Merge remote-tracking branch 'regulator/fix/palmas' into regulator-linus
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "compat.h"
29 #include "hash.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "transaction.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "math.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 struct extent_buffer *leaf,
87 struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, u64 owner, u64 offset,
92 struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root,
95 u64 parent, u64 root_objectid,
96 u64 flags, struct btrfs_disk_key *key,
97 int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 struct btrfs_root *extent_root, u64 flags,
100 int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 u64 bytenr, u64 num_bytes, int reserved);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138 }
139
140 /*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146 {
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178 }
179
180 /*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187 {
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
228 {
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE, GFP_NOFS);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250
251 static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
253 {
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 cache->key.objectid, bytenr,
272 0, &logical, &nr, &stripe_len);
273 if (ret)
274 return ret;
275
276 while (nr--) {
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
297 ret = add_excluded_extent(root, start, len);
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
302 }
303
304 kfree(logical);
305 }
306 return 0;
307 }
308
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
315 if (cache->cached != BTRFS_CACHE_STARTED) {
316 spin_unlock(&cache->lock);
317 return NULL;
318 }
319
320 /* We're loading it the fast way, so we don't have a caching_ctl. */
321 if (!cache->caching_ctl) {
322 spin_unlock(&cache->lock);
323 return NULL;
324 }
325
326 ctl = cache->caching_ctl;
327 atomic_inc(&ctl->count);
328 spin_unlock(&cache->lock);
329 return ctl;
330 }
331
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 if (atomic_dec_and_test(&ctl->count))
335 kfree(ctl);
336 }
337
338 /*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 u64 extent_start, extent_end, size, total_added = 0;
347 int ret;
348
349 while (start < end) {
350 ret = find_first_extent_bit(info->pinned_extents, start,
351 &extent_start, &extent_end,
352 EXTENT_DIRTY | EXTENT_UPTODATE,
353 NULL);
354 if (ret)
355 break;
356
357 if (extent_start <= start) {
358 start = extent_end + 1;
359 } else if (extent_start > start && extent_start < end) {
360 size = extent_start - start;
361 total_added += size;
362 ret = btrfs_add_free_space(block_group, start,
363 size);
364 BUG_ON(ret); /* -ENOMEM or logic error */
365 start = extent_end + 1;
366 } else {
367 break;
368 }
369 }
370
371 if (start < end) {
372 size = end - start;
373 total_added += size;
374 ret = btrfs_add_free_space(block_group, start, size);
375 BUG_ON(ret); /* -ENOMEM or logic error */
376 }
377
378 return total_added;
379 }
380
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 struct btrfs_block_group_cache *block_group;
384 struct btrfs_fs_info *fs_info;
385 struct btrfs_caching_control *caching_ctl;
386 struct btrfs_root *extent_root;
387 struct btrfs_path *path;
388 struct extent_buffer *leaf;
389 struct btrfs_key key;
390 u64 total_found = 0;
391 u64 last = 0;
392 u32 nritems;
393 int ret = -ENOMEM;
394
395 caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 block_group = caching_ctl->block_group;
397 fs_info = block_group->fs_info;
398 extent_root = fs_info->extent_root;
399
400 path = btrfs_alloc_path();
401 if (!path)
402 goto out;
403
404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405
406 /*
407 * We don't want to deadlock with somebody trying to allocate a new
408 * extent for the extent root while also trying to search the extent
409 * root to add free space. So we skip locking and search the commit
410 * root, since its read-only
411 */
412 path->skip_locking = 1;
413 path->search_commit_root = 1;
414 path->reada = 1;
415
416 key.objectid = last;
417 key.offset = 0;
418 key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 mutex_lock(&caching_ctl->mutex);
421 /* need to make sure the commit_root doesn't disappear */
422 down_read(&fs_info->extent_commit_sem);
423
424 next:
425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 if (ret < 0)
427 goto err;
428
429 leaf = path->nodes[0];
430 nritems = btrfs_header_nritems(leaf);
431
432 while (1) {
433 if (btrfs_fs_closing(fs_info) > 1) {
434 last = (u64)-1;
435 break;
436 }
437
438 if (path->slots[0] < nritems) {
439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 } else {
441 ret = find_next_key(path, 0, &key);
442 if (ret)
443 break;
444
445 if (need_resched()) {
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->extent_commit_sem);
449 mutex_unlock(&caching_ctl->mutex);
450 cond_resched();
451 goto again;
452 }
453
454 ret = btrfs_next_leaf(extent_root, path);
455 if (ret < 0)
456 goto err;
457 if (ret)
458 break;
459 leaf = path->nodes[0];
460 nritems = btrfs_header_nritems(leaf);
461 continue;
462 }
463
464 if (key.objectid < last) {
465 key.objectid = last;
466 key.offset = 0;
467 key.type = BTRFS_EXTENT_ITEM_KEY;
468
469 caching_ctl->progress = last;
470 btrfs_release_path(path);
471 goto next;
472 }
473
474 if (key.objectid < block_group->key.objectid) {
475 path->slots[0]++;
476 continue;
477 }
478
479 if (key.objectid >= block_group->key.objectid +
480 block_group->key.offset)
481 break;
482
483 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
484 key.type == BTRFS_METADATA_ITEM_KEY) {
485 total_found += add_new_free_space(block_group,
486 fs_info, last,
487 key.objectid);
488 if (key.type == BTRFS_METADATA_ITEM_KEY)
489 last = key.objectid +
490 fs_info->tree_root->leafsize;
491 else
492 last = key.objectid + key.offset;
493
494 if (total_found > (1024 * 1024 * 2)) {
495 total_found = 0;
496 wake_up(&caching_ctl->wait);
497 }
498 }
499 path->slots[0]++;
500 }
501 ret = 0;
502
503 total_found += add_new_free_space(block_group, fs_info, last,
504 block_group->key.objectid +
505 block_group->key.offset);
506 caching_ctl->progress = (u64)-1;
507
508 spin_lock(&block_group->lock);
509 block_group->caching_ctl = NULL;
510 block_group->cached = BTRFS_CACHE_FINISHED;
511 spin_unlock(&block_group->lock);
512
513 err:
514 btrfs_free_path(path);
515 up_read(&fs_info->extent_commit_sem);
516
517 free_excluded_extents(extent_root, block_group);
518
519 mutex_unlock(&caching_ctl->mutex);
520 out:
521 if (ret) {
522 spin_lock(&block_group->lock);
523 block_group->caching_ctl = NULL;
524 block_group->cached = BTRFS_CACHE_ERROR;
525 spin_unlock(&block_group->lock);
526 }
527 wake_up(&caching_ctl->wait);
528
529 put_caching_control(caching_ctl);
530 btrfs_put_block_group(block_group);
531 }
532
533 static int cache_block_group(struct btrfs_block_group_cache *cache,
534 int load_cache_only)
535 {
536 DEFINE_WAIT(wait);
537 struct btrfs_fs_info *fs_info = cache->fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret = 0;
540
541 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
542 if (!caching_ctl)
543 return -ENOMEM;
544
545 INIT_LIST_HEAD(&caching_ctl->list);
546 mutex_init(&caching_ctl->mutex);
547 init_waitqueue_head(&caching_ctl->wait);
548 caching_ctl->block_group = cache;
549 caching_ctl->progress = cache->key.objectid;
550 atomic_set(&caching_ctl->count, 1);
551 caching_ctl->work.func = caching_thread;
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
584 return 0;
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
590
591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
596 cache->caching_ctl = NULL;
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
599 } else {
600 if (load_cache_only) {
601 cache->caching_ctl = NULL;
602 cache->cached = BTRFS_CACHE_NO;
603 } else {
604 cache->cached = BTRFS_CACHE_STARTED;
605 }
606 }
607 spin_unlock(&cache->lock);
608 wake_up(&caching_ctl->wait);
609 if (ret == 1) {
610 put_caching_control(caching_ctl);
611 free_excluded_extents(fs_info->extent_root, cache);
612 return 0;
613 }
614 } else {
615 /*
616 * We are not going to do the fast caching, set cached to the
617 * appropriate value and wakeup any waiters.
618 */
619 spin_lock(&cache->lock);
620 if (load_cache_only) {
621 cache->caching_ctl = NULL;
622 cache->cached = BTRFS_CACHE_NO;
623 } else {
624 cache->cached = BTRFS_CACHE_STARTED;
625 }
626 spin_unlock(&cache->lock);
627 wake_up(&caching_ctl->wait);
628 }
629
630 if (load_cache_only) {
631 put_caching_control(caching_ctl);
632 return 0;
633 }
634
635 down_write(&fs_info->extent_commit_sem);
636 atomic_inc(&caching_ctl->count);
637 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
638 up_write(&fs_info->extent_commit_sem);
639
640 btrfs_get_block_group(cache);
641
642 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
643
644 return ret;
645 }
646
647 /*
648 * return the block group that starts at or after bytenr
649 */
650 static struct btrfs_block_group_cache *
651 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
652 {
653 struct btrfs_block_group_cache *cache;
654
655 cache = block_group_cache_tree_search(info, bytenr, 0);
656
657 return cache;
658 }
659
660 /*
661 * return the block group that contains the given bytenr
662 */
663 struct btrfs_block_group_cache *btrfs_lookup_block_group(
664 struct btrfs_fs_info *info,
665 u64 bytenr)
666 {
667 struct btrfs_block_group_cache *cache;
668
669 cache = block_group_cache_tree_search(info, bytenr, 1);
670
671 return cache;
672 }
673
674 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
675 u64 flags)
676 {
677 struct list_head *head = &info->space_info;
678 struct btrfs_space_info *found;
679
680 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
681
682 rcu_read_lock();
683 list_for_each_entry_rcu(found, head, list) {
684 if (found->flags & flags) {
685 rcu_read_unlock();
686 return found;
687 }
688 }
689 rcu_read_unlock();
690 return NULL;
691 }
692
693 /*
694 * after adding space to the filesystem, we need to clear the full flags
695 * on all the space infos.
696 */
697 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
698 {
699 struct list_head *head = &info->space_info;
700 struct btrfs_space_info *found;
701
702 rcu_read_lock();
703 list_for_each_entry_rcu(found, head, list)
704 found->full = 0;
705 rcu_read_unlock();
706 }
707
708 /* simple helper to search for an existing extent at a given offset */
709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
710 {
711 int ret;
712 struct btrfs_key key;
713 struct btrfs_path *path;
714
715 path = btrfs_alloc_path();
716 if (!path)
717 return -ENOMEM;
718
719 key.objectid = start;
720 key.offset = len;
721 key.type = BTRFS_EXTENT_ITEM_KEY;
722 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
723 0, 0);
724 if (ret > 0) {
725 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
726 if (key.objectid == start &&
727 key.type == BTRFS_METADATA_ITEM_KEY)
728 ret = 0;
729 }
730 btrfs_free_path(path);
731 return ret;
732 }
733
734 /*
735 * helper function to lookup reference count and flags of a tree block.
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
745 u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 offset = root->leafsize;
764 metadata = 0;
765 }
766
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
771 if (metadata) {
772 key.objectid = bytenr;
773 key.type = BTRFS_METADATA_ITEM_KEY;
774 key.offset = offset;
775 } else {
776 key.objectid = bytenr;
777 key.type = BTRFS_EXTENT_ITEM_KEY;
778 key.offset = offset;
779 }
780
781 if (!trans) {
782 path->skip_locking = 1;
783 path->search_commit_root = 1;
784 }
785 again:
786 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 &key, path, 0, 0);
788 if (ret < 0)
789 goto out_free;
790
791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 metadata = 0;
793 if (path->slots[0]) {
794 path->slots[0]--;
795 btrfs_item_key_to_cpu(path->nodes[0], &key,
796 path->slots[0]);
797 if (key.objectid == bytenr &&
798 key.type == BTRFS_EXTENT_ITEM_KEY &&
799 key.offset == root->leafsize)
800 ret = 0;
801 }
802 if (ret) {
803 key.objectid = bytenr;
804 key.type = BTRFS_EXTENT_ITEM_KEY;
805 key.offset = root->leafsize;
806 btrfs_release_path(path);
807 goto again;
808 }
809 }
810
811 if (ret == 0) {
812 leaf = path->nodes[0];
813 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
814 if (item_size >= sizeof(*ei)) {
815 ei = btrfs_item_ptr(leaf, path->slots[0],
816 struct btrfs_extent_item);
817 num_refs = btrfs_extent_refs(leaf, ei);
818 extent_flags = btrfs_extent_flags(leaf, ei);
819 } else {
820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
821 struct btrfs_extent_item_v0 *ei0;
822 BUG_ON(item_size != sizeof(*ei0));
823 ei0 = btrfs_item_ptr(leaf, path->slots[0],
824 struct btrfs_extent_item_v0);
825 num_refs = btrfs_extent_refs_v0(leaf, ei0);
826 /* FIXME: this isn't correct for data */
827 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
828 #else
829 BUG();
830 #endif
831 }
832 BUG_ON(num_refs == 0);
833 } else {
834 num_refs = 0;
835 extent_flags = 0;
836 ret = 0;
837 }
838
839 if (!trans)
840 goto out;
841
842 delayed_refs = &trans->transaction->delayed_refs;
843 spin_lock(&delayed_refs->lock);
844 head = btrfs_find_delayed_ref_head(trans, bytenr);
845 if (head) {
846 if (!mutex_trylock(&head->mutex)) {
847 atomic_inc(&head->node.refs);
848 spin_unlock(&delayed_refs->lock);
849
850 btrfs_release_path(path);
851
852 /*
853 * Mutex was contended, block until it's released and try
854 * again
855 */
856 mutex_lock(&head->mutex);
857 mutex_unlock(&head->mutex);
858 btrfs_put_delayed_ref(&head->node);
859 goto again;
860 }
861 if (head->extent_op && head->extent_op->update_flags)
862 extent_flags |= head->extent_op->flags_to_set;
863 else
864 BUG_ON(num_refs == 0);
865
866 num_refs += head->node.ref_mod;
867 mutex_unlock(&head->mutex);
868 }
869 spin_unlock(&delayed_refs->lock);
870 out:
871 WARN_ON(num_refs == 0);
872 if (refs)
873 *refs = num_refs;
874 if (flags)
875 *flags = extent_flags;
876 out_free:
877 btrfs_free_path(path);
878 return ret;
879 }
880
881 /*
882 * Back reference rules. Back refs have three main goals:
883 *
884 * 1) differentiate between all holders of references to an extent so that
885 * when a reference is dropped we can make sure it was a valid reference
886 * before freeing the extent.
887 *
888 * 2) Provide enough information to quickly find the holders of an extent
889 * if we notice a given block is corrupted or bad.
890 *
891 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
892 * maintenance. This is actually the same as #2, but with a slightly
893 * different use case.
894 *
895 * There are two kinds of back refs. The implicit back refs is optimized
896 * for pointers in non-shared tree blocks. For a given pointer in a block,
897 * back refs of this kind provide information about the block's owner tree
898 * and the pointer's key. These information allow us to find the block by
899 * b-tree searching. The full back refs is for pointers in tree blocks not
900 * referenced by their owner trees. The location of tree block is recorded
901 * in the back refs. Actually the full back refs is generic, and can be
902 * used in all cases the implicit back refs is used. The major shortcoming
903 * of the full back refs is its overhead. Every time a tree block gets
904 * COWed, we have to update back refs entry for all pointers in it.
905 *
906 * For a newly allocated tree block, we use implicit back refs for
907 * pointers in it. This means most tree related operations only involve
908 * implicit back refs. For a tree block created in old transaction, the
909 * only way to drop a reference to it is COW it. So we can detect the
910 * event that tree block loses its owner tree's reference and do the
911 * back refs conversion.
912 *
913 * When a tree block is COW'd through a tree, there are four cases:
914 *
915 * The reference count of the block is one and the tree is the block's
916 * owner tree. Nothing to do in this case.
917 *
918 * The reference count of the block is one and the tree is not the
919 * block's owner tree. In this case, full back refs is used for pointers
920 * in the block. Remove these full back refs, add implicit back refs for
921 * every pointers in the new block.
922 *
923 * The reference count of the block is greater than one and the tree is
924 * the block's owner tree. In this case, implicit back refs is used for
925 * pointers in the block. Add full back refs for every pointers in the
926 * block, increase lower level extents' reference counts. The original
927 * implicit back refs are entailed to the new block.
928 *
929 * The reference count of the block is greater than one and the tree is
930 * not the block's owner tree. Add implicit back refs for every pointer in
931 * the new block, increase lower level extents' reference count.
932 *
933 * Back Reference Key composing:
934 *
935 * The key objectid corresponds to the first byte in the extent,
936 * The key type is used to differentiate between types of back refs.
937 * There are different meanings of the key offset for different types
938 * of back refs.
939 *
940 * File extents can be referenced by:
941 *
942 * - multiple snapshots, subvolumes, or different generations in one subvol
943 * - different files inside a single subvolume
944 * - different offsets inside a file (bookend extents in file.c)
945 *
946 * The extent ref structure for the implicit back refs has fields for:
947 *
948 * - Objectid of the subvolume root
949 * - objectid of the file holding the reference
950 * - original offset in the file
951 * - how many bookend extents
952 *
953 * The key offset for the implicit back refs is hash of the first
954 * three fields.
955 *
956 * The extent ref structure for the full back refs has field for:
957 *
958 * - number of pointers in the tree leaf
959 *
960 * The key offset for the implicit back refs is the first byte of
961 * the tree leaf
962 *
963 * When a file extent is allocated, The implicit back refs is used.
964 * the fields are filled in:
965 *
966 * (root_key.objectid, inode objectid, offset in file, 1)
967 *
968 * When a file extent is removed file truncation, we find the
969 * corresponding implicit back refs and check the following fields:
970 *
971 * (btrfs_header_owner(leaf), inode objectid, offset in file)
972 *
973 * Btree extents can be referenced by:
974 *
975 * - Different subvolumes
976 *
977 * Both the implicit back refs and the full back refs for tree blocks
978 * only consist of key. The key offset for the implicit back refs is
979 * objectid of block's owner tree. The key offset for the full back refs
980 * is the first byte of parent block.
981 *
982 * When implicit back refs is used, information about the lowest key and
983 * level of the tree block are required. These information are stored in
984 * tree block info structure.
985 */
986
987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
988 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
989 struct btrfs_root *root,
990 struct btrfs_path *path,
991 u64 owner, u32 extra_size)
992 {
993 struct btrfs_extent_item *item;
994 struct btrfs_extent_item_v0 *ei0;
995 struct btrfs_extent_ref_v0 *ref0;
996 struct btrfs_tree_block_info *bi;
997 struct extent_buffer *leaf;
998 struct btrfs_key key;
999 struct btrfs_key found_key;
1000 u32 new_size = sizeof(*item);
1001 u64 refs;
1002 int ret;
1003
1004 leaf = path->nodes[0];
1005 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1006
1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1009 struct btrfs_extent_item_v0);
1010 refs = btrfs_extent_refs_v0(leaf, ei0);
1011
1012 if (owner == (u64)-1) {
1013 while (1) {
1014 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1015 ret = btrfs_next_leaf(root, path);
1016 if (ret < 0)
1017 return ret;
1018 BUG_ON(ret > 0); /* Corruption */
1019 leaf = path->nodes[0];
1020 }
1021 btrfs_item_key_to_cpu(leaf, &found_key,
1022 path->slots[0]);
1023 BUG_ON(key.objectid != found_key.objectid);
1024 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1025 path->slots[0]++;
1026 continue;
1027 }
1028 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1029 struct btrfs_extent_ref_v0);
1030 owner = btrfs_ref_objectid_v0(leaf, ref0);
1031 break;
1032 }
1033 }
1034 btrfs_release_path(path);
1035
1036 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1037 new_size += sizeof(*bi);
1038
1039 new_size -= sizeof(*ei0);
1040 ret = btrfs_search_slot(trans, root, &key, path,
1041 new_size + extra_size, 1);
1042 if (ret < 0)
1043 return ret;
1044 BUG_ON(ret); /* Corruption */
1045
1046 btrfs_extend_item(root, path, new_size);
1047
1048 leaf = path->nodes[0];
1049 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1050 btrfs_set_extent_refs(leaf, item, refs);
1051 /* FIXME: get real generation */
1052 btrfs_set_extent_generation(leaf, item, 0);
1053 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1054 btrfs_set_extent_flags(leaf, item,
1055 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1056 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1057 bi = (struct btrfs_tree_block_info *)(item + 1);
1058 /* FIXME: get first key of the block */
1059 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1060 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1061 } else {
1062 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1063 }
1064 btrfs_mark_buffer_dirty(leaf);
1065 return 0;
1066 }
1067 #endif
1068
1069 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1070 {
1071 u32 high_crc = ~(u32)0;
1072 u32 low_crc = ~(u32)0;
1073 __le64 lenum;
1074
1075 lenum = cpu_to_le64(root_objectid);
1076 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1077 lenum = cpu_to_le64(owner);
1078 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1079 lenum = cpu_to_le64(offset);
1080 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1081
1082 return ((u64)high_crc << 31) ^ (u64)low_crc;
1083 }
1084
1085 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref)
1087 {
1088 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1089 btrfs_extent_data_ref_objectid(leaf, ref),
1090 btrfs_extent_data_ref_offset(leaf, ref));
1091 }
1092
1093 static int match_extent_data_ref(struct extent_buffer *leaf,
1094 struct btrfs_extent_data_ref *ref,
1095 u64 root_objectid, u64 owner, u64 offset)
1096 {
1097 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1098 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1099 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1100 return 0;
1101 return 1;
1102 }
1103
1104 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1105 struct btrfs_root *root,
1106 struct btrfs_path *path,
1107 u64 bytenr, u64 parent,
1108 u64 root_objectid,
1109 u64 owner, u64 offset)
1110 {
1111 struct btrfs_key key;
1112 struct btrfs_extent_data_ref *ref;
1113 struct extent_buffer *leaf;
1114 u32 nritems;
1115 int ret;
1116 int recow;
1117 int err = -ENOENT;
1118
1119 key.objectid = bytenr;
1120 if (parent) {
1121 key.type = BTRFS_SHARED_DATA_REF_KEY;
1122 key.offset = parent;
1123 } else {
1124 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1125 key.offset = hash_extent_data_ref(root_objectid,
1126 owner, offset);
1127 }
1128 again:
1129 recow = 0;
1130 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1131 if (ret < 0) {
1132 err = ret;
1133 goto fail;
1134 }
1135
1136 if (parent) {
1137 if (!ret)
1138 return 0;
1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1140 key.type = BTRFS_EXTENT_REF_V0_KEY;
1141 btrfs_release_path(path);
1142 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1143 if (ret < 0) {
1144 err = ret;
1145 goto fail;
1146 }
1147 if (!ret)
1148 return 0;
1149 #endif
1150 goto fail;
1151 }
1152
1153 leaf = path->nodes[0];
1154 nritems = btrfs_header_nritems(leaf);
1155 while (1) {
1156 if (path->slots[0] >= nritems) {
1157 ret = btrfs_next_leaf(root, path);
1158 if (ret < 0)
1159 err = ret;
1160 if (ret)
1161 goto fail;
1162
1163 leaf = path->nodes[0];
1164 nritems = btrfs_header_nritems(leaf);
1165 recow = 1;
1166 }
1167
1168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 if (key.objectid != bytenr ||
1170 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1171 goto fail;
1172
1173 ref = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_extent_data_ref);
1175
1176 if (match_extent_data_ref(leaf, ref, root_objectid,
1177 owner, offset)) {
1178 if (recow) {
1179 btrfs_release_path(path);
1180 goto again;
1181 }
1182 err = 0;
1183 break;
1184 }
1185 path->slots[0]++;
1186 }
1187 fail:
1188 return err;
1189 }
1190
1191 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1192 struct btrfs_root *root,
1193 struct btrfs_path *path,
1194 u64 bytenr, u64 parent,
1195 u64 root_objectid, u64 owner,
1196 u64 offset, int refs_to_add)
1197 {
1198 struct btrfs_key key;
1199 struct extent_buffer *leaf;
1200 u32 size;
1201 u32 num_refs;
1202 int ret;
1203
1204 key.objectid = bytenr;
1205 if (parent) {
1206 key.type = BTRFS_SHARED_DATA_REF_KEY;
1207 key.offset = parent;
1208 size = sizeof(struct btrfs_shared_data_ref);
1209 } else {
1210 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1211 key.offset = hash_extent_data_ref(root_objectid,
1212 owner, offset);
1213 size = sizeof(struct btrfs_extent_data_ref);
1214 }
1215
1216 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1217 if (ret && ret != -EEXIST)
1218 goto fail;
1219
1220 leaf = path->nodes[0];
1221 if (parent) {
1222 struct btrfs_shared_data_ref *ref;
1223 ref = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_shared_data_ref);
1225 if (ret == 0) {
1226 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1227 } else {
1228 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1229 num_refs += refs_to_add;
1230 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1231 }
1232 } else {
1233 struct btrfs_extent_data_ref *ref;
1234 while (ret == -EEXIST) {
1235 ref = btrfs_item_ptr(leaf, path->slots[0],
1236 struct btrfs_extent_data_ref);
1237 if (match_extent_data_ref(leaf, ref, root_objectid,
1238 owner, offset))
1239 break;
1240 btrfs_release_path(path);
1241 key.offset++;
1242 ret = btrfs_insert_empty_item(trans, root, path, &key,
1243 size);
1244 if (ret && ret != -EEXIST)
1245 goto fail;
1246
1247 leaf = path->nodes[0];
1248 }
1249 ref = btrfs_item_ptr(leaf, path->slots[0],
1250 struct btrfs_extent_data_ref);
1251 if (ret == 0) {
1252 btrfs_set_extent_data_ref_root(leaf, ref,
1253 root_objectid);
1254 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1255 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1256 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1257 } else {
1258 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1259 num_refs += refs_to_add;
1260 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1261 }
1262 }
1263 btrfs_mark_buffer_dirty(leaf);
1264 ret = 0;
1265 fail:
1266 btrfs_release_path(path);
1267 return ret;
1268 }
1269
1270 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1271 struct btrfs_root *root,
1272 struct btrfs_path *path,
1273 int refs_to_drop)
1274 {
1275 struct btrfs_key key;
1276 struct btrfs_extent_data_ref *ref1 = NULL;
1277 struct btrfs_shared_data_ref *ref2 = NULL;
1278 struct extent_buffer *leaf;
1279 u32 num_refs = 0;
1280 int ret = 0;
1281
1282 leaf = path->nodes[0];
1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284
1285 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1286 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1287 struct btrfs_extent_data_ref);
1288 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1289 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1290 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_shared_data_ref);
1292 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1294 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1295 struct btrfs_extent_ref_v0 *ref0;
1296 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1297 struct btrfs_extent_ref_v0);
1298 num_refs = btrfs_ref_count_v0(leaf, ref0);
1299 #endif
1300 } else {
1301 BUG();
1302 }
1303
1304 BUG_ON(num_refs < refs_to_drop);
1305 num_refs -= refs_to_drop;
1306
1307 if (num_refs == 0) {
1308 ret = btrfs_del_item(trans, root, path);
1309 } else {
1310 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1311 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1312 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1313 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315 else {
1316 struct btrfs_extent_ref_v0 *ref0;
1317 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1318 struct btrfs_extent_ref_v0);
1319 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1320 }
1321 #endif
1322 btrfs_mark_buffer_dirty(leaf);
1323 }
1324 return ret;
1325 }
1326
1327 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1328 struct btrfs_path *path,
1329 struct btrfs_extent_inline_ref *iref)
1330 {
1331 struct btrfs_key key;
1332 struct extent_buffer *leaf;
1333 struct btrfs_extent_data_ref *ref1;
1334 struct btrfs_shared_data_ref *ref2;
1335 u32 num_refs = 0;
1336
1337 leaf = path->nodes[0];
1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339 if (iref) {
1340 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1341 BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else {
1345 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 }
1348 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_data_ref);
1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_shared_data_ref);
1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 struct btrfs_extent_ref_v0 *ref0;
1359 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_extent_ref_v0);
1361 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363 } else {
1364 WARN_ON(1);
1365 }
1366 return num_refs;
1367 }
1368
1369 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *root,
1371 struct btrfs_path *path,
1372 u64 bytenr, u64 parent,
1373 u64 root_objectid)
1374 {
1375 struct btrfs_key key;
1376 int ret;
1377
1378 key.objectid = bytenr;
1379 if (parent) {
1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 key.offset = parent;
1382 } else {
1383 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 key.offset = root_objectid;
1385 }
1386
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1391 if (ret == -ENOENT && parent) {
1392 btrfs_release_path(path);
1393 key.type = BTRFS_EXTENT_REF_V0_KEY;
1394 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1395 if (ret > 0)
1396 ret = -ENOENT;
1397 }
1398 #endif
1399 return ret;
1400 }
1401
1402 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root,
1404 struct btrfs_path *path,
1405 u64 bytenr, u64 parent,
1406 u64 root_objectid)
1407 {
1408 struct btrfs_key key;
1409 int ret;
1410
1411 key.objectid = bytenr;
1412 if (parent) {
1413 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1414 key.offset = parent;
1415 } else {
1416 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1417 key.offset = root_objectid;
1418 }
1419
1420 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1421 btrfs_release_path(path);
1422 return ret;
1423 }
1424
1425 static inline int extent_ref_type(u64 parent, u64 owner)
1426 {
1427 int type;
1428 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1429 if (parent > 0)
1430 type = BTRFS_SHARED_BLOCK_REF_KEY;
1431 else
1432 type = BTRFS_TREE_BLOCK_REF_KEY;
1433 } else {
1434 if (parent > 0)
1435 type = BTRFS_SHARED_DATA_REF_KEY;
1436 else
1437 type = BTRFS_EXTENT_DATA_REF_KEY;
1438 }
1439 return type;
1440 }
1441
1442 static int find_next_key(struct btrfs_path *path, int level,
1443 struct btrfs_key *key)
1444
1445 {
1446 for (; level < BTRFS_MAX_LEVEL; level++) {
1447 if (!path->nodes[level])
1448 break;
1449 if (path->slots[level] + 1 >=
1450 btrfs_header_nritems(path->nodes[level]))
1451 continue;
1452 if (level == 0)
1453 btrfs_item_key_to_cpu(path->nodes[level], key,
1454 path->slots[level] + 1);
1455 else
1456 btrfs_node_key_to_cpu(path->nodes[level], key,
1457 path->slots[level] + 1);
1458 return 0;
1459 }
1460 return 1;
1461 }
1462
1463 /*
1464 * look for inline back ref. if back ref is found, *ref_ret is set
1465 * to the address of inline back ref, and 0 is returned.
1466 *
1467 * if back ref isn't found, *ref_ret is set to the address where it
1468 * should be inserted, and -ENOENT is returned.
1469 *
1470 * if insert is true and there are too many inline back refs, the path
1471 * points to the extent item, and -EAGAIN is returned.
1472 *
1473 * NOTE: inline back refs are ordered in the same way that back ref
1474 * items in the tree are ordered.
1475 */
1476 static noinline_for_stack
1477 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1478 struct btrfs_root *root,
1479 struct btrfs_path *path,
1480 struct btrfs_extent_inline_ref **ref_ret,
1481 u64 bytenr, u64 num_bytes,
1482 u64 parent, u64 root_objectid,
1483 u64 owner, u64 offset, int insert)
1484 {
1485 struct btrfs_key key;
1486 struct extent_buffer *leaf;
1487 struct btrfs_extent_item *ei;
1488 struct btrfs_extent_inline_ref *iref;
1489 u64 flags;
1490 u64 item_size;
1491 unsigned long ptr;
1492 unsigned long end;
1493 int extra_size;
1494 int type;
1495 int want;
1496 int ret;
1497 int err = 0;
1498 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1499 SKINNY_METADATA);
1500
1501 key.objectid = bytenr;
1502 key.type = BTRFS_EXTENT_ITEM_KEY;
1503 key.offset = num_bytes;
1504
1505 want = extent_ref_type(parent, owner);
1506 if (insert) {
1507 extra_size = btrfs_extent_inline_ref_size(want);
1508 path->keep_locks = 1;
1509 } else
1510 extra_size = -1;
1511
1512 /*
1513 * Owner is our parent level, so we can just add one to get the level
1514 * for the block we are interested in.
1515 */
1516 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1517 key.type = BTRFS_METADATA_ITEM_KEY;
1518 key.offset = owner;
1519 }
1520
1521 again:
1522 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1523 if (ret < 0) {
1524 err = ret;
1525 goto out;
1526 }
1527
1528 /*
1529 * We may be a newly converted file system which still has the old fat
1530 * extent entries for metadata, so try and see if we have one of those.
1531 */
1532 if (ret > 0 && skinny_metadata) {
1533 skinny_metadata = false;
1534 if (path->slots[0]) {
1535 path->slots[0]--;
1536 btrfs_item_key_to_cpu(path->nodes[0], &key,
1537 path->slots[0]);
1538 if (key.objectid == bytenr &&
1539 key.type == BTRFS_EXTENT_ITEM_KEY &&
1540 key.offset == num_bytes)
1541 ret = 0;
1542 }
1543 if (ret) {
1544 key.type = BTRFS_EXTENT_ITEM_KEY;
1545 key.offset = num_bytes;
1546 btrfs_release_path(path);
1547 goto again;
1548 }
1549 }
1550
1551 if (ret && !insert) {
1552 err = -ENOENT;
1553 goto out;
1554 } else if (ret) {
1555 err = -EIO;
1556 WARN_ON(1);
1557 goto out;
1558 }
1559
1560 leaf = path->nodes[0];
1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 if (item_size < sizeof(*ei)) {
1564 if (!insert) {
1565 err = -ENOENT;
1566 goto out;
1567 }
1568 ret = convert_extent_item_v0(trans, root, path, owner,
1569 extra_size);
1570 if (ret < 0) {
1571 err = ret;
1572 goto out;
1573 }
1574 leaf = path->nodes[0];
1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 }
1577 #endif
1578 BUG_ON(item_size < sizeof(*ei));
1579
1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 flags = btrfs_extent_flags(leaf, ei);
1582
1583 ptr = (unsigned long)(ei + 1);
1584 end = (unsigned long)ei + item_size;
1585
1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 ptr += sizeof(struct btrfs_tree_block_info);
1588 BUG_ON(ptr > end);
1589 }
1590
1591 err = -ENOENT;
1592 while (1) {
1593 if (ptr >= end) {
1594 WARN_ON(ptr > end);
1595 break;
1596 }
1597 iref = (struct btrfs_extent_inline_ref *)ptr;
1598 type = btrfs_extent_inline_ref_type(leaf, iref);
1599 if (want < type)
1600 break;
1601 if (want > type) {
1602 ptr += btrfs_extent_inline_ref_size(type);
1603 continue;
1604 }
1605
1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 struct btrfs_extent_data_ref *dref;
1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 if (match_extent_data_ref(leaf, dref, root_objectid,
1610 owner, offset)) {
1611 err = 0;
1612 break;
1613 }
1614 if (hash_extent_data_ref_item(leaf, dref) <
1615 hash_extent_data_ref(root_objectid, owner, offset))
1616 break;
1617 } else {
1618 u64 ref_offset;
1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 if (parent > 0) {
1621 if (parent == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < parent)
1626 break;
1627 } else {
1628 if (root_objectid == ref_offset) {
1629 err = 0;
1630 break;
1631 }
1632 if (ref_offset < root_objectid)
1633 break;
1634 }
1635 }
1636 ptr += btrfs_extent_inline_ref_size(type);
1637 }
1638 if (err == -ENOENT && insert) {
1639 if (item_size + extra_size >=
1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 err = -EAGAIN;
1642 goto out;
1643 }
1644 /*
1645 * To add new inline back ref, we have to make sure
1646 * there is no corresponding back ref item.
1647 * For simplicity, we just do not add new inline back
1648 * ref if there is any kind of item for this block
1649 */
1650 if (find_next_key(path, 0, &key) == 0 &&
1651 key.objectid == bytenr &&
1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 err = -EAGAIN;
1654 goto out;
1655 }
1656 }
1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 if (insert) {
1660 path->keep_locks = 0;
1661 btrfs_unlock_up_safe(path, 1);
1662 }
1663 return err;
1664 }
1665
1666 /*
1667 * helper to add new inline back ref
1668 */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 struct btrfs_path *path,
1672 struct btrfs_extent_inline_ref *iref,
1673 u64 parent, u64 root_objectid,
1674 u64 owner, u64 offset, int refs_to_add,
1675 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 struct extent_buffer *leaf;
1678 struct btrfs_extent_item *ei;
1679 unsigned long ptr;
1680 unsigned long end;
1681 unsigned long item_offset;
1682 u64 refs;
1683 int size;
1684 int type;
1685
1686 leaf = path->nodes[0];
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 item_offset = (unsigned long)iref - (unsigned long)ei;
1689
1690 type = extent_ref_type(parent, owner);
1691 size = btrfs_extent_inline_ref_size(type);
1692
1693 btrfs_extend_item(root, path, size);
1694
1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 refs = btrfs_extent_refs(leaf, ei);
1697 refs += refs_to_add;
1698 btrfs_set_extent_refs(leaf, ei, refs);
1699 if (extent_op)
1700 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702 ptr = (unsigned long)ei + item_offset;
1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 if (ptr < end - size)
1705 memmove_extent_buffer(leaf, ptr + size, ptr,
1706 end - size - ptr);
1707
1708 iref = (struct btrfs_extent_inline_ref *)ptr;
1709 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 struct btrfs_extent_data_ref *dref;
1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 struct btrfs_shared_data_ref *sref;
1719 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 } else {
1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 }
1727 btrfs_mark_buffer_dirty(leaf);
1728 }
1729
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 struct btrfs_root *root,
1732 struct btrfs_path *path,
1733 struct btrfs_extent_inline_ref **ref_ret,
1734 u64 bytenr, u64 num_bytes, u64 parent,
1735 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 int ret;
1738
1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 bytenr, num_bytes, parent,
1741 root_objectid, owner, offset, 0);
1742 if (ret != -ENOENT)
1743 return ret;
1744
1745 btrfs_release_path(path);
1746 *ref_ret = NULL;
1747
1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 root_objectid);
1751 } else {
1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 root_objectid, owner, offset);
1754 }
1755 return ret;
1756 }
1757
1758 /*
1759 * helper to update/remove inline back ref
1760 */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 struct btrfs_path *path,
1764 struct btrfs_extent_inline_ref *iref,
1765 int refs_to_mod,
1766 struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 struct extent_buffer *leaf;
1769 struct btrfs_extent_item *ei;
1770 struct btrfs_extent_data_ref *dref = NULL;
1771 struct btrfs_shared_data_ref *sref = NULL;
1772 unsigned long ptr;
1773 unsigned long end;
1774 u32 item_size;
1775 int size;
1776 int type;
1777 u64 refs;
1778
1779 leaf = path->nodes[0];
1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 refs = btrfs_extent_refs(leaf, ei);
1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 refs += refs_to_mod;
1784 btrfs_set_extent_refs(leaf, ei, refs);
1785 if (extent_op)
1786 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788 type = btrfs_extent_inline_ref_type(leaf, iref);
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
1799 }
1800
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
1810 size = btrfs_extent_inline_ref_size(type);
1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 ptr = (unsigned long)iref;
1813 end = (unsigned long)ei + item_size;
1814 if (ptr + size < end)
1815 memmove_extent_buffer(leaf, ptr, ptr + size,
1816 end - ptr - size);
1817 item_size -= size;
1818 btrfs_truncate_item(root, path, item_size, 1);
1819 }
1820 btrfs_mark_buffer_dirty(leaf);
1821 }
1822
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 struct btrfs_root *root,
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
1835 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 bytenr, num_bytes, parent,
1837 root_objectid, owner, offset, 1);
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 update_inline_extent_backref(root, path, iref,
1841 refs_to_add, extent_op);
1842 } else if (ret == -ENOENT) {
1843 setup_inline_extent_backref(root, path, iref, parent,
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
1847 }
1848 return ret;
1849 }
1850
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 struct btrfs_root *root,
1853 struct btrfs_path *path,
1854 u64 bytenr, u64 parent, u64 root_objectid,
1855 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 int ret;
1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 BUG_ON(refs_to_add != 1);
1860 ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 parent, root_objectid);
1862 } else {
1863 ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 parent, root_objectid,
1865 owner, offset, refs_to_add);
1866 }
1867 return ret;
1868 }
1869
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 struct btrfs_root *root,
1872 struct btrfs_path *path,
1873 struct btrfs_extent_inline_ref *iref,
1874 int refs_to_drop, int is_data)
1875 {
1876 int ret = 0;
1877
1878 BUG_ON(!is_data && refs_to_drop != 1);
1879 if (iref) {
1880 update_inline_extent_backref(root, path, iref,
1881 -refs_to_drop, NULL);
1882 } else if (is_data) {
1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 } else {
1885 ret = btrfs_del_item(trans, root, path);
1886 }
1887 return ret;
1888 }
1889
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 u64 start, u64 len)
1892 {
1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 u64 num_bytes, u64 *actual_bytes)
1898 {
1899 int ret;
1900 u64 discarded_bytes = 0;
1901 struct btrfs_bio *bbio = NULL;
1902
1903
1904 /* Tell the block device(s) that the sectors can be discarded */
1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 bytenr, &num_bytes, &bbio, 0);
1907 /* Error condition is -ENOMEM */
1908 if (!ret) {
1909 struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 int i;
1911
1912
1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 if (!stripe->dev->can_discard)
1915 continue;
1916
1917 ret = btrfs_issue_discard(stripe->dev->bdev,
1918 stripe->physical,
1919 stripe->length);
1920 if (!ret)
1921 discarded_bytes += stripe->length;
1922 else if (ret != -EOPNOTSUPP)
1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924
1925 /*
1926 * Just in case we get back EOPNOTSUPP for some reason,
1927 * just ignore the return value so we don't screw up
1928 * people calling discard_extent.
1929 */
1930 ret = 0;
1931 }
1932 kfree(bbio);
1933 }
1934
1935 if (actual_bytes)
1936 *actual_bytes = discarded_bytes;
1937
1938
1939 if (ret == -EOPNOTSUPP)
1940 ret = 0;
1941 return ret;
1942 }
1943
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 struct btrfs_root *root,
1947 u64 bytenr, u64 num_bytes, u64 parent,
1948 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 int ret;
1951 struct btrfs_fs_info *fs_info = root->fs_info;
1952
1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955
1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 num_bytes,
1959 parent, root_objectid, (int)owner,
1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 } else {
1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 num_bytes,
1964 parent, root_objectid, owner, offset,
1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 }
1967 return ret;
1968 }
1969
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 struct btrfs_root *root,
1972 u64 bytenr, u64 num_bytes,
1973 u64 parent, u64 root_objectid,
1974 u64 owner, u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
1980 u64 refs;
1981 int ret;
1982 int err = 0;
1983
1984 path = btrfs_alloc_path();
1985 if (!path)
1986 return -ENOMEM;
1987
1988 path->reada = 1;
1989 path->leave_spinning = 1;
1990 /* this will setup the path even if it fails to insert the back ref */
1991 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992 path, bytenr, num_bytes, parent,
1993 root_objectid, owner, offset,
1994 refs_to_add, extent_op);
1995 if (ret == 0)
1996 goto out;
1997
1998 if (ret != -EAGAIN) {
1999 err = ret;
2000 goto out;
2001 }
2002
2003 leaf = path->nodes[0];
2004 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2005 refs = btrfs_extent_refs(leaf, item);
2006 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2007 if (extent_op)
2008 __run_delayed_extent_op(extent_op, leaf, item);
2009
2010 btrfs_mark_buffer_dirty(leaf);
2011 btrfs_release_path(path);
2012
2013 path->reada = 1;
2014 path->leave_spinning = 1;
2015
2016 /* now insert the actual backref */
2017 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2018 path, bytenr, parent, root_objectid,
2019 owner, offset, refs_to_add);
2020 if (ret)
2021 btrfs_abort_transaction(trans, root, ret);
2022 out:
2023 btrfs_free_path(path);
2024 return err;
2025 }
2026
2027 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 struct btrfs_delayed_ref_node *node,
2030 struct btrfs_delayed_extent_op *extent_op,
2031 int insert_reserved)
2032 {
2033 int ret = 0;
2034 struct btrfs_delayed_data_ref *ref;
2035 struct btrfs_key ins;
2036 u64 parent = 0;
2037 u64 ref_root = 0;
2038 u64 flags = 0;
2039
2040 ins.objectid = node->bytenr;
2041 ins.offset = node->num_bytes;
2042 ins.type = BTRFS_EXTENT_ITEM_KEY;
2043
2044 ref = btrfs_delayed_node_to_data_ref(node);
2045 trace_run_delayed_data_ref(node, ref, node->action);
2046
2047 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2048 parent = ref->parent;
2049 else
2050 ref_root = ref->root;
2051
2052 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2053 if (extent_op)
2054 flags |= extent_op->flags_to_set;
2055 ret = alloc_reserved_file_extent(trans, root,
2056 parent, ref_root, flags,
2057 ref->objectid, ref->offset,
2058 &ins, node->ref_mod);
2059 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2060 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2061 node->num_bytes, parent,
2062 ref_root, ref->objectid,
2063 ref->offset, node->ref_mod,
2064 extent_op);
2065 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2066 ret = __btrfs_free_extent(trans, root, node->bytenr,
2067 node->num_bytes, parent,
2068 ref_root, ref->objectid,
2069 ref->offset, node->ref_mod,
2070 extent_op);
2071 } else {
2072 BUG();
2073 }
2074 return ret;
2075 }
2076
2077 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2078 struct extent_buffer *leaf,
2079 struct btrfs_extent_item *ei)
2080 {
2081 u64 flags = btrfs_extent_flags(leaf, ei);
2082 if (extent_op->update_flags) {
2083 flags |= extent_op->flags_to_set;
2084 btrfs_set_extent_flags(leaf, ei, flags);
2085 }
2086
2087 if (extent_op->update_key) {
2088 struct btrfs_tree_block_info *bi;
2089 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2090 bi = (struct btrfs_tree_block_info *)(ei + 1);
2091 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2092 }
2093 }
2094
2095 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2096 struct btrfs_root *root,
2097 struct btrfs_delayed_ref_node *node,
2098 struct btrfs_delayed_extent_op *extent_op)
2099 {
2100 struct btrfs_key key;
2101 struct btrfs_path *path;
2102 struct btrfs_extent_item *ei;
2103 struct extent_buffer *leaf;
2104 u32 item_size;
2105 int ret;
2106 int err = 0;
2107 int metadata = !extent_op->is_data;
2108
2109 if (trans->aborted)
2110 return 0;
2111
2112 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2113 metadata = 0;
2114
2115 path = btrfs_alloc_path();
2116 if (!path)
2117 return -ENOMEM;
2118
2119 key.objectid = node->bytenr;
2120
2121 if (metadata) {
2122 key.type = BTRFS_METADATA_ITEM_KEY;
2123 key.offset = extent_op->level;
2124 } else {
2125 key.type = BTRFS_EXTENT_ITEM_KEY;
2126 key.offset = node->num_bytes;
2127 }
2128
2129 again:
2130 path->reada = 1;
2131 path->leave_spinning = 1;
2132 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2133 path, 0, 1);
2134 if (ret < 0) {
2135 err = ret;
2136 goto out;
2137 }
2138 if (ret > 0) {
2139 if (metadata) {
2140 btrfs_release_path(path);
2141 metadata = 0;
2142
2143 key.offset = node->num_bytes;
2144 key.type = BTRFS_EXTENT_ITEM_KEY;
2145 goto again;
2146 }
2147 err = -EIO;
2148 goto out;
2149 }
2150
2151 leaf = path->nodes[0];
2152 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2154 if (item_size < sizeof(*ei)) {
2155 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2156 path, (u64)-1, 0);
2157 if (ret < 0) {
2158 err = ret;
2159 goto out;
2160 }
2161 leaf = path->nodes[0];
2162 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2163 }
2164 #endif
2165 BUG_ON(item_size < sizeof(*ei));
2166 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2167 __run_delayed_extent_op(extent_op, leaf, ei);
2168
2169 btrfs_mark_buffer_dirty(leaf);
2170 out:
2171 btrfs_free_path(path);
2172 return err;
2173 }
2174
2175 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 struct btrfs_delayed_ref_node *node,
2178 struct btrfs_delayed_extent_op *extent_op,
2179 int insert_reserved)
2180 {
2181 int ret = 0;
2182 struct btrfs_delayed_tree_ref *ref;
2183 struct btrfs_key ins;
2184 u64 parent = 0;
2185 u64 ref_root = 0;
2186 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2187 SKINNY_METADATA);
2188
2189 ref = btrfs_delayed_node_to_tree_ref(node);
2190 trace_run_delayed_tree_ref(node, ref, node->action);
2191
2192 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2193 parent = ref->parent;
2194 else
2195 ref_root = ref->root;
2196
2197 ins.objectid = node->bytenr;
2198 if (skinny_metadata) {
2199 ins.offset = ref->level;
2200 ins.type = BTRFS_METADATA_ITEM_KEY;
2201 } else {
2202 ins.offset = node->num_bytes;
2203 ins.type = BTRFS_EXTENT_ITEM_KEY;
2204 }
2205
2206 BUG_ON(node->ref_mod != 1);
2207 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2208 BUG_ON(!extent_op || !extent_op->update_flags);
2209 ret = alloc_reserved_tree_block(trans, root,
2210 parent, ref_root,
2211 extent_op->flags_to_set,
2212 &extent_op->key,
2213 ref->level, &ins);
2214 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2215 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2216 node->num_bytes, parent, ref_root,
2217 ref->level, 0, 1, extent_op);
2218 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2219 ret = __btrfs_free_extent(trans, root, node->bytenr,
2220 node->num_bytes, parent, ref_root,
2221 ref->level, 0, 1, extent_op);
2222 } else {
2223 BUG();
2224 }
2225 return ret;
2226 }
2227
2228 /* helper function to actually process a single delayed ref entry */
2229 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2230 struct btrfs_root *root,
2231 struct btrfs_delayed_ref_node *node,
2232 struct btrfs_delayed_extent_op *extent_op,
2233 int insert_reserved)
2234 {
2235 int ret = 0;
2236
2237 if (trans->aborted)
2238 return 0;
2239
2240 if (btrfs_delayed_ref_is_head(node)) {
2241 struct btrfs_delayed_ref_head *head;
2242 /*
2243 * we've hit the end of the chain and we were supposed
2244 * to insert this extent into the tree. But, it got
2245 * deleted before we ever needed to insert it, so all
2246 * we have to do is clean up the accounting
2247 */
2248 BUG_ON(extent_op);
2249 head = btrfs_delayed_node_to_head(node);
2250 trace_run_delayed_ref_head(node, head, node->action);
2251
2252 if (insert_reserved) {
2253 btrfs_pin_extent(root, node->bytenr,
2254 node->num_bytes, 1);
2255 if (head->is_data) {
2256 ret = btrfs_del_csums(trans, root,
2257 node->bytenr,
2258 node->num_bytes);
2259 }
2260 }
2261 return ret;
2262 }
2263
2264 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2265 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2266 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2267 insert_reserved);
2268 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2269 node->type == BTRFS_SHARED_DATA_REF_KEY)
2270 ret = run_delayed_data_ref(trans, root, node, extent_op,
2271 insert_reserved);
2272 else
2273 BUG();
2274 return ret;
2275 }
2276
2277 static noinline struct btrfs_delayed_ref_node *
2278 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2279 {
2280 struct rb_node *node;
2281 struct btrfs_delayed_ref_node *ref;
2282 int action = BTRFS_ADD_DELAYED_REF;
2283 again:
2284 /*
2285 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2286 * this prevents ref count from going down to zero when
2287 * there still are pending delayed ref.
2288 */
2289 node = rb_prev(&head->node.rb_node);
2290 while (1) {
2291 if (!node)
2292 break;
2293 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2294 rb_node);
2295 if (ref->bytenr != head->node.bytenr)
2296 break;
2297 if (ref->action == action)
2298 return ref;
2299 node = rb_prev(node);
2300 }
2301 if (action == BTRFS_ADD_DELAYED_REF) {
2302 action = BTRFS_DROP_DELAYED_REF;
2303 goto again;
2304 }
2305 return NULL;
2306 }
2307
2308 /*
2309 * Returns 0 on success or if called with an already aborted transaction.
2310 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2311 */
2312 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2313 struct btrfs_root *root,
2314 struct list_head *cluster)
2315 {
2316 struct btrfs_delayed_ref_root *delayed_refs;
2317 struct btrfs_delayed_ref_node *ref;
2318 struct btrfs_delayed_ref_head *locked_ref = NULL;
2319 struct btrfs_delayed_extent_op *extent_op;
2320 struct btrfs_fs_info *fs_info = root->fs_info;
2321 int ret;
2322 int count = 0;
2323 int must_insert_reserved = 0;
2324
2325 delayed_refs = &trans->transaction->delayed_refs;
2326 while (1) {
2327 if (!locked_ref) {
2328 /* pick a new head ref from the cluster list */
2329 if (list_empty(cluster))
2330 break;
2331
2332 locked_ref = list_entry(cluster->next,
2333 struct btrfs_delayed_ref_head, cluster);
2334
2335 /* grab the lock that says we are going to process
2336 * all the refs for this head */
2337 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2338
2339 /*
2340 * we may have dropped the spin lock to get the head
2341 * mutex lock, and that might have given someone else
2342 * time to free the head. If that's true, it has been
2343 * removed from our list and we can move on.
2344 */
2345 if (ret == -EAGAIN) {
2346 locked_ref = NULL;
2347 count++;
2348 continue;
2349 }
2350 }
2351
2352 /*
2353 * We need to try and merge add/drops of the same ref since we
2354 * can run into issues with relocate dropping the implicit ref
2355 * and then it being added back again before the drop can
2356 * finish. If we merged anything we need to re-loop so we can
2357 * get a good ref.
2358 */
2359 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2360 locked_ref);
2361
2362 /*
2363 * locked_ref is the head node, so we have to go one
2364 * node back for any delayed ref updates
2365 */
2366 ref = select_delayed_ref(locked_ref);
2367
2368 if (ref && ref->seq &&
2369 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2370 /*
2371 * there are still refs with lower seq numbers in the
2372 * process of being added. Don't run this ref yet.
2373 */
2374 list_del_init(&locked_ref->cluster);
2375 btrfs_delayed_ref_unlock(locked_ref);
2376 locked_ref = NULL;
2377 delayed_refs->num_heads_ready++;
2378 spin_unlock(&delayed_refs->lock);
2379 cond_resched();
2380 spin_lock(&delayed_refs->lock);
2381 continue;
2382 }
2383
2384 /*
2385 * record the must insert reserved flag before we
2386 * drop the spin lock.
2387 */
2388 must_insert_reserved = locked_ref->must_insert_reserved;
2389 locked_ref->must_insert_reserved = 0;
2390
2391 extent_op = locked_ref->extent_op;
2392 locked_ref->extent_op = NULL;
2393
2394 if (!ref) {
2395 /* All delayed refs have been processed, Go ahead
2396 * and send the head node to run_one_delayed_ref,
2397 * so that any accounting fixes can happen
2398 */
2399 ref = &locked_ref->node;
2400
2401 if (extent_op && must_insert_reserved) {
2402 btrfs_free_delayed_extent_op(extent_op);
2403 extent_op = NULL;
2404 }
2405
2406 if (extent_op) {
2407 spin_unlock(&delayed_refs->lock);
2408
2409 ret = run_delayed_extent_op(trans, root,
2410 ref, extent_op);
2411 btrfs_free_delayed_extent_op(extent_op);
2412
2413 if (ret) {
2414 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2415 spin_lock(&delayed_refs->lock);
2416 btrfs_delayed_ref_unlock(locked_ref);
2417 return ret;
2418 }
2419
2420 goto next;
2421 }
2422 }
2423
2424 ref->in_tree = 0;
2425 rb_erase(&ref->rb_node, &delayed_refs->root);
2426 delayed_refs->num_entries--;
2427 if (!btrfs_delayed_ref_is_head(ref)) {
2428 /*
2429 * when we play the delayed ref, also correct the
2430 * ref_mod on head
2431 */
2432 switch (ref->action) {
2433 case BTRFS_ADD_DELAYED_REF:
2434 case BTRFS_ADD_DELAYED_EXTENT:
2435 locked_ref->node.ref_mod -= ref->ref_mod;
2436 break;
2437 case BTRFS_DROP_DELAYED_REF:
2438 locked_ref->node.ref_mod += ref->ref_mod;
2439 break;
2440 default:
2441 WARN_ON(1);
2442 }
2443 } else {
2444 list_del_init(&locked_ref->cluster);
2445 }
2446 spin_unlock(&delayed_refs->lock);
2447
2448 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2449 must_insert_reserved);
2450
2451 btrfs_free_delayed_extent_op(extent_op);
2452 if (ret) {
2453 btrfs_delayed_ref_unlock(locked_ref);
2454 btrfs_put_delayed_ref(ref);
2455 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2456 spin_lock(&delayed_refs->lock);
2457 return ret;
2458 }
2459
2460 /*
2461 * If this node is a head, that means all the refs in this head
2462 * have been dealt with, and we will pick the next head to deal
2463 * with, so we must unlock the head and drop it from the cluster
2464 * list before we release it.
2465 */
2466 if (btrfs_delayed_ref_is_head(ref)) {
2467 btrfs_delayed_ref_unlock(locked_ref);
2468 locked_ref = NULL;
2469 }
2470 btrfs_put_delayed_ref(ref);
2471 count++;
2472 next:
2473 cond_resched();
2474 spin_lock(&delayed_refs->lock);
2475 }
2476 return count;
2477 }
2478
2479 #ifdef SCRAMBLE_DELAYED_REFS
2480 /*
2481 * Normally delayed refs get processed in ascending bytenr order. This
2482 * correlates in most cases to the order added. To expose dependencies on this
2483 * order, we start to process the tree in the middle instead of the beginning
2484 */
2485 static u64 find_middle(struct rb_root *root)
2486 {
2487 struct rb_node *n = root->rb_node;
2488 struct btrfs_delayed_ref_node *entry;
2489 int alt = 1;
2490 u64 middle;
2491 u64 first = 0, last = 0;
2492
2493 n = rb_first(root);
2494 if (n) {
2495 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2496 first = entry->bytenr;
2497 }
2498 n = rb_last(root);
2499 if (n) {
2500 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2501 last = entry->bytenr;
2502 }
2503 n = root->rb_node;
2504
2505 while (n) {
2506 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2507 WARN_ON(!entry->in_tree);
2508
2509 middle = entry->bytenr;
2510
2511 if (alt)
2512 n = n->rb_left;
2513 else
2514 n = n->rb_right;
2515
2516 alt = 1 - alt;
2517 }
2518 return middle;
2519 }
2520 #endif
2521
2522 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2523 struct btrfs_fs_info *fs_info)
2524 {
2525 struct qgroup_update *qgroup_update;
2526 int ret = 0;
2527
2528 if (list_empty(&trans->qgroup_ref_list) !=
2529 !trans->delayed_ref_elem.seq) {
2530 /* list without seq or seq without list */
2531 btrfs_err(fs_info,
2532 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2533 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2534 (u32)(trans->delayed_ref_elem.seq >> 32),
2535 (u32)trans->delayed_ref_elem.seq);
2536 BUG();
2537 }
2538
2539 if (!trans->delayed_ref_elem.seq)
2540 return 0;
2541
2542 while (!list_empty(&trans->qgroup_ref_list)) {
2543 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2544 struct qgroup_update, list);
2545 list_del(&qgroup_update->list);
2546 if (!ret)
2547 ret = btrfs_qgroup_account_ref(
2548 trans, fs_info, qgroup_update->node,
2549 qgroup_update->extent_op);
2550 kfree(qgroup_update);
2551 }
2552
2553 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2554
2555 return ret;
2556 }
2557
2558 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2559 int count)
2560 {
2561 int val = atomic_read(&delayed_refs->ref_seq);
2562
2563 if (val < seq || val >= seq + count)
2564 return 1;
2565 return 0;
2566 }
2567
2568 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2569 {
2570 u64 num_bytes;
2571
2572 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2573 sizeof(struct btrfs_extent_inline_ref));
2574 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2575 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2576
2577 /*
2578 * We don't ever fill up leaves all the way so multiply by 2 just to be
2579 * closer to what we're really going to want to ouse.
2580 */
2581 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2582 }
2583
2584 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2585 struct btrfs_root *root)
2586 {
2587 struct btrfs_block_rsv *global_rsv;
2588 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2589 u64 num_bytes;
2590 int ret = 0;
2591
2592 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2593 num_heads = heads_to_leaves(root, num_heads);
2594 if (num_heads > 1)
2595 num_bytes += (num_heads - 1) * root->leafsize;
2596 num_bytes <<= 1;
2597 global_rsv = &root->fs_info->global_block_rsv;
2598
2599 /*
2600 * If we can't allocate any more chunks lets make sure we have _lots_ of
2601 * wiggle room since running delayed refs can create more delayed refs.
2602 */
2603 if (global_rsv->space_info->full)
2604 num_bytes <<= 1;
2605
2606 spin_lock(&global_rsv->lock);
2607 if (global_rsv->reserved <= num_bytes)
2608 ret = 1;
2609 spin_unlock(&global_rsv->lock);
2610 return ret;
2611 }
2612
2613 /*
2614 * this starts processing the delayed reference count updates and
2615 * extent insertions we have queued up so far. count can be
2616 * 0, which means to process everything in the tree at the start
2617 * of the run (but not newly added entries), or it can be some target
2618 * number you'd like to process.
2619 *
2620 * Returns 0 on success or if called with an aborted transaction
2621 * Returns <0 on error and aborts the transaction
2622 */
2623 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2624 struct btrfs_root *root, unsigned long count)
2625 {
2626 struct rb_node *node;
2627 struct btrfs_delayed_ref_root *delayed_refs;
2628 struct btrfs_delayed_ref_node *ref;
2629 struct list_head cluster;
2630 int ret;
2631 u64 delayed_start;
2632 int run_all = count == (unsigned long)-1;
2633 int run_most = 0;
2634 int loops;
2635
2636 /* We'll clean this up in btrfs_cleanup_transaction */
2637 if (trans->aborted)
2638 return 0;
2639
2640 if (root == root->fs_info->extent_root)
2641 root = root->fs_info->tree_root;
2642
2643 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2644
2645 delayed_refs = &trans->transaction->delayed_refs;
2646 INIT_LIST_HEAD(&cluster);
2647 if (count == 0) {
2648 count = delayed_refs->num_entries * 2;
2649 run_most = 1;
2650 }
2651
2652 if (!run_all && !run_most) {
2653 int old;
2654 int seq = atomic_read(&delayed_refs->ref_seq);
2655
2656 progress:
2657 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2658 if (old) {
2659 DEFINE_WAIT(__wait);
2660 if (delayed_refs->flushing ||
2661 !btrfs_should_throttle_delayed_refs(trans, root))
2662 return 0;
2663
2664 prepare_to_wait(&delayed_refs->wait, &__wait,
2665 TASK_UNINTERRUPTIBLE);
2666
2667 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2668 if (old) {
2669 schedule();
2670 finish_wait(&delayed_refs->wait, &__wait);
2671
2672 if (!refs_newer(delayed_refs, seq, 256))
2673 goto progress;
2674 else
2675 return 0;
2676 } else {
2677 finish_wait(&delayed_refs->wait, &__wait);
2678 goto again;
2679 }
2680 }
2681
2682 } else {
2683 atomic_inc(&delayed_refs->procs_running_refs);
2684 }
2685
2686 again:
2687 loops = 0;
2688 spin_lock(&delayed_refs->lock);
2689
2690 #ifdef SCRAMBLE_DELAYED_REFS
2691 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2692 #endif
2693
2694 while (1) {
2695 if (!(run_all || run_most) &&
2696 !btrfs_should_throttle_delayed_refs(trans, root))
2697 break;
2698
2699 /*
2700 * go find something we can process in the rbtree. We start at
2701 * the beginning of the tree, and then build a cluster
2702 * of refs to process starting at the first one we are able to
2703 * lock
2704 */
2705 delayed_start = delayed_refs->run_delayed_start;
2706 ret = btrfs_find_ref_cluster(trans, &cluster,
2707 delayed_refs->run_delayed_start);
2708 if (ret)
2709 break;
2710
2711 ret = run_clustered_refs(trans, root, &cluster);
2712 if (ret < 0) {
2713 btrfs_release_ref_cluster(&cluster);
2714 spin_unlock(&delayed_refs->lock);
2715 btrfs_abort_transaction(trans, root, ret);
2716 atomic_dec(&delayed_refs->procs_running_refs);
2717 wake_up(&delayed_refs->wait);
2718 return ret;
2719 }
2720
2721 atomic_add(ret, &delayed_refs->ref_seq);
2722
2723 count -= min_t(unsigned long, ret, count);
2724
2725 if (count == 0)
2726 break;
2727
2728 if (delayed_start >= delayed_refs->run_delayed_start) {
2729 if (loops == 0) {
2730 /*
2731 * btrfs_find_ref_cluster looped. let's do one
2732 * more cycle. if we don't run any delayed ref
2733 * during that cycle (because we can't because
2734 * all of them are blocked), bail out.
2735 */
2736 loops = 1;
2737 } else {
2738 /*
2739 * no runnable refs left, stop trying
2740 */
2741 BUG_ON(run_all);
2742 break;
2743 }
2744 }
2745 if (ret) {
2746 /* refs were run, let's reset staleness detection */
2747 loops = 0;
2748 }
2749 }
2750
2751 if (run_all) {
2752 if (!list_empty(&trans->new_bgs)) {
2753 spin_unlock(&delayed_refs->lock);
2754 btrfs_create_pending_block_groups(trans, root);
2755 spin_lock(&delayed_refs->lock);
2756 }
2757
2758 node = rb_first(&delayed_refs->root);
2759 if (!node)
2760 goto out;
2761 count = (unsigned long)-1;
2762
2763 while (node) {
2764 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2765 rb_node);
2766 if (btrfs_delayed_ref_is_head(ref)) {
2767 struct btrfs_delayed_ref_head *head;
2768
2769 head = btrfs_delayed_node_to_head(ref);
2770 atomic_inc(&ref->refs);
2771
2772 spin_unlock(&delayed_refs->lock);
2773 /*
2774 * Mutex was contended, block until it's
2775 * released and try again
2776 */
2777 mutex_lock(&head->mutex);
2778 mutex_unlock(&head->mutex);
2779
2780 btrfs_put_delayed_ref(ref);
2781 cond_resched();
2782 goto again;
2783 }
2784 node = rb_next(node);
2785 }
2786 spin_unlock(&delayed_refs->lock);
2787 schedule_timeout(1);
2788 goto again;
2789 }
2790 out:
2791 atomic_dec(&delayed_refs->procs_running_refs);
2792 smp_mb();
2793 if (waitqueue_active(&delayed_refs->wait))
2794 wake_up(&delayed_refs->wait);
2795
2796 spin_unlock(&delayed_refs->lock);
2797 assert_qgroups_uptodate(trans);
2798 return 0;
2799 }
2800
2801 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2802 struct btrfs_root *root,
2803 u64 bytenr, u64 num_bytes, u64 flags,
2804 int level, int is_data)
2805 {
2806 struct btrfs_delayed_extent_op *extent_op;
2807 int ret;
2808
2809 extent_op = btrfs_alloc_delayed_extent_op();
2810 if (!extent_op)
2811 return -ENOMEM;
2812
2813 extent_op->flags_to_set = flags;
2814 extent_op->update_flags = 1;
2815 extent_op->update_key = 0;
2816 extent_op->is_data = is_data ? 1 : 0;
2817 extent_op->level = level;
2818
2819 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2820 num_bytes, extent_op);
2821 if (ret)
2822 btrfs_free_delayed_extent_op(extent_op);
2823 return ret;
2824 }
2825
2826 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2827 struct btrfs_root *root,
2828 struct btrfs_path *path,
2829 u64 objectid, u64 offset, u64 bytenr)
2830 {
2831 struct btrfs_delayed_ref_head *head;
2832 struct btrfs_delayed_ref_node *ref;
2833 struct btrfs_delayed_data_ref *data_ref;
2834 struct btrfs_delayed_ref_root *delayed_refs;
2835 struct rb_node *node;
2836 int ret = 0;
2837
2838 ret = -ENOENT;
2839 delayed_refs = &trans->transaction->delayed_refs;
2840 spin_lock(&delayed_refs->lock);
2841 head = btrfs_find_delayed_ref_head(trans, bytenr);
2842 if (!head)
2843 goto out;
2844
2845 if (!mutex_trylock(&head->mutex)) {
2846 atomic_inc(&head->node.refs);
2847 spin_unlock(&delayed_refs->lock);
2848
2849 btrfs_release_path(path);
2850
2851 /*
2852 * Mutex was contended, block until it's released and let
2853 * caller try again
2854 */
2855 mutex_lock(&head->mutex);
2856 mutex_unlock(&head->mutex);
2857 btrfs_put_delayed_ref(&head->node);
2858 return -EAGAIN;
2859 }
2860
2861 node = rb_prev(&head->node.rb_node);
2862 if (!node)
2863 goto out_unlock;
2864
2865 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2866
2867 if (ref->bytenr != bytenr)
2868 goto out_unlock;
2869
2870 ret = 1;
2871 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2872 goto out_unlock;
2873
2874 data_ref = btrfs_delayed_node_to_data_ref(ref);
2875
2876 node = rb_prev(node);
2877 if (node) {
2878 int seq = ref->seq;
2879
2880 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2881 if (ref->bytenr == bytenr && ref->seq == seq)
2882 goto out_unlock;
2883 }
2884
2885 if (data_ref->root != root->root_key.objectid ||
2886 data_ref->objectid != objectid || data_ref->offset != offset)
2887 goto out_unlock;
2888
2889 ret = 0;
2890 out_unlock:
2891 mutex_unlock(&head->mutex);
2892 out:
2893 spin_unlock(&delayed_refs->lock);
2894 return ret;
2895 }
2896
2897 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2898 struct btrfs_root *root,
2899 struct btrfs_path *path,
2900 u64 objectid, u64 offset, u64 bytenr)
2901 {
2902 struct btrfs_root *extent_root = root->fs_info->extent_root;
2903 struct extent_buffer *leaf;
2904 struct btrfs_extent_data_ref *ref;
2905 struct btrfs_extent_inline_ref *iref;
2906 struct btrfs_extent_item *ei;
2907 struct btrfs_key key;
2908 u32 item_size;
2909 int ret;
2910
2911 key.objectid = bytenr;
2912 key.offset = (u64)-1;
2913 key.type = BTRFS_EXTENT_ITEM_KEY;
2914
2915 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2916 if (ret < 0)
2917 goto out;
2918 BUG_ON(ret == 0); /* Corruption */
2919
2920 ret = -ENOENT;
2921 if (path->slots[0] == 0)
2922 goto out;
2923
2924 path->slots[0]--;
2925 leaf = path->nodes[0];
2926 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2927
2928 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2929 goto out;
2930
2931 ret = 1;
2932 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2934 if (item_size < sizeof(*ei)) {
2935 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2936 goto out;
2937 }
2938 #endif
2939 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2940
2941 if (item_size != sizeof(*ei) +
2942 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2943 goto out;
2944
2945 if (btrfs_extent_generation(leaf, ei) <=
2946 btrfs_root_last_snapshot(&root->root_item))
2947 goto out;
2948
2949 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2950 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2951 BTRFS_EXTENT_DATA_REF_KEY)
2952 goto out;
2953
2954 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2955 if (btrfs_extent_refs(leaf, ei) !=
2956 btrfs_extent_data_ref_count(leaf, ref) ||
2957 btrfs_extent_data_ref_root(leaf, ref) !=
2958 root->root_key.objectid ||
2959 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2960 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2961 goto out;
2962
2963 ret = 0;
2964 out:
2965 return ret;
2966 }
2967
2968 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2969 struct btrfs_root *root,
2970 u64 objectid, u64 offset, u64 bytenr)
2971 {
2972 struct btrfs_path *path;
2973 int ret;
2974 int ret2;
2975
2976 path = btrfs_alloc_path();
2977 if (!path)
2978 return -ENOENT;
2979
2980 do {
2981 ret = check_committed_ref(trans, root, path, objectid,
2982 offset, bytenr);
2983 if (ret && ret != -ENOENT)
2984 goto out;
2985
2986 ret2 = check_delayed_ref(trans, root, path, objectid,
2987 offset, bytenr);
2988 } while (ret2 == -EAGAIN);
2989
2990 if (ret2 && ret2 != -ENOENT) {
2991 ret = ret2;
2992 goto out;
2993 }
2994
2995 if (ret != -ENOENT || ret2 != -ENOENT)
2996 ret = 0;
2997 out:
2998 btrfs_free_path(path);
2999 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3000 WARN_ON(ret > 0);
3001 return ret;
3002 }
3003
3004 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3005 struct btrfs_root *root,
3006 struct extent_buffer *buf,
3007 int full_backref, int inc, int for_cow)
3008 {
3009 u64 bytenr;
3010 u64 num_bytes;
3011 u64 parent;
3012 u64 ref_root;
3013 u32 nritems;
3014 struct btrfs_key key;
3015 struct btrfs_file_extent_item *fi;
3016 int i;
3017 int level;
3018 int ret = 0;
3019 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3020 u64, u64, u64, u64, u64, u64, int);
3021
3022 ref_root = btrfs_header_owner(buf);
3023 nritems = btrfs_header_nritems(buf);
3024 level = btrfs_header_level(buf);
3025
3026 if (!root->ref_cows && level == 0)
3027 return 0;
3028
3029 if (inc)
3030 process_func = btrfs_inc_extent_ref;
3031 else
3032 process_func = btrfs_free_extent;
3033
3034 if (full_backref)
3035 parent = buf->start;
3036 else
3037 parent = 0;
3038
3039 for (i = 0; i < nritems; i++) {
3040 if (level == 0) {
3041 btrfs_item_key_to_cpu(buf, &key, i);
3042 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3043 continue;
3044 fi = btrfs_item_ptr(buf, i,
3045 struct btrfs_file_extent_item);
3046 if (btrfs_file_extent_type(buf, fi) ==
3047 BTRFS_FILE_EXTENT_INLINE)
3048 continue;
3049 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3050 if (bytenr == 0)
3051 continue;
3052
3053 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3054 key.offset -= btrfs_file_extent_offset(buf, fi);
3055 ret = process_func(trans, root, bytenr, num_bytes,
3056 parent, ref_root, key.objectid,
3057 key.offset, for_cow);
3058 if (ret)
3059 goto fail;
3060 } else {
3061 bytenr = btrfs_node_blockptr(buf, i);
3062 num_bytes = btrfs_level_size(root, level - 1);
3063 ret = process_func(trans, root, bytenr, num_bytes,
3064 parent, ref_root, level - 1, 0,
3065 for_cow);
3066 if (ret)
3067 goto fail;
3068 }
3069 }
3070 return 0;
3071 fail:
3072 return ret;
3073 }
3074
3075 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3076 struct extent_buffer *buf, int full_backref, int for_cow)
3077 {
3078 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3079 }
3080
3081 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3082 struct extent_buffer *buf, int full_backref, int for_cow)
3083 {
3084 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3085 }
3086
3087 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3088 struct btrfs_root *root,
3089 struct btrfs_path *path,
3090 struct btrfs_block_group_cache *cache)
3091 {
3092 int ret;
3093 struct btrfs_root *extent_root = root->fs_info->extent_root;
3094 unsigned long bi;
3095 struct extent_buffer *leaf;
3096
3097 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3098 if (ret < 0)
3099 goto fail;
3100 BUG_ON(ret); /* Corruption */
3101
3102 leaf = path->nodes[0];
3103 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3104 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3105 btrfs_mark_buffer_dirty(leaf);
3106 btrfs_release_path(path);
3107 fail:
3108 if (ret) {
3109 btrfs_abort_transaction(trans, root, ret);
3110 return ret;
3111 }
3112 return 0;
3113
3114 }
3115
3116 static struct btrfs_block_group_cache *
3117 next_block_group(struct btrfs_root *root,
3118 struct btrfs_block_group_cache *cache)
3119 {
3120 struct rb_node *node;
3121 spin_lock(&root->fs_info->block_group_cache_lock);
3122 node = rb_next(&cache->cache_node);
3123 btrfs_put_block_group(cache);
3124 if (node) {
3125 cache = rb_entry(node, struct btrfs_block_group_cache,
3126 cache_node);
3127 btrfs_get_block_group(cache);
3128 } else
3129 cache = NULL;
3130 spin_unlock(&root->fs_info->block_group_cache_lock);
3131 return cache;
3132 }
3133
3134 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3135 struct btrfs_trans_handle *trans,
3136 struct btrfs_path *path)
3137 {
3138 struct btrfs_root *root = block_group->fs_info->tree_root;
3139 struct inode *inode = NULL;
3140 u64 alloc_hint = 0;
3141 int dcs = BTRFS_DC_ERROR;
3142 int num_pages = 0;
3143 int retries = 0;
3144 int ret = 0;
3145
3146 /*
3147 * If this block group is smaller than 100 megs don't bother caching the
3148 * block group.
3149 */
3150 if (block_group->key.offset < (100 * 1024 * 1024)) {
3151 spin_lock(&block_group->lock);
3152 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3153 spin_unlock(&block_group->lock);
3154 return 0;
3155 }
3156
3157 again:
3158 inode = lookup_free_space_inode(root, block_group, path);
3159 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3160 ret = PTR_ERR(inode);
3161 btrfs_release_path(path);
3162 goto out;
3163 }
3164
3165 if (IS_ERR(inode)) {
3166 BUG_ON(retries);
3167 retries++;
3168
3169 if (block_group->ro)
3170 goto out_free;
3171
3172 ret = create_free_space_inode(root, trans, block_group, path);
3173 if (ret)
3174 goto out_free;
3175 goto again;
3176 }
3177
3178 /* We've already setup this transaction, go ahead and exit */
3179 if (block_group->cache_generation == trans->transid &&
3180 i_size_read(inode)) {
3181 dcs = BTRFS_DC_SETUP;
3182 goto out_put;
3183 }
3184
3185 /*
3186 * We want to set the generation to 0, that way if anything goes wrong
3187 * from here on out we know not to trust this cache when we load up next
3188 * time.
3189 */
3190 BTRFS_I(inode)->generation = 0;
3191 ret = btrfs_update_inode(trans, root, inode);
3192 WARN_ON(ret);
3193
3194 if (i_size_read(inode) > 0) {
3195 ret = btrfs_check_trunc_cache_free_space(root,
3196 &root->fs_info->global_block_rsv);
3197 if (ret)
3198 goto out_put;
3199
3200 ret = btrfs_truncate_free_space_cache(root, trans, path,
3201 inode);
3202 if (ret)
3203 goto out_put;
3204 }
3205
3206 spin_lock(&block_group->lock);
3207 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3208 !btrfs_test_opt(root, SPACE_CACHE)) {
3209 /*
3210 * don't bother trying to write stuff out _if_
3211 * a) we're not cached,
3212 * b) we're with nospace_cache mount option.
3213 */
3214 dcs = BTRFS_DC_WRITTEN;
3215 spin_unlock(&block_group->lock);
3216 goto out_put;
3217 }
3218 spin_unlock(&block_group->lock);
3219
3220 /*
3221 * Try to preallocate enough space based on how big the block group is.
3222 * Keep in mind this has to include any pinned space which could end up
3223 * taking up quite a bit since it's not folded into the other space
3224 * cache.
3225 */
3226 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3227 if (!num_pages)
3228 num_pages = 1;
3229
3230 num_pages *= 16;
3231 num_pages *= PAGE_CACHE_SIZE;
3232
3233 ret = btrfs_check_data_free_space(inode, num_pages);
3234 if (ret)
3235 goto out_put;
3236
3237 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3238 num_pages, num_pages,
3239 &alloc_hint);
3240 if (!ret)
3241 dcs = BTRFS_DC_SETUP;
3242 btrfs_free_reserved_data_space(inode, num_pages);
3243
3244 out_put:
3245 iput(inode);
3246 out_free:
3247 btrfs_release_path(path);
3248 out:
3249 spin_lock(&block_group->lock);
3250 if (!ret && dcs == BTRFS_DC_SETUP)
3251 block_group->cache_generation = trans->transid;
3252 block_group->disk_cache_state = dcs;
3253 spin_unlock(&block_group->lock);
3254
3255 return ret;
3256 }
3257
3258 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3259 struct btrfs_root *root)
3260 {
3261 struct btrfs_block_group_cache *cache;
3262 int err = 0;
3263 struct btrfs_path *path;
3264 u64 last = 0;
3265
3266 path = btrfs_alloc_path();
3267 if (!path)
3268 return -ENOMEM;
3269
3270 again:
3271 while (1) {
3272 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3273 while (cache) {
3274 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3275 break;
3276 cache = next_block_group(root, cache);
3277 }
3278 if (!cache) {
3279 if (last == 0)
3280 break;
3281 last = 0;
3282 continue;
3283 }
3284 err = cache_save_setup(cache, trans, path);
3285 last = cache->key.objectid + cache->key.offset;
3286 btrfs_put_block_group(cache);
3287 }
3288
3289 while (1) {
3290 if (last == 0) {
3291 err = btrfs_run_delayed_refs(trans, root,
3292 (unsigned long)-1);
3293 if (err) /* File system offline */
3294 goto out;
3295 }
3296
3297 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3298 while (cache) {
3299 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3300 btrfs_put_block_group(cache);
3301 goto again;
3302 }
3303
3304 if (cache->dirty)
3305 break;
3306 cache = next_block_group(root, cache);
3307 }
3308 if (!cache) {
3309 if (last == 0)
3310 break;
3311 last = 0;
3312 continue;
3313 }
3314
3315 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3316 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3317 cache->dirty = 0;
3318 last = cache->key.objectid + cache->key.offset;
3319
3320 err = write_one_cache_group(trans, root, path, cache);
3321 if (err) /* File system offline */
3322 goto out;
3323
3324 btrfs_put_block_group(cache);
3325 }
3326
3327 while (1) {
3328 /*
3329 * I don't think this is needed since we're just marking our
3330 * preallocated extent as written, but just in case it can't
3331 * hurt.
3332 */
3333 if (last == 0) {
3334 err = btrfs_run_delayed_refs(trans, root,
3335 (unsigned long)-1);
3336 if (err) /* File system offline */
3337 goto out;
3338 }
3339
3340 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3341 while (cache) {
3342 /*
3343 * Really this shouldn't happen, but it could if we
3344 * couldn't write the entire preallocated extent and
3345 * splitting the extent resulted in a new block.
3346 */
3347 if (cache->dirty) {
3348 btrfs_put_block_group(cache);
3349 goto again;
3350 }
3351 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3352 break;
3353 cache = next_block_group(root, cache);
3354 }
3355 if (!cache) {
3356 if (last == 0)
3357 break;
3358 last = 0;
3359 continue;
3360 }
3361
3362 err = btrfs_write_out_cache(root, trans, cache, path);
3363
3364 /*
3365 * If we didn't have an error then the cache state is still
3366 * NEED_WRITE, so we can set it to WRITTEN.
3367 */
3368 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3369 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3370 last = cache->key.objectid + cache->key.offset;
3371 btrfs_put_block_group(cache);
3372 }
3373 out:
3374
3375 btrfs_free_path(path);
3376 return err;
3377 }
3378
3379 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3380 {
3381 struct btrfs_block_group_cache *block_group;
3382 int readonly = 0;
3383
3384 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3385 if (!block_group || block_group->ro)
3386 readonly = 1;
3387 if (block_group)
3388 btrfs_put_block_group(block_group);
3389 return readonly;
3390 }
3391
3392 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3393 u64 total_bytes, u64 bytes_used,
3394 struct btrfs_space_info **space_info)
3395 {
3396 struct btrfs_space_info *found;
3397 int i;
3398 int factor;
3399 int ret;
3400
3401 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3402 BTRFS_BLOCK_GROUP_RAID10))
3403 factor = 2;
3404 else
3405 factor = 1;
3406
3407 found = __find_space_info(info, flags);
3408 if (found) {
3409 spin_lock(&found->lock);
3410 found->total_bytes += total_bytes;
3411 found->disk_total += total_bytes * factor;
3412 found->bytes_used += bytes_used;
3413 found->disk_used += bytes_used * factor;
3414 found->full = 0;
3415 spin_unlock(&found->lock);
3416 *space_info = found;
3417 return 0;
3418 }
3419 found = kzalloc(sizeof(*found), GFP_NOFS);
3420 if (!found)
3421 return -ENOMEM;
3422
3423 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3424 if (ret) {
3425 kfree(found);
3426 return ret;
3427 }
3428
3429 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3430 INIT_LIST_HEAD(&found->block_groups[i]);
3431 init_rwsem(&found->groups_sem);
3432 spin_lock_init(&found->lock);
3433 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3434 found->total_bytes = total_bytes;
3435 found->disk_total = total_bytes * factor;
3436 found->bytes_used = bytes_used;
3437 found->disk_used = bytes_used * factor;
3438 found->bytes_pinned = 0;
3439 found->bytes_reserved = 0;
3440 found->bytes_readonly = 0;
3441 found->bytes_may_use = 0;
3442 found->full = 0;
3443 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3444 found->chunk_alloc = 0;
3445 found->flush = 0;
3446 init_waitqueue_head(&found->wait);
3447 *space_info = found;
3448 list_add_rcu(&found->list, &info->space_info);
3449 if (flags & BTRFS_BLOCK_GROUP_DATA)
3450 info->data_sinfo = found;
3451 return 0;
3452 }
3453
3454 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3455 {
3456 u64 extra_flags = chunk_to_extended(flags) &
3457 BTRFS_EXTENDED_PROFILE_MASK;
3458
3459 write_seqlock(&fs_info->profiles_lock);
3460 if (flags & BTRFS_BLOCK_GROUP_DATA)
3461 fs_info->avail_data_alloc_bits |= extra_flags;
3462 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3463 fs_info->avail_metadata_alloc_bits |= extra_flags;
3464 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3465 fs_info->avail_system_alloc_bits |= extra_flags;
3466 write_sequnlock(&fs_info->profiles_lock);
3467 }
3468
3469 /*
3470 * returns target flags in extended format or 0 if restripe for this
3471 * chunk_type is not in progress
3472 *
3473 * should be called with either volume_mutex or balance_lock held
3474 */
3475 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3476 {
3477 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3478 u64 target = 0;
3479
3480 if (!bctl)
3481 return 0;
3482
3483 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3484 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3485 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3486 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3487 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3488 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3489 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3490 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3491 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3492 }
3493
3494 return target;
3495 }
3496
3497 /*
3498 * @flags: available profiles in extended format (see ctree.h)
3499 *
3500 * Returns reduced profile in chunk format. If profile changing is in
3501 * progress (either running or paused) picks the target profile (if it's
3502 * already available), otherwise falls back to plain reducing.
3503 */
3504 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3505 {
3506 /*
3507 * we add in the count of missing devices because we want
3508 * to make sure that any RAID levels on a degraded FS
3509 * continue to be honored.
3510 */
3511 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3512 root->fs_info->fs_devices->missing_devices;
3513 u64 target;
3514 u64 tmp;
3515
3516 /*
3517 * see if restripe for this chunk_type is in progress, if so
3518 * try to reduce to the target profile
3519 */
3520 spin_lock(&root->fs_info->balance_lock);
3521 target = get_restripe_target(root->fs_info, flags);
3522 if (target) {
3523 /* pick target profile only if it's already available */
3524 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3525 spin_unlock(&root->fs_info->balance_lock);
3526 return extended_to_chunk(target);
3527 }
3528 }
3529 spin_unlock(&root->fs_info->balance_lock);
3530
3531 /* First, mask out the RAID levels which aren't possible */
3532 if (num_devices == 1)
3533 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3534 BTRFS_BLOCK_GROUP_RAID5);
3535 if (num_devices < 3)
3536 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3537 if (num_devices < 4)
3538 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3539
3540 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3541 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3542 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3543 flags &= ~tmp;
3544
3545 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3546 tmp = BTRFS_BLOCK_GROUP_RAID6;
3547 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3548 tmp = BTRFS_BLOCK_GROUP_RAID5;
3549 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3550 tmp = BTRFS_BLOCK_GROUP_RAID10;
3551 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3552 tmp = BTRFS_BLOCK_GROUP_RAID1;
3553 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3554 tmp = BTRFS_BLOCK_GROUP_RAID0;
3555
3556 return extended_to_chunk(flags | tmp);
3557 }
3558
3559 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3560 {
3561 unsigned seq;
3562
3563 do {
3564 seq = read_seqbegin(&root->fs_info->profiles_lock);
3565
3566 if (flags & BTRFS_BLOCK_GROUP_DATA)
3567 flags |= root->fs_info->avail_data_alloc_bits;
3568 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3569 flags |= root->fs_info->avail_system_alloc_bits;
3570 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3571 flags |= root->fs_info->avail_metadata_alloc_bits;
3572 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3573
3574 return btrfs_reduce_alloc_profile(root, flags);
3575 }
3576
3577 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3578 {
3579 u64 flags;
3580 u64 ret;
3581
3582 if (data)
3583 flags = BTRFS_BLOCK_GROUP_DATA;
3584 else if (root == root->fs_info->chunk_root)
3585 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3586 else
3587 flags = BTRFS_BLOCK_GROUP_METADATA;
3588
3589 ret = get_alloc_profile(root, flags);
3590 return ret;
3591 }
3592
3593 /*
3594 * This will check the space that the inode allocates from to make sure we have
3595 * enough space for bytes.
3596 */
3597 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3598 {
3599 struct btrfs_space_info *data_sinfo;
3600 struct btrfs_root *root = BTRFS_I(inode)->root;
3601 struct btrfs_fs_info *fs_info = root->fs_info;
3602 u64 used;
3603 int ret = 0, committed = 0, alloc_chunk = 1;
3604
3605 /* make sure bytes are sectorsize aligned */
3606 bytes = ALIGN(bytes, root->sectorsize);
3607
3608 if (root == root->fs_info->tree_root ||
3609 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3610 alloc_chunk = 0;
3611 committed = 1;
3612 }
3613
3614 data_sinfo = fs_info->data_sinfo;
3615 if (!data_sinfo)
3616 goto alloc;
3617
3618 again:
3619 /* make sure we have enough space to handle the data first */
3620 spin_lock(&data_sinfo->lock);
3621 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3622 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3623 data_sinfo->bytes_may_use;
3624
3625 if (used + bytes > data_sinfo->total_bytes) {
3626 struct btrfs_trans_handle *trans;
3627
3628 /*
3629 * if we don't have enough free bytes in this space then we need
3630 * to alloc a new chunk.
3631 */
3632 if (!data_sinfo->full && alloc_chunk) {
3633 u64 alloc_target;
3634
3635 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3636 spin_unlock(&data_sinfo->lock);
3637 alloc:
3638 alloc_target = btrfs_get_alloc_profile(root, 1);
3639 trans = btrfs_join_transaction(root);
3640 if (IS_ERR(trans))
3641 return PTR_ERR(trans);
3642
3643 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3644 alloc_target,
3645 CHUNK_ALLOC_NO_FORCE);
3646 btrfs_end_transaction(trans, root);
3647 if (ret < 0) {
3648 if (ret != -ENOSPC)
3649 return ret;
3650 else
3651 goto commit_trans;
3652 }
3653
3654 if (!data_sinfo)
3655 data_sinfo = fs_info->data_sinfo;
3656
3657 goto again;
3658 }
3659
3660 /*
3661 * If we don't have enough pinned space to deal with this
3662 * allocation don't bother committing the transaction.
3663 */
3664 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3665 bytes) < 0)
3666 committed = 1;
3667 spin_unlock(&data_sinfo->lock);
3668
3669 /* commit the current transaction and try again */
3670 commit_trans:
3671 if (!committed &&
3672 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3673 committed = 1;
3674
3675 trans = btrfs_join_transaction(root);
3676 if (IS_ERR(trans))
3677 return PTR_ERR(trans);
3678 ret = btrfs_commit_transaction(trans, root);
3679 if (ret)
3680 return ret;
3681 goto again;
3682 }
3683
3684 return -ENOSPC;
3685 }
3686 data_sinfo->bytes_may_use += bytes;
3687 trace_btrfs_space_reservation(root->fs_info, "space_info",
3688 data_sinfo->flags, bytes, 1);
3689 spin_unlock(&data_sinfo->lock);
3690
3691 return 0;
3692 }
3693
3694 /*
3695 * Called if we need to clear a data reservation for this inode.
3696 */
3697 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3698 {
3699 struct btrfs_root *root = BTRFS_I(inode)->root;
3700 struct btrfs_space_info *data_sinfo;
3701
3702 /* make sure bytes are sectorsize aligned */
3703 bytes = ALIGN(bytes, root->sectorsize);
3704
3705 data_sinfo = root->fs_info->data_sinfo;
3706 spin_lock(&data_sinfo->lock);
3707 WARN_ON(data_sinfo->bytes_may_use < bytes);
3708 data_sinfo->bytes_may_use -= bytes;
3709 trace_btrfs_space_reservation(root->fs_info, "space_info",
3710 data_sinfo->flags, bytes, 0);
3711 spin_unlock(&data_sinfo->lock);
3712 }
3713
3714 static void force_metadata_allocation(struct btrfs_fs_info *info)
3715 {
3716 struct list_head *head = &info->space_info;
3717 struct btrfs_space_info *found;
3718
3719 rcu_read_lock();
3720 list_for_each_entry_rcu(found, head, list) {
3721 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3722 found->force_alloc = CHUNK_ALLOC_FORCE;
3723 }
3724 rcu_read_unlock();
3725 }
3726
3727 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3728 {
3729 return (global->size << 1);
3730 }
3731
3732 static int should_alloc_chunk(struct btrfs_root *root,
3733 struct btrfs_space_info *sinfo, int force)
3734 {
3735 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3736 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3737 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3738 u64 thresh;
3739
3740 if (force == CHUNK_ALLOC_FORCE)
3741 return 1;
3742
3743 /*
3744 * We need to take into account the global rsv because for all intents
3745 * and purposes it's used space. Don't worry about locking the
3746 * global_rsv, it doesn't change except when the transaction commits.
3747 */
3748 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3749 num_allocated += calc_global_rsv_need_space(global_rsv);
3750
3751 /*
3752 * in limited mode, we want to have some free space up to
3753 * about 1% of the FS size.
3754 */
3755 if (force == CHUNK_ALLOC_LIMITED) {
3756 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3757 thresh = max_t(u64, 64 * 1024 * 1024,
3758 div_factor_fine(thresh, 1));
3759
3760 if (num_bytes - num_allocated < thresh)
3761 return 1;
3762 }
3763
3764 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3765 return 0;
3766 return 1;
3767 }
3768
3769 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3770 {
3771 u64 num_dev;
3772
3773 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3774 BTRFS_BLOCK_GROUP_RAID0 |
3775 BTRFS_BLOCK_GROUP_RAID5 |
3776 BTRFS_BLOCK_GROUP_RAID6))
3777 num_dev = root->fs_info->fs_devices->rw_devices;
3778 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3779 num_dev = 2;
3780 else
3781 num_dev = 1; /* DUP or single */
3782
3783 /* metadata for updaing devices and chunk tree */
3784 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3785 }
3786
3787 static void check_system_chunk(struct btrfs_trans_handle *trans,
3788 struct btrfs_root *root, u64 type)
3789 {
3790 struct btrfs_space_info *info;
3791 u64 left;
3792 u64 thresh;
3793
3794 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3795 spin_lock(&info->lock);
3796 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3797 info->bytes_reserved - info->bytes_readonly;
3798 spin_unlock(&info->lock);
3799
3800 thresh = get_system_chunk_thresh(root, type);
3801 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3802 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3803 left, thresh, type);
3804 dump_space_info(info, 0, 0);
3805 }
3806
3807 if (left < thresh) {
3808 u64 flags;
3809
3810 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3811 btrfs_alloc_chunk(trans, root, flags);
3812 }
3813 }
3814
3815 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3816 struct btrfs_root *extent_root, u64 flags, int force)
3817 {
3818 struct btrfs_space_info *space_info;
3819 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3820 int wait_for_alloc = 0;
3821 int ret = 0;
3822
3823 /* Don't re-enter if we're already allocating a chunk */
3824 if (trans->allocating_chunk)
3825 return -ENOSPC;
3826
3827 space_info = __find_space_info(extent_root->fs_info, flags);
3828 if (!space_info) {
3829 ret = update_space_info(extent_root->fs_info, flags,
3830 0, 0, &space_info);
3831 BUG_ON(ret); /* -ENOMEM */
3832 }
3833 BUG_ON(!space_info); /* Logic error */
3834
3835 again:
3836 spin_lock(&space_info->lock);
3837 if (force < space_info->force_alloc)
3838 force = space_info->force_alloc;
3839 if (space_info->full) {
3840 if (should_alloc_chunk(extent_root, space_info, force))
3841 ret = -ENOSPC;
3842 else
3843 ret = 0;
3844 spin_unlock(&space_info->lock);
3845 return ret;
3846 }
3847
3848 if (!should_alloc_chunk(extent_root, space_info, force)) {
3849 spin_unlock(&space_info->lock);
3850 return 0;
3851 } else if (space_info->chunk_alloc) {
3852 wait_for_alloc = 1;
3853 } else {
3854 space_info->chunk_alloc = 1;
3855 }
3856
3857 spin_unlock(&space_info->lock);
3858
3859 mutex_lock(&fs_info->chunk_mutex);
3860
3861 /*
3862 * The chunk_mutex is held throughout the entirety of a chunk
3863 * allocation, so once we've acquired the chunk_mutex we know that the
3864 * other guy is done and we need to recheck and see if we should
3865 * allocate.
3866 */
3867 if (wait_for_alloc) {
3868 mutex_unlock(&fs_info->chunk_mutex);
3869 wait_for_alloc = 0;
3870 goto again;
3871 }
3872
3873 trans->allocating_chunk = true;
3874
3875 /*
3876 * If we have mixed data/metadata chunks we want to make sure we keep
3877 * allocating mixed chunks instead of individual chunks.
3878 */
3879 if (btrfs_mixed_space_info(space_info))
3880 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3881
3882 /*
3883 * if we're doing a data chunk, go ahead and make sure that
3884 * we keep a reasonable number of metadata chunks allocated in the
3885 * FS as well.
3886 */
3887 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3888 fs_info->data_chunk_allocations++;
3889 if (!(fs_info->data_chunk_allocations %
3890 fs_info->metadata_ratio))
3891 force_metadata_allocation(fs_info);
3892 }
3893
3894 /*
3895 * Check if we have enough space in SYSTEM chunk because we may need
3896 * to update devices.
3897 */
3898 check_system_chunk(trans, extent_root, flags);
3899
3900 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3901 trans->allocating_chunk = false;
3902
3903 spin_lock(&space_info->lock);
3904 if (ret < 0 && ret != -ENOSPC)
3905 goto out;
3906 if (ret)
3907 space_info->full = 1;
3908 else
3909 ret = 1;
3910
3911 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3912 out:
3913 space_info->chunk_alloc = 0;
3914 spin_unlock(&space_info->lock);
3915 mutex_unlock(&fs_info->chunk_mutex);
3916 return ret;
3917 }
3918
3919 static int can_overcommit(struct btrfs_root *root,
3920 struct btrfs_space_info *space_info, u64 bytes,
3921 enum btrfs_reserve_flush_enum flush)
3922 {
3923 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3924 u64 profile = btrfs_get_alloc_profile(root, 0);
3925 u64 space_size;
3926 u64 avail;
3927 u64 used;
3928
3929 used = space_info->bytes_used + space_info->bytes_reserved +
3930 space_info->bytes_pinned + space_info->bytes_readonly;
3931
3932 /*
3933 * We only want to allow over committing if we have lots of actual space
3934 * free, but if we don't have enough space to handle the global reserve
3935 * space then we could end up having a real enospc problem when trying
3936 * to allocate a chunk or some other such important allocation.
3937 */
3938 spin_lock(&global_rsv->lock);
3939 space_size = calc_global_rsv_need_space(global_rsv);
3940 spin_unlock(&global_rsv->lock);
3941 if (used + space_size >= space_info->total_bytes)
3942 return 0;
3943
3944 used += space_info->bytes_may_use;
3945
3946 spin_lock(&root->fs_info->free_chunk_lock);
3947 avail = root->fs_info->free_chunk_space;
3948 spin_unlock(&root->fs_info->free_chunk_lock);
3949
3950 /*
3951 * If we have dup, raid1 or raid10 then only half of the free
3952 * space is actually useable. For raid56, the space info used
3953 * doesn't include the parity drive, so we don't have to
3954 * change the math
3955 */
3956 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3957 BTRFS_BLOCK_GROUP_RAID1 |
3958 BTRFS_BLOCK_GROUP_RAID10))
3959 avail >>= 1;
3960
3961 /*
3962 * If we aren't flushing all things, let us overcommit up to
3963 * 1/2th of the space. If we can flush, don't let us overcommit
3964 * too much, let it overcommit up to 1/8 of the space.
3965 */
3966 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3967 avail >>= 3;
3968 else
3969 avail >>= 1;
3970
3971 if (used + bytes < space_info->total_bytes + avail)
3972 return 1;
3973 return 0;
3974 }
3975
3976 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3977 unsigned long nr_pages)
3978 {
3979 struct super_block *sb = root->fs_info->sb;
3980
3981 if (down_read_trylock(&sb->s_umount)) {
3982 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3983 up_read(&sb->s_umount);
3984 } else {
3985 /*
3986 * We needn't worry the filesystem going from r/w to r/o though
3987 * we don't acquire ->s_umount mutex, because the filesystem
3988 * should guarantee the delalloc inodes list be empty after
3989 * the filesystem is readonly(all dirty pages are written to
3990 * the disk).
3991 */
3992 btrfs_start_all_delalloc_inodes(root->fs_info, 0);
3993 if (!current->journal_info)
3994 btrfs_wait_all_ordered_extents(root->fs_info);
3995 }
3996 }
3997
3998 /*
3999 * shrink metadata reservation for delalloc
4000 */
4001 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4002 bool wait_ordered)
4003 {
4004 struct btrfs_block_rsv *block_rsv;
4005 struct btrfs_space_info *space_info;
4006 struct btrfs_trans_handle *trans;
4007 u64 delalloc_bytes;
4008 u64 max_reclaim;
4009 long time_left;
4010 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
4011 int loops = 0;
4012 enum btrfs_reserve_flush_enum flush;
4013
4014 trans = (struct btrfs_trans_handle *)current->journal_info;
4015 block_rsv = &root->fs_info->delalloc_block_rsv;
4016 space_info = block_rsv->space_info;
4017
4018 smp_mb();
4019 delalloc_bytes = percpu_counter_sum_positive(
4020 &root->fs_info->delalloc_bytes);
4021 if (delalloc_bytes == 0) {
4022 if (trans)
4023 return;
4024 btrfs_wait_all_ordered_extents(root->fs_info);
4025 return;
4026 }
4027
4028 while (delalloc_bytes && loops < 3) {
4029 max_reclaim = min(delalloc_bytes, to_reclaim);
4030 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4031 btrfs_writeback_inodes_sb_nr(root, nr_pages);
4032 /*
4033 * We need to wait for the async pages to actually start before
4034 * we do anything.
4035 */
4036 wait_event(root->fs_info->async_submit_wait,
4037 !atomic_read(&root->fs_info->async_delalloc_pages));
4038
4039 if (!trans)
4040 flush = BTRFS_RESERVE_FLUSH_ALL;
4041 else
4042 flush = BTRFS_RESERVE_NO_FLUSH;
4043 spin_lock(&space_info->lock);
4044 if (can_overcommit(root, space_info, orig, flush)) {
4045 spin_unlock(&space_info->lock);
4046 break;
4047 }
4048 spin_unlock(&space_info->lock);
4049
4050 loops++;
4051 if (wait_ordered && !trans) {
4052 btrfs_wait_all_ordered_extents(root->fs_info);
4053 } else {
4054 time_left = schedule_timeout_killable(1);
4055 if (time_left)
4056 break;
4057 }
4058 smp_mb();
4059 delalloc_bytes = percpu_counter_sum_positive(
4060 &root->fs_info->delalloc_bytes);
4061 }
4062 }
4063
4064 /**
4065 * maybe_commit_transaction - possibly commit the transaction if its ok to
4066 * @root - the root we're allocating for
4067 * @bytes - the number of bytes we want to reserve
4068 * @force - force the commit
4069 *
4070 * This will check to make sure that committing the transaction will actually
4071 * get us somewhere and then commit the transaction if it does. Otherwise it
4072 * will return -ENOSPC.
4073 */
4074 static int may_commit_transaction(struct btrfs_root *root,
4075 struct btrfs_space_info *space_info,
4076 u64 bytes, int force)
4077 {
4078 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4079 struct btrfs_trans_handle *trans;
4080
4081 trans = (struct btrfs_trans_handle *)current->journal_info;
4082 if (trans)
4083 return -EAGAIN;
4084
4085 if (force)
4086 goto commit;
4087
4088 /* See if there is enough pinned space to make this reservation */
4089 spin_lock(&space_info->lock);
4090 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4091 bytes) >= 0) {
4092 spin_unlock(&space_info->lock);
4093 goto commit;
4094 }
4095 spin_unlock(&space_info->lock);
4096
4097 /*
4098 * See if there is some space in the delayed insertion reservation for
4099 * this reservation.
4100 */
4101 if (space_info != delayed_rsv->space_info)
4102 return -ENOSPC;
4103
4104 spin_lock(&space_info->lock);
4105 spin_lock(&delayed_rsv->lock);
4106 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4107 bytes - delayed_rsv->size) >= 0) {
4108 spin_unlock(&delayed_rsv->lock);
4109 spin_unlock(&space_info->lock);
4110 return -ENOSPC;
4111 }
4112 spin_unlock(&delayed_rsv->lock);
4113 spin_unlock(&space_info->lock);
4114
4115 commit:
4116 trans = btrfs_join_transaction(root);
4117 if (IS_ERR(trans))
4118 return -ENOSPC;
4119
4120 return btrfs_commit_transaction(trans, root);
4121 }
4122
4123 enum flush_state {
4124 FLUSH_DELAYED_ITEMS_NR = 1,
4125 FLUSH_DELAYED_ITEMS = 2,
4126 FLUSH_DELALLOC = 3,
4127 FLUSH_DELALLOC_WAIT = 4,
4128 ALLOC_CHUNK = 5,
4129 COMMIT_TRANS = 6,
4130 };
4131
4132 static int flush_space(struct btrfs_root *root,
4133 struct btrfs_space_info *space_info, u64 num_bytes,
4134 u64 orig_bytes, int state)
4135 {
4136 struct btrfs_trans_handle *trans;
4137 int nr;
4138 int ret = 0;
4139
4140 switch (state) {
4141 case FLUSH_DELAYED_ITEMS_NR:
4142 case FLUSH_DELAYED_ITEMS:
4143 if (state == FLUSH_DELAYED_ITEMS_NR) {
4144 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4145
4146 nr = (int)div64_u64(num_bytes, bytes);
4147 if (!nr)
4148 nr = 1;
4149 nr *= 2;
4150 } else {
4151 nr = -1;
4152 }
4153 trans = btrfs_join_transaction(root);
4154 if (IS_ERR(trans)) {
4155 ret = PTR_ERR(trans);
4156 break;
4157 }
4158 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4159 btrfs_end_transaction(trans, root);
4160 break;
4161 case FLUSH_DELALLOC:
4162 case FLUSH_DELALLOC_WAIT:
4163 shrink_delalloc(root, num_bytes, orig_bytes,
4164 state == FLUSH_DELALLOC_WAIT);
4165 break;
4166 case ALLOC_CHUNK:
4167 trans = btrfs_join_transaction(root);
4168 if (IS_ERR(trans)) {
4169 ret = PTR_ERR(trans);
4170 break;
4171 }
4172 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4173 btrfs_get_alloc_profile(root, 0),
4174 CHUNK_ALLOC_NO_FORCE);
4175 btrfs_end_transaction(trans, root);
4176 if (ret == -ENOSPC)
4177 ret = 0;
4178 break;
4179 case COMMIT_TRANS:
4180 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4181 break;
4182 default:
4183 ret = -ENOSPC;
4184 break;
4185 }
4186
4187 return ret;
4188 }
4189 /**
4190 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4191 * @root - the root we're allocating for
4192 * @block_rsv - the block_rsv we're allocating for
4193 * @orig_bytes - the number of bytes we want
4194 * @flush - whether or not we can flush to make our reservation
4195 *
4196 * This will reserve orgi_bytes number of bytes from the space info associated
4197 * with the block_rsv. If there is not enough space it will make an attempt to
4198 * flush out space to make room. It will do this by flushing delalloc if
4199 * possible or committing the transaction. If flush is 0 then no attempts to
4200 * regain reservations will be made and this will fail if there is not enough
4201 * space already.
4202 */
4203 static int reserve_metadata_bytes(struct btrfs_root *root,
4204 struct btrfs_block_rsv *block_rsv,
4205 u64 orig_bytes,
4206 enum btrfs_reserve_flush_enum flush)
4207 {
4208 struct btrfs_space_info *space_info = block_rsv->space_info;
4209 u64 used;
4210 u64 num_bytes = orig_bytes;
4211 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4212 int ret = 0;
4213 bool flushing = false;
4214
4215 again:
4216 ret = 0;
4217 spin_lock(&space_info->lock);
4218 /*
4219 * We only want to wait if somebody other than us is flushing and we
4220 * are actually allowed to flush all things.
4221 */
4222 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4223 space_info->flush) {
4224 spin_unlock(&space_info->lock);
4225 /*
4226 * If we have a trans handle we can't wait because the flusher
4227 * may have to commit the transaction, which would mean we would
4228 * deadlock since we are waiting for the flusher to finish, but
4229 * hold the current transaction open.
4230 */
4231 if (current->journal_info)
4232 return -EAGAIN;
4233 ret = wait_event_killable(space_info->wait, !space_info->flush);
4234 /* Must have been killed, return */
4235 if (ret)
4236 return -EINTR;
4237
4238 spin_lock(&space_info->lock);
4239 }
4240
4241 ret = -ENOSPC;
4242 used = space_info->bytes_used + space_info->bytes_reserved +
4243 space_info->bytes_pinned + space_info->bytes_readonly +
4244 space_info->bytes_may_use;
4245
4246 /*
4247 * The idea here is that we've not already over-reserved the block group
4248 * then we can go ahead and save our reservation first and then start
4249 * flushing if we need to. Otherwise if we've already overcommitted
4250 * lets start flushing stuff first and then come back and try to make
4251 * our reservation.
4252 */
4253 if (used <= space_info->total_bytes) {
4254 if (used + orig_bytes <= space_info->total_bytes) {
4255 space_info->bytes_may_use += orig_bytes;
4256 trace_btrfs_space_reservation(root->fs_info,
4257 "space_info", space_info->flags, orig_bytes, 1);
4258 ret = 0;
4259 } else {
4260 /*
4261 * Ok set num_bytes to orig_bytes since we aren't
4262 * overocmmitted, this way we only try and reclaim what
4263 * we need.
4264 */
4265 num_bytes = orig_bytes;
4266 }
4267 } else {
4268 /*
4269 * Ok we're over committed, set num_bytes to the overcommitted
4270 * amount plus the amount of bytes that we need for this
4271 * reservation.
4272 */
4273 num_bytes = used - space_info->total_bytes +
4274 (orig_bytes * 2);
4275 }
4276
4277 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4278 space_info->bytes_may_use += orig_bytes;
4279 trace_btrfs_space_reservation(root->fs_info, "space_info",
4280 space_info->flags, orig_bytes,
4281 1);
4282 ret = 0;
4283 }
4284
4285 /*
4286 * Couldn't make our reservation, save our place so while we're trying
4287 * to reclaim space we can actually use it instead of somebody else
4288 * stealing it from us.
4289 *
4290 * We make the other tasks wait for the flush only when we can flush
4291 * all things.
4292 */
4293 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4294 flushing = true;
4295 space_info->flush = 1;
4296 }
4297
4298 spin_unlock(&space_info->lock);
4299
4300 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4301 goto out;
4302
4303 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4304 flush_state);
4305 flush_state++;
4306
4307 /*
4308 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4309 * would happen. So skip delalloc flush.
4310 */
4311 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4312 (flush_state == FLUSH_DELALLOC ||
4313 flush_state == FLUSH_DELALLOC_WAIT))
4314 flush_state = ALLOC_CHUNK;
4315
4316 if (!ret)
4317 goto again;
4318 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4319 flush_state < COMMIT_TRANS)
4320 goto again;
4321 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4322 flush_state <= COMMIT_TRANS)
4323 goto again;
4324
4325 out:
4326 if (ret == -ENOSPC &&
4327 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4328 struct btrfs_block_rsv *global_rsv =
4329 &root->fs_info->global_block_rsv;
4330
4331 if (block_rsv != global_rsv &&
4332 !block_rsv_use_bytes(global_rsv, orig_bytes))
4333 ret = 0;
4334 }
4335 if (flushing) {
4336 spin_lock(&space_info->lock);
4337 space_info->flush = 0;
4338 wake_up_all(&space_info->wait);
4339 spin_unlock(&space_info->lock);
4340 }
4341 return ret;
4342 }
4343
4344 static struct btrfs_block_rsv *get_block_rsv(
4345 const struct btrfs_trans_handle *trans,
4346 const struct btrfs_root *root)
4347 {
4348 struct btrfs_block_rsv *block_rsv = NULL;
4349
4350 if (root->ref_cows)
4351 block_rsv = trans->block_rsv;
4352
4353 if (root == root->fs_info->csum_root && trans->adding_csums)
4354 block_rsv = trans->block_rsv;
4355
4356 if (root == root->fs_info->uuid_root)
4357 block_rsv = trans->block_rsv;
4358
4359 if (!block_rsv)
4360 block_rsv = root->block_rsv;
4361
4362 if (!block_rsv)
4363 block_rsv = &root->fs_info->empty_block_rsv;
4364
4365 return block_rsv;
4366 }
4367
4368 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4369 u64 num_bytes)
4370 {
4371 int ret = -ENOSPC;
4372 spin_lock(&block_rsv->lock);
4373 if (block_rsv->reserved >= num_bytes) {
4374 block_rsv->reserved -= num_bytes;
4375 if (block_rsv->reserved < block_rsv->size)
4376 block_rsv->full = 0;
4377 ret = 0;
4378 }
4379 spin_unlock(&block_rsv->lock);
4380 return ret;
4381 }
4382
4383 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4384 u64 num_bytes, int update_size)
4385 {
4386 spin_lock(&block_rsv->lock);
4387 block_rsv->reserved += num_bytes;
4388 if (update_size)
4389 block_rsv->size += num_bytes;
4390 else if (block_rsv->reserved >= block_rsv->size)
4391 block_rsv->full = 1;
4392 spin_unlock(&block_rsv->lock);
4393 }
4394
4395 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4396 struct btrfs_block_rsv *dest, u64 num_bytes,
4397 int min_factor)
4398 {
4399 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4400 u64 min_bytes;
4401
4402 if (global_rsv->space_info != dest->space_info)
4403 return -ENOSPC;
4404
4405 spin_lock(&global_rsv->lock);
4406 min_bytes = div_factor(global_rsv->size, min_factor);
4407 if (global_rsv->reserved < min_bytes + num_bytes) {
4408 spin_unlock(&global_rsv->lock);
4409 return -ENOSPC;
4410 }
4411 global_rsv->reserved -= num_bytes;
4412 if (global_rsv->reserved < global_rsv->size)
4413 global_rsv->full = 0;
4414 spin_unlock(&global_rsv->lock);
4415
4416 block_rsv_add_bytes(dest, num_bytes, 1);
4417 return 0;
4418 }
4419
4420 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4421 struct btrfs_block_rsv *block_rsv,
4422 struct btrfs_block_rsv *dest, u64 num_bytes)
4423 {
4424 struct btrfs_space_info *space_info = block_rsv->space_info;
4425
4426 spin_lock(&block_rsv->lock);
4427 if (num_bytes == (u64)-1)
4428 num_bytes = block_rsv->size;
4429 block_rsv->size -= num_bytes;
4430 if (block_rsv->reserved >= block_rsv->size) {
4431 num_bytes = block_rsv->reserved - block_rsv->size;
4432 block_rsv->reserved = block_rsv->size;
4433 block_rsv->full = 1;
4434 } else {
4435 num_bytes = 0;
4436 }
4437 spin_unlock(&block_rsv->lock);
4438
4439 if (num_bytes > 0) {
4440 if (dest) {
4441 spin_lock(&dest->lock);
4442 if (!dest->full) {
4443 u64 bytes_to_add;
4444
4445 bytes_to_add = dest->size - dest->reserved;
4446 bytes_to_add = min(num_bytes, bytes_to_add);
4447 dest->reserved += bytes_to_add;
4448 if (dest->reserved >= dest->size)
4449 dest->full = 1;
4450 num_bytes -= bytes_to_add;
4451 }
4452 spin_unlock(&dest->lock);
4453 }
4454 if (num_bytes) {
4455 spin_lock(&space_info->lock);
4456 space_info->bytes_may_use -= num_bytes;
4457 trace_btrfs_space_reservation(fs_info, "space_info",
4458 space_info->flags, num_bytes, 0);
4459 spin_unlock(&space_info->lock);
4460 }
4461 }
4462 }
4463
4464 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4465 struct btrfs_block_rsv *dst, u64 num_bytes)
4466 {
4467 int ret;
4468
4469 ret = block_rsv_use_bytes(src, num_bytes);
4470 if (ret)
4471 return ret;
4472
4473 block_rsv_add_bytes(dst, num_bytes, 1);
4474 return 0;
4475 }
4476
4477 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4478 {
4479 memset(rsv, 0, sizeof(*rsv));
4480 spin_lock_init(&rsv->lock);
4481 rsv->type = type;
4482 }
4483
4484 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4485 unsigned short type)
4486 {
4487 struct btrfs_block_rsv *block_rsv;
4488 struct btrfs_fs_info *fs_info = root->fs_info;
4489
4490 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4491 if (!block_rsv)
4492 return NULL;
4493
4494 btrfs_init_block_rsv(block_rsv, type);
4495 block_rsv->space_info = __find_space_info(fs_info,
4496 BTRFS_BLOCK_GROUP_METADATA);
4497 return block_rsv;
4498 }
4499
4500 void btrfs_free_block_rsv(struct btrfs_root *root,
4501 struct btrfs_block_rsv *rsv)
4502 {
4503 if (!rsv)
4504 return;
4505 btrfs_block_rsv_release(root, rsv, (u64)-1);
4506 kfree(rsv);
4507 }
4508
4509 int btrfs_block_rsv_add(struct btrfs_root *root,
4510 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4511 enum btrfs_reserve_flush_enum flush)
4512 {
4513 int ret;
4514
4515 if (num_bytes == 0)
4516 return 0;
4517
4518 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4519 if (!ret) {
4520 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4521 return 0;
4522 }
4523
4524 return ret;
4525 }
4526
4527 int btrfs_block_rsv_check(struct btrfs_root *root,
4528 struct btrfs_block_rsv *block_rsv, int min_factor)
4529 {
4530 u64 num_bytes = 0;
4531 int ret = -ENOSPC;
4532
4533 if (!block_rsv)
4534 return 0;
4535
4536 spin_lock(&block_rsv->lock);
4537 num_bytes = div_factor(block_rsv->size, min_factor);
4538 if (block_rsv->reserved >= num_bytes)
4539 ret = 0;
4540 spin_unlock(&block_rsv->lock);
4541
4542 return ret;
4543 }
4544
4545 int btrfs_block_rsv_refill(struct btrfs_root *root,
4546 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4547 enum btrfs_reserve_flush_enum flush)
4548 {
4549 u64 num_bytes = 0;
4550 int ret = -ENOSPC;
4551
4552 if (!block_rsv)
4553 return 0;
4554
4555 spin_lock(&block_rsv->lock);
4556 num_bytes = min_reserved;
4557 if (block_rsv->reserved >= num_bytes)
4558 ret = 0;
4559 else
4560 num_bytes -= block_rsv->reserved;
4561 spin_unlock(&block_rsv->lock);
4562
4563 if (!ret)
4564 return 0;
4565
4566 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4567 if (!ret) {
4568 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4569 return 0;
4570 }
4571
4572 return ret;
4573 }
4574
4575 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4576 struct btrfs_block_rsv *dst_rsv,
4577 u64 num_bytes)
4578 {
4579 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4580 }
4581
4582 void btrfs_block_rsv_release(struct btrfs_root *root,
4583 struct btrfs_block_rsv *block_rsv,
4584 u64 num_bytes)
4585 {
4586 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4587 if (global_rsv->full || global_rsv == block_rsv ||
4588 block_rsv->space_info != global_rsv->space_info)
4589 global_rsv = NULL;
4590 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4591 num_bytes);
4592 }
4593
4594 /*
4595 * helper to calculate size of global block reservation.
4596 * the desired value is sum of space used by extent tree,
4597 * checksum tree and root tree
4598 */
4599 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4600 {
4601 struct btrfs_space_info *sinfo;
4602 u64 num_bytes;
4603 u64 meta_used;
4604 u64 data_used;
4605 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4606
4607 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4608 spin_lock(&sinfo->lock);
4609 data_used = sinfo->bytes_used;
4610 spin_unlock(&sinfo->lock);
4611
4612 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4613 spin_lock(&sinfo->lock);
4614 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4615 data_used = 0;
4616 meta_used = sinfo->bytes_used;
4617 spin_unlock(&sinfo->lock);
4618
4619 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4620 csum_size * 2;
4621 num_bytes += div64_u64(data_used + meta_used, 50);
4622
4623 if (num_bytes * 3 > meta_used)
4624 num_bytes = div64_u64(meta_used, 3);
4625
4626 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4627 }
4628
4629 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4630 {
4631 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4632 struct btrfs_space_info *sinfo = block_rsv->space_info;
4633 u64 num_bytes;
4634
4635 num_bytes = calc_global_metadata_size(fs_info);
4636
4637 spin_lock(&sinfo->lock);
4638 spin_lock(&block_rsv->lock);
4639
4640 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4641
4642 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4643 sinfo->bytes_reserved + sinfo->bytes_readonly +
4644 sinfo->bytes_may_use;
4645
4646 if (sinfo->total_bytes > num_bytes) {
4647 num_bytes = sinfo->total_bytes - num_bytes;
4648 block_rsv->reserved += num_bytes;
4649 sinfo->bytes_may_use += num_bytes;
4650 trace_btrfs_space_reservation(fs_info, "space_info",
4651 sinfo->flags, num_bytes, 1);
4652 }
4653
4654 if (block_rsv->reserved >= block_rsv->size) {
4655 num_bytes = block_rsv->reserved - block_rsv->size;
4656 sinfo->bytes_may_use -= num_bytes;
4657 trace_btrfs_space_reservation(fs_info, "space_info",
4658 sinfo->flags, num_bytes, 0);
4659 block_rsv->reserved = block_rsv->size;
4660 block_rsv->full = 1;
4661 }
4662
4663 spin_unlock(&block_rsv->lock);
4664 spin_unlock(&sinfo->lock);
4665 }
4666
4667 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4668 {
4669 struct btrfs_space_info *space_info;
4670
4671 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4672 fs_info->chunk_block_rsv.space_info = space_info;
4673
4674 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4675 fs_info->global_block_rsv.space_info = space_info;
4676 fs_info->delalloc_block_rsv.space_info = space_info;
4677 fs_info->trans_block_rsv.space_info = space_info;
4678 fs_info->empty_block_rsv.space_info = space_info;
4679 fs_info->delayed_block_rsv.space_info = space_info;
4680
4681 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4682 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4683 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4684 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4685 if (fs_info->quota_root)
4686 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4687 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4688
4689 update_global_block_rsv(fs_info);
4690 }
4691
4692 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4693 {
4694 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4695 (u64)-1);
4696 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4697 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4698 WARN_ON(fs_info->trans_block_rsv.size > 0);
4699 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4700 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4701 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4702 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4703 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4704 }
4705
4706 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4707 struct btrfs_root *root)
4708 {
4709 if (!trans->block_rsv)
4710 return;
4711
4712 if (!trans->bytes_reserved)
4713 return;
4714
4715 trace_btrfs_space_reservation(root->fs_info, "transaction",
4716 trans->transid, trans->bytes_reserved, 0);
4717 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4718 trans->bytes_reserved = 0;
4719 }
4720
4721 /* Can only return 0 or -ENOSPC */
4722 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4723 struct inode *inode)
4724 {
4725 struct btrfs_root *root = BTRFS_I(inode)->root;
4726 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4727 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4728
4729 /*
4730 * We need to hold space in order to delete our orphan item once we've
4731 * added it, so this takes the reservation so we can release it later
4732 * when we are truly done with the orphan item.
4733 */
4734 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4735 trace_btrfs_space_reservation(root->fs_info, "orphan",
4736 btrfs_ino(inode), num_bytes, 1);
4737 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4738 }
4739
4740 void btrfs_orphan_release_metadata(struct inode *inode)
4741 {
4742 struct btrfs_root *root = BTRFS_I(inode)->root;
4743 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4744 trace_btrfs_space_reservation(root->fs_info, "orphan",
4745 btrfs_ino(inode), num_bytes, 0);
4746 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4747 }
4748
4749 /*
4750 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4751 * root: the root of the parent directory
4752 * rsv: block reservation
4753 * items: the number of items that we need do reservation
4754 * qgroup_reserved: used to return the reserved size in qgroup
4755 *
4756 * This function is used to reserve the space for snapshot/subvolume
4757 * creation and deletion. Those operations are different with the
4758 * common file/directory operations, they change two fs/file trees
4759 * and root tree, the number of items that the qgroup reserves is
4760 * different with the free space reservation. So we can not use
4761 * the space reseravtion mechanism in start_transaction().
4762 */
4763 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4764 struct btrfs_block_rsv *rsv,
4765 int items,
4766 u64 *qgroup_reserved,
4767 bool use_global_rsv)
4768 {
4769 u64 num_bytes;
4770 int ret;
4771 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4772
4773 if (root->fs_info->quota_enabled) {
4774 /* One for parent inode, two for dir entries */
4775 num_bytes = 3 * root->leafsize;
4776 ret = btrfs_qgroup_reserve(root, num_bytes);
4777 if (ret)
4778 return ret;
4779 } else {
4780 num_bytes = 0;
4781 }
4782
4783 *qgroup_reserved = num_bytes;
4784
4785 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4786 rsv->space_info = __find_space_info(root->fs_info,
4787 BTRFS_BLOCK_GROUP_METADATA);
4788 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4789 BTRFS_RESERVE_FLUSH_ALL);
4790
4791 if (ret == -ENOSPC && use_global_rsv)
4792 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4793
4794 if (ret) {
4795 if (*qgroup_reserved)
4796 btrfs_qgroup_free(root, *qgroup_reserved);
4797 }
4798
4799 return ret;
4800 }
4801
4802 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4803 struct btrfs_block_rsv *rsv,
4804 u64 qgroup_reserved)
4805 {
4806 btrfs_block_rsv_release(root, rsv, (u64)-1);
4807 if (qgroup_reserved)
4808 btrfs_qgroup_free(root, qgroup_reserved);
4809 }
4810
4811 /**
4812 * drop_outstanding_extent - drop an outstanding extent
4813 * @inode: the inode we're dropping the extent for
4814 *
4815 * This is called when we are freeing up an outstanding extent, either called
4816 * after an error or after an extent is written. This will return the number of
4817 * reserved extents that need to be freed. This must be called with
4818 * BTRFS_I(inode)->lock held.
4819 */
4820 static unsigned drop_outstanding_extent(struct inode *inode)
4821 {
4822 unsigned drop_inode_space = 0;
4823 unsigned dropped_extents = 0;
4824
4825 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4826 BTRFS_I(inode)->outstanding_extents--;
4827
4828 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4829 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4830 &BTRFS_I(inode)->runtime_flags))
4831 drop_inode_space = 1;
4832
4833 /*
4834 * If we have more or the same amount of outsanding extents than we have
4835 * reserved then we need to leave the reserved extents count alone.
4836 */
4837 if (BTRFS_I(inode)->outstanding_extents >=
4838 BTRFS_I(inode)->reserved_extents)
4839 return drop_inode_space;
4840
4841 dropped_extents = BTRFS_I(inode)->reserved_extents -
4842 BTRFS_I(inode)->outstanding_extents;
4843 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4844 return dropped_extents + drop_inode_space;
4845 }
4846
4847 /**
4848 * calc_csum_metadata_size - return the amount of metada space that must be
4849 * reserved/free'd for the given bytes.
4850 * @inode: the inode we're manipulating
4851 * @num_bytes: the number of bytes in question
4852 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4853 *
4854 * This adjusts the number of csum_bytes in the inode and then returns the
4855 * correct amount of metadata that must either be reserved or freed. We
4856 * calculate how many checksums we can fit into one leaf and then divide the
4857 * number of bytes that will need to be checksumed by this value to figure out
4858 * how many checksums will be required. If we are adding bytes then the number
4859 * may go up and we will return the number of additional bytes that must be
4860 * reserved. If it is going down we will return the number of bytes that must
4861 * be freed.
4862 *
4863 * This must be called with BTRFS_I(inode)->lock held.
4864 */
4865 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4866 int reserve)
4867 {
4868 struct btrfs_root *root = BTRFS_I(inode)->root;
4869 u64 csum_size;
4870 int num_csums_per_leaf;
4871 int num_csums;
4872 int old_csums;
4873
4874 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4875 BTRFS_I(inode)->csum_bytes == 0)
4876 return 0;
4877
4878 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4879 if (reserve)
4880 BTRFS_I(inode)->csum_bytes += num_bytes;
4881 else
4882 BTRFS_I(inode)->csum_bytes -= num_bytes;
4883 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4884 num_csums_per_leaf = (int)div64_u64(csum_size,
4885 sizeof(struct btrfs_csum_item) +
4886 sizeof(struct btrfs_disk_key));
4887 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4888 num_csums = num_csums + num_csums_per_leaf - 1;
4889 num_csums = num_csums / num_csums_per_leaf;
4890
4891 old_csums = old_csums + num_csums_per_leaf - 1;
4892 old_csums = old_csums / num_csums_per_leaf;
4893
4894 /* No change, no need to reserve more */
4895 if (old_csums == num_csums)
4896 return 0;
4897
4898 if (reserve)
4899 return btrfs_calc_trans_metadata_size(root,
4900 num_csums - old_csums);
4901
4902 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4903 }
4904
4905 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4906 {
4907 struct btrfs_root *root = BTRFS_I(inode)->root;
4908 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4909 u64 to_reserve = 0;
4910 u64 csum_bytes;
4911 unsigned nr_extents = 0;
4912 int extra_reserve = 0;
4913 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4914 int ret = 0;
4915 bool delalloc_lock = true;
4916 u64 to_free = 0;
4917 unsigned dropped;
4918
4919 /* If we are a free space inode we need to not flush since we will be in
4920 * the middle of a transaction commit. We also don't need the delalloc
4921 * mutex since we won't race with anybody. We need this mostly to make
4922 * lockdep shut its filthy mouth.
4923 */
4924 if (btrfs_is_free_space_inode(inode)) {
4925 flush = BTRFS_RESERVE_NO_FLUSH;
4926 delalloc_lock = false;
4927 }
4928
4929 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4930 btrfs_transaction_in_commit(root->fs_info))
4931 schedule_timeout(1);
4932
4933 if (delalloc_lock)
4934 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4935
4936 num_bytes = ALIGN(num_bytes, root->sectorsize);
4937
4938 spin_lock(&BTRFS_I(inode)->lock);
4939 BTRFS_I(inode)->outstanding_extents++;
4940
4941 if (BTRFS_I(inode)->outstanding_extents >
4942 BTRFS_I(inode)->reserved_extents)
4943 nr_extents = BTRFS_I(inode)->outstanding_extents -
4944 BTRFS_I(inode)->reserved_extents;
4945
4946 /*
4947 * Add an item to reserve for updating the inode when we complete the
4948 * delalloc io.
4949 */
4950 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4951 &BTRFS_I(inode)->runtime_flags)) {
4952 nr_extents++;
4953 extra_reserve = 1;
4954 }
4955
4956 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4957 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4958 csum_bytes = BTRFS_I(inode)->csum_bytes;
4959 spin_unlock(&BTRFS_I(inode)->lock);
4960
4961 if (root->fs_info->quota_enabled) {
4962 ret = btrfs_qgroup_reserve(root, num_bytes +
4963 nr_extents * root->leafsize);
4964 if (ret)
4965 goto out_fail;
4966 }
4967
4968 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4969 if (unlikely(ret)) {
4970 if (root->fs_info->quota_enabled)
4971 btrfs_qgroup_free(root, num_bytes +
4972 nr_extents * root->leafsize);
4973 goto out_fail;
4974 }
4975
4976 spin_lock(&BTRFS_I(inode)->lock);
4977 if (extra_reserve) {
4978 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4979 &BTRFS_I(inode)->runtime_flags);
4980 nr_extents--;
4981 }
4982 BTRFS_I(inode)->reserved_extents += nr_extents;
4983 spin_unlock(&BTRFS_I(inode)->lock);
4984
4985 if (delalloc_lock)
4986 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4987
4988 if (to_reserve)
4989 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4990 btrfs_ino(inode), to_reserve, 1);
4991 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4992
4993 return 0;
4994
4995 out_fail:
4996 spin_lock(&BTRFS_I(inode)->lock);
4997 dropped = drop_outstanding_extent(inode);
4998 /*
4999 * If the inodes csum_bytes is the same as the original
5000 * csum_bytes then we know we haven't raced with any free()ers
5001 * so we can just reduce our inodes csum bytes and carry on.
5002 */
5003 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5004 calc_csum_metadata_size(inode, num_bytes, 0);
5005 } else {
5006 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5007 u64 bytes;
5008
5009 /*
5010 * This is tricky, but first we need to figure out how much we
5011 * free'd from any free-ers that occured during this
5012 * reservation, so we reset ->csum_bytes to the csum_bytes
5013 * before we dropped our lock, and then call the free for the
5014 * number of bytes that were freed while we were trying our
5015 * reservation.
5016 */
5017 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5018 BTRFS_I(inode)->csum_bytes = csum_bytes;
5019 to_free = calc_csum_metadata_size(inode, bytes, 0);
5020
5021
5022 /*
5023 * Now we need to see how much we would have freed had we not
5024 * been making this reservation and our ->csum_bytes were not
5025 * artificially inflated.
5026 */
5027 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5028 bytes = csum_bytes - orig_csum_bytes;
5029 bytes = calc_csum_metadata_size(inode, bytes, 0);
5030
5031 /*
5032 * Now reset ->csum_bytes to what it should be. If bytes is
5033 * more than to_free then we would have free'd more space had we
5034 * not had an artificially high ->csum_bytes, so we need to free
5035 * the remainder. If bytes is the same or less then we don't
5036 * need to do anything, the other free-ers did the correct
5037 * thing.
5038 */
5039 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5040 if (bytes > to_free)
5041 to_free = bytes - to_free;
5042 else
5043 to_free = 0;
5044 }
5045 spin_unlock(&BTRFS_I(inode)->lock);
5046 if (dropped)
5047 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5048
5049 if (to_free) {
5050 btrfs_block_rsv_release(root, block_rsv, to_free);
5051 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5052 btrfs_ino(inode), to_free, 0);
5053 }
5054 if (delalloc_lock)
5055 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5056 return ret;
5057 }
5058
5059 /**
5060 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5061 * @inode: the inode to release the reservation for
5062 * @num_bytes: the number of bytes we're releasing
5063 *
5064 * This will release the metadata reservation for an inode. This can be called
5065 * once we complete IO for a given set of bytes to release their metadata
5066 * reservations.
5067 */
5068 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5069 {
5070 struct btrfs_root *root = BTRFS_I(inode)->root;
5071 u64 to_free = 0;
5072 unsigned dropped;
5073
5074 num_bytes = ALIGN(num_bytes, root->sectorsize);
5075 spin_lock(&BTRFS_I(inode)->lock);
5076 dropped = drop_outstanding_extent(inode);
5077
5078 if (num_bytes)
5079 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5080 spin_unlock(&BTRFS_I(inode)->lock);
5081 if (dropped > 0)
5082 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5083
5084 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5085 btrfs_ino(inode), to_free, 0);
5086 if (root->fs_info->quota_enabled) {
5087 btrfs_qgroup_free(root, num_bytes +
5088 dropped * root->leafsize);
5089 }
5090
5091 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5092 to_free);
5093 }
5094
5095 /**
5096 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5097 * @inode: inode we're writing to
5098 * @num_bytes: the number of bytes we want to allocate
5099 *
5100 * This will do the following things
5101 *
5102 * o reserve space in the data space info for num_bytes
5103 * o reserve space in the metadata space info based on number of outstanding
5104 * extents and how much csums will be needed
5105 * o add to the inodes ->delalloc_bytes
5106 * o add it to the fs_info's delalloc inodes list.
5107 *
5108 * This will return 0 for success and -ENOSPC if there is no space left.
5109 */
5110 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5111 {
5112 int ret;
5113
5114 ret = btrfs_check_data_free_space(inode, num_bytes);
5115 if (ret)
5116 return ret;
5117
5118 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5119 if (ret) {
5120 btrfs_free_reserved_data_space(inode, num_bytes);
5121 return ret;
5122 }
5123
5124 return 0;
5125 }
5126
5127 /**
5128 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5129 * @inode: inode we're releasing space for
5130 * @num_bytes: the number of bytes we want to free up
5131 *
5132 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5133 * called in the case that we don't need the metadata AND data reservations
5134 * anymore. So if there is an error or we insert an inline extent.
5135 *
5136 * This function will release the metadata space that was not used and will
5137 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5138 * list if there are no delalloc bytes left.
5139 */
5140 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5141 {
5142 btrfs_delalloc_release_metadata(inode, num_bytes);
5143 btrfs_free_reserved_data_space(inode, num_bytes);
5144 }
5145
5146 static int update_block_group(struct btrfs_root *root,
5147 u64 bytenr, u64 num_bytes, int alloc)
5148 {
5149 struct btrfs_block_group_cache *cache = NULL;
5150 struct btrfs_fs_info *info = root->fs_info;
5151 u64 total = num_bytes;
5152 u64 old_val;
5153 u64 byte_in_group;
5154 int factor;
5155
5156 /* block accounting for super block */
5157 spin_lock(&info->delalloc_root_lock);
5158 old_val = btrfs_super_bytes_used(info->super_copy);
5159 if (alloc)
5160 old_val += num_bytes;
5161 else
5162 old_val -= num_bytes;
5163 btrfs_set_super_bytes_used(info->super_copy, old_val);
5164 spin_unlock(&info->delalloc_root_lock);
5165
5166 while (total) {
5167 cache = btrfs_lookup_block_group(info, bytenr);
5168 if (!cache)
5169 return -ENOENT;
5170 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5171 BTRFS_BLOCK_GROUP_RAID1 |
5172 BTRFS_BLOCK_GROUP_RAID10))
5173 factor = 2;
5174 else
5175 factor = 1;
5176 /*
5177 * If this block group has free space cache written out, we
5178 * need to make sure to load it if we are removing space. This
5179 * is because we need the unpinning stage to actually add the
5180 * space back to the block group, otherwise we will leak space.
5181 */
5182 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5183 cache_block_group(cache, 1);
5184
5185 byte_in_group = bytenr - cache->key.objectid;
5186 WARN_ON(byte_in_group > cache->key.offset);
5187
5188 spin_lock(&cache->space_info->lock);
5189 spin_lock(&cache->lock);
5190
5191 if (btrfs_test_opt(root, SPACE_CACHE) &&
5192 cache->disk_cache_state < BTRFS_DC_CLEAR)
5193 cache->disk_cache_state = BTRFS_DC_CLEAR;
5194
5195 cache->dirty = 1;
5196 old_val = btrfs_block_group_used(&cache->item);
5197 num_bytes = min(total, cache->key.offset - byte_in_group);
5198 if (alloc) {
5199 old_val += num_bytes;
5200 btrfs_set_block_group_used(&cache->item, old_val);
5201 cache->reserved -= num_bytes;
5202 cache->space_info->bytes_reserved -= num_bytes;
5203 cache->space_info->bytes_used += num_bytes;
5204 cache->space_info->disk_used += num_bytes * factor;
5205 spin_unlock(&cache->lock);
5206 spin_unlock(&cache->space_info->lock);
5207 } else {
5208 old_val -= num_bytes;
5209 btrfs_set_block_group_used(&cache->item, old_val);
5210 cache->pinned += num_bytes;
5211 cache->space_info->bytes_pinned += num_bytes;
5212 cache->space_info->bytes_used -= num_bytes;
5213 cache->space_info->disk_used -= num_bytes * factor;
5214 spin_unlock(&cache->lock);
5215 spin_unlock(&cache->space_info->lock);
5216
5217 set_extent_dirty(info->pinned_extents,
5218 bytenr, bytenr + num_bytes - 1,
5219 GFP_NOFS | __GFP_NOFAIL);
5220 }
5221 btrfs_put_block_group(cache);
5222 total -= num_bytes;
5223 bytenr += num_bytes;
5224 }
5225 return 0;
5226 }
5227
5228 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5229 {
5230 struct btrfs_block_group_cache *cache;
5231 u64 bytenr;
5232
5233 spin_lock(&root->fs_info->block_group_cache_lock);
5234 bytenr = root->fs_info->first_logical_byte;
5235 spin_unlock(&root->fs_info->block_group_cache_lock);
5236
5237 if (bytenr < (u64)-1)
5238 return bytenr;
5239
5240 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5241 if (!cache)
5242 return 0;
5243
5244 bytenr = cache->key.objectid;
5245 btrfs_put_block_group(cache);
5246
5247 return bytenr;
5248 }
5249
5250 static int pin_down_extent(struct btrfs_root *root,
5251 struct btrfs_block_group_cache *cache,
5252 u64 bytenr, u64 num_bytes, int reserved)
5253 {
5254 spin_lock(&cache->space_info->lock);
5255 spin_lock(&cache->lock);
5256 cache->pinned += num_bytes;
5257 cache->space_info->bytes_pinned += num_bytes;
5258 if (reserved) {
5259 cache->reserved -= num_bytes;
5260 cache->space_info->bytes_reserved -= num_bytes;
5261 }
5262 spin_unlock(&cache->lock);
5263 spin_unlock(&cache->space_info->lock);
5264
5265 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5266 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5267 return 0;
5268 }
5269
5270 /*
5271 * this function must be called within transaction
5272 */
5273 int btrfs_pin_extent(struct btrfs_root *root,
5274 u64 bytenr, u64 num_bytes, int reserved)
5275 {
5276 struct btrfs_block_group_cache *cache;
5277
5278 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5279 BUG_ON(!cache); /* Logic error */
5280
5281 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5282
5283 btrfs_put_block_group(cache);
5284 return 0;
5285 }
5286
5287 /*
5288 * this function must be called within transaction
5289 */
5290 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5291 u64 bytenr, u64 num_bytes)
5292 {
5293 struct btrfs_block_group_cache *cache;
5294 int ret;
5295
5296 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5297 if (!cache)
5298 return -EINVAL;
5299
5300 /*
5301 * pull in the free space cache (if any) so that our pin
5302 * removes the free space from the cache. We have load_only set
5303 * to one because the slow code to read in the free extents does check
5304 * the pinned extents.
5305 */
5306 cache_block_group(cache, 1);
5307
5308 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5309
5310 /* remove us from the free space cache (if we're there at all) */
5311 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5312 btrfs_put_block_group(cache);
5313 return ret;
5314 }
5315
5316 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5317 {
5318 int ret;
5319 struct btrfs_block_group_cache *block_group;
5320 struct btrfs_caching_control *caching_ctl;
5321
5322 block_group = btrfs_lookup_block_group(root->fs_info, start);
5323 if (!block_group)
5324 return -EINVAL;
5325
5326 cache_block_group(block_group, 0);
5327 caching_ctl = get_caching_control(block_group);
5328
5329 if (!caching_ctl) {
5330 /* Logic error */
5331 BUG_ON(!block_group_cache_done(block_group));
5332 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5333 } else {
5334 mutex_lock(&caching_ctl->mutex);
5335
5336 if (start >= caching_ctl->progress) {
5337 ret = add_excluded_extent(root, start, num_bytes);
5338 } else if (start + num_bytes <= caching_ctl->progress) {
5339 ret = btrfs_remove_free_space(block_group,
5340 start, num_bytes);
5341 } else {
5342 num_bytes = caching_ctl->progress - start;
5343 ret = btrfs_remove_free_space(block_group,
5344 start, num_bytes);
5345 if (ret)
5346 goto out_lock;
5347
5348 num_bytes = (start + num_bytes) -
5349 caching_ctl->progress;
5350 start = caching_ctl->progress;
5351 ret = add_excluded_extent(root, start, num_bytes);
5352 }
5353 out_lock:
5354 mutex_unlock(&caching_ctl->mutex);
5355 put_caching_control(caching_ctl);
5356 }
5357 btrfs_put_block_group(block_group);
5358 return ret;
5359 }
5360
5361 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5362 struct extent_buffer *eb)
5363 {
5364 struct btrfs_file_extent_item *item;
5365 struct btrfs_key key;
5366 int found_type;
5367 int i;
5368
5369 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5370 return 0;
5371
5372 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5373 btrfs_item_key_to_cpu(eb, &key, i);
5374 if (key.type != BTRFS_EXTENT_DATA_KEY)
5375 continue;
5376 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5377 found_type = btrfs_file_extent_type(eb, item);
5378 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5379 continue;
5380 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5381 continue;
5382 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5383 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5384 __exclude_logged_extent(log, key.objectid, key.offset);
5385 }
5386
5387 return 0;
5388 }
5389
5390 /**
5391 * btrfs_update_reserved_bytes - update the block_group and space info counters
5392 * @cache: The cache we are manipulating
5393 * @num_bytes: The number of bytes in question
5394 * @reserve: One of the reservation enums
5395 *
5396 * This is called by the allocator when it reserves space, or by somebody who is
5397 * freeing space that was never actually used on disk. For example if you
5398 * reserve some space for a new leaf in transaction A and before transaction A
5399 * commits you free that leaf, you call this with reserve set to 0 in order to
5400 * clear the reservation.
5401 *
5402 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5403 * ENOSPC accounting. For data we handle the reservation through clearing the
5404 * delalloc bits in the io_tree. We have to do this since we could end up
5405 * allocating less disk space for the amount of data we have reserved in the
5406 * case of compression.
5407 *
5408 * If this is a reservation and the block group has become read only we cannot
5409 * make the reservation and return -EAGAIN, otherwise this function always
5410 * succeeds.
5411 */
5412 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5413 u64 num_bytes, int reserve)
5414 {
5415 struct btrfs_space_info *space_info = cache->space_info;
5416 int ret = 0;
5417
5418 spin_lock(&space_info->lock);
5419 spin_lock(&cache->lock);
5420 if (reserve != RESERVE_FREE) {
5421 if (cache->ro) {
5422 ret = -EAGAIN;
5423 } else {
5424 cache->reserved += num_bytes;
5425 space_info->bytes_reserved += num_bytes;
5426 if (reserve == RESERVE_ALLOC) {
5427 trace_btrfs_space_reservation(cache->fs_info,
5428 "space_info", space_info->flags,
5429 num_bytes, 0);
5430 space_info->bytes_may_use -= num_bytes;
5431 }
5432 }
5433 } else {
5434 if (cache->ro)
5435 space_info->bytes_readonly += num_bytes;
5436 cache->reserved -= num_bytes;
5437 space_info->bytes_reserved -= num_bytes;
5438 }
5439 spin_unlock(&cache->lock);
5440 spin_unlock(&space_info->lock);
5441 return ret;
5442 }
5443
5444 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5445 struct btrfs_root *root)
5446 {
5447 struct btrfs_fs_info *fs_info = root->fs_info;
5448 struct btrfs_caching_control *next;
5449 struct btrfs_caching_control *caching_ctl;
5450 struct btrfs_block_group_cache *cache;
5451 struct btrfs_space_info *space_info;
5452
5453 down_write(&fs_info->extent_commit_sem);
5454
5455 list_for_each_entry_safe(caching_ctl, next,
5456 &fs_info->caching_block_groups, list) {
5457 cache = caching_ctl->block_group;
5458 if (block_group_cache_done(cache)) {
5459 cache->last_byte_to_unpin = (u64)-1;
5460 list_del_init(&caching_ctl->list);
5461 put_caching_control(caching_ctl);
5462 } else {
5463 cache->last_byte_to_unpin = caching_ctl->progress;
5464 }
5465 }
5466
5467 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5468 fs_info->pinned_extents = &fs_info->freed_extents[1];
5469 else
5470 fs_info->pinned_extents = &fs_info->freed_extents[0];
5471
5472 up_write(&fs_info->extent_commit_sem);
5473
5474 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5475 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5476
5477 update_global_block_rsv(fs_info);
5478 }
5479
5480 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5481 {
5482 struct btrfs_fs_info *fs_info = root->fs_info;
5483 struct btrfs_block_group_cache *cache = NULL;
5484 struct btrfs_space_info *space_info;
5485 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5486 u64 len;
5487 bool readonly;
5488
5489 while (start <= end) {
5490 readonly = false;
5491 if (!cache ||
5492 start >= cache->key.objectid + cache->key.offset) {
5493 if (cache)
5494 btrfs_put_block_group(cache);
5495 cache = btrfs_lookup_block_group(fs_info, start);
5496 BUG_ON(!cache); /* Logic error */
5497 }
5498
5499 len = cache->key.objectid + cache->key.offset - start;
5500 len = min(len, end + 1 - start);
5501
5502 if (start < cache->last_byte_to_unpin) {
5503 len = min(len, cache->last_byte_to_unpin - start);
5504 btrfs_add_free_space(cache, start, len);
5505 }
5506
5507 start += len;
5508 space_info = cache->space_info;
5509
5510 spin_lock(&space_info->lock);
5511 spin_lock(&cache->lock);
5512 cache->pinned -= len;
5513 space_info->bytes_pinned -= len;
5514 if (cache->ro) {
5515 space_info->bytes_readonly += len;
5516 readonly = true;
5517 }
5518 spin_unlock(&cache->lock);
5519 if (!readonly && global_rsv->space_info == space_info) {
5520 spin_lock(&global_rsv->lock);
5521 if (!global_rsv->full) {
5522 len = min(len, global_rsv->size -
5523 global_rsv->reserved);
5524 global_rsv->reserved += len;
5525 space_info->bytes_may_use += len;
5526 if (global_rsv->reserved >= global_rsv->size)
5527 global_rsv->full = 1;
5528 }
5529 spin_unlock(&global_rsv->lock);
5530 }
5531 spin_unlock(&space_info->lock);
5532 }
5533
5534 if (cache)
5535 btrfs_put_block_group(cache);
5536 return 0;
5537 }
5538
5539 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5540 struct btrfs_root *root)
5541 {
5542 struct btrfs_fs_info *fs_info = root->fs_info;
5543 struct extent_io_tree *unpin;
5544 u64 start;
5545 u64 end;
5546 int ret;
5547
5548 if (trans->aborted)
5549 return 0;
5550
5551 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5552 unpin = &fs_info->freed_extents[1];
5553 else
5554 unpin = &fs_info->freed_extents[0];
5555
5556 while (1) {
5557 ret = find_first_extent_bit(unpin, 0, &start, &end,
5558 EXTENT_DIRTY, NULL);
5559 if (ret)
5560 break;
5561
5562 if (btrfs_test_opt(root, DISCARD))
5563 ret = btrfs_discard_extent(root, start,
5564 end + 1 - start, NULL);
5565
5566 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5567 unpin_extent_range(root, start, end);
5568 cond_resched();
5569 }
5570
5571 return 0;
5572 }
5573
5574 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5575 u64 owner, u64 root_objectid)
5576 {
5577 struct btrfs_space_info *space_info;
5578 u64 flags;
5579
5580 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5581 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5582 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5583 else
5584 flags = BTRFS_BLOCK_GROUP_METADATA;
5585 } else {
5586 flags = BTRFS_BLOCK_GROUP_DATA;
5587 }
5588
5589 space_info = __find_space_info(fs_info, flags);
5590 BUG_ON(!space_info); /* Logic bug */
5591 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5592 }
5593
5594
5595 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5596 struct btrfs_root *root,
5597 u64 bytenr, u64 num_bytes, u64 parent,
5598 u64 root_objectid, u64 owner_objectid,
5599 u64 owner_offset, int refs_to_drop,
5600 struct btrfs_delayed_extent_op *extent_op)
5601 {
5602 struct btrfs_key key;
5603 struct btrfs_path *path;
5604 struct btrfs_fs_info *info = root->fs_info;
5605 struct btrfs_root *extent_root = info->extent_root;
5606 struct extent_buffer *leaf;
5607 struct btrfs_extent_item *ei;
5608 struct btrfs_extent_inline_ref *iref;
5609 int ret;
5610 int is_data;
5611 int extent_slot = 0;
5612 int found_extent = 0;
5613 int num_to_del = 1;
5614 u32 item_size;
5615 u64 refs;
5616 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5617 SKINNY_METADATA);
5618
5619 path = btrfs_alloc_path();
5620 if (!path)
5621 return -ENOMEM;
5622
5623 path->reada = 1;
5624 path->leave_spinning = 1;
5625
5626 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5627 BUG_ON(!is_data && refs_to_drop != 1);
5628
5629 if (is_data)
5630 skinny_metadata = 0;
5631
5632 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5633 bytenr, num_bytes, parent,
5634 root_objectid, owner_objectid,
5635 owner_offset);
5636 if (ret == 0) {
5637 extent_slot = path->slots[0];
5638 while (extent_slot >= 0) {
5639 btrfs_item_key_to_cpu(path->nodes[0], &key,
5640 extent_slot);
5641 if (key.objectid != bytenr)
5642 break;
5643 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5644 key.offset == num_bytes) {
5645 found_extent = 1;
5646 break;
5647 }
5648 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5649 key.offset == owner_objectid) {
5650 found_extent = 1;
5651 break;
5652 }
5653 if (path->slots[0] - extent_slot > 5)
5654 break;
5655 extent_slot--;
5656 }
5657 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5658 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5659 if (found_extent && item_size < sizeof(*ei))
5660 found_extent = 0;
5661 #endif
5662 if (!found_extent) {
5663 BUG_ON(iref);
5664 ret = remove_extent_backref(trans, extent_root, path,
5665 NULL, refs_to_drop,
5666 is_data);
5667 if (ret) {
5668 btrfs_abort_transaction(trans, extent_root, ret);
5669 goto out;
5670 }
5671 btrfs_release_path(path);
5672 path->leave_spinning = 1;
5673
5674 key.objectid = bytenr;
5675 key.type = BTRFS_EXTENT_ITEM_KEY;
5676 key.offset = num_bytes;
5677
5678 if (!is_data && skinny_metadata) {
5679 key.type = BTRFS_METADATA_ITEM_KEY;
5680 key.offset = owner_objectid;
5681 }
5682
5683 ret = btrfs_search_slot(trans, extent_root,
5684 &key, path, -1, 1);
5685 if (ret > 0 && skinny_metadata && path->slots[0]) {
5686 /*
5687 * Couldn't find our skinny metadata item,
5688 * see if we have ye olde extent item.
5689 */
5690 path->slots[0]--;
5691 btrfs_item_key_to_cpu(path->nodes[0], &key,
5692 path->slots[0]);
5693 if (key.objectid == bytenr &&
5694 key.type == BTRFS_EXTENT_ITEM_KEY &&
5695 key.offset == num_bytes)
5696 ret = 0;
5697 }
5698
5699 if (ret > 0 && skinny_metadata) {
5700 skinny_metadata = false;
5701 key.type = BTRFS_EXTENT_ITEM_KEY;
5702 key.offset = num_bytes;
5703 btrfs_release_path(path);
5704 ret = btrfs_search_slot(trans, extent_root,
5705 &key, path, -1, 1);
5706 }
5707
5708 if (ret) {
5709 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5710 ret, bytenr);
5711 if (ret > 0)
5712 btrfs_print_leaf(extent_root,
5713 path->nodes[0]);
5714 }
5715 if (ret < 0) {
5716 btrfs_abort_transaction(trans, extent_root, ret);
5717 goto out;
5718 }
5719 extent_slot = path->slots[0];
5720 }
5721 } else if (ret == -ENOENT) {
5722 btrfs_print_leaf(extent_root, path->nodes[0]);
5723 WARN_ON(1);
5724 btrfs_err(info,
5725 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5726 bytenr, parent, root_objectid, owner_objectid,
5727 owner_offset);
5728 } else {
5729 btrfs_abort_transaction(trans, extent_root, ret);
5730 goto out;
5731 }
5732
5733 leaf = path->nodes[0];
5734 item_size = btrfs_item_size_nr(leaf, extent_slot);
5735 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5736 if (item_size < sizeof(*ei)) {
5737 BUG_ON(found_extent || extent_slot != path->slots[0]);
5738 ret = convert_extent_item_v0(trans, extent_root, path,
5739 owner_objectid, 0);
5740 if (ret < 0) {
5741 btrfs_abort_transaction(trans, extent_root, ret);
5742 goto out;
5743 }
5744
5745 btrfs_release_path(path);
5746 path->leave_spinning = 1;
5747
5748 key.objectid = bytenr;
5749 key.type = BTRFS_EXTENT_ITEM_KEY;
5750 key.offset = num_bytes;
5751
5752 ret = btrfs_search_slot(trans, extent_root, &key, path,
5753 -1, 1);
5754 if (ret) {
5755 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5756 ret, bytenr);
5757 btrfs_print_leaf(extent_root, path->nodes[0]);
5758 }
5759 if (ret < 0) {
5760 btrfs_abort_transaction(trans, extent_root, ret);
5761 goto out;
5762 }
5763
5764 extent_slot = path->slots[0];
5765 leaf = path->nodes[0];
5766 item_size = btrfs_item_size_nr(leaf, extent_slot);
5767 }
5768 #endif
5769 BUG_ON(item_size < sizeof(*ei));
5770 ei = btrfs_item_ptr(leaf, extent_slot,
5771 struct btrfs_extent_item);
5772 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5773 key.type == BTRFS_EXTENT_ITEM_KEY) {
5774 struct btrfs_tree_block_info *bi;
5775 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5776 bi = (struct btrfs_tree_block_info *)(ei + 1);
5777 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5778 }
5779
5780 refs = btrfs_extent_refs(leaf, ei);
5781 if (refs < refs_to_drop) {
5782 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5783 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5784 ret = -EINVAL;
5785 btrfs_abort_transaction(trans, extent_root, ret);
5786 goto out;
5787 }
5788 refs -= refs_to_drop;
5789
5790 if (refs > 0) {
5791 if (extent_op)
5792 __run_delayed_extent_op(extent_op, leaf, ei);
5793 /*
5794 * In the case of inline back ref, reference count will
5795 * be updated by remove_extent_backref
5796 */
5797 if (iref) {
5798 BUG_ON(!found_extent);
5799 } else {
5800 btrfs_set_extent_refs(leaf, ei, refs);
5801 btrfs_mark_buffer_dirty(leaf);
5802 }
5803 if (found_extent) {
5804 ret = remove_extent_backref(trans, extent_root, path,
5805 iref, refs_to_drop,
5806 is_data);
5807 if (ret) {
5808 btrfs_abort_transaction(trans, extent_root, ret);
5809 goto out;
5810 }
5811 }
5812 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5813 root_objectid);
5814 } else {
5815 if (found_extent) {
5816 BUG_ON(is_data && refs_to_drop !=
5817 extent_data_ref_count(root, path, iref));
5818 if (iref) {
5819 BUG_ON(path->slots[0] != extent_slot);
5820 } else {
5821 BUG_ON(path->slots[0] != extent_slot + 1);
5822 path->slots[0] = extent_slot;
5823 num_to_del = 2;
5824 }
5825 }
5826
5827 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5828 num_to_del);
5829 if (ret) {
5830 btrfs_abort_transaction(trans, extent_root, ret);
5831 goto out;
5832 }
5833 btrfs_release_path(path);
5834
5835 if (is_data) {
5836 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5837 if (ret) {
5838 btrfs_abort_transaction(trans, extent_root, ret);
5839 goto out;
5840 }
5841 }
5842
5843 ret = update_block_group(root, bytenr, num_bytes, 0);
5844 if (ret) {
5845 btrfs_abort_transaction(trans, extent_root, ret);
5846 goto out;
5847 }
5848 }
5849 out:
5850 btrfs_free_path(path);
5851 return ret;
5852 }
5853
5854 /*
5855 * when we free an block, it is possible (and likely) that we free the last
5856 * delayed ref for that extent as well. This searches the delayed ref tree for
5857 * a given extent, and if there are no other delayed refs to be processed, it
5858 * removes it from the tree.
5859 */
5860 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5861 struct btrfs_root *root, u64 bytenr)
5862 {
5863 struct btrfs_delayed_ref_head *head;
5864 struct btrfs_delayed_ref_root *delayed_refs;
5865 struct btrfs_delayed_ref_node *ref;
5866 struct rb_node *node;
5867 int ret = 0;
5868
5869 delayed_refs = &trans->transaction->delayed_refs;
5870 spin_lock(&delayed_refs->lock);
5871 head = btrfs_find_delayed_ref_head(trans, bytenr);
5872 if (!head)
5873 goto out;
5874
5875 node = rb_prev(&head->node.rb_node);
5876 if (!node)
5877 goto out;
5878
5879 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5880
5881 /* there are still entries for this ref, we can't drop it */
5882 if (ref->bytenr == bytenr)
5883 goto out;
5884
5885 if (head->extent_op) {
5886 if (!head->must_insert_reserved)
5887 goto out;
5888 btrfs_free_delayed_extent_op(head->extent_op);
5889 head->extent_op = NULL;
5890 }
5891
5892 /*
5893 * waiting for the lock here would deadlock. If someone else has it
5894 * locked they are already in the process of dropping it anyway
5895 */
5896 if (!mutex_trylock(&head->mutex))
5897 goto out;
5898
5899 /*
5900 * at this point we have a head with no other entries. Go
5901 * ahead and process it.
5902 */
5903 head->node.in_tree = 0;
5904 rb_erase(&head->node.rb_node, &delayed_refs->root);
5905
5906 delayed_refs->num_entries--;
5907
5908 /*
5909 * we don't take a ref on the node because we're removing it from the
5910 * tree, so we just steal the ref the tree was holding.
5911 */
5912 delayed_refs->num_heads--;
5913 if (list_empty(&head->cluster))
5914 delayed_refs->num_heads_ready--;
5915
5916 list_del_init(&head->cluster);
5917 spin_unlock(&delayed_refs->lock);
5918
5919 BUG_ON(head->extent_op);
5920 if (head->must_insert_reserved)
5921 ret = 1;
5922
5923 mutex_unlock(&head->mutex);
5924 btrfs_put_delayed_ref(&head->node);
5925 return ret;
5926 out:
5927 spin_unlock(&delayed_refs->lock);
5928 return 0;
5929 }
5930
5931 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5932 struct btrfs_root *root,
5933 struct extent_buffer *buf,
5934 u64 parent, int last_ref)
5935 {
5936 struct btrfs_block_group_cache *cache = NULL;
5937 int pin = 1;
5938 int ret;
5939
5940 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5941 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5942 buf->start, buf->len,
5943 parent, root->root_key.objectid,
5944 btrfs_header_level(buf),
5945 BTRFS_DROP_DELAYED_REF, NULL, 0);
5946 BUG_ON(ret); /* -ENOMEM */
5947 }
5948
5949 if (!last_ref)
5950 return;
5951
5952 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5953
5954 if (btrfs_header_generation(buf) == trans->transid) {
5955 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5956 ret = check_ref_cleanup(trans, root, buf->start);
5957 if (!ret)
5958 goto out;
5959 }
5960
5961 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5962 pin_down_extent(root, cache, buf->start, buf->len, 1);
5963 goto out;
5964 }
5965
5966 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5967
5968 btrfs_add_free_space(cache, buf->start, buf->len);
5969 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5970 pin = 0;
5971 }
5972 out:
5973 if (pin)
5974 add_pinned_bytes(root->fs_info, buf->len,
5975 btrfs_header_level(buf),
5976 root->root_key.objectid);
5977
5978 /*
5979 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5980 * anymore.
5981 */
5982 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5983 btrfs_put_block_group(cache);
5984 }
5985
5986 /* Can return -ENOMEM */
5987 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5988 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5989 u64 owner, u64 offset, int for_cow)
5990 {
5991 int ret;
5992 struct btrfs_fs_info *fs_info = root->fs_info;
5993
5994 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
5995
5996 /*
5997 * tree log blocks never actually go into the extent allocation
5998 * tree, just update pinning info and exit early.
5999 */
6000 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6001 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6002 /* unlocks the pinned mutex */
6003 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6004 ret = 0;
6005 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6006 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6007 num_bytes,
6008 parent, root_objectid, (int)owner,
6009 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6010 } else {
6011 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6012 num_bytes,
6013 parent, root_objectid, owner,
6014 offset, BTRFS_DROP_DELAYED_REF,
6015 NULL, for_cow);
6016 }
6017 return ret;
6018 }
6019
6020 static u64 stripe_align(struct btrfs_root *root,
6021 struct btrfs_block_group_cache *cache,
6022 u64 val, u64 num_bytes)
6023 {
6024 u64 ret = ALIGN(val, root->stripesize);
6025 return ret;
6026 }
6027
6028 /*
6029 * when we wait for progress in the block group caching, its because
6030 * our allocation attempt failed at least once. So, we must sleep
6031 * and let some progress happen before we try again.
6032 *
6033 * This function will sleep at least once waiting for new free space to
6034 * show up, and then it will check the block group free space numbers
6035 * for our min num_bytes. Another option is to have it go ahead
6036 * and look in the rbtree for a free extent of a given size, but this
6037 * is a good start.
6038 *
6039 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6040 * any of the information in this block group.
6041 */
6042 static noinline void
6043 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6044 u64 num_bytes)
6045 {
6046 struct btrfs_caching_control *caching_ctl;
6047
6048 caching_ctl = get_caching_control(cache);
6049 if (!caching_ctl)
6050 return;
6051
6052 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6053 (cache->free_space_ctl->free_space >= num_bytes));
6054
6055 put_caching_control(caching_ctl);
6056 }
6057
6058 static noinline int
6059 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6060 {
6061 struct btrfs_caching_control *caching_ctl;
6062 int ret = 0;
6063
6064 caching_ctl = get_caching_control(cache);
6065 if (!caching_ctl)
6066 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6067
6068 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6069 if (cache->cached == BTRFS_CACHE_ERROR)
6070 ret = -EIO;
6071 put_caching_control(caching_ctl);
6072 return ret;
6073 }
6074
6075 int __get_raid_index(u64 flags)
6076 {
6077 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6078 return BTRFS_RAID_RAID10;
6079 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6080 return BTRFS_RAID_RAID1;
6081 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6082 return BTRFS_RAID_DUP;
6083 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6084 return BTRFS_RAID_RAID0;
6085 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6086 return BTRFS_RAID_RAID5;
6087 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6088 return BTRFS_RAID_RAID6;
6089
6090 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6091 }
6092
6093 static int get_block_group_index(struct btrfs_block_group_cache *cache)
6094 {
6095 return __get_raid_index(cache->flags);
6096 }
6097
6098 enum btrfs_loop_type {
6099 LOOP_CACHING_NOWAIT = 0,
6100 LOOP_CACHING_WAIT = 1,
6101 LOOP_ALLOC_CHUNK = 2,
6102 LOOP_NO_EMPTY_SIZE = 3,
6103 };
6104
6105 /*
6106 * walks the btree of allocated extents and find a hole of a given size.
6107 * The key ins is changed to record the hole:
6108 * ins->objectid == start position
6109 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6110 * ins->offset == the size of the hole.
6111 * Any available blocks before search_start are skipped.
6112 *
6113 * If there is no suitable free space, we will record the max size of
6114 * the free space extent currently.
6115 */
6116 static noinline int find_free_extent(struct btrfs_root *orig_root,
6117 u64 num_bytes, u64 empty_size,
6118 u64 hint_byte, struct btrfs_key *ins,
6119 u64 flags)
6120 {
6121 int ret = 0;
6122 struct btrfs_root *root = orig_root->fs_info->extent_root;
6123 struct btrfs_free_cluster *last_ptr = NULL;
6124 struct btrfs_block_group_cache *block_group = NULL;
6125 struct btrfs_block_group_cache *used_block_group;
6126 u64 search_start = 0;
6127 u64 max_extent_size = 0;
6128 int empty_cluster = 2 * 1024 * 1024;
6129 struct btrfs_space_info *space_info;
6130 int loop = 0;
6131 int index = __get_raid_index(flags);
6132 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6133 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6134 bool found_uncached_bg = false;
6135 bool failed_cluster_refill = false;
6136 bool failed_alloc = false;
6137 bool use_cluster = true;
6138 bool have_caching_bg = false;
6139
6140 WARN_ON(num_bytes < root->sectorsize);
6141 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6142 ins->objectid = 0;
6143 ins->offset = 0;
6144
6145 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6146
6147 space_info = __find_space_info(root->fs_info, flags);
6148 if (!space_info) {
6149 btrfs_err(root->fs_info, "No space info for %llu", flags);
6150 return -ENOSPC;
6151 }
6152
6153 /*
6154 * If the space info is for both data and metadata it means we have a
6155 * small filesystem and we can't use the clustering stuff.
6156 */
6157 if (btrfs_mixed_space_info(space_info))
6158 use_cluster = false;
6159
6160 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6161 last_ptr = &root->fs_info->meta_alloc_cluster;
6162 if (!btrfs_test_opt(root, SSD))
6163 empty_cluster = 64 * 1024;
6164 }
6165
6166 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6167 btrfs_test_opt(root, SSD)) {
6168 last_ptr = &root->fs_info->data_alloc_cluster;
6169 }
6170
6171 if (last_ptr) {
6172 spin_lock(&last_ptr->lock);
6173 if (last_ptr->block_group)
6174 hint_byte = last_ptr->window_start;
6175 spin_unlock(&last_ptr->lock);
6176 }
6177
6178 search_start = max(search_start, first_logical_byte(root, 0));
6179 search_start = max(search_start, hint_byte);
6180
6181 if (!last_ptr)
6182 empty_cluster = 0;
6183
6184 if (search_start == hint_byte) {
6185 block_group = btrfs_lookup_block_group(root->fs_info,
6186 search_start);
6187 used_block_group = block_group;
6188 /*
6189 * we don't want to use the block group if it doesn't match our
6190 * allocation bits, or if its not cached.
6191 *
6192 * However if we are re-searching with an ideal block group
6193 * picked out then we don't care that the block group is cached.
6194 */
6195 if (block_group && block_group_bits(block_group, flags) &&
6196 block_group->cached != BTRFS_CACHE_NO) {
6197 down_read(&space_info->groups_sem);
6198 if (list_empty(&block_group->list) ||
6199 block_group->ro) {
6200 /*
6201 * someone is removing this block group,
6202 * we can't jump into the have_block_group
6203 * target because our list pointers are not
6204 * valid
6205 */
6206 btrfs_put_block_group(block_group);
6207 up_read(&space_info->groups_sem);
6208 } else {
6209 index = get_block_group_index(block_group);
6210 goto have_block_group;
6211 }
6212 } else if (block_group) {
6213 btrfs_put_block_group(block_group);
6214 }
6215 }
6216 search:
6217 have_caching_bg = false;
6218 down_read(&space_info->groups_sem);
6219 list_for_each_entry(block_group, &space_info->block_groups[index],
6220 list) {
6221 u64 offset;
6222 int cached;
6223
6224 used_block_group = block_group;
6225 btrfs_get_block_group(block_group);
6226 search_start = block_group->key.objectid;
6227
6228 /*
6229 * this can happen if we end up cycling through all the
6230 * raid types, but we want to make sure we only allocate
6231 * for the proper type.
6232 */
6233 if (!block_group_bits(block_group, flags)) {
6234 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6235 BTRFS_BLOCK_GROUP_RAID1 |
6236 BTRFS_BLOCK_GROUP_RAID5 |
6237 BTRFS_BLOCK_GROUP_RAID6 |
6238 BTRFS_BLOCK_GROUP_RAID10;
6239
6240 /*
6241 * if they asked for extra copies and this block group
6242 * doesn't provide them, bail. This does allow us to
6243 * fill raid0 from raid1.
6244 */
6245 if ((flags & extra) && !(block_group->flags & extra))
6246 goto loop;
6247 }
6248
6249 have_block_group:
6250 cached = block_group_cache_done(block_group);
6251 if (unlikely(!cached)) {
6252 found_uncached_bg = true;
6253 ret = cache_block_group(block_group, 0);
6254 BUG_ON(ret < 0);
6255 ret = 0;
6256 }
6257
6258 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6259 goto loop;
6260 if (unlikely(block_group->ro))
6261 goto loop;
6262
6263 /*
6264 * Ok we want to try and use the cluster allocator, so
6265 * lets look there
6266 */
6267 if (last_ptr) {
6268 unsigned long aligned_cluster;
6269 /*
6270 * the refill lock keeps out other
6271 * people trying to start a new cluster
6272 */
6273 spin_lock(&last_ptr->refill_lock);
6274 used_block_group = last_ptr->block_group;
6275 if (used_block_group != block_group &&
6276 (!used_block_group ||
6277 used_block_group->ro ||
6278 !block_group_bits(used_block_group, flags))) {
6279 used_block_group = block_group;
6280 goto refill_cluster;
6281 }
6282
6283 if (used_block_group != block_group)
6284 btrfs_get_block_group(used_block_group);
6285
6286 offset = btrfs_alloc_from_cluster(used_block_group,
6287 last_ptr,
6288 num_bytes,
6289 used_block_group->key.objectid,
6290 &max_extent_size);
6291 if (offset) {
6292 /* we have a block, we're done */
6293 spin_unlock(&last_ptr->refill_lock);
6294 trace_btrfs_reserve_extent_cluster(root,
6295 block_group, search_start, num_bytes);
6296 goto checks;
6297 }
6298
6299 WARN_ON(last_ptr->block_group != used_block_group);
6300 if (used_block_group != block_group) {
6301 btrfs_put_block_group(used_block_group);
6302 used_block_group = block_group;
6303 }
6304 refill_cluster:
6305 BUG_ON(used_block_group != block_group);
6306 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6307 * set up a new clusters, so lets just skip it
6308 * and let the allocator find whatever block
6309 * it can find. If we reach this point, we
6310 * will have tried the cluster allocator
6311 * plenty of times and not have found
6312 * anything, so we are likely way too
6313 * fragmented for the clustering stuff to find
6314 * anything.
6315 *
6316 * However, if the cluster is taken from the
6317 * current block group, release the cluster
6318 * first, so that we stand a better chance of
6319 * succeeding in the unclustered
6320 * allocation. */
6321 if (loop >= LOOP_NO_EMPTY_SIZE &&
6322 last_ptr->block_group != block_group) {
6323 spin_unlock(&last_ptr->refill_lock);
6324 goto unclustered_alloc;
6325 }
6326
6327 /*
6328 * this cluster didn't work out, free it and
6329 * start over
6330 */
6331 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6332
6333 if (loop >= LOOP_NO_EMPTY_SIZE) {
6334 spin_unlock(&last_ptr->refill_lock);
6335 goto unclustered_alloc;
6336 }
6337
6338 aligned_cluster = max_t(unsigned long,
6339 empty_cluster + empty_size,
6340 block_group->full_stripe_len);
6341
6342 /* allocate a cluster in this block group */
6343 ret = btrfs_find_space_cluster(root, block_group,
6344 last_ptr, search_start,
6345 num_bytes,
6346 aligned_cluster);
6347 if (ret == 0) {
6348 /*
6349 * now pull our allocation out of this
6350 * cluster
6351 */
6352 offset = btrfs_alloc_from_cluster(block_group,
6353 last_ptr,
6354 num_bytes,
6355 search_start,
6356 &max_extent_size);
6357 if (offset) {
6358 /* we found one, proceed */
6359 spin_unlock(&last_ptr->refill_lock);
6360 trace_btrfs_reserve_extent_cluster(root,
6361 block_group, search_start,
6362 num_bytes);
6363 goto checks;
6364 }
6365 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6366 && !failed_cluster_refill) {
6367 spin_unlock(&last_ptr->refill_lock);
6368
6369 failed_cluster_refill = true;
6370 wait_block_group_cache_progress(block_group,
6371 num_bytes + empty_cluster + empty_size);
6372 goto have_block_group;
6373 }
6374
6375 /*
6376 * at this point we either didn't find a cluster
6377 * or we weren't able to allocate a block from our
6378 * cluster. Free the cluster we've been trying
6379 * to use, and go to the next block group
6380 */
6381 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6382 spin_unlock(&last_ptr->refill_lock);
6383 goto loop;
6384 }
6385
6386 unclustered_alloc:
6387 spin_lock(&block_group->free_space_ctl->tree_lock);
6388 if (cached &&
6389 block_group->free_space_ctl->free_space <
6390 num_bytes + empty_cluster + empty_size) {
6391 if (block_group->free_space_ctl->free_space >
6392 max_extent_size)
6393 max_extent_size =
6394 block_group->free_space_ctl->free_space;
6395 spin_unlock(&block_group->free_space_ctl->tree_lock);
6396 goto loop;
6397 }
6398 spin_unlock(&block_group->free_space_ctl->tree_lock);
6399
6400 offset = btrfs_find_space_for_alloc(block_group, search_start,
6401 num_bytes, empty_size,
6402 &max_extent_size);
6403 /*
6404 * If we didn't find a chunk, and we haven't failed on this
6405 * block group before, and this block group is in the middle of
6406 * caching and we are ok with waiting, then go ahead and wait
6407 * for progress to be made, and set failed_alloc to true.
6408 *
6409 * If failed_alloc is true then we've already waited on this
6410 * block group once and should move on to the next block group.
6411 */
6412 if (!offset && !failed_alloc && !cached &&
6413 loop > LOOP_CACHING_NOWAIT) {
6414 wait_block_group_cache_progress(block_group,
6415 num_bytes + empty_size);
6416 failed_alloc = true;
6417 goto have_block_group;
6418 } else if (!offset) {
6419 if (!cached)
6420 have_caching_bg = true;
6421 goto loop;
6422 }
6423 checks:
6424 search_start = stripe_align(root, used_block_group,
6425 offset, num_bytes);
6426
6427 /* move on to the next group */
6428 if (search_start + num_bytes >
6429 used_block_group->key.objectid + used_block_group->key.offset) {
6430 btrfs_add_free_space(used_block_group, offset, num_bytes);
6431 goto loop;
6432 }
6433
6434 if (offset < search_start)
6435 btrfs_add_free_space(used_block_group, offset,
6436 search_start - offset);
6437 BUG_ON(offset > search_start);
6438
6439 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6440 alloc_type);
6441 if (ret == -EAGAIN) {
6442 btrfs_add_free_space(used_block_group, offset, num_bytes);
6443 goto loop;
6444 }
6445
6446 /* we are all good, lets return */
6447 ins->objectid = search_start;
6448 ins->offset = num_bytes;
6449
6450 trace_btrfs_reserve_extent(orig_root, block_group,
6451 search_start, num_bytes);
6452 if (used_block_group != block_group)
6453 btrfs_put_block_group(used_block_group);
6454 btrfs_put_block_group(block_group);
6455 break;
6456 loop:
6457 failed_cluster_refill = false;
6458 failed_alloc = false;
6459 BUG_ON(index != get_block_group_index(block_group));
6460 if (used_block_group != block_group)
6461 btrfs_put_block_group(used_block_group);
6462 btrfs_put_block_group(block_group);
6463 }
6464 up_read(&space_info->groups_sem);
6465
6466 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6467 goto search;
6468
6469 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6470 goto search;
6471
6472 /*
6473 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6474 * caching kthreads as we move along
6475 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6476 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6477 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6478 * again
6479 */
6480 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6481 index = 0;
6482 loop++;
6483 if (loop == LOOP_ALLOC_CHUNK) {
6484 struct btrfs_trans_handle *trans;
6485
6486 trans = btrfs_join_transaction(root);
6487 if (IS_ERR(trans)) {
6488 ret = PTR_ERR(trans);
6489 goto out;
6490 }
6491
6492 ret = do_chunk_alloc(trans, root, flags,
6493 CHUNK_ALLOC_FORCE);
6494 /*
6495 * Do not bail out on ENOSPC since we
6496 * can do more things.
6497 */
6498 if (ret < 0 && ret != -ENOSPC)
6499 btrfs_abort_transaction(trans,
6500 root, ret);
6501 else
6502 ret = 0;
6503 btrfs_end_transaction(trans, root);
6504 if (ret)
6505 goto out;
6506 }
6507
6508 if (loop == LOOP_NO_EMPTY_SIZE) {
6509 empty_size = 0;
6510 empty_cluster = 0;
6511 }
6512
6513 goto search;
6514 } else if (!ins->objectid) {
6515 ret = -ENOSPC;
6516 } else if (ins->objectid) {
6517 ret = 0;
6518 }
6519 out:
6520 if (ret == -ENOSPC)
6521 ins->offset = max_extent_size;
6522 return ret;
6523 }
6524
6525 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6526 int dump_block_groups)
6527 {
6528 struct btrfs_block_group_cache *cache;
6529 int index = 0;
6530
6531 spin_lock(&info->lock);
6532 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6533 info->flags,
6534 info->total_bytes - info->bytes_used - info->bytes_pinned -
6535 info->bytes_reserved - info->bytes_readonly,
6536 (info->full) ? "" : "not ");
6537 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6538 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6539 info->total_bytes, info->bytes_used, info->bytes_pinned,
6540 info->bytes_reserved, info->bytes_may_use,
6541 info->bytes_readonly);
6542 spin_unlock(&info->lock);
6543
6544 if (!dump_block_groups)
6545 return;
6546
6547 down_read(&info->groups_sem);
6548 again:
6549 list_for_each_entry(cache, &info->block_groups[index], list) {
6550 spin_lock(&cache->lock);
6551 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6552 cache->key.objectid, cache->key.offset,
6553 btrfs_block_group_used(&cache->item), cache->pinned,
6554 cache->reserved, cache->ro ? "[readonly]" : "");
6555 btrfs_dump_free_space(cache, bytes);
6556 spin_unlock(&cache->lock);
6557 }
6558 if (++index < BTRFS_NR_RAID_TYPES)
6559 goto again;
6560 up_read(&info->groups_sem);
6561 }
6562
6563 int btrfs_reserve_extent(struct btrfs_root *root,
6564 u64 num_bytes, u64 min_alloc_size,
6565 u64 empty_size, u64 hint_byte,
6566 struct btrfs_key *ins, int is_data)
6567 {
6568 bool final_tried = false;
6569 u64 flags;
6570 int ret;
6571
6572 flags = btrfs_get_alloc_profile(root, is_data);
6573 again:
6574 WARN_ON(num_bytes < root->sectorsize);
6575 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6576 flags);
6577
6578 if (ret == -ENOSPC) {
6579 if (!final_tried && ins->offset) {
6580 num_bytes = min(num_bytes >> 1, ins->offset);
6581 num_bytes = round_down(num_bytes, root->sectorsize);
6582 num_bytes = max(num_bytes, min_alloc_size);
6583 if (num_bytes == min_alloc_size)
6584 final_tried = true;
6585 goto again;
6586 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6587 struct btrfs_space_info *sinfo;
6588
6589 sinfo = __find_space_info(root->fs_info, flags);
6590 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6591 flags, num_bytes);
6592 if (sinfo)
6593 dump_space_info(sinfo, num_bytes, 1);
6594 }
6595 }
6596
6597 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6598
6599 return ret;
6600 }
6601
6602 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6603 u64 start, u64 len, int pin)
6604 {
6605 struct btrfs_block_group_cache *cache;
6606 int ret = 0;
6607
6608 cache = btrfs_lookup_block_group(root->fs_info, start);
6609 if (!cache) {
6610 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6611 start);
6612 return -ENOSPC;
6613 }
6614
6615 if (btrfs_test_opt(root, DISCARD))
6616 ret = btrfs_discard_extent(root, start, len, NULL);
6617
6618 if (pin)
6619 pin_down_extent(root, cache, start, len, 1);
6620 else {
6621 btrfs_add_free_space(cache, start, len);
6622 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6623 }
6624 btrfs_put_block_group(cache);
6625
6626 trace_btrfs_reserved_extent_free(root, start, len);
6627
6628 return ret;
6629 }
6630
6631 int btrfs_free_reserved_extent(struct btrfs_root *root,
6632 u64 start, u64 len)
6633 {
6634 return __btrfs_free_reserved_extent(root, start, len, 0);
6635 }
6636
6637 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6638 u64 start, u64 len)
6639 {
6640 return __btrfs_free_reserved_extent(root, start, len, 1);
6641 }
6642
6643 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6644 struct btrfs_root *root,
6645 u64 parent, u64 root_objectid,
6646 u64 flags, u64 owner, u64 offset,
6647 struct btrfs_key *ins, int ref_mod)
6648 {
6649 int ret;
6650 struct btrfs_fs_info *fs_info = root->fs_info;
6651 struct btrfs_extent_item *extent_item;
6652 struct btrfs_extent_inline_ref *iref;
6653 struct btrfs_path *path;
6654 struct extent_buffer *leaf;
6655 int type;
6656 u32 size;
6657
6658 if (parent > 0)
6659 type = BTRFS_SHARED_DATA_REF_KEY;
6660 else
6661 type = BTRFS_EXTENT_DATA_REF_KEY;
6662
6663 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6664
6665 path = btrfs_alloc_path();
6666 if (!path)
6667 return -ENOMEM;
6668
6669 path->leave_spinning = 1;
6670 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6671 ins, size);
6672 if (ret) {
6673 btrfs_free_path(path);
6674 return ret;
6675 }
6676
6677 leaf = path->nodes[0];
6678 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6679 struct btrfs_extent_item);
6680 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6681 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6682 btrfs_set_extent_flags(leaf, extent_item,
6683 flags | BTRFS_EXTENT_FLAG_DATA);
6684
6685 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6686 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6687 if (parent > 0) {
6688 struct btrfs_shared_data_ref *ref;
6689 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6690 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6691 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6692 } else {
6693 struct btrfs_extent_data_ref *ref;
6694 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6695 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6696 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6697 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6698 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6699 }
6700
6701 btrfs_mark_buffer_dirty(path->nodes[0]);
6702 btrfs_free_path(path);
6703
6704 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6705 if (ret) { /* -ENOENT, logic error */
6706 btrfs_err(fs_info, "update block group failed for %llu %llu",
6707 ins->objectid, ins->offset);
6708 BUG();
6709 }
6710 return ret;
6711 }
6712
6713 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6714 struct btrfs_root *root,
6715 u64 parent, u64 root_objectid,
6716 u64 flags, struct btrfs_disk_key *key,
6717 int level, struct btrfs_key *ins)
6718 {
6719 int ret;
6720 struct btrfs_fs_info *fs_info = root->fs_info;
6721 struct btrfs_extent_item *extent_item;
6722 struct btrfs_tree_block_info *block_info;
6723 struct btrfs_extent_inline_ref *iref;
6724 struct btrfs_path *path;
6725 struct extent_buffer *leaf;
6726 u32 size = sizeof(*extent_item) + sizeof(*iref);
6727 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6728 SKINNY_METADATA);
6729
6730 if (!skinny_metadata)
6731 size += sizeof(*block_info);
6732
6733 path = btrfs_alloc_path();
6734 if (!path)
6735 return -ENOMEM;
6736
6737 path->leave_spinning = 1;
6738 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6739 ins, size);
6740 if (ret) {
6741 btrfs_free_path(path);
6742 return ret;
6743 }
6744
6745 leaf = path->nodes[0];
6746 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6747 struct btrfs_extent_item);
6748 btrfs_set_extent_refs(leaf, extent_item, 1);
6749 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6750 btrfs_set_extent_flags(leaf, extent_item,
6751 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6752
6753 if (skinny_metadata) {
6754 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6755 } else {
6756 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6757 btrfs_set_tree_block_key(leaf, block_info, key);
6758 btrfs_set_tree_block_level(leaf, block_info, level);
6759 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6760 }
6761
6762 if (parent > 0) {
6763 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6764 btrfs_set_extent_inline_ref_type(leaf, iref,
6765 BTRFS_SHARED_BLOCK_REF_KEY);
6766 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6767 } else {
6768 btrfs_set_extent_inline_ref_type(leaf, iref,
6769 BTRFS_TREE_BLOCK_REF_KEY);
6770 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6771 }
6772
6773 btrfs_mark_buffer_dirty(leaf);
6774 btrfs_free_path(path);
6775
6776 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6777 if (ret) { /* -ENOENT, logic error */
6778 btrfs_err(fs_info, "update block group failed for %llu %llu",
6779 ins->objectid, ins->offset);
6780 BUG();
6781 }
6782 return ret;
6783 }
6784
6785 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6786 struct btrfs_root *root,
6787 u64 root_objectid, u64 owner,
6788 u64 offset, struct btrfs_key *ins)
6789 {
6790 int ret;
6791
6792 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6793
6794 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6795 ins->offset, 0,
6796 root_objectid, owner, offset,
6797 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6798 return ret;
6799 }
6800
6801 /*
6802 * this is used by the tree logging recovery code. It records that
6803 * an extent has been allocated and makes sure to clear the free
6804 * space cache bits as well
6805 */
6806 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6807 struct btrfs_root *root,
6808 u64 root_objectid, u64 owner, u64 offset,
6809 struct btrfs_key *ins)
6810 {
6811 int ret;
6812 struct btrfs_block_group_cache *block_group;
6813
6814 /*
6815 * Mixed block groups will exclude before processing the log so we only
6816 * need to do the exlude dance if this fs isn't mixed.
6817 */
6818 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6819 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6820 if (ret)
6821 return ret;
6822 }
6823
6824 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6825 if (!block_group)
6826 return -EINVAL;
6827
6828 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6829 RESERVE_ALLOC_NO_ACCOUNT);
6830 BUG_ON(ret); /* logic error */
6831 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6832 0, owner, offset, ins, 1);
6833 btrfs_put_block_group(block_group);
6834 return ret;
6835 }
6836
6837 static struct extent_buffer *
6838 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6839 u64 bytenr, u32 blocksize, int level)
6840 {
6841 struct extent_buffer *buf;
6842
6843 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6844 if (!buf)
6845 return ERR_PTR(-ENOMEM);
6846 btrfs_set_header_generation(buf, trans->transid);
6847 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6848 btrfs_tree_lock(buf);
6849 clean_tree_block(trans, root, buf);
6850 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6851
6852 btrfs_set_lock_blocking(buf);
6853 btrfs_set_buffer_uptodate(buf);
6854
6855 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6856 /*
6857 * we allow two log transactions at a time, use different
6858 * EXENT bit to differentiate dirty pages.
6859 */
6860 if (root->log_transid % 2 == 0)
6861 set_extent_dirty(&root->dirty_log_pages, buf->start,
6862 buf->start + buf->len - 1, GFP_NOFS);
6863 else
6864 set_extent_new(&root->dirty_log_pages, buf->start,
6865 buf->start + buf->len - 1, GFP_NOFS);
6866 } else {
6867 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6868 buf->start + buf->len - 1, GFP_NOFS);
6869 }
6870 trans->blocks_used++;
6871 /* this returns a buffer locked for blocking */
6872 return buf;
6873 }
6874
6875 static struct btrfs_block_rsv *
6876 use_block_rsv(struct btrfs_trans_handle *trans,
6877 struct btrfs_root *root, u32 blocksize)
6878 {
6879 struct btrfs_block_rsv *block_rsv;
6880 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6881 int ret;
6882 bool global_updated = false;
6883
6884 block_rsv = get_block_rsv(trans, root);
6885
6886 if (unlikely(block_rsv->size == 0))
6887 goto try_reserve;
6888 again:
6889 ret = block_rsv_use_bytes(block_rsv, blocksize);
6890 if (!ret)
6891 return block_rsv;
6892
6893 if (block_rsv->failfast)
6894 return ERR_PTR(ret);
6895
6896 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6897 global_updated = true;
6898 update_global_block_rsv(root->fs_info);
6899 goto again;
6900 }
6901
6902 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6903 static DEFINE_RATELIMIT_STATE(_rs,
6904 DEFAULT_RATELIMIT_INTERVAL * 10,
6905 /*DEFAULT_RATELIMIT_BURST*/ 1);
6906 if (__ratelimit(&_rs))
6907 WARN(1, KERN_DEBUG
6908 "btrfs: block rsv returned %d\n", ret);
6909 }
6910 try_reserve:
6911 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6912 BTRFS_RESERVE_NO_FLUSH);
6913 if (!ret)
6914 return block_rsv;
6915 /*
6916 * If we couldn't reserve metadata bytes try and use some from
6917 * the global reserve if its space type is the same as the global
6918 * reservation.
6919 */
6920 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6921 block_rsv->space_info == global_rsv->space_info) {
6922 ret = block_rsv_use_bytes(global_rsv, blocksize);
6923 if (!ret)
6924 return global_rsv;
6925 }
6926 return ERR_PTR(ret);
6927 }
6928
6929 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6930 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6931 {
6932 block_rsv_add_bytes(block_rsv, blocksize, 0);
6933 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6934 }
6935
6936 /*
6937 * finds a free extent and does all the dirty work required for allocation
6938 * returns the key for the extent through ins, and a tree buffer for
6939 * the first block of the extent through buf.
6940 *
6941 * returns the tree buffer or NULL.
6942 */
6943 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6944 struct btrfs_root *root, u32 blocksize,
6945 u64 parent, u64 root_objectid,
6946 struct btrfs_disk_key *key, int level,
6947 u64 hint, u64 empty_size)
6948 {
6949 struct btrfs_key ins;
6950 struct btrfs_block_rsv *block_rsv;
6951 struct extent_buffer *buf;
6952 u64 flags = 0;
6953 int ret;
6954 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6955 SKINNY_METADATA);
6956
6957 block_rsv = use_block_rsv(trans, root, blocksize);
6958 if (IS_ERR(block_rsv))
6959 return ERR_CAST(block_rsv);
6960
6961 ret = btrfs_reserve_extent(root, blocksize, blocksize,
6962 empty_size, hint, &ins, 0);
6963 if (ret) {
6964 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6965 return ERR_PTR(ret);
6966 }
6967
6968 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6969 blocksize, level);
6970 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6971
6972 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6973 if (parent == 0)
6974 parent = ins.objectid;
6975 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6976 } else
6977 BUG_ON(parent > 0);
6978
6979 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6980 struct btrfs_delayed_extent_op *extent_op;
6981 extent_op = btrfs_alloc_delayed_extent_op();
6982 BUG_ON(!extent_op); /* -ENOMEM */
6983 if (key)
6984 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6985 else
6986 memset(&extent_op->key, 0, sizeof(extent_op->key));
6987 extent_op->flags_to_set = flags;
6988 if (skinny_metadata)
6989 extent_op->update_key = 0;
6990 else
6991 extent_op->update_key = 1;
6992 extent_op->update_flags = 1;
6993 extent_op->is_data = 0;
6994 extent_op->level = level;
6995
6996 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6997 ins.objectid,
6998 ins.offset, parent, root_objectid,
6999 level, BTRFS_ADD_DELAYED_EXTENT,
7000 extent_op, 0);
7001 BUG_ON(ret); /* -ENOMEM */
7002 }
7003 return buf;
7004 }
7005
7006 struct walk_control {
7007 u64 refs[BTRFS_MAX_LEVEL];
7008 u64 flags[BTRFS_MAX_LEVEL];
7009 struct btrfs_key update_progress;
7010 int stage;
7011 int level;
7012 int shared_level;
7013 int update_ref;
7014 int keep_locks;
7015 int reada_slot;
7016 int reada_count;
7017 int for_reloc;
7018 };
7019
7020 #define DROP_REFERENCE 1
7021 #define UPDATE_BACKREF 2
7022
7023 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7024 struct btrfs_root *root,
7025 struct walk_control *wc,
7026 struct btrfs_path *path)
7027 {
7028 u64 bytenr;
7029 u64 generation;
7030 u64 refs;
7031 u64 flags;
7032 u32 nritems;
7033 u32 blocksize;
7034 struct btrfs_key key;
7035 struct extent_buffer *eb;
7036 int ret;
7037 int slot;
7038 int nread = 0;
7039
7040 if (path->slots[wc->level] < wc->reada_slot) {
7041 wc->reada_count = wc->reada_count * 2 / 3;
7042 wc->reada_count = max(wc->reada_count, 2);
7043 } else {
7044 wc->reada_count = wc->reada_count * 3 / 2;
7045 wc->reada_count = min_t(int, wc->reada_count,
7046 BTRFS_NODEPTRS_PER_BLOCK(root));
7047 }
7048
7049 eb = path->nodes[wc->level];
7050 nritems = btrfs_header_nritems(eb);
7051 blocksize = btrfs_level_size(root, wc->level - 1);
7052
7053 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7054 if (nread >= wc->reada_count)
7055 break;
7056
7057 cond_resched();
7058 bytenr = btrfs_node_blockptr(eb, slot);
7059 generation = btrfs_node_ptr_generation(eb, slot);
7060
7061 if (slot == path->slots[wc->level])
7062 goto reada;
7063
7064 if (wc->stage == UPDATE_BACKREF &&
7065 generation <= root->root_key.offset)
7066 continue;
7067
7068 /* We don't lock the tree block, it's OK to be racy here */
7069 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7070 wc->level - 1, 1, &refs,
7071 &flags);
7072 /* We don't care about errors in readahead. */
7073 if (ret < 0)
7074 continue;
7075 BUG_ON(refs == 0);
7076
7077 if (wc->stage == DROP_REFERENCE) {
7078 if (refs == 1)
7079 goto reada;
7080
7081 if (wc->level == 1 &&
7082 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7083 continue;
7084 if (!wc->update_ref ||
7085 generation <= root->root_key.offset)
7086 continue;
7087 btrfs_node_key_to_cpu(eb, &key, slot);
7088 ret = btrfs_comp_cpu_keys(&key,
7089 &wc->update_progress);
7090 if (ret < 0)
7091 continue;
7092 } else {
7093 if (wc->level == 1 &&
7094 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7095 continue;
7096 }
7097 reada:
7098 ret = readahead_tree_block(root, bytenr, blocksize,
7099 generation);
7100 if (ret)
7101 break;
7102 nread++;
7103 }
7104 wc->reada_slot = slot;
7105 }
7106
7107 /*
7108 * helper to process tree block while walking down the tree.
7109 *
7110 * when wc->stage == UPDATE_BACKREF, this function updates
7111 * back refs for pointers in the block.
7112 *
7113 * NOTE: return value 1 means we should stop walking down.
7114 */
7115 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7116 struct btrfs_root *root,
7117 struct btrfs_path *path,
7118 struct walk_control *wc, int lookup_info)
7119 {
7120 int level = wc->level;
7121 struct extent_buffer *eb = path->nodes[level];
7122 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7123 int ret;
7124
7125 if (wc->stage == UPDATE_BACKREF &&
7126 btrfs_header_owner(eb) != root->root_key.objectid)
7127 return 1;
7128
7129 /*
7130 * when reference count of tree block is 1, it won't increase
7131 * again. once full backref flag is set, we never clear it.
7132 */
7133 if (lookup_info &&
7134 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7135 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7136 BUG_ON(!path->locks[level]);
7137 ret = btrfs_lookup_extent_info(trans, root,
7138 eb->start, level, 1,
7139 &wc->refs[level],
7140 &wc->flags[level]);
7141 BUG_ON(ret == -ENOMEM);
7142 if (ret)
7143 return ret;
7144 BUG_ON(wc->refs[level] == 0);
7145 }
7146
7147 if (wc->stage == DROP_REFERENCE) {
7148 if (wc->refs[level] > 1)
7149 return 1;
7150
7151 if (path->locks[level] && !wc->keep_locks) {
7152 btrfs_tree_unlock_rw(eb, path->locks[level]);
7153 path->locks[level] = 0;
7154 }
7155 return 0;
7156 }
7157
7158 /* wc->stage == UPDATE_BACKREF */
7159 if (!(wc->flags[level] & flag)) {
7160 BUG_ON(!path->locks[level]);
7161 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7162 BUG_ON(ret); /* -ENOMEM */
7163 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7164 BUG_ON(ret); /* -ENOMEM */
7165 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7166 eb->len, flag,
7167 btrfs_header_level(eb), 0);
7168 BUG_ON(ret); /* -ENOMEM */
7169 wc->flags[level] |= flag;
7170 }
7171
7172 /*
7173 * the block is shared by multiple trees, so it's not good to
7174 * keep the tree lock
7175 */
7176 if (path->locks[level] && level > 0) {
7177 btrfs_tree_unlock_rw(eb, path->locks[level]);
7178 path->locks[level] = 0;
7179 }
7180 return 0;
7181 }
7182
7183 /*
7184 * helper to process tree block pointer.
7185 *
7186 * when wc->stage == DROP_REFERENCE, this function checks
7187 * reference count of the block pointed to. if the block
7188 * is shared and we need update back refs for the subtree
7189 * rooted at the block, this function changes wc->stage to
7190 * UPDATE_BACKREF. if the block is shared and there is no
7191 * need to update back, this function drops the reference
7192 * to the block.
7193 *
7194 * NOTE: return value 1 means we should stop walking down.
7195 */
7196 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7197 struct btrfs_root *root,
7198 struct btrfs_path *path,
7199 struct walk_control *wc, int *lookup_info)
7200 {
7201 u64 bytenr;
7202 u64 generation;
7203 u64 parent;
7204 u32 blocksize;
7205 struct btrfs_key key;
7206 struct extent_buffer *next;
7207 int level = wc->level;
7208 int reada = 0;
7209 int ret = 0;
7210
7211 generation = btrfs_node_ptr_generation(path->nodes[level],
7212 path->slots[level]);
7213 /*
7214 * if the lower level block was created before the snapshot
7215 * was created, we know there is no need to update back refs
7216 * for the subtree
7217 */
7218 if (wc->stage == UPDATE_BACKREF &&
7219 generation <= root->root_key.offset) {
7220 *lookup_info = 1;
7221 return 1;
7222 }
7223
7224 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7225 blocksize = btrfs_level_size(root, level - 1);
7226
7227 next = btrfs_find_tree_block(root, bytenr, blocksize);
7228 if (!next) {
7229 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7230 if (!next)
7231 return -ENOMEM;
7232 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7233 level - 1);
7234 reada = 1;
7235 }
7236 btrfs_tree_lock(next);
7237 btrfs_set_lock_blocking(next);
7238
7239 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7240 &wc->refs[level - 1],
7241 &wc->flags[level - 1]);
7242 if (ret < 0) {
7243 btrfs_tree_unlock(next);
7244 return ret;
7245 }
7246
7247 if (unlikely(wc->refs[level - 1] == 0)) {
7248 btrfs_err(root->fs_info, "Missing references.");
7249 BUG();
7250 }
7251 *lookup_info = 0;
7252
7253 if (wc->stage == DROP_REFERENCE) {
7254 if (wc->refs[level - 1] > 1) {
7255 if (level == 1 &&
7256 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7257 goto skip;
7258
7259 if (!wc->update_ref ||
7260 generation <= root->root_key.offset)
7261 goto skip;
7262
7263 btrfs_node_key_to_cpu(path->nodes[level], &key,
7264 path->slots[level]);
7265 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7266 if (ret < 0)
7267 goto skip;
7268
7269 wc->stage = UPDATE_BACKREF;
7270 wc->shared_level = level - 1;
7271 }
7272 } else {
7273 if (level == 1 &&
7274 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7275 goto skip;
7276 }
7277
7278 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7279 btrfs_tree_unlock(next);
7280 free_extent_buffer(next);
7281 next = NULL;
7282 *lookup_info = 1;
7283 }
7284
7285 if (!next) {
7286 if (reada && level == 1)
7287 reada_walk_down(trans, root, wc, path);
7288 next = read_tree_block(root, bytenr, blocksize, generation);
7289 if (!next || !extent_buffer_uptodate(next)) {
7290 free_extent_buffer(next);
7291 return -EIO;
7292 }
7293 btrfs_tree_lock(next);
7294 btrfs_set_lock_blocking(next);
7295 }
7296
7297 level--;
7298 BUG_ON(level != btrfs_header_level(next));
7299 path->nodes[level] = next;
7300 path->slots[level] = 0;
7301 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7302 wc->level = level;
7303 if (wc->level == 1)
7304 wc->reada_slot = 0;
7305 return 0;
7306 skip:
7307 wc->refs[level - 1] = 0;
7308 wc->flags[level - 1] = 0;
7309 if (wc->stage == DROP_REFERENCE) {
7310 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7311 parent = path->nodes[level]->start;
7312 } else {
7313 BUG_ON(root->root_key.objectid !=
7314 btrfs_header_owner(path->nodes[level]));
7315 parent = 0;
7316 }
7317
7318 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7319 root->root_key.objectid, level - 1, 0, 0);
7320 BUG_ON(ret); /* -ENOMEM */
7321 }
7322 btrfs_tree_unlock(next);
7323 free_extent_buffer(next);
7324 *lookup_info = 1;
7325 return 1;
7326 }
7327
7328 /*
7329 * helper to process tree block while walking up the tree.
7330 *
7331 * when wc->stage == DROP_REFERENCE, this function drops
7332 * reference count on the block.
7333 *
7334 * when wc->stage == UPDATE_BACKREF, this function changes
7335 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7336 * to UPDATE_BACKREF previously while processing the block.
7337 *
7338 * NOTE: return value 1 means we should stop walking up.
7339 */
7340 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7341 struct btrfs_root *root,
7342 struct btrfs_path *path,
7343 struct walk_control *wc)
7344 {
7345 int ret;
7346 int level = wc->level;
7347 struct extent_buffer *eb = path->nodes[level];
7348 u64 parent = 0;
7349
7350 if (wc->stage == UPDATE_BACKREF) {
7351 BUG_ON(wc->shared_level < level);
7352 if (level < wc->shared_level)
7353 goto out;
7354
7355 ret = find_next_key(path, level + 1, &wc->update_progress);
7356 if (ret > 0)
7357 wc->update_ref = 0;
7358
7359 wc->stage = DROP_REFERENCE;
7360 wc->shared_level = -1;
7361 path->slots[level] = 0;
7362
7363 /*
7364 * check reference count again if the block isn't locked.
7365 * we should start walking down the tree again if reference
7366 * count is one.
7367 */
7368 if (!path->locks[level]) {
7369 BUG_ON(level == 0);
7370 btrfs_tree_lock(eb);
7371 btrfs_set_lock_blocking(eb);
7372 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7373
7374 ret = btrfs_lookup_extent_info(trans, root,
7375 eb->start, level, 1,
7376 &wc->refs[level],
7377 &wc->flags[level]);
7378 if (ret < 0) {
7379 btrfs_tree_unlock_rw(eb, path->locks[level]);
7380 path->locks[level] = 0;
7381 return ret;
7382 }
7383 BUG_ON(wc->refs[level] == 0);
7384 if (wc->refs[level] == 1) {
7385 btrfs_tree_unlock_rw(eb, path->locks[level]);
7386 path->locks[level] = 0;
7387 return 1;
7388 }
7389 }
7390 }
7391
7392 /* wc->stage == DROP_REFERENCE */
7393 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7394
7395 if (wc->refs[level] == 1) {
7396 if (level == 0) {
7397 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7398 ret = btrfs_dec_ref(trans, root, eb, 1,
7399 wc->for_reloc);
7400 else
7401 ret = btrfs_dec_ref(trans, root, eb, 0,
7402 wc->for_reloc);
7403 BUG_ON(ret); /* -ENOMEM */
7404 }
7405 /* make block locked assertion in clean_tree_block happy */
7406 if (!path->locks[level] &&
7407 btrfs_header_generation(eb) == trans->transid) {
7408 btrfs_tree_lock(eb);
7409 btrfs_set_lock_blocking(eb);
7410 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7411 }
7412 clean_tree_block(trans, root, eb);
7413 }
7414
7415 if (eb == root->node) {
7416 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7417 parent = eb->start;
7418 else
7419 BUG_ON(root->root_key.objectid !=
7420 btrfs_header_owner(eb));
7421 } else {
7422 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7423 parent = path->nodes[level + 1]->start;
7424 else
7425 BUG_ON(root->root_key.objectid !=
7426 btrfs_header_owner(path->nodes[level + 1]));
7427 }
7428
7429 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7430 out:
7431 wc->refs[level] = 0;
7432 wc->flags[level] = 0;
7433 return 0;
7434 }
7435
7436 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7437 struct btrfs_root *root,
7438 struct btrfs_path *path,
7439 struct walk_control *wc)
7440 {
7441 int level = wc->level;
7442 int lookup_info = 1;
7443 int ret;
7444
7445 while (level >= 0) {
7446 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7447 if (ret > 0)
7448 break;
7449
7450 if (level == 0)
7451 break;
7452
7453 if (path->slots[level] >=
7454 btrfs_header_nritems(path->nodes[level]))
7455 break;
7456
7457 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7458 if (ret > 0) {
7459 path->slots[level]++;
7460 continue;
7461 } else if (ret < 0)
7462 return ret;
7463 level = wc->level;
7464 }
7465 return 0;
7466 }
7467
7468 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7469 struct btrfs_root *root,
7470 struct btrfs_path *path,
7471 struct walk_control *wc, int max_level)
7472 {
7473 int level = wc->level;
7474 int ret;
7475
7476 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7477 while (level < max_level && path->nodes[level]) {
7478 wc->level = level;
7479 if (path->slots[level] + 1 <
7480 btrfs_header_nritems(path->nodes[level])) {
7481 path->slots[level]++;
7482 return 0;
7483 } else {
7484 ret = walk_up_proc(trans, root, path, wc);
7485 if (ret > 0)
7486 return 0;
7487
7488 if (path->locks[level]) {
7489 btrfs_tree_unlock_rw(path->nodes[level],
7490 path->locks[level]);
7491 path->locks[level] = 0;
7492 }
7493 free_extent_buffer(path->nodes[level]);
7494 path->nodes[level] = NULL;
7495 level++;
7496 }
7497 }
7498 return 1;
7499 }
7500
7501 /*
7502 * drop a subvolume tree.
7503 *
7504 * this function traverses the tree freeing any blocks that only
7505 * referenced by the tree.
7506 *
7507 * when a shared tree block is found. this function decreases its
7508 * reference count by one. if update_ref is true, this function
7509 * also make sure backrefs for the shared block and all lower level
7510 * blocks are properly updated.
7511 *
7512 * If called with for_reloc == 0, may exit early with -EAGAIN
7513 */
7514 int btrfs_drop_snapshot(struct btrfs_root *root,
7515 struct btrfs_block_rsv *block_rsv, int update_ref,
7516 int for_reloc)
7517 {
7518 struct btrfs_path *path;
7519 struct btrfs_trans_handle *trans;
7520 struct btrfs_root *tree_root = root->fs_info->tree_root;
7521 struct btrfs_root_item *root_item = &root->root_item;
7522 struct walk_control *wc;
7523 struct btrfs_key key;
7524 int err = 0;
7525 int ret;
7526 int level;
7527 bool root_dropped = false;
7528
7529 path = btrfs_alloc_path();
7530 if (!path) {
7531 err = -ENOMEM;
7532 goto out;
7533 }
7534
7535 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7536 if (!wc) {
7537 btrfs_free_path(path);
7538 err = -ENOMEM;
7539 goto out;
7540 }
7541
7542 trans = btrfs_start_transaction(tree_root, 0);
7543 if (IS_ERR(trans)) {
7544 err = PTR_ERR(trans);
7545 goto out_free;
7546 }
7547
7548 if (block_rsv)
7549 trans->block_rsv = block_rsv;
7550
7551 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7552 level = btrfs_header_level(root->node);
7553 path->nodes[level] = btrfs_lock_root_node(root);
7554 btrfs_set_lock_blocking(path->nodes[level]);
7555 path->slots[level] = 0;
7556 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7557 memset(&wc->update_progress, 0,
7558 sizeof(wc->update_progress));
7559 } else {
7560 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7561 memcpy(&wc->update_progress, &key,
7562 sizeof(wc->update_progress));
7563
7564 level = root_item->drop_level;
7565 BUG_ON(level == 0);
7566 path->lowest_level = level;
7567 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7568 path->lowest_level = 0;
7569 if (ret < 0) {
7570 err = ret;
7571 goto out_end_trans;
7572 }
7573 WARN_ON(ret > 0);
7574
7575 /*
7576 * unlock our path, this is safe because only this
7577 * function is allowed to delete this snapshot
7578 */
7579 btrfs_unlock_up_safe(path, 0);
7580
7581 level = btrfs_header_level(root->node);
7582 while (1) {
7583 btrfs_tree_lock(path->nodes[level]);
7584 btrfs_set_lock_blocking(path->nodes[level]);
7585 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7586
7587 ret = btrfs_lookup_extent_info(trans, root,
7588 path->nodes[level]->start,
7589 level, 1, &wc->refs[level],
7590 &wc->flags[level]);
7591 if (ret < 0) {
7592 err = ret;
7593 goto out_end_trans;
7594 }
7595 BUG_ON(wc->refs[level] == 0);
7596
7597 if (level == root_item->drop_level)
7598 break;
7599
7600 btrfs_tree_unlock(path->nodes[level]);
7601 path->locks[level] = 0;
7602 WARN_ON(wc->refs[level] != 1);
7603 level--;
7604 }
7605 }
7606
7607 wc->level = level;
7608 wc->shared_level = -1;
7609 wc->stage = DROP_REFERENCE;
7610 wc->update_ref = update_ref;
7611 wc->keep_locks = 0;
7612 wc->for_reloc = for_reloc;
7613 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7614
7615 while (1) {
7616
7617 ret = walk_down_tree(trans, root, path, wc);
7618 if (ret < 0) {
7619 err = ret;
7620 break;
7621 }
7622
7623 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7624 if (ret < 0) {
7625 err = ret;
7626 break;
7627 }
7628
7629 if (ret > 0) {
7630 BUG_ON(wc->stage != DROP_REFERENCE);
7631 break;
7632 }
7633
7634 if (wc->stage == DROP_REFERENCE) {
7635 level = wc->level;
7636 btrfs_node_key(path->nodes[level],
7637 &root_item->drop_progress,
7638 path->slots[level]);
7639 root_item->drop_level = level;
7640 }
7641
7642 BUG_ON(wc->level == 0);
7643 if (btrfs_should_end_transaction(trans, tree_root) ||
7644 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7645 ret = btrfs_update_root(trans, tree_root,
7646 &root->root_key,
7647 root_item);
7648 if (ret) {
7649 btrfs_abort_transaction(trans, tree_root, ret);
7650 err = ret;
7651 goto out_end_trans;
7652 }
7653
7654 btrfs_end_transaction_throttle(trans, tree_root);
7655 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7656 pr_debug("btrfs: drop snapshot early exit\n");
7657 err = -EAGAIN;
7658 goto out_free;
7659 }
7660
7661 trans = btrfs_start_transaction(tree_root, 0);
7662 if (IS_ERR(trans)) {
7663 err = PTR_ERR(trans);
7664 goto out_free;
7665 }
7666 if (block_rsv)
7667 trans->block_rsv = block_rsv;
7668 }
7669 }
7670 btrfs_release_path(path);
7671 if (err)
7672 goto out_end_trans;
7673
7674 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7675 if (ret) {
7676 btrfs_abort_transaction(trans, tree_root, ret);
7677 goto out_end_trans;
7678 }
7679
7680 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7681 ret = btrfs_find_root(tree_root, &root->root_key, path,
7682 NULL, NULL);
7683 if (ret < 0) {
7684 btrfs_abort_transaction(trans, tree_root, ret);
7685 err = ret;
7686 goto out_end_trans;
7687 } else if (ret > 0) {
7688 /* if we fail to delete the orphan item this time
7689 * around, it'll get picked up the next time.
7690 *
7691 * The most common failure here is just -ENOENT.
7692 */
7693 btrfs_del_orphan_item(trans, tree_root,
7694 root->root_key.objectid);
7695 }
7696 }
7697
7698 if (root->in_radix) {
7699 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7700 } else {
7701 free_extent_buffer(root->node);
7702 free_extent_buffer(root->commit_root);
7703 btrfs_put_fs_root(root);
7704 }
7705 root_dropped = true;
7706 out_end_trans:
7707 btrfs_end_transaction_throttle(trans, tree_root);
7708 out_free:
7709 kfree(wc);
7710 btrfs_free_path(path);
7711 out:
7712 /*
7713 * So if we need to stop dropping the snapshot for whatever reason we
7714 * need to make sure to add it back to the dead root list so that we
7715 * keep trying to do the work later. This also cleans up roots if we
7716 * don't have it in the radix (like when we recover after a power fail
7717 * or unmount) so we don't leak memory.
7718 */
7719 if (!for_reloc && root_dropped == false)
7720 btrfs_add_dead_root(root);
7721 if (err)
7722 btrfs_std_error(root->fs_info, err);
7723 return err;
7724 }
7725
7726 /*
7727 * drop subtree rooted at tree block 'node'.
7728 *
7729 * NOTE: this function will unlock and release tree block 'node'
7730 * only used by relocation code
7731 */
7732 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7733 struct btrfs_root *root,
7734 struct extent_buffer *node,
7735 struct extent_buffer *parent)
7736 {
7737 struct btrfs_path *path;
7738 struct walk_control *wc;
7739 int level;
7740 int parent_level;
7741 int ret = 0;
7742 int wret;
7743
7744 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7745
7746 path = btrfs_alloc_path();
7747 if (!path)
7748 return -ENOMEM;
7749
7750 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7751 if (!wc) {
7752 btrfs_free_path(path);
7753 return -ENOMEM;
7754 }
7755
7756 btrfs_assert_tree_locked(parent);
7757 parent_level = btrfs_header_level(parent);
7758 extent_buffer_get(parent);
7759 path->nodes[parent_level] = parent;
7760 path->slots[parent_level] = btrfs_header_nritems(parent);
7761
7762 btrfs_assert_tree_locked(node);
7763 level = btrfs_header_level(node);
7764 path->nodes[level] = node;
7765 path->slots[level] = 0;
7766 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7767
7768 wc->refs[parent_level] = 1;
7769 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7770 wc->level = level;
7771 wc->shared_level = -1;
7772 wc->stage = DROP_REFERENCE;
7773 wc->update_ref = 0;
7774 wc->keep_locks = 1;
7775 wc->for_reloc = 1;
7776 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7777
7778 while (1) {
7779 wret = walk_down_tree(trans, root, path, wc);
7780 if (wret < 0) {
7781 ret = wret;
7782 break;
7783 }
7784
7785 wret = walk_up_tree(trans, root, path, wc, parent_level);
7786 if (wret < 0)
7787 ret = wret;
7788 if (wret != 0)
7789 break;
7790 }
7791
7792 kfree(wc);
7793 btrfs_free_path(path);
7794 return ret;
7795 }
7796
7797 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7798 {
7799 u64 num_devices;
7800 u64 stripped;
7801
7802 /*
7803 * if restripe for this chunk_type is on pick target profile and
7804 * return, otherwise do the usual balance
7805 */
7806 stripped = get_restripe_target(root->fs_info, flags);
7807 if (stripped)
7808 return extended_to_chunk(stripped);
7809
7810 /*
7811 * we add in the count of missing devices because we want
7812 * to make sure that any RAID levels on a degraded FS
7813 * continue to be honored.
7814 */
7815 num_devices = root->fs_info->fs_devices->rw_devices +
7816 root->fs_info->fs_devices->missing_devices;
7817
7818 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7819 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7820 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7821
7822 if (num_devices == 1) {
7823 stripped |= BTRFS_BLOCK_GROUP_DUP;
7824 stripped = flags & ~stripped;
7825
7826 /* turn raid0 into single device chunks */
7827 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7828 return stripped;
7829
7830 /* turn mirroring into duplication */
7831 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7832 BTRFS_BLOCK_GROUP_RAID10))
7833 return stripped | BTRFS_BLOCK_GROUP_DUP;
7834 } else {
7835 /* they already had raid on here, just return */
7836 if (flags & stripped)
7837 return flags;
7838
7839 stripped |= BTRFS_BLOCK_GROUP_DUP;
7840 stripped = flags & ~stripped;
7841
7842 /* switch duplicated blocks with raid1 */
7843 if (flags & BTRFS_BLOCK_GROUP_DUP)
7844 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7845
7846 /* this is drive concat, leave it alone */
7847 }
7848
7849 return flags;
7850 }
7851
7852 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7853 {
7854 struct btrfs_space_info *sinfo = cache->space_info;
7855 u64 num_bytes;
7856 u64 min_allocable_bytes;
7857 int ret = -ENOSPC;
7858
7859
7860 /*
7861 * We need some metadata space and system metadata space for
7862 * allocating chunks in some corner cases until we force to set
7863 * it to be readonly.
7864 */
7865 if ((sinfo->flags &
7866 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7867 !force)
7868 min_allocable_bytes = 1 * 1024 * 1024;
7869 else
7870 min_allocable_bytes = 0;
7871
7872 spin_lock(&sinfo->lock);
7873 spin_lock(&cache->lock);
7874
7875 if (cache->ro) {
7876 ret = 0;
7877 goto out;
7878 }
7879
7880 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7881 cache->bytes_super - btrfs_block_group_used(&cache->item);
7882
7883 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7884 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7885 min_allocable_bytes <= sinfo->total_bytes) {
7886 sinfo->bytes_readonly += num_bytes;
7887 cache->ro = 1;
7888 ret = 0;
7889 }
7890 out:
7891 spin_unlock(&cache->lock);
7892 spin_unlock(&sinfo->lock);
7893 return ret;
7894 }
7895
7896 int btrfs_set_block_group_ro(struct btrfs_root *root,
7897 struct btrfs_block_group_cache *cache)
7898
7899 {
7900 struct btrfs_trans_handle *trans;
7901 u64 alloc_flags;
7902 int ret;
7903
7904 BUG_ON(cache->ro);
7905
7906 trans = btrfs_join_transaction(root);
7907 if (IS_ERR(trans))
7908 return PTR_ERR(trans);
7909
7910 alloc_flags = update_block_group_flags(root, cache->flags);
7911 if (alloc_flags != cache->flags) {
7912 ret = do_chunk_alloc(trans, root, alloc_flags,
7913 CHUNK_ALLOC_FORCE);
7914 if (ret < 0)
7915 goto out;
7916 }
7917
7918 ret = set_block_group_ro(cache, 0);
7919 if (!ret)
7920 goto out;
7921 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7922 ret = do_chunk_alloc(trans, root, alloc_flags,
7923 CHUNK_ALLOC_FORCE);
7924 if (ret < 0)
7925 goto out;
7926 ret = set_block_group_ro(cache, 0);
7927 out:
7928 btrfs_end_transaction(trans, root);
7929 return ret;
7930 }
7931
7932 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7933 struct btrfs_root *root, u64 type)
7934 {
7935 u64 alloc_flags = get_alloc_profile(root, type);
7936 return do_chunk_alloc(trans, root, alloc_flags,
7937 CHUNK_ALLOC_FORCE);
7938 }
7939
7940 /*
7941 * helper to account the unused space of all the readonly block group in the
7942 * list. takes mirrors into account.
7943 */
7944 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7945 {
7946 struct btrfs_block_group_cache *block_group;
7947 u64 free_bytes = 0;
7948 int factor;
7949
7950 list_for_each_entry(block_group, groups_list, list) {
7951 spin_lock(&block_group->lock);
7952
7953 if (!block_group->ro) {
7954 spin_unlock(&block_group->lock);
7955 continue;
7956 }
7957
7958 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7959 BTRFS_BLOCK_GROUP_RAID10 |
7960 BTRFS_BLOCK_GROUP_DUP))
7961 factor = 2;
7962 else
7963 factor = 1;
7964
7965 free_bytes += (block_group->key.offset -
7966 btrfs_block_group_used(&block_group->item)) *
7967 factor;
7968
7969 spin_unlock(&block_group->lock);
7970 }
7971
7972 return free_bytes;
7973 }
7974
7975 /*
7976 * helper to account the unused space of all the readonly block group in the
7977 * space_info. takes mirrors into account.
7978 */
7979 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7980 {
7981 int i;
7982 u64 free_bytes = 0;
7983
7984 spin_lock(&sinfo->lock);
7985
7986 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7987 if (!list_empty(&sinfo->block_groups[i]))
7988 free_bytes += __btrfs_get_ro_block_group_free_space(
7989 &sinfo->block_groups[i]);
7990
7991 spin_unlock(&sinfo->lock);
7992
7993 return free_bytes;
7994 }
7995
7996 void btrfs_set_block_group_rw(struct btrfs_root *root,
7997 struct btrfs_block_group_cache *cache)
7998 {
7999 struct btrfs_space_info *sinfo = cache->space_info;
8000 u64 num_bytes;
8001
8002 BUG_ON(!cache->ro);
8003
8004 spin_lock(&sinfo->lock);
8005 spin_lock(&cache->lock);
8006 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8007 cache->bytes_super - btrfs_block_group_used(&cache->item);
8008 sinfo->bytes_readonly -= num_bytes;
8009 cache->ro = 0;
8010 spin_unlock(&cache->lock);
8011 spin_unlock(&sinfo->lock);
8012 }
8013
8014 /*
8015 * checks to see if its even possible to relocate this block group.
8016 *
8017 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8018 * ok to go ahead and try.
8019 */
8020 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8021 {
8022 struct btrfs_block_group_cache *block_group;
8023 struct btrfs_space_info *space_info;
8024 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8025 struct btrfs_device *device;
8026 struct btrfs_trans_handle *trans;
8027 u64 min_free;
8028 u64 dev_min = 1;
8029 u64 dev_nr = 0;
8030 u64 target;
8031 int index;
8032 int full = 0;
8033 int ret = 0;
8034
8035 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8036
8037 /* odd, couldn't find the block group, leave it alone */
8038 if (!block_group)
8039 return -1;
8040
8041 min_free = btrfs_block_group_used(&block_group->item);
8042
8043 /* no bytes used, we're good */
8044 if (!min_free)
8045 goto out;
8046
8047 space_info = block_group->space_info;
8048 spin_lock(&space_info->lock);
8049
8050 full = space_info->full;
8051
8052 /*
8053 * if this is the last block group we have in this space, we can't
8054 * relocate it unless we're able to allocate a new chunk below.
8055 *
8056 * Otherwise, we need to make sure we have room in the space to handle
8057 * all of the extents from this block group. If we can, we're good
8058 */
8059 if ((space_info->total_bytes != block_group->key.offset) &&
8060 (space_info->bytes_used + space_info->bytes_reserved +
8061 space_info->bytes_pinned + space_info->bytes_readonly +
8062 min_free < space_info->total_bytes)) {
8063 spin_unlock(&space_info->lock);
8064 goto out;
8065 }
8066 spin_unlock(&space_info->lock);
8067
8068 /*
8069 * ok we don't have enough space, but maybe we have free space on our
8070 * devices to allocate new chunks for relocation, so loop through our
8071 * alloc devices and guess if we have enough space. if this block
8072 * group is going to be restriped, run checks against the target
8073 * profile instead of the current one.
8074 */
8075 ret = -1;
8076
8077 /*
8078 * index:
8079 * 0: raid10
8080 * 1: raid1
8081 * 2: dup
8082 * 3: raid0
8083 * 4: single
8084 */
8085 target = get_restripe_target(root->fs_info, block_group->flags);
8086 if (target) {
8087 index = __get_raid_index(extended_to_chunk(target));
8088 } else {
8089 /*
8090 * this is just a balance, so if we were marked as full
8091 * we know there is no space for a new chunk
8092 */
8093 if (full)
8094 goto out;
8095
8096 index = get_block_group_index(block_group);
8097 }
8098
8099 if (index == BTRFS_RAID_RAID10) {
8100 dev_min = 4;
8101 /* Divide by 2 */
8102 min_free >>= 1;
8103 } else if (index == BTRFS_RAID_RAID1) {
8104 dev_min = 2;
8105 } else if (index == BTRFS_RAID_DUP) {
8106 /* Multiply by 2 */
8107 min_free <<= 1;
8108 } else if (index == BTRFS_RAID_RAID0) {
8109 dev_min = fs_devices->rw_devices;
8110 do_div(min_free, dev_min);
8111 }
8112
8113 /* We need to do this so that we can look at pending chunks */
8114 trans = btrfs_join_transaction(root);
8115 if (IS_ERR(trans)) {
8116 ret = PTR_ERR(trans);
8117 goto out;
8118 }
8119
8120 mutex_lock(&root->fs_info->chunk_mutex);
8121 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8122 u64 dev_offset;
8123
8124 /*
8125 * check to make sure we can actually find a chunk with enough
8126 * space to fit our block group in.
8127 */
8128 if (device->total_bytes > device->bytes_used + min_free &&
8129 !device->is_tgtdev_for_dev_replace) {
8130 ret = find_free_dev_extent(trans, device, min_free,
8131 &dev_offset, NULL);
8132 if (!ret)
8133 dev_nr++;
8134
8135 if (dev_nr >= dev_min)
8136 break;
8137
8138 ret = -1;
8139 }
8140 }
8141 mutex_unlock(&root->fs_info->chunk_mutex);
8142 btrfs_end_transaction(trans, root);
8143 out:
8144 btrfs_put_block_group(block_group);
8145 return ret;
8146 }
8147
8148 static int find_first_block_group(struct btrfs_root *root,
8149 struct btrfs_path *path, struct btrfs_key *key)
8150 {
8151 int ret = 0;
8152 struct btrfs_key found_key;
8153 struct extent_buffer *leaf;
8154 int slot;
8155
8156 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8157 if (ret < 0)
8158 goto out;
8159
8160 while (1) {
8161 slot = path->slots[0];
8162 leaf = path->nodes[0];
8163 if (slot >= btrfs_header_nritems(leaf)) {
8164 ret = btrfs_next_leaf(root, path);
8165 if (ret == 0)
8166 continue;
8167 if (ret < 0)
8168 goto out;
8169 break;
8170 }
8171 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8172
8173 if (found_key.objectid >= key->objectid &&
8174 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8175 ret = 0;
8176 goto out;
8177 }
8178 path->slots[0]++;
8179 }
8180 out:
8181 return ret;
8182 }
8183
8184 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8185 {
8186 struct btrfs_block_group_cache *block_group;
8187 u64 last = 0;
8188
8189 while (1) {
8190 struct inode *inode;
8191
8192 block_group = btrfs_lookup_first_block_group(info, last);
8193 while (block_group) {
8194 spin_lock(&block_group->lock);
8195 if (block_group->iref)
8196 break;
8197 spin_unlock(&block_group->lock);
8198 block_group = next_block_group(info->tree_root,
8199 block_group);
8200 }
8201 if (!block_group) {
8202 if (last == 0)
8203 break;
8204 last = 0;
8205 continue;
8206 }
8207
8208 inode = block_group->inode;
8209 block_group->iref = 0;
8210 block_group->inode = NULL;
8211 spin_unlock(&block_group->lock);
8212 iput(inode);
8213 last = block_group->key.objectid + block_group->key.offset;
8214 btrfs_put_block_group(block_group);
8215 }
8216 }
8217
8218 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8219 {
8220 struct btrfs_block_group_cache *block_group;
8221 struct btrfs_space_info *space_info;
8222 struct btrfs_caching_control *caching_ctl;
8223 struct rb_node *n;
8224
8225 down_write(&info->extent_commit_sem);
8226 while (!list_empty(&info->caching_block_groups)) {
8227 caching_ctl = list_entry(info->caching_block_groups.next,
8228 struct btrfs_caching_control, list);
8229 list_del(&caching_ctl->list);
8230 put_caching_control(caching_ctl);
8231 }
8232 up_write(&info->extent_commit_sem);
8233
8234 spin_lock(&info->block_group_cache_lock);
8235 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8236 block_group = rb_entry(n, struct btrfs_block_group_cache,
8237 cache_node);
8238 rb_erase(&block_group->cache_node,
8239 &info->block_group_cache_tree);
8240 spin_unlock(&info->block_group_cache_lock);
8241
8242 down_write(&block_group->space_info->groups_sem);
8243 list_del(&block_group->list);
8244 up_write(&block_group->space_info->groups_sem);
8245
8246 if (block_group->cached == BTRFS_CACHE_STARTED)
8247 wait_block_group_cache_done(block_group);
8248
8249 /*
8250 * We haven't cached this block group, which means we could
8251 * possibly have excluded extents on this block group.
8252 */
8253 if (block_group->cached == BTRFS_CACHE_NO ||
8254 block_group->cached == BTRFS_CACHE_ERROR)
8255 free_excluded_extents(info->extent_root, block_group);
8256
8257 btrfs_remove_free_space_cache(block_group);
8258 btrfs_put_block_group(block_group);
8259
8260 spin_lock(&info->block_group_cache_lock);
8261 }
8262 spin_unlock(&info->block_group_cache_lock);
8263
8264 /* now that all the block groups are freed, go through and
8265 * free all the space_info structs. This is only called during
8266 * the final stages of unmount, and so we know nobody is
8267 * using them. We call synchronize_rcu() once before we start,
8268 * just to be on the safe side.
8269 */
8270 synchronize_rcu();
8271
8272 release_global_block_rsv(info);
8273
8274 while(!list_empty(&info->space_info)) {
8275 space_info = list_entry(info->space_info.next,
8276 struct btrfs_space_info,
8277 list);
8278 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8279 if (space_info->bytes_pinned > 0 ||
8280 space_info->bytes_reserved > 0 ||
8281 space_info->bytes_may_use > 0) {
8282 WARN_ON(1);
8283 dump_space_info(space_info, 0, 0);
8284 }
8285 }
8286 percpu_counter_destroy(&space_info->total_bytes_pinned);
8287 list_del(&space_info->list);
8288 kfree(space_info);
8289 }
8290 return 0;
8291 }
8292
8293 static void __link_block_group(struct btrfs_space_info *space_info,
8294 struct btrfs_block_group_cache *cache)
8295 {
8296 int index = get_block_group_index(cache);
8297
8298 down_write(&space_info->groups_sem);
8299 list_add_tail(&cache->list, &space_info->block_groups[index]);
8300 up_write(&space_info->groups_sem);
8301 }
8302
8303 int btrfs_read_block_groups(struct btrfs_root *root)
8304 {
8305 struct btrfs_path *path;
8306 int ret;
8307 struct btrfs_block_group_cache *cache;
8308 struct btrfs_fs_info *info = root->fs_info;
8309 struct btrfs_space_info *space_info;
8310 struct btrfs_key key;
8311 struct btrfs_key found_key;
8312 struct extent_buffer *leaf;
8313 int need_clear = 0;
8314 u64 cache_gen;
8315
8316 root = info->extent_root;
8317 key.objectid = 0;
8318 key.offset = 0;
8319 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8320 path = btrfs_alloc_path();
8321 if (!path)
8322 return -ENOMEM;
8323 path->reada = 1;
8324
8325 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8326 if (btrfs_test_opt(root, SPACE_CACHE) &&
8327 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8328 need_clear = 1;
8329 if (btrfs_test_opt(root, CLEAR_CACHE))
8330 need_clear = 1;
8331
8332 while (1) {
8333 ret = find_first_block_group(root, path, &key);
8334 if (ret > 0)
8335 break;
8336 if (ret != 0)
8337 goto error;
8338 leaf = path->nodes[0];
8339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8340 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8341 if (!cache) {
8342 ret = -ENOMEM;
8343 goto error;
8344 }
8345 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8346 GFP_NOFS);
8347 if (!cache->free_space_ctl) {
8348 kfree(cache);
8349 ret = -ENOMEM;
8350 goto error;
8351 }
8352
8353 atomic_set(&cache->count, 1);
8354 spin_lock_init(&cache->lock);
8355 cache->fs_info = info;
8356 INIT_LIST_HEAD(&cache->list);
8357 INIT_LIST_HEAD(&cache->cluster_list);
8358
8359 if (need_clear) {
8360 /*
8361 * When we mount with old space cache, we need to
8362 * set BTRFS_DC_CLEAR and set dirty flag.
8363 *
8364 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8365 * truncate the old free space cache inode and
8366 * setup a new one.
8367 * b) Setting 'dirty flag' makes sure that we flush
8368 * the new space cache info onto disk.
8369 */
8370 cache->disk_cache_state = BTRFS_DC_CLEAR;
8371 if (btrfs_test_opt(root, SPACE_CACHE))
8372 cache->dirty = 1;
8373 }
8374
8375 read_extent_buffer(leaf, &cache->item,
8376 btrfs_item_ptr_offset(leaf, path->slots[0]),
8377 sizeof(cache->item));
8378 memcpy(&cache->key, &found_key, sizeof(found_key));
8379
8380 key.objectid = found_key.objectid + found_key.offset;
8381 btrfs_release_path(path);
8382 cache->flags = btrfs_block_group_flags(&cache->item);
8383 cache->sectorsize = root->sectorsize;
8384 cache->full_stripe_len = btrfs_full_stripe_len(root,
8385 &root->fs_info->mapping_tree,
8386 found_key.objectid);
8387 btrfs_init_free_space_ctl(cache);
8388
8389 /*
8390 * We need to exclude the super stripes now so that the space
8391 * info has super bytes accounted for, otherwise we'll think
8392 * we have more space than we actually do.
8393 */
8394 ret = exclude_super_stripes(root, cache);
8395 if (ret) {
8396 /*
8397 * We may have excluded something, so call this just in
8398 * case.
8399 */
8400 free_excluded_extents(root, cache);
8401 kfree(cache->free_space_ctl);
8402 kfree(cache);
8403 goto error;
8404 }
8405
8406 /*
8407 * check for two cases, either we are full, and therefore
8408 * don't need to bother with the caching work since we won't
8409 * find any space, or we are empty, and we can just add all
8410 * the space in and be done with it. This saves us _alot_ of
8411 * time, particularly in the full case.
8412 */
8413 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8414 cache->last_byte_to_unpin = (u64)-1;
8415 cache->cached = BTRFS_CACHE_FINISHED;
8416 free_excluded_extents(root, cache);
8417 } else if (btrfs_block_group_used(&cache->item) == 0) {
8418 cache->last_byte_to_unpin = (u64)-1;
8419 cache->cached = BTRFS_CACHE_FINISHED;
8420 add_new_free_space(cache, root->fs_info,
8421 found_key.objectid,
8422 found_key.objectid +
8423 found_key.offset);
8424 free_excluded_extents(root, cache);
8425 }
8426
8427 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8428 if (ret) {
8429 btrfs_remove_free_space_cache(cache);
8430 btrfs_put_block_group(cache);
8431 goto error;
8432 }
8433
8434 ret = update_space_info(info, cache->flags, found_key.offset,
8435 btrfs_block_group_used(&cache->item),
8436 &space_info);
8437 if (ret) {
8438 btrfs_remove_free_space_cache(cache);
8439 spin_lock(&info->block_group_cache_lock);
8440 rb_erase(&cache->cache_node,
8441 &info->block_group_cache_tree);
8442 spin_unlock(&info->block_group_cache_lock);
8443 btrfs_put_block_group(cache);
8444 goto error;
8445 }
8446
8447 cache->space_info = space_info;
8448 spin_lock(&cache->space_info->lock);
8449 cache->space_info->bytes_readonly += cache->bytes_super;
8450 spin_unlock(&cache->space_info->lock);
8451
8452 __link_block_group(space_info, cache);
8453
8454 set_avail_alloc_bits(root->fs_info, cache->flags);
8455 if (btrfs_chunk_readonly(root, cache->key.objectid))
8456 set_block_group_ro(cache, 1);
8457 }
8458
8459 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8460 if (!(get_alloc_profile(root, space_info->flags) &
8461 (BTRFS_BLOCK_GROUP_RAID10 |
8462 BTRFS_BLOCK_GROUP_RAID1 |
8463 BTRFS_BLOCK_GROUP_RAID5 |
8464 BTRFS_BLOCK_GROUP_RAID6 |
8465 BTRFS_BLOCK_GROUP_DUP)))
8466 continue;
8467 /*
8468 * avoid allocating from un-mirrored block group if there are
8469 * mirrored block groups.
8470 */
8471 list_for_each_entry(cache,
8472 &space_info->block_groups[BTRFS_RAID_RAID0],
8473 list)
8474 set_block_group_ro(cache, 1);
8475 list_for_each_entry(cache,
8476 &space_info->block_groups[BTRFS_RAID_SINGLE],
8477 list)
8478 set_block_group_ro(cache, 1);
8479 }
8480
8481 init_global_block_rsv(info);
8482 ret = 0;
8483 error:
8484 btrfs_free_path(path);
8485 return ret;
8486 }
8487
8488 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8489 struct btrfs_root *root)
8490 {
8491 struct btrfs_block_group_cache *block_group, *tmp;
8492 struct btrfs_root *extent_root = root->fs_info->extent_root;
8493 struct btrfs_block_group_item item;
8494 struct btrfs_key key;
8495 int ret = 0;
8496
8497 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8498 new_bg_list) {
8499 list_del_init(&block_group->new_bg_list);
8500
8501 if (ret)
8502 continue;
8503
8504 spin_lock(&block_group->lock);
8505 memcpy(&item, &block_group->item, sizeof(item));
8506 memcpy(&key, &block_group->key, sizeof(key));
8507 spin_unlock(&block_group->lock);
8508
8509 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8510 sizeof(item));
8511 if (ret)
8512 btrfs_abort_transaction(trans, extent_root, ret);
8513 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8514 key.objectid, key.offset);
8515 if (ret)
8516 btrfs_abort_transaction(trans, extent_root, ret);
8517 }
8518 }
8519
8520 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8521 struct btrfs_root *root, u64 bytes_used,
8522 u64 type, u64 chunk_objectid, u64 chunk_offset,
8523 u64 size)
8524 {
8525 int ret;
8526 struct btrfs_root *extent_root;
8527 struct btrfs_block_group_cache *cache;
8528
8529 extent_root = root->fs_info->extent_root;
8530
8531 root->fs_info->last_trans_log_full_commit = trans->transid;
8532
8533 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8534 if (!cache)
8535 return -ENOMEM;
8536 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8537 GFP_NOFS);
8538 if (!cache->free_space_ctl) {
8539 kfree(cache);
8540 return -ENOMEM;
8541 }
8542
8543 cache->key.objectid = chunk_offset;
8544 cache->key.offset = size;
8545 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8546 cache->sectorsize = root->sectorsize;
8547 cache->fs_info = root->fs_info;
8548 cache->full_stripe_len = btrfs_full_stripe_len(root,
8549 &root->fs_info->mapping_tree,
8550 chunk_offset);
8551
8552 atomic_set(&cache->count, 1);
8553 spin_lock_init(&cache->lock);
8554 INIT_LIST_HEAD(&cache->list);
8555 INIT_LIST_HEAD(&cache->cluster_list);
8556 INIT_LIST_HEAD(&cache->new_bg_list);
8557
8558 btrfs_init_free_space_ctl(cache);
8559
8560 btrfs_set_block_group_used(&cache->item, bytes_used);
8561 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8562 cache->flags = type;
8563 btrfs_set_block_group_flags(&cache->item, type);
8564
8565 cache->last_byte_to_unpin = (u64)-1;
8566 cache->cached = BTRFS_CACHE_FINISHED;
8567 ret = exclude_super_stripes(root, cache);
8568 if (ret) {
8569 /*
8570 * We may have excluded something, so call this just in
8571 * case.
8572 */
8573 free_excluded_extents(root, cache);
8574 kfree(cache->free_space_ctl);
8575 kfree(cache);
8576 return ret;
8577 }
8578
8579 add_new_free_space(cache, root->fs_info, chunk_offset,
8580 chunk_offset + size);
8581
8582 free_excluded_extents(root, cache);
8583
8584 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8585 if (ret) {
8586 btrfs_remove_free_space_cache(cache);
8587 btrfs_put_block_group(cache);
8588 return ret;
8589 }
8590
8591 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8592 &cache->space_info);
8593 if (ret) {
8594 btrfs_remove_free_space_cache(cache);
8595 spin_lock(&root->fs_info->block_group_cache_lock);
8596 rb_erase(&cache->cache_node,
8597 &root->fs_info->block_group_cache_tree);
8598 spin_unlock(&root->fs_info->block_group_cache_lock);
8599 btrfs_put_block_group(cache);
8600 return ret;
8601 }
8602 update_global_block_rsv(root->fs_info);
8603
8604 spin_lock(&cache->space_info->lock);
8605 cache->space_info->bytes_readonly += cache->bytes_super;
8606 spin_unlock(&cache->space_info->lock);
8607
8608 __link_block_group(cache->space_info, cache);
8609
8610 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8611
8612 set_avail_alloc_bits(extent_root->fs_info, type);
8613
8614 return 0;
8615 }
8616
8617 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8618 {
8619 u64 extra_flags = chunk_to_extended(flags) &
8620 BTRFS_EXTENDED_PROFILE_MASK;
8621
8622 write_seqlock(&fs_info->profiles_lock);
8623 if (flags & BTRFS_BLOCK_GROUP_DATA)
8624 fs_info->avail_data_alloc_bits &= ~extra_flags;
8625 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8626 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8627 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8628 fs_info->avail_system_alloc_bits &= ~extra_flags;
8629 write_sequnlock(&fs_info->profiles_lock);
8630 }
8631
8632 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8633 struct btrfs_root *root, u64 group_start)
8634 {
8635 struct btrfs_path *path;
8636 struct btrfs_block_group_cache *block_group;
8637 struct btrfs_free_cluster *cluster;
8638 struct btrfs_root *tree_root = root->fs_info->tree_root;
8639 struct btrfs_key key;
8640 struct inode *inode;
8641 int ret;
8642 int index;
8643 int factor;
8644
8645 root = root->fs_info->extent_root;
8646
8647 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8648 BUG_ON(!block_group);
8649 BUG_ON(!block_group->ro);
8650
8651 /*
8652 * Free the reserved super bytes from this block group before
8653 * remove it.
8654 */
8655 free_excluded_extents(root, block_group);
8656
8657 memcpy(&key, &block_group->key, sizeof(key));
8658 index = get_block_group_index(block_group);
8659 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8660 BTRFS_BLOCK_GROUP_RAID1 |
8661 BTRFS_BLOCK_GROUP_RAID10))
8662 factor = 2;
8663 else
8664 factor = 1;
8665
8666 /* make sure this block group isn't part of an allocation cluster */
8667 cluster = &root->fs_info->data_alloc_cluster;
8668 spin_lock(&cluster->refill_lock);
8669 btrfs_return_cluster_to_free_space(block_group, cluster);
8670 spin_unlock(&cluster->refill_lock);
8671
8672 /*
8673 * make sure this block group isn't part of a metadata
8674 * allocation cluster
8675 */
8676 cluster = &root->fs_info->meta_alloc_cluster;
8677 spin_lock(&cluster->refill_lock);
8678 btrfs_return_cluster_to_free_space(block_group, cluster);
8679 spin_unlock(&cluster->refill_lock);
8680
8681 path = btrfs_alloc_path();
8682 if (!path) {
8683 ret = -ENOMEM;
8684 goto out;
8685 }
8686
8687 inode = lookup_free_space_inode(tree_root, block_group, path);
8688 if (!IS_ERR(inode)) {
8689 ret = btrfs_orphan_add(trans, inode);
8690 if (ret) {
8691 btrfs_add_delayed_iput(inode);
8692 goto out;
8693 }
8694 clear_nlink(inode);
8695 /* One for the block groups ref */
8696 spin_lock(&block_group->lock);
8697 if (block_group->iref) {
8698 block_group->iref = 0;
8699 block_group->inode = NULL;
8700 spin_unlock(&block_group->lock);
8701 iput(inode);
8702 } else {
8703 spin_unlock(&block_group->lock);
8704 }
8705 /* One for our lookup ref */
8706 btrfs_add_delayed_iput(inode);
8707 }
8708
8709 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8710 key.offset = block_group->key.objectid;
8711 key.type = 0;
8712
8713 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8714 if (ret < 0)
8715 goto out;
8716 if (ret > 0)
8717 btrfs_release_path(path);
8718 if (ret == 0) {
8719 ret = btrfs_del_item(trans, tree_root, path);
8720 if (ret)
8721 goto out;
8722 btrfs_release_path(path);
8723 }
8724
8725 spin_lock(&root->fs_info->block_group_cache_lock);
8726 rb_erase(&block_group->cache_node,
8727 &root->fs_info->block_group_cache_tree);
8728
8729 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8730 root->fs_info->first_logical_byte = (u64)-1;
8731 spin_unlock(&root->fs_info->block_group_cache_lock);
8732
8733 down_write(&block_group->space_info->groups_sem);
8734 /*
8735 * we must use list_del_init so people can check to see if they
8736 * are still on the list after taking the semaphore
8737 */
8738 list_del_init(&block_group->list);
8739 if (list_empty(&block_group->space_info->block_groups[index]))
8740 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8741 up_write(&block_group->space_info->groups_sem);
8742
8743 if (block_group->cached == BTRFS_CACHE_STARTED)
8744 wait_block_group_cache_done(block_group);
8745
8746 btrfs_remove_free_space_cache(block_group);
8747
8748 spin_lock(&block_group->space_info->lock);
8749 block_group->space_info->total_bytes -= block_group->key.offset;
8750 block_group->space_info->bytes_readonly -= block_group->key.offset;
8751 block_group->space_info->disk_total -= block_group->key.offset * factor;
8752 spin_unlock(&block_group->space_info->lock);
8753
8754 memcpy(&key, &block_group->key, sizeof(key));
8755
8756 btrfs_clear_space_info_full(root->fs_info);
8757
8758 btrfs_put_block_group(block_group);
8759 btrfs_put_block_group(block_group);
8760
8761 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8762 if (ret > 0)
8763 ret = -EIO;
8764 if (ret < 0)
8765 goto out;
8766
8767 ret = btrfs_del_item(trans, root, path);
8768 out:
8769 btrfs_free_path(path);
8770 return ret;
8771 }
8772
8773 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8774 {
8775 struct btrfs_space_info *space_info;
8776 struct btrfs_super_block *disk_super;
8777 u64 features;
8778 u64 flags;
8779 int mixed = 0;
8780 int ret;
8781
8782 disk_super = fs_info->super_copy;
8783 if (!btrfs_super_root(disk_super))
8784 return 1;
8785
8786 features = btrfs_super_incompat_flags(disk_super);
8787 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8788 mixed = 1;
8789
8790 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8791 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8792 if (ret)
8793 goto out;
8794
8795 if (mixed) {
8796 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8797 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8798 } else {
8799 flags = BTRFS_BLOCK_GROUP_METADATA;
8800 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8801 if (ret)
8802 goto out;
8803
8804 flags = BTRFS_BLOCK_GROUP_DATA;
8805 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8806 }
8807 out:
8808 return ret;
8809 }
8810
8811 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8812 {
8813 return unpin_extent_range(root, start, end);
8814 }
8815
8816 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8817 u64 num_bytes, u64 *actual_bytes)
8818 {
8819 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8820 }
8821
8822 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8823 {
8824 struct btrfs_fs_info *fs_info = root->fs_info;
8825 struct btrfs_block_group_cache *cache = NULL;
8826 u64 group_trimmed;
8827 u64 start;
8828 u64 end;
8829 u64 trimmed = 0;
8830 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8831 int ret = 0;
8832
8833 /*
8834 * try to trim all FS space, our block group may start from non-zero.
8835 */
8836 if (range->len == total_bytes)
8837 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8838 else
8839 cache = btrfs_lookup_block_group(fs_info, range->start);
8840
8841 while (cache) {
8842 if (cache->key.objectid >= (range->start + range->len)) {
8843 btrfs_put_block_group(cache);
8844 break;
8845 }
8846
8847 start = max(range->start, cache->key.objectid);
8848 end = min(range->start + range->len,
8849 cache->key.objectid + cache->key.offset);
8850
8851 if (end - start >= range->minlen) {
8852 if (!block_group_cache_done(cache)) {
8853 ret = cache_block_group(cache, 0);
8854 if (ret) {
8855 btrfs_put_block_group(cache);
8856 break;
8857 }
8858 ret = wait_block_group_cache_done(cache);
8859 if (ret) {
8860 btrfs_put_block_group(cache);
8861 break;
8862 }
8863 }
8864 ret = btrfs_trim_block_group(cache,
8865 &group_trimmed,
8866 start,
8867 end,
8868 range->minlen);
8869
8870 trimmed += group_trimmed;
8871 if (ret) {
8872 btrfs_put_block_group(cache);
8873 break;
8874 }
8875 }
8876
8877 cache = next_block_group(fs_info->tree_root, cache);
8878 }
8879
8880 range->len = trimmed;
8881 return ret;
8882 }
This page took 0.342408 seconds and 6 git commands to generate.