Merge branch 'for-rc' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
99 int level, struct btrfs_key *ins,
100 int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 u64 num_bytes, int reserve,
110 int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
115
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 smp_mb();
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
122 }
123
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 return (cache->flags & bits) == bits;
127 }
128
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 atomic_inc(&cache->count);
132 }
133
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
139 kfree(cache->free_space_ctl);
140 kfree(cache);
141 }
142 }
143
144 /*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 struct btrfs_block_group_cache *block_group)
150 {
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182 }
183
184 /*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191 {
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
220 if (ret) {
221 btrfs_get_block_group(ret);
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228 }
229
230 static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
232 {
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239 }
240
241 static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243 {
244 u64 start, end;
245
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254
255 static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
257 {
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
268 if (ret)
269 return ret;
270 }
271
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
277 if (ret)
278 return ret;
279
280 while (nr--) {
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
306 }
307
308 kfree(logical);
309 }
310 return 0;
311 }
312
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328 }
329
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334 }
335
336 /*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
385 struct btrfs_path *path;
386 struct extent_buffer *leaf;
387 struct btrfs_key key;
388 u64 total_found = 0;
389 u64 last = 0;
390 u32 nritems;
391 int ret = -ENOMEM;
392
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
398 path = btrfs_alloc_path();
399 if (!path)
400 goto out;
401
402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403
404 /*
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
409 */
410 path->skip_locking = 1;
411 path->search_commit_root = 1;
412 path->reada = 1;
413
414 key.objectid = last;
415 key.offset = 0;
416 key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 mutex_lock(&caching_ctl->mutex);
419 /* need to make sure the commit_root doesn't disappear */
420 down_read(&fs_info->commit_root_sem);
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto err;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->commit_root_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
451 }
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
461 }
462
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
476 }
477
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
481
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->nodesize;
490 else
491 last = key.objectid + key.offset;
492
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
497 }
498 path->slots[0]++;
499 }
500 ret = 0;
501
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
506
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
511
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->commit_root_sem);
515
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
530 }
531
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
534 {
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
539
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 mutex_lock(&caching_ctl->mutex);
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 caching_ctl->progress = (u64)-1;
601 } else {
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
607 cache->has_caching_ctl = 1;
608 }
609 }
610 spin_unlock(&cache->lock);
611 mutex_unlock(&caching_ctl->mutex);
612
613 wake_up(&caching_ctl->wait);
614 if (ret == 1) {
615 put_caching_control(caching_ctl);
616 free_excluded_extents(fs_info->extent_root, cache);
617 return 0;
618 }
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
630 cache->has_caching_ctl = 1;
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
634 }
635
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
638 return 0;
639 }
640
641 down_write(&fs_info->commit_root_sem);
642 atomic_inc(&caching_ctl->count);
643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 up_write(&fs_info->commit_root_sem);
645
646 btrfs_get_block_group(cache);
647
648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649
650 return ret;
651 }
652
653 /*
654 * return the block group that starts at or after bytenr
655 */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 struct btrfs_block_group_cache *cache;
660
661 cache = block_group_cache_tree_search(info, bytenr, 0);
662
663 return cache;
664 }
665
666 /*
667 * return the block group that contains the given bytenr
668 */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
672 {
673 struct btrfs_block_group_cache *cache;
674
675 cache = block_group_cache_tree_search(info, bytenr, 1);
676
677 return cache;
678 }
679
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
682 {
683 struct list_head *head = &info->space_info;
684 struct btrfs_space_info *found;
685
686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
690 if (found->flags & flags) {
691 rcu_read_unlock();
692 return found;
693 }
694 }
695 rcu_read_unlock();
696 return NULL;
697 }
698
699 /*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712 }
713
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 int ret;
718 struct btrfs_key key;
719 struct btrfs_path *path;
720
721 path = btrfs_alloc_path();
722 if (!path)
723 return -ENOMEM;
724
725 key.objectid = start;
726 key.offset = len;
727 key.type = BTRFS_EXTENT_ITEM_KEY;
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->nodesize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
775
776 search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
796 key.offset == root->nodesize)
797 ret = 0;
798 }
799 }
800
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 BUG();
820 #endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
840 btrfs_release_path(path);
841
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
849 goto search_again;
850 }
851 spin_lock(&head->lock);
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
858 spin_unlock(&head->lock);
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862 out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868 out_free:
869 btrfs_free_path(path);
870 return ret;
871 }
872
873 /*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
935 * - different files inside a single subvolume
936 * - different offsets inside a file (bookend extents in file.c)
937 *
938 * The extent ref structure for the implicit back refs has fields for:
939 *
940 * - Objectid of the subvolume root
941 * - objectid of the file holding the reference
942 * - original offset in the file
943 * - how many bookend extents
944 *
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
947 *
948 * The extent ref structure for the full back refs has field for:
949 *
950 * - number of pointers in the tree leaf
951 *
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
954 *
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
957 *
958 * (root_key.objectid, inode objectid, offset in file, 1)
959 *
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
962 *
963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 *
965 * Btree extents can be referenced by:
966 *
967 * - Different subvolumes
968 *
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
973 *
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
977 */
978
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
984 {
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
990 struct btrfs_key key;
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret > 0); /* Corruption */
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
1026 btrfs_release_path(path);
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
1036 BUG_ON(ret); /* Corruption */
1037
1038 btrfs_extend_item(root, path, new_size);
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058 }
1059 #endif
1060
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 lenum = cpu_to_le64(owner);
1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 lenum = cpu_to_le64(offset);
1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079 {
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094 }
1095
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
1105 struct extent_buffer *leaf;
1106 u32 nritems;
1107 int ret;
1108 int recow;
1109 int err = -ENOENT;
1110
1111 key.objectid = bytenr;
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120 again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
1127
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 btrfs_release_path(path);
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141 #endif
1142 goto fail;
1143 }
1144
1145 leaf = path->nodes[0];
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
1171 btrfs_release_path(path);
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
1178 }
1179 fail:
1180 return err;
1181 }
1182
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
1189 {
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
1192 u32 size;
1193 u32 num_refs;
1194 int ret;
1195
1196 key.objectid = bytenr;
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
1207
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 }
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
1232 btrfs_release_path(path);
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
1238
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 }
1254 }
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257 fail:
1258 btrfs_release_path(path);
1259 return ret;
1260 }
1261
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
1265 int refs_to_drop, int *last_ref)
1266 {
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
1270 struct extent_buffer *leaf;
1271 u32 num_refs = 0;
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 } else {
1293 BUG();
1294 }
1295
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
1298
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
1301 *last_ref = 1;
1302 } else {
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314 #endif
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
1317 return ret;
1318 }
1319
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360 }
1361
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1367 {
1368 struct btrfs_key key;
1369 int ret;
1370
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1378 }
1379
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
1385 btrfs_release_path(path);
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
1400 {
1401 struct btrfs_key key;
1402 int ret;
1403
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 btrfs_release_path(path);
1415 return ret;
1416 }
1417
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
1433 }
1434
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
1437
1438 {
1439 for (; level < BTRFS_MAX_LEVEL; level++) {
1440 if (!path->nodes[level])
1441 break;
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454 }
1455
1456 /*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477 {
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
1493
1494 key.objectid = bytenr;
1495 key.type = BTRFS_EXTENT_ITEM_KEY;
1496 key.offset = num_bytes;
1497
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
1501 path->keep_locks = 1;
1502 } else
1503 extra_size = -1;
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514 again:
1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 if (ret < 0) {
1517 err = ret;
1518 goto out;
1519 }
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
1537 key.objectid = bytenr;
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
1548 } else if (WARN_ON(ret)) {
1549 err = -EIO;
1550 goto out;
1551 }
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570 #endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 if (insert) {
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * helper to add new inline back ref
1661 */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
1686 btrfs_extend_item(root, path, size);
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
1721 }
1722
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
1736 return ret;
1737
1738 btrfs_release_path(path);
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
1747 }
1748 return ret;
1749 }
1750
1751 /*
1752 * helper to update/remove inline back ref
1753 */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
1761 {
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
1793 }
1794
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
1804 *last_ref = 1;
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
1813 btrfs_truncate_item(root, path, item_size, 1);
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
1816 }
1817
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 update_inline_extent_backref(root, path, iref,
1836 refs_to_add, extent_op, NULL);
1837 } else if (ret == -ENOENT) {
1838 setup_inline_extent_backref(root, path, iref, parent,
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
1842 }
1843 return ret;
1844 }
1845
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863 }
1864
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
1869 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 int ret = 0;
1872
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
1875 update_inline_extent_backref(root, path, iref,
1876 -refs_to_drop, NULL, last_ref);
1877 } else if (is_data) {
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
1880 } else {
1881 *last_ref = 1;
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885 }
1886
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 u64 start, u64 len)
1889 {
1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 int ret;
1897 u64 discarded_bytes = 0;
1898 struct btrfs_bio *bbio = NULL;
1899
1900
1901 /* Tell the block device(s) that the sectors can be discarded */
1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 bytenr, &num_bytes, &bbio, 0);
1904 /* Error condition is -ENOMEM */
1905 if (!ret) {
1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 int i;
1908
1909
1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
1928 }
1929 btrfs_put_bbio(bbio);
1930 }
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
1935
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
1938 return ret;
1939 }
1940
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 int no_quota,
1974 struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 struct btrfs_fs_info *fs_info = root->fs_info;
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 struct btrfs_key key;
1981 u64 refs;
1982 int ret;
1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 goto out;
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
2014
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
2025 leaf = path->nodes[0];
2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
2034
2035 btrfs_mark_buffer_dirty(leaf);
2036 btrfs_release_path(path);
2037
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
2045 path->reada = 1;
2046 path->leave_spinning = 1;
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 btrfs_free_path(path);
2055 return ret;
2056 }
2057
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
2063 {
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
2080 ref_root = ref->root;
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 if (extent_op)
2084 flags |= extent_op->flags_to_set;
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
2094 node->no_quota, extent_op);
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
2100 extent_op, node->no_quota);
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105 }
2106
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110 {
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123 }
2124
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
2135 int ret;
2136 int err = 0;
2137 int metadata = !extent_op->is_data;
2138
2139 if (trans->aborted)
2140 return 0;
2141
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
2150
2151 if (metadata) {
2152 key.type = BTRFS_METADATA_ITEM_KEY;
2153 key.offset = extent_op->level;
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159 again:
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
2169 if (metadata) {
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
2182
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
2191 }
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207 #endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
2211
2212 btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 btrfs_free_path(path);
2215 return err;
2216 }
2217
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
2223 {
2224 int ret = 0;
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
2231
2232 ref = btrfs_delayed_node_to_tree_ref(node);
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
2237 ref_root = ref->root;
2238
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 BUG_ON(!extent_op || !extent_op->update_flags);
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
2255 ref->level, &ins,
2256 node->no_quota);
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
2267 } else {
2268 BUG();
2269 }
2270 return ret;
2271 }
2272
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
2286 return 0;
2287 }
2288
2289 if (btrfs_delayed_ref_is_head(node)) {
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
2301 if (insert_reserved) {
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
2308 }
2309 }
2310 return ret;
2311 }
2312
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
2324 }
2325
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 struct rb_node *node;
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
2337 node = rb_first(&head->ref_root);
2338 while (node) {
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 return ref;
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
2346 }
2347 return last;
2348 }
2349
2350 /*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
2357 {
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 struct btrfs_delayed_extent_op *extent_op;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 ktime_t start = ktime_get();
2364 int ret;
2365 unsigned long count = 0;
2366 unsigned long actual_count = 0;
2367 int must_insert_reserved = 0;
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
2370 while (1) {
2371 if (!locked_ref) {
2372 if (count >= nr)
2373 break;
2374
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 spin_unlock(&delayed_refs->lock);
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
2396 }
2397 }
2398
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
2406 spin_lock(&locked_ref->lock);
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 spin_unlock(&locked_ref->lock);
2419 btrfs_delayed_ref_unlock(locked_ref);
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 locked_ref = NULL;
2425 cond_resched();
2426 count++;
2427 continue;
2428 }
2429
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
2436
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
2440 if (!ref) {
2441
2442
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
2448
2449 if (extent_op && must_insert_reserved) {
2450 btrfs_free_delayed_extent_op(extent_op);
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
2455 spin_unlock(&locked_ref->lock);
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
2458 btrfs_free_delayed_extent_op(extent_op);
2459
2460 if (ret) {
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
2469 locked_ref->processing = 0;
2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 btrfs_delayed_ref_unlock(locked_ref);
2472 return ret;
2473 }
2474 continue;
2475 }
2476
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
2497 actual_count++;
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 }
2501 atomic_dec(&delayed_refs->num_entries);
2502
2503 if (!btrfs_delayed_ref_is_head(ref)) {
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
2520 spin_unlock(&locked_ref->lock);
2521
2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 must_insert_reserved);
2524
2525 btrfs_free_delayed_extent_op(extent_op);
2526 if (ret) {
2527 locked_ref->processing = 0;
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 return ret;
2532 }
2533
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
2541 if (locked_ref->is_data &&
2542 locked_ref->total_ref_mod < 0) {
2543 spin_lock(&delayed_refs->lock);
2544 delayed_refs->pending_csums -= ref->num_bytes;
2545 spin_unlock(&delayed_refs->lock);
2546 }
2547 btrfs_delayed_ref_unlock(locked_ref);
2548 locked_ref = NULL;
2549 }
2550 btrfs_put_delayed_ref(ref);
2551 count++;
2552 cond_resched();
2553 }
2554
2555 /*
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2559 */
2560 if (actual_count > 0) {
2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 u64 avg;
2563
2564 /*
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2567 */
2568 spin_lock(&delayed_refs->lock);
2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2571 spin_unlock(&delayed_refs->lock);
2572 }
2573 return 0;
2574 }
2575
2576 #ifdef SCRAMBLE_DELAYED_REFS
2577 /*
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2581 */
2582 static u64 find_middle(struct rb_root *root)
2583 {
2584 struct rb_node *n = root->rb_node;
2585 struct btrfs_delayed_ref_node *entry;
2586 int alt = 1;
2587 u64 middle;
2588 u64 first = 0, last = 0;
2589
2590 n = rb_first(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 first = entry->bytenr;
2594 }
2595 n = rb_last(root);
2596 if (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 last = entry->bytenr;
2599 }
2600 n = root->rb_node;
2601
2602 while (n) {
2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 WARN_ON(!entry->in_tree);
2605
2606 middle = entry->bytenr;
2607
2608 if (alt)
2609 n = n->rb_left;
2610 else
2611 n = n->rb_right;
2612
2613 alt = 1 - alt;
2614 }
2615 return middle;
2616 }
2617 #endif
2618
2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620 {
2621 u64 num_bytes;
2622
2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 sizeof(struct btrfs_extent_inline_ref));
2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627
2628 /*
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2631 */
2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2633 }
2634
2635 /*
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2638 */
2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2640 {
2641 u64 csum_size;
2642 u64 num_csums_per_leaf;
2643 u64 num_csums;
2644
2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 num_csums_per_leaf = div64_u64(csum_size,
2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 num_csums += num_csums_per_leaf - 1;
2650 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 return num_csums;
2652 }
2653
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655 struct btrfs_root *root)
2656 {
2657 struct btrfs_block_rsv *global_rsv;
2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 u64 num_bytes, num_dirty_bgs_bytes;
2662 int ret = 0;
2663
2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 num_heads = heads_to_leaves(root, num_heads);
2666 if (num_heads > 1)
2667 num_bytes += (num_heads - 1) * root->nodesize;
2668 num_bytes <<= 1;
2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 num_dirty_bgs);
2672 global_rsv = &root->fs_info->global_block_rsv;
2673
2674 /*
2675 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 * wiggle room since running delayed refs can create more delayed refs.
2677 */
2678 if (global_rsv->space_info->full) {
2679 num_dirty_bgs_bytes <<= 1;
2680 num_bytes <<= 1;
2681 }
2682
2683 spin_lock(&global_rsv->lock);
2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2685 ret = 1;
2686 spin_unlock(&global_rsv->lock);
2687 return ret;
2688 }
2689
2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root)
2692 {
2693 struct btrfs_fs_info *fs_info = root->fs_info;
2694 u64 num_entries =
2695 atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 u64 avg_runtime;
2697 u64 val;
2698
2699 smp_mb();
2700 avg_runtime = fs_info->avg_delayed_ref_runtime;
2701 val = num_entries * avg_runtime;
2702 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 return 1;
2704 if (val >= NSEC_PER_SEC / 2)
2705 return 2;
2706
2707 return btrfs_check_space_for_delayed_refs(trans, root);
2708 }
2709
2710 struct async_delayed_refs {
2711 struct btrfs_root *root;
2712 int count;
2713 int error;
2714 int sync;
2715 struct completion wait;
2716 struct btrfs_work work;
2717 };
2718
2719 static void delayed_ref_async_start(struct btrfs_work *work)
2720 {
2721 struct async_delayed_refs *async;
2722 struct btrfs_trans_handle *trans;
2723 int ret;
2724
2725 async = container_of(work, struct async_delayed_refs, work);
2726
2727 trans = btrfs_join_transaction(async->root);
2728 if (IS_ERR(trans)) {
2729 async->error = PTR_ERR(trans);
2730 goto done;
2731 }
2732
2733 /*
2734 * trans->sync means that when we call end_transaciton, we won't
2735 * wait on delayed refs
2736 */
2737 trans->sync = true;
2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 if (ret)
2740 async->error = ret;
2741
2742 ret = btrfs_end_transaction(trans, async->root);
2743 if (ret && !async->error)
2744 async->error = ret;
2745 done:
2746 if (async->sync)
2747 complete(&async->wait);
2748 else
2749 kfree(async);
2750 }
2751
2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 unsigned long count, int wait)
2754 {
2755 struct async_delayed_refs *async;
2756 int ret;
2757
2758 async = kmalloc(sizeof(*async), GFP_NOFS);
2759 if (!async)
2760 return -ENOMEM;
2761
2762 async->root = root->fs_info->tree_root;
2763 async->count = count;
2764 async->error = 0;
2765 if (wait)
2766 async->sync = 1;
2767 else
2768 async->sync = 0;
2769 init_completion(&async->wait);
2770
2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 delayed_ref_async_start, NULL, NULL);
2773
2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775
2776 if (wait) {
2777 wait_for_completion(&async->wait);
2778 ret = async->error;
2779 kfree(async);
2780 return ret;
2781 }
2782 return 0;
2783 }
2784
2785 /*
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far. count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
2791 *
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
2794 */
2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 struct btrfs_root *root, unsigned long count)
2797 {
2798 struct rb_node *node;
2799 struct btrfs_delayed_ref_root *delayed_refs;
2800 struct btrfs_delayed_ref_head *head;
2801 int ret;
2802 int run_all = count == (unsigned long)-1;
2803
2804 /* We'll clean this up in btrfs_cleanup_transaction */
2805 if (trans->aborted)
2806 return 0;
2807
2808 if (root == root->fs_info->extent_root)
2809 root = root->fs_info->tree_root;
2810
2811 delayed_refs = &trans->transaction->delayed_refs;
2812 if (count == 0)
2813 count = atomic_read(&delayed_refs->num_entries) * 2;
2814
2815 again:
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818 #endif
2819 ret = __btrfs_run_delayed_refs(trans, root, count);
2820 if (ret < 0) {
2821 btrfs_abort_transaction(trans, root, ret);
2822 return ret;
2823 }
2824
2825 if (run_all) {
2826 if (!list_empty(&trans->new_bgs))
2827 btrfs_create_pending_block_groups(trans, root);
2828
2829 spin_lock(&delayed_refs->lock);
2830 node = rb_first(&delayed_refs->href_root);
2831 if (!node) {
2832 spin_unlock(&delayed_refs->lock);
2833 goto out;
2834 }
2835 count = (unsigned long)-1;
2836
2837 while (node) {
2838 head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 href_node);
2840 if (btrfs_delayed_ref_is_head(&head->node)) {
2841 struct btrfs_delayed_ref_node *ref;
2842
2843 ref = &head->node;
2844 atomic_inc(&ref->refs);
2845
2846 spin_unlock(&delayed_refs->lock);
2847 /*
2848 * Mutex was contended, block until it's
2849 * released and try again
2850 */
2851 mutex_lock(&head->mutex);
2852 mutex_unlock(&head->mutex);
2853
2854 btrfs_put_delayed_ref(ref);
2855 cond_resched();
2856 goto again;
2857 } else {
2858 WARN_ON(1);
2859 }
2860 node = rb_next(node);
2861 }
2862 spin_unlock(&delayed_refs->lock);
2863 cond_resched();
2864 goto again;
2865 }
2866 out:
2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 if (ret)
2869 return ret;
2870 assert_qgroups_uptodate(trans);
2871 return 0;
2872 }
2873
2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 u64 bytenr, u64 num_bytes, u64 flags,
2877 int level, int is_data)
2878 {
2879 struct btrfs_delayed_extent_op *extent_op;
2880 int ret;
2881
2882 extent_op = btrfs_alloc_delayed_extent_op();
2883 if (!extent_op)
2884 return -ENOMEM;
2885
2886 extent_op->flags_to_set = flags;
2887 extent_op->update_flags = 1;
2888 extent_op->update_key = 0;
2889 extent_op->is_data = is_data ? 1 : 0;
2890 extent_op->level = level;
2891
2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 num_bytes, extent_op);
2894 if (ret)
2895 btrfs_free_delayed_extent_op(extent_op);
2896 return ret;
2897 }
2898
2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 struct btrfs_path *path,
2902 u64 objectid, u64 offset, u64 bytenr)
2903 {
2904 struct btrfs_delayed_ref_head *head;
2905 struct btrfs_delayed_ref_node *ref;
2906 struct btrfs_delayed_data_ref *data_ref;
2907 struct btrfs_delayed_ref_root *delayed_refs;
2908 struct rb_node *node;
2909 int ret = 0;
2910
2911 delayed_refs = &trans->transaction->delayed_refs;
2912 spin_lock(&delayed_refs->lock);
2913 head = btrfs_find_delayed_ref_head(trans, bytenr);
2914 if (!head) {
2915 spin_unlock(&delayed_refs->lock);
2916 return 0;
2917 }
2918
2919 if (!mutex_trylock(&head->mutex)) {
2920 atomic_inc(&head->node.refs);
2921 spin_unlock(&delayed_refs->lock);
2922
2923 btrfs_release_path(path);
2924
2925 /*
2926 * Mutex was contended, block until it's released and let
2927 * caller try again
2928 */
2929 mutex_lock(&head->mutex);
2930 mutex_unlock(&head->mutex);
2931 btrfs_put_delayed_ref(&head->node);
2932 return -EAGAIN;
2933 }
2934 spin_unlock(&delayed_refs->lock);
2935
2936 spin_lock(&head->lock);
2937 node = rb_first(&head->ref_root);
2938 while (node) {
2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 node = rb_next(node);
2941
2942 /* If it's a shared ref we know a cross reference exists */
2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 ret = 1;
2945 break;
2946 }
2947
2948 data_ref = btrfs_delayed_node_to_data_ref(ref);
2949
2950 /*
2951 * If our ref doesn't match the one we're currently looking at
2952 * then we have a cross reference.
2953 */
2954 if (data_ref->root != root->root_key.objectid ||
2955 data_ref->objectid != objectid ||
2956 data_ref->offset != offset) {
2957 ret = 1;
2958 break;
2959 }
2960 }
2961 spin_unlock(&head->lock);
2962 mutex_unlock(&head->mutex);
2963 return ret;
2964 }
2965
2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path,
2969 u64 objectid, u64 offset, u64 bytenr)
2970 {
2971 struct btrfs_root *extent_root = root->fs_info->extent_root;
2972 struct extent_buffer *leaf;
2973 struct btrfs_extent_data_ref *ref;
2974 struct btrfs_extent_inline_ref *iref;
2975 struct btrfs_extent_item *ei;
2976 struct btrfs_key key;
2977 u32 item_size;
2978 int ret;
2979
2980 key.objectid = bytenr;
2981 key.offset = (u64)-1;
2982 key.type = BTRFS_EXTENT_ITEM_KEY;
2983
2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 if (ret < 0)
2986 goto out;
2987 BUG_ON(ret == 0); /* Corruption */
2988
2989 ret = -ENOENT;
2990 if (path->slots[0] == 0)
2991 goto out;
2992
2993 path->slots[0]--;
2994 leaf = path->nodes[0];
2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2996
2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2998 goto out;
2999
3000 ret = 1;
3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 if (item_size < sizeof(*ei)) {
3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 goto out;
3006 }
3007 #endif
3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3009
3010 if (item_size != sizeof(*ei) +
3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 goto out;
3013
3014 if (btrfs_extent_generation(leaf, ei) <=
3015 btrfs_root_last_snapshot(&root->root_item))
3016 goto out;
3017
3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 BTRFS_EXTENT_DATA_REF_KEY)
3021 goto out;
3022
3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 if (btrfs_extent_refs(leaf, ei) !=
3025 btrfs_extent_data_ref_count(leaf, ref) ||
3026 btrfs_extent_data_ref_root(leaf, ref) !=
3027 root->root_key.objectid ||
3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 goto out;
3031
3032 ret = 0;
3033 out:
3034 return ret;
3035 }
3036
3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 struct btrfs_path *path;
3042 int ret;
3043 int ret2;
3044
3045 path = btrfs_alloc_path();
3046 if (!path)
3047 return -ENOENT;
3048
3049 do {
3050 ret = check_committed_ref(trans, root, path, objectid,
3051 offset, bytenr);
3052 if (ret && ret != -ENOENT)
3053 goto out;
3054
3055 ret2 = check_delayed_ref(trans, root, path, objectid,
3056 offset, bytenr);
3057 } while (ret2 == -EAGAIN);
3058
3059 if (ret2 && ret2 != -ENOENT) {
3060 ret = ret2;
3061 goto out;
3062 }
3063
3064 if (ret != -ENOENT || ret2 != -ENOENT)
3065 ret = 0;
3066 out:
3067 btrfs_free_path(path);
3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 WARN_ON(ret > 0);
3070 return ret;
3071 }
3072
3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3074 struct btrfs_root *root,
3075 struct extent_buffer *buf,
3076 int full_backref, int inc)
3077 {
3078 u64 bytenr;
3079 u64 num_bytes;
3080 u64 parent;
3081 u64 ref_root;
3082 u32 nritems;
3083 struct btrfs_key key;
3084 struct btrfs_file_extent_item *fi;
3085 int i;
3086 int level;
3087 int ret = 0;
3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3089 u64, u64, u64, u64, u64, u64, int);
3090
3091
3092 if (btrfs_test_is_dummy_root(root))
3093 return 0;
3094
3095 ref_root = btrfs_header_owner(buf);
3096 nritems = btrfs_header_nritems(buf);
3097 level = btrfs_header_level(buf);
3098
3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3100 return 0;
3101
3102 if (inc)
3103 process_func = btrfs_inc_extent_ref;
3104 else
3105 process_func = btrfs_free_extent;
3106
3107 if (full_backref)
3108 parent = buf->start;
3109 else
3110 parent = 0;
3111
3112 for (i = 0; i < nritems; i++) {
3113 if (level == 0) {
3114 btrfs_item_key_to_cpu(buf, &key, i);
3115 if (key.type != BTRFS_EXTENT_DATA_KEY)
3116 continue;
3117 fi = btrfs_item_ptr(buf, i,
3118 struct btrfs_file_extent_item);
3119 if (btrfs_file_extent_type(buf, fi) ==
3120 BTRFS_FILE_EXTENT_INLINE)
3121 continue;
3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 if (bytenr == 0)
3124 continue;
3125
3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 key.offset -= btrfs_file_extent_offset(buf, fi);
3128 ret = process_func(trans, root, bytenr, num_bytes,
3129 parent, ref_root, key.objectid,
3130 key.offset, 1);
3131 if (ret)
3132 goto fail;
3133 } else {
3134 bytenr = btrfs_node_blockptr(buf, i);
3135 num_bytes = root->nodesize;
3136 ret = process_func(trans, root, bytenr, num_bytes,
3137 parent, ref_root, level - 1, 0,
3138 1);
3139 if (ret)
3140 goto fail;
3141 }
3142 }
3143 return 0;
3144 fail:
3145 return ret;
3146 }
3147
3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3149 struct extent_buffer *buf, int full_backref)
3150 {
3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3152 }
3153
3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3155 struct extent_buffer *buf, int full_backref)
3156 {
3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3158 }
3159
3160 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 struct btrfs_path *path,
3163 struct btrfs_block_group_cache *cache)
3164 {
3165 int ret;
3166 struct btrfs_root *extent_root = root->fs_info->extent_root;
3167 unsigned long bi;
3168 struct extent_buffer *leaf;
3169
3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3171 if (ret) {
3172 if (ret > 0)
3173 ret = -ENOENT;
3174 goto fail;
3175 }
3176
3177 leaf = path->nodes[0];
3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 btrfs_mark_buffer_dirty(leaf);
3181 fail:
3182 btrfs_release_path(path);
3183 if (ret)
3184 btrfs_abort_transaction(trans, root, ret);
3185 return ret;
3186
3187 }
3188
3189 static struct btrfs_block_group_cache *
3190 next_block_group(struct btrfs_root *root,
3191 struct btrfs_block_group_cache *cache)
3192 {
3193 struct rb_node *node;
3194
3195 spin_lock(&root->fs_info->block_group_cache_lock);
3196
3197 /* If our block group was removed, we need a full search. */
3198 if (RB_EMPTY_NODE(&cache->cache_node)) {
3199 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3200
3201 spin_unlock(&root->fs_info->block_group_cache_lock);
3202 btrfs_put_block_group(cache);
3203 cache = btrfs_lookup_first_block_group(root->fs_info,
3204 next_bytenr);
3205 return cache;
3206 }
3207 node = rb_next(&cache->cache_node);
3208 btrfs_put_block_group(cache);
3209 if (node) {
3210 cache = rb_entry(node, struct btrfs_block_group_cache,
3211 cache_node);
3212 btrfs_get_block_group(cache);
3213 } else
3214 cache = NULL;
3215 spin_unlock(&root->fs_info->block_group_cache_lock);
3216 return cache;
3217 }
3218
3219 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3220 struct btrfs_trans_handle *trans,
3221 struct btrfs_path *path)
3222 {
3223 struct btrfs_root *root = block_group->fs_info->tree_root;
3224 struct inode *inode = NULL;
3225 u64 alloc_hint = 0;
3226 int dcs = BTRFS_DC_ERROR;
3227 u64 num_pages = 0;
3228 int retries = 0;
3229 int ret = 0;
3230
3231 /*
3232 * If this block group is smaller than 100 megs don't bother caching the
3233 * block group.
3234 */
3235 if (block_group->key.offset < (100 * 1024 * 1024)) {
3236 spin_lock(&block_group->lock);
3237 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3238 spin_unlock(&block_group->lock);
3239 return 0;
3240 }
3241
3242 if (trans->aborted)
3243 return 0;
3244 again:
3245 inode = lookup_free_space_inode(root, block_group, path);
3246 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3247 ret = PTR_ERR(inode);
3248 btrfs_release_path(path);
3249 goto out;
3250 }
3251
3252 if (IS_ERR(inode)) {
3253 BUG_ON(retries);
3254 retries++;
3255
3256 if (block_group->ro)
3257 goto out_free;
3258
3259 ret = create_free_space_inode(root, trans, block_group, path);
3260 if (ret)
3261 goto out_free;
3262 goto again;
3263 }
3264
3265 /* We've already setup this transaction, go ahead and exit */
3266 if (block_group->cache_generation == trans->transid &&
3267 i_size_read(inode)) {
3268 dcs = BTRFS_DC_SETUP;
3269 goto out_put;
3270 }
3271
3272 /*
3273 * We want to set the generation to 0, that way if anything goes wrong
3274 * from here on out we know not to trust this cache when we load up next
3275 * time.
3276 */
3277 BTRFS_I(inode)->generation = 0;
3278 ret = btrfs_update_inode(trans, root, inode);
3279 if (ret) {
3280 /*
3281 * So theoretically we could recover from this, simply set the
3282 * super cache generation to 0 so we know to invalidate the
3283 * cache, but then we'd have to keep track of the block groups
3284 * that fail this way so we know we _have_ to reset this cache
3285 * before the next commit or risk reading stale cache. So to
3286 * limit our exposure to horrible edge cases lets just abort the
3287 * transaction, this only happens in really bad situations
3288 * anyway.
3289 */
3290 btrfs_abort_transaction(trans, root, ret);
3291 goto out_put;
3292 }
3293 WARN_ON(ret);
3294
3295 if (i_size_read(inode) > 0) {
3296 ret = btrfs_check_trunc_cache_free_space(root,
3297 &root->fs_info->global_block_rsv);
3298 if (ret)
3299 goto out_put;
3300
3301 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3302 if (ret)
3303 goto out_put;
3304 }
3305
3306 spin_lock(&block_group->lock);
3307 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3308 !btrfs_test_opt(root, SPACE_CACHE)) {
3309 /*
3310 * don't bother trying to write stuff out _if_
3311 * a) we're not cached,
3312 * b) we're with nospace_cache mount option.
3313 */
3314 dcs = BTRFS_DC_WRITTEN;
3315 spin_unlock(&block_group->lock);
3316 goto out_put;
3317 }
3318 spin_unlock(&block_group->lock);
3319
3320 /*
3321 * Try to preallocate enough space based on how big the block group is.
3322 * Keep in mind this has to include any pinned space which could end up
3323 * taking up quite a bit since it's not folded into the other space
3324 * cache.
3325 */
3326 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3327 if (!num_pages)
3328 num_pages = 1;
3329
3330 num_pages *= 16;
3331 num_pages *= PAGE_CACHE_SIZE;
3332
3333 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3334 if (ret)
3335 goto out_put;
3336
3337 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3338 num_pages, num_pages,
3339 &alloc_hint);
3340 if (!ret)
3341 dcs = BTRFS_DC_SETUP;
3342 btrfs_free_reserved_data_space(inode, num_pages);
3343
3344 out_put:
3345 iput(inode);
3346 out_free:
3347 btrfs_release_path(path);
3348 out:
3349 spin_lock(&block_group->lock);
3350 if (!ret && dcs == BTRFS_DC_SETUP)
3351 block_group->cache_generation = trans->transid;
3352 block_group->disk_cache_state = dcs;
3353 spin_unlock(&block_group->lock);
3354
3355 return ret;
3356 }
3357
3358 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3359 struct btrfs_root *root)
3360 {
3361 struct btrfs_block_group_cache *cache, *tmp;
3362 struct btrfs_transaction *cur_trans = trans->transaction;
3363 struct btrfs_path *path;
3364
3365 if (list_empty(&cur_trans->dirty_bgs) ||
3366 !btrfs_test_opt(root, SPACE_CACHE))
3367 return 0;
3368
3369 path = btrfs_alloc_path();
3370 if (!path)
3371 return -ENOMEM;
3372
3373 /* Could add new block groups, use _safe just in case */
3374 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3375 dirty_list) {
3376 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3377 cache_save_setup(cache, trans, path);
3378 }
3379
3380 btrfs_free_path(path);
3381 return 0;
3382 }
3383
3384 /*
3385 * transaction commit does final block group cache writeback during a
3386 * critical section where nothing is allowed to change the FS. This is
3387 * required in order for the cache to actually match the block group,
3388 * but can introduce a lot of latency into the commit.
3389 *
3390 * So, btrfs_start_dirty_block_groups is here to kick off block group
3391 * cache IO. There's a chance we'll have to redo some of it if the
3392 * block group changes again during the commit, but it greatly reduces
3393 * the commit latency by getting rid of the easy block groups while
3394 * we're still allowing others to join the commit.
3395 */
3396 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3397 struct btrfs_root *root)
3398 {
3399 struct btrfs_block_group_cache *cache;
3400 struct btrfs_transaction *cur_trans = trans->transaction;
3401 int ret = 0;
3402 int should_put;
3403 struct btrfs_path *path = NULL;
3404 LIST_HEAD(dirty);
3405 struct list_head *io = &cur_trans->io_bgs;
3406 int num_started = 0;
3407 int loops = 0;
3408
3409 spin_lock(&cur_trans->dirty_bgs_lock);
3410 if (list_empty(&cur_trans->dirty_bgs)) {
3411 spin_unlock(&cur_trans->dirty_bgs_lock);
3412 return 0;
3413 }
3414 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3415 spin_unlock(&cur_trans->dirty_bgs_lock);
3416
3417 again:
3418 /*
3419 * make sure all the block groups on our dirty list actually
3420 * exist
3421 */
3422 btrfs_create_pending_block_groups(trans, root);
3423
3424 if (!path) {
3425 path = btrfs_alloc_path();
3426 if (!path)
3427 return -ENOMEM;
3428 }
3429
3430 /*
3431 * cache_write_mutex is here only to save us from balance or automatic
3432 * removal of empty block groups deleting this block group while we are
3433 * writing out the cache
3434 */
3435 mutex_lock(&trans->transaction->cache_write_mutex);
3436 while (!list_empty(&dirty)) {
3437 cache = list_first_entry(&dirty,
3438 struct btrfs_block_group_cache,
3439 dirty_list);
3440 /*
3441 * this can happen if something re-dirties a block
3442 * group that is already under IO. Just wait for it to
3443 * finish and then do it all again
3444 */
3445 if (!list_empty(&cache->io_list)) {
3446 list_del_init(&cache->io_list);
3447 btrfs_wait_cache_io(root, trans, cache,
3448 &cache->io_ctl, path,
3449 cache->key.objectid);
3450 btrfs_put_block_group(cache);
3451 }
3452
3453
3454 /*
3455 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3456 * if it should update the cache_state. Don't delete
3457 * until after we wait.
3458 *
3459 * Since we're not running in the commit critical section
3460 * we need the dirty_bgs_lock to protect from update_block_group
3461 */
3462 spin_lock(&cur_trans->dirty_bgs_lock);
3463 list_del_init(&cache->dirty_list);
3464 spin_unlock(&cur_trans->dirty_bgs_lock);
3465
3466 should_put = 1;
3467
3468 cache_save_setup(cache, trans, path);
3469
3470 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3471 cache->io_ctl.inode = NULL;
3472 ret = btrfs_write_out_cache(root, trans, cache, path);
3473 if (ret == 0 && cache->io_ctl.inode) {
3474 num_started++;
3475 should_put = 0;
3476
3477 /*
3478 * the cache_write_mutex is protecting
3479 * the io_list
3480 */
3481 list_add_tail(&cache->io_list, io);
3482 } else {
3483 /*
3484 * if we failed to write the cache, the
3485 * generation will be bad and life goes on
3486 */
3487 ret = 0;
3488 }
3489 }
3490 if (!ret)
3491 ret = write_one_cache_group(trans, root, path, cache);
3492
3493 /* if its not on the io list, we need to put the block group */
3494 if (should_put)
3495 btrfs_put_block_group(cache);
3496
3497 if (ret)
3498 break;
3499
3500 /*
3501 * Avoid blocking other tasks for too long. It might even save
3502 * us from writing caches for block groups that are going to be
3503 * removed.
3504 */
3505 mutex_unlock(&trans->transaction->cache_write_mutex);
3506 mutex_lock(&trans->transaction->cache_write_mutex);
3507 }
3508 mutex_unlock(&trans->transaction->cache_write_mutex);
3509
3510 /*
3511 * go through delayed refs for all the stuff we've just kicked off
3512 * and then loop back (just once)
3513 */
3514 ret = btrfs_run_delayed_refs(trans, root, 0);
3515 if (!ret && loops == 0) {
3516 loops++;
3517 spin_lock(&cur_trans->dirty_bgs_lock);
3518 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3519 /*
3520 * dirty_bgs_lock protects us from concurrent block group
3521 * deletes too (not just cache_write_mutex).
3522 */
3523 if (!list_empty(&dirty)) {
3524 spin_unlock(&cur_trans->dirty_bgs_lock);
3525 goto again;
3526 }
3527 spin_unlock(&cur_trans->dirty_bgs_lock);
3528 }
3529
3530 btrfs_free_path(path);
3531 return ret;
3532 }
3533
3534 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3535 struct btrfs_root *root)
3536 {
3537 struct btrfs_block_group_cache *cache;
3538 struct btrfs_transaction *cur_trans = trans->transaction;
3539 int ret = 0;
3540 int should_put;
3541 struct btrfs_path *path;
3542 struct list_head *io = &cur_trans->io_bgs;
3543 int num_started = 0;
3544
3545 path = btrfs_alloc_path();
3546 if (!path)
3547 return -ENOMEM;
3548
3549 /*
3550 * We don't need the lock here since we are protected by the transaction
3551 * commit. We want to do the cache_save_setup first and then run the
3552 * delayed refs to make sure we have the best chance at doing this all
3553 * in one shot.
3554 */
3555 while (!list_empty(&cur_trans->dirty_bgs)) {
3556 cache = list_first_entry(&cur_trans->dirty_bgs,
3557 struct btrfs_block_group_cache,
3558 dirty_list);
3559
3560 /*
3561 * this can happen if cache_save_setup re-dirties a block
3562 * group that is already under IO. Just wait for it to
3563 * finish and then do it all again
3564 */
3565 if (!list_empty(&cache->io_list)) {
3566 list_del_init(&cache->io_list);
3567 btrfs_wait_cache_io(root, trans, cache,
3568 &cache->io_ctl, path,
3569 cache->key.objectid);
3570 btrfs_put_block_group(cache);
3571 }
3572
3573 /*
3574 * don't remove from the dirty list until after we've waited
3575 * on any pending IO
3576 */
3577 list_del_init(&cache->dirty_list);
3578 should_put = 1;
3579
3580 cache_save_setup(cache, trans, path);
3581
3582 if (!ret)
3583 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3584
3585 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3586 cache->io_ctl.inode = NULL;
3587 ret = btrfs_write_out_cache(root, trans, cache, path);
3588 if (ret == 0 && cache->io_ctl.inode) {
3589 num_started++;
3590 should_put = 0;
3591 list_add_tail(&cache->io_list, io);
3592 } else {
3593 /*
3594 * if we failed to write the cache, the
3595 * generation will be bad and life goes on
3596 */
3597 ret = 0;
3598 }
3599 }
3600 if (!ret)
3601 ret = write_one_cache_group(trans, root, path, cache);
3602
3603 /* if its not on the io list, we need to put the block group */
3604 if (should_put)
3605 btrfs_put_block_group(cache);
3606 }
3607
3608 while (!list_empty(io)) {
3609 cache = list_first_entry(io, struct btrfs_block_group_cache,
3610 io_list);
3611 list_del_init(&cache->io_list);
3612 btrfs_wait_cache_io(root, trans, cache,
3613 &cache->io_ctl, path, cache->key.objectid);
3614 btrfs_put_block_group(cache);
3615 }
3616
3617 btrfs_free_path(path);
3618 return ret;
3619 }
3620
3621 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3622 {
3623 struct btrfs_block_group_cache *block_group;
3624 int readonly = 0;
3625
3626 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3627 if (!block_group || block_group->ro)
3628 readonly = 1;
3629 if (block_group)
3630 btrfs_put_block_group(block_group);
3631 return readonly;
3632 }
3633
3634 static const char *alloc_name(u64 flags)
3635 {
3636 switch (flags) {
3637 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3638 return "mixed";
3639 case BTRFS_BLOCK_GROUP_METADATA:
3640 return "metadata";
3641 case BTRFS_BLOCK_GROUP_DATA:
3642 return "data";
3643 case BTRFS_BLOCK_GROUP_SYSTEM:
3644 return "system";
3645 default:
3646 WARN_ON(1);
3647 return "invalid-combination";
3648 };
3649 }
3650
3651 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3652 u64 total_bytes, u64 bytes_used,
3653 struct btrfs_space_info **space_info)
3654 {
3655 struct btrfs_space_info *found;
3656 int i;
3657 int factor;
3658 int ret;
3659
3660 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3661 BTRFS_BLOCK_GROUP_RAID10))
3662 factor = 2;
3663 else
3664 factor = 1;
3665
3666 found = __find_space_info(info, flags);
3667 if (found) {
3668 spin_lock(&found->lock);
3669 found->total_bytes += total_bytes;
3670 found->disk_total += total_bytes * factor;
3671 found->bytes_used += bytes_used;
3672 found->disk_used += bytes_used * factor;
3673 found->full = 0;
3674 spin_unlock(&found->lock);
3675 *space_info = found;
3676 return 0;
3677 }
3678 found = kzalloc(sizeof(*found), GFP_NOFS);
3679 if (!found)
3680 return -ENOMEM;
3681
3682 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3683 if (ret) {
3684 kfree(found);
3685 return ret;
3686 }
3687
3688 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3689 INIT_LIST_HEAD(&found->block_groups[i]);
3690 init_rwsem(&found->groups_sem);
3691 spin_lock_init(&found->lock);
3692 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3693 found->total_bytes = total_bytes;
3694 found->disk_total = total_bytes * factor;
3695 found->bytes_used = bytes_used;
3696 found->disk_used = bytes_used * factor;
3697 found->bytes_pinned = 0;
3698 found->bytes_reserved = 0;
3699 found->bytes_readonly = 0;
3700 found->bytes_may_use = 0;
3701 found->full = 0;
3702 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3703 found->chunk_alloc = 0;
3704 found->flush = 0;
3705 init_waitqueue_head(&found->wait);
3706 INIT_LIST_HEAD(&found->ro_bgs);
3707
3708 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3709 info->space_info_kobj, "%s",
3710 alloc_name(found->flags));
3711 if (ret) {
3712 kfree(found);
3713 return ret;
3714 }
3715
3716 *space_info = found;
3717 list_add_rcu(&found->list, &info->space_info);
3718 if (flags & BTRFS_BLOCK_GROUP_DATA)
3719 info->data_sinfo = found;
3720
3721 return ret;
3722 }
3723
3724 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3725 {
3726 u64 extra_flags = chunk_to_extended(flags) &
3727 BTRFS_EXTENDED_PROFILE_MASK;
3728
3729 write_seqlock(&fs_info->profiles_lock);
3730 if (flags & BTRFS_BLOCK_GROUP_DATA)
3731 fs_info->avail_data_alloc_bits |= extra_flags;
3732 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3733 fs_info->avail_metadata_alloc_bits |= extra_flags;
3734 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3735 fs_info->avail_system_alloc_bits |= extra_flags;
3736 write_sequnlock(&fs_info->profiles_lock);
3737 }
3738
3739 /*
3740 * returns target flags in extended format or 0 if restripe for this
3741 * chunk_type is not in progress
3742 *
3743 * should be called with either volume_mutex or balance_lock held
3744 */
3745 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3746 {
3747 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3748 u64 target = 0;
3749
3750 if (!bctl)
3751 return 0;
3752
3753 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3754 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3755 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3756 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3757 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3758 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3759 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3760 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3761 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3762 }
3763
3764 return target;
3765 }
3766
3767 /*
3768 * @flags: available profiles in extended format (see ctree.h)
3769 *
3770 * Returns reduced profile in chunk format. If profile changing is in
3771 * progress (either running or paused) picks the target profile (if it's
3772 * already available), otherwise falls back to plain reducing.
3773 */
3774 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3775 {
3776 u64 num_devices = root->fs_info->fs_devices->rw_devices;
3777 u64 target;
3778 u64 tmp;
3779
3780 /*
3781 * see if restripe for this chunk_type is in progress, if so
3782 * try to reduce to the target profile
3783 */
3784 spin_lock(&root->fs_info->balance_lock);
3785 target = get_restripe_target(root->fs_info, flags);
3786 if (target) {
3787 /* pick target profile only if it's already available */
3788 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3789 spin_unlock(&root->fs_info->balance_lock);
3790 return extended_to_chunk(target);
3791 }
3792 }
3793 spin_unlock(&root->fs_info->balance_lock);
3794
3795 /* First, mask out the RAID levels which aren't possible */
3796 if (num_devices == 1)
3797 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3798 BTRFS_BLOCK_GROUP_RAID5);
3799 if (num_devices < 3)
3800 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3801 if (num_devices < 4)
3802 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3803
3804 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3805 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3806 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3807 flags &= ~tmp;
3808
3809 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3810 tmp = BTRFS_BLOCK_GROUP_RAID6;
3811 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3812 tmp = BTRFS_BLOCK_GROUP_RAID5;
3813 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3814 tmp = BTRFS_BLOCK_GROUP_RAID10;
3815 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3816 tmp = BTRFS_BLOCK_GROUP_RAID1;
3817 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3818 tmp = BTRFS_BLOCK_GROUP_RAID0;
3819
3820 return extended_to_chunk(flags | tmp);
3821 }
3822
3823 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3824 {
3825 unsigned seq;
3826 u64 flags;
3827
3828 do {
3829 flags = orig_flags;
3830 seq = read_seqbegin(&root->fs_info->profiles_lock);
3831
3832 if (flags & BTRFS_BLOCK_GROUP_DATA)
3833 flags |= root->fs_info->avail_data_alloc_bits;
3834 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3835 flags |= root->fs_info->avail_system_alloc_bits;
3836 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3837 flags |= root->fs_info->avail_metadata_alloc_bits;
3838 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3839
3840 return btrfs_reduce_alloc_profile(root, flags);
3841 }
3842
3843 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3844 {
3845 u64 flags;
3846 u64 ret;
3847
3848 if (data)
3849 flags = BTRFS_BLOCK_GROUP_DATA;
3850 else if (root == root->fs_info->chunk_root)
3851 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3852 else
3853 flags = BTRFS_BLOCK_GROUP_METADATA;
3854
3855 ret = get_alloc_profile(root, flags);
3856 return ret;
3857 }
3858
3859 /*
3860 * This will check the space that the inode allocates from to make sure we have
3861 * enough space for bytes.
3862 */
3863 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3864 {
3865 struct btrfs_space_info *data_sinfo;
3866 struct btrfs_root *root = BTRFS_I(inode)->root;
3867 struct btrfs_fs_info *fs_info = root->fs_info;
3868 u64 used;
3869 int ret = 0;
3870 int need_commit = 2;
3871 int have_pinned_space;
3872
3873 /* make sure bytes are sectorsize aligned */
3874 bytes = ALIGN(bytes, root->sectorsize);
3875
3876 if (btrfs_is_free_space_inode(inode)) {
3877 need_commit = 0;
3878 ASSERT(current->journal_info);
3879 }
3880
3881 data_sinfo = fs_info->data_sinfo;
3882 if (!data_sinfo)
3883 goto alloc;
3884
3885 again:
3886 /* make sure we have enough space to handle the data first */
3887 spin_lock(&data_sinfo->lock);
3888 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3889 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3890 data_sinfo->bytes_may_use;
3891
3892 if (used + bytes > data_sinfo->total_bytes) {
3893 struct btrfs_trans_handle *trans;
3894
3895 /*
3896 * if we don't have enough free bytes in this space then we need
3897 * to alloc a new chunk.
3898 */
3899 if (!data_sinfo->full) {
3900 u64 alloc_target;
3901
3902 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3903 spin_unlock(&data_sinfo->lock);
3904 alloc:
3905 alloc_target = btrfs_get_alloc_profile(root, 1);
3906 /*
3907 * It is ugly that we don't call nolock join
3908 * transaction for the free space inode case here.
3909 * But it is safe because we only do the data space
3910 * reservation for the free space cache in the
3911 * transaction context, the common join transaction
3912 * just increase the counter of the current transaction
3913 * handler, doesn't try to acquire the trans_lock of
3914 * the fs.
3915 */
3916 trans = btrfs_join_transaction(root);
3917 if (IS_ERR(trans))
3918 return PTR_ERR(trans);
3919
3920 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3921 alloc_target,
3922 CHUNK_ALLOC_NO_FORCE);
3923 btrfs_end_transaction(trans, root);
3924 if (ret < 0) {
3925 if (ret != -ENOSPC)
3926 return ret;
3927 else {
3928 have_pinned_space = 1;
3929 goto commit_trans;
3930 }
3931 }
3932
3933 if (!data_sinfo)
3934 data_sinfo = fs_info->data_sinfo;
3935
3936 goto again;
3937 }
3938
3939 /*
3940 * If we don't have enough pinned space to deal with this
3941 * allocation, and no removed chunk in current transaction,
3942 * don't bother committing the transaction.
3943 */
3944 have_pinned_space = percpu_counter_compare(
3945 &data_sinfo->total_bytes_pinned,
3946 used + bytes - data_sinfo->total_bytes);
3947 spin_unlock(&data_sinfo->lock);
3948
3949 /* commit the current transaction and try again */
3950 commit_trans:
3951 if (need_commit &&
3952 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3953 need_commit--;
3954
3955 trans = btrfs_join_transaction(root);
3956 if (IS_ERR(trans))
3957 return PTR_ERR(trans);
3958 if (have_pinned_space >= 0 ||
3959 trans->transaction->have_free_bgs ||
3960 need_commit > 0) {
3961 ret = btrfs_commit_transaction(trans, root);
3962 if (ret)
3963 return ret;
3964 /*
3965 * make sure that all running delayed iput are
3966 * done
3967 */
3968 down_write(&root->fs_info->delayed_iput_sem);
3969 up_write(&root->fs_info->delayed_iput_sem);
3970 goto again;
3971 } else {
3972 btrfs_end_transaction(trans, root);
3973 }
3974 }
3975
3976 trace_btrfs_space_reservation(root->fs_info,
3977 "space_info:enospc",
3978 data_sinfo->flags, bytes, 1);
3979 return -ENOSPC;
3980 }
3981 ret = btrfs_qgroup_reserve(root, write_bytes);
3982 if (ret)
3983 goto out;
3984 data_sinfo->bytes_may_use += bytes;
3985 trace_btrfs_space_reservation(root->fs_info, "space_info",
3986 data_sinfo->flags, bytes, 1);
3987 out:
3988 spin_unlock(&data_sinfo->lock);
3989
3990 return ret;
3991 }
3992
3993 /*
3994 * Called if we need to clear a data reservation for this inode.
3995 */
3996 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3997 {
3998 struct btrfs_root *root = BTRFS_I(inode)->root;
3999 struct btrfs_space_info *data_sinfo;
4000
4001 /* make sure bytes are sectorsize aligned */
4002 bytes = ALIGN(bytes, root->sectorsize);
4003
4004 data_sinfo = root->fs_info->data_sinfo;
4005 spin_lock(&data_sinfo->lock);
4006 WARN_ON(data_sinfo->bytes_may_use < bytes);
4007 data_sinfo->bytes_may_use -= bytes;
4008 trace_btrfs_space_reservation(root->fs_info, "space_info",
4009 data_sinfo->flags, bytes, 0);
4010 spin_unlock(&data_sinfo->lock);
4011 }
4012
4013 static void force_metadata_allocation(struct btrfs_fs_info *info)
4014 {
4015 struct list_head *head = &info->space_info;
4016 struct btrfs_space_info *found;
4017
4018 rcu_read_lock();
4019 list_for_each_entry_rcu(found, head, list) {
4020 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4021 found->force_alloc = CHUNK_ALLOC_FORCE;
4022 }
4023 rcu_read_unlock();
4024 }
4025
4026 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4027 {
4028 return (global->size << 1);
4029 }
4030
4031 static int should_alloc_chunk(struct btrfs_root *root,
4032 struct btrfs_space_info *sinfo, int force)
4033 {
4034 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4035 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4036 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4037 u64 thresh;
4038
4039 if (force == CHUNK_ALLOC_FORCE)
4040 return 1;
4041
4042 /*
4043 * We need to take into account the global rsv because for all intents
4044 * and purposes it's used space. Don't worry about locking the
4045 * global_rsv, it doesn't change except when the transaction commits.
4046 */
4047 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4048 num_allocated += calc_global_rsv_need_space(global_rsv);
4049
4050 /*
4051 * in limited mode, we want to have some free space up to
4052 * about 1% of the FS size.
4053 */
4054 if (force == CHUNK_ALLOC_LIMITED) {
4055 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4056 thresh = max_t(u64, 64 * 1024 * 1024,
4057 div_factor_fine(thresh, 1));
4058
4059 if (num_bytes - num_allocated < thresh)
4060 return 1;
4061 }
4062
4063 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4064 return 0;
4065 return 1;
4066 }
4067
4068 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4069 {
4070 u64 num_dev;
4071
4072 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4073 BTRFS_BLOCK_GROUP_RAID0 |
4074 BTRFS_BLOCK_GROUP_RAID5 |
4075 BTRFS_BLOCK_GROUP_RAID6))
4076 num_dev = root->fs_info->fs_devices->rw_devices;
4077 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4078 num_dev = 2;
4079 else
4080 num_dev = 1; /* DUP or single */
4081
4082 /* metadata for updaing devices and chunk tree */
4083 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4084 }
4085
4086 static void check_system_chunk(struct btrfs_trans_handle *trans,
4087 struct btrfs_root *root, u64 type)
4088 {
4089 struct btrfs_space_info *info;
4090 u64 left;
4091 u64 thresh;
4092
4093 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4094 spin_lock(&info->lock);
4095 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4096 info->bytes_reserved - info->bytes_readonly;
4097 spin_unlock(&info->lock);
4098
4099 thresh = get_system_chunk_thresh(root, type);
4100 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4101 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4102 left, thresh, type);
4103 dump_space_info(info, 0, 0);
4104 }
4105
4106 if (left < thresh) {
4107 u64 flags;
4108
4109 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4110 btrfs_alloc_chunk(trans, root, flags);
4111 }
4112 }
4113
4114 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4115 struct btrfs_root *extent_root, u64 flags, int force)
4116 {
4117 struct btrfs_space_info *space_info;
4118 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4119 int wait_for_alloc = 0;
4120 int ret = 0;
4121
4122 /* Don't re-enter if we're already allocating a chunk */
4123 if (trans->allocating_chunk)
4124 return -ENOSPC;
4125
4126 space_info = __find_space_info(extent_root->fs_info, flags);
4127 if (!space_info) {
4128 ret = update_space_info(extent_root->fs_info, flags,
4129 0, 0, &space_info);
4130 BUG_ON(ret); /* -ENOMEM */
4131 }
4132 BUG_ON(!space_info); /* Logic error */
4133
4134 again:
4135 spin_lock(&space_info->lock);
4136 if (force < space_info->force_alloc)
4137 force = space_info->force_alloc;
4138 if (space_info->full) {
4139 if (should_alloc_chunk(extent_root, space_info, force))
4140 ret = -ENOSPC;
4141 else
4142 ret = 0;
4143 spin_unlock(&space_info->lock);
4144 return ret;
4145 }
4146
4147 if (!should_alloc_chunk(extent_root, space_info, force)) {
4148 spin_unlock(&space_info->lock);
4149 return 0;
4150 } else if (space_info->chunk_alloc) {
4151 wait_for_alloc = 1;
4152 } else {
4153 space_info->chunk_alloc = 1;
4154 }
4155
4156 spin_unlock(&space_info->lock);
4157
4158 mutex_lock(&fs_info->chunk_mutex);
4159
4160 /*
4161 * The chunk_mutex is held throughout the entirety of a chunk
4162 * allocation, so once we've acquired the chunk_mutex we know that the
4163 * other guy is done and we need to recheck and see if we should
4164 * allocate.
4165 */
4166 if (wait_for_alloc) {
4167 mutex_unlock(&fs_info->chunk_mutex);
4168 wait_for_alloc = 0;
4169 goto again;
4170 }
4171
4172 trans->allocating_chunk = true;
4173
4174 /*
4175 * If we have mixed data/metadata chunks we want to make sure we keep
4176 * allocating mixed chunks instead of individual chunks.
4177 */
4178 if (btrfs_mixed_space_info(space_info))
4179 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4180
4181 /*
4182 * if we're doing a data chunk, go ahead and make sure that
4183 * we keep a reasonable number of metadata chunks allocated in the
4184 * FS as well.
4185 */
4186 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4187 fs_info->data_chunk_allocations++;
4188 if (!(fs_info->data_chunk_allocations %
4189 fs_info->metadata_ratio))
4190 force_metadata_allocation(fs_info);
4191 }
4192
4193 /*
4194 * Check if we have enough space in SYSTEM chunk because we may need
4195 * to update devices.
4196 */
4197 check_system_chunk(trans, extent_root, flags);
4198
4199 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4200 trans->allocating_chunk = false;
4201
4202 spin_lock(&space_info->lock);
4203 if (ret < 0 && ret != -ENOSPC)
4204 goto out;
4205 if (ret)
4206 space_info->full = 1;
4207 else
4208 ret = 1;
4209
4210 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4211 out:
4212 space_info->chunk_alloc = 0;
4213 spin_unlock(&space_info->lock);
4214 mutex_unlock(&fs_info->chunk_mutex);
4215 return ret;
4216 }
4217
4218 static int can_overcommit(struct btrfs_root *root,
4219 struct btrfs_space_info *space_info, u64 bytes,
4220 enum btrfs_reserve_flush_enum flush)
4221 {
4222 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4223 u64 profile = btrfs_get_alloc_profile(root, 0);
4224 u64 space_size;
4225 u64 avail;
4226 u64 used;
4227
4228 used = space_info->bytes_used + space_info->bytes_reserved +
4229 space_info->bytes_pinned + space_info->bytes_readonly;
4230
4231 /*
4232 * We only want to allow over committing if we have lots of actual space
4233 * free, but if we don't have enough space to handle the global reserve
4234 * space then we could end up having a real enospc problem when trying
4235 * to allocate a chunk or some other such important allocation.
4236 */
4237 spin_lock(&global_rsv->lock);
4238 space_size = calc_global_rsv_need_space(global_rsv);
4239 spin_unlock(&global_rsv->lock);
4240 if (used + space_size >= space_info->total_bytes)
4241 return 0;
4242
4243 used += space_info->bytes_may_use;
4244
4245 spin_lock(&root->fs_info->free_chunk_lock);
4246 avail = root->fs_info->free_chunk_space;
4247 spin_unlock(&root->fs_info->free_chunk_lock);
4248
4249 /*
4250 * If we have dup, raid1 or raid10 then only half of the free
4251 * space is actually useable. For raid56, the space info used
4252 * doesn't include the parity drive, so we don't have to
4253 * change the math
4254 */
4255 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4256 BTRFS_BLOCK_GROUP_RAID1 |
4257 BTRFS_BLOCK_GROUP_RAID10))
4258 avail >>= 1;
4259
4260 /*
4261 * If we aren't flushing all things, let us overcommit up to
4262 * 1/2th of the space. If we can flush, don't let us overcommit
4263 * too much, let it overcommit up to 1/8 of the space.
4264 */
4265 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4266 avail >>= 3;
4267 else
4268 avail >>= 1;
4269
4270 if (used + bytes < space_info->total_bytes + avail)
4271 return 1;
4272 return 0;
4273 }
4274
4275 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4276 unsigned long nr_pages, int nr_items)
4277 {
4278 struct super_block *sb = root->fs_info->sb;
4279
4280 if (down_read_trylock(&sb->s_umount)) {
4281 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4282 up_read(&sb->s_umount);
4283 } else {
4284 /*
4285 * We needn't worry the filesystem going from r/w to r/o though
4286 * we don't acquire ->s_umount mutex, because the filesystem
4287 * should guarantee the delalloc inodes list be empty after
4288 * the filesystem is readonly(all dirty pages are written to
4289 * the disk).
4290 */
4291 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4292 if (!current->journal_info)
4293 btrfs_wait_ordered_roots(root->fs_info, nr_items);
4294 }
4295 }
4296
4297 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4298 {
4299 u64 bytes;
4300 int nr;
4301
4302 bytes = btrfs_calc_trans_metadata_size(root, 1);
4303 nr = (int)div64_u64(to_reclaim, bytes);
4304 if (!nr)
4305 nr = 1;
4306 return nr;
4307 }
4308
4309 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4310
4311 /*
4312 * shrink metadata reservation for delalloc
4313 */
4314 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4315 bool wait_ordered)
4316 {
4317 struct btrfs_block_rsv *block_rsv;
4318 struct btrfs_space_info *space_info;
4319 struct btrfs_trans_handle *trans;
4320 u64 delalloc_bytes;
4321 u64 max_reclaim;
4322 long time_left;
4323 unsigned long nr_pages;
4324 int loops;
4325 int items;
4326 enum btrfs_reserve_flush_enum flush;
4327
4328 /* Calc the number of the pages we need flush for space reservation */
4329 items = calc_reclaim_items_nr(root, to_reclaim);
4330 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4331
4332 trans = (struct btrfs_trans_handle *)current->journal_info;
4333 block_rsv = &root->fs_info->delalloc_block_rsv;
4334 space_info = block_rsv->space_info;
4335
4336 delalloc_bytes = percpu_counter_sum_positive(
4337 &root->fs_info->delalloc_bytes);
4338 if (delalloc_bytes == 0) {
4339 if (trans)
4340 return;
4341 if (wait_ordered)
4342 btrfs_wait_ordered_roots(root->fs_info, items);
4343 return;
4344 }
4345
4346 loops = 0;
4347 while (delalloc_bytes && loops < 3) {
4348 max_reclaim = min(delalloc_bytes, to_reclaim);
4349 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4350 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4351 /*
4352 * We need to wait for the async pages to actually start before
4353 * we do anything.
4354 */
4355 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4356 if (!max_reclaim)
4357 goto skip_async;
4358
4359 if (max_reclaim <= nr_pages)
4360 max_reclaim = 0;
4361 else
4362 max_reclaim -= nr_pages;
4363
4364 wait_event(root->fs_info->async_submit_wait,
4365 atomic_read(&root->fs_info->async_delalloc_pages) <=
4366 (int)max_reclaim);
4367 skip_async:
4368 if (!trans)
4369 flush = BTRFS_RESERVE_FLUSH_ALL;
4370 else
4371 flush = BTRFS_RESERVE_NO_FLUSH;
4372 spin_lock(&space_info->lock);
4373 if (can_overcommit(root, space_info, orig, flush)) {
4374 spin_unlock(&space_info->lock);
4375 break;
4376 }
4377 spin_unlock(&space_info->lock);
4378
4379 loops++;
4380 if (wait_ordered && !trans) {
4381 btrfs_wait_ordered_roots(root->fs_info, items);
4382 } else {
4383 time_left = schedule_timeout_killable(1);
4384 if (time_left)
4385 break;
4386 }
4387 delalloc_bytes = percpu_counter_sum_positive(
4388 &root->fs_info->delalloc_bytes);
4389 }
4390 }
4391
4392 /**
4393 * maybe_commit_transaction - possibly commit the transaction if its ok to
4394 * @root - the root we're allocating for
4395 * @bytes - the number of bytes we want to reserve
4396 * @force - force the commit
4397 *
4398 * This will check to make sure that committing the transaction will actually
4399 * get us somewhere and then commit the transaction if it does. Otherwise it
4400 * will return -ENOSPC.
4401 */
4402 static int may_commit_transaction(struct btrfs_root *root,
4403 struct btrfs_space_info *space_info,
4404 u64 bytes, int force)
4405 {
4406 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4407 struct btrfs_trans_handle *trans;
4408
4409 trans = (struct btrfs_trans_handle *)current->journal_info;
4410 if (trans)
4411 return -EAGAIN;
4412
4413 if (force)
4414 goto commit;
4415
4416 /* See if there is enough pinned space to make this reservation */
4417 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4418 bytes) >= 0)
4419 goto commit;
4420
4421 /*
4422 * See if there is some space in the delayed insertion reservation for
4423 * this reservation.
4424 */
4425 if (space_info != delayed_rsv->space_info)
4426 return -ENOSPC;
4427
4428 spin_lock(&delayed_rsv->lock);
4429 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4430 bytes - delayed_rsv->size) >= 0) {
4431 spin_unlock(&delayed_rsv->lock);
4432 return -ENOSPC;
4433 }
4434 spin_unlock(&delayed_rsv->lock);
4435
4436 commit:
4437 trans = btrfs_join_transaction(root);
4438 if (IS_ERR(trans))
4439 return -ENOSPC;
4440
4441 return btrfs_commit_transaction(trans, root);
4442 }
4443
4444 enum flush_state {
4445 FLUSH_DELAYED_ITEMS_NR = 1,
4446 FLUSH_DELAYED_ITEMS = 2,
4447 FLUSH_DELALLOC = 3,
4448 FLUSH_DELALLOC_WAIT = 4,
4449 ALLOC_CHUNK = 5,
4450 COMMIT_TRANS = 6,
4451 };
4452
4453 static int flush_space(struct btrfs_root *root,
4454 struct btrfs_space_info *space_info, u64 num_bytes,
4455 u64 orig_bytes, int state)
4456 {
4457 struct btrfs_trans_handle *trans;
4458 int nr;
4459 int ret = 0;
4460
4461 switch (state) {
4462 case FLUSH_DELAYED_ITEMS_NR:
4463 case FLUSH_DELAYED_ITEMS:
4464 if (state == FLUSH_DELAYED_ITEMS_NR)
4465 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4466 else
4467 nr = -1;
4468
4469 trans = btrfs_join_transaction(root);
4470 if (IS_ERR(trans)) {
4471 ret = PTR_ERR(trans);
4472 break;
4473 }
4474 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4475 btrfs_end_transaction(trans, root);
4476 break;
4477 case FLUSH_DELALLOC:
4478 case FLUSH_DELALLOC_WAIT:
4479 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4480 state == FLUSH_DELALLOC_WAIT);
4481 break;
4482 case ALLOC_CHUNK:
4483 trans = btrfs_join_transaction(root);
4484 if (IS_ERR(trans)) {
4485 ret = PTR_ERR(trans);
4486 break;
4487 }
4488 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4489 btrfs_get_alloc_profile(root, 0),
4490 CHUNK_ALLOC_NO_FORCE);
4491 btrfs_end_transaction(trans, root);
4492 if (ret == -ENOSPC)
4493 ret = 0;
4494 break;
4495 case COMMIT_TRANS:
4496 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4497 break;
4498 default:
4499 ret = -ENOSPC;
4500 break;
4501 }
4502
4503 return ret;
4504 }
4505
4506 static inline u64
4507 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4508 struct btrfs_space_info *space_info)
4509 {
4510 u64 used;
4511 u64 expected;
4512 u64 to_reclaim;
4513
4514 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4515 16 * 1024 * 1024);
4516 spin_lock(&space_info->lock);
4517 if (can_overcommit(root, space_info, to_reclaim,
4518 BTRFS_RESERVE_FLUSH_ALL)) {
4519 to_reclaim = 0;
4520 goto out;
4521 }
4522
4523 used = space_info->bytes_used + space_info->bytes_reserved +
4524 space_info->bytes_pinned + space_info->bytes_readonly +
4525 space_info->bytes_may_use;
4526 if (can_overcommit(root, space_info, 1024 * 1024,
4527 BTRFS_RESERVE_FLUSH_ALL))
4528 expected = div_factor_fine(space_info->total_bytes, 95);
4529 else
4530 expected = div_factor_fine(space_info->total_bytes, 90);
4531
4532 if (used > expected)
4533 to_reclaim = used - expected;
4534 else
4535 to_reclaim = 0;
4536 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4537 space_info->bytes_reserved);
4538 out:
4539 spin_unlock(&space_info->lock);
4540
4541 return to_reclaim;
4542 }
4543
4544 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4545 struct btrfs_fs_info *fs_info, u64 used)
4546 {
4547 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4548
4549 /* If we're just plain full then async reclaim just slows us down. */
4550 if (space_info->bytes_used >= thresh)
4551 return 0;
4552
4553 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4554 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4555 }
4556
4557 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4558 struct btrfs_fs_info *fs_info,
4559 int flush_state)
4560 {
4561 u64 used;
4562
4563 spin_lock(&space_info->lock);
4564 /*
4565 * We run out of space and have not got any free space via flush_space,
4566 * so don't bother doing async reclaim.
4567 */
4568 if (flush_state > COMMIT_TRANS && space_info->full) {
4569 spin_unlock(&space_info->lock);
4570 return 0;
4571 }
4572
4573 used = space_info->bytes_used + space_info->bytes_reserved +
4574 space_info->bytes_pinned + space_info->bytes_readonly +
4575 space_info->bytes_may_use;
4576 if (need_do_async_reclaim(space_info, fs_info, used)) {
4577 spin_unlock(&space_info->lock);
4578 return 1;
4579 }
4580 spin_unlock(&space_info->lock);
4581
4582 return 0;
4583 }
4584
4585 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4586 {
4587 struct btrfs_fs_info *fs_info;
4588 struct btrfs_space_info *space_info;
4589 u64 to_reclaim;
4590 int flush_state;
4591
4592 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4593 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4594
4595 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4596 space_info);
4597 if (!to_reclaim)
4598 return;
4599
4600 flush_state = FLUSH_DELAYED_ITEMS_NR;
4601 do {
4602 flush_space(fs_info->fs_root, space_info, to_reclaim,
4603 to_reclaim, flush_state);
4604 flush_state++;
4605 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4606 flush_state))
4607 return;
4608 } while (flush_state < COMMIT_TRANS);
4609 }
4610
4611 void btrfs_init_async_reclaim_work(struct work_struct *work)
4612 {
4613 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4614 }
4615
4616 /**
4617 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4618 * @root - the root we're allocating for
4619 * @block_rsv - the block_rsv we're allocating for
4620 * @orig_bytes - the number of bytes we want
4621 * @flush - whether or not we can flush to make our reservation
4622 *
4623 * This will reserve orgi_bytes number of bytes from the space info associated
4624 * with the block_rsv. If there is not enough space it will make an attempt to
4625 * flush out space to make room. It will do this by flushing delalloc if
4626 * possible or committing the transaction. If flush is 0 then no attempts to
4627 * regain reservations will be made and this will fail if there is not enough
4628 * space already.
4629 */
4630 static int reserve_metadata_bytes(struct btrfs_root *root,
4631 struct btrfs_block_rsv *block_rsv,
4632 u64 orig_bytes,
4633 enum btrfs_reserve_flush_enum flush)
4634 {
4635 struct btrfs_space_info *space_info = block_rsv->space_info;
4636 u64 used;
4637 u64 num_bytes = orig_bytes;
4638 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4639 int ret = 0;
4640 bool flushing = false;
4641
4642 again:
4643 ret = 0;
4644 spin_lock(&space_info->lock);
4645 /*
4646 * We only want to wait if somebody other than us is flushing and we
4647 * are actually allowed to flush all things.
4648 */
4649 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4650 space_info->flush) {
4651 spin_unlock(&space_info->lock);
4652 /*
4653 * If we have a trans handle we can't wait because the flusher
4654 * may have to commit the transaction, which would mean we would
4655 * deadlock since we are waiting for the flusher to finish, but
4656 * hold the current transaction open.
4657 */
4658 if (current->journal_info)
4659 return -EAGAIN;
4660 ret = wait_event_killable(space_info->wait, !space_info->flush);
4661 /* Must have been killed, return */
4662 if (ret)
4663 return -EINTR;
4664
4665 spin_lock(&space_info->lock);
4666 }
4667
4668 ret = -ENOSPC;
4669 used = space_info->bytes_used + space_info->bytes_reserved +
4670 space_info->bytes_pinned + space_info->bytes_readonly +
4671 space_info->bytes_may_use;
4672
4673 /*
4674 * The idea here is that we've not already over-reserved the block group
4675 * then we can go ahead and save our reservation first and then start
4676 * flushing if we need to. Otherwise if we've already overcommitted
4677 * lets start flushing stuff first and then come back and try to make
4678 * our reservation.
4679 */
4680 if (used <= space_info->total_bytes) {
4681 if (used + orig_bytes <= space_info->total_bytes) {
4682 space_info->bytes_may_use += orig_bytes;
4683 trace_btrfs_space_reservation(root->fs_info,
4684 "space_info", space_info->flags, orig_bytes, 1);
4685 ret = 0;
4686 } else {
4687 /*
4688 * Ok set num_bytes to orig_bytes since we aren't
4689 * overocmmitted, this way we only try and reclaim what
4690 * we need.
4691 */
4692 num_bytes = orig_bytes;
4693 }
4694 } else {
4695 /*
4696 * Ok we're over committed, set num_bytes to the overcommitted
4697 * amount plus the amount of bytes that we need for this
4698 * reservation.
4699 */
4700 num_bytes = used - space_info->total_bytes +
4701 (orig_bytes * 2);
4702 }
4703
4704 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4705 space_info->bytes_may_use += orig_bytes;
4706 trace_btrfs_space_reservation(root->fs_info, "space_info",
4707 space_info->flags, orig_bytes,
4708 1);
4709 ret = 0;
4710 }
4711
4712 /*
4713 * Couldn't make our reservation, save our place so while we're trying
4714 * to reclaim space we can actually use it instead of somebody else
4715 * stealing it from us.
4716 *
4717 * We make the other tasks wait for the flush only when we can flush
4718 * all things.
4719 */
4720 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4721 flushing = true;
4722 space_info->flush = 1;
4723 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4724 used += orig_bytes;
4725 /*
4726 * We will do the space reservation dance during log replay,
4727 * which means we won't have fs_info->fs_root set, so don't do
4728 * the async reclaim as we will panic.
4729 */
4730 if (!root->fs_info->log_root_recovering &&
4731 need_do_async_reclaim(space_info, root->fs_info, used) &&
4732 !work_busy(&root->fs_info->async_reclaim_work))
4733 queue_work(system_unbound_wq,
4734 &root->fs_info->async_reclaim_work);
4735 }
4736 spin_unlock(&space_info->lock);
4737
4738 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4739 goto out;
4740
4741 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4742 flush_state);
4743 flush_state++;
4744
4745 /*
4746 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4747 * would happen. So skip delalloc flush.
4748 */
4749 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4750 (flush_state == FLUSH_DELALLOC ||
4751 flush_state == FLUSH_DELALLOC_WAIT))
4752 flush_state = ALLOC_CHUNK;
4753
4754 if (!ret)
4755 goto again;
4756 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4757 flush_state < COMMIT_TRANS)
4758 goto again;
4759 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4760 flush_state <= COMMIT_TRANS)
4761 goto again;
4762
4763 out:
4764 if (ret == -ENOSPC &&
4765 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4766 struct btrfs_block_rsv *global_rsv =
4767 &root->fs_info->global_block_rsv;
4768
4769 if (block_rsv != global_rsv &&
4770 !block_rsv_use_bytes(global_rsv, orig_bytes))
4771 ret = 0;
4772 }
4773 if (ret == -ENOSPC)
4774 trace_btrfs_space_reservation(root->fs_info,
4775 "space_info:enospc",
4776 space_info->flags, orig_bytes, 1);
4777 if (flushing) {
4778 spin_lock(&space_info->lock);
4779 space_info->flush = 0;
4780 wake_up_all(&space_info->wait);
4781 spin_unlock(&space_info->lock);
4782 }
4783 return ret;
4784 }
4785
4786 static struct btrfs_block_rsv *get_block_rsv(
4787 const struct btrfs_trans_handle *trans,
4788 const struct btrfs_root *root)
4789 {
4790 struct btrfs_block_rsv *block_rsv = NULL;
4791
4792 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4793 block_rsv = trans->block_rsv;
4794
4795 if (root == root->fs_info->csum_root && trans->adding_csums)
4796 block_rsv = trans->block_rsv;
4797
4798 if (root == root->fs_info->uuid_root)
4799 block_rsv = trans->block_rsv;
4800
4801 if (!block_rsv)
4802 block_rsv = root->block_rsv;
4803
4804 if (!block_rsv)
4805 block_rsv = &root->fs_info->empty_block_rsv;
4806
4807 return block_rsv;
4808 }
4809
4810 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4811 u64 num_bytes)
4812 {
4813 int ret = -ENOSPC;
4814 spin_lock(&block_rsv->lock);
4815 if (block_rsv->reserved >= num_bytes) {
4816 block_rsv->reserved -= num_bytes;
4817 if (block_rsv->reserved < block_rsv->size)
4818 block_rsv->full = 0;
4819 ret = 0;
4820 }
4821 spin_unlock(&block_rsv->lock);
4822 return ret;
4823 }
4824
4825 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4826 u64 num_bytes, int update_size)
4827 {
4828 spin_lock(&block_rsv->lock);
4829 block_rsv->reserved += num_bytes;
4830 if (update_size)
4831 block_rsv->size += num_bytes;
4832 else if (block_rsv->reserved >= block_rsv->size)
4833 block_rsv->full = 1;
4834 spin_unlock(&block_rsv->lock);
4835 }
4836
4837 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4838 struct btrfs_block_rsv *dest, u64 num_bytes,
4839 int min_factor)
4840 {
4841 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4842 u64 min_bytes;
4843
4844 if (global_rsv->space_info != dest->space_info)
4845 return -ENOSPC;
4846
4847 spin_lock(&global_rsv->lock);
4848 min_bytes = div_factor(global_rsv->size, min_factor);
4849 if (global_rsv->reserved < min_bytes + num_bytes) {
4850 spin_unlock(&global_rsv->lock);
4851 return -ENOSPC;
4852 }
4853 global_rsv->reserved -= num_bytes;
4854 if (global_rsv->reserved < global_rsv->size)
4855 global_rsv->full = 0;
4856 spin_unlock(&global_rsv->lock);
4857
4858 block_rsv_add_bytes(dest, num_bytes, 1);
4859 return 0;
4860 }
4861
4862 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4863 struct btrfs_block_rsv *block_rsv,
4864 struct btrfs_block_rsv *dest, u64 num_bytes)
4865 {
4866 struct btrfs_space_info *space_info = block_rsv->space_info;
4867
4868 spin_lock(&block_rsv->lock);
4869 if (num_bytes == (u64)-1)
4870 num_bytes = block_rsv->size;
4871 block_rsv->size -= num_bytes;
4872 if (block_rsv->reserved >= block_rsv->size) {
4873 num_bytes = block_rsv->reserved - block_rsv->size;
4874 block_rsv->reserved = block_rsv->size;
4875 block_rsv->full = 1;
4876 } else {
4877 num_bytes = 0;
4878 }
4879 spin_unlock(&block_rsv->lock);
4880
4881 if (num_bytes > 0) {
4882 if (dest) {
4883 spin_lock(&dest->lock);
4884 if (!dest->full) {
4885 u64 bytes_to_add;
4886
4887 bytes_to_add = dest->size - dest->reserved;
4888 bytes_to_add = min(num_bytes, bytes_to_add);
4889 dest->reserved += bytes_to_add;
4890 if (dest->reserved >= dest->size)
4891 dest->full = 1;
4892 num_bytes -= bytes_to_add;
4893 }
4894 spin_unlock(&dest->lock);
4895 }
4896 if (num_bytes) {
4897 spin_lock(&space_info->lock);
4898 space_info->bytes_may_use -= num_bytes;
4899 trace_btrfs_space_reservation(fs_info, "space_info",
4900 space_info->flags, num_bytes, 0);
4901 spin_unlock(&space_info->lock);
4902 }
4903 }
4904 }
4905
4906 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4907 struct btrfs_block_rsv *dst, u64 num_bytes)
4908 {
4909 int ret;
4910
4911 ret = block_rsv_use_bytes(src, num_bytes);
4912 if (ret)
4913 return ret;
4914
4915 block_rsv_add_bytes(dst, num_bytes, 1);
4916 return 0;
4917 }
4918
4919 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4920 {
4921 memset(rsv, 0, sizeof(*rsv));
4922 spin_lock_init(&rsv->lock);
4923 rsv->type = type;
4924 }
4925
4926 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4927 unsigned short type)
4928 {
4929 struct btrfs_block_rsv *block_rsv;
4930 struct btrfs_fs_info *fs_info = root->fs_info;
4931
4932 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4933 if (!block_rsv)
4934 return NULL;
4935
4936 btrfs_init_block_rsv(block_rsv, type);
4937 block_rsv->space_info = __find_space_info(fs_info,
4938 BTRFS_BLOCK_GROUP_METADATA);
4939 return block_rsv;
4940 }
4941
4942 void btrfs_free_block_rsv(struct btrfs_root *root,
4943 struct btrfs_block_rsv *rsv)
4944 {
4945 if (!rsv)
4946 return;
4947 btrfs_block_rsv_release(root, rsv, (u64)-1);
4948 kfree(rsv);
4949 }
4950
4951 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4952 {
4953 kfree(rsv);
4954 }
4955
4956 int btrfs_block_rsv_add(struct btrfs_root *root,
4957 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4958 enum btrfs_reserve_flush_enum flush)
4959 {
4960 int ret;
4961
4962 if (num_bytes == 0)
4963 return 0;
4964
4965 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4966 if (!ret) {
4967 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4968 return 0;
4969 }
4970
4971 return ret;
4972 }
4973
4974 int btrfs_block_rsv_check(struct btrfs_root *root,
4975 struct btrfs_block_rsv *block_rsv, int min_factor)
4976 {
4977 u64 num_bytes = 0;
4978 int ret = -ENOSPC;
4979
4980 if (!block_rsv)
4981 return 0;
4982
4983 spin_lock(&block_rsv->lock);
4984 num_bytes = div_factor(block_rsv->size, min_factor);
4985 if (block_rsv->reserved >= num_bytes)
4986 ret = 0;
4987 spin_unlock(&block_rsv->lock);
4988
4989 return ret;
4990 }
4991
4992 int btrfs_block_rsv_refill(struct btrfs_root *root,
4993 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4994 enum btrfs_reserve_flush_enum flush)
4995 {
4996 u64 num_bytes = 0;
4997 int ret = -ENOSPC;
4998
4999 if (!block_rsv)
5000 return 0;
5001
5002 spin_lock(&block_rsv->lock);
5003 num_bytes = min_reserved;
5004 if (block_rsv->reserved >= num_bytes)
5005 ret = 0;
5006 else
5007 num_bytes -= block_rsv->reserved;
5008 spin_unlock(&block_rsv->lock);
5009
5010 if (!ret)
5011 return 0;
5012
5013 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5014 if (!ret) {
5015 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5016 return 0;
5017 }
5018
5019 return ret;
5020 }
5021
5022 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5023 struct btrfs_block_rsv *dst_rsv,
5024 u64 num_bytes)
5025 {
5026 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5027 }
5028
5029 void btrfs_block_rsv_release(struct btrfs_root *root,
5030 struct btrfs_block_rsv *block_rsv,
5031 u64 num_bytes)
5032 {
5033 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5034 if (global_rsv == block_rsv ||
5035 block_rsv->space_info != global_rsv->space_info)
5036 global_rsv = NULL;
5037 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5038 num_bytes);
5039 }
5040
5041 /*
5042 * helper to calculate size of global block reservation.
5043 * the desired value is sum of space used by extent tree,
5044 * checksum tree and root tree
5045 */
5046 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5047 {
5048 struct btrfs_space_info *sinfo;
5049 u64 num_bytes;
5050 u64 meta_used;
5051 u64 data_used;
5052 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5053
5054 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5055 spin_lock(&sinfo->lock);
5056 data_used = sinfo->bytes_used;
5057 spin_unlock(&sinfo->lock);
5058
5059 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5060 spin_lock(&sinfo->lock);
5061 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5062 data_used = 0;
5063 meta_used = sinfo->bytes_used;
5064 spin_unlock(&sinfo->lock);
5065
5066 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5067 csum_size * 2;
5068 num_bytes += div_u64(data_used + meta_used, 50);
5069
5070 if (num_bytes * 3 > meta_used)
5071 num_bytes = div_u64(meta_used, 3);
5072
5073 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5074 }
5075
5076 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5077 {
5078 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5079 struct btrfs_space_info *sinfo = block_rsv->space_info;
5080 u64 num_bytes;
5081
5082 num_bytes = calc_global_metadata_size(fs_info);
5083
5084 spin_lock(&sinfo->lock);
5085 spin_lock(&block_rsv->lock);
5086
5087 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5088
5089 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5090 sinfo->bytes_reserved + sinfo->bytes_readonly +
5091 sinfo->bytes_may_use;
5092
5093 if (sinfo->total_bytes > num_bytes) {
5094 num_bytes = sinfo->total_bytes - num_bytes;
5095 block_rsv->reserved += num_bytes;
5096 sinfo->bytes_may_use += num_bytes;
5097 trace_btrfs_space_reservation(fs_info, "space_info",
5098 sinfo->flags, num_bytes, 1);
5099 }
5100
5101 if (block_rsv->reserved >= block_rsv->size) {
5102 num_bytes = block_rsv->reserved - block_rsv->size;
5103 sinfo->bytes_may_use -= num_bytes;
5104 trace_btrfs_space_reservation(fs_info, "space_info",
5105 sinfo->flags, num_bytes, 0);
5106 block_rsv->reserved = block_rsv->size;
5107 block_rsv->full = 1;
5108 }
5109
5110 spin_unlock(&block_rsv->lock);
5111 spin_unlock(&sinfo->lock);
5112 }
5113
5114 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5115 {
5116 struct btrfs_space_info *space_info;
5117
5118 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5119 fs_info->chunk_block_rsv.space_info = space_info;
5120
5121 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5122 fs_info->global_block_rsv.space_info = space_info;
5123 fs_info->delalloc_block_rsv.space_info = space_info;
5124 fs_info->trans_block_rsv.space_info = space_info;
5125 fs_info->empty_block_rsv.space_info = space_info;
5126 fs_info->delayed_block_rsv.space_info = space_info;
5127
5128 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5129 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5130 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5131 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5132 if (fs_info->quota_root)
5133 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5134 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5135
5136 update_global_block_rsv(fs_info);
5137 }
5138
5139 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5140 {
5141 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5142 (u64)-1);
5143 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5144 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5145 WARN_ON(fs_info->trans_block_rsv.size > 0);
5146 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5147 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5148 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5149 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5150 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5151 }
5152
5153 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5154 struct btrfs_root *root)
5155 {
5156 if (!trans->block_rsv)
5157 return;
5158
5159 if (!trans->bytes_reserved)
5160 return;
5161
5162 trace_btrfs_space_reservation(root->fs_info, "transaction",
5163 trans->transid, trans->bytes_reserved, 0);
5164 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5165 trans->bytes_reserved = 0;
5166 }
5167
5168 /* Can only return 0 or -ENOSPC */
5169 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5170 struct inode *inode)
5171 {
5172 struct btrfs_root *root = BTRFS_I(inode)->root;
5173 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5174 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5175
5176 /*
5177 * We need to hold space in order to delete our orphan item once we've
5178 * added it, so this takes the reservation so we can release it later
5179 * when we are truly done with the orphan item.
5180 */
5181 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5182 trace_btrfs_space_reservation(root->fs_info, "orphan",
5183 btrfs_ino(inode), num_bytes, 1);
5184 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5185 }
5186
5187 void btrfs_orphan_release_metadata(struct inode *inode)
5188 {
5189 struct btrfs_root *root = BTRFS_I(inode)->root;
5190 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5191 trace_btrfs_space_reservation(root->fs_info, "orphan",
5192 btrfs_ino(inode), num_bytes, 0);
5193 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5194 }
5195
5196 /*
5197 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5198 * root: the root of the parent directory
5199 * rsv: block reservation
5200 * items: the number of items that we need do reservation
5201 * qgroup_reserved: used to return the reserved size in qgroup
5202 *
5203 * This function is used to reserve the space for snapshot/subvolume
5204 * creation and deletion. Those operations are different with the
5205 * common file/directory operations, they change two fs/file trees
5206 * and root tree, the number of items that the qgroup reserves is
5207 * different with the free space reservation. So we can not use
5208 * the space reseravtion mechanism in start_transaction().
5209 */
5210 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5211 struct btrfs_block_rsv *rsv,
5212 int items,
5213 u64 *qgroup_reserved,
5214 bool use_global_rsv)
5215 {
5216 u64 num_bytes;
5217 int ret;
5218 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5219
5220 if (root->fs_info->quota_enabled) {
5221 /* One for parent inode, two for dir entries */
5222 num_bytes = 3 * root->nodesize;
5223 ret = btrfs_qgroup_reserve(root, num_bytes);
5224 if (ret)
5225 return ret;
5226 } else {
5227 num_bytes = 0;
5228 }
5229
5230 *qgroup_reserved = num_bytes;
5231
5232 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5233 rsv->space_info = __find_space_info(root->fs_info,
5234 BTRFS_BLOCK_GROUP_METADATA);
5235 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5236 BTRFS_RESERVE_FLUSH_ALL);
5237
5238 if (ret == -ENOSPC && use_global_rsv)
5239 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5240
5241 if (ret) {
5242 if (*qgroup_reserved)
5243 btrfs_qgroup_free(root, *qgroup_reserved);
5244 }
5245
5246 return ret;
5247 }
5248
5249 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5250 struct btrfs_block_rsv *rsv,
5251 u64 qgroup_reserved)
5252 {
5253 btrfs_block_rsv_release(root, rsv, (u64)-1);
5254 }
5255
5256 /**
5257 * drop_outstanding_extent - drop an outstanding extent
5258 * @inode: the inode we're dropping the extent for
5259 * @num_bytes: the number of bytes we're relaseing.
5260 *
5261 * This is called when we are freeing up an outstanding extent, either called
5262 * after an error or after an extent is written. This will return the number of
5263 * reserved extents that need to be freed. This must be called with
5264 * BTRFS_I(inode)->lock held.
5265 */
5266 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5267 {
5268 unsigned drop_inode_space = 0;
5269 unsigned dropped_extents = 0;
5270 unsigned num_extents = 0;
5271
5272 num_extents = (unsigned)div64_u64(num_bytes +
5273 BTRFS_MAX_EXTENT_SIZE - 1,
5274 BTRFS_MAX_EXTENT_SIZE);
5275 ASSERT(num_extents);
5276 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5277 BTRFS_I(inode)->outstanding_extents -= num_extents;
5278
5279 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5280 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5281 &BTRFS_I(inode)->runtime_flags))
5282 drop_inode_space = 1;
5283
5284 /*
5285 * If we have more or the same amount of outsanding extents than we have
5286 * reserved then we need to leave the reserved extents count alone.
5287 */
5288 if (BTRFS_I(inode)->outstanding_extents >=
5289 BTRFS_I(inode)->reserved_extents)
5290 return drop_inode_space;
5291
5292 dropped_extents = BTRFS_I(inode)->reserved_extents -
5293 BTRFS_I(inode)->outstanding_extents;
5294 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5295 return dropped_extents + drop_inode_space;
5296 }
5297
5298 /**
5299 * calc_csum_metadata_size - return the amount of metada space that must be
5300 * reserved/free'd for the given bytes.
5301 * @inode: the inode we're manipulating
5302 * @num_bytes: the number of bytes in question
5303 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5304 *
5305 * This adjusts the number of csum_bytes in the inode and then returns the
5306 * correct amount of metadata that must either be reserved or freed. We
5307 * calculate how many checksums we can fit into one leaf and then divide the
5308 * number of bytes that will need to be checksumed by this value to figure out
5309 * how many checksums will be required. If we are adding bytes then the number
5310 * may go up and we will return the number of additional bytes that must be
5311 * reserved. If it is going down we will return the number of bytes that must
5312 * be freed.
5313 *
5314 * This must be called with BTRFS_I(inode)->lock held.
5315 */
5316 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5317 int reserve)
5318 {
5319 struct btrfs_root *root = BTRFS_I(inode)->root;
5320 u64 old_csums, num_csums;
5321
5322 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5323 BTRFS_I(inode)->csum_bytes == 0)
5324 return 0;
5325
5326 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5327 if (reserve)
5328 BTRFS_I(inode)->csum_bytes += num_bytes;
5329 else
5330 BTRFS_I(inode)->csum_bytes -= num_bytes;
5331 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5332
5333 /* No change, no need to reserve more */
5334 if (old_csums == num_csums)
5335 return 0;
5336
5337 if (reserve)
5338 return btrfs_calc_trans_metadata_size(root,
5339 num_csums - old_csums);
5340
5341 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5342 }
5343
5344 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5345 {
5346 struct btrfs_root *root = BTRFS_I(inode)->root;
5347 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5348 u64 to_reserve = 0;
5349 u64 csum_bytes;
5350 unsigned nr_extents = 0;
5351 int extra_reserve = 0;
5352 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5353 int ret = 0;
5354 bool delalloc_lock = true;
5355 u64 to_free = 0;
5356 unsigned dropped;
5357
5358 /* If we are a free space inode we need to not flush since we will be in
5359 * the middle of a transaction commit. We also don't need the delalloc
5360 * mutex since we won't race with anybody. We need this mostly to make
5361 * lockdep shut its filthy mouth.
5362 */
5363 if (btrfs_is_free_space_inode(inode)) {
5364 flush = BTRFS_RESERVE_NO_FLUSH;
5365 delalloc_lock = false;
5366 }
5367
5368 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5369 btrfs_transaction_in_commit(root->fs_info))
5370 schedule_timeout(1);
5371
5372 if (delalloc_lock)
5373 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5374
5375 num_bytes = ALIGN(num_bytes, root->sectorsize);
5376
5377 spin_lock(&BTRFS_I(inode)->lock);
5378 nr_extents = (unsigned)div64_u64(num_bytes +
5379 BTRFS_MAX_EXTENT_SIZE - 1,
5380 BTRFS_MAX_EXTENT_SIZE);
5381 BTRFS_I(inode)->outstanding_extents += nr_extents;
5382 nr_extents = 0;
5383
5384 if (BTRFS_I(inode)->outstanding_extents >
5385 BTRFS_I(inode)->reserved_extents)
5386 nr_extents = BTRFS_I(inode)->outstanding_extents -
5387 BTRFS_I(inode)->reserved_extents;
5388
5389 /*
5390 * Add an item to reserve for updating the inode when we complete the
5391 * delalloc io.
5392 */
5393 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5394 &BTRFS_I(inode)->runtime_flags)) {
5395 nr_extents++;
5396 extra_reserve = 1;
5397 }
5398
5399 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5400 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5401 csum_bytes = BTRFS_I(inode)->csum_bytes;
5402 spin_unlock(&BTRFS_I(inode)->lock);
5403
5404 if (root->fs_info->quota_enabled) {
5405 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5406 if (ret)
5407 goto out_fail;
5408 }
5409
5410 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5411 if (unlikely(ret)) {
5412 if (root->fs_info->quota_enabled)
5413 btrfs_qgroup_free(root, nr_extents * root->nodesize);
5414 goto out_fail;
5415 }
5416
5417 spin_lock(&BTRFS_I(inode)->lock);
5418 if (extra_reserve) {
5419 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5420 &BTRFS_I(inode)->runtime_flags);
5421 nr_extents--;
5422 }
5423 BTRFS_I(inode)->reserved_extents += nr_extents;
5424 spin_unlock(&BTRFS_I(inode)->lock);
5425
5426 if (delalloc_lock)
5427 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5428
5429 if (to_reserve)
5430 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5431 btrfs_ino(inode), to_reserve, 1);
5432 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5433
5434 return 0;
5435
5436 out_fail:
5437 spin_lock(&BTRFS_I(inode)->lock);
5438 dropped = drop_outstanding_extent(inode, num_bytes);
5439 /*
5440 * If the inodes csum_bytes is the same as the original
5441 * csum_bytes then we know we haven't raced with any free()ers
5442 * so we can just reduce our inodes csum bytes and carry on.
5443 */
5444 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5445 calc_csum_metadata_size(inode, num_bytes, 0);
5446 } else {
5447 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5448 u64 bytes;
5449
5450 /*
5451 * This is tricky, but first we need to figure out how much we
5452 * free'd from any free-ers that occured during this
5453 * reservation, so we reset ->csum_bytes to the csum_bytes
5454 * before we dropped our lock, and then call the free for the
5455 * number of bytes that were freed while we were trying our
5456 * reservation.
5457 */
5458 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5459 BTRFS_I(inode)->csum_bytes = csum_bytes;
5460 to_free = calc_csum_metadata_size(inode, bytes, 0);
5461
5462
5463 /*
5464 * Now we need to see how much we would have freed had we not
5465 * been making this reservation and our ->csum_bytes were not
5466 * artificially inflated.
5467 */
5468 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5469 bytes = csum_bytes - orig_csum_bytes;
5470 bytes = calc_csum_metadata_size(inode, bytes, 0);
5471
5472 /*
5473 * Now reset ->csum_bytes to what it should be. If bytes is
5474 * more than to_free then we would have free'd more space had we
5475 * not had an artificially high ->csum_bytes, so we need to free
5476 * the remainder. If bytes is the same or less then we don't
5477 * need to do anything, the other free-ers did the correct
5478 * thing.
5479 */
5480 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5481 if (bytes > to_free)
5482 to_free = bytes - to_free;
5483 else
5484 to_free = 0;
5485 }
5486 spin_unlock(&BTRFS_I(inode)->lock);
5487 if (dropped)
5488 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5489
5490 if (to_free) {
5491 btrfs_block_rsv_release(root, block_rsv, to_free);
5492 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5493 btrfs_ino(inode), to_free, 0);
5494 }
5495 if (delalloc_lock)
5496 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5497 return ret;
5498 }
5499
5500 /**
5501 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5502 * @inode: the inode to release the reservation for
5503 * @num_bytes: the number of bytes we're releasing
5504 *
5505 * This will release the metadata reservation for an inode. This can be called
5506 * once we complete IO for a given set of bytes to release their metadata
5507 * reservations.
5508 */
5509 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5510 {
5511 struct btrfs_root *root = BTRFS_I(inode)->root;
5512 u64 to_free = 0;
5513 unsigned dropped;
5514
5515 num_bytes = ALIGN(num_bytes, root->sectorsize);
5516 spin_lock(&BTRFS_I(inode)->lock);
5517 dropped = drop_outstanding_extent(inode, num_bytes);
5518
5519 if (num_bytes)
5520 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5521 spin_unlock(&BTRFS_I(inode)->lock);
5522 if (dropped > 0)
5523 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5524
5525 if (btrfs_test_is_dummy_root(root))
5526 return;
5527
5528 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5529 btrfs_ino(inode), to_free, 0);
5530
5531 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5532 to_free);
5533 }
5534
5535 /**
5536 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5537 * @inode: inode we're writing to
5538 * @num_bytes: the number of bytes we want to allocate
5539 *
5540 * This will do the following things
5541 *
5542 * o reserve space in the data space info for num_bytes
5543 * o reserve space in the metadata space info based on number of outstanding
5544 * extents and how much csums will be needed
5545 * o add to the inodes ->delalloc_bytes
5546 * o add it to the fs_info's delalloc inodes list.
5547 *
5548 * This will return 0 for success and -ENOSPC if there is no space left.
5549 */
5550 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5551 {
5552 int ret;
5553
5554 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5555 if (ret)
5556 return ret;
5557
5558 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5559 if (ret) {
5560 btrfs_free_reserved_data_space(inode, num_bytes);
5561 return ret;
5562 }
5563
5564 return 0;
5565 }
5566
5567 /**
5568 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5569 * @inode: inode we're releasing space for
5570 * @num_bytes: the number of bytes we want to free up
5571 *
5572 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5573 * called in the case that we don't need the metadata AND data reservations
5574 * anymore. So if there is an error or we insert an inline extent.
5575 *
5576 * This function will release the metadata space that was not used and will
5577 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5578 * list if there are no delalloc bytes left.
5579 */
5580 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5581 {
5582 btrfs_delalloc_release_metadata(inode, num_bytes);
5583 btrfs_free_reserved_data_space(inode, num_bytes);
5584 }
5585
5586 static int update_block_group(struct btrfs_trans_handle *trans,
5587 struct btrfs_root *root, u64 bytenr,
5588 u64 num_bytes, int alloc)
5589 {
5590 struct btrfs_block_group_cache *cache = NULL;
5591 struct btrfs_fs_info *info = root->fs_info;
5592 u64 total = num_bytes;
5593 u64 old_val;
5594 u64 byte_in_group;
5595 int factor;
5596
5597 /* block accounting for super block */
5598 spin_lock(&info->delalloc_root_lock);
5599 old_val = btrfs_super_bytes_used(info->super_copy);
5600 if (alloc)
5601 old_val += num_bytes;
5602 else
5603 old_val -= num_bytes;
5604 btrfs_set_super_bytes_used(info->super_copy, old_val);
5605 spin_unlock(&info->delalloc_root_lock);
5606
5607 while (total) {
5608 cache = btrfs_lookup_block_group(info, bytenr);
5609 if (!cache)
5610 return -ENOENT;
5611 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5612 BTRFS_BLOCK_GROUP_RAID1 |
5613 BTRFS_BLOCK_GROUP_RAID10))
5614 factor = 2;
5615 else
5616 factor = 1;
5617 /*
5618 * If this block group has free space cache written out, we
5619 * need to make sure to load it if we are removing space. This
5620 * is because we need the unpinning stage to actually add the
5621 * space back to the block group, otherwise we will leak space.
5622 */
5623 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5624 cache_block_group(cache, 1);
5625
5626 byte_in_group = bytenr - cache->key.objectid;
5627 WARN_ON(byte_in_group > cache->key.offset);
5628
5629 spin_lock(&cache->space_info->lock);
5630 spin_lock(&cache->lock);
5631
5632 if (btrfs_test_opt(root, SPACE_CACHE) &&
5633 cache->disk_cache_state < BTRFS_DC_CLEAR)
5634 cache->disk_cache_state = BTRFS_DC_CLEAR;
5635
5636 old_val = btrfs_block_group_used(&cache->item);
5637 num_bytes = min(total, cache->key.offset - byte_in_group);
5638 if (alloc) {
5639 old_val += num_bytes;
5640 btrfs_set_block_group_used(&cache->item, old_val);
5641 cache->reserved -= num_bytes;
5642 cache->space_info->bytes_reserved -= num_bytes;
5643 cache->space_info->bytes_used += num_bytes;
5644 cache->space_info->disk_used += num_bytes * factor;
5645 spin_unlock(&cache->lock);
5646 spin_unlock(&cache->space_info->lock);
5647 } else {
5648 old_val -= num_bytes;
5649 btrfs_set_block_group_used(&cache->item, old_val);
5650 cache->pinned += num_bytes;
5651 cache->space_info->bytes_pinned += num_bytes;
5652 cache->space_info->bytes_used -= num_bytes;
5653 cache->space_info->disk_used -= num_bytes * factor;
5654 spin_unlock(&cache->lock);
5655 spin_unlock(&cache->space_info->lock);
5656
5657 set_extent_dirty(info->pinned_extents,
5658 bytenr, bytenr + num_bytes - 1,
5659 GFP_NOFS | __GFP_NOFAIL);
5660 /*
5661 * No longer have used bytes in this block group, queue
5662 * it for deletion.
5663 */
5664 if (old_val == 0) {
5665 spin_lock(&info->unused_bgs_lock);
5666 if (list_empty(&cache->bg_list)) {
5667 btrfs_get_block_group(cache);
5668 list_add_tail(&cache->bg_list,
5669 &info->unused_bgs);
5670 }
5671 spin_unlock(&info->unused_bgs_lock);
5672 }
5673 }
5674
5675 spin_lock(&trans->transaction->dirty_bgs_lock);
5676 if (list_empty(&cache->dirty_list)) {
5677 list_add_tail(&cache->dirty_list,
5678 &trans->transaction->dirty_bgs);
5679 trans->transaction->num_dirty_bgs++;
5680 btrfs_get_block_group(cache);
5681 }
5682 spin_unlock(&trans->transaction->dirty_bgs_lock);
5683
5684 btrfs_put_block_group(cache);
5685 total -= num_bytes;
5686 bytenr += num_bytes;
5687 }
5688 return 0;
5689 }
5690
5691 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5692 {
5693 struct btrfs_block_group_cache *cache;
5694 u64 bytenr;
5695
5696 spin_lock(&root->fs_info->block_group_cache_lock);
5697 bytenr = root->fs_info->first_logical_byte;
5698 spin_unlock(&root->fs_info->block_group_cache_lock);
5699
5700 if (bytenr < (u64)-1)
5701 return bytenr;
5702
5703 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5704 if (!cache)
5705 return 0;
5706
5707 bytenr = cache->key.objectid;
5708 btrfs_put_block_group(cache);
5709
5710 return bytenr;
5711 }
5712
5713 static int pin_down_extent(struct btrfs_root *root,
5714 struct btrfs_block_group_cache *cache,
5715 u64 bytenr, u64 num_bytes, int reserved)
5716 {
5717 spin_lock(&cache->space_info->lock);
5718 spin_lock(&cache->lock);
5719 cache->pinned += num_bytes;
5720 cache->space_info->bytes_pinned += num_bytes;
5721 if (reserved) {
5722 cache->reserved -= num_bytes;
5723 cache->space_info->bytes_reserved -= num_bytes;
5724 }
5725 spin_unlock(&cache->lock);
5726 spin_unlock(&cache->space_info->lock);
5727
5728 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5729 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5730 if (reserved)
5731 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5732 return 0;
5733 }
5734
5735 /*
5736 * this function must be called within transaction
5737 */
5738 int btrfs_pin_extent(struct btrfs_root *root,
5739 u64 bytenr, u64 num_bytes, int reserved)
5740 {
5741 struct btrfs_block_group_cache *cache;
5742
5743 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5744 BUG_ON(!cache); /* Logic error */
5745
5746 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5747
5748 btrfs_put_block_group(cache);
5749 return 0;
5750 }
5751
5752 /*
5753 * this function must be called within transaction
5754 */
5755 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5756 u64 bytenr, u64 num_bytes)
5757 {
5758 struct btrfs_block_group_cache *cache;
5759 int ret;
5760
5761 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5762 if (!cache)
5763 return -EINVAL;
5764
5765 /*
5766 * pull in the free space cache (if any) so that our pin
5767 * removes the free space from the cache. We have load_only set
5768 * to one because the slow code to read in the free extents does check
5769 * the pinned extents.
5770 */
5771 cache_block_group(cache, 1);
5772
5773 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5774
5775 /* remove us from the free space cache (if we're there at all) */
5776 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5777 btrfs_put_block_group(cache);
5778 return ret;
5779 }
5780
5781 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5782 {
5783 int ret;
5784 struct btrfs_block_group_cache *block_group;
5785 struct btrfs_caching_control *caching_ctl;
5786
5787 block_group = btrfs_lookup_block_group(root->fs_info, start);
5788 if (!block_group)
5789 return -EINVAL;
5790
5791 cache_block_group(block_group, 0);
5792 caching_ctl = get_caching_control(block_group);
5793
5794 if (!caching_ctl) {
5795 /* Logic error */
5796 BUG_ON(!block_group_cache_done(block_group));
5797 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5798 } else {
5799 mutex_lock(&caching_ctl->mutex);
5800
5801 if (start >= caching_ctl->progress) {
5802 ret = add_excluded_extent(root, start, num_bytes);
5803 } else if (start + num_bytes <= caching_ctl->progress) {
5804 ret = btrfs_remove_free_space(block_group,
5805 start, num_bytes);
5806 } else {
5807 num_bytes = caching_ctl->progress - start;
5808 ret = btrfs_remove_free_space(block_group,
5809 start, num_bytes);
5810 if (ret)
5811 goto out_lock;
5812
5813 num_bytes = (start + num_bytes) -
5814 caching_ctl->progress;
5815 start = caching_ctl->progress;
5816 ret = add_excluded_extent(root, start, num_bytes);
5817 }
5818 out_lock:
5819 mutex_unlock(&caching_ctl->mutex);
5820 put_caching_control(caching_ctl);
5821 }
5822 btrfs_put_block_group(block_group);
5823 return ret;
5824 }
5825
5826 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5827 struct extent_buffer *eb)
5828 {
5829 struct btrfs_file_extent_item *item;
5830 struct btrfs_key key;
5831 int found_type;
5832 int i;
5833
5834 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5835 return 0;
5836
5837 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5838 btrfs_item_key_to_cpu(eb, &key, i);
5839 if (key.type != BTRFS_EXTENT_DATA_KEY)
5840 continue;
5841 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5842 found_type = btrfs_file_extent_type(eb, item);
5843 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5844 continue;
5845 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5846 continue;
5847 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5848 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5849 __exclude_logged_extent(log, key.objectid, key.offset);
5850 }
5851
5852 return 0;
5853 }
5854
5855 /**
5856 * btrfs_update_reserved_bytes - update the block_group and space info counters
5857 * @cache: The cache we are manipulating
5858 * @num_bytes: The number of bytes in question
5859 * @reserve: One of the reservation enums
5860 * @delalloc: The blocks are allocated for the delalloc write
5861 *
5862 * This is called by the allocator when it reserves space, or by somebody who is
5863 * freeing space that was never actually used on disk. For example if you
5864 * reserve some space for a new leaf in transaction A and before transaction A
5865 * commits you free that leaf, you call this with reserve set to 0 in order to
5866 * clear the reservation.
5867 *
5868 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5869 * ENOSPC accounting. For data we handle the reservation through clearing the
5870 * delalloc bits in the io_tree. We have to do this since we could end up
5871 * allocating less disk space for the amount of data we have reserved in the
5872 * case of compression.
5873 *
5874 * If this is a reservation and the block group has become read only we cannot
5875 * make the reservation and return -EAGAIN, otherwise this function always
5876 * succeeds.
5877 */
5878 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5879 u64 num_bytes, int reserve, int delalloc)
5880 {
5881 struct btrfs_space_info *space_info = cache->space_info;
5882 int ret = 0;
5883
5884 spin_lock(&space_info->lock);
5885 spin_lock(&cache->lock);
5886 if (reserve != RESERVE_FREE) {
5887 if (cache->ro) {
5888 ret = -EAGAIN;
5889 } else {
5890 cache->reserved += num_bytes;
5891 space_info->bytes_reserved += num_bytes;
5892 if (reserve == RESERVE_ALLOC) {
5893 trace_btrfs_space_reservation(cache->fs_info,
5894 "space_info", space_info->flags,
5895 num_bytes, 0);
5896 space_info->bytes_may_use -= num_bytes;
5897 }
5898
5899 if (delalloc)
5900 cache->delalloc_bytes += num_bytes;
5901 }
5902 } else {
5903 if (cache->ro)
5904 space_info->bytes_readonly += num_bytes;
5905 cache->reserved -= num_bytes;
5906 space_info->bytes_reserved -= num_bytes;
5907
5908 if (delalloc)
5909 cache->delalloc_bytes -= num_bytes;
5910 }
5911 spin_unlock(&cache->lock);
5912 spin_unlock(&space_info->lock);
5913 return ret;
5914 }
5915
5916 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5917 struct btrfs_root *root)
5918 {
5919 struct btrfs_fs_info *fs_info = root->fs_info;
5920 struct btrfs_caching_control *next;
5921 struct btrfs_caching_control *caching_ctl;
5922 struct btrfs_block_group_cache *cache;
5923
5924 down_write(&fs_info->commit_root_sem);
5925
5926 list_for_each_entry_safe(caching_ctl, next,
5927 &fs_info->caching_block_groups, list) {
5928 cache = caching_ctl->block_group;
5929 if (block_group_cache_done(cache)) {
5930 cache->last_byte_to_unpin = (u64)-1;
5931 list_del_init(&caching_ctl->list);
5932 put_caching_control(caching_ctl);
5933 } else {
5934 cache->last_byte_to_unpin = caching_ctl->progress;
5935 }
5936 }
5937
5938 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5939 fs_info->pinned_extents = &fs_info->freed_extents[1];
5940 else
5941 fs_info->pinned_extents = &fs_info->freed_extents[0];
5942
5943 up_write(&fs_info->commit_root_sem);
5944
5945 update_global_block_rsv(fs_info);
5946 }
5947
5948 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5949 const bool return_free_space)
5950 {
5951 struct btrfs_fs_info *fs_info = root->fs_info;
5952 struct btrfs_block_group_cache *cache = NULL;
5953 struct btrfs_space_info *space_info;
5954 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5955 u64 len;
5956 bool readonly;
5957
5958 while (start <= end) {
5959 readonly = false;
5960 if (!cache ||
5961 start >= cache->key.objectid + cache->key.offset) {
5962 if (cache)
5963 btrfs_put_block_group(cache);
5964 cache = btrfs_lookup_block_group(fs_info, start);
5965 BUG_ON(!cache); /* Logic error */
5966 }
5967
5968 len = cache->key.objectid + cache->key.offset - start;
5969 len = min(len, end + 1 - start);
5970
5971 if (start < cache->last_byte_to_unpin) {
5972 len = min(len, cache->last_byte_to_unpin - start);
5973 if (return_free_space)
5974 btrfs_add_free_space(cache, start, len);
5975 }
5976
5977 start += len;
5978 space_info = cache->space_info;
5979
5980 spin_lock(&space_info->lock);
5981 spin_lock(&cache->lock);
5982 cache->pinned -= len;
5983 space_info->bytes_pinned -= len;
5984 percpu_counter_add(&space_info->total_bytes_pinned, -len);
5985 if (cache->ro) {
5986 space_info->bytes_readonly += len;
5987 readonly = true;
5988 }
5989 spin_unlock(&cache->lock);
5990 if (!readonly && global_rsv->space_info == space_info) {
5991 spin_lock(&global_rsv->lock);
5992 if (!global_rsv->full) {
5993 len = min(len, global_rsv->size -
5994 global_rsv->reserved);
5995 global_rsv->reserved += len;
5996 space_info->bytes_may_use += len;
5997 if (global_rsv->reserved >= global_rsv->size)
5998 global_rsv->full = 1;
5999 }
6000 spin_unlock(&global_rsv->lock);
6001 }
6002 spin_unlock(&space_info->lock);
6003 }
6004
6005 if (cache)
6006 btrfs_put_block_group(cache);
6007 return 0;
6008 }
6009
6010 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6011 struct btrfs_root *root)
6012 {
6013 struct btrfs_fs_info *fs_info = root->fs_info;
6014 struct extent_io_tree *unpin;
6015 u64 start;
6016 u64 end;
6017 int ret;
6018
6019 if (trans->aborted)
6020 return 0;
6021
6022 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6023 unpin = &fs_info->freed_extents[1];
6024 else
6025 unpin = &fs_info->freed_extents[0];
6026
6027 while (1) {
6028 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6029 ret = find_first_extent_bit(unpin, 0, &start, &end,
6030 EXTENT_DIRTY, NULL);
6031 if (ret) {
6032 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6033 break;
6034 }
6035
6036 if (btrfs_test_opt(root, DISCARD))
6037 ret = btrfs_discard_extent(root, start,
6038 end + 1 - start, NULL);
6039
6040 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6041 unpin_extent_range(root, start, end, true);
6042 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6043 cond_resched();
6044 }
6045
6046 return 0;
6047 }
6048
6049 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6050 u64 owner, u64 root_objectid)
6051 {
6052 struct btrfs_space_info *space_info;
6053 u64 flags;
6054
6055 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6056 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6057 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6058 else
6059 flags = BTRFS_BLOCK_GROUP_METADATA;
6060 } else {
6061 flags = BTRFS_BLOCK_GROUP_DATA;
6062 }
6063
6064 space_info = __find_space_info(fs_info, flags);
6065 BUG_ON(!space_info); /* Logic bug */
6066 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6067 }
6068
6069
6070 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6071 struct btrfs_root *root,
6072 u64 bytenr, u64 num_bytes, u64 parent,
6073 u64 root_objectid, u64 owner_objectid,
6074 u64 owner_offset, int refs_to_drop,
6075 struct btrfs_delayed_extent_op *extent_op,
6076 int no_quota)
6077 {
6078 struct btrfs_key key;
6079 struct btrfs_path *path;
6080 struct btrfs_fs_info *info = root->fs_info;
6081 struct btrfs_root *extent_root = info->extent_root;
6082 struct extent_buffer *leaf;
6083 struct btrfs_extent_item *ei;
6084 struct btrfs_extent_inline_ref *iref;
6085 int ret;
6086 int is_data;
6087 int extent_slot = 0;
6088 int found_extent = 0;
6089 int num_to_del = 1;
6090 u32 item_size;
6091 u64 refs;
6092 int last_ref = 0;
6093 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6094 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6095 SKINNY_METADATA);
6096
6097 if (!info->quota_enabled || !is_fstree(root_objectid))
6098 no_quota = 1;
6099
6100 path = btrfs_alloc_path();
6101 if (!path)
6102 return -ENOMEM;
6103
6104 path->reada = 1;
6105 path->leave_spinning = 1;
6106
6107 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6108 BUG_ON(!is_data && refs_to_drop != 1);
6109
6110 if (is_data)
6111 skinny_metadata = 0;
6112
6113 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6114 bytenr, num_bytes, parent,
6115 root_objectid, owner_objectid,
6116 owner_offset);
6117 if (ret == 0) {
6118 extent_slot = path->slots[0];
6119 while (extent_slot >= 0) {
6120 btrfs_item_key_to_cpu(path->nodes[0], &key,
6121 extent_slot);
6122 if (key.objectid != bytenr)
6123 break;
6124 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6125 key.offset == num_bytes) {
6126 found_extent = 1;
6127 break;
6128 }
6129 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6130 key.offset == owner_objectid) {
6131 found_extent = 1;
6132 break;
6133 }
6134 if (path->slots[0] - extent_slot > 5)
6135 break;
6136 extent_slot--;
6137 }
6138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6139 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6140 if (found_extent && item_size < sizeof(*ei))
6141 found_extent = 0;
6142 #endif
6143 if (!found_extent) {
6144 BUG_ON(iref);
6145 ret = remove_extent_backref(trans, extent_root, path,
6146 NULL, refs_to_drop,
6147 is_data, &last_ref);
6148 if (ret) {
6149 btrfs_abort_transaction(trans, extent_root, ret);
6150 goto out;
6151 }
6152 btrfs_release_path(path);
6153 path->leave_spinning = 1;
6154
6155 key.objectid = bytenr;
6156 key.type = BTRFS_EXTENT_ITEM_KEY;
6157 key.offset = num_bytes;
6158
6159 if (!is_data && skinny_metadata) {
6160 key.type = BTRFS_METADATA_ITEM_KEY;
6161 key.offset = owner_objectid;
6162 }
6163
6164 ret = btrfs_search_slot(trans, extent_root,
6165 &key, path, -1, 1);
6166 if (ret > 0 && skinny_metadata && path->slots[0]) {
6167 /*
6168 * Couldn't find our skinny metadata item,
6169 * see if we have ye olde extent item.
6170 */
6171 path->slots[0]--;
6172 btrfs_item_key_to_cpu(path->nodes[0], &key,
6173 path->slots[0]);
6174 if (key.objectid == bytenr &&
6175 key.type == BTRFS_EXTENT_ITEM_KEY &&
6176 key.offset == num_bytes)
6177 ret = 0;
6178 }
6179
6180 if (ret > 0 && skinny_metadata) {
6181 skinny_metadata = false;
6182 key.objectid = bytenr;
6183 key.type = BTRFS_EXTENT_ITEM_KEY;
6184 key.offset = num_bytes;
6185 btrfs_release_path(path);
6186 ret = btrfs_search_slot(trans, extent_root,
6187 &key, path, -1, 1);
6188 }
6189
6190 if (ret) {
6191 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6192 ret, bytenr);
6193 if (ret > 0)
6194 btrfs_print_leaf(extent_root,
6195 path->nodes[0]);
6196 }
6197 if (ret < 0) {
6198 btrfs_abort_transaction(trans, extent_root, ret);
6199 goto out;
6200 }
6201 extent_slot = path->slots[0];
6202 }
6203 } else if (WARN_ON(ret == -ENOENT)) {
6204 btrfs_print_leaf(extent_root, path->nodes[0]);
6205 btrfs_err(info,
6206 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6207 bytenr, parent, root_objectid, owner_objectid,
6208 owner_offset);
6209 btrfs_abort_transaction(trans, extent_root, ret);
6210 goto out;
6211 } else {
6212 btrfs_abort_transaction(trans, extent_root, ret);
6213 goto out;
6214 }
6215
6216 leaf = path->nodes[0];
6217 item_size = btrfs_item_size_nr(leaf, extent_slot);
6218 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6219 if (item_size < sizeof(*ei)) {
6220 BUG_ON(found_extent || extent_slot != path->slots[0]);
6221 ret = convert_extent_item_v0(trans, extent_root, path,
6222 owner_objectid, 0);
6223 if (ret < 0) {
6224 btrfs_abort_transaction(trans, extent_root, ret);
6225 goto out;
6226 }
6227
6228 btrfs_release_path(path);
6229 path->leave_spinning = 1;
6230
6231 key.objectid = bytenr;
6232 key.type = BTRFS_EXTENT_ITEM_KEY;
6233 key.offset = num_bytes;
6234
6235 ret = btrfs_search_slot(trans, extent_root, &key, path,
6236 -1, 1);
6237 if (ret) {
6238 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6239 ret, bytenr);
6240 btrfs_print_leaf(extent_root, path->nodes[0]);
6241 }
6242 if (ret < 0) {
6243 btrfs_abort_transaction(trans, extent_root, ret);
6244 goto out;
6245 }
6246
6247 extent_slot = path->slots[0];
6248 leaf = path->nodes[0];
6249 item_size = btrfs_item_size_nr(leaf, extent_slot);
6250 }
6251 #endif
6252 BUG_ON(item_size < sizeof(*ei));
6253 ei = btrfs_item_ptr(leaf, extent_slot,
6254 struct btrfs_extent_item);
6255 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6256 key.type == BTRFS_EXTENT_ITEM_KEY) {
6257 struct btrfs_tree_block_info *bi;
6258 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6259 bi = (struct btrfs_tree_block_info *)(ei + 1);
6260 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6261 }
6262
6263 refs = btrfs_extent_refs(leaf, ei);
6264 if (refs < refs_to_drop) {
6265 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6266 "for bytenr %Lu", refs_to_drop, refs, bytenr);
6267 ret = -EINVAL;
6268 btrfs_abort_transaction(trans, extent_root, ret);
6269 goto out;
6270 }
6271 refs -= refs_to_drop;
6272
6273 if (refs > 0) {
6274 type = BTRFS_QGROUP_OPER_SUB_SHARED;
6275 if (extent_op)
6276 __run_delayed_extent_op(extent_op, leaf, ei);
6277 /*
6278 * In the case of inline back ref, reference count will
6279 * be updated by remove_extent_backref
6280 */
6281 if (iref) {
6282 BUG_ON(!found_extent);
6283 } else {
6284 btrfs_set_extent_refs(leaf, ei, refs);
6285 btrfs_mark_buffer_dirty(leaf);
6286 }
6287 if (found_extent) {
6288 ret = remove_extent_backref(trans, extent_root, path,
6289 iref, refs_to_drop,
6290 is_data, &last_ref);
6291 if (ret) {
6292 btrfs_abort_transaction(trans, extent_root, ret);
6293 goto out;
6294 }
6295 }
6296 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6297 root_objectid);
6298 } else {
6299 if (found_extent) {
6300 BUG_ON(is_data && refs_to_drop !=
6301 extent_data_ref_count(root, path, iref));
6302 if (iref) {
6303 BUG_ON(path->slots[0] != extent_slot);
6304 } else {
6305 BUG_ON(path->slots[0] != extent_slot + 1);
6306 path->slots[0] = extent_slot;
6307 num_to_del = 2;
6308 }
6309 }
6310
6311 last_ref = 1;
6312 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6313 num_to_del);
6314 if (ret) {
6315 btrfs_abort_transaction(trans, extent_root, ret);
6316 goto out;
6317 }
6318 btrfs_release_path(path);
6319
6320 if (is_data) {
6321 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6322 if (ret) {
6323 btrfs_abort_transaction(trans, extent_root, ret);
6324 goto out;
6325 }
6326 }
6327
6328 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6329 if (ret) {
6330 btrfs_abort_transaction(trans, extent_root, ret);
6331 goto out;
6332 }
6333 }
6334 btrfs_release_path(path);
6335
6336 /* Deal with the quota accounting */
6337 if (!ret && last_ref && !no_quota) {
6338 int mod_seq = 0;
6339
6340 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6341 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6342 mod_seq = 1;
6343
6344 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6345 bytenr, num_bytes, type,
6346 mod_seq);
6347 }
6348 out:
6349 btrfs_free_path(path);
6350 return ret;
6351 }
6352
6353 /*
6354 * when we free an block, it is possible (and likely) that we free the last
6355 * delayed ref for that extent as well. This searches the delayed ref tree for
6356 * a given extent, and if there are no other delayed refs to be processed, it
6357 * removes it from the tree.
6358 */
6359 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6360 struct btrfs_root *root, u64 bytenr)
6361 {
6362 struct btrfs_delayed_ref_head *head;
6363 struct btrfs_delayed_ref_root *delayed_refs;
6364 int ret = 0;
6365
6366 delayed_refs = &trans->transaction->delayed_refs;
6367 spin_lock(&delayed_refs->lock);
6368 head = btrfs_find_delayed_ref_head(trans, bytenr);
6369 if (!head)
6370 goto out_delayed_unlock;
6371
6372 spin_lock(&head->lock);
6373 if (rb_first(&head->ref_root))
6374 goto out;
6375
6376 if (head->extent_op) {
6377 if (!head->must_insert_reserved)
6378 goto out;
6379 btrfs_free_delayed_extent_op(head->extent_op);
6380 head->extent_op = NULL;
6381 }
6382
6383 /*
6384 * waiting for the lock here would deadlock. If someone else has it
6385 * locked they are already in the process of dropping it anyway
6386 */
6387 if (!mutex_trylock(&head->mutex))
6388 goto out;
6389
6390 /*
6391 * at this point we have a head with no other entries. Go
6392 * ahead and process it.
6393 */
6394 head->node.in_tree = 0;
6395 rb_erase(&head->href_node, &delayed_refs->href_root);
6396
6397 atomic_dec(&delayed_refs->num_entries);
6398
6399 /*
6400 * we don't take a ref on the node because we're removing it from the
6401 * tree, so we just steal the ref the tree was holding.
6402 */
6403 delayed_refs->num_heads--;
6404 if (head->processing == 0)
6405 delayed_refs->num_heads_ready--;
6406 head->processing = 0;
6407 spin_unlock(&head->lock);
6408 spin_unlock(&delayed_refs->lock);
6409
6410 BUG_ON(head->extent_op);
6411 if (head->must_insert_reserved)
6412 ret = 1;
6413
6414 mutex_unlock(&head->mutex);
6415 btrfs_put_delayed_ref(&head->node);
6416 return ret;
6417 out:
6418 spin_unlock(&head->lock);
6419
6420 out_delayed_unlock:
6421 spin_unlock(&delayed_refs->lock);
6422 return 0;
6423 }
6424
6425 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6426 struct btrfs_root *root,
6427 struct extent_buffer *buf,
6428 u64 parent, int last_ref)
6429 {
6430 int pin = 1;
6431 int ret;
6432
6433 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6434 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6435 buf->start, buf->len,
6436 parent, root->root_key.objectid,
6437 btrfs_header_level(buf),
6438 BTRFS_DROP_DELAYED_REF, NULL, 0);
6439 BUG_ON(ret); /* -ENOMEM */
6440 }
6441
6442 if (!last_ref)
6443 return;
6444
6445 if (btrfs_header_generation(buf) == trans->transid) {
6446 struct btrfs_block_group_cache *cache;
6447
6448 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6449 ret = check_ref_cleanup(trans, root, buf->start);
6450 if (!ret)
6451 goto out;
6452 }
6453
6454 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6455
6456 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6457 pin_down_extent(root, cache, buf->start, buf->len, 1);
6458 btrfs_put_block_group(cache);
6459 goto out;
6460 }
6461
6462 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6463
6464 btrfs_add_free_space(cache, buf->start, buf->len);
6465 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6466 btrfs_put_block_group(cache);
6467 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6468 pin = 0;
6469 }
6470 out:
6471 if (pin)
6472 add_pinned_bytes(root->fs_info, buf->len,
6473 btrfs_header_level(buf),
6474 root->root_key.objectid);
6475
6476 /*
6477 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6478 * anymore.
6479 */
6480 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6481 }
6482
6483 /* Can return -ENOMEM */
6484 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6485 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6486 u64 owner, u64 offset, int no_quota)
6487 {
6488 int ret;
6489 struct btrfs_fs_info *fs_info = root->fs_info;
6490
6491 if (btrfs_test_is_dummy_root(root))
6492 return 0;
6493
6494 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6495
6496 /*
6497 * tree log blocks never actually go into the extent allocation
6498 * tree, just update pinning info and exit early.
6499 */
6500 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6501 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6502 /* unlocks the pinned mutex */
6503 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6504 ret = 0;
6505 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6506 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6507 num_bytes,
6508 parent, root_objectid, (int)owner,
6509 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6510 } else {
6511 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6512 num_bytes,
6513 parent, root_objectid, owner,
6514 offset, BTRFS_DROP_DELAYED_REF,
6515 NULL, no_quota);
6516 }
6517 return ret;
6518 }
6519
6520 /*
6521 * when we wait for progress in the block group caching, its because
6522 * our allocation attempt failed at least once. So, we must sleep
6523 * and let some progress happen before we try again.
6524 *
6525 * This function will sleep at least once waiting for new free space to
6526 * show up, and then it will check the block group free space numbers
6527 * for our min num_bytes. Another option is to have it go ahead
6528 * and look in the rbtree for a free extent of a given size, but this
6529 * is a good start.
6530 *
6531 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6532 * any of the information in this block group.
6533 */
6534 static noinline void
6535 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6536 u64 num_bytes)
6537 {
6538 struct btrfs_caching_control *caching_ctl;
6539
6540 caching_ctl = get_caching_control(cache);
6541 if (!caching_ctl)
6542 return;
6543
6544 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6545 (cache->free_space_ctl->free_space >= num_bytes));
6546
6547 put_caching_control(caching_ctl);
6548 }
6549
6550 static noinline int
6551 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6552 {
6553 struct btrfs_caching_control *caching_ctl;
6554 int ret = 0;
6555
6556 caching_ctl = get_caching_control(cache);
6557 if (!caching_ctl)
6558 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6559
6560 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6561 if (cache->cached == BTRFS_CACHE_ERROR)
6562 ret = -EIO;
6563 put_caching_control(caching_ctl);
6564 return ret;
6565 }
6566
6567 int __get_raid_index(u64 flags)
6568 {
6569 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6570 return BTRFS_RAID_RAID10;
6571 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6572 return BTRFS_RAID_RAID1;
6573 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6574 return BTRFS_RAID_DUP;
6575 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6576 return BTRFS_RAID_RAID0;
6577 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6578 return BTRFS_RAID_RAID5;
6579 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6580 return BTRFS_RAID_RAID6;
6581
6582 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6583 }
6584
6585 int get_block_group_index(struct btrfs_block_group_cache *cache)
6586 {
6587 return __get_raid_index(cache->flags);
6588 }
6589
6590 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6591 [BTRFS_RAID_RAID10] = "raid10",
6592 [BTRFS_RAID_RAID1] = "raid1",
6593 [BTRFS_RAID_DUP] = "dup",
6594 [BTRFS_RAID_RAID0] = "raid0",
6595 [BTRFS_RAID_SINGLE] = "single",
6596 [BTRFS_RAID_RAID5] = "raid5",
6597 [BTRFS_RAID_RAID6] = "raid6",
6598 };
6599
6600 static const char *get_raid_name(enum btrfs_raid_types type)
6601 {
6602 if (type >= BTRFS_NR_RAID_TYPES)
6603 return NULL;
6604
6605 return btrfs_raid_type_names[type];
6606 }
6607
6608 enum btrfs_loop_type {
6609 LOOP_CACHING_NOWAIT = 0,
6610 LOOP_CACHING_WAIT = 1,
6611 LOOP_ALLOC_CHUNK = 2,
6612 LOOP_NO_EMPTY_SIZE = 3,
6613 };
6614
6615 static inline void
6616 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6617 int delalloc)
6618 {
6619 if (delalloc)
6620 down_read(&cache->data_rwsem);
6621 }
6622
6623 static inline void
6624 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6625 int delalloc)
6626 {
6627 btrfs_get_block_group(cache);
6628 if (delalloc)
6629 down_read(&cache->data_rwsem);
6630 }
6631
6632 static struct btrfs_block_group_cache *
6633 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6634 struct btrfs_free_cluster *cluster,
6635 int delalloc)
6636 {
6637 struct btrfs_block_group_cache *used_bg;
6638 bool locked = false;
6639 again:
6640 spin_lock(&cluster->refill_lock);
6641 if (locked) {
6642 if (used_bg == cluster->block_group)
6643 return used_bg;
6644
6645 up_read(&used_bg->data_rwsem);
6646 btrfs_put_block_group(used_bg);
6647 }
6648
6649 used_bg = cluster->block_group;
6650 if (!used_bg)
6651 return NULL;
6652
6653 if (used_bg == block_group)
6654 return used_bg;
6655
6656 btrfs_get_block_group(used_bg);
6657
6658 if (!delalloc)
6659 return used_bg;
6660
6661 if (down_read_trylock(&used_bg->data_rwsem))
6662 return used_bg;
6663
6664 spin_unlock(&cluster->refill_lock);
6665 down_read(&used_bg->data_rwsem);
6666 locked = true;
6667 goto again;
6668 }
6669
6670 static inline void
6671 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6672 int delalloc)
6673 {
6674 if (delalloc)
6675 up_read(&cache->data_rwsem);
6676 btrfs_put_block_group(cache);
6677 }
6678
6679 /*
6680 * walks the btree of allocated extents and find a hole of a given size.
6681 * The key ins is changed to record the hole:
6682 * ins->objectid == start position
6683 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6684 * ins->offset == the size of the hole.
6685 * Any available blocks before search_start are skipped.
6686 *
6687 * If there is no suitable free space, we will record the max size of
6688 * the free space extent currently.
6689 */
6690 static noinline int find_free_extent(struct btrfs_root *orig_root,
6691 u64 num_bytes, u64 empty_size,
6692 u64 hint_byte, struct btrfs_key *ins,
6693 u64 flags, int delalloc)
6694 {
6695 int ret = 0;
6696 struct btrfs_root *root = orig_root->fs_info->extent_root;
6697 struct btrfs_free_cluster *last_ptr = NULL;
6698 struct btrfs_block_group_cache *block_group = NULL;
6699 u64 search_start = 0;
6700 u64 max_extent_size = 0;
6701 int empty_cluster = 2 * 1024 * 1024;
6702 struct btrfs_space_info *space_info;
6703 int loop = 0;
6704 int index = __get_raid_index(flags);
6705 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6706 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6707 bool failed_cluster_refill = false;
6708 bool failed_alloc = false;
6709 bool use_cluster = true;
6710 bool have_caching_bg = false;
6711
6712 WARN_ON(num_bytes < root->sectorsize);
6713 ins->type = BTRFS_EXTENT_ITEM_KEY;
6714 ins->objectid = 0;
6715 ins->offset = 0;
6716
6717 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6718
6719 space_info = __find_space_info(root->fs_info, flags);
6720 if (!space_info) {
6721 btrfs_err(root->fs_info, "No space info for %llu", flags);
6722 return -ENOSPC;
6723 }
6724
6725 /*
6726 * If the space info is for both data and metadata it means we have a
6727 * small filesystem and we can't use the clustering stuff.
6728 */
6729 if (btrfs_mixed_space_info(space_info))
6730 use_cluster = false;
6731
6732 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6733 last_ptr = &root->fs_info->meta_alloc_cluster;
6734 if (!btrfs_test_opt(root, SSD))
6735 empty_cluster = 64 * 1024;
6736 }
6737
6738 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6739 btrfs_test_opt(root, SSD)) {
6740 last_ptr = &root->fs_info->data_alloc_cluster;
6741 }
6742
6743 if (last_ptr) {
6744 spin_lock(&last_ptr->lock);
6745 if (last_ptr->block_group)
6746 hint_byte = last_ptr->window_start;
6747 spin_unlock(&last_ptr->lock);
6748 }
6749
6750 search_start = max(search_start, first_logical_byte(root, 0));
6751 search_start = max(search_start, hint_byte);
6752
6753 if (!last_ptr)
6754 empty_cluster = 0;
6755
6756 if (search_start == hint_byte) {
6757 block_group = btrfs_lookup_block_group(root->fs_info,
6758 search_start);
6759 /*
6760 * we don't want to use the block group if it doesn't match our
6761 * allocation bits, or if its not cached.
6762 *
6763 * However if we are re-searching with an ideal block group
6764 * picked out then we don't care that the block group is cached.
6765 */
6766 if (block_group && block_group_bits(block_group, flags) &&
6767 block_group->cached != BTRFS_CACHE_NO) {
6768 down_read(&space_info->groups_sem);
6769 if (list_empty(&block_group->list) ||
6770 block_group->ro) {
6771 /*
6772 * someone is removing this block group,
6773 * we can't jump into the have_block_group
6774 * target because our list pointers are not
6775 * valid
6776 */
6777 btrfs_put_block_group(block_group);
6778 up_read(&space_info->groups_sem);
6779 } else {
6780 index = get_block_group_index(block_group);
6781 btrfs_lock_block_group(block_group, delalloc);
6782 goto have_block_group;
6783 }
6784 } else if (block_group) {
6785 btrfs_put_block_group(block_group);
6786 }
6787 }
6788 search:
6789 have_caching_bg = false;
6790 down_read(&space_info->groups_sem);
6791 list_for_each_entry(block_group, &space_info->block_groups[index],
6792 list) {
6793 u64 offset;
6794 int cached;
6795
6796 btrfs_grab_block_group(block_group, delalloc);
6797 search_start = block_group->key.objectid;
6798
6799 /*
6800 * this can happen if we end up cycling through all the
6801 * raid types, but we want to make sure we only allocate
6802 * for the proper type.
6803 */
6804 if (!block_group_bits(block_group, flags)) {
6805 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6806 BTRFS_BLOCK_GROUP_RAID1 |
6807 BTRFS_BLOCK_GROUP_RAID5 |
6808 BTRFS_BLOCK_GROUP_RAID6 |
6809 BTRFS_BLOCK_GROUP_RAID10;
6810
6811 /*
6812 * if they asked for extra copies and this block group
6813 * doesn't provide them, bail. This does allow us to
6814 * fill raid0 from raid1.
6815 */
6816 if ((flags & extra) && !(block_group->flags & extra))
6817 goto loop;
6818 }
6819
6820 have_block_group:
6821 cached = block_group_cache_done(block_group);
6822 if (unlikely(!cached)) {
6823 ret = cache_block_group(block_group, 0);
6824 BUG_ON(ret < 0);
6825 ret = 0;
6826 }
6827
6828 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6829 goto loop;
6830 if (unlikely(block_group->ro))
6831 goto loop;
6832
6833 /*
6834 * Ok we want to try and use the cluster allocator, so
6835 * lets look there
6836 */
6837 if (last_ptr) {
6838 struct btrfs_block_group_cache *used_block_group;
6839 unsigned long aligned_cluster;
6840 /*
6841 * the refill lock keeps out other
6842 * people trying to start a new cluster
6843 */
6844 used_block_group = btrfs_lock_cluster(block_group,
6845 last_ptr,
6846 delalloc);
6847 if (!used_block_group)
6848 goto refill_cluster;
6849
6850 if (used_block_group != block_group &&
6851 (used_block_group->ro ||
6852 !block_group_bits(used_block_group, flags)))
6853 goto release_cluster;
6854
6855 offset = btrfs_alloc_from_cluster(used_block_group,
6856 last_ptr,
6857 num_bytes,
6858 used_block_group->key.objectid,
6859 &max_extent_size);
6860 if (offset) {
6861 /* we have a block, we're done */
6862 spin_unlock(&last_ptr->refill_lock);
6863 trace_btrfs_reserve_extent_cluster(root,
6864 used_block_group,
6865 search_start, num_bytes);
6866 if (used_block_group != block_group) {
6867 btrfs_release_block_group(block_group,
6868 delalloc);
6869 block_group = used_block_group;
6870 }
6871 goto checks;
6872 }
6873
6874 WARN_ON(last_ptr->block_group != used_block_group);
6875 release_cluster:
6876 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6877 * set up a new clusters, so lets just skip it
6878 * and let the allocator find whatever block
6879 * it can find. If we reach this point, we
6880 * will have tried the cluster allocator
6881 * plenty of times and not have found
6882 * anything, so we are likely way too
6883 * fragmented for the clustering stuff to find
6884 * anything.
6885 *
6886 * However, if the cluster is taken from the
6887 * current block group, release the cluster
6888 * first, so that we stand a better chance of
6889 * succeeding in the unclustered
6890 * allocation. */
6891 if (loop >= LOOP_NO_EMPTY_SIZE &&
6892 used_block_group != block_group) {
6893 spin_unlock(&last_ptr->refill_lock);
6894 btrfs_release_block_group(used_block_group,
6895 delalloc);
6896 goto unclustered_alloc;
6897 }
6898
6899 /*
6900 * this cluster didn't work out, free it and
6901 * start over
6902 */
6903 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6904
6905 if (used_block_group != block_group)
6906 btrfs_release_block_group(used_block_group,
6907 delalloc);
6908 refill_cluster:
6909 if (loop >= LOOP_NO_EMPTY_SIZE) {
6910 spin_unlock(&last_ptr->refill_lock);
6911 goto unclustered_alloc;
6912 }
6913
6914 aligned_cluster = max_t(unsigned long,
6915 empty_cluster + empty_size,
6916 block_group->full_stripe_len);
6917
6918 /* allocate a cluster in this block group */
6919 ret = btrfs_find_space_cluster(root, block_group,
6920 last_ptr, search_start,
6921 num_bytes,
6922 aligned_cluster);
6923 if (ret == 0) {
6924 /*
6925 * now pull our allocation out of this
6926 * cluster
6927 */
6928 offset = btrfs_alloc_from_cluster(block_group,
6929 last_ptr,
6930 num_bytes,
6931 search_start,
6932 &max_extent_size);
6933 if (offset) {
6934 /* we found one, proceed */
6935 spin_unlock(&last_ptr->refill_lock);
6936 trace_btrfs_reserve_extent_cluster(root,
6937 block_group, search_start,
6938 num_bytes);
6939 goto checks;
6940 }
6941 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6942 && !failed_cluster_refill) {
6943 spin_unlock(&last_ptr->refill_lock);
6944
6945 failed_cluster_refill = true;
6946 wait_block_group_cache_progress(block_group,
6947 num_bytes + empty_cluster + empty_size);
6948 goto have_block_group;
6949 }
6950
6951 /*
6952 * at this point we either didn't find a cluster
6953 * or we weren't able to allocate a block from our
6954 * cluster. Free the cluster we've been trying
6955 * to use, and go to the next block group
6956 */
6957 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6958 spin_unlock(&last_ptr->refill_lock);
6959 goto loop;
6960 }
6961
6962 unclustered_alloc:
6963 spin_lock(&block_group->free_space_ctl->tree_lock);
6964 if (cached &&
6965 block_group->free_space_ctl->free_space <
6966 num_bytes + empty_cluster + empty_size) {
6967 if (block_group->free_space_ctl->free_space >
6968 max_extent_size)
6969 max_extent_size =
6970 block_group->free_space_ctl->free_space;
6971 spin_unlock(&block_group->free_space_ctl->tree_lock);
6972 goto loop;
6973 }
6974 spin_unlock(&block_group->free_space_ctl->tree_lock);
6975
6976 offset = btrfs_find_space_for_alloc(block_group, search_start,
6977 num_bytes, empty_size,
6978 &max_extent_size);
6979 /*
6980 * If we didn't find a chunk, and we haven't failed on this
6981 * block group before, and this block group is in the middle of
6982 * caching and we are ok with waiting, then go ahead and wait
6983 * for progress to be made, and set failed_alloc to true.
6984 *
6985 * If failed_alloc is true then we've already waited on this
6986 * block group once and should move on to the next block group.
6987 */
6988 if (!offset && !failed_alloc && !cached &&
6989 loop > LOOP_CACHING_NOWAIT) {
6990 wait_block_group_cache_progress(block_group,
6991 num_bytes + empty_size);
6992 failed_alloc = true;
6993 goto have_block_group;
6994 } else if (!offset) {
6995 if (!cached)
6996 have_caching_bg = true;
6997 goto loop;
6998 }
6999 checks:
7000 search_start = ALIGN(offset, root->stripesize);
7001
7002 /* move on to the next group */
7003 if (search_start + num_bytes >
7004 block_group->key.objectid + block_group->key.offset) {
7005 btrfs_add_free_space(block_group, offset, num_bytes);
7006 goto loop;
7007 }
7008
7009 if (offset < search_start)
7010 btrfs_add_free_space(block_group, offset,
7011 search_start - offset);
7012 BUG_ON(offset > search_start);
7013
7014 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7015 alloc_type, delalloc);
7016 if (ret == -EAGAIN) {
7017 btrfs_add_free_space(block_group, offset, num_bytes);
7018 goto loop;
7019 }
7020
7021 /* we are all good, lets return */
7022 ins->objectid = search_start;
7023 ins->offset = num_bytes;
7024
7025 trace_btrfs_reserve_extent(orig_root, block_group,
7026 search_start, num_bytes);
7027 btrfs_release_block_group(block_group, delalloc);
7028 break;
7029 loop:
7030 failed_cluster_refill = false;
7031 failed_alloc = false;
7032 BUG_ON(index != get_block_group_index(block_group));
7033 btrfs_release_block_group(block_group, delalloc);
7034 }
7035 up_read(&space_info->groups_sem);
7036
7037 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7038 goto search;
7039
7040 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7041 goto search;
7042
7043 /*
7044 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7045 * caching kthreads as we move along
7046 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7047 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7048 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7049 * again
7050 */
7051 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7052 index = 0;
7053 loop++;
7054 if (loop == LOOP_ALLOC_CHUNK) {
7055 struct btrfs_trans_handle *trans;
7056 int exist = 0;
7057
7058 trans = current->journal_info;
7059 if (trans)
7060 exist = 1;
7061 else
7062 trans = btrfs_join_transaction(root);
7063
7064 if (IS_ERR(trans)) {
7065 ret = PTR_ERR(trans);
7066 goto out;
7067 }
7068
7069 ret = do_chunk_alloc(trans, root, flags,
7070 CHUNK_ALLOC_FORCE);
7071 /*
7072 * Do not bail out on ENOSPC since we
7073 * can do more things.
7074 */
7075 if (ret < 0 && ret != -ENOSPC)
7076 btrfs_abort_transaction(trans,
7077 root, ret);
7078 else
7079 ret = 0;
7080 if (!exist)
7081 btrfs_end_transaction(trans, root);
7082 if (ret)
7083 goto out;
7084 }
7085
7086 if (loop == LOOP_NO_EMPTY_SIZE) {
7087 empty_size = 0;
7088 empty_cluster = 0;
7089 }
7090
7091 goto search;
7092 } else if (!ins->objectid) {
7093 ret = -ENOSPC;
7094 } else if (ins->objectid) {
7095 ret = 0;
7096 }
7097 out:
7098 if (ret == -ENOSPC)
7099 ins->offset = max_extent_size;
7100 return ret;
7101 }
7102
7103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7104 int dump_block_groups)
7105 {
7106 struct btrfs_block_group_cache *cache;
7107 int index = 0;
7108
7109 spin_lock(&info->lock);
7110 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7111 info->flags,
7112 info->total_bytes - info->bytes_used - info->bytes_pinned -
7113 info->bytes_reserved - info->bytes_readonly,
7114 (info->full) ? "" : "not ");
7115 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7116 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7117 info->total_bytes, info->bytes_used, info->bytes_pinned,
7118 info->bytes_reserved, info->bytes_may_use,
7119 info->bytes_readonly);
7120 spin_unlock(&info->lock);
7121
7122 if (!dump_block_groups)
7123 return;
7124
7125 down_read(&info->groups_sem);
7126 again:
7127 list_for_each_entry(cache, &info->block_groups[index], list) {
7128 spin_lock(&cache->lock);
7129 printk(KERN_INFO "BTRFS: "
7130 "block group %llu has %llu bytes, "
7131 "%llu used %llu pinned %llu reserved %s\n",
7132 cache->key.objectid, cache->key.offset,
7133 btrfs_block_group_used(&cache->item), cache->pinned,
7134 cache->reserved, cache->ro ? "[readonly]" : "");
7135 btrfs_dump_free_space(cache, bytes);
7136 spin_unlock(&cache->lock);
7137 }
7138 if (++index < BTRFS_NR_RAID_TYPES)
7139 goto again;
7140 up_read(&info->groups_sem);
7141 }
7142
7143 int btrfs_reserve_extent(struct btrfs_root *root,
7144 u64 num_bytes, u64 min_alloc_size,
7145 u64 empty_size, u64 hint_byte,
7146 struct btrfs_key *ins, int is_data, int delalloc)
7147 {
7148 bool final_tried = false;
7149 u64 flags;
7150 int ret;
7151
7152 flags = btrfs_get_alloc_profile(root, is_data);
7153 again:
7154 WARN_ON(num_bytes < root->sectorsize);
7155 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7156 flags, delalloc);
7157
7158 if (ret == -ENOSPC) {
7159 if (!final_tried && ins->offset) {
7160 num_bytes = min(num_bytes >> 1, ins->offset);
7161 num_bytes = round_down(num_bytes, root->sectorsize);
7162 num_bytes = max(num_bytes, min_alloc_size);
7163 if (num_bytes == min_alloc_size)
7164 final_tried = true;
7165 goto again;
7166 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7167 struct btrfs_space_info *sinfo;
7168
7169 sinfo = __find_space_info(root->fs_info, flags);
7170 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7171 flags, num_bytes);
7172 if (sinfo)
7173 dump_space_info(sinfo, num_bytes, 1);
7174 }
7175 }
7176
7177 return ret;
7178 }
7179
7180 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7181 u64 start, u64 len,
7182 int pin, int delalloc)
7183 {
7184 struct btrfs_block_group_cache *cache;
7185 int ret = 0;
7186
7187 cache = btrfs_lookup_block_group(root->fs_info, start);
7188 if (!cache) {
7189 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7190 start);
7191 return -ENOSPC;
7192 }
7193
7194 if (pin)
7195 pin_down_extent(root, cache, start, len, 1);
7196 else {
7197 if (btrfs_test_opt(root, DISCARD))
7198 ret = btrfs_discard_extent(root, start, len, NULL);
7199 btrfs_add_free_space(cache, start, len);
7200 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7201 }
7202
7203 btrfs_put_block_group(cache);
7204
7205 trace_btrfs_reserved_extent_free(root, start, len);
7206
7207 return ret;
7208 }
7209
7210 int btrfs_free_reserved_extent(struct btrfs_root *root,
7211 u64 start, u64 len, int delalloc)
7212 {
7213 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7214 }
7215
7216 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7217 u64 start, u64 len)
7218 {
7219 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7220 }
7221
7222 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7223 struct btrfs_root *root,
7224 u64 parent, u64 root_objectid,
7225 u64 flags, u64 owner, u64 offset,
7226 struct btrfs_key *ins, int ref_mod)
7227 {
7228 int ret;
7229 struct btrfs_fs_info *fs_info = root->fs_info;
7230 struct btrfs_extent_item *extent_item;
7231 struct btrfs_extent_inline_ref *iref;
7232 struct btrfs_path *path;
7233 struct extent_buffer *leaf;
7234 int type;
7235 u32 size;
7236
7237 if (parent > 0)
7238 type = BTRFS_SHARED_DATA_REF_KEY;
7239 else
7240 type = BTRFS_EXTENT_DATA_REF_KEY;
7241
7242 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7243
7244 path = btrfs_alloc_path();
7245 if (!path)
7246 return -ENOMEM;
7247
7248 path->leave_spinning = 1;
7249 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7250 ins, size);
7251 if (ret) {
7252 btrfs_free_path(path);
7253 return ret;
7254 }
7255
7256 leaf = path->nodes[0];
7257 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7258 struct btrfs_extent_item);
7259 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7260 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7261 btrfs_set_extent_flags(leaf, extent_item,
7262 flags | BTRFS_EXTENT_FLAG_DATA);
7263
7264 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7265 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7266 if (parent > 0) {
7267 struct btrfs_shared_data_ref *ref;
7268 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7269 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7270 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7271 } else {
7272 struct btrfs_extent_data_ref *ref;
7273 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7274 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7275 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7276 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7277 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7278 }
7279
7280 btrfs_mark_buffer_dirty(path->nodes[0]);
7281 btrfs_free_path(path);
7282
7283 /* Always set parent to 0 here since its exclusive anyway. */
7284 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7285 ins->objectid, ins->offset,
7286 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7287 if (ret)
7288 return ret;
7289
7290 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7291 if (ret) { /* -ENOENT, logic error */
7292 btrfs_err(fs_info, "update block group failed for %llu %llu",
7293 ins->objectid, ins->offset);
7294 BUG();
7295 }
7296 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7297 return ret;
7298 }
7299
7300 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7301 struct btrfs_root *root,
7302 u64 parent, u64 root_objectid,
7303 u64 flags, struct btrfs_disk_key *key,
7304 int level, struct btrfs_key *ins,
7305 int no_quota)
7306 {
7307 int ret;
7308 struct btrfs_fs_info *fs_info = root->fs_info;
7309 struct btrfs_extent_item *extent_item;
7310 struct btrfs_tree_block_info *block_info;
7311 struct btrfs_extent_inline_ref *iref;
7312 struct btrfs_path *path;
7313 struct extent_buffer *leaf;
7314 u32 size = sizeof(*extent_item) + sizeof(*iref);
7315 u64 num_bytes = ins->offset;
7316 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7317 SKINNY_METADATA);
7318
7319 if (!skinny_metadata)
7320 size += sizeof(*block_info);
7321
7322 path = btrfs_alloc_path();
7323 if (!path) {
7324 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7325 root->nodesize);
7326 return -ENOMEM;
7327 }
7328
7329 path->leave_spinning = 1;
7330 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7331 ins, size);
7332 if (ret) {
7333 btrfs_free_path(path);
7334 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7335 root->nodesize);
7336 return ret;
7337 }
7338
7339 leaf = path->nodes[0];
7340 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7341 struct btrfs_extent_item);
7342 btrfs_set_extent_refs(leaf, extent_item, 1);
7343 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7344 btrfs_set_extent_flags(leaf, extent_item,
7345 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7346
7347 if (skinny_metadata) {
7348 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7349 num_bytes = root->nodesize;
7350 } else {
7351 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7352 btrfs_set_tree_block_key(leaf, block_info, key);
7353 btrfs_set_tree_block_level(leaf, block_info, level);
7354 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7355 }
7356
7357 if (parent > 0) {
7358 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7359 btrfs_set_extent_inline_ref_type(leaf, iref,
7360 BTRFS_SHARED_BLOCK_REF_KEY);
7361 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7362 } else {
7363 btrfs_set_extent_inline_ref_type(leaf, iref,
7364 BTRFS_TREE_BLOCK_REF_KEY);
7365 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7366 }
7367
7368 btrfs_mark_buffer_dirty(leaf);
7369 btrfs_free_path(path);
7370
7371 if (!no_quota) {
7372 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7373 ins->objectid, num_bytes,
7374 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7375 if (ret)
7376 return ret;
7377 }
7378
7379 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7380 1);
7381 if (ret) { /* -ENOENT, logic error */
7382 btrfs_err(fs_info, "update block group failed for %llu %llu",
7383 ins->objectid, ins->offset);
7384 BUG();
7385 }
7386
7387 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7388 return ret;
7389 }
7390
7391 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7392 struct btrfs_root *root,
7393 u64 root_objectid, u64 owner,
7394 u64 offset, struct btrfs_key *ins)
7395 {
7396 int ret;
7397
7398 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7399
7400 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7401 ins->offset, 0,
7402 root_objectid, owner, offset,
7403 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7404 return ret;
7405 }
7406
7407 /*
7408 * this is used by the tree logging recovery code. It records that
7409 * an extent has been allocated and makes sure to clear the free
7410 * space cache bits as well
7411 */
7412 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7413 struct btrfs_root *root,
7414 u64 root_objectid, u64 owner, u64 offset,
7415 struct btrfs_key *ins)
7416 {
7417 int ret;
7418 struct btrfs_block_group_cache *block_group;
7419
7420 /*
7421 * Mixed block groups will exclude before processing the log so we only
7422 * need to do the exlude dance if this fs isn't mixed.
7423 */
7424 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7425 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7426 if (ret)
7427 return ret;
7428 }
7429
7430 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7431 if (!block_group)
7432 return -EINVAL;
7433
7434 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7435 RESERVE_ALLOC_NO_ACCOUNT, 0);
7436 BUG_ON(ret); /* logic error */
7437 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7438 0, owner, offset, ins, 1);
7439 btrfs_put_block_group(block_group);
7440 return ret;
7441 }
7442
7443 static struct extent_buffer *
7444 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7445 u64 bytenr, int level)
7446 {
7447 struct extent_buffer *buf;
7448
7449 buf = btrfs_find_create_tree_block(root, bytenr);
7450 if (!buf)
7451 return ERR_PTR(-ENOMEM);
7452 btrfs_set_header_generation(buf, trans->transid);
7453 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7454 btrfs_tree_lock(buf);
7455 clean_tree_block(trans, root->fs_info, buf);
7456 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7457
7458 btrfs_set_lock_blocking(buf);
7459 btrfs_set_buffer_uptodate(buf);
7460
7461 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7462 buf->log_index = root->log_transid % 2;
7463 /*
7464 * we allow two log transactions at a time, use different
7465 * EXENT bit to differentiate dirty pages.
7466 */
7467 if (buf->log_index == 0)
7468 set_extent_dirty(&root->dirty_log_pages, buf->start,
7469 buf->start + buf->len - 1, GFP_NOFS);
7470 else
7471 set_extent_new(&root->dirty_log_pages, buf->start,
7472 buf->start + buf->len - 1, GFP_NOFS);
7473 } else {
7474 buf->log_index = -1;
7475 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7476 buf->start + buf->len - 1, GFP_NOFS);
7477 }
7478 trans->blocks_used++;
7479 /* this returns a buffer locked for blocking */
7480 return buf;
7481 }
7482
7483 static struct btrfs_block_rsv *
7484 use_block_rsv(struct btrfs_trans_handle *trans,
7485 struct btrfs_root *root, u32 blocksize)
7486 {
7487 struct btrfs_block_rsv *block_rsv;
7488 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7489 int ret;
7490 bool global_updated = false;
7491
7492 block_rsv = get_block_rsv(trans, root);
7493
7494 if (unlikely(block_rsv->size == 0))
7495 goto try_reserve;
7496 again:
7497 ret = block_rsv_use_bytes(block_rsv, blocksize);
7498 if (!ret)
7499 return block_rsv;
7500
7501 if (block_rsv->failfast)
7502 return ERR_PTR(ret);
7503
7504 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7505 global_updated = true;
7506 update_global_block_rsv(root->fs_info);
7507 goto again;
7508 }
7509
7510 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7511 static DEFINE_RATELIMIT_STATE(_rs,
7512 DEFAULT_RATELIMIT_INTERVAL * 10,
7513 /*DEFAULT_RATELIMIT_BURST*/ 1);
7514 if (__ratelimit(&_rs))
7515 WARN(1, KERN_DEBUG
7516 "BTRFS: block rsv returned %d\n", ret);
7517 }
7518 try_reserve:
7519 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7520 BTRFS_RESERVE_NO_FLUSH);
7521 if (!ret)
7522 return block_rsv;
7523 /*
7524 * If we couldn't reserve metadata bytes try and use some from
7525 * the global reserve if its space type is the same as the global
7526 * reservation.
7527 */
7528 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7529 block_rsv->space_info == global_rsv->space_info) {
7530 ret = block_rsv_use_bytes(global_rsv, blocksize);
7531 if (!ret)
7532 return global_rsv;
7533 }
7534 return ERR_PTR(ret);
7535 }
7536
7537 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7538 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7539 {
7540 block_rsv_add_bytes(block_rsv, blocksize, 0);
7541 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7542 }
7543
7544 /*
7545 * finds a free extent and does all the dirty work required for allocation
7546 * returns the key for the extent through ins, and a tree buffer for
7547 * the first block of the extent through buf.
7548 *
7549 * returns the tree buffer or an ERR_PTR on error.
7550 */
7551 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7552 struct btrfs_root *root,
7553 u64 parent, u64 root_objectid,
7554 struct btrfs_disk_key *key, int level,
7555 u64 hint, u64 empty_size)
7556 {
7557 struct btrfs_key ins;
7558 struct btrfs_block_rsv *block_rsv;
7559 struct extent_buffer *buf;
7560 struct btrfs_delayed_extent_op *extent_op;
7561 u64 flags = 0;
7562 int ret;
7563 u32 blocksize = root->nodesize;
7564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7565 SKINNY_METADATA);
7566
7567 if (btrfs_test_is_dummy_root(root)) {
7568 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7569 level);
7570 if (!IS_ERR(buf))
7571 root->alloc_bytenr += blocksize;
7572 return buf;
7573 }
7574
7575 block_rsv = use_block_rsv(trans, root, blocksize);
7576 if (IS_ERR(block_rsv))
7577 return ERR_CAST(block_rsv);
7578
7579 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7580 empty_size, hint, &ins, 0, 0);
7581 if (ret)
7582 goto out_unuse;
7583
7584 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7585 if (IS_ERR(buf)) {
7586 ret = PTR_ERR(buf);
7587 goto out_free_reserved;
7588 }
7589
7590 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7591 if (parent == 0)
7592 parent = ins.objectid;
7593 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7594 } else
7595 BUG_ON(parent > 0);
7596
7597 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7598 extent_op = btrfs_alloc_delayed_extent_op();
7599 if (!extent_op) {
7600 ret = -ENOMEM;
7601 goto out_free_buf;
7602 }
7603 if (key)
7604 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7605 else
7606 memset(&extent_op->key, 0, sizeof(extent_op->key));
7607 extent_op->flags_to_set = flags;
7608 if (skinny_metadata)
7609 extent_op->update_key = 0;
7610 else
7611 extent_op->update_key = 1;
7612 extent_op->update_flags = 1;
7613 extent_op->is_data = 0;
7614 extent_op->level = level;
7615
7616 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7617 ins.objectid, ins.offset,
7618 parent, root_objectid, level,
7619 BTRFS_ADD_DELAYED_EXTENT,
7620 extent_op, 0);
7621 if (ret)
7622 goto out_free_delayed;
7623 }
7624 return buf;
7625
7626 out_free_delayed:
7627 btrfs_free_delayed_extent_op(extent_op);
7628 out_free_buf:
7629 free_extent_buffer(buf);
7630 out_free_reserved:
7631 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7632 out_unuse:
7633 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7634 return ERR_PTR(ret);
7635 }
7636
7637 struct walk_control {
7638 u64 refs[BTRFS_MAX_LEVEL];
7639 u64 flags[BTRFS_MAX_LEVEL];
7640 struct btrfs_key update_progress;
7641 int stage;
7642 int level;
7643 int shared_level;
7644 int update_ref;
7645 int keep_locks;
7646 int reada_slot;
7647 int reada_count;
7648 int for_reloc;
7649 };
7650
7651 #define DROP_REFERENCE 1
7652 #define UPDATE_BACKREF 2
7653
7654 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7655 struct btrfs_root *root,
7656 struct walk_control *wc,
7657 struct btrfs_path *path)
7658 {
7659 u64 bytenr;
7660 u64 generation;
7661 u64 refs;
7662 u64 flags;
7663 u32 nritems;
7664 u32 blocksize;
7665 struct btrfs_key key;
7666 struct extent_buffer *eb;
7667 int ret;
7668 int slot;
7669 int nread = 0;
7670
7671 if (path->slots[wc->level] < wc->reada_slot) {
7672 wc->reada_count = wc->reada_count * 2 / 3;
7673 wc->reada_count = max(wc->reada_count, 2);
7674 } else {
7675 wc->reada_count = wc->reada_count * 3 / 2;
7676 wc->reada_count = min_t(int, wc->reada_count,
7677 BTRFS_NODEPTRS_PER_BLOCK(root));
7678 }
7679
7680 eb = path->nodes[wc->level];
7681 nritems = btrfs_header_nritems(eb);
7682 blocksize = root->nodesize;
7683
7684 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7685 if (nread >= wc->reada_count)
7686 break;
7687
7688 cond_resched();
7689 bytenr = btrfs_node_blockptr(eb, slot);
7690 generation = btrfs_node_ptr_generation(eb, slot);
7691
7692 if (slot == path->slots[wc->level])
7693 goto reada;
7694
7695 if (wc->stage == UPDATE_BACKREF &&
7696 generation <= root->root_key.offset)
7697 continue;
7698
7699 /* We don't lock the tree block, it's OK to be racy here */
7700 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7701 wc->level - 1, 1, &refs,
7702 &flags);
7703 /* We don't care about errors in readahead. */
7704 if (ret < 0)
7705 continue;
7706 BUG_ON(refs == 0);
7707
7708 if (wc->stage == DROP_REFERENCE) {
7709 if (refs == 1)
7710 goto reada;
7711
7712 if (wc->level == 1 &&
7713 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7714 continue;
7715 if (!wc->update_ref ||
7716 generation <= root->root_key.offset)
7717 continue;
7718 btrfs_node_key_to_cpu(eb, &key, slot);
7719 ret = btrfs_comp_cpu_keys(&key,
7720 &wc->update_progress);
7721 if (ret < 0)
7722 continue;
7723 } else {
7724 if (wc->level == 1 &&
7725 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7726 continue;
7727 }
7728 reada:
7729 readahead_tree_block(root, bytenr);
7730 nread++;
7731 }
7732 wc->reada_slot = slot;
7733 }
7734
7735 static int account_leaf_items(struct btrfs_trans_handle *trans,
7736 struct btrfs_root *root,
7737 struct extent_buffer *eb)
7738 {
7739 int nr = btrfs_header_nritems(eb);
7740 int i, extent_type, ret;
7741 struct btrfs_key key;
7742 struct btrfs_file_extent_item *fi;
7743 u64 bytenr, num_bytes;
7744
7745 for (i = 0; i < nr; i++) {
7746 btrfs_item_key_to_cpu(eb, &key, i);
7747
7748 if (key.type != BTRFS_EXTENT_DATA_KEY)
7749 continue;
7750
7751 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7752 /* filter out non qgroup-accountable extents */
7753 extent_type = btrfs_file_extent_type(eb, fi);
7754
7755 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7756 continue;
7757
7758 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7759 if (!bytenr)
7760 continue;
7761
7762 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7763
7764 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7765 root->objectid,
7766 bytenr, num_bytes,
7767 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7768 if (ret)
7769 return ret;
7770 }
7771 return 0;
7772 }
7773
7774 /*
7775 * Walk up the tree from the bottom, freeing leaves and any interior
7776 * nodes which have had all slots visited. If a node (leaf or
7777 * interior) is freed, the node above it will have it's slot
7778 * incremented. The root node will never be freed.
7779 *
7780 * At the end of this function, we should have a path which has all
7781 * slots incremented to the next position for a search. If we need to
7782 * read a new node it will be NULL and the node above it will have the
7783 * correct slot selected for a later read.
7784 *
7785 * If we increment the root nodes slot counter past the number of
7786 * elements, 1 is returned to signal completion of the search.
7787 */
7788 static int adjust_slots_upwards(struct btrfs_root *root,
7789 struct btrfs_path *path, int root_level)
7790 {
7791 int level = 0;
7792 int nr, slot;
7793 struct extent_buffer *eb;
7794
7795 if (root_level == 0)
7796 return 1;
7797
7798 while (level <= root_level) {
7799 eb = path->nodes[level];
7800 nr = btrfs_header_nritems(eb);
7801 path->slots[level]++;
7802 slot = path->slots[level];
7803 if (slot >= nr || level == 0) {
7804 /*
7805 * Don't free the root - we will detect this
7806 * condition after our loop and return a
7807 * positive value for caller to stop walking the tree.
7808 */
7809 if (level != root_level) {
7810 btrfs_tree_unlock_rw(eb, path->locks[level]);
7811 path->locks[level] = 0;
7812
7813 free_extent_buffer(eb);
7814 path->nodes[level] = NULL;
7815 path->slots[level] = 0;
7816 }
7817 } else {
7818 /*
7819 * We have a valid slot to walk back down
7820 * from. Stop here so caller can process these
7821 * new nodes.
7822 */
7823 break;
7824 }
7825
7826 level++;
7827 }
7828
7829 eb = path->nodes[root_level];
7830 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7831 return 1;
7832
7833 return 0;
7834 }
7835
7836 /*
7837 * root_eb is the subtree root and is locked before this function is called.
7838 */
7839 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7840 struct btrfs_root *root,
7841 struct extent_buffer *root_eb,
7842 u64 root_gen,
7843 int root_level)
7844 {
7845 int ret = 0;
7846 int level;
7847 struct extent_buffer *eb = root_eb;
7848 struct btrfs_path *path = NULL;
7849
7850 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7851 BUG_ON(root_eb == NULL);
7852
7853 if (!root->fs_info->quota_enabled)
7854 return 0;
7855
7856 if (!extent_buffer_uptodate(root_eb)) {
7857 ret = btrfs_read_buffer(root_eb, root_gen);
7858 if (ret)
7859 goto out;
7860 }
7861
7862 if (root_level == 0) {
7863 ret = account_leaf_items(trans, root, root_eb);
7864 goto out;
7865 }
7866
7867 path = btrfs_alloc_path();
7868 if (!path)
7869 return -ENOMEM;
7870
7871 /*
7872 * Walk down the tree. Missing extent blocks are filled in as
7873 * we go. Metadata is accounted every time we read a new
7874 * extent block.
7875 *
7876 * When we reach a leaf, we account for file extent items in it,
7877 * walk back up the tree (adjusting slot pointers as we go)
7878 * and restart the search process.
7879 */
7880 extent_buffer_get(root_eb); /* For path */
7881 path->nodes[root_level] = root_eb;
7882 path->slots[root_level] = 0;
7883 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7884 walk_down:
7885 level = root_level;
7886 while (level >= 0) {
7887 if (path->nodes[level] == NULL) {
7888 int parent_slot;
7889 u64 child_gen;
7890 u64 child_bytenr;
7891
7892 /* We need to get child blockptr/gen from
7893 * parent before we can read it. */
7894 eb = path->nodes[level + 1];
7895 parent_slot = path->slots[level + 1];
7896 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7897 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7898
7899 eb = read_tree_block(root, child_bytenr, child_gen);
7900 if (!eb || !extent_buffer_uptodate(eb)) {
7901 ret = -EIO;
7902 goto out;
7903 }
7904
7905 path->nodes[level] = eb;
7906 path->slots[level] = 0;
7907
7908 btrfs_tree_read_lock(eb);
7909 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7910 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7911
7912 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7913 root->objectid,
7914 child_bytenr,
7915 root->nodesize,
7916 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7917 0);
7918 if (ret)
7919 goto out;
7920
7921 }
7922
7923 if (level == 0) {
7924 ret = account_leaf_items(trans, root, path->nodes[level]);
7925 if (ret)
7926 goto out;
7927
7928 /* Nonzero return here means we completed our search */
7929 ret = adjust_slots_upwards(root, path, root_level);
7930 if (ret)
7931 break;
7932
7933 /* Restart search with new slots */
7934 goto walk_down;
7935 }
7936
7937 level--;
7938 }
7939
7940 ret = 0;
7941 out:
7942 btrfs_free_path(path);
7943
7944 return ret;
7945 }
7946
7947 /*
7948 * helper to process tree block while walking down the tree.
7949 *
7950 * when wc->stage == UPDATE_BACKREF, this function updates
7951 * back refs for pointers in the block.
7952 *
7953 * NOTE: return value 1 means we should stop walking down.
7954 */
7955 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7956 struct btrfs_root *root,
7957 struct btrfs_path *path,
7958 struct walk_control *wc, int lookup_info)
7959 {
7960 int level = wc->level;
7961 struct extent_buffer *eb = path->nodes[level];
7962 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7963 int ret;
7964
7965 if (wc->stage == UPDATE_BACKREF &&
7966 btrfs_header_owner(eb) != root->root_key.objectid)
7967 return 1;
7968
7969 /*
7970 * when reference count of tree block is 1, it won't increase
7971 * again. once full backref flag is set, we never clear it.
7972 */
7973 if (lookup_info &&
7974 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7975 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7976 BUG_ON(!path->locks[level]);
7977 ret = btrfs_lookup_extent_info(trans, root,
7978 eb->start, level, 1,
7979 &wc->refs[level],
7980 &wc->flags[level]);
7981 BUG_ON(ret == -ENOMEM);
7982 if (ret)
7983 return ret;
7984 BUG_ON(wc->refs[level] == 0);
7985 }
7986
7987 if (wc->stage == DROP_REFERENCE) {
7988 if (wc->refs[level] > 1)
7989 return 1;
7990
7991 if (path->locks[level] && !wc->keep_locks) {
7992 btrfs_tree_unlock_rw(eb, path->locks[level]);
7993 path->locks[level] = 0;
7994 }
7995 return 0;
7996 }
7997
7998 /* wc->stage == UPDATE_BACKREF */
7999 if (!(wc->flags[level] & flag)) {
8000 BUG_ON(!path->locks[level]);
8001 ret = btrfs_inc_ref(trans, root, eb, 1);
8002 BUG_ON(ret); /* -ENOMEM */
8003 ret = btrfs_dec_ref(trans, root, eb, 0);
8004 BUG_ON(ret); /* -ENOMEM */
8005 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8006 eb->len, flag,
8007 btrfs_header_level(eb), 0);
8008 BUG_ON(ret); /* -ENOMEM */
8009 wc->flags[level] |= flag;
8010 }
8011
8012 /*
8013 * the block is shared by multiple trees, so it's not good to
8014 * keep the tree lock
8015 */
8016 if (path->locks[level] && level > 0) {
8017 btrfs_tree_unlock_rw(eb, path->locks[level]);
8018 path->locks[level] = 0;
8019 }
8020 return 0;
8021 }
8022
8023 /*
8024 * helper to process tree block pointer.
8025 *
8026 * when wc->stage == DROP_REFERENCE, this function checks
8027 * reference count of the block pointed to. if the block
8028 * is shared and we need update back refs for the subtree
8029 * rooted at the block, this function changes wc->stage to
8030 * UPDATE_BACKREF. if the block is shared and there is no
8031 * need to update back, this function drops the reference
8032 * to the block.
8033 *
8034 * NOTE: return value 1 means we should stop walking down.
8035 */
8036 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8037 struct btrfs_root *root,
8038 struct btrfs_path *path,
8039 struct walk_control *wc, int *lookup_info)
8040 {
8041 u64 bytenr;
8042 u64 generation;
8043 u64 parent;
8044 u32 blocksize;
8045 struct btrfs_key key;
8046 struct extent_buffer *next;
8047 int level = wc->level;
8048 int reada = 0;
8049 int ret = 0;
8050 bool need_account = false;
8051
8052 generation = btrfs_node_ptr_generation(path->nodes[level],
8053 path->slots[level]);
8054 /*
8055 * if the lower level block was created before the snapshot
8056 * was created, we know there is no need to update back refs
8057 * for the subtree
8058 */
8059 if (wc->stage == UPDATE_BACKREF &&
8060 generation <= root->root_key.offset) {
8061 *lookup_info = 1;
8062 return 1;
8063 }
8064
8065 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8066 blocksize = root->nodesize;
8067
8068 next = btrfs_find_tree_block(root->fs_info, bytenr);
8069 if (!next) {
8070 next = btrfs_find_create_tree_block(root, bytenr);
8071 if (!next)
8072 return -ENOMEM;
8073 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8074 level - 1);
8075 reada = 1;
8076 }
8077 btrfs_tree_lock(next);
8078 btrfs_set_lock_blocking(next);
8079
8080 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8081 &wc->refs[level - 1],
8082 &wc->flags[level - 1]);
8083 if (ret < 0) {
8084 btrfs_tree_unlock(next);
8085 return ret;
8086 }
8087
8088 if (unlikely(wc->refs[level - 1] == 0)) {
8089 btrfs_err(root->fs_info, "Missing references.");
8090 BUG();
8091 }
8092 *lookup_info = 0;
8093
8094 if (wc->stage == DROP_REFERENCE) {
8095 if (wc->refs[level - 1] > 1) {
8096 need_account = true;
8097 if (level == 1 &&
8098 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8099 goto skip;
8100
8101 if (!wc->update_ref ||
8102 generation <= root->root_key.offset)
8103 goto skip;
8104
8105 btrfs_node_key_to_cpu(path->nodes[level], &key,
8106 path->slots[level]);
8107 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8108 if (ret < 0)
8109 goto skip;
8110
8111 wc->stage = UPDATE_BACKREF;
8112 wc->shared_level = level - 1;
8113 }
8114 } else {
8115 if (level == 1 &&
8116 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8117 goto skip;
8118 }
8119
8120 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8121 btrfs_tree_unlock(next);
8122 free_extent_buffer(next);
8123 next = NULL;
8124 *lookup_info = 1;
8125 }
8126
8127 if (!next) {
8128 if (reada && level == 1)
8129 reada_walk_down(trans, root, wc, path);
8130 next = read_tree_block(root, bytenr, generation);
8131 if (!next || !extent_buffer_uptodate(next)) {
8132 free_extent_buffer(next);
8133 return -EIO;
8134 }
8135 btrfs_tree_lock(next);
8136 btrfs_set_lock_blocking(next);
8137 }
8138
8139 level--;
8140 BUG_ON(level != btrfs_header_level(next));
8141 path->nodes[level] = next;
8142 path->slots[level] = 0;
8143 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8144 wc->level = level;
8145 if (wc->level == 1)
8146 wc->reada_slot = 0;
8147 return 0;
8148 skip:
8149 wc->refs[level - 1] = 0;
8150 wc->flags[level - 1] = 0;
8151 if (wc->stage == DROP_REFERENCE) {
8152 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8153 parent = path->nodes[level]->start;
8154 } else {
8155 BUG_ON(root->root_key.objectid !=
8156 btrfs_header_owner(path->nodes[level]));
8157 parent = 0;
8158 }
8159
8160 if (need_account) {
8161 ret = account_shared_subtree(trans, root, next,
8162 generation, level - 1);
8163 if (ret) {
8164 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8165 "%d accounting shared subtree. Quota "
8166 "is out of sync, rescan required.\n",
8167 root->fs_info->sb->s_id, ret);
8168 }
8169 }
8170 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8171 root->root_key.objectid, level - 1, 0, 0);
8172 BUG_ON(ret); /* -ENOMEM */
8173 }
8174 btrfs_tree_unlock(next);
8175 free_extent_buffer(next);
8176 *lookup_info = 1;
8177 return 1;
8178 }
8179
8180 /*
8181 * helper to process tree block while walking up the tree.
8182 *
8183 * when wc->stage == DROP_REFERENCE, this function drops
8184 * reference count on the block.
8185 *
8186 * when wc->stage == UPDATE_BACKREF, this function changes
8187 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8188 * to UPDATE_BACKREF previously while processing the block.
8189 *
8190 * NOTE: return value 1 means we should stop walking up.
8191 */
8192 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8193 struct btrfs_root *root,
8194 struct btrfs_path *path,
8195 struct walk_control *wc)
8196 {
8197 int ret;
8198 int level = wc->level;
8199 struct extent_buffer *eb = path->nodes[level];
8200 u64 parent = 0;
8201
8202 if (wc->stage == UPDATE_BACKREF) {
8203 BUG_ON(wc->shared_level < level);
8204 if (level < wc->shared_level)
8205 goto out;
8206
8207 ret = find_next_key(path, level + 1, &wc->update_progress);
8208 if (ret > 0)
8209 wc->update_ref = 0;
8210
8211 wc->stage = DROP_REFERENCE;
8212 wc->shared_level = -1;
8213 path->slots[level] = 0;
8214
8215 /*
8216 * check reference count again if the block isn't locked.
8217 * we should start walking down the tree again if reference
8218 * count is one.
8219 */
8220 if (!path->locks[level]) {
8221 BUG_ON(level == 0);
8222 btrfs_tree_lock(eb);
8223 btrfs_set_lock_blocking(eb);
8224 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8225
8226 ret = btrfs_lookup_extent_info(trans, root,
8227 eb->start, level, 1,
8228 &wc->refs[level],
8229 &wc->flags[level]);
8230 if (ret < 0) {
8231 btrfs_tree_unlock_rw(eb, path->locks[level]);
8232 path->locks[level] = 0;
8233 return ret;
8234 }
8235 BUG_ON(wc->refs[level] == 0);
8236 if (wc->refs[level] == 1) {
8237 btrfs_tree_unlock_rw(eb, path->locks[level]);
8238 path->locks[level] = 0;
8239 return 1;
8240 }
8241 }
8242 }
8243
8244 /* wc->stage == DROP_REFERENCE */
8245 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8246
8247 if (wc->refs[level] == 1) {
8248 if (level == 0) {
8249 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8250 ret = btrfs_dec_ref(trans, root, eb, 1);
8251 else
8252 ret = btrfs_dec_ref(trans, root, eb, 0);
8253 BUG_ON(ret); /* -ENOMEM */
8254 ret = account_leaf_items(trans, root, eb);
8255 if (ret) {
8256 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8257 "%d accounting leaf items. Quota "
8258 "is out of sync, rescan required.\n",
8259 root->fs_info->sb->s_id, ret);
8260 }
8261 }
8262 /* make block locked assertion in clean_tree_block happy */
8263 if (!path->locks[level] &&
8264 btrfs_header_generation(eb) == trans->transid) {
8265 btrfs_tree_lock(eb);
8266 btrfs_set_lock_blocking(eb);
8267 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8268 }
8269 clean_tree_block(trans, root->fs_info, eb);
8270 }
8271
8272 if (eb == root->node) {
8273 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8274 parent = eb->start;
8275 else
8276 BUG_ON(root->root_key.objectid !=
8277 btrfs_header_owner(eb));
8278 } else {
8279 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8280 parent = path->nodes[level + 1]->start;
8281 else
8282 BUG_ON(root->root_key.objectid !=
8283 btrfs_header_owner(path->nodes[level + 1]));
8284 }
8285
8286 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8287 out:
8288 wc->refs[level] = 0;
8289 wc->flags[level] = 0;
8290 return 0;
8291 }
8292
8293 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8294 struct btrfs_root *root,
8295 struct btrfs_path *path,
8296 struct walk_control *wc)
8297 {
8298 int level = wc->level;
8299 int lookup_info = 1;
8300 int ret;
8301
8302 while (level >= 0) {
8303 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8304 if (ret > 0)
8305 break;
8306
8307 if (level == 0)
8308 break;
8309
8310 if (path->slots[level] >=
8311 btrfs_header_nritems(path->nodes[level]))
8312 break;
8313
8314 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8315 if (ret > 0) {
8316 path->slots[level]++;
8317 continue;
8318 } else if (ret < 0)
8319 return ret;
8320 level = wc->level;
8321 }
8322 return 0;
8323 }
8324
8325 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8326 struct btrfs_root *root,
8327 struct btrfs_path *path,
8328 struct walk_control *wc, int max_level)
8329 {
8330 int level = wc->level;
8331 int ret;
8332
8333 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8334 while (level < max_level && path->nodes[level]) {
8335 wc->level = level;
8336 if (path->slots[level] + 1 <
8337 btrfs_header_nritems(path->nodes[level])) {
8338 path->slots[level]++;
8339 return 0;
8340 } else {
8341 ret = walk_up_proc(trans, root, path, wc);
8342 if (ret > 0)
8343 return 0;
8344
8345 if (path->locks[level]) {
8346 btrfs_tree_unlock_rw(path->nodes[level],
8347 path->locks[level]);
8348 path->locks[level] = 0;
8349 }
8350 free_extent_buffer(path->nodes[level]);
8351 path->nodes[level] = NULL;
8352 level++;
8353 }
8354 }
8355 return 1;
8356 }
8357
8358 /*
8359 * drop a subvolume tree.
8360 *
8361 * this function traverses the tree freeing any blocks that only
8362 * referenced by the tree.
8363 *
8364 * when a shared tree block is found. this function decreases its
8365 * reference count by one. if update_ref is true, this function
8366 * also make sure backrefs for the shared block and all lower level
8367 * blocks are properly updated.
8368 *
8369 * If called with for_reloc == 0, may exit early with -EAGAIN
8370 */
8371 int btrfs_drop_snapshot(struct btrfs_root *root,
8372 struct btrfs_block_rsv *block_rsv, int update_ref,
8373 int for_reloc)
8374 {
8375 struct btrfs_path *path;
8376 struct btrfs_trans_handle *trans;
8377 struct btrfs_root *tree_root = root->fs_info->tree_root;
8378 struct btrfs_root_item *root_item = &root->root_item;
8379 struct walk_control *wc;
8380 struct btrfs_key key;
8381 int err = 0;
8382 int ret;
8383 int level;
8384 bool root_dropped = false;
8385
8386 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8387
8388 path = btrfs_alloc_path();
8389 if (!path) {
8390 err = -ENOMEM;
8391 goto out;
8392 }
8393
8394 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8395 if (!wc) {
8396 btrfs_free_path(path);
8397 err = -ENOMEM;
8398 goto out;
8399 }
8400
8401 trans = btrfs_start_transaction(tree_root, 0);
8402 if (IS_ERR(trans)) {
8403 err = PTR_ERR(trans);
8404 goto out_free;
8405 }
8406
8407 if (block_rsv)
8408 trans->block_rsv = block_rsv;
8409
8410 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8411 level = btrfs_header_level(root->node);
8412 path->nodes[level] = btrfs_lock_root_node(root);
8413 btrfs_set_lock_blocking(path->nodes[level]);
8414 path->slots[level] = 0;
8415 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8416 memset(&wc->update_progress, 0,
8417 sizeof(wc->update_progress));
8418 } else {
8419 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8420 memcpy(&wc->update_progress, &key,
8421 sizeof(wc->update_progress));
8422
8423 level = root_item->drop_level;
8424 BUG_ON(level == 0);
8425 path->lowest_level = level;
8426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8427 path->lowest_level = 0;
8428 if (ret < 0) {
8429 err = ret;
8430 goto out_end_trans;
8431 }
8432 WARN_ON(ret > 0);
8433
8434 /*
8435 * unlock our path, this is safe because only this
8436 * function is allowed to delete this snapshot
8437 */
8438 btrfs_unlock_up_safe(path, 0);
8439
8440 level = btrfs_header_level(root->node);
8441 while (1) {
8442 btrfs_tree_lock(path->nodes[level]);
8443 btrfs_set_lock_blocking(path->nodes[level]);
8444 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8445
8446 ret = btrfs_lookup_extent_info(trans, root,
8447 path->nodes[level]->start,
8448 level, 1, &wc->refs[level],
8449 &wc->flags[level]);
8450 if (ret < 0) {
8451 err = ret;
8452 goto out_end_trans;
8453 }
8454 BUG_ON(wc->refs[level] == 0);
8455
8456 if (level == root_item->drop_level)
8457 break;
8458
8459 btrfs_tree_unlock(path->nodes[level]);
8460 path->locks[level] = 0;
8461 WARN_ON(wc->refs[level] != 1);
8462 level--;
8463 }
8464 }
8465
8466 wc->level = level;
8467 wc->shared_level = -1;
8468 wc->stage = DROP_REFERENCE;
8469 wc->update_ref = update_ref;
8470 wc->keep_locks = 0;
8471 wc->for_reloc = for_reloc;
8472 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8473
8474 while (1) {
8475
8476 ret = walk_down_tree(trans, root, path, wc);
8477 if (ret < 0) {
8478 err = ret;
8479 break;
8480 }
8481
8482 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8483 if (ret < 0) {
8484 err = ret;
8485 break;
8486 }
8487
8488 if (ret > 0) {
8489 BUG_ON(wc->stage != DROP_REFERENCE);
8490 break;
8491 }
8492
8493 if (wc->stage == DROP_REFERENCE) {
8494 level = wc->level;
8495 btrfs_node_key(path->nodes[level],
8496 &root_item->drop_progress,
8497 path->slots[level]);
8498 root_item->drop_level = level;
8499 }
8500
8501 BUG_ON(wc->level == 0);
8502 if (btrfs_should_end_transaction(trans, tree_root) ||
8503 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8504 ret = btrfs_update_root(trans, tree_root,
8505 &root->root_key,
8506 root_item);
8507 if (ret) {
8508 btrfs_abort_transaction(trans, tree_root, ret);
8509 err = ret;
8510 goto out_end_trans;
8511 }
8512
8513 /*
8514 * Qgroup update accounting is run from
8515 * delayed ref handling. This usually works
8516 * out because delayed refs are normally the
8517 * only way qgroup updates are added. However,
8518 * we may have added updates during our tree
8519 * walk so run qgroups here to make sure we
8520 * don't lose any updates.
8521 */
8522 ret = btrfs_delayed_qgroup_accounting(trans,
8523 root->fs_info);
8524 if (ret)
8525 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8526 "running qgroup updates "
8527 "during snapshot delete. "
8528 "Quota is out of sync, "
8529 "rescan required.\n", ret);
8530
8531 btrfs_end_transaction_throttle(trans, tree_root);
8532 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8533 pr_debug("BTRFS: drop snapshot early exit\n");
8534 err = -EAGAIN;
8535 goto out_free;
8536 }
8537
8538 trans = btrfs_start_transaction(tree_root, 0);
8539 if (IS_ERR(trans)) {
8540 err = PTR_ERR(trans);
8541 goto out_free;
8542 }
8543 if (block_rsv)
8544 trans->block_rsv = block_rsv;
8545 }
8546 }
8547 btrfs_release_path(path);
8548 if (err)
8549 goto out_end_trans;
8550
8551 ret = btrfs_del_root(trans, tree_root, &root->root_key);
8552 if (ret) {
8553 btrfs_abort_transaction(trans, tree_root, ret);
8554 goto out_end_trans;
8555 }
8556
8557 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8558 ret = btrfs_find_root(tree_root, &root->root_key, path,
8559 NULL, NULL);
8560 if (ret < 0) {
8561 btrfs_abort_transaction(trans, tree_root, ret);
8562 err = ret;
8563 goto out_end_trans;
8564 } else if (ret > 0) {
8565 /* if we fail to delete the orphan item this time
8566 * around, it'll get picked up the next time.
8567 *
8568 * The most common failure here is just -ENOENT.
8569 */
8570 btrfs_del_orphan_item(trans, tree_root,
8571 root->root_key.objectid);
8572 }
8573 }
8574
8575 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8576 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8577 } else {
8578 free_extent_buffer(root->node);
8579 free_extent_buffer(root->commit_root);
8580 btrfs_put_fs_root(root);
8581 }
8582 root_dropped = true;
8583 out_end_trans:
8584 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8585 if (ret)
8586 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8587 "running qgroup updates "
8588 "during snapshot delete. "
8589 "Quota is out of sync, "
8590 "rescan required.\n", ret);
8591
8592 btrfs_end_transaction_throttle(trans, tree_root);
8593 out_free:
8594 kfree(wc);
8595 btrfs_free_path(path);
8596 out:
8597 /*
8598 * So if we need to stop dropping the snapshot for whatever reason we
8599 * need to make sure to add it back to the dead root list so that we
8600 * keep trying to do the work later. This also cleans up roots if we
8601 * don't have it in the radix (like when we recover after a power fail
8602 * or unmount) so we don't leak memory.
8603 */
8604 if (!for_reloc && root_dropped == false)
8605 btrfs_add_dead_root(root);
8606 if (err && err != -EAGAIN)
8607 btrfs_std_error(root->fs_info, err);
8608 return err;
8609 }
8610
8611 /*
8612 * drop subtree rooted at tree block 'node'.
8613 *
8614 * NOTE: this function will unlock and release tree block 'node'
8615 * only used by relocation code
8616 */
8617 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8618 struct btrfs_root *root,
8619 struct extent_buffer *node,
8620 struct extent_buffer *parent)
8621 {
8622 struct btrfs_path *path;
8623 struct walk_control *wc;
8624 int level;
8625 int parent_level;
8626 int ret = 0;
8627 int wret;
8628
8629 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8630
8631 path = btrfs_alloc_path();
8632 if (!path)
8633 return -ENOMEM;
8634
8635 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8636 if (!wc) {
8637 btrfs_free_path(path);
8638 return -ENOMEM;
8639 }
8640
8641 btrfs_assert_tree_locked(parent);
8642 parent_level = btrfs_header_level(parent);
8643 extent_buffer_get(parent);
8644 path->nodes[parent_level] = parent;
8645 path->slots[parent_level] = btrfs_header_nritems(parent);
8646
8647 btrfs_assert_tree_locked(node);
8648 level = btrfs_header_level(node);
8649 path->nodes[level] = node;
8650 path->slots[level] = 0;
8651 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8652
8653 wc->refs[parent_level] = 1;
8654 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8655 wc->level = level;
8656 wc->shared_level = -1;
8657 wc->stage = DROP_REFERENCE;
8658 wc->update_ref = 0;
8659 wc->keep_locks = 1;
8660 wc->for_reloc = 1;
8661 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8662
8663 while (1) {
8664 wret = walk_down_tree(trans, root, path, wc);
8665 if (wret < 0) {
8666 ret = wret;
8667 break;
8668 }
8669
8670 wret = walk_up_tree(trans, root, path, wc, parent_level);
8671 if (wret < 0)
8672 ret = wret;
8673 if (wret != 0)
8674 break;
8675 }
8676
8677 kfree(wc);
8678 btrfs_free_path(path);
8679 return ret;
8680 }
8681
8682 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8683 {
8684 u64 num_devices;
8685 u64 stripped;
8686
8687 /*
8688 * if restripe for this chunk_type is on pick target profile and
8689 * return, otherwise do the usual balance
8690 */
8691 stripped = get_restripe_target(root->fs_info, flags);
8692 if (stripped)
8693 return extended_to_chunk(stripped);
8694
8695 num_devices = root->fs_info->fs_devices->rw_devices;
8696
8697 stripped = BTRFS_BLOCK_GROUP_RAID0 |
8698 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8699 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8700
8701 if (num_devices == 1) {
8702 stripped |= BTRFS_BLOCK_GROUP_DUP;
8703 stripped = flags & ~stripped;
8704
8705 /* turn raid0 into single device chunks */
8706 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8707 return stripped;
8708
8709 /* turn mirroring into duplication */
8710 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8711 BTRFS_BLOCK_GROUP_RAID10))
8712 return stripped | BTRFS_BLOCK_GROUP_DUP;
8713 } else {
8714 /* they already had raid on here, just return */
8715 if (flags & stripped)
8716 return flags;
8717
8718 stripped |= BTRFS_BLOCK_GROUP_DUP;
8719 stripped = flags & ~stripped;
8720
8721 /* switch duplicated blocks with raid1 */
8722 if (flags & BTRFS_BLOCK_GROUP_DUP)
8723 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8724
8725 /* this is drive concat, leave it alone */
8726 }
8727
8728 return flags;
8729 }
8730
8731 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8732 {
8733 struct btrfs_space_info *sinfo = cache->space_info;
8734 u64 num_bytes;
8735 u64 min_allocable_bytes;
8736 int ret = -ENOSPC;
8737
8738
8739 /*
8740 * We need some metadata space and system metadata space for
8741 * allocating chunks in some corner cases until we force to set
8742 * it to be readonly.
8743 */
8744 if ((sinfo->flags &
8745 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8746 !force)
8747 min_allocable_bytes = 1 * 1024 * 1024;
8748 else
8749 min_allocable_bytes = 0;
8750
8751 spin_lock(&sinfo->lock);
8752 spin_lock(&cache->lock);
8753
8754 if (cache->ro) {
8755 ret = 0;
8756 goto out;
8757 }
8758
8759 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8760 cache->bytes_super - btrfs_block_group_used(&cache->item);
8761
8762 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8763 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8764 min_allocable_bytes <= sinfo->total_bytes) {
8765 sinfo->bytes_readonly += num_bytes;
8766 cache->ro = 1;
8767 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8768 ret = 0;
8769 }
8770 out:
8771 spin_unlock(&cache->lock);
8772 spin_unlock(&sinfo->lock);
8773 return ret;
8774 }
8775
8776 int btrfs_set_block_group_ro(struct btrfs_root *root,
8777 struct btrfs_block_group_cache *cache)
8778
8779 {
8780 struct btrfs_trans_handle *trans;
8781 u64 alloc_flags;
8782 int ret;
8783
8784 BUG_ON(cache->ro);
8785
8786 again:
8787 trans = btrfs_join_transaction(root);
8788 if (IS_ERR(trans))
8789 return PTR_ERR(trans);
8790
8791 /*
8792 * we're not allowed to set block groups readonly after the dirty
8793 * block groups cache has started writing. If it already started,
8794 * back off and let this transaction commit
8795 */
8796 mutex_lock(&root->fs_info->ro_block_group_mutex);
8797 if (trans->transaction->dirty_bg_run) {
8798 u64 transid = trans->transid;
8799
8800 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8801 btrfs_end_transaction(trans, root);
8802
8803 ret = btrfs_wait_for_commit(root, transid);
8804 if (ret)
8805 return ret;
8806 goto again;
8807 }
8808
8809
8810 ret = set_block_group_ro(cache, 0);
8811 if (!ret)
8812 goto out;
8813 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8814 ret = do_chunk_alloc(trans, root, alloc_flags,
8815 CHUNK_ALLOC_FORCE);
8816 if (ret < 0)
8817 goto out;
8818 ret = set_block_group_ro(cache, 0);
8819 out:
8820 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8821 alloc_flags = update_block_group_flags(root, cache->flags);
8822 check_system_chunk(trans, root, alloc_flags);
8823 }
8824 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8825
8826 btrfs_end_transaction(trans, root);
8827 return ret;
8828 }
8829
8830 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8831 struct btrfs_root *root, u64 type)
8832 {
8833 u64 alloc_flags = get_alloc_profile(root, type);
8834 return do_chunk_alloc(trans, root, alloc_flags,
8835 CHUNK_ALLOC_FORCE);
8836 }
8837
8838 /*
8839 * helper to account the unused space of all the readonly block group in the
8840 * space_info. takes mirrors into account.
8841 */
8842 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8843 {
8844 struct btrfs_block_group_cache *block_group;
8845 u64 free_bytes = 0;
8846 int factor;
8847
8848 /* It's df, we don't care if it's racey */
8849 if (list_empty(&sinfo->ro_bgs))
8850 return 0;
8851
8852 spin_lock(&sinfo->lock);
8853 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8854 spin_lock(&block_group->lock);
8855
8856 if (!block_group->ro) {
8857 spin_unlock(&block_group->lock);
8858 continue;
8859 }
8860
8861 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8862 BTRFS_BLOCK_GROUP_RAID10 |
8863 BTRFS_BLOCK_GROUP_DUP))
8864 factor = 2;
8865 else
8866 factor = 1;
8867
8868 free_bytes += (block_group->key.offset -
8869 btrfs_block_group_used(&block_group->item)) *
8870 factor;
8871
8872 spin_unlock(&block_group->lock);
8873 }
8874 spin_unlock(&sinfo->lock);
8875
8876 return free_bytes;
8877 }
8878
8879 void btrfs_set_block_group_rw(struct btrfs_root *root,
8880 struct btrfs_block_group_cache *cache)
8881 {
8882 struct btrfs_space_info *sinfo = cache->space_info;
8883 u64 num_bytes;
8884
8885 BUG_ON(!cache->ro);
8886
8887 spin_lock(&sinfo->lock);
8888 spin_lock(&cache->lock);
8889 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8890 cache->bytes_super - btrfs_block_group_used(&cache->item);
8891 sinfo->bytes_readonly -= num_bytes;
8892 cache->ro = 0;
8893 list_del_init(&cache->ro_list);
8894 spin_unlock(&cache->lock);
8895 spin_unlock(&sinfo->lock);
8896 }
8897
8898 /*
8899 * checks to see if its even possible to relocate this block group.
8900 *
8901 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8902 * ok to go ahead and try.
8903 */
8904 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8905 {
8906 struct btrfs_block_group_cache *block_group;
8907 struct btrfs_space_info *space_info;
8908 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8909 struct btrfs_device *device;
8910 struct btrfs_trans_handle *trans;
8911 u64 min_free;
8912 u64 dev_min = 1;
8913 u64 dev_nr = 0;
8914 u64 target;
8915 int index;
8916 int full = 0;
8917 int ret = 0;
8918
8919 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8920
8921 /* odd, couldn't find the block group, leave it alone */
8922 if (!block_group)
8923 return -1;
8924
8925 min_free = btrfs_block_group_used(&block_group->item);
8926
8927 /* no bytes used, we're good */
8928 if (!min_free)
8929 goto out;
8930
8931 space_info = block_group->space_info;
8932 spin_lock(&space_info->lock);
8933
8934 full = space_info->full;
8935
8936 /*
8937 * if this is the last block group we have in this space, we can't
8938 * relocate it unless we're able to allocate a new chunk below.
8939 *
8940 * Otherwise, we need to make sure we have room in the space to handle
8941 * all of the extents from this block group. If we can, we're good
8942 */
8943 if ((space_info->total_bytes != block_group->key.offset) &&
8944 (space_info->bytes_used + space_info->bytes_reserved +
8945 space_info->bytes_pinned + space_info->bytes_readonly +
8946 min_free < space_info->total_bytes)) {
8947 spin_unlock(&space_info->lock);
8948 goto out;
8949 }
8950 spin_unlock(&space_info->lock);
8951
8952 /*
8953 * ok we don't have enough space, but maybe we have free space on our
8954 * devices to allocate new chunks for relocation, so loop through our
8955 * alloc devices and guess if we have enough space. if this block
8956 * group is going to be restriped, run checks against the target
8957 * profile instead of the current one.
8958 */
8959 ret = -1;
8960
8961 /*
8962 * index:
8963 * 0: raid10
8964 * 1: raid1
8965 * 2: dup
8966 * 3: raid0
8967 * 4: single
8968 */
8969 target = get_restripe_target(root->fs_info, block_group->flags);
8970 if (target) {
8971 index = __get_raid_index(extended_to_chunk(target));
8972 } else {
8973 /*
8974 * this is just a balance, so if we were marked as full
8975 * we know there is no space for a new chunk
8976 */
8977 if (full)
8978 goto out;
8979
8980 index = get_block_group_index(block_group);
8981 }
8982
8983 if (index == BTRFS_RAID_RAID10) {
8984 dev_min = 4;
8985 /* Divide by 2 */
8986 min_free >>= 1;
8987 } else if (index == BTRFS_RAID_RAID1) {
8988 dev_min = 2;
8989 } else if (index == BTRFS_RAID_DUP) {
8990 /* Multiply by 2 */
8991 min_free <<= 1;
8992 } else if (index == BTRFS_RAID_RAID0) {
8993 dev_min = fs_devices->rw_devices;
8994 min_free = div64_u64(min_free, dev_min);
8995 }
8996
8997 /* We need to do this so that we can look at pending chunks */
8998 trans = btrfs_join_transaction(root);
8999 if (IS_ERR(trans)) {
9000 ret = PTR_ERR(trans);
9001 goto out;
9002 }
9003
9004 mutex_lock(&root->fs_info->chunk_mutex);
9005 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9006 u64 dev_offset;
9007
9008 /*
9009 * check to make sure we can actually find a chunk with enough
9010 * space to fit our block group in.
9011 */
9012 if (device->total_bytes > device->bytes_used + min_free &&
9013 !device->is_tgtdev_for_dev_replace) {
9014 ret = find_free_dev_extent(trans, device, min_free,
9015 &dev_offset, NULL);
9016 if (!ret)
9017 dev_nr++;
9018
9019 if (dev_nr >= dev_min)
9020 break;
9021
9022 ret = -1;
9023 }
9024 }
9025 mutex_unlock(&root->fs_info->chunk_mutex);
9026 btrfs_end_transaction(trans, root);
9027 out:
9028 btrfs_put_block_group(block_group);
9029 return ret;
9030 }
9031
9032 static int find_first_block_group(struct btrfs_root *root,
9033 struct btrfs_path *path, struct btrfs_key *key)
9034 {
9035 int ret = 0;
9036 struct btrfs_key found_key;
9037 struct extent_buffer *leaf;
9038 int slot;
9039
9040 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9041 if (ret < 0)
9042 goto out;
9043
9044 while (1) {
9045 slot = path->slots[0];
9046 leaf = path->nodes[0];
9047 if (slot >= btrfs_header_nritems(leaf)) {
9048 ret = btrfs_next_leaf(root, path);
9049 if (ret == 0)
9050 continue;
9051 if (ret < 0)
9052 goto out;
9053 break;
9054 }
9055 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9056
9057 if (found_key.objectid >= key->objectid &&
9058 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9059 ret = 0;
9060 goto out;
9061 }
9062 path->slots[0]++;
9063 }
9064 out:
9065 return ret;
9066 }
9067
9068 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9069 {
9070 struct btrfs_block_group_cache *block_group;
9071 u64 last = 0;
9072
9073 while (1) {
9074 struct inode *inode;
9075
9076 block_group = btrfs_lookup_first_block_group(info, last);
9077 while (block_group) {
9078 spin_lock(&block_group->lock);
9079 if (block_group->iref)
9080 break;
9081 spin_unlock(&block_group->lock);
9082 block_group = next_block_group(info->tree_root,
9083 block_group);
9084 }
9085 if (!block_group) {
9086 if (last == 0)
9087 break;
9088 last = 0;
9089 continue;
9090 }
9091
9092 inode = block_group->inode;
9093 block_group->iref = 0;
9094 block_group->inode = NULL;
9095 spin_unlock(&block_group->lock);
9096 iput(inode);
9097 last = block_group->key.objectid + block_group->key.offset;
9098 btrfs_put_block_group(block_group);
9099 }
9100 }
9101
9102 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9103 {
9104 struct btrfs_block_group_cache *block_group;
9105 struct btrfs_space_info *space_info;
9106 struct btrfs_caching_control *caching_ctl;
9107 struct rb_node *n;
9108
9109 down_write(&info->commit_root_sem);
9110 while (!list_empty(&info->caching_block_groups)) {
9111 caching_ctl = list_entry(info->caching_block_groups.next,
9112 struct btrfs_caching_control, list);
9113 list_del(&caching_ctl->list);
9114 put_caching_control(caching_ctl);
9115 }
9116 up_write(&info->commit_root_sem);
9117
9118 spin_lock(&info->unused_bgs_lock);
9119 while (!list_empty(&info->unused_bgs)) {
9120 block_group = list_first_entry(&info->unused_bgs,
9121 struct btrfs_block_group_cache,
9122 bg_list);
9123 list_del_init(&block_group->bg_list);
9124 btrfs_put_block_group(block_group);
9125 }
9126 spin_unlock(&info->unused_bgs_lock);
9127
9128 spin_lock(&info->block_group_cache_lock);
9129 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9130 block_group = rb_entry(n, struct btrfs_block_group_cache,
9131 cache_node);
9132 rb_erase(&block_group->cache_node,
9133 &info->block_group_cache_tree);
9134 RB_CLEAR_NODE(&block_group->cache_node);
9135 spin_unlock(&info->block_group_cache_lock);
9136
9137 down_write(&block_group->space_info->groups_sem);
9138 list_del(&block_group->list);
9139 up_write(&block_group->space_info->groups_sem);
9140
9141 if (block_group->cached == BTRFS_CACHE_STARTED)
9142 wait_block_group_cache_done(block_group);
9143
9144 /*
9145 * We haven't cached this block group, which means we could
9146 * possibly have excluded extents on this block group.
9147 */
9148 if (block_group->cached == BTRFS_CACHE_NO ||
9149 block_group->cached == BTRFS_CACHE_ERROR)
9150 free_excluded_extents(info->extent_root, block_group);
9151
9152 btrfs_remove_free_space_cache(block_group);
9153 btrfs_put_block_group(block_group);
9154
9155 spin_lock(&info->block_group_cache_lock);
9156 }
9157 spin_unlock(&info->block_group_cache_lock);
9158
9159 /* now that all the block groups are freed, go through and
9160 * free all the space_info structs. This is only called during
9161 * the final stages of unmount, and so we know nobody is
9162 * using them. We call synchronize_rcu() once before we start,
9163 * just to be on the safe side.
9164 */
9165 synchronize_rcu();
9166
9167 release_global_block_rsv(info);
9168
9169 while (!list_empty(&info->space_info)) {
9170 int i;
9171
9172 space_info = list_entry(info->space_info.next,
9173 struct btrfs_space_info,
9174 list);
9175 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9176 if (WARN_ON(space_info->bytes_pinned > 0 ||
9177 space_info->bytes_reserved > 0 ||
9178 space_info->bytes_may_use > 0)) {
9179 dump_space_info(space_info, 0, 0);
9180 }
9181 }
9182 list_del(&space_info->list);
9183 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9184 struct kobject *kobj;
9185 kobj = space_info->block_group_kobjs[i];
9186 space_info->block_group_kobjs[i] = NULL;
9187 if (kobj) {
9188 kobject_del(kobj);
9189 kobject_put(kobj);
9190 }
9191 }
9192 kobject_del(&space_info->kobj);
9193 kobject_put(&space_info->kobj);
9194 }
9195 return 0;
9196 }
9197
9198 static void __link_block_group(struct btrfs_space_info *space_info,
9199 struct btrfs_block_group_cache *cache)
9200 {
9201 int index = get_block_group_index(cache);
9202 bool first = false;
9203
9204 down_write(&space_info->groups_sem);
9205 if (list_empty(&space_info->block_groups[index]))
9206 first = true;
9207 list_add_tail(&cache->list, &space_info->block_groups[index]);
9208 up_write(&space_info->groups_sem);
9209
9210 if (first) {
9211 struct raid_kobject *rkobj;
9212 int ret;
9213
9214 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9215 if (!rkobj)
9216 goto out_err;
9217 rkobj->raid_type = index;
9218 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9219 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9220 "%s", get_raid_name(index));
9221 if (ret) {
9222 kobject_put(&rkobj->kobj);
9223 goto out_err;
9224 }
9225 space_info->block_group_kobjs[index] = &rkobj->kobj;
9226 }
9227
9228 return;
9229 out_err:
9230 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9231 }
9232
9233 static struct btrfs_block_group_cache *
9234 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9235 {
9236 struct btrfs_block_group_cache *cache;
9237
9238 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9239 if (!cache)
9240 return NULL;
9241
9242 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9243 GFP_NOFS);
9244 if (!cache->free_space_ctl) {
9245 kfree(cache);
9246 return NULL;
9247 }
9248
9249 cache->key.objectid = start;
9250 cache->key.offset = size;
9251 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9252
9253 cache->sectorsize = root->sectorsize;
9254 cache->fs_info = root->fs_info;
9255 cache->full_stripe_len = btrfs_full_stripe_len(root,
9256 &root->fs_info->mapping_tree,
9257 start);
9258 atomic_set(&cache->count, 1);
9259 spin_lock_init(&cache->lock);
9260 init_rwsem(&cache->data_rwsem);
9261 INIT_LIST_HEAD(&cache->list);
9262 INIT_LIST_HEAD(&cache->cluster_list);
9263 INIT_LIST_HEAD(&cache->bg_list);
9264 INIT_LIST_HEAD(&cache->ro_list);
9265 INIT_LIST_HEAD(&cache->dirty_list);
9266 INIT_LIST_HEAD(&cache->io_list);
9267 btrfs_init_free_space_ctl(cache);
9268 atomic_set(&cache->trimming, 0);
9269
9270 return cache;
9271 }
9272
9273 int btrfs_read_block_groups(struct btrfs_root *root)
9274 {
9275 struct btrfs_path *path;
9276 int ret;
9277 struct btrfs_block_group_cache *cache;
9278 struct btrfs_fs_info *info = root->fs_info;
9279 struct btrfs_space_info *space_info;
9280 struct btrfs_key key;
9281 struct btrfs_key found_key;
9282 struct extent_buffer *leaf;
9283 int need_clear = 0;
9284 u64 cache_gen;
9285
9286 root = info->extent_root;
9287 key.objectid = 0;
9288 key.offset = 0;
9289 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9290 path = btrfs_alloc_path();
9291 if (!path)
9292 return -ENOMEM;
9293 path->reada = 1;
9294
9295 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9296 if (btrfs_test_opt(root, SPACE_CACHE) &&
9297 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9298 need_clear = 1;
9299 if (btrfs_test_opt(root, CLEAR_CACHE))
9300 need_clear = 1;
9301
9302 while (1) {
9303 ret = find_first_block_group(root, path, &key);
9304 if (ret > 0)
9305 break;
9306 if (ret != 0)
9307 goto error;
9308
9309 leaf = path->nodes[0];
9310 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9311
9312 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9313 found_key.offset);
9314 if (!cache) {
9315 ret = -ENOMEM;
9316 goto error;
9317 }
9318
9319 if (need_clear) {
9320 /*
9321 * When we mount with old space cache, we need to
9322 * set BTRFS_DC_CLEAR and set dirty flag.
9323 *
9324 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9325 * truncate the old free space cache inode and
9326 * setup a new one.
9327 * b) Setting 'dirty flag' makes sure that we flush
9328 * the new space cache info onto disk.
9329 */
9330 if (btrfs_test_opt(root, SPACE_CACHE))
9331 cache->disk_cache_state = BTRFS_DC_CLEAR;
9332 }
9333
9334 read_extent_buffer(leaf, &cache->item,
9335 btrfs_item_ptr_offset(leaf, path->slots[0]),
9336 sizeof(cache->item));
9337 cache->flags = btrfs_block_group_flags(&cache->item);
9338
9339 key.objectid = found_key.objectid + found_key.offset;
9340 btrfs_release_path(path);
9341
9342 /*
9343 * We need to exclude the super stripes now so that the space
9344 * info has super bytes accounted for, otherwise we'll think
9345 * we have more space than we actually do.
9346 */
9347 ret = exclude_super_stripes(root, cache);
9348 if (ret) {
9349 /*
9350 * We may have excluded something, so call this just in
9351 * case.
9352 */
9353 free_excluded_extents(root, cache);
9354 btrfs_put_block_group(cache);
9355 goto error;
9356 }
9357
9358 /*
9359 * check for two cases, either we are full, and therefore
9360 * don't need to bother with the caching work since we won't
9361 * find any space, or we are empty, and we can just add all
9362 * the space in and be done with it. This saves us _alot_ of
9363 * time, particularly in the full case.
9364 */
9365 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9366 cache->last_byte_to_unpin = (u64)-1;
9367 cache->cached = BTRFS_CACHE_FINISHED;
9368 free_excluded_extents(root, cache);
9369 } else if (btrfs_block_group_used(&cache->item) == 0) {
9370 cache->last_byte_to_unpin = (u64)-1;
9371 cache->cached = BTRFS_CACHE_FINISHED;
9372 add_new_free_space(cache, root->fs_info,
9373 found_key.objectid,
9374 found_key.objectid +
9375 found_key.offset);
9376 free_excluded_extents(root, cache);
9377 }
9378
9379 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9380 if (ret) {
9381 btrfs_remove_free_space_cache(cache);
9382 btrfs_put_block_group(cache);
9383 goto error;
9384 }
9385
9386 ret = update_space_info(info, cache->flags, found_key.offset,
9387 btrfs_block_group_used(&cache->item),
9388 &space_info);
9389 if (ret) {
9390 btrfs_remove_free_space_cache(cache);
9391 spin_lock(&info->block_group_cache_lock);
9392 rb_erase(&cache->cache_node,
9393 &info->block_group_cache_tree);
9394 RB_CLEAR_NODE(&cache->cache_node);
9395 spin_unlock(&info->block_group_cache_lock);
9396 btrfs_put_block_group(cache);
9397 goto error;
9398 }
9399
9400 cache->space_info = space_info;
9401 spin_lock(&cache->space_info->lock);
9402 cache->space_info->bytes_readonly += cache->bytes_super;
9403 spin_unlock(&cache->space_info->lock);
9404
9405 __link_block_group(space_info, cache);
9406
9407 set_avail_alloc_bits(root->fs_info, cache->flags);
9408 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9409 set_block_group_ro(cache, 1);
9410 } else if (btrfs_block_group_used(&cache->item) == 0) {
9411 spin_lock(&info->unused_bgs_lock);
9412 /* Should always be true but just in case. */
9413 if (list_empty(&cache->bg_list)) {
9414 btrfs_get_block_group(cache);
9415 list_add_tail(&cache->bg_list,
9416 &info->unused_bgs);
9417 }
9418 spin_unlock(&info->unused_bgs_lock);
9419 }
9420 }
9421
9422 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9423 if (!(get_alloc_profile(root, space_info->flags) &
9424 (BTRFS_BLOCK_GROUP_RAID10 |
9425 BTRFS_BLOCK_GROUP_RAID1 |
9426 BTRFS_BLOCK_GROUP_RAID5 |
9427 BTRFS_BLOCK_GROUP_RAID6 |
9428 BTRFS_BLOCK_GROUP_DUP)))
9429 continue;
9430 /*
9431 * avoid allocating from un-mirrored block group if there are
9432 * mirrored block groups.
9433 */
9434 list_for_each_entry(cache,
9435 &space_info->block_groups[BTRFS_RAID_RAID0],
9436 list)
9437 set_block_group_ro(cache, 1);
9438 list_for_each_entry(cache,
9439 &space_info->block_groups[BTRFS_RAID_SINGLE],
9440 list)
9441 set_block_group_ro(cache, 1);
9442 }
9443
9444 init_global_block_rsv(info);
9445 ret = 0;
9446 error:
9447 btrfs_free_path(path);
9448 return ret;
9449 }
9450
9451 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9452 struct btrfs_root *root)
9453 {
9454 struct btrfs_block_group_cache *block_group, *tmp;
9455 struct btrfs_root *extent_root = root->fs_info->extent_root;
9456 struct btrfs_block_group_item item;
9457 struct btrfs_key key;
9458 int ret = 0;
9459
9460 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9461 if (ret)
9462 goto next;
9463
9464 spin_lock(&block_group->lock);
9465 memcpy(&item, &block_group->item, sizeof(item));
9466 memcpy(&key, &block_group->key, sizeof(key));
9467 spin_unlock(&block_group->lock);
9468
9469 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9470 sizeof(item));
9471 if (ret)
9472 btrfs_abort_transaction(trans, extent_root, ret);
9473 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9474 key.objectid, key.offset);
9475 if (ret)
9476 btrfs_abort_transaction(trans, extent_root, ret);
9477 next:
9478 list_del_init(&block_group->bg_list);
9479 }
9480 }
9481
9482 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9483 struct btrfs_root *root, u64 bytes_used,
9484 u64 type, u64 chunk_objectid, u64 chunk_offset,
9485 u64 size)
9486 {
9487 int ret;
9488 struct btrfs_root *extent_root;
9489 struct btrfs_block_group_cache *cache;
9490
9491 extent_root = root->fs_info->extent_root;
9492
9493 btrfs_set_log_full_commit(root->fs_info, trans);
9494
9495 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9496 if (!cache)
9497 return -ENOMEM;
9498
9499 btrfs_set_block_group_used(&cache->item, bytes_used);
9500 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9501 btrfs_set_block_group_flags(&cache->item, type);
9502
9503 cache->flags = type;
9504 cache->last_byte_to_unpin = (u64)-1;
9505 cache->cached = BTRFS_CACHE_FINISHED;
9506 ret = exclude_super_stripes(root, cache);
9507 if (ret) {
9508 /*
9509 * We may have excluded something, so call this just in
9510 * case.
9511 */
9512 free_excluded_extents(root, cache);
9513 btrfs_put_block_group(cache);
9514 return ret;
9515 }
9516
9517 add_new_free_space(cache, root->fs_info, chunk_offset,
9518 chunk_offset + size);
9519
9520 free_excluded_extents(root, cache);
9521
9522 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9523 if (ret) {
9524 btrfs_remove_free_space_cache(cache);
9525 btrfs_put_block_group(cache);
9526 return ret;
9527 }
9528
9529 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9530 &cache->space_info);
9531 if (ret) {
9532 btrfs_remove_free_space_cache(cache);
9533 spin_lock(&root->fs_info->block_group_cache_lock);
9534 rb_erase(&cache->cache_node,
9535 &root->fs_info->block_group_cache_tree);
9536 RB_CLEAR_NODE(&cache->cache_node);
9537 spin_unlock(&root->fs_info->block_group_cache_lock);
9538 btrfs_put_block_group(cache);
9539 return ret;
9540 }
9541 update_global_block_rsv(root->fs_info);
9542
9543 spin_lock(&cache->space_info->lock);
9544 cache->space_info->bytes_readonly += cache->bytes_super;
9545 spin_unlock(&cache->space_info->lock);
9546
9547 __link_block_group(cache->space_info, cache);
9548
9549 list_add_tail(&cache->bg_list, &trans->new_bgs);
9550
9551 set_avail_alloc_bits(extent_root->fs_info, type);
9552
9553 return 0;
9554 }
9555
9556 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9557 {
9558 u64 extra_flags = chunk_to_extended(flags) &
9559 BTRFS_EXTENDED_PROFILE_MASK;
9560
9561 write_seqlock(&fs_info->profiles_lock);
9562 if (flags & BTRFS_BLOCK_GROUP_DATA)
9563 fs_info->avail_data_alloc_bits &= ~extra_flags;
9564 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9565 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9566 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9567 fs_info->avail_system_alloc_bits &= ~extra_flags;
9568 write_sequnlock(&fs_info->profiles_lock);
9569 }
9570
9571 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9572 struct btrfs_root *root, u64 group_start,
9573 struct extent_map *em)
9574 {
9575 struct btrfs_path *path;
9576 struct btrfs_block_group_cache *block_group;
9577 struct btrfs_free_cluster *cluster;
9578 struct btrfs_root *tree_root = root->fs_info->tree_root;
9579 struct btrfs_key key;
9580 struct inode *inode;
9581 struct kobject *kobj = NULL;
9582 int ret;
9583 int index;
9584 int factor;
9585 struct btrfs_caching_control *caching_ctl = NULL;
9586 bool remove_em;
9587
9588 root = root->fs_info->extent_root;
9589
9590 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9591 BUG_ON(!block_group);
9592 BUG_ON(!block_group->ro);
9593
9594 /*
9595 * Free the reserved super bytes from this block group before
9596 * remove it.
9597 */
9598 free_excluded_extents(root, block_group);
9599
9600 memcpy(&key, &block_group->key, sizeof(key));
9601 index = get_block_group_index(block_group);
9602 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9603 BTRFS_BLOCK_GROUP_RAID1 |
9604 BTRFS_BLOCK_GROUP_RAID10))
9605 factor = 2;
9606 else
9607 factor = 1;
9608
9609 /* make sure this block group isn't part of an allocation cluster */
9610 cluster = &root->fs_info->data_alloc_cluster;
9611 spin_lock(&cluster->refill_lock);
9612 btrfs_return_cluster_to_free_space(block_group, cluster);
9613 spin_unlock(&cluster->refill_lock);
9614
9615 /*
9616 * make sure this block group isn't part of a metadata
9617 * allocation cluster
9618 */
9619 cluster = &root->fs_info->meta_alloc_cluster;
9620 spin_lock(&cluster->refill_lock);
9621 btrfs_return_cluster_to_free_space(block_group, cluster);
9622 spin_unlock(&cluster->refill_lock);
9623
9624 path = btrfs_alloc_path();
9625 if (!path) {
9626 ret = -ENOMEM;
9627 goto out;
9628 }
9629
9630 /*
9631 * get the inode first so any iput calls done for the io_list
9632 * aren't the final iput (no unlinks allowed now)
9633 */
9634 inode = lookup_free_space_inode(tree_root, block_group, path);
9635
9636 mutex_lock(&trans->transaction->cache_write_mutex);
9637 /*
9638 * make sure our free spache cache IO is done before remove the
9639 * free space inode
9640 */
9641 spin_lock(&trans->transaction->dirty_bgs_lock);
9642 if (!list_empty(&block_group->io_list)) {
9643 list_del_init(&block_group->io_list);
9644
9645 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9646
9647 spin_unlock(&trans->transaction->dirty_bgs_lock);
9648 btrfs_wait_cache_io(root, trans, block_group,
9649 &block_group->io_ctl, path,
9650 block_group->key.objectid);
9651 btrfs_put_block_group(block_group);
9652 spin_lock(&trans->transaction->dirty_bgs_lock);
9653 }
9654
9655 if (!list_empty(&block_group->dirty_list)) {
9656 list_del_init(&block_group->dirty_list);
9657 btrfs_put_block_group(block_group);
9658 }
9659 spin_unlock(&trans->transaction->dirty_bgs_lock);
9660 mutex_unlock(&trans->transaction->cache_write_mutex);
9661
9662 if (!IS_ERR(inode)) {
9663 ret = btrfs_orphan_add(trans, inode);
9664 if (ret) {
9665 btrfs_add_delayed_iput(inode);
9666 goto out;
9667 }
9668 clear_nlink(inode);
9669 /* One for the block groups ref */
9670 spin_lock(&block_group->lock);
9671 if (block_group->iref) {
9672 block_group->iref = 0;
9673 block_group->inode = NULL;
9674 spin_unlock(&block_group->lock);
9675 iput(inode);
9676 } else {
9677 spin_unlock(&block_group->lock);
9678 }
9679 /* One for our lookup ref */
9680 btrfs_add_delayed_iput(inode);
9681 }
9682
9683 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9684 key.offset = block_group->key.objectid;
9685 key.type = 0;
9686
9687 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9688 if (ret < 0)
9689 goto out;
9690 if (ret > 0)
9691 btrfs_release_path(path);
9692 if (ret == 0) {
9693 ret = btrfs_del_item(trans, tree_root, path);
9694 if (ret)
9695 goto out;
9696 btrfs_release_path(path);
9697 }
9698
9699 spin_lock(&root->fs_info->block_group_cache_lock);
9700 rb_erase(&block_group->cache_node,
9701 &root->fs_info->block_group_cache_tree);
9702 RB_CLEAR_NODE(&block_group->cache_node);
9703
9704 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9705 root->fs_info->first_logical_byte = (u64)-1;
9706 spin_unlock(&root->fs_info->block_group_cache_lock);
9707
9708 down_write(&block_group->space_info->groups_sem);
9709 /*
9710 * we must use list_del_init so people can check to see if they
9711 * are still on the list after taking the semaphore
9712 */
9713 list_del_init(&block_group->list);
9714 if (list_empty(&block_group->space_info->block_groups[index])) {
9715 kobj = block_group->space_info->block_group_kobjs[index];
9716 block_group->space_info->block_group_kobjs[index] = NULL;
9717 clear_avail_alloc_bits(root->fs_info, block_group->flags);
9718 }
9719 up_write(&block_group->space_info->groups_sem);
9720 if (kobj) {
9721 kobject_del(kobj);
9722 kobject_put(kobj);
9723 }
9724
9725 if (block_group->has_caching_ctl)
9726 caching_ctl = get_caching_control(block_group);
9727 if (block_group->cached == BTRFS_CACHE_STARTED)
9728 wait_block_group_cache_done(block_group);
9729 if (block_group->has_caching_ctl) {
9730 down_write(&root->fs_info->commit_root_sem);
9731 if (!caching_ctl) {
9732 struct btrfs_caching_control *ctl;
9733
9734 list_for_each_entry(ctl,
9735 &root->fs_info->caching_block_groups, list)
9736 if (ctl->block_group == block_group) {
9737 caching_ctl = ctl;
9738 atomic_inc(&caching_ctl->count);
9739 break;
9740 }
9741 }
9742 if (caching_ctl)
9743 list_del_init(&caching_ctl->list);
9744 up_write(&root->fs_info->commit_root_sem);
9745 if (caching_ctl) {
9746 /* Once for the caching bgs list and once for us. */
9747 put_caching_control(caching_ctl);
9748 put_caching_control(caching_ctl);
9749 }
9750 }
9751
9752 spin_lock(&trans->transaction->dirty_bgs_lock);
9753 if (!list_empty(&block_group->dirty_list)) {
9754 WARN_ON(1);
9755 }
9756 if (!list_empty(&block_group->io_list)) {
9757 WARN_ON(1);
9758 }
9759 spin_unlock(&trans->transaction->dirty_bgs_lock);
9760 btrfs_remove_free_space_cache(block_group);
9761
9762 spin_lock(&block_group->space_info->lock);
9763 list_del_init(&block_group->ro_list);
9764
9765 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9766 WARN_ON(block_group->space_info->total_bytes
9767 < block_group->key.offset);
9768 WARN_ON(block_group->space_info->bytes_readonly
9769 < block_group->key.offset);
9770 WARN_ON(block_group->space_info->disk_total
9771 < block_group->key.offset * factor);
9772 }
9773 block_group->space_info->total_bytes -= block_group->key.offset;
9774 block_group->space_info->bytes_readonly -= block_group->key.offset;
9775 block_group->space_info->disk_total -= block_group->key.offset * factor;
9776
9777 spin_unlock(&block_group->space_info->lock);
9778
9779 memcpy(&key, &block_group->key, sizeof(key));
9780
9781 lock_chunks(root);
9782 if (!list_empty(&em->list)) {
9783 /* We're in the transaction->pending_chunks list. */
9784 free_extent_map(em);
9785 }
9786 spin_lock(&block_group->lock);
9787 block_group->removed = 1;
9788 /*
9789 * At this point trimming can't start on this block group, because we
9790 * removed the block group from the tree fs_info->block_group_cache_tree
9791 * so no one can't find it anymore and even if someone already got this
9792 * block group before we removed it from the rbtree, they have already
9793 * incremented block_group->trimming - if they didn't, they won't find
9794 * any free space entries because we already removed them all when we
9795 * called btrfs_remove_free_space_cache().
9796 *
9797 * And we must not remove the extent map from the fs_info->mapping_tree
9798 * to prevent the same logical address range and physical device space
9799 * ranges from being reused for a new block group. This is because our
9800 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9801 * completely transactionless, so while it is trimming a range the
9802 * currently running transaction might finish and a new one start,
9803 * allowing for new block groups to be created that can reuse the same
9804 * physical device locations unless we take this special care.
9805 */
9806 remove_em = (atomic_read(&block_group->trimming) == 0);
9807 /*
9808 * Make sure a trimmer task always sees the em in the pinned_chunks list
9809 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9810 * before checking block_group->removed).
9811 */
9812 if (!remove_em) {
9813 /*
9814 * Our em might be in trans->transaction->pending_chunks which
9815 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9816 * and so is the fs_info->pinned_chunks list.
9817 *
9818 * So at this point we must be holding the chunk_mutex to avoid
9819 * any races with chunk allocation (more specifically at
9820 * volumes.c:contains_pending_extent()), to ensure it always
9821 * sees the em, either in the pending_chunks list or in the
9822 * pinned_chunks list.
9823 */
9824 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9825 }
9826 spin_unlock(&block_group->lock);
9827
9828 if (remove_em) {
9829 struct extent_map_tree *em_tree;
9830
9831 em_tree = &root->fs_info->mapping_tree.map_tree;
9832 write_lock(&em_tree->lock);
9833 /*
9834 * The em might be in the pending_chunks list, so make sure the
9835 * chunk mutex is locked, since remove_extent_mapping() will
9836 * delete us from that list.
9837 */
9838 remove_extent_mapping(em_tree, em);
9839 write_unlock(&em_tree->lock);
9840 /* once for the tree */
9841 free_extent_map(em);
9842 }
9843
9844 unlock_chunks(root);
9845
9846 btrfs_put_block_group(block_group);
9847 btrfs_put_block_group(block_group);
9848
9849 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9850 if (ret > 0)
9851 ret = -EIO;
9852 if (ret < 0)
9853 goto out;
9854
9855 ret = btrfs_del_item(trans, root, path);
9856 out:
9857 btrfs_free_path(path);
9858 return ret;
9859 }
9860
9861 /*
9862 * Process the unused_bgs list and remove any that don't have any allocated
9863 * space inside of them.
9864 */
9865 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9866 {
9867 struct btrfs_block_group_cache *block_group;
9868 struct btrfs_space_info *space_info;
9869 struct btrfs_root *root = fs_info->extent_root;
9870 struct btrfs_trans_handle *trans;
9871 int ret = 0;
9872
9873 if (!fs_info->open)
9874 return;
9875
9876 spin_lock(&fs_info->unused_bgs_lock);
9877 while (!list_empty(&fs_info->unused_bgs)) {
9878 u64 start, end;
9879
9880 block_group = list_first_entry(&fs_info->unused_bgs,
9881 struct btrfs_block_group_cache,
9882 bg_list);
9883 space_info = block_group->space_info;
9884 list_del_init(&block_group->bg_list);
9885 if (ret || btrfs_mixed_space_info(space_info)) {
9886 btrfs_put_block_group(block_group);
9887 continue;
9888 }
9889 spin_unlock(&fs_info->unused_bgs_lock);
9890
9891 /* Don't want to race with allocators so take the groups_sem */
9892 down_write(&space_info->groups_sem);
9893 spin_lock(&block_group->lock);
9894 if (block_group->reserved ||
9895 btrfs_block_group_used(&block_group->item) ||
9896 block_group->ro) {
9897 /*
9898 * We want to bail if we made new allocations or have
9899 * outstanding allocations in this block group. We do
9900 * the ro check in case balance is currently acting on
9901 * this block group.
9902 */
9903 spin_unlock(&block_group->lock);
9904 up_write(&space_info->groups_sem);
9905 goto next;
9906 }
9907 spin_unlock(&block_group->lock);
9908
9909 /* We don't want to force the issue, only flip if it's ok. */
9910 ret = set_block_group_ro(block_group, 0);
9911 up_write(&space_info->groups_sem);
9912 if (ret < 0) {
9913 ret = 0;
9914 goto next;
9915 }
9916
9917 /*
9918 * Want to do this before we do anything else so we can recover
9919 * properly if we fail to join the transaction.
9920 */
9921 /* 1 for btrfs_orphan_reserve_metadata() */
9922 trans = btrfs_start_transaction(root, 1);
9923 if (IS_ERR(trans)) {
9924 btrfs_set_block_group_rw(root, block_group);
9925 ret = PTR_ERR(trans);
9926 goto next;
9927 }
9928
9929 /*
9930 * We could have pending pinned extents for this block group,
9931 * just delete them, we don't care about them anymore.
9932 */
9933 start = block_group->key.objectid;
9934 end = start + block_group->key.offset - 1;
9935 /*
9936 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9937 * btrfs_finish_extent_commit(). If we are at transaction N,
9938 * another task might be running finish_extent_commit() for the
9939 * previous transaction N - 1, and have seen a range belonging
9940 * to the block group in freed_extents[] before we were able to
9941 * clear the whole block group range from freed_extents[]. This
9942 * means that task can lookup for the block group after we
9943 * unpinned it from freed_extents[] and removed it, leading to
9944 * a BUG_ON() at btrfs_unpin_extent_range().
9945 */
9946 mutex_lock(&fs_info->unused_bg_unpin_mutex);
9947 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9948 EXTENT_DIRTY, GFP_NOFS);
9949 if (ret) {
9950 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9951 btrfs_set_block_group_rw(root, block_group);
9952 goto end_trans;
9953 }
9954 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9955 EXTENT_DIRTY, GFP_NOFS);
9956 if (ret) {
9957 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9958 btrfs_set_block_group_rw(root, block_group);
9959 goto end_trans;
9960 }
9961 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9962
9963 /* Reset pinned so btrfs_put_block_group doesn't complain */
9964 spin_lock(&space_info->lock);
9965 spin_lock(&block_group->lock);
9966
9967 space_info->bytes_pinned -= block_group->pinned;
9968 space_info->bytes_readonly += block_group->pinned;
9969 percpu_counter_add(&space_info->total_bytes_pinned,
9970 -block_group->pinned);
9971 block_group->pinned = 0;
9972
9973 spin_unlock(&block_group->lock);
9974 spin_unlock(&space_info->lock);
9975
9976 /*
9977 * Btrfs_remove_chunk will abort the transaction if things go
9978 * horribly wrong.
9979 */
9980 ret = btrfs_remove_chunk(trans, root,
9981 block_group->key.objectid);
9982 end_trans:
9983 btrfs_end_transaction(trans, root);
9984 next:
9985 btrfs_put_block_group(block_group);
9986 spin_lock(&fs_info->unused_bgs_lock);
9987 }
9988 spin_unlock(&fs_info->unused_bgs_lock);
9989 }
9990
9991 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9992 {
9993 struct btrfs_space_info *space_info;
9994 struct btrfs_super_block *disk_super;
9995 u64 features;
9996 u64 flags;
9997 int mixed = 0;
9998 int ret;
9999
10000 disk_super = fs_info->super_copy;
10001 if (!btrfs_super_root(disk_super))
10002 return 1;
10003
10004 features = btrfs_super_incompat_flags(disk_super);
10005 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10006 mixed = 1;
10007
10008 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10009 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10010 if (ret)
10011 goto out;
10012
10013 if (mixed) {
10014 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10015 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10016 } else {
10017 flags = BTRFS_BLOCK_GROUP_METADATA;
10018 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10019 if (ret)
10020 goto out;
10021
10022 flags = BTRFS_BLOCK_GROUP_DATA;
10023 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10024 }
10025 out:
10026 return ret;
10027 }
10028
10029 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10030 {
10031 return unpin_extent_range(root, start, end, false);
10032 }
10033
10034 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10035 {
10036 struct btrfs_fs_info *fs_info = root->fs_info;
10037 struct btrfs_block_group_cache *cache = NULL;
10038 u64 group_trimmed;
10039 u64 start;
10040 u64 end;
10041 u64 trimmed = 0;
10042 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10043 int ret = 0;
10044
10045 /*
10046 * try to trim all FS space, our block group may start from non-zero.
10047 */
10048 if (range->len == total_bytes)
10049 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10050 else
10051 cache = btrfs_lookup_block_group(fs_info, range->start);
10052
10053 while (cache) {
10054 if (cache->key.objectid >= (range->start + range->len)) {
10055 btrfs_put_block_group(cache);
10056 break;
10057 }
10058
10059 start = max(range->start, cache->key.objectid);
10060 end = min(range->start + range->len,
10061 cache->key.objectid + cache->key.offset);
10062
10063 if (end - start >= range->minlen) {
10064 if (!block_group_cache_done(cache)) {
10065 ret = cache_block_group(cache, 0);
10066 if (ret) {
10067 btrfs_put_block_group(cache);
10068 break;
10069 }
10070 ret = wait_block_group_cache_done(cache);
10071 if (ret) {
10072 btrfs_put_block_group(cache);
10073 break;
10074 }
10075 }
10076 ret = btrfs_trim_block_group(cache,
10077 &group_trimmed,
10078 start,
10079 end,
10080 range->minlen);
10081
10082 trimmed += group_trimmed;
10083 if (ret) {
10084 btrfs_put_block_group(cache);
10085 break;
10086 }
10087 }
10088
10089 cache = next_block_group(fs_info->tree_root, cache);
10090 }
10091
10092 range->len = trimmed;
10093 return ret;
10094 }
10095
10096 /*
10097 * btrfs_{start,end}_write_no_snapshoting() are similar to
10098 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10099 * data into the page cache through nocow before the subvolume is snapshoted,
10100 * but flush the data into disk after the snapshot creation, or to prevent
10101 * operations while snapshoting is ongoing and that cause the snapshot to be
10102 * inconsistent (writes followed by expanding truncates for example).
10103 */
10104 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10105 {
10106 percpu_counter_dec(&root->subv_writers->counter);
10107 /*
10108 * Make sure counter is updated before we wake up
10109 * waiters.
10110 */
10111 smp_mb();
10112 if (waitqueue_active(&root->subv_writers->wait))
10113 wake_up(&root->subv_writers->wait);
10114 }
10115
10116 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10117 {
10118 if (atomic_read(&root->will_be_snapshoted))
10119 return 0;
10120
10121 percpu_counter_inc(&root->subv_writers->counter);
10122 /*
10123 * Make sure counter is updated before we check for snapshot creation.
10124 */
10125 smp_mb();
10126 if (atomic_read(&root->will_be_snapshoted)) {
10127 btrfs_end_write_no_snapshoting(root);
10128 return 0;
10129 }
10130 return 1;
10131 }
This page took 0.229792 seconds and 6 git commands to generate.