Btrfs: do not overcommit if we don't have enough space for global rsv
[deliverable/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37
38 #undef SCRAMBLE_DELAYED_REFS
39
40 /*
41 * control flags for do_chunk_alloc's force field
42 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
43 * if we really need one.
44 *
45 * CHUNK_ALLOC_LIMITED means to only try and allocate one
46 * if we have very few chunks already allocated. This is
47 * used as part of the clustering code to help make sure
48 * we have a good pool of storage to cluster in, without
49 * filling the FS with empty chunks
50 *
51 * CHUNK_ALLOC_FORCE means it must try to allocate one
52 *
53 */
54 enum {
55 CHUNK_ALLOC_NO_FORCE = 0,
56 CHUNK_ALLOC_LIMITED = 1,
57 CHUNK_ALLOC_FORCE = 2,
58 };
59
60 /*
61 * Control how reservations are dealt with.
62 *
63 * RESERVE_FREE - freeing a reservation.
64 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
65 * ENOSPC accounting
66 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
67 * bytes_may_use as the ENOSPC accounting is done elsewhere
68 */
69 enum {
70 RESERVE_FREE = 0,
71 RESERVE_ALLOC = 1,
72 RESERVE_ALLOC_NO_ACCOUNT = 2,
73 };
74
75 static int update_block_group(struct btrfs_root *root,
76 u64 bytenr, u64 num_bytes, int alloc);
77 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root,
79 u64 bytenr, u64 num_bytes, u64 parent,
80 u64 root_objectid, u64 owner_objectid,
81 u64 owner_offset, int refs_to_drop,
82 struct btrfs_delayed_extent_op *extra_op);
83 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
84 struct extent_buffer *leaf,
85 struct btrfs_extent_item *ei);
86 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
87 struct btrfs_root *root,
88 u64 parent, u64 root_objectid,
89 u64 flags, u64 owner, u64 offset,
90 struct btrfs_key *ins, int ref_mod);
91 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
92 struct btrfs_root *root,
93 u64 parent, u64 root_objectid,
94 u64 flags, struct btrfs_disk_key *key,
95 int level, struct btrfs_key *ins);
96 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
97 struct btrfs_root *extent_root, u64 flags,
98 int force);
99 static int find_next_key(struct btrfs_path *path, int level,
100 struct btrfs_key *key);
101 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
102 int dump_block_groups);
103 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
104 u64 num_bytes, int reserve);
105
106 static noinline int
107 block_group_cache_done(struct btrfs_block_group_cache *cache)
108 {
109 smp_mb();
110 return cache->cached == BTRFS_CACHE_FINISHED;
111 }
112
113 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
114 {
115 return (cache->flags & bits) == bits;
116 }
117
118 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
119 {
120 atomic_inc(&cache->count);
121 }
122
123 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
124 {
125 if (atomic_dec_and_test(&cache->count)) {
126 WARN_ON(cache->pinned > 0);
127 WARN_ON(cache->reserved > 0);
128 kfree(cache->free_space_ctl);
129 kfree(cache);
130 }
131 }
132
133 /*
134 * this adds the block group to the fs_info rb tree for the block group
135 * cache
136 */
137 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
138 struct btrfs_block_group_cache *block_group)
139 {
140 struct rb_node **p;
141 struct rb_node *parent = NULL;
142 struct btrfs_block_group_cache *cache;
143
144 spin_lock(&info->block_group_cache_lock);
145 p = &info->block_group_cache_tree.rb_node;
146
147 while (*p) {
148 parent = *p;
149 cache = rb_entry(parent, struct btrfs_block_group_cache,
150 cache_node);
151 if (block_group->key.objectid < cache->key.objectid) {
152 p = &(*p)->rb_left;
153 } else if (block_group->key.objectid > cache->key.objectid) {
154 p = &(*p)->rb_right;
155 } else {
156 spin_unlock(&info->block_group_cache_lock);
157 return -EEXIST;
158 }
159 }
160
161 rb_link_node(&block_group->cache_node, parent, p);
162 rb_insert_color(&block_group->cache_node,
163 &info->block_group_cache_tree);
164
165 if (info->first_logical_byte > block_group->key.objectid)
166 info->first_logical_byte = block_group->key.objectid;
167
168 spin_unlock(&info->block_group_cache_lock);
169
170 return 0;
171 }
172
173 /*
174 * This will return the block group at or after bytenr if contains is 0, else
175 * it will return the block group that contains the bytenr
176 */
177 static struct btrfs_block_group_cache *
178 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
179 int contains)
180 {
181 struct btrfs_block_group_cache *cache, *ret = NULL;
182 struct rb_node *n;
183 u64 end, start;
184
185 spin_lock(&info->block_group_cache_lock);
186 n = info->block_group_cache_tree.rb_node;
187
188 while (n) {
189 cache = rb_entry(n, struct btrfs_block_group_cache,
190 cache_node);
191 end = cache->key.objectid + cache->key.offset - 1;
192 start = cache->key.objectid;
193
194 if (bytenr < start) {
195 if (!contains && (!ret || start < ret->key.objectid))
196 ret = cache;
197 n = n->rb_left;
198 } else if (bytenr > start) {
199 if (contains && bytenr <= end) {
200 ret = cache;
201 break;
202 }
203 n = n->rb_right;
204 } else {
205 ret = cache;
206 break;
207 }
208 }
209 if (ret) {
210 btrfs_get_block_group(ret);
211 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
212 info->first_logical_byte = ret->key.objectid;
213 }
214 spin_unlock(&info->block_group_cache_lock);
215
216 return ret;
217 }
218
219 static int add_excluded_extent(struct btrfs_root *root,
220 u64 start, u64 num_bytes)
221 {
222 u64 end = start + num_bytes - 1;
223 set_extent_bits(&root->fs_info->freed_extents[0],
224 start, end, EXTENT_UPTODATE, GFP_NOFS);
225 set_extent_bits(&root->fs_info->freed_extents[1],
226 start, end, EXTENT_UPTODATE, GFP_NOFS);
227 return 0;
228 }
229
230 static void free_excluded_extents(struct btrfs_root *root,
231 struct btrfs_block_group_cache *cache)
232 {
233 u64 start, end;
234
235 start = cache->key.objectid;
236 end = start + cache->key.offset - 1;
237
238 clear_extent_bits(&root->fs_info->freed_extents[0],
239 start, end, EXTENT_UPTODATE, GFP_NOFS);
240 clear_extent_bits(&root->fs_info->freed_extents[1],
241 start, end, EXTENT_UPTODATE, GFP_NOFS);
242 }
243
244 static int exclude_super_stripes(struct btrfs_root *root,
245 struct btrfs_block_group_cache *cache)
246 {
247 u64 bytenr;
248 u64 *logical;
249 int stripe_len;
250 int i, nr, ret;
251
252 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
253 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
254 cache->bytes_super += stripe_len;
255 ret = add_excluded_extent(root, cache->key.objectid,
256 stripe_len);
257 BUG_ON(ret); /* -ENOMEM */
258 }
259
260 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
261 bytenr = btrfs_sb_offset(i);
262 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
263 cache->key.objectid, bytenr,
264 0, &logical, &nr, &stripe_len);
265 BUG_ON(ret); /* -ENOMEM */
266
267 while (nr--) {
268 cache->bytes_super += stripe_len;
269 ret = add_excluded_extent(root, logical[nr],
270 stripe_len);
271 BUG_ON(ret); /* -ENOMEM */
272 }
273
274 kfree(logical);
275 }
276 return 0;
277 }
278
279 static struct btrfs_caching_control *
280 get_caching_control(struct btrfs_block_group_cache *cache)
281 {
282 struct btrfs_caching_control *ctl;
283
284 spin_lock(&cache->lock);
285 if (cache->cached != BTRFS_CACHE_STARTED) {
286 spin_unlock(&cache->lock);
287 return NULL;
288 }
289
290 /* We're loading it the fast way, so we don't have a caching_ctl. */
291 if (!cache->caching_ctl) {
292 spin_unlock(&cache->lock);
293 return NULL;
294 }
295
296 ctl = cache->caching_ctl;
297 atomic_inc(&ctl->count);
298 spin_unlock(&cache->lock);
299 return ctl;
300 }
301
302 static void put_caching_control(struct btrfs_caching_control *ctl)
303 {
304 if (atomic_dec_and_test(&ctl->count))
305 kfree(ctl);
306 }
307
308 /*
309 * this is only called by cache_block_group, since we could have freed extents
310 * we need to check the pinned_extents for any extents that can't be used yet
311 * since their free space will be released as soon as the transaction commits.
312 */
313 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
314 struct btrfs_fs_info *info, u64 start, u64 end)
315 {
316 u64 extent_start, extent_end, size, total_added = 0;
317 int ret;
318
319 while (start < end) {
320 ret = find_first_extent_bit(info->pinned_extents, start,
321 &extent_start, &extent_end,
322 EXTENT_DIRTY | EXTENT_UPTODATE,
323 NULL);
324 if (ret)
325 break;
326
327 if (extent_start <= start) {
328 start = extent_end + 1;
329 } else if (extent_start > start && extent_start < end) {
330 size = extent_start - start;
331 total_added += size;
332 ret = btrfs_add_free_space(block_group, start,
333 size);
334 BUG_ON(ret); /* -ENOMEM or logic error */
335 start = extent_end + 1;
336 } else {
337 break;
338 }
339 }
340
341 if (start < end) {
342 size = end - start;
343 total_added += size;
344 ret = btrfs_add_free_space(block_group, start, size);
345 BUG_ON(ret); /* -ENOMEM or logic error */
346 }
347
348 return total_added;
349 }
350
351 static noinline void caching_thread(struct btrfs_work *work)
352 {
353 struct btrfs_block_group_cache *block_group;
354 struct btrfs_fs_info *fs_info;
355 struct btrfs_caching_control *caching_ctl;
356 struct btrfs_root *extent_root;
357 struct btrfs_path *path;
358 struct extent_buffer *leaf;
359 struct btrfs_key key;
360 u64 total_found = 0;
361 u64 last = 0;
362 u32 nritems;
363 int ret = 0;
364
365 caching_ctl = container_of(work, struct btrfs_caching_control, work);
366 block_group = caching_ctl->block_group;
367 fs_info = block_group->fs_info;
368 extent_root = fs_info->extent_root;
369
370 path = btrfs_alloc_path();
371 if (!path)
372 goto out;
373
374 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
375
376 /*
377 * We don't want to deadlock with somebody trying to allocate a new
378 * extent for the extent root while also trying to search the extent
379 * root to add free space. So we skip locking and search the commit
380 * root, since its read-only
381 */
382 path->skip_locking = 1;
383 path->search_commit_root = 1;
384 path->reada = 1;
385
386 key.objectid = last;
387 key.offset = 0;
388 key.type = BTRFS_EXTENT_ITEM_KEY;
389 again:
390 mutex_lock(&caching_ctl->mutex);
391 /* need to make sure the commit_root doesn't disappear */
392 down_read(&fs_info->extent_commit_sem);
393
394 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
395 if (ret < 0)
396 goto err;
397
398 leaf = path->nodes[0];
399 nritems = btrfs_header_nritems(leaf);
400
401 while (1) {
402 if (btrfs_fs_closing(fs_info) > 1) {
403 last = (u64)-1;
404 break;
405 }
406
407 if (path->slots[0] < nritems) {
408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
409 } else {
410 ret = find_next_key(path, 0, &key);
411 if (ret)
412 break;
413
414 if (need_resched() ||
415 btrfs_next_leaf(extent_root, path)) {
416 caching_ctl->progress = last;
417 btrfs_release_path(path);
418 up_read(&fs_info->extent_commit_sem);
419 mutex_unlock(&caching_ctl->mutex);
420 cond_resched();
421 goto again;
422 }
423 leaf = path->nodes[0];
424 nritems = btrfs_header_nritems(leaf);
425 continue;
426 }
427
428 if (key.objectid < block_group->key.objectid) {
429 path->slots[0]++;
430 continue;
431 }
432
433 if (key.objectid >= block_group->key.objectid +
434 block_group->key.offset)
435 break;
436
437 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
438 total_found += add_new_free_space(block_group,
439 fs_info, last,
440 key.objectid);
441 last = key.objectid + key.offset;
442
443 if (total_found > (1024 * 1024 * 2)) {
444 total_found = 0;
445 wake_up(&caching_ctl->wait);
446 }
447 }
448 path->slots[0]++;
449 }
450 ret = 0;
451
452 total_found += add_new_free_space(block_group, fs_info, last,
453 block_group->key.objectid +
454 block_group->key.offset);
455 caching_ctl->progress = (u64)-1;
456
457 spin_lock(&block_group->lock);
458 block_group->caching_ctl = NULL;
459 block_group->cached = BTRFS_CACHE_FINISHED;
460 spin_unlock(&block_group->lock);
461
462 err:
463 btrfs_free_path(path);
464 up_read(&fs_info->extent_commit_sem);
465
466 free_excluded_extents(extent_root, block_group);
467
468 mutex_unlock(&caching_ctl->mutex);
469 out:
470 wake_up(&caching_ctl->wait);
471
472 put_caching_control(caching_ctl);
473 btrfs_put_block_group(block_group);
474 }
475
476 static int cache_block_group(struct btrfs_block_group_cache *cache,
477 int load_cache_only)
478 {
479 DEFINE_WAIT(wait);
480 struct btrfs_fs_info *fs_info = cache->fs_info;
481 struct btrfs_caching_control *caching_ctl;
482 int ret = 0;
483
484 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
485 if (!caching_ctl)
486 return -ENOMEM;
487
488 INIT_LIST_HEAD(&caching_ctl->list);
489 mutex_init(&caching_ctl->mutex);
490 init_waitqueue_head(&caching_ctl->wait);
491 caching_ctl->block_group = cache;
492 caching_ctl->progress = cache->key.objectid;
493 atomic_set(&caching_ctl->count, 1);
494 caching_ctl->work.func = caching_thread;
495
496 spin_lock(&cache->lock);
497 /*
498 * This should be a rare occasion, but this could happen I think in the
499 * case where one thread starts to load the space cache info, and then
500 * some other thread starts a transaction commit which tries to do an
501 * allocation while the other thread is still loading the space cache
502 * info. The previous loop should have kept us from choosing this block
503 * group, but if we've moved to the state where we will wait on caching
504 * block groups we need to first check if we're doing a fast load here,
505 * so we can wait for it to finish, otherwise we could end up allocating
506 * from a block group who's cache gets evicted for one reason or
507 * another.
508 */
509 while (cache->cached == BTRFS_CACHE_FAST) {
510 struct btrfs_caching_control *ctl;
511
512 ctl = cache->caching_ctl;
513 atomic_inc(&ctl->count);
514 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
515 spin_unlock(&cache->lock);
516
517 schedule();
518
519 finish_wait(&ctl->wait, &wait);
520 put_caching_control(ctl);
521 spin_lock(&cache->lock);
522 }
523
524 if (cache->cached != BTRFS_CACHE_NO) {
525 spin_unlock(&cache->lock);
526 kfree(caching_ctl);
527 return 0;
528 }
529 WARN_ON(cache->caching_ctl);
530 cache->caching_ctl = caching_ctl;
531 cache->cached = BTRFS_CACHE_FAST;
532 spin_unlock(&cache->lock);
533
534 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
535 ret = load_free_space_cache(fs_info, cache);
536
537 spin_lock(&cache->lock);
538 if (ret == 1) {
539 cache->caching_ctl = NULL;
540 cache->cached = BTRFS_CACHE_FINISHED;
541 cache->last_byte_to_unpin = (u64)-1;
542 } else {
543 if (load_cache_only) {
544 cache->caching_ctl = NULL;
545 cache->cached = BTRFS_CACHE_NO;
546 } else {
547 cache->cached = BTRFS_CACHE_STARTED;
548 }
549 }
550 spin_unlock(&cache->lock);
551 wake_up(&caching_ctl->wait);
552 if (ret == 1) {
553 put_caching_control(caching_ctl);
554 free_excluded_extents(fs_info->extent_root, cache);
555 return 0;
556 }
557 } else {
558 /*
559 * We are not going to do the fast caching, set cached to the
560 * appropriate value and wakeup any waiters.
561 */
562 spin_lock(&cache->lock);
563 if (load_cache_only) {
564 cache->caching_ctl = NULL;
565 cache->cached = BTRFS_CACHE_NO;
566 } else {
567 cache->cached = BTRFS_CACHE_STARTED;
568 }
569 spin_unlock(&cache->lock);
570 wake_up(&caching_ctl->wait);
571 }
572
573 if (load_cache_only) {
574 put_caching_control(caching_ctl);
575 return 0;
576 }
577
578 down_write(&fs_info->extent_commit_sem);
579 atomic_inc(&caching_ctl->count);
580 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
581 up_write(&fs_info->extent_commit_sem);
582
583 btrfs_get_block_group(cache);
584
585 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
586
587 return ret;
588 }
589
590 /*
591 * return the block group that starts at or after bytenr
592 */
593 static struct btrfs_block_group_cache *
594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
595 {
596 struct btrfs_block_group_cache *cache;
597
598 cache = block_group_cache_tree_search(info, bytenr, 0);
599
600 return cache;
601 }
602
603 /*
604 * return the block group that contains the given bytenr
605 */
606 struct btrfs_block_group_cache *btrfs_lookup_block_group(
607 struct btrfs_fs_info *info,
608 u64 bytenr)
609 {
610 struct btrfs_block_group_cache *cache;
611
612 cache = block_group_cache_tree_search(info, bytenr, 1);
613
614 return cache;
615 }
616
617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
618 u64 flags)
619 {
620 struct list_head *head = &info->space_info;
621 struct btrfs_space_info *found;
622
623 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
624
625 rcu_read_lock();
626 list_for_each_entry_rcu(found, head, list) {
627 if (found->flags & flags) {
628 rcu_read_unlock();
629 return found;
630 }
631 }
632 rcu_read_unlock();
633 return NULL;
634 }
635
636 /*
637 * after adding space to the filesystem, we need to clear the full flags
638 * on all the space infos.
639 */
640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
641 {
642 struct list_head *head = &info->space_info;
643 struct btrfs_space_info *found;
644
645 rcu_read_lock();
646 list_for_each_entry_rcu(found, head, list)
647 found->full = 0;
648 rcu_read_unlock();
649 }
650
651 u64 btrfs_find_block_group(struct btrfs_root *root,
652 u64 search_start, u64 search_hint, int owner)
653 {
654 struct btrfs_block_group_cache *cache;
655 u64 used;
656 u64 last = max(search_hint, search_start);
657 u64 group_start = 0;
658 int full_search = 0;
659 int factor = 9;
660 int wrapped = 0;
661 again:
662 while (1) {
663 cache = btrfs_lookup_first_block_group(root->fs_info, last);
664 if (!cache)
665 break;
666
667 spin_lock(&cache->lock);
668 last = cache->key.objectid + cache->key.offset;
669 used = btrfs_block_group_used(&cache->item);
670
671 if ((full_search || !cache->ro) &&
672 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
673 if (used + cache->pinned + cache->reserved <
674 div_factor(cache->key.offset, factor)) {
675 group_start = cache->key.objectid;
676 spin_unlock(&cache->lock);
677 btrfs_put_block_group(cache);
678 goto found;
679 }
680 }
681 spin_unlock(&cache->lock);
682 btrfs_put_block_group(cache);
683 cond_resched();
684 }
685 if (!wrapped) {
686 last = search_start;
687 wrapped = 1;
688 goto again;
689 }
690 if (!full_search && factor < 10) {
691 last = search_start;
692 full_search = 1;
693 factor = 10;
694 goto again;
695 }
696 found:
697 return group_start;
698 }
699
700 /* simple helper to search for an existing extent at a given offset */
701 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
702 {
703 int ret;
704 struct btrfs_key key;
705 struct btrfs_path *path;
706
707 path = btrfs_alloc_path();
708 if (!path)
709 return -ENOMEM;
710
711 key.objectid = start;
712 key.offset = len;
713 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
714 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
715 0, 0);
716 btrfs_free_path(path);
717 return ret;
718 }
719
720 /*
721 * helper function to lookup reference count and flags of extent.
722 *
723 * the head node for delayed ref is used to store the sum of all the
724 * reference count modifications queued up in the rbtree. the head
725 * node may also store the extent flags to set. This way you can check
726 * to see what the reference count and extent flags would be if all of
727 * the delayed refs are not processed.
728 */
729 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
730 struct btrfs_root *root, u64 bytenr,
731 u64 num_bytes, u64 *refs, u64 *flags)
732 {
733 struct btrfs_delayed_ref_head *head;
734 struct btrfs_delayed_ref_root *delayed_refs;
735 struct btrfs_path *path;
736 struct btrfs_extent_item *ei;
737 struct extent_buffer *leaf;
738 struct btrfs_key key;
739 u32 item_size;
740 u64 num_refs;
741 u64 extent_flags;
742 int ret;
743
744 path = btrfs_alloc_path();
745 if (!path)
746 return -ENOMEM;
747
748 key.objectid = bytenr;
749 key.type = BTRFS_EXTENT_ITEM_KEY;
750 key.offset = num_bytes;
751 if (!trans) {
752 path->skip_locking = 1;
753 path->search_commit_root = 1;
754 }
755 again:
756 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
757 &key, path, 0, 0);
758 if (ret < 0)
759 goto out_free;
760
761 if (ret == 0) {
762 leaf = path->nodes[0];
763 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
764 if (item_size >= sizeof(*ei)) {
765 ei = btrfs_item_ptr(leaf, path->slots[0],
766 struct btrfs_extent_item);
767 num_refs = btrfs_extent_refs(leaf, ei);
768 extent_flags = btrfs_extent_flags(leaf, ei);
769 } else {
770 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
771 struct btrfs_extent_item_v0 *ei0;
772 BUG_ON(item_size != sizeof(*ei0));
773 ei0 = btrfs_item_ptr(leaf, path->slots[0],
774 struct btrfs_extent_item_v0);
775 num_refs = btrfs_extent_refs_v0(leaf, ei0);
776 /* FIXME: this isn't correct for data */
777 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
778 #else
779 BUG();
780 #endif
781 }
782 BUG_ON(num_refs == 0);
783 } else {
784 num_refs = 0;
785 extent_flags = 0;
786 ret = 0;
787 }
788
789 if (!trans)
790 goto out;
791
792 delayed_refs = &trans->transaction->delayed_refs;
793 spin_lock(&delayed_refs->lock);
794 head = btrfs_find_delayed_ref_head(trans, bytenr);
795 if (head) {
796 if (!mutex_trylock(&head->mutex)) {
797 atomic_inc(&head->node.refs);
798 spin_unlock(&delayed_refs->lock);
799
800 btrfs_release_path(path);
801
802 /*
803 * Mutex was contended, block until it's released and try
804 * again
805 */
806 mutex_lock(&head->mutex);
807 mutex_unlock(&head->mutex);
808 btrfs_put_delayed_ref(&head->node);
809 goto again;
810 }
811 if (head->extent_op && head->extent_op->update_flags)
812 extent_flags |= head->extent_op->flags_to_set;
813 else
814 BUG_ON(num_refs == 0);
815
816 num_refs += head->node.ref_mod;
817 mutex_unlock(&head->mutex);
818 }
819 spin_unlock(&delayed_refs->lock);
820 out:
821 WARN_ON(num_refs == 0);
822 if (refs)
823 *refs = num_refs;
824 if (flags)
825 *flags = extent_flags;
826 out_free:
827 btrfs_free_path(path);
828 return ret;
829 }
830
831 /*
832 * Back reference rules. Back refs have three main goals:
833 *
834 * 1) differentiate between all holders of references to an extent so that
835 * when a reference is dropped we can make sure it was a valid reference
836 * before freeing the extent.
837 *
838 * 2) Provide enough information to quickly find the holders of an extent
839 * if we notice a given block is corrupted or bad.
840 *
841 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
842 * maintenance. This is actually the same as #2, but with a slightly
843 * different use case.
844 *
845 * There are two kinds of back refs. The implicit back refs is optimized
846 * for pointers in non-shared tree blocks. For a given pointer in a block,
847 * back refs of this kind provide information about the block's owner tree
848 * and the pointer's key. These information allow us to find the block by
849 * b-tree searching. The full back refs is for pointers in tree blocks not
850 * referenced by their owner trees. The location of tree block is recorded
851 * in the back refs. Actually the full back refs is generic, and can be
852 * used in all cases the implicit back refs is used. The major shortcoming
853 * of the full back refs is its overhead. Every time a tree block gets
854 * COWed, we have to update back refs entry for all pointers in it.
855 *
856 * For a newly allocated tree block, we use implicit back refs for
857 * pointers in it. This means most tree related operations only involve
858 * implicit back refs. For a tree block created in old transaction, the
859 * only way to drop a reference to it is COW it. So we can detect the
860 * event that tree block loses its owner tree's reference and do the
861 * back refs conversion.
862 *
863 * When a tree block is COW'd through a tree, there are four cases:
864 *
865 * The reference count of the block is one and the tree is the block's
866 * owner tree. Nothing to do in this case.
867 *
868 * The reference count of the block is one and the tree is not the
869 * block's owner tree. In this case, full back refs is used for pointers
870 * in the block. Remove these full back refs, add implicit back refs for
871 * every pointers in the new block.
872 *
873 * The reference count of the block is greater than one and the tree is
874 * the block's owner tree. In this case, implicit back refs is used for
875 * pointers in the block. Add full back refs for every pointers in the
876 * block, increase lower level extents' reference counts. The original
877 * implicit back refs are entailed to the new block.
878 *
879 * The reference count of the block is greater than one and the tree is
880 * not the block's owner tree. Add implicit back refs for every pointer in
881 * the new block, increase lower level extents' reference count.
882 *
883 * Back Reference Key composing:
884 *
885 * The key objectid corresponds to the first byte in the extent,
886 * The key type is used to differentiate between types of back refs.
887 * There are different meanings of the key offset for different types
888 * of back refs.
889 *
890 * File extents can be referenced by:
891 *
892 * - multiple snapshots, subvolumes, or different generations in one subvol
893 * - different files inside a single subvolume
894 * - different offsets inside a file (bookend extents in file.c)
895 *
896 * The extent ref structure for the implicit back refs has fields for:
897 *
898 * - Objectid of the subvolume root
899 * - objectid of the file holding the reference
900 * - original offset in the file
901 * - how many bookend extents
902 *
903 * The key offset for the implicit back refs is hash of the first
904 * three fields.
905 *
906 * The extent ref structure for the full back refs has field for:
907 *
908 * - number of pointers in the tree leaf
909 *
910 * The key offset for the implicit back refs is the first byte of
911 * the tree leaf
912 *
913 * When a file extent is allocated, The implicit back refs is used.
914 * the fields are filled in:
915 *
916 * (root_key.objectid, inode objectid, offset in file, 1)
917 *
918 * When a file extent is removed file truncation, we find the
919 * corresponding implicit back refs and check the following fields:
920 *
921 * (btrfs_header_owner(leaf), inode objectid, offset in file)
922 *
923 * Btree extents can be referenced by:
924 *
925 * - Different subvolumes
926 *
927 * Both the implicit back refs and the full back refs for tree blocks
928 * only consist of key. The key offset for the implicit back refs is
929 * objectid of block's owner tree. The key offset for the full back refs
930 * is the first byte of parent block.
931 *
932 * When implicit back refs is used, information about the lowest key and
933 * level of the tree block are required. These information are stored in
934 * tree block info structure.
935 */
936
937 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
938 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
939 struct btrfs_root *root,
940 struct btrfs_path *path,
941 u64 owner, u32 extra_size)
942 {
943 struct btrfs_extent_item *item;
944 struct btrfs_extent_item_v0 *ei0;
945 struct btrfs_extent_ref_v0 *ref0;
946 struct btrfs_tree_block_info *bi;
947 struct extent_buffer *leaf;
948 struct btrfs_key key;
949 struct btrfs_key found_key;
950 u32 new_size = sizeof(*item);
951 u64 refs;
952 int ret;
953
954 leaf = path->nodes[0];
955 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
956
957 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
958 ei0 = btrfs_item_ptr(leaf, path->slots[0],
959 struct btrfs_extent_item_v0);
960 refs = btrfs_extent_refs_v0(leaf, ei0);
961
962 if (owner == (u64)-1) {
963 while (1) {
964 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
965 ret = btrfs_next_leaf(root, path);
966 if (ret < 0)
967 return ret;
968 BUG_ON(ret > 0); /* Corruption */
969 leaf = path->nodes[0];
970 }
971 btrfs_item_key_to_cpu(leaf, &found_key,
972 path->slots[0]);
973 BUG_ON(key.objectid != found_key.objectid);
974 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
975 path->slots[0]++;
976 continue;
977 }
978 ref0 = btrfs_item_ptr(leaf, path->slots[0],
979 struct btrfs_extent_ref_v0);
980 owner = btrfs_ref_objectid_v0(leaf, ref0);
981 break;
982 }
983 }
984 btrfs_release_path(path);
985
986 if (owner < BTRFS_FIRST_FREE_OBJECTID)
987 new_size += sizeof(*bi);
988
989 new_size -= sizeof(*ei0);
990 ret = btrfs_search_slot(trans, root, &key, path,
991 new_size + extra_size, 1);
992 if (ret < 0)
993 return ret;
994 BUG_ON(ret); /* Corruption */
995
996 btrfs_extend_item(trans, root, path, new_size);
997
998 leaf = path->nodes[0];
999 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1000 btrfs_set_extent_refs(leaf, item, refs);
1001 /* FIXME: get real generation */
1002 btrfs_set_extent_generation(leaf, item, 0);
1003 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1004 btrfs_set_extent_flags(leaf, item,
1005 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1006 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1007 bi = (struct btrfs_tree_block_info *)(item + 1);
1008 /* FIXME: get first key of the block */
1009 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1010 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1011 } else {
1012 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1013 }
1014 btrfs_mark_buffer_dirty(leaf);
1015 return 0;
1016 }
1017 #endif
1018
1019 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1020 {
1021 u32 high_crc = ~(u32)0;
1022 u32 low_crc = ~(u32)0;
1023 __le64 lenum;
1024
1025 lenum = cpu_to_le64(root_objectid);
1026 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1027 lenum = cpu_to_le64(owner);
1028 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1029 lenum = cpu_to_le64(offset);
1030 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1031
1032 return ((u64)high_crc << 31) ^ (u64)low_crc;
1033 }
1034
1035 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1036 struct btrfs_extent_data_ref *ref)
1037 {
1038 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1039 btrfs_extent_data_ref_objectid(leaf, ref),
1040 btrfs_extent_data_ref_offset(leaf, ref));
1041 }
1042
1043 static int match_extent_data_ref(struct extent_buffer *leaf,
1044 struct btrfs_extent_data_ref *ref,
1045 u64 root_objectid, u64 owner, u64 offset)
1046 {
1047 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1048 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1049 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1050 return 0;
1051 return 1;
1052 }
1053
1054 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1055 struct btrfs_root *root,
1056 struct btrfs_path *path,
1057 u64 bytenr, u64 parent,
1058 u64 root_objectid,
1059 u64 owner, u64 offset)
1060 {
1061 struct btrfs_key key;
1062 struct btrfs_extent_data_ref *ref;
1063 struct extent_buffer *leaf;
1064 u32 nritems;
1065 int ret;
1066 int recow;
1067 int err = -ENOENT;
1068
1069 key.objectid = bytenr;
1070 if (parent) {
1071 key.type = BTRFS_SHARED_DATA_REF_KEY;
1072 key.offset = parent;
1073 } else {
1074 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1075 key.offset = hash_extent_data_ref(root_objectid,
1076 owner, offset);
1077 }
1078 again:
1079 recow = 0;
1080 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1081 if (ret < 0) {
1082 err = ret;
1083 goto fail;
1084 }
1085
1086 if (parent) {
1087 if (!ret)
1088 return 0;
1089 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1090 key.type = BTRFS_EXTENT_REF_V0_KEY;
1091 btrfs_release_path(path);
1092 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1093 if (ret < 0) {
1094 err = ret;
1095 goto fail;
1096 }
1097 if (!ret)
1098 return 0;
1099 #endif
1100 goto fail;
1101 }
1102
1103 leaf = path->nodes[0];
1104 nritems = btrfs_header_nritems(leaf);
1105 while (1) {
1106 if (path->slots[0] >= nritems) {
1107 ret = btrfs_next_leaf(root, path);
1108 if (ret < 0)
1109 err = ret;
1110 if (ret)
1111 goto fail;
1112
1113 leaf = path->nodes[0];
1114 nritems = btrfs_header_nritems(leaf);
1115 recow = 1;
1116 }
1117
1118 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1119 if (key.objectid != bytenr ||
1120 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1121 goto fail;
1122
1123 ref = btrfs_item_ptr(leaf, path->slots[0],
1124 struct btrfs_extent_data_ref);
1125
1126 if (match_extent_data_ref(leaf, ref, root_objectid,
1127 owner, offset)) {
1128 if (recow) {
1129 btrfs_release_path(path);
1130 goto again;
1131 }
1132 err = 0;
1133 break;
1134 }
1135 path->slots[0]++;
1136 }
1137 fail:
1138 return err;
1139 }
1140
1141 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1142 struct btrfs_root *root,
1143 struct btrfs_path *path,
1144 u64 bytenr, u64 parent,
1145 u64 root_objectid, u64 owner,
1146 u64 offset, int refs_to_add)
1147 {
1148 struct btrfs_key key;
1149 struct extent_buffer *leaf;
1150 u32 size;
1151 u32 num_refs;
1152 int ret;
1153
1154 key.objectid = bytenr;
1155 if (parent) {
1156 key.type = BTRFS_SHARED_DATA_REF_KEY;
1157 key.offset = parent;
1158 size = sizeof(struct btrfs_shared_data_ref);
1159 } else {
1160 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1161 key.offset = hash_extent_data_ref(root_objectid,
1162 owner, offset);
1163 size = sizeof(struct btrfs_extent_data_ref);
1164 }
1165
1166 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1167 if (ret && ret != -EEXIST)
1168 goto fail;
1169
1170 leaf = path->nodes[0];
1171 if (parent) {
1172 struct btrfs_shared_data_ref *ref;
1173 ref = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_shared_data_ref);
1175 if (ret == 0) {
1176 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1177 } else {
1178 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1179 num_refs += refs_to_add;
1180 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1181 }
1182 } else {
1183 struct btrfs_extent_data_ref *ref;
1184 while (ret == -EEXIST) {
1185 ref = btrfs_item_ptr(leaf, path->slots[0],
1186 struct btrfs_extent_data_ref);
1187 if (match_extent_data_ref(leaf, ref, root_objectid,
1188 owner, offset))
1189 break;
1190 btrfs_release_path(path);
1191 key.offset++;
1192 ret = btrfs_insert_empty_item(trans, root, path, &key,
1193 size);
1194 if (ret && ret != -EEXIST)
1195 goto fail;
1196
1197 leaf = path->nodes[0];
1198 }
1199 ref = btrfs_item_ptr(leaf, path->slots[0],
1200 struct btrfs_extent_data_ref);
1201 if (ret == 0) {
1202 btrfs_set_extent_data_ref_root(leaf, ref,
1203 root_objectid);
1204 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1205 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1206 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1207 } else {
1208 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1209 num_refs += refs_to_add;
1210 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1211 }
1212 }
1213 btrfs_mark_buffer_dirty(leaf);
1214 ret = 0;
1215 fail:
1216 btrfs_release_path(path);
1217 return ret;
1218 }
1219
1220 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1221 struct btrfs_root *root,
1222 struct btrfs_path *path,
1223 int refs_to_drop)
1224 {
1225 struct btrfs_key key;
1226 struct btrfs_extent_data_ref *ref1 = NULL;
1227 struct btrfs_shared_data_ref *ref2 = NULL;
1228 struct extent_buffer *leaf;
1229 u32 num_refs = 0;
1230 int ret = 0;
1231
1232 leaf = path->nodes[0];
1233 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1234
1235 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1236 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_extent_data_ref);
1238 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1239 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1240 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_shared_data_ref);
1242 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1243 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1244 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1245 struct btrfs_extent_ref_v0 *ref0;
1246 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1247 struct btrfs_extent_ref_v0);
1248 num_refs = btrfs_ref_count_v0(leaf, ref0);
1249 #endif
1250 } else {
1251 BUG();
1252 }
1253
1254 BUG_ON(num_refs < refs_to_drop);
1255 num_refs -= refs_to_drop;
1256
1257 if (num_refs == 0) {
1258 ret = btrfs_del_item(trans, root, path);
1259 } else {
1260 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1261 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1262 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1263 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1264 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1265 else {
1266 struct btrfs_extent_ref_v0 *ref0;
1267 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1268 struct btrfs_extent_ref_v0);
1269 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1270 }
1271 #endif
1272 btrfs_mark_buffer_dirty(leaf);
1273 }
1274 return ret;
1275 }
1276
1277 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1278 struct btrfs_path *path,
1279 struct btrfs_extent_inline_ref *iref)
1280 {
1281 struct btrfs_key key;
1282 struct extent_buffer *leaf;
1283 struct btrfs_extent_data_ref *ref1;
1284 struct btrfs_shared_data_ref *ref2;
1285 u32 num_refs = 0;
1286
1287 leaf = path->nodes[0];
1288 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1289 if (iref) {
1290 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1291 BTRFS_EXTENT_DATA_REF_KEY) {
1292 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1293 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1294 } else {
1295 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1296 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1297 }
1298 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1299 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1300 struct btrfs_extent_data_ref);
1301 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1302 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1303 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1304 struct btrfs_shared_data_ref);
1305 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 num_refs = btrfs_ref_count_v0(leaf, ref0);
1312 #endif
1313 } else {
1314 WARN_ON(1);
1315 }
1316 return num_refs;
1317 }
1318
1319 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1320 struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 u64 bytenr, u64 parent,
1323 u64 root_objectid)
1324 {
1325 struct btrfs_key key;
1326 int ret;
1327
1328 key.objectid = bytenr;
1329 if (parent) {
1330 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1331 key.offset = parent;
1332 } else {
1333 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1334 key.offset = root_objectid;
1335 }
1336
1337 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1338 if (ret > 0)
1339 ret = -ENOENT;
1340 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1341 if (ret == -ENOENT && parent) {
1342 btrfs_release_path(path);
1343 key.type = BTRFS_EXTENT_REF_V0_KEY;
1344 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1345 if (ret > 0)
1346 ret = -ENOENT;
1347 }
1348 #endif
1349 return ret;
1350 }
1351
1352 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1353 struct btrfs_root *root,
1354 struct btrfs_path *path,
1355 u64 bytenr, u64 parent,
1356 u64 root_objectid)
1357 {
1358 struct btrfs_key key;
1359 int ret;
1360
1361 key.objectid = bytenr;
1362 if (parent) {
1363 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1364 key.offset = parent;
1365 } else {
1366 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1367 key.offset = root_objectid;
1368 }
1369
1370 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1371 btrfs_release_path(path);
1372 return ret;
1373 }
1374
1375 static inline int extent_ref_type(u64 parent, u64 owner)
1376 {
1377 int type;
1378 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1379 if (parent > 0)
1380 type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 else
1382 type = BTRFS_TREE_BLOCK_REF_KEY;
1383 } else {
1384 if (parent > 0)
1385 type = BTRFS_SHARED_DATA_REF_KEY;
1386 else
1387 type = BTRFS_EXTENT_DATA_REF_KEY;
1388 }
1389 return type;
1390 }
1391
1392 static int find_next_key(struct btrfs_path *path, int level,
1393 struct btrfs_key *key)
1394
1395 {
1396 for (; level < BTRFS_MAX_LEVEL; level++) {
1397 if (!path->nodes[level])
1398 break;
1399 if (path->slots[level] + 1 >=
1400 btrfs_header_nritems(path->nodes[level]))
1401 continue;
1402 if (level == 0)
1403 btrfs_item_key_to_cpu(path->nodes[level], key,
1404 path->slots[level] + 1);
1405 else
1406 btrfs_node_key_to_cpu(path->nodes[level], key,
1407 path->slots[level] + 1);
1408 return 0;
1409 }
1410 return 1;
1411 }
1412
1413 /*
1414 * look for inline back ref. if back ref is found, *ref_ret is set
1415 * to the address of inline back ref, and 0 is returned.
1416 *
1417 * if back ref isn't found, *ref_ret is set to the address where it
1418 * should be inserted, and -ENOENT is returned.
1419 *
1420 * if insert is true and there are too many inline back refs, the path
1421 * points to the extent item, and -EAGAIN is returned.
1422 *
1423 * NOTE: inline back refs are ordered in the same way that back ref
1424 * items in the tree are ordered.
1425 */
1426 static noinline_for_stack
1427 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1428 struct btrfs_root *root,
1429 struct btrfs_path *path,
1430 struct btrfs_extent_inline_ref **ref_ret,
1431 u64 bytenr, u64 num_bytes,
1432 u64 parent, u64 root_objectid,
1433 u64 owner, u64 offset, int insert)
1434 {
1435 struct btrfs_key key;
1436 struct extent_buffer *leaf;
1437 struct btrfs_extent_item *ei;
1438 struct btrfs_extent_inline_ref *iref;
1439 u64 flags;
1440 u64 item_size;
1441 unsigned long ptr;
1442 unsigned long end;
1443 int extra_size;
1444 int type;
1445 int want;
1446 int ret;
1447 int err = 0;
1448
1449 key.objectid = bytenr;
1450 key.type = BTRFS_EXTENT_ITEM_KEY;
1451 key.offset = num_bytes;
1452
1453 want = extent_ref_type(parent, owner);
1454 if (insert) {
1455 extra_size = btrfs_extent_inline_ref_size(want);
1456 path->keep_locks = 1;
1457 } else
1458 extra_size = -1;
1459 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1460 if (ret < 0) {
1461 err = ret;
1462 goto out;
1463 }
1464 if (ret && !insert) {
1465 err = -ENOENT;
1466 goto out;
1467 }
1468 BUG_ON(ret); /* Corruption */
1469
1470 leaf = path->nodes[0];
1471 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1472 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1473 if (item_size < sizeof(*ei)) {
1474 if (!insert) {
1475 err = -ENOENT;
1476 goto out;
1477 }
1478 ret = convert_extent_item_v0(trans, root, path, owner,
1479 extra_size);
1480 if (ret < 0) {
1481 err = ret;
1482 goto out;
1483 }
1484 leaf = path->nodes[0];
1485 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1486 }
1487 #endif
1488 BUG_ON(item_size < sizeof(*ei));
1489
1490 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1491 flags = btrfs_extent_flags(leaf, ei);
1492
1493 ptr = (unsigned long)(ei + 1);
1494 end = (unsigned long)ei + item_size;
1495
1496 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1497 ptr += sizeof(struct btrfs_tree_block_info);
1498 BUG_ON(ptr > end);
1499 } else {
1500 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1501 }
1502
1503 err = -ENOENT;
1504 while (1) {
1505 if (ptr >= end) {
1506 WARN_ON(ptr > end);
1507 break;
1508 }
1509 iref = (struct btrfs_extent_inline_ref *)ptr;
1510 type = btrfs_extent_inline_ref_type(leaf, iref);
1511 if (want < type)
1512 break;
1513 if (want > type) {
1514 ptr += btrfs_extent_inline_ref_size(type);
1515 continue;
1516 }
1517
1518 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1519 struct btrfs_extent_data_ref *dref;
1520 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1521 if (match_extent_data_ref(leaf, dref, root_objectid,
1522 owner, offset)) {
1523 err = 0;
1524 break;
1525 }
1526 if (hash_extent_data_ref_item(leaf, dref) <
1527 hash_extent_data_ref(root_objectid, owner, offset))
1528 break;
1529 } else {
1530 u64 ref_offset;
1531 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1532 if (parent > 0) {
1533 if (parent == ref_offset) {
1534 err = 0;
1535 break;
1536 }
1537 if (ref_offset < parent)
1538 break;
1539 } else {
1540 if (root_objectid == ref_offset) {
1541 err = 0;
1542 break;
1543 }
1544 if (ref_offset < root_objectid)
1545 break;
1546 }
1547 }
1548 ptr += btrfs_extent_inline_ref_size(type);
1549 }
1550 if (err == -ENOENT && insert) {
1551 if (item_size + extra_size >=
1552 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1553 err = -EAGAIN;
1554 goto out;
1555 }
1556 /*
1557 * To add new inline back ref, we have to make sure
1558 * there is no corresponding back ref item.
1559 * For simplicity, we just do not add new inline back
1560 * ref if there is any kind of item for this block
1561 */
1562 if (find_next_key(path, 0, &key) == 0 &&
1563 key.objectid == bytenr &&
1564 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1565 err = -EAGAIN;
1566 goto out;
1567 }
1568 }
1569 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1570 out:
1571 if (insert) {
1572 path->keep_locks = 0;
1573 btrfs_unlock_up_safe(path, 1);
1574 }
1575 return err;
1576 }
1577
1578 /*
1579 * helper to add new inline back ref
1580 */
1581 static noinline_for_stack
1582 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1583 struct btrfs_root *root,
1584 struct btrfs_path *path,
1585 struct btrfs_extent_inline_ref *iref,
1586 u64 parent, u64 root_objectid,
1587 u64 owner, u64 offset, int refs_to_add,
1588 struct btrfs_delayed_extent_op *extent_op)
1589 {
1590 struct extent_buffer *leaf;
1591 struct btrfs_extent_item *ei;
1592 unsigned long ptr;
1593 unsigned long end;
1594 unsigned long item_offset;
1595 u64 refs;
1596 int size;
1597 int type;
1598
1599 leaf = path->nodes[0];
1600 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1601 item_offset = (unsigned long)iref - (unsigned long)ei;
1602
1603 type = extent_ref_type(parent, owner);
1604 size = btrfs_extent_inline_ref_size(type);
1605
1606 btrfs_extend_item(trans, root, path, size);
1607
1608 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1609 refs = btrfs_extent_refs(leaf, ei);
1610 refs += refs_to_add;
1611 btrfs_set_extent_refs(leaf, ei, refs);
1612 if (extent_op)
1613 __run_delayed_extent_op(extent_op, leaf, ei);
1614
1615 ptr = (unsigned long)ei + item_offset;
1616 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1617 if (ptr < end - size)
1618 memmove_extent_buffer(leaf, ptr + size, ptr,
1619 end - size - ptr);
1620
1621 iref = (struct btrfs_extent_inline_ref *)ptr;
1622 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1623 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1624 struct btrfs_extent_data_ref *dref;
1625 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1626 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1627 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1628 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1629 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1630 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1631 struct btrfs_shared_data_ref *sref;
1632 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1633 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1634 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1635 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1636 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1637 } else {
1638 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1639 }
1640 btrfs_mark_buffer_dirty(leaf);
1641 }
1642
1643 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1644 struct btrfs_root *root,
1645 struct btrfs_path *path,
1646 struct btrfs_extent_inline_ref **ref_ret,
1647 u64 bytenr, u64 num_bytes, u64 parent,
1648 u64 root_objectid, u64 owner, u64 offset)
1649 {
1650 int ret;
1651
1652 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1653 bytenr, num_bytes, parent,
1654 root_objectid, owner, offset, 0);
1655 if (ret != -ENOENT)
1656 return ret;
1657
1658 btrfs_release_path(path);
1659 *ref_ret = NULL;
1660
1661 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1662 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1663 root_objectid);
1664 } else {
1665 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1666 root_objectid, owner, offset);
1667 }
1668 return ret;
1669 }
1670
1671 /*
1672 * helper to update/remove inline back ref
1673 */
1674 static noinline_for_stack
1675 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1676 struct btrfs_root *root,
1677 struct btrfs_path *path,
1678 struct btrfs_extent_inline_ref *iref,
1679 int refs_to_mod,
1680 struct btrfs_delayed_extent_op *extent_op)
1681 {
1682 struct extent_buffer *leaf;
1683 struct btrfs_extent_item *ei;
1684 struct btrfs_extent_data_ref *dref = NULL;
1685 struct btrfs_shared_data_ref *sref = NULL;
1686 unsigned long ptr;
1687 unsigned long end;
1688 u32 item_size;
1689 int size;
1690 int type;
1691 u64 refs;
1692
1693 leaf = path->nodes[0];
1694 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1695 refs = btrfs_extent_refs(leaf, ei);
1696 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1697 refs += refs_to_mod;
1698 btrfs_set_extent_refs(leaf, ei, refs);
1699 if (extent_op)
1700 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702 type = btrfs_extent_inline_ref_type(leaf, iref);
1703
1704 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 refs = btrfs_extent_data_ref_count(leaf, dref);
1707 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1708 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1709 refs = btrfs_shared_data_ref_count(leaf, sref);
1710 } else {
1711 refs = 1;
1712 BUG_ON(refs_to_mod != -1);
1713 }
1714
1715 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1716 refs += refs_to_mod;
1717
1718 if (refs > 0) {
1719 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1720 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1721 else
1722 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1723 } else {
1724 size = btrfs_extent_inline_ref_size(type);
1725 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1726 ptr = (unsigned long)iref;
1727 end = (unsigned long)ei + item_size;
1728 if (ptr + size < end)
1729 memmove_extent_buffer(leaf, ptr, ptr + size,
1730 end - ptr - size);
1731 item_size -= size;
1732 btrfs_truncate_item(trans, root, path, item_size, 1);
1733 }
1734 btrfs_mark_buffer_dirty(leaf);
1735 }
1736
1737 static noinline_for_stack
1738 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1739 struct btrfs_root *root,
1740 struct btrfs_path *path,
1741 u64 bytenr, u64 num_bytes, u64 parent,
1742 u64 root_objectid, u64 owner,
1743 u64 offset, int refs_to_add,
1744 struct btrfs_delayed_extent_op *extent_op)
1745 {
1746 struct btrfs_extent_inline_ref *iref;
1747 int ret;
1748
1749 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1750 bytenr, num_bytes, parent,
1751 root_objectid, owner, offset, 1);
1752 if (ret == 0) {
1753 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1754 update_inline_extent_backref(trans, root, path, iref,
1755 refs_to_add, extent_op);
1756 } else if (ret == -ENOENT) {
1757 setup_inline_extent_backref(trans, root, path, iref, parent,
1758 root_objectid, owner, offset,
1759 refs_to_add, extent_op);
1760 ret = 0;
1761 }
1762 return ret;
1763 }
1764
1765 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1766 struct btrfs_root *root,
1767 struct btrfs_path *path,
1768 u64 bytenr, u64 parent, u64 root_objectid,
1769 u64 owner, u64 offset, int refs_to_add)
1770 {
1771 int ret;
1772 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1773 BUG_ON(refs_to_add != 1);
1774 ret = insert_tree_block_ref(trans, root, path, bytenr,
1775 parent, root_objectid);
1776 } else {
1777 ret = insert_extent_data_ref(trans, root, path, bytenr,
1778 parent, root_objectid,
1779 owner, offset, refs_to_add);
1780 }
1781 return ret;
1782 }
1783
1784 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1785 struct btrfs_root *root,
1786 struct btrfs_path *path,
1787 struct btrfs_extent_inline_ref *iref,
1788 int refs_to_drop, int is_data)
1789 {
1790 int ret = 0;
1791
1792 BUG_ON(!is_data && refs_to_drop != 1);
1793 if (iref) {
1794 update_inline_extent_backref(trans, root, path, iref,
1795 -refs_to_drop, NULL);
1796 } else if (is_data) {
1797 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1798 } else {
1799 ret = btrfs_del_item(trans, root, path);
1800 }
1801 return ret;
1802 }
1803
1804 static int btrfs_issue_discard(struct block_device *bdev,
1805 u64 start, u64 len)
1806 {
1807 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1808 }
1809
1810 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1811 u64 num_bytes, u64 *actual_bytes)
1812 {
1813 int ret;
1814 u64 discarded_bytes = 0;
1815 struct btrfs_bio *bbio = NULL;
1816
1817
1818 /* Tell the block device(s) that the sectors can be discarded */
1819 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1820 bytenr, &num_bytes, &bbio, 0);
1821 /* Error condition is -ENOMEM */
1822 if (!ret) {
1823 struct btrfs_bio_stripe *stripe = bbio->stripes;
1824 int i;
1825
1826
1827 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1828 if (!stripe->dev->can_discard)
1829 continue;
1830
1831 ret = btrfs_issue_discard(stripe->dev->bdev,
1832 stripe->physical,
1833 stripe->length);
1834 if (!ret)
1835 discarded_bytes += stripe->length;
1836 else if (ret != -EOPNOTSUPP)
1837 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1838
1839 /*
1840 * Just in case we get back EOPNOTSUPP for some reason,
1841 * just ignore the return value so we don't screw up
1842 * people calling discard_extent.
1843 */
1844 ret = 0;
1845 }
1846 kfree(bbio);
1847 }
1848
1849 if (actual_bytes)
1850 *actual_bytes = discarded_bytes;
1851
1852
1853 return ret;
1854 }
1855
1856 /* Can return -ENOMEM */
1857 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1858 struct btrfs_root *root,
1859 u64 bytenr, u64 num_bytes, u64 parent,
1860 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1861 {
1862 int ret;
1863 struct btrfs_fs_info *fs_info = root->fs_info;
1864
1865 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1866 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1867
1868 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1869 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1870 num_bytes,
1871 parent, root_objectid, (int)owner,
1872 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1873 } else {
1874 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1875 num_bytes,
1876 parent, root_objectid, owner, offset,
1877 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1878 }
1879 return ret;
1880 }
1881
1882 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1883 struct btrfs_root *root,
1884 u64 bytenr, u64 num_bytes,
1885 u64 parent, u64 root_objectid,
1886 u64 owner, u64 offset, int refs_to_add,
1887 struct btrfs_delayed_extent_op *extent_op)
1888 {
1889 struct btrfs_path *path;
1890 struct extent_buffer *leaf;
1891 struct btrfs_extent_item *item;
1892 u64 refs;
1893 int ret;
1894 int err = 0;
1895
1896 path = btrfs_alloc_path();
1897 if (!path)
1898 return -ENOMEM;
1899
1900 path->reada = 1;
1901 path->leave_spinning = 1;
1902 /* this will setup the path even if it fails to insert the back ref */
1903 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1904 path, bytenr, num_bytes, parent,
1905 root_objectid, owner, offset,
1906 refs_to_add, extent_op);
1907 if (ret == 0)
1908 goto out;
1909
1910 if (ret != -EAGAIN) {
1911 err = ret;
1912 goto out;
1913 }
1914
1915 leaf = path->nodes[0];
1916 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1917 refs = btrfs_extent_refs(leaf, item);
1918 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1919 if (extent_op)
1920 __run_delayed_extent_op(extent_op, leaf, item);
1921
1922 btrfs_mark_buffer_dirty(leaf);
1923 btrfs_release_path(path);
1924
1925 path->reada = 1;
1926 path->leave_spinning = 1;
1927
1928 /* now insert the actual backref */
1929 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1930 path, bytenr, parent, root_objectid,
1931 owner, offset, refs_to_add);
1932 if (ret)
1933 btrfs_abort_transaction(trans, root, ret);
1934 out:
1935 btrfs_free_path(path);
1936 return err;
1937 }
1938
1939 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1940 struct btrfs_root *root,
1941 struct btrfs_delayed_ref_node *node,
1942 struct btrfs_delayed_extent_op *extent_op,
1943 int insert_reserved)
1944 {
1945 int ret = 0;
1946 struct btrfs_delayed_data_ref *ref;
1947 struct btrfs_key ins;
1948 u64 parent = 0;
1949 u64 ref_root = 0;
1950 u64 flags = 0;
1951
1952 ins.objectid = node->bytenr;
1953 ins.offset = node->num_bytes;
1954 ins.type = BTRFS_EXTENT_ITEM_KEY;
1955
1956 ref = btrfs_delayed_node_to_data_ref(node);
1957 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1958 parent = ref->parent;
1959 else
1960 ref_root = ref->root;
1961
1962 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1963 if (extent_op) {
1964 BUG_ON(extent_op->update_key);
1965 flags |= extent_op->flags_to_set;
1966 }
1967 ret = alloc_reserved_file_extent(trans, root,
1968 parent, ref_root, flags,
1969 ref->objectid, ref->offset,
1970 &ins, node->ref_mod);
1971 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1972 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1973 node->num_bytes, parent,
1974 ref_root, ref->objectid,
1975 ref->offset, node->ref_mod,
1976 extent_op);
1977 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1978 ret = __btrfs_free_extent(trans, root, node->bytenr,
1979 node->num_bytes, parent,
1980 ref_root, ref->objectid,
1981 ref->offset, node->ref_mod,
1982 extent_op);
1983 } else {
1984 BUG();
1985 }
1986 return ret;
1987 }
1988
1989 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1990 struct extent_buffer *leaf,
1991 struct btrfs_extent_item *ei)
1992 {
1993 u64 flags = btrfs_extent_flags(leaf, ei);
1994 if (extent_op->update_flags) {
1995 flags |= extent_op->flags_to_set;
1996 btrfs_set_extent_flags(leaf, ei, flags);
1997 }
1998
1999 if (extent_op->update_key) {
2000 struct btrfs_tree_block_info *bi;
2001 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2002 bi = (struct btrfs_tree_block_info *)(ei + 1);
2003 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2004 }
2005 }
2006
2007 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2008 struct btrfs_root *root,
2009 struct btrfs_delayed_ref_node *node,
2010 struct btrfs_delayed_extent_op *extent_op)
2011 {
2012 struct btrfs_key key;
2013 struct btrfs_path *path;
2014 struct btrfs_extent_item *ei;
2015 struct extent_buffer *leaf;
2016 u32 item_size;
2017 int ret;
2018 int err = 0;
2019
2020 if (trans->aborted)
2021 return 0;
2022
2023 path = btrfs_alloc_path();
2024 if (!path)
2025 return -ENOMEM;
2026
2027 key.objectid = node->bytenr;
2028 key.type = BTRFS_EXTENT_ITEM_KEY;
2029 key.offset = node->num_bytes;
2030
2031 path->reada = 1;
2032 path->leave_spinning = 1;
2033 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2034 path, 0, 1);
2035 if (ret < 0) {
2036 err = ret;
2037 goto out;
2038 }
2039 if (ret > 0) {
2040 err = -EIO;
2041 goto out;
2042 }
2043
2044 leaf = path->nodes[0];
2045 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2046 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2047 if (item_size < sizeof(*ei)) {
2048 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2049 path, (u64)-1, 0);
2050 if (ret < 0) {
2051 err = ret;
2052 goto out;
2053 }
2054 leaf = path->nodes[0];
2055 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2056 }
2057 #endif
2058 BUG_ON(item_size < sizeof(*ei));
2059 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2060 __run_delayed_extent_op(extent_op, leaf, ei);
2061
2062 btrfs_mark_buffer_dirty(leaf);
2063 out:
2064 btrfs_free_path(path);
2065 return err;
2066 }
2067
2068 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2069 struct btrfs_root *root,
2070 struct btrfs_delayed_ref_node *node,
2071 struct btrfs_delayed_extent_op *extent_op,
2072 int insert_reserved)
2073 {
2074 int ret = 0;
2075 struct btrfs_delayed_tree_ref *ref;
2076 struct btrfs_key ins;
2077 u64 parent = 0;
2078 u64 ref_root = 0;
2079
2080 ins.objectid = node->bytenr;
2081 ins.offset = node->num_bytes;
2082 ins.type = BTRFS_EXTENT_ITEM_KEY;
2083
2084 ref = btrfs_delayed_node_to_tree_ref(node);
2085 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2086 parent = ref->parent;
2087 else
2088 ref_root = ref->root;
2089
2090 BUG_ON(node->ref_mod != 1);
2091 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2092 BUG_ON(!extent_op || !extent_op->update_flags ||
2093 !extent_op->update_key);
2094 ret = alloc_reserved_tree_block(trans, root,
2095 parent, ref_root,
2096 extent_op->flags_to_set,
2097 &extent_op->key,
2098 ref->level, &ins);
2099 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2100 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2101 node->num_bytes, parent, ref_root,
2102 ref->level, 0, 1, extent_op);
2103 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2104 ret = __btrfs_free_extent(trans, root, node->bytenr,
2105 node->num_bytes, parent, ref_root,
2106 ref->level, 0, 1, extent_op);
2107 } else {
2108 BUG();
2109 }
2110 return ret;
2111 }
2112
2113 /* helper function to actually process a single delayed ref entry */
2114 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2115 struct btrfs_root *root,
2116 struct btrfs_delayed_ref_node *node,
2117 struct btrfs_delayed_extent_op *extent_op,
2118 int insert_reserved)
2119 {
2120 int ret = 0;
2121
2122 if (trans->aborted)
2123 return 0;
2124
2125 if (btrfs_delayed_ref_is_head(node)) {
2126 struct btrfs_delayed_ref_head *head;
2127 /*
2128 * we've hit the end of the chain and we were supposed
2129 * to insert this extent into the tree. But, it got
2130 * deleted before we ever needed to insert it, so all
2131 * we have to do is clean up the accounting
2132 */
2133 BUG_ON(extent_op);
2134 head = btrfs_delayed_node_to_head(node);
2135 if (insert_reserved) {
2136 btrfs_pin_extent(root, node->bytenr,
2137 node->num_bytes, 1);
2138 if (head->is_data) {
2139 ret = btrfs_del_csums(trans, root,
2140 node->bytenr,
2141 node->num_bytes);
2142 }
2143 }
2144 return ret;
2145 }
2146
2147 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2148 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2149 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2150 insert_reserved);
2151 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2152 node->type == BTRFS_SHARED_DATA_REF_KEY)
2153 ret = run_delayed_data_ref(trans, root, node, extent_op,
2154 insert_reserved);
2155 else
2156 BUG();
2157 return ret;
2158 }
2159
2160 static noinline struct btrfs_delayed_ref_node *
2161 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2162 {
2163 struct rb_node *node;
2164 struct btrfs_delayed_ref_node *ref;
2165 int action = BTRFS_ADD_DELAYED_REF;
2166 again:
2167 /*
2168 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2169 * this prevents ref count from going down to zero when
2170 * there still are pending delayed ref.
2171 */
2172 node = rb_prev(&head->node.rb_node);
2173 while (1) {
2174 if (!node)
2175 break;
2176 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2177 rb_node);
2178 if (ref->bytenr != head->node.bytenr)
2179 break;
2180 if (ref->action == action)
2181 return ref;
2182 node = rb_prev(node);
2183 }
2184 if (action == BTRFS_ADD_DELAYED_REF) {
2185 action = BTRFS_DROP_DELAYED_REF;
2186 goto again;
2187 }
2188 return NULL;
2189 }
2190
2191 /*
2192 * Returns 0 on success or if called with an already aborted transaction.
2193 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2194 */
2195 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2196 struct btrfs_root *root,
2197 struct list_head *cluster)
2198 {
2199 struct btrfs_delayed_ref_root *delayed_refs;
2200 struct btrfs_delayed_ref_node *ref;
2201 struct btrfs_delayed_ref_head *locked_ref = NULL;
2202 struct btrfs_delayed_extent_op *extent_op;
2203 struct btrfs_fs_info *fs_info = root->fs_info;
2204 int ret;
2205 int count = 0;
2206 int must_insert_reserved = 0;
2207
2208 delayed_refs = &trans->transaction->delayed_refs;
2209 while (1) {
2210 if (!locked_ref) {
2211 /* pick a new head ref from the cluster list */
2212 if (list_empty(cluster))
2213 break;
2214
2215 locked_ref = list_entry(cluster->next,
2216 struct btrfs_delayed_ref_head, cluster);
2217
2218 /* grab the lock that says we are going to process
2219 * all the refs for this head */
2220 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2221
2222 /*
2223 * we may have dropped the spin lock to get the head
2224 * mutex lock, and that might have given someone else
2225 * time to free the head. If that's true, it has been
2226 * removed from our list and we can move on.
2227 */
2228 if (ret == -EAGAIN) {
2229 locked_ref = NULL;
2230 count++;
2231 continue;
2232 }
2233 }
2234
2235 /*
2236 * We need to try and merge add/drops of the same ref since we
2237 * can run into issues with relocate dropping the implicit ref
2238 * and then it being added back again before the drop can
2239 * finish. If we merged anything we need to re-loop so we can
2240 * get a good ref.
2241 */
2242 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2243 locked_ref);
2244
2245 /*
2246 * locked_ref is the head node, so we have to go one
2247 * node back for any delayed ref updates
2248 */
2249 ref = select_delayed_ref(locked_ref);
2250
2251 if (ref && ref->seq &&
2252 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2253 /*
2254 * there are still refs with lower seq numbers in the
2255 * process of being added. Don't run this ref yet.
2256 */
2257 list_del_init(&locked_ref->cluster);
2258 btrfs_delayed_ref_unlock(locked_ref);
2259 locked_ref = NULL;
2260 delayed_refs->num_heads_ready++;
2261 spin_unlock(&delayed_refs->lock);
2262 cond_resched();
2263 spin_lock(&delayed_refs->lock);
2264 continue;
2265 }
2266
2267 /*
2268 * record the must insert reserved flag before we
2269 * drop the spin lock.
2270 */
2271 must_insert_reserved = locked_ref->must_insert_reserved;
2272 locked_ref->must_insert_reserved = 0;
2273
2274 extent_op = locked_ref->extent_op;
2275 locked_ref->extent_op = NULL;
2276
2277 if (!ref) {
2278 /* All delayed refs have been processed, Go ahead
2279 * and send the head node to run_one_delayed_ref,
2280 * so that any accounting fixes can happen
2281 */
2282 ref = &locked_ref->node;
2283
2284 if (extent_op && must_insert_reserved) {
2285 btrfs_free_delayed_extent_op(extent_op);
2286 extent_op = NULL;
2287 }
2288
2289 if (extent_op) {
2290 spin_unlock(&delayed_refs->lock);
2291
2292 ret = run_delayed_extent_op(trans, root,
2293 ref, extent_op);
2294 btrfs_free_delayed_extent_op(extent_op);
2295
2296 if (ret) {
2297 printk(KERN_DEBUG
2298 "btrfs: run_delayed_extent_op "
2299 "returned %d\n", ret);
2300 spin_lock(&delayed_refs->lock);
2301 btrfs_delayed_ref_unlock(locked_ref);
2302 return ret;
2303 }
2304
2305 goto next;
2306 }
2307 }
2308
2309 ref->in_tree = 0;
2310 rb_erase(&ref->rb_node, &delayed_refs->root);
2311 delayed_refs->num_entries--;
2312 if (!btrfs_delayed_ref_is_head(ref)) {
2313 /*
2314 * when we play the delayed ref, also correct the
2315 * ref_mod on head
2316 */
2317 switch (ref->action) {
2318 case BTRFS_ADD_DELAYED_REF:
2319 case BTRFS_ADD_DELAYED_EXTENT:
2320 locked_ref->node.ref_mod -= ref->ref_mod;
2321 break;
2322 case BTRFS_DROP_DELAYED_REF:
2323 locked_ref->node.ref_mod += ref->ref_mod;
2324 break;
2325 default:
2326 WARN_ON(1);
2327 }
2328 }
2329 spin_unlock(&delayed_refs->lock);
2330
2331 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2332 must_insert_reserved);
2333
2334 btrfs_free_delayed_extent_op(extent_op);
2335 if (ret) {
2336 btrfs_delayed_ref_unlock(locked_ref);
2337 btrfs_put_delayed_ref(ref);
2338 printk(KERN_DEBUG
2339 "btrfs: run_one_delayed_ref returned %d\n", ret);
2340 spin_lock(&delayed_refs->lock);
2341 return ret;
2342 }
2343
2344 /*
2345 * If this node is a head, that means all the refs in this head
2346 * have been dealt with, and we will pick the next head to deal
2347 * with, so we must unlock the head and drop it from the cluster
2348 * list before we release it.
2349 */
2350 if (btrfs_delayed_ref_is_head(ref)) {
2351 list_del_init(&locked_ref->cluster);
2352 btrfs_delayed_ref_unlock(locked_ref);
2353 locked_ref = NULL;
2354 }
2355 btrfs_put_delayed_ref(ref);
2356 count++;
2357 next:
2358 cond_resched();
2359 spin_lock(&delayed_refs->lock);
2360 }
2361 return count;
2362 }
2363
2364 #ifdef SCRAMBLE_DELAYED_REFS
2365 /*
2366 * Normally delayed refs get processed in ascending bytenr order. This
2367 * correlates in most cases to the order added. To expose dependencies on this
2368 * order, we start to process the tree in the middle instead of the beginning
2369 */
2370 static u64 find_middle(struct rb_root *root)
2371 {
2372 struct rb_node *n = root->rb_node;
2373 struct btrfs_delayed_ref_node *entry;
2374 int alt = 1;
2375 u64 middle;
2376 u64 first = 0, last = 0;
2377
2378 n = rb_first(root);
2379 if (n) {
2380 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2381 first = entry->bytenr;
2382 }
2383 n = rb_last(root);
2384 if (n) {
2385 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2386 last = entry->bytenr;
2387 }
2388 n = root->rb_node;
2389
2390 while (n) {
2391 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2392 WARN_ON(!entry->in_tree);
2393
2394 middle = entry->bytenr;
2395
2396 if (alt)
2397 n = n->rb_left;
2398 else
2399 n = n->rb_right;
2400
2401 alt = 1 - alt;
2402 }
2403 return middle;
2404 }
2405 #endif
2406
2407 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2408 struct btrfs_fs_info *fs_info)
2409 {
2410 struct qgroup_update *qgroup_update;
2411 int ret = 0;
2412
2413 if (list_empty(&trans->qgroup_ref_list) !=
2414 !trans->delayed_ref_elem.seq) {
2415 /* list without seq or seq without list */
2416 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2417 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2418 trans->delayed_ref_elem.seq);
2419 BUG();
2420 }
2421
2422 if (!trans->delayed_ref_elem.seq)
2423 return 0;
2424
2425 while (!list_empty(&trans->qgroup_ref_list)) {
2426 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2427 struct qgroup_update, list);
2428 list_del(&qgroup_update->list);
2429 if (!ret)
2430 ret = btrfs_qgroup_account_ref(
2431 trans, fs_info, qgroup_update->node,
2432 qgroup_update->extent_op);
2433 kfree(qgroup_update);
2434 }
2435
2436 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2437
2438 return ret;
2439 }
2440
2441 /*
2442 * this starts processing the delayed reference count updates and
2443 * extent insertions we have queued up so far. count can be
2444 * 0, which means to process everything in the tree at the start
2445 * of the run (but not newly added entries), or it can be some target
2446 * number you'd like to process.
2447 *
2448 * Returns 0 on success or if called with an aborted transaction
2449 * Returns <0 on error and aborts the transaction
2450 */
2451 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2452 struct btrfs_root *root, unsigned long count)
2453 {
2454 struct rb_node *node;
2455 struct btrfs_delayed_ref_root *delayed_refs;
2456 struct btrfs_delayed_ref_node *ref;
2457 struct list_head cluster;
2458 int ret;
2459 u64 delayed_start;
2460 int run_all = count == (unsigned long)-1;
2461 int run_most = 0;
2462 int loops;
2463
2464 /* We'll clean this up in btrfs_cleanup_transaction */
2465 if (trans->aborted)
2466 return 0;
2467
2468 if (root == root->fs_info->extent_root)
2469 root = root->fs_info->tree_root;
2470
2471 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2472
2473 delayed_refs = &trans->transaction->delayed_refs;
2474 INIT_LIST_HEAD(&cluster);
2475 again:
2476 loops = 0;
2477 spin_lock(&delayed_refs->lock);
2478
2479 #ifdef SCRAMBLE_DELAYED_REFS
2480 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2481 #endif
2482
2483 if (count == 0) {
2484 count = delayed_refs->num_entries * 2;
2485 run_most = 1;
2486 }
2487 while (1) {
2488 if (!(run_all || run_most) &&
2489 delayed_refs->num_heads_ready < 64)
2490 break;
2491
2492 /*
2493 * go find something we can process in the rbtree. We start at
2494 * the beginning of the tree, and then build a cluster
2495 * of refs to process starting at the first one we are able to
2496 * lock
2497 */
2498 delayed_start = delayed_refs->run_delayed_start;
2499 ret = btrfs_find_ref_cluster(trans, &cluster,
2500 delayed_refs->run_delayed_start);
2501 if (ret)
2502 break;
2503
2504 ret = run_clustered_refs(trans, root, &cluster);
2505 if (ret < 0) {
2506 btrfs_release_ref_cluster(&cluster);
2507 spin_unlock(&delayed_refs->lock);
2508 btrfs_abort_transaction(trans, root, ret);
2509 return ret;
2510 }
2511
2512 count -= min_t(unsigned long, ret, count);
2513
2514 if (count == 0)
2515 break;
2516
2517 if (delayed_start >= delayed_refs->run_delayed_start) {
2518 if (loops == 0) {
2519 /*
2520 * btrfs_find_ref_cluster looped. let's do one
2521 * more cycle. if we don't run any delayed ref
2522 * during that cycle (because we can't because
2523 * all of them are blocked), bail out.
2524 */
2525 loops = 1;
2526 } else {
2527 /*
2528 * no runnable refs left, stop trying
2529 */
2530 BUG_ON(run_all);
2531 break;
2532 }
2533 }
2534 if (ret) {
2535 /* refs were run, let's reset staleness detection */
2536 loops = 0;
2537 }
2538 }
2539
2540 if (run_all) {
2541 if (!list_empty(&trans->new_bgs)) {
2542 spin_unlock(&delayed_refs->lock);
2543 btrfs_create_pending_block_groups(trans, root);
2544 spin_lock(&delayed_refs->lock);
2545 }
2546
2547 node = rb_first(&delayed_refs->root);
2548 if (!node)
2549 goto out;
2550 count = (unsigned long)-1;
2551
2552 while (node) {
2553 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2554 rb_node);
2555 if (btrfs_delayed_ref_is_head(ref)) {
2556 struct btrfs_delayed_ref_head *head;
2557
2558 head = btrfs_delayed_node_to_head(ref);
2559 atomic_inc(&ref->refs);
2560
2561 spin_unlock(&delayed_refs->lock);
2562 /*
2563 * Mutex was contended, block until it's
2564 * released and try again
2565 */
2566 mutex_lock(&head->mutex);
2567 mutex_unlock(&head->mutex);
2568
2569 btrfs_put_delayed_ref(ref);
2570 cond_resched();
2571 goto again;
2572 }
2573 node = rb_next(node);
2574 }
2575 spin_unlock(&delayed_refs->lock);
2576 schedule_timeout(1);
2577 goto again;
2578 }
2579 out:
2580 spin_unlock(&delayed_refs->lock);
2581 assert_qgroups_uptodate(trans);
2582 return 0;
2583 }
2584
2585 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2586 struct btrfs_root *root,
2587 u64 bytenr, u64 num_bytes, u64 flags,
2588 int is_data)
2589 {
2590 struct btrfs_delayed_extent_op *extent_op;
2591 int ret;
2592
2593 extent_op = btrfs_alloc_delayed_extent_op();
2594 if (!extent_op)
2595 return -ENOMEM;
2596
2597 extent_op->flags_to_set = flags;
2598 extent_op->update_flags = 1;
2599 extent_op->update_key = 0;
2600 extent_op->is_data = is_data ? 1 : 0;
2601
2602 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2603 num_bytes, extent_op);
2604 if (ret)
2605 btrfs_free_delayed_extent_op(extent_op);
2606 return ret;
2607 }
2608
2609 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2610 struct btrfs_root *root,
2611 struct btrfs_path *path,
2612 u64 objectid, u64 offset, u64 bytenr)
2613 {
2614 struct btrfs_delayed_ref_head *head;
2615 struct btrfs_delayed_ref_node *ref;
2616 struct btrfs_delayed_data_ref *data_ref;
2617 struct btrfs_delayed_ref_root *delayed_refs;
2618 struct rb_node *node;
2619 int ret = 0;
2620
2621 ret = -ENOENT;
2622 delayed_refs = &trans->transaction->delayed_refs;
2623 spin_lock(&delayed_refs->lock);
2624 head = btrfs_find_delayed_ref_head(trans, bytenr);
2625 if (!head)
2626 goto out;
2627
2628 if (!mutex_trylock(&head->mutex)) {
2629 atomic_inc(&head->node.refs);
2630 spin_unlock(&delayed_refs->lock);
2631
2632 btrfs_release_path(path);
2633
2634 /*
2635 * Mutex was contended, block until it's released and let
2636 * caller try again
2637 */
2638 mutex_lock(&head->mutex);
2639 mutex_unlock(&head->mutex);
2640 btrfs_put_delayed_ref(&head->node);
2641 return -EAGAIN;
2642 }
2643
2644 node = rb_prev(&head->node.rb_node);
2645 if (!node)
2646 goto out_unlock;
2647
2648 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2649
2650 if (ref->bytenr != bytenr)
2651 goto out_unlock;
2652
2653 ret = 1;
2654 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2655 goto out_unlock;
2656
2657 data_ref = btrfs_delayed_node_to_data_ref(ref);
2658
2659 node = rb_prev(node);
2660 if (node) {
2661 int seq = ref->seq;
2662
2663 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2664 if (ref->bytenr == bytenr && ref->seq == seq)
2665 goto out_unlock;
2666 }
2667
2668 if (data_ref->root != root->root_key.objectid ||
2669 data_ref->objectid != objectid || data_ref->offset != offset)
2670 goto out_unlock;
2671
2672 ret = 0;
2673 out_unlock:
2674 mutex_unlock(&head->mutex);
2675 out:
2676 spin_unlock(&delayed_refs->lock);
2677 return ret;
2678 }
2679
2680 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2681 struct btrfs_root *root,
2682 struct btrfs_path *path,
2683 u64 objectid, u64 offset, u64 bytenr)
2684 {
2685 struct btrfs_root *extent_root = root->fs_info->extent_root;
2686 struct extent_buffer *leaf;
2687 struct btrfs_extent_data_ref *ref;
2688 struct btrfs_extent_inline_ref *iref;
2689 struct btrfs_extent_item *ei;
2690 struct btrfs_key key;
2691 u32 item_size;
2692 int ret;
2693
2694 key.objectid = bytenr;
2695 key.offset = (u64)-1;
2696 key.type = BTRFS_EXTENT_ITEM_KEY;
2697
2698 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2699 if (ret < 0)
2700 goto out;
2701 BUG_ON(ret == 0); /* Corruption */
2702
2703 ret = -ENOENT;
2704 if (path->slots[0] == 0)
2705 goto out;
2706
2707 path->slots[0]--;
2708 leaf = path->nodes[0];
2709 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2710
2711 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2712 goto out;
2713
2714 ret = 1;
2715 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2716 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2717 if (item_size < sizeof(*ei)) {
2718 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2719 goto out;
2720 }
2721 #endif
2722 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2723
2724 if (item_size != sizeof(*ei) +
2725 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2726 goto out;
2727
2728 if (btrfs_extent_generation(leaf, ei) <=
2729 btrfs_root_last_snapshot(&root->root_item))
2730 goto out;
2731
2732 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2733 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2734 BTRFS_EXTENT_DATA_REF_KEY)
2735 goto out;
2736
2737 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2738 if (btrfs_extent_refs(leaf, ei) !=
2739 btrfs_extent_data_ref_count(leaf, ref) ||
2740 btrfs_extent_data_ref_root(leaf, ref) !=
2741 root->root_key.objectid ||
2742 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2743 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2744 goto out;
2745
2746 ret = 0;
2747 out:
2748 return ret;
2749 }
2750
2751 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2752 struct btrfs_root *root,
2753 u64 objectid, u64 offset, u64 bytenr)
2754 {
2755 struct btrfs_path *path;
2756 int ret;
2757 int ret2;
2758
2759 path = btrfs_alloc_path();
2760 if (!path)
2761 return -ENOENT;
2762
2763 do {
2764 ret = check_committed_ref(trans, root, path, objectid,
2765 offset, bytenr);
2766 if (ret && ret != -ENOENT)
2767 goto out;
2768
2769 ret2 = check_delayed_ref(trans, root, path, objectid,
2770 offset, bytenr);
2771 } while (ret2 == -EAGAIN);
2772
2773 if (ret2 && ret2 != -ENOENT) {
2774 ret = ret2;
2775 goto out;
2776 }
2777
2778 if (ret != -ENOENT || ret2 != -ENOENT)
2779 ret = 0;
2780 out:
2781 btrfs_free_path(path);
2782 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2783 WARN_ON(ret > 0);
2784 return ret;
2785 }
2786
2787 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2788 struct btrfs_root *root,
2789 struct extent_buffer *buf,
2790 int full_backref, int inc, int for_cow)
2791 {
2792 u64 bytenr;
2793 u64 num_bytes;
2794 u64 parent;
2795 u64 ref_root;
2796 u32 nritems;
2797 struct btrfs_key key;
2798 struct btrfs_file_extent_item *fi;
2799 int i;
2800 int level;
2801 int ret = 0;
2802 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2803 u64, u64, u64, u64, u64, u64, int);
2804
2805 ref_root = btrfs_header_owner(buf);
2806 nritems = btrfs_header_nritems(buf);
2807 level = btrfs_header_level(buf);
2808
2809 if (!root->ref_cows && level == 0)
2810 return 0;
2811
2812 if (inc)
2813 process_func = btrfs_inc_extent_ref;
2814 else
2815 process_func = btrfs_free_extent;
2816
2817 if (full_backref)
2818 parent = buf->start;
2819 else
2820 parent = 0;
2821
2822 for (i = 0; i < nritems; i++) {
2823 if (level == 0) {
2824 btrfs_item_key_to_cpu(buf, &key, i);
2825 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2826 continue;
2827 fi = btrfs_item_ptr(buf, i,
2828 struct btrfs_file_extent_item);
2829 if (btrfs_file_extent_type(buf, fi) ==
2830 BTRFS_FILE_EXTENT_INLINE)
2831 continue;
2832 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2833 if (bytenr == 0)
2834 continue;
2835
2836 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2837 key.offset -= btrfs_file_extent_offset(buf, fi);
2838 ret = process_func(trans, root, bytenr, num_bytes,
2839 parent, ref_root, key.objectid,
2840 key.offset, for_cow);
2841 if (ret)
2842 goto fail;
2843 } else {
2844 bytenr = btrfs_node_blockptr(buf, i);
2845 num_bytes = btrfs_level_size(root, level - 1);
2846 ret = process_func(trans, root, bytenr, num_bytes,
2847 parent, ref_root, level - 1, 0,
2848 for_cow);
2849 if (ret)
2850 goto fail;
2851 }
2852 }
2853 return 0;
2854 fail:
2855 return ret;
2856 }
2857
2858 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2859 struct extent_buffer *buf, int full_backref, int for_cow)
2860 {
2861 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2862 }
2863
2864 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2865 struct extent_buffer *buf, int full_backref, int for_cow)
2866 {
2867 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2868 }
2869
2870 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2871 struct btrfs_root *root,
2872 struct btrfs_path *path,
2873 struct btrfs_block_group_cache *cache)
2874 {
2875 int ret;
2876 struct btrfs_root *extent_root = root->fs_info->extent_root;
2877 unsigned long bi;
2878 struct extent_buffer *leaf;
2879
2880 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2881 if (ret < 0)
2882 goto fail;
2883 BUG_ON(ret); /* Corruption */
2884
2885 leaf = path->nodes[0];
2886 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2887 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2888 btrfs_mark_buffer_dirty(leaf);
2889 btrfs_release_path(path);
2890 fail:
2891 if (ret) {
2892 btrfs_abort_transaction(trans, root, ret);
2893 return ret;
2894 }
2895 return 0;
2896
2897 }
2898
2899 static struct btrfs_block_group_cache *
2900 next_block_group(struct btrfs_root *root,
2901 struct btrfs_block_group_cache *cache)
2902 {
2903 struct rb_node *node;
2904 spin_lock(&root->fs_info->block_group_cache_lock);
2905 node = rb_next(&cache->cache_node);
2906 btrfs_put_block_group(cache);
2907 if (node) {
2908 cache = rb_entry(node, struct btrfs_block_group_cache,
2909 cache_node);
2910 btrfs_get_block_group(cache);
2911 } else
2912 cache = NULL;
2913 spin_unlock(&root->fs_info->block_group_cache_lock);
2914 return cache;
2915 }
2916
2917 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2918 struct btrfs_trans_handle *trans,
2919 struct btrfs_path *path)
2920 {
2921 struct btrfs_root *root = block_group->fs_info->tree_root;
2922 struct inode *inode = NULL;
2923 u64 alloc_hint = 0;
2924 int dcs = BTRFS_DC_ERROR;
2925 int num_pages = 0;
2926 int retries = 0;
2927 int ret = 0;
2928
2929 /*
2930 * If this block group is smaller than 100 megs don't bother caching the
2931 * block group.
2932 */
2933 if (block_group->key.offset < (100 * 1024 * 1024)) {
2934 spin_lock(&block_group->lock);
2935 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2936 spin_unlock(&block_group->lock);
2937 return 0;
2938 }
2939
2940 again:
2941 inode = lookup_free_space_inode(root, block_group, path);
2942 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2943 ret = PTR_ERR(inode);
2944 btrfs_release_path(path);
2945 goto out;
2946 }
2947
2948 if (IS_ERR(inode)) {
2949 BUG_ON(retries);
2950 retries++;
2951
2952 if (block_group->ro)
2953 goto out_free;
2954
2955 ret = create_free_space_inode(root, trans, block_group, path);
2956 if (ret)
2957 goto out_free;
2958 goto again;
2959 }
2960
2961 /* We've already setup this transaction, go ahead and exit */
2962 if (block_group->cache_generation == trans->transid &&
2963 i_size_read(inode)) {
2964 dcs = BTRFS_DC_SETUP;
2965 goto out_put;
2966 }
2967
2968 /*
2969 * We want to set the generation to 0, that way if anything goes wrong
2970 * from here on out we know not to trust this cache when we load up next
2971 * time.
2972 */
2973 BTRFS_I(inode)->generation = 0;
2974 ret = btrfs_update_inode(trans, root, inode);
2975 WARN_ON(ret);
2976
2977 if (i_size_read(inode) > 0) {
2978 ret = btrfs_truncate_free_space_cache(root, trans, path,
2979 inode);
2980 if (ret)
2981 goto out_put;
2982 }
2983
2984 spin_lock(&block_group->lock);
2985 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2986 !btrfs_test_opt(root, SPACE_CACHE)) {
2987 /*
2988 * don't bother trying to write stuff out _if_
2989 * a) we're not cached,
2990 * b) we're with nospace_cache mount option.
2991 */
2992 dcs = BTRFS_DC_WRITTEN;
2993 spin_unlock(&block_group->lock);
2994 goto out_put;
2995 }
2996 spin_unlock(&block_group->lock);
2997
2998 /*
2999 * Try to preallocate enough space based on how big the block group is.
3000 * Keep in mind this has to include any pinned space which could end up
3001 * taking up quite a bit since it's not folded into the other space
3002 * cache.
3003 */
3004 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3005 if (!num_pages)
3006 num_pages = 1;
3007
3008 num_pages *= 16;
3009 num_pages *= PAGE_CACHE_SIZE;
3010
3011 ret = btrfs_check_data_free_space(inode, num_pages);
3012 if (ret)
3013 goto out_put;
3014
3015 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3016 num_pages, num_pages,
3017 &alloc_hint);
3018 if (!ret)
3019 dcs = BTRFS_DC_SETUP;
3020 btrfs_free_reserved_data_space(inode, num_pages);
3021
3022 out_put:
3023 iput(inode);
3024 out_free:
3025 btrfs_release_path(path);
3026 out:
3027 spin_lock(&block_group->lock);
3028 if (!ret && dcs == BTRFS_DC_SETUP)
3029 block_group->cache_generation = trans->transid;
3030 block_group->disk_cache_state = dcs;
3031 spin_unlock(&block_group->lock);
3032
3033 return ret;
3034 }
3035
3036 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3037 struct btrfs_root *root)
3038 {
3039 struct btrfs_block_group_cache *cache;
3040 int err = 0;
3041 struct btrfs_path *path;
3042 u64 last = 0;
3043
3044 path = btrfs_alloc_path();
3045 if (!path)
3046 return -ENOMEM;
3047
3048 again:
3049 while (1) {
3050 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3051 while (cache) {
3052 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3053 break;
3054 cache = next_block_group(root, cache);
3055 }
3056 if (!cache) {
3057 if (last == 0)
3058 break;
3059 last = 0;
3060 continue;
3061 }
3062 err = cache_save_setup(cache, trans, path);
3063 last = cache->key.objectid + cache->key.offset;
3064 btrfs_put_block_group(cache);
3065 }
3066
3067 while (1) {
3068 if (last == 0) {
3069 err = btrfs_run_delayed_refs(trans, root,
3070 (unsigned long)-1);
3071 if (err) /* File system offline */
3072 goto out;
3073 }
3074
3075 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3076 while (cache) {
3077 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3078 btrfs_put_block_group(cache);
3079 goto again;
3080 }
3081
3082 if (cache->dirty)
3083 break;
3084 cache = next_block_group(root, cache);
3085 }
3086 if (!cache) {
3087 if (last == 0)
3088 break;
3089 last = 0;
3090 continue;
3091 }
3092
3093 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3094 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3095 cache->dirty = 0;
3096 last = cache->key.objectid + cache->key.offset;
3097
3098 err = write_one_cache_group(trans, root, path, cache);
3099 if (err) /* File system offline */
3100 goto out;
3101
3102 btrfs_put_block_group(cache);
3103 }
3104
3105 while (1) {
3106 /*
3107 * I don't think this is needed since we're just marking our
3108 * preallocated extent as written, but just in case it can't
3109 * hurt.
3110 */
3111 if (last == 0) {
3112 err = btrfs_run_delayed_refs(trans, root,
3113 (unsigned long)-1);
3114 if (err) /* File system offline */
3115 goto out;
3116 }
3117
3118 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3119 while (cache) {
3120 /*
3121 * Really this shouldn't happen, but it could if we
3122 * couldn't write the entire preallocated extent and
3123 * splitting the extent resulted in a new block.
3124 */
3125 if (cache->dirty) {
3126 btrfs_put_block_group(cache);
3127 goto again;
3128 }
3129 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3130 break;
3131 cache = next_block_group(root, cache);
3132 }
3133 if (!cache) {
3134 if (last == 0)
3135 break;
3136 last = 0;
3137 continue;
3138 }
3139
3140 err = btrfs_write_out_cache(root, trans, cache, path);
3141
3142 /*
3143 * If we didn't have an error then the cache state is still
3144 * NEED_WRITE, so we can set it to WRITTEN.
3145 */
3146 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3147 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3148 last = cache->key.objectid + cache->key.offset;
3149 btrfs_put_block_group(cache);
3150 }
3151 out:
3152
3153 btrfs_free_path(path);
3154 return err;
3155 }
3156
3157 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3158 {
3159 struct btrfs_block_group_cache *block_group;
3160 int readonly = 0;
3161
3162 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3163 if (!block_group || block_group->ro)
3164 readonly = 1;
3165 if (block_group)
3166 btrfs_put_block_group(block_group);
3167 return readonly;
3168 }
3169
3170 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3171 u64 total_bytes, u64 bytes_used,
3172 struct btrfs_space_info **space_info)
3173 {
3174 struct btrfs_space_info *found;
3175 int i;
3176 int factor;
3177
3178 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3179 BTRFS_BLOCK_GROUP_RAID10))
3180 factor = 2;
3181 else
3182 factor = 1;
3183
3184 found = __find_space_info(info, flags);
3185 if (found) {
3186 spin_lock(&found->lock);
3187 found->total_bytes += total_bytes;
3188 found->disk_total += total_bytes * factor;
3189 found->bytes_used += bytes_used;
3190 found->disk_used += bytes_used * factor;
3191 found->full = 0;
3192 spin_unlock(&found->lock);
3193 *space_info = found;
3194 return 0;
3195 }
3196 found = kzalloc(sizeof(*found), GFP_NOFS);
3197 if (!found)
3198 return -ENOMEM;
3199
3200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3201 INIT_LIST_HEAD(&found->block_groups[i]);
3202 init_rwsem(&found->groups_sem);
3203 spin_lock_init(&found->lock);
3204 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3205 found->total_bytes = total_bytes;
3206 found->disk_total = total_bytes * factor;
3207 found->bytes_used = bytes_used;
3208 found->disk_used = bytes_used * factor;
3209 found->bytes_pinned = 0;
3210 found->bytes_reserved = 0;
3211 found->bytes_readonly = 0;
3212 found->bytes_may_use = 0;
3213 found->full = 0;
3214 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3215 found->chunk_alloc = 0;
3216 found->flush = 0;
3217 init_waitqueue_head(&found->wait);
3218 *space_info = found;
3219 list_add_rcu(&found->list, &info->space_info);
3220 if (flags & BTRFS_BLOCK_GROUP_DATA)
3221 info->data_sinfo = found;
3222 return 0;
3223 }
3224
3225 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3226 {
3227 u64 extra_flags = chunk_to_extended(flags) &
3228 BTRFS_EXTENDED_PROFILE_MASK;
3229
3230 write_seqlock(&fs_info->profiles_lock);
3231 if (flags & BTRFS_BLOCK_GROUP_DATA)
3232 fs_info->avail_data_alloc_bits |= extra_flags;
3233 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3234 fs_info->avail_metadata_alloc_bits |= extra_flags;
3235 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3236 fs_info->avail_system_alloc_bits |= extra_flags;
3237 write_sequnlock(&fs_info->profiles_lock);
3238 }
3239
3240 /*
3241 * returns target flags in extended format or 0 if restripe for this
3242 * chunk_type is not in progress
3243 *
3244 * should be called with either volume_mutex or balance_lock held
3245 */
3246 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3247 {
3248 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3249 u64 target = 0;
3250
3251 if (!bctl)
3252 return 0;
3253
3254 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3255 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3256 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3257 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3258 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3259 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3260 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3261 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3262 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3263 }
3264
3265 return target;
3266 }
3267
3268 /*
3269 * @flags: available profiles in extended format (see ctree.h)
3270 *
3271 * Returns reduced profile in chunk format. If profile changing is in
3272 * progress (either running or paused) picks the target profile (if it's
3273 * already available), otherwise falls back to plain reducing.
3274 */
3275 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3276 {
3277 /*
3278 * we add in the count of missing devices because we want
3279 * to make sure that any RAID levels on a degraded FS
3280 * continue to be honored.
3281 */
3282 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3283 root->fs_info->fs_devices->missing_devices;
3284 u64 target;
3285
3286 /*
3287 * see if restripe for this chunk_type is in progress, if so
3288 * try to reduce to the target profile
3289 */
3290 spin_lock(&root->fs_info->balance_lock);
3291 target = get_restripe_target(root->fs_info, flags);
3292 if (target) {
3293 /* pick target profile only if it's already available */
3294 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3295 spin_unlock(&root->fs_info->balance_lock);
3296 return extended_to_chunk(target);
3297 }
3298 }
3299 spin_unlock(&root->fs_info->balance_lock);
3300
3301 if (num_devices == 1)
3302 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3303 if (num_devices < 4)
3304 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3305
3306 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3307 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3308 BTRFS_BLOCK_GROUP_RAID10))) {
3309 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3310 }
3311
3312 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3313 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3314 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3315 }
3316
3317 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3318 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3319 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3320 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3321 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3322 }
3323
3324 return extended_to_chunk(flags);
3325 }
3326
3327 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3328 {
3329 unsigned seq;
3330
3331 do {
3332 seq = read_seqbegin(&root->fs_info->profiles_lock);
3333
3334 if (flags & BTRFS_BLOCK_GROUP_DATA)
3335 flags |= root->fs_info->avail_data_alloc_bits;
3336 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3337 flags |= root->fs_info->avail_system_alloc_bits;
3338 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3339 flags |= root->fs_info->avail_metadata_alloc_bits;
3340 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3341
3342 return btrfs_reduce_alloc_profile(root, flags);
3343 }
3344
3345 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3346 {
3347 u64 flags;
3348
3349 if (data)
3350 flags = BTRFS_BLOCK_GROUP_DATA;
3351 else if (root == root->fs_info->chunk_root)
3352 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3353 else
3354 flags = BTRFS_BLOCK_GROUP_METADATA;
3355
3356 return get_alloc_profile(root, flags);
3357 }
3358
3359 /*
3360 * This will check the space that the inode allocates from to make sure we have
3361 * enough space for bytes.
3362 */
3363 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3364 {
3365 struct btrfs_space_info *data_sinfo;
3366 struct btrfs_root *root = BTRFS_I(inode)->root;
3367 struct btrfs_fs_info *fs_info = root->fs_info;
3368 u64 used;
3369 int ret = 0, committed = 0, alloc_chunk = 1;
3370
3371 /* make sure bytes are sectorsize aligned */
3372 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3373
3374 if (root == root->fs_info->tree_root ||
3375 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3376 alloc_chunk = 0;
3377 committed = 1;
3378 }
3379
3380 data_sinfo = fs_info->data_sinfo;
3381 if (!data_sinfo)
3382 goto alloc;
3383
3384 again:
3385 /* make sure we have enough space to handle the data first */
3386 spin_lock(&data_sinfo->lock);
3387 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3388 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3389 data_sinfo->bytes_may_use;
3390
3391 if (used + bytes > data_sinfo->total_bytes) {
3392 struct btrfs_trans_handle *trans;
3393
3394 /*
3395 * if we don't have enough free bytes in this space then we need
3396 * to alloc a new chunk.
3397 */
3398 if (!data_sinfo->full && alloc_chunk) {
3399 u64 alloc_target;
3400
3401 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3402 spin_unlock(&data_sinfo->lock);
3403 alloc:
3404 alloc_target = btrfs_get_alloc_profile(root, 1);
3405 trans = btrfs_join_transaction(root);
3406 if (IS_ERR(trans))
3407 return PTR_ERR(trans);
3408
3409 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3410 alloc_target,
3411 CHUNK_ALLOC_NO_FORCE);
3412 btrfs_end_transaction(trans, root);
3413 if (ret < 0) {
3414 if (ret != -ENOSPC)
3415 return ret;
3416 else
3417 goto commit_trans;
3418 }
3419
3420 if (!data_sinfo)
3421 data_sinfo = fs_info->data_sinfo;
3422
3423 goto again;
3424 }
3425
3426 /*
3427 * If we have less pinned bytes than we want to allocate then
3428 * don't bother committing the transaction, it won't help us.
3429 */
3430 if (data_sinfo->bytes_pinned < bytes)
3431 committed = 1;
3432 spin_unlock(&data_sinfo->lock);
3433
3434 /* commit the current transaction and try again */
3435 commit_trans:
3436 if (!committed &&
3437 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3438 committed = 1;
3439 trans = btrfs_join_transaction(root);
3440 if (IS_ERR(trans))
3441 return PTR_ERR(trans);
3442 ret = btrfs_commit_transaction(trans, root);
3443 if (ret)
3444 return ret;
3445 goto again;
3446 }
3447
3448 return -ENOSPC;
3449 }
3450 data_sinfo->bytes_may_use += bytes;
3451 trace_btrfs_space_reservation(root->fs_info, "space_info",
3452 data_sinfo->flags, bytes, 1);
3453 spin_unlock(&data_sinfo->lock);
3454
3455 return 0;
3456 }
3457
3458 /*
3459 * Called if we need to clear a data reservation for this inode.
3460 */
3461 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3462 {
3463 struct btrfs_root *root = BTRFS_I(inode)->root;
3464 struct btrfs_space_info *data_sinfo;
3465
3466 /* make sure bytes are sectorsize aligned */
3467 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3468
3469 data_sinfo = root->fs_info->data_sinfo;
3470 spin_lock(&data_sinfo->lock);
3471 data_sinfo->bytes_may_use -= bytes;
3472 trace_btrfs_space_reservation(root->fs_info, "space_info",
3473 data_sinfo->flags, bytes, 0);
3474 spin_unlock(&data_sinfo->lock);
3475 }
3476
3477 static void force_metadata_allocation(struct btrfs_fs_info *info)
3478 {
3479 struct list_head *head = &info->space_info;
3480 struct btrfs_space_info *found;
3481
3482 rcu_read_lock();
3483 list_for_each_entry_rcu(found, head, list) {
3484 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3485 found->force_alloc = CHUNK_ALLOC_FORCE;
3486 }
3487 rcu_read_unlock();
3488 }
3489
3490 static int should_alloc_chunk(struct btrfs_root *root,
3491 struct btrfs_space_info *sinfo, int force)
3492 {
3493 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3494 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3495 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3496 u64 thresh;
3497
3498 if (force == CHUNK_ALLOC_FORCE)
3499 return 1;
3500
3501 /*
3502 * We need to take into account the global rsv because for all intents
3503 * and purposes it's used space. Don't worry about locking the
3504 * global_rsv, it doesn't change except when the transaction commits.
3505 */
3506 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3507 num_allocated += global_rsv->size;
3508
3509 /*
3510 * in limited mode, we want to have some free space up to
3511 * about 1% of the FS size.
3512 */
3513 if (force == CHUNK_ALLOC_LIMITED) {
3514 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3515 thresh = max_t(u64, 64 * 1024 * 1024,
3516 div_factor_fine(thresh, 1));
3517
3518 if (num_bytes - num_allocated < thresh)
3519 return 1;
3520 }
3521
3522 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3523 return 0;
3524 return 1;
3525 }
3526
3527 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3528 {
3529 u64 num_dev;
3530
3531 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3532 type & BTRFS_BLOCK_GROUP_RAID0)
3533 num_dev = root->fs_info->fs_devices->rw_devices;
3534 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3535 num_dev = 2;
3536 else
3537 num_dev = 1; /* DUP or single */
3538
3539 /* metadata for updaing devices and chunk tree */
3540 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3541 }
3542
3543 static void check_system_chunk(struct btrfs_trans_handle *trans,
3544 struct btrfs_root *root, u64 type)
3545 {
3546 struct btrfs_space_info *info;
3547 u64 left;
3548 u64 thresh;
3549
3550 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3551 spin_lock(&info->lock);
3552 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3553 info->bytes_reserved - info->bytes_readonly;
3554 spin_unlock(&info->lock);
3555
3556 thresh = get_system_chunk_thresh(root, type);
3557 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3558 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3559 left, thresh, type);
3560 dump_space_info(info, 0, 0);
3561 }
3562
3563 if (left < thresh) {
3564 u64 flags;
3565
3566 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3567 btrfs_alloc_chunk(trans, root, flags);
3568 }
3569 }
3570
3571 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3572 struct btrfs_root *extent_root, u64 flags, int force)
3573 {
3574 struct btrfs_space_info *space_info;
3575 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3576 int wait_for_alloc = 0;
3577 int ret = 0;
3578
3579 /* Don't re-enter if we're already allocating a chunk */
3580 if (trans->allocating_chunk)
3581 return -ENOSPC;
3582
3583 space_info = __find_space_info(extent_root->fs_info, flags);
3584 if (!space_info) {
3585 ret = update_space_info(extent_root->fs_info, flags,
3586 0, 0, &space_info);
3587 BUG_ON(ret); /* -ENOMEM */
3588 }
3589 BUG_ON(!space_info); /* Logic error */
3590
3591 again:
3592 spin_lock(&space_info->lock);
3593 if (force < space_info->force_alloc)
3594 force = space_info->force_alloc;
3595 if (space_info->full) {
3596 spin_unlock(&space_info->lock);
3597 return 0;
3598 }
3599
3600 if (!should_alloc_chunk(extent_root, space_info, force)) {
3601 spin_unlock(&space_info->lock);
3602 return 0;
3603 } else if (space_info->chunk_alloc) {
3604 wait_for_alloc = 1;
3605 } else {
3606 space_info->chunk_alloc = 1;
3607 }
3608
3609 spin_unlock(&space_info->lock);
3610
3611 mutex_lock(&fs_info->chunk_mutex);
3612
3613 /*
3614 * The chunk_mutex is held throughout the entirety of a chunk
3615 * allocation, so once we've acquired the chunk_mutex we know that the
3616 * other guy is done and we need to recheck and see if we should
3617 * allocate.
3618 */
3619 if (wait_for_alloc) {
3620 mutex_unlock(&fs_info->chunk_mutex);
3621 wait_for_alloc = 0;
3622 goto again;
3623 }
3624
3625 trans->allocating_chunk = true;
3626
3627 /*
3628 * If we have mixed data/metadata chunks we want to make sure we keep
3629 * allocating mixed chunks instead of individual chunks.
3630 */
3631 if (btrfs_mixed_space_info(space_info))
3632 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3633
3634 /*
3635 * if we're doing a data chunk, go ahead and make sure that
3636 * we keep a reasonable number of metadata chunks allocated in the
3637 * FS as well.
3638 */
3639 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3640 fs_info->data_chunk_allocations++;
3641 if (!(fs_info->data_chunk_allocations %
3642 fs_info->metadata_ratio))
3643 force_metadata_allocation(fs_info);
3644 }
3645
3646 /*
3647 * Check if we have enough space in SYSTEM chunk because we may need
3648 * to update devices.
3649 */
3650 check_system_chunk(trans, extent_root, flags);
3651
3652 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3653 trans->allocating_chunk = false;
3654 if (ret < 0 && ret != -ENOSPC)
3655 goto out;
3656
3657 spin_lock(&space_info->lock);
3658 if (ret)
3659 space_info->full = 1;
3660 else
3661 ret = 1;
3662
3663 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3664 space_info->chunk_alloc = 0;
3665 spin_unlock(&space_info->lock);
3666 out:
3667 mutex_unlock(&fs_info->chunk_mutex);
3668 return ret;
3669 }
3670
3671 static int can_overcommit(struct btrfs_root *root,
3672 struct btrfs_space_info *space_info, u64 bytes,
3673 enum btrfs_reserve_flush_enum flush)
3674 {
3675 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3676 u64 profile = btrfs_get_alloc_profile(root, 0);
3677 u64 rsv_size = 0;
3678 u64 avail;
3679 u64 used;
3680
3681 used = space_info->bytes_used + space_info->bytes_reserved +
3682 space_info->bytes_pinned + space_info->bytes_readonly;
3683
3684 spin_lock(&global_rsv->lock);
3685 rsv_size = global_rsv->size;
3686 spin_unlock(&global_rsv->lock);
3687
3688 /*
3689 * We only want to allow over committing if we have lots of actual space
3690 * free, but if we don't have enough space to handle the global reserve
3691 * space then we could end up having a real enospc problem when trying
3692 * to allocate a chunk or some other such important allocation.
3693 */
3694 rsv_size <<= 1;
3695 if (used + rsv_size >= space_info->total_bytes)
3696 return 0;
3697
3698 used += space_info->bytes_may_use;
3699
3700 spin_lock(&root->fs_info->free_chunk_lock);
3701 avail = root->fs_info->free_chunk_space;
3702 spin_unlock(&root->fs_info->free_chunk_lock);
3703
3704 /*
3705 * If we have dup, raid1 or raid10 then only half of the free
3706 * space is actually useable.
3707 */
3708 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3709 BTRFS_BLOCK_GROUP_RAID1 |
3710 BTRFS_BLOCK_GROUP_RAID10))
3711 avail >>= 1;
3712
3713 /*
3714 * If we aren't flushing all things, let us overcommit up to
3715 * 1/2th of the space. If we can flush, don't let us overcommit
3716 * too much, let it overcommit up to 1/8 of the space.
3717 */
3718 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3719 avail >>= 3;
3720 else
3721 avail >>= 1;
3722
3723 if (used + bytes < space_info->total_bytes + avail)
3724 return 1;
3725 return 0;
3726 }
3727
3728 static inline int writeback_inodes_sb_nr_if_idle_safe(struct super_block *sb,
3729 unsigned long nr_pages,
3730 enum wb_reason reason)
3731 {
3732 /* the flusher is dealing with the dirty inodes now. */
3733 if (writeback_in_progress(sb->s_bdi))
3734 return 1;
3735
3736 if (down_read_trylock(&sb->s_umount)) {
3737 writeback_inodes_sb_nr(sb, nr_pages, reason);
3738 up_read(&sb->s_umount);
3739 return 1;
3740 }
3741
3742 return 0;
3743 }
3744
3745 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3746 unsigned long nr_pages)
3747 {
3748 struct super_block *sb = root->fs_info->sb;
3749 int started;
3750
3751 /* If we can not start writeback, just sync all the delalloc file. */
3752 started = writeback_inodes_sb_nr_if_idle_safe(sb, nr_pages,
3753 WB_REASON_FS_FREE_SPACE);
3754 if (!started) {
3755 /*
3756 * We needn't worry the filesystem going from r/w to r/o though
3757 * we don't acquire ->s_umount mutex, because the filesystem
3758 * should guarantee the delalloc inodes list be empty after
3759 * the filesystem is readonly(all dirty pages are written to
3760 * the disk).
3761 */
3762 btrfs_start_delalloc_inodes(root, 0);
3763 btrfs_wait_ordered_extents(root, 0);
3764 }
3765 }
3766
3767 /*
3768 * shrink metadata reservation for delalloc
3769 */
3770 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3771 bool wait_ordered)
3772 {
3773 struct btrfs_block_rsv *block_rsv;
3774 struct btrfs_space_info *space_info;
3775 struct btrfs_trans_handle *trans;
3776 u64 delalloc_bytes;
3777 u64 max_reclaim;
3778 long time_left;
3779 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3780 int loops = 0;
3781 enum btrfs_reserve_flush_enum flush;
3782
3783 trans = (struct btrfs_trans_handle *)current->journal_info;
3784 block_rsv = &root->fs_info->delalloc_block_rsv;
3785 space_info = block_rsv->space_info;
3786
3787 smp_mb();
3788 delalloc_bytes = percpu_counter_sum_positive(
3789 &root->fs_info->delalloc_bytes);
3790 if (delalloc_bytes == 0) {
3791 if (trans)
3792 return;
3793 btrfs_wait_ordered_extents(root, 0);
3794 return;
3795 }
3796
3797 while (delalloc_bytes && loops < 3) {
3798 max_reclaim = min(delalloc_bytes, to_reclaim);
3799 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3800 btrfs_writeback_inodes_sb_nr(root, nr_pages);
3801 /*
3802 * We need to wait for the async pages to actually start before
3803 * we do anything.
3804 */
3805 wait_event(root->fs_info->async_submit_wait,
3806 !atomic_read(&root->fs_info->async_delalloc_pages));
3807
3808 if (!trans)
3809 flush = BTRFS_RESERVE_FLUSH_ALL;
3810 else
3811 flush = BTRFS_RESERVE_NO_FLUSH;
3812 spin_lock(&space_info->lock);
3813 if (can_overcommit(root, space_info, orig, flush)) {
3814 spin_unlock(&space_info->lock);
3815 break;
3816 }
3817 spin_unlock(&space_info->lock);
3818
3819 loops++;
3820 if (wait_ordered && !trans) {
3821 btrfs_wait_ordered_extents(root, 0);
3822 } else {
3823 time_left = schedule_timeout_killable(1);
3824 if (time_left)
3825 break;
3826 }
3827 smp_mb();
3828 delalloc_bytes = percpu_counter_sum_positive(
3829 &root->fs_info->delalloc_bytes);
3830 }
3831 }
3832
3833 /**
3834 * maybe_commit_transaction - possibly commit the transaction if its ok to
3835 * @root - the root we're allocating for
3836 * @bytes - the number of bytes we want to reserve
3837 * @force - force the commit
3838 *
3839 * This will check to make sure that committing the transaction will actually
3840 * get us somewhere and then commit the transaction if it does. Otherwise it
3841 * will return -ENOSPC.
3842 */
3843 static int may_commit_transaction(struct btrfs_root *root,
3844 struct btrfs_space_info *space_info,
3845 u64 bytes, int force)
3846 {
3847 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3848 struct btrfs_trans_handle *trans;
3849
3850 trans = (struct btrfs_trans_handle *)current->journal_info;
3851 if (trans)
3852 return -EAGAIN;
3853
3854 if (force)
3855 goto commit;
3856
3857 /* See if there is enough pinned space to make this reservation */
3858 spin_lock(&space_info->lock);
3859 if (space_info->bytes_pinned >= bytes) {
3860 spin_unlock(&space_info->lock);
3861 goto commit;
3862 }
3863 spin_unlock(&space_info->lock);
3864
3865 /*
3866 * See if there is some space in the delayed insertion reservation for
3867 * this reservation.
3868 */
3869 if (space_info != delayed_rsv->space_info)
3870 return -ENOSPC;
3871
3872 spin_lock(&space_info->lock);
3873 spin_lock(&delayed_rsv->lock);
3874 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3875 spin_unlock(&delayed_rsv->lock);
3876 spin_unlock(&space_info->lock);
3877 return -ENOSPC;
3878 }
3879 spin_unlock(&delayed_rsv->lock);
3880 spin_unlock(&space_info->lock);
3881
3882 commit:
3883 trans = btrfs_join_transaction(root);
3884 if (IS_ERR(trans))
3885 return -ENOSPC;
3886
3887 return btrfs_commit_transaction(trans, root);
3888 }
3889
3890 enum flush_state {
3891 FLUSH_DELAYED_ITEMS_NR = 1,
3892 FLUSH_DELAYED_ITEMS = 2,
3893 FLUSH_DELALLOC = 3,
3894 FLUSH_DELALLOC_WAIT = 4,
3895 ALLOC_CHUNK = 5,
3896 COMMIT_TRANS = 6,
3897 };
3898
3899 static int flush_space(struct btrfs_root *root,
3900 struct btrfs_space_info *space_info, u64 num_bytes,
3901 u64 orig_bytes, int state)
3902 {
3903 struct btrfs_trans_handle *trans;
3904 int nr;
3905 int ret = 0;
3906
3907 switch (state) {
3908 case FLUSH_DELAYED_ITEMS_NR:
3909 case FLUSH_DELAYED_ITEMS:
3910 if (state == FLUSH_DELAYED_ITEMS_NR) {
3911 u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3912
3913 nr = (int)div64_u64(num_bytes, bytes);
3914 if (!nr)
3915 nr = 1;
3916 nr *= 2;
3917 } else {
3918 nr = -1;
3919 }
3920 trans = btrfs_join_transaction(root);
3921 if (IS_ERR(trans)) {
3922 ret = PTR_ERR(trans);
3923 break;
3924 }
3925 ret = btrfs_run_delayed_items_nr(trans, root, nr);
3926 btrfs_end_transaction(trans, root);
3927 break;
3928 case FLUSH_DELALLOC:
3929 case FLUSH_DELALLOC_WAIT:
3930 shrink_delalloc(root, num_bytes, orig_bytes,
3931 state == FLUSH_DELALLOC_WAIT);
3932 break;
3933 case ALLOC_CHUNK:
3934 trans = btrfs_join_transaction(root);
3935 if (IS_ERR(trans)) {
3936 ret = PTR_ERR(trans);
3937 break;
3938 }
3939 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3940 btrfs_get_alloc_profile(root, 0),
3941 CHUNK_ALLOC_NO_FORCE);
3942 btrfs_end_transaction(trans, root);
3943 if (ret == -ENOSPC)
3944 ret = 0;
3945 break;
3946 case COMMIT_TRANS:
3947 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3948 break;
3949 default:
3950 ret = -ENOSPC;
3951 break;
3952 }
3953
3954 return ret;
3955 }
3956 /**
3957 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3958 * @root - the root we're allocating for
3959 * @block_rsv - the block_rsv we're allocating for
3960 * @orig_bytes - the number of bytes we want
3961 * @flush - wether or not we can flush to make our reservation
3962 *
3963 * This will reserve orgi_bytes number of bytes from the space info associated
3964 * with the block_rsv. If there is not enough space it will make an attempt to
3965 * flush out space to make room. It will do this by flushing delalloc if
3966 * possible or committing the transaction. If flush is 0 then no attempts to
3967 * regain reservations will be made and this will fail if there is not enough
3968 * space already.
3969 */
3970 static int reserve_metadata_bytes(struct btrfs_root *root,
3971 struct btrfs_block_rsv *block_rsv,
3972 u64 orig_bytes,
3973 enum btrfs_reserve_flush_enum flush)
3974 {
3975 struct btrfs_space_info *space_info = block_rsv->space_info;
3976 u64 used;
3977 u64 num_bytes = orig_bytes;
3978 int flush_state = FLUSH_DELAYED_ITEMS_NR;
3979 int ret = 0;
3980 bool flushing = false;
3981
3982 again:
3983 ret = 0;
3984 spin_lock(&space_info->lock);
3985 /*
3986 * We only want to wait if somebody other than us is flushing and we
3987 * are actually allowed to flush all things.
3988 */
3989 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
3990 space_info->flush) {
3991 spin_unlock(&space_info->lock);
3992 /*
3993 * If we have a trans handle we can't wait because the flusher
3994 * may have to commit the transaction, which would mean we would
3995 * deadlock since we are waiting for the flusher to finish, but
3996 * hold the current transaction open.
3997 */
3998 if (current->journal_info)
3999 return -EAGAIN;
4000 ret = wait_event_killable(space_info->wait, !space_info->flush);
4001 /* Must have been killed, return */
4002 if (ret)
4003 return -EINTR;
4004
4005 spin_lock(&space_info->lock);
4006 }
4007
4008 ret = -ENOSPC;
4009 used = space_info->bytes_used + space_info->bytes_reserved +
4010 space_info->bytes_pinned + space_info->bytes_readonly +
4011 space_info->bytes_may_use;
4012
4013 /*
4014 * The idea here is that we've not already over-reserved the block group
4015 * then we can go ahead and save our reservation first and then start
4016 * flushing if we need to. Otherwise if we've already overcommitted
4017 * lets start flushing stuff first and then come back and try to make
4018 * our reservation.
4019 */
4020 if (used <= space_info->total_bytes) {
4021 if (used + orig_bytes <= space_info->total_bytes) {
4022 space_info->bytes_may_use += orig_bytes;
4023 trace_btrfs_space_reservation(root->fs_info,
4024 "space_info", space_info->flags, orig_bytes, 1);
4025 ret = 0;
4026 } else {
4027 /*
4028 * Ok set num_bytes to orig_bytes since we aren't
4029 * overocmmitted, this way we only try and reclaim what
4030 * we need.
4031 */
4032 num_bytes = orig_bytes;
4033 }
4034 } else {
4035 /*
4036 * Ok we're over committed, set num_bytes to the overcommitted
4037 * amount plus the amount of bytes that we need for this
4038 * reservation.
4039 */
4040 num_bytes = used - space_info->total_bytes +
4041 (orig_bytes * 2);
4042 }
4043
4044 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4045 space_info->bytes_may_use += orig_bytes;
4046 trace_btrfs_space_reservation(root->fs_info, "space_info",
4047 space_info->flags, orig_bytes,
4048 1);
4049 ret = 0;
4050 }
4051
4052 /*
4053 * Couldn't make our reservation, save our place so while we're trying
4054 * to reclaim space we can actually use it instead of somebody else
4055 * stealing it from us.
4056 *
4057 * We make the other tasks wait for the flush only when we can flush
4058 * all things.
4059 */
4060 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4061 flushing = true;
4062 space_info->flush = 1;
4063 }
4064
4065 spin_unlock(&space_info->lock);
4066
4067 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4068 goto out;
4069
4070 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4071 flush_state);
4072 flush_state++;
4073
4074 /*
4075 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4076 * would happen. So skip delalloc flush.
4077 */
4078 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4079 (flush_state == FLUSH_DELALLOC ||
4080 flush_state == FLUSH_DELALLOC_WAIT))
4081 flush_state = ALLOC_CHUNK;
4082
4083 if (!ret)
4084 goto again;
4085 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4086 flush_state < COMMIT_TRANS)
4087 goto again;
4088 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4089 flush_state <= COMMIT_TRANS)
4090 goto again;
4091
4092 out:
4093 if (flushing) {
4094 spin_lock(&space_info->lock);
4095 space_info->flush = 0;
4096 wake_up_all(&space_info->wait);
4097 spin_unlock(&space_info->lock);
4098 }
4099 return ret;
4100 }
4101
4102 static struct btrfs_block_rsv *get_block_rsv(
4103 const struct btrfs_trans_handle *trans,
4104 const struct btrfs_root *root)
4105 {
4106 struct btrfs_block_rsv *block_rsv = NULL;
4107
4108 if (root->ref_cows)
4109 block_rsv = trans->block_rsv;
4110
4111 if (root == root->fs_info->csum_root && trans->adding_csums)
4112 block_rsv = trans->block_rsv;
4113
4114 if (!block_rsv)
4115 block_rsv = root->block_rsv;
4116
4117 if (!block_rsv)
4118 block_rsv = &root->fs_info->empty_block_rsv;
4119
4120 return block_rsv;
4121 }
4122
4123 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4124 u64 num_bytes)
4125 {
4126 int ret = -ENOSPC;
4127 spin_lock(&block_rsv->lock);
4128 if (block_rsv->reserved >= num_bytes) {
4129 block_rsv->reserved -= num_bytes;
4130 if (block_rsv->reserved < block_rsv->size)
4131 block_rsv->full = 0;
4132 ret = 0;
4133 }
4134 spin_unlock(&block_rsv->lock);
4135 return ret;
4136 }
4137
4138 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4139 u64 num_bytes, int update_size)
4140 {
4141 spin_lock(&block_rsv->lock);
4142 block_rsv->reserved += num_bytes;
4143 if (update_size)
4144 block_rsv->size += num_bytes;
4145 else if (block_rsv->reserved >= block_rsv->size)
4146 block_rsv->full = 1;
4147 spin_unlock(&block_rsv->lock);
4148 }
4149
4150 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4151 struct btrfs_block_rsv *block_rsv,
4152 struct btrfs_block_rsv *dest, u64 num_bytes)
4153 {
4154 struct btrfs_space_info *space_info = block_rsv->space_info;
4155
4156 spin_lock(&block_rsv->lock);
4157 if (num_bytes == (u64)-1)
4158 num_bytes = block_rsv->size;
4159 block_rsv->size -= num_bytes;
4160 if (block_rsv->reserved >= block_rsv->size) {
4161 num_bytes = block_rsv->reserved - block_rsv->size;
4162 block_rsv->reserved = block_rsv->size;
4163 block_rsv->full = 1;
4164 } else {
4165 num_bytes = 0;
4166 }
4167 spin_unlock(&block_rsv->lock);
4168
4169 if (num_bytes > 0) {
4170 if (dest) {
4171 spin_lock(&dest->lock);
4172 if (!dest->full) {
4173 u64 bytes_to_add;
4174
4175 bytes_to_add = dest->size - dest->reserved;
4176 bytes_to_add = min(num_bytes, bytes_to_add);
4177 dest->reserved += bytes_to_add;
4178 if (dest->reserved >= dest->size)
4179 dest->full = 1;
4180 num_bytes -= bytes_to_add;
4181 }
4182 spin_unlock(&dest->lock);
4183 }
4184 if (num_bytes) {
4185 spin_lock(&space_info->lock);
4186 space_info->bytes_may_use -= num_bytes;
4187 trace_btrfs_space_reservation(fs_info, "space_info",
4188 space_info->flags, num_bytes, 0);
4189 space_info->reservation_progress++;
4190 spin_unlock(&space_info->lock);
4191 }
4192 }
4193 }
4194
4195 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4196 struct btrfs_block_rsv *dst, u64 num_bytes)
4197 {
4198 int ret;
4199
4200 ret = block_rsv_use_bytes(src, num_bytes);
4201 if (ret)
4202 return ret;
4203
4204 block_rsv_add_bytes(dst, num_bytes, 1);
4205 return 0;
4206 }
4207
4208 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4209 {
4210 memset(rsv, 0, sizeof(*rsv));
4211 spin_lock_init(&rsv->lock);
4212 rsv->type = type;
4213 }
4214
4215 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4216 unsigned short type)
4217 {
4218 struct btrfs_block_rsv *block_rsv;
4219 struct btrfs_fs_info *fs_info = root->fs_info;
4220
4221 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4222 if (!block_rsv)
4223 return NULL;
4224
4225 btrfs_init_block_rsv(block_rsv, type);
4226 block_rsv->space_info = __find_space_info(fs_info,
4227 BTRFS_BLOCK_GROUP_METADATA);
4228 return block_rsv;
4229 }
4230
4231 void btrfs_free_block_rsv(struct btrfs_root *root,
4232 struct btrfs_block_rsv *rsv)
4233 {
4234 if (!rsv)
4235 return;
4236 btrfs_block_rsv_release(root, rsv, (u64)-1);
4237 kfree(rsv);
4238 }
4239
4240 int btrfs_block_rsv_add(struct btrfs_root *root,
4241 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4242 enum btrfs_reserve_flush_enum flush)
4243 {
4244 int ret;
4245
4246 if (num_bytes == 0)
4247 return 0;
4248
4249 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4250 if (!ret) {
4251 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4252 return 0;
4253 }
4254
4255 return ret;
4256 }
4257
4258 int btrfs_block_rsv_check(struct btrfs_root *root,
4259 struct btrfs_block_rsv *block_rsv, int min_factor)
4260 {
4261 u64 num_bytes = 0;
4262 int ret = -ENOSPC;
4263
4264 if (!block_rsv)
4265 return 0;
4266
4267 spin_lock(&block_rsv->lock);
4268 num_bytes = div_factor(block_rsv->size, min_factor);
4269 if (block_rsv->reserved >= num_bytes)
4270 ret = 0;
4271 spin_unlock(&block_rsv->lock);
4272
4273 return ret;
4274 }
4275
4276 int btrfs_block_rsv_refill(struct btrfs_root *root,
4277 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4278 enum btrfs_reserve_flush_enum flush)
4279 {
4280 u64 num_bytes = 0;
4281 int ret = -ENOSPC;
4282
4283 if (!block_rsv)
4284 return 0;
4285
4286 spin_lock(&block_rsv->lock);
4287 num_bytes = min_reserved;
4288 if (block_rsv->reserved >= num_bytes)
4289 ret = 0;
4290 else
4291 num_bytes -= block_rsv->reserved;
4292 spin_unlock(&block_rsv->lock);
4293
4294 if (!ret)
4295 return 0;
4296
4297 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4298 if (!ret) {
4299 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4300 return 0;
4301 }
4302
4303 return ret;
4304 }
4305
4306 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4307 struct btrfs_block_rsv *dst_rsv,
4308 u64 num_bytes)
4309 {
4310 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4311 }
4312
4313 void btrfs_block_rsv_release(struct btrfs_root *root,
4314 struct btrfs_block_rsv *block_rsv,
4315 u64 num_bytes)
4316 {
4317 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4318 if (global_rsv->full || global_rsv == block_rsv ||
4319 block_rsv->space_info != global_rsv->space_info)
4320 global_rsv = NULL;
4321 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4322 num_bytes);
4323 }
4324
4325 /*
4326 * helper to calculate size of global block reservation.
4327 * the desired value is sum of space used by extent tree,
4328 * checksum tree and root tree
4329 */
4330 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4331 {
4332 struct btrfs_space_info *sinfo;
4333 u64 num_bytes;
4334 u64 meta_used;
4335 u64 data_used;
4336 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4337
4338 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4339 spin_lock(&sinfo->lock);
4340 data_used = sinfo->bytes_used;
4341 spin_unlock(&sinfo->lock);
4342
4343 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4344 spin_lock(&sinfo->lock);
4345 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4346 data_used = 0;
4347 meta_used = sinfo->bytes_used;
4348 spin_unlock(&sinfo->lock);
4349
4350 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4351 csum_size * 2;
4352 num_bytes += div64_u64(data_used + meta_used, 50);
4353
4354 if (num_bytes * 3 > meta_used)
4355 num_bytes = div64_u64(meta_used, 3);
4356
4357 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4358 }
4359
4360 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4361 {
4362 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4363 struct btrfs_space_info *sinfo = block_rsv->space_info;
4364 u64 num_bytes;
4365
4366 num_bytes = calc_global_metadata_size(fs_info);
4367
4368 spin_lock(&sinfo->lock);
4369 spin_lock(&block_rsv->lock);
4370
4371 block_rsv->size = num_bytes;
4372
4373 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4374 sinfo->bytes_reserved + sinfo->bytes_readonly +
4375 sinfo->bytes_may_use;
4376
4377 if (sinfo->total_bytes > num_bytes) {
4378 num_bytes = sinfo->total_bytes - num_bytes;
4379 block_rsv->reserved += num_bytes;
4380 sinfo->bytes_may_use += num_bytes;
4381 trace_btrfs_space_reservation(fs_info, "space_info",
4382 sinfo->flags, num_bytes, 1);
4383 }
4384
4385 if (block_rsv->reserved >= block_rsv->size) {
4386 num_bytes = block_rsv->reserved - block_rsv->size;
4387 sinfo->bytes_may_use -= num_bytes;
4388 trace_btrfs_space_reservation(fs_info, "space_info",
4389 sinfo->flags, num_bytes, 0);
4390 sinfo->reservation_progress++;
4391 block_rsv->reserved = block_rsv->size;
4392 block_rsv->full = 1;
4393 }
4394
4395 spin_unlock(&block_rsv->lock);
4396 spin_unlock(&sinfo->lock);
4397 }
4398
4399 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4400 {
4401 struct btrfs_space_info *space_info;
4402
4403 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4404 fs_info->chunk_block_rsv.space_info = space_info;
4405
4406 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4407 fs_info->global_block_rsv.space_info = space_info;
4408 fs_info->delalloc_block_rsv.space_info = space_info;
4409 fs_info->trans_block_rsv.space_info = space_info;
4410 fs_info->empty_block_rsv.space_info = space_info;
4411 fs_info->delayed_block_rsv.space_info = space_info;
4412
4413 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4414 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4415 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4416 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4417 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4418
4419 update_global_block_rsv(fs_info);
4420 }
4421
4422 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4423 {
4424 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4425 (u64)-1);
4426 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4427 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4428 WARN_ON(fs_info->trans_block_rsv.size > 0);
4429 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4430 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4431 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4432 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4433 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4434 }
4435
4436 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4437 struct btrfs_root *root)
4438 {
4439 if (!trans->block_rsv)
4440 return;
4441
4442 if (!trans->bytes_reserved)
4443 return;
4444
4445 trace_btrfs_space_reservation(root->fs_info, "transaction",
4446 trans->transid, trans->bytes_reserved, 0);
4447 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4448 trans->bytes_reserved = 0;
4449 }
4450
4451 /* Can only return 0 or -ENOSPC */
4452 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4453 struct inode *inode)
4454 {
4455 struct btrfs_root *root = BTRFS_I(inode)->root;
4456 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4457 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4458
4459 /*
4460 * We need to hold space in order to delete our orphan item once we've
4461 * added it, so this takes the reservation so we can release it later
4462 * when we are truly done with the orphan item.
4463 */
4464 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4465 trace_btrfs_space_reservation(root->fs_info, "orphan",
4466 btrfs_ino(inode), num_bytes, 1);
4467 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4468 }
4469
4470 void btrfs_orphan_release_metadata(struct inode *inode)
4471 {
4472 struct btrfs_root *root = BTRFS_I(inode)->root;
4473 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4474 trace_btrfs_space_reservation(root->fs_info, "orphan",
4475 btrfs_ino(inode), num_bytes, 0);
4476 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4477 }
4478
4479 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4480 struct btrfs_pending_snapshot *pending)
4481 {
4482 struct btrfs_root *root = pending->root;
4483 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4484 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4485 /*
4486 * two for root back/forward refs, two for directory entries,
4487 * one for root of the snapshot and one for parent inode.
4488 */
4489 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6);
4490 dst_rsv->space_info = src_rsv->space_info;
4491 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4492 }
4493
4494 /**
4495 * drop_outstanding_extent - drop an outstanding extent
4496 * @inode: the inode we're dropping the extent for
4497 *
4498 * This is called when we are freeing up an outstanding extent, either called
4499 * after an error or after an extent is written. This will return the number of
4500 * reserved extents that need to be freed. This must be called with
4501 * BTRFS_I(inode)->lock held.
4502 */
4503 static unsigned drop_outstanding_extent(struct inode *inode)
4504 {
4505 unsigned drop_inode_space = 0;
4506 unsigned dropped_extents = 0;
4507
4508 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4509 BTRFS_I(inode)->outstanding_extents--;
4510
4511 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4512 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4513 &BTRFS_I(inode)->runtime_flags))
4514 drop_inode_space = 1;
4515
4516 /*
4517 * If we have more or the same amount of outsanding extents than we have
4518 * reserved then we need to leave the reserved extents count alone.
4519 */
4520 if (BTRFS_I(inode)->outstanding_extents >=
4521 BTRFS_I(inode)->reserved_extents)
4522 return drop_inode_space;
4523
4524 dropped_extents = BTRFS_I(inode)->reserved_extents -
4525 BTRFS_I(inode)->outstanding_extents;
4526 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4527 return dropped_extents + drop_inode_space;
4528 }
4529
4530 /**
4531 * calc_csum_metadata_size - return the amount of metada space that must be
4532 * reserved/free'd for the given bytes.
4533 * @inode: the inode we're manipulating
4534 * @num_bytes: the number of bytes in question
4535 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4536 *
4537 * This adjusts the number of csum_bytes in the inode and then returns the
4538 * correct amount of metadata that must either be reserved or freed. We
4539 * calculate how many checksums we can fit into one leaf and then divide the
4540 * number of bytes that will need to be checksumed by this value to figure out
4541 * how many checksums will be required. If we are adding bytes then the number
4542 * may go up and we will return the number of additional bytes that must be
4543 * reserved. If it is going down we will return the number of bytes that must
4544 * be freed.
4545 *
4546 * This must be called with BTRFS_I(inode)->lock held.
4547 */
4548 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4549 int reserve)
4550 {
4551 struct btrfs_root *root = BTRFS_I(inode)->root;
4552 u64 csum_size;
4553 int num_csums_per_leaf;
4554 int num_csums;
4555 int old_csums;
4556
4557 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4558 BTRFS_I(inode)->csum_bytes == 0)
4559 return 0;
4560
4561 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4562 if (reserve)
4563 BTRFS_I(inode)->csum_bytes += num_bytes;
4564 else
4565 BTRFS_I(inode)->csum_bytes -= num_bytes;
4566 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4567 num_csums_per_leaf = (int)div64_u64(csum_size,
4568 sizeof(struct btrfs_csum_item) +
4569 sizeof(struct btrfs_disk_key));
4570 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4571 num_csums = num_csums + num_csums_per_leaf - 1;
4572 num_csums = num_csums / num_csums_per_leaf;
4573
4574 old_csums = old_csums + num_csums_per_leaf - 1;
4575 old_csums = old_csums / num_csums_per_leaf;
4576
4577 /* No change, no need to reserve more */
4578 if (old_csums == num_csums)
4579 return 0;
4580
4581 if (reserve)
4582 return btrfs_calc_trans_metadata_size(root,
4583 num_csums - old_csums);
4584
4585 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4586 }
4587
4588 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4589 {
4590 struct btrfs_root *root = BTRFS_I(inode)->root;
4591 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4592 u64 to_reserve = 0;
4593 u64 csum_bytes;
4594 unsigned nr_extents = 0;
4595 int extra_reserve = 0;
4596 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4597 int ret = 0;
4598 bool delalloc_lock = true;
4599
4600 /* If we are a free space inode we need to not flush since we will be in
4601 * the middle of a transaction commit. We also don't need the delalloc
4602 * mutex since we won't race with anybody. We need this mostly to make
4603 * lockdep shut its filthy mouth.
4604 */
4605 if (btrfs_is_free_space_inode(inode)) {
4606 flush = BTRFS_RESERVE_NO_FLUSH;
4607 delalloc_lock = false;
4608 }
4609
4610 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4611 btrfs_transaction_in_commit(root->fs_info))
4612 schedule_timeout(1);
4613
4614 if (delalloc_lock)
4615 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4616
4617 num_bytes = ALIGN(num_bytes, root->sectorsize);
4618
4619 spin_lock(&BTRFS_I(inode)->lock);
4620 BTRFS_I(inode)->outstanding_extents++;
4621
4622 if (BTRFS_I(inode)->outstanding_extents >
4623 BTRFS_I(inode)->reserved_extents)
4624 nr_extents = BTRFS_I(inode)->outstanding_extents -
4625 BTRFS_I(inode)->reserved_extents;
4626
4627 /*
4628 * Add an item to reserve for updating the inode when we complete the
4629 * delalloc io.
4630 */
4631 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4632 &BTRFS_I(inode)->runtime_flags)) {
4633 nr_extents++;
4634 extra_reserve = 1;
4635 }
4636
4637 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4638 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4639 csum_bytes = BTRFS_I(inode)->csum_bytes;
4640 spin_unlock(&BTRFS_I(inode)->lock);
4641
4642 if (root->fs_info->quota_enabled)
4643 ret = btrfs_qgroup_reserve(root, num_bytes +
4644 nr_extents * root->leafsize);
4645
4646 /*
4647 * ret != 0 here means the qgroup reservation failed, we go straight to
4648 * the shared error handling then.
4649 */
4650 if (ret == 0)
4651 ret = reserve_metadata_bytes(root, block_rsv,
4652 to_reserve, flush);
4653
4654 if (ret) {
4655 u64 to_free = 0;
4656 unsigned dropped;
4657
4658 spin_lock(&BTRFS_I(inode)->lock);
4659 dropped = drop_outstanding_extent(inode);
4660 /*
4661 * If the inodes csum_bytes is the same as the original
4662 * csum_bytes then we know we haven't raced with any free()ers
4663 * so we can just reduce our inodes csum bytes and carry on.
4664 * Otherwise we have to do the normal free thing to account for
4665 * the case that the free side didn't free up its reserve
4666 * because of this outstanding reservation.
4667 */
4668 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4669 calc_csum_metadata_size(inode, num_bytes, 0);
4670 else
4671 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4672 spin_unlock(&BTRFS_I(inode)->lock);
4673 if (dropped)
4674 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4675
4676 if (to_free) {
4677 btrfs_block_rsv_release(root, block_rsv, to_free);
4678 trace_btrfs_space_reservation(root->fs_info,
4679 "delalloc",
4680 btrfs_ino(inode),
4681 to_free, 0);
4682 }
4683 if (root->fs_info->quota_enabled) {
4684 btrfs_qgroup_free(root, num_bytes +
4685 nr_extents * root->leafsize);
4686 }
4687 if (delalloc_lock)
4688 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4689 return ret;
4690 }
4691
4692 spin_lock(&BTRFS_I(inode)->lock);
4693 if (extra_reserve) {
4694 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4695 &BTRFS_I(inode)->runtime_flags);
4696 nr_extents--;
4697 }
4698 BTRFS_I(inode)->reserved_extents += nr_extents;
4699 spin_unlock(&BTRFS_I(inode)->lock);
4700
4701 if (delalloc_lock)
4702 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4703
4704 if (to_reserve)
4705 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4706 btrfs_ino(inode), to_reserve, 1);
4707 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4708
4709 return 0;
4710 }
4711
4712 /**
4713 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4714 * @inode: the inode to release the reservation for
4715 * @num_bytes: the number of bytes we're releasing
4716 *
4717 * This will release the metadata reservation for an inode. This can be called
4718 * once we complete IO for a given set of bytes to release their metadata
4719 * reservations.
4720 */
4721 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4722 {
4723 struct btrfs_root *root = BTRFS_I(inode)->root;
4724 u64 to_free = 0;
4725 unsigned dropped;
4726
4727 num_bytes = ALIGN(num_bytes, root->sectorsize);
4728 spin_lock(&BTRFS_I(inode)->lock);
4729 dropped = drop_outstanding_extent(inode);
4730
4731 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4732 spin_unlock(&BTRFS_I(inode)->lock);
4733 if (dropped > 0)
4734 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4735
4736 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4737 btrfs_ino(inode), to_free, 0);
4738 if (root->fs_info->quota_enabled) {
4739 btrfs_qgroup_free(root, num_bytes +
4740 dropped * root->leafsize);
4741 }
4742
4743 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4744 to_free);
4745 }
4746
4747 /**
4748 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4749 * @inode: inode we're writing to
4750 * @num_bytes: the number of bytes we want to allocate
4751 *
4752 * This will do the following things
4753 *
4754 * o reserve space in the data space info for num_bytes
4755 * o reserve space in the metadata space info based on number of outstanding
4756 * extents and how much csums will be needed
4757 * o add to the inodes ->delalloc_bytes
4758 * o add it to the fs_info's delalloc inodes list.
4759 *
4760 * This will return 0 for success and -ENOSPC if there is no space left.
4761 */
4762 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4763 {
4764 int ret;
4765
4766 ret = btrfs_check_data_free_space(inode, num_bytes);
4767 if (ret)
4768 return ret;
4769
4770 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4771 if (ret) {
4772 btrfs_free_reserved_data_space(inode, num_bytes);
4773 return ret;
4774 }
4775
4776 return 0;
4777 }
4778
4779 /**
4780 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4781 * @inode: inode we're releasing space for
4782 * @num_bytes: the number of bytes we want to free up
4783 *
4784 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4785 * called in the case that we don't need the metadata AND data reservations
4786 * anymore. So if there is an error or we insert an inline extent.
4787 *
4788 * This function will release the metadata space that was not used and will
4789 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4790 * list if there are no delalloc bytes left.
4791 */
4792 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4793 {
4794 btrfs_delalloc_release_metadata(inode, num_bytes);
4795 btrfs_free_reserved_data_space(inode, num_bytes);
4796 }
4797
4798 static int update_block_group(struct btrfs_root *root,
4799 u64 bytenr, u64 num_bytes, int alloc)
4800 {
4801 struct btrfs_block_group_cache *cache = NULL;
4802 struct btrfs_fs_info *info = root->fs_info;
4803 u64 total = num_bytes;
4804 u64 old_val;
4805 u64 byte_in_group;
4806 int factor;
4807
4808 /* block accounting for super block */
4809 spin_lock(&info->delalloc_lock);
4810 old_val = btrfs_super_bytes_used(info->super_copy);
4811 if (alloc)
4812 old_val += num_bytes;
4813 else
4814 old_val -= num_bytes;
4815 btrfs_set_super_bytes_used(info->super_copy, old_val);
4816 spin_unlock(&info->delalloc_lock);
4817
4818 while (total) {
4819 cache = btrfs_lookup_block_group(info, bytenr);
4820 if (!cache)
4821 return -ENOENT;
4822 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4823 BTRFS_BLOCK_GROUP_RAID1 |
4824 BTRFS_BLOCK_GROUP_RAID10))
4825 factor = 2;
4826 else
4827 factor = 1;
4828 /*
4829 * If this block group has free space cache written out, we
4830 * need to make sure to load it if we are removing space. This
4831 * is because we need the unpinning stage to actually add the
4832 * space back to the block group, otherwise we will leak space.
4833 */
4834 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4835 cache_block_group(cache, 1);
4836
4837 byte_in_group = bytenr - cache->key.objectid;
4838 WARN_ON(byte_in_group > cache->key.offset);
4839
4840 spin_lock(&cache->space_info->lock);
4841 spin_lock(&cache->lock);
4842
4843 if (btrfs_test_opt(root, SPACE_CACHE) &&
4844 cache->disk_cache_state < BTRFS_DC_CLEAR)
4845 cache->disk_cache_state = BTRFS_DC_CLEAR;
4846
4847 cache->dirty = 1;
4848 old_val = btrfs_block_group_used(&cache->item);
4849 num_bytes = min(total, cache->key.offset - byte_in_group);
4850 if (alloc) {
4851 old_val += num_bytes;
4852 btrfs_set_block_group_used(&cache->item, old_val);
4853 cache->reserved -= num_bytes;
4854 cache->space_info->bytes_reserved -= num_bytes;
4855 cache->space_info->bytes_used += num_bytes;
4856 cache->space_info->disk_used += num_bytes * factor;
4857 spin_unlock(&cache->lock);
4858 spin_unlock(&cache->space_info->lock);
4859 } else {
4860 old_val -= num_bytes;
4861 btrfs_set_block_group_used(&cache->item, old_val);
4862 cache->pinned += num_bytes;
4863 cache->space_info->bytes_pinned += num_bytes;
4864 cache->space_info->bytes_used -= num_bytes;
4865 cache->space_info->disk_used -= num_bytes * factor;
4866 spin_unlock(&cache->lock);
4867 spin_unlock(&cache->space_info->lock);
4868
4869 set_extent_dirty(info->pinned_extents,
4870 bytenr, bytenr + num_bytes - 1,
4871 GFP_NOFS | __GFP_NOFAIL);
4872 }
4873 btrfs_put_block_group(cache);
4874 total -= num_bytes;
4875 bytenr += num_bytes;
4876 }
4877 return 0;
4878 }
4879
4880 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4881 {
4882 struct btrfs_block_group_cache *cache;
4883 u64 bytenr;
4884
4885 spin_lock(&root->fs_info->block_group_cache_lock);
4886 bytenr = root->fs_info->first_logical_byte;
4887 spin_unlock(&root->fs_info->block_group_cache_lock);
4888
4889 if (bytenr < (u64)-1)
4890 return bytenr;
4891
4892 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4893 if (!cache)
4894 return 0;
4895
4896 bytenr = cache->key.objectid;
4897 btrfs_put_block_group(cache);
4898
4899 return bytenr;
4900 }
4901
4902 static int pin_down_extent(struct btrfs_root *root,
4903 struct btrfs_block_group_cache *cache,
4904 u64 bytenr, u64 num_bytes, int reserved)
4905 {
4906 spin_lock(&cache->space_info->lock);
4907 spin_lock(&cache->lock);
4908 cache->pinned += num_bytes;
4909 cache->space_info->bytes_pinned += num_bytes;
4910 if (reserved) {
4911 cache->reserved -= num_bytes;
4912 cache->space_info->bytes_reserved -= num_bytes;
4913 }
4914 spin_unlock(&cache->lock);
4915 spin_unlock(&cache->space_info->lock);
4916
4917 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4918 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4919 return 0;
4920 }
4921
4922 /*
4923 * this function must be called within transaction
4924 */
4925 int btrfs_pin_extent(struct btrfs_root *root,
4926 u64 bytenr, u64 num_bytes, int reserved)
4927 {
4928 struct btrfs_block_group_cache *cache;
4929
4930 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4931 BUG_ON(!cache); /* Logic error */
4932
4933 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4934
4935 btrfs_put_block_group(cache);
4936 return 0;
4937 }
4938
4939 /*
4940 * this function must be called within transaction
4941 */
4942 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
4943 u64 bytenr, u64 num_bytes)
4944 {
4945 struct btrfs_block_group_cache *cache;
4946
4947 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4948 BUG_ON(!cache); /* Logic error */
4949
4950 /*
4951 * pull in the free space cache (if any) so that our pin
4952 * removes the free space from the cache. We have load_only set
4953 * to one because the slow code to read in the free extents does check
4954 * the pinned extents.
4955 */
4956 cache_block_group(cache, 1);
4957
4958 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4959
4960 /* remove us from the free space cache (if we're there at all) */
4961 btrfs_remove_free_space(cache, bytenr, num_bytes);
4962 btrfs_put_block_group(cache);
4963 return 0;
4964 }
4965
4966 /**
4967 * btrfs_update_reserved_bytes - update the block_group and space info counters
4968 * @cache: The cache we are manipulating
4969 * @num_bytes: The number of bytes in question
4970 * @reserve: One of the reservation enums
4971 *
4972 * This is called by the allocator when it reserves space, or by somebody who is
4973 * freeing space that was never actually used on disk. For example if you
4974 * reserve some space for a new leaf in transaction A and before transaction A
4975 * commits you free that leaf, you call this with reserve set to 0 in order to
4976 * clear the reservation.
4977 *
4978 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4979 * ENOSPC accounting. For data we handle the reservation through clearing the
4980 * delalloc bits in the io_tree. We have to do this since we could end up
4981 * allocating less disk space for the amount of data we have reserved in the
4982 * case of compression.
4983 *
4984 * If this is a reservation and the block group has become read only we cannot
4985 * make the reservation and return -EAGAIN, otherwise this function always
4986 * succeeds.
4987 */
4988 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4989 u64 num_bytes, int reserve)
4990 {
4991 struct btrfs_space_info *space_info = cache->space_info;
4992 int ret = 0;
4993
4994 spin_lock(&space_info->lock);
4995 spin_lock(&cache->lock);
4996 if (reserve != RESERVE_FREE) {
4997 if (cache->ro) {
4998 ret = -EAGAIN;
4999 } else {
5000 cache->reserved += num_bytes;
5001 space_info->bytes_reserved += num_bytes;
5002 if (reserve == RESERVE_ALLOC) {
5003 trace_btrfs_space_reservation(cache->fs_info,
5004 "space_info", space_info->flags,
5005 num_bytes, 0);
5006 space_info->bytes_may_use -= num_bytes;
5007 }
5008 }
5009 } else {
5010 if (cache->ro)
5011 space_info->bytes_readonly += num_bytes;
5012 cache->reserved -= num_bytes;
5013 space_info->bytes_reserved -= num_bytes;
5014 space_info->reservation_progress++;
5015 }
5016 spin_unlock(&cache->lock);
5017 spin_unlock(&space_info->lock);
5018 return ret;
5019 }
5020
5021 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5022 struct btrfs_root *root)
5023 {
5024 struct btrfs_fs_info *fs_info = root->fs_info;
5025 struct btrfs_caching_control *next;
5026 struct btrfs_caching_control *caching_ctl;
5027 struct btrfs_block_group_cache *cache;
5028
5029 down_write(&fs_info->extent_commit_sem);
5030
5031 list_for_each_entry_safe(caching_ctl, next,
5032 &fs_info->caching_block_groups, list) {
5033 cache = caching_ctl->block_group;
5034 if (block_group_cache_done(cache)) {
5035 cache->last_byte_to_unpin = (u64)-1;
5036 list_del_init(&caching_ctl->list);
5037 put_caching_control(caching_ctl);
5038 } else {
5039 cache->last_byte_to_unpin = caching_ctl->progress;
5040 }
5041 }
5042
5043 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5044 fs_info->pinned_extents = &fs_info->freed_extents[1];
5045 else
5046 fs_info->pinned_extents = &fs_info->freed_extents[0];
5047
5048 up_write(&fs_info->extent_commit_sem);
5049
5050 update_global_block_rsv(fs_info);
5051 }
5052
5053 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5054 {
5055 struct btrfs_fs_info *fs_info = root->fs_info;
5056 struct btrfs_block_group_cache *cache = NULL;
5057 struct btrfs_space_info *space_info;
5058 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5059 u64 len;
5060 bool readonly;
5061
5062 while (start <= end) {
5063 readonly = false;
5064 if (!cache ||
5065 start >= cache->key.objectid + cache->key.offset) {
5066 if (cache)
5067 btrfs_put_block_group(cache);
5068 cache = btrfs_lookup_block_group(fs_info, start);
5069 BUG_ON(!cache); /* Logic error */
5070 }
5071
5072 len = cache->key.objectid + cache->key.offset - start;
5073 len = min(len, end + 1 - start);
5074
5075 if (start < cache->last_byte_to_unpin) {
5076 len = min(len, cache->last_byte_to_unpin - start);
5077 btrfs_add_free_space(cache, start, len);
5078 }
5079
5080 start += len;
5081 space_info = cache->space_info;
5082
5083 spin_lock(&space_info->lock);
5084 spin_lock(&cache->lock);
5085 cache->pinned -= len;
5086 space_info->bytes_pinned -= len;
5087 if (cache->ro) {
5088 space_info->bytes_readonly += len;
5089 readonly = true;
5090 }
5091 spin_unlock(&cache->lock);
5092 if (!readonly && global_rsv->space_info == space_info) {
5093 spin_lock(&global_rsv->lock);
5094 if (!global_rsv->full) {
5095 len = min(len, global_rsv->size -
5096 global_rsv->reserved);
5097 global_rsv->reserved += len;
5098 space_info->bytes_may_use += len;
5099 if (global_rsv->reserved >= global_rsv->size)
5100 global_rsv->full = 1;
5101 }
5102 spin_unlock(&global_rsv->lock);
5103 }
5104 spin_unlock(&space_info->lock);
5105 }
5106
5107 if (cache)
5108 btrfs_put_block_group(cache);
5109 return 0;
5110 }
5111
5112 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5113 struct btrfs_root *root)
5114 {
5115 struct btrfs_fs_info *fs_info = root->fs_info;
5116 struct extent_io_tree *unpin;
5117 u64 start;
5118 u64 end;
5119 int ret;
5120
5121 if (trans->aborted)
5122 return 0;
5123
5124 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5125 unpin = &fs_info->freed_extents[1];
5126 else
5127 unpin = &fs_info->freed_extents[0];
5128
5129 while (1) {
5130 ret = find_first_extent_bit(unpin, 0, &start, &end,
5131 EXTENT_DIRTY, NULL);
5132 if (ret)
5133 break;
5134
5135 if (btrfs_test_opt(root, DISCARD))
5136 ret = btrfs_discard_extent(root, start,
5137 end + 1 - start, NULL);
5138
5139 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5140 unpin_extent_range(root, start, end);
5141 cond_resched();
5142 }
5143
5144 return 0;
5145 }
5146
5147 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5148 struct btrfs_root *root,
5149 u64 bytenr, u64 num_bytes, u64 parent,
5150 u64 root_objectid, u64 owner_objectid,
5151 u64 owner_offset, int refs_to_drop,
5152 struct btrfs_delayed_extent_op *extent_op)
5153 {
5154 struct btrfs_key key;
5155 struct btrfs_path *path;
5156 struct btrfs_fs_info *info = root->fs_info;
5157 struct btrfs_root *extent_root = info->extent_root;
5158 struct extent_buffer *leaf;
5159 struct btrfs_extent_item *ei;
5160 struct btrfs_extent_inline_ref *iref;
5161 int ret;
5162 int is_data;
5163 int extent_slot = 0;
5164 int found_extent = 0;
5165 int num_to_del = 1;
5166 u32 item_size;
5167 u64 refs;
5168
5169 path = btrfs_alloc_path();
5170 if (!path)
5171 return -ENOMEM;
5172
5173 path->reada = 1;
5174 path->leave_spinning = 1;
5175
5176 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5177 BUG_ON(!is_data && refs_to_drop != 1);
5178
5179 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5180 bytenr, num_bytes, parent,
5181 root_objectid, owner_objectid,
5182 owner_offset);
5183 if (ret == 0) {
5184 extent_slot = path->slots[0];
5185 while (extent_slot >= 0) {
5186 btrfs_item_key_to_cpu(path->nodes[0], &key,
5187 extent_slot);
5188 if (key.objectid != bytenr)
5189 break;
5190 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5191 key.offset == num_bytes) {
5192 found_extent = 1;
5193 break;
5194 }
5195 if (path->slots[0] - extent_slot > 5)
5196 break;
5197 extent_slot--;
5198 }
5199 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5200 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5201 if (found_extent && item_size < sizeof(*ei))
5202 found_extent = 0;
5203 #endif
5204 if (!found_extent) {
5205 BUG_ON(iref);
5206 ret = remove_extent_backref(trans, extent_root, path,
5207 NULL, refs_to_drop,
5208 is_data);
5209 if (ret) {
5210 btrfs_abort_transaction(trans, extent_root, ret);
5211 goto out;
5212 }
5213 btrfs_release_path(path);
5214 path->leave_spinning = 1;
5215
5216 key.objectid = bytenr;
5217 key.type = BTRFS_EXTENT_ITEM_KEY;
5218 key.offset = num_bytes;
5219
5220 ret = btrfs_search_slot(trans, extent_root,
5221 &key, path, -1, 1);
5222 if (ret) {
5223 printk(KERN_ERR "umm, got %d back from search"
5224 ", was looking for %llu\n", ret,
5225 (unsigned long long)bytenr);
5226 if (ret > 0)
5227 btrfs_print_leaf(extent_root,
5228 path->nodes[0]);
5229 }
5230 if (ret < 0) {
5231 btrfs_abort_transaction(trans, extent_root, ret);
5232 goto out;
5233 }
5234 extent_slot = path->slots[0];
5235 }
5236 } else if (ret == -ENOENT) {
5237 btrfs_print_leaf(extent_root, path->nodes[0]);
5238 WARN_ON(1);
5239 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5240 "parent %llu root %llu owner %llu offset %llu\n",
5241 (unsigned long long)bytenr,
5242 (unsigned long long)parent,
5243 (unsigned long long)root_objectid,
5244 (unsigned long long)owner_objectid,
5245 (unsigned long long)owner_offset);
5246 } else {
5247 btrfs_abort_transaction(trans, extent_root, ret);
5248 goto out;
5249 }
5250
5251 leaf = path->nodes[0];
5252 item_size = btrfs_item_size_nr(leaf, extent_slot);
5253 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5254 if (item_size < sizeof(*ei)) {
5255 BUG_ON(found_extent || extent_slot != path->slots[0]);
5256 ret = convert_extent_item_v0(trans, extent_root, path,
5257 owner_objectid, 0);
5258 if (ret < 0) {
5259 btrfs_abort_transaction(trans, extent_root, ret);
5260 goto out;
5261 }
5262
5263 btrfs_release_path(path);
5264 path->leave_spinning = 1;
5265
5266 key.objectid = bytenr;
5267 key.type = BTRFS_EXTENT_ITEM_KEY;
5268 key.offset = num_bytes;
5269
5270 ret = btrfs_search_slot(trans, extent_root, &key, path,
5271 -1, 1);
5272 if (ret) {
5273 printk(KERN_ERR "umm, got %d back from search"
5274 ", was looking for %llu\n", ret,
5275 (unsigned long long)bytenr);
5276 btrfs_print_leaf(extent_root, path->nodes[0]);
5277 }
5278 if (ret < 0) {
5279 btrfs_abort_transaction(trans, extent_root, ret);
5280 goto out;
5281 }
5282
5283 extent_slot = path->slots[0];
5284 leaf = path->nodes[0];
5285 item_size = btrfs_item_size_nr(leaf, extent_slot);
5286 }
5287 #endif
5288 BUG_ON(item_size < sizeof(*ei));
5289 ei = btrfs_item_ptr(leaf, extent_slot,
5290 struct btrfs_extent_item);
5291 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5292 struct btrfs_tree_block_info *bi;
5293 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5294 bi = (struct btrfs_tree_block_info *)(ei + 1);
5295 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5296 }
5297
5298 refs = btrfs_extent_refs(leaf, ei);
5299 BUG_ON(refs < refs_to_drop);
5300 refs -= refs_to_drop;
5301
5302 if (refs > 0) {
5303 if (extent_op)
5304 __run_delayed_extent_op(extent_op, leaf, ei);
5305 /*
5306 * In the case of inline back ref, reference count will
5307 * be updated by remove_extent_backref
5308 */
5309 if (iref) {
5310 BUG_ON(!found_extent);
5311 } else {
5312 btrfs_set_extent_refs(leaf, ei, refs);
5313 btrfs_mark_buffer_dirty(leaf);
5314 }
5315 if (found_extent) {
5316 ret = remove_extent_backref(trans, extent_root, path,
5317 iref, refs_to_drop,
5318 is_data);
5319 if (ret) {
5320 btrfs_abort_transaction(trans, extent_root, ret);
5321 goto out;
5322 }
5323 }
5324 } else {
5325 if (found_extent) {
5326 BUG_ON(is_data && refs_to_drop !=
5327 extent_data_ref_count(root, path, iref));
5328 if (iref) {
5329 BUG_ON(path->slots[0] != extent_slot);
5330 } else {
5331 BUG_ON(path->slots[0] != extent_slot + 1);
5332 path->slots[0] = extent_slot;
5333 num_to_del = 2;
5334 }
5335 }
5336
5337 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5338 num_to_del);
5339 if (ret) {
5340 btrfs_abort_transaction(trans, extent_root, ret);
5341 goto out;
5342 }
5343 btrfs_release_path(path);
5344
5345 if (is_data) {
5346 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5347 if (ret) {
5348 btrfs_abort_transaction(trans, extent_root, ret);
5349 goto out;
5350 }
5351 }
5352
5353 ret = update_block_group(root, bytenr, num_bytes, 0);
5354 if (ret) {
5355 btrfs_abort_transaction(trans, extent_root, ret);
5356 goto out;
5357 }
5358 }
5359 out:
5360 btrfs_free_path(path);
5361 return ret;
5362 }
5363
5364 /*
5365 * when we free an block, it is possible (and likely) that we free the last
5366 * delayed ref for that extent as well. This searches the delayed ref tree for
5367 * a given extent, and if there are no other delayed refs to be processed, it
5368 * removes it from the tree.
5369 */
5370 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5371 struct btrfs_root *root, u64 bytenr)
5372 {
5373 struct btrfs_delayed_ref_head *head;
5374 struct btrfs_delayed_ref_root *delayed_refs;
5375 struct btrfs_delayed_ref_node *ref;
5376 struct rb_node *node;
5377 int ret = 0;
5378
5379 delayed_refs = &trans->transaction->delayed_refs;
5380 spin_lock(&delayed_refs->lock);
5381 head = btrfs_find_delayed_ref_head(trans, bytenr);
5382 if (!head)
5383 goto out;
5384
5385 node = rb_prev(&head->node.rb_node);
5386 if (!node)
5387 goto out;
5388
5389 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5390
5391 /* there are still entries for this ref, we can't drop it */
5392 if (ref->bytenr == bytenr)
5393 goto out;
5394
5395 if (head->extent_op) {
5396 if (!head->must_insert_reserved)
5397 goto out;
5398 btrfs_free_delayed_extent_op(head->extent_op);
5399 head->extent_op = NULL;
5400 }
5401
5402 /*
5403 * waiting for the lock here would deadlock. If someone else has it
5404 * locked they are already in the process of dropping it anyway
5405 */
5406 if (!mutex_trylock(&head->mutex))
5407 goto out;
5408
5409 /*
5410 * at this point we have a head with no other entries. Go
5411 * ahead and process it.
5412 */
5413 head->node.in_tree = 0;
5414 rb_erase(&head->node.rb_node, &delayed_refs->root);
5415
5416 delayed_refs->num_entries--;
5417
5418 /*
5419 * we don't take a ref on the node because we're removing it from the
5420 * tree, so we just steal the ref the tree was holding.
5421 */
5422 delayed_refs->num_heads--;
5423 if (list_empty(&head->cluster))
5424 delayed_refs->num_heads_ready--;
5425
5426 list_del_init(&head->cluster);
5427 spin_unlock(&delayed_refs->lock);
5428
5429 BUG_ON(head->extent_op);
5430 if (head->must_insert_reserved)
5431 ret = 1;
5432
5433 mutex_unlock(&head->mutex);
5434 btrfs_put_delayed_ref(&head->node);
5435 return ret;
5436 out:
5437 spin_unlock(&delayed_refs->lock);
5438 return 0;
5439 }
5440
5441 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5442 struct btrfs_root *root,
5443 struct extent_buffer *buf,
5444 u64 parent, int last_ref)
5445 {
5446 struct btrfs_block_group_cache *cache = NULL;
5447 int ret;
5448
5449 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5450 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5451 buf->start, buf->len,
5452 parent, root->root_key.objectid,
5453 btrfs_header_level(buf),
5454 BTRFS_DROP_DELAYED_REF, NULL, 0);
5455 BUG_ON(ret); /* -ENOMEM */
5456 }
5457
5458 if (!last_ref)
5459 return;
5460
5461 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5462
5463 if (btrfs_header_generation(buf) == trans->transid) {
5464 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5465 ret = check_ref_cleanup(trans, root, buf->start);
5466 if (!ret)
5467 goto out;
5468 }
5469
5470 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5471 pin_down_extent(root, cache, buf->start, buf->len, 1);
5472 goto out;
5473 }
5474
5475 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5476
5477 btrfs_add_free_space(cache, buf->start, buf->len);
5478 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5479 }
5480 out:
5481 /*
5482 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5483 * anymore.
5484 */
5485 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5486 btrfs_put_block_group(cache);
5487 }
5488
5489 /* Can return -ENOMEM */
5490 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5491 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5492 u64 owner, u64 offset, int for_cow)
5493 {
5494 int ret;
5495 struct btrfs_fs_info *fs_info = root->fs_info;
5496
5497 /*
5498 * tree log blocks never actually go into the extent allocation
5499 * tree, just update pinning info and exit early.
5500 */
5501 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5502 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5503 /* unlocks the pinned mutex */
5504 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5505 ret = 0;
5506 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5507 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5508 num_bytes,
5509 parent, root_objectid, (int)owner,
5510 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5511 } else {
5512 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5513 num_bytes,
5514 parent, root_objectid, owner,
5515 offset, BTRFS_DROP_DELAYED_REF,
5516 NULL, for_cow);
5517 }
5518 return ret;
5519 }
5520
5521 static u64 stripe_align(struct btrfs_root *root, u64 val)
5522 {
5523 u64 mask = ((u64)root->stripesize - 1);
5524 u64 ret = (val + mask) & ~mask;
5525 return ret;
5526 }
5527
5528 /*
5529 * when we wait for progress in the block group caching, its because
5530 * our allocation attempt failed at least once. So, we must sleep
5531 * and let some progress happen before we try again.
5532 *
5533 * This function will sleep at least once waiting for new free space to
5534 * show up, and then it will check the block group free space numbers
5535 * for our min num_bytes. Another option is to have it go ahead
5536 * and look in the rbtree for a free extent of a given size, but this
5537 * is a good start.
5538 */
5539 static noinline int
5540 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5541 u64 num_bytes)
5542 {
5543 struct btrfs_caching_control *caching_ctl;
5544 DEFINE_WAIT(wait);
5545
5546 caching_ctl = get_caching_control(cache);
5547 if (!caching_ctl)
5548 return 0;
5549
5550 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5551 (cache->free_space_ctl->free_space >= num_bytes));
5552
5553 put_caching_control(caching_ctl);
5554 return 0;
5555 }
5556
5557 static noinline int
5558 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5559 {
5560 struct btrfs_caching_control *caching_ctl;
5561 DEFINE_WAIT(wait);
5562
5563 caching_ctl = get_caching_control(cache);
5564 if (!caching_ctl)
5565 return 0;
5566
5567 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5568
5569 put_caching_control(caching_ctl);
5570 return 0;
5571 }
5572
5573 int __get_raid_index(u64 flags)
5574 {
5575 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5576 return BTRFS_RAID_RAID10;
5577 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5578 return BTRFS_RAID_RAID1;
5579 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5580 return BTRFS_RAID_DUP;
5581 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5582 return BTRFS_RAID_RAID0;
5583 else
5584 return BTRFS_RAID_SINGLE;
5585 }
5586
5587 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5588 {
5589 return __get_raid_index(cache->flags);
5590 }
5591
5592 enum btrfs_loop_type {
5593 LOOP_CACHING_NOWAIT = 0,
5594 LOOP_CACHING_WAIT = 1,
5595 LOOP_ALLOC_CHUNK = 2,
5596 LOOP_NO_EMPTY_SIZE = 3,
5597 };
5598
5599 /*
5600 * walks the btree of allocated extents and find a hole of a given size.
5601 * The key ins is changed to record the hole:
5602 * ins->objectid == block start
5603 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5604 * ins->offset == number of blocks
5605 * Any available blocks before search_start are skipped.
5606 */
5607 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5608 struct btrfs_root *orig_root,
5609 u64 num_bytes, u64 empty_size,
5610 u64 hint_byte, struct btrfs_key *ins,
5611 u64 data)
5612 {
5613 int ret = 0;
5614 struct btrfs_root *root = orig_root->fs_info->extent_root;
5615 struct btrfs_free_cluster *last_ptr = NULL;
5616 struct btrfs_block_group_cache *block_group = NULL;
5617 struct btrfs_block_group_cache *used_block_group;
5618 u64 search_start = 0;
5619 int empty_cluster = 2 * 1024 * 1024;
5620 struct btrfs_space_info *space_info;
5621 int loop = 0;
5622 int index = __get_raid_index(data);
5623 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5624 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5625 bool found_uncached_bg = false;
5626 bool failed_cluster_refill = false;
5627 bool failed_alloc = false;
5628 bool use_cluster = true;
5629 bool have_caching_bg = false;
5630
5631 WARN_ON(num_bytes < root->sectorsize);
5632 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5633 ins->objectid = 0;
5634 ins->offset = 0;
5635
5636 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5637
5638 space_info = __find_space_info(root->fs_info, data);
5639 if (!space_info) {
5640 printk(KERN_ERR "No space info for %llu\n", data);
5641 return -ENOSPC;
5642 }
5643
5644 /*
5645 * If the space info is for both data and metadata it means we have a
5646 * small filesystem and we can't use the clustering stuff.
5647 */
5648 if (btrfs_mixed_space_info(space_info))
5649 use_cluster = false;
5650
5651 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5652 last_ptr = &root->fs_info->meta_alloc_cluster;
5653 if (!btrfs_test_opt(root, SSD))
5654 empty_cluster = 64 * 1024;
5655 }
5656
5657 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5658 btrfs_test_opt(root, SSD)) {
5659 last_ptr = &root->fs_info->data_alloc_cluster;
5660 }
5661
5662 if (last_ptr) {
5663 spin_lock(&last_ptr->lock);
5664 if (last_ptr->block_group)
5665 hint_byte = last_ptr->window_start;
5666 spin_unlock(&last_ptr->lock);
5667 }
5668
5669 search_start = max(search_start, first_logical_byte(root, 0));
5670 search_start = max(search_start, hint_byte);
5671
5672 if (!last_ptr)
5673 empty_cluster = 0;
5674
5675 if (search_start == hint_byte) {
5676 block_group = btrfs_lookup_block_group(root->fs_info,
5677 search_start);
5678 used_block_group = block_group;
5679 /*
5680 * we don't want to use the block group if it doesn't match our
5681 * allocation bits, or if its not cached.
5682 *
5683 * However if we are re-searching with an ideal block group
5684 * picked out then we don't care that the block group is cached.
5685 */
5686 if (block_group && block_group_bits(block_group, data) &&
5687 block_group->cached != BTRFS_CACHE_NO) {
5688 down_read(&space_info->groups_sem);
5689 if (list_empty(&block_group->list) ||
5690 block_group->ro) {
5691 /*
5692 * someone is removing this block group,
5693 * we can't jump into the have_block_group
5694 * target because our list pointers are not
5695 * valid
5696 */
5697 btrfs_put_block_group(block_group);
5698 up_read(&space_info->groups_sem);
5699 } else {
5700 index = get_block_group_index(block_group);
5701 goto have_block_group;
5702 }
5703 } else if (block_group) {
5704 btrfs_put_block_group(block_group);
5705 }
5706 }
5707 search:
5708 have_caching_bg = false;
5709 down_read(&space_info->groups_sem);
5710 list_for_each_entry(block_group, &space_info->block_groups[index],
5711 list) {
5712 u64 offset;
5713 int cached;
5714
5715 used_block_group = block_group;
5716 btrfs_get_block_group(block_group);
5717 search_start = block_group->key.objectid;
5718
5719 /*
5720 * this can happen if we end up cycling through all the
5721 * raid types, but we want to make sure we only allocate
5722 * for the proper type.
5723 */
5724 if (!block_group_bits(block_group, data)) {
5725 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5726 BTRFS_BLOCK_GROUP_RAID1 |
5727 BTRFS_BLOCK_GROUP_RAID10;
5728
5729 /*
5730 * if they asked for extra copies and this block group
5731 * doesn't provide them, bail. This does allow us to
5732 * fill raid0 from raid1.
5733 */
5734 if ((data & extra) && !(block_group->flags & extra))
5735 goto loop;
5736 }
5737
5738 have_block_group:
5739 cached = block_group_cache_done(block_group);
5740 if (unlikely(!cached)) {
5741 found_uncached_bg = true;
5742 ret = cache_block_group(block_group, 0);
5743 BUG_ON(ret < 0);
5744 ret = 0;
5745 }
5746
5747 if (unlikely(block_group->ro))
5748 goto loop;
5749
5750 /*
5751 * Ok we want to try and use the cluster allocator, so
5752 * lets look there
5753 */
5754 if (last_ptr) {
5755 /*
5756 * the refill lock keeps out other
5757 * people trying to start a new cluster
5758 */
5759 spin_lock(&last_ptr->refill_lock);
5760 used_block_group = last_ptr->block_group;
5761 if (used_block_group != block_group &&
5762 (!used_block_group ||
5763 used_block_group->ro ||
5764 !block_group_bits(used_block_group, data))) {
5765 used_block_group = block_group;
5766 goto refill_cluster;
5767 }
5768
5769 if (used_block_group != block_group)
5770 btrfs_get_block_group(used_block_group);
5771
5772 offset = btrfs_alloc_from_cluster(used_block_group,
5773 last_ptr, num_bytes, used_block_group->key.objectid);
5774 if (offset) {
5775 /* we have a block, we're done */
5776 spin_unlock(&last_ptr->refill_lock);
5777 trace_btrfs_reserve_extent_cluster(root,
5778 block_group, search_start, num_bytes);
5779 goto checks;
5780 }
5781
5782 WARN_ON(last_ptr->block_group != used_block_group);
5783 if (used_block_group != block_group) {
5784 btrfs_put_block_group(used_block_group);
5785 used_block_group = block_group;
5786 }
5787 refill_cluster:
5788 BUG_ON(used_block_group != block_group);
5789 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5790 * set up a new clusters, so lets just skip it
5791 * and let the allocator find whatever block
5792 * it can find. If we reach this point, we
5793 * will have tried the cluster allocator
5794 * plenty of times and not have found
5795 * anything, so we are likely way too
5796 * fragmented for the clustering stuff to find
5797 * anything.
5798 *
5799 * However, if the cluster is taken from the
5800 * current block group, release the cluster
5801 * first, so that we stand a better chance of
5802 * succeeding in the unclustered
5803 * allocation. */
5804 if (loop >= LOOP_NO_EMPTY_SIZE &&
5805 last_ptr->block_group != block_group) {
5806 spin_unlock(&last_ptr->refill_lock);
5807 goto unclustered_alloc;
5808 }
5809
5810 /*
5811 * this cluster didn't work out, free it and
5812 * start over
5813 */
5814 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5815
5816 if (loop >= LOOP_NO_EMPTY_SIZE) {
5817 spin_unlock(&last_ptr->refill_lock);
5818 goto unclustered_alloc;
5819 }
5820
5821 /* allocate a cluster in this block group */
5822 ret = btrfs_find_space_cluster(trans, root,
5823 block_group, last_ptr,
5824 search_start, num_bytes,
5825 empty_cluster + empty_size);
5826 if (ret == 0) {
5827 /*
5828 * now pull our allocation out of this
5829 * cluster
5830 */
5831 offset = btrfs_alloc_from_cluster(block_group,
5832 last_ptr, num_bytes,
5833 search_start);
5834 if (offset) {
5835 /* we found one, proceed */
5836 spin_unlock(&last_ptr->refill_lock);
5837 trace_btrfs_reserve_extent_cluster(root,
5838 block_group, search_start,
5839 num_bytes);
5840 goto checks;
5841 }
5842 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5843 && !failed_cluster_refill) {
5844 spin_unlock(&last_ptr->refill_lock);
5845
5846 failed_cluster_refill = true;
5847 wait_block_group_cache_progress(block_group,
5848 num_bytes + empty_cluster + empty_size);
5849 goto have_block_group;
5850 }
5851
5852 /*
5853 * at this point we either didn't find a cluster
5854 * or we weren't able to allocate a block from our
5855 * cluster. Free the cluster we've been trying
5856 * to use, and go to the next block group
5857 */
5858 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5859 spin_unlock(&last_ptr->refill_lock);
5860 goto loop;
5861 }
5862
5863 unclustered_alloc:
5864 spin_lock(&block_group->free_space_ctl->tree_lock);
5865 if (cached &&
5866 block_group->free_space_ctl->free_space <
5867 num_bytes + empty_cluster + empty_size) {
5868 spin_unlock(&block_group->free_space_ctl->tree_lock);
5869 goto loop;
5870 }
5871 spin_unlock(&block_group->free_space_ctl->tree_lock);
5872
5873 offset = btrfs_find_space_for_alloc(block_group, search_start,
5874 num_bytes, empty_size);
5875 /*
5876 * If we didn't find a chunk, and we haven't failed on this
5877 * block group before, and this block group is in the middle of
5878 * caching and we are ok with waiting, then go ahead and wait
5879 * for progress to be made, and set failed_alloc to true.
5880 *
5881 * If failed_alloc is true then we've already waited on this
5882 * block group once and should move on to the next block group.
5883 */
5884 if (!offset && !failed_alloc && !cached &&
5885 loop > LOOP_CACHING_NOWAIT) {
5886 wait_block_group_cache_progress(block_group,
5887 num_bytes + empty_size);
5888 failed_alloc = true;
5889 goto have_block_group;
5890 } else if (!offset) {
5891 if (!cached)
5892 have_caching_bg = true;
5893 goto loop;
5894 }
5895 checks:
5896 search_start = stripe_align(root, offset);
5897
5898 /* move on to the next group */
5899 if (search_start + num_bytes >
5900 used_block_group->key.objectid + used_block_group->key.offset) {
5901 btrfs_add_free_space(used_block_group, offset, num_bytes);
5902 goto loop;
5903 }
5904
5905 if (offset < search_start)
5906 btrfs_add_free_space(used_block_group, offset,
5907 search_start - offset);
5908 BUG_ON(offset > search_start);
5909
5910 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5911 alloc_type);
5912 if (ret == -EAGAIN) {
5913 btrfs_add_free_space(used_block_group, offset, num_bytes);
5914 goto loop;
5915 }
5916
5917 /* we are all good, lets return */
5918 ins->objectid = search_start;
5919 ins->offset = num_bytes;
5920
5921 trace_btrfs_reserve_extent(orig_root, block_group,
5922 search_start, num_bytes);
5923 if (used_block_group != block_group)
5924 btrfs_put_block_group(used_block_group);
5925 btrfs_put_block_group(block_group);
5926 break;
5927 loop:
5928 failed_cluster_refill = false;
5929 failed_alloc = false;
5930 BUG_ON(index != get_block_group_index(block_group));
5931 if (used_block_group != block_group)
5932 btrfs_put_block_group(used_block_group);
5933 btrfs_put_block_group(block_group);
5934 }
5935 up_read(&space_info->groups_sem);
5936
5937 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5938 goto search;
5939
5940 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5941 goto search;
5942
5943 /*
5944 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5945 * caching kthreads as we move along
5946 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5947 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5948 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5949 * again
5950 */
5951 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5952 index = 0;
5953 loop++;
5954 if (loop == LOOP_ALLOC_CHUNK) {
5955 ret = do_chunk_alloc(trans, root, data,
5956 CHUNK_ALLOC_FORCE);
5957 /*
5958 * Do not bail out on ENOSPC since we
5959 * can do more things.
5960 */
5961 if (ret < 0 && ret != -ENOSPC) {
5962 btrfs_abort_transaction(trans,
5963 root, ret);
5964 goto out;
5965 }
5966 }
5967
5968 if (loop == LOOP_NO_EMPTY_SIZE) {
5969 empty_size = 0;
5970 empty_cluster = 0;
5971 }
5972
5973 goto search;
5974 } else if (!ins->objectid) {
5975 ret = -ENOSPC;
5976 } else if (ins->objectid) {
5977 ret = 0;
5978 }
5979 out:
5980
5981 return ret;
5982 }
5983
5984 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5985 int dump_block_groups)
5986 {
5987 struct btrfs_block_group_cache *cache;
5988 int index = 0;
5989
5990 spin_lock(&info->lock);
5991 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5992 (unsigned long long)info->flags,
5993 (unsigned long long)(info->total_bytes - info->bytes_used -
5994 info->bytes_pinned - info->bytes_reserved -
5995 info->bytes_readonly),
5996 (info->full) ? "" : "not ");
5997 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5998 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5999 (unsigned long long)info->total_bytes,
6000 (unsigned long long)info->bytes_used,
6001 (unsigned long long)info->bytes_pinned,
6002 (unsigned long long)info->bytes_reserved,
6003 (unsigned long long)info->bytes_may_use,
6004 (unsigned long long)info->bytes_readonly);
6005 spin_unlock(&info->lock);
6006
6007 if (!dump_block_groups)
6008 return;
6009
6010 down_read(&info->groups_sem);
6011 again:
6012 list_for_each_entry(cache, &info->block_groups[index], list) {
6013 spin_lock(&cache->lock);
6014 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6015 (unsigned long long)cache->key.objectid,
6016 (unsigned long long)cache->key.offset,
6017 (unsigned long long)btrfs_block_group_used(&cache->item),
6018 (unsigned long long)cache->pinned,
6019 (unsigned long long)cache->reserved,
6020 cache->ro ? "[readonly]" : "");
6021 btrfs_dump_free_space(cache, bytes);
6022 spin_unlock(&cache->lock);
6023 }
6024 if (++index < BTRFS_NR_RAID_TYPES)
6025 goto again;
6026 up_read(&info->groups_sem);
6027 }
6028
6029 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6030 struct btrfs_root *root,
6031 u64 num_bytes, u64 min_alloc_size,
6032 u64 empty_size, u64 hint_byte,
6033 struct btrfs_key *ins, u64 data)
6034 {
6035 bool final_tried = false;
6036 int ret;
6037
6038 data = btrfs_get_alloc_profile(root, data);
6039 again:
6040 WARN_ON(num_bytes < root->sectorsize);
6041 ret = find_free_extent(trans, root, num_bytes, empty_size,
6042 hint_byte, ins, data);
6043
6044 if (ret == -ENOSPC) {
6045 if (!final_tried) {
6046 num_bytes = num_bytes >> 1;
6047 num_bytes = num_bytes & ~(root->sectorsize - 1);
6048 num_bytes = max(num_bytes, min_alloc_size);
6049 if (num_bytes == min_alloc_size)
6050 final_tried = true;
6051 goto again;
6052 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6053 struct btrfs_space_info *sinfo;
6054
6055 sinfo = __find_space_info(root->fs_info, data);
6056 printk(KERN_ERR "btrfs allocation failed flags %llu, "
6057 "wanted %llu\n", (unsigned long long)data,
6058 (unsigned long long)num_bytes);
6059 if (sinfo)
6060 dump_space_info(sinfo, num_bytes, 1);
6061 }
6062 }
6063
6064 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6065
6066 return ret;
6067 }
6068
6069 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6070 u64 start, u64 len, int pin)
6071 {
6072 struct btrfs_block_group_cache *cache;
6073 int ret = 0;
6074
6075 cache = btrfs_lookup_block_group(root->fs_info, start);
6076 if (!cache) {
6077 printk(KERN_ERR "Unable to find block group for %llu\n",
6078 (unsigned long long)start);
6079 return -ENOSPC;
6080 }
6081
6082 if (btrfs_test_opt(root, DISCARD))
6083 ret = btrfs_discard_extent(root, start, len, NULL);
6084
6085 if (pin)
6086 pin_down_extent(root, cache, start, len, 1);
6087 else {
6088 btrfs_add_free_space(cache, start, len);
6089 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6090 }
6091 btrfs_put_block_group(cache);
6092
6093 trace_btrfs_reserved_extent_free(root, start, len);
6094
6095 return ret;
6096 }
6097
6098 int btrfs_free_reserved_extent(struct btrfs_root *root,
6099 u64 start, u64 len)
6100 {
6101 return __btrfs_free_reserved_extent(root, start, len, 0);
6102 }
6103
6104 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6105 u64 start, u64 len)
6106 {
6107 return __btrfs_free_reserved_extent(root, start, len, 1);
6108 }
6109
6110 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6111 struct btrfs_root *root,
6112 u64 parent, u64 root_objectid,
6113 u64 flags, u64 owner, u64 offset,
6114 struct btrfs_key *ins, int ref_mod)
6115 {
6116 int ret;
6117 struct btrfs_fs_info *fs_info = root->fs_info;
6118 struct btrfs_extent_item *extent_item;
6119 struct btrfs_extent_inline_ref *iref;
6120 struct btrfs_path *path;
6121 struct extent_buffer *leaf;
6122 int type;
6123 u32 size;
6124
6125 if (parent > 0)
6126 type = BTRFS_SHARED_DATA_REF_KEY;
6127 else
6128 type = BTRFS_EXTENT_DATA_REF_KEY;
6129
6130 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6131
6132 path = btrfs_alloc_path();
6133 if (!path)
6134 return -ENOMEM;
6135
6136 path->leave_spinning = 1;
6137 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6138 ins, size);
6139 if (ret) {
6140 btrfs_free_path(path);
6141 return ret;
6142 }
6143
6144 leaf = path->nodes[0];
6145 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6146 struct btrfs_extent_item);
6147 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6148 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6149 btrfs_set_extent_flags(leaf, extent_item,
6150 flags | BTRFS_EXTENT_FLAG_DATA);
6151
6152 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6153 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6154 if (parent > 0) {
6155 struct btrfs_shared_data_ref *ref;
6156 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6157 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6158 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6159 } else {
6160 struct btrfs_extent_data_ref *ref;
6161 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6162 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6163 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6164 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6165 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6166 }
6167
6168 btrfs_mark_buffer_dirty(path->nodes[0]);
6169 btrfs_free_path(path);
6170
6171 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6172 if (ret) { /* -ENOENT, logic error */
6173 printk(KERN_ERR "btrfs update block group failed for %llu "
6174 "%llu\n", (unsigned long long)ins->objectid,
6175 (unsigned long long)ins->offset);
6176 BUG();
6177 }
6178 return ret;
6179 }
6180
6181 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6182 struct btrfs_root *root,
6183 u64 parent, u64 root_objectid,
6184 u64 flags, struct btrfs_disk_key *key,
6185 int level, struct btrfs_key *ins)
6186 {
6187 int ret;
6188 struct btrfs_fs_info *fs_info = root->fs_info;
6189 struct btrfs_extent_item *extent_item;
6190 struct btrfs_tree_block_info *block_info;
6191 struct btrfs_extent_inline_ref *iref;
6192 struct btrfs_path *path;
6193 struct extent_buffer *leaf;
6194 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6195
6196 path = btrfs_alloc_path();
6197 if (!path)
6198 return -ENOMEM;
6199
6200 path->leave_spinning = 1;
6201 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6202 ins, size);
6203 if (ret) {
6204 btrfs_free_path(path);
6205 return ret;
6206 }
6207
6208 leaf = path->nodes[0];
6209 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6210 struct btrfs_extent_item);
6211 btrfs_set_extent_refs(leaf, extent_item, 1);
6212 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6213 btrfs_set_extent_flags(leaf, extent_item,
6214 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6215 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6216
6217 btrfs_set_tree_block_key(leaf, block_info, key);
6218 btrfs_set_tree_block_level(leaf, block_info, level);
6219
6220 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6221 if (parent > 0) {
6222 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6223 btrfs_set_extent_inline_ref_type(leaf, iref,
6224 BTRFS_SHARED_BLOCK_REF_KEY);
6225 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6226 } else {
6227 btrfs_set_extent_inline_ref_type(leaf, iref,
6228 BTRFS_TREE_BLOCK_REF_KEY);
6229 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6230 }
6231
6232 btrfs_mark_buffer_dirty(leaf);
6233 btrfs_free_path(path);
6234
6235 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6236 if (ret) { /* -ENOENT, logic error */
6237 printk(KERN_ERR "btrfs update block group failed for %llu "
6238 "%llu\n", (unsigned long long)ins->objectid,
6239 (unsigned long long)ins->offset);
6240 BUG();
6241 }
6242 return ret;
6243 }
6244
6245 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6246 struct btrfs_root *root,
6247 u64 root_objectid, u64 owner,
6248 u64 offset, struct btrfs_key *ins)
6249 {
6250 int ret;
6251
6252 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6253
6254 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6255 ins->offset, 0,
6256 root_objectid, owner, offset,
6257 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6258 return ret;
6259 }
6260
6261 /*
6262 * this is used by the tree logging recovery code. It records that
6263 * an extent has been allocated and makes sure to clear the free
6264 * space cache bits as well
6265 */
6266 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6267 struct btrfs_root *root,
6268 u64 root_objectid, u64 owner, u64 offset,
6269 struct btrfs_key *ins)
6270 {
6271 int ret;
6272 struct btrfs_block_group_cache *block_group;
6273 struct btrfs_caching_control *caching_ctl;
6274 u64 start = ins->objectid;
6275 u64 num_bytes = ins->offset;
6276
6277 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6278 cache_block_group(block_group, 0);
6279 caching_ctl = get_caching_control(block_group);
6280
6281 if (!caching_ctl) {
6282 BUG_ON(!block_group_cache_done(block_group));
6283 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6284 BUG_ON(ret); /* -ENOMEM */
6285 } else {
6286 mutex_lock(&caching_ctl->mutex);
6287
6288 if (start >= caching_ctl->progress) {
6289 ret = add_excluded_extent(root, start, num_bytes);
6290 BUG_ON(ret); /* -ENOMEM */
6291 } else if (start + num_bytes <= caching_ctl->progress) {
6292 ret = btrfs_remove_free_space(block_group,
6293 start, num_bytes);
6294 BUG_ON(ret); /* -ENOMEM */
6295 } else {
6296 num_bytes = caching_ctl->progress - start;
6297 ret = btrfs_remove_free_space(block_group,
6298 start, num_bytes);
6299 BUG_ON(ret); /* -ENOMEM */
6300
6301 start = caching_ctl->progress;
6302 num_bytes = ins->objectid + ins->offset -
6303 caching_ctl->progress;
6304 ret = add_excluded_extent(root, start, num_bytes);
6305 BUG_ON(ret); /* -ENOMEM */
6306 }
6307
6308 mutex_unlock(&caching_ctl->mutex);
6309 put_caching_control(caching_ctl);
6310 }
6311
6312 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6313 RESERVE_ALLOC_NO_ACCOUNT);
6314 BUG_ON(ret); /* logic error */
6315 btrfs_put_block_group(block_group);
6316 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6317 0, owner, offset, ins, 1);
6318 return ret;
6319 }
6320
6321 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6322 struct btrfs_root *root,
6323 u64 bytenr, u32 blocksize,
6324 int level)
6325 {
6326 struct extent_buffer *buf;
6327
6328 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6329 if (!buf)
6330 return ERR_PTR(-ENOMEM);
6331 btrfs_set_header_generation(buf, trans->transid);
6332 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6333 btrfs_tree_lock(buf);
6334 clean_tree_block(trans, root, buf);
6335 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6336
6337 btrfs_set_lock_blocking(buf);
6338 btrfs_set_buffer_uptodate(buf);
6339
6340 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6341 /*
6342 * we allow two log transactions at a time, use different
6343 * EXENT bit to differentiate dirty pages.
6344 */
6345 if (root->log_transid % 2 == 0)
6346 set_extent_dirty(&root->dirty_log_pages, buf->start,
6347 buf->start + buf->len - 1, GFP_NOFS);
6348 else
6349 set_extent_new(&root->dirty_log_pages, buf->start,
6350 buf->start + buf->len - 1, GFP_NOFS);
6351 } else {
6352 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6353 buf->start + buf->len - 1, GFP_NOFS);
6354 }
6355 trans->blocks_used++;
6356 /* this returns a buffer locked for blocking */
6357 return buf;
6358 }
6359
6360 static struct btrfs_block_rsv *
6361 use_block_rsv(struct btrfs_trans_handle *trans,
6362 struct btrfs_root *root, u32 blocksize)
6363 {
6364 struct btrfs_block_rsv *block_rsv;
6365 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6366 int ret;
6367
6368 block_rsv = get_block_rsv(trans, root);
6369
6370 if (block_rsv->size == 0) {
6371 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6372 BTRFS_RESERVE_NO_FLUSH);
6373 /*
6374 * If we couldn't reserve metadata bytes try and use some from
6375 * the global reserve.
6376 */
6377 if (ret && block_rsv != global_rsv) {
6378 ret = block_rsv_use_bytes(global_rsv, blocksize);
6379 if (!ret)
6380 return global_rsv;
6381 return ERR_PTR(ret);
6382 } else if (ret) {
6383 return ERR_PTR(ret);
6384 }
6385 return block_rsv;
6386 }
6387
6388 ret = block_rsv_use_bytes(block_rsv, blocksize);
6389 if (!ret)
6390 return block_rsv;
6391 if (ret && !block_rsv->failfast) {
6392 static DEFINE_RATELIMIT_STATE(_rs,
6393 DEFAULT_RATELIMIT_INTERVAL,
6394 /*DEFAULT_RATELIMIT_BURST*/ 2);
6395 if (__ratelimit(&_rs))
6396 WARN(1, KERN_DEBUG "btrfs: block rsv returned %d\n",
6397 ret);
6398 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6399 BTRFS_RESERVE_NO_FLUSH);
6400 if (!ret) {
6401 return block_rsv;
6402 } else if (ret && block_rsv != global_rsv) {
6403 ret = block_rsv_use_bytes(global_rsv, blocksize);
6404 if (!ret)
6405 return global_rsv;
6406 }
6407 }
6408
6409 return ERR_PTR(-ENOSPC);
6410 }
6411
6412 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6413 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6414 {
6415 block_rsv_add_bytes(block_rsv, blocksize, 0);
6416 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6417 }
6418
6419 /*
6420 * finds a free extent and does all the dirty work required for allocation
6421 * returns the key for the extent through ins, and a tree buffer for
6422 * the first block of the extent through buf.
6423 *
6424 * returns the tree buffer or NULL.
6425 */
6426 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6427 struct btrfs_root *root, u32 blocksize,
6428 u64 parent, u64 root_objectid,
6429 struct btrfs_disk_key *key, int level,
6430 u64 hint, u64 empty_size)
6431 {
6432 struct btrfs_key ins;
6433 struct btrfs_block_rsv *block_rsv;
6434 struct extent_buffer *buf;
6435 u64 flags = 0;
6436 int ret;
6437
6438
6439 block_rsv = use_block_rsv(trans, root, blocksize);
6440 if (IS_ERR(block_rsv))
6441 return ERR_CAST(block_rsv);
6442
6443 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6444 empty_size, hint, &ins, 0);
6445 if (ret) {
6446 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6447 return ERR_PTR(ret);
6448 }
6449
6450 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6451 blocksize, level);
6452 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6453
6454 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6455 if (parent == 0)
6456 parent = ins.objectid;
6457 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6458 } else
6459 BUG_ON(parent > 0);
6460
6461 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6462 struct btrfs_delayed_extent_op *extent_op;
6463 extent_op = btrfs_alloc_delayed_extent_op();
6464 BUG_ON(!extent_op); /* -ENOMEM */
6465 if (key)
6466 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6467 else
6468 memset(&extent_op->key, 0, sizeof(extent_op->key));
6469 extent_op->flags_to_set = flags;
6470 extent_op->update_key = 1;
6471 extent_op->update_flags = 1;
6472 extent_op->is_data = 0;
6473
6474 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6475 ins.objectid,
6476 ins.offset, parent, root_objectid,
6477 level, BTRFS_ADD_DELAYED_EXTENT,
6478 extent_op, 0);
6479 BUG_ON(ret); /* -ENOMEM */
6480 }
6481 return buf;
6482 }
6483
6484 struct walk_control {
6485 u64 refs[BTRFS_MAX_LEVEL];
6486 u64 flags[BTRFS_MAX_LEVEL];
6487 struct btrfs_key update_progress;
6488 int stage;
6489 int level;
6490 int shared_level;
6491 int update_ref;
6492 int keep_locks;
6493 int reada_slot;
6494 int reada_count;
6495 int for_reloc;
6496 };
6497
6498 #define DROP_REFERENCE 1
6499 #define UPDATE_BACKREF 2
6500
6501 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6502 struct btrfs_root *root,
6503 struct walk_control *wc,
6504 struct btrfs_path *path)
6505 {
6506 u64 bytenr;
6507 u64 generation;
6508 u64 refs;
6509 u64 flags;
6510 u32 nritems;
6511 u32 blocksize;
6512 struct btrfs_key key;
6513 struct extent_buffer *eb;
6514 int ret;
6515 int slot;
6516 int nread = 0;
6517
6518 if (path->slots[wc->level] < wc->reada_slot) {
6519 wc->reada_count = wc->reada_count * 2 / 3;
6520 wc->reada_count = max(wc->reada_count, 2);
6521 } else {
6522 wc->reada_count = wc->reada_count * 3 / 2;
6523 wc->reada_count = min_t(int, wc->reada_count,
6524 BTRFS_NODEPTRS_PER_BLOCK(root));
6525 }
6526
6527 eb = path->nodes[wc->level];
6528 nritems = btrfs_header_nritems(eb);
6529 blocksize = btrfs_level_size(root, wc->level - 1);
6530
6531 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6532 if (nread >= wc->reada_count)
6533 break;
6534
6535 cond_resched();
6536 bytenr = btrfs_node_blockptr(eb, slot);
6537 generation = btrfs_node_ptr_generation(eb, slot);
6538
6539 if (slot == path->slots[wc->level])
6540 goto reada;
6541
6542 if (wc->stage == UPDATE_BACKREF &&
6543 generation <= root->root_key.offset)
6544 continue;
6545
6546 /* We don't lock the tree block, it's OK to be racy here */
6547 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6548 &refs, &flags);
6549 /* We don't care about errors in readahead. */
6550 if (ret < 0)
6551 continue;
6552 BUG_ON(refs == 0);
6553
6554 if (wc->stage == DROP_REFERENCE) {
6555 if (refs == 1)
6556 goto reada;
6557
6558 if (wc->level == 1 &&
6559 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6560 continue;
6561 if (!wc->update_ref ||
6562 generation <= root->root_key.offset)
6563 continue;
6564 btrfs_node_key_to_cpu(eb, &key, slot);
6565 ret = btrfs_comp_cpu_keys(&key,
6566 &wc->update_progress);
6567 if (ret < 0)
6568 continue;
6569 } else {
6570 if (wc->level == 1 &&
6571 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6572 continue;
6573 }
6574 reada:
6575 ret = readahead_tree_block(root, bytenr, blocksize,
6576 generation);
6577 if (ret)
6578 break;
6579 nread++;
6580 }
6581 wc->reada_slot = slot;
6582 }
6583
6584 /*
6585 * hepler to process tree block while walking down the tree.
6586 *
6587 * when wc->stage == UPDATE_BACKREF, this function updates
6588 * back refs for pointers in the block.
6589 *
6590 * NOTE: return value 1 means we should stop walking down.
6591 */
6592 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6593 struct btrfs_root *root,
6594 struct btrfs_path *path,
6595 struct walk_control *wc, int lookup_info)
6596 {
6597 int level = wc->level;
6598 struct extent_buffer *eb = path->nodes[level];
6599 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6600 int ret;
6601
6602 if (wc->stage == UPDATE_BACKREF &&
6603 btrfs_header_owner(eb) != root->root_key.objectid)
6604 return 1;
6605
6606 /*
6607 * when reference count of tree block is 1, it won't increase
6608 * again. once full backref flag is set, we never clear it.
6609 */
6610 if (lookup_info &&
6611 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6612 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6613 BUG_ON(!path->locks[level]);
6614 ret = btrfs_lookup_extent_info(trans, root,
6615 eb->start, eb->len,
6616 &wc->refs[level],
6617 &wc->flags[level]);
6618 BUG_ON(ret == -ENOMEM);
6619 if (ret)
6620 return ret;
6621 BUG_ON(wc->refs[level] == 0);
6622 }
6623
6624 if (wc->stage == DROP_REFERENCE) {
6625 if (wc->refs[level] > 1)
6626 return 1;
6627
6628 if (path->locks[level] && !wc->keep_locks) {
6629 btrfs_tree_unlock_rw(eb, path->locks[level]);
6630 path->locks[level] = 0;
6631 }
6632 return 0;
6633 }
6634
6635 /* wc->stage == UPDATE_BACKREF */
6636 if (!(wc->flags[level] & flag)) {
6637 BUG_ON(!path->locks[level]);
6638 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6639 BUG_ON(ret); /* -ENOMEM */
6640 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6641 BUG_ON(ret); /* -ENOMEM */
6642 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6643 eb->len, flag, 0);
6644 BUG_ON(ret); /* -ENOMEM */
6645 wc->flags[level] |= flag;
6646 }
6647
6648 /*
6649 * the block is shared by multiple trees, so it's not good to
6650 * keep the tree lock
6651 */
6652 if (path->locks[level] && level > 0) {
6653 btrfs_tree_unlock_rw(eb, path->locks[level]);
6654 path->locks[level] = 0;
6655 }
6656 return 0;
6657 }
6658
6659 /*
6660 * hepler to process tree block pointer.
6661 *
6662 * when wc->stage == DROP_REFERENCE, this function checks
6663 * reference count of the block pointed to. if the block
6664 * is shared and we need update back refs for the subtree
6665 * rooted at the block, this function changes wc->stage to
6666 * UPDATE_BACKREF. if the block is shared and there is no
6667 * need to update back, this function drops the reference
6668 * to the block.
6669 *
6670 * NOTE: return value 1 means we should stop walking down.
6671 */
6672 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6673 struct btrfs_root *root,
6674 struct btrfs_path *path,
6675 struct walk_control *wc, int *lookup_info)
6676 {
6677 u64 bytenr;
6678 u64 generation;
6679 u64 parent;
6680 u32 blocksize;
6681 struct btrfs_key key;
6682 struct extent_buffer *next;
6683 int level = wc->level;
6684 int reada = 0;
6685 int ret = 0;
6686
6687 generation = btrfs_node_ptr_generation(path->nodes[level],
6688 path->slots[level]);
6689 /*
6690 * if the lower level block was created before the snapshot
6691 * was created, we know there is no need to update back refs
6692 * for the subtree
6693 */
6694 if (wc->stage == UPDATE_BACKREF &&
6695 generation <= root->root_key.offset) {
6696 *lookup_info = 1;
6697 return 1;
6698 }
6699
6700 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6701 blocksize = btrfs_level_size(root, level - 1);
6702
6703 next = btrfs_find_tree_block(root, bytenr, blocksize);
6704 if (!next) {
6705 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6706 if (!next)
6707 return -ENOMEM;
6708 reada = 1;
6709 }
6710 btrfs_tree_lock(next);
6711 btrfs_set_lock_blocking(next);
6712
6713 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6714 &wc->refs[level - 1],
6715 &wc->flags[level - 1]);
6716 if (ret < 0) {
6717 btrfs_tree_unlock(next);
6718 return ret;
6719 }
6720
6721 BUG_ON(wc->refs[level - 1] == 0);
6722 *lookup_info = 0;
6723
6724 if (wc->stage == DROP_REFERENCE) {
6725 if (wc->refs[level - 1] > 1) {
6726 if (level == 1 &&
6727 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6728 goto skip;
6729
6730 if (!wc->update_ref ||
6731 generation <= root->root_key.offset)
6732 goto skip;
6733
6734 btrfs_node_key_to_cpu(path->nodes[level], &key,
6735 path->slots[level]);
6736 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6737 if (ret < 0)
6738 goto skip;
6739
6740 wc->stage = UPDATE_BACKREF;
6741 wc->shared_level = level - 1;
6742 }
6743 } else {
6744 if (level == 1 &&
6745 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6746 goto skip;
6747 }
6748
6749 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6750 btrfs_tree_unlock(next);
6751 free_extent_buffer(next);
6752 next = NULL;
6753 *lookup_info = 1;
6754 }
6755
6756 if (!next) {
6757 if (reada && level == 1)
6758 reada_walk_down(trans, root, wc, path);
6759 next = read_tree_block(root, bytenr, blocksize, generation);
6760 if (!next)
6761 return -EIO;
6762 btrfs_tree_lock(next);
6763 btrfs_set_lock_blocking(next);
6764 }
6765
6766 level--;
6767 BUG_ON(level != btrfs_header_level(next));
6768 path->nodes[level] = next;
6769 path->slots[level] = 0;
6770 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6771 wc->level = level;
6772 if (wc->level == 1)
6773 wc->reada_slot = 0;
6774 return 0;
6775 skip:
6776 wc->refs[level - 1] = 0;
6777 wc->flags[level - 1] = 0;
6778 if (wc->stage == DROP_REFERENCE) {
6779 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6780 parent = path->nodes[level]->start;
6781 } else {
6782 BUG_ON(root->root_key.objectid !=
6783 btrfs_header_owner(path->nodes[level]));
6784 parent = 0;
6785 }
6786
6787 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6788 root->root_key.objectid, level - 1, 0, 0);
6789 BUG_ON(ret); /* -ENOMEM */
6790 }
6791 btrfs_tree_unlock(next);
6792 free_extent_buffer(next);
6793 *lookup_info = 1;
6794 return 1;
6795 }
6796
6797 /*
6798 * hepler to process tree block while walking up the tree.
6799 *
6800 * when wc->stage == DROP_REFERENCE, this function drops
6801 * reference count on the block.
6802 *
6803 * when wc->stage == UPDATE_BACKREF, this function changes
6804 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6805 * to UPDATE_BACKREF previously while processing the block.
6806 *
6807 * NOTE: return value 1 means we should stop walking up.
6808 */
6809 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6810 struct btrfs_root *root,
6811 struct btrfs_path *path,
6812 struct walk_control *wc)
6813 {
6814 int ret;
6815 int level = wc->level;
6816 struct extent_buffer *eb = path->nodes[level];
6817 u64 parent = 0;
6818
6819 if (wc->stage == UPDATE_BACKREF) {
6820 BUG_ON(wc->shared_level < level);
6821 if (level < wc->shared_level)
6822 goto out;
6823
6824 ret = find_next_key(path, level + 1, &wc->update_progress);
6825 if (ret > 0)
6826 wc->update_ref = 0;
6827
6828 wc->stage = DROP_REFERENCE;
6829 wc->shared_level = -1;
6830 path->slots[level] = 0;
6831
6832 /*
6833 * check reference count again if the block isn't locked.
6834 * we should start walking down the tree again if reference
6835 * count is one.
6836 */
6837 if (!path->locks[level]) {
6838 BUG_ON(level == 0);
6839 btrfs_tree_lock(eb);
6840 btrfs_set_lock_blocking(eb);
6841 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6842
6843 ret = btrfs_lookup_extent_info(trans, root,
6844 eb->start, eb->len,
6845 &wc->refs[level],
6846 &wc->flags[level]);
6847 if (ret < 0) {
6848 btrfs_tree_unlock_rw(eb, path->locks[level]);
6849 path->locks[level] = 0;
6850 return ret;
6851 }
6852 BUG_ON(wc->refs[level] == 0);
6853 if (wc->refs[level] == 1) {
6854 btrfs_tree_unlock_rw(eb, path->locks[level]);
6855 path->locks[level] = 0;
6856 return 1;
6857 }
6858 }
6859 }
6860
6861 /* wc->stage == DROP_REFERENCE */
6862 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6863
6864 if (wc->refs[level] == 1) {
6865 if (level == 0) {
6866 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6867 ret = btrfs_dec_ref(trans, root, eb, 1,
6868 wc->for_reloc);
6869 else
6870 ret = btrfs_dec_ref(trans, root, eb, 0,
6871 wc->for_reloc);
6872 BUG_ON(ret); /* -ENOMEM */
6873 }
6874 /* make block locked assertion in clean_tree_block happy */
6875 if (!path->locks[level] &&
6876 btrfs_header_generation(eb) == trans->transid) {
6877 btrfs_tree_lock(eb);
6878 btrfs_set_lock_blocking(eb);
6879 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6880 }
6881 clean_tree_block(trans, root, eb);
6882 }
6883
6884 if (eb == root->node) {
6885 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6886 parent = eb->start;
6887 else
6888 BUG_ON(root->root_key.objectid !=
6889 btrfs_header_owner(eb));
6890 } else {
6891 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6892 parent = path->nodes[level + 1]->start;
6893 else
6894 BUG_ON(root->root_key.objectid !=
6895 btrfs_header_owner(path->nodes[level + 1]));
6896 }
6897
6898 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6899 out:
6900 wc->refs[level] = 0;
6901 wc->flags[level] = 0;
6902 return 0;
6903 }
6904
6905 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6906 struct btrfs_root *root,
6907 struct btrfs_path *path,
6908 struct walk_control *wc)
6909 {
6910 int level = wc->level;
6911 int lookup_info = 1;
6912 int ret;
6913
6914 while (level >= 0) {
6915 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6916 if (ret > 0)
6917 break;
6918
6919 if (level == 0)
6920 break;
6921
6922 if (path->slots[level] >=
6923 btrfs_header_nritems(path->nodes[level]))
6924 break;
6925
6926 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6927 if (ret > 0) {
6928 path->slots[level]++;
6929 continue;
6930 } else if (ret < 0)
6931 return ret;
6932 level = wc->level;
6933 }
6934 return 0;
6935 }
6936
6937 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6938 struct btrfs_root *root,
6939 struct btrfs_path *path,
6940 struct walk_control *wc, int max_level)
6941 {
6942 int level = wc->level;
6943 int ret;
6944
6945 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6946 while (level < max_level && path->nodes[level]) {
6947 wc->level = level;
6948 if (path->slots[level] + 1 <
6949 btrfs_header_nritems(path->nodes[level])) {
6950 path->slots[level]++;
6951 return 0;
6952 } else {
6953 ret = walk_up_proc(trans, root, path, wc);
6954 if (ret > 0)
6955 return 0;
6956
6957 if (path->locks[level]) {
6958 btrfs_tree_unlock_rw(path->nodes[level],
6959 path->locks[level]);
6960 path->locks[level] = 0;
6961 }
6962 free_extent_buffer(path->nodes[level]);
6963 path->nodes[level] = NULL;
6964 level++;
6965 }
6966 }
6967 return 1;
6968 }
6969
6970 /*
6971 * drop a subvolume tree.
6972 *
6973 * this function traverses the tree freeing any blocks that only
6974 * referenced by the tree.
6975 *
6976 * when a shared tree block is found. this function decreases its
6977 * reference count by one. if update_ref is true, this function
6978 * also make sure backrefs for the shared block and all lower level
6979 * blocks are properly updated.
6980 */
6981 int btrfs_drop_snapshot(struct btrfs_root *root,
6982 struct btrfs_block_rsv *block_rsv, int update_ref,
6983 int for_reloc)
6984 {
6985 struct btrfs_path *path;
6986 struct btrfs_trans_handle *trans;
6987 struct btrfs_root *tree_root = root->fs_info->tree_root;
6988 struct btrfs_root_item *root_item = &root->root_item;
6989 struct walk_control *wc;
6990 struct btrfs_key key;
6991 int err = 0;
6992 int ret;
6993 int level;
6994
6995 path = btrfs_alloc_path();
6996 if (!path) {
6997 err = -ENOMEM;
6998 goto out;
6999 }
7000
7001 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7002 if (!wc) {
7003 btrfs_free_path(path);
7004 err = -ENOMEM;
7005 goto out;
7006 }
7007
7008 trans = btrfs_start_transaction(tree_root, 0);
7009 if (IS_ERR(trans)) {
7010 err = PTR_ERR(trans);
7011 goto out_free;
7012 }
7013
7014 if (block_rsv)
7015 trans->block_rsv = block_rsv;
7016
7017 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7018 level = btrfs_header_level(root->node);
7019 path->nodes[level] = btrfs_lock_root_node(root);
7020 btrfs_set_lock_blocking(path->nodes[level]);
7021 path->slots[level] = 0;
7022 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7023 memset(&wc->update_progress, 0,
7024 sizeof(wc->update_progress));
7025 } else {
7026 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7027 memcpy(&wc->update_progress, &key,
7028 sizeof(wc->update_progress));
7029
7030 level = root_item->drop_level;
7031 BUG_ON(level == 0);
7032 path->lowest_level = level;
7033 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7034 path->lowest_level = 0;
7035 if (ret < 0) {
7036 err = ret;
7037 goto out_end_trans;
7038 }
7039 WARN_ON(ret > 0);
7040
7041 /*
7042 * unlock our path, this is safe because only this
7043 * function is allowed to delete this snapshot
7044 */
7045 btrfs_unlock_up_safe(path, 0);
7046
7047 level = btrfs_header_level(root->node);
7048 while (1) {
7049 btrfs_tree_lock(path->nodes[level]);
7050 btrfs_set_lock_blocking(path->nodes[level]);
7051
7052 ret = btrfs_lookup_extent_info(trans, root,
7053 path->nodes[level]->start,
7054 path->nodes[level]->len,
7055 &wc->refs[level],
7056 &wc->flags[level]);
7057 if (ret < 0) {
7058 err = ret;
7059 goto out_end_trans;
7060 }
7061 BUG_ON(wc->refs[level] == 0);
7062
7063 if (level == root_item->drop_level)
7064 break;
7065
7066 btrfs_tree_unlock(path->nodes[level]);
7067 WARN_ON(wc->refs[level] != 1);
7068 level--;
7069 }
7070 }
7071
7072 wc->level = level;
7073 wc->shared_level = -1;
7074 wc->stage = DROP_REFERENCE;
7075 wc->update_ref = update_ref;
7076 wc->keep_locks = 0;
7077 wc->for_reloc = for_reloc;
7078 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7079
7080 while (1) {
7081 ret = walk_down_tree(trans, root, path, wc);
7082 if (ret < 0) {
7083 err = ret;
7084 break;
7085 }
7086
7087 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7088 if (ret < 0) {
7089 err = ret;
7090 break;
7091 }
7092
7093 if (ret > 0) {
7094 BUG_ON(wc->stage != DROP_REFERENCE);
7095 break;
7096 }
7097
7098 if (wc->stage == DROP_REFERENCE) {
7099 level = wc->level;
7100 btrfs_node_key(path->nodes[level],
7101 &root_item->drop_progress,
7102 path->slots[level]);
7103 root_item->drop_level = level;
7104 }
7105
7106 BUG_ON(wc->level == 0);
7107 if (btrfs_should_end_transaction(trans, tree_root)) {
7108 ret = btrfs_update_root(trans, tree_root,
7109 &root->root_key,
7110 root_item);
7111 if (ret) {
7112 btrfs_abort_transaction(trans, tree_root, ret);
7113 err = ret;
7114 goto out_end_trans;
7115 }
7116
7117 btrfs_end_transaction_throttle(trans, tree_root);
7118 trans = btrfs_start_transaction(tree_root, 0);
7119 if (IS_ERR(trans)) {
7120 err = PTR_ERR(trans);
7121 goto out_free;
7122 }
7123 if (block_rsv)
7124 trans->block_rsv = block_rsv;
7125 }
7126 }
7127 btrfs_release_path(path);
7128 if (err)
7129 goto out_end_trans;
7130
7131 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7132 if (ret) {
7133 btrfs_abort_transaction(trans, tree_root, ret);
7134 goto out_end_trans;
7135 }
7136
7137 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7138 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7139 NULL, NULL);
7140 if (ret < 0) {
7141 btrfs_abort_transaction(trans, tree_root, ret);
7142 err = ret;
7143 goto out_end_trans;
7144 } else if (ret > 0) {
7145 /* if we fail to delete the orphan item this time
7146 * around, it'll get picked up the next time.
7147 *
7148 * The most common failure here is just -ENOENT.
7149 */
7150 btrfs_del_orphan_item(trans, tree_root,
7151 root->root_key.objectid);
7152 }
7153 }
7154
7155 if (root->in_radix) {
7156 btrfs_free_fs_root(tree_root->fs_info, root);
7157 } else {
7158 free_extent_buffer(root->node);
7159 free_extent_buffer(root->commit_root);
7160 kfree(root);
7161 }
7162 out_end_trans:
7163 btrfs_end_transaction_throttle(trans, tree_root);
7164 out_free:
7165 kfree(wc);
7166 btrfs_free_path(path);
7167 out:
7168 if (err)
7169 btrfs_std_error(root->fs_info, err);
7170 return err;
7171 }
7172
7173 /*
7174 * drop subtree rooted at tree block 'node'.
7175 *
7176 * NOTE: this function will unlock and release tree block 'node'
7177 * only used by relocation code
7178 */
7179 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7180 struct btrfs_root *root,
7181 struct extent_buffer *node,
7182 struct extent_buffer *parent)
7183 {
7184 struct btrfs_path *path;
7185 struct walk_control *wc;
7186 int level;
7187 int parent_level;
7188 int ret = 0;
7189 int wret;
7190
7191 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7192
7193 path = btrfs_alloc_path();
7194 if (!path)
7195 return -ENOMEM;
7196
7197 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7198 if (!wc) {
7199 btrfs_free_path(path);
7200 return -ENOMEM;
7201 }
7202
7203 btrfs_assert_tree_locked(parent);
7204 parent_level = btrfs_header_level(parent);
7205 extent_buffer_get(parent);
7206 path->nodes[parent_level] = parent;
7207 path->slots[parent_level] = btrfs_header_nritems(parent);
7208
7209 btrfs_assert_tree_locked(node);
7210 level = btrfs_header_level(node);
7211 path->nodes[level] = node;
7212 path->slots[level] = 0;
7213 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7214
7215 wc->refs[parent_level] = 1;
7216 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7217 wc->level = level;
7218 wc->shared_level = -1;
7219 wc->stage = DROP_REFERENCE;
7220 wc->update_ref = 0;
7221 wc->keep_locks = 1;
7222 wc->for_reloc = 1;
7223 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7224
7225 while (1) {
7226 wret = walk_down_tree(trans, root, path, wc);
7227 if (wret < 0) {
7228 ret = wret;
7229 break;
7230 }
7231
7232 wret = walk_up_tree(trans, root, path, wc, parent_level);
7233 if (wret < 0)
7234 ret = wret;
7235 if (wret != 0)
7236 break;
7237 }
7238
7239 kfree(wc);
7240 btrfs_free_path(path);
7241 return ret;
7242 }
7243
7244 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7245 {
7246 u64 num_devices;
7247 u64 stripped;
7248
7249 /*
7250 * if restripe for this chunk_type is on pick target profile and
7251 * return, otherwise do the usual balance
7252 */
7253 stripped = get_restripe_target(root->fs_info, flags);
7254 if (stripped)
7255 return extended_to_chunk(stripped);
7256
7257 /*
7258 * we add in the count of missing devices because we want
7259 * to make sure that any RAID levels on a degraded FS
7260 * continue to be honored.
7261 */
7262 num_devices = root->fs_info->fs_devices->rw_devices +
7263 root->fs_info->fs_devices->missing_devices;
7264
7265 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7266 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7267
7268 if (num_devices == 1) {
7269 stripped |= BTRFS_BLOCK_GROUP_DUP;
7270 stripped = flags & ~stripped;
7271
7272 /* turn raid0 into single device chunks */
7273 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7274 return stripped;
7275
7276 /* turn mirroring into duplication */
7277 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7278 BTRFS_BLOCK_GROUP_RAID10))
7279 return stripped | BTRFS_BLOCK_GROUP_DUP;
7280 } else {
7281 /* they already had raid on here, just return */
7282 if (flags & stripped)
7283 return flags;
7284
7285 stripped |= BTRFS_BLOCK_GROUP_DUP;
7286 stripped = flags & ~stripped;
7287
7288 /* switch duplicated blocks with raid1 */
7289 if (flags & BTRFS_BLOCK_GROUP_DUP)
7290 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7291
7292 /* this is drive concat, leave it alone */
7293 }
7294
7295 return flags;
7296 }
7297
7298 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7299 {
7300 struct btrfs_space_info *sinfo = cache->space_info;
7301 u64 num_bytes;
7302 u64 min_allocable_bytes;
7303 int ret = -ENOSPC;
7304
7305
7306 /*
7307 * We need some metadata space and system metadata space for
7308 * allocating chunks in some corner cases until we force to set
7309 * it to be readonly.
7310 */
7311 if ((sinfo->flags &
7312 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7313 !force)
7314 min_allocable_bytes = 1 * 1024 * 1024;
7315 else
7316 min_allocable_bytes = 0;
7317
7318 spin_lock(&sinfo->lock);
7319 spin_lock(&cache->lock);
7320
7321 if (cache->ro) {
7322 ret = 0;
7323 goto out;
7324 }
7325
7326 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7327 cache->bytes_super - btrfs_block_group_used(&cache->item);
7328
7329 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7330 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7331 min_allocable_bytes <= sinfo->total_bytes) {
7332 sinfo->bytes_readonly += num_bytes;
7333 cache->ro = 1;
7334 ret = 0;
7335 }
7336 out:
7337 spin_unlock(&cache->lock);
7338 spin_unlock(&sinfo->lock);
7339 return ret;
7340 }
7341
7342 int btrfs_set_block_group_ro(struct btrfs_root *root,
7343 struct btrfs_block_group_cache *cache)
7344
7345 {
7346 struct btrfs_trans_handle *trans;
7347 u64 alloc_flags;
7348 int ret;
7349
7350 BUG_ON(cache->ro);
7351
7352 trans = btrfs_join_transaction(root);
7353 if (IS_ERR(trans))
7354 return PTR_ERR(trans);
7355
7356 alloc_flags = update_block_group_flags(root, cache->flags);
7357 if (alloc_flags != cache->flags) {
7358 ret = do_chunk_alloc(trans, root, alloc_flags,
7359 CHUNK_ALLOC_FORCE);
7360 if (ret < 0)
7361 goto out;
7362 }
7363
7364 ret = set_block_group_ro(cache, 0);
7365 if (!ret)
7366 goto out;
7367 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7368 ret = do_chunk_alloc(trans, root, alloc_flags,
7369 CHUNK_ALLOC_FORCE);
7370 if (ret < 0)
7371 goto out;
7372 ret = set_block_group_ro(cache, 0);
7373 out:
7374 btrfs_end_transaction(trans, root);
7375 return ret;
7376 }
7377
7378 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7379 struct btrfs_root *root, u64 type)
7380 {
7381 u64 alloc_flags = get_alloc_profile(root, type);
7382 return do_chunk_alloc(trans, root, alloc_flags,
7383 CHUNK_ALLOC_FORCE);
7384 }
7385
7386 /*
7387 * helper to account the unused space of all the readonly block group in the
7388 * list. takes mirrors into account.
7389 */
7390 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7391 {
7392 struct btrfs_block_group_cache *block_group;
7393 u64 free_bytes = 0;
7394 int factor;
7395
7396 list_for_each_entry(block_group, groups_list, list) {
7397 spin_lock(&block_group->lock);
7398
7399 if (!block_group->ro) {
7400 spin_unlock(&block_group->lock);
7401 continue;
7402 }
7403
7404 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7405 BTRFS_BLOCK_GROUP_RAID10 |
7406 BTRFS_BLOCK_GROUP_DUP))
7407 factor = 2;
7408 else
7409 factor = 1;
7410
7411 free_bytes += (block_group->key.offset -
7412 btrfs_block_group_used(&block_group->item)) *
7413 factor;
7414
7415 spin_unlock(&block_group->lock);
7416 }
7417
7418 return free_bytes;
7419 }
7420
7421 /*
7422 * helper to account the unused space of all the readonly block group in the
7423 * space_info. takes mirrors into account.
7424 */
7425 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7426 {
7427 int i;
7428 u64 free_bytes = 0;
7429
7430 spin_lock(&sinfo->lock);
7431
7432 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7433 if (!list_empty(&sinfo->block_groups[i]))
7434 free_bytes += __btrfs_get_ro_block_group_free_space(
7435 &sinfo->block_groups[i]);
7436
7437 spin_unlock(&sinfo->lock);
7438
7439 return free_bytes;
7440 }
7441
7442 void btrfs_set_block_group_rw(struct btrfs_root *root,
7443 struct btrfs_block_group_cache *cache)
7444 {
7445 struct btrfs_space_info *sinfo = cache->space_info;
7446 u64 num_bytes;
7447
7448 BUG_ON(!cache->ro);
7449
7450 spin_lock(&sinfo->lock);
7451 spin_lock(&cache->lock);
7452 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7453 cache->bytes_super - btrfs_block_group_used(&cache->item);
7454 sinfo->bytes_readonly -= num_bytes;
7455 cache->ro = 0;
7456 spin_unlock(&cache->lock);
7457 spin_unlock(&sinfo->lock);
7458 }
7459
7460 /*
7461 * checks to see if its even possible to relocate this block group.
7462 *
7463 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7464 * ok to go ahead and try.
7465 */
7466 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7467 {
7468 struct btrfs_block_group_cache *block_group;
7469 struct btrfs_space_info *space_info;
7470 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7471 struct btrfs_device *device;
7472 u64 min_free;
7473 u64 dev_min = 1;
7474 u64 dev_nr = 0;
7475 u64 target;
7476 int index;
7477 int full = 0;
7478 int ret = 0;
7479
7480 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7481
7482 /* odd, couldn't find the block group, leave it alone */
7483 if (!block_group)
7484 return -1;
7485
7486 min_free = btrfs_block_group_used(&block_group->item);
7487
7488 /* no bytes used, we're good */
7489 if (!min_free)
7490 goto out;
7491
7492 space_info = block_group->space_info;
7493 spin_lock(&space_info->lock);
7494
7495 full = space_info->full;
7496
7497 /*
7498 * if this is the last block group we have in this space, we can't
7499 * relocate it unless we're able to allocate a new chunk below.
7500 *
7501 * Otherwise, we need to make sure we have room in the space to handle
7502 * all of the extents from this block group. If we can, we're good
7503 */
7504 if ((space_info->total_bytes != block_group->key.offset) &&
7505 (space_info->bytes_used + space_info->bytes_reserved +
7506 space_info->bytes_pinned + space_info->bytes_readonly +
7507 min_free < space_info->total_bytes)) {
7508 spin_unlock(&space_info->lock);
7509 goto out;
7510 }
7511 spin_unlock(&space_info->lock);
7512
7513 /*
7514 * ok we don't have enough space, but maybe we have free space on our
7515 * devices to allocate new chunks for relocation, so loop through our
7516 * alloc devices and guess if we have enough space. if this block
7517 * group is going to be restriped, run checks against the target
7518 * profile instead of the current one.
7519 */
7520 ret = -1;
7521
7522 /*
7523 * index:
7524 * 0: raid10
7525 * 1: raid1
7526 * 2: dup
7527 * 3: raid0
7528 * 4: single
7529 */
7530 target = get_restripe_target(root->fs_info, block_group->flags);
7531 if (target) {
7532 index = __get_raid_index(extended_to_chunk(target));
7533 } else {
7534 /*
7535 * this is just a balance, so if we were marked as full
7536 * we know there is no space for a new chunk
7537 */
7538 if (full)
7539 goto out;
7540
7541 index = get_block_group_index(block_group);
7542 }
7543
7544 if (index == BTRFS_RAID_RAID10) {
7545 dev_min = 4;
7546 /* Divide by 2 */
7547 min_free >>= 1;
7548 } else if (index == BTRFS_RAID_RAID1) {
7549 dev_min = 2;
7550 } else if (index == BTRFS_RAID_DUP) {
7551 /* Multiply by 2 */
7552 min_free <<= 1;
7553 } else if (index == BTRFS_RAID_RAID0) {
7554 dev_min = fs_devices->rw_devices;
7555 do_div(min_free, dev_min);
7556 }
7557
7558 mutex_lock(&root->fs_info->chunk_mutex);
7559 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7560 u64 dev_offset;
7561
7562 /*
7563 * check to make sure we can actually find a chunk with enough
7564 * space to fit our block group in.
7565 */
7566 if (device->total_bytes > device->bytes_used + min_free &&
7567 !device->is_tgtdev_for_dev_replace) {
7568 ret = find_free_dev_extent(device, min_free,
7569 &dev_offset, NULL);
7570 if (!ret)
7571 dev_nr++;
7572
7573 if (dev_nr >= dev_min)
7574 break;
7575
7576 ret = -1;
7577 }
7578 }
7579 mutex_unlock(&root->fs_info->chunk_mutex);
7580 out:
7581 btrfs_put_block_group(block_group);
7582 return ret;
7583 }
7584
7585 static int find_first_block_group(struct btrfs_root *root,
7586 struct btrfs_path *path, struct btrfs_key *key)
7587 {
7588 int ret = 0;
7589 struct btrfs_key found_key;
7590 struct extent_buffer *leaf;
7591 int slot;
7592
7593 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7594 if (ret < 0)
7595 goto out;
7596
7597 while (1) {
7598 slot = path->slots[0];
7599 leaf = path->nodes[0];
7600 if (slot >= btrfs_header_nritems(leaf)) {
7601 ret = btrfs_next_leaf(root, path);
7602 if (ret == 0)
7603 continue;
7604 if (ret < 0)
7605 goto out;
7606 break;
7607 }
7608 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7609
7610 if (found_key.objectid >= key->objectid &&
7611 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7612 ret = 0;
7613 goto out;
7614 }
7615 path->slots[0]++;
7616 }
7617 out:
7618 return ret;
7619 }
7620
7621 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7622 {
7623 struct btrfs_block_group_cache *block_group;
7624 u64 last = 0;
7625
7626 while (1) {
7627 struct inode *inode;
7628
7629 block_group = btrfs_lookup_first_block_group(info, last);
7630 while (block_group) {
7631 spin_lock(&block_group->lock);
7632 if (block_group->iref)
7633 break;
7634 spin_unlock(&block_group->lock);
7635 block_group = next_block_group(info->tree_root,
7636 block_group);
7637 }
7638 if (!block_group) {
7639 if (last == 0)
7640 break;
7641 last = 0;
7642 continue;
7643 }
7644
7645 inode = block_group->inode;
7646 block_group->iref = 0;
7647 block_group->inode = NULL;
7648 spin_unlock(&block_group->lock);
7649 iput(inode);
7650 last = block_group->key.objectid + block_group->key.offset;
7651 btrfs_put_block_group(block_group);
7652 }
7653 }
7654
7655 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7656 {
7657 struct btrfs_block_group_cache *block_group;
7658 struct btrfs_space_info *space_info;
7659 struct btrfs_caching_control *caching_ctl;
7660 struct rb_node *n;
7661
7662 down_write(&info->extent_commit_sem);
7663 while (!list_empty(&info->caching_block_groups)) {
7664 caching_ctl = list_entry(info->caching_block_groups.next,
7665 struct btrfs_caching_control, list);
7666 list_del(&caching_ctl->list);
7667 put_caching_control(caching_ctl);
7668 }
7669 up_write(&info->extent_commit_sem);
7670
7671 spin_lock(&info->block_group_cache_lock);
7672 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7673 block_group = rb_entry(n, struct btrfs_block_group_cache,
7674 cache_node);
7675 rb_erase(&block_group->cache_node,
7676 &info->block_group_cache_tree);
7677 spin_unlock(&info->block_group_cache_lock);
7678
7679 down_write(&block_group->space_info->groups_sem);
7680 list_del(&block_group->list);
7681 up_write(&block_group->space_info->groups_sem);
7682
7683 if (block_group->cached == BTRFS_CACHE_STARTED)
7684 wait_block_group_cache_done(block_group);
7685
7686 /*
7687 * We haven't cached this block group, which means we could
7688 * possibly have excluded extents on this block group.
7689 */
7690 if (block_group->cached == BTRFS_CACHE_NO)
7691 free_excluded_extents(info->extent_root, block_group);
7692
7693 btrfs_remove_free_space_cache(block_group);
7694 btrfs_put_block_group(block_group);
7695
7696 spin_lock(&info->block_group_cache_lock);
7697 }
7698 spin_unlock(&info->block_group_cache_lock);
7699
7700 /* now that all the block groups are freed, go through and
7701 * free all the space_info structs. This is only called during
7702 * the final stages of unmount, and so we know nobody is
7703 * using them. We call synchronize_rcu() once before we start,
7704 * just to be on the safe side.
7705 */
7706 synchronize_rcu();
7707
7708 release_global_block_rsv(info);
7709
7710 while(!list_empty(&info->space_info)) {
7711 space_info = list_entry(info->space_info.next,
7712 struct btrfs_space_info,
7713 list);
7714 if (space_info->bytes_pinned > 0 ||
7715 space_info->bytes_reserved > 0 ||
7716 space_info->bytes_may_use > 0) {
7717 WARN_ON(1);
7718 dump_space_info(space_info, 0, 0);
7719 }
7720 list_del(&space_info->list);
7721 kfree(space_info);
7722 }
7723 return 0;
7724 }
7725
7726 static void __link_block_group(struct btrfs_space_info *space_info,
7727 struct btrfs_block_group_cache *cache)
7728 {
7729 int index = get_block_group_index(cache);
7730
7731 down_write(&space_info->groups_sem);
7732 list_add_tail(&cache->list, &space_info->block_groups[index]);
7733 up_write(&space_info->groups_sem);
7734 }
7735
7736 int btrfs_read_block_groups(struct btrfs_root *root)
7737 {
7738 struct btrfs_path *path;
7739 int ret;
7740 struct btrfs_block_group_cache *cache;
7741 struct btrfs_fs_info *info = root->fs_info;
7742 struct btrfs_space_info *space_info;
7743 struct btrfs_key key;
7744 struct btrfs_key found_key;
7745 struct extent_buffer *leaf;
7746 int need_clear = 0;
7747 u64 cache_gen;
7748
7749 root = info->extent_root;
7750 key.objectid = 0;
7751 key.offset = 0;
7752 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7753 path = btrfs_alloc_path();
7754 if (!path)
7755 return -ENOMEM;
7756 path->reada = 1;
7757
7758 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7759 if (btrfs_test_opt(root, SPACE_CACHE) &&
7760 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7761 need_clear = 1;
7762 if (btrfs_test_opt(root, CLEAR_CACHE))
7763 need_clear = 1;
7764
7765 while (1) {
7766 ret = find_first_block_group(root, path, &key);
7767 if (ret > 0)
7768 break;
7769 if (ret != 0)
7770 goto error;
7771 leaf = path->nodes[0];
7772 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7773 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7774 if (!cache) {
7775 ret = -ENOMEM;
7776 goto error;
7777 }
7778 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7779 GFP_NOFS);
7780 if (!cache->free_space_ctl) {
7781 kfree(cache);
7782 ret = -ENOMEM;
7783 goto error;
7784 }
7785
7786 atomic_set(&cache->count, 1);
7787 spin_lock_init(&cache->lock);
7788 cache->fs_info = info;
7789 INIT_LIST_HEAD(&cache->list);
7790 INIT_LIST_HEAD(&cache->cluster_list);
7791
7792 if (need_clear) {
7793 /*
7794 * When we mount with old space cache, we need to
7795 * set BTRFS_DC_CLEAR and set dirty flag.
7796 *
7797 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7798 * truncate the old free space cache inode and
7799 * setup a new one.
7800 * b) Setting 'dirty flag' makes sure that we flush
7801 * the new space cache info onto disk.
7802 */
7803 cache->disk_cache_state = BTRFS_DC_CLEAR;
7804 if (btrfs_test_opt(root, SPACE_CACHE))
7805 cache->dirty = 1;
7806 }
7807
7808 read_extent_buffer(leaf, &cache->item,
7809 btrfs_item_ptr_offset(leaf, path->slots[0]),
7810 sizeof(cache->item));
7811 memcpy(&cache->key, &found_key, sizeof(found_key));
7812
7813 key.objectid = found_key.objectid + found_key.offset;
7814 btrfs_release_path(path);
7815 cache->flags = btrfs_block_group_flags(&cache->item);
7816 cache->sectorsize = root->sectorsize;
7817
7818 btrfs_init_free_space_ctl(cache);
7819
7820 /*
7821 * We need to exclude the super stripes now so that the space
7822 * info has super bytes accounted for, otherwise we'll think
7823 * we have more space than we actually do.
7824 */
7825 exclude_super_stripes(root, cache);
7826
7827 /*
7828 * check for two cases, either we are full, and therefore
7829 * don't need to bother with the caching work since we won't
7830 * find any space, or we are empty, and we can just add all
7831 * the space in and be done with it. This saves us _alot_ of
7832 * time, particularly in the full case.
7833 */
7834 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7835 cache->last_byte_to_unpin = (u64)-1;
7836 cache->cached = BTRFS_CACHE_FINISHED;
7837 free_excluded_extents(root, cache);
7838 } else if (btrfs_block_group_used(&cache->item) == 0) {
7839 cache->last_byte_to_unpin = (u64)-1;
7840 cache->cached = BTRFS_CACHE_FINISHED;
7841 add_new_free_space(cache, root->fs_info,
7842 found_key.objectid,
7843 found_key.objectid +
7844 found_key.offset);
7845 free_excluded_extents(root, cache);
7846 }
7847
7848 ret = update_space_info(info, cache->flags, found_key.offset,
7849 btrfs_block_group_used(&cache->item),
7850 &space_info);
7851 BUG_ON(ret); /* -ENOMEM */
7852 cache->space_info = space_info;
7853 spin_lock(&cache->space_info->lock);
7854 cache->space_info->bytes_readonly += cache->bytes_super;
7855 spin_unlock(&cache->space_info->lock);
7856
7857 __link_block_group(space_info, cache);
7858
7859 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7860 BUG_ON(ret); /* Logic error */
7861
7862 set_avail_alloc_bits(root->fs_info, cache->flags);
7863 if (btrfs_chunk_readonly(root, cache->key.objectid))
7864 set_block_group_ro(cache, 1);
7865 }
7866
7867 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7868 if (!(get_alloc_profile(root, space_info->flags) &
7869 (BTRFS_BLOCK_GROUP_RAID10 |
7870 BTRFS_BLOCK_GROUP_RAID1 |
7871 BTRFS_BLOCK_GROUP_DUP)))
7872 continue;
7873 /*
7874 * avoid allocating from un-mirrored block group if there are
7875 * mirrored block groups.
7876 */
7877 list_for_each_entry(cache, &space_info->block_groups[3], list)
7878 set_block_group_ro(cache, 1);
7879 list_for_each_entry(cache, &space_info->block_groups[4], list)
7880 set_block_group_ro(cache, 1);
7881 }
7882
7883 init_global_block_rsv(info);
7884 ret = 0;
7885 error:
7886 btrfs_free_path(path);
7887 return ret;
7888 }
7889
7890 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
7891 struct btrfs_root *root)
7892 {
7893 struct btrfs_block_group_cache *block_group, *tmp;
7894 struct btrfs_root *extent_root = root->fs_info->extent_root;
7895 struct btrfs_block_group_item item;
7896 struct btrfs_key key;
7897 int ret = 0;
7898
7899 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
7900 new_bg_list) {
7901 list_del_init(&block_group->new_bg_list);
7902
7903 if (ret)
7904 continue;
7905
7906 spin_lock(&block_group->lock);
7907 memcpy(&item, &block_group->item, sizeof(item));
7908 memcpy(&key, &block_group->key, sizeof(key));
7909 spin_unlock(&block_group->lock);
7910
7911 ret = btrfs_insert_item(trans, extent_root, &key, &item,
7912 sizeof(item));
7913 if (ret)
7914 btrfs_abort_transaction(trans, extent_root, ret);
7915 }
7916 }
7917
7918 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7919 struct btrfs_root *root, u64 bytes_used,
7920 u64 type, u64 chunk_objectid, u64 chunk_offset,
7921 u64 size)
7922 {
7923 int ret;
7924 struct btrfs_root *extent_root;
7925 struct btrfs_block_group_cache *cache;
7926
7927 extent_root = root->fs_info->extent_root;
7928
7929 root->fs_info->last_trans_log_full_commit = trans->transid;
7930
7931 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7932 if (!cache)
7933 return -ENOMEM;
7934 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7935 GFP_NOFS);
7936 if (!cache->free_space_ctl) {
7937 kfree(cache);
7938 return -ENOMEM;
7939 }
7940
7941 cache->key.objectid = chunk_offset;
7942 cache->key.offset = size;
7943 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7944 cache->sectorsize = root->sectorsize;
7945 cache->fs_info = root->fs_info;
7946
7947 atomic_set(&cache->count, 1);
7948 spin_lock_init(&cache->lock);
7949 INIT_LIST_HEAD(&cache->list);
7950 INIT_LIST_HEAD(&cache->cluster_list);
7951 INIT_LIST_HEAD(&cache->new_bg_list);
7952
7953 btrfs_init_free_space_ctl(cache);
7954
7955 btrfs_set_block_group_used(&cache->item, bytes_used);
7956 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7957 cache->flags = type;
7958 btrfs_set_block_group_flags(&cache->item, type);
7959
7960 cache->last_byte_to_unpin = (u64)-1;
7961 cache->cached = BTRFS_CACHE_FINISHED;
7962 exclude_super_stripes(root, cache);
7963
7964 add_new_free_space(cache, root->fs_info, chunk_offset,
7965 chunk_offset + size);
7966
7967 free_excluded_extents(root, cache);
7968
7969 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7970 &cache->space_info);
7971 BUG_ON(ret); /* -ENOMEM */
7972 update_global_block_rsv(root->fs_info);
7973
7974 spin_lock(&cache->space_info->lock);
7975 cache->space_info->bytes_readonly += cache->bytes_super;
7976 spin_unlock(&cache->space_info->lock);
7977
7978 __link_block_group(cache->space_info, cache);
7979
7980 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7981 BUG_ON(ret); /* Logic error */
7982
7983 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
7984
7985 set_avail_alloc_bits(extent_root->fs_info, type);
7986
7987 return 0;
7988 }
7989
7990 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7991 {
7992 u64 extra_flags = chunk_to_extended(flags) &
7993 BTRFS_EXTENDED_PROFILE_MASK;
7994
7995 write_seqlock(&fs_info->profiles_lock);
7996 if (flags & BTRFS_BLOCK_GROUP_DATA)
7997 fs_info->avail_data_alloc_bits &= ~extra_flags;
7998 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7999 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8000 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8001 fs_info->avail_system_alloc_bits &= ~extra_flags;
8002 write_sequnlock(&fs_info->profiles_lock);
8003 }
8004
8005 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8006 struct btrfs_root *root, u64 group_start)
8007 {
8008 struct btrfs_path *path;
8009 struct btrfs_block_group_cache *block_group;
8010 struct btrfs_free_cluster *cluster;
8011 struct btrfs_root *tree_root = root->fs_info->tree_root;
8012 struct btrfs_key key;
8013 struct inode *inode;
8014 int ret;
8015 int index;
8016 int factor;
8017
8018 root = root->fs_info->extent_root;
8019
8020 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8021 BUG_ON(!block_group);
8022 BUG_ON(!block_group->ro);
8023
8024 /*
8025 * Free the reserved super bytes from this block group before
8026 * remove it.
8027 */
8028 free_excluded_extents(root, block_group);
8029
8030 memcpy(&key, &block_group->key, sizeof(key));
8031 index = get_block_group_index(block_group);
8032 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8033 BTRFS_BLOCK_GROUP_RAID1 |
8034 BTRFS_BLOCK_GROUP_RAID10))
8035 factor = 2;
8036 else
8037 factor = 1;
8038
8039 /* make sure this block group isn't part of an allocation cluster */
8040 cluster = &root->fs_info->data_alloc_cluster;
8041 spin_lock(&cluster->refill_lock);
8042 btrfs_return_cluster_to_free_space(block_group, cluster);
8043 spin_unlock(&cluster->refill_lock);
8044
8045 /*
8046 * make sure this block group isn't part of a metadata
8047 * allocation cluster
8048 */
8049 cluster = &root->fs_info->meta_alloc_cluster;
8050 spin_lock(&cluster->refill_lock);
8051 btrfs_return_cluster_to_free_space(block_group, cluster);
8052 spin_unlock(&cluster->refill_lock);
8053
8054 path = btrfs_alloc_path();
8055 if (!path) {
8056 ret = -ENOMEM;
8057 goto out;
8058 }
8059
8060 inode = lookup_free_space_inode(tree_root, block_group, path);
8061 if (!IS_ERR(inode)) {
8062 ret = btrfs_orphan_add(trans, inode);
8063 if (ret) {
8064 btrfs_add_delayed_iput(inode);
8065 goto out;
8066 }
8067 clear_nlink(inode);
8068 /* One for the block groups ref */
8069 spin_lock(&block_group->lock);
8070 if (block_group->iref) {
8071 block_group->iref = 0;
8072 block_group->inode = NULL;
8073 spin_unlock(&block_group->lock);
8074 iput(inode);
8075 } else {
8076 spin_unlock(&block_group->lock);
8077 }
8078 /* One for our lookup ref */
8079 btrfs_add_delayed_iput(inode);
8080 }
8081
8082 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8083 key.offset = block_group->key.objectid;
8084 key.type = 0;
8085
8086 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8087 if (ret < 0)
8088 goto out;
8089 if (ret > 0)
8090 btrfs_release_path(path);
8091 if (ret == 0) {
8092 ret = btrfs_del_item(trans, tree_root, path);
8093 if (ret)
8094 goto out;
8095 btrfs_release_path(path);
8096 }
8097
8098 spin_lock(&root->fs_info->block_group_cache_lock);
8099 rb_erase(&block_group->cache_node,
8100 &root->fs_info->block_group_cache_tree);
8101
8102 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8103 root->fs_info->first_logical_byte = (u64)-1;
8104 spin_unlock(&root->fs_info->block_group_cache_lock);
8105
8106 down_write(&block_group->space_info->groups_sem);
8107 /*
8108 * we must use list_del_init so people can check to see if they
8109 * are still on the list after taking the semaphore
8110 */
8111 list_del_init(&block_group->list);
8112 if (list_empty(&block_group->space_info->block_groups[index]))
8113 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8114 up_write(&block_group->space_info->groups_sem);
8115
8116 if (block_group->cached == BTRFS_CACHE_STARTED)
8117 wait_block_group_cache_done(block_group);
8118
8119 btrfs_remove_free_space_cache(block_group);
8120
8121 spin_lock(&block_group->space_info->lock);
8122 block_group->space_info->total_bytes -= block_group->key.offset;
8123 block_group->space_info->bytes_readonly -= block_group->key.offset;
8124 block_group->space_info->disk_total -= block_group->key.offset * factor;
8125 spin_unlock(&block_group->space_info->lock);
8126
8127 memcpy(&key, &block_group->key, sizeof(key));
8128
8129 btrfs_clear_space_info_full(root->fs_info);
8130
8131 btrfs_put_block_group(block_group);
8132 btrfs_put_block_group(block_group);
8133
8134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8135 if (ret > 0)
8136 ret = -EIO;
8137 if (ret < 0)
8138 goto out;
8139
8140 ret = btrfs_del_item(trans, root, path);
8141 out:
8142 btrfs_free_path(path);
8143 return ret;
8144 }
8145
8146 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8147 {
8148 struct btrfs_space_info *space_info;
8149 struct btrfs_super_block *disk_super;
8150 u64 features;
8151 u64 flags;
8152 int mixed = 0;
8153 int ret;
8154
8155 disk_super = fs_info->super_copy;
8156 if (!btrfs_super_root(disk_super))
8157 return 1;
8158
8159 features = btrfs_super_incompat_flags(disk_super);
8160 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8161 mixed = 1;
8162
8163 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8164 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8165 if (ret)
8166 goto out;
8167
8168 if (mixed) {
8169 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8170 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8171 } else {
8172 flags = BTRFS_BLOCK_GROUP_METADATA;
8173 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8174 if (ret)
8175 goto out;
8176
8177 flags = BTRFS_BLOCK_GROUP_DATA;
8178 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8179 }
8180 out:
8181 return ret;
8182 }
8183
8184 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8185 {
8186 return unpin_extent_range(root, start, end);
8187 }
8188
8189 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8190 u64 num_bytes, u64 *actual_bytes)
8191 {
8192 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8193 }
8194
8195 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8196 {
8197 struct btrfs_fs_info *fs_info = root->fs_info;
8198 struct btrfs_block_group_cache *cache = NULL;
8199 u64 group_trimmed;
8200 u64 start;
8201 u64 end;
8202 u64 trimmed = 0;
8203 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8204 int ret = 0;
8205
8206 /*
8207 * try to trim all FS space, our block group may start from non-zero.
8208 */
8209 if (range->len == total_bytes)
8210 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8211 else
8212 cache = btrfs_lookup_block_group(fs_info, range->start);
8213
8214 while (cache) {
8215 if (cache->key.objectid >= (range->start + range->len)) {
8216 btrfs_put_block_group(cache);
8217 break;
8218 }
8219
8220 start = max(range->start, cache->key.objectid);
8221 end = min(range->start + range->len,
8222 cache->key.objectid + cache->key.offset);
8223
8224 if (end - start >= range->minlen) {
8225 if (!block_group_cache_done(cache)) {
8226 ret = cache_block_group(cache, 0);
8227 if (!ret)
8228 wait_block_group_cache_done(cache);
8229 }
8230 ret = btrfs_trim_block_group(cache,
8231 &group_trimmed,
8232 start,
8233 end,
8234 range->minlen);
8235
8236 trimmed += group_trimmed;
8237 if (ret) {
8238 btrfs_put_block_group(cache);
8239 break;
8240 }
8241 }
8242
8243 cache = next_block_group(fs_info->tree_root, cache);
8244 }
8245
8246 range->len = trimmed;
8247 return ret;
8248 }
This page took 0.434158 seconds and 6 git commands to generate.