Btrfs: remove unnecessary transaction commit before send
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 #include "sysfs.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
55 */
56 enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71 enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78 u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 struct btrfs_root *root,
81 u64 bytenr, u64 num_bytes, u64 parent,
82 u64 root_objectid, u64 owner_objectid,
83 u64 owner_offset, int refs_to_drop,
84 struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 struct extent_buffer *leaf,
87 struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root,
90 u64 parent, u64 root_objectid,
91 u64 flags, u64 owner, u64 offset,
92 struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root,
95 u64 parent, u64 root_objectid,
96 u64 flags, struct btrfs_disk_key *key,
97 int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 struct btrfs_root *extent_root, u64 flags,
100 int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 u64 bytenr, u64 num_bytes, int reserved);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138 }
139
140 /*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146 {
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178 }
179
180 /*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187 {
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
228 {
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE, GFP_NOFS);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE, GFP_NOFS);
234 return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE, GFP_NOFS);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250
251 static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
253 {
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 cache->key.objectid, bytenr,
272 0, &logical, &nr, &stripe_len);
273 if (ret)
274 return ret;
275
276 while (nr--) {
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
297 ret = add_excluded_extent(root, start, len);
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
302 }
303
304 kfree(logical);
305 }
306 return 0;
307 }
308
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
315 if (cache->cached != BTRFS_CACHE_STARTED) {
316 spin_unlock(&cache->lock);
317 return NULL;
318 }
319
320 /* We're loading it the fast way, so we don't have a caching_ctl. */
321 if (!cache->caching_ctl) {
322 spin_unlock(&cache->lock);
323 return NULL;
324 }
325
326 ctl = cache->caching_ctl;
327 atomic_inc(&ctl->count);
328 spin_unlock(&cache->lock);
329 return ctl;
330 }
331
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 if (atomic_dec_and_test(&ctl->count))
335 kfree(ctl);
336 }
337
338 /*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 u64 extent_start, extent_end, size, total_added = 0;
347 int ret;
348
349 while (start < end) {
350 ret = find_first_extent_bit(info->pinned_extents, start,
351 &extent_start, &extent_end,
352 EXTENT_DIRTY | EXTENT_UPTODATE,
353 NULL);
354 if (ret)
355 break;
356
357 if (extent_start <= start) {
358 start = extent_end + 1;
359 } else if (extent_start > start && extent_start < end) {
360 size = extent_start - start;
361 total_added += size;
362 ret = btrfs_add_free_space(block_group, start,
363 size);
364 BUG_ON(ret); /* -ENOMEM or logic error */
365 start = extent_end + 1;
366 } else {
367 break;
368 }
369 }
370
371 if (start < end) {
372 size = end - start;
373 total_added += size;
374 ret = btrfs_add_free_space(block_group, start, size);
375 BUG_ON(ret); /* -ENOMEM or logic error */
376 }
377
378 return total_added;
379 }
380
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 struct btrfs_block_group_cache *block_group;
384 struct btrfs_fs_info *fs_info;
385 struct btrfs_caching_control *caching_ctl;
386 struct btrfs_root *extent_root;
387 struct btrfs_path *path;
388 struct extent_buffer *leaf;
389 struct btrfs_key key;
390 u64 total_found = 0;
391 u64 last = 0;
392 u32 nritems;
393 int ret = -ENOMEM;
394
395 caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 block_group = caching_ctl->block_group;
397 fs_info = block_group->fs_info;
398 extent_root = fs_info->extent_root;
399
400 path = btrfs_alloc_path();
401 if (!path)
402 goto out;
403
404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405
406 /*
407 * We don't want to deadlock with somebody trying to allocate a new
408 * extent for the extent root while also trying to search the extent
409 * root to add free space. So we skip locking and search the commit
410 * root, since its read-only
411 */
412 path->skip_locking = 1;
413 path->search_commit_root = 1;
414 path->reada = 1;
415
416 key.objectid = last;
417 key.offset = 0;
418 key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 mutex_lock(&caching_ctl->mutex);
421 /* need to make sure the commit_root doesn't disappear */
422 down_read(&fs_info->extent_commit_sem);
423
424 next:
425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 if (ret < 0)
427 goto err;
428
429 leaf = path->nodes[0];
430 nritems = btrfs_header_nritems(leaf);
431
432 while (1) {
433 if (btrfs_fs_closing(fs_info) > 1) {
434 last = (u64)-1;
435 break;
436 }
437
438 if (path->slots[0] < nritems) {
439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 } else {
441 ret = find_next_key(path, 0, &key);
442 if (ret)
443 break;
444
445 if (need_resched() ||
446 rwsem_is_contended(&fs_info->extent_commit_sem)) {
447 caching_ctl->progress = last;
448 btrfs_release_path(path);
449 up_read(&fs_info->extent_commit_sem);
450 mutex_unlock(&caching_ctl->mutex);
451 cond_resched();
452 goto again;
453 }
454
455 ret = btrfs_next_leaf(extent_root, path);
456 if (ret < 0)
457 goto err;
458 if (ret)
459 break;
460 leaf = path->nodes[0];
461 nritems = btrfs_header_nritems(leaf);
462 continue;
463 }
464
465 if (key.objectid < last) {
466 key.objectid = last;
467 key.offset = 0;
468 key.type = BTRFS_EXTENT_ITEM_KEY;
469
470 caching_ctl->progress = last;
471 btrfs_release_path(path);
472 goto next;
473 }
474
475 if (key.objectid < block_group->key.objectid) {
476 path->slots[0]++;
477 continue;
478 }
479
480 if (key.objectid >= block_group->key.objectid +
481 block_group->key.offset)
482 break;
483
484 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
485 key.type == BTRFS_METADATA_ITEM_KEY) {
486 total_found += add_new_free_space(block_group,
487 fs_info, last,
488 key.objectid);
489 if (key.type == BTRFS_METADATA_ITEM_KEY)
490 last = key.objectid +
491 fs_info->tree_root->leafsize;
492 else
493 last = key.objectid + key.offset;
494
495 if (total_found > (1024 * 1024 * 2)) {
496 total_found = 0;
497 wake_up(&caching_ctl->wait);
498 }
499 }
500 path->slots[0]++;
501 }
502 ret = 0;
503
504 total_found += add_new_free_space(block_group, fs_info, last,
505 block_group->key.objectid +
506 block_group->key.offset);
507 caching_ctl->progress = (u64)-1;
508
509 spin_lock(&block_group->lock);
510 block_group->caching_ctl = NULL;
511 block_group->cached = BTRFS_CACHE_FINISHED;
512 spin_unlock(&block_group->lock);
513
514 err:
515 btrfs_free_path(path);
516 up_read(&fs_info->extent_commit_sem);
517
518 free_excluded_extents(extent_root, block_group);
519
520 mutex_unlock(&caching_ctl->mutex);
521 out:
522 if (ret) {
523 spin_lock(&block_group->lock);
524 block_group->caching_ctl = NULL;
525 block_group->cached = BTRFS_CACHE_ERROR;
526 spin_unlock(&block_group->lock);
527 }
528 wake_up(&caching_ctl->wait);
529
530 put_caching_control(caching_ctl);
531 btrfs_put_block_group(block_group);
532 }
533
534 static int cache_block_group(struct btrfs_block_group_cache *cache,
535 int load_cache_only)
536 {
537 DEFINE_WAIT(wait);
538 struct btrfs_fs_info *fs_info = cache->fs_info;
539 struct btrfs_caching_control *caching_ctl;
540 int ret = 0;
541
542 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
543 if (!caching_ctl)
544 return -ENOMEM;
545
546 INIT_LIST_HEAD(&caching_ctl->list);
547 mutex_init(&caching_ctl->mutex);
548 init_waitqueue_head(&caching_ctl->wait);
549 caching_ctl->block_group = cache;
550 caching_ctl->progress = cache->key.objectid;
551 atomic_set(&caching_ctl->count, 1);
552 caching_ctl->work.func = caching_thread;
553
554 spin_lock(&cache->lock);
555 /*
556 * This should be a rare occasion, but this could happen I think in the
557 * case where one thread starts to load the space cache info, and then
558 * some other thread starts a transaction commit which tries to do an
559 * allocation while the other thread is still loading the space cache
560 * info. The previous loop should have kept us from choosing this block
561 * group, but if we've moved to the state where we will wait on caching
562 * block groups we need to first check if we're doing a fast load here,
563 * so we can wait for it to finish, otherwise we could end up allocating
564 * from a block group who's cache gets evicted for one reason or
565 * another.
566 */
567 while (cache->cached == BTRFS_CACHE_FAST) {
568 struct btrfs_caching_control *ctl;
569
570 ctl = cache->caching_ctl;
571 atomic_inc(&ctl->count);
572 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
573 spin_unlock(&cache->lock);
574
575 schedule();
576
577 finish_wait(&ctl->wait, &wait);
578 put_caching_control(ctl);
579 spin_lock(&cache->lock);
580 }
581
582 if (cache->cached != BTRFS_CACHE_NO) {
583 spin_unlock(&cache->lock);
584 kfree(caching_ctl);
585 return 0;
586 }
587 WARN_ON(cache->caching_ctl);
588 cache->caching_ctl = caching_ctl;
589 cache->cached = BTRFS_CACHE_FAST;
590 spin_unlock(&cache->lock);
591
592 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
597 cache->caching_ctl = NULL;
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
600 } else {
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
606 }
607 }
608 spin_unlock(&cache->lock);
609 wake_up(&caching_ctl->wait);
610 if (ret == 1) {
611 put_caching_control(caching_ctl);
612 free_excluded_extents(fs_info->extent_root, cache);
613 return 0;
614 }
615 } else {
616 /*
617 * We are not going to do the fast caching, set cached to the
618 * appropriate value and wakeup any waiters.
619 */
620 spin_lock(&cache->lock);
621 if (load_cache_only) {
622 cache->caching_ctl = NULL;
623 cache->cached = BTRFS_CACHE_NO;
624 } else {
625 cache->cached = BTRFS_CACHE_STARTED;
626 }
627 spin_unlock(&cache->lock);
628 wake_up(&caching_ctl->wait);
629 }
630
631 if (load_cache_only) {
632 put_caching_control(caching_ctl);
633 return 0;
634 }
635
636 down_write(&fs_info->extent_commit_sem);
637 atomic_inc(&caching_ctl->count);
638 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
639 up_write(&fs_info->extent_commit_sem);
640
641 btrfs_get_block_group(cache);
642
643 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
644
645 return ret;
646 }
647
648 /*
649 * return the block group that starts at or after bytenr
650 */
651 static struct btrfs_block_group_cache *
652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
653 {
654 struct btrfs_block_group_cache *cache;
655
656 cache = block_group_cache_tree_search(info, bytenr, 0);
657
658 return cache;
659 }
660
661 /*
662 * return the block group that contains the given bytenr
663 */
664 struct btrfs_block_group_cache *btrfs_lookup_block_group(
665 struct btrfs_fs_info *info,
666 u64 bytenr)
667 {
668 struct btrfs_block_group_cache *cache;
669
670 cache = block_group_cache_tree_search(info, bytenr, 1);
671
672 return cache;
673 }
674
675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
676 u64 flags)
677 {
678 struct list_head *head = &info->space_info;
679 struct btrfs_space_info *found;
680
681 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
682
683 rcu_read_lock();
684 list_for_each_entry_rcu(found, head, list) {
685 if (found->flags & flags) {
686 rcu_read_unlock();
687 return found;
688 }
689 }
690 rcu_read_unlock();
691 return NULL;
692 }
693
694 /*
695 * after adding space to the filesystem, we need to clear the full flags
696 * on all the space infos.
697 */
698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
699 {
700 struct list_head *head = &info->space_info;
701 struct btrfs_space_info *found;
702
703 rcu_read_lock();
704 list_for_each_entry_rcu(found, head, list)
705 found->full = 0;
706 rcu_read_unlock();
707 }
708
709 /* simple helper to search for an existing extent at a given offset */
710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
711 {
712 int ret;
713 struct btrfs_key key;
714 struct btrfs_path *path;
715
716 path = btrfs_alloc_path();
717 if (!path)
718 return -ENOMEM;
719
720 key.objectid = start;
721 key.offset = len;
722 key.type = BTRFS_EXTENT_ITEM_KEY;
723 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
724 0, 0);
725 if (ret > 0) {
726 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
727 if (key.objectid == start &&
728 key.type == BTRFS_METADATA_ITEM_KEY)
729 ret = 0;
730 }
731 btrfs_free_path(path);
732 return ret;
733 }
734
735 /*
736 * helper function to lookup reference count and flags of a tree block.
737 *
738 * the head node for delayed ref is used to store the sum of all the
739 * reference count modifications queued up in the rbtree. the head
740 * node may also store the extent flags to set. This way you can check
741 * to see what the reference count and extent flags would be if all of
742 * the delayed refs are not processed.
743 */
744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
745 struct btrfs_root *root, u64 bytenr,
746 u64 offset, int metadata, u64 *refs, u64 *flags)
747 {
748 struct btrfs_delayed_ref_head *head;
749 struct btrfs_delayed_ref_root *delayed_refs;
750 struct btrfs_path *path;
751 struct btrfs_extent_item *ei;
752 struct extent_buffer *leaf;
753 struct btrfs_key key;
754 u32 item_size;
755 u64 num_refs;
756 u64 extent_flags;
757 int ret;
758
759 /*
760 * If we don't have skinny metadata, don't bother doing anything
761 * different
762 */
763 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
764 offset = root->leafsize;
765 metadata = 0;
766 }
767
768 path = btrfs_alloc_path();
769 if (!path)
770 return -ENOMEM;
771
772 if (!trans) {
773 path->skip_locking = 1;
774 path->search_commit_root = 1;
775 }
776
777 search_again:
778 key.objectid = bytenr;
779 key.offset = offset;
780 if (metadata)
781 key.type = BTRFS_METADATA_ITEM_KEY;
782 else
783 key.type = BTRFS_EXTENT_ITEM_KEY;
784
785 again:
786 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 &key, path, 0, 0);
788 if (ret < 0)
789 goto out_free;
790
791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 if (path->slots[0]) {
793 path->slots[0]--;
794 btrfs_item_key_to_cpu(path->nodes[0], &key,
795 path->slots[0]);
796 if (key.objectid == bytenr &&
797 key.type == BTRFS_EXTENT_ITEM_KEY &&
798 key.offset == root->leafsize)
799 ret = 0;
800 }
801 if (ret) {
802 key.objectid = bytenr;
803 key.type = BTRFS_EXTENT_ITEM_KEY;
804 key.offset = root->leafsize;
805 btrfs_release_path(path);
806 goto again;
807 }
808 }
809
810 if (ret == 0) {
811 leaf = path->nodes[0];
812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 if (item_size >= sizeof(*ei)) {
814 ei = btrfs_item_ptr(leaf, path->slots[0],
815 struct btrfs_extent_item);
816 num_refs = btrfs_extent_refs(leaf, ei);
817 extent_flags = btrfs_extent_flags(leaf, ei);
818 } else {
819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 struct btrfs_extent_item_v0 *ei0;
821 BUG_ON(item_size != sizeof(*ei0));
822 ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 struct btrfs_extent_item_v0);
824 num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 /* FIXME: this isn't correct for data */
826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827 #else
828 BUG();
829 #endif
830 }
831 BUG_ON(num_refs == 0);
832 } else {
833 num_refs = 0;
834 extent_flags = 0;
835 ret = 0;
836 }
837
838 if (!trans)
839 goto out;
840
841 delayed_refs = &trans->transaction->delayed_refs;
842 spin_lock(&delayed_refs->lock);
843 head = btrfs_find_delayed_ref_head(trans, bytenr);
844 if (head) {
845 if (!mutex_trylock(&head->mutex)) {
846 atomic_inc(&head->node.refs);
847 spin_unlock(&delayed_refs->lock);
848
849 btrfs_release_path(path);
850
851 /*
852 * Mutex was contended, block until it's released and try
853 * again
854 */
855 mutex_lock(&head->mutex);
856 mutex_unlock(&head->mutex);
857 btrfs_put_delayed_ref(&head->node);
858 goto search_again;
859 }
860 if (head->extent_op && head->extent_op->update_flags)
861 extent_flags |= head->extent_op->flags_to_set;
862 else
863 BUG_ON(num_refs == 0);
864
865 num_refs += head->node.ref_mod;
866 mutex_unlock(&head->mutex);
867 }
868 spin_unlock(&delayed_refs->lock);
869 out:
870 WARN_ON(num_refs == 0);
871 if (refs)
872 *refs = num_refs;
873 if (flags)
874 *flags = extent_flags;
875 out_free:
876 btrfs_free_path(path);
877 return ret;
878 }
879
880 /*
881 * Back reference rules. Back refs have three main goals:
882 *
883 * 1) differentiate between all holders of references to an extent so that
884 * when a reference is dropped we can make sure it was a valid reference
885 * before freeing the extent.
886 *
887 * 2) Provide enough information to quickly find the holders of an extent
888 * if we notice a given block is corrupted or bad.
889 *
890 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
891 * maintenance. This is actually the same as #2, but with a slightly
892 * different use case.
893 *
894 * There are two kinds of back refs. The implicit back refs is optimized
895 * for pointers in non-shared tree blocks. For a given pointer in a block,
896 * back refs of this kind provide information about the block's owner tree
897 * and the pointer's key. These information allow us to find the block by
898 * b-tree searching. The full back refs is for pointers in tree blocks not
899 * referenced by their owner trees. The location of tree block is recorded
900 * in the back refs. Actually the full back refs is generic, and can be
901 * used in all cases the implicit back refs is used. The major shortcoming
902 * of the full back refs is its overhead. Every time a tree block gets
903 * COWed, we have to update back refs entry for all pointers in it.
904 *
905 * For a newly allocated tree block, we use implicit back refs for
906 * pointers in it. This means most tree related operations only involve
907 * implicit back refs. For a tree block created in old transaction, the
908 * only way to drop a reference to it is COW it. So we can detect the
909 * event that tree block loses its owner tree's reference and do the
910 * back refs conversion.
911 *
912 * When a tree block is COW'd through a tree, there are four cases:
913 *
914 * The reference count of the block is one and the tree is the block's
915 * owner tree. Nothing to do in this case.
916 *
917 * The reference count of the block is one and the tree is not the
918 * block's owner tree. In this case, full back refs is used for pointers
919 * in the block. Remove these full back refs, add implicit back refs for
920 * every pointers in the new block.
921 *
922 * The reference count of the block is greater than one and the tree is
923 * the block's owner tree. In this case, implicit back refs is used for
924 * pointers in the block. Add full back refs for every pointers in the
925 * block, increase lower level extents' reference counts. The original
926 * implicit back refs are entailed to the new block.
927 *
928 * The reference count of the block is greater than one and the tree is
929 * not the block's owner tree. Add implicit back refs for every pointer in
930 * the new block, increase lower level extents' reference count.
931 *
932 * Back Reference Key composing:
933 *
934 * The key objectid corresponds to the first byte in the extent,
935 * The key type is used to differentiate between types of back refs.
936 * There are different meanings of the key offset for different types
937 * of back refs.
938 *
939 * File extents can be referenced by:
940 *
941 * - multiple snapshots, subvolumes, or different generations in one subvol
942 * - different files inside a single subvolume
943 * - different offsets inside a file (bookend extents in file.c)
944 *
945 * The extent ref structure for the implicit back refs has fields for:
946 *
947 * - Objectid of the subvolume root
948 * - objectid of the file holding the reference
949 * - original offset in the file
950 * - how many bookend extents
951 *
952 * The key offset for the implicit back refs is hash of the first
953 * three fields.
954 *
955 * The extent ref structure for the full back refs has field for:
956 *
957 * - number of pointers in the tree leaf
958 *
959 * The key offset for the implicit back refs is the first byte of
960 * the tree leaf
961 *
962 * When a file extent is allocated, The implicit back refs is used.
963 * the fields are filled in:
964 *
965 * (root_key.objectid, inode objectid, offset in file, 1)
966 *
967 * When a file extent is removed file truncation, we find the
968 * corresponding implicit back refs and check the following fields:
969 *
970 * (btrfs_header_owner(leaf), inode objectid, offset in file)
971 *
972 * Btree extents can be referenced by:
973 *
974 * - Different subvolumes
975 *
976 * Both the implicit back refs and the full back refs for tree blocks
977 * only consist of key. The key offset for the implicit back refs is
978 * objectid of block's owner tree. The key offset for the full back refs
979 * is the first byte of parent block.
980 *
981 * When implicit back refs is used, information about the lowest key and
982 * level of the tree block are required. These information are stored in
983 * tree block info structure.
984 */
985
986 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
987 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
988 struct btrfs_root *root,
989 struct btrfs_path *path,
990 u64 owner, u32 extra_size)
991 {
992 struct btrfs_extent_item *item;
993 struct btrfs_extent_item_v0 *ei0;
994 struct btrfs_extent_ref_v0 *ref0;
995 struct btrfs_tree_block_info *bi;
996 struct extent_buffer *leaf;
997 struct btrfs_key key;
998 struct btrfs_key found_key;
999 u32 new_size = sizeof(*item);
1000 u64 refs;
1001 int ret;
1002
1003 leaf = path->nodes[0];
1004 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1005
1006 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1007 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1008 struct btrfs_extent_item_v0);
1009 refs = btrfs_extent_refs_v0(leaf, ei0);
1010
1011 if (owner == (u64)-1) {
1012 while (1) {
1013 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1014 ret = btrfs_next_leaf(root, path);
1015 if (ret < 0)
1016 return ret;
1017 BUG_ON(ret > 0); /* Corruption */
1018 leaf = path->nodes[0];
1019 }
1020 btrfs_item_key_to_cpu(leaf, &found_key,
1021 path->slots[0]);
1022 BUG_ON(key.objectid != found_key.objectid);
1023 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1024 path->slots[0]++;
1025 continue;
1026 }
1027 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1028 struct btrfs_extent_ref_v0);
1029 owner = btrfs_ref_objectid_v0(leaf, ref0);
1030 break;
1031 }
1032 }
1033 btrfs_release_path(path);
1034
1035 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1036 new_size += sizeof(*bi);
1037
1038 new_size -= sizeof(*ei0);
1039 ret = btrfs_search_slot(trans, root, &key, path,
1040 new_size + extra_size, 1);
1041 if (ret < 0)
1042 return ret;
1043 BUG_ON(ret); /* Corruption */
1044
1045 btrfs_extend_item(root, path, new_size);
1046
1047 leaf = path->nodes[0];
1048 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1049 btrfs_set_extent_refs(leaf, item, refs);
1050 /* FIXME: get real generation */
1051 btrfs_set_extent_generation(leaf, item, 0);
1052 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1053 btrfs_set_extent_flags(leaf, item,
1054 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1055 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1056 bi = (struct btrfs_tree_block_info *)(item + 1);
1057 /* FIXME: get first key of the block */
1058 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1059 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1060 } else {
1061 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1062 }
1063 btrfs_mark_buffer_dirty(leaf);
1064 return 0;
1065 }
1066 #endif
1067
1068 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1069 {
1070 u32 high_crc = ~(u32)0;
1071 u32 low_crc = ~(u32)0;
1072 __le64 lenum;
1073
1074 lenum = cpu_to_le64(root_objectid);
1075 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1076 lenum = cpu_to_le64(owner);
1077 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1078 lenum = cpu_to_le64(offset);
1079 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1080
1081 return ((u64)high_crc << 31) ^ (u64)low_crc;
1082 }
1083
1084 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref)
1086 {
1087 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1088 btrfs_extent_data_ref_objectid(leaf, ref),
1089 btrfs_extent_data_ref_offset(leaf, ref));
1090 }
1091
1092 static int match_extent_data_ref(struct extent_buffer *leaf,
1093 struct btrfs_extent_data_ref *ref,
1094 u64 root_objectid, u64 owner, u64 offset)
1095 {
1096 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1097 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1098 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1099 return 0;
1100 return 1;
1101 }
1102
1103 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1104 struct btrfs_root *root,
1105 struct btrfs_path *path,
1106 u64 bytenr, u64 parent,
1107 u64 root_objectid,
1108 u64 owner, u64 offset)
1109 {
1110 struct btrfs_key key;
1111 struct btrfs_extent_data_ref *ref;
1112 struct extent_buffer *leaf;
1113 u32 nritems;
1114 int ret;
1115 int recow;
1116 int err = -ENOENT;
1117
1118 key.objectid = bytenr;
1119 if (parent) {
1120 key.type = BTRFS_SHARED_DATA_REF_KEY;
1121 key.offset = parent;
1122 } else {
1123 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1124 key.offset = hash_extent_data_ref(root_objectid,
1125 owner, offset);
1126 }
1127 again:
1128 recow = 0;
1129 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1130 if (ret < 0) {
1131 err = ret;
1132 goto fail;
1133 }
1134
1135 if (parent) {
1136 if (!ret)
1137 return 0;
1138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1139 key.type = BTRFS_EXTENT_REF_V0_KEY;
1140 btrfs_release_path(path);
1141 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1142 if (ret < 0) {
1143 err = ret;
1144 goto fail;
1145 }
1146 if (!ret)
1147 return 0;
1148 #endif
1149 goto fail;
1150 }
1151
1152 leaf = path->nodes[0];
1153 nritems = btrfs_header_nritems(leaf);
1154 while (1) {
1155 if (path->slots[0] >= nritems) {
1156 ret = btrfs_next_leaf(root, path);
1157 if (ret < 0)
1158 err = ret;
1159 if (ret)
1160 goto fail;
1161
1162 leaf = path->nodes[0];
1163 nritems = btrfs_header_nritems(leaf);
1164 recow = 1;
1165 }
1166
1167 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1168 if (key.objectid != bytenr ||
1169 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1170 goto fail;
1171
1172 ref = btrfs_item_ptr(leaf, path->slots[0],
1173 struct btrfs_extent_data_ref);
1174
1175 if (match_extent_data_ref(leaf, ref, root_objectid,
1176 owner, offset)) {
1177 if (recow) {
1178 btrfs_release_path(path);
1179 goto again;
1180 }
1181 err = 0;
1182 break;
1183 }
1184 path->slots[0]++;
1185 }
1186 fail:
1187 return err;
1188 }
1189
1190 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1191 struct btrfs_root *root,
1192 struct btrfs_path *path,
1193 u64 bytenr, u64 parent,
1194 u64 root_objectid, u64 owner,
1195 u64 offset, int refs_to_add)
1196 {
1197 struct btrfs_key key;
1198 struct extent_buffer *leaf;
1199 u32 size;
1200 u32 num_refs;
1201 int ret;
1202
1203 key.objectid = bytenr;
1204 if (parent) {
1205 key.type = BTRFS_SHARED_DATA_REF_KEY;
1206 key.offset = parent;
1207 size = sizeof(struct btrfs_shared_data_ref);
1208 } else {
1209 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1210 key.offset = hash_extent_data_ref(root_objectid,
1211 owner, offset);
1212 size = sizeof(struct btrfs_extent_data_ref);
1213 }
1214
1215 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1216 if (ret && ret != -EEXIST)
1217 goto fail;
1218
1219 leaf = path->nodes[0];
1220 if (parent) {
1221 struct btrfs_shared_data_ref *ref;
1222 ref = btrfs_item_ptr(leaf, path->slots[0],
1223 struct btrfs_shared_data_ref);
1224 if (ret == 0) {
1225 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1226 } else {
1227 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1228 num_refs += refs_to_add;
1229 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1230 }
1231 } else {
1232 struct btrfs_extent_data_ref *ref;
1233 while (ret == -EEXIST) {
1234 ref = btrfs_item_ptr(leaf, path->slots[0],
1235 struct btrfs_extent_data_ref);
1236 if (match_extent_data_ref(leaf, ref, root_objectid,
1237 owner, offset))
1238 break;
1239 btrfs_release_path(path);
1240 key.offset++;
1241 ret = btrfs_insert_empty_item(trans, root, path, &key,
1242 size);
1243 if (ret && ret != -EEXIST)
1244 goto fail;
1245
1246 leaf = path->nodes[0];
1247 }
1248 ref = btrfs_item_ptr(leaf, path->slots[0],
1249 struct btrfs_extent_data_ref);
1250 if (ret == 0) {
1251 btrfs_set_extent_data_ref_root(leaf, ref,
1252 root_objectid);
1253 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1254 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1255 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1256 } else {
1257 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1258 num_refs += refs_to_add;
1259 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1260 }
1261 }
1262 btrfs_mark_buffer_dirty(leaf);
1263 ret = 0;
1264 fail:
1265 btrfs_release_path(path);
1266 return ret;
1267 }
1268
1269 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root,
1271 struct btrfs_path *path,
1272 int refs_to_drop)
1273 {
1274 struct btrfs_key key;
1275 struct btrfs_extent_data_ref *ref1 = NULL;
1276 struct btrfs_shared_data_ref *ref2 = NULL;
1277 struct extent_buffer *leaf;
1278 u32 num_refs = 0;
1279 int ret = 0;
1280
1281 leaf = path->nodes[0];
1282 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1283
1284 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1285 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_data_ref);
1287 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1288 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1289 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_shared_data_ref);
1291 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1292 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1293 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1294 struct btrfs_extent_ref_v0 *ref0;
1295 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1296 struct btrfs_extent_ref_v0);
1297 num_refs = btrfs_ref_count_v0(leaf, ref0);
1298 #endif
1299 } else {
1300 BUG();
1301 }
1302
1303 BUG_ON(num_refs < refs_to_drop);
1304 num_refs -= refs_to_drop;
1305
1306 if (num_refs == 0) {
1307 ret = btrfs_del_item(trans, root, path);
1308 } else {
1309 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1310 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1311 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1312 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1313 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1314 else {
1315 struct btrfs_extent_ref_v0 *ref0;
1316 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1317 struct btrfs_extent_ref_v0);
1318 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1319 }
1320 #endif
1321 btrfs_mark_buffer_dirty(leaf);
1322 }
1323 return ret;
1324 }
1325
1326 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1327 struct btrfs_path *path,
1328 struct btrfs_extent_inline_ref *iref)
1329 {
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
1332 struct btrfs_extent_data_ref *ref1;
1333 struct btrfs_shared_data_ref *ref2;
1334 u32 num_refs = 0;
1335
1336 leaf = path->nodes[0];
1337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1338 if (iref) {
1339 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1340 BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else {
1344 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1345 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1346 }
1347 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1348 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_extent_data_ref);
1350 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1351 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1352 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_shared_data_ref);
1354 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1355 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1356 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1357 struct btrfs_extent_ref_v0 *ref0;
1358 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1359 struct btrfs_extent_ref_v0);
1360 num_refs = btrfs_ref_count_v0(leaf, ref0);
1361 #endif
1362 } else {
1363 WARN_ON(1);
1364 }
1365 return num_refs;
1366 }
1367
1368 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root,
1370 struct btrfs_path *path,
1371 u64 bytenr, u64 parent,
1372 u64 root_objectid)
1373 {
1374 struct btrfs_key key;
1375 int ret;
1376
1377 key.objectid = bytenr;
1378 if (parent) {
1379 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 key.offset = parent;
1381 } else {
1382 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 key.offset = root_objectid;
1384 }
1385
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1390 if (ret == -ENOENT && parent) {
1391 btrfs_release_path(path);
1392 key.type = BTRFS_EXTENT_REF_V0_KEY;
1393 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1394 if (ret > 0)
1395 ret = -ENOENT;
1396 }
1397 #endif
1398 return ret;
1399 }
1400
1401 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_path *path,
1404 u64 bytenr, u64 parent,
1405 u64 root_objectid)
1406 {
1407 struct btrfs_key key;
1408 int ret;
1409
1410 key.objectid = bytenr;
1411 if (parent) {
1412 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1413 key.offset = parent;
1414 } else {
1415 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1416 key.offset = root_objectid;
1417 }
1418
1419 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1420 btrfs_release_path(path);
1421 return ret;
1422 }
1423
1424 static inline int extent_ref_type(u64 parent, u64 owner)
1425 {
1426 int type;
1427 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1428 if (parent > 0)
1429 type = BTRFS_SHARED_BLOCK_REF_KEY;
1430 else
1431 type = BTRFS_TREE_BLOCK_REF_KEY;
1432 } else {
1433 if (parent > 0)
1434 type = BTRFS_SHARED_DATA_REF_KEY;
1435 else
1436 type = BTRFS_EXTENT_DATA_REF_KEY;
1437 }
1438 return type;
1439 }
1440
1441 static int find_next_key(struct btrfs_path *path, int level,
1442 struct btrfs_key *key)
1443
1444 {
1445 for (; level < BTRFS_MAX_LEVEL; level++) {
1446 if (!path->nodes[level])
1447 break;
1448 if (path->slots[level] + 1 >=
1449 btrfs_header_nritems(path->nodes[level]))
1450 continue;
1451 if (level == 0)
1452 btrfs_item_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1454 else
1455 btrfs_node_key_to_cpu(path->nodes[level], key,
1456 path->slots[level] + 1);
1457 return 0;
1458 }
1459 return 1;
1460 }
1461
1462 /*
1463 * look for inline back ref. if back ref is found, *ref_ret is set
1464 * to the address of inline back ref, and 0 is returned.
1465 *
1466 * if back ref isn't found, *ref_ret is set to the address where it
1467 * should be inserted, and -ENOENT is returned.
1468 *
1469 * if insert is true and there are too many inline back refs, the path
1470 * points to the extent item, and -EAGAIN is returned.
1471 *
1472 * NOTE: inline back refs are ordered in the same way that back ref
1473 * items in the tree are ordered.
1474 */
1475 static noinline_for_stack
1476 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1477 struct btrfs_root *root,
1478 struct btrfs_path *path,
1479 struct btrfs_extent_inline_ref **ref_ret,
1480 u64 bytenr, u64 num_bytes,
1481 u64 parent, u64 root_objectid,
1482 u64 owner, u64 offset, int insert)
1483 {
1484 struct btrfs_key key;
1485 struct extent_buffer *leaf;
1486 struct btrfs_extent_item *ei;
1487 struct btrfs_extent_inline_ref *iref;
1488 u64 flags;
1489 u64 item_size;
1490 unsigned long ptr;
1491 unsigned long end;
1492 int extra_size;
1493 int type;
1494 int want;
1495 int ret;
1496 int err = 0;
1497 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1498 SKINNY_METADATA);
1499
1500 key.objectid = bytenr;
1501 key.type = BTRFS_EXTENT_ITEM_KEY;
1502 key.offset = num_bytes;
1503
1504 want = extent_ref_type(parent, owner);
1505 if (insert) {
1506 extra_size = btrfs_extent_inline_ref_size(want);
1507 path->keep_locks = 1;
1508 } else
1509 extra_size = -1;
1510
1511 /*
1512 * Owner is our parent level, so we can just add one to get the level
1513 * for the block we are interested in.
1514 */
1515 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1516 key.type = BTRFS_METADATA_ITEM_KEY;
1517 key.offset = owner;
1518 }
1519
1520 again:
1521 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1522 if (ret < 0) {
1523 err = ret;
1524 goto out;
1525 }
1526
1527 /*
1528 * We may be a newly converted file system which still has the old fat
1529 * extent entries for metadata, so try and see if we have one of those.
1530 */
1531 if (ret > 0 && skinny_metadata) {
1532 skinny_metadata = false;
1533 if (path->slots[0]) {
1534 path->slots[0]--;
1535 btrfs_item_key_to_cpu(path->nodes[0], &key,
1536 path->slots[0]);
1537 if (key.objectid == bytenr &&
1538 key.type == BTRFS_EXTENT_ITEM_KEY &&
1539 key.offset == num_bytes)
1540 ret = 0;
1541 }
1542 if (ret) {
1543 key.type = BTRFS_EXTENT_ITEM_KEY;
1544 key.offset = num_bytes;
1545 btrfs_release_path(path);
1546 goto again;
1547 }
1548 }
1549
1550 if (ret && !insert) {
1551 err = -ENOENT;
1552 goto out;
1553 } else if (WARN_ON(ret)) {
1554 err = -EIO;
1555 goto out;
1556 }
1557
1558 leaf = path->nodes[0];
1559 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1560 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1561 if (item_size < sizeof(*ei)) {
1562 if (!insert) {
1563 err = -ENOENT;
1564 goto out;
1565 }
1566 ret = convert_extent_item_v0(trans, root, path, owner,
1567 extra_size);
1568 if (ret < 0) {
1569 err = ret;
1570 goto out;
1571 }
1572 leaf = path->nodes[0];
1573 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1574 }
1575 #endif
1576 BUG_ON(item_size < sizeof(*ei));
1577
1578 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1579 flags = btrfs_extent_flags(leaf, ei);
1580
1581 ptr = (unsigned long)(ei + 1);
1582 end = (unsigned long)ei + item_size;
1583
1584 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1585 ptr += sizeof(struct btrfs_tree_block_info);
1586 BUG_ON(ptr > end);
1587 }
1588
1589 err = -ENOENT;
1590 while (1) {
1591 if (ptr >= end) {
1592 WARN_ON(ptr > end);
1593 break;
1594 }
1595 iref = (struct btrfs_extent_inline_ref *)ptr;
1596 type = btrfs_extent_inline_ref_type(leaf, iref);
1597 if (want < type)
1598 break;
1599 if (want > type) {
1600 ptr += btrfs_extent_inline_ref_size(type);
1601 continue;
1602 }
1603
1604 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1605 struct btrfs_extent_data_ref *dref;
1606 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1607 if (match_extent_data_ref(leaf, dref, root_objectid,
1608 owner, offset)) {
1609 err = 0;
1610 break;
1611 }
1612 if (hash_extent_data_ref_item(leaf, dref) <
1613 hash_extent_data_ref(root_objectid, owner, offset))
1614 break;
1615 } else {
1616 u64 ref_offset;
1617 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1618 if (parent > 0) {
1619 if (parent == ref_offset) {
1620 err = 0;
1621 break;
1622 }
1623 if (ref_offset < parent)
1624 break;
1625 } else {
1626 if (root_objectid == ref_offset) {
1627 err = 0;
1628 break;
1629 }
1630 if (ref_offset < root_objectid)
1631 break;
1632 }
1633 }
1634 ptr += btrfs_extent_inline_ref_size(type);
1635 }
1636 if (err == -ENOENT && insert) {
1637 if (item_size + extra_size >=
1638 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1639 err = -EAGAIN;
1640 goto out;
1641 }
1642 /*
1643 * To add new inline back ref, we have to make sure
1644 * there is no corresponding back ref item.
1645 * For simplicity, we just do not add new inline back
1646 * ref if there is any kind of item for this block
1647 */
1648 if (find_next_key(path, 0, &key) == 0 &&
1649 key.objectid == bytenr &&
1650 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1651 err = -EAGAIN;
1652 goto out;
1653 }
1654 }
1655 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1656 out:
1657 if (insert) {
1658 path->keep_locks = 0;
1659 btrfs_unlock_up_safe(path, 1);
1660 }
1661 return err;
1662 }
1663
1664 /*
1665 * helper to add new inline back ref
1666 */
1667 static noinline_for_stack
1668 void setup_inline_extent_backref(struct btrfs_root *root,
1669 struct btrfs_path *path,
1670 struct btrfs_extent_inline_ref *iref,
1671 u64 parent, u64 root_objectid,
1672 u64 owner, u64 offset, int refs_to_add,
1673 struct btrfs_delayed_extent_op *extent_op)
1674 {
1675 struct extent_buffer *leaf;
1676 struct btrfs_extent_item *ei;
1677 unsigned long ptr;
1678 unsigned long end;
1679 unsigned long item_offset;
1680 u64 refs;
1681 int size;
1682 int type;
1683
1684 leaf = path->nodes[0];
1685 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1686 item_offset = (unsigned long)iref - (unsigned long)ei;
1687
1688 type = extent_ref_type(parent, owner);
1689 size = btrfs_extent_inline_ref_size(type);
1690
1691 btrfs_extend_item(root, path, size);
1692
1693 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1694 refs = btrfs_extent_refs(leaf, ei);
1695 refs += refs_to_add;
1696 btrfs_set_extent_refs(leaf, ei, refs);
1697 if (extent_op)
1698 __run_delayed_extent_op(extent_op, leaf, ei);
1699
1700 ptr = (unsigned long)ei + item_offset;
1701 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1702 if (ptr < end - size)
1703 memmove_extent_buffer(leaf, ptr + size, ptr,
1704 end - size - ptr);
1705
1706 iref = (struct btrfs_extent_inline_ref *)ptr;
1707 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1708 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1709 struct btrfs_extent_data_ref *dref;
1710 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1711 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1712 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1713 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1714 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1715 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1716 struct btrfs_shared_data_ref *sref;
1717 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1718 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 } else {
1723 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1724 }
1725 btrfs_mark_buffer_dirty(leaf);
1726 }
1727
1728 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1729 struct btrfs_root *root,
1730 struct btrfs_path *path,
1731 struct btrfs_extent_inline_ref **ref_ret,
1732 u64 bytenr, u64 num_bytes, u64 parent,
1733 u64 root_objectid, u64 owner, u64 offset)
1734 {
1735 int ret;
1736
1737 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1738 bytenr, num_bytes, parent,
1739 root_objectid, owner, offset, 0);
1740 if (ret != -ENOENT)
1741 return ret;
1742
1743 btrfs_release_path(path);
1744 *ref_ret = NULL;
1745
1746 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1747 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1748 root_objectid);
1749 } else {
1750 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1751 root_objectid, owner, offset);
1752 }
1753 return ret;
1754 }
1755
1756 /*
1757 * helper to update/remove inline back ref
1758 */
1759 static noinline_for_stack
1760 void update_inline_extent_backref(struct btrfs_root *root,
1761 struct btrfs_path *path,
1762 struct btrfs_extent_inline_ref *iref,
1763 int refs_to_mod,
1764 struct btrfs_delayed_extent_op *extent_op)
1765 {
1766 struct extent_buffer *leaf;
1767 struct btrfs_extent_item *ei;
1768 struct btrfs_extent_data_ref *dref = NULL;
1769 struct btrfs_shared_data_ref *sref = NULL;
1770 unsigned long ptr;
1771 unsigned long end;
1772 u32 item_size;
1773 int size;
1774 int type;
1775 u64 refs;
1776
1777 leaf = path->nodes[0];
1778 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1779 refs = btrfs_extent_refs(leaf, ei);
1780 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1781 refs += refs_to_mod;
1782 btrfs_set_extent_refs(leaf, ei, refs);
1783 if (extent_op)
1784 __run_delayed_extent_op(extent_op, leaf, ei);
1785
1786 type = btrfs_extent_inline_ref_type(leaf, iref);
1787
1788 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1789 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1790 refs = btrfs_extent_data_ref_count(leaf, dref);
1791 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1792 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1793 refs = btrfs_shared_data_ref_count(leaf, sref);
1794 } else {
1795 refs = 1;
1796 BUG_ON(refs_to_mod != -1);
1797 }
1798
1799 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1800 refs += refs_to_mod;
1801
1802 if (refs > 0) {
1803 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1804 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1805 else
1806 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1807 } else {
1808 size = btrfs_extent_inline_ref_size(type);
1809 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1810 ptr = (unsigned long)iref;
1811 end = (unsigned long)ei + item_size;
1812 if (ptr + size < end)
1813 memmove_extent_buffer(leaf, ptr, ptr + size,
1814 end - ptr - size);
1815 item_size -= size;
1816 btrfs_truncate_item(root, path, item_size, 1);
1817 }
1818 btrfs_mark_buffer_dirty(leaf);
1819 }
1820
1821 static noinline_for_stack
1822 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1823 struct btrfs_root *root,
1824 struct btrfs_path *path,
1825 u64 bytenr, u64 num_bytes, u64 parent,
1826 u64 root_objectid, u64 owner,
1827 u64 offset, int refs_to_add,
1828 struct btrfs_delayed_extent_op *extent_op)
1829 {
1830 struct btrfs_extent_inline_ref *iref;
1831 int ret;
1832
1833 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1834 bytenr, num_bytes, parent,
1835 root_objectid, owner, offset, 1);
1836 if (ret == 0) {
1837 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1838 update_inline_extent_backref(root, path, iref,
1839 refs_to_add, extent_op);
1840 } else if (ret == -ENOENT) {
1841 setup_inline_extent_backref(root, path, iref, parent,
1842 root_objectid, owner, offset,
1843 refs_to_add, extent_op);
1844 ret = 0;
1845 }
1846 return ret;
1847 }
1848
1849 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1850 struct btrfs_root *root,
1851 struct btrfs_path *path,
1852 u64 bytenr, u64 parent, u64 root_objectid,
1853 u64 owner, u64 offset, int refs_to_add)
1854 {
1855 int ret;
1856 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1857 BUG_ON(refs_to_add != 1);
1858 ret = insert_tree_block_ref(trans, root, path, bytenr,
1859 parent, root_objectid);
1860 } else {
1861 ret = insert_extent_data_ref(trans, root, path, bytenr,
1862 parent, root_objectid,
1863 owner, offset, refs_to_add);
1864 }
1865 return ret;
1866 }
1867
1868 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1869 struct btrfs_root *root,
1870 struct btrfs_path *path,
1871 struct btrfs_extent_inline_ref *iref,
1872 int refs_to_drop, int is_data)
1873 {
1874 int ret = 0;
1875
1876 BUG_ON(!is_data && refs_to_drop != 1);
1877 if (iref) {
1878 update_inline_extent_backref(root, path, iref,
1879 -refs_to_drop, NULL);
1880 } else if (is_data) {
1881 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1882 } else {
1883 ret = btrfs_del_item(trans, root, path);
1884 }
1885 return ret;
1886 }
1887
1888 static int btrfs_issue_discard(struct block_device *bdev,
1889 u64 start, u64 len)
1890 {
1891 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1892 }
1893
1894 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1895 u64 num_bytes, u64 *actual_bytes)
1896 {
1897 int ret;
1898 u64 discarded_bytes = 0;
1899 struct btrfs_bio *bbio = NULL;
1900
1901
1902 /* Tell the block device(s) that the sectors can be discarded */
1903 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1904 bytenr, &num_bytes, &bbio, 0);
1905 /* Error condition is -ENOMEM */
1906 if (!ret) {
1907 struct btrfs_bio_stripe *stripe = bbio->stripes;
1908 int i;
1909
1910
1911 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1912 if (!stripe->dev->can_discard)
1913 continue;
1914
1915 ret = btrfs_issue_discard(stripe->dev->bdev,
1916 stripe->physical,
1917 stripe->length);
1918 if (!ret)
1919 discarded_bytes += stripe->length;
1920 else if (ret != -EOPNOTSUPP)
1921 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1922
1923 /*
1924 * Just in case we get back EOPNOTSUPP for some reason,
1925 * just ignore the return value so we don't screw up
1926 * people calling discard_extent.
1927 */
1928 ret = 0;
1929 }
1930 kfree(bbio);
1931 }
1932
1933 if (actual_bytes)
1934 *actual_bytes = discarded_bytes;
1935
1936
1937 if (ret == -EOPNOTSUPP)
1938 ret = 0;
1939 return ret;
1940 }
1941
1942 /* Can return -ENOMEM */
1943 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1944 struct btrfs_root *root,
1945 u64 bytenr, u64 num_bytes, u64 parent,
1946 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1947 {
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1964 }
1965 return ret;
1966 }
1967
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 struct btrfs_delayed_extent_op *extent_op)
1974 {
1975 struct btrfs_path *path;
1976 struct extent_buffer *leaf;
1977 struct btrfs_extent_item *item;
1978 u64 refs;
1979 int ret;
1980
1981 path = btrfs_alloc_path();
1982 if (!path)
1983 return -ENOMEM;
1984
1985 path->reada = 1;
1986 path->leave_spinning = 1;
1987 /* this will setup the path even if it fails to insert the back ref */
1988 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1989 path, bytenr, num_bytes, parent,
1990 root_objectid, owner, offset,
1991 refs_to_add, extent_op);
1992 if (ret != -EAGAIN)
1993 goto out;
1994
1995 leaf = path->nodes[0];
1996 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1997 refs = btrfs_extent_refs(leaf, item);
1998 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1999 if (extent_op)
2000 __run_delayed_extent_op(extent_op, leaf, item);
2001
2002 btrfs_mark_buffer_dirty(leaf);
2003 btrfs_release_path(path);
2004
2005 path->reada = 1;
2006 path->leave_spinning = 1;
2007
2008 /* now insert the actual backref */
2009 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2010 path, bytenr, parent, root_objectid,
2011 owner, offset, refs_to_add);
2012 if (ret)
2013 btrfs_abort_transaction(trans, root, ret);
2014 out:
2015 btrfs_free_path(path);
2016 return ret;
2017 }
2018
2019 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2020 struct btrfs_root *root,
2021 struct btrfs_delayed_ref_node *node,
2022 struct btrfs_delayed_extent_op *extent_op,
2023 int insert_reserved)
2024 {
2025 int ret = 0;
2026 struct btrfs_delayed_data_ref *ref;
2027 struct btrfs_key ins;
2028 u64 parent = 0;
2029 u64 ref_root = 0;
2030 u64 flags = 0;
2031
2032 ins.objectid = node->bytenr;
2033 ins.offset = node->num_bytes;
2034 ins.type = BTRFS_EXTENT_ITEM_KEY;
2035
2036 ref = btrfs_delayed_node_to_data_ref(node);
2037 trace_run_delayed_data_ref(node, ref, node->action);
2038
2039 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2040 parent = ref->parent;
2041 else
2042 ref_root = ref->root;
2043
2044 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2045 if (extent_op)
2046 flags |= extent_op->flags_to_set;
2047 ret = alloc_reserved_file_extent(trans, root,
2048 parent, ref_root, flags,
2049 ref->objectid, ref->offset,
2050 &ins, node->ref_mod);
2051 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2052 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2053 node->num_bytes, parent,
2054 ref_root, ref->objectid,
2055 ref->offset, node->ref_mod,
2056 extent_op);
2057 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2058 ret = __btrfs_free_extent(trans, root, node->bytenr,
2059 node->num_bytes, parent,
2060 ref_root, ref->objectid,
2061 ref->offset, node->ref_mod,
2062 extent_op);
2063 } else {
2064 BUG();
2065 }
2066 return ret;
2067 }
2068
2069 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2070 struct extent_buffer *leaf,
2071 struct btrfs_extent_item *ei)
2072 {
2073 u64 flags = btrfs_extent_flags(leaf, ei);
2074 if (extent_op->update_flags) {
2075 flags |= extent_op->flags_to_set;
2076 btrfs_set_extent_flags(leaf, ei, flags);
2077 }
2078
2079 if (extent_op->update_key) {
2080 struct btrfs_tree_block_info *bi;
2081 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2082 bi = (struct btrfs_tree_block_info *)(ei + 1);
2083 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2084 }
2085 }
2086
2087 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2088 struct btrfs_root *root,
2089 struct btrfs_delayed_ref_node *node,
2090 struct btrfs_delayed_extent_op *extent_op)
2091 {
2092 struct btrfs_key key;
2093 struct btrfs_path *path;
2094 struct btrfs_extent_item *ei;
2095 struct extent_buffer *leaf;
2096 u32 item_size;
2097 int ret;
2098 int err = 0;
2099 int metadata = !extent_op->is_data;
2100
2101 if (trans->aborted)
2102 return 0;
2103
2104 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2105 metadata = 0;
2106
2107 path = btrfs_alloc_path();
2108 if (!path)
2109 return -ENOMEM;
2110
2111 key.objectid = node->bytenr;
2112
2113 if (metadata) {
2114 key.type = BTRFS_METADATA_ITEM_KEY;
2115 key.offset = extent_op->level;
2116 } else {
2117 key.type = BTRFS_EXTENT_ITEM_KEY;
2118 key.offset = node->num_bytes;
2119 }
2120
2121 again:
2122 path->reada = 1;
2123 path->leave_spinning = 1;
2124 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2125 path, 0, 1);
2126 if (ret < 0) {
2127 err = ret;
2128 goto out;
2129 }
2130 if (ret > 0) {
2131 if (metadata) {
2132 if (path->slots[0] > 0) {
2133 path->slots[0]--;
2134 btrfs_item_key_to_cpu(path->nodes[0], &key,
2135 path->slots[0]);
2136 if (key.objectid == node->bytenr &&
2137 key.type == BTRFS_EXTENT_ITEM_KEY &&
2138 key.offset == node->num_bytes)
2139 ret = 0;
2140 }
2141 if (ret > 0) {
2142 btrfs_release_path(path);
2143 metadata = 0;
2144
2145 key.objectid = node->bytenr;
2146 key.offset = node->num_bytes;
2147 key.type = BTRFS_EXTENT_ITEM_KEY;
2148 goto again;
2149 }
2150 } else {
2151 err = -EIO;
2152 goto out;
2153 }
2154 }
2155
2156 leaf = path->nodes[0];
2157 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2158 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2159 if (item_size < sizeof(*ei)) {
2160 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2161 path, (u64)-1, 0);
2162 if (ret < 0) {
2163 err = ret;
2164 goto out;
2165 }
2166 leaf = path->nodes[0];
2167 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2168 }
2169 #endif
2170 BUG_ON(item_size < sizeof(*ei));
2171 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2172 __run_delayed_extent_op(extent_op, leaf, ei);
2173
2174 btrfs_mark_buffer_dirty(leaf);
2175 out:
2176 btrfs_free_path(path);
2177 return err;
2178 }
2179
2180 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_delayed_ref_node *node,
2183 struct btrfs_delayed_extent_op *extent_op,
2184 int insert_reserved)
2185 {
2186 int ret = 0;
2187 struct btrfs_delayed_tree_ref *ref;
2188 struct btrfs_key ins;
2189 u64 parent = 0;
2190 u64 ref_root = 0;
2191 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2192 SKINNY_METADATA);
2193
2194 ref = btrfs_delayed_node_to_tree_ref(node);
2195 trace_run_delayed_tree_ref(node, ref, node->action);
2196
2197 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2198 parent = ref->parent;
2199 else
2200 ref_root = ref->root;
2201
2202 ins.objectid = node->bytenr;
2203 if (skinny_metadata) {
2204 ins.offset = ref->level;
2205 ins.type = BTRFS_METADATA_ITEM_KEY;
2206 } else {
2207 ins.offset = node->num_bytes;
2208 ins.type = BTRFS_EXTENT_ITEM_KEY;
2209 }
2210
2211 BUG_ON(node->ref_mod != 1);
2212 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2213 BUG_ON(!extent_op || !extent_op->update_flags);
2214 ret = alloc_reserved_tree_block(trans, root,
2215 parent, ref_root,
2216 extent_op->flags_to_set,
2217 &extent_op->key,
2218 ref->level, &ins);
2219 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2220 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2221 node->num_bytes, parent, ref_root,
2222 ref->level, 0, 1, extent_op);
2223 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2224 ret = __btrfs_free_extent(trans, root, node->bytenr,
2225 node->num_bytes, parent, ref_root,
2226 ref->level, 0, 1, extent_op);
2227 } else {
2228 BUG();
2229 }
2230 return ret;
2231 }
2232
2233 /* helper function to actually process a single delayed ref entry */
2234 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2235 struct btrfs_root *root,
2236 struct btrfs_delayed_ref_node *node,
2237 struct btrfs_delayed_extent_op *extent_op,
2238 int insert_reserved)
2239 {
2240 int ret = 0;
2241
2242 if (trans->aborted) {
2243 if (insert_reserved)
2244 btrfs_pin_extent(root, node->bytenr,
2245 node->num_bytes, 1);
2246 return 0;
2247 }
2248
2249 if (btrfs_delayed_ref_is_head(node)) {
2250 struct btrfs_delayed_ref_head *head;
2251 /*
2252 * we've hit the end of the chain and we were supposed
2253 * to insert this extent into the tree. But, it got
2254 * deleted before we ever needed to insert it, so all
2255 * we have to do is clean up the accounting
2256 */
2257 BUG_ON(extent_op);
2258 head = btrfs_delayed_node_to_head(node);
2259 trace_run_delayed_ref_head(node, head, node->action);
2260
2261 if (insert_reserved) {
2262 btrfs_pin_extent(root, node->bytenr,
2263 node->num_bytes, 1);
2264 if (head->is_data) {
2265 ret = btrfs_del_csums(trans, root,
2266 node->bytenr,
2267 node->num_bytes);
2268 }
2269 }
2270 return ret;
2271 }
2272
2273 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2274 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2276 insert_reserved);
2277 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2278 node->type == BTRFS_SHARED_DATA_REF_KEY)
2279 ret = run_delayed_data_ref(trans, root, node, extent_op,
2280 insert_reserved);
2281 else
2282 BUG();
2283 return ret;
2284 }
2285
2286 static noinline struct btrfs_delayed_ref_node *
2287 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2288 {
2289 struct rb_node *node;
2290 struct btrfs_delayed_ref_node *ref;
2291 int action = BTRFS_ADD_DELAYED_REF;
2292 again:
2293 /*
2294 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2295 * this prevents ref count from going down to zero when
2296 * there still are pending delayed ref.
2297 */
2298 node = rb_prev(&head->node.rb_node);
2299 while (1) {
2300 if (!node)
2301 break;
2302 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2303 rb_node);
2304 if (ref->bytenr != head->node.bytenr)
2305 break;
2306 if (ref->action == action)
2307 return ref;
2308 node = rb_prev(node);
2309 }
2310 if (action == BTRFS_ADD_DELAYED_REF) {
2311 action = BTRFS_DROP_DELAYED_REF;
2312 goto again;
2313 }
2314 return NULL;
2315 }
2316
2317 /*
2318 * Returns 0 on success or if called with an already aborted transaction.
2319 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2320 */
2321 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2322 struct btrfs_root *root,
2323 struct list_head *cluster)
2324 {
2325 struct btrfs_delayed_ref_root *delayed_refs;
2326 struct btrfs_delayed_ref_node *ref;
2327 struct btrfs_delayed_ref_head *locked_ref = NULL;
2328 struct btrfs_delayed_extent_op *extent_op;
2329 struct btrfs_fs_info *fs_info = root->fs_info;
2330 int ret;
2331 int count = 0;
2332 int must_insert_reserved = 0;
2333
2334 delayed_refs = &trans->transaction->delayed_refs;
2335 while (1) {
2336 if (!locked_ref) {
2337 /* pick a new head ref from the cluster list */
2338 if (list_empty(cluster))
2339 break;
2340
2341 locked_ref = list_entry(cluster->next,
2342 struct btrfs_delayed_ref_head, cluster);
2343
2344 /* grab the lock that says we are going to process
2345 * all the refs for this head */
2346 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2347
2348 /*
2349 * we may have dropped the spin lock to get the head
2350 * mutex lock, and that might have given someone else
2351 * time to free the head. If that's true, it has been
2352 * removed from our list and we can move on.
2353 */
2354 if (ret == -EAGAIN) {
2355 locked_ref = NULL;
2356 count++;
2357 continue;
2358 }
2359 }
2360
2361 /*
2362 * We need to try and merge add/drops of the same ref since we
2363 * can run into issues with relocate dropping the implicit ref
2364 * and then it being added back again before the drop can
2365 * finish. If we merged anything we need to re-loop so we can
2366 * get a good ref.
2367 */
2368 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2369 locked_ref);
2370
2371 /*
2372 * locked_ref is the head node, so we have to go one
2373 * node back for any delayed ref updates
2374 */
2375 ref = select_delayed_ref(locked_ref);
2376
2377 if (ref && ref->seq &&
2378 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2379 /*
2380 * there are still refs with lower seq numbers in the
2381 * process of being added. Don't run this ref yet.
2382 */
2383 list_del_init(&locked_ref->cluster);
2384 btrfs_delayed_ref_unlock(locked_ref);
2385 locked_ref = NULL;
2386 delayed_refs->num_heads_ready++;
2387 spin_unlock(&delayed_refs->lock);
2388 cond_resched();
2389 spin_lock(&delayed_refs->lock);
2390 continue;
2391 }
2392
2393 /*
2394 * record the must insert reserved flag before we
2395 * drop the spin lock.
2396 */
2397 must_insert_reserved = locked_ref->must_insert_reserved;
2398 locked_ref->must_insert_reserved = 0;
2399
2400 extent_op = locked_ref->extent_op;
2401 locked_ref->extent_op = NULL;
2402
2403 if (!ref) {
2404 /* All delayed refs have been processed, Go ahead
2405 * and send the head node to run_one_delayed_ref,
2406 * so that any accounting fixes can happen
2407 */
2408 ref = &locked_ref->node;
2409
2410 if (extent_op && must_insert_reserved) {
2411 btrfs_free_delayed_extent_op(extent_op);
2412 extent_op = NULL;
2413 }
2414
2415 if (extent_op) {
2416 spin_unlock(&delayed_refs->lock);
2417
2418 ret = run_delayed_extent_op(trans, root,
2419 ref, extent_op);
2420 btrfs_free_delayed_extent_op(extent_op);
2421
2422 if (ret) {
2423 /*
2424 * Need to reset must_insert_reserved if
2425 * there was an error so the abort stuff
2426 * can cleanup the reserved space
2427 * properly.
2428 */
2429 if (must_insert_reserved)
2430 locked_ref->must_insert_reserved = 1;
2431 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2432 spin_lock(&delayed_refs->lock);
2433 btrfs_delayed_ref_unlock(locked_ref);
2434 return ret;
2435 }
2436
2437 goto next;
2438 }
2439 }
2440
2441 ref->in_tree = 0;
2442 rb_erase(&ref->rb_node, &delayed_refs->root);
2443 if (btrfs_delayed_ref_is_head(ref)) {
2444 rb_erase(&locked_ref->href_node,
2445 &delayed_refs->href_root);
2446 }
2447 delayed_refs->num_entries--;
2448 if (!btrfs_delayed_ref_is_head(ref)) {
2449 /*
2450 * when we play the delayed ref, also correct the
2451 * ref_mod on head
2452 */
2453 switch (ref->action) {
2454 case BTRFS_ADD_DELAYED_REF:
2455 case BTRFS_ADD_DELAYED_EXTENT:
2456 locked_ref->node.ref_mod -= ref->ref_mod;
2457 break;
2458 case BTRFS_DROP_DELAYED_REF:
2459 locked_ref->node.ref_mod += ref->ref_mod;
2460 break;
2461 default:
2462 WARN_ON(1);
2463 }
2464 } else {
2465 list_del_init(&locked_ref->cluster);
2466 }
2467 spin_unlock(&delayed_refs->lock);
2468
2469 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2470 must_insert_reserved);
2471
2472 btrfs_free_delayed_extent_op(extent_op);
2473 if (ret) {
2474 btrfs_delayed_ref_unlock(locked_ref);
2475 btrfs_put_delayed_ref(ref);
2476 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2477 spin_lock(&delayed_refs->lock);
2478 return ret;
2479 }
2480
2481 /*
2482 * If this node is a head, that means all the refs in this head
2483 * have been dealt with, and we will pick the next head to deal
2484 * with, so we must unlock the head and drop it from the cluster
2485 * list before we release it.
2486 */
2487 if (btrfs_delayed_ref_is_head(ref)) {
2488 btrfs_delayed_ref_unlock(locked_ref);
2489 locked_ref = NULL;
2490 }
2491 btrfs_put_delayed_ref(ref);
2492 count++;
2493 next:
2494 cond_resched();
2495 spin_lock(&delayed_refs->lock);
2496 }
2497 return count;
2498 }
2499
2500 #ifdef SCRAMBLE_DELAYED_REFS
2501 /*
2502 * Normally delayed refs get processed in ascending bytenr order. This
2503 * correlates in most cases to the order added. To expose dependencies on this
2504 * order, we start to process the tree in the middle instead of the beginning
2505 */
2506 static u64 find_middle(struct rb_root *root)
2507 {
2508 struct rb_node *n = root->rb_node;
2509 struct btrfs_delayed_ref_node *entry;
2510 int alt = 1;
2511 u64 middle;
2512 u64 first = 0, last = 0;
2513
2514 n = rb_first(root);
2515 if (n) {
2516 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2517 first = entry->bytenr;
2518 }
2519 n = rb_last(root);
2520 if (n) {
2521 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2522 last = entry->bytenr;
2523 }
2524 n = root->rb_node;
2525
2526 while (n) {
2527 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2528 WARN_ON(!entry->in_tree);
2529
2530 middle = entry->bytenr;
2531
2532 if (alt)
2533 n = n->rb_left;
2534 else
2535 n = n->rb_right;
2536
2537 alt = 1 - alt;
2538 }
2539 return middle;
2540 }
2541 #endif
2542
2543 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2544 struct btrfs_fs_info *fs_info)
2545 {
2546 struct qgroup_update *qgroup_update;
2547 int ret = 0;
2548
2549 if (list_empty(&trans->qgroup_ref_list) !=
2550 !trans->delayed_ref_elem.seq) {
2551 /* list without seq or seq without list */
2552 btrfs_err(fs_info,
2553 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2554 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2555 (u32)(trans->delayed_ref_elem.seq >> 32),
2556 (u32)trans->delayed_ref_elem.seq);
2557 BUG();
2558 }
2559
2560 if (!trans->delayed_ref_elem.seq)
2561 return 0;
2562
2563 while (!list_empty(&trans->qgroup_ref_list)) {
2564 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2565 struct qgroup_update, list);
2566 list_del(&qgroup_update->list);
2567 if (!ret)
2568 ret = btrfs_qgroup_account_ref(
2569 trans, fs_info, qgroup_update->node,
2570 qgroup_update->extent_op);
2571 kfree(qgroup_update);
2572 }
2573
2574 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2575
2576 return ret;
2577 }
2578
2579 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2580 int count)
2581 {
2582 int val = atomic_read(&delayed_refs->ref_seq);
2583
2584 if (val < seq || val >= seq + count)
2585 return 1;
2586 return 0;
2587 }
2588
2589 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2590 {
2591 u64 num_bytes;
2592
2593 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2594 sizeof(struct btrfs_extent_inline_ref));
2595 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2596 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2597
2598 /*
2599 * We don't ever fill up leaves all the way so multiply by 2 just to be
2600 * closer to what we're really going to want to ouse.
2601 */
2602 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2603 }
2604
2605 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2606 struct btrfs_root *root)
2607 {
2608 struct btrfs_block_rsv *global_rsv;
2609 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2610 u64 num_bytes;
2611 int ret = 0;
2612
2613 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2614 num_heads = heads_to_leaves(root, num_heads);
2615 if (num_heads > 1)
2616 num_bytes += (num_heads - 1) * root->leafsize;
2617 num_bytes <<= 1;
2618 global_rsv = &root->fs_info->global_block_rsv;
2619
2620 /*
2621 * If we can't allocate any more chunks lets make sure we have _lots_ of
2622 * wiggle room since running delayed refs can create more delayed refs.
2623 */
2624 if (global_rsv->space_info->full)
2625 num_bytes <<= 1;
2626
2627 spin_lock(&global_rsv->lock);
2628 if (global_rsv->reserved <= num_bytes)
2629 ret = 1;
2630 spin_unlock(&global_rsv->lock);
2631 return ret;
2632 }
2633
2634 /*
2635 * this starts processing the delayed reference count updates and
2636 * extent insertions we have queued up so far. count can be
2637 * 0, which means to process everything in the tree at the start
2638 * of the run (but not newly added entries), or it can be some target
2639 * number you'd like to process.
2640 *
2641 * Returns 0 on success or if called with an aborted transaction
2642 * Returns <0 on error and aborts the transaction
2643 */
2644 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2645 struct btrfs_root *root, unsigned long count)
2646 {
2647 struct rb_node *node;
2648 struct btrfs_delayed_ref_root *delayed_refs;
2649 struct btrfs_delayed_ref_head *head;
2650 struct list_head cluster;
2651 int ret;
2652 u64 delayed_start;
2653 int run_all = count == (unsigned long)-1;
2654 int run_most = 0;
2655 int loops;
2656
2657 /* We'll clean this up in btrfs_cleanup_transaction */
2658 if (trans->aborted)
2659 return 0;
2660
2661 if (root == root->fs_info->extent_root)
2662 root = root->fs_info->tree_root;
2663
2664 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2665
2666 delayed_refs = &trans->transaction->delayed_refs;
2667 INIT_LIST_HEAD(&cluster);
2668 if (count == 0) {
2669 count = delayed_refs->num_entries * 2;
2670 run_most = 1;
2671 }
2672
2673 if (!run_all && !run_most) {
2674 int old;
2675 int seq = atomic_read(&delayed_refs->ref_seq);
2676
2677 progress:
2678 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2679 if (old) {
2680 DEFINE_WAIT(__wait);
2681 if (delayed_refs->flushing ||
2682 !btrfs_should_throttle_delayed_refs(trans, root))
2683 return 0;
2684
2685 prepare_to_wait(&delayed_refs->wait, &__wait,
2686 TASK_UNINTERRUPTIBLE);
2687
2688 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2689 if (old) {
2690 schedule();
2691 finish_wait(&delayed_refs->wait, &__wait);
2692
2693 if (!refs_newer(delayed_refs, seq, 256))
2694 goto progress;
2695 else
2696 return 0;
2697 } else {
2698 finish_wait(&delayed_refs->wait, &__wait);
2699 goto again;
2700 }
2701 }
2702
2703 } else {
2704 atomic_inc(&delayed_refs->procs_running_refs);
2705 }
2706
2707 again:
2708 loops = 0;
2709 spin_lock(&delayed_refs->lock);
2710
2711 #ifdef SCRAMBLE_DELAYED_REFS
2712 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2713 #endif
2714
2715 while (1) {
2716 if (!(run_all || run_most) &&
2717 !btrfs_should_throttle_delayed_refs(trans, root))
2718 break;
2719
2720 /*
2721 * go find something we can process in the rbtree. We start at
2722 * the beginning of the tree, and then build a cluster
2723 * of refs to process starting at the first one we are able to
2724 * lock
2725 */
2726 delayed_start = delayed_refs->run_delayed_start;
2727 ret = btrfs_find_ref_cluster(trans, &cluster,
2728 delayed_refs->run_delayed_start);
2729 if (ret)
2730 break;
2731
2732 ret = run_clustered_refs(trans, root, &cluster);
2733 if (ret < 0) {
2734 btrfs_release_ref_cluster(&cluster);
2735 spin_unlock(&delayed_refs->lock);
2736 btrfs_abort_transaction(trans, root, ret);
2737 atomic_dec(&delayed_refs->procs_running_refs);
2738 wake_up(&delayed_refs->wait);
2739 return ret;
2740 }
2741
2742 atomic_add(ret, &delayed_refs->ref_seq);
2743
2744 count -= min_t(unsigned long, ret, count);
2745
2746 if (count == 0)
2747 break;
2748
2749 if (delayed_start >= delayed_refs->run_delayed_start) {
2750 if (loops == 0) {
2751 /*
2752 * btrfs_find_ref_cluster looped. let's do one
2753 * more cycle. if we don't run any delayed ref
2754 * during that cycle (because we can't because
2755 * all of them are blocked), bail out.
2756 */
2757 loops = 1;
2758 } else {
2759 /*
2760 * no runnable refs left, stop trying
2761 */
2762 BUG_ON(run_all);
2763 break;
2764 }
2765 }
2766 if (ret) {
2767 /* refs were run, let's reset staleness detection */
2768 loops = 0;
2769 }
2770 }
2771
2772 if (run_all) {
2773 if (!list_empty(&trans->new_bgs)) {
2774 spin_unlock(&delayed_refs->lock);
2775 btrfs_create_pending_block_groups(trans, root);
2776 spin_lock(&delayed_refs->lock);
2777 }
2778
2779 node = rb_first(&delayed_refs->href_root);
2780 if (!node)
2781 goto out;
2782 count = (unsigned long)-1;
2783
2784 while (node) {
2785 head = rb_entry(node, struct btrfs_delayed_ref_head,
2786 href_node);
2787 if (btrfs_delayed_ref_is_head(&head->node)) {
2788 struct btrfs_delayed_ref_node *ref;
2789
2790 ref = &head->node;
2791 atomic_inc(&ref->refs);
2792
2793 spin_unlock(&delayed_refs->lock);
2794 /*
2795 * Mutex was contended, block until it's
2796 * released and try again
2797 */
2798 mutex_lock(&head->mutex);
2799 mutex_unlock(&head->mutex);
2800
2801 btrfs_put_delayed_ref(ref);
2802 cond_resched();
2803 goto again;
2804 } else {
2805 WARN_ON(1);
2806 }
2807 node = rb_next(node);
2808 }
2809 spin_unlock(&delayed_refs->lock);
2810 schedule_timeout(1);
2811 goto again;
2812 }
2813 out:
2814 atomic_dec(&delayed_refs->procs_running_refs);
2815 smp_mb();
2816 if (waitqueue_active(&delayed_refs->wait))
2817 wake_up(&delayed_refs->wait);
2818
2819 spin_unlock(&delayed_refs->lock);
2820 assert_qgroups_uptodate(trans);
2821 return 0;
2822 }
2823
2824 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2825 struct btrfs_root *root,
2826 u64 bytenr, u64 num_bytes, u64 flags,
2827 int level, int is_data)
2828 {
2829 struct btrfs_delayed_extent_op *extent_op;
2830 int ret;
2831
2832 extent_op = btrfs_alloc_delayed_extent_op();
2833 if (!extent_op)
2834 return -ENOMEM;
2835
2836 extent_op->flags_to_set = flags;
2837 extent_op->update_flags = 1;
2838 extent_op->update_key = 0;
2839 extent_op->is_data = is_data ? 1 : 0;
2840 extent_op->level = level;
2841
2842 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2843 num_bytes, extent_op);
2844 if (ret)
2845 btrfs_free_delayed_extent_op(extent_op);
2846 return ret;
2847 }
2848
2849 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2850 struct btrfs_root *root,
2851 struct btrfs_path *path,
2852 u64 objectid, u64 offset, u64 bytenr)
2853 {
2854 struct btrfs_delayed_ref_head *head;
2855 struct btrfs_delayed_ref_node *ref;
2856 struct btrfs_delayed_data_ref *data_ref;
2857 struct btrfs_delayed_ref_root *delayed_refs;
2858 struct rb_node *node;
2859 int ret = 0;
2860
2861 ret = -ENOENT;
2862 delayed_refs = &trans->transaction->delayed_refs;
2863 spin_lock(&delayed_refs->lock);
2864 head = btrfs_find_delayed_ref_head(trans, bytenr);
2865 if (!head)
2866 goto out;
2867
2868 if (!mutex_trylock(&head->mutex)) {
2869 atomic_inc(&head->node.refs);
2870 spin_unlock(&delayed_refs->lock);
2871
2872 btrfs_release_path(path);
2873
2874 /*
2875 * Mutex was contended, block until it's released and let
2876 * caller try again
2877 */
2878 mutex_lock(&head->mutex);
2879 mutex_unlock(&head->mutex);
2880 btrfs_put_delayed_ref(&head->node);
2881 return -EAGAIN;
2882 }
2883
2884 node = rb_prev(&head->node.rb_node);
2885 if (!node)
2886 goto out_unlock;
2887
2888 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2889
2890 if (ref->bytenr != bytenr)
2891 goto out_unlock;
2892
2893 ret = 1;
2894 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2895 goto out_unlock;
2896
2897 data_ref = btrfs_delayed_node_to_data_ref(ref);
2898
2899 node = rb_prev(node);
2900 if (node) {
2901 int seq = ref->seq;
2902
2903 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2904 if (ref->bytenr == bytenr && ref->seq == seq)
2905 goto out_unlock;
2906 }
2907
2908 if (data_ref->root != root->root_key.objectid ||
2909 data_ref->objectid != objectid || data_ref->offset != offset)
2910 goto out_unlock;
2911
2912 ret = 0;
2913 out_unlock:
2914 mutex_unlock(&head->mutex);
2915 out:
2916 spin_unlock(&delayed_refs->lock);
2917 return ret;
2918 }
2919
2920 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2921 struct btrfs_root *root,
2922 struct btrfs_path *path,
2923 u64 objectid, u64 offset, u64 bytenr)
2924 {
2925 struct btrfs_root *extent_root = root->fs_info->extent_root;
2926 struct extent_buffer *leaf;
2927 struct btrfs_extent_data_ref *ref;
2928 struct btrfs_extent_inline_ref *iref;
2929 struct btrfs_extent_item *ei;
2930 struct btrfs_key key;
2931 u32 item_size;
2932 int ret;
2933
2934 key.objectid = bytenr;
2935 key.offset = (u64)-1;
2936 key.type = BTRFS_EXTENT_ITEM_KEY;
2937
2938 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2939 if (ret < 0)
2940 goto out;
2941 BUG_ON(ret == 0); /* Corruption */
2942
2943 ret = -ENOENT;
2944 if (path->slots[0] == 0)
2945 goto out;
2946
2947 path->slots[0]--;
2948 leaf = path->nodes[0];
2949 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2950
2951 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2952 goto out;
2953
2954 ret = 1;
2955 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2956 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2957 if (item_size < sizeof(*ei)) {
2958 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2959 goto out;
2960 }
2961 #endif
2962 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2963
2964 if (item_size != sizeof(*ei) +
2965 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2966 goto out;
2967
2968 if (btrfs_extent_generation(leaf, ei) <=
2969 btrfs_root_last_snapshot(&root->root_item))
2970 goto out;
2971
2972 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2973 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2974 BTRFS_EXTENT_DATA_REF_KEY)
2975 goto out;
2976
2977 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2978 if (btrfs_extent_refs(leaf, ei) !=
2979 btrfs_extent_data_ref_count(leaf, ref) ||
2980 btrfs_extent_data_ref_root(leaf, ref) !=
2981 root->root_key.objectid ||
2982 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2983 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2984 goto out;
2985
2986 ret = 0;
2987 out:
2988 return ret;
2989 }
2990
2991 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2992 struct btrfs_root *root,
2993 u64 objectid, u64 offset, u64 bytenr)
2994 {
2995 struct btrfs_path *path;
2996 int ret;
2997 int ret2;
2998
2999 path = btrfs_alloc_path();
3000 if (!path)
3001 return -ENOENT;
3002
3003 do {
3004 ret = check_committed_ref(trans, root, path, objectid,
3005 offset, bytenr);
3006 if (ret && ret != -ENOENT)
3007 goto out;
3008
3009 ret2 = check_delayed_ref(trans, root, path, objectid,
3010 offset, bytenr);
3011 } while (ret2 == -EAGAIN);
3012
3013 if (ret2 && ret2 != -ENOENT) {
3014 ret = ret2;
3015 goto out;
3016 }
3017
3018 if (ret != -ENOENT || ret2 != -ENOENT)
3019 ret = 0;
3020 out:
3021 btrfs_free_path(path);
3022 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3023 WARN_ON(ret > 0);
3024 return ret;
3025 }
3026
3027 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3028 struct btrfs_root *root,
3029 struct extent_buffer *buf,
3030 int full_backref, int inc, int for_cow)
3031 {
3032 u64 bytenr;
3033 u64 num_bytes;
3034 u64 parent;
3035 u64 ref_root;
3036 u32 nritems;
3037 struct btrfs_key key;
3038 struct btrfs_file_extent_item *fi;
3039 int i;
3040 int level;
3041 int ret = 0;
3042 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3043 u64, u64, u64, u64, u64, u64, int);
3044
3045 ref_root = btrfs_header_owner(buf);
3046 nritems = btrfs_header_nritems(buf);
3047 level = btrfs_header_level(buf);
3048
3049 if (!root->ref_cows && level == 0)
3050 return 0;
3051
3052 if (inc)
3053 process_func = btrfs_inc_extent_ref;
3054 else
3055 process_func = btrfs_free_extent;
3056
3057 if (full_backref)
3058 parent = buf->start;
3059 else
3060 parent = 0;
3061
3062 for (i = 0; i < nritems; i++) {
3063 if (level == 0) {
3064 btrfs_item_key_to_cpu(buf, &key, i);
3065 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3066 continue;
3067 fi = btrfs_item_ptr(buf, i,
3068 struct btrfs_file_extent_item);
3069 if (btrfs_file_extent_type(buf, fi) ==
3070 BTRFS_FILE_EXTENT_INLINE)
3071 continue;
3072 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3073 if (bytenr == 0)
3074 continue;
3075
3076 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3077 key.offset -= btrfs_file_extent_offset(buf, fi);
3078 ret = process_func(trans, root, bytenr, num_bytes,
3079 parent, ref_root, key.objectid,
3080 key.offset, for_cow);
3081 if (ret)
3082 goto fail;
3083 } else {
3084 bytenr = btrfs_node_blockptr(buf, i);
3085 num_bytes = btrfs_level_size(root, level - 1);
3086 ret = process_func(trans, root, bytenr, num_bytes,
3087 parent, ref_root, level - 1, 0,
3088 for_cow);
3089 if (ret)
3090 goto fail;
3091 }
3092 }
3093 return 0;
3094 fail:
3095 return ret;
3096 }
3097
3098 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3099 struct extent_buffer *buf, int full_backref, int for_cow)
3100 {
3101 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3102 }
3103
3104 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3105 struct extent_buffer *buf, int full_backref, int for_cow)
3106 {
3107 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3108 }
3109
3110 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3111 struct btrfs_root *root,
3112 struct btrfs_path *path,
3113 struct btrfs_block_group_cache *cache)
3114 {
3115 int ret;
3116 struct btrfs_root *extent_root = root->fs_info->extent_root;
3117 unsigned long bi;
3118 struct extent_buffer *leaf;
3119
3120 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3121 if (ret < 0)
3122 goto fail;
3123 BUG_ON(ret); /* Corruption */
3124
3125 leaf = path->nodes[0];
3126 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3127 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3128 btrfs_mark_buffer_dirty(leaf);
3129 btrfs_release_path(path);
3130 fail:
3131 if (ret) {
3132 btrfs_abort_transaction(trans, root, ret);
3133 return ret;
3134 }
3135 return 0;
3136
3137 }
3138
3139 static struct btrfs_block_group_cache *
3140 next_block_group(struct btrfs_root *root,
3141 struct btrfs_block_group_cache *cache)
3142 {
3143 struct rb_node *node;
3144 spin_lock(&root->fs_info->block_group_cache_lock);
3145 node = rb_next(&cache->cache_node);
3146 btrfs_put_block_group(cache);
3147 if (node) {
3148 cache = rb_entry(node, struct btrfs_block_group_cache,
3149 cache_node);
3150 btrfs_get_block_group(cache);
3151 } else
3152 cache = NULL;
3153 spin_unlock(&root->fs_info->block_group_cache_lock);
3154 return cache;
3155 }
3156
3157 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3158 struct btrfs_trans_handle *trans,
3159 struct btrfs_path *path)
3160 {
3161 struct btrfs_root *root = block_group->fs_info->tree_root;
3162 struct inode *inode = NULL;
3163 u64 alloc_hint = 0;
3164 int dcs = BTRFS_DC_ERROR;
3165 int num_pages = 0;
3166 int retries = 0;
3167 int ret = 0;
3168
3169 /*
3170 * If this block group is smaller than 100 megs don't bother caching the
3171 * block group.
3172 */
3173 if (block_group->key.offset < (100 * 1024 * 1024)) {
3174 spin_lock(&block_group->lock);
3175 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3176 spin_unlock(&block_group->lock);
3177 return 0;
3178 }
3179
3180 again:
3181 inode = lookup_free_space_inode(root, block_group, path);
3182 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3183 ret = PTR_ERR(inode);
3184 btrfs_release_path(path);
3185 goto out;
3186 }
3187
3188 if (IS_ERR(inode)) {
3189 BUG_ON(retries);
3190 retries++;
3191
3192 if (block_group->ro)
3193 goto out_free;
3194
3195 ret = create_free_space_inode(root, trans, block_group, path);
3196 if (ret)
3197 goto out_free;
3198 goto again;
3199 }
3200
3201 /* We've already setup this transaction, go ahead and exit */
3202 if (block_group->cache_generation == trans->transid &&
3203 i_size_read(inode)) {
3204 dcs = BTRFS_DC_SETUP;
3205 goto out_put;
3206 }
3207
3208 /*
3209 * We want to set the generation to 0, that way if anything goes wrong
3210 * from here on out we know not to trust this cache when we load up next
3211 * time.
3212 */
3213 BTRFS_I(inode)->generation = 0;
3214 ret = btrfs_update_inode(trans, root, inode);
3215 WARN_ON(ret);
3216
3217 if (i_size_read(inode) > 0) {
3218 ret = btrfs_check_trunc_cache_free_space(root,
3219 &root->fs_info->global_block_rsv);
3220 if (ret)
3221 goto out_put;
3222
3223 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3224 if (ret)
3225 goto out_put;
3226 }
3227
3228 spin_lock(&block_group->lock);
3229 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3230 !btrfs_test_opt(root, SPACE_CACHE)) {
3231 /*
3232 * don't bother trying to write stuff out _if_
3233 * a) we're not cached,
3234 * b) we're with nospace_cache mount option.
3235 */
3236 dcs = BTRFS_DC_WRITTEN;
3237 spin_unlock(&block_group->lock);
3238 goto out_put;
3239 }
3240 spin_unlock(&block_group->lock);
3241
3242 /*
3243 * Try to preallocate enough space based on how big the block group is.
3244 * Keep in mind this has to include any pinned space which could end up
3245 * taking up quite a bit since it's not folded into the other space
3246 * cache.
3247 */
3248 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3249 if (!num_pages)
3250 num_pages = 1;
3251
3252 num_pages *= 16;
3253 num_pages *= PAGE_CACHE_SIZE;
3254
3255 ret = btrfs_check_data_free_space(inode, num_pages);
3256 if (ret)
3257 goto out_put;
3258
3259 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3260 num_pages, num_pages,
3261 &alloc_hint);
3262 if (!ret)
3263 dcs = BTRFS_DC_SETUP;
3264 btrfs_free_reserved_data_space(inode, num_pages);
3265
3266 out_put:
3267 iput(inode);
3268 out_free:
3269 btrfs_release_path(path);
3270 out:
3271 spin_lock(&block_group->lock);
3272 if (!ret && dcs == BTRFS_DC_SETUP)
3273 block_group->cache_generation = trans->transid;
3274 block_group->disk_cache_state = dcs;
3275 spin_unlock(&block_group->lock);
3276
3277 return ret;
3278 }
3279
3280 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3281 struct btrfs_root *root)
3282 {
3283 struct btrfs_block_group_cache *cache;
3284 int err = 0;
3285 struct btrfs_path *path;
3286 u64 last = 0;
3287
3288 path = btrfs_alloc_path();
3289 if (!path)
3290 return -ENOMEM;
3291
3292 again:
3293 while (1) {
3294 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3295 while (cache) {
3296 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3297 break;
3298 cache = next_block_group(root, cache);
3299 }
3300 if (!cache) {
3301 if (last == 0)
3302 break;
3303 last = 0;
3304 continue;
3305 }
3306 err = cache_save_setup(cache, trans, path);
3307 last = cache->key.objectid + cache->key.offset;
3308 btrfs_put_block_group(cache);
3309 }
3310
3311 while (1) {
3312 if (last == 0) {
3313 err = btrfs_run_delayed_refs(trans, root,
3314 (unsigned long)-1);
3315 if (err) /* File system offline */
3316 goto out;
3317 }
3318
3319 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3320 while (cache) {
3321 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3322 btrfs_put_block_group(cache);
3323 goto again;
3324 }
3325
3326 if (cache->dirty)
3327 break;
3328 cache = next_block_group(root, cache);
3329 }
3330 if (!cache) {
3331 if (last == 0)
3332 break;
3333 last = 0;
3334 continue;
3335 }
3336
3337 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3338 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3339 cache->dirty = 0;
3340 last = cache->key.objectid + cache->key.offset;
3341
3342 err = write_one_cache_group(trans, root, path, cache);
3343 btrfs_put_block_group(cache);
3344 if (err) /* File system offline */
3345 goto out;
3346 }
3347
3348 while (1) {
3349 /*
3350 * I don't think this is needed since we're just marking our
3351 * preallocated extent as written, but just in case it can't
3352 * hurt.
3353 */
3354 if (last == 0) {
3355 err = btrfs_run_delayed_refs(trans, root,
3356 (unsigned long)-1);
3357 if (err) /* File system offline */
3358 goto out;
3359 }
3360
3361 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3362 while (cache) {
3363 /*
3364 * Really this shouldn't happen, but it could if we
3365 * couldn't write the entire preallocated extent and
3366 * splitting the extent resulted in a new block.
3367 */
3368 if (cache->dirty) {
3369 btrfs_put_block_group(cache);
3370 goto again;
3371 }
3372 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3373 break;
3374 cache = next_block_group(root, cache);
3375 }
3376 if (!cache) {
3377 if (last == 0)
3378 break;
3379 last = 0;
3380 continue;
3381 }
3382
3383 err = btrfs_write_out_cache(root, trans, cache, path);
3384
3385 /*
3386 * If we didn't have an error then the cache state is still
3387 * NEED_WRITE, so we can set it to WRITTEN.
3388 */
3389 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3390 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3391 last = cache->key.objectid + cache->key.offset;
3392 btrfs_put_block_group(cache);
3393 }
3394 out:
3395
3396 btrfs_free_path(path);
3397 return err;
3398 }
3399
3400 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3401 {
3402 struct btrfs_block_group_cache *block_group;
3403 int readonly = 0;
3404
3405 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3406 if (!block_group || block_group->ro)
3407 readonly = 1;
3408 if (block_group)
3409 btrfs_put_block_group(block_group);
3410 return readonly;
3411 }
3412
3413 static const char *alloc_name(u64 flags)
3414 {
3415 switch (flags) {
3416 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3417 return "mixed";
3418 case BTRFS_BLOCK_GROUP_METADATA:
3419 return "metadata";
3420 case BTRFS_BLOCK_GROUP_DATA:
3421 return "data";
3422 case BTRFS_BLOCK_GROUP_SYSTEM:
3423 return "system";
3424 default:
3425 WARN_ON(1);
3426 return "invalid-combination";
3427 };
3428 }
3429
3430 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3431 u64 total_bytes, u64 bytes_used,
3432 struct btrfs_space_info **space_info)
3433 {
3434 struct btrfs_space_info *found;
3435 int i;
3436 int factor;
3437 int ret;
3438
3439 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3440 BTRFS_BLOCK_GROUP_RAID10))
3441 factor = 2;
3442 else
3443 factor = 1;
3444
3445 found = __find_space_info(info, flags);
3446 if (found) {
3447 spin_lock(&found->lock);
3448 found->total_bytes += total_bytes;
3449 found->disk_total += total_bytes * factor;
3450 found->bytes_used += bytes_used;
3451 found->disk_used += bytes_used * factor;
3452 found->full = 0;
3453 spin_unlock(&found->lock);
3454 *space_info = found;
3455 return 0;
3456 }
3457 found = kzalloc(sizeof(*found), GFP_NOFS);
3458 if (!found)
3459 return -ENOMEM;
3460
3461 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3462 if (ret) {
3463 kfree(found);
3464 return ret;
3465 }
3466
3467 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
3468 INIT_LIST_HEAD(&found->block_groups[i]);
3469 kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
3470 }
3471 init_rwsem(&found->groups_sem);
3472 spin_lock_init(&found->lock);
3473 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3474 found->total_bytes = total_bytes;
3475 found->disk_total = total_bytes * factor;
3476 found->bytes_used = bytes_used;
3477 found->disk_used = bytes_used * factor;
3478 found->bytes_pinned = 0;
3479 found->bytes_reserved = 0;
3480 found->bytes_readonly = 0;
3481 found->bytes_may_use = 0;
3482 found->full = 0;
3483 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3484 found->chunk_alloc = 0;
3485 found->flush = 0;
3486 init_waitqueue_head(&found->wait);
3487
3488 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3489 info->space_info_kobj, "%s",
3490 alloc_name(found->flags));
3491 if (ret) {
3492 kfree(found);
3493 return ret;
3494 }
3495
3496 *space_info = found;
3497 list_add_rcu(&found->list, &info->space_info);
3498 if (flags & BTRFS_BLOCK_GROUP_DATA)
3499 info->data_sinfo = found;
3500
3501 return ret;
3502 }
3503
3504 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3505 {
3506 u64 extra_flags = chunk_to_extended(flags) &
3507 BTRFS_EXTENDED_PROFILE_MASK;
3508
3509 write_seqlock(&fs_info->profiles_lock);
3510 if (flags & BTRFS_BLOCK_GROUP_DATA)
3511 fs_info->avail_data_alloc_bits |= extra_flags;
3512 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3513 fs_info->avail_metadata_alloc_bits |= extra_flags;
3514 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3515 fs_info->avail_system_alloc_bits |= extra_flags;
3516 write_sequnlock(&fs_info->profiles_lock);
3517 }
3518
3519 /*
3520 * returns target flags in extended format or 0 if restripe for this
3521 * chunk_type is not in progress
3522 *
3523 * should be called with either volume_mutex or balance_lock held
3524 */
3525 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3526 {
3527 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3528 u64 target = 0;
3529
3530 if (!bctl)
3531 return 0;
3532
3533 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3534 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3535 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3536 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3537 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3538 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3539 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3540 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3541 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3542 }
3543
3544 return target;
3545 }
3546
3547 /*
3548 * @flags: available profiles in extended format (see ctree.h)
3549 *
3550 * Returns reduced profile in chunk format. If profile changing is in
3551 * progress (either running or paused) picks the target profile (if it's
3552 * already available), otherwise falls back to plain reducing.
3553 */
3554 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3555 {
3556 /*
3557 * we add in the count of missing devices because we want
3558 * to make sure that any RAID levels on a degraded FS
3559 * continue to be honored.
3560 */
3561 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3562 root->fs_info->fs_devices->missing_devices;
3563 u64 target;
3564 u64 tmp;
3565
3566 /*
3567 * see if restripe for this chunk_type is in progress, if so
3568 * try to reduce to the target profile
3569 */
3570 spin_lock(&root->fs_info->balance_lock);
3571 target = get_restripe_target(root->fs_info, flags);
3572 if (target) {
3573 /* pick target profile only if it's already available */
3574 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3575 spin_unlock(&root->fs_info->balance_lock);
3576 return extended_to_chunk(target);
3577 }
3578 }
3579 spin_unlock(&root->fs_info->balance_lock);
3580
3581 /* First, mask out the RAID levels which aren't possible */
3582 if (num_devices == 1)
3583 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3584 BTRFS_BLOCK_GROUP_RAID5);
3585 if (num_devices < 3)
3586 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3587 if (num_devices < 4)
3588 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3589
3590 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3591 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3592 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3593 flags &= ~tmp;
3594
3595 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3596 tmp = BTRFS_BLOCK_GROUP_RAID6;
3597 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3598 tmp = BTRFS_BLOCK_GROUP_RAID5;
3599 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3600 tmp = BTRFS_BLOCK_GROUP_RAID10;
3601 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3602 tmp = BTRFS_BLOCK_GROUP_RAID1;
3603 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3604 tmp = BTRFS_BLOCK_GROUP_RAID0;
3605
3606 return extended_to_chunk(flags | tmp);
3607 }
3608
3609 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3610 {
3611 unsigned seq;
3612
3613 do {
3614 seq = read_seqbegin(&root->fs_info->profiles_lock);
3615
3616 if (flags & BTRFS_BLOCK_GROUP_DATA)
3617 flags |= root->fs_info->avail_data_alloc_bits;
3618 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3619 flags |= root->fs_info->avail_system_alloc_bits;
3620 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3621 flags |= root->fs_info->avail_metadata_alloc_bits;
3622 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3623
3624 return btrfs_reduce_alloc_profile(root, flags);
3625 }
3626
3627 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3628 {
3629 u64 flags;
3630 u64 ret;
3631
3632 if (data)
3633 flags = BTRFS_BLOCK_GROUP_DATA;
3634 else if (root == root->fs_info->chunk_root)
3635 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3636 else
3637 flags = BTRFS_BLOCK_GROUP_METADATA;
3638
3639 ret = get_alloc_profile(root, flags);
3640 return ret;
3641 }
3642
3643 /*
3644 * This will check the space that the inode allocates from to make sure we have
3645 * enough space for bytes.
3646 */
3647 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3648 {
3649 struct btrfs_space_info *data_sinfo;
3650 struct btrfs_root *root = BTRFS_I(inode)->root;
3651 struct btrfs_fs_info *fs_info = root->fs_info;
3652 u64 used;
3653 int ret = 0, committed = 0, alloc_chunk = 1;
3654
3655 /* make sure bytes are sectorsize aligned */
3656 bytes = ALIGN(bytes, root->sectorsize);
3657
3658 if (btrfs_is_free_space_inode(inode)) {
3659 committed = 1;
3660 ASSERT(current->journal_info);
3661 }
3662
3663 data_sinfo = fs_info->data_sinfo;
3664 if (!data_sinfo)
3665 goto alloc;
3666
3667 again:
3668 /* make sure we have enough space to handle the data first */
3669 spin_lock(&data_sinfo->lock);
3670 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3671 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3672 data_sinfo->bytes_may_use;
3673
3674 if (used + bytes > data_sinfo->total_bytes) {
3675 struct btrfs_trans_handle *trans;
3676
3677 /*
3678 * if we don't have enough free bytes in this space then we need
3679 * to alloc a new chunk.
3680 */
3681 if (!data_sinfo->full && alloc_chunk) {
3682 u64 alloc_target;
3683
3684 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3685 spin_unlock(&data_sinfo->lock);
3686 alloc:
3687 alloc_target = btrfs_get_alloc_profile(root, 1);
3688 /*
3689 * It is ugly that we don't call nolock join
3690 * transaction for the free space inode case here.
3691 * But it is safe because we only do the data space
3692 * reservation for the free space cache in the
3693 * transaction context, the common join transaction
3694 * just increase the counter of the current transaction
3695 * handler, doesn't try to acquire the trans_lock of
3696 * the fs.
3697 */
3698 trans = btrfs_join_transaction(root);
3699 if (IS_ERR(trans))
3700 return PTR_ERR(trans);
3701
3702 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3703 alloc_target,
3704 CHUNK_ALLOC_NO_FORCE);
3705 btrfs_end_transaction(trans, root);
3706 if (ret < 0) {
3707 if (ret != -ENOSPC)
3708 return ret;
3709 else
3710 goto commit_trans;
3711 }
3712
3713 if (!data_sinfo)
3714 data_sinfo = fs_info->data_sinfo;
3715
3716 goto again;
3717 }
3718
3719 /*
3720 * If we don't have enough pinned space to deal with this
3721 * allocation don't bother committing the transaction.
3722 */
3723 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3724 bytes) < 0)
3725 committed = 1;
3726 spin_unlock(&data_sinfo->lock);
3727
3728 /* commit the current transaction and try again */
3729 commit_trans:
3730 if (!committed &&
3731 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3732 committed = 1;
3733
3734 trans = btrfs_join_transaction(root);
3735 if (IS_ERR(trans))
3736 return PTR_ERR(trans);
3737 ret = btrfs_commit_transaction(trans, root);
3738 if (ret)
3739 return ret;
3740 goto again;
3741 }
3742
3743 trace_btrfs_space_reservation(root->fs_info,
3744 "space_info:enospc",
3745 data_sinfo->flags, bytes, 1);
3746 return -ENOSPC;
3747 }
3748 data_sinfo->bytes_may_use += bytes;
3749 trace_btrfs_space_reservation(root->fs_info, "space_info",
3750 data_sinfo->flags, bytes, 1);
3751 spin_unlock(&data_sinfo->lock);
3752
3753 return 0;
3754 }
3755
3756 /*
3757 * Called if we need to clear a data reservation for this inode.
3758 */
3759 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3760 {
3761 struct btrfs_root *root = BTRFS_I(inode)->root;
3762 struct btrfs_space_info *data_sinfo;
3763
3764 /* make sure bytes are sectorsize aligned */
3765 bytes = ALIGN(bytes, root->sectorsize);
3766
3767 data_sinfo = root->fs_info->data_sinfo;
3768 spin_lock(&data_sinfo->lock);
3769 WARN_ON(data_sinfo->bytes_may_use < bytes);
3770 data_sinfo->bytes_may_use -= bytes;
3771 trace_btrfs_space_reservation(root->fs_info, "space_info",
3772 data_sinfo->flags, bytes, 0);
3773 spin_unlock(&data_sinfo->lock);
3774 }
3775
3776 static void force_metadata_allocation(struct btrfs_fs_info *info)
3777 {
3778 struct list_head *head = &info->space_info;
3779 struct btrfs_space_info *found;
3780
3781 rcu_read_lock();
3782 list_for_each_entry_rcu(found, head, list) {
3783 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3784 found->force_alloc = CHUNK_ALLOC_FORCE;
3785 }
3786 rcu_read_unlock();
3787 }
3788
3789 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3790 {
3791 return (global->size << 1);
3792 }
3793
3794 static int should_alloc_chunk(struct btrfs_root *root,
3795 struct btrfs_space_info *sinfo, int force)
3796 {
3797 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3798 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3799 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3800 u64 thresh;
3801
3802 if (force == CHUNK_ALLOC_FORCE)
3803 return 1;
3804
3805 /*
3806 * We need to take into account the global rsv because for all intents
3807 * and purposes it's used space. Don't worry about locking the
3808 * global_rsv, it doesn't change except when the transaction commits.
3809 */
3810 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3811 num_allocated += calc_global_rsv_need_space(global_rsv);
3812
3813 /*
3814 * in limited mode, we want to have some free space up to
3815 * about 1% of the FS size.
3816 */
3817 if (force == CHUNK_ALLOC_LIMITED) {
3818 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3819 thresh = max_t(u64, 64 * 1024 * 1024,
3820 div_factor_fine(thresh, 1));
3821
3822 if (num_bytes - num_allocated < thresh)
3823 return 1;
3824 }
3825
3826 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3827 return 0;
3828 return 1;
3829 }
3830
3831 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3832 {
3833 u64 num_dev;
3834
3835 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3836 BTRFS_BLOCK_GROUP_RAID0 |
3837 BTRFS_BLOCK_GROUP_RAID5 |
3838 BTRFS_BLOCK_GROUP_RAID6))
3839 num_dev = root->fs_info->fs_devices->rw_devices;
3840 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3841 num_dev = 2;
3842 else
3843 num_dev = 1; /* DUP or single */
3844
3845 /* metadata for updaing devices and chunk tree */
3846 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3847 }
3848
3849 static void check_system_chunk(struct btrfs_trans_handle *trans,
3850 struct btrfs_root *root, u64 type)
3851 {
3852 struct btrfs_space_info *info;
3853 u64 left;
3854 u64 thresh;
3855
3856 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3857 spin_lock(&info->lock);
3858 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3859 info->bytes_reserved - info->bytes_readonly;
3860 spin_unlock(&info->lock);
3861
3862 thresh = get_system_chunk_thresh(root, type);
3863 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3864 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3865 left, thresh, type);
3866 dump_space_info(info, 0, 0);
3867 }
3868
3869 if (left < thresh) {
3870 u64 flags;
3871
3872 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3873 btrfs_alloc_chunk(trans, root, flags);
3874 }
3875 }
3876
3877 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *extent_root, u64 flags, int force)
3879 {
3880 struct btrfs_space_info *space_info;
3881 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3882 int wait_for_alloc = 0;
3883 int ret = 0;
3884
3885 /* Don't re-enter if we're already allocating a chunk */
3886 if (trans->allocating_chunk)
3887 return -ENOSPC;
3888
3889 space_info = __find_space_info(extent_root->fs_info, flags);
3890 if (!space_info) {
3891 ret = update_space_info(extent_root->fs_info, flags,
3892 0, 0, &space_info);
3893 BUG_ON(ret); /* -ENOMEM */
3894 }
3895 BUG_ON(!space_info); /* Logic error */
3896
3897 again:
3898 spin_lock(&space_info->lock);
3899 if (force < space_info->force_alloc)
3900 force = space_info->force_alloc;
3901 if (space_info->full) {
3902 if (should_alloc_chunk(extent_root, space_info, force))
3903 ret = -ENOSPC;
3904 else
3905 ret = 0;
3906 spin_unlock(&space_info->lock);
3907 return ret;
3908 }
3909
3910 if (!should_alloc_chunk(extent_root, space_info, force)) {
3911 spin_unlock(&space_info->lock);
3912 return 0;
3913 } else if (space_info->chunk_alloc) {
3914 wait_for_alloc = 1;
3915 } else {
3916 space_info->chunk_alloc = 1;
3917 }
3918
3919 spin_unlock(&space_info->lock);
3920
3921 mutex_lock(&fs_info->chunk_mutex);
3922
3923 /*
3924 * The chunk_mutex is held throughout the entirety of a chunk
3925 * allocation, so once we've acquired the chunk_mutex we know that the
3926 * other guy is done and we need to recheck and see if we should
3927 * allocate.
3928 */
3929 if (wait_for_alloc) {
3930 mutex_unlock(&fs_info->chunk_mutex);
3931 wait_for_alloc = 0;
3932 goto again;
3933 }
3934
3935 trans->allocating_chunk = true;
3936
3937 /*
3938 * If we have mixed data/metadata chunks we want to make sure we keep
3939 * allocating mixed chunks instead of individual chunks.
3940 */
3941 if (btrfs_mixed_space_info(space_info))
3942 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3943
3944 /*
3945 * if we're doing a data chunk, go ahead and make sure that
3946 * we keep a reasonable number of metadata chunks allocated in the
3947 * FS as well.
3948 */
3949 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3950 fs_info->data_chunk_allocations++;
3951 if (!(fs_info->data_chunk_allocations %
3952 fs_info->metadata_ratio))
3953 force_metadata_allocation(fs_info);
3954 }
3955
3956 /*
3957 * Check if we have enough space in SYSTEM chunk because we may need
3958 * to update devices.
3959 */
3960 check_system_chunk(trans, extent_root, flags);
3961
3962 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3963 trans->allocating_chunk = false;
3964
3965 spin_lock(&space_info->lock);
3966 if (ret < 0 && ret != -ENOSPC)
3967 goto out;
3968 if (ret)
3969 space_info->full = 1;
3970 else
3971 ret = 1;
3972
3973 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3974 out:
3975 space_info->chunk_alloc = 0;
3976 spin_unlock(&space_info->lock);
3977 mutex_unlock(&fs_info->chunk_mutex);
3978 return ret;
3979 }
3980
3981 static int can_overcommit(struct btrfs_root *root,
3982 struct btrfs_space_info *space_info, u64 bytes,
3983 enum btrfs_reserve_flush_enum flush)
3984 {
3985 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3986 u64 profile = btrfs_get_alloc_profile(root, 0);
3987 u64 space_size;
3988 u64 avail;
3989 u64 used;
3990
3991 used = space_info->bytes_used + space_info->bytes_reserved +
3992 space_info->bytes_pinned + space_info->bytes_readonly;
3993
3994 /*
3995 * We only want to allow over committing if we have lots of actual space
3996 * free, but if we don't have enough space to handle the global reserve
3997 * space then we could end up having a real enospc problem when trying
3998 * to allocate a chunk or some other such important allocation.
3999 */
4000 spin_lock(&global_rsv->lock);
4001 space_size = calc_global_rsv_need_space(global_rsv);
4002 spin_unlock(&global_rsv->lock);
4003 if (used + space_size >= space_info->total_bytes)
4004 return 0;
4005
4006 used += space_info->bytes_may_use;
4007
4008 spin_lock(&root->fs_info->free_chunk_lock);
4009 avail = root->fs_info->free_chunk_space;
4010 spin_unlock(&root->fs_info->free_chunk_lock);
4011
4012 /*
4013 * If we have dup, raid1 or raid10 then only half of the free
4014 * space is actually useable. For raid56, the space info used
4015 * doesn't include the parity drive, so we don't have to
4016 * change the math
4017 */
4018 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4019 BTRFS_BLOCK_GROUP_RAID1 |
4020 BTRFS_BLOCK_GROUP_RAID10))
4021 avail >>= 1;
4022
4023 /*
4024 * If we aren't flushing all things, let us overcommit up to
4025 * 1/2th of the space. If we can flush, don't let us overcommit
4026 * too much, let it overcommit up to 1/8 of the space.
4027 */
4028 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4029 avail >>= 3;
4030 else
4031 avail >>= 1;
4032
4033 if (used + bytes < space_info->total_bytes + avail)
4034 return 1;
4035 return 0;
4036 }
4037
4038 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4039 unsigned long nr_pages)
4040 {
4041 struct super_block *sb = root->fs_info->sb;
4042
4043 if (down_read_trylock(&sb->s_umount)) {
4044 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4045 up_read(&sb->s_umount);
4046 } else {
4047 /*
4048 * We needn't worry the filesystem going from r/w to r/o though
4049 * we don't acquire ->s_umount mutex, because the filesystem
4050 * should guarantee the delalloc inodes list be empty after
4051 * the filesystem is readonly(all dirty pages are written to
4052 * the disk).
4053 */
4054 btrfs_start_delalloc_roots(root->fs_info, 0);
4055 if (!current->journal_info)
4056 btrfs_wait_ordered_roots(root->fs_info, -1);
4057 }
4058 }
4059
4060 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4061 {
4062 u64 bytes;
4063 int nr;
4064
4065 bytes = btrfs_calc_trans_metadata_size(root, 1);
4066 nr = (int)div64_u64(to_reclaim, bytes);
4067 if (!nr)
4068 nr = 1;
4069 return nr;
4070 }
4071
4072 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4073
4074 /*
4075 * shrink metadata reservation for delalloc
4076 */
4077 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4078 bool wait_ordered)
4079 {
4080 struct btrfs_block_rsv *block_rsv;
4081 struct btrfs_space_info *space_info;
4082 struct btrfs_trans_handle *trans;
4083 u64 delalloc_bytes;
4084 u64 max_reclaim;
4085 long time_left;
4086 unsigned long nr_pages;
4087 int loops;
4088 int items;
4089 enum btrfs_reserve_flush_enum flush;
4090
4091 /* Calc the number of the pages we need flush for space reservation */
4092 items = calc_reclaim_items_nr(root, to_reclaim);
4093 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4094
4095 trans = (struct btrfs_trans_handle *)current->journal_info;
4096 block_rsv = &root->fs_info->delalloc_block_rsv;
4097 space_info = block_rsv->space_info;
4098
4099 delalloc_bytes = percpu_counter_sum_positive(
4100 &root->fs_info->delalloc_bytes);
4101 if (delalloc_bytes == 0) {
4102 if (trans)
4103 return;
4104 if (wait_ordered)
4105 btrfs_wait_ordered_roots(root->fs_info, items);
4106 return;
4107 }
4108
4109 loops = 0;
4110 while (delalloc_bytes && loops < 3) {
4111 max_reclaim = min(delalloc_bytes, to_reclaim);
4112 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4113 btrfs_writeback_inodes_sb_nr(root, nr_pages);
4114 /*
4115 * We need to wait for the async pages to actually start before
4116 * we do anything.
4117 */
4118 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4119 if (!max_reclaim)
4120 goto skip_async;
4121
4122 if (max_reclaim <= nr_pages)
4123 max_reclaim = 0;
4124 else
4125 max_reclaim -= nr_pages;
4126
4127 wait_event(root->fs_info->async_submit_wait,
4128 atomic_read(&root->fs_info->async_delalloc_pages) <=
4129 (int)max_reclaim);
4130 skip_async:
4131 if (!trans)
4132 flush = BTRFS_RESERVE_FLUSH_ALL;
4133 else
4134 flush = BTRFS_RESERVE_NO_FLUSH;
4135 spin_lock(&space_info->lock);
4136 if (can_overcommit(root, space_info, orig, flush)) {
4137 spin_unlock(&space_info->lock);
4138 break;
4139 }
4140 spin_unlock(&space_info->lock);
4141
4142 loops++;
4143 if (wait_ordered && !trans) {
4144 btrfs_wait_ordered_roots(root->fs_info, items);
4145 } else {
4146 time_left = schedule_timeout_killable(1);
4147 if (time_left)
4148 break;
4149 }
4150 delalloc_bytes = percpu_counter_sum_positive(
4151 &root->fs_info->delalloc_bytes);
4152 }
4153 }
4154
4155 /**
4156 * maybe_commit_transaction - possibly commit the transaction if its ok to
4157 * @root - the root we're allocating for
4158 * @bytes - the number of bytes we want to reserve
4159 * @force - force the commit
4160 *
4161 * This will check to make sure that committing the transaction will actually
4162 * get us somewhere and then commit the transaction if it does. Otherwise it
4163 * will return -ENOSPC.
4164 */
4165 static int may_commit_transaction(struct btrfs_root *root,
4166 struct btrfs_space_info *space_info,
4167 u64 bytes, int force)
4168 {
4169 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4170 struct btrfs_trans_handle *trans;
4171
4172 trans = (struct btrfs_trans_handle *)current->journal_info;
4173 if (trans)
4174 return -EAGAIN;
4175
4176 if (force)
4177 goto commit;
4178
4179 /* See if there is enough pinned space to make this reservation */
4180 spin_lock(&space_info->lock);
4181 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4182 bytes) >= 0) {
4183 spin_unlock(&space_info->lock);
4184 goto commit;
4185 }
4186 spin_unlock(&space_info->lock);
4187
4188 /*
4189 * See if there is some space in the delayed insertion reservation for
4190 * this reservation.
4191 */
4192 if (space_info != delayed_rsv->space_info)
4193 return -ENOSPC;
4194
4195 spin_lock(&space_info->lock);
4196 spin_lock(&delayed_rsv->lock);
4197 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4198 bytes - delayed_rsv->size) >= 0) {
4199 spin_unlock(&delayed_rsv->lock);
4200 spin_unlock(&space_info->lock);
4201 return -ENOSPC;
4202 }
4203 spin_unlock(&delayed_rsv->lock);
4204 spin_unlock(&space_info->lock);
4205
4206 commit:
4207 trans = btrfs_join_transaction(root);
4208 if (IS_ERR(trans))
4209 return -ENOSPC;
4210
4211 return btrfs_commit_transaction(trans, root);
4212 }
4213
4214 enum flush_state {
4215 FLUSH_DELAYED_ITEMS_NR = 1,
4216 FLUSH_DELAYED_ITEMS = 2,
4217 FLUSH_DELALLOC = 3,
4218 FLUSH_DELALLOC_WAIT = 4,
4219 ALLOC_CHUNK = 5,
4220 COMMIT_TRANS = 6,
4221 };
4222
4223 static int flush_space(struct btrfs_root *root,
4224 struct btrfs_space_info *space_info, u64 num_bytes,
4225 u64 orig_bytes, int state)
4226 {
4227 struct btrfs_trans_handle *trans;
4228 int nr;
4229 int ret = 0;
4230
4231 switch (state) {
4232 case FLUSH_DELAYED_ITEMS_NR:
4233 case FLUSH_DELAYED_ITEMS:
4234 if (state == FLUSH_DELAYED_ITEMS_NR)
4235 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4236 else
4237 nr = -1;
4238
4239 trans = btrfs_join_transaction(root);
4240 if (IS_ERR(trans)) {
4241 ret = PTR_ERR(trans);
4242 break;
4243 }
4244 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4245 btrfs_end_transaction(trans, root);
4246 break;
4247 case FLUSH_DELALLOC:
4248 case FLUSH_DELALLOC_WAIT:
4249 shrink_delalloc(root, num_bytes, orig_bytes,
4250 state == FLUSH_DELALLOC_WAIT);
4251 break;
4252 case ALLOC_CHUNK:
4253 trans = btrfs_join_transaction(root);
4254 if (IS_ERR(trans)) {
4255 ret = PTR_ERR(trans);
4256 break;
4257 }
4258 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4259 btrfs_get_alloc_profile(root, 0),
4260 CHUNK_ALLOC_NO_FORCE);
4261 btrfs_end_transaction(trans, root);
4262 if (ret == -ENOSPC)
4263 ret = 0;
4264 break;
4265 case COMMIT_TRANS:
4266 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4267 break;
4268 default:
4269 ret = -ENOSPC;
4270 break;
4271 }
4272
4273 return ret;
4274 }
4275 /**
4276 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4277 * @root - the root we're allocating for
4278 * @block_rsv - the block_rsv we're allocating for
4279 * @orig_bytes - the number of bytes we want
4280 * @flush - whether or not we can flush to make our reservation
4281 *
4282 * This will reserve orgi_bytes number of bytes from the space info associated
4283 * with the block_rsv. If there is not enough space it will make an attempt to
4284 * flush out space to make room. It will do this by flushing delalloc if
4285 * possible or committing the transaction. If flush is 0 then no attempts to
4286 * regain reservations will be made and this will fail if there is not enough
4287 * space already.
4288 */
4289 static int reserve_metadata_bytes(struct btrfs_root *root,
4290 struct btrfs_block_rsv *block_rsv,
4291 u64 orig_bytes,
4292 enum btrfs_reserve_flush_enum flush)
4293 {
4294 struct btrfs_space_info *space_info = block_rsv->space_info;
4295 u64 used;
4296 u64 num_bytes = orig_bytes;
4297 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4298 int ret = 0;
4299 bool flushing = false;
4300
4301 again:
4302 ret = 0;
4303 spin_lock(&space_info->lock);
4304 /*
4305 * We only want to wait if somebody other than us is flushing and we
4306 * are actually allowed to flush all things.
4307 */
4308 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4309 space_info->flush) {
4310 spin_unlock(&space_info->lock);
4311 /*
4312 * If we have a trans handle we can't wait because the flusher
4313 * may have to commit the transaction, which would mean we would
4314 * deadlock since we are waiting for the flusher to finish, but
4315 * hold the current transaction open.
4316 */
4317 if (current->journal_info)
4318 return -EAGAIN;
4319 ret = wait_event_killable(space_info->wait, !space_info->flush);
4320 /* Must have been killed, return */
4321 if (ret)
4322 return -EINTR;
4323
4324 spin_lock(&space_info->lock);
4325 }
4326
4327 ret = -ENOSPC;
4328 used = space_info->bytes_used + space_info->bytes_reserved +
4329 space_info->bytes_pinned + space_info->bytes_readonly +
4330 space_info->bytes_may_use;
4331
4332 /*
4333 * The idea here is that we've not already over-reserved the block group
4334 * then we can go ahead and save our reservation first and then start
4335 * flushing if we need to. Otherwise if we've already overcommitted
4336 * lets start flushing stuff first and then come back and try to make
4337 * our reservation.
4338 */
4339 if (used <= space_info->total_bytes) {
4340 if (used + orig_bytes <= space_info->total_bytes) {
4341 space_info->bytes_may_use += orig_bytes;
4342 trace_btrfs_space_reservation(root->fs_info,
4343 "space_info", space_info->flags, orig_bytes, 1);
4344 ret = 0;
4345 } else {
4346 /*
4347 * Ok set num_bytes to orig_bytes since we aren't
4348 * overocmmitted, this way we only try and reclaim what
4349 * we need.
4350 */
4351 num_bytes = orig_bytes;
4352 }
4353 } else {
4354 /*
4355 * Ok we're over committed, set num_bytes to the overcommitted
4356 * amount plus the amount of bytes that we need for this
4357 * reservation.
4358 */
4359 num_bytes = used - space_info->total_bytes +
4360 (orig_bytes * 2);
4361 }
4362
4363 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4364 space_info->bytes_may_use += orig_bytes;
4365 trace_btrfs_space_reservation(root->fs_info, "space_info",
4366 space_info->flags, orig_bytes,
4367 1);
4368 ret = 0;
4369 }
4370
4371 /*
4372 * Couldn't make our reservation, save our place so while we're trying
4373 * to reclaim space we can actually use it instead of somebody else
4374 * stealing it from us.
4375 *
4376 * We make the other tasks wait for the flush only when we can flush
4377 * all things.
4378 */
4379 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4380 flushing = true;
4381 space_info->flush = 1;
4382 }
4383
4384 spin_unlock(&space_info->lock);
4385
4386 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4387 goto out;
4388
4389 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4390 flush_state);
4391 flush_state++;
4392
4393 /*
4394 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4395 * would happen. So skip delalloc flush.
4396 */
4397 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4398 (flush_state == FLUSH_DELALLOC ||
4399 flush_state == FLUSH_DELALLOC_WAIT))
4400 flush_state = ALLOC_CHUNK;
4401
4402 if (!ret)
4403 goto again;
4404 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4405 flush_state < COMMIT_TRANS)
4406 goto again;
4407 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4408 flush_state <= COMMIT_TRANS)
4409 goto again;
4410
4411 out:
4412 if (ret == -ENOSPC &&
4413 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4414 struct btrfs_block_rsv *global_rsv =
4415 &root->fs_info->global_block_rsv;
4416
4417 if (block_rsv != global_rsv &&
4418 !block_rsv_use_bytes(global_rsv, orig_bytes))
4419 ret = 0;
4420 }
4421 if (ret == -ENOSPC)
4422 trace_btrfs_space_reservation(root->fs_info,
4423 "space_info:enospc",
4424 space_info->flags, orig_bytes, 1);
4425 if (flushing) {
4426 spin_lock(&space_info->lock);
4427 space_info->flush = 0;
4428 wake_up_all(&space_info->wait);
4429 spin_unlock(&space_info->lock);
4430 }
4431 return ret;
4432 }
4433
4434 static struct btrfs_block_rsv *get_block_rsv(
4435 const struct btrfs_trans_handle *trans,
4436 const struct btrfs_root *root)
4437 {
4438 struct btrfs_block_rsv *block_rsv = NULL;
4439
4440 if (root->ref_cows)
4441 block_rsv = trans->block_rsv;
4442
4443 if (root == root->fs_info->csum_root && trans->adding_csums)
4444 block_rsv = trans->block_rsv;
4445
4446 if (root == root->fs_info->uuid_root)
4447 block_rsv = trans->block_rsv;
4448
4449 if (!block_rsv)
4450 block_rsv = root->block_rsv;
4451
4452 if (!block_rsv)
4453 block_rsv = &root->fs_info->empty_block_rsv;
4454
4455 return block_rsv;
4456 }
4457
4458 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4459 u64 num_bytes)
4460 {
4461 int ret = -ENOSPC;
4462 spin_lock(&block_rsv->lock);
4463 if (block_rsv->reserved >= num_bytes) {
4464 block_rsv->reserved -= num_bytes;
4465 if (block_rsv->reserved < block_rsv->size)
4466 block_rsv->full = 0;
4467 ret = 0;
4468 }
4469 spin_unlock(&block_rsv->lock);
4470 return ret;
4471 }
4472
4473 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4474 u64 num_bytes, int update_size)
4475 {
4476 spin_lock(&block_rsv->lock);
4477 block_rsv->reserved += num_bytes;
4478 if (update_size)
4479 block_rsv->size += num_bytes;
4480 else if (block_rsv->reserved >= block_rsv->size)
4481 block_rsv->full = 1;
4482 spin_unlock(&block_rsv->lock);
4483 }
4484
4485 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4486 struct btrfs_block_rsv *dest, u64 num_bytes,
4487 int min_factor)
4488 {
4489 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4490 u64 min_bytes;
4491
4492 if (global_rsv->space_info != dest->space_info)
4493 return -ENOSPC;
4494
4495 spin_lock(&global_rsv->lock);
4496 min_bytes = div_factor(global_rsv->size, min_factor);
4497 if (global_rsv->reserved < min_bytes + num_bytes) {
4498 spin_unlock(&global_rsv->lock);
4499 return -ENOSPC;
4500 }
4501 global_rsv->reserved -= num_bytes;
4502 if (global_rsv->reserved < global_rsv->size)
4503 global_rsv->full = 0;
4504 spin_unlock(&global_rsv->lock);
4505
4506 block_rsv_add_bytes(dest, num_bytes, 1);
4507 return 0;
4508 }
4509
4510 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4511 struct btrfs_block_rsv *block_rsv,
4512 struct btrfs_block_rsv *dest, u64 num_bytes)
4513 {
4514 struct btrfs_space_info *space_info = block_rsv->space_info;
4515
4516 spin_lock(&block_rsv->lock);
4517 if (num_bytes == (u64)-1)
4518 num_bytes = block_rsv->size;
4519 block_rsv->size -= num_bytes;
4520 if (block_rsv->reserved >= block_rsv->size) {
4521 num_bytes = block_rsv->reserved - block_rsv->size;
4522 block_rsv->reserved = block_rsv->size;
4523 block_rsv->full = 1;
4524 } else {
4525 num_bytes = 0;
4526 }
4527 spin_unlock(&block_rsv->lock);
4528
4529 if (num_bytes > 0) {
4530 if (dest) {
4531 spin_lock(&dest->lock);
4532 if (!dest->full) {
4533 u64 bytes_to_add;
4534
4535 bytes_to_add = dest->size - dest->reserved;
4536 bytes_to_add = min(num_bytes, bytes_to_add);
4537 dest->reserved += bytes_to_add;
4538 if (dest->reserved >= dest->size)
4539 dest->full = 1;
4540 num_bytes -= bytes_to_add;
4541 }
4542 spin_unlock(&dest->lock);
4543 }
4544 if (num_bytes) {
4545 spin_lock(&space_info->lock);
4546 space_info->bytes_may_use -= num_bytes;
4547 trace_btrfs_space_reservation(fs_info, "space_info",
4548 space_info->flags, num_bytes, 0);
4549 spin_unlock(&space_info->lock);
4550 }
4551 }
4552 }
4553
4554 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4555 struct btrfs_block_rsv *dst, u64 num_bytes)
4556 {
4557 int ret;
4558
4559 ret = block_rsv_use_bytes(src, num_bytes);
4560 if (ret)
4561 return ret;
4562
4563 block_rsv_add_bytes(dst, num_bytes, 1);
4564 return 0;
4565 }
4566
4567 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4568 {
4569 memset(rsv, 0, sizeof(*rsv));
4570 spin_lock_init(&rsv->lock);
4571 rsv->type = type;
4572 }
4573
4574 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4575 unsigned short type)
4576 {
4577 struct btrfs_block_rsv *block_rsv;
4578 struct btrfs_fs_info *fs_info = root->fs_info;
4579
4580 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4581 if (!block_rsv)
4582 return NULL;
4583
4584 btrfs_init_block_rsv(block_rsv, type);
4585 block_rsv->space_info = __find_space_info(fs_info,
4586 BTRFS_BLOCK_GROUP_METADATA);
4587 return block_rsv;
4588 }
4589
4590 void btrfs_free_block_rsv(struct btrfs_root *root,
4591 struct btrfs_block_rsv *rsv)
4592 {
4593 if (!rsv)
4594 return;
4595 btrfs_block_rsv_release(root, rsv, (u64)-1);
4596 kfree(rsv);
4597 }
4598
4599 int btrfs_block_rsv_add(struct btrfs_root *root,
4600 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4601 enum btrfs_reserve_flush_enum flush)
4602 {
4603 int ret;
4604
4605 if (num_bytes == 0)
4606 return 0;
4607
4608 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4609 if (!ret) {
4610 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4611 return 0;
4612 }
4613
4614 return ret;
4615 }
4616
4617 int btrfs_block_rsv_check(struct btrfs_root *root,
4618 struct btrfs_block_rsv *block_rsv, int min_factor)
4619 {
4620 u64 num_bytes = 0;
4621 int ret = -ENOSPC;
4622
4623 if (!block_rsv)
4624 return 0;
4625
4626 spin_lock(&block_rsv->lock);
4627 num_bytes = div_factor(block_rsv->size, min_factor);
4628 if (block_rsv->reserved >= num_bytes)
4629 ret = 0;
4630 spin_unlock(&block_rsv->lock);
4631
4632 return ret;
4633 }
4634
4635 int btrfs_block_rsv_refill(struct btrfs_root *root,
4636 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4637 enum btrfs_reserve_flush_enum flush)
4638 {
4639 u64 num_bytes = 0;
4640 int ret = -ENOSPC;
4641
4642 if (!block_rsv)
4643 return 0;
4644
4645 spin_lock(&block_rsv->lock);
4646 num_bytes = min_reserved;
4647 if (block_rsv->reserved >= num_bytes)
4648 ret = 0;
4649 else
4650 num_bytes -= block_rsv->reserved;
4651 spin_unlock(&block_rsv->lock);
4652
4653 if (!ret)
4654 return 0;
4655
4656 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4657 if (!ret) {
4658 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4659 return 0;
4660 }
4661
4662 return ret;
4663 }
4664
4665 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4666 struct btrfs_block_rsv *dst_rsv,
4667 u64 num_bytes)
4668 {
4669 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4670 }
4671
4672 void btrfs_block_rsv_release(struct btrfs_root *root,
4673 struct btrfs_block_rsv *block_rsv,
4674 u64 num_bytes)
4675 {
4676 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4677 if (global_rsv == block_rsv ||
4678 block_rsv->space_info != global_rsv->space_info)
4679 global_rsv = NULL;
4680 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4681 num_bytes);
4682 }
4683
4684 /*
4685 * helper to calculate size of global block reservation.
4686 * the desired value is sum of space used by extent tree,
4687 * checksum tree and root tree
4688 */
4689 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4690 {
4691 struct btrfs_space_info *sinfo;
4692 u64 num_bytes;
4693 u64 meta_used;
4694 u64 data_used;
4695 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4696
4697 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4698 spin_lock(&sinfo->lock);
4699 data_used = sinfo->bytes_used;
4700 spin_unlock(&sinfo->lock);
4701
4702 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4703 spin_lock(&sinfo->lock);
4704 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4705 data_used = 0;
4706 meta_used = sinfo->bytes_used;
4707 spin_unlock(&sinfo->lock);
4708
4709 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4710 csum_size * 2;
4711 num_bytes += div64_u64(data_used + meta_used, 50);
4712
4713 if (num_bytes * 3 > meta_used)
4714 num_bytes = div64_u64(meta_used, 3);
4715
4716 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4717 }
4718
4719 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4720 {
4721 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4722 struct btrfs_space_info *sinfo = block_rsv->space_info;
4723 u64 num_bytes;
4724
4725 num_bytes = calc_global_metadata_size(fs_info);
4726
4727 spin_lock(&sinfo->lock);
4728 spin_lock(&block_rsv->lock);
4729
4730 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4731
4732 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4733 sinfo->bytes_reserved + sinfo->bytes_readonly +
4734 sinfo->bytes_may_use;
4735
4736 if (sinfo->total_bytes > num_bytes) {
4737 num_bytes = sinfo->total_bytes - num_bytes;
4738 block_rsv->reserved += num_bytes;
4739 sinfo->bytes_may_use += num_bytes;
4740 trace_btrfs_space_reservation(fs_info, "space_info",
4741 sinfo->flags, num_bytes, 1);
4742 }
4743
4744 if (block_rsv->reserved >= block_rsv->size) {
4745 num_bytes = block_rsv->reserved - block_rsv->size;
4746 sinfo->bytes_may_use -= num_bytes;
4747 trace_btrfs_space_reservation(fs_info, "space_info",
4748 sinfo->flags, num_bytes, 0);
4749 block_rsv->reserved = block_rsv->size;
4750 block_rsv->full = 1;
4751 }
4752
4753 spin_unlock(&block_rsv->lock);
4754 spin_unlock(&sinfo->lock);
4755 }
4756
4757 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4758 {
4759 struct btrfs_space_info *space_info;
4760
4761 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4762 fs_info->chunk_block_rsv.space_info = space_info;
4763
4764 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4765 fs_info->global_block_rsv.space_info = space_info;
4766 fs_info->delalloc_block_rsv.space_info = space_info;
4767 fs_info->trans_block_rsv.space_info = space_info;
4768 fs_info->empty_block_rsv.space_info = space_info;
4769 fs_info->delayed_block_rsv.space_info = space_info;
4770
4771 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4772 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4773 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4774 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4775 if (fs_info->quota_root)
4776 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4777 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4778
4779 update_global_block_rsv(fs_info);
4780 }
4781
4782 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4783 {
4784 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4785 (u64)-1);
4786 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4787 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4788 WARN_ON(fs_info->trans_block_rsv.size > 0);
4789 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4790 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4791 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4792 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4793 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4794 }
4795
4796 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4797 struct btrfs_root *root)
4798 {
4799 if (!trans->block_rsv)
4800 return;
4801
4802 if (!trans->bytes_reserved)
4803 return;
4804
4805 trace_btrfs_space_reservation(root->fs_info, "transaction",
4806 trans->transid, trans->bytes_reserved, 0);
4807 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4808 trans->bytes_reserved = 0;
4809 }
4810
4811 /* Can only return 0 or -ENOSPC */
4812 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4813 struct inode *inode)
4814 {
4815 struct btrfs_root *root = BTRFS_I(inode)->root;
4816 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4817 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4818
4819 /*
4820 * We need to hold space in order to delete our orphan item once we've
4821 * added it, so this takes the reservation so we can release it later
4822 * when we are truly done with the orphan item.
4823 */
4824 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4825 trace_btrfs_space_reservation(root->fs_info, "orphan",
4826 btrfs_ino(inode), num_bytes, 1);
4827 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4828 }
4829
4830 void btrfs_orphan_release_metadata(struct inode *inode)
4831 {
4832 struct btrfs_root *root = BTRFS_I(inode)->root;
4833 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4834 trace_btrfs_space_reservation(root->fs_info, "orphan",
4835 btrfs_ino(inode), num_bytes, 0);
4836 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4837 }
4838
4839 /*
4840 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4841 * root: the root of the parent directory
4842 * rsv: block reservation
4843 * items: the number of items that we need do reservation
4844 * qgroup_reserved: used to return the reserved size in qgroup
4845 *
4846 * This function is used to reserve the space for snapshot/subvolume
4847 * creation and deletion. Those operations are different with the
4848 * common file/directory operations, they change two fs/file trees
4849 * and root tree, the number of items that the qgroup reserves is
4850 * different with the free space reservation. So we can not use
4851 * the space reseravtion mechanism in start_transaction().
4852 */
4853 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4854 struct btrfs_block_rsv *rsv,
4855 int items,
4856 u64 *qgroup_reserved,
4857 bool use_global_rsv)
4858 {
4859 u64 num_bytes;
4860 int ret;
4861 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4862
4863 if (root->fs_info->quota_enabled) {
4864 /* One for parent inode, two for dir entries */
4865 num_bytes = 3 * root->leafsize;
4866 ret = btrfs_qgroup_reserve(root, num_bytes);
4867 if (ret)
4868 return ret;
4869 } else {
4870 num_bytes = 0;
4871 }
4872
4873 *qgroup_reserved = num_bytes;
4874
4875 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4876 rsv->space_info = __find_space_info(root->fs_info,
4877 BTRFS_BLOCK_GROUP_METADATA);
4878 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4879 BTRFS_RESERVE_FLUSH_ALL);
4880
4881 if (ret == -ENOSPC && use_global_rsv)
4882 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4883
4884 if (ret) {
4885 if (*qgroup_reserved)
4886 btrfs_qgroup_free(root, *qgroup_reserved);
4887 }
4888
4889 return ret;
4890 }
4891
4892 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4893 struct btrfs_block_rsv *rsv,
4894 u64 qgroup_reserved)
4895 {
4896 btrfs_block_rsv_release(root, rsv, (u64)-1);
4897 if (qgroup_reserved)
4898 btrfs_qgroup_free(root, qgroup_reserved);
4899 }
4900
4901 /**
4902 * drop_outstanding_extent - drop an outstanding extent
4903 * @inode: the inode we're dropping the extent for
4904 *
4905 * This is called when we are freeing up an outstanding extent, either called
4906 * after an error or after an extent is written. This will return the number of
4907 * reserved extents that need to be freed. This must be called with
4908 * BTRFS_I(inode)->lock held.
4909 */
4910 static unsigned drop_outstanding_extent(struct inode *inode)
4911 {
4912 unsigned drop_inode_space = 0;
4913 unsigned dropped_extents = 0;
4914
4915 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4916 BTRFS_I(inode)->outstanding_extents--;
4917
4918 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4919 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4920 &BTRFS_I(inode)->runtime_flags))
4921 drop_inode_space = 1;
4922
4923 /*
4924 * If we have more or the same amount of outsanding extents than we have
4925 * reserved then we need to leave the reserved extents count alone.
4926 */
4927 if (BTRFS_I(inode)->outstanding_extents >=
4928 BTRFS_I(inode)->reserved_extents)
4929 return drop_inode_space;
4930
4931 dropped_extents = BTRFS_I(inode)->reserved_extents -
4932 BTRFS_I(inode)->outstanding_extents;
4933 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4934 return dropped_extents + drop_inode_space;
4935 }
4936
4937 /**
4938 * calc_csum_metadata_size - return the amount of metada space that must be
4939 * reserved/free'd for the given bytes.
4940 * @inode: the inode we're manipulating
4941 * @num_bytes: the number of bytes in question
4942 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4943 *
4944 * This adjusts the number of csum_bytes in the inode and then returns the
4945 * correct amount of metadata that must either be reserved or freed. We
4946 * calculate how many checksums we can fit into one leaf and then divide the
4947 * number of bytes that will need to be checksumed by this value to figure out
4948 * how many checksums will be required. If we are adding bytes then the number
4949 * may go up and we will return the number of additional bytes that must be
4950 * reserved. If it is going down we will return the number of bytes that must
4951 * be freed.
4952 *
4953 * This must be called with BTRFS_I(inode)->lock held.
4954 */
4955 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4956 int reserve)
4957 {
4958 struct btrfs_root *root = BTRFS_I(inode)->root;
4959 u64 csum_size;
4960 int num_csums_per_leaf;
4961 int num_csums;
4962 int old_csums;
4963
4964 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4965 BTRFS_I(inode)->csum_bytes == 0)
4966 return 0;
4967
4968 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4969 if (reserve)
4970 BTRFS_I(inode)->csum_bytes += num_bytes;
4971 else
4972 BTRFS_I(inode)->csum_bytes -= num_bytes;
4973 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4974 num_csums_per_leaf = (int)div64_u64(csum_size,
4975 sizeof(struct btrfs_csum_item) +
4976 sizeof(struct btrfs_disk_key));
4977 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4978 num_csums = num_csums + num_csums_per_leaf - 1;
4979 num_csums = num_csums / num_csums_per_leaf;
4980
4981 old_csums = old_csums + num_csums_per_leaf - 1;
4982 old_csums = old_csums / num_csums_per_leaf;
4983
4984 /* No change, no need to reserve more */
4985 if (old_csums == num_csums)
4986 return 0;
4987
4988 if (reserve)
4989 return btrfs_calc_trans_metadata_size(root,
4990 num_csums - old_csums);
4991
4992 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4993 }
4994
4995 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4996 {
4997 struct btrfs_root *root = BTRFS_I(inode)->root;
4998 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4999 u64 to_reserve = 0;
5000 u64 csum_bytes;
5001 unsigned nr_extents = 0;
5002 int extra_reserve = 0;
5003 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5004 int ret = 0;
5005 bool delalloc_lock = true;
5006 u64 to_free = 0;
5007 unsigned dropped;
5008
5009 /* If we are a free space inode we need to not flush since we will be in
5010 * the middle of a transaction commit. We also don't need the delalloc
5011 * mutex since we won't race with anybody. We need this mostly to make
5012 * lockdep shut its filthy mouth.
5013 */
5014 if (btrfs_is_free_space_inode(inode)) {
5015 flush = BTRFS_RESERVE_NO_FLUSH;
5016 delalloc_lock = false;
5017 }
5018
5019 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5020 btrfs_transaction_in_commit(root->fs_info))
5021 schedule_timeout(1);
5022
5023 if (delalloc_lock)
5024 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5025
5026 num_bytes = ALIGN(num_bytes, root->sectorsize);
5027
5028 spin_lock(&BTRFS_I(inode)->lock);
5029 BTRFS_I(inode)->outstanding_extents++;
5030
5031 if (BTRFS_I(inode)->outstanding_extents >
5032 BTRFS_I(inode)->reserved_extents)
5033 nr_extents = BTRFS_I(inode)->outstanding_extents -
5034 BTRFS_I(inode)->reserved_extents;
5035
5036 /*
5037 * Add an item to reserve for updating the inode when we complete the
5038 * delalloc io.
5039 */
5040 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5041 &BTRFS_I(inode)->runtime_flags)) {
5042 nr_extents++;
5043 extra_reserve = 1;
5044 }
5045
5046 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5047 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5048 csum_bytes = BTRFS_I(inode)->csum_bytes;
5049 spin_unlock(&BTRFS_I(inode)->lock);
5050
5051 if (root->fs_info->quota_enabled) {
5052 ret = btrfs_qgroup_reserve(root, num_bytes +
5053 nr_extents * root->leafsize);
5054 if (ret)
5055 goto out_fail;
5056 }
5057
5058 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5059 if (unlikely(ret)) {
5060 if (root->fs_info->quota_enabled)
5061 btrfs_qgroup_free(root, num_bytes +
5062 nr_extents * root->leafsize);
5063 goto out_fail;
5064 }
5065
5066 spin_lock(&BTRFS_I(inode)->lock);
5067 if (extra_reserve) {
5068 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5069 &BTRFS_I(inode)->runtime_flags);
5070 nr_extents--;
5071 }
5072 BTRFS_I(inode)->reserved_extents += nr_extents;
5073 spin_unlock(&BTRFS_I(inode)->lock);
5074
5075 if (delalloc_lock)
5076 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5077
5078 if (to_reserve)
5079 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5080 btrfs_ino(inode), to_reserve, 1);
5081 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5082
5083 return 0;
5084
5085 out_fail:
5086 spin_lock(&BTRFS_I(inode)->lock);
5087 dropped = drop_outstanding_extent(inode);
5088 /*
5089 * If the inodes csum_bytes is the same as the original
5090 * csum_bytes then we know we haven't raced with any free()ers
5091 * so we can just reduce our inodes csum bytes and carry on.
5092 */
5093 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5094 calc_csum_metadata_size(inode, num_bytes, 0);
5095 } else {
5096 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5097 u64 bytes;
5098
5099 /*
5100 * This is tricky, but first we need to figure out how much we
5101 * free'd from any free-ers that occured during this
5102 * reservation, so we reset ->csum_bytes to the csum_bytes
5103 * before we dropped our lock, and then call the free for the
5104 * number of bytes that were freed while we were trying our
5105 * reservation.
5106 */
5107 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5108 BTRFS_I(inode)->csum_bytes = csum_bytes;
5109 to_free = calc_csum_metadata_size(inode, bytes, 0);
5110
5111
5112 /*
5113 * Now we need to see how much we would have freed had we not
5114 * been making this reservation and our ->csum_bytes were not
5115 * artificially inflated.
5116 */
5117 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5118 bytes = csum_bytes - orig_csum_bytes;
5119 bytes = calc_csum_metadata_size(inode, bytes, 0);
5120
5121 /*
5122 * Now reset ->csum_bytes to what it should be. If bytes is
5123 * more than to_free then we would have free'd more space had we
5124 * not had an artificially high ->csum_bytes, so we need to free
5125 * the remainder. If bytes is the same or less then we don't
5126 * need to do anything, the other free-ers did the correct
5127 * thing.
5128 */
5129 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5130 if (bytes > to_free)
5131 to_free = bytes - to_free;
5132 else
5133 to_free = 0;
5134 }
5135 spin_unlock(&BTRFS_I(inode)->lock);
5136 if (dropped)
5137 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5138
5139 if (to_free) {
5140 btrfs_block_rsv_release(root, block_rsv, to_free);
5141 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5142 btrfs_ino(inode), to_free, 0);
5143 }
5144 if (delalloc_lock)
5145 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5146 return ret;
5147 }
5148
5149 /**
5150 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5151 * @inode: the inode to release the reservation for
5152 * @num_bytes: the number of bytes we're releasing
5153 *
5154 * This will release the metadata reservation for an inode. This can be called
5155 * once we complete IO for a given set of bytes to release their metadata
5156 * reservations.
5157 */
5158 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5159 {
5160 struct btrfs_root *root = BTRFS_I(inode)->root;
5161 u64 to_free = 0;
5162 unsigned dropped;
5163
5164 num_bytes = ALIGN(num_bytes, root->sectorsize);
5165 spin_lock(&BTRFS_I(inode)->lock);
5166 dropped = drop_outstanding_extent(inode);
5167
5168 if (num_bytes)
5169 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5170 spin_unlock(&BTRFS_I(inode)->lock);
5171 if (dropped > 0)
5172 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5173
5174 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5175 btrfs_ino(inode), to_free, 0);
5176 if (root->fs_info->quota_enabled) {
5177 btrfs_qgroup_free(root, num_bytes +
5178 dropped * root->leafsize);
5179 }
5180
5181 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5182 to_free);
5183 }
5184
5185 /**
5186 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5187 * @inode: inode we're writing to
5188 * @num_bytes: the number of bytes we want to allocate
5189 *
5190 * This will do the following things
5191 *
5192 * o reserve space in the data space info for num_bytes
5193 * o reserve space in the metadata space info based on number of outstanding
5194 * extents and how much csums will be needed
5195 * o add to the inodes ->delalloc_bytes
5196 * o add it to the fs_info's delalloc inodes list.
5197 *
5198 * This will return 0 for success and -ENOSPC if there is no space left.
5199 */
5200 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5201 {
5202 int ret;
5203
5204 ret = btrfs_check_data_free_space(inode, num_bytes);
5205 if (ret)
5206 return ret;
5207
5208 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5209 if (ret) {
5210 btrfs_free_reserved_data_space(inode, num_bytes);
5211 return ret;
5212 }
5213
5214 return 0;
5215 }
5216
5217 /**
5218 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5219 * @inode: inode we're releasing space for
5220 * @num_bytes: the number of bytes we want to free up
5221 *
5222 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5223 * called in the case that we don't need the metadata AND data reservations
5224 * anymore. So if there is an error or we insert an inline extent.
5225 *
5226 * This function will release the metadata space that was not used and will
5227 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5228 * list if there are no delalloc bytes left.
5229 */
5230 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5231 {
5232 btrfs_delalloc_release_metadata(inode, num_bytes);
5233 btrfs_free_reserved_data_space(inode, num_bytes);
5234 }
5235
5236 static int update_block_group(struct btrfs_root *root,
5237 u64 bytenr, u64 num_bytes, int alloc)
5238 {
5239 struct btrfs_block_group_cache *cache = NULL;
5240 struct btrfs_fs_info *info = root->fs_info;
5241 u64 total = num_bytes;
5242 u64 old_val;
5243 u64 byte_in_group;
5244 int factor;
5245
5246 /* block accounting for super block */
5247 spin_lock(&info->delalloc_root_lock);
5248 old_val = btrfs_super_bytes_used(info->super_copy);
5249 if (alloc)
5250 old_val += num_bytes;
5251 else
5252 old_val -= num_bytes;
5253 btrfs_set_super_bytes_used(info->super_copy, old_val);
5254 spin_unlock(&info->delalloc_root_lock);
5255
5256 while (total) {
5257 cache = btrfs_lookup_block_group(info, bytenr);
5258 if (!cache)
5259 return -ENOENT;
5260 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5261 BTRFS_BLOCK_GROUP_RAID1 |
5262 BTRFS_BLOCK_GROUP_RAID10))
5263 factor = 2;
5264 else
5265 factor = 1;
5266 /*
5267 * If this block group has free space cache written out, we
5268 * need to make sure to load it if we are removing space. This
5269 * is because we need the unpinning stage to actually add the
5270 * space back to the block group, otherwise we will leak space.
5271 */
5272 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5273 cache_block_group(cache, 1);
5274
5275 byte_in_group = bytenr - cache->key.objectid;
5276 WARN_ON(byte_in_group > cache->key.offset);
5277
5278 spin_lock(&cache->space_info->lock);
5279 spin_lock(&cache->lock);
5280
5281 if (btrfs_test_opt(root, SPACE_CACHE) &&
5282 cache->disk_cache_state < BTRFS_DC_CLEAR)
5283 cache->disk_cache_state = BTRFS_DC_CLEAR;
5284
5285 cache->dirty = 1;
5286 old_val = btrfs_block_group_used(&cache->item);
5287 num_bytes = min(total, cache->key.offset - byte_in_group);
5288 if (alloc) {
5289 old_val += num_bytes;
5290 btrfs_set_block_group_used(&cache->item, old_val);
5291 cache->reserved -= num_bytes;
5292 cache->space_info->bytes_reserved -= num_bytes;
5293 cache->space_info->bytes_used += num_bytes;
5294 cache->space_info->disk_used += num_bytes * factor;
5295 spin_unlock(&cache->lock);
5296 spin_unlock(&cache->space_info->lock);
5297 } else {
5298 old_val -= num_bytes;
5299 btrfs_set_block_group_used(&cache->item, old_val);
5300 cache->pinned += num_bytes;
5301 cache->space_info->bytes_pinned += num_bytes;
5302 cache->space_info->bytes_used -= num_bytes;
5303 cache->space_info->disk_used -= num_bytes * factor;
5304 spin_unlock(&cache->lock);
5305 spin_unlock(&cache->space_info->lock);
5306
5307 set_extent_dirty(info->pinned_extents,
5308 bytenr, bytenr + num_bytes - 1,
5309 GFP_NOFS | __GFP_NOFAIL);
5310 }
5311 btrfs_put_block_group(cache);
5312 total -= num_bytes;
5313 bytenr += num_bytes;
5314 }
5315 return 0;
5316 }
5317
5318 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5319 {
5320 struct btrfs_block_group_cache *cache;
5321 u64 bytenr;
5322
5323 spin_lock(&root->fs_info->block_group_cache_lock);
5324 bytenr = root->fs_info->first_logical_byte;
5325 spin_unlock(&root->fs_info->block_group_cache_lock);
5326
5327 if (bytenr < (u64)-1)
5328 return bytenr;
5329
5330 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5331 if (!cache)
5332 return 0;
5333
5334 bytenr = cache->key.objectid;
5335 btrfs_put_block_group(cache);
5336
5337 return bytenr;
5338 }
5339
5340 static int pin_down_extent(struct btrfs_root *root,
5341 struct btrfs_block_group_cache *cache,
5342 u64 bytenr, u64 num_bytes, int reserved)
5343 {
5344 spin_lock(&cache->space_info->lock);
5345 spin_lock(&cache->lock);
5346 cache->pinned += num_bytes;
5347 cache->space_info->bytes_pinned += num_bytes;
5348 if (reserved) {
5349 cache->reserved -= num_bytes;
5350 cache->space_info->bytes_reserved -= num_bytes;
5351 }
5352 spin_unlock(&cache->lock);
5353 spin_unlock(&cache->space_info->lock);
5354
5355 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5356 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5357 if (reserved)
5358 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5359 return 0;
5360 }
5361
5362 /*
5363 * this function must be called within transaction
5364 */
5365 int btrfs_pin_extent(struct btrfs_root *root,
5366 u64 bytenr, u64 num_bytes, int reserved)
5367 {
5368 struct btrfs_block_group_cache *cache;
5369
5370 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5371 BUG_ON(!cache); /* Logic error */
5372
5373 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5374
5375 btrfs_put_block_group(cache);
5376 return 0;
5377 }
5378
5379 /*
5380 * this function must be called within transaction
5381 */
5382 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5383 u64 bytenr, u64 num_bytes)
5384 {
5385 struct btrfs_block_group_cache *cache;
5386 int ret;
5387
5388 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5389 if (!cache)
5390 return -EINVAL;
5391
5392 /*
5393 * pull in the free space cache (if any) so that our pin
5394 * removes the free space from the cache. We have load_only set
5395 * to one because the slow code to read in the free extents does check
5396 * the pinned extents.
5397 */
5398 cache_block_group(cache, 1);
5399
5400 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5401
5402 /* remove us from the free space cache (if we're there at all) */
5403 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5404 btrfs_put_block_group(cache);
5405 return ret;
5406 }
5407
5408 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5409 {
5410 int ret;
5411 struct btrfs_block_group_cache *block_group;
5412 struct btrfs_caching_control *caching_ctl;
5413
5414 block_group = btrfs_lookup_block_group(root->fs_info, start);
5415 if (!block_group)
5416 return -EINVAL;
5417
5418 cache_block_group(block_group, 0);
5419 caching_ctl = get_caching_control(block_group);
5420
5421 if (!caching_ctl) {
5422 /* Logic error */
5423 BUG_ON(!block_group_cache_done(block_group));
5424 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5425 } else {
5426 mutex_lock(&caching_ctl->mutex);
5427
5428 if (start >= caching_ctl->progress) {
5429 ret = add_excluded_extent(root, start, num_bytes);
5430 } else if (start + num_bytes <= caching_ctl->progress) {
5431 ret = btrfs_remove_free_space(block_group,
5432 start, num_bytes);
5433 } else {
5434 num_bytes = caching_ctl->progress - start;
5435 ret = btrfs_remove_free_space(block_group,
5436 start, num_bytes);
5437 if (ret)
5438 goto out_lock;
5439
5440 num_bytes = (start + num_bytes) -
5441 caching_ctl->progress;
5442 start = caching_ctl->progress;
5443 ret = add_excluded_extent(root, start, num_bytes);
5444 }
5445 out_lock:
5446 mutex_unlock(&caching_ctl->mutex);
5447 put_caching_control(caching_ctl);
5448 }
5449 btrfs_put_block_group(block_group);
5450 return ret;
5451 }
5452
5453 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5454 struct extent_buffer *eb)
5455 {
5456 struct btrfs_file_extent_item *item;
5457 struct btrfs_key key;
5458 int found_type;
5459 int i;
5460
5461 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5462 return 0;
5463
5464 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5465 btrfs_item_key_to_cpu(eb, &key, i);
5466 if (key.type != BTRFS_EXTENT_DATA_KEY)
5467 continue;
5468 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5469 found_type = btrfs_file_extent_type(eb, item);
5470 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5471 continue;
5472 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5473 continue;
5474 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5475 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5476 __exclude_logged_extent(log, key.objectid, key.offset);
5477 }
5478
5479 return 0;
5480 }
5481
5482 /**
5483 * btrfs_update_reserved_bytes - update the block_group and space info counters
5484 * @cache: The cache we are manipulating
5485 * @num_bytes: The number of bytes in question
5486 * @reserve: One of the reservation enums
5487 *
5488 * This is called by the allocator when it reserves space, or by somebody who is
5489 * freeing space that was never actually used on disk. For example if you
5490 * reserve some space for a new leaf in transaction A and before transaction A
5491 * commits you free that leaf, you call this with reserve set to 0 in order to
5492 * clear the reservation.
5493 *
5494 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5495 * ENOSPC accounting. For data we handle the reservation through clearing the
5496 * delalloc bits in the io_tree. We have to do this since we could end up
5497 * allocating less disk space for the amount of data we have reserved in the
5498 * case of compression.
5499 *
5500 * If this is a reservation and the block group has become read only we cannot
5501 * make the reservation and return -EAGAIN, otherwise this function always
5502 * succeeds.
5503 */
5504 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5505 u64 num_bytes, int reserve)
5506 {
5507 struct btrfs_space_info *space_info = cache->space_info;
5508 int ret = 0;
5509
5510 spin_lock(&space_info->lock);
5511 spin_lock(&cache->lock);
5512 if (reserve != RESERVE_FREE) {
5513 if (cache->ro) {
5514 ret = -EAGAIN;
5515 } else {
5516 cache->reserved += num_bytes;
5517 space_info->bytes_reserved += num_bytes;
5518 if (reserve == RESERVE_ALLOC) {
5519 trace_btrfs_space_reservation(cache->fs_info,
5520 "space_info", space_info->flags,
5521 num_bytes, 0);
5522 space_info->bytes_may_use -= num_bytes;
5523 }
5524 }
5525 } else {
5526 if (cache->ro)
5527 space_info->bytes_readonly += num_bytes;
5528 cache->reserved -= num_bytes;
5529 space_info->bytes_reserved -= num_bytes;
5530 }
5531 spin_unlock(&cache->lock);
5532 spin_unlock(&space_info->lock);
5533 return ret;
5534 }
5535
5536 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5537 struct btrfs_root *root)
5538 {
5539 struct btrfs_fs_info *fs_info = root->fs_info;
5540 struct btrfs_caching_control *next;
5541 struct btrfs_caching_control *caching_ctl;
5542 struct btrfs_block_group_cache *cache;
5543 struct btrfs_space_info *space_info;
5544
5545 down_write(&fs_info->extent_commit_sem);
5546
5547 list_for_each_entry_safe(caching_ctl, next,
5548 &fs_info->caching_block_groups, list) {
5549 cache = caching_ctl->block_group;
5550 if (block_group_cache_done(cache)) {
5551 cache->last_byte_to_unpin = (u64)-1;
5552 list_del_init(&caching_ctl->list);
5553 put_caching_control(caching_ctl);
5554 } else {
5555 cache->last_byte_to_unpin = caching_ctl->progress;
5556 }
5557 }
5558
5559 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5560 fs_info->pinned_extents = &fs_info->freed_extents[1];
5561 else
5562 fs_info->pinned_extents = &fs_info->freed_extents[0];
5563
5564 up_write(&fs_info->extent_commit_sem);
5565
5566 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5567 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5568
5569 update_global_block_rsv(fs_info);
5570 }
5571
5572 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5573 {
5574 struct btrfs_fs_info *fs_info = root->fs_info;
5575 struct btrfs_block_group_cache *cache = NULL;
5576 struct btrfs_space_info *space_info;
5577 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5578 u64 len;
5579 bool readonly;
5580
5581 while (start <= end) {
5582 readonly = false;
5583 if (!cache ||
5584 start >= cache->key.objectid + cache->key.offset) {
5585 if (cache)
5586 btrfs_put_block_group(cache);
5587 cache = btrfs_lookup_block_group(fs_info, start);
5588 BUG_ON(!cache); /* Logic error */
5589 }
5590
5591 len = cache->key.objectid + cache->key.offset - start;
5592 len = min(len, end + 1 - start);
5593
5594 if (start < cache->last_byte_to_unpin) {
5595 len = min(len, cache->last_byte_to_unpin - start);
5596 btrfs_add_free_space(cache, start, len);
5597 }
5598
5599 start += len;
5600 space_info = cache->space_info;
5601
5602 spin_lock(&space_info->lock);
5603 spin_lock(&cache->lock);
5604 cache->pinned -= len;
5605 space_info->bytes_pinned -= len;
5606 if (cache->ro) {
5607 space_info->bytes_readonly += len;
5608 readonly = true;
5609 }
5610 spin_unlock(&cache->lock);
5611 if (!readonly && global_rsv->space_info == space_info) {
5612 spin_lock(&global_rsv->lock);
5613 if (!global_rsv->full) {
5614 len = min(len, global_rsv->size -
5615 global_rsv->reserved);
5616 global_rsv->reserved += len;
5617 space_info->bytes_may_use += len;
5618 if (global_rsv->reserved >= global_rsv->size)
5619 global_rsv->full = 1;
5620 }
5621 spin_unlock(&global_rsv->lock);
5622 }
5623 spin_unlock(&space_info->lock);
5624 }
5625
5626 if (cache)
5627 btrfs_put_block_group(cache);
5628 return 0;
5629 }
5630
5631 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5632 struct btrfs_root *root)
5633 {
5634 struct btrfs_fs_info *fs_info = root->fs_info;
5635 struct extent_io_tree *unpin;
5636 u64 start;
5637 u64 end;
5638 int ret;
5639
5640 if (trans->aborted)
5641 return 0;
5642
5643 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5644 unpin = &fs_info->freed_extents[1];
5645 else
5646 unpin = &fs_info->freed_extents[0];
5647
5648 while (1) {
5649 ret = find_first_extent_bit(unpin, 0, &start, &end,
5650 EXTENT_DIRTY, NULL);
5651 if (ret)
5652 break;
5653
5654 if (btrfs_test_opt(root, DISCARD))
5655 ret = btrfs_discard_extent(root, start,
5656 end + 1 - start, NULL);
5657
5658 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5659 unpin_extent_range(root, start, end);
5660 cond_resched();
5661 }
5662
5663 return 0;
5664 }
5665
5666 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5667 u64 owner, u64 root_objectid)
5668 {
5669 struct btrfs_space_info *space_info;
5670 u64 flags;
5671
5672 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5673 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5674 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5675 else
5676 flags = BTRFS_BLOCK_GROUP_METADATA;
5677 } else {
5678 flags = BTRFS_BLOCK_GROUP_DATA;
5679 }
5680
5681 space_info = __find_space_info(fs_info, flags);
5682 BUG_ON(!space_info); /* Logic bug */
5683 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5684 }
5685
5686
5687 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5688 struct btrfs_root *root,
5689 u64 bytenr, u64 num_bytes, u64 parent,
5690 u64 root_objectid, u64 owner_objectid,
5691 u64 owner_offset, int refs_to_drop,
5692 struct btrfs_delayed_extent_op *extent_op)
5693 {
5694 struct btrfs_key key;
5695 struct btrfs_path *path;
5696 struct btrfs_fs_info *info = root->fs_info;
5697 struct btrfs_root *extent_root = info->extent_root;
5698 struct extent_buffer *leaf;
5699 struct btrfs_extent_item *ei;
5700 struct btrfs_extent_inline_ref *iref;
5701 int ret;
5702 int is_data;
5703 int extent_slot = 0;
5704 int found_extent = 0;
5705 int num_to_del = 1;
5706 u32 item_size;
5707 u64 refs;
5708 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5709 SKINNY_METADATA);
5710
5711 path = btrfs_alloc_path();
5712 if (!path)
5713 return -ENOMEM;
5714
5715 path->reada = 1;
5716 path->leave_spinning = 1;
5717
5718 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5719 BUG_ON(!is_data && refs_to_drop != 1);
5720
5721 if (is_data)
5722 skinny_metadata = 0;
5723
5724 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5725 bytenr, num_bytes, parent,
5726 root_objectid, owner_objectid,
5727 owner_offset);
5728 if (ret == 0) {
5729 extent_slot = path->slots[0];
5730 while (extent_slot >= 0) {
5731 btrfs_item_key_to_cpu(path->nodes[0], &key,
5732 extent_slot);
5733 if (key.objectid != bytenr)
5734 break;
5735 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5736 key.offset == num_bytes) {
5737 found_extent = 1;
5738 break;
5739 }
5740 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5741 key.offset == owner_objectid) {
5742 found_extent = 1;
5743 break;
5744 }
5745 if (path->slots[0] - extent_slot > 5)
5746 break;
5747 extent_slot--;
5748 }
5749 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5750 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5751 if (found_extent && item_size < sizeof(*ei))
5752 found_extent = 0;
5753 #endif
5754 if (!found_extent) {
5755 BUG_ON(iref);
5756 ret = remove_extent_backref(trans, extent_root, path,
5757 NULL, refs_to_drop,
5758 is_data);
5759 if (ret) {
5760 btrfs_abort_transaction(trans, extent_root, ret);
5761 goto out;
5762 }
5763 btrfs_release_path(path);
5764 path->leave_spinning = 1;
5765
5766 key.objectid = bytenr;
5767 key.type = BTRFS_EXTENT_ITEM_KEY;
5768 key.offset = num_bytes;
5769
5770 if (!is_data && skinny_metadata) {
5771 key.type = BTRFS_METADATA_ITEM_KEY;
5772 key.offset = owner_objectid;
5773 }
5774
5775 ret = btrfs_search_slot(trans, extent_root,
5776 &key, path, -1, 1);
5777 if (ret > 0 && skinny_metadata && path->slots[0]) {
5778 /*
5779 * Couldn't find our skinny metadata item,
5780 * see if we have ye olde extent item.
5781 */
5782 path->slots[0]--;
5783 btrfs_item_key_to_cpu(path->nodes[0], &key,
5784 path->slots[0]);
5785 if (key.objectid == bytenr &&
5786 key.type == BTRFS_EXTENT_ITEM_KEY &&
5787 key.offset == num_bytes)
5788 ret = 0;
5789 }
5790
5791 if (ret > 0 && skinny_metadata) {
5792 skinny_metadata = false;
5793 key.type = BTRFS_EXTENT_ITEM_KEY;
5794 key.offset = num_bytes;
5795 btrfs_release_path(path);
5796 ret = btrfs_search_slot(trans, extent_root,
5797 &key, path, -1, 1);
5798 }
5799
5800 if (ret) {
5801 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5802 ret, bytenr);
5803 if (ret > 0)
5804 btrfs_print_leaf(extent_root,
5805 path->nodes[0]);
5806 }
5807 if (ret < 0) {
5808 btrfs_abort_transaction(trans, extent_root, ret);
5809 goto out;
5810 }
5811 extent_slot = path->slots[0];
5812 }
5813 } else if (WARN_ON(ret == -ENOENT)) {
5814 btrfs_print_leaf(extent_root, path->nodes[0]);
5815 btrfs_err(info,
5816 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5817 bytenr, parent, root_objectid, owner_objectid,
5818 owner_offset);
5819 } else {
5820 btrfs_abort_transaction(trans, extent_root, ret);
5821 goto out;
5822 }
5823
5824 leaf = path->nodes[0];
5825 item_size = btrfs_item_size_nr(leaf, extent_slot);
5826 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5827 if (item_size < sizeof(*ei)) {
5828 BUG_ON(found_extent || extent_slot != path->slots[0]);
5829 ret = convert_extent_item_v0(trans, extent_root, path,
5830 owner_objectid, 0);
5831 if (ret < 0) {
5832 btrfs_abort_transaction(trans, extent_root, ret);
5833 goto out;
5834 }
5835
5836 btrfs_release_path(path);
5837 path->leave_spinning = 1;
5838
5839 key.objectid = bytenr;
5840 key.type = BTRFS_EXTENT_ITEM_KEY;
5841 key.offset = num_bytes;
5842
5843 ret = btrfs_search_slot(trans, extent_root, &key, path,
5844 -1, 1);
5845 if (ret) {
5846 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5847 ret, bytenr);
5848 btrfs_print_leaf(extent_root, path->nodes[0]);
5849 }
5850 if (ret < 0) {
5851 btrfs_abort_transaction(trans, extent_root, ret);
5852 goto out;
5853 }
5854
5855 extent_slot = path->slots[0];
5856 leaf = path->nodes[0];
5857 item_size = btrfs_item_size_nr(leaf, extent_slot);
5858 }
5859 #endif
5860 BUG_ON(item_size < sizeof(*ei));
5861 ei = btrfs_item_ptr(leaf, extent_slot,
5862 struct btrfs_extent_item);
5863 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5864 key.type == BTRFS_EXTENT_ITEM_KEY) {
5865 struct btrfs_tree_block_info *bi;
5866 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5867 bi = (struct btrfs_tree_block_info *)(ei + 1);
5868 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5869 }
5870
5871 refs = btrfs_extent_refs(leaf, ei);
5872 if (refs < refs_to_drop) {
5873 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5874 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5875 ret = -EINVAL;
5876 btrfs_abort_transaction(trans, extent_root, ret);
5877 goto out;
5878 }
5879 refs -= refs_to_drop;
5880
5881 if (refs > 0) {
5882 if (extent_op)
5883 __run_delayed_extent_op(extent_op, leaf, ei);
5884 /*
5885 * In the case of inline back ref, reference count will
5886 * be updated by remove_extent_backref
5887 */
5888 if (iref) {
5889 BUG_ON(!found_extent);
5890 } else {
5891 btrfs_set_extent_refs(leaf, ei, refs);
5892 btrfs_mark_buffer_dirty(leaf);
5893 }
5894 if (found_extent) {
5895 ret = remove_extent_backref(trans, extent_root, path,
5896 iref, refs_to_drop,
5897 is_data);
5898 if (ret) {
5899 btrfs_abort_transaction(trans, extent_root, ret);
5900 goto out;
5901 }
5902 }
5903 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5904 root_objectid);
5905 } else {
5906 if (found_extent) {
5907 BUG_ON(is_data && refs_to_drop !=
5908 extent_data_ref_count(root, path, iref));
5909 if (iref) {
5910 BUG_ON(path->slots[0] != extent_slot);
5911 } else {
5912 BUG_ON(path->slots[0] != extent_slot + 1);
5913 path->slots[0] = extent_slot;
5914 num_to_del = 2;
5915 }
5916 }
5917
5918 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5919 num_to_del);
5920 if (ret) {
5921 btrfs_abort_transaction(trans, extent_root, ret);
5922 goto out;
5923 }
5924 btrfs_release_path(path);
5925
5926 if (is_data) {
5927 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5928 if (ret) {
5929 btrfs_abort_transaction(trans, extent_root, ret);
5930 goto out;
5931 }
5932 }
5933
5934 ret = update_block_group(root, bytenr, num_bytes, 0);
5935 if (ret) {
5936 btrfs_abort_transaction(trans, extent_root, ret);
5937 goto out;
5938 }
5939 }
5940 out:
5941 btrfs_free_path(path);
5942 return ret;
5943 }
5944
5945 /*
5946 * when we free an block, it is possible (and likely) that we free the last
5947 * delayed ref for that extent as well. This searches the delayed ref tree for
5948 * a given extent, and if there are no other delayed refs to be processed, it
5949 * removes it from the tree.
5950 */
5951 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5952 struct btrfs_root *root, u64 bytenr)
5953 {
5954 struct btrfs_delayed_ref_head *head;
5955 struct btrfs_delayed_ref_root *delayed_refs;
5956 struct btrfs_delayed_ref_node *ref;
5957 struct rb_node *node;
5958 int ret = 0;
5959
5960 delayed_refs = &trans->transaction->delayed_refs;
5961 spin_lock(&delayed_refs->lock);
5962 head = btrfs_find_delayed_ref_head(trans, bytenr);
5963 if (!head)
5964 goto out;
5965
5966 node = rb_prev(&head->node.rb_node);
5967 if (!node)
5968 goto out;
5969
5970 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5971
5972 /* there are still entries for this ref, we can't drop it */
5973 if (ref->bytenr == bytenr)
5974 goto out;
5975
5976 if (head->extent_op) {
5977 if (!head->must_insert_reserved)
5978 goto out;
5979 btrfs_free_delayed_extent_op(head->extent_op);
5980 head->extent_op = NULL;
5981 }
5982
5983 /*
5984 * waiting for the lock here would deadlock. If someone else has it
5985 * locked they are already in the process of dropping it anyway
5986 */
5987 if (!mutex_trylock(&head->mutex))
5988 goto out;
5989
5990 /*
5991 * at this point we have a head with no other entries. Go
5992 * ahead and process it.
5993 */
5994 head->node.in_tree = 0;
5995 rb_erase(&head->node.rb_node, &delayed_refs->root);
5996 rb_erase(&head->href_node, &delayed_refs->href_root);
5997
5998 delayed_refs->num_entries--;
5999
6000 /*
6001 * we don't take a ref on the node because we're removing it from the
6002 * tree, so we just steal the ref the tree was holding.
6003 */
6004 delayed_refs->num_heads--;
6005 if (list_empty(&head->cluster))
6006 delayed_refs->num_heads_ready--;
6007
6008 list_del_init(&head->cluster);
6009 spin_unlock(&delayed_refs->lock);
6010
6011 BUG_ON(head->extent_op);
6012 if (head->must_insert_reserved)
6013 ret = 1;
6014
6015 mutex_unlock(&head->mutex);
6016 btrfs_put_delayed_ref(&head->node);
6017 return ret;
6018 out:
6019 spin_unlock(&delayed_refs->lock);
6020 return 0;
6021 }
6022
6023 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6024 struct btrfs_root *root,
6025 struct extent_buffer *buf,
6026 u64 parent, int last_ref)
6027 {
6028 struct btrfs_block_group_cache *cache = NULL;
6029 int pin = 1;
6030 int ret;
6031
6032 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6033 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6034 buf->start, buf->len,
6035 parent, root->root_key.objectid,
6036 btrfs_header_level(buf),
6037 BTRFS_DROP_DELAYED_REF, NULL, 0);
6038 BUG_ON(ret); /* -ENOMEM */
6039 }
6040
6041 if (!last_ref)
6042 return;
6043
6044 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6045
6046 if (btrfs_header_generation(buf) == trans->transid) {
6047 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6048 ret = check_ref_cleanup(trans, root, buf->start);
6049 if (!ret)
6050 goto out;
6051 }
6052
6053 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6054 pin_down_extent(root, cache, buf->start, buf->len, 1);
6055 goto out;
6056 }
6057
6058 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6059
6060 btrfs_add_free_space(cache, buf->start, buf->len);
6061 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
6062 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6063 pin = 0;
6064 }
6065 out:
6066 if (pin)
6067 add_pinned_bytes(root->fs_info, buf->len,
6068 btrfs_header_level(buf),
6069 root->root_key.objectid);
6070
6071 /*
6072 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6073 * anymore.
6074 */
6075 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6076 btrfs_put_block_group(cache);
6077 }
6078
6079 /* Can return -ENOMEM */
6080 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6081 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6082 u64 owner, u64 offset, int for_cow)
6083 {
6084 int ret;
6085 struct btrfs_fs_info *fs_info = root->fs_info;
6086
6087 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6088
6089 /*
6090 * tree log blocks never actually go into the extent allocation
6091 * tree, just update pinning info and exit early.
6092 */
6093 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6094 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6095 /* unlocks the pinned mutex */
6096 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6097 ret = 0;
6098 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6099 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6100 num_bytes,
6101 parent, root_objectid, (int)owner,
6102 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6103 } else {
6104 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6105 num_bytes,
6106 parent, root_objectid, owner,
6107 offset, BTRFS_DROP_DELAYED_REF,
6108 NULL, for_cow);
6109 }
6110 return ret;
6111 }
6112
6113 static u64 stripe_align(struct btrfs_root *root,
6114 struct btrfs_block_group_cache *cache,
6115 u64 val, u64 num_bytes)
6116 {
6117 u64 ret = ALIGN(val, root->stripesize);
6118 return ret;
6119 }
6120
6121 /*
6122 * when we wait for progress in the block group caching, its because
6123 * our allocation attempt failed at least once. So, we must sleep
6124 * and let some progress happen before we try again.
6125 *
6126 * This function will sleep at least once waiting for new free space to
6127 * show up, and then it will check the block group free space numbers
6128 * for our min num_bytes. Another option is to have it go ahead
6129 * and look in the rbtree for a free extent of a given size, but this
6130 * is a good start.
6131 *
6132 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6133 * any of the information in this block group.
6134 */
6135 static noinline void
6136 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6137 u64 num_bytes)
6138 {
6139 struct btrfs_caching_control *caching_ctl;
6140
6141 caching_ctl = get_caching_control(cache);
6142 if (!caching_ctl)
6143 return;
6144
6145 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6146 (cache->free_space_ctl->free_space >= num_bytes));
6147
6148 put_caching_control(caching_ctl);
6149 }
6150
6151 static noinline int
6152 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6153 {
6154 struct btrfs_caching_control *caching_ctl;
6155 int ret = 0;
6156
6157 caching_ctl = get_caching_control(cache);
6158 if (!caching_ctl)
6159 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6160
6161 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6162 if (cache->cached == BTRFS_CACHE_ERROR)
6163 ret = -EIO;
6164 put_caching_control(caching_ctl);
6165 return ret;
6166 }
6167
6168 int __get_raid_index(u64 flags)
6169 {
6170 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6171 return BTRFS_RAID_RAID10;
6172 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6173 return BTRFS_RAID_RAID1;
6174 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6175 return BTRFS_RAID_DUP;
6176 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6177 return BTRFS_RAID_RAID0;
6178 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6179 return BTRFS_RAID_RAID5;
6180 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6181 return BTRFS_RAID_RAID6;
6182
6183 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6184 }
6185
6186 int get_block_group_index(struct btrfs_block_group_cache *cache)
6187 {
6188 return __get_raid_index(cache->flags);
6189 }
6190
6191 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6192 [BTRFS_RAID_RAID10] = "raid10",
6193 [BTRFS_RAID_RAID1] = "raid1",
6194 [BTRFS_RAID_DUP] = "dup",
6195 [BTRFS_RAID_RAID0] = "raid0",
6196 [BTRFS_RAID_SINGLE] = "single",
6197 [BTRFS_RAID_RAID5] = "raid5",
6198 [BTRFS_RAID_RAID6] = "raid6",
6199 };
6200
6201 static const char *get_raid_name(enum btrfs_raid_types type)
6202 {
6203 if (type >= BTRFS_NR_RAID_TYPES)
6204 return NULL;
6205
6206 return btrfs_raid_type_names[type];
6207 }
6208
6209 enum btrfs_loop_type {
6210 LOOP_CACHING_NOWAIT = 0,
6211 LOOP_CACHING_WAIT = 1,
6212 LOOP_ALLOC_CHUNK = 2,
6213 LOOP_NO_EMPTY_SIZE = 3,
6214 };
6215
6216 /*
6217 * walks the btree of allocated extents and find a hole of a given size.
6218 * The key ins is changed to record the hole:
6219 * ins->objectid == start position
6220 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6221 * ins->offset == the size of the hole.
6222 * Any available blocks before search_start are skipped.
6223 *
6224 * If there is no suitable free space, we will record the max size of
6225 * the free space extent currently.
6226 */
6227 static noinline int find_free_extent(struct btrfs_root *orig_root,
6228 u64 num_bytes, u64 empty_size,
6229 u64 hint_byte, struct btrfs_key *ins,
6230 u64 flags)
6231 {
6232 int ret = 0;
6233 struct btrfs_root *root = orig_root->fs_info->extent_root;
6234 struct btrfs_free_cluster *last_ptr = NULL;
6235 struct btrfs_block_group_cache *block_group = NULL;
6236 struct btrfs_block_group_cache *used_block_group;
6237 u64 search_start = 0;
6238 u64 max_extent_size = 0;
6239 int empty_cluster = 2 * 1024 * 1024;
6240 struct btrfs_space_info *space_info;
6241 int loop = 0;
6242 int index = __get_raid_index(flags);
6243 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6244 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6245 bool failed_cluster_refill = false;
6246 bool failed_alloc = false;
6247 bool use_cluster = true;
6248 bool have_caching_bg = false;
6249
6250 WARN_ON(num_bytes < root->sectorsize);
6251 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6252 ins->objectid = 0;
6253 ins->offset = 0;
6254
6255 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6256
6257 space_info = __find_space_info(root->fs_info, flags);
6258 if (!space_info) {
6259 btrfs_err(root->fs_info, "No space info for %llu", flags);
6260 return -ENOSPC;
6261 }
6262
6263 /*
6264 * If the space info is for both data and metadata it means we have a
6265 * small filesystem and we can't use the clustering stuff.
6266 */
6267 if (btrfs_mixed_space_info(space_info))
6268 use_cluster = false;
6269
6270 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6271 last_ptr = &root->fs_info->meta_alloc_cluster;
6272 if (!btrfs_test_opt(root, SSD))
6273 empty_cluster = 64 * 1024;
6274 }
6275
6276 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6277 btrfs_test_opt(root, SSD)) {
6278 last_ptr = &root->fs_info->data_alloc_cluster;
6279 }
6280
6281 if (last_ptr) {
6282 spin_lock(&last_ptr->lock);
6283 if (last_ptr->block_group)
6284 hint_byte = last_ptr->window_start;
6285 spin_unlock(&last_ptr->lock);
6286 }
6287
6288 search_start = max(search_start, first_logical_byte(root, 0));
6289 search_start = max(search_start, hint_byte);
6290
6291 if (!last_ptr)
6292 empty_cluster = 0;
6293
6294 if (search_start == hint_byte) {
6295 block_group = btrfs_lookup_block_group(root->fs_info,
6296 search_start);
6297 used_block_group = block_group;
6298 /*
6299 * we don't want to use the block group if it doesn't match our
6300 * allocation bits, or if its not cached.
6301 *
6302 * However if we are re-searching with an ideal block group
6303 * picked out then we don't care that the block group is cached.
6304 */
6305 if (block_group && block_group_bits(block_group, flags) &&
6306 block_group->cached != BTRFS_CACHE_NO) {
6307 down_read(&space_info->groups_sem);
6308 if (list_empty(&block_group->list) ||
6309 block_group->ro) {
6310 /*
6311 * someone is removing this block group,
6312 * we can't jump into the have_block_group
6313 * target because our list pointers are not
6314 * valid
6315 */
6316 btrfs_put_block_group(block_group);
6317 up_read(&space_info->groups_sem);
6318 } else {
6319 index = get_block_group_index(block_group);
6320 goto have_block_group;
6321 }
6322 } else if (block_group) {
6323 btrfs_put_block_group(block_group);
6324 }
6325 }
6326 search:
6327 have_caching_bg = false;
6328 down_read(&space_info->groups_sem);
6329 list_for_each_entry(block_group, &space_info->block_groups[index],
6330 list) {
6331 u64 offset;
6332 int cached;
6333
6334 used_block_group = block_group;
6335 btrfs_get_block_group(block_group);
6336 search_start = block_group->key.objectid;
6337
6338 /*
6339 * this can happen if we end up cycling through all the
6340 * raid types, but we want to make sure we only allocate
6341 * for the proper type.
6342 */
6343 if (!block_group_bits(block_group, flags)) {
6344 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6345 BTRFS_BLOCK_GROUP_RAID1 |
6346 BTRFS_BLOCK_GROUP_RAID5 |
6347 BTRFS_BLOCK_GROUP_RAID6 |
6348 BTRFS_BLOCK_GROUP_RAID10;
6349
6350 /*
6351 * if they asked for extra copies and this block group
6352 * doesn't provide them, bail. This does allow us to
6353 * fill raid0 from raid1.
6354 */
6355 if ((flags & extra) && !(block_group->flags & extra))
6356 goto loop;
6357 }
6358
6359 have_block_group:
6360 cached = block_group_cache_done(block_group);
6361 if (unlikely(!cached)) {
6362 ret = cache_block_group(block_group, 0);
6363 BUG_ON(ret < 0);
6364 ret = 0;
6365 }
6366
6367 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6368 goto loop;
6369 if (unlikely(block_group->ro))
6370 goto loop;
6371
6372 /*
6373 * Ok we want to try and use the cluster allocator, so
6374 * lets look there
6375 */
6376 if (last_ptr) {
6377 unsigned long aligned_cluster;
6378 /*
6379 * the refill lock keeps out other
6380 * people trying to start a new cluster
6381 */
6382 spin_lock(&last_ptr->refill_lock);
6383 used_block_group = last_ptr->block_group;
6384 if (used_block_group != block_group &&
6385 (!used_block_group ||
6386 used_block_group->ro ||
6387 !block_group_bits(used_block_group, flags))) {
6388 used_block_group = block_group;
6389 goto refill_cluster;
6390 }
6391
6392 if (used_block_group != block_group)
6393 btrfs_get_block_group(used_block_group);
6394
6395 offset = btrfs_alloc_from_cluster(used_block_group,
6396 last_ptr,
6397 num_bytes,
6398 used_block_group->key.objectid,
6399 &max_extent_size);
6400 if (offset) {
6401 /* we have a block, we're done */
6402 spin_unlock(&last_ptr->refill_lock);
6403 trace_btrfs_reserve_extent_cluster(root,
6404 block_group, search_start, num_bytes);
6405 goto checks;
6406 }
6407
6408 WARN_ON(last_ptr->block_group != used_block_group);
6409 if (used_block_group != block_group) {
6410 btrfs_put_block_group(used_block_group);
6411 used_block_group = block_group;
6412 }
6413 refill_cluster:
6414 BUG_ON(used_block_group != block_group);
6415 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6416 * set up a new clusters, so lets just skip it
6417 * and let the allocator find whatever block
6418 * it can find. If we reach this point, we
6419 * will have tried the cluster allocator
6420 * plenty of times and not have found
6421 * anything, so we are likely way too
6422 * fragmented for the clustering stuff to find
6423 * anything.
6424 *
6425 * However, if the cluster is taken from the
6426 * current block group, release the cluster
6427 * first, so that we stand a better chance of
6428 * succeeding in the unclustered
6429 * allocation. */
6430 if (loop >= LOOP_NO_EMPTY_SIZE &&
6431 last_ptr->block_group != block_group) {
6432 spin_unlock(&last_ptr->refill_lock);
6433 goto unclustered_alloc;
6434 }
6435
6436 /*
6437 * this cluster didn't work out, free it and
6438 * start over
6439 */
6440 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6441
6442 if (loop >= LOOP_NO_EMPTY_SIZE) {
6443 spin_unlock(&last_ptr->refill_lock);
6444 goto unclustered_alloc;
6445 }
6446
6447 aligned_cluster = max_t(unsigned long,
6448 empty_cluster + empty_size,
6449 block_group->full_stripe_len);
6450
6451 /* allocate a cluster in this block group */
6452 ret = btrfs_find_space_cluster(root, block_group,
6453 last_ptr, search_start,
6454 num_bytes,
6455 aligned_cluster);
6456 if (ret == 0) {
6457 /*
6458 * now pull our allocation out of this
6459 * cluster
6460 */
6461 offset = btrfs_alloc_from_cluster(block_group,
6462 last_ptr,
6463 num_bytes,
6464 search_start,
6465 &max_extent_size);
6466 if (offset) {
6467 /* we found one, proceed */
6468 spin_unlock(&last_ptr->refill_lock);
6469 trace_btrfs_reserve_extent_cluster(root,
6470 block_group, search_start,
6471 num_bytes);
6472 goto checks;
6473 }
6474 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6475 && !failed_cluster_refill) {
6476 spin_unlock(&last_ptr->refill_lock);
6477
6478 failed_cluster_refill = true;
6479 wait_block_group_cache_progress(block_group,
6480 num_bytes + empty_cluster + empty_size);
6481 goto have_block_group;
6482 }
6483
6484 /*
6485 * at this point we either didn't find a cluster
6486 * or we weren't able to allocate a block from our
6487 * cluster. Free the cluster we've been trying
6488 * to use, and go to the next block group
6489 */
6490 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6491 spin_unlock(&last_ptr->refill_lock);
6492 goto loop;
6493 }
6494
6495 unclustered_alloc:
6496 spin_lock(&block_group->free_space_ctl->tree_lock);
6497 if (cached &&
6498 block_group->free_space_ctl->free_space <
6499 num_bytes + empty_cluster + empty_size) {
6500 if (block_group->free_space_ctl->free_space >
6501 max_extent_size)
6502 max_extent_size =
6503 block_group->free_space_ctl->free_space;
6504 spin_unlock(&block_group->free_space_ctl->tree_lock);
6505 goto loop;
6506 }
6507 spin_unlock(&block_group->free_space_ctl->tree_lock);
6508
6509 offset = btrfs_find_space_for_alloc(block_group, search_start,
6510 num_bytes, empty_size,
6511 &max_extent_size);
6512 /*
6513 * If we didn't find a chunk, and we haven't failed on this
6514 * block group before, and this block group is in the middle of
6515 * caching and we are ok with waiting, then go ahead and wait
6516 * for progress to be made, and set failed_alloc to true.
6517 *
6518 * If failed_alloc is true then we've already waited on this
6519 * block group once and should move on to the next block group.
6520 */
6521 if (!offset && !failed_alloc && !cached &&
6522 loop > LOOP_CACHING_NOWAIT) {
6523 wait_block_group_cache_progress(block_group,
6524 num_bytes + empty_size);
6525 failed_alloc = true;
6526 goto have_block_group;
6527 } else if (!offset) {
6528 if (!cached)
6529 have_caching_bg = true;
6530 goto loop;
6531 }
6532 checks:
6533 search_start = stripe_align(root, used_block_group,
6534 offset, num_bytes);
6535
6536 /* move on to the next group */
6537 if (search_start + num_bytes >
6538 used_block_group->key.objectid + used_block_group->key.offset) {
6539 btrfs_add_free_space(used_block_group, offset, num_bytes);
6540 goto loop;
6541 }
6542
6543 if (offset < search_start)
6544 btrfs_add_free_space(used_block_group, offset,
6545 search_start - offset);
6546 BUG_ON(offset > search_start);
6547
6548 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6549 alloc_type);
6550 if (ret == -EAGAIN) {
6551 btrfs_add_free_space(used_block_group, offset, num_bytes);
6552 goto loop;
6553 }
6554
6555 /* we are all good, lets return */
6556 ins->objectid = search_start;
6557 ins->offset = num_bytes;
6558
6559 trace_btrfs_reserve_extent(orig_root, block_group,
6560 search_start, num_bytes);
6561 if (used_block_group != block_group)
6562 btrfs_put_block_group(used_block_group);
6563 btrfs_put_block_group(block_group);
6564 break;
6565 loop:
6566 failed_cluster_refill = false;
6567 failed_alloc = false;
6568 BUG_ON(index != get_block_group_index(block_group));
6569 if (used_block_group != block_group)
6570 btrfs_put_block_group(used_block_group);
6571 btrfs_put_block_group(block_group);
6572 }
6573 up_read(&space_info->groups_sem);
6574
6575 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6576 goto search;
6577
6578 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6579 goto search;
6580
6581 /*
6582 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6583 * caching kthreads as we move along
6584 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6585 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6586 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6587 * again
6588 */
6589 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6590 index = 0;
6591 loop++;
6592 if (loop == LOOP_ALLOC_CHUNK) {
6593 struct btrfs_trans_handle *trans;
6594
6595 trans = btrfs_join_transaction(root);
6596 if (IS_ERR(trans)) {
6597 ret = PTR_ERR(trans);
6598 goto out;
6599 }
6600
6601 ret = do_chunk_alloc(trans, root, flags,
6602 CHUNK_ALLOC_FORCE);
6603 /*
6604 * Do not bail out on ENOSPC since we
6605 * can do more things.
6606 */
6607 if (ret < 0 && ret != -ENOSPC)
6608 btrfs_abort_transaction(trans,
6609 root, ret);
6610 else
6611 ret = 0;
6612 btrfs_end_transaction(trans, root);
6613 if (ret)
6614 goto out;
6615 }
6616
6617 if (loop == LOOP_NO_EMPTY_SIZE) {
6618 empty_size = 0;
6619 empty_cluster = 0;
6620 }
6621
6622 goto search;
6623 } else if (!ins->objectid) {
6624 ret = -ENOSPC;
6625 } else if (ins->objectid) {
6626 ret = 0;
6627 }
6628 out:
6629 if (ret == -ENOSPC)
6630 ins->offset = max_extent_size;
6631 return ret;
6632 }
6633
6634 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6635 int dump_block_groups)
6636 {
6637 struct btrfs_block_group_cache *cache;
6638 int index = 0;
6639
6640 spin_lock(&info->lock);
6641 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6642 info->flags,
6643 info->total_bytes - info->bytes_used - info->bytes_pinned -
6644 info->bytes_reserved - info->bytes_readonly,
6645 (info->full) ? "" : "not ");
6646 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6647 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6648 info->total_bytes, info->bytes_used, info->bytes_pinned,
6649 info->bytes_reserved, info->bytes_may_use,
6650 info->bytes_readonly);
6651 spin_unlock(&info->lock);
6652
6653 if (!dump_block_groups)
6654 return;
6655
6656 down_read(&info->groups_sem);
6657 again:
6658 list_for_each_entry(cache, &info->block_groups[index], list) {
6659 spin_lock(&cache->lock);
6660 printk(KERN_INFO "BTRFS: "
6661 "block group %llu has %llu bytes, "
6662 "%llu used %llu pinned %llu reserved %s\n",
6663 cache->key.objectid, cache->key.offset,
6664 btrfs_block_group_used(&cache->item), cache->pinned,
6665 cache->reserved, cache->ro ? "[readonly]" : "");
6666 btrfs_dump_free_space(cache, bytes);
6667 spin_unlock(&cache->lock);
6668 }
6669 if (++index < BTRFS_NR_RAID_TYPES)
6670 goto again;
6671 up_read(&info->groups_sem);
6672 }
6673
6674 int btrfs_reserve_extent(struct btrfs_root *root,
6675 u64 num_bytes, u64 min_alloc_size,
6676 u64 empty_size, u64 hint_byte,
6677 struct btrfs_key *ins, int is_data)
6678 {
6679 bool final_tried = false;
6680 u64 flags;
6681 int ret;
6682
6683 flags = btrfs_get_alloc_profile(root, is_data);
6684 again:
6685 WARN_ON(num_bytes < root->sectorsize);
6686 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6687 flags);
6688
6689 if (ret == -ENOSPC) {
6690 if (!final_tried && ins->offset) {
6691 num_bytes = min(num_bytes >> 1, ins->offset);
6692 num_bytes = round_down(num_bytes, root->sectorsize);
6693 num_bytes = max(num_bytes, min_alloc_size);
6694 if (num_bytes == min_alloc_size)
6695 final_tried = true;
6696 goto again;
6697 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6698 struct btrfs_space_info *sinfo;
6699
6700 sinfo = __find_space_info(root->fs_info, flags);
6701 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6702 flags, num_bytes);
6703 if (sinfo)
6704 dump_space_info(sinfo, num_bytes, 1);
6705 }
6706 }
6707
6708 return ret;
6709 }
6710
6711 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6712 u64 start, u64 len, int pin)
6713 {
6714 struct btrfs_block_group_cache *cache;
6715 int ret = 0;
6716
6717 cache = btrfs_lookup_block_group(root->fs_info, start);
6718 if (!cache) {
6719 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6720 start);
6721 return -ENOSPC;
6722 }
6723
6724 if (btrfs_test_opt(root, DISCARD))
6725 ret = btrfs_discard_extent(root, start, len, NULL);
6726
6727 if (pin)
6728 pin_down_extent(root, cache, start, len, 1);
6729 else {
6730 btrfs_add_free_space(cache, start, len);
6731 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6732 }
6733 btrfs_put_block_group(cache);
6734
6735 trace_btrfs_reserved_extent_free(root, start, len);
6736
6737 return ret;
6738 }
6739
6740 int btrfs_free_reserved_extent(struct btrfs_root *root,
6741 u64 start, u64 len)
6742 {
6743 return __btrfs_free_reserved_extent(root, start, len, 0);
6744 }
6745
6746 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6747 u64 start, u64 len)
6748 {
6749 return __btrfs_free_reserved_extent(root, start, len, 1);
6750 }
6751
6752 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6753 struct btrfs_root *root,
6754 u64 parent, u64 root_objectid,
6755 u64 flags, u64 owner, u64 offset,
6756 struct btrfs_key *ins, int ref_mod)
6757 {
6758 int ret;
6759 struct btrfs_fs_info *fs_info = root->fs_info;
6760 struct btrfs_extent_item *extent_item;
6761 struct btrfs_extent_inline_ref *iref;
6762 struct btrfs_path *path;
6763 struct extent_buffer *leaf;
6764 int type;
6765 u32 size;
6766
6767 if (parent > 0)
6768 type = BTRFS_SHARED_DATA_REF_KEY;
6769 else
6770 type = BTRFS_EXTENT_DATA_REF_KEY;
6771
6772 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6773
6774 path = btrfs_alloc_path();
6775 if (!path)
6776 return -ENOMEM;
6777
6778 path->leave_spinning = 1;
6779 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6780 ins, size);
6781 if (ret) {
6782 btrfs_free_path(path);
6783 return ret;
6784 }
6785
6786 leaf = path->nodes[0];
6787 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6788 struct btrfs_extent_item);
6789 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6790 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6791 btrfs_set_extent_flags(leaf, extent_item,
6792 flags | BTRFS_EXTENT_FLAG_DATA);
6793
6794 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6795 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6796 if (parent > 0) {
6797 struct btrfs_shared_data_ref *ref;
6798 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6799 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6800 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6801 } else {
6802 struct btrfs_extent_data_ref *ref;
6803 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6804 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6805 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6806 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6807 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6808 }
6809
6810 btrfs_mark_buffer_dirty(path->nodes[0]);
6811 btrfs_free_path(path);
6812
6813 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6814 if (ret) { /* -ENOENT, logic error */
6815 btrfs_err(fs_info, "update block group failed for %llu %llu",
6816 ins->objectid, ins->offset);
6817 BUG();
6818 }
6819 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6820 return ret;
6821 }
6822
6823 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6824 struct btrfs_root *root,
6825 u64 parent, u64 root_objectid,
6826 u64 flags, struct btrfs_disk_key *key,
6827 int level, struct btrfs_key *ins)
6828 {
6829 int ret;
6830 struct btrfs_fs_info *fs_info = root->fs_info;
6831 struct btrfs_extent_item *extent_item;
6832 struct btrfs_tree_block_info *block_info;
6833 struct btrfs_extent_inline_ref *iref;
6834 struct btrfs_path *path;
6835 struct extent_buffer *leaf;
6836 u32 size = sizeof(*extent_item) + sizeof(*iref);
6837 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6838 SKINNY_METADATA);
6839
6840 if (!skinny_metadata)
6841 size += sizeof(*block_info);
6842
6843 path = btrfs_alloc_path();
6844 if (!path) {
6845 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6846 root->leafsize);
6847 return -ENOMEM;
6848 }
6849
6850 path->leave_spinning = 1;
6851 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6852 ins, size);
6853 if (ret) {
6854 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6855 root->leafsize);
6856 btrfs_free_path(path);
6857 return ret;
6858 }
6859
6860 leaf = path->nodes[0];
6861 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6862 struct btrfs_extent_item);
6863 btrfs_set_extent_refs(leaf, extent_item, 1);
6864 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6865 btrfs_set_extent_flags(leaf, extent_item,
6866 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6867
6868 if (skinny_metadata) {
6869 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6870 } else {
6871 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6872 btrfs_set_tree_block_key(leaf, block_info, key);
6873 btrfs_set_tree_block_level(leaf, block_info, level);
6874 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6875 }
6876
6877 if (parent > 0) {
6878 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6879 btrfs_set_extent_inline_ref_type(leaf, iref,
6880 BTRFS_SHARED_BLOCK_REF_KEY);
6881 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6882 } else {
6883 btrfs_set_extent_inline_ref_type(leaf, iref,
6884 BTRFS_TREE_BLOCK_REF_KEY);
6885 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6886 }
6887
6888 btrfs_mark_buffer_dirty(leaf);
6889 btrfs_free_path(path);
6890
6891 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6892 if (ret) { /* -ENOENT, logic error */
6893 btrfs_err(fs_info, "update block group failed for %llu %llu",
6894 ins->objectid, ins->offset);
6895 BUG();
6896 }
6897
6898 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6899 return ret;
6900 }
6901
6902 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6903 struct btrfs_root *root,
6904 u64 root_objectid, u64 owner,
6905 u64 offset, struct btrfs_key *ins)
6906 {
6907 int ret;
6908
6909 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6910
6911 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6912 ins->offset, 0,
6913 root_objectid, owner, offset,
6914 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6915 return ret;
6916 }
6917
6918 /*
6919 * this is used by the tree logging recovery code. It records that
6920 * an extent has been allocated and makes sure to clear the free
6921 * space cache bits as well
6922 */
6923 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6924 struct btrfs_root *root,
6925 u64 root_objectid, u64 owner, u64 offset,
6926 struct btrfs_key *ins)
6927 {
6928 int ret;
6929 struct btrfs_block_group_cache *block_group;
6930
6931 /*
6932 * Mixed block groups will exclude before processing the log so we only
6933 * need to do the exlude dance if this fs isn't mixed.
6934 */
6935 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6936 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6937 if (ret)
6938 return ret;
6939 }
6940
6941 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6942 if (!block_group)
6943 return -EINVAL;
6944
6945 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6946 RESERVE_ALLOC_NO_ACCOUNT);
6947 BUG_ON(ret); /* logic error */
6948 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6949 0, owner, offset, ins, 1);
6950 btrfs_put_block_group(block_group);
6951 return ret;
6952 }
6953
6954 static struct extent_buffer *
6955 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6956 u64 bytenr, u32 blocksize, int level)
6957 {
6958 struct extent_buffer *buf;
6959
6960 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6961 if (!buf)
6962 return ERR_PTR(-ENOMEM);
6963 btrfs_set_header_generation(buf, trans->transid);
6964 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6965 btrfs_tree_lock(buf);
6966 clean_tree_block(trans, root, buf);
6967 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6968
6969 btrfs_set_lock_blocking(buf);
6970 btrfs_set_buffer_uptodate(buf);
6971
6972 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6973 /*
6974 * we allow two log transactions at a time, use different
6975 * EXENT bit to differentiate dirty pages.
6976 */
6977 if (root->log_transid % 2 == 0)
6978 set_extent_dirty(&root->dirty_log_pages, buf->start,
6979 buf->start + buf->len - 1, GFP_NOFS);
6980 else
6981 set_extent_new(&root->dirty_log_pages, buf->start,
6982 buf->start + buf->len - 1, GFP_NOFS);
6983 } else {
6984 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6985 buf->start + buf->len - 1, GFP_NOFS);
6986 }
6987 trans->blocks_used++;
6988 /* this returns a buffer locked for blocking */
6989 return buf;
6990 }
6991
6992 static struct btrfs_block_rsv *
6993 use_block_rsv(struct btrfs_trans_handle *trans,
6994 struct btrfs_root *root, u32 blocksize)
6995 {
6996 struct btrfs_block_rsv *block_rsv;
6997 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6998 int ret;
6999 bool global_updated = false;
7000
7001 block_rsv = get_block_rsv(trans, root);
7002
7003 if (unlikely(block_rsv->size == 0))
7004 goto try_reserve;
7005 again:
7006 ret = block_rsv_use_bytes(block_rsv, blocksize);
7007 if (!ret)
7008 return block_rsv;
7009
7010 if (block_rsv->failfast)
7011 return ERR_PTR(ret);
7012
7013 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7014 global_updated = true;
7015 update_global_block_rsv(root->fs_info);
7016 goto again;
7017 }
7018
7019 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7020 static DEFINE_RATELIMIT_STATE(_rs,
7021 DEFAULT_RATELIMIT_INTERVAL * 10,
7022 /*DEFAULT_RATELIMIT_BURST*/ 1);
7023 if (__ratelimit(&_rs))
7024 WARN(1, KERN_DEBUG
7025 "BTRFS: block rsv returned %d\n", ret);
7026 }
7027 try_reserve:
7028 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7029 BTRFS_RESERVE_NO_FLUSH);
7030 if (!ret)
7031 return block_rsv;
7032 /*
7033 * If we couldn't reserve metadata bytes try and use some from
7034 * the global reserve if its space type is the same as the global
7035 * reservation.
7036 */
7037 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7038 block_rsv->space_info == global_rsv->space_info) {
7039 ret = block_rsv_use_bytes(global_rsv, blocksize);
7040 if (!ret)
7041 return global_rsv;
7042 }
7043 return ERR_PTR(ret);
7044 }
7045
7046 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7047 struct btrfs_block_rsv *block_rsv, u32 blocksize)
7048 {
7049 block_rsv_add_bytes(block_rsv, blocksize, 0);
7050 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7051 }
7052
7053 /*
7054 * finds a free extent and does all the dirty work required for allocation
7055 * returns the key for the extent through ins, and a tree buffer for
7056 * the first block of the extent through buf.
7057 *
7058 * returns the tree buffer or NULL.
7059 */
7060 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
7061 struct btrfs_root *root, u32 blocksize,
7062 u64 parent, u64 root_objectid,
7063 struct btrfs_disk_key *key, int level,
7064 u64 hint, u64 empty_size)
7065 {
7066 struct btrfs_key ins;
7067 struct btrfs_block_rsv *block_rsv;
7068 struct extent_buffer *buf;
7069 u64 flags = 0;
7070 int ret;
7071 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7072 SKINNY_METADATA);
7073
7074 block_rsv = use_block_rsv(trans, root, blocksize);
7075 if (IS_ERR(block_rsv))
7076 return ERR_CAST(block_rsv);
7077
7078 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7079 empty_size, hint, &ins, 0);
7080 if (ret) {
7081 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7082 return ERR_PTR(ret);
7083 }
7084
7085 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7086 blocksize, level);
7087 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7088
7089 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7090 if (parent == 0)
7091 parent = ins.objectid;
7092 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7093 } else
7094 BUG_ON(parent > 0);
7095
7096 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7097 struct btrfs_delayed_extent_op *extent_op;
7098 extent_op = btrfs_alloc_delayed_extent_op();
7099 BUG_ON(!extent_op); /* -ENOMEM */
7100 if (key)
7101 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7102 else
7103 memset(&extent_op->key, 0, sizeof(extent_op->key));
7104 extent_op->flags_to_set = flags;
7105 if (skinny_metadata)
7106 extent_op->update_key = 0;
7107 else
7108 extent_op->update_key = 1;
7109 extent_op->update_flags = 1;
7110 extent_op->is_data = 0;
7111 extent_op->level = level;
7112
7113 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7114 ins.objectid,
7115 ins.offset, parent, root_objectid,
7116 level, BTRFS_ADD_DELAYED_EXTENT,
7117 extent_op, 0);
7118 BUG_ON(ret); /* -ENOMEM */
7119 }
7120 return buf;
7121 }
7122
7123 struct walk_control {
7124 u64 refs[BTRFS_MAX_LEVEL];
7125 u64 flags[BTRFS_MAX_LEVEL];
7126 struct btrfs_key update_progress;
7127 int stage;
7128 int level;
7129 int shared_level;
7130 int update_ref;
7131 int keep_locks;
7132 int reada_slot;
7133 int reada_count;
7134 int for_reloc;
7135 };
7136
7137 #define DROP_REFERENCE 1
7138 #define UPDATE_BACKREF 2
7139
7140 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7141 struct btrfs_root *root,
7142 struct walk_control *wc,
7143 struct btrfs_path *path)
7144 {
7145 u64 bytenr;
7146 u64 generation;
7147 u64 refs;
7148 u64 flags;
7149 u32 nritems;
7150 u32 blocksize;
7151 struct btrfs_key key;
7152 struct extent_buffer *eb;
7153 int ret;
7154 int slot;
7155 int nread = 0;
7156
7157 if (path->slots[wc->level] < wc->reada_slot) {
7158 wc->reada_count = wc->reada_count * 2 / 3;
7159 wc->reada_count = max(wc->reada_count, 2);
7160 } else {
7161 wc->reada_count = wc->reada_count * 3 / 2;
7162 wc->reada_count = min_t(int, wc->reada_count,
7163 BTRFS_NODEPTRS_PER_BLOCK(root));
7164 }
7165
7166 eb = path->nodes[wc->level];
7167 nritems = btrfs_header_nritems(eb);
7168 blocksize = btrfs_level_size(root, wc->level - 1);
7169
7170 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7171 if (nread >= wc->reada_count)
7172 break;
7173
7174 cond_resched();
7175 bytenr = btrfs_node_blockptr(eb, slot);
7176 generation = btrfs_node_ptr_generation(eb, slot);
7177
7178 if (slot == path->slots[wc->level])
7179 goto reada;
7180
7181 if (wc->stage == UPDATE_BACKREF &&
7182 generation <= root->root_key.offset)
7183 continue;
7184
7185 /* We don't lock the tree block, it's OK to be racy here */
7186 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7187 wc->level - 1, 1, &refs,
7188 &flags);
7189 /* We don't care about errors in readahead. */
7190 if (ret < 0)
7191 continue;
7192 BUG_ON(refs == 0);
7193
7194 if (wc->stage == DROP_REFERENCE) {
7195 if (refs == 1)
7196 goto reada;
7197
7198 if (wc->level == 1 &&
7199 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7200 continue;
7201 if (!wc->update_ref ||
7202 generation <= root->root_key.offset)
7203 continue;
7204 btrfs_node_key_to_cpu(eb, &key, slot);
7205 ret = btrfs_comp_cpu_keys(&key,
7206 &wc->update_progress);
7207 if (ret < 0)
7208 continue;
7209 } else {
7210 if (wc->level == 1 &&
7211 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7212 continue;
7213 }
7214 reada:
7215 ret = readahead_tree_block(root, bytenr, blocksize,
7216 generation);
7217 if (ret)
7218 break;
7219 nread++;
7220 }
7221 wc->reada_slot = slot;
7222 }
7223
7224 /*
7225 * helper to process tree block while walking down the tree.
7226 *
7227 * when wc->stage == UPDATE_BACKREF, this function updates
7228 * back refs for pointers in the block.
7229 *
7230 * NOTE: return value 1 means we should stop walking down.
7231 */
7232 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7233 struct btrfs_root *root,
7234 struct btrfs_path *path,
7235 struct walk_control *wc, int lookup_info)
7236 {
7237 int level = wc->level;
7238 struct extent_buffer *eb = path->nodes[level];
7239 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7240 int ret;
7241
7242 if (wc->stage == UPDATE_BACKREF &&
7243 btrfs_header_owner(eb) != root->root_key.objectid)
7244 return 1;
7245
7246 /*
7247 * when reference count of tree block is 1, it won't increase
7248 * again. once full backref flag is set, we never clear it.
7249 */
7250 if (lookup_info &&
7251 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7252 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7253 BUG_ON(!path->locks[level]);
7254 ret = btrfs_lookup_extent_info(trans, root,
7255 eb->start, level, 1,
7256 &wc->refs[level],
7257 &wc->flags[level]);
7258 BUG_ON(ret == -ENOMEM);
7259 if (ret)
7260 return ret;
7261 BUG_ON(wc->refs[level] == 0);
7262 }
7263
7264 if (wc->stage == DROP_REFERENCE) {
7265 if (wc->refs[level] > 1)
7266 return 1;
7267
7268 if (path->locks[level] && !wc->keep_locks) {
7269 btrfs_tree_unlock_rw(eb, path->locks[level]);
7270 path->locks[level] = 0;
7271 }
7272 return 0;
7273 }
7274
7275 /* wc->stage == UPDATE_BACKREF */
7276 if (!(wc->flags[level] & flag)) {
7277 BUG_ON(!path->locks[level]);
7278 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7279 BUG_ON(ret); /* -ENOMEM */
7280 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7281 BUG_ON(ret); /* -ENOMEM */
7282 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7283 eb->len, flag,
7284 btrfs_header_level(eb), 0);
7285 BUG_ON(ret); /* -ENOMEM */
7286 wc->flags[level] |= flag;
7287 }
7288
7289 /*
7290 * the block is shared by multiple trees, so it's not good to
7291 * keep the tree lock
7292 */
7293 if (path->locks[level] && level > 0) {
7294 btrfs_tree_unlock_rw(eb, path->locks[level]);
7295 path->locks[level] = 0;
7296 }
7297 return 0;
7298 }
7299
7300 /*
7301 * helper to process tree block pointer.
7302 *
7303 * when wc->stage == DROP_REFERENCE, this function checks
7304 * reference count of the block pointed to. if the block
7305 * is shared and we need update back refs for the subtree
7306 * rooted at the block, this function changes wc->stage to
7307 * UPDATE_BACKREF. if the block is shared and there is no
7308 * need to update back, this function drops the reference
7309 * to the block.
7310 *
7311 * NOTE: return value 1 means we should stop walking down.
7312 */
7313 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7314 struct btrfs_root *root,
7315 struct btrfs_path *path,
7316 struct walk_control *wc, int *lookup_info)
7317 {
7318 u64 bytenr;
7319 u64 generation;
7320 u64 parent;
7321 u32 blocksize;
7322 struct btrfs_key key;
7323 struct extent_buffer *next;
7324 int level = wc->level;
7325 int reada = 0;
7326 int ret = 0;
7327
7328 generation = btrfs_node_ptr_generation(path->nodes[level],
7329 path->slots[level]);
7330 /*
7331 * if the lower level block was created before the snapshot
7332 * was created, we know there is no need to update back refs
7333 * for the subtree
7334 */
7335 if (wc->stage == UPDATE_BACKREF &&
7336 generation <= root->root_key.offset) {
7337 *lookup_info = 1;
7338 return 1;
7339 }
7340
7341 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7342 blocksize = btrfs_level_size(root, level - 1);
7343
7344 next = btrfs_find_tree_block(root, bytenr, blocksize);
7345 if (!next) {
7346 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7347 if (!next)
7348 return -ENOMEM;
7349 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7350 level - 1);
7351 reada = 1;
7352 }
7353 btrfs_tree_lock(next);
7354 btrfs_set_lock_blocking(next);
7355
7356 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7357 &wc->refs[level - 1],
7358 &wc->flags[level - 1]);
7359 if (ret < 0) {
7360 btrfs_tree_unlock(next);
7361 return ret;
7362 }
7363
7364 if (unlikely(wc->refs[level - 1] == 0)) {
7365 btrfs_err(root->fs_info, "Missing references.");
7366 BUG();
7367 }
7368 *lookup_info = 0;
7369
7370 if (wc->stage == DROP_REFERENCE) {
7371 if (wc->refs[level - 1] > 1) {
7372 if (level == 1 &&
7373 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7374 goto skip;
7375
7376 if (!wc->update_ref ||
7377 generation <= root->root_key.offset)
7378 goto skip;
7379
7380 btrfs_node_key_to_cpu(path->nodes[level], &key,
7381 path->slots[level]);
7382 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7383 if (ret < 0)
7384 goto skip;
7385
7386 wc->stage = UPDATE_BACKREF;
7387 wc->shared_level = level - 1;
7388 }
7389 } else {
7390 if (level == 1 &&
7391 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7392 goto skip;
7393 }
7394
7395 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7396 btrfs_tree_unlock(next);
7397 free_extent_buffer(next);
7398 next = NULL;
7399 *lookup_info = 1;
7400 }
7401
7402 if (!next) {
7403 if (reada && level == 1)
7404 reada_walk_down(trans, root, wc, path);
7405 next = read_tree_block(root, bytenr, blocksize, generation);
7406 if (!next || !extent_buffer_uptodate(next)) {
7407 free_extent_buffer(next);
7408 return -EIO;
7409 }
7410 btrfs_tree_lock(next);
7411 btrfs_set_lock_blocking(next);
7412 }
7413
7414 level--;
7415 BUG_ON(level != btrfs_header_level(next));
7416 path->nodes[level] = next;
7417 path->slots[level] = 0;
7418 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7419 wc->level = level;
7420 if (wc->level == 1)
7421 wc->reada_slot = 0;
7422 return 0;
7423 skip:
7424 wc->refs[level - 1] = 0;
7425 wc->flags[level - 1] = 0;
7426 if (wc->stage == DROP_REFERENCE) {
7427 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7428 parent = path->nodes[level]->start;
7429 } else {
7430 BUG_ON(root->root_key.objectid !=
7431 btrfs_header_owner(path->nodes[level]));
7432 parent = 0;
7433 }
7434
7435 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7436 root->root_key.objectid, level - 1, 0, 0);
7437 BUG_ON(ret); /* -ENOMEM */
7438 }
7439 btrfs_tree_unlock(next);
7440 free_extent_buffer(next);
7441 *lookup_info = 1;
7442 return 1;
7443 }
7444
7445 /*
7446 * helper to process tree block while walking up the tree.
7447 *
7448 * when wc->stage == DROP_REFERENCE, this function drops
7449 * reference count on the block.
7450 *
7451 * when wc->stage == UPDATE_BACKREF, this function changes
7452 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7453 * to UPDATE_BACKREF previously while processing the block.
7454 *
7455 * NOTE: return value 1 means we should stop walking up.
7456 */
7457 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7458 struct btrfs_root *root,
7459 struct btrfs_path *path,
7460 struct walk_control *wc)
7461 {
7462 int ret;
7463 int level = wc->level;
7464 struct extent_buffer *eb = path->nodes[level];
7465 u64 parent = 0;
7466
7467 if (wc->stage == UPDATE_BACKREF) {
7468 BUG_ON(wc->shared_level < level);
7469 if (level < wc->shared_level)
7470 goto out;
7471
7472 ret = find_next_key(path, level + 1, &wc->update_progress);
7473 if (ret > 0)
7474 wc->update_ref = 0;
7475
7476 wc->stage = DROP_REFERENCE;
7477 wc->shared_level = -1;
7478 path->slots[level] = 0;
7479
7480 /*
7481 * check reference count again if the block isn't locked.
7482 * we should start walking down the tree again if reference
7483 * count is one.
7484 */
7485 if (!path->locks[level]) {
7486 BUG_ON(level == 0);
7487 btrfs_tree_lock(eb);
7488 btrfs_set_lock_blocking(eb);
7489 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7490
7491 ret = btrfs_lookup_extent_info(trans, root,
7492 eb->start, level, 1,
7493 &wc->refs[level],
7494 &wc->flags[level]);
7495 if (ret < 0) {
7496 btrfs_tree_unlock_rw(eb, path->locks[level]);
7497 path->locks[level] = 0;
7498 return ret;
7499 }
7500 BUG_ON(wc->refs[level] == 0);
7501 if (wc->refs[level] == 1) {
7502 btrfs_tree_unlock_rw(eb, path->locks[level]);
7503 path->locks[level] = 0;
7504 return 1;
7505 }
7506 }
7507 }
7508
7509 /* wc->stage == DROP_REFERENCE */
7510 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7511
7512 if (wc->refs[level] == 1) {
7513 if (level == 0) {
7514 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7515 ret = btrfs_dec_ref(trans, root, eb, 1,
7516 wc->for_reloc);
7517 else
7518 ret = btrfs_dec_ref(trans, root, eb, 0,
7519 wc->for_reloc);
7520 BUG_ON(ret); /* -ENOMEM */
7521 }
7522 /* make block locked assertion in clean_tree_block happy */
7523 if (!path->locks[level] &&
7524 btrfs_header_generation(eb) == trans->transid) {
7525 btrfs_tree_lock(eb);
7526 btrfs_set_lock_blocking(eb);
7527 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7528 }
7529 clean_tree_block(trans, root, eb);
7530 }
7531
7532 if (eb == root->node) {
7533 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7534 parent = eb->start;
7535 else
7536 BUG_ON(root->root_key.objectid !=
7537 btrfs_header_owner(eb));
7538 } else {
7539 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7540 parent = path->nodes[level + 1]->start;
7541 else
7542 BUG_ON(root->root_key.objectid !=
7543 btrfs_header_owner(path->nodes[level + 1]));
7544 }
7545
7546 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7547 out:
7548 wc->refs[level] = 0;
7549 wc->flags[level] = 0;
7550 return 0;
7551 }
7552
7553 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7554 struct btrfs_root *root,
7555 struct btrfs_path *path,
7556 struct walk_control *wc)
7557 {
7558 int level = wc->level;
7559 int lookup_info = 1;
7560 int ret;
7561
7562 while (level >= 0) {
7563 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7564 if (ret > 0)
7565 break;
7566
7567 if (level == 0)
7568 break;
7569
7570 if (path->slots[level] >=
7571 btrfs_header_nritems(path->nodes[level]))
7572 break;
7573
7574 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7575 if (ret > 0) {
7576 path->slots[level]++;
7577 continue;
7578 } else if (ret < 0)
7579 return ret;
7580 level = wc->level;
7581 }
7582 return 0;
7583 }
7584
7585 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7586 struct btrfs_root *root,
7587 struct btrfs_path *path,
7588 struct walk_control *wc, int max_level)
7589 {
7590 int level = wc->level;
7591 int ret;
7592
7593 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7594 while (level < max_level && path->nodes[level]) {
7595 wc->level = level;
7596 if (path->slots[level] + 1 <
7597 btrfs_header_nritems(path->nodes[level])) {
7598 path->slots[level]++;
7599 return 0;
7600 } else {
7601 ret = walk_up_proc(trans, root, path, wc);
7602 if (ret > 0)
7603 return 0;
7604
7605 if (path->locks[level]) {
7606 btrfs_tree_unlock_rw(path->nodes[level],
7607 path->locks[level]);
7608 path->locks[level] = 0;
7609 }
7610 free_extent_buffer(path->nodes[level]);
7611 path->nodes[level] = NULL;
7612 level++;
7613 }
7614 }
7615 return 1;
7616 }
7617
7618 /*
7619 * drop a subvolume tree.
7620 *
7621 * this function traverses the tree freeing any blocks that only
7622 * referenced by the tree.
7623 *
7624 * when a shared tree block is found. this function decreases its
7625 * reference count by one. if update_ref is true, this function
7626 * also make sure backrefs for the shared block and all lower level
7627 * blocks are properly updated.
7628 *
7629 * If called with for_reloc == 0, may exit early with -EAGAIN
7630 */
7631 int btrfs_drop_snapshot(struct btrfs_root *root,
7632 struct btrfs_block_rsv *block_rsv, int update_ref,
7633 int for_reloc)
7634 {
7635 struct btrfs_path *path;
7636 struct btrfs_trans_handle *trans;
7637 struct btrfs_root *tree_root = root->fs_info->tree_root;
7638 struct btrfs_root_item *root_item = &root->root_item;
7639 struct walk_control *wc;
7640 struct btrfs_key key;
7641 int err = 0;
7642 int ret;
7643 int level;
7644 bool root_dropped = false;
7645
7646 path = btrfs_alloc_path();
7647 if (!path) {
7648 err = -ENOMEM;
7649 goto out;
7650 }
7651
7652 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7653 if (!wc) {
7654 btrfs_free_path(path);
7655 err = -ENOMEM;
7656 goto out;
7657 }
7658
7659 trans = btrfs_start_transaction(tree_root, 0);
7660 if (IS_ERR(trans)) {
7661 err = PTR_ERR(trans);
7662 goto out_free;
7663 }
7664
7665 if (block_rsv)
7666 trans->block_rsv = block_rsv;
7667
7668 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7669 level = btrfs_header_level(root->node);
7670 path->nodes[level] = btrfs_lock_root_node(root);
7671 btrfs_set_lock_blocking(path->nodes[level]);
7672 path->slots[level] = 0;
7673 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7674 memset(&wc->update_progress, 0,
7675 sizeof(wc->update_progress));
7676 } else {
7677 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7678 memcpy(&wc->update_progress, &key,
7679 sizeof(wc->update_progress));
7680
7681 level = root_item->drop_level;
7682 BUG_ON(level == 0);
7683 path->lowest_level = level;
7684 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7685 path->lowest_level = 0;
7686 if (ret < 0) {
7687 err = ret;
7688 goto out_end_trans;
7689 }
7690 WARN_ON(ret > 0);
7691
7692 /*
7693 * unlock our path, this is safe because only this
7694 * function is allowed to delete this snapshot
7695 */
7696 btrfs_unlock_up_safe(path, 0);
7697
7698 level = btrfs_header_level(root->node);
7699 while (1) {
7700 btrfs_tree_lock(path->nodes[level]);
7701 btrfs_set_lock_blocking(path->nodes[level]);
7702 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7703
7704 ret = btrfs_lookup_extent_info(trans, root,
7705 path->nodes[level]->start,
7706 level, 1, &wc->refs[level],
7707 &wc->flags[level]);
7708 if (ret < 0) {
7709 err = ret;
7710 goto out_end_trans;
7711 }
7712 BUG_ON(wc->refs[level] == 0);
7713
7714 if (level == root_item->drop_level)
7715 break;
7716
7717 btrfs_tree_unlock(path->nodes[level]);
7718 path->locks[level] = 0;
7719 WARN_ON(wc->refs[level] != 1);
7720 level--;
7721 }
7722 }
7723
7724 wc->level = level;
7725 wc->shared_level = -1;
7726 wc->stage = DROP_REFERENCE;
7727 wc->update_ref = update_ref;
7728 wc->keep_locks = 0;
7729 wc->for_reloc = for_reloc;
7730 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7731
7732 while (1) {
7733
7734 ret = walk_down_tree(trans, root, path, wc);
7735 if (ret < 0) {
7736 err = ret;
7737 break;
7738 }
7739
7740 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7741 if (ret < 0) {
7742 err = ret;
7743 break;
7744 }
7745
7746 if (ret > 0) {
7747 BUG_ON(wc->stage != DROP_REFERENCE);
7748 break;
7749 }
7750
7751 if (wc->stage == DROP_REFERENCE) {
7752 level = wc->level;
7753 btrfs_node_key(path->nodes[level],
7754 &root_item->drop_progress,
7755 path->slots[level]);
7756 root_item->drop_level = level;
7757 }
7758
7759 BUG_ON(wc->level == 0);
7760 if (btrfs_should_end_transaction(trans, tree_root) ||
7761 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7762 ret = btrfs_update_root(trans, tree_root,
7763 &root->root_key,
7764 root_item);
7765 if (ret) {
7766 btrfs_abort_transaction(trans, tree_root, ret);
7767 err = ret;
7768 goto out_end_trans;
7769 }
7770
7771 btrfs_end_transaction_throttle(trans, tree_root);
7772 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7773 pr_debug("BTRFS: drop snapshot early exit\n");
7774 err = -EAGAIN;
7775 goto out_free;
7776 }
7777
7778 trans = btrfs_start_transaction(tree_root, 0);
7779 if (IS_ERR(trans)) {
7780 err = PTR_ERR(trans);
7781 goto out_free;
7782 }
7783 if (block_rsv)
7784 trans->block_rsv = block_rsv;
7785 }
7786 }
7787 btrfs_release_path(path);
7788 if (err)
7789 goto out_end_trans;
7790
7791 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7792 if (ret) {
7793 btrfs_abort_transaction(trans, tree_root, ret);
7794 goto out_end_trans;
7795 }
7796
7797 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7798 ret = btrfs_find_root(tree_root, &root->root_key, path,
7799 NULL, NULL);
7800 if (ret < 0) {
7801 btrfs_abort_transaction(trans, tree_root, ret);
7802 err = ret;
7803 goto out_end_trans;
7804 } else if (ret > 0) {
7805 /* if we fail to delete the orphan item this time
7806 * around, it'll get picked up the next time.
7807 *
7808 * The most common failure here is just -ENOENT.
7809 */
7810 btrfs_del_orphan_item(trans, tree_root,
7811 root->root_key.objectid);
7812 }
7813 }
7814
7815 if (root->in_radix) {
7816 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7817 } else {
7818 free_extent_buffer(root->node);
7819 free_extent_buffer(root->commit_root);
7820 btrfs_put_fs_root(root);
7821 }
7822 root_dropped = true;
7823 out_end_trans:
7824 btrfs_end_transaction_throttle(trans, tree_root);
7825 out_free:
7826 kfree(wc);
7827 btrfs_free_path(path);
7828 out:
7829 /*
7830 * So if we need to stop dropping the snapshot for whatever reason we
7831 * need to make sure to add it back to the dead root list so that we
7832 * keep trying to do the work later. This also cleans up roots if we
7833 * don't have it in the radix (like when we recover after a power fail
7834 * or unmount) so we don't leak memory.
7835 */
7836 if (!for_reloc && root_dropped == false)
7837 btrfs_add_dead_root(root);
7838 if (err)
7839 btrfs_std_error(root->fs_info, err);
7840 return err;
7841 }
7842
7843 /*
7844 * drop subtree rooted at tree block 'node'.
7845 *
7846 * NOTE: this function will unlock and release tree block 'node'
7847 * only used by relocation code
7848 */
7849 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7850 struct btrfs_root *root,
7851 struct extent_buffer *node,
7852 struct extent_buffer *parent)
7853 {
7854 struct btrfs_path *path;
7855 struct walk_control *wc;
7856 int level;
7857 int parent_level;
7858 int ret = 0;
7859 int wret;
7860
7861 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7862
7863 path = btrfs_alloc_path();
7864 if (!path)
7865 return -ENOMEM;
7866
7867 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7868 if (!wc) {
7869 btrfs_free_path(path);
7870 return -ENOMEM;
7871 }
7872
7873 btrfs_assert_tree_locked(parent);
7874 parent_level = btrfs_header_level(parent);
7875 extent_buffer_get(parent);
7876 path->nodes[parent_level] = parent;
7877 path->slots[parent_level] = btrfs_header_nritems(parent);
7878
7879 btrfs_assert_tree_locked(node);
7880 level = btrfs_header_level(node);
7881 path->nodes[level] = node;
7882 path->slots[level] = 0;
7883 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7884
7885 wc->refs[parent_level] = 1;
7886 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7887 wc->level = level;
7888 wc->shared_level = -1;
7889 wc->stage = DROP_REFERENCE;
7890 wc->update_ref = 0;
7891 wc->keep_locks = 1;
7892 wc->for_reloc = 1;
7893 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7894
7895 while (1) {
7896 wret = walk_down_tree(trans, root, path, wc);
7897 if (wret < 0) {
7898 ret = wret;
7899 break;
7900 }
7901
7902 wret = walk_up_tree(trans, root, path, wc, parent_level);
7903 if (wret < 0)
7904 ret = wret;
7905 if (wret != 0)
7906 break;
7907 }
7908
7909 kfree(wc);
7910 btrfs_free_path(path);
7911 return ret;
7912 }
7913
7914 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7915 {
7916 u64 num_devices;
7917 u64 stripped;
7918
7919 /*
7920 * if restripe for this chunk_type is on pick target profile and
7921 * return, otherwise do the usual balance
7922 */
7923 stripped = get_restripe_target(root->fs_info, flags);
7924 if (stripped)
7925 return extended_to_chunk(stripped);
7926
7927 /*
7928 * we add in the count of missing devices because we want
7929 * to make sure that any RAID levels on a degraded FS
7930 * continue to be honored.
7931 */
7932 num_devices = root->fs_info->fs_devices->rw_devices +
7933 root->fs_info->fs_devices->missing_devices;
7934
7935 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7936 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7937 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7938
7939 if (num_devices == 1) {
7940 stripped |= BTRFS_BLOCK_GROUP_DUP;
7941 stripped = flags & ~stripped;
7942
7943 /* turn raid0 into single device chunks */
7944 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7945 return stripped;
7946
7947 /* turn mirroring into duplication */
7948 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7949 BTRFS_BLOCK_GROUP_RAID10))
7950 return stripped | BTRFS_BLOCK_GROUP_DUP;
7951 } else {
7952 /* they already had raid on here, just return */
7953 if (flags & stripped)
7954 return flags;
7955
7956 stripped |= BTRFS_BLOCK_GROUP_DUP;
7957 stripped = flags & ~stripped;
7958
7959 /* switch duplicated blocks with raid1 */
7960 if (flags & BTRFS_BLOCK_GROUP_DUP)
7961 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7962
7963 /* this is drive concat, leave it alone */
7964 }
7965
7966 return flags;
7967 }
7968
7969 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7970 {
7971 struct btrfs_space_info *sinfo = cache->space_info;
7972 u64 num_bytes;
7973 u64 min_allocable_bytes;
7974 int ret = -ENOSPC;
7975
7976
7977 /*
7978 * We need some metadata space and system metadata space for
7979 * allocating chunks in some corner cases until we force to set
7980 * it to be readonly.
7981 */
7982 if ((sinfo->flags &
7983 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7984 !force)
7985 min_allocable_bytes = 1 * 1024 * 1024;
7986 else
7987 min_allocable_bytes = 0;
7988
7989 spin_lock(&sinfo->lock);
7990 spin_lock(&cache->lock);
7991
7992 if (cache->ro) {
7993 ret = 0;
7994 goto out;
7995 }
7996
7997 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7998 cache->bytes_super - btrfs_block_group_used(&cache->item);
7999
8000 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8001 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8002 min_allocable_bytes <= sinfo->total_bytes) {
8003 sinfo->bytes_readonly += num_bytes;
8004 cache->ro = 1;
8005 ret = 0;
8006 }
8007 out:
8008 spin_unlock(&cache->lock);
8009 spin_unlock(&sinfo->lock);
8010 return ret;
8011 }
8012
8013 int btrfs_set_block_group_ro(struct btrfs_root *root,
8014 struct btrfs_block_group_cache *cache)
8015
8016 {
8017 struct btrfs_trans_handle *trans;
8018 u64 alloc_flags;
8019 int ret;
8020
8021 BUG_ON(cache->ro);
8022
8023 trans = btrfs_join_transaction(root);
8024 if (IS_ERR(trans))
8025 return PTR_ERR(trans);
8026
8027 alloc_flags = update_block_group_flags(root, cache->flags);
8028 if (alloc_flags != cache->flags) {
8029 ret = do_chunk_alloc(trans, root, alloc_flags,
8030 CHUNK_ALLOC_FORCE);
8031 if (ret < 0)
8032 goto out;
8033 }
8034
8035 ret = set_block_group_ro(cache, 0);
8036 if (!ret)
8037 goto out;
8038 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8039 ret = do_chunk_alloc(trans, root, alloc_flags,
8040 CHUNK_ALLOC_FORCE);
8041 if (ret < 0)
8042 goto out;
8043 ret = set_block_group_ro(cache, 0);
8044 out:
8045 btrfs_end_transaction(trans, root);
8046 return ret;
8047 }
8048
8049 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8050 struct btrfs_root *root, u64 type)
8051 {
8052 u64 alloc_flags = get_alloc_profile(root, type);
8053 return do_chunk_alloc(trans, root, alloc_flags,
8054 CHUNK_ALLOC_FORCE);
8055 }
8056
8057 /*
8058 * helper to account the unused space of all the readonly block group in the
8059 * list. takes mirrors into account.
8060 */
8061 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8062 {
8063 struct btrfs_block_group_cache *block_group;
8064 u64 free_bytes = 0;
8065 int factor;
8066
8067 list_for_each_entry(block_group, groups_list, list) {
8068 spin_lock(&block_group->lock);
8069
8070 if (!block_group->ro) {
8071 spin_unlock(&block_group->lock);
8072 continue;
8073 }
8074
8075 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8076 BTRFS_BLOCK_GROUP_RAID10 |
8077 BTRFS_BLOCK_GROUP_DUP))
8078 factor = 2;
8079 else
8080 factor = 1;
8081
8082 free_bytes += (block_group->key.offset -
8083 btrfs_block_group_used(&block_group->item)) *
8084 factor;
8085
8086 spin_unlock(&block_group->lock);
8087 }
8088
8089 return free_bytes;
8090 }
8091
8092 /*
8093 * helper to account the unused space of all the readonly block group in the
8094 * space_info. takes mirrors into account.
8095 */
8096 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8097 {
8098 int i;
8099 u64 free_bytes = 0;
8100
8101 spin_lock(&sinfo->lock);
8102
8103 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8104 if (!list_empty(&sinfo->block_groups[i]))
8105 free_bytes += __btrfs_get_ro_block_group_free_space(
8106 &sinfo->block_groups[i]);
8107
8108 spin_unlock(&sinfo->lock);
8109
8110 return free_bytes;
8111 }
8112
8113 void btrfs_set_block_group_rw(struct btrfs_root *root,
8114 struct btrfs_block_group_cache *cache)
8115 {
8116 struct btrfs_space_info *sinfo = cache->space_info;
8117 u64 num_bytes;
8118
8119 BUG_ON(!cache->ro);
8120
8121 spin_lock(&sinfo->lock);
8122 spin_lock(&cache->lock);
8123 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8124 cache->bytes_super - btrfs_block_group_used(&cache->item);
8125 sinfo->bytes_readonly -= num_bytes;
8126 cache->ro = 0;
8127 spin_unlock(&cache->lock);
8128 spin_unlock(&sinfo->lock);
8129 }
8130
8131 /*
8132 * checks to see if its even possible to relocate this block group.
8133 *
8134 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8135 * ok to go ahead and try.
8136 */
8137 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8138 {
8139 struct btrfs_block_group_cache *block_group;
8140 struct btrfs_space_info *space_info;
8141 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8142 struct btrfs_device *device;
8143 struct btrfs_trans_handle *trans;
8144 u64 min_free;
8145 u64 dev_min = 1;
8146 u64 dev_nr = 0;
8147 u64 target;
8148 int index;
8149 int full = 0;
8150 int ret = 0;
8151
8152 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8153
8154 /* odd, couldn't find the block group, leave it alone */
8155 if (!block_group)
8156 return -1;
8157
8158 min_free = btrfs_block_group_used(&block_group->item);
8159
8160 /* no bytes used, we're good */
8161 if (!min_free)
8162 goto out;
8163
8164 space_info = block_group->space_info;
8165 spin_lock(&space_info->lock);
8166
8167 full = space_info->full;
8168
8169 /*
8170 * if this is the last block group we have in this space, we can't
8171 * relocate it unless we're able to allocate a new chunk below.
8172 *
8173 * Otherwise, we need to make sure we have room in the space to handle
8174 * all of the extents from this block group. If we can, we're good
8175 */
8176 if ((space_info->total_bytes != block_group->key.offset) &&
8177 (space_info->bytes_used + space_info->bytes_reserved +
8178 space_info->bytes_pinned + space_info->bytes_readonly +
8179 min_free < space_info->total_bytes)) {
8180 spin_unlock(&space_info->lock);
8181 goto out;
8182 }
8183 spin_unlock(&space_info->lock);
8184
8185 /*
8186 * ok we don't have enough space, but maybe we have free space on our
8187 * devices to allocate new chunks for relocation, so loop through our
8188 * alloc devices and guess if we have enough space. if this block
8189 * group is going to be restriped, run checks against the target
8190 * profile instead of the current one.
8191 */
8192 ret = -1;
8193
8194 /*
8195 * index:
8196 * 0: raid10
8197 * 1: raid1
8198 * 2: dup
8199 * 3: raid0
8200 * 4: single
8201 */
8202 target = get_restripe_target(root->fs_info, block_group->flags);
8203 if (target) {
8204 index = __get_raid_index(extended_to_chunk(target));
8205 } else {
8206 /*
8207 * this is just a balance, so if we were marked as full
8208 * we know there is no space for a new chunk
8209 */
8210 if (full)
8211 goto out;
8212
8213 index = get_block_group_index(block_group);
8214 }
8215
8216 if (index == BTRFS_RAID_RAID10) {
8217 dev_min = 4;
8218 /* Divide by 2 */
8219 min_free >>= 1;
8220 } else if (index == BTRFS_RAID_RAID1) {
8221 dev_min = 2;
8222 } else if (index == BTRFS_RAID_DUP) {
8223 /* Multiply by 2 */
8224 min_free <<= 1;
8225 } else if (index == BTRFS_RAID_RAID0) {
8226 dev_min = fs_devices->rw_devices;
8227 do_div(min_free, dev_min);
8228 }
8229
8230 /* We need to do this so that we can look at pending chunks */
8231 trans = btrfs_join_transaction(root);
8232 if (IS_ERR(trans)) {
8233 ret = PTR_ERR(trans);
8234 goto out;
8235 }
8236
8237 mutex_lock(&root->fs_info->chunk_mutex);
8238 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8239 u64 dev_offset;
8240
8241 /*
8242 * check to make sure we can actually find a chunk with enough
8243 * space to fit our block group in.
8244 */
8245 if (device->total_bytes > device->bytes_used + min_free &&
8246 !device->is_tgtdev_for_dev_replace) {
8247 ret = find_free_dev_extent(trans, device, min_free,
8248 &dev_offset, NULL);
8249 if (!ret)
8250 dev_nr++;
8251
8252 if (dev_nr >= dev_min)
8253 break;
8254
8255 ret = -1;
8256 }
8257 }
8258 mutex_unlock(&root->fs_info->chunk_mutex);
8259 btrfs_end_transaction(trans, root);
8260 out:
8261 btrfs_put_block_group(block_group);
8262 return ret;
8263 }
8264
8265 static int find_first_block_group(struct btrfs_root *root,
8266 struct btrfs_path *path, struct btrfs_key *key)
8267 {
8268 int ret = 0;
8269 struct btrfs_key found_key;
8270 struct extent_buffer *leaf;
8271 int slot;
8272
8273 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8274 if (ret < 0)
8275 goto out;
8276
8277 while (1) {
8278 slot = path->slots[0];
8279 leaf = path->nodes[0];
8280 if (slot >= btrfs_header_nritems(leaf)) {
8281 ret = btrfs_next_leaf(root, path);
8282 if (ret == 0)
8283 continue;
8284 if (ret < 0)
8285 goto out;
8286 break;
8287 }
8288 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8289
8290 if (found_key.objectid >= key->objectid &&
8291 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8292 ret = 0;
8293 goto out;
8294 }
8295 path->slots[0]++;
8296 }
8297 out:
8298 return ret;
8299 }
8300
8301 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8302 {
8303 struct btrfs_block_group_cache *block_group;
8304 u64 last = 0;
8305
8306 while (1) {
8307 struct inode *inode;
8308
8309 block_group = btrfs_lookup_first_block_group(info, last);
8310 while (block_group) {
8311 spin_lock(&block_group->lock);
8312 if (block_group->iref)
8313 break;
8314 spin_unlock(&block_group->lock);
8315 block_group = next_block_group(info->tree_root,
8316 block_group);
8317 }
8318 if (!block_group) {
8319 if (last == 0)
8320 break;
8321 last = 0;
8322 continue;
8323 }
8324
8325 inode = block_group->inode;
8326 block_group->iref = 0;
8327 block_group->inode = NULL;
8328 spin_unlock(&block_group->lock);
8329 iput(inode);
8330 last = block_group->key.objectid + block_group->key.offset;
8331 btrfs_put_block_group(block_group);
8332 }
8333 }
8334
8335 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8336 {
8337 struct btrfs_block_group_cache *block_group;
8338 struct btrfs_space_info *space_info;
8339 struct btrfs_caching_control *caching_ctl;
8340 struct rb_node *n;
8341
8342 down_write(&info->extent_commit_sem);
8343 while (!list_empty(&info->caching_block_groups)) {
8344 caching_ctl = list_entry(info->caching_block_groups.next,
8345 struct btrfs_caching_control, list);
8346 list_del(&caching_ctl->list);
8347 put_caching_control(caching_ctl);
8348 }
8349 up_write(&info->extent_commit_sem);
8350
8351 spin_lock(&info->block_group_cache_lock);
8352 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8353 block_group = rb_entry(n, struct btrfs_block_group_cache,
8354 cache_node);
8355 rb_erase(&block_group->cache_node,
8356 &info->block_group_cache_tree);
8357 spin_unlock(&info->block_group_cache_lock);
8358
8359 down_write(&block_group->space_info->groups_sem);
8360 list_del(&block_group->list);
8361 up_write(&block_group->space_info->groups_sem);
8362
8363 if (block_group->cached == BTRFS_CACHE_STARTED)
8364 wait_block_group_cache_done(block_group);
8365
8366 /*
8367 * We haven't cached this block group, which means we could
8368 * possibly have excluded extents on this block group.
8369 */
8370 if (block_group->cached == BTRFS_CACHE_NO ||
8371 block_group->cached == BTRFS_CACHE_ERROR)
8372 free_excluded_extents(info->extent_root, block_group);
8373
8374 btrfs_remove_free_space_cache(block_group);
8375 btrfs_put_block_group(block_group);
8376
8377 spin_lock(&info->block_group_cache_lock);
8378 }
8379 spin_unlock(&info->block_group_cache_lock);
8380
8381 /* now that all the block groups are freed, go through and
8382 * free all the space_info structs. This is only called during
8383 * the final stages of unmount, and so we know nobody is
8384 * using them. We call synchronize_rcu() once before we start,
8385 * just to be on the safe side.
8386 */
8387 synchronize_rcu();
8388
8389 release_global_block_rsv(info);
8390
8391 while (!list_empty(&info->space_info)) {
8392 int i;
8393
8394 space_info = list_entry(info->space_info.next,
8395 struct btrfs_space_info,
8396 list);
8397 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8398 if (WARN_ON(space_info->bytes_pinned > 0 ||
8399 space_info->bytes_reserved > 0 ||
8400 space_info->bytes_may_use > 0)) {
8401 dump_space_info(space_info, 0, 0);
8402 }
8403 }
8404 list_del(&space_info->list);
8405 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8406 struct kobject *kobj;
8407 kobj = &space_info->block_group_kobjs[i];
8408 if (kobj->parent) {
8409 kobject_del(kobj);
8410 kobject_put(kobj);
8411 }
8412 }
8413 kobject_del(&space_info->kobj);
8414 kobject_put(&space_info->kobj);
8415 }
8416 return 0;
8417 }
8418
8419 static void __link_block_group(struct btrfs_space_info *space_info,
8420 struct btrfs_block_group_cache *cache)
8421 {
8422 int index = get_block_group_index(cache);
8423
8424 down_write(&space_info->groups_sem);
8425 if (list_empty(&space_info->block_groups[index])) {
8426 struct kobject *kobj = &space_info->block_group_kobjs[index];
8427 int ret;
8428
8429 kobject_get(&space_info->kobj); /* put in release */
8430 ret = kobject_add(kobj, &space_info->kobj, "%s",
8431 get_raid_name(index));
8432 if (ret) {
8433 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8434 kobject_put(&space_info->kobj);
8435 }
8436 }
8437 list_add_tail(&cache->list, &space_info->block_groups[index]);
8438 up_write(&space_info->groups_sem);
8439 }
8440
8441 int btrfs_read_block_groups(struct btrfs_root *root)
8442 {
8443 struct btrfs_path *path;
8444 int ret;
8445 struct btrfs_block_group_cache *cache;
8446 struct btrfs_fs_info *info = root->fs_info;
8447 struct btrfs_space_info *space_info;
8448 struct btrfs_key key;
8449 struct btrfs_key found_key;
8450 struct extent_buffer *leaf;
8451 int need_clear = 0;
8452 u64 cache_gen;
8453
8454 root = info->extent_root;
8455 key.objectid = 0;
8456 key.offset = 0;
8457 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8458 path = btrfs_alloc_path();
8459 if (!path)
8460 return -ENOMEM;
8461 path->reada = 1;
8462
8463 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8464 if (btrfs_test_opt(root, SPACE_CACHE) &&
8465 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8466 need_clear = 1;
8467 if (btrfs_test_opt(root, CLEAR_CACHE))
8468 need_clear = 1;
8469
8470 while (1) {
8471 ret = find_first_block_group(root, path, &key);
8472 if (ret > 0)
8473 break;
8474 if (ret != 0)
8475 goto error;
8476 leaf = path->nodes[0];
8477 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8478 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8479 if (!cache) {
8480 ret = -ENOMEM;
8481 goto error;
8482 }
8483 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8484 GFP_NOFS);
8485 if (!cache->free_space_ctl) {
8486 kfree(cache);
8487 ret = -ENOMEM;
8488 goto error;
8489 }
8490
8491 atomic_set(&cache->count, 1);
8492 spin_lock_init(&cache->lock);
8493 cache->fs_info = info;
8494 INIT_LIST_HEAD(&cache->list);
8495 INIT_LIST_HEAD(&cache->cluster_list);
8496
8497 if (need_clear) {
8498 /*
8499 * When we mount with old space cache, we need to
8500 * set BTRFS_DC_CLEAR and set dirty flag.
8501 *
8502 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8503 * truncate the old free space cache inode and
8504 * setup a new one.
8505 * b) Setting 'dirty flag' makes sure that we flush
8506 * the new space cache info onto disk.
8507 */
8508 cache->disk_cache_state = BTRFS_DC_CLEAR;
8509 if (btrfs_test_opt(root, SPACE_CACHE))
8510 cache->dirty = 1;
8511 }
8512
8513 read_extent_buffer(leaf, &cache->item,
8514 btrfs_item_ptr_offset(leaf, path->slots[0]),
8515 sizeof(cache->item));
8516 memcpy(&cache->key, &found_key, sizeof(found_key));
8517
8518 key.objectid = found_key.objectid + found_key.offset;
8519 btrfs_release_path(path);
8520 cache->flags = btrfs_block_group_flags(&cache->item);
8521 cache->sectorsize = root->sectorsize;
8522 cache->full_stripe_len = btrfs_full_stripe_len(root,
8523 &root->fs_info->mapping_tree,
8524 found_key.objectid);
8525 btrfs_init_free_space_ctl(cache);
8526
8527 /*
8528 * We need to exclude the super stripes now so that the space
8529 * info has super bytes accounted for, otherwise we'll think
8530 * we have more space than we actually do.
8531 */
8532 ret = exclude_super_stripes(root, cache);
8533 if (ret) {
8534 /*
8535 * We may have excluded something, so call this just in
8536 * case.
8537 */
8538 free_excluded_extents(root, cache);
8539 kfree(cache->free_space_ctl);
8540 kfree(cache);
8541 goto error;
8542 }
8543
8544 /*
8545 * check for two cases, either we are full, and therefore
8546 * don't need to bother with the caching work since we won't
8547 * find any space, or we are empty, and we can just add all
8548 * the space in and be done with it. This saves us _alot_ of
8549 * time, particularly in the full case.
8550 */
8551 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8552 cache->last_byte_to_unpin = (u64)-1;
8553 cache->cached = BTRFS_CACHE_FINISHED;
8554 free_excluded_extents(root, cache);
8555 } else if (btrfs_block_group_used(&cache->item) == 0) {
8556 cache->last_byte_to_unpin = (u64)-1;
8557 cache->cached = BTRFS_CACHE_FINISHED;
8558 add_new_free_space(cache, root->fs_info,
8559 found_key.objectid,
8560 found_key.objectid +
8561 found_key.offset);
8562 free_excluded_extents(root, cache);
8563 }
8564
8565 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8566 if (ret) {
8567 btrfs_remove_free_space_cache(cache);
8568 btrfs_put_block_group(cache);
8569 goto error;
8570 }
8571
8572 ret = update_space_info(info, cache->flags, found_key.offset,
8573 btrfs_block_group_used(&cache->item),
8574 &space_info);
8575 if (ret) {
8576 btrfs_remove_free_space_cache(cache);
8577 spin_lock(&info->block_group_cache_lock);
8578 rb_erase(&cache->cache_node,
8579 &info->block_group_cache_tree);
8580 spin_unlock(&info->block_group_cache_lock);
8581 btrfs_put_block_group(cache);
8582 goto error;
8583 }
8584
8585 cache->space_info = space_info;
8586 spin_lock(&cache->space_info->lock);
8587 cache->space_info->bytes_readonly += cache->bytes_super;
8588 spin_unlock(&cache->space_info->lock);
8589
8590 __link_block_group(space_info, cache);
8591
8592 set_avail_alloc_bits(root->fs_info, cache->flags);
8593 if (btrfs_chunk_readonly(root, cache->key.objectid))
8594 set_block_group_ro(cache, 1);
8595 }
8596
8597 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8598 if (!(get_alloc_profile(root, space_info->flags) &
8599 (BTRFS_BLOCK_GROUP_RAID10 |
8600 BTRFS_BLOCK_GROUP_RAID1 |
8601 BTRFS_BLOCK_GROUP_RAID5 |
8602 BTRFS_BLOCK_GROUP_RAID6 |
8603 BTRFS_BLOCK_GROUP_DUP)))
8604 continue;
8605 /*
8606 * avoid allocating from un-mirrored block group if there are
8607 * mirrored block groups.
8608 */
8609 list_for_each_entry(cache,
8610 &space_info->block_groups[BTRFS_RAID_RAID0],
8611 list)
8612 set_block_group_ro(cache, 1);
8613 list_for_each_entry(cache,
8614 &space_info->block_groups[BTRFS_RAID_SINGLE],
8615 list)
8616 set_block_group_ro(cache, 1);
8617 }
8618
8619 init_global_block_rsv(info);
8620 ret = 0;
8621 error:
8622 btrfs_free_path(path);
8623 return ret;
8624 }
8625
8626 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8627 struct btrfs_root *root)
8628 {
8629 struct btrfs_block_group_cache *block_group, *tmp;
8630 struct btrfs_root *extent_root = root->fs_info->extent_root;
8631 struct btrfs_block_group_item item;
8632 struct btrfs_key key;
8633 int ret = 0;
8634
8635 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8636 new_bg_list) {
8637 list_del_init(&block_group->new_bg_list);
8638
8639 if (ret)
8640 continue;
8641
8642 spin_lock(&block_group->lock);
8643 memcpy(&item, &block_group->item, sizeof(item));
8644 memcpy(&key, &block_group->key, sizeof(key));
8645 spin_unlock(&block_group->lock);
8646
8647 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8648 sizeof(item));
8649 if (ret)
8650 btrfs_abort_transaction(trans, extent_root, ret);
8651 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8652 key.objectid, key.offset);
8653 if (ret)
8654 btrfs_abort_transaction(trans, extent_root, ret);
8655 }
8656 }
8657
8658 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8659 struct btrfs_root *root, u64 bytes_used,
8660 u64 type, u64 chunk_objectid, u64 chunk_offset,
8661 u64 size)
8662 {
8663 int ret;
8664 struct btrfs_root *extent_root;
8665 struct btrfs_block_group_cache *cache;
8666
8667 extent_root = root->fs_info->extent_root;
8668
8669 root->fs_info->last_trans_log_full_commit = trans->transid;
8670
8671 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8672 if (!cache)
8673 return -ENOMEM;
8674 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8675 GFP_NOFS);
8676 if (!cache->free_space_ctl) {
8677 kfree(cache);
8678 return -ENOMEM;
8679 }
8680
8681 cache->key.objectid = chunk_offset;
8682 cache->key.offset = size;
8683 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8684 cache->sectorsize = root->sectorsize;
8685 cache->fs_info = root->fs_info;
8686 cache->full_stripe_len = btrfs_full_stripe_len(root,
8687 &root->fs_info->mapping_tree,
8688 chunk_offset);
8689
8690 atomic_set(&cache->count, 1);
8691 spin_lock_init(&cache->lock);
8692 INIT_LIST_HEAD(&cache->list);
8693 INIT_LIST_HEAD(&cache->cluster_list);
8694 INIT_LIST_HEAD(&cache->new_bg_list);
8695
8696 btrfs_init_free_space_ctl(cache);
8697
8698 btrfs_set_block_group_used(&cache->item, bytes_used);
8699 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8700 cache->flags = type;
8701 btrfs_set_block_group_flags(&cache->item, type);
8702
8703 cache->last_byte_to_unpin = (u64)-1;
8704 cache->cached = BTRFS_CACHE_FINISHED;
8705 ret = exclude_super_stripes(root, cache);
8706 if (ret) {
8707 /*
8708 * We may have excluded something, so call this just in
8709 * case.
8710 */
8711 free_excluded_extents(root, cache);
8712 kfree(cache->free_space_ctl);
8713 kfree(cache);
8714 return ret;
8715 }
8716
8717 add_new_free_space(cache, root->fs_info, chunk_offset,
8718 chunk_offset + size);
8719
8720 free_excluded_extents(root, cache);
8721
8722 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8723 if (ret) {
8724 btrfs_remove_free_space_cache(cache);
8725 btrfs_put_block_group(cache);
8726 return ret;
8727 }
8728
8729 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8730 &cache->space_info);
8731 if (ret) {
8732 btrfs_remove_free_space_cache(cache);
8733 spin_lock(&root->fs_info->block_group_cache_lock);
8734 rb_erase(&cache->cache_node,
8735 &root->fs_info->block_group_cache_tree);
8736 spin_unlock(&root->fs_info->block_group_cache_lock);
8737 btrfs_put_block_group(cache);
8738 return ret;
8739 }
8740 update_global_block_rsv(root->fs_info);
8741
8742 spin_lock(&cache->space_info->lock);
8743 cache->space_info->bytes_readonly += cache->bytes_super;
8744 spin_unlock(&cache->space_info->lock);
8745
8746 __link_block_group(cache->space_info, cache);
8747
8748 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8749
8750 set_avail_alloc_bits(extent_root->fs_info, type);
8751
8752 return 0;
8753 }
8754
8755 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8756 {
8757 u64 extra_flags = chunk_to_extended(flags) &
8758 BTRFS_EXTENDED_PROFILE_MASK;
8759
8760 write_seqlock(&fs_info->profiles_lock);
8761 if (flags & BTRFS_BLOCK_GROUP_DATA)
8762 fs_info->avail_data_alloc_bits &= ~extra_flags;
8763 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8764 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8765 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8766 fs_info->avail_system_alloc_bits &= ~extra_flags;
8767 write_sequnlock(&fs_info->profiles_lock);
8768 }
8769
8770 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8771 struct btrfs_root *root, u64 group_start)
8772 {
8773 struct btrfs_path *path;
8774 struct btrfs_block_group_cache *block_group;
8775 struct btrfs_free_cluster *cluster;
8776 struct btrfs_root *tree_root = root->fs_info->tree_root;
8777 struct btrfs_key key;
8778 struct inode *inode;
8779 int ret;
8780 int index;
8781 int factor;
8782
8783 root = root->fs_info->extent_root;
8784
8785 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8786 BUG_ON(!block_group);
8787 BUG_ON(!block_group->ro);
8788
8789 /*
8790 * Free the reserved super bytes from this block group before
8791 * remove it.
8792 */
8793 free_excluded_extents(root, block_group);
8794
8795 memcpy(&key, &block_group->key, sizeof(key));
8796 index = get_block_group_index(block_group);
8797 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8798 BTRFS_BLOCK_GROUP_RAID1 |
8799 BTRFS_BLOCK_GROUP_RAID10))
8800 factor = 2;
8801 else
8802 factor = 1;
8803
8804 /* make sure this block group isn't part of an allocation cluster */
8805 cluster = &root->fs_info->data_alloc_cluster;
8806 spin_lock(&cluster->refill_lock);
8807 btrfs_return_cluster_to_free_space(block_group, cluster);
8808 spin_unlock(&cluster->refill_lock);
8809
8810 /*
8811 * make sure this block group isn't part of a metadata
8812 * allocation cluster
8813 */
8814 cluster = &root->fs_info->meta_alloc_cluster;
8815 spin_lock(&cluster->refill_lock);
8816 btrfs_return_cluster_to_free_space(block_group, cluster);
8817 spin_unlock(&cluster->refill_lock);
8818
8819 path = btrfs_alloc_path();
8820 if (!path) {
8821 ret = -ENOMEM;
8822 goto out;
8823 }
8824
8825 inode = lookup_free_space_inode(tree_root, block_group, path);
8826 if (!IS_ERR(inode)) {
8827 ret = btrfs_orphan_add(trans, inode);
8828 if (ret) {
8829 btrfs_add_delayed_iput(inode);
8830 goto out;
8831 }
8832 clear_nlink(inode);
8833 /* One for the block groups ref */
8834 spin_lock(&block_group->lock);
8835 if (block_group->iref) {
8836 block_group->iref = 0;
8837 block_group->inode = NULL;
8838 spin_unlock(&block_group->lock);
8839 iput(inode);
8840 } else {
8841 spin_unlock(&block_group->lock);
8842 }
8843 /* One for our lookup ref */
8844 btrfs_add_delayed_iput(inode);
8845 }
8846
8847 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8848 key.offset = block_group->key.objectid;
8849 key.type = 0;
8850
8851 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8852 if (ret < 0)
8853 goto out;
8854 if (ret > 0)
8855 btrfs_release_path(path);
8856 if (ret == 0) {
8857 ret = btrfs_del_item(trans, tree_root, path);
8858 if (ret)
8859 goto out;
8860 btrfs_release_path(path);
8861 }
8862
8863 spin_lock(&root->fs_info->block_group_cache_lock);
8864 rb_erase(&block_group->cache_node,
8865 &root->fs_info->block_group_cache_tree);
8866
8867 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8868 root->fs_info->first_logical_byte = (u64)-1;
8869 spin_unlock(&root->fs_info->block_group_cache_lock);
8870
8871 down_write(&block_group->space_info->groups_sem);
8872 /*
8873 * we must use list_del_init so people can check to see if they
8874 * are still on the list after taking the semaphore
8875 */
8876 list_del_init(&block_group->list);
8877 if (list_empty(&block_group->space_info->block_groups[index])) {
8878 kobject_del(&block_group->space_info->block_group_kobjs[index]);
8879 kobject_put(&block_group->space_info->block_group_kobjs[index]);
8880 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8881 }
8882 up_write(&block_group->space_info->groups_sem);
8883
8884 if (block_group->cached == BTRFS_CACHE_STARTED)
8885 wait_block_group_cache_done(block_group);
8886
8887 btrfs_remove_free_space_cache(block_group);
8888
8889 spin_lock(&block_group->space_info->lock);
8890 block_group->space_info->total_bytes -= block_group->key.offset;
8891 block_group->space_info->bytes_readonly -= block_group->key.offset;
8892 block_group->space_info->disk_total -= block_group->key.offset * factor;
8893 spin_unlock(&block_group->space_info->lock);
8894
8895 memcpy(&key, &block_group->key, sizeof(key));
8896
8897 btrfs_clear_space_info_full(root->fs_info);
8898
8899 btrfs_put_block_group(block_group);
8900 btrfs_put_block_group(block_group);
8901
8902 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8903 if (ret > 0)
8904 ret = -EIO;
8905 if (ret < 0)
8906 goto out;
8907
8908 ret = btrfs_del_item(trans, root, path);
8909 out:
8910 btrfs_free_path(path);
8911 return ret;
8912 }
8913
8914 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8915 {
8916 struct btrfs_space_info *space_info;
8917 struct btrfs_super_block *disk_super;
8918 u64 features;
8919 u64 flags;
8920 int mixed = 0;
8921 int ret;
8922
8923 disk_super = fs_info->super_copy;
8924 if (!btrfs_super_root(disk_super))
8925 return 1;
8926
8927 features = btrfs_super_incompat_flags(disk_super);
8928 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8929 mixed = 1;
8930
8931 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8932 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8933 if (ret)
8934 goto out;
8935
8936 if (mixed) {
8937 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8938 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8939 } else {
8940 flags = BTRFS_BLOCK_GROUP_METADATA;
8941 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8942 if (ret)
8943 goto out;
8944
8945 flags = BTRFS_BLOCK_GROUP_DATA;
8946 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8947 }
8948 out:
8949 return ret;
8950 }
8951
8952 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8953 {
8954 return unpin_extent_range(root, start, end);
8955 }
8956
8957 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8958 u64 num_bytes, u64 *actual_bytes)
8959 {
8960 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8961 }
8962
8963 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8964 {
8965 struct btrfs_fs_info *fs_info = root->fs_info;
8966 struct btrfs_block_group_cache *cache = NULL;
8967 u64 group_trimmed;
8968 u64 start;
8969 u64 end;
8970 u64 trimmed = 0;
8971 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8972 int ret = 0;
8973
8974 /*
8975 * try to trim all FS space, our block group may start from non-zero.
8976 */
8977 if (range->len == total_bytes)
8978 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8979 else
8980 cache = btrfs_lookup_block_group(fs_info, range->start);
8981
8982 while (cache) {
8983 if (cache->key.objectid >= (range->start + range->len)) {
8984 btrfs_put_block_group(cache);
8985 break;
8986 }
8987
8988 start = max(range->start, cache->key.objectid);
8989 end = min(range->start + range->len,
8990 cache->key.objectid + cache->key.offset);
8991
8992 if (end - start >= range->minlen) {
8993 if (!block_group_cache_done(cache)) {
8994 ret = cache_block_group(cache, 0);
8995 if (ret) {
8996 btrfs_put_block_group(cache);
8997 break;
8998 }
8999 ret = wait_block_group_cache_done(cache);
9000 if (ret) {
9001 btrfs_put_block_group(cache);
9002 break;
9003 }
9004 }
9005 ret = btrfs_trim_block_group(cache,
9006 &group_trimmed,
9007 start,
9008 end,
9009 range->minlen);
9010
9011 trimmed += group_trimmed;
9012 if (ret) {
9013 btrfs_put_block_group(cache);
9014 break;
9015 }
9016 }
9017
9018 cache = next_block_group(fs_info->tree_root, cache);
9019 }
9020
9021 range->len = trimmed;
9022 return ret;
9023 }
This page took 0.308467 seconds and 6 git commands to generate.