ENOSPC)
4010 ret = 0;
4011 break;
4012 case COMMIT_TRANS:
4013 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4014 break;
4015 default:
4016 ret = -ENOSPC;
4017 break;
4018 }
4019
4020 return ret;
4021 }
4022 /**
4023 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4024 * @root - the root we're allocating for
4025 * @block_rsv - the block_rsv we're allocating for
4026 * @orig_bytes - the number of bytes we want
4027 * @flush - whether or not we can flush to make our reservation
4028 *
4029 * This will reserve orgi_bytes number of bytes from the space info associated
4030 * with the block_rsv. If there is not enough space it will make an attempt to
4031 * flush out space to make room. It will do this by flushing delalloc if
4032 * possible or committing the transaction. If flush is 0 then no attempts to
4033 * regain reservations will be made and this will fail if there is not enough
4034 * space already.
4035 */
4036 static int reserve_metadata_bytes(struct btrfs_root *root,
4037 struct btrfs_block_rsv *block_rsv,
4038 u64 orig_bytes,
4039 enum btrfs_reserve_flush_enum flush)
4040 {
4041 struct btrfs_space_info *space_info = block_rsv->space_info;
4042 u64 used;
4043 u64 num_bytes = orig_bytes;
4044 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4045 int ret = 0;
4046 bool flushing = false;
4047
4048 again:
4049 ret = 0;
4050 spin_lock(&space_info->lock);
4051 /*
4052 * We only want to wait if somebody other than us is flushing and we
4053 * are actually allowed to flush all things.
4054 */
4055 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4056 space_info->flush) {
4057 spin_unlock(&space_info->lock);
4058 /*
4059 * If we have a trans handle we can't wait because the flusher
4060 * may have to commit the transaction, which would mean we would
4061 * deadlock since we are waiting for the flusher to finish, but
4062 * hold the current transaction open.
4063 */
4064 if (current->journal_info)
4065 return -EAGAIN;
4066 ret = wait_event_killable(space_info->wait, !space_info->flush);
4067 /* Must have been killed, return */
4068 if (ret)
4069 return -EINTR;
4070
4071 spin_lock(&space_info->lock);
4072 }
4073
4074 ret = -ENOSPC;
4075 used = space_info->bytes_used + space_info->bytes_reserved +
4076 space_info->bytes_pinned + space_info->bytes_readonly +
4077 space_info->bytes_may_use;
4078
4079 /*
4080 * The idea here is that we've not already over-reserved the block group
4081 * then we can go ahead and save our reservation first and then start
4082 * flushing if we need to. Otherwise if we've already overcommitted
4083 * lets start flushing stuff first and then come back and try to make
4084 * our reservation.
4085 */
4086 if (used <= space_info->total_bytes) {
4087 if (used + orig_bytes <= space_info->total_bytes) {
4088 space_info->bytes_may_use += orig_bytes;
4089 trace_btrfs_space_reservation(root->fs_info,
4090 "space_info", space_info->flags, orig_bytes, 1);
4091 ret = 0;
4092 } else {
4093 /*
4094 * Ok set num_bytes to orig_bytes since we aren't
4095 * overocmmitted, this way we only try and reclaim what
4096 * we need.
4097 */
4098 num_bytes = orig_bytes;
4099 }
4100 } else {
4101 /*
4102 * Ok we're over committed, set num_bytes to the overcommitted
4103 * amount plus the amount of bytes that we need for this
4104 * reservation.
4105 */
4106 num_bytes = used - space_info->total_bytes +
4107 (orig_bytes * 2);
4108 }
4109
4110 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4111 space_info->bytes_may_use += orig_bytes;
4112 trace_btrfs_space_reservation(root->fs_info, "space_info",
4113 space_info->flags, orig_bytes,
4114 1);
4115 ret = 0;
4116 }
4117
4118 /*
4119 * Couldn't make our reservation, save our place so while we're trying
4120 * to reclaim space we can actually use it instead of somebody else
4121 * stealing it from us.
4122 *
4123 * We make the other tasks wait for the flush only when we can flush
4124 * all things.
4125 */
4126 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4127 flushing = true;
4128 space_info->flush = 1;
4129 }
4130
4131 spin_unlock(&space_info->lock);
4132
4133 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4134 goto out;
4135
4136 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4137 flush_state);
4138 flush_state++;
4139
4140 /*
4141 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4142 * would happen. So skip delalloc flush.
4143 */
4144 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4145 (flush_state == FLUSH_DELALLOC ||
4146 flush_state == FLUSH_DELALLOC_WAIT))
4147 flush_state = ALLOC_CHUNK;
4148
4149 if (!ret)
4150 goto again;
4151 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4152 flush_state < COMMIT_TRANS)
4153 goto again;
4154 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4155 flush_state <= COMMIT_TRANS)
4156 goto again;
4157
4158 out:
4159 if (ret == -ENOSPC &&
4160 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4161 struct btrfs_block_rsv *global_rsv =
4162 &root->fs_info->global_block_rsv;
4163
4164 if (block_rsv != global_rsv &&
4165 !block_rsv_use_bytes(global_rsv, orig_bytes))
4166 ret = 0;
4167 }
4168 if (flushing) {
4169 spin_lock(&space_info->lock);
4170 space_info->flush = 0;
4171 wake_up_all(&space_info->wait);
4172 spin_unlock(&space_info->lock);
4173 }
4174 return ret;
4175 }
4176
4177 static struct btrfs_block_rsv *get_block_rsv(
4178 const struct btrfs_trans_handle *trans,
4179 const struct btrfs_root *root)
4180 {
4181 struct btrfs_block_rsv *block_rsv = NULL;
4182
4183 if (root->ref_cows)
4184 block_rsv = trans->block_rsv;
4185
4186 if (root == root->fs_info->csum_root && trans->adding_csums)
4187 block_rsv = trans->block_rsv;
4188
4189 if (!block_rsv)
4190 block_rsv = root->block_rsv;
4191
4192 if (!block_rsv)
4193 block_rsv = &root->fs_info->empty_block_rsv;
4194
4195 return block_rsv;
4196 }
4197
4198 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4199 u64 num_bytes)
4200 {
4201 int ret = -ENOSPC;
4202 spin_lock(&block_rsv->lock);
4203 if (block_rsv->reserved >= num_bytes) {
4204 block_rsv->reserved -= num_bytes;
4205 if (block_rsv->reserved < block_rsv->size)
4206 block_rsv->full = 0;
4207 ret = 0;
4208 }
4209 spin_unlock(&block_rsv->lock);
4210 return ret;
4211 }
4212
4213 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4214 u64 num_bytes, int update_size)
4215 {
4216 spin_lock(&block_rsv->lock);
4217 block_rsv->reserved += num_bytes;
4218 if (update_size)
4219 block_rsv->size += num_bytes;
4220 else if (block_rsv->reserved >= block_rsv->size)
4221 block_rsv->full = 1;
4222 spin_unlock(&block_rsv->lock);
4223 }
4224
4225 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4226 struct btrfs_block_rsv *block_rsv,
4227 struct btrfs_block_rsv *dest, u64 num_bytes)
4228 {
4229 struct btrfs_space_info *space_info = block_rsv->space_info;
4230
4231 spin_lock(&block_rsv->lock);
4232 if (num_bytes == (u64)-1)
4233 num_bytes = block_rsv->size;
4234 block_rsv->size -= num_bytes;
4235 if (block_rsv->reserved >= block_rsv->size) {
4236 num_bytes = block_rsv->reserved - block_rsv->size;
4237 block_rsv->reserved = block_rsv->size;
4238 block_rsv->full = 1;
4239 } else {
4240 num_bytes = 0;
4241 }
4242 spin_unlock(&block_rsv->lock);
4243
4244 if (num_bytes > 0) {
4245 if (dest) {
4246 spin_lock(&dest->lock);
4247 if (!dest->full) {
4248 u64 bytes_to_add;
4249
4250 bytes_to_add = dest->size - dest->reserved;
4251 bytes_to_add = min(num_bytes, bytes_to_add);
4252 dest->reserved += bytes_to_add;
4253 if (dest->reserved >= dest->size)
4254 dest->full = 1;
4255 num_bytes -= bytes_to_add;
4256 }
4257 spin_unlock(&dest->lock);
4258 }
4259 if (num_bytes) {
4260 spin_lock(&space_info->lock);
4261 space_info->bytes_may_use -= num_bytes;
4262 trace_btrfs_space_reservation(fs_info, "space_info",
4263 space_info->flags, num_bytes, 0);
4264 space_info->reservation_progress++;
4265 spin_unlock(&space_info->lock);
4266 }
4267 }
4268 }
4269
4270 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4271 struct btrfs_block_rsv *dst, u64 num_bytes)
4272 {
4273 int ret;
4274
4275 ret = block_rsv_use_bytes(src, num_bytes);
4276 if (ret)
4277 return ret;
4278
4279 block_rsv_add_bytes(dst, num_bytes, 1);
4280 return 0;
4281 }
4282
4283 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4284 {
4285 memset(rsv, 0, sizeof(*rsv));
4286 spin_lock_init(&rsv->lock);
4287 rsv->type = type;
4288 }
4289
4290 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4291 unsigned short type)
4292 {
4293 struct btrfs_block_rsv *block_rsv;
4294 struct btrfs_fs_info *fs_info = root->fs_info;
4295
4296 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4297 if (!block_rsv)
4298 return NULL;
4299
4300 btrfs_init_block_rsv(block_rsv, type);
4301 block_rsv->space_info = __find_space_info(fs_info,
4302 BTRFS_BLOCK_GROUP_METADATA);
4303 return block_rsv;
4304 }
4305
4306 void btrfs_free_block_rsv(struct btrfs_root *root,
4307 struct btrfs_block_rsv *rsv)
4308 {
4309 if (!rsv)
4310 return;
4311 btrfs_block_rsv_release(root, rsv, (u64)-1);
4312 kfree(rsv);
4313 }
4314
4315 int btrfs_block_rsv_add(struct btrfs_root *root,
4316 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4317 enum btrfs_reserve_flush_enum flush)
4318 {
4319 int ret;
4320
4321 if (num_bytes == 0)
4322 return 0;
4323
4324 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4325 if (!ret) {
4326 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4327 return 0;
4328 }
4329
4330 return ret;
4331 }
4332
4333 int btrfs_block_rsv_check(struct btrfs_root *root,
4334 struct btrfs_block_rsv *block_rsv, int min_factor)
4335 {
4336 u64 num_bytes = 0;
4337 int ret = -ENOSPC;
4338
4339 if (!block_rsv)
4340 return 0;
4341
4342 spin_lock(&block_rsv->lock);
4343 num_bytes = div_factor(block_rsv->size, min_factor);
4344 if (block_rsv->reserved >= num_bytes)
4345 ret = 0;
4346 spin_unlock(&block_rsv->lock);
4347
4348 return ret;
4349 }
4350
4351 int btrfs_block_rsv_refill(struct btrfs_root *root,
4352 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4353 enum btrfs_reserve_flush_enum flush)
4354 {
4355 u64 num_bytes = 0;
4356 int ret = -ENOSPC;
4357
4358 if (!block_rsv)
4359 return 0;
4360
4361 spin_lock(&block_rsv->lock);
4362 num_bytes = min_reserved;
4363 if (block_rsv->reserved >= num_bytes)
4364 ret = 0;
4365 else
4366 num_bytes -= block_rsv->reserved;
4367 spin_unlock(&block_rsv->lock);
4368
4369 if (!ret)
4370 return 0;
4371
4372 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4373 if (!ret) {
4374 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4375 return 0;
4376 }
4377
4378 return ret;
4379 }
4380
4381 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4382 struct btrfs_block_rsv *dst_rsv,
4383 u64 num_bytes)
4384 {
4385 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4386 }
4387
4388 void btrfs_block_rsv_release(struct btrfs_root *root,
4389 struct btrfs_block_rsv *block_rsv,
4390 u64 num_bytes)
4391 {
4392 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4393 if (global_rsv->full || global_rsv == block_rsv ||
4394 block_rsv->space_info != global_rsv->space_info)
4395 global_rsv = NULL;
4396 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4397 num_bytes);
4398 }
4399
4400 /*
4401 * helper to calculate size of global block reservation.
4402 * the desired value is sum of space used by extent tree,
4403 * checksum tree and root tree
4404 */
4405 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4406 {
4407 struct btrfs_space_info *sinfo;
4408 u64 num_bytes;
4409 u64 meta_used;
4410 u64 data_used;
4411 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4412
4413 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4414 spin_lock(&sinfo->lock);
4415 data_used = sinfo->bytes_used;
4416 spin_unlock(&sinfo->lock);
4417
4418 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4419 spin_lock(&sinfo->lock);
4420 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4421 data_used = 0;
4422 meta_used = sinfo->bytes_used;
4423 spin_unlock(&sinfo->lock);
4424
4425 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4426 csum_size * 2;
4427 num_bytes += div64_u64(data_used + meta_used, 50);
4428
4429 if (num_bytes * 3 > meta_used)
4430 num_bytes = div64_u64(meta_used, 3);
4431
4432 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4433 }
4434
4435 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4436 {
4437 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4438 struct btrfs_space_info *sinfo = block_rsv->space_info;
4439 u64 num_bytes;
4440
4441 num_bytes = calc_global_metadata_size(fs_info);
4442
4443 spin_lock(&sinfo->lock);
4444 spin_lock(&block_rsv->lock);
4445
4446 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4447
4448 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4449 sinfo->bytes_reserved + sinfo->bytes_readonly +
4450 sinfo->bytes_may_use;
4451
4452 if (sinfo->total_bytes > num_bytes) {
4453 num_bytes = sinfo->total_bytes - num_bytes;
4454 block_rsv->reserved += num_bytes;
4455 sinfo->bytes_may_use += num_bytes;
4456 trace_btrfs_space_reservation(fs_info, "space_info",
4457 sinfo->flags, num_bytes, 1);
4458 }
4459
4460 if (block_rsv->reserved >= block_rsv->size) {
4461 num_bytes = block_rsv->reserved - block_rsv->size;
4462 sinfo->bytes_may_use -= num_bytes;
4463 trace_btrfs_space_reservation(fs_info, "space_info",
4464 sinfo->flags, num_bytes, 0);
4465 sinfo->reservation_progress++;
4466 block_rsv->reserved = block_rsv->size;
4467 block_rsv->full = 1;
4468 }
4469
4470 spin_unlock(&block_rsv->lock);
4471 spin_unlock(&sinfo->lock);
4472 }
4473
4474 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4475 {
4476 struct btrfs_space_info *space_info;
4477
4478 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4479 fs_info->chunk_block_rsv.space_info = space_info;
4480
4481 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4482 fs_info->global_block_rsv.space_info = space_info;
4483 fs_info->delalloc_block_rsv.space_info = space_info;
4484 fs_info->trans_block_rsv.space_info = space_info;
4485 fs_info->empty_block_rsv.space_info = space_info;
4486 fs_info->delayed_block_rsv.space_info = space_info;
4487
4488 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4489 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4490 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4491 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4492 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4493
4494 update_global_block_rsv(fs_info);
4495 }
4496
4497 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4498 {
4499 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4500 (u64)-1);
4501 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4502 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4503 WARN_ON(fs_info->trans_block_rsv.size > 0);
4504 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4505 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4506 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4507 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4508 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4509 }
4510
4511 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4512 struct btrfs_root *root)
4513 {
4514 if (!trans->block_rsv)
4515 return;
4516
4517 if (!trans->bytes_reserved)
4518 return;
4519
4520 trace_btrfs_space_reservation(root->fs_info, "transaction",
4521 trans->transid, trans->bytes_reserved, 0);
4522 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4523 trans->bytes_reserved = 0;
4524 }
4525
4526 /* Can only return 0 or -ENOSPC */
4527 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4528 struct inode *inode)
4529 {
4530 struct btrfs_root *root = BTRFS_I(inode)->root;
4531 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4532 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4533
4534 /*
4535 * We need to hold space in order to delete our orphan item once we've
4536 * added it, so this takes the reservation so we can release it later
4537 * when we are truly done with the orphan item.
4538 */
4539 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4540 trace_btrfs_space_reservation(root->fs_info, "orphan",
4541 btrfs_ino(inode), num_bytes, 1);
4542 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4543 }
4544
4545 void btrfs_orphan_release_metadata(struct inode *inode)
4546 {
4547 struct btrfs_root *root = BTRFS_I(inode)->root;
4548 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4549 trace_btrfs_space_reservation(root->fs_info, "orphan",
4550 btrfs_ino(inode), num_bytes, 0);
4551 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4552 }
4553
4554 /*
4555 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4556 * root: the root of the parent directory
4557 * rsv: block reservation
4558 * items: the number of items that we need do reservation
4559 * qgroup_reserved: used to return the reserved size in qgroup
4560 *
4561 * This function is used to reserve the space for snapshot/subvolume
4562 * creation and deletion. Those operations are different with the
4563 * common file/directory operations, they change two fs/file trees
4564 * and root tree, the number of items that the qgroup reserves is
4565 * different with the free space reservation. So we can not use
4566 * the space reseravtion mechanism in start_transaction().
4567 */
4568 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4569 struct btrfs_block_rsv *rsv,
4570 int items,
4571 u64 *qgroup_reserved)
4572 {
4573 u64 num_bytes;
4574 int ret;
4575
4576 if (root->fs_info->quota_enabled) {
4577 /* One for parent inode, two for dir entries */
4578 num_bytes = 3 * root->leafsize;
4579 ret = btrfs_qgroup_reserve(root, num_bytes);
4580 if (ret)
4581 return ret;
4582 } else {
4583 num_bytes = 0;
4584 }
4585
4586 *qgroup_reserved = num_bytes;
4587
4588 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4589 rsv->space_info = __find_space_info(root->fs_info,
4590 BTRFS_BLOCK_GROUP_METADATA);
4591 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4592 BTRFS_RESERVE_FLUSH_ALL);
4593 if (ret) {
4594 if (*qgroup_reserved)
4595 btrfs_qgroup_free(root, *qgroup_reserved);
4596 }
4597
4598 return ret;
4599 }
4600
4601 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4602 struct btrfs_block_rsv *rsv,
4603 u64 qgroup_reserved)
4604 {
4605 btrfs_block_rsv_release(root, rsv, (u64)-1);
4606 if (qgroup_reserved)
4607 btrfs_qgroup_free(root, qgroup_reserved);
4608 }
4609
4610 /**
4611 * drop_outstanding_extent - drop an outstanding extent
4612 * @inode: the inode we're dropping the extent for
4613 *
4614 * This is called when we are freeing up an outstanding extent, either called
4615 * after an error or after an extent is written. This will return the number of
4616 * reserved extents that need to be freed. This must be called with
4617 * BTRFS_I(inode)->lock held.
4618 */
4619 static unsigned drop_outstanding_extent(struct inode *inode)
4620 {
4621 unsigned drop_inode_space = 0;
4622 unsigned dropped_extents = 0;
4623
4624 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4625 BTRFS_I(inode)->outstanding_extents--;
4626
4627 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4628 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4629 &BTRFS_I(inode)->runtime_flags))
4630 drop_inode_space = 1;
4631
4632 /*
4633 * If we have more or the same amount of outsanding extents than we have
4634 * reserved then we need to leave the reserved extents count alone.
4635 */
4636 if (BTRFS_I(inode)->outstanding_extents >=
4637 BTRFS_I(inode)->reserved_extents)
4638 return drop_inode_space;
4639
4640 dropped_extents = BTRFS_I(inode)->reserved_extents -
4641 BTRFS_I(inode)->outstanding_extents;
4642 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4643 return dropped_extents + drop_inode_space;
4644 }
4645
4646 /**
4647 * calc_csum_metadata_size - return the amount of metada space that must be
4648 * reserved/free'd for the given bytes.
4649 * @inode: the inode we're manipulating
4650 * @num_bytes: the number of bytes in question
4651 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4652 *
4653 * This adjusts the number of csum_bytes in the inode and then returns the
4654 * correct amount of metadata that must either be reserved or freed. We
4655 * calculate how many checksums we can fit into one leaf and then divide the
4656 * number of bytes that will need to be checksumed by this value to figure out
4657 * how many checksums will be required. If we are adding bytes then the number
4658 * may go up and we will return the number of additional bytes that must be
4659 * reserved. If it is going down we will return the number of bytes that must
4660 * be freed.
4661 *
4662 * This must be called with BTRFS_I(inode)->lock held.
4663 */
4664 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4665 int reserve)
4666 {
4667 struct btrfs_root *root = BTRFS_I(inode)->root;
4668 u64 csum_size;
4669 int num_csums_per_leaf;
4670 int num_csums;
4671 int old_csums;
4672
4673 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4674 BTRFS_I(inode)->csum_bytes == 0)
4675 return 0;
4676
4677 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4678 if (reserve)
4679 BTRFS_I(inode)->csum_bytes += num_bytes;
4680 else
4681 BTRFS_I(inode)->csum_bytes -= num_bytes;
4682 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4683 num_csums_per_leaf = (int)div64_u64(csum_size,
4684 sizeof(struct btrfs_csum_item) +
4685 sizeof(struct btrfs_disk_key));
4686 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4687 num_csums = num_csums + num_csums_per_leaf - 1;
4688 num_csums = num_csums / num_csums_per_leaf;
4689
4690 old_csums = old_csums + num_csums_per_leaf - 1;
4691 old_csums = old_csums / num_csums_per_leaf;
4692
4693 /* No change, no need to reserve more */
4694 if (old_csums == num_csums)
4695 return 0;
4696
4697 if (reserve)
4698 return btrfs_calc_trans_metadata_size(root,
4699 num_csums - old_csums);
4700
4701 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4702 }
4703
4704 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4705 {
4706 struct btrfs_root *root = BTRFS_I(inode)->root;
4707 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4708 u64 to_reserve = 0;
4709 u64 csum_bytes;
4710 unsigned nr_extents = 0;
4711 int extra_reserve = 0;
4712 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4713 int ret = 0;
4714 bool delalloc_lock = true;
4715 u64 to_free = 0;
4716 unsigned dropped;
4717
4718 /* If we are a free space inode we need to not flush since we will be in
4719 * the middle of a transaction commit. We also don't need the delalloc
4720 * mutex since we won't race with anybody. We need this mostly to make
4721 * lockdep shut its filthy mouth.
4722 */
4723 if (btrfs_is_free_space_inode(inode)) {
4724 flush = BTRFS_RESERVE_NO_FLUSH;
4725 delalloc_lock = false;
4726 }
4727
4728 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4729 btrfs_transaction_in_commit(root->fs_info))
4730 schedule_timeout(1);
4731
4732 if (delalloc_lock)
4733 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4734
4735 num_bytes = ALIGN(num_bytes, root->sectorsize);
4736
4737 spin_lock(&BTRFS_I(inode)->lock);
4738 BTRFS_I(inode)->outstanding_extents++;
4739
4740 if (BTRFS_I(inode)->outstanding_extents >
4741 BTRFS_I(inode)->reserved_extents)
4742 nr_extents = BTRFS_I(inode)->outstanding_extents -
4743 BTRFS_I(inode)->reserved_extents;
4744
4745 /*
4746 * Add an item to reserve for updating the inode when we complete the
4747 * delalloc io.
4748 */
4749 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4750 &BTRFS_I(inode)->runtime_flags)) {
4751 nr_extents++;
4752 extra_reserve = 1;
4753 }
4754
4755 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4756 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4757 csum_bytes = BTRFS_I(inode)->csum_bytes;
4758 spin_unlock(&BTRFS_I(inode)->lock);
4759
4760 if (root->fs_info->quota_enabled) {
4761 ret = btrfs_qgroup_reserve(root, num_bytes +
4762 nr_extents * root->leafsize);
4763 if (ret)
4764 goto out_fail;
4765 }
4766
4767 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4768 if (unlikely(ret)) {
4769 if (root->fs_info->quota_enabled)
4770 btrfs_qgroup_free(root, num_bytes +
4771 nr_extents * root->leafsize);
4772 goto out_fail;
4773 }
4774
4775 spin_lock(&BTRFS_I(inode)->lock);
4776 if (extra_reserve) {
4777 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4778 &BTRFS_I(inode)->runtime_flags);
4779 nr_extents--;
4780 }
4781 BTRFS_I(inode)->reserved_extents += nr_extents;
4782 spin_unlock(&BTRFS_I(inode)->lock);
4783
4784 if (delalloc_lock)
4785 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4786
4787 if (to_reserve)
4788 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4789 btrfs_ino(inode), to_reserve, 1);
4790 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4791
4792 return 0;
4793
4794 out_fail:
4795 spin_lock(&BTRFS_I(inode)->lock);
4796 dropped = drop_outstanding_extent(inode);
4797 /*
4798 * If the inodes csum_bytes is the same as the original
4799 * csum_bytes then we know we haven't raced with any free()ers
4800 * so we can just reduce our inodes csum bytes and carry on.
4801 */
4802 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
4803 calc_csum_metadata_size(inode, num_bytes, 0);
4804 } else {
4805 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
4806 u64 bytes;
4807
4808 /*
4809 * This is tricky, but first we need to figure out how much we
4810 * free'd from any free-ers that occured during this
4811 * reservation, so we reset ->csum_bytes to the csum_bytes
4812 * before we dropped our lock, and then call the free for the
4813 * number of bytes that were freed while we were trying our
4814 * reservation.
4815 */
4816 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
4817 BTRFS_I(inode)->csum_bytes = csum_bytes;
4818 to_free = calc_csum_metadata_size(inode, bytes, 0);
4819
4820
4821 /*
4822 * Now we need to see how much we would have freed had we not
4823 * been making this reservation and our ->csum_bytes were not
4824 * artificially inflated.
4825 */
4826 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
4827 bytes = csum_bytes - orig_csum_bytes;
4828 bytes = calc_csum_metadata_size(inode, bytes, 0);
4829
4830 /*
4831 * Now reset ->csum_bytes to what it should be. If bytes is
4832 * more than to_free then we would have free'd more space had we
4833 * not had an artificially high ->csum_bytes, so we need to free
4834 * the remainder. If bytes is the same or less then we don't
4835 * need to do anything, the other free-ers did the correct
4836 * thing.
4837 */
4838 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
4839 if (bytes > to_free)
4840 to_free = bytes - to_free;
4841 else
4842 to_free = 0;
4843 }
4844 spin_unlock(&BTRFS_I(inode)->lock);
4845 if (dropped)
4846 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4847
4848 if (to_free) {
4849 btrfs_block_rsv_release(root, block_rsv, to_free);
4850 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4851 btrfs_ino(inode), to_free, 0);
4852 }
4853 if (delalloc_lock)
4854 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4855 return ret;
4856 }
4857
4858 /**
4859 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4860 * @inode: the inode to release the reservation for
4861 * @num_bytes: the number of bytes we're releasing
4862 *
4863 * This will release the metadata reservation for an inode. This can be called
4864 * once we complete IO for a given set of bytes to release their metadata
4865 * reservations.
4866 */
4867 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4868 {
4869 struct btrfs_root *root = BTRFS_I(inode)->root;
4870 u64 to_free = 0;
4871 unsigned dropped;
4872
4873 num_bytes = ALIGN(num_bytes, root->sectorsize);
4874 spin_lock(&BTRFS_I(inode)->lock);
4875 dropped = drop_outstanding_extent(inode);
4876
4877 if (num_bytes)
4878 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4879 spin_unlock(&BTRFS_I(inode)->lock);
4880 if (dropped > 0)
4881 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4882
4883 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4884 btrfs_ino(inode), to_free, 0);
4885 if (root->fs_info->quota_enabled) {
4886 btrfs_qgroup_free(root, num_bytes +
4887 dropped * root->leafsize);
4888 }
4889
4890 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4891 to_free);
4892 }
4893
4894 /**
4895 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4896 * @inode: inode we're writing to
4897 * @num_bytes: the number of bytes we want to allocate
4898 *
4899 * This will do the following things
4900 *
4901 * o reserve space in the data space info for num_bytes
4902 * o reserve space in the metadata space info based on number of outstanding
4903 * extents and how much csums will be needed
4904 * o add to the inodes ->delalloc_bytes
4905 * o add it to the fs_info's delalloc inodes list.
4906 *
4907 * This will return 0 for success and -ENOSPC if there is no space left.
4908 */
4909 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4910 {
4911 int ret;
4912
4913 ret = btrfs_check_data_free_space(inode, num_bytes);
4914 if (ret)
4915 return ret;
4916
4917 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4918 if (ret) {
4919 btrfs_free_reserved_data_space(inode, num_bytes);
4920 return ret;
4921 }
4922
4923 return 0;
4924 }
4925
4926 /**
4927 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4928 * @inode: inode we're releasing space for
4929 * @num_bytes: the number of bytes we want to free up
4930 *
4931 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4932 * called in the case that we don't need the metadata AND data reservations
4933 * anymore. So if there is an error or we insert an inline extent.
4934 *
4935 * This function will release the metadata space that was not used and will
4936 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4937 * list if there are no delalloc bytes left.
4938 */
4939 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4940 {
4941 btrfs_delalloc_release_metadata(inode, num_bytes);
4942 btrfs_free_reserved_data_space(inode, num_bytes);
4943 }
4944
4945 static int update_block_group(struct btrfs_root *root,
4946 u64 bytenr, u64 num_bytes, int alloc)
4947 {
4948 struct btrfs_block_group_cache *cache = NULL;
4949 struct btrfs_fs_info *info = root->fs_info;
4950 u64 total = num_bytes;
4951 u64 old_val;
4952 u64 byte_in_group;
4953 int factor;
4954
4955 /* block accounting for super block */
4956 spin_lock(&info->delalloc_lock);
4957 old_val = btrfs_super_bytes_used(info->super_copy);
4958 if (alloc)
4959 old_val += num_bytes;
4960 else
4961 old_val -= num_bytes;
4962 btrfs_set_super_bytes_used(info->super_copy, old_val);
4963 spin_unlock(&info->delalloc_lock);
4964
4965 while (total) {
4966 cache = btrfs_lookup_block_group(info, bytenr);
4967 if (!cache)
4968 return -ENOENT;
4969 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4970 BTRFS_BLOCK_GROUP_RAID1 |
4971 BTRFS_BLOCK_GROUP_RAID10))
4972 factor = 2;
4973 else
4974 factor = 1;
4975 /*
4976 * If this block group has free space cache written out, we
4977 * need to make sure to load it if we are removing space. This
4978 * is because we need the unpinning stage to actually add the
4979 * space back to the block group, otherwise we will leak space.
4980 */
4981 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4982 cache_block_group(cache, 1);
4983
4984 byte_in_group = bytenr - cache->key.objectid;
4985 WARN_ON(byte_in_group > cache->key.offset);
4986
4987 spin_lock(&cache->space_info->lock);
4988 spin_lock(&cache->lock);
4989
4990 if (btrfs_test_opt(root, SPACE_CACHE) &&
4991 cache->disk_cache_state < BTRFS_DC_CLEAR)
4992 cache->disk_cache_state = BTRFS_DC_CLEAR;
4993
4994 cache->dirty = 1;
4995 old_val = btrfs_block_group_used(&cache->item);
4996 num_bytes = min(total, cache->key.offset - byte_in_group);
4997 if (alloc) {
4998 old_val += num_bytes;
4999 btrfs_set_block_group_used(&cache->item, old_val);
5000 cache->reserved -= num_bytes;
5001 cache->space_info->bytes_reserved -= num_bytes;
5002 cache->space_info->bytes_used += num_bytes;
5003 cache->space_info->disk_used += num_bytes * factor;
5004 spin_unlock(&cache->lock);
5005 spin_unlock(&cache->space_info->lock);
5006 } else {
5007 old_val -= num_bytes;
5008 btrfs_set_block_group_used(&cache->item, old_val);
5009 cache->pinned += num_bytes;
5010 cache->space_info->bytes_pinned += num_bytes;
5011 cache->space_info->bytes_used -= num_bytes;
5012 cache->space_info->disk_used -= num_bytes * factor;
5013 spin_unlock(&cache->lock);
5014 spin_unlock(&cache->space_info->lock);
5015
5016 set_extent_dirty(info->pinned_extents,
5017 bytenr, bytenr + num_bytes - 1,
5018 GFP_NOFS | __GFP_NOFAIL);
5019 }
5020 btrfs_put_block_group(cache);
5021 total -= num_bytes;
5022 bytenr += num_bytes;
5023 }
5024 return 0;
5025 }
5026
5027 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5028 {
5029 struct btrfs_block_group_cache *cache;
5030 u64 bytenr;
5031
5032 spin_lock(&root->fs_info->block_group_cache_lock);
5033 bytenr = root->fs_info->first_logical_byte;
5034 spin_unlock(&root->fs_info->block_group_cache_lock);
5035
5036 if (bytenr < (u64)-1)
5037 return bytenr;
5038
5039 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5040 if (!cache)
5041 return 0;
5042
5043 bytenr = cache->key.objectid;
5044 btrfs_put_block_group(cache);
5045
5046 return bytenr;
5047 }
5048
5049 static int pin_down_extent(struct btrfs_root *root,
5050 struct btrfs_block_group_cache *cache,
5051 u64 bytenr, u64 num_bytes, int reserved)
5052 {
5053 spin_lock(&cache->space_info->lock);
5054 spin_lock(&cache->lock);
5055 cache->pinned += num_bytes;
5056 cache->space_info->bytes_pinned += num_bytes;
5057 if (reserved) {
5058 cache->reserved -= num_bytes;
5059 cache->space_info->bytes_reserved -= num_bytes;
5060 }
5061 spin_unlock(&cache->lock);
5062 spin_unlock(&cache->space_info->lock);
5063
5064 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5065 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5066 return 0;
5067 }
5068
5069 /*
5070 * this function must be called within transaction
5071 */
5072 int btrfs_pin_extent(struct btrfs_root *root,
5073 u64 bytenr, u64 num_bytes, int reserved)
5074 {
5075 struct btrfs_block_group_cache *cache;
5076
5077 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5078 BUG_ON(!cache); /* Logic error */
5079
5080 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5081
5082 btrfs_put_block_group(cache);
5083 return 0;
5084 }
5085
5086 /*
5087 * this function must be called within transaction
5088 */
5089 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5090 u64 bytenr, u64 num_bytes)
5091 {
5092 struct btrfs_block_group_cache *cache;
5093
5094 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5095 BUG_ON(!cache); /* Logic error */
5096
5097 /*
5098 * pull in the free space cache (if any) so that our pin
5099 * removes the free space from the cache. We have load_only set
5100 * to one because the slow code to read in the free extents does check
5101 * the pinned extents.
5102 */
5103 cache_block_group(cache, 1);
5104
5105 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5106
5107 /* remove us from the free space cache (if we're there at all) */
5108 btrfs_remove_free_space(cache, bytenr, num_bytes);
5109 btrfs_put_block_group(cache);
5110 return 0;
5111 }
5112
5113 /**
5114 * btrfs_update_reserved_bytes - update the block_group and space info counters
5115 * @cache: The cache we are manipulating
5116 * @num_bytes: The number of bytes in question
5117 * @reserve: One of the reservation enums
5118 *
5119 * This is called by the allocator when it reserves space, or by somebody who is
5120 * freeing space that was never actually used on disk. For example if you
5121 * reserve some space for a new leaf in transaction A and before transaction A
5122 * commits you free that leaf, you call this with reserve set to 0 in order to
5123 * clear the reservation.
5124 *
5125 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5126 * ENOSPC accounting. For data we handle the reservation through clearing the
5127 * delalloc bits in the io_tree. We have to do this since we could end up
5128 * allocating less disk space for the amount of data we have reserved in the
5129 * case of compression.
5130 *
5131 * If this is a reservation and the block group has become read only we cannot
5132 * make the reservation and return -EAGAIN, otherwise this function always
5133 * succeeds.
5134 */
5135 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5136 u64 num_bytes, int reserve)
5137 {
5138 struct btrfs_space_info *space_info = cache->space_info;
5139 int ret = 0;
5140
5141 spin_lock(&space_info->lock);
5142 spin_lock(&cache->lock);
5143 if (reserve != RESERVE_FREE) {
5144 if (cache->ro) {
5145 ret = -EAGAIN;
5146 } else {
5147 cache->reserved += num_bytes;
5148 space_info->bytes_reserved += num_bytes;
5149 if (reserve == RESERVE_ALLOC) {
5150 trace_btrfs_space_reservation(cache->fs_info,
5151 "space_info", space_info->flags,
5152 num_bytes, 0);
5153 space_info->bytes_may_use -= num_bytes;
5154 }
5155 }
5156 } else {
5157 if (cache->ro)
5158 space_info->bytes_readonly += num_bytes;
5159 cache->reserved -= num_bytes;
5160 space_info->bytes_reserved -= num_bytes;
5161 space_info->reservation_progress++;
5162 }
5163 spin_unlock(&cache->lock);
5164 spin_unlock(&space_info->lock);
5165 return ret;
5166 }
5167
5168 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5169 struct btrfs_root *root)
5170 {
5171 struct btrfs_fs_info *fs_info = root->fs_info;
5172 struct btrfs_caching_control *next;
5173 struct btrfs_caching_control *caching_ctl;
5174 struct btrfs_block_group_cache *cache;
5175
5176 down_write(&fs_info->extent_commit_sem);
5177
5178 list_for_each_entry_safe(caching_ctl, next,
5179 &fs_info->caching_block_groups, list) {
5180 cache = caching_ctl->block_group;
5181 if (block_group_cache_done(cache)) {
5182 cache->last_byte_to_unpin = (u64)-1;
5183 list_del_init(&caching_ctl->list);
5184 put_caching_control(caching_ctl);
5185 } else {
5186 cache->last_byte_to_unpin = caching_ctl->progress;
5187 }
5188 }
5189
5190 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5191 fs_info->pinned_extents = &fs_info->freed_extents[1];
5192 else
5193 fs_info->pinned_extents = &fs_info->freed_extents[0];
5194
5195 up_write(&fs_info->extent_commit_sem);
5196
5197 update_global_block_rsv(fs_info);
5198 }
5199
5200 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5201 {
5202 struct btrfs_fs_info *fs_info = root->fs_info;
5203 struct btrfs_block_group_cache *cache = NULL;
5204 struct btrfs_space_info *space_info;
5205 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5206 u64 len;
5207 bool readonly;
5208
5209 while (start <= end) {
5210 readonly = false;
5211 if (!cache ||
5212 start >= cache->key.objectid + cache->key.offset) {
5213 if (cache)
5214 btrfs_put_block_group(cache);
5215 cache = btrfs_lookup_block_group(fs_info, start);
5216 BUG_ON(!cache); /* Logic error */
5217 }
5218
5219 len = cache->key.objectid + cache->key.offset - start;
5220 len = min(len, end + 1 - start);
5221
5222 if (start < cache->last_byte_to_unpin) {
5223 len = min(len, cache->last_byte_to_unpin - start);
5224 btrfs_add_free_space(cache, start, len);
5225 }
5226
5227 start += len;
5228 space_info = cache->space_info;
5229
5230 spin_lock(&space_info->lock);
5231 spin_lock(&cache->lock);
5232 cache->pinned -= len;
5233 space_info->bytes_pinned -= len;
5234 if (cache->ro) {
5235 space_info->bytes_readonly += len;
5236 readonly = true;
5237 }
5238 spin_unlock(&cache->lock);
5239 if (!readonly && global_rsv->space_info == space_info) {
5240 spin_lock(&global_rsv->lock);
5241 if (!global_rsv->full) {
5242 len = min(len, global_rsv->size -
5243 global_rsv->reserved);
5244 global_rsv->reserved += len;
5245 space_info->bytes_may_use += len;
5246 if (global_rsv->reserved >= global_rsv->size)
5247 global_rsv->full = 1;
5248 }
5249 spin_unlock(&global_rsv->lock);
5250 }
5251 spin_unlock(&space_info->lock);
5252 }
5253
5254 if (cache)
5255 btrfs_put_block_group(cache);
5256 return 0;
5257 }
5258
5259 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5260 struct btrfs_root *root)
5261 {
5262 struct btrfs_fs_info *fs_info = root->fs_info;
5263 struct extent_io_tree *unpin;
5264 u64 start;
5265 u64 end;
5266 int ret;
5267
5268 if (trans->aborted)
5269 return 0;
5270
5271 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5272 unpin = &fs_info->freed_extents[1];
5273 else
5274 unpin = &fs_info->freed_extents[0];
5275
5276 while (1) {
5277 ret = find_first_extent_bit(unpin, 0, &start, &end,
5278 EXTENT_DIRTY, NULL);
5279 if (ret)
5280 break;
5281
5282 if (btrfs_test_opt(root, DISCARD))
5283 ret = btrfs_discard_extent(root, start,
5284 end + 1 - start, NULL);
5285
5286 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5287 unpin_extent_range(root, start, end);
5288 cond_resched();
5289 }
5290
5291 return 0;
5292 }
5293
5294 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5295 struct btrfs_root *root,
5296 u64 bytenr, u64 num_bytes, u64 parent,
5297 u64 root_objectid, u64 owner_objectid,
5298 u64 owner_offset, int refs_to_drop,
5299 struct btrfs_delayed_extent_op *extent_op)
5300 {
5301 struct btrfs_key key;
5302 struct btrfs_path *path;
5303 struct btrfs_fs_info *info = root->fs_info;
5304 struct btrfs_root *extent_root = info->extent_root;
5305 struct extent_buffer *leaf;
5306 struct btrfs_extent_item *ei;
5307 struct btrfs_extent_inline_ref *iref;
5308 int ret;
5309 int is_data;
5310 int extent_slot = 0;
5311 int found_extent = 0;
5312 int num_to_del = 1;
5313 u32 item_size;
5314 u64 refs;
5315
5316 path = btrfs_alloc_path();
5317 if (!path)
5318 return -ENOMEM;
5319
5320 path->reada = 1;
5321 path->leave_spinning = 1;
5322
5323 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5324 BUG_ON(!is_data && refs_to_drop != 1);
5325
5326 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5327 bytenr, num_bytes, parent,
5328 root_objectid, owner_objectid,
5329 owner_offset);
5330 if (ret == 0) {
5331 extent_slot = path->slots[0];
5332 while (extent_slot >= 0) {
5333 btrfs_item_key_to_cpu(path->nodes[0], &key,
5334 extent_slot);
5335 if (key.objectid != bytenr)
5336 break;
5337 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5338 key.offset == num_bytes) {
5339 found_extent = 1;
5340 break;
5341 }
5342 if (path->slots[0] - extent_slot > 5)
5343 break;
5344 extent_slot--;
5345 }
5346 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5347 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5348 if (found_extent && item_size < sizeof(*ei))
5349 found_extent = 0;
5350 #endif
5351 if (!found_extent) {
5352 BUG_ON(iref);
5353 ret = remove_extent_backref(trans, extent_root, path,
5354 NULL, refs_to_drop,
5355 is_data);
5356 if (ret) {
5357 btrfs_abort_transaction(trans, extent_root, ret);
5358 goto out;
5359 }
5360 btrfs_release_path(path);
5361 path->leave_spinning = 1;
5362
5363 key.objectid = bytenr;
5364 key.type = BTRFS_EXTENT_ITEM_KEY;
5365 key.offset = num_bytes;
5366
5367 ret = btrfs_search_slot(trans, extent_root,
5368 &key, path, -1, 1);
5369 if (ret) {
5370 printk(KERN_ERR "umm, got %d back from search"
5371 ", was looking for %llu\n", ret,
5372 (unsigned long long)bytenr);
5373 if (ret > 0)
5374 btrfs_print_leaf(extent_root,
5375 path->nodes[0]);
5376 }
5377 if (ret < 0) {
5378 btrfs_abort_transaction(trans, extent_root, ret);
5379 goto out;
5380 }
5381 extent_slot = path->slots[0];
5382 }
5383 } else if (ret == -ENOENT) {
5384 btrfs_print_leaf(extent_root, path->nodes[0]);
5385 WARN_ON(1);
5386 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5387 "parent %llu root %llu owner %llu offset %llu\n",
5388 (unsigned long long)bytenr,
5389 (unsigned long long)parent,
5390 (unsigned long long)root_objectid,
5391 (unsigned long long)owner_objectid,
5392 (unsigned long long)owner_offset);
5393 } else {
5394 btrfs_abort_transaction(trans, extent_root, ret);
5395 goto out;
5396 }
5397
5398 leaf = path->nodes[0];
5399 item_size = btrfs_item_size_nr(leaf, extent_slot);
5400 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5401 if (item_size < sizeof(*ei)) {
5402 BUG_ON(found_extent || extent_slot != path->slots[0]);
5403 ret = convert_extent_item_v0(trans, extent_root, path,
5404 owner_objectid, 0);
5405 if (ret < 0) {
5406 btrfs_abort_transaction(trans, extent_root, ret);
5407 goto out;
5408 }
5409
5410 btrfs_release_path(path);
5411 path->leave_spinning = 1;
5412
5413 key.objectid = bytenr;
5414 key.type = BTRFS_EXTENT_ITEM_KEY;
5415 key.offset = num_bytes;
5416
5417 ret = btrfs_search_slot(trans, extent_root, &key, path,
5418 -1, 1);
5419 if (ret) {
5420 printk(KERN_ERR "umm, got %d back from search"
5421 ", was looking for %llu\n", ret,
5422 (unsigned long long)bytenr);
5423 btrfs_print_leaf(extent_root, path->nodes[0]);
5424 }
5425 if (ret < 0) {
5426 btrfs_abort_transaction(trans, extent_root, ret);
5427 goto out;
5428 }
5429
5430 extent_slot = path->slots[0];
5431 leaf = path->nodes[0];
5432 item_size = btrfs_item_size_nr(leaf, extent_slot);
5433 }
5434 #endif
5435 BUG_ON(item_size < sizeof(*ei));
5436 ei = btrfs_item_ptr(leaf, extent_slot,
5437 struct btrfs_extent_item);
5438 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5439 struct btrfs_tree_block_info *bi;
5440 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5441 bi = (struct btrfs_tree_block_info *)(ei + 1);
5442 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5443 }
5444
5445 refs = btrfs_extent_refs(leaf, ei);
5446 BUG_ON(refs < refs_to_drop);
5447 refs -= refs_to_drop;
5448
5449 if (refs > 0) {
5450 if (extent_op)
5451 __run_delayed_extent_op(extent_op, leaf, ei);
5452 /*
5453 * In the case of inline back ref, reference count will
5454 * be updated by remove_extent_backref
5455 */
5456 if (iref) {
5457 BUG_ON(!found_extent);
5458 } else {
5459 btrfs_set_extent_refs(leaf, ei, refs);
5460 btrfs_mark_buffer_dirty(leaf);
5461 }
5462 if (found_extent) {
5463 ret = remove_extent_backref(trans, extent_root, path,
5464 iref, refs_to_drop,
5465 is_data);
5466 if (ret) {
5467 btrfs_abort_transaction(trans, extent_root, ret);
5468 goto out;
5469 }
5470 }
5471 } else {
5472 if (found_extent) {
5473 BUG_ON(is_data && refs_to_drop !=
5474 extent_data_ref_count(root, path, iref));
5475 if (iref) {
5476 BUG_ON(path->slots[0] != extent_slot);
5477 } else {
5478 BUG_ON(path->slots[0] != extent_slot + 1);
5479 path->slots[0] = extent_slot;
5480 num_to_del = 2;
5481 }
5482 }
5483
5484 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5485 num_to_del);
5486 if (ret) {
5487 btrfs_abort_transaction(trans, extent_root, ret);
5488 goto out;
5489 }
5490 btrfs_release_path(path);
5491
5492 if (is_data) {
5493 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5494 if (ret) {
5495 btrfs_abort_transaction(trans, extent_root, ret);
5496 goto out;
5497 }
5498 }
5499
5500 ret = update_block_group(root, bytenr, num_bytes, 0);
5501 if (ret) {
5502 btrfs_abort_transaction(trans, extent_root, ret);
5503 goto out;
5504 }
5505 }
5506 out:
5507 btrfs_free_path(path);
5508 return ret;
5509 }
5510
5511 /*
5512 * when we free an block, it is possible (and likely) that we free the last
5513 * delayed ref for that extent as well. This searches the delayed ref tree for
5514 * a given extent, and if there are no other delayed refs to be processed, it
5515 * removes it from the tree.
5516 */
5517 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5518 struct btrfs_root *root, u64 bytenr)
5519 {
5520 struct btrfs_delayed_ref_head *head;
5521 struct btrfs_delayed_ref_root *delayed_refs;
5522 struct btrfs_delayed_ref_node *ref;
5523 struct rb_node *node;
5524 int ret = 0;
5525
5526 delayed_refs = &trans->transaction->delayed_refs;
5527 spin_lock(&delayed_refs->lock);
5528 head = btrfs_find_delayed_ref_head(trans, bytenr);
5529 if (!head)
5530 goto out;
5531
5532 node = rb_prev(&head->node.rb_node);
5533 if (!node)
5534 goto out;
5535
5536 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5537
5538 /* there are still entries for this ref, we can't drop it */
5539 if (ref->bytenr == bytenr)
5540 goto out;
5541
5542 if (head->extent_op) {
5543 if (!head->must_insert_reserved)
5544 goto out;
5545 btrfs_free_delayed_extent_op(head->extent_op);
5546 head->extent_op = NULL;
5547 }
5548
5549 /*
5550 * waiting for the lock here would deadlock. If someone else has it
5551 * locked they are already in the process of dropping it anyway
5552 */
5553 if (!mutex_trylock(&head->mutex))
5554 goto out;
5555
5556 /*
5557 * at this point we have a head with no other entries. Go
5558 * ahead and process it.
5559 */
5560 head->node.in_tree = 0;
5561 rb_erase(&head->node.rb_node, &delayed_refs->root);
5562
5563 delayed_refs->num_entries--;
5564
5565 /*
5566 * we don't take a ref on the node because we're removing it from the
5567 * tree, so we just steal the ref the tree was holding.
5568 */
5569 delayed_refs->num_heads--;
5570 if (list_empty(&head->cluster))
5571 delayed_refs->num_heads_ready--;
5572
5573 list_del_init(&head->cluster);
5574 spin_unlock(&delayed_refs->lock);
5575
5576 BUG_ON(head->extent_op);
5577 if (head->must_insert_reserved)
5578 ret = 1;
5579
5580 mutex_unlock(&head->mutex);
5581 btrfs_put_delayed_ref(&head->node);
5582 return ret;
5583 out:
5584 spin_unlock(&delayed_refs->lock);
5585 return 0;
5586 }
5587
5588 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5589 struct btrfs_root *root,
5590 struct extent_buffer *buf,
5591 u64 parent, int last_ref)
5592 {
5593 struct btrfs_block_group_cache *cache = NULL;
5594 int ret;
5595
5596 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5597 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5598 buf->start, buf->len,
5599 parent, root->root_key.objectid,
5600 btrfs_header_level(buf),
5601 BTRFS_DROP_DELAYED_REF, NULL, 0);
5602 BUG_ON(ret); /* -ENOMEM */
5603 }
5604
5605 if (!last_ref)
5606 return;
5607
5608 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5609
5610 if (btrfs_header_generation(buf) == trans->transid) {
5611 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5612 ret = check_ref_cleanup(trans, root, buf->start);
5613 if (!ret)
5614 goto out;
5615 }
5616
5617 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5618 pin_down_extent(root, cache, buf->start, buf->len, 1);
5619 goto out;
5620 }
5621
5622 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5623
5624 btrfs_add_free_space(cache, buf->start, buf->len);
5625 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5626 }
5627 out:
5628 /*
5629 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5630 * anymore.
5631 */
5632 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5633 btrfs_put_block_group(cache);
5634 }
5635
5636 /* Can return -ENOMEM */
5637 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5638 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5639 u64 owner, u64 offset, int for_cow)
5640 {
5641 int ret;
5642 struct btrfs_fs_info *fs_info = root->fs_info;
5643
5644 /*
5645 * tree log blocks never actually go into the extent allocation
5646 * tree, just update pinning info and exit early.
5647 */
5648 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5649 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5650 /* unlocks the pinned mutex */
5651 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5652 ret = 0;
5653 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5654 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5655 num_bytes,
5656 parent, root_objectid, (int)owner,
5657 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5658 } else {
5659 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5660 num_bytes,
5661 parent, root_objectid, owner,
5662 offset, BTRFS_DROP_DELAYED_REF,
5663 NULL, for_cow);
5664 }
5665 return ret;
5666 }
5667
5668 static u64 stripe_align(struct btrfs_root *root,
5669 struct btrfs_block_group_cache *cache,
5670 u64 val, u64 num_bytes)
5671 {
5672 u64 ret = ALIGN(val, root->stripesize);
5673 return ret;
5674 }
5675
5676 /*
5677 * when we wait for progress in the block group caching, its because
5678 * our allocation attempt failed at least once. So, we must sleep
5679 * and let some progress happen before we try again.
5680 *
5681 * This function will sleep at least once waiting for new free space to
5682 * show up, and then it will check the block group free space numbers
5683 * for our min num_bytes. Another option is to have it go ahead
5684 * and look in the rbtree for a free extent of a given size, but this
5685 * is a good start.
5686 */
5687 static noinline int
5688 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5689 u64 num_bytes)
5690 {
5691 struct btrfs_caching_control *caching_ctl;
5692
5693 caching_ctl = get_caching_control(cache);
5694 if (!caching_ctl)
5695 return 0;
5696
5697 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5698 (cache->free_space_ctl->free_space >= num_bytes));
5699
5700 put_caching_control(caching_ctl);
5701 return 0;
5702 }
5703
5704 static noinline int
5705 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5706 {
5707 struct btrfs_caching_control *caching_ctl;
5708
5709 caching_ctl = get_caching_control(cache);
5710 if (!caching_ctl)
5711 return 0;
5712
5713 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5714
5715 put_caching_control(caching_ctl);
5716 return 0;
5717 }
5718
5719 int __get_raid_index(u64 flags)
5720 {
5721 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5722 return BTRFS_RAID_RAID10;
5723 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5724 return BTRFS_RAID_RAID1;
5725 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5726 return BTRFS_RAID_DUP;
5727 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5728 return BTRFS_RAID_RAID0;
5729 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
5730 return BTRFS_RAID_RAID5;
5731 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
5732 return BTRFS_RAID_RAID6;
5733
5734 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
5735 }
5736
5737 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5738 {
5739 return __get_raid_index(cache->flags);
5740 }
5741
5742 enum btrfs_loop_type {
5743 LOOP_CACHING_NOWAIT = 0,
5744 LOOP_CACHING_WAIT = 1,
5745 LOOP_ALLOC_CHUNK = 2,
5746 LOOP_NO_EMPTY_SIZE = 3,
5747 };
5748
5749 /*
5750 * walks the btree of allocated extents and find a hole of a given size.
5751 * The key ins is changed to record the hole:
5752 * ins->objectid == block start
5753 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5754 * ins->offset == number of blocks
5755 * Any available blocks before search_start are skipped.
5756 */
5757 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5758 struct btrfs_root *orig_root,
5759 u64 num_bytes, u64 empty_size,
5760 u64 hint_byte, struct btrfs_key *ins,
5761 u64 data)
5762 {
5763 int ret = 0;
5764 struct btrfs_root *root = orig_root->fs_info->extent_root;
5765 struct btrfs_free_cluster *last_ptr = NULL;
5766 struct btrfs_block_group_cache *block_group = NULL;
5767 struct btrfs_block_group_cache *used_block_group;
5768 u64 search_start = 0;
5769 int empty_cluster = 2 * 1024 * 1024;
5770 struct btrfs_space_info *space_info;
5771 int loop = 0;
5772 int index = __get_raid_index(data);
5773 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5774 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5775 bool found_uncached_bg = false;
5776 bool failed_cluster_refill = false;
5777 bool failed_alloc = false;
5778 bool use_cluster = true;
5779 bool have_caching_bg = false;
5780
5781 WARN_ON(num_bytes < root->sectorsize);
5782 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5783 ins->objectid = 0;
5784 ins->offset = 0;
5785
5786 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5787
5788 space_info = __find_space_info(root->fs_info, data);
5789 if (!space_info) {
5790 printk(KERN_ERR "No space info for %llu\n", data);
5791 return -ENOSPC;
5792 }
5793
5794 /*
5795 * If the space info is for both data and metadata it means we have a
5796 * small filesystem and we can't use the clustering stuff.
5797 */
5798 if (btrfs_mixed_space_info(space_info))
5799 use_cluster = false;
5800
5801 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5802 last_ptr = &root->fs_info->meta_alloc_cluster;
5803 if (!btrfs_test_opt(root, SSD))
5804 empty_cluster = 64 * 1024;
5805 }
5806
5807 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5808 btrfs_test_opt(root, SSD)) {
5809 last_ptr = &root->fs_info->data_alloc_cluster;
5810 }
5811
5812 if (last_ptr) {
5813 spin_lock(&last_ptr->lock);
5814 if (last_ptr->block_group)
5815 hint_byte = last_ptr->window_start;
5816 spin_unlock(&last_ptr->lock);
5817 }
5818
5819 search_start = max(search_start, first_logical_byte(root, 0));
5820 search_start = max(search_start, hint_byte);
5821
5822 if (!last_ptr)
5823 empty_cluster = 0;
5824
5825 if (search_start == hint_byte) {
5826 block_group = btrfs_lookup_block_group(root->fs_info,
5827 search_start);
5828 used_block_group = block_group;
5829 /*
5830 * we don't want to use the block group if it doesn't match our
5831 * allocation bits, or if its not cached.
5832 *
5833 * However if we are re-searching with an ideal block group
5834 * picked out then we don't care that the block group is cached.
5835 */
5836 if (block_group && block_group_bits(block_group, data) &&
5837 block_group->cached != BTRFS_CACHE_NO) {
5838 down_read(&space_info->groups_sem);
5839 if (list_empty(&block_group->list) ||
5840 block_group->ro) {
5841 /*
5842 * someone is removing this block group,
5843 * we can't jump into the have_block_group
5844 * target because our list pointers are not
5845 * valid
5846 */
5847 btrfs_put_block_group(block_group);
5848 up_read(&space_info->groups_sem);
5849 } else {
5850 index = get_block_group_index(block_group);
5851 goto have_block_group;
5852 }
5853 } else if (block_group) {
5854 btrfs_put_block_group(block_group);
5855 }
5856 }
5857 search:
5858 have_caching_bg = false;
5859 down_read(&space_info->groups_sem);
5860 list_for_each_entry(block_group, &space_info->block_groups[index],
5861 list) {
5862 u64 offset;
5863 int cached;
5864
5865 used_block_group = block_group;
5866 btrfs_get_block_group(block_group);
5867 search_start = block_group->key.objectid;
5868
5869 /*
5870 * this can happen if we end up cycling through all the
5871 * raid types, but we want to make sure we only allocate
5872 * for the proper type.
5873 */
5874 if (!block_group_bits(block_group, data)) {
5875 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5876 BTRFS_BLOCK_GROUP_RAID1 |
5877 BTRFS_BLOCK_GROUP_RAID5 |
5878 BTRFS_BLOCK_GROUP_RAID6 |
5879 BTRFS_BLOCK_GROUP_RAID10;
5880
5881 /*
5882 * if they asked for extra copies and this block group
5883 * doesn't provide them, bail. This does allow us to
5884 * fill raid0 from raid1.
5885 */
5886 if ((data & extra) && !(block_group->flags & extra))
5887 goto loop;
5888 }
5889
5890 have_block_group:
5891 cached = block_group_cache_done(block_group);
5892 if (unlikely(!cached)) {
5893 found_uncached_bg = true;
5894 ret = cache_block_group(block_group, 0);
5895 BUG_ON(ret < 0);
5896 ret = 0;
5897 }
5898
5899 if (unlikely(block_group->ro))
5900 goto loop;
5901
5902 /*
5903 * Ok we want to try and use the cluster allocator, so
5904 * lets look there
5905 */
5906 if (last_ptr) {
5907 unsigned long aligned_cluster;
5908 /*
5909 * the refill lock keeps out other
5910 * people trying to start a new cluster
5911 */
5912 spin_lock(&last_ptr->refill_lock);
5913 used_block_group = last_ptr->block_group;
5914 if (used_block_group != block_group &&
5915 (!used_block_group ||
5916 used_block_group->ro ||
5917 !block_group_bits(used_block_group, data))) {
5918 used_block_group = block_group;
5919 goto refill_cluster;
5920 }
5921
5922 if (used_block_group != block_group)
5923 btrfs_get_block_group(used_block_group);
5924
5925 offset = btrfs_alloc_from_cluster(used_block_group,
5926 last_ptr, num_bytes, used_block_group->key.objectid);
5927 if (offset) {
5928 /* we have a block, we're done */
5929 spin_unlock(&last_ptr->refill_lock);
5930 trace_btrfs_reserve_extent_cluster(root,
5931 block_group, search_start, num_bytes);
5932 goto checks;
5933 }
5934
5935 WARN_ON(last_ptr->block_group != used_block_group);
5936 if (used_block_group != block_group) {
5937 btrfs_put_block_group(used_block_group);
5938 used_block_group = block_group;
5939 }
5940 refill_cluster:
5941 BUG_ON(used_block_group != block_group);
5942 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5943 * set up a new clusters, so lets just skip it
5944 * and let the allocator find whatever block
5945 * it can find. If we reach this point, we
5946 * will have tried the cluster allocator
5947 * plenty of times and not have found
5948 * anything, so we are likely way too
5949 * fragmented for the clustering stuff to find
5950 * anything.
5951 *
5952 * However, if the cluster is taken from the
5953 * current block group, release the cluster
5954 * first, so that we stand a better chance of
5955 * succeeding in the unclustered
5956 * allocation. */
5957 if (loop >= LOOP_NO_EMPTY_SIZE &&
5958 last_ptr->block_group != block_group) {
5959 spin_unlock(&last_ptr->refill_lock);
5960 goto unclustered_alloc;
5961 }
5962
5963 /*
5964 * this cluster didn't work out, free it and
5965 * start over
5966 */
5967 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5968
5969 if (loop >= LOOP_NO_EMPTY_SIZE) {
5970 spin_unlock(&last_ptr->refill_lock);
5971 goto unclustered_alloc;
5972 }
5973
5974 aligned_cluster = max_t(unsigned long,
5975 empty_cluster + empty_size,
5976 block_group->full_stripe_len);
5977
5978 /* allocate a cluster in this block group */
5979 ret = btrfs_find_space_cluster(trans, root,
5980 block_group, last_ptr,
5981 search_start, num_bytes,
5982 aligned_cluster);
5983 if (ret == 0) {
5984 /*
5985 * now pull our allocation out of this
5986 * cluster
5987 */
5988 offset = btrfs_alloc_from_cluster(block_group,
5989 last_ptr, num_bytes,
5990 search_start);
5991 if (offset) {
5992 /* we found one, proceed */
5993 spin_unlock(&last_ptr->refill_lock);
5994 trace_btrfs_reserve_extent_cluster(root,
5995 block_group, search_start,
5996 num_bytes);
5997 goto checks;
5998 }
5999 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6000 && !failed_cluster_refill) {
6001 spin_unlock(&last_ptr->refill_lock);
6002
6003 failed_cluster_refill = true;
6004 wait_block_group_cache_progress(block_group,
6005 num_bytes + empty_cluster + empty_size);
6006 goto have_block_group;
6007 }
6008
6009 /*
6010 * at this point we either didn't find a cluster
6011 * or we weren't able to allocate a block from our
6012 * cluster. Free the cluster we've been trying
6013 * to use, and go to the next block group
6014 */
6015 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6016 spin_unlock(&last_ptr->refill_lock);
6017 goto loop;
6018 }
6019
6020 unclustered_alloc:
6021 spin_lock(&block_group->free_space_ctl->tree_lock);
6022 if (cached &&
6023 block_group->free_space_ctl->free_space <
6024 num_bytes + empty_cluster + empty_size) {
6025 spin_unlock(&block_group->free_space_ctl->tree_lock);
6026 goto loop;
6027 }
6028 spin_unlock(&block_group->free_space_ctl->tree_lock);
6029
6030 offset = btrfs_find_space_for_alloc(block_group, search_start,
6031 num_bytes, empty_size);
6032 /*
6033 * If we didn't find a chunk, and we haven't failed on this
6034 * block group before, and this block group is in the middle of
6035 * caching and we are ok with waiting, then go ahead and wait
6036 * for progress to be made, and set failed_alloc to true.
6037 *
6038 * If failed_alloc is true then we've already waited on this
6039 * block group once and should move on to the next block group.
6040 */
6041 if (!offset && !failed_alloc && !cached &&
6042 loop > LOOP_CACHING_NOWAIT) {
6043 wait_block_group_cache_progress(block_group,
6044 num_bytes + empty_size);
6045 failed_alloc = true;
6046 goto have_block_group;
6047 } else if (!offset) {
6048 if (!cached)
6049 have_caching_bg = true;
6050 goto loop;
6051 }
6052 checks:
6053 search_start = stripe_align(root, used_block_group,
6054 offset, num_bytes);
6055
6056 /* move on to the next group */
6057 if (search_start + num_bytes >
6058 used_block_group->key.objectid + used_block_group->key.offset) {
6059 btrfs_add_free_space(used_block_group, offset, num_bytes);
6060 goto loop;
6061 }
6062
6063 if (offset < search_start)
6064 btrfs_add_free_space(used_block_group, offset,
6065 search_start - offset);
6066 BUG_ON(offset > search_start);
6067
6068 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6069 alloc_type);
6070 if (ret == -EAGAIN) {
6071 btrfs_add_free_space(used_block_group, offset, num_bytes);
6072 goto loop;
6073 }
6074
6075 /* we are all good, lets return */
6076 ins->objectid = search_start;
6077 ins->offset = num_bytes;
6078
6079 trace_btrfs_reserve_extent(orig_root, block_group,
6080 search_start, num_bytes);
6081 if (used_block_group != block_group)
6082 btrfs_put_block_group(used_block_group);
6083 btrfs_put_block_group(block_group);
6084 break;
6085 loop:
6086 failed_cluster_refill = false;
6087 failed_alloc = false;
6088 BUG_ON(index != get_block_group_index(block_group));
6089 if (used_block_group != block_group)
6090 btrfs_put_block_group(used_block_group);
6091 btrfs_put_block_group(block_group);
6092 }
6093 up_read(&space_info->groups_sem);
6094
6095 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6096 goto search;
6097
6098 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6099 goto search;
6100
6101 /*
6102 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6103 * caching kthreads as we move along
6104 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6105 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6106 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6107 * again
6108 */
6109 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6110 index = 0;
6111 loop++;
6112 if (loop == LOOP_ALLOC_CHUNK) {
6113 ret = do_chunk_alloc(trans, root, data,
6114 CHUNK_ALLOC_FORCE);
6115 /*
6116 * Do not bail out on ENOSPC since we
6117 * can do more things.
6118 */
6119 if (ret < 0 && ret != -ENOSPC) {
6120 btrfs_abort_transaction(trans,
6121 root, ret);
6122 goto out;
6123 }
6124 }
6125
6126 if (loop == LOOP_NO_EMPTY_SIZE) {
6127 empty_size = 0;
6128 empty_cluster = 0;
6129 }
6130
6131 goto search;
6132 } else if (!ins->objectid) {
6133 ret = -ENOSPC;
6134 } else if (ins->objectid) {
6135 ret = 0;
6136 }
6137 out:
6138
6139 return ret;
6140 }
6141
6142 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6143 int dump_block_groups)
6144 {
6145 struct btrfs_block_group_cache *cache;
6146 int index = 0;
6147
6148 spin_lock(&info->lock);
6149 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6150 (unsigned long long)info->flags,
6151 (unsigned long long)(info->total_bytes - info->bytes_used -
6152 info->bytes_pinned - info->bytes_reserved -
6153 info->bytes_readonly),
6154 (info->full) ? "" : "not ");
6155 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6156 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6157 (unsigned long long)info->total_bytes,
6158 (unsigned long long)info->bytes_used,
6159 (unsigned long long)info->bytes_pinned,
6160 (unsigned long long)info->bytes_reserved,
6161 (unsigned long long)info->bytes_may_use,
6162 (unsigned long long)info->bytes_readonly);
6163 spin_unlock(&info->lock);
6164
6165 if (!dump_block_groups)
6166 return;
6167
6168 down_read(&info->groups_sem);
6169 again:
6170 list_for_each_entry(cache, &info->block_groups[index], list) {
6171 spin_lock(&cache->lock);
6172 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6173 (unsigned long long)cache->key.objectid,
6174 (unsigned long long)cache->key.offset,
6175 (unsigned long long)btrfs_block_group_used(&cache->item),
6176 (unsigned long long)cache->pinned,
6177 (unsigned long long)cache->reserved,
6178 cache->ro ? "[readonly]" : "");
6179 btrfs_dump_free_space(cache, bytes);
6180 spin_unlock(&cache->lock);
6181 }
6182 if (++index < BTRFS_NR_RAID_TYPES)
6183 goto again;
6184 up_read(&info->groups_sem);
6185 }
6186
6187 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6188 struct btrfs_root *root,
6189 u64 num_bytes, u64 min_alloc_size,
6190 u64 empty_size, u64 hint_byte,
6191 struct btrfs_key *ins, u64 data)
6192 {
6193 bool final_tried = false;
6194 int ret;
6195
6196 data = btrfs_get_alloc_profile(root, data);
6197 again:
6198 WARN_ON(num_bytes < root->sectorsize);
6199 ret = find_free_extent(trans, root, num_bytes, empty_size,
6200 hint_byte, ins, data);
6201
6202 if (ret == -ENOSPC) {
6203 if (!final_tried) {
6204 num_bytes = num_bytes >> 1;
6205 num_bytes = round_down(num_bytes, root->sectorsize);
6206 num_bytes = max(num_bytes, min_alloc_size);
6207 if (num_bytes == min_alloc_size)
6208 final_tried = true;
6209 goto again;
6210 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6211 struct btrfs_space_info *sinfo;
6212
6213 sinfo = __find_space_info(root->fs_info, data);
6214 printk(KERN_ERR "btrfs allocation failed flags %llu, "
6215 "wanted %llu\n", (unsigned long long)data,
6216 (unsigned long long)num_bytes);
6217 if (sinfo)
6218 dump_space_info(sinfo, num_bytes, 1);
6219 }
6220 }
6221
6222 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6223
6224 return ret;
6225 }
6226
6227 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6228 u64 start, u64 len, int pin)
6229 {
6230 struct btrfs_block_group_cache *cache;
6231 int ret = 0;
6232
6233 cache = btrfs_lookup_block_group(root->fs_info, start);
6234 if (!cache) {
6235 printk(KERN_ERR "Unable to find block group for %llu\n",
6236 (unsigned long long)start);
6237 return -ENOSPC;
6238 }
6239
6240 if (btrfs_test_opt(root, DISCARD))
6241 ret = btrfs_discard_extent(root, start, len, NULL);
6242
6243 if (pin)
6244 pin_down_extent(root, cache, start, len, 1);
6245 else {
6246 btrfs_add_free_space(cache, start, len);
6247 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6248 }
6249 btrfs_put_block_group(cache);
6250
6251 trace_btrfs_reserved_extent_free(root, start, len);
6252
6253 return ret;
6254 }
6255
6256 int btrfs_free_reserved_extent(struct btrfs_root *root,
6257 u64 start, u64 len)
6258 {
6259 return __btrfs_free_reserved_extent(root, start, len, 0);
6260 }
6261
6262 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6263 u64 start, u64 len)
6264 {
6265 return __btrfs_free_reserved_extent(root, start, len, 1);
6266 }
6267
6268 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6269 struct btrfs_root *root,
6270 u64 parent, u64 root_objectid,
6271 u64 flags, u64 owner, u64 offset,
6272 struct btrfs_key *ins, int ref_mod)
6273 {
6274 int ret;
6275 struct btrfs_fs_info *fs_info = root->fs_info;
6276 struct btrfs_extent_item *extent_item;
6277 struct btrfs_extent_inline_ref *iref;
6278 struct btrfs_path *path;
6279 struct extent_buffer *leaf;
6280 int type;
6281 u32 size;
6282
6283 if (parent > 0)
6284 type = BTRFS_SHARED_DATA_REF_KEY;
6285 else
6286 type = BTRFS_EXTENT_DATA_REF_KEY;
6287
6288 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6289
6290 path = btrfs_alloc_path();
6291 if (!path)
6292 return -ENOMEM;
6293
6294 path->leave_spinning = 1;
6295 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6296 ins, size);
6297 if (ret) {
6298 btrfs_free_path(path);
6299 return ret;
6300 }
6301
6302 leaf = path->nodes[0];
6303 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6304 struct btrfs_extent_item);
6305 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6306 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6307 btrfs_set_extent_flags(leaf, extent_item,
6308 flags | BTRFS_EXTENT_FLAG_DATA);
6309
6310 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6311 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6312 if (parent > 0) {
6313 struct btrfs_shared_data_ref *ref;
6314 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6315 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6316 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6317 } else {
6318 struct btrfs_extent_data_ref *ref;
6319 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6320 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6321 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6322 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6323 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6324 }
6325
6326 btrfs_mark_buffer_dirty(path->nodes[0]);
6327 btrfs_free_path(path);
6328
6329 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6330 if (ret) { /* -ENOENT, logic error */
6331 printk(KERN_ERR "btrfs update block group failed for %llu "
6332 "%llu\n", (unsigned long long)ins->objectid,
6333 (unsigned long long)ins->offset);
6334 BUG();
6335 }
6336 return ret;
6337 }
6338
6339 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6340 struct btrfs_root *root,
6341 u64 parent, u64 root_objectid,
6342 u64 flags, struct btrfs_disk_key *key,
6343 int level, struct btrfs_key *ins)
6344 {
6345 int ret;
6346 struct btrfs_fs_info *fs_info = root->fs_info;
6347 struct btrfs_extent_item *extent_item;
6348 struct btrfs_tree_block_info *block_info;
6349 struct btrfs_extent_inline_ref *iref;
6350 struct btrfs_path *path;
6351 struct extent_buffer *leaf;
6352 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6353
6354 path = btrfs_alloc_path();
6355 if (!path)
6356 return -ENOMEM;
6357
6358 path->leave_spinning = 1;
6359 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6360 ins, size);
6361 if (ret) {
6362 btrfs_free_path(path);
6363 return ret;
6364 }
6365
6366 leaf = path->nodes[0];
6367 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6368 struct btrfs_extent_item);
6369 btrfs_set_extent_refs(leaf, extent_item, 1);
6370 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6371 btrfs_set_extent_flags(leaf, extent_item,
6372 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6373 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6374
6375 btrfs_set_tree_block_key(leaf, block_info, key);
6376 btrfs_set_tree_block_level(leaf, block_info, level);
6377
6378 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6379 if (parent > 0) {
6380 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6381 btrfs_set_extent_inline_ref_type(leaf, iref,
6382 BTRFS_SHARED_BLOCK_REF_KEY);
6383 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6384 } else {
6385 btrfs_set_extent_inline_ref_type(leaf, iref,
6386 BTRFS_TREE_BLOCK_REF_KEY);
6387 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6388 }
6389
6390 btrfs_mark_buffer_dirty(leaf);
6391 btrfs_free_path(path);
6392
6393 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6394 if (ret) { /* -ENOENT, logic error */
6395 printk(KERN_ERR "btrfs update block group failed for %llu "
6396 "%llu\n", (unsigned long long)ins->objectid,
6397 (unsigned long long)ins->offset);
6398 BUG();
6399 }
6400 return ret;
6401 }
6402
6403 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6404 struct btrfs_root *root,
6405 u64 root_objectid, u64 owner,
6406 u64 offset, struct btrfs_key *ins)
6407 {
6408 int ret;
6409
6410 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6411
6412 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6413 ins->offset, 0,
6414 root_objectid, owner, offset,
6415 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6416 return ret;
6417 }
6418
6419 /*
6420 * this is used by the tree logging recovery code. It records that
6421 * an extent has been allocated and makes sure to clear the free
6422 * space cache bits as well
6423 */
6424 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6425 struct btrfs_root *root,
6426 u64 root_objectid, u64 owner, u64 offset,
6427 struct btrfs_key *ins)
6428 {
6429 int ret;
6430 struct btrfs_block_group_cache *block_group;
6431 struct btrfs_caching_control *caching_ctl;
6432 u64 start = ins->objectid;
6433 u64 num_bytes = ins->offset;
6434
6435 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6436 cache_block_group(block_group, 0);
6437 caching_ctl = get_caching_control(block_group);
6438
6439 if (!caching_ctl) {
6440 BUG_ON(!block_group_cache_done(block_group));
6441 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6442 BUG_ON(ret); /* -ENOMEM */
6443 } else {
6444 mutex_lock(&caching_ctl->mutex);
6445
6446 if (start >= caching_ctl->progress) {
6447 ret = add_excluded_extent(root, start, num_bytes);
6448 BUG_ON(ret); /* -ENOMEM */
6449 } else if (start + num_bytes <= caching_ctl->progress) {
6450 ret = btrfs_remove_free_space(block_group,
6451 start, num_bytes);
6452 BUG_ON(ret); /* -ENOMEM */
6453 } else {
6454 num_bytes = caching_ctl->progress - start;
6455 ret = btrfs_remove_free_space(block_group,
6456 start, num_bytes);
6457 BUG_ON(ret); /* -ENOMEM */
6458
6459 start = caching_ctl->progress;
6460 num_bytes = ins->objectid + ins->offset -
6461 caching_ctl->progress;
6462 ret = add_excluded_extent(root, start, num_bytes);
6463 BUG_ON(ret); /* -ENOMEM */
6464 }
6465
6466 mutex_unlock(&caching_ctl->mutex);
6467 put_caching_control(caching_ctl);
6468 }
6469
6470 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6471 RESERVE_ALLOC_NO_ACCOUNT);
6472 BUG_ON(ret); /* logic error */
6473 btrfs_put_block_group(block_group);
6474 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6475 0, owner, offset, ins, 1);
6476 return ret;
6477 }
6478
6479 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6480 struct btrfs_root *root,
6481 u64 bytenr, u32 blocksize,
6482 int level)
6483 {
6484 struct extent_buffer *buf;
6485
6486 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6487 if (!buf)
6488 return ERR_PTR(-ENOMEM);
6489 btrfs_set_header_generation(buf, trans->transid);
6490 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6491 btrfs_tree_lock(buf);
6492 clean_tree_block(trans, root, buf);
6493 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6494
6495 btrfs_set_lock_blocking(buf);
6496 btrfs_set_buffer_uptodate(buf);
6497
6498 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6499 /*
6500 * we allow two log transactions at a time, use different
6501 * EXENT bit to differentiate dirty pages.
6502 */
6503 if (root->log_transid % 2 == 0)
6504 set_extent_dirty(&root->dirty_log_pages, buf->start,
6505 buf->start + buf->len - 1, GFP_NOFS);
6506 else
6507 set_extent_new(&root->dirty_log_pages, buf->start,
6508 buf->start + buf->len - 1, GFP_NOFS);
6509 } else {
6510 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6511 buf->start + buf->len - 1, GFP_NOFS);
6512 }
6513 trans->blocks_used++;
6514 /* this returns a buffer locked for blocking */
6515 return buf;
6516 }
6517
6518 static struct btrfs_block_rsv *
6519 use_block_rsv(struct btrfs_trans_handle *trans,
6520 struct btrfs_root *root, u32 blocksize)
6521 {
6522 struct btrfs_block_rsv *block_rsv;
6523 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6524 int ret;
6525
6526 block_rsv = get_block_rsv(trans, root);
6527
6528 if (block_rsv->size == 0) {
6529 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6530 BTRFS_RESERVE_NO_FLUSH);
6531 /*
6532 * If we couldn't reserve metadata bytes try and use some from
6533 * the global reserve.
6534 */
6535 if (ret && block_rsv != global_rsv) {
6536 ret = block_rsv_use_bytes(global_rsv, blocksize);
6537 if (!ret)
6538 return global_rsv;
6539 return ERR_PTR(ret);
6540 } else if (ret) {
6541 return ERR_PTR(ret);
6542 }
6543 return block_rsv;
6544 }
6545
6546 ret = block_rsv_use_bytes(block_rsv, blocksize);
6547 if (!ret)
6548 return block_rsv;
6549 if (ret && !block_rsv->failfast) {
6550 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6551 static DEFINE_RATELIMIT_STATE(_rs,
6552 DEFAULT_RATELIMIT_INTERVAL * 10,
6553 /*DEFAULT_RATELIMIT_BURST*/ 1);
6554 if (__ratelimit(&_rs))
6555 WARN(1, KERN_DEBUG
6556 "btrfs: block rsv returned %d\n", ret);
6557 }
6558 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6559 BTRFS_RESERVE_NO_FLUSH);
6560 if (!ret) {
6561 return block_rsv;
6562 } else if (ret && block_rsv != global_rsv) {
6563 ret = block_rsv_use_bytes(global_rsv, blocksize);
6564 if (!ret)
6565 return global_rsv;
6566 }
6567 }
6568
6569 return ERR_PTR(-ENOSPC);
6570 }
6571
6572 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6573 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6574 {
6575 block_rsv_add_bytes(block_rsv, blocksize, 0);
6576 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6577 }
6578
6579 /*
6580 * finds a free extent and does all the dirty work required for allocation
6581 * returns the key for the extent through ins, and a tree buffer for
6582 * the first block of the extent through buf.
6583 *
6584 * returns the tree buffer or NULL.
6585 */
6586 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6587 struct btrfs_root *root, u32 blocksize,
6588 u64 parent, u64 root_objectid,
6589 struct btrfs_disk_key *key, int level,
6590 u64 hint, u64 empty_size)
6591 {
6592 struct btrfs_key ins;
6593 struct btrfs_block_rsv *block_rsv;
6594 struct extent_buffer *buf;
6595 u64 flags = 0;
6596 int ret;
6597
6598
6599 block_rsv = use_block_rsv(trans, root, blocksize);
6600 if (IS_ERR(block_rsv))
6601 return ERR_CAST(block_rsv);
6602
6603 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6604 empty_size, hint, &ins, 0);
6605 if (ret) {
6606 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6607 return ERR_PTR(ret);
6608 }
6609
6610 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6611 blocksize, level);
6612 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6613
6614 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6615 if (parent == 0)
6616 parent = ins.objectid;
6617 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6618 } else
6619 BUG_ON(parent > 0);
6620
6621 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6622 struct btrfs_delayed_extent_op *extent_op;
6623 extent_op = btrfs_alloc_delayed_extent_op();
6624 BUG_ON(!extent_op); /* -ENOMEM */
6625 if (key)
6626 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6627 else
6628 memset(&extent_op->key, 0, sizeof(extent_op->key));
6629 extent_op->flags_to_set = flags;
6630 extent_op->update_key = 1;
6631 extent_op->update_flags = 1;
6632 extent_op->is_data = 0;
6633
6634 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6635 ins.objectid,
6636 ins.offset, parent, root_objectid,
6637 level, BTRFS_ADD_DELAYED_EXTENT,
6638 extent_op, 0);
6639 BUG_ON(ret); /* -ENOMEM */
6640 }
6641 return buf;
6642 }
6643
6644 struct walk_control {
6645 u64 refs[BTRFS_MAX_LEVEL];
6646 u64 flags[BTRFS_MAX_LEVEL];
6647 struct btrfs_key update_progress;
6648 int stage;
6649 int level;
6650 int shared_level;
6651 int update_ref;
6652 int keep_locks;
6653 int reada_slot;
6654 int reada_count;
6655 int for_reloc;
6656 };
6657
6658 #define DROP_REFERENCE 1
6659 #define UPDATE_BACKREF 2
6660
6661 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6662 struct btrfs_root *root,
6663 struct walk_control *wc,
6664 struct btrfs_path *path)
6665 {
6666 u64 bytenr;
6667 u64 generation;
6668 u64 refs;
6669 u64 flags;
6670 u32 nritems;
6671 u32 blocksize;
6672 struct btrfs_key key;
6673 struct extent_buffer *eb;
6674 int ret;
6675 int slot;
6676 int nread = 0;
6677
6678 if (path->slots[wc->level] < wc->reada_slot) {
6679 wc->reada_count = wc->reada_count * 2 / 3;
6680 wc->reada_count = max(wc->reada_count, 2);
6681 } else {
6682 wc->reada_count = wc->reada_count * 3 / 2;
6683 wc->reada_count = min_t(int, wc->reada_count,
6684 BTRFS_NODEPTRS_PER_BLOCK(root));
6685 }
6686
6687 eb = path->nodes[wc->level];
6688 nritems = btrfs_header_nritems(eb);
6689 blocksize = btrfs_level_size(root, wc->level - 1);
6690
6691 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6692 if (nread >= wc->reada_count)
6693 break;
6694
6695 cond_resched();
6696 bytenr = btrfs_node_blockptr(eb, slot);
6697 generation = btrfs_node_ptr_generation(eb, slot);
6698
6699 if (slot == path->slots[wc->level])
6700 goto reada;
6701
6702 if (wc->stage == UPDATE_BACKREF &&
6703 generation <= root->root_key.offset)
6704 continue;
6705
6706 /* We don't lock the tree block, it's OK to be racy here */
6707 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6708 &refs, &flags);
6709 /* We don't care about errors in readahead. */
6710 if (ret < 0)
6711 continue;
6712 BUG_ON(refs == 0);
6713
6714 if (wc->stage == DROP_REFERENCE) {
6715 if (refs == 1)
6716 goto reada;
6717
6718 if (wc->level == 1 &&
6719 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6720 continue;
6721 if (!wc->update_ref ||
6722 generation <= root->root_key.offset)
6723 continue;
6724 btrfs_node_key_to_cpu(eb, &key, slot);
6725 ret = btrfs_comp_cpu_keys(&key,
6726 &wc->update_progress);
6727 if (ret < 0)
6728 continue;
6729 } else {
6730 if (wc->level == 1 &&
6731 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6732 continue;
6733 }
6734 reada:
6735 ret = readahead_tree_block(root, bytenr, blocksize,
6736 generation);
6737 if (ret)
6738 break;
6739 nread++;
6740 }
6741 wc->reada_slot = slot;
6742 }
6743
6744 /*
6745 * helper to process tree block while walking down the tree.
6746 *
6747 * when wc->stage == UPDATE_BACKREF, this function updates
6748 * back refs for pointers in the block.
6749 *
6750 * NOTE: return value 1 means we should stop walking down.
6751 */
6752 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6753 struct btrfs_root *root,
6754 struct btrfs_path *path,
6755 struct walk_control *wc, int lookup_info)
6756 {
6757 int level = wc->level;
6758 struct extent_buffer *eb = path->nodes[level];
6759 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6760 int ret;
6761
6762 if (wc->stage == UPDATE_BACKREF &&
6763 btrfs_header_owner(eb) != root->root_key.objectid)
6764 return 1;
6765
6766 /*
6767 * when reference count of tree block is 1, it won't increase
6768 * again. once full backref flag is set, we never clear it.
6769 */
6770 if (lookup_info &&
6771 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6772 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6773 BUG_ON(!path->locks[level]);
6774 ret = btrfs_lookup_extent_info(trans, root,
6775 eb->start, eb->len,
6776 &wc->refs[level],
6777 &wc->flags[level]);
6778 BUG_ON(ret == -ENOMEM);
6779 if (ret)
6780 return ret;
6781 BUG_ON(wc->refs[level] == 0);
6782 }
6783
6784 if (wc->stage == DROP_REFERENCE) {
6785 if (wc->refs[level] > 1)
6786 return 1;
6787
6788 if (path->locks[level] && !wc->keep_locks) {
6789 btrfs_tree_unlock_rw(eb, path->locks[level]);
6790 path->locks[level] = 0;
6791 }
6792 return 0;
6793 }
6794
6795 /* wc->stage == UPDATE_BACKREF */
6796 if (!(wc->flags[level] & flag)) {
6797 BUG_ON(!path->locks[level]);
6798 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6799 BUG_ON(ret); /* -ENOMEM */
6800 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6801 BUG_ON(ret); /* -ENOMEM */
6802 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6803 eb->len, flag, 0);
6804 BUG_ON(ret); /* -ENOMEM */
6805 wc->flags[level] |= flag;
6806 }
6807
6808 /*
6809 * the block is shared by multiple trees, so it's not good to
6810 * keep the tree lock
6811 */
6812 if (path->locks[level] && level > 0) {
6813 btrfs_tree_unlock_rw(eb, path->locks[level]);
6814 path->locks[level] = 0;
6815 }
6816 return 0;
6817 }
6818
6819 /*
6820 * helper to process tree block pointer.
6821 *
6822 * when wc->stage == DROP_REFERENCE, this function checks
6823 * reference count of the block pointed to. if the block
6824 * is shared and we need update back refs for the subtree
6825 * rooted at the block, this function changes wc->stage to
6826 * UPDATE_BACKREF. if the block is shared and there is no
6827 * need to update back, this function drops the reference
6828 * to the block.
6829 *
6830 * NOTE: return value 1 means we should stop walking down.
6831 */
6832 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6833 struct btrfs_root *root,
6834 struct btrfs_path *path,
6835 struct walk_control *wc, int *lookup_info)
6836 {
6837 u64 bytenr;
6838 u64 generation;
6839 u64 parent;
6840 u32 blocksize;
6841 struct btrfs_key key;
6842 struct extent_buffer *next;
6843 int level = wc->level;
6844 int reada = 0;
6845 int ret = 0;
6846
6847 generation = btrfs_node_ptr_generation(path->nodes[level],
6848 path->slots[level]);
6849 /*
6850 * if the lower level block was created before the snapshot
6851 * was created, we know there is no need to update back refs
6852 * for the subtree
6853 */
6854 if (wc->stage == UPDATE_BACKREF &&
6855 generation <= root->root_key.offset) {
6856 *lookup_info = 1;
6857 return 1;
6858 }
6859
6860 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6861 blocksize = btrfs_level_size(root, level - 1);
6862
6863 next = btrfs_find_tree_block(root, bytenr, blocksize);
6864 if (!next) {
6865 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6866 if (!next)
6867 return -ENOMEM;
6868 reada = 1;
6869 }
6870 btrfs_tree_lock(next);
6871 btrfs_set_lock_blocking(next);
6872
6873 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6874 &wc->refs[level - 1],
6875 &wc->flags[level - 1]);
6876 if (ret < 0) {
6877 btrfs_tree_unlock(next);
6878 return ret;
6879 }
6880
6881 BUG_ON(wc->refs[level - 1] == 0);
6882 *lookup_info = 0;
6883
6884 if (wc->stage == DROP_REFERENCE) {
6885 if (wc->refs[level - 1] > 1) {
6886 if (level == 1 &&
6887 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6888 goto skip;
6889
6890 if (!wc->update_ref ||
6891 generation <= root->root_key.offset)
6892 goto skip;
6893
6894 btrfs_node_key_to_cpu(path->nodes[level], &key,
6895 path->slots[level]);
6896 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6897 if (ret < 0)
6898 goto skip;
6899
6900 wc->stage = UPDATE_BACKREF;
6901 wc->shared_level = level - 1;
6902 }
6903 } else {
6904 if (level == 1 &&
6905 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6906 goto skip;
6907 }
6908
6909 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6910 btrfs_tree_unlock(next);
6911 free_extent_buffer(next);
6912 next = NULL;
6913 *lookup_info = 1;
6914 }
6915
6916 if (!next) {
6917 if (reada && level == 1)
6918 reada_walk_down(trans, root, wc, path);
6919 next = read_tree_block(root, bytenr, blocksize, generation);
6920 if (!next)
6921 return -EIO;
6922 btrfs_tree_lock(next);
6923 btrfs_set_lock_blocking(next);
6924 }
6925
6926 level--;
6927 BUG_ON(level != btrfs_header_level(next));
6928 path->nodes[level] = next;
6929 path->slots[level] = 0;
6930 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6931 wc->level = level;
6932 if (wc->level == 1)
6933 wc->reada_slot = 0;
6934 return 0;
6935 skip:
6936 wc->refs[level - 1] = 0;
6937 wc->flags[level - 1] = 0;
6938 if (wc->stage == DROP_REFERENCE) {
6939 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6940 parent = path->nodes[level]->start;
6941 } else {
6942 BUG_ON(root->root_key.objectid !=
6943 btrfs_header_owner(path->nodes[level]));
6944 parent = 0;
6945 }
6946
6947 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6948 root->root_key.objectid, level - 1, 0, 0);
6949 BUG_ON(ret); /* -ENOMEM */
6950 }
6951 btrfs_tree_unlock(next);
6952 free_extent_buffer(next);
6953 *lookup_info = 1;
6954 return 1;
6955 }
6956
6957 /*
6958 * helper to process tree block while walking up the tree.
6959 *
6960 * when wc->stage == DROP_REFERENCE, this function drops
6961 * reference count on the block.
6962 *
6963 * when wc->stage == UPDATE_BACKREF, this function changes
6964 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6965 * to UPDATE_BACKREF previously while processing the block.
6966 *
6967 * NOTE: return value 1 means we should stop walking up.
6968 */
6969 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6970 struct btrfs_root *root,
6971 struct btrfs_path *path,
6972 struct walk_control *wc)
6973 {
6974 int ret;
6975 int level = wc->level;
6976 struct extent_buffer *eb = path->nodes[level];
6977 u64 parent = 0;
6978
6979 if (wc->stage == UPDATE_BACKREF) {
6980 BUG_ON(wc->shared_level < level);
6981 if (level < wc->shared_level)
6982 goto out;
6983
6984 ret = find_next_key(path, level + 1, &wc->update_progress);
6985 if (ret > 0)
6986 wc->update_ref = 0;
6987
6988 wc->stage = DROP_REFERENCE;
6989 wc->shared_level = -1;
6990 path->slots[level] = 0;
6991
6992 /*
6993 * check reference count again if the block isn't locked.
6994 * we should start walking down the tree again if reference
6995 * count is one.
6996 */
6997 if (!path->locks[level]) {
6998 BUG_ON(level == 0);
6999 btrfs_tree_lock(eb);
7000 btrfs_set_lock_blocking(eb);
7001 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7002
7003 ret = btrfs_lookup_extent_info(trans, root,
7004 eb->start, eb->len,
7005 &wc->refs[level],
7006 &wc->flags[level]);
7007 if (ret < 0) {
7008 btrfs_tree_unlock_rw(eb, path->locks[level]);
7009 path->locks[level] = 0;
7010 return ret;
7011 }
7012 BUG_ON(wc->refs[level] == 0);
7013 if (wc->refs[level] == 1) {
7014 btrfs_tree_unlock_rw(eb, path->locks[level]);
7015 path->locks[level] = 0;
7016 return 1;
7017 }
7018 }
7019 }
7020
7021 /* wc->stage == DROP_REFERENCE */
7022 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7023
7024 if (wc->refs[level] == 1) {
7025 if (level == 0) {
7026 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7027 ret = btrfs_dec_ref(trans, root, eb, 1,
7028 wc->for_reloc);
7029 else
7030 ret = btrfs_dec_ref(trans, root, eb, 0,
7031 wc->for_reloc);
7032 BUG_ON(ret); /* -ENOMEM */
7033 }
7034 /* make block locked assertion in clean_tree_block happy */
7035 if (!path->locks[level] &&
7036 btrfs_header_generation(eb) == trans->transid) {
7037 btrfs_tree_lock(eb);
7038 btrfs_set_lock_blocking(eb);
7039 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7040 }
7041 clean_tree_block(trans, root, eb);
7042 }
7043
7044 if (eb == root->node) {
7045 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7046 parent = eb->start;
7047 else
7048 BUG_ON(root->root_key.objectid !=
7049 btrfs_header_owner(eb));
7050 } else {
7051 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7052 parent = path->nodes[level + 1]->start;
7053 else
7054 BUG_ON(root->root_key.objectid !=
7055 btrfs_header_owner(path->nodes[level + 1]));
7056 }
7057
7058 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7059 out:
7060 wc->refs[level] = 0;
7061 wc->flags[level] = 0;
7062 return 0;
7063 }
7064
7065 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7066 struct btrfs_root *root,
7067 struct btrfs_path *path,
7068 struct walk_control *wc)
7069 {
7070 int level = wc->level;
7071 int lookup_info = 1;
7072 int ret;
7073
7074 while (level >= 0) {
7075 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7076 if (ret > 0)
7077 break;
7078
7079 if (level == 0)
7080 break;
7081
7082 if (path->slots[level] >=
7083 btrfs_header_nritems(path->nodes[level]))
7084 break;
7085
7086 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7087 if (ret > 0) {
7088 path->slots[level]++;
7089 continue;
7090 } else if (ret < 0)
7091 return ret;
7092 level = wc->level;
7093 }
7094 return 0;
7095 }
7096
7097 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7098 struct btrfs_root *root,
7099 struct btrfs_path *path,
7100 struct walk_control *wc, int max_level)
7101 {
7102 int level = wc->level;
7103 int ret;
7104
7105 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7106 while (level < max_level && path->nodes[level]) {
7107 wc->level = level;
7108 if (path->slots[level] + 1 <
7109 btrfs_header_nritems(path->nodes[level])) {
7110 path->slots[level]++;
7111 return 0;
7112 } else {
7113 ret = walk_up_proc(trans, root, path, wc);
7114 if (ret > 0)
7115 return 0;
7116
7117 if (path->locks[level]) {
7118 btrfs_tree_unlock_rw(path->nodes[level],
7119 path->locks[level]);
7120 path->locks[level] = 0;
7121 }
7122 free_extent_buffer(path->nodes[level]);
7123 path->nodes[level] = NULL;
7124 level++;
7125 }
7126 }
7127 return 1;
7128 }
7129
7130 /*
7131 * drop a subvolume tree.
7132 *
7133 * this function traverses the tree freeing any blocks that only
7134 * referenced by the tree.
7135 *
7136 * when a shared tree block is found. this function decreases its
7137 * reference count by one. if update_ref is true, this function
7138 * also make sure backrefs for the shared block and all lower level
7139 * blocks are properly updated.
7140 */
7141 int btrfs_drop_snapshot(struct btrfs_root *root,
7142 struct btrfs_block_rsv *block_rsv, int update_ref,
7143 int for_reloc)
7144 {
7145 struct btrfs_path *path;
7146 struct btrfs_trans_handle *trans;
7147 struct btrfs_root *tree_root = root->fs_info->tree_root;
7148 struct btrfs_root_item *root_item = &root->root_item;
7149 struct walk_control *wc;
7150 struct btrfs_key key;
7151 int err = 0;
7152 int ret;
7153 int level;
7154
7155 path = btrfs_alloc_path();
7156 if (!path) {
7157 err = -ENOMEM;
7158 goto out;
7159 }
7160
7161 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7162 if (!wc) {
7163 btrfs_free_path(path);
7164 err = -ENOMEM;
7165 goto out;
7166 }
7167
7168 trans = btrfs_start_transaction(tree_root, 0);
7169 if (IS_ERR(trans)) {
7170 err = PTR_ERR(trans);
7171 goto out_free;
7172 }
7173
7174 if (block_rsv)
7175 trans->block_rsv = block_rsv;
7176
7177 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7178 level = btrfs_header_level(root->node);
7179 path->nodes[level] = btrfs_lock_root_node(root);
7180 btrfs_set_lock_blocking(path->nodes[level]);
7181 path->slots[level] = 0;
7182 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7183 memset(&wc->update_progress, 0,
7184 sizeof(wc->update_progress));
7185 } else {
7186 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7187 memcpy(&wc->update_progress, &key,
7188 sizeof(wc->update_progress));
7189
7190 level = root_item->drop_level;
7191 BUG_ON(level == 0);
7192 path->lowest_level = level;
7193 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7194 path->lowest_level = 0;
7195 if (ret < 0) {
7196 err = ret;
7197 goto out_end_trans;
7198 }
7199 WARN_ON(ret > 0);
7200
7201 /*
7202 * unlock our path, this is safe because only this
7203 * function is allowed to delete this snapshot
7204 */
7205 btrfs_unlock_up_safe(path, 0);
7206
7207 level = btrfs_header_level(root->node);
7208 while (1) {
7209 btrfs_tree_lock(path->nodes[level]);
7210 btrfs_set_lock_blocking(path->nodes[level]);
7211
7212 ret = btrfs_lookup_extent_info(trans, root,
7213 path->nodes[level]->start,
7214 path->nodes[level]->len,
7215 &wc->refs[level],
7216 &wc->flags[level]);
7217 if (ret < 0) {
7218 err = ret;
7219 goto out_end_trans;
7220 }
7221 BUG_ON(wc->refs[level] == 0);
7222
7223 if (level == root_item->drop_level)
7224 break;
7225
7226 btrfs_tree_unlock(path->nodes[level]);
7227 WARN_ON(wc->refs[level] != 1);
7228 level--;
7229 }
7230 }
7231
7232 wc->level = level;
7233 wc->shared_level = -1;
7234 wc->stage = DROP_REFERENCE;
7235 wc->update_ref = update_ref;
7236 wc->keep_locks = 0;
7237 wc->for_reloc = for_reloc;
7238 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7239
7240 while (1) {
7241 ret = walk_down_tree(trans, root, path, wc);
7242 if (ret < 0) {
7243 err = ret;
7244 break;
7245 }
7246
7247 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7248 if (ret < 0) {
7249 err = ret;
7250 break;
7251 }
7252
7253 if (ret > 0) {
7254 BUG_ON(wc->stage != DROP_REFERENCE);
7255 break;
7256 }
7257
7258 if (wc->stage == DROP_REFERENCE) {
7259 level = wc->level;
7260 btrfs_node_key(path->nodes[level],
7261 &root_item->drop_progress,
7262 path->slots[level]);
7263 root_item->drop_level = level;
7264 }
7265
7266 BUG_ON(wc->level == 0);
7267 if (btrfs_should_end_transaction(trans, tree_root)) {
7268 ret = btrfs_update_root(trans, tree_root,
7269 &root->root_key,
7270 root_item);
7271 if (ret) {
7272 btrfs_abort_transaction(trans, tree_root, ret);
7273 err = ret;
7274 goto out_end_trans;
7275 }
7276
7277 btrfs_end_transaction_throttle(trans, tree_root);
7278 trans = btrfs_start_transaction(tree_root, 0);
7279 if (IS_ERR(trans)) {
7280 err = PTR_ERR(trans);
7281 goto out_free;
7282 }
7283 if (block_rsv)
7284 trans->block_rsv = block_rsv;
7285 }
7286 }
7287 btrfs_release_path(path);
7288 if (err)
7289 goto out_end_trans;
7290
7291 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7292 if (ret) {
7293 btrfs_abort_transaction(trans, tree_root, ret);
7294 goto out_end_trans;
7295 }
7296
7297 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7298 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7299 NULL, NULL);
7300 if (ret < 0) {
7301 btrfs_abort_transaction(trans, tree_root, ret);
7302 err = ret;
7303 goto out_end_trans;
7304 } else if (ret > 0) {
7305 /* if we fail to delete the orphan item this time
7306 * around, it'll get picked up the next time.
7307 *
7308 * The most common failure here is just -ENOENT.
7309 */
7310 btrfs_del_orphan_item(trans, tree_root,
7311 root->root_key.objectid);
7312 }
7313 }
7314
7315 if (root->in_radix) {
7316 btrfs_free_fs_root(tree_root->fs_info, root);
7317 } else {
7318 free_extent_buffer(root->node);
7319 free_extent_buffer(root->commit_root);
7320 kfree(root);
7321 }
7322 out_end_trans:
7323 btrfs_end_transaction_throttle(trans, tree_root);
7324 out_free:
7325 kfree(wc);
7326 btrfs_free_path(path);
7327 out:
7328 if (err)
7329 btrfs_std_error(root->fs_info, err);
7330 return err;
7331 }
7332
7333 /*
7334 * drop subtree rooted at tree block 'node'.
7335 *
7336 * NOTE: this function will unlock and release tree block 'node'
7337 * only used by relocation code
7338 */
7339 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7340 struct btrfs_root *root,
7341 struct extent_buffer *node,
7342 struct extent_buffer *parent)
7343 {
7344 struct btrfs_path *path;
7345 struct walk_control *wc;
7346 int level;
7347 int parent_level;
7348 int ret = 0;
7349 int wret;
7350
7351 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7352
7353 path = btrfs_alloc_path();
7354 if (!path)
7355 return -ENOMEM;
7356
7357 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7358 if (!wc) {
7359 btrfs_free_path(path);
7360 return -ENOMEM;
7361 }
7362
7363 btrfs_assert_tree_locked(parent);
7364 parent_level = btrfs_header_level(parent);
7365 extent_buffer_get(parent);
7366 path->nodes[parent_level] = parent;
7367 path->slots[parent_level] = btrfs_header_nritems(parent);
7368
7369 btrfs_assert_tree_locked(node);
7370 level = btrfs_header_level(node);
7371 path->nodes[level] = node;
7372 path->slots[level] = 0;
7373 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7374
7375 wc->refs[parent_level] = 1;
7376 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7377 wc->level = level;
7378 wc->shared_level = -1;
7379 wc->stage = DROP_REFERENCE;
7380 wc->update_ref = 0;
7381 wc->keep_locks = 1;
7382 wc->for_reloc = 1;
7383 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7384
7385 while (1) {
7386 wret = walk_down_tree(trans, root, path, wc);
7387 if (wret < 0) {
7388 ret = wret;
7389 break;
7390 }
7391
7392 wret = walk_up_tree(trans, root, path, wc, parent_level);
7393 if (wret < 0)
7394 ret = wret;
7395 if (wret != 0)
7396 break;
7397 }
7398
7399 kfree(wc);
7400 btrfs_free_path(path);
7401 return ret;
7402 }
7403
7404 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7405 {
7406 u64 num_devices;
7407 u64 stripped;
7408
7409 /*
7410 * if restripe for this chunk_type is on pick target profile and
7411 * return, otherwise do the usual balance
7412 */
7413 stripped = get_restripe_target(root->fs_info, flags);
7414 if (stripped)
7415 return extended_to_chunk(stripped);
7416
7417 /*
7418 * we add in the count of missing devices because we want
7419 * to make sure that any RAID levels on a degraded FS
7420 * continue to be honored.
7421 */
7422 num_devices = root->fs_info->fs_devices->rw_devices +
7423 root->fs_info->fs_devices->missing_devices;
7424
7425 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7426 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7427 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7428
7429 if (num_devices == 1) {
7430 stripped |= BTRFS_BLOCK_GROUP_DUP;
7431 stripped = flags & ~stripped;
7432
7433 /* turn raid0 into single device chunks */
7434 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7435 return stripped;
7436
7437 /* turn mirroring into duplication */
7438 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7439 BTRFS_BLOCK_GROUP_RAID10))
7440 return stripped | BTRFS_BLOCK_GROUP_DUP;
7441 } else {
7442 /* they already had raid on here, just return */
7443 if (flags & stripped)
7444 return flags;
7445
7446 stripped |= BTRFS_BLOCK_GROUP_DUP;
7447 stripped = flags & ~stripped;
7448
7449 /* switch duplicated blocks with raid1 */
7450 if (flags & BTRFS_BLOCK_GROUP_DUP)
7451 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7452
7453 /* this is drive concat, leave it alone */
7454 }
7455
7456 return flags;
7457 }
7458
7459 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7460 {
7461 struct btrfs_space_info *sinfo = cache->space_info;
7462 u64 num_bytes;
7463 u64 min_allocable_bytes;
7464 int ret = -ENOSPC;
7465
7466
7467 /*
7468 * We need some metadata space and system metadata space for
7469 * allocating chunks in some corner cases until we force to set
7470 * it to be readonly.
7471 */
7472 if ((sinfo->flags &
7473 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7474 !force)
7475 min_allocable_bytes = 1 * 1024 * 1024;
7476 else
7477 min_allocable_bytes = 0;
7478
7479 spin_lock(&sinfo->lock);
7480 spin_lock(&cache->lock);
7481
7482 if (cache->ro) {
7483 ret = 0;
7484 goto out;
7485 }
7486
7487 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7488 cache->bytes_super - btrfs_block_group_used(&cache->item);
7489
7490 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7491 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7492 min_allocable_bytes <= sinfo->total_bytes) {
7493 sinfo->bytes_readonly += num_bytes;
7494 cache->ro = 1;
7495 ret = 0;
7496 }
7497 out:
7498 spin_unlock(&cache->lock);
7499 spin_unlock(&sinfo->lock);
7500 return ret;
7501 }
7502
7503 int btrfs_set_block_group_ro(struct btrfs_root *root,
7504 struct btrfs_block_group_cache *cache)
7505
7506 {
7507 struct btrfs_trans_handle *trans;
7508 u64 alloc_flags;
7509 int ret;
7510
7511 BUG_ON(cache->ro);
7512
7513 trans = btrfs_join_transaction(root);
7514 if (IS_ERR(trans))
7515 return PTR_ERR(trans);
7516
7517 alloc_flags = update_block_group_flags(root, cache->flags);
7518 if (alloc_flags != cache->flags) {
7519 ret = do_chunk_alloc(trans, root, alloc_flags,
7520 CHUNK_ALLOC_FORCE);
7521 if (ret < 0)
7522 goto out;
7523 }
7524
7525 ret = set_block_group_ro(cache, 0);
7526 if (!ret)
7527 goto out;
7528 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7529 ret = do_chunk_alloc(trans, root, alloc_flags,
7530 CHUNK_ALLOC_FORCE);
7531 if (ret < 0)
7532 goto out;
7533 ret = set_block_group_ro(cache, 0);
7534 out:
7535 btrfs_end_transaction(trans, root);
7536 return ret;
7537 }
7538
7539 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7540 struct btrfs_root *root, u64 type)
7541 {
7542 u64 alloc_flags = get_alloc_profile(root, type);
7543 return do_chunk_alloc(trans, root, alloc_flags,
7544 CHUNK_ALLOC_FORCE);
7545 }
7546
7547 /*
7548 * helper to account the unused space of all the readonly block group in the
7549 * list. takes mirrors into account.
7550 */
7551 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7552 {
7553 struct btrfs_block_group_cache *block_group;
7554 u64 free_bytes = 0;
7555 int factor;
7556
7557 list_for_each_entry(block_group, groups_list, list) {
7558 spin_lock(&block_group->lock);
7559
7560 if (!block_group->ro) {
7561 spin_unlock(&block_group->lock);
7562 continue;
7563 }
7564
7565 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7566 BTRFS_BLOCK_GROUP_RAID10 |
7567 BTRFS_BLOCK_GROUP_DUP))
7568 factor = 2;
7569 else
7570 factor = 1;
7571
7572 free_bytes += (block_group->key.offset -
7573 btrfs_block_group_used(&block_group->item)) *
7574 factor;
7575
7576 spin_unlock(&block_group->lock);
7577 }
7578
7579 return free_bytes;
7580 }
7581
7582 /*
7583 * helper to account the unused space of all the readonly block group in the
7584 * space_info. takes mirrors into account.
7585 */
7586 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7587 {
7588 int i;
7589 u64 free_bytes = 0;
7590
7591 spin_lock(&sinfo->lock);
7592
7593 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7594 if (!list_empty(&sinfo->block_groups[i]))
7595 free_bytes += __btrfs_get_ro_block_group_free_space(
7596 &sinfo->block_groups[i]);
7597
7598 spin_unlock(&sinfo->lock);
7599
7600 return free_bytes;
7601 }
7602
7603 void btrfs_set_block_group_rw(struct btrfs_root *root,
7604 struct btrfs_block_group_cache *cache)
7605 {
7606 struct btrfs_space_info *sinfo = cache->space_info;
7607 u64 num_bytes;
7608
7609 BUG_ON(!cache->ro);
7610
7611 spin_lock(&sinfo->lock);
7612 spin_lock(&cache->lock);
7613 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7614 cache->bytes_super - btrfs_block_group_used(&cache->item);
7615 sinfo->bytes_readonly -= num_bytes;
7616 cache->ro = 0;
7617 spin_unlock(&cache->lock);
7618 spin_unlock(&sinfo->lock);
7619 }
7620
7621 /*
7622 * checks to see if its even possible to relocate this block group.
7623 *
7624 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7625 * ok to go ahead and try.
7626 */
7627 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7628 {
7629 struct btrfs_block_group_cache *block_group;
7630 struct btrfs_space_info *space_info;
7631 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7632 struct btrfs_device *device;
7633 u64 min_free;
7634 u64 dev_min = 1;
7635 u64 dev_nr = 0;
7636 u64 target;
7637 int index;
7638 int full = 0;
7639 int ret = 0;
7640
7641 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7642
7643 /* odd, couldn't find the block group, leave it alone */
7644 if (!block_group)
7645 return -1;
7646
7647 min_free = btrfs_block_group_used(&block_group->item);
7648
7649 /* no bytes used, we're good */
7650 if (!min_free)
7651 goto out;
7652
7653 space_info = block_group->space_info;
7654 spin_lock(&space_info->lock);
7655
7656 full = space_info->full;
7657
7658 /*
7659 * if this is the last block group we have in this space, we can't
7660 * relocate it unless we're able to allocate a new chunk below.
7661 *
7662 * Otherwise, we need to make sure we have room in the space to handle
7663 * all of the extents from this block group. If we can, we're good
7664 */
7665 if ((space_info->total_bytes != block_group->key.offset) &&
7666 (space_info->bytes_used + space_info->bytes_reserved +
7667 space_info->bytes_pinned + space_info->bytes_readonly +
7668 min_free < space_info->total_bytes)) {
7669 spin_unlock(&space_info->lock);
7670 goto out;
7671 }
7672 spin_unlock(&space_info->lock);
7673
7674 /*
7675 * ok we don't have enough space, but maybe we have free space on our
7676 * devices to allocate new chunks for relocation, so loop through our
7677 * alloc devices and guess if we have enough space. if this block
7678 * group is going to be restriped, run checks against the target
7679 * profile instead of the current one.
7680 */
7681 ret = -1;
7682
7683 /*
7684 * index:
7685 * 0: raid10
7686 * 1: raid1
7687 * 2: dup
7688 * 3: raid0
7689 * 4: single
7690 */
7691 target = get_restripe_target(root->fs_info, block_group->flags);
7692 if (target) {
7693 index = __get_raid_index(extended_to_chunk(target));
7694 } else {
7695 /*
7696 * this is just a balance, so if we were marked as full
7697 * we know there is no space for a new chunk
7698 */
7699 if (full)
7700 goto out;
7701
7702 index = get_block_group_index(block_group);
7703 }
7704
7705 if (index == BTRFS_RAID_RAID10) {
7706 dev_min = 4;
7707 /* Divide by 2 */
7708 min_free >>= 1;
7709 } else if (index == BTRFS_RAID_RAID1) {
7710 dev_min = 2;
7711 } else if (index == BTRFS_RAID_DUP) {
7712 /* Multiply by 2 */
7713 min_free <<= 1;
7714 } else if (index == BTRFS_RAID_RAID0) {
7715 dev_min = fs_devices->rw_devices;
7716 do_div(min_free, dev_min);
7717 }
7718
7719 mutex_lock(&root->fs_info->chunk_mutex);
7720 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7721 u64 dev_offset;
7722
7723 /*
7724 * check to make sure we can actually find a chunk with enough
7725 * space to fit our block group in.
7726 */
7727 if (device->total_bytes > device->bytes_used + min_free &&
7728 !device->is_tgtdev_for_dev_replace) {
7729 ret = find_free_dev_extent(device, min_free,
7730 &dev_offset, NULL);
7731 if (!ret)
7732 dev_nr++;
7733
7734 if (dev_nr >= dev_min)
7735 break;
7736
7737 ret = -1;
7738 }
7739 }
7740 mutex_unlock(&root->fs_info->chunk_mutex);
7741 out:
7742 btrfs_put_block_group(block_group);
7743 return ret;
7744 }
7745
7746 static int find_first_block_group(struct btrfs_root *root,
7747 struct btrfs_path *path, struct btrfs_key *key)
7748 {
7749 int ret = 0;
7750 struct btrfs_key found_key;
7751 struct extent_buffer *leaf;
7752 int slot;
7753
7754 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7755 if (ret < 0)
7756 goto out;
7757
7758 while (1) {
7759 slot = path->slots[0];
7760 leaf = path->nodes[0];
7761 if (slot >= btrfs_header_nritems(leaf)) {
7762 ret = btrfs_next_leaf(root, path);
7763 if (ret == 0)
7764 continue;
7765 if (ret < 0)
7766 goto out;
7767 break;
7768 }
7769 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7770
7771 if (found_key.objectid >= key->objectid &&
7772 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7773 ret = 0;
7774 goto out;
7775 }
7776 path->slots[0]++;
7777 }
7778 out:
7779 return ret;
7780 }
7781
7782 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7783 {
7784 struct btrfs_block_group_cache *block_group;
7785 u64 last = 0;
7786
7787 while (1) {
7788 struct inode *inode;
7789
7790 block_group = btrfs_lookup_first_block_group(info, last);
7791 while (block_group) {
7792 spin_lock(&block_group->lock);
7793 if (block_group->iref)
7794 break;
7795 spin_unlock(&block_group->lock);
7796 block_group = next_block_group(info->tree_root,
7797 block_group);
7798 }
7799 if (!block_group) {
7800 if (last == 0)
7801 break;
7802 last = 0;
7803 continue;
7804 }
7805
7806 inode = block_group->inode;
7807 block_group->iref = 0;
7808 block_group->inode = NULL;
7809 spin_unlock(&block_group->lock);
7810 iput(inode);
7811 last = block_group->key.objectid + block_group->key.offset;
7812 btrfs_put_block_group(block_group);
7813 }
7814 }
7815
7816 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7817 {
7818 struct btrfs_block_group_cache *block_group;
7819 struct btrfs_space_info *space_info;
7820 struct btrfs_caching_control *caching_ctl;
7821 struct rb_node *n;
7822
7823 down_write(&info->extent_commit_sem);
7824 while (!list_empty(&info->caching_block_groups)) {
7825 caching_ctl = list_entry(info->caching_block_groups.next,
7826 struct btrfs_caching_control, list);
7827 list_del(&caching_ctl->list);
7828 put_caching_control(caching_ctl);
7829 }
7830 up_write(&info->extent_commit_sem);
7831
7832 spin_lock(&info->block_group_cache_lock);
7833 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7834 block_group = rb_entry(n, struct btrfs_block_group_cache,
7835 cache_node);
7836 rb_erase(&block_group->cache_node,
7837 &info->block_group_cache_tree);
7838 spin_unlock(&info->block_group_cache_lock);
7839
7840 down_write(&block_group->space_info->groups_sem);
7841 list_del(&block_group->list);
7842 up_write(&block_group->space_info->groups_sem);
7843
7844 if (block_group->cached == BTRFS_CACHE_STARTED)
7845 wait_block_group_cache_done(block_group);
7846
7847 /*
7848 * We haven't cached this block group, which means we could
7849 * possibly have excluded extents on this block group.
7850 */
7851 if (block_group->cached == BTRFS_CACHE_NO)
7852 free_excluded_extents(info->extent_root, block_group);
7853
7854 btrfs_remove_free_space_cache(block_group);
7855 btrfs_put_block_group(block_group);
7856
7857 spin_lock(&info->block_group_cache_lock);
7858 }
7859 spin_unlock(&info->block_group_cache_lock);
7860
7861 /* now that all the block groups are freed, go through and
7862 * free all the space_info structs. This is only called during
7863 * the final stages of unmount, and so we know nobody is
7864 * using them. We call synchronize_rcu() once before we start,
7865 * just to be on the safe side.
7866 */
7867 synchronize_rcu();
7868
7869 release_global_block_rsv(info);
7870
7871 while(!list_empty(&info->space_info)) {
7872 space_info = list_entry(info->space_info.next,
7873 struct btrfs_space_info,
7874 list);
7875 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
7876 if (space_info->bytes_pinned > 0 ||
7877 space_info->bytes_reserved > 0 ||
7878 space_info->bytes_may_use > 0) {
7879 WARN_ON(1);
7880 dump_space_info(space_info, 0, 0);
7881 }
7882 }
7883 list_del(&space_info->list);
7884 kfree(space_info);
7885 }
7886 return 0;
7887 }
7888
7889 static void __link_block_group(struct btrfs_space_info *space_info,
7890 struct btrfs_block_group_cache *cache)
7891 {
7892 int index = get_block_group_index(cache);
7893
7894 down_write(&space_info->groups_sem);
7895 list_add_tail(&cache->list, &space_info->block_groups[index]);
7896 up_write(&space_info->groups_sem);
7897 }
7898
7899 int btrfs_read_block_groups(struct btrfs_root *root)
7900 {
7901 struct btrfs_path *path;
7902 int ret;
7903 struct btrfs_block_group_cache *cache;
7904 struct btrfs_fs_info *info = root->fs_info;
7905 struct btrfs_space_info *space_info;
7906 struct btrfs_key key;
7907 struct btrfs_key found_key;
7908 struct extent_buffer *leaf;
7909 int need_clear = 0;
7910 u64 cache_gen;
7911
7912 root = info->extent_root;
7913 key.objectid = 0;
7914 key.offset = 0;
7915 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7916 path = btrfs_alloc_path();
7917 if (!path)
7918 return -ENOMEM;
7919 path->reada = 1;
7920
7921 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7922 if (btrfs_test_opt(root, SPACE_CACHE) &&
7923 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7924 need_clear = 1;
7925 if (btrfs_test_opt(root, CLEAR_CACHE))
7926 need_clear = 1;
7927
7928 while (1) {
7929 ret = find_first_block_group(root, path, &key);
7930 if (ret > 0)
7931 break;
7932 if (ret != 0)
7933 goto error;
7934 leaf = path->nodes[0];
7935 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7936 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7937 if (!cache) {
7938 ret = -ENOMEM;
7939 goto error;
7940 }
7941 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7942 GFP_NOFS);
7943 if (!cache->free_space_ctl) {
7944 kfree(cache);
7945 ret = -ENOMEM;
7946 goto error;
7947 }
7948
7949 atomic_set(&cache->count, 1);
7950 spin_lock_init(&cache->lock);
7951 cache->fs_info = info;
7952 INIT_LIST_HEAD(&cache->list);
7953 INIT_LIST_HEAD(&cache->cluster_list);
7954
7955 if (need_clear) {
7956 /*
7957 * When we mount with old space cache, we need to
7958 * set BTRFS_DC_CLEAR and set dirty flag.
7959 *
7960 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7961 * truncate the old free space cache inode and
7962 * setup a new one.
7963 * b) Setting 'dirty flag' makes sure that we flush
7964 * the new space cache info onto disk.
7965 */
7966 cache->disk_cache_state = BTRFS_DC_CLEAR;
7967 if (btrfs_test_opt(root, SPACE_CACHE))
7968 cache->dirty = 1;
7969 }
7970
7971 read_extent_buffer(leaf, &cache->item,
7972 btrfs_item_ptr_offset(leaf, path->slots[0]),
7973 sizeof(cache->item));
7974 memcpy(&cache->key, &found_key, sizeof(found_key));
7975
7976 key.objectid = found_key.objectid + found_key.offset;
7977 btrfs_release_path(path);
7978 cache->flags = btrfs_block_group_flags(&cache->item);
7979 cache->sectorsize = root->sectorsize;
7980 cache->full_stripe_len = btrfs_full_stripe_len(root,
7981 &root->fs_info->mapping_tree,
7982 found_key.objectid);
7983 btrfs_init_free_space_ctl(cache);
7984
7985 /*
7986 * We need to exclude the super stripes now so that the space
7987 * info has super bytes accounted for, otherwise we'll think
7988 * we have more space than we actually do.
7989 */
7990 ret = exclude_super_stripes(root, cache);
7991 if (ret) {
7992 /*
7993 * We may have excluded something, so call this just in
7994 * case.
7995 */
7996 free_excluded_extents(root, cache);
7997 kfree(cache->free_space_ctl);
7998 kfree(cache);
7999 goto error;
8000 }
8001
8002 /*
8003 * check for two cases, either we are full, and therefore
8004 * don't need to bother with the caching work since we won't
8005 * find any space, or we are empty, and we can just add all
8006 * the space in and be done with it. This saves us _alot_ of
8007 * time, particularly in the full case.
8008 */
8009 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8010 cache->last_byte_to_unpin = (u64)-1;
8011 cache->cached = BTRFS_CACHE_FINISHED;
8012 free_excluded_extents(root, cache);
8013 } else if (btrfs_block_group_used(&cache->item) == 0) {
8014 cache->last_byte_to_unpin = (u64)-1;
8015 cache->cached = BTRFS_CACHE_FINISHED;
8016 add_new_free_space(cache, root->fs_info,
8017 found_key.objectid,
8018 found_key.objectid +
8019 found_key.offset);
8020 free_excluded_extents(root, cache);
8021 }
8022
8023 ret = update_space_info(info, cache->flags, found_key.offset,
8024 btrfs_block_group_used(&cache->item),
8025 &space_info);
8026 BUG_ON(ret); /* -ENOMEM */
8027 cache->space_info = space_info;
8028 spin_lock(&cache->space_info->lock);
8029 cache->space_info->bytes_readonly += cache->bytes_super;
8030 spin_unlock(&cache->space_info->lock);
8031
8032 __link_block_group(space_info, cache);
8033
8034 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8035 BUG_ON(ret); /* Logic error */
8036
8037 set_avail_alloc_bits(root->fs_info, cache->flags);
8038 if (btrfs_chunk_readonly(root, cache->key.objectid))
8039 set_block_group_ro(cache, 1);
8040 }
8041
8042 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8043 if (!(get_alloc_profile(root, space_info->flags) &
8044 (BTRFS_BLOCK_GROUP_RAID10 |
8045 BTRFS_BLOCK_GROUP_RAID1 |
8046 BTRFS_BLOCK_GROUP_RAID5 |
8047 BTRFS_BLOCK_GROUP_RAID6 |
8048 BTRFS_BLOCK_GROUP_DUP)))
8049 continue;
8050 /*
8051 * avoid allocating from un-mirrored block group if there are
8052 * mirrored block groups.
8053 */
8054 list_for_each_entry(cache, &space_info->block_groups[3], list)
8055 set_block_group_ro(cache, 1);
8056 list_for_each_entry(cache, &space_info->block_groups[4], list)
8057 set_block_group_ro(cache, 1);
8058 }
8059
8060 init_global_block_rsv(info);
8061 ret = 0;
8062 error:
8063 btrfs_free_path(path);
8064 return ret;
8065 }
8066
8067 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8068 struct btrfs_root *root)
8069 {
8070 struct btrfs_block_group_cache *block_group, *tmp;
8071 struct btrfs_root *extent_root = root->fs_info->extent_root;
8072 struct btrfs_block_group_item item;
8073 struct btrfs_key key;
8074 int ret = 0;
8075
8076 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8077 new_bg_list) {
8078 list_del_init(&block_group->new_bg_list);
8079
8080 if (ret)
8081 continue;
8082
8083 spin_lock(&block_group->lock);
8084 memcpy(&item, &block_group->item, sizeof(item));
8085 memcpy(&key, &block_group->key, sizeof(key));
8086 spin_unlock(&block_group->lock);
8087
8088 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8089 sizeof(item));
8090 if (ret)
8091 btrfs_abort_transaction(trans, extent_root, ret);
8092 }
8093 }
8094
8095 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8096 struct btrfs_root *root, u64 bytes_used,
8097 u64 type, u64 chunk_objectid, u64 chunk_offset,
8098 u64 size)
8099 {
8100 int ret;
8101 struct btrfs_root *extent_root;
8102 struct btrfs_block_group_cache *cache;
8103
8104 extent_root = root->fs_info->extent_root;
8105
8106 root->fs_info->last_trans_log_full_commit = trans->transid;
8107
8108 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8109 if (!cache)
8110 return -ENOMEM;
8111 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8112 GFP_NOFS);
8113 if (!cache->free_space_ctl) {
8114 kfree(cache);
8115 return -ENOMEM;
8116 }
8117
8118 cache->key.objectid = chunk_offset;
8119 cache->key.offset = size;
8120 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8121 cache->sectorsize = root->sectorsize;
8122 cache->fs_info = root->fs_info;
8123 cache->full_stripe_len = btrfs_full_stripe_len(root,
8124 &root->fs_info->mapping_tree,
8125 chunk_offset);
8126
8127 atomic_set(&cache->count, 1);
8128 spin_lock_init(&cache->lock);
8129 INIT_LIST_HEAD(&cache->list);
8130 INIT_LIST_HEAD(&cache->cluster_list);
8131 INIT_LIST_HEAD(&cache->new_bg_list);
8132
8133 btrfs_init_free_space_ctl(cache);
8134
8135 btrfs_set_block_group_used(&cache->item, bytes_used);
8136 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8137 cache->flags = type;
8138 btrfs_set_block_group_flags(&cache->item, type);
8139
8140 cache->last_byte_to_unpin = (u64)-1;
8141 cache->cached = BTRFS_CACHE_FINISHED;
8142 ret = exclude_super_stripes(root, cache);
8143 if (ret) {
8144 /*
8145 * We may have excluded something, so call this just in
8146 * case.
8147 */
8148 free_excluded_extents(root, cache);
8149 kfree(cache->free_space_ctl);
8150 kfree(cache);
8151 return ret;
8152 }
8153
8154 add_new_free_space(cache, root->fs_info, chunk_offset,
8155 chunk_offset + size);
8156
8157 free_excluded_extents(root, cache);
8158
8159 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8160 &cache->space_info);
8161 BUG_ON(ret); /* -ENOMEM */
8162 update_global_block_rsv(root->fs_info);
8163
8164 spin_lock(&cache->space_info->lock);
8165 cache->space_info->bytes_readonly += cache->bytes_super;
8166 spin_unlock(&cache->space_info->lock);
8167
8168 __link_block_group(cache->space_info, cache);
8169
8170 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8171 BUG_ON(ret); /* Logic error */
8172
8173 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8174
8175 set_avail_alloc_bits(extent_root->fs_info, type);
8176
8177 return 0;
8178 }
8179
8180 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8181 {
8182 u64 extra_flags = chunk_to_extended(flags) &
8183 BTRFS_EXTENDED_PROFILE_MASK;
8184
8185 write_seqlock(&fs_info->profiles_lock);
8186 if (flags & BTRFS_BLOCK_GROUP_DATA)
8187 fs_info->avail_data_alloc_bits &= ~extra_flags;
8188 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8189 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8190 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8191 fs_info->avail_system_alloc_bits &= ~extra_flags;
8192 write_sequnlock(&fs_info->profiles_lock);
8193 }
8194
8195 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8196 struct btrfs_root *root, u64 group_start)
8197 {
8198 struct btrfs_path *path;
8199 struct btrfs_block_group_cache *block_group;
8200 struct btrfs_free_cluster *cluster;
8201 struct btrfs_root *tree_root = root->fs_info->tree_root;
8202 struct btrfs_key key;
8203 struct inode *inode;
8204 int ret;
8205 int index;
8206 int factor;
8207
8208 root = root->fs_info->extent_root;
8209
8210 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8211 BUG_ON(!block_group);
8212 BUG_ON(!block_group->ro);
8213
8214 /*
8215 * Free the reserved super bytes from this block group before
8216 * remove it.
8217 */
8218 free_excluded_extents(root, block_group);
8219
8220 memcpy(&key, &block_group->key, sizeof(key));
8221 index = get_block_group_index(block_group);
8222 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8223 BTRFS_BLOCK_GROUP_RAID1 |
8224 BTRFS_BLOCK_GROUP_RAID10))
8225 factor = 2;
8226 else
8227 factor = 1;
8228
8229 /* make sure this block group isn't part of an allocation cluster */
8230 cluster = &root->fs_info->data_alloc_cluster;
8231 spin_lock(&cluster->refill_lock);
8232 btrfs_return_cluster_to_free_space(block_group, cluster);
8233 spin_unlock(&cluster->refill_lock);
8234
8235 /*
8236 * make sure this block group isn't part of a metadata
8237 * allocation cluster
8238 */
8239 cluster = &root->fs_info->meta_alloc_cluster;
8240 spin_lock(&cluster->refill_lock);
8241 btrfs_return_cluster_to_free_space(block_group, cluster);
8242 spin_unlock(&cluster->refill_lock);
8243
8244 path = btrfs_alloc_path();
8245 if (!path) {
8246 ret = -ENOMEM;
8247 goto out;
8248 }
8249
8250 inode = lookup_free_space_inode(tree_root, block_group, path);
8251 if (!IS_ERR(inode)) {
8252 ret = btrfs_orphan_add(trans, inode);
8253 if (ret) {
8254 btrfs_add_delayed_iput(inode);
8255 goto out;
8256 }
8257 clear_nlink(inode);
8258 /* One for the block groups ref */
8259 spin_lock(&block_group->lock);
8260 if (block_group->iref) {
8261 block_group->iref = 0;
8262 block_group->inode = NULL;
8263 spin_unlock(&block_group->lock);
8264 iput(inode);
8265 } else {
8266 spin_unlock(&block_group->lock);
8267 }
8268 /* One for our lookup ref */
8269 btrfs_add_delayed_iput(inode);
8270 }
8271
8272 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8273 key.offset = block_group->key.objectid;
8274 key.type = 0;
8275
8276 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8277 if (ret < 0)
8278 goto out;
8279 if (ret > 0)
8280 btrfs_release_path(path);
8281 if (ret == 0) {
8282 ret = btrfs_del_item(trans, tree_root, path);
8283 if (ret)
8284 goto out;
8285 btrfs_release_path(path);
8286 }
8287
8288 spin_lock(&root->fs_info->block_group_cache_lock);
8289 rb_erase(&block_group->cache_node,
8290 &root->fs_info->block_group_cache_tree);
8291
8292 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8293 root->fs_info->first_logical_byte = (u64)-1;
8294 spin_unlock(&root->fs_info->block_group_cache_lock);
8295
8296 down_write(&block_group->space_info->groups_sem);
8297 /*
8298 * we must use list_del_init so people can check to see if they
8299 * are still on the list after taking the semaphore
8300 */
8301 list_del_init(&block_group->list);
8302 if (list_empty(&block_group->space_info->block_groups[index]))
8303 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8304 up_write(&block_group->space_info->groups_sem);
8305
8306 if (block_group->cached == BTRFS_CACHE_STARTED)
8307 wait_block_group_cache_done(block_group);
8308
8309 btrfs_remove_free_space_cache(block_group);
8310
8311 spin_lock(&block_group->space_info->lock);
8312 block_group->space_info->total_bytes -= block_group->key.offset;
8313 block_group->space_info->bytes_readonly -= block_group->key.offset;
8314 block_group->space_info->disk_total -= block_group->key.offset * factor;
8315 spin_unlock(&block_group->space_info->lock);
8316
8317 memcpy(&key, &block_group->key, sizeof(key));
8318
8319 btrfs_clear_space_info_full(root->fs_info);
8320
8321 btrfs_put_block_group(block_group);
8322 btrfs_put_block_group(block_group);
8323
8324 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8325 if (ret > 0)
8326 ret = -EIO;
8327 if (ret < 0)
8328 goto out;
8329
8330 ret = btrfs_del_item(trans, root, path);
8331 out:
8332 btrfs_free_path(path);
8333 return ret;
8334 }
8335
8336 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8337 {
8338 struct btrfs_space_info *space_info;
8339 struct btrfs_super_block *disk_super;
8340 u64 features;
8341 u64 flags;
8342 int mixed = 0;
8343 int ret;
8344
8345 disk_super = fs_info->super_copy;
8346 if (!btrfs_super_root(disk_super))
8347 return 1;
8348
8349 features = btrfs_super_incompat_flags(disk_super);
8350 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8351 mixed = 1;
8352
8353 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8354 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8355 if (ret)
8356 goto out;
8357
8358 if (mixed) {
8359 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8360 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8361 } else {
8362 flags = BTRFS_BLOCK_GROUP_METADATA;
8363 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8364 if (ret)
8365 goto out;
8366
8367 flags = BTRFS_BLOCK_GROUP_DATA;
8368 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8369 }
8370 out:
8371 return ret;
8372 }
8373
8374 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8375 {
8376 return unpin_extent_range(root, start, end);
8377 }
8378
8379 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8380 u64 num_bytes, u64 *actual_bytes)
8381 {
8382 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8383 }
8384
8385 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8386 {
8387 struct btrfs_fs_info *fs_info = root->fs_info;
8388 struct btrfs_block_group_cache *cache = NULL;
8389 u64 group_trimmed;
8390 u64 start;
8391 u64 end;
8392 u64 trimmed = 0;
8393 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8394 int ret = 0;
8395
8396 /*
8397 * try to trim all FS space, our block group may start from non-zero.
8398 */
8399 if (range->len == total_bytes)
8400 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8401 else
8402 cache = btrfs_lookup_block_group(fs_info, range->start);
8403
8404 while (cache) {
8405 if (cache->key.objectid >= (range->start + range->len)) {
8406 btrfs_put_block_group(cache);
8407 break;
8408 }
8409
8410 start = max(range->start, cache->key.objectid);
8411 end = min(range->start + range->len,
8412 cache->key.objectid + cache->key.offset);
8413
8414 if (end - start >= range->minlen) {
8415 if (!block_group_cache_done(cache)) {
8416 ret = cache_block_group(cache, 0);
8417 if (!ret)
8418 wait_block_group_cache_done(cache);
8419 }
8420 ret = btrfs_trim_block_group(cache,
8421 &group_trimmed,
8422 start,
8423 end,
8424 range->minlen);
8425
8426 trimmed += group_trimmed;
8427 if (ret) {
8428 btrfs_put_block_group(cache);
8429 break;
8430 }
8431 }
8432
8433 cache = next_block_group(fs_info->tree_root, cache);
8434 }
8435
8436 range->len = trimmed;
8437 return ret;
8438 }
This page took 0.197262 seconds and 6 git commands to generate.